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In decision analysis, continuous uncertainties (i.e., the volume of oil in a 

reservoir) must be approximated by discrete distributions for use in decision trees, for 

example. Many methods of this process, called discretization, have been proposed and 

used for decades in practice. To the author’s knowledge, few studies of the methods’ 

accuracies exist, and were of only limited scope. This work presents a broad and 

systematic analysis of the accuracies of various discretization methods across large sets 

of distributions. The results indicate the best methods to use for approximating the 

moments of different types and shapes of distributions. New, more accurate, methods are 

also presented for a variety of distributional and practical assumptions. This first part of 

the work assumes perfect knowledge of the continuous distribution, which might not be 

the case in practice. The distributions are often elicited from subject matter experts, and 

because of issues such as cognitive biases, may have assessment errors. The second part 

of this work examines the implications of this error, and shows that differences between 

some discretization methods’ approximations are negligible under assessment error, 

whereas other methods’ errors are significantly larger than those because of imperfect 

assessments.  The final part of this work extends the analysis of previous sections to 
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applications to the Project Evaluation and Review Technique (PERT). The accuracies of 

several PERT formulae for approximating the mean and variance are analyzed, and 

several new formulae presented. The new formulae provide significant accuracy 

improvements over existing formulae. 
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Chapter 1: Introduction 

BACKGROUND 

Many decisions in both personal and business environments must be made without 

complete knowledge of the situation. This incompleteness of knowledge about a past 

event, fact, or the outcome of a future event is called uncertainty. The prospects, or 

potential future states, of the decisions depend on the actual values of these unknown 

factors. The presence of uncertainty is often the factor separating the difficult decisions 

from the trivial (Howard, 1989). Decision analysis theory and methods provide a 

philosophy and logical framework for making sound decisions under the conditions of 

uncertainty, scarce resources, and competing objectives. Knowledge about unknown 

parameters or uncertain quantities can be quantitatively described using probability 

distributions, and this knowledge can be applied to reasoning using probability theory.  

The possible values uncertain quantities can realize may be continuous, such as the 

volume of hydrocarbons in a reservoir or fraction of market share, or discrete, such as the 

presence of hydrocarbons or the winner of an election. Continuous uncertainties are 

modeled with a probability density function (pdf), and discrete uncertainties with a 

probability mass function (pmf). Decision trees are a popular tool for modeling the 

various uncertainties and decisions of a decision problem, but can represent only discrete 

scenarios. In order to represent continuous uncertainties in a discrete decision tree, it is 

common for decision analysts to represent, or approximate, pdfs with properly designed 

pmfs, a process known as discretization.  

Monte Carlo methods and more generally numerical integration methods 

approximate the values of complicated functions by a weighted sum of discrete values. 

Algorithms such as these utilize discrete representations of continuous values to make 

intractable calculations tractable and difficult ones easier. Decision trees are one such 

algorithm, and continuous uncertainties (and decision variables) are discretized to 
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simplify the tree-rollback procedure. Additionally, the computational time requirements 

associated with complex models, such as reservoir simulations or large portfolio 

optimizations, often limit the number of model evaluations. In these cases, it is more 

economical to carefully choose a small set of input values, rather than generate a large 

number of random scenarios via Monte Carlo simulation. 

In addition to easing the computational burden, discretization in decision analysis 

aids in understanding of the problem by defining distinct scenarios, and can simplify the 

work of assessing a probability distribution supplied by a decision-maker or subject-

matter expert.  

Discretization methods are designed to preserve certain properties of the continuous 

distribution, such as moments or percentiles. This goal is a means to the ultimate end of 

accurately representing the important characteristics of the output distribution of a 

decision model. This output is generally a distribution on a value measure, such as net 

present value (NPV) or utility. A common decision metric is the expectation of this value 

measure, such as expected NPV (ENPV), or the certainty equivalent (CE) of expected 

utility (Howard, 1971). The next chapter discusses the importance of matching input 

distribution moments to the output distribution expectation.  

Although our focus lies in discretizing probability distributions, the space of 

alternatives for a decision variable may also be continuous. This raises similar issues to 

that of probability discretization, of choosing a discrete set of alternatives to represent a 

continuous set. Merkhofer (1975) considered these issues in detail. 

MOTIVATION 

The existence of many discretization methods naturally raises the question as to which 

method is best in general or for a particular situation. Several prior studies, such as 

Keefer and Bodily (1983), Keefer (1994), and Smith (1993), indicated that some methods 

are consistently superior to others, but were limited in the methods considered, the 
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metrics used for evaluation, and the scope of distributions on which they were tested. 

Other work focused on separately estimating the means and variances of continuous 

distributions (Perry and Greig, 1975; Keefer and Verdini, 1993; Johnson, 1998; Lau and 

Lau, 1998; Lau et al., 1998; Shankar et al., 2010). However, this work is often not 

directly applicable to discretization because separate formulas are typically used for mean 

and variance estimation and are not always in a form consistent with a probability 

distribution. This work is, however, related, and is considered in this work in Chapter 6. 

Several methods have been proposed, but few have been systematically analyzed, 

and none in the scope considered here. Many of these can preserve the location and scale 

(mean and variance, respectively) of many distributions quite well but are quite poor in 

preserving higher moments, such as the skewness and kurtosis, that define a distribution’s 

shape. Some methods were designed with a specific distribution in mind and applied 

indiscriminately, while others make no assumptions about the underlying distribution a 

priori. We examine the questions of which method is best, when, and why.  

Despite varying degrees of accuracy, the magnitudes of differences in accuracy, 

particularly for the mean of a distribution, can be small for the best methods. This fact 

raises the question of whether these differences are significant when the underlying 

continuous distribution may not be precisely known. In practice, the continuous 

distributions that are discretized are assessed from the subjective judgment of subject-

matter experts. Due to disagreement between experts, inconsistencies in assessments, and 

cognitive biases, these assessments may not be accurate representations of the expert’s 

knowledge, a phenomenon we call assessment error. Although an expert gives a specific 

estimate for a distribution percentile, he or she may accept any value within a small 

neighborhood around their assessment as consistent with their information.  

Clearly, accurate approximations to continuous distributions are important for 

accurate decision models, but they are not the ultimate goal. As mentioned above, the 
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goal of decision analysis is to achieve the clarity required to make a good decision. The 

decision analysis cycle in Figure 1 is a structured approach to achieving this clarity 

through iterative model structuring, analysis, and refinement (Matheson and Howard, 

1968). Simple, less accurate, discrete approximations may be sufficient in the early stages 

of analysis, but their flaws might be shown by insights from the model. Uncertainties 

with more impact on the value function should be approximated in the model with 

enough accuracy to represent the characteristics that are important to the decision. 

 

Figure 1. The Decision Analysis Cycle. 

CONTRIBUTIONS 

This dissertation makes several contributions to the literature on probability discretization 

in decision analysis applications. We extend previous research by considering a wide 

range of distributions, through the use of the Pearson and Johnson distribution systems, 

which cover several commonly-used distribution families. We analyze discretization 

methods that have not been previously considered but that are now in common use, and 

we suggest several new discretizations that are tailored to specific distribution families. 

Error analysis is performed over a wide range of distributions from the two distribution 

systems. The author is not aware of any systematic discretization error analysis of as 

wide a scope as performed here.  
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The results show that even some quite simple methods can closely approximate the 

means and variances of a wide range of distributions. These same methods, however, 

provide very poor estimates of higher moments, such as skewness and kurtosis, that 

depend much more on the distribution tails. Most discretization methods we consider, and 

all of the methods typically in use, poorly represent these tails, hence the higher 

moments. Simple discretizations can accurately preserve the location and scale of a 

distribution, but they are generally poor approximations of the shape. Our results give 

insight into the distributions for which different methods perform best, and the reasons 

for this. The results provide a guide for choosing discretization methods in practice. We 

construct new methods by optimizing the average performance in matching the mean 

over wide sets of distributions having distinct qualities. In some cases, our new methods 

provide distinct improvements over existing methods, and in others demonstrate that the 

existing methods are already very close to optimal according to mean-squared error.  

To analyze the effects of imperfectly assessed distributions, we start by presenting 

a model of probability assessment error based on the notion of a truth set. Although a 

discretization method may clearly outperform another in terms of discretization error, in 

many cases the presence of assessment error overwhelms this difference in performance. 

However, some methods’ discretization errors are large enough to be significant under 

large assessment error. Our approach to assessment error is new and addresses practical 

issues with subjectively assessed distributions. We compare a selection of discretization 

methods, encompassing different types of methods with widely varying accuracies. Our 

model of assessment error in the percentile assessments is consistent with the errors 

reported in much of the probability assessment literature.  

Other than decision analysis, the Program Evaluation and Review Technique 

(PERT) frequently utilizes approximations to continuous distributions. Rather than 

forming discrete approximations to distributions, PERT approximations typically 
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estimate the mean and variance using separate formulae that are functions of distribution 

characteristics, such as percentiles, endpoints, or the mode. We extend the formulation 

we use to find new discretization shortcuts to construct new mean and variance 

approximation formulae that are more accurate than previously proposed formulae. We 

also demonstrate that the mode is a poor characteristic to use in these formulae. 

ORGANIZATION 

This work is organized as follows. The next chapter reviews the main discretization 

methods discussed in the literature, give a brief history of their development, and presents 

our new methods. Chapter 3 reviews the Pearson and Johnson distribution systems we 

use for analysis. Chapter 4 presents the analysis of discretization error. Chapter 5 presents 

the extension to include assessment error. Chapter 6 gives an application of our results to 

the form of methods used by PERT methods. Chapter 7 concludes and presents further 

questions and directions for future work.  
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Chapter 2: Discretization Methods 

INTRODUCTION 

This chapter reviews the main discretization methods discussed in the literature and gives 

a brief history of their development. We present several new discretization methods. We 

briefly review the use of discretization in other fields. We also review probability 

elicitation. 

We broadly categorize the methods as either distribution-specific, which require the 

full distribution, or as a shortcut, which only requires a few predefined percentiles. 

Shortcuts use (often three) fixed percentiles such as the 10
th

 (P10), 50
th

 (P50), and 90
th

 

(P90). Distribution-specific methods tailor the percentiles to the shape of the underlying 

pdf, and they typically give the analyst freedom to choose the number of discrete points. 

An advantage of shortcut methods is that the full pdf need not be known, requiring only 

the percentile assessments. In contrast, distribution-specific methods require the full pdf, 

but this gains modeling flexibility. 

Specifically, suppose we are constructing a decision model that takes as an input 

the continuous random variable X with support S  . For a realization x S  of this 

uncertainty and a vector of decision variables w, the model has value output v(w,x). 

Discretization approximates the pdf f(x), or the cumulative distribution function (cdf) 

F(x), with a set of values ix S , i = 1, 2, …, N, and associated probabilities pi ≡ p(xi). In 

most discretization methods, N is equal to three, but five is not uncommon. We denote 

the discretization operation as ( )dD f  for continuous pdf f and discretization method d, 

and the resulting pmf as ( )dg D f  with corresponding cdf G. 

The values and probabilities are chosen so that g preserves certain properties of f. 

The moments of f are the most common, but aspects of the cdf curve F may also be used. 

Various measures of accuracy are discussed later in this chapter. 
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DISTRIBUTION-SPECIFIC METHODS 

Distribution-specific methods require that the full distribution be known. The methods we 

consider can be divided into bracket methods and quadrature methods. 

Bracket Methods 

Bracket methods partition the distribution into mutually exclusive intervals, or brackets, 

1,...

, , , , 1,... ,i i i j

i N

B S B S B B i j N i j


      , representing each interval with a single 

value-probability pair, { , }i ix p . The intervals can be defined for discretizing a random 

variable X by partitioning either the support of X or partitioning the cumulative 

probability scale, which the cdf F of X transforms into a partition on the support. The 

second convention is generally easier to work with, since it is independent of the support 

of X, and it is more common in the decision analysis literature.  

The bracket methods Bracket Mean (BMn) and Bracket Median (BMd) represent 

intervals by their means and medians, respectively. The analyst is not restricted to using 

only means or medians, but these methods are straightforward to apply without requiring 

any calculation. 

Bracket Mean 

BMn, also called the “equal areas” method  was originally developed by Jim Matheson 

and his colleagues at the Stanford Research Institute from the late 1960s to the early 

1970s (Bickel et al., 2011). BMn represents brackets by their conditional means, 

  |i ix E X x B  , (1) 

and weights them by the probability represented by the bracket, 

  
i

i

x B

p f x dx


  .  (2) 

The method is more adaptable to the underlying distribution than are shortcuts and is also 

easier to apply than the Gaussian quadrature method described below. BMn perfectly 

matches the mean of the underlying distribution, but it always underestimates the 
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variance and higher even-moments (Miller and Rice, 1983). The next chapter will show 

that BMn’s error in the variance, for three- and five-point bracket examples, tends to be 

higher than some three-point discretization shortcuts. 

Part of BMn’s appeal stems from the fact that it can be graphically explained and 

applied to a distribution for which the cdf, but not necessarily the functional form, is 

available (Merkhofer, 1975). For example, Figure 2 shows the cdf of a standard-normal 

distribution, with the cumulative scale divided into three intervals: [0.0, 0.25], (0.25, 

0.75], and (0.75, 1.0]. To find the conditional mean of the first bracket, which we will use 

as the discretization point x1, find the location of the vertical line that makes the shaded 

areas A1 and A2 equal. The X value at this point is conditional mean. Repeat for each 

interval, assigning the probability of an interval to the corresponding point as the 

discretization. Here, the points -1.24, 0, and 1.24 are respectively assigned probabilities 

0.25, 0.50, and 0.25.  For a proof of this method, see (Merkhofer, 1975) or McNamee and 

Celona (1991). 

 

Figure 2. An example application of Bracket Mean with intervals [0, 0.25], (0.25, 0.75], 
(0.75, 1] on the standard normal distribution. 
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Bracket Median 

BMd uses the conditional medians of the partitions of the support. If partitioning on the 

cumulative probability axis, the median of a bracket can be determined simply by the 

midpoint of that interval on the cumulative probability scale (a percentile). Using the 

brackets of Figure 2, the median of the bracket [0, 0.25] is the 0.125 percentile, or the 

P12.5. Because the conditional distributions are generally skewed, the median and the 

mean differ and BMd will regularly result in different discretizations from BMn  

BMd is frequently recommended in decision analysis texts (Schlaifer, 1969; 

Holloway, 1979; Clemen, 1991). Although the method is simple to apply, it typically 

incurs large errors in the moments. The next chapter will show that three- and five-point 

BMd discretizations using equal-sized brackets tend to perform far worse than three- and 

five-point BMn in matching the mean and variance of a distribution.  

Quadrature Methods1 

These methods originate from numerical integration methods. The most widely used of 

these in the decision analysis literature is Gaussian quadrature (GQ), which approximates 

an integral with a sum of discrete points and weights. For a function ( )x and pdf f(x), 

the values ix  and probabilities ip  are found for the approximation 

 
1

( ) ( ) ( ),

b n

i i

ia

f x x dx p x


     (3) 

which is exact for functions ( )x that are polynomials of degree 2n-1 or less. An n-point 

GQ preserves the 0
th

 through the (2n-1)
st
 moments, which Stroud (1974) showed to be the 

highest degree achievable by an n-point approximation. Gauss in 1816 studied the special 

case of [a, b] = [-1, 1], and integration rules of this form became known as Gaussian 

quadrature formulae. Formulae for many common weighting functions are tabulated; see 

for example, Stroud and Secrest (1966). Miller and Rice (1983) first described GQ as a 

                                                 
1 This section borrows heavily from Smith (1990). 
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method for discretizing continuous probability distributions to reduce the complexity of 

decision problems. Smith (1990, 1993) gave an alternative method for constructing GQ 

discretizations, which utilizes the theory of orthogonal polynomials described in Stroud 

and Secrest (1966). We review both methods below. 

A GQ formula is constructed in two steps: finding ip  and ix . First, a polynomial is 

constructed whose roots are the points of the discrete approximation. Second, the 

probabilities are found by solving the linear system of equations formed by setting the 

first n moments (including the 0
th

 moment) of the discrete approximation equal to the 

corresponding moments of f.  

Miller and Rice’s Method 

The basic approach described by Miller and Rice (1983) is to solve for ip  and ix  in the 

2n equations 

  
1

( ) 0, ,2 1.
n

k k

k i i

i

x f x dx m p x k N





      (4) 

This is accomplished by finding ix  as the roots of a polynomial 

 
01

( ) ( ) .
n n

k

i k

ki

x x x c x


     (5) 

The coefficients kc  are determined from a set of n linear equations formed from (4): 

 
1 0

( ) 0 0,..., 1.
n n

j

i i i k k j

i k

p x x c m j n 

 

       (6) 

Having found the points ix , the weights ip  are determined from the linear system 

of equations formed by the first n equations of Equation (4). 

Smith’s Method 

The methodological simplification described by Smith (1990) utilizes the theory of 

orthogonal polynomials. Two polynomials P(x) and Q(x) are orthogonal with respect to f 

if 
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 ( ) ( ) ( ) 0.P x Q x f x dx





  (7) 

Denote by ( )nP x  a degree n polynomial that is orthogonal to all polynomials of degree 

less than n: 

 ( ) ( ) 0 0,..., 1,k

nP x x f x dx k n





     (8) 

which is unique up to a scaling constant. Denote by ( )nP x  a degree n orthonormal 

polynomial, which is an orthogonal polynomial scaled so that 

 
0, ,

( ) ( ) ( )
1, .

n k

k n
P x P x f x dx

k n



 




 


   (9) 

An orthogonal polynomial is exactly the polynomial for which we computed the 

constants in (6). The orthonormal polynomials P0*,...,Pn* with respect to f are related by 

the recurrence relation (using Smith (1993)'s notation): 

 
 

1 0

1/2
*2 * 2 *

1 1

( ) 0; ( ) 1,

( ) ( ) ( ) ( ) ( )i i i i i

P x P x

P x x E xP x P x E P x P x



 

 

        

  (10) 

 *

1/2
2

for 1 1

( )
where ( ) .

( )

i
i

i

i n

P x
P x

E P x

  


  

  

E denotes the expectation with respect to F. The n roots of Pn*, y1,..., yn are distinct 

and provide the n discretization values. The discretization points yi are the roots of 

( ),nP x
 which can be computed using the Newton-Raphson method, for example. The 

probability weight associated with each point is given by 

 
1 1

,
'( ) ( )

n
i

n n i n i

k
p

k P x P x 

 

   (11) 

where nk  and 1nk   are the leading coefficients of ( )nP x
 and 1( )nP x

 , respectively, and 

'( )nP x
 denotes the derivative of ( )nP x

.  



   13 

These approaches require only the moments of f. The theory of orthogonal 

polynomials guarantees that the roots are contained within the support of f and that 

1

1

1
n

i

p


 , which thus assures that the result is a valid pmf representation of f.  

GQ has the highest possible moment accuracy of any discrete approximation 

method, but it has several drawbacks. First, it is by far the most complex method we 

consider, and its calculations necessitate software implementation. Smith’s approach 

avoids solving the system of linear equations in the Miller and Rice method, but it still 

requires finding the roots of an n-degree polynomial. Second, GQ is limited to 

distributions for which the 2n-1 moments exist. Finally, GQ tends to use points far out in 

the tails of a distribution, in order to match higher moments. These points correspond to 

extreme percentiles, such as the P99.9, which are often unreliable for subjectively 

assessed distributions (Lichtenstein et al., 1982). 

SHORTCUT METHODS 

Shortcut methods use only a few points from the cdf, making them often the easiest to 

use in practice, since only these points must be elicited or determined and then 

appropriately weighted in the decision tree. A shortcut is defined by a set of percentiles 

{ }iq  from the pdf and a corresponding set of probabilities { }ip . The 100%q  percentile 

for a cdf F is the value 
1( )F q

. Shortcut values and probabilities will be summarized in 

the form, (q1, q2, q3, p1, p2, p3). Shortcuts are typically symmetric, i.e., for a three-point 

discretization, p1 = p3 and
1 1

1 3( ) 1 ( )F q F q   . 

Some of the earliest work on shortcut-like methods was that of Pearson and Tukey 

(1965), who tested many approximation formulae that preserve either the mean or the 

variance of a set of distributions. They recommended a symmetric three-point 

approximation for the mean by weighting the P5, P50, and P95 with 0.185, 0.630, and 

0.185, respectively. Keefer and Bodily (1983) suggested treating Pearson and Tukey’s 

approximation as a full pmf and referred to it as Extended Pearson-Tukey (EPT). 
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Examples in the literature include Keeney (1987) in selecting sites for nuclear waste 

repositories and Brooks and Kirkwood (1988) in selecting a strategy for microcomputer 

networking. Clemen and Reilly (1999) and Wang and Dyer (2012) used it to discretize 

Gaussian copulas.  

Another mean approximation formula, called “Swanson’s Mean,” weights the P10, 

P50 and P90 percentiles of F(x) by 0.300, 0.400, and 0.300, respectively. Roy Swanson 

proposed, in a 1972 internal Exxon memo, that the mean of a lognormal distribution can 

be approximated by weighting the P10, P50, and P90 by 0.300, 0.400, and 0.300, 

respectively (Hurst et al., 2000). Keefer and Bodily (1983) also suggested treating this 

approximation as a full pmf and called it Extended Swanson-Megill (ESM), to be used 

with many distribution families in addition to the lognormal. However, Megill (1984) 

stressed that it should not be used for highly skewed lognormal distributions. Example 

applications of ESM in the literature include valuation of a refinery (Keefer, 1995), 

evaluating strategies for meeting environmental regulations (Bailey et al., 2000), 

decision-making in pharmaceuticals (Stonebraker, 2002; Stonebraker and Keefer, 2009), 

and bidding (Bailey et al., 2011). Willigers (2009) compared EPT as an alternative to 

ESM in a portfolio modeling application. ESM is heavily used within the oil & gas 

industry (Megill, 1984; Hurst et al., 2000; Rose, 2001b; Bickel et al., 2011). 

McNamee and Celona (1990), SDG consultants at the time, described another 

shortcut, which has come to be known as the McNamee-Celona Shortcut (MCS) or the 

"25-50-25" shortcut. MCS uses (P10, P50, P90, 0.250, 0.500, 0.250). It is based on both 

MRO and the application of the BMn method. BMn applied to the normal distribution, 

using the brackets [0, 0.25], [0.25, 0.75], and [0.75, 1], yields the P10.2, P50, and P89.8 

percentiles. McNamee and Celona cautioned that MCS was only a first approximation in 

analyzing a decision problem and that the distributions should be encoded and discretized 

more carefully as the analysis progressed. MCS has received little attention in the 
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literature, but it is common among practitioners, particularly in the oil & gas industry 

(Bickel et al., 2011).  

Miller and Rice (1983) introduced several shortcuts based on an application of 

Gaussian quadrature, for situations when the full pdf is not known, as might be the case 

when one assesses a cdf directly from an expert. Their three-point method (P8.5, P50, 

P91.5, 0.248, 0.504, 0.248) is known as the Miller and Rice One-Step (MRO). 

D'Errico and Zaino (1988) proposed, and Zaino and D'Errico (1989) analyzed, two 

approximations based on the Taguchi (1978) method. The first (ZDT) uses equal weights 

(P11, P50, P89, 0.333, 0.333, 0.333). The second (ZDI) is a three-point Gaussian 

quadrature for a normal distribution, (P4.2, P50, P95.8, 0.167, 0.667, 0.167). Zaino and 

D'Errico (1989) called ZDI an improvement over ZDT and found the former to be more 

accurate in their experience. 

These shortcuts are summarized in Table 1 below. Each shortcut uses the P50 (the 

median) and is symmetric about the median. They differ only in the distance from the 

symmetric outer percentiles to the median and in the probability weight on the median. 

Of these, EPT generally best preserves a distribution's mean and variance. ESM is 

generally best if the P10, P50, and P90 are used. Although EPT is more accurate, ESM's 

less extreme percentiles may be easier for experts to assess. MCS, though widely used, is 

generally inferior to ESM. 

Shortcut 
Discretization 

Values 
Probability Weights 

Extended Swanson-Megill (ESM) P10, P50, P90 0.300, 0.400, 0.300 

McNamee-Celona Shortcut (MCS) P10, P50, P90 0.250, 0.500, 0.250 

Extended Pearson-Tukey (EPT) P5, P50, P95 0.185, 0.630, 0.185 

Zaino-D'Errico "Improved" (ZDI) P4.2, P50, P95.8 0.167, 0.667, 0.167 

Zaino-D'Errico-Tagichi (ZDT) P11, P50, P89 0.333, 0.333, 0.333 

Miller-Rice One-Step (MRO) P8.5, P50, P91.5 0.248, 0.504, 0.248 

Table 1. Summary of discretization shortcut methods. 
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NEW SHORTCUT METHODS 

The shortcuts previously discussed do not typically have broad foundations. For example, 

ESM was based on the lognormal distribution, and MCS on the normal. EPT, on the other 

hand, was based on a wide but sparse set of distributions, covering many shapes. The 

Pearson and Johnson systems can be used to systematically incorporate basic information 

about a distribution to refine the discretization.  

We follow the approach of Lau et al. (1998), who found three-, five-, and seven- 

point mean-approximation formulae by finding, for a given set of percentiles, the 

probabilities that minimize the average squared error over the entire set of distributions 

(i.e., all the Pearson types). Applying a similar approach to individual regions of the 

Pearson and Johnson systems gives mean-approximation formulae which, like ESM and 

EPT, can be used as full pmfs.  

The Pearson system, described in more detail later, subsumes many common 

distributions (e.g., normal, beta, uniform, exponential) and is divided into several types. 

Three main types make up the majority of Pearson distributions, the rest being special 

and limiting cases. The primary distinction among the three major regions (i.e., I, VI, and 

IV) of the Pearson system is their range of support: the type I has bounded support, [a, b], 

the type VI support is unbounded in one direction, [a, ∞] or [-∞, b], and the type IV has 

unbounded support, [-∞, ∞]. Type I can be further divided into three distinct shapes: U-

shapes, J-shapes, and ∩-shapes. The Johnson system also has three types: the bounded 

SB, similar to the Pearson type I, the SL, or generalized lognormal distribution, 

unbounded in one direction, and the unbounded SU. 

This allows the analyst to tailor a shortcut to a distribution using only knowledge of 

the support boundedness. This basic characteristic of uncertainty is often easy to 

determine, allowing focus on a particular Pearson region and thereby choice of the best 

shortcut.  
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Lau et al. (1998) found their three-point approximations by solving the following 

regression problem over n distributions: 

 

1 2

1 2

,
1

1 1 1 1

1 1 2 3 3

1 2 3

3 1

3 1

1 2 3

1
min ( )
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
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  



 

 



  (12) 

This procedure yields a symmetric discretization, i.e., where 3 1p p  and 3 11   . The 

objective function minimizes the average squared error (ASE) over the n distributions. 

Lau et al. (1998) found that for 1 0.05  , the best three-point mean-approximation 

formula is (P5, P50, P95, 0.179, 0.642, 0.179). This shortcut has very similar 

probabilities to EPT (P5, P50, P95, 0.185, 0.630, 0.185), which also was constructed 

using points in similar areas of the 1 2( , )   plane. However, Lau et al. (1998) more 

densely covered this area, particularly the type IV region. 

For each distribution system, we construct three sets of shortcuts. One set of 

shortcuts, which we call EPT+, determines the best percentiles and probabilities for 

symmetric shortcuts. The second, EPT++, relaxes the symmetry requirement. The third 

set, the standard percentile (SP) methods, fixes the points to be the P10, P50, and P90, 

since these are commonly used in practice, and fits the probabilities.  

EPT Extensions 

Both Pearson and Tukey (1965) and Lau et al. (1998) considered a limited set of 

symmetric discretizations. Lau et al. (1998) considered four sets of percentiles 

1( 0.01,0.05,0.10,0.25)  , based on the probability elicitation literature. Pearson and 

Tukey (1965) investigated a different set of percentiles 1( 0.005,0.01,0.025,0.05)  . In 

this section, we vary 1  over a larger, more complete set of percentiles, from P1 to P20 



   18 

in increments of 1%, first maintaining that the discretization must be symmetric, and then 

relaxing this requirement. Since these shortcuts extend Pearson and Tukey’s work, we 

refer to them as "EPT+" discretizations and add an identifier that specifies the Pearson or 

Johnson region for which a specific discretization is optimized. 

Symmetric Type-Specific Shortcuts 

For each set of percentiles, we find the probabilities that minimize the ASE. The error-

minimizing shortcut discretizations for the type I, IV, and VI distributions are given in 

Table 2. For some of these shortcuts, as well as those in the tables presented later, the 

fitted probabilities did not sum to one after rounding to three decimal places. They were 

then adjusted to sum to one by successively adding 0.001 to the rounded probabilities in 

the descending order of the amount lost to rounding (if the probability was rounded 

down). We performed the same procedure on the three Johnson types, yielding the 

shortcuts in Table 3. Here and for the other two sets of new shortcuts, the Johnson SB 

distributions do not include their U-shapes. 
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Shortcut Pearson Distribution Type 
Discretization 

Values 

Respective 

Probabilities 

EPT1U+ I-U (Beta) P15, P50, P85 0.296, 0.408, 0.296 

EPT1J+ I-J (Beta) P6, P50, P94 0.203, 0.594, 0.203 

EPT1∩+ I-∩ (Beta) P5, P50, P95 0.184, 0.632, 0.184 

EPT3+ III (Gamma) P5, P50, P95 0.184, 0.632, 0.184 

EPT6+ VI (Beta Prime) P4, P50, P96 0.164, 0.672, 0.164 

EPT5+ V (Inverse Gamma) P4, P50, P96 0.163, 0.674, 0.163 

EPT4+ IV P6, P50, P94 0.212, 0.576, 0.212 

Table 2. Symmetric type-specific discretization shortcuts for the Pearson system (EPT+ 

methods). 

Shortcut Johnson Distribution Type 
Discretization 

Values 

Respective 

Probabilities 

EPTSB+ SB (unimodal only) P5, P50, P95 0.182, 0.636, 0.182 

EPTSL+ SL P4, P50, P96 0.163, 0.674, 0.163 

EPTSU+ SU P4, P50, P96 0.163, 0.674, 0.163 

Table 3. Symmetric type-specific discretization shortcuts for the Johnson system (EPT+ 

methods). 

In Table 2, the EPT1∩+ and EPT3+ shortcuts uses the same percentiles and 

probabilities (rounded to three decimal places) as EPT. This is partly due to Pearson-

Tukey’s heavy sampling of this region. EPT6+ and EPT5+ use the same percentiles and 

almost exactly the same probabilities as ZDI, perhaps because these distributions are 

unbounded above and ZDI is the Gaussian quadrature for the normal distribution. The 

EPT1U+ and EPT4+ percentiles do not resemble the percentiles of any of the pre-existing 

shortcuts that we consider, although EPT1U+ uses almost exactly the same probabilities 

as ESM and the EPT4+ probabilities are similar to MCS.  

Asymmetric Type-Specific Shortcuts  

We now relax the constraint that the discretizations must be symmetric, but we still 

require that one point be the P50. We again consider values for the lower (upper) 

percentiles from P1 (P99) to P20 (P80) in increments of 1%. The resulting EPT++ 

shortcut methods are shown in Table 4 for the Pearson system and Table 5 for the 
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Johnson system. The type I-∩ and VI shortcuts have nearly the same percentiles and 

probabilities as the symmetric shortcuts in Table 2, implying that three points (that 

include P50) would not better approximate these pdfs. The type I-J and IV shortcuts are 

similar to their symmetric counterparts in their percentiles and probabilities. However, 

EPT1U++ and the method for the two transition types, EPT3++ and EPT5++, are 

significantly altered by allowing for asymmetry. In the Johnson system, EPTSL+ and 

EPTSL++ are identical. EPTSB++ has very similar percentiles, though different 

probabilities, from EPTSB+. EPTSU++ differs even more from EPTSU+, in both 

percentiles and probabilities. 

 

Shortcut Distribution Type 
Discretization 

Values 

Respective 

Probabilities 

EPT1U++ I-U (Beta) P1, P50, P85 0.216, 0.491, 0.293 

EPT1J++ I-J (Beta) P2, P50, P94 0.184, 0.615, 0.201 

EPT1∩++ I-∩ (Beta) P5, P50, P95 0.184, 0.632, 0.184 

EPT3++ III (Gamma) P2, P50, P99 0.110, 0.793, 0.097 

EPT6++ VI (Beta Prime) P4, P50, P96 0.164, 0.672, 0.164 

EPT5++ V (Inverse Gamma) P9, P50, P95 0.239, 0.565, 0.196 

EPT4++ IV P7, P50, P94 0.231, 0.551, 0.218 

Table 4. Non-symmetric type-specific discretization shortcuts  for the Pearson system 

(EPT++ methods). 

Shortcut Johnson Distribution Type 
Discretization 

Values 

Respective 

Probabilities 

EPTSB++ SB (unimodal only) P6, P50, P97 0.192, 0.648, 0.160 

EPTSL++ SL P4, P50, P96 0.163, 0.674, 0.163 

EPTSU++ SU P9, P50, P92 0.283, 0.450, 0.267 

Table 5. Non-symmetric type-specific discretization shortcuts for the Johnson system 

(EPT++ methods). 

The skewed distributions considered in this section all have positive skewness, 

which results in discretizations with more extreme upper percentiles for some distribution 

types (i.e., 3 10.5 0.5    ). The upper percentile of the type IV shortcut, for example, 

is slightly more extreme than the lower percentile and corresponds specifically to the 
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"thicker" upper tail. If the distribution is left-skewed, then the lower percentile should be 

more extreme to match that tail. Therefore, the shortcuts will need to be accordingly 

reflected for left-skewed distributions. For example, the shortcut for a right-skewed type 

IV is (P7, P50, P94, 0.231, 0.551, 0.218), but for a left-skewed type IV, the shortcut 

would become (P6, P50, P93, 0.218, 0.551, 0.231). These shortcuts are on average more 

accurate than those in Table 1 in matching the mean (and often the variance as well) of 

the distributions to which they were tailored.  

Standard Percentile Discretizations 

The P10, P50, and P90 percentiles have become very common in practice, through the 

use of ESM and MCS and in other applications. Therefore, in this section, we find the 

ASE-minimizing three-point discretizations using these percentiles. We call these the 

Standard Percentile (SP) methods, and they are given in Table 6 for the Pearson system 

and Table 7 for the Johnson system.  

The probabilities for SP1∩, SP3, and SP6 are similar to those of ESM (0.300, 

0.400, 0.300). SPSL also has similar probabilities to these, which is to be expected, as 

estimating the mean of lognormal distributions was ESM’s origin. That is, if one wants to 

use the P10, P50, and P90 percentiles and is dealing with a unimodal distribution 

bounded at one or both ends, ESM is close to the discretization that minimizes the error 

in the mean. The probabilities for SP1J, SP1U, and SPSB are similar to those of MCS. 

The probabilities assigned to the P10 and P90 points are largest for the type IV 

distributions because of their higher kurtosis, and thus thicker tails, being unbounded in 

both directions. The SP4 discretization is almost an equal weighting of the P10, P50, and 

P90, which is similar to ZDT.  
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Shortcut Distribution Type 
Discretization 

Values 

Respective 

Probabilities 

SP1U I-U (Beta) P10, P50, P90 0.228, 0.544, 0.228 

SP1J I-J (Beta) P10, P50, P90 0.273, 0.454, 0.273 

SP1∩ I-∩ (Beta) P10, P50, P90 0.296, 0.408, 0.296 

SP3 III (Gamma) P10, P50, P90 0.302, 0.396, 0.302 

SP6 VI (Beta Prime) P10, P50, P90 0.308, 0.384, 0.308 

SP5 V (Inverse Gamma) P10, P50, P90 0.314, 0.372, 0.314 

SP4 IV P10, P50, P90 0.322, 0.356, 0.322 

Table 6. Type-specific P10-P50-P90 discretization shortcuts for the Pearson system (SP 

methods). 

Shortcut Johnson Distribution Type 
Discretization 

Values 

Respective 

Probabilities 

SPSB SB (unimodal only) P10, P50, P90 0.279, 0.442, 0.279 

SPSL SL P10, P50, P90 0.311, 0.378, 0.311 

SPSU SU P10, P50, P90 0.316, 0.368, 0.316 

Table 7. Type-specific P10-P50-P90 discretization shortcuts for the Johnson System (SP 

methods). 

Shortcuts Utilizing the Distribution Mode 

The mode (most likely value) of a distribution is a possible alternative to the P50 for the 

middle discretization point. Several methods in the PERT literature (Keefer and Bodily, 

1983; Johnson, 1998) use the mode in conjunction with two percentiles to approximate 

the mean of a distribution. However, the mode is not a good choice for matching the 

mean or as a general approximation of distribution shape, as demonstrated below.  

We briefly consider shortcuts using the mode for the Johnson system, using the 

same procedure as before to fit weights of the P10, mode, and P90 to minimize ASE in 

the mean for each of the three types. The resulting discretizations are given in Table 8. 
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Johnson Distribution Type 
Discretization 

Values 
Probabilities 

SB (unimodal only) P10, mode, P90 0.384, 0.232, 0.384 

SL P10, mode, P90 0.409, 0.182, 0.409 

SU P10, mode, P90 0.480, 0.040, 0.480 

Table 8. Best mean-preserving discretization shortcuts using the P10, mode, and P90 for 

the three Johnson distribution types. 

A few observations show the inferiority of the mode as a discretization point. First, 

all three shortcuts are bimodal: each weights the individual percentiles more than the 

mode, and thus does not have the same modal-shape of the approximated distribution 

(which are all unimodal here). Second, these weights indicate that the percentiles are 

more important than the mode for matching the mean. These shortcuts have average 

absolute errors in the mean of 4.54%, 0.09%, and 4.96% for the SB (unimodal only), SL, 

and SU types, respectively, compared to 1.56%, 0.12%, and 0.11% for the MP shortcuts. 

Although the mode shortcut for the SL type is slightly more accurate in the mean than the 

corresponding SP shortcut, it has 21.16% average absolute error in the variance, 

compared to 10.10% for SPSL. The mode shortcuts tend to drastically overestimate the 

variance, due to the large weighting of the P10 and P90. For these reasons, three-point 

mode-based discretizations poorly estimate both a distribution’s shape and moments, and 

should not be used. 

DISCRETE APPROXIMATIONS IN PERT 

PERT is a popular method for estimating project completion time. It began as a U.S. 

Navy project to develop a quantitative evaluation methodology for project management 

(Malcolm et al., 1959). This section briefly reviews discrete approximations in PERT and 

presents several new approximations. Our regression procedure used in the previous 

section to construct new discretization shortcuts is easily extended to construct new 

PERT formulae. 
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MacCrimmon and Ryavec (1964) explained and analyzed four assumptions of the 

Classical PERT method: 

1. The beta distribution models activity time. 

2. The mode activity time m is known, as well as the optimistic time  (lower bound) 

and pessimistic time (upper bound). 

3. The mean activity time is estimated as 

 
4

ˆ
6

a m b


 
 .  (13) 

4. The variance of the activity time is estimated as 

 
2

2 ( )
ˆ

36

b a



 .  (14) 

The mean estimation formula implies a 1/6, 2/3, and 1/6 weighting of the P0, mode, and 

P100, respectively. The variance estimation formula implies an equal weighting with 

opposite signs of only the P0 and P100. Later work, which we briefly review, challenged 

these assumptions and proposed new approximation methods for the mean and variance. 

PERT methods typically use separate estimation formulae for the mean and variance that 

don’t necessarily form discrete probability distributions. 

Approximation Formulae 

Moder and Rodgers (1968) suggested using the P5 for a and P95 for b instead of the P0 

and P100, respectively, in Equations (13) and  (14) (MR). They argued that the P0 and 

P100 are unlikely to appear in data or experience, and thus are difficult to estimate. Perry 

and Greig (1975) suggested using these same percentiles, but with different weightings 

given in Table 9 (PG). Keefer and Bodily (1983) compared several mean and variance 

approximation formulae, including the two they termed ESM and EPT, over a set of beta 

distributions, which we discussed earlier. They found EPT to be superior in estimating 

both the mean and variance. Farnum and Stanton (1987) showed that the classical PERT 

formulae fail when the mode falls outside the range  0.13( ), 0.87( )b aa a b a    . 
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They proposed different formulae (FS) based on the position of the mode, which we 

generalize as 2x  in Table 9. Classical PERT is used in the center of the range, but 

variations on the formulae are used near the support endpoints. Golenko-Ginzburg (1988) 

proposed another weighting of the classical PERT mean formula and a more complex 

modification to the variance formula (GG). 

Lau et al. (1998) proposed approximation formulae using more than three points by 

fitting the weights over a large set of distribution from Pearson’s, and other, distributions 

systems, similar to our approach. Johnson (1998) examined the ability of several three-

point approximations to match the mean and variance of a selection of beta, gamma, 

lognormal, and F distributions. He found that using the P4, P50, and P96, instead of the 

P0, mode, and P100, respectively, in the classical PERT formula gives better estimations 

of the mean across all four of these distributions. Shankar and Sireesha (2009) and 

Shankar et al. (2010) proposed modifications to the classical PERT method, but these did 

not show any improvement. 

Table 9 summarizes the methods we consider, which are the classical and modified 

PERT formulae, methods discussed above that showed improvements over classical 

PERT, and EPT. Note that the EPT variance formula is not from Pearson and Tukey 

(1965), but the simplified form of the variance approximation formula in Keefer and 

Verdini (1993). PERT Mod is the same as classical PERT, but uses the P1 and P99 

instead of the P0 and P100, respectively, to avoid some of the issues that arise using the 

endpoints of the distribution. 
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Approximation 

method 

Discretization 

Values 

1 2 3( , , , )x x x   
Formula for mean Formula for variance 

Classical 

PERT (PERT) 

P0, mode, 

P100 1 2 3( 4 ) / 6x x x    
2

3 1 / 36x x  

PERT 

modified 

(PERT mod) 

P1, mode, 

P99 1 2 3( 4 ) / 6x x x    
2

3 1 / 36x x  

Moder and 

Rodgers (MR) 

P5, mode, 

P95 1 2 3( 4 ) / 6x x x    
2

3 1 /10.2x x  

Perry and 

Greig (PG) 

P5, mode, 

P95 1 2 3( 0.95 ) / 2.95x x x   
2 2

3 1( ) / 3.25x x  

Farnum and 

Stanton (FS) 

P0, mode, 

P100 

If 
 1 3 1 2

1 3 1

0.13

0.87( )

x x x x

x x x

  

  
, 

1 2 3( 4 ) / 6x x x   

If 2 1 3 10.13( )x x x x   , 

2 1 3 1
1

3 1 2

2( )( )

3 2

x x x x
x

x x x

 


 
 

If 2 1 3 10.87( )x x x x   , 

2

3 1
1

3 1 2

( )

3 2

x x
x

x x x




 
 

 

 
2

3 1 / 36x x  

 
 

   
2

2 1 3 2

3 1 22

x x x x

x x x

 

 
 

 
 

 
2

2 1 3 2

3 1 2

( )

2

x x x x

x x x

 

 
 

Golenko-

Ginzburg 

(GG) 

P0, mode, 

P100 1 2 3(2 9 2 ) /13x x x   

   
2

3 1 2 1

3 1

2

2 1

3 1

81
22

1268

81

x x x x

x x

x x

x x

 




 
  

 





 

Extended 

Pearson-Tukey 

(EPT) 

P5, P50, P95 1 2 30.185 0.630 0.185x x x   

2 2 2

1 2 3

2

1 2 3

0.185 0.630 0.185

(0.185 0.630 0.185 )

x x x

x x x

 

  
 

Table 9. Summary of PERT and its variants we consider. 



   27 

New Formulae 

We use the method described above to find new PERT approximation formulae. The goal 

of estimating moments directly, rather than approximating a full distribution, reduces the 

constraints on our fitting procedure. 

In this section, we propose new formulae to estimate the mean and variance of an 

activity time given two percentiles and either the median or mode. We us a similar 

approach as above, minimizing the ASE in these moments (individually) over a large set 

of distributions. We perform the same optimization as in Equation (12), without requiring 

that the weights be symmetric. We require that they sum to one, even though these are 

not meant to be probability distributions. Through experimentation, we found that this 

constraint produced more robust formulae, and that in some cases the weights naturally 

summed to one. Equation (15) gives our mean approximation formula using three points, 

where 2x  is either the median or the mode. The mean is calculated as a weighted average 

of the three points using probability weights. Equations (16) and (17) are used to estimate 

the variance. These new approaches result as solutions to two different optimization 

problems. One problem solves for probability weights 1 2 3( , , )p p p  in Equation (15) that 

minimize ASE in the mean. The other solves for a separate set of weights 1 2 3( , , )p p p  in 

Equation (17) that minimize ASE in the variance. Equation (17) is the equation for the 

variance of a discrete distribution with three possibilities 1 2 3( , , )x x x  with probability 

weights 1 2 3( , , )p p p , respectively. However, these methods are not intended to be used as 

distributions, and to distinguish them from our new shortcut methods, we call these the 

“fitted probability” (FP) methods.  

 1 1 1 2 2 3 3p x p x p x      (15) 

 2 1 1 2 2 3 3p x p x p x      (16) 

 

2 2 2 2

1 1 2 2 2 2 3 3 2

2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3

( ) ( ) ( )

( )

p x p x p x

p x p x p x p x p x p x

        

     
  (17) 
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We consider the P0, P5, P10, P50, P90, P95, and P100 percentiles as well as the 

mode for both the Pearson type I-J and I-∩. Formulae for the mean are given in Table 10. 

The formulae using the mode place almost no weight on the lower percentile, because the 

lower percentile is too close to the mode of right skewed distributions. The mode may be 

less than the P5 and P10for some distributions, which appears to lead to poorer 

performance for methods using these percentiles with the mode rather than the  median. 

FP 5-50-95 is almost exactly EPT, and FP 10-50-90 is almost exactly ESM, for the I-∩ 

distributions. FP 5-50-95 is also similar to EPT for I-J, while FP 10-50-90 is more similar 

to MCS than ESM for this type. The other mean approximation FP formulae are 

asymmetric, and unlike any of the shortcut methods. 

Approximation formulae for the variance are given in Table 11. FP 0-50-100 places 

no weight on the P100 for either Pearson type, and places more weight on the P0 than the 

P50. FP 5-50-95 is again similar to EPT for the I-∩ distributions, but is bimodal, placing 

no weight on the P50 for type I-J. The mean approximation weights in Table 10 tend to 

bear little resemblance to their corresponding variance approximation weights in Table 

11. The only exceptions are the FP 5-50-95 mean and variance approximation formulae 

for type I-∩, which we show in Chapter 6 are some of the most accurate. 

 

FP method 
Discretization 

Values 

Probability Weights 

I-∩ I-J 

FP 0-50-100 P0, P50, P100 0.059, 0.935, 0.005 0.001, 0.986, 0.013 

FP 5-50-95 P5, P50, P95 0.184, 0.632, 0.184 0.188, 0.624, 0.187 

FP 10-50-90 P10, P50, P90 0.298, 0.406, 0.296 0.238, 0.497, 0.266 

FP 0-m-100 P0, mode, P100 0.002, 0.985, 0.013 0.966, 0.002, 0.032 

FP 5-m-95 P5, mode, P95 0.000, 0.647, 0.353 0.001, 0.687, 0.312 

FP 10-m-90 P10, mode, P90 0.004, 0.563, 0.433 0.001, 0.601, 0.399 

Table 10. Summary of FP methods for mean estimation. 
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FP method 
Discretization 

Values 

Probability Weights 

I-∩ I-J 

FP 0-50-100 P0, P50, P100 0.698, 0.302, 0.000 0.502, 0.498, 0.000 

FP 5-50-95 P5, P50, P95 0.179, 0.633, 0.188 0.875, 0.000, 0.125 

FP 10-50-90 P10, P50, P90 0.178, 0.301, 0.520 0.181, 0.142, 0.677 

FP 0-m-100 P0, mode, P100 0.886, 0.114, 0.000 0.496, 0.504, 0.000 

FP 5-m-95 P5, mode, P95 0.172, 0.702, 0.126 0.665, 0.214, 0.122 

FP 10-m-90 P10, mode, P90 0.000, 0.221, 0.779 0.000, 0.789, 0.211 

Table 11. Summary of FP methods for variance estimation. 

DISCRETIZATION IN OTHER FIELDS 

Discretization has wide application and use in fields other than decision analysis. 

Tauchen and Hussey (1991) used GQ in asset pricing with dynamic nonlinear models, 

and Sullivan (2000) used it to value American put options. Lind (1982) discussed 

discretization for modeling uncertainty in dynamical systems. Kotsiantis and 

Kanellopoulos (2006) reviewed the literature on discretization for machine learning 

applications. They discussed variations of bracket methods for summarizing and 

categorizing data statically (considering one uncertainty at a time) and dynamically 

(considering multiple uncertainties simultaneously to incorporate dependence). Their 

focus was classifying data sampled from continuous ranges, rather than discretizing 

continuous distributions explicitly. 

Multistage stochastic programming is another field that often requires 

approximations of uncertainties to make the problems tractable. Kaut and Wallace (2007) 

reviewed several methods used in the stochastic programming literature, including 

moment matching using GQ.  Kall et al. (1988) discussed discretization using partitions 

of the distributions’ support (bracket methods), particularly a method corresponding to 

BMn, which can be used with the Jensen and Edmundson-Madansky inequalities to 

bound the optimal value (Huang et al., 1977). Other methods include Monte Carlo 

sampling (Birge and Louveaux, 1997) and nonlinear optimization (Høyland and Wallace, 
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2001; Pflug, 2001). Discretization is also sometimes called scenario generation, since the 

result is a discrete set of uncertainty realizations.  

Histograms are commonly used to graphically represent frequency data and are 

discrete by definition. Histograms represent the frequencies or counts of observations 

falling within a particular range (also known as a bin) as the height of the bar in the 

graph. The discretization methods discussed in this work are typically used as simplifying 

approximations to continuous distributions, whereas histograms are used to represent the 

distributions implied by empirical data (Scott, 2011). The parameters for constructing a 

histogram include the number of bins, bin widths, and orientation of the bins. Two 

common heuristic rules for selecting the parameters for histograms with homogenous bin 

widths are Sturges’ Rule, which determines the number of bins, and Scott’s Rule, which 

determines the bin width for a given number of bins (Scott, 1979, 2010, 2011). The 

flexibility of histogram derivation rules are limited by the quality and format of the 

empirical data, such as when the data are collected into bins of unequal width (Scott and 

Scott, 2008). 

EVALUATING DISCRETIZATION METHODS 

Several characteristics of a distribution might be desirable to preserve, and several 

corresponding measures of error. Distribution moments are an obvious characteristic, 

which much of the literature has considered. Moments not only are summary statistics of 

the entire distribution but are important to matching the moments of the output 

distribution.  

Prior Work 

Keefer and Bodily (1983) made the first systematic study of the performance of several 

discretization methods, including mean- and variance-approximation formulas, shortcuts 

(EPT and ESM), and a distribution-specific method (Bracket Median). They studied how 
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well the methods preserved the mean and variances of 78 bell-shaped (∩-shaped) beta 

distributions and found EPT to be the best. ESM had slightly inferior performance but 

was also found to be better than most of the other methods they examined. Keefer and 

Verdini (1993) performed a similar study with the same set of beta distributions and 

included some approximations developed after 1983, which they found inferior to EPT 

and ESM in matching means and variances. They noted that EPT's improvement over 

ESM may be outweighed by the evidence that EPT's more extreme percentiles are more 

difficult to subjectively assess. Keefer (1994) examined the performance of all six 

shortcuts described above in preserving certainty equivalents, which depend upon all the 

moments of the underlying pdf, over a set of 169 right-skewed, left-skewed, ∩-shaped, 

and J-shaped beta distributions, as well as four lognormal distributions, and again found 

EPT to perform the best. This analysis showed that EPT had the lowest error across 

several levels of risk aversion, including risk neutrality, in which case the certain 

equivalent is simply the mean.  

The distributions in Figure 3 that were considered by both Keefer and Bodily 

(1983) and Keefer (1994) are denoted by grey circles. Distributions considered by Keefer 

(1994), but not by Keefer and Bodily (1983), are denoted by black circles. Both Keefer 

and Bodily (1983) and Keefer (1994) considered a relatively small sample of 

distributions within the Pearson system, being confined to ∩-shaped beta (type I) 

distributions with low skew. Keefer (1994) expanded this somewhat but limited the 

analysis to beta distributions along the transition between the ∩-shaped and J-shaped beta 

regions and four lognormal distributions. 

The distributions Pearson and Tukey (1965) used to construct their mean- and 

variance- matching formulae are shown as black diamonds in Figure 3. Although 11 of 

the 96 points they used fall outside the area of Figure 3, these points are sparsely 

distributed over a range of kurtoses from 10 to 20 and are inconsistent with the denser 
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spacing of the rest of their grid. Pearson and Tukey’s analysis did not fully explore the 

Pearson system, as it was limited to the tables of Pearson distributions that were available 

at the time.  

Bickel et al. (2011) showed that ESM can perform very poorly on moderate-to-

highly-skewed lognormal distributions, significantly underestimating the mean, variance, 

and skewness of the underlying pdf, and instead recommended the use of GQ. Yet, as 

discussed above, GQ can be difficult to use in practice. Analysts may therefore want to 

use one of the existing shortcut methods, such as ESM or MCS.  
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Figure 3. The Pearson distribution system 1 2( , )   plot showing distributions used in 

previous work. 

Moments 

Common properties of interest are the moments of X (e.g., the mean, variance, skewness, 

and kurtosis). Smith (1993) provided the following argument in support of matching 

moments: In decision and risk analysis, we are often interested in computing the 

expectation of some value function (e.g., net present value or utility) v(x), that is a 

function of the uncertain quantity X. If v(x) can be closely approximated by a 

differentiable function, it can be written as a Taylor series expansion about a: 
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 2 3'( ) ''( ) '''( )
( ) ( ) ( ) ( ) ( ) ...

1! 2! 3!

v a v a v a
v x v a x a x a x a          (18) 

Taking the expectation E[v(X)] yields a weighted sum of the raw moments of X. For 

example, if a = 0, we have 

 2 3'(0) ''(0) '''(0)
[ ( )] (0) [ ] [ ] [ ] ...

1! 2! 3!

v v v
E v X v E X E X E X       (19) 

Thus, a good approximation of the mean of our output variable, E[v(X)], must closely 

approximate the moments of the input variable X,. For a thorough discussion of 

polynomial approximation, see Hamming (1973). 

Certain Equivalents 

Rather than explicitly consider risk aversion and matching certain equivalents as Keefer 

(1994) did, we apply the same reasoning as before for matching moments. The certain 

equivalent can be considered part of the value function v(x), so that to match the certain 

equivalent, we would generally need to also match several moments. 

For example, Howard (1971) demonstrated a formula from Pratt (1964) for 

approximating a certain equivalent using only the mean and variance of the value lottery. 

    
var( ( ))

( ) ( )
2 ( ( ))

v X
CE v X E v X

v X
  .  (20) 

Summary Statistics 

In many cases, it will be convenient to summarize the error measures over a set of 

distributions. Keefer and Bodily (1983) used the four summary statistics given in Table 

12 to summarize their results for the beta distribution. We define these error measures in 

our notation as follows: Let rH  denote the indexed set of distributions corresponding to 

region {I- ,I-J,I-U,III,IV,V,VI}r   in the Pearson system or  , ,B L Ur S S S  in the 

Johnson system. The number of points that we sample in this region is rs . For a 

distribution index ri D , the true k-th moment is 
k

im , the estimate from a discretization 

is ˆ k

im , and the error in the k-th moment is ˆ( )k k k

i i im m   . ME and MPE give the error 
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with the greatest magnitude, regardless of sign. For these two measures, positive error 

indicates that the discretized moment is larger than the actual moment.  

 

Error Statistic Formula 

Average Absolute Error (AAE) 
1

r

k

i

i Drs




  

Average Absolute Percentage Error (AAPE) 
1

100%
r

k

i

k
i Dr is m





  

Maximum Error (ME) , arg max
r

k k

j i
i D

j 


  

Maximum Percentage Error (MPE) 100%, arg max
r

k k
j i

k ki D
j i

j
m m

 


   

Table 12. Keefer and Bodily (1983) summary statistics. 

Because the errors, 
k

i , and percentage errors, /k k

i im , are the same for the 

standardized distributions, we typically use percentage error in moments, unless 

otherwise specified. We use the ME statistic from Table 12, along with two other 

statistics: the Average Error (AE) and the Average Squared Error (ASE), which are given 

in Table 13.  

Error Statistic Formula 

Average Error (AE) 
1

r

k

i

i Drs




  

Average Squared Error (ASE) 
21

( )
r

k

i

i Drs




  

Table 13. Additional Error Measures. 
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EXAMPLES 

This section illustrates the use of SP, EPT++, GQ, and BMn on a lognormal distribution 

with parameters µ = 1, σ = 0.5. We use the SPSL and EPTSL++ shortcuts, since we are 

discretizing a lognormal distribution. 

SPSL Shortcut 

The lognormal cdf and the resulting SP6 discretization cdf are shown in Figure 4. The 

values and probabilities used by the discretization are given in Table 14. The SPSL 

shortcut is similar to ESM but assigns slightly higher probabilities to the P10 and P90.  

 

 

Figure 4. SPSL (dashed line) and lognormal (solid line) cdfs. 

Quantity x1 x2 x3 

Values 1.4322 2.7183 5.1592 

Probabilities 0.311 0.378 0.311 

Percentiles 10.00% 50.00% 90.00% 

Table 14. SPSL values and probabilities for Lognormal(1, 0.5). 

EPTSL++ Shortcut 

The lognormal cdf and resulting discretization cdf are shown in Figure 5. The values and 

probabilities for the discretization are given in Table 15.  
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Figure 5. EPTSL++ (dashed line) and lognormal (solid line) cdfs. 

Quantity x1 x2 x3 

Values 1.1328 2.7183 6.5231 

Probabilities 0.163 0.674 0.163 

Percentiles 4.00% 50.00% 96.00% 

Table 15. EPTSL ++ values and probabilities for Lognormal(1, 0.5). 

Gaussian Quadrature 

Here we demonstrate three- and five-point GQs (GQ3 and GQ5, respectively). The cdfs 

are shown in Figure 6, and the values, probabilities, and equivalent percentiles are given 

for GQ3 and GQ5 in Table 16 and Table 17, respectively. Each method uses the P99.9 or 

a more extreme percentile. The orthonormal polynomials for GQ3 in this example are 
*

1

*

0

*

1

* 2

2

* 2 3

3

( ) 0,

( ) 1,

( ) 1.876 0.609 ,

( ) 2.640 1.524 0.169 ,

( ) 3.207 2.484 0.489 0.024 .

P x

P x

P x x

P x x x

P x x x x

 



  

  

    
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Figure 6. GQ3 (dotted line), GQ5 (dashed line), and lognormal (solid line) cdfs. 

Quantity x1 x2 x3 

Values 2.0003 5.0784 12.8934 

Probabilities 0.6652 0.3285 0.0063 

Percentiles 26.98% 89.44% 99.91% 

Table 16. Three-point GQ of Lognormal(1, 0.5). 

Quantity x1 x2 x3 x4 x5 

Values 1.6885 3.9121 8.3729 17.9201 41.5203 

Probabilities 0.4729 0.4789 0.0477 0.0005 2.6081E-07 

Percentiles 17.05% 76.67% 98.78% 99.99% ≈100.00% 

Table 17. Five-point GQ of Lognormal(1, 0.5). 

Bracket Mean 

Figure 7 shows the cdfs for a three-point Bracket Mean discretization (BMn3) using the 

brackets [0, 0.25], [0.25, 0.75], and [0.75, 1] (alternatively referred to as 25-50-25) and a 

five-point Bracket Mean discretization (BMn5) using equal brackets of 0.2. The values 

and probabilities for BMn3 and BMn5 are given in Table 18 and Table 19, respectively.  

The discretization points are more tightly clustered about the mode of the 

distribution than GQ, causing BMn to fail to fully capture the distribution tails, as did the 
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shortcuts. Whether BMn or a shortcut is preferred depends on the importance of the 

different moments.  

 

 

Figure 7. BMn3 (dotted line), BMn5 (dashed line), and lognormal (solid line) cdfs. 

Quantity x1 x2 x3 

Values 1.4797 2.7670 5.3071 

Probabilities 0.2500 0.5000 0.2500 

Percentiles 11.19% 51.42% 90.96% 

Table 18. Three-point BMn values and probabilities for lognormal(1, 0.5) using 

cumulative brackets [0, 0.25], [0.25, 0.75], and [0.75, 1]. 

Quantity x1 x2 x3 x4 x5 

Values 1.3839 2.0909 2.7255 3.5591 5.6417 

Probabilities 0.2000 0.2000 0.2000 0.2000 0.2000 

Percentiles 8.85% 29.98% 50.21% 70.51% 92.79% 

Table 19. Five-point BMn values and probabilities for lognormal(1, 0.5) using equal 

cumulative brackets of 0.2. 

The percentage errors in the moments and the three L-norms are given for each 

method in Table 20. The high SPSL errors in the skewness and kurtosis estimations are -

75.57% and -81.57%, respectively. EPTSL++ closely matches the mean and variance, 
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with errors of 0.07% and -1.52%, respectively, but significantly underestimates the 

skewness and kurtosis, with errors of -28.20% and -59.52%, respectively. This poor 

performance in matching the skewness and kurtosis is typical of shortcut methods, 

especially for unbounded distributions. The distribution tails, which shortcuts do not 

capture well, are more important to these higher moments than to the mean and variance. 

EPTSL++ has lower errors in each of the first four moments than does SPSL, because its 

more extreme percentiles better capture the tails than does SPSL. However, EPT6++’s 

more extreme percentiles may be more difficult to assess than the P10 and P90 used by 

SP6. 

GQ3 matches moments 0 through 5, and GQ5 matches moments 0 through 9. Their 

errors in the first four moments are all 0%. While any Bracket Mean discretization will 

theoretically match the mean of the distribution, they are often inferior to some shortcuts 

in matching higher moments. The moment errors for BMn3 and BMn5 are larger than 

those for EPTSL++ in the variance, skewness, and kurtosis. BMn3 and BMn5 have the 

lowest Lp distances, despite having significantly higher moment errors than the other four 

methods.  

 

 Mean Variance Skewness Kurtosis 

SPSL -0.20% -17.69% -75.57% -81.57% 

EPTSL++ -0.07% -1.52% -28.20% -59.52% 

GQ3 0.00% 0.00% 0.00% 0.00% 

GQ5 0.00% 0.00% 0.00% 0.00% 

BMn3 0.00% -28.41% -63.31% -76.47% 

BMn5 0.00% -20.05% -60.17% -74.65% 

Table 20. Error measures for each discretization in the example. 
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PROBABILITY ASSESSMENT 

Decision analysis problems often require subjective assessment of probability 

distributions, especially in cases where relevant historical data is limited or nonexistant. 

One of the most common assessment methods uses percentiles elicited from a subject 

matter expert to construct a probability distribution. These assessments may be used 

directly in a discrete approximation to the distribution or to fit the parameters of a 

continuous distribution.  

When using subjectively assessed probabilities, the quality of the assessment, as a 

representation of an expert’s knowledge and beliefs, is of great importance to the quality 

of the decision model. Winkler and Murphy (1968) defined the quality of probability 

assessments as having a normative component, that the assessments form coherent 

probabilities that are consistent with the expert’s beliefs, and a substantive component, or 

the extent of the expert’s knowledge about the uncertain quantity. Wallsten and Budescu 

(1983) similarly defined assessment quality in terms of reliability 

(repeatability/consistency of assessments) and validity (representativeness of the expert’s 

actual opinion). Lichtenstein et al. (1982), in a survey of the early work on probability 

elicitation and calibration, described an expert as well calibrated “if over the long run, for 

all propositions assigned a given probability, the proportion that is true is equal to the 

probability assigned.”  

The assessments made by an expert may not be representative of their actual 

knowledge and beliefs, due to cognitive biases such as those identified by Tversky and 

Kahneman (1974). For example, experts and decision-makers can often be overconfident, 

assigning distribution that are too narrow (Capen, 1976; Alpert and Raiffa, 1982). To 

reduce the effects of biases in elicitation, several methods were developed. Hampton et 

al. (1973), Spetzler and Holstein (1975), and Wallsten and Budescu (1983) described and 

reviewed several such methods. Wallsten and Budescu (1983) reported that the results of 
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several studies “suggest high validity and coherence, given outcome feedback and 

experience at encoding probabilities.” Merkhofer (1987), in a retrospective on the 

elicitation process described by Spetzler and Holstein (1975), claimed that despite the 

lack of formal studies at the time, there was enough experiential evidence from practicing 

decision analysts to conclude that the elicitation process greatly increases the consistency 

and the experts’ confidence in the validity of probability assessments. These findings 

indicate that the biases evident in assessments from un-calibrated experts can be greatly 

mitigated with sufficient and appropriate training. 

Two commonly-used assessment methods are “fixed-probability,” in which the 

cumulative probability, F(x), is fixed and the corresponding value, x, is elicited, and 

“fixed-value,” in which the value, x, is fixed and the corresponding cumulative 

probability, F(x), is elicited (Abbas et al., 2008). Spetzler and Holstein (1975) described 

several encoding techniques applicable to both methods and additionally described a third 

hybrid method, in which neither probabilities nor values are fixed. We focus on the fixed-

probability, or percentile (also referred to as the “quantile” or “fractile” method by some 

authors), method for the 10
th 

(P10), 50
th 

(P50), and 90
th

 (P90) percentiles.  

It is common practice in the oil & gas industry to assess the P10, P50, and P90 

(Rose, 2001a; Jahn et al., 2008), which has become an accepted standard for reporting 

reserves uncertainty (Ross, 2011). This provided the basis for Swanson’s Rule (Megill, 

1984; Hurst et al., 2000) for estimating the mean of a distribution by weighting the P10, 

P50, and P90 by 0.300, 0.400, and 0.300, respectively. Other schemes are used; 

Schuenemeyer (2002), for example, described an application in which five percentiles 

and the minimum and maximum values are assessed.  

The issues of calibration and assessment accuracy are important to our discussion 

of discretization accuracy, in the quality of the methods’ representations of assessed 

distributions. Intuitively, there is little justification for using an extremely accurate 
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discretization if the continuous distribution is not believed to be an accurate 

representation of the uncertainty. It was not previously clear to what levels of 

discretization and assessment accuracy this applies. Chapter 5 addresses this question by 

comparing the relative importance of these errors for different methods and levels of 

error. The moment estimates by some methods, such as ESM and EPT, are similar 

enough that even a small degree of assessment error makes the methods’ differences 

insignificant. MCS’s moment estimates, as compared to ESM or EPT, can in many cases 

be more significant than the assessment errors of reasonably well-calibrated experts seen 

in practice. 

SUMMARY 

This chapter reviewed several discretization methods and illustrated their use in an 

example. Chapter 4 will analyze and compare their accuracies in matching the moments 

of large sets of distributions by using the evaluation metrics discussed in this chapter. 

PERT approximation formulae for the mean and variance were also reviewed, and will be 

analyzed in Chapter 6. Finally, the chapter discussed practical issues with probability 

assessment, which Chapter 5 will incorporate into our analysis as assessment error.  
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Chapter 3: The Pearson and Johnson Distribution Systems 

DISTRIBUTION SYSTEMS 

A distribution system defines a set of continuous distributions. The best-known 

distribution system is the Pearson system (Pearson, 1895, 1901, 1916). We use this, along 

with the Johnson (1949) system, for analysis. Each system has advantages and 

disadvantages, but contain the same general distribution shapes. The Pearson system 

contains many common distributions as special cases and three ranges of support 

boundedness. The Johnson system contains only two common distributions, the normal 

and lognormal, which are treated as special cases, and only two ranges of support 

boundedness. The Pearson system includes the normal distribution, but not the 

lognormal. Although distributions in the two systems with similar moments have similar 

shapes, some moments do not exist for certain Pearson system distributions, but always 

exist for Johnson system distributions. The Pearson system has convenient relationships 

between its parameters and distribution moments, but has cdfs that must be numerically 

evaluated, making it convenient for working with moments, but not percentiles. The 

Johnson system, on the other hand, has cdfs that are simple to evaluate as transformations 

of the normal distribution, but its moments must be evaluated numerically for the main 

distribution types, making it convenient for working with percentiles, but not moments. 

Other distributions systems include Burr (1973), Ramberg and Schmeiser (1974), 

Schmeiser and Deutsch (1974), and Butterworth (1987). We do not use these systems for 

a variety of reasons. The Burr (1973) system and the Ramberg and Schmeiser (1974) 

system each have only a single range of support, versus the three of Pearson's system. 

The Ramberg and Schmeiser (1974) system covers a smaller range of shapes than 

Pearson's or Johnson’s. The Butterworth (1987) system only approximates several of the 

named distributions included in the Pearson system. 
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Kolari et al. (1989) identified distribution shapes for 11 financial ratios throughout 

the Pearson and Johnson systems. Lau et al. (1995) found the moments of the empirical 

distributions of two financial ratios to lie in the Pearson I∩, IV, and VI types.  

PEARSON DISTRIBUTION SYSTEM 

A distribution f(x) in the Pearson system is a solution of the differential equation 

 
2
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1 df a x
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 
. (21) 

Multiplying each side of Equation (21) by rx  and rearranging yields 
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Integrating each side with respect to x, using integration by parts on the left side, gives 
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It is assumed that the term  2

0 1 2

rx b b x b x f   vanishes at the boundaries of the 

distribution f’s support, leaving the recursive moment relation 

    0 1 1 2 1 11 2r r r r rrb r b r b a             . (24) 

The requirement that a probability distribution pdf integrate to one provides the boundary 

condition 0 1   for this recursion. Setting r = 0, 1, 2, 3 yields the system of equations 
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  (25) 

These four equations in the four unknowns, a, b0, b1, and b2, define the mean, variance, 

skewness, and kurtosis of a distribution, but the distribution must still be normalized so 

that it integrates to one. The form of the normalizing factor depends on the distribution 

type and is given for each of the types discussed below in their pdfs. 

Together, within the Pearson system, the third and fourth moments determine a 

unique location-scale distribution (Elderton and Johnson, 1969). This fact allows 
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distributions in the Pearson system to be conveniently characterized by their shape, which 

is defined by their skewness 1 and kurtosis 2  (the third and fourth central moments, 

respectively). Since skewness can be positive or negative but is symmetric under 

reflection, it is convenient to consider squared-skewness, 2

1 1  . Figure 8 shows a 

portion of the Pearson system, denoting several regions, or classes of distributions. The

1  and 2  axes are not bounded above. The vertical axis denoting kurtosis is inverted 

following the convention of previous work (Rhind, 1909; Pearson, 1916; Craig, 1936; 

Draper, 1952; Ord, 1972; Lau et al., 1995).  

The Pearson system includes all possible combinations of skewness and kurtosis, 

which Pearson (1916) showed must have  

 2 1 1   . (26) 

The region above the line 2 1 1    is shaded and labeled as the "Impossible Area" in 

Figure 8. Although the Pearson system covers all possible 1 2( , )   pairs, it does not 

include all possible pdfs, most notably the lognormal (which is included in the Johnson 

system).  
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Figure 8. Pearson Distribution System. 

The Pearson system is a convenient and natural choice because of its direct relation 

to named distributions over much of the feasible 1 2( , )   region, its variety of 

distribution shapes and support ranges, and general ease of use as compared to other 

systems. Three main types of distributions cover the feasible region, which Pearson 

designated type I, type IV, and type VI, as highlighted in Figure 8. Pearson defined nine 

additional types, which are special cases of the main three or transition boundaries 

between them. For example, types III and V are the gamma and inverse gamma 

distributions, respectively. The normal distribution is a special case, where types I, II 

(not-shown), III, IV, V, and VI intersect. 
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Pearson Distribution Types 

We now briefly describe the three main Pearson distributions and two transition 

distributions, top-to-bottom as they appear in Figure 8. The distributions in the Pearson 

system are location-scale generalizations, but we give the standard forms of the 

distributions, which are equivalent under an appropriate shifting by 1  and scaling by 

2

2 1     of x, 

 1x
y






   (27) 

Type I (Beta Distribution) 

Type I corresponds to the beta distribution, with pdf  

  
 

 
111

1 , 0 1
,

If y y y y
B



 

    , (28) 

where   and   are parameters and  ,B    is the beta function. Pearson (1895) 

characterized this type as having skewness and limited range. This type arises when the 

denominator of Equation (21) has roots with opposite signs. The beta can be ∩-shaped (

1, 1   ), J-shaped ( 1, 1    or 1, 1   ), or U-shaped ( 1, 1   ). We 

denote these shapes as types I-∩, I-J, and I-U, respectively. When a beta distribution is J-

shaped, the value of f approaches infinity as x approaches 0 (when 1, 1   ) or 1 

(when 1, 1   ). When it is U-shaped, f goes to infinity at both 0 and 1. Type I-U is 

the only Pearson type that is not unimodal. The symmetric type I is called type II and lies 

along the 2 axis (not shown) between kurtoses 1 and 3. The uniform distribution is the 

point 1 2( 0, 1.8)   , which is also the point where the three regions of type I meet. 

Type III (Gamma Distribution) 

Type III, or the gamma distribution, is a transition distribution that forms the boundary 

between type I and type VI in Figure 8. It has pdf 
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where ( )k is the gamma function, and k and   are parameters. This type occurs when 

2 0b   in Equation (21). At the point where this type intersects with the line that divides 

the ∩-shape and J-shape type I regions, is the exponential distribution, or type X. 

Type VI (Beta Prime Distribution) 

Type VI corresponds to the beta prime distribution, also called the inverted beta 

distribution or the beta distribution of the second kind. For parameters   and  , the pdf 

is 
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Pearson (1901) characterized this distribution as being unbounded in one direction. As 

seen in Figure 8, type VI covers the region between the gamma and inverse gamma 

distributions, each of which also has this property. Type VI distributions are the solution 

to Equation (21) when its denominator has roots of the same sign. 

Type V (Inverse Gamma Distribution) 

Type V is the second transition type, which separates the regions of type IV and type VI 

and is known as the inverse gamma distribution. For parameters   and , it has pdf 
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 (31) 

This type occurs when the roots of Equation (21) are real and equal. 

Type IV 

Type IV does not correspond to any single common distribution. For parameters m and v, 

the pdf is 
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Pearson (1895) characterized this type as being unbounded in both directions and 

possibly having skewness. It is the solution to Equation (21) that arises when the 
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denominator has complex roots. A special case when type IV is symmetric 

1 2( 0, 3)    is Student's t-distribution, which Pearson (1916) called type VII.  

Fitting Pearson Distributions to Moments 

The Pearson system lends itself well to fitting to moments. Elderton and Johnson (1969) 

provided straightforward procedures for fitting each of the Pearson types discussed here. 

JOHNSON DISTRIBUTION SYSTEM 

The distribution system developed by Johnson (1949) takes a different approach from the 

Pearson system, by generating distributions through transformations of a normal random 

variable. A distribution in the Johnson system is defined by the four parameters γ, δ, ξ, 

and λ in the general equation 

 ,
x

z g


 


 
   

 
  (33) 

where z is a standard normal random variable, and g is a monotonic function. As with the 

Pearson system, the four parameters of the Johnson distribution uniquely define the first 

four moments of the distribution. The Johnson system also includes all possible 

combinations of skewness and kurtosis with 2 1 1   . 

Figure 9 displays a portion of the Johnson system, plotted as a function of 1  and 

2 , which is composed of three types denoted as regions in Figure 9. These types depend 

on the transform g: the lognormal ( LS ), support bounded at both ends ( BS ), and 

unbounded range at both ends ( US ). The LS  region, which is a transition type, is a 

generalized lognormal distribution, but the other two types do not correspond to common 

distributions. The normal distribution is a special case where all three types meet. 

Distributions in the upper part of the SB region, between the dashed line and the 

impossible area, have bimodal “U” shapes, whereas distributions in the remainder of the 

system are unimodal. 
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Figure 9. Johnson Distribution System. 

Johnson Distribution Types 

Letting ( ) /y x    , the transformations and distributions for each of the three types 

are given below. The moments of type SL and SU distributions can be calculated in closed 

form, and the SB distribution moments by numerical integration. Equations for each are 

given below.  

Bounded BS  

The BS  type is given by the transformation ( ) ln , 0 1.
1
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  (34) 

The SB moments have very complex forms, but can be found by numerical integration 

using the pdf. 
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Lognormal LS  

The LS  type is given by the transformation ( ) ln( )g x x : 
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This can be expressed as a three-parameter distribution by re-parameterizing with  

 ' ln      yielding 
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(Elderton and Johnson, 1969). The r
th

 moment of the SL distribution is given by 
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Unbounded US  

The US  type is given by the transformation  1 2( ) sinh ( ) ln 1g x x x x    ;  
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The r
th

 even-moment of the SU distribution is given by 
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and the r
th

 odd-moment is given by 
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Fitting Johnson Distributions to Moments 

Matching Johnson distributions to moments is not as straightforward as for Pearson 

distributions, but Hill et al. (1976) gave algorithms for matching Johnson parameters to 

the first four moments for each of the three Johnson Types. Mathematica
®
 code for these 

algorithms are given in the Appendix. 
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COMPARISON OF THE PEARSON AND JOHNSON SYSTEMS 

Although the Pearson and Johnson systems have different derivations, functional forms, 

and region types on the 1 2( , )  plane, distributions in either system having the same 

moments are very similar in shape. Although our results are similar between these two 

systems, considering both allows us to expand the scope of named distributions that we 

consider, namely to include the lognormal distribution and to circumvent the 

nonexistence of some higher moments in the Pearson system. The similarity can be 

demonstrated by considering the L∞ distance measure, or Kolmogorov-Smirnov distance 

(Darling, 1957), 

  , max ( ) ( )
x S

L F G F x G x


  ,  (41) 

which is the maximum absolute error between cdfs F and G. 

Figure 10 shows the L∞ distance between standardized distributions in the Pearson 

and Johnson systems. In the figure, the regions and labels for both systems are overlaid. 

The L∞ distance is less than 0.1 over most of the figure, with the largest differences 

between the U-shaped distributions. The thin region of higher (between 0.1 and 0.2) L∞ 

distance in the middle of the figure is where the semi-bounded Pearson Type VI region 

overlaps with the unbounded Johnson US  region.  
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Figure 10. KS-distance between standardized Pearson and Johnson distributions. 

Figure 11 shows two examples of bounded ∩-shape Pearson and Johnson 

distributions with the same first four moments, displaying almost identical pdfs. Figure 

12 shows two examples of U-shaped distributions and indicates that the higher L∞ 

distance for these shapes is due to slight boundary differences, amplified by the 

asymptotic boundary behavior for these distributions.  
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α = 2, β = 2 

 

α = 2, β = 20 

 

Figure 11. Comparison of two standardized (µ = σ = 1) ∩-shape beta distributions (solid 

grey) to SB distributions (dashed black) having the same first four moments. 

 
α = 0.25, β = 0.25 

 

α = 0.1, β = 0.5 

 

Figure 12. Comparison of two standardized (µ = σ = 1) U-shape beta distributions (solid 

grey) to SB distributions (dashed black) having the same first four moments. 

SUMMARY 

This chapter described the Pearson and Johnson distributions systems, which we use for 

our analyses in the following chapters. The combination of these systems includes many 

commonly used distributions as special cases. Although the shapes of distributions in 

each system are very similar, the systems each have unique qualities that make them 

convenient and useful for our analysis.    
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Chapter 4: Discretization Error2 

This chapter explores the effects of discretization on different types and shapes of 

perfectly assessed distributions. As discussed in Chapter 2, comparison we will evaluate 

and compare discretization methods using their accuracy in estimating moments of 

distributions in the Pearson and Johnson systems. The overall results are similar between 

the two systems, because they produce very similar pdfs, as discussed in Chapter 3. 

However, the analyses have slightly different focuses. The Pearson system’s division into 

more types gives more granularity to the analysis by shape, and the Johnson system 

allows greater focus on the lognormal distribution and its generalization. GQ is not 

included in the moment results because a three-point GQ will match the first five 

moments, which includes the moments of interest. 

The next section describes our analysis method. We then analyze the two 

distribution systems separately, first the Pearson, then the Johnson. This analysis includes 

our new shortcut methods for each distribution system. This chapter concludes with a 

summary of the results and discussion of practical implications. 

METHOD 

We compute the discretizations and their errors for a large set of distributions in the 

Pearson and Johnson systems. These distributions are parameterized by 1 2( , )  , defining 

unique location-scale distributions in each system. The set of distributions is defined in 

1 2( , )   space by an evenly distributed grid of points. We standardize the distributions to 

have unit mean and variance, preserving the skewness, 
3

1 3 /   , and kurtosis, 

4

2 4 /   , where k  is the k
th

 central moment, and   is the standard deviation. This 

                                                 
2 Summaries of the results of this chapter are published with my advisor, Eric Bickel, in the following: 

Hammond, Robert and J. Eric Bickel. 2013a. Reexamining discrete approximations to continuous 

distributions. Decision Analysis 10(1) 6-25. 

Hammond, Robert and J. Eric Bickel. 2013b. Approximating continuous probability distributions using the 

10th, 50th, and 90th percentiles. The Engineering Economist 58(3) 189-208. 
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allows flexibility in distribution shape, while still enabling comparison of location and 

scale. Because skewness can be positive or negative but is symmetric under reflection, it 

is convenient to consider squared-skewness, 2

1 1  . We use a range of 1 24, 10   , 

slightly larger than that of Lau et al. (1998), to increase coverage of kurtosis and include 

more of the distributions considered by Pearson and Tukey (1965). This range is 

arbitrary, but our experimentation determined that increasing this range by 50% in each 

dimension does not change our conclusions.  

Denoting the set of all Pearson distributions by PQ , the 1 2( , )   grid is defined as 

   1 2 1 2 1 2, | 0.1 , 0,...,40, 0.1 , 10,...,100, 1i i j j               (42) 

This results in a grid of approximately 2,900 1 2( , )   points in the feasible area shown in 

Figure 3, spaced 0.1 in both dimensions. The corresponding set of Pearson distributions is 

   2

3 4| ' ( ) , ' ( ) ,P PH f f f f Q    .  (43) 

The Johnson system has the same range of feasible 1 2( , )  points, and we use the same 

grid to define the set of Johnson distributions, 

   2

3 4| ' ( ) , ' ( ) ,J JH f f f f Q    ,  (44) 

where JQ denotes the set of all Johnson distributions. 

Each 1 2( , )   point corresponds to a unique standardized distribution. We 

discretize each of these distributions and calculate the absolute error in the mean, 

variance, skewness, and kurtosis. The approximations of the true mean ( ) , variance 

2( ) , skewness 1( ) , kurtosis 2( ) , respectively, are 

 
1 1 1

1 1 2 2 3 3
ˆ ( ) ( ) ( )p F p F p F        ,  (45) 

      
2 2 2

1 1 1 2

1 1 2 2 3 3
ˆ ˆ( ) ( ) ( )p F p F p F          ,

  (46) 

       3 3 3
1 1 1 3

1 1 1 2 2 3 3
ˆ ˆ( ) ( ) ( ) /p F p F p F          ,  (47) 

       4 4 4
1 1 1 4

2 1 1 2 2 3 3
ˆ ˆ( ) ( ) ( ) /p F p F p F          .  (48) 
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We define the discretization error in the k
th

 as the difference between the true 

moment of distribution f and the approximate moment using discretization d as 

 ( )( )
d

k k k

d D f ff    .   (49) 

The percentage error is the discretization error divided by the true moment 

 
( )

( ) d

k k

D f fk

d k

f

f
 





 ,   (50) 

and we define 0/0 = 0 for this measure. 

There is another reason for our distribution standardization. The beta distribution 

has the property that ( , ) 1 ( , )F F     . However, percentage error does not follow 

this relation for non-standardized beta distributions, and introduces bias, as pointed out 

by Lau et al. (1998). They standardized each distribution to have unit mean and variance. 

This practice, which we follow, eliminates the bias and allows for consistent comparison 

of errors between distributions with different support ranges. This standardization makes 

the errors in these moments equivalent to their respective percentage errors. For example,  

 

1 1

( )1 1

( ) 1

ˆ
ˆ

ˆ

ESM

ESM

D f f

D f f

f

 
 




   .  (51) 

We performed all of our numerical calculations using Mathematica
®
 software. 

Numerical errors produced in these calculations are generally negligible, but they do 

appear in some of our results below. These errors are identified and discussed. 

PEARSON SYSTEM 

We first consider the Pearson distribution system. Our approach is based in large part on 

the results of Keefer and Bodily (1983). 

Keefer and Bodily’s Analysis 

Table 21 gives the results for the I-∩ distributions, in the same manner as Keefer and 

Bodily (1983) (hereafter, KB). In this table and in each of the tables of results that follow, 

the lowest errors, to three decimal places, are highlighted. A selection of KB’s results is 
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repeated in Table 22 for comparison. Although each of EPT, ZDI, BMn3, and BMn5 has 

at least one measure of "0.000" for the tables, none is exactly equal to zero. The grey-

shaded cells show the most accurate shortcut (top-portion of Table 21) and the most 

accurate distribution-specific method (bottom-portion of Table 21) for each measure. As 

noted by KB, EPT performs very well. ZDI has comparable performance to EPT and is 

better than ESM. Although MRO is similar to MCS, it is distinctly more accurate by all 

measures for both the mean and variance. MRO and ZDT perform similarly although 

they use very different weights. Both BMd methods perform rather poorly. The BMn3 

and BMn5 methods perfectly match the mean (with negligible numerical error), but they 

are not as accurate as EPT in matching the variance.  

All of the error measures are increased relative to KB’s results because of our 

expanded distribution set. For example, EPT’s AAPE in the mean and the variance are 

about three times larger in our case than reported by KB (0.066% compared to 0.020%). 

In addition, our expanded analysis demonstrates that EPT outperforms ESM more than 

was found by KB. For example, in our case, ESM’s AAPE is about five times as large as 

EPT, whereas KB found that it was only about two and one-half times as large.  

BMn, in theory, matches the means of all of the distributions considered, but in 

practice the integrals involved in computing the conditional means often can be evaluated 

only using numerical integration methods, which introduces numerical error. However, 

good numerical integration software will generally produce negligible errors, which, in 

our case, are several orders of magnitude smaller than the smallest discretization errors. 

Also, in practical application, GQ will often have small numerical errors. 
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  Mean Variance 

  AAE AAPE ME MPE AAE AAPE ME MPE 

S
h

o
rt

cu
ts

 M
et

h
o

d
s EPT 0.000 0.066 -0.001 -0.178 0.000 1.096 -0.008 -10.090 

ZDI 0.000 0.152 -0.002 -0.589 0.000 1.189 -0.013 -16.094 

ESM 0.001 0.331 0.004 1.419 0.001 7.776 0.013 -19.960 

MCS 0.002 2.255 -0.005 -4.852 0.002 20.384 -0.005 -32.051 

MRO 0.000 0.621 -0.001 -1.647 0.000 9.601 0.002 -20.721 

ZDT 0.001 0.653 0.006 1.919 0.001 8.280 0.016 -21.253 

D
is

tr
ib

u
ti

o

n
-S

p
ec

if
ic

 

M
et

h
o

d
s BMd3 0.005 5.124 -0.012 -10.494 0.004 40.390 -0.012 -53.752 

BMd5 0.003 3.027 -0.006 -6.390 0.002 25.961 -0.007 -38.402 

BMn3 0.000 0.000 0.000 0.000 0.002 22.201 -0.013 -29.199 

BMn5 0.000 0.000 0.000 0.000 0.001 13.042 -0.004 -20.526 

Table 21. Errors in the mean and variance for expanded set of type I-∩ (beta) 

distributions. 

 Mean Variance 

 AAE AAPE ME MPE AAE AAPE ME MPE 

EPT 0.000 0.020 0.000 0.070 0.000 0.460 -0.001 -1.600 

ESM 0.000 0.050 0.001 0.330 0.000 2.700 0.006 11.100 

BMd5 0.001 0.750 -0.004 -3.350 0.002 21.500 -0.006 -30.200 

Table 22. Selected results from KB (discretized – actual mean and variance). 

General Shortcut Moment Errors 

We turn now to the set of distributions PH  from the Pearson system, first considering the 

shortcut methods from the literature. The following tables give the AE, ASE, and ME 

statistics. We use these instead of KB’s measures for various reasons. AE displays a 

method’s tendency to under- or over-estimate a moment, which AAE does not (AAE and 

AAPE are equal for errors in the mean and variance as well). ASE describes magnitude, 

giving more emphasis to larger errors, and which we used to fit our new methods, as 

described in Chapter 2. We use ME to display the largest magnitude error, regardless of 

sign (again, ME is equal to MPE for the mean and variance). 



   61 

Table 23 and Table 24 summarize our results for each of the main Pearson types (I, 

VI, and IV) and two transition types (III and V) over PH . As before, the best measures 

are highlighted for each distribution type. In these tables, ASE’s results are shown in 

scientific notation rather than rounded to three decimal places, since many would round 

to 0.000. These results identify the method that performs best, when performance is 

averaged over a given distribution region. Although different methods may have lower 

errors for specific distributions, these tables show which method has the lowest errors on 

average. 

All six shortcuts tend to underestimate the moments of types III-VI, with the only 

exception being EPTs estimates of the type III mean. These four distributions all have at 

least one unbounded tail. EPT and ZDI tend to underestimate the mean of types I-U and 

I-J, but tend to overestimate the variance of both, along with the higher moments of type 

I-U. The shortcuts’ performance is highly varied among type I-U and type I-J, whereas 

either EPT or ZDI performs best for type I-∩ and type III-VI distributions in all four 

moments. The only exception is type I-∩ skewness, for which MRO has the lowest ME. 

EPT and ZDI poorly estimate the skewness for distributions close to the uniform at 

 1 20, 1.8   . Either EPT or ZDI is also best or second best for many measures in the 

I-J moments, although MRO has the lowest AE and ASE, and ESM the lowest ME, in the 

variance. ESM, MCS, ZDT, and MRO have larger errors in the skewness and kurtosis for 

all of the Pearson types, often larger than 0.500. 

ZDI is distinctly the best in the skewness and kurtosis of types III-VI, due to its 

having the most extreme percentiles of all of these methods, although EPT generally has 

similar errors. The I-U distribution is the only type for which MCS performs best by any 

measure. Each method has its highest errors in the mean in the I-U distributions, and with 

the exception of MCS, their highest errors in the variance. ESM, MCS, ZDT, and MRO 

on average perform the best for these distributions, despite also having their largest MEs. 
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This performance may be due to those methods’ having more probability weight on their 

upper and lower percentiles, making them more similar in shape to U-shaped 

distributions than are EPT and ZDI. The fact that ESM, MCS, ZDT, and MRO use less 

extreme percentiles than EPT and ZDI does not matter as much for these distributions, 

since their tails are bounded. 

MRO performs better than MCS on all types except the U-shape beta, for which it 

performs slightly worse. ZDT performs slightly worse than ESM for types I and III, and 

nearly identically to ESM for types IV, V, and VI. ESM has lower error than MRO by all 

measures in the mean and variance for types III–VI, but higher errors in the skewness and 

kurtosis for these types. ESM has slightly higher errors in the mean and variance than 

does ZDT for types IV–VI, but slightly lower errors in skewness and kurtosis. 

These results indicate that the method that is best at matching the mean is not 

necessarily the best at matching the variance or higher moments of a distribution. For 

example, EPT has the lowest error statistics for types III and VI for the mean, but not for 

the variance, although EPT's errors are only slightly larger than the best methods’. EPT 

was designed to approximate only the mean, but it preserves the variance better than, or 

nearly as well as, any of the shortcut methods. ZDI was designed to match the first five 

moments of the normal distribution (being the result of a three-point GQ) and often has 

the lowest errors in the moments for many other distributions as well. 

Table 23 and Table 24 indicate that ESM more accurately matches the mean and 

variance for many more distributions than does MCS, but it has slightly higher error in 

skewness and kurtosis than does MCS. This is due to MCS's poorer performance in 

matching the variance, resulting in smaller denominators in Equations (47) and (48). Both 

ESM and MCS underestimate skewness and kurtosis, but MCS's greater underestimation 

of the variance lowers the effective error in skewness and kurtosis. Of the four shortcuts 

using percentiles close to the P10, P50, and P90, MRO has the lowest errors in skewness 
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and kurtosis, since it uses the most extreme percentiles of these methods, the P8.5 and 

P91.5. 

This analysis yields the conclusion that ZDI is generally the best shortcut method 

for matching moments, but EPT has nearly identical performance using slightly less 

extreme percentiles. Even the best methods for type I-U distributions have significant 

errors, which suggests that none of these shortcuts should be used for this type.   
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  Mean Variance 

  AE ASE ME AE ASE ME 

I-
U

 (
B

et
a)

 

ESM 0.155 3.83E-02 0.443 0.303 1.31E-01 0.800 

MCS 0.041 1.24E-02 -0.351 0.154 5.73E-02 0.607 

EPT -0.045 1.28E-02 -0.485 0.199 1.02E-01 -0.602 

ZDI -0.086 1.78E-02 -0.523 0.139 8.68E-02 -0.641 

ZDT 0.203 5.76E-02 0.539 0.296 1.33E-01 0.845 

MRO 0.065 1.58E-02 -0.355 0.258 1.03E-01 0.658 

I-
J 

(B
et

a)
 

ESM 0.034 1.67E-03 0.094 -0.065 1.37E-02 -0.213 

MCS -0.035 1.35E-03 -0.051 -0.195 4.54E-02 -0.331 

EPT -0.005 9.44E-05 -0.041 0.099 2.00E-02 0.394 

ZDI -0.017 4.90E-04 -0.070 0.119 2.57E-02 0.434 

ZDT 0.048 3.10E-03 0.118 -0.080 1.78E-02 -0.222 

MRO 0.002 1.39E-04 0.045 -0.064 1.19E-02 -0.214 

I-
∩

 (
B

et
a)

 

ESM 0.004 3.81E-05 0.018 -0.055 9.10E-03 -0.204 

MCS -0.030 1.07E-03 -0.050 -0.206 4.62E-02 -0.324 

EPT 0.001 9.75E-07 -0.002 -0.003 2.12E-04 -0.085 

ZDI -0.002 5.76E-06 -0.008 0.001 3.79E-04 -0.142 

ZDT 0.009 1.09E-04 0.025 -0.044 1.00E-02 -0.213 

MRO -0.008 8.86E-05 -0.017 -0.094 1.21E-02 -0.207 

II
I 

(G
am

m
a)

 ESM -0.001 1.71E-06 -0.002 -0.118 1.74E-02 -0.213 

MCS -0.036 1.46E-03 -0.051 -0.258 6.87E-02 -0.331 

EPT 0.000 1.84E-07 0.001 -0.020 5.22E-04 -0.037 

ZDI -0.001 1.95E-06 -0.002 -0.003 1.26E-05 -0.005 

ZDT 0.003 1.04E-05 0.006 -0.114 1.76E-02 -0.223 

MRO -0.013 1.74E-04 -0.017 -0.144 2.26E-02 -0.215 

V
I 

(B
et

a 
P

ri
m

e)
 

ESM -0.006 4.46E-05 -0.012 -0.166 2.93E-02 -0.221 

MCS -0.042 1.84E-03 -0.051 -0.298 9.01E-02 -0.341 

EPT -0.001 8.92E-07 -0.002 -0.045 2.32E-03 -0.076 

ZDI -0.001 2.03E-06 -0.002 -0.021 5.89E-04 -0.048 

ZDT -0.002 1.67E-05 -0.009 -0.166 2.96E-02 -0.226 

MRO -0.017 2.99E-04 -0.021 -0.185 3.52E-02 -0.228 

V
  

(I
n
v
er

se
 G

am
m

a)
 

ESM -0.007 5.67E-05 -0.012 -0.130 1.94E-02 -0.204 

MCS -0.033 1.14E-03 -0.044 -0.272 7.54E-02 -0.331 

EPT -0.001 1.67E-06 -0.002 -0.040 2.04E-03 -0.075 

ZDI -0.001 1.40E-06 -0.002 -0.024 7.48E-04 -0.047 

ZDT -0.005 2.83E-05 -0.009 -0.125 1.86E-02 -0.205 

MRO -0.014 2.22E-04 -0.020 -0.158 2.68E-02 -0.220 

IV
 

ESM -0.007 6.01E-05 -0.012 -0.173 3.12E-02 -0.224 

MCS -0.022 6.10E-04 -0.044 -0.309 9.66E-02 -0.353 

EPT -0.002 3.37E-06 -0.003 -0.068 5.07E-03 -0.104 

ZDI -0.001 1.57E-06 -0.002 -0.047 2.51E-03 -0.078 

ZDT -0.006 4.30E-05 -0.010 -0.170 3.03E-02 -0.223 

MRO -0.011 1.47E-04 -0.020 -0.197 3.98E-02 -0.243 

Table 23. Shortcut method errors in the mean and variance for the main Pearson types. 
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  Skewness Kurtosis 

  AE ASE ME AE ASE ME 

I-
U

 (
B

et
a)

 

ESM -0.294 2.21E-01 2.787 -0.432 2.53E-01 -0.709 

MCS -0.063 2.49E-01 4.159 -0.256 1.72E-01 1.029 

EPT 0.333 6.37E-01 6.507 0.146 2.56E-01 2.158 

ZDI 0.473 8.75E-01 7.354 0.321 4.10E-01 2.652 

ZDT -0.431 2.71E-01 2.004 -0.513 3.14E-01 -0.752 

MRO -0.050 2.56E-01 4.220 -0.247 1.69E-01 1.054 

I-
J 

(B
et

a)
 

ESM -0.529 2.91E-01 -0.684 -0.655 4.45E-01 -0.809 

MCS -0.369 1.55E-01 -0.574 -0.558 3.35E-01 -0.758 

EPT -0.038 5.14E-02 1.032 -0.320 1.54E-01 -0.627 

ZDI 0.075 7.01E-02 1.315 -0.215 1.13E-01 0.719 

ZDT -0.628 4.01E-01 -0.755 -0.701 5.03E-01 -0.832 

MRO -0.348 1.42E-01 -0.553 -0.551 3.28E-01 -0.753 

I-
∩

 (
B

et
a)

 

ESM -0.607 3.74E-01 -0.683 -0.594 3.74E-01 -0.802 

MCS -0.466 2.27E-01 -0.572 -0.502 2.82E-01 -0.750 

EPT -0.069 3.95E-02 0.882 -0.281 1.30E-01 -0.616 

ZDI 0.069 5.29E-02 1.166 -0.183 9.44E-02 0.630 

ZDT -0.699 4.92E-01 -0.754 -0.638 4.25E-01 -0.827 

MRO -0.430 1.96E-01 -0.550 -0.496 2.76E-01 -0.746 

II
I 

(G
am

m
a)

 ESM -0.660 4.46E-01 -0.687 -0.690 4.86E-01 -0.810 

MCS -0.546 3.06E-01 -0.577 -0.619 3.97E-01 -0.759 

EPT -0.229 5.60E-02 -0.315 -0.448 2.22E-01 -0.630 

ZDI -0.119 1.86E-02 -0.228 -0.371 1.63E-01 -0.572 

ZDT -0.733 5.51E-01 -0.756 -0.724 5.32E-01 -0.833 

MRO -0.517 2.75E-01 -0.556 -0.614 3.91E-01 -0.755 

IV
 (

B
et

a 
P

ri
m

e)
 

ESM -0.715 5.12E-01 -0.764 -0.771 5.97E-01 -0.830 

MCS -0.613 3.77E-01 -0.679 -0.717 5.19E-01 -0.791 

EPT -0.327 1.10E-01 -0.432 -0.584 3.49E-01 -0.695 

ZDI -0.229 5.64E-02 -0.346 -0.524 2.84E-01 -0.651 

ZDT -0.782 6.11E-01 -0.820 -0.796 6.37E-01 -0.849 

MRO -0.587 3.46E-01 -0.656 -0.713 5.13E-01 -0.789 

V
  

(I
n
v
er

se
 G

am
m

a)
 

ESM -0.728 5.31E-01 -0.764 -0.713 5.17E-01 -0.827 

MCS -0.629 3.97E-01 -0.679 -0.651 4.35E-01 -0.788 

EPT -0.328 1.13E-01 -0.431 -0.505 2.76E-01 -0.690 

ZDI -0.221 5.65E-02 -0.345 -0.440 2.19E-01 -0.646 

ZDT -0.793 6.29E-01 -0.820 -0.743 5.59E-01 -0.847 

MRO -0.601 3.62E-01 -0.656 -0.647 4.30E-01 -0.785 

IV
 

ESM -0.794 6.32E-01 -0.855 -0.765 5.90E-01 -0.833 

MCS -0.719 5.19E-01 -0.802 -0.716 5.19E-01 -0.799 

EPT -0.478 2.36E-01 -0.625 -0.607 3.80E-01 -0.728 

ZDI -0.392 1.63E-01 -0.560 -0.560 3.28E-01 -0.698 

ZDT -0.844 7.13E-01 -0.890 -0.789 6.26E-01 -0.850 

MRO -0.696 4.87E-01 -0.785 -0.713 5.15E-01 -0.797 

Table 24. Shortcut method errors in the skewness and kurtosis for the main Pearson 

types. 
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Figure 13 through Figure 18 show plots for the absolute percentage error ( )k

d f  in 

the moments for the six shortcuts. These plots quantify the performance of the various 

methods as a function of distribution shape. The contours and error magnitude ranges are 

standardized separately for each moment throughout the error plots. Absolute error in the 

mean is shown to vary from 0 to 0.15, and in the variance from 0 to 0.5 (with our 

1    normalization, these are equivalent to 0% to 15% and 0% to 50% error ranges, 

respectively), with darker shading indicating higher absolute error. Skewness and kurtosis 

errors are both shown between 0 and 100%. Black areas in the plots indicate where the 

errors exceed the upper bound. 

For most of the distributions in PH , the errors of each method behave similarly, as 

functions of 1  and 2  for their respective moments. It is readily apparent that the 

highest errors are in the type I-U region. The error manifests a transition from high, to 

low, and back to high, in this type as 1 increases. This is due to large overestimation 

error near the point  1 20, 1 ,    which decreases to zero, and then to large 

underestimation error for larger 1 . Errors in the mean typically increase with both 1  

and 2 , and errors in variance and kurtosis increase primarily with 2  (kurtosis), i.e., as 

the tails of the distributions get "fatter."  

The EPT and ZDI errors are less sensitive to changes in skewness than are those of 

either ESM or MCS. With the exception of type I-U, EPT and ZDI generally match the 

variance better than either ESM or MCS. This undoubtedly stems from the fact that both 

EPT’s and ZDI’s percentiles capture more of the tail effects than do ESM’s and MCS’s 

P10 and P90. Both ESM and MCS display significantly higher error sensitivity to 

distribution shape than do either EPT or ZDI, and error generally increases with 1  and 

2 . However, MCS is much more sensitive to skewness than is ESM, because MCS 

places less weight on the P10 and P90. ESM clearly outperforms MCS for type I-∩, III, 

IV, V, and VI distributions. All of the shortcut methods produce large errors within the I-
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U region, which is a strong indication that they should not be used for this Pearson type. 

Although ESM’s performance is rather poor, it is superior to that of MCS. For example, 

although ESM misestimates the variance of type I-∩ in the middle of our plots (β1 = 2 

and β2 = 5) by about 10%, MCS’s error rate is 25%. 

MRO is generally more accurate in the mean and variance than is MCS, but less 

accurate than EPT, ZDI, or ESM, and ZDT's performance on the variance is similar to 

that of ESM. ZDT actually performs quite well outside of the beta region, having 

absolute errors of less than 0.01 over all of the type VI and most of the type IV regions in 

the plot, and generally performing similar to ESM. ZDT’s less extreme percentiles and 

higher weighting of these points (0.333) might help it better account for the tails.  

With the exception of type I-U, and I-J in the case of ZDI, EPT and ZDI perform 

well over most of the plot area. ESM displays greater errors than EPT and ZDI over type 

I-U and I-J, and portions of the type IV, V, and VI distributions.  

MCS results in the highest errors among the six shortcut methods, indicating that 

its justification for use on the mean may be weak and does not extend to other 

distributions.. We noted in Chapter 2 that MCS originated from an application of BMn 

with 25-50-25 brackets to the normal distribution. Figure 14 shows that although MCS 

matches the mean of the normal distribution (and all symmetric distributions, since it is a 

symmetric discretization), it poorly estimates the mean of most other distributions, even 

those having a shape similar to that of the normal distribution. It also underestimates the 

variance by almost 20% and the skewness and kurtosis by approximately 55% and 35%, 

respectively.  

EPT and ZDI perform similarly over the type I region, but ZDI more accurately 

matches the variance for type IV, V, and VI distributions. The similarity in the EPT and 

ZDI errors is expected, considering the similarity of these methods' percentiles and 

probabilities. ZDI performs better over the type IV distributions, perhaps because it is a 
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GQ for the normal distribution, which is unbounded, as are the distributions in this 

region. Additionally, the formula used to derive EPT was designed by Pearson and Tukey 

(1965) based on performance over shapes mostly located in the type I and VI regions (as 

shown in Figure 3). 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 13. ESM errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 14. MCS errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 15. EPT errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 16. ZDI errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 17. ZDT errors in matching moments in the Pearson system. 

  



 74 

a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 18. MRO errors in matching moments in the Pearson system. 
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New Shortcut Moment Errors 

Here we consider the new shortcut methods described in Chapter 2. Summary statistics 

for the mean and variance are given in Table 25, and for the skewness and kurtosis in 

Table 26. Symmetric distributions are not included in the results for EPT++, because 

some of these methods are asymmetric and the percentage error measurements in the 

skewness would result in division by zero. All of these methods were optimized with 

respect to ASE in the mean. EPT+ has similar performance to that of EPT++, often 

outperforming EPT++. Both of these methods have lower ASEs in the mean than do any 

of the six shortcuts discussed in the previous section, except for type III and VI, where 

EPT has lower ASE. However, these improvements are not large. They also typically 

have lower AEs in the mean. EPT also has lower error by each measure in the variance 

for type I-∩. This similarity in performance indicates that EPT and ZDI are near-optimal 

in matching the moments among three-point shortcuts using the P50. 

Although the EPT++ methods had the most flexibility to fit to the distributions in 

each type, rounding the probabilities to three decimal places increased the ASEs for these 

types to where the ASE for EPT++ exceeded that for EPT+. This indicates that the 

EPT++ methods may be over-fit and highly sensitive to the probability weights. 

The similar performance of EPT+ and EPT++, which are identical for types I-∩ 

and VI, indicates that the extra freedom of allowing asymmetry for EPT++ does not 

significantly improve upon the shortcuts’ estimates. In some cases, it has increased their 

estimates’ sensitivity to the probability weights to the point that roundoff at three decimal 

places degrades their performance. 

In contrast, the SP methods show distinct improvements in the mean and variance 

over ESM, MCS, ZDT, and MRO, often having error measures an order of magnitude 

lower than these methods. Although SP methods tend to have higher errors than do the 
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other shortcuts in the skewness and kurtosis, they are usually within an order of 

magnitude. 

The improvement in the mean, but in some cases degraded performance in the 

variance, is a result of our procedure’s considering error only in matching the means of a 

set of distributions, without consideration of the variance. One could consider some 

weighting of the mean and the variance to develop other approximations. Indeed, Keefer 

(1994) considered all the moments via the computation of a certain equivalent. However, 

developing a shortcut method that preserved certain equivalents would require knowledge 

of the decision maker’s utility function, which is likely to differ widely across decision 

makers and decision situations. 
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  Mean Variance 

  AE ASE ME AE ASE ME 

I-
U

 

(B
et

a)
 EPT1U+ -0.004 9.11E-03 0.319 -0.167 1.00E-01 -0.832 

EPT1U++* -0.001 8.59E-03 0.312 -0.183 1.04E-01 -0.833 

SP1U -0.009 9.68E-03 -0.396 0.080 3.69E-02 -0.509 

I-
J 

(B
et

a)
 EPT1J+ -0.001 3.44E-05 0.034 0.050 1.13E-02 0.312 

EPT1J++ 0.001 2.55E-05 0.030 0.036 9.98E-03 0.300 

SP1J -0.003 2.32E-04 0.037 -0.134 2.60E-02 -0.276 

I-
∩

 

(B
et

a)
 EPT1∩+ 0.000 2.70E-07 -0.003 -0.008 2.69E-04 -0.089 

EPT1∩++ 0.000 2.70E-07 -0.003 -0.008 2.69E-04 -0.089 

SP1∩ 0.001 2.18E-05 0.016 -0.067 1.04E-02 -0.213 

II
I 

(G
am

m
a)

 

EPT3+ -0.001 6.27E-07 -0.001 -0.025 7.42E-04 -0.042 

EPT3++ -0.001 1.25E-06 -0.001 0.249 7.76E-02 0.441 

SP3 0.000 6.53E-07 0.002 -0.112 1.62E-02 -0.209 

V
I 

(B
et

a 

P
ri

m
e)

 EPT6+ 0.001 1.05E-06 0.001 -0.004 1.34E-04 -0.029 

EPT6++ 0.001 1.05E-06 0.001 -0.004 1.34E-04 -0.029 

SP6 0.000 9.79E-06 0.007 -0.145 2.29E-02 -0.202 

V
 

(I
n

v
. 

G
am

.)
 EPT5+ 0.000 7.05E-08 -0.001 -0.014 3.19E-04 -0.034 

EPT5++ 0.000 5.56E-09 0.000 -0.012 2.85E-04 -0.036 

SP5 0.000 2.69E-06 -0.003 -0.091 1.10E-02 -0.168 

IV
 

EPT4+ 0.000 1.08E-06 0.002 -0.073 5.98E-03 -0.114 

EPT4++* 0.001 1.31E-06 0.003 -0.063 4.80E-03 -0.121 

SP4 0.000 3.53E-06 0.005 -0.113 1.43E-02 -0.167 

*Symmetric distributions not included in these results. 

Table 25. New shortcut method errors in the mean and variance for the main Pearson 

types. 
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  Skewness Kurtosis 

  AE ASE ME AE ASE ME 

I-
U

 

(B
et

a)
 EPT1U+ -0.286 2.17E-01 2.887 -0.421 2.46E-01 -0.703 

EPT1U++* -0.309 2.81E-01 -3.829 -0.406 2.43E-01 0.894 

SP1U 0.054 3.17E-01 4.865 -0.149 1.57E-01 1.331 

I-
J 

(B
et

a)
 EPT1J+ -0.138 5.78E-02 0.780 -0.403 2.03E-01 -0.673 

EPT1J++ -0.134 5.51E-02 0.715 -0.394 1.98E-01 -0.670 

SP1J -0.446 2.14E-01 -0.627 -0.608 3.89E-01 -0.784 

I-
∩

 

(B
et

a)
 EPT1∩+ -0.063 3.93E-02 0.893 -0.277 1.28E-01 -0.613 

EPT1∩++ -0.063 3.93E-02 0.893 -0.277 1.28E-01 -0.613 

SP1∩ -0.597 3.62E-01 -0.675 -0.588 3.67E-01 -0.799 

II
I 

(G
am

m
a)

 

EPT3+ -0.225 5.40E-02 -0.312 -0.444 2.19E-01 -0.627 

EPT3++ 0.662 5.50E-01 1.712 0.242 1.18E-01 0.668 

SP3 -0.664 4.51E-01 -0.691 -0.692 4.89E-01 -0.811 

V
I 

(B
et

a 

P
ri

m
e)

 EPT6+ -0.210 4.86E-02 -0.330 -0.513 2.74E-01 -0.643 

EPT6++ -0.210 4.86E-02 -0.330 -0.513 2.74E-01 -0.643 

SP6 -0.730 5.33E-01 -0.776 -0.777 6.07E-01 -0.835 

V
 

(I
n

v
. 

G
am

.)
 EPT5+ -0.195 4.65E-02 -0.324 -0.425 2.07E-01 -0.635 

EPT5++ -0.221 7.91E-02 -0.407 -0.537 3.06E-01 -0.709 

SP5 -0.752 5.67E-01 -0.785 -0.726 5.36E-01 -0.836 

IV
 

EPT4+ -0.577 3.38E-01 -0.698 -0.661 4.46E-01 -0.763 

EPT4++* -0.462 2.53E-01 -0.600 -0.674 4.63E-01 -0.775 

SP4 -0.823 6.78E-01 -0.876 -0.782 6.15E-01 -0.845 

*Symmetric distributions not included in these results. 

Table 26. New shortcut method errors in the skewness and kurtosis for the main Pearson 

types. 

The absolute percentage errors in the first four moments are plotted for EPT+ and 

EPT++ in Figure 19 and Figure 20, respectively. The error in each region is shown only 

for the shortcut corresponding to that region. The contour levels for each moment are 

consistent with the plots in the previous section. The scalloping along the regional 

borders is a result of our discrete sampling of these regions, and of our transitioning to a 

new discretization along these borders. 
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Comparing Figure 19 and Figure 20 to Figure 15 shows that EPT+ and EPT++’s 

errors in the moments are nearly identical to those for EPT. Although the EPT++ 

methods for type I-U, I-J, and IV distributions differ from those for EPT+, they bring 

negligible improvement in accuracy. 

The absolute error in the distribution mean in panel a of Figure 19 and Figure 20 is 

less than 0.01 over almost the entire plot, with the exception of the type I-U region. For 

this region, the tailored EPT1U+ shortcut does not provide much improvement over the 

errors seen in Figure 2. In terms of the mean, the primary benefit of EPT1J+ over EPT is 

a reduction in error within the type I-J region. EPT+ reduces the error in the variance, 

compared to EPT, for the type VI and most of the type I-J region. There is, however, an 

increase in error for type I-J distributions with relatively high skew and kurtosis. In 

addition, error in the variance is increased slightly within the type IV region. Errors in the 

skewness and kurtosis tend to be slightly increased as well. 

Plots of the absolute percentage error in the moments for the SP shortcuts are 

shown in Figure 21. Comparing these to ESM and MCS in Figure 2 and Figure 3, 

respectively, shows the significant improvement made by the SP shortcuts, especially 

over MCS. There is less contrast between SP and ESM, being that the SP shortcuts use 

similar probabilities as ESM, but the tailoring to individual regions better preserves the 

mean in each region. The same is true for the variance in all but the type I-J region, where 

SP1J performs slightly worse than ESM. As noted earlier, SP tends to have higher errors 

in skewness and kurtosis. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 19. EPT+ errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 20. EPT++ errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 21. SP errors in matching moments in the Pearson system. 
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Comparing Individual Distributions 

We saw previously that fitting the new shortcuts to minimize ASE did not also minimize 

other error statistics. Nor does it necessarily minimize error for individual distributions, 

as we discuss here. We compare individual distributions from the Pearson system, 

showing for exactly which distributions the errors are the lowest. Figure 22 shows which 

of EPT++, EPT+, or EPT best matches the mean or variance for specific distributions by 

the white, light gray, or dark grey regions, respectively. Tailoring EPT+ and EPT++ to 

specific distribution types in most cases improves performance in matching the mean. No 

one shortcut dominates the others over any entire region, and the shortcut most accurate 

in the mean of a distribution is often not the most accurate for that distribution's variance.  

 

a) Mean 

 

b) Variance 

 

Figure 22. Regions where EPT, EPT+, or EPT++ is the most accurate. 

Figure 23 shows which of SP, ESM, and MCS, all using the same percentiles, is 

most accurate in estimating the mean or variance for a given distribution as indicated by 
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white, light grey, or dark grey regions, respectively. The SP discretizations are the best of 

the three over most of the region considered, and are the most accurate for both the mean 

and the variance over nearly the entire type IV and VI regions. SP is a distinct 

improvement over ESM and MCS. MCS is better than the other two only for parts of the 

type I-U region, where it still displays significant error. ESM is most accurate in the 

mean only for small portions of the type I-J and I-∩ regions, but is most accurate in the 

variance over most of these same regions. 

 

a) Mean 

 

b) Variance 

 

Figure 23. Regions where ESM, MCS, or SP is the Most Accurate. 

Distribution-Specific Method Moment Errors 

Finally, we turn our attention to the distribution specific methods. The AE, ASE, and ME 

statistics are shown in Table 27 for mean and variance, and in Table 28 for skewness and 

kurtosis. 
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As expected, the BMn methods better match the mean than do BMd or the 

shortcuts. The mean error statistics for both BMn methods are highlighted, since both 

theoretically match the mean, and any discrepancy is purely numerical error. Table 27 

indicates that all of the numerical integration errors for the BMn methods average less 

than 10
-3

 and are generally several orders of magnitude smaller than the discretization 

errors for the BMd and shortcut methods. Miller and Rice (1983) proved that BMn will 

systematically underestimate variance and kurtosis, which is evident in Table 27 and 

Table 28, respectively. Table 28 also shows that BMn underestimates the skewness. The 

tables also show that five points are generally better than three. In every statistic, for each 

distribution type and moment, BMd5 has lower error than BMd3, and BMn5 has lower 

error than BMn3. 

The best of these methods in matching the avriance, BMn5, has errors two to three 

orders of magnitude higher than those of EPT and ZDI in Table 23 and Table 24, 

respectively. BMn5 also has larger errors than EPT and ZDI in skewness and kurtosis, 

except for the type I-U distributions. ESM, ZDT, and MRO’s errors in variance are also 

typically lower than those of BMn5, but are higher in skewness and kurtosis. BMn 

provides improved accuracy in the mean at the cost of reduced accuracy in the variance 

and higher moments, as compared to the best shortcuts. 
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  Mean Variance 

  AE ASE ME AE ASE ME 

I-
U

 (
B

et
a)

  BMd3 -0.020 9.23E-03 -0.335 -0.288 1.78E-01 -0.982 

BMd5 0.004 1.45E-03 0.156 -0.007 1.82E-02 0.371 

BMn3 0.000 1.18E-10 0.000 -0.207 4.90E-02 -0.446 

BMn5 0.000 1.19E-10 0.000 -0.103 1.29E-02 -0.262 

I-
J 

(B
et

a)
 BMd3 -0.097 9.84E-03 -0.121 -0.466 2.27E-01 -0.616 

BMd5 -0.051 2.74E-03 -0.068 -0.284 8.73E-02 -0.395 

BMn3 0.000 8.63E-12 0.000 -0.248 6.27E-02 -0.299 

BMn5 0.000 7.62E-12 0.000 -0.156 2.58E-02 -0.212 

I-
∩

 (
B

et
a)

 BMd3 -0.068 5.35E-03 -0.108 -0.404 1.69E-01 -0.538 

BMd5 -0.040 1.88E-03 -0.066 -0.260 7.21E-02 -0.384 

BMn3 0.000 8.69E-14 0.000 -0.222 5.04E-02 -0.292 

BMn5 0.000 4.48E-14 0.000 -0.130 1.84E-02 -0.205 

II
I 

(G
am

m
a)

 BMd3 -0.077 6.71E-03 -0.111 -0.466 2.19E-01 -0.549 

BMd5 -0.047 2.52E-03 -0.068 -0.317 1.03E-01 -0.395 

BMn3 0.000 2.80E-13 0.000 -0.248 6.26E-02 -0.299 

BMn5 0.000 1.24E-13 0.000 -0.160 2.67E-02 -0.213 

V
I 

(B
et

a 
P

ri
m

e)
 

BMd3 -0.087 7.74E-03 -0.111 -0.504 2.55E-01 -0.549 

BMd5 -0.055 3.06E-03 -0.068 -0.357 1.29E-01 -0.401 

BMn3 0.000 4.01E-14 0.000 -0.271 7.37E-02 -0.309 

BMn5 0.000 1.69E-14 0.000 -0.185 3.48E-02 -0.230 

V
 

(I
n

v
er

se
 

G
am

m
a)

 BMd3 -0.065 4.46E-03 -0.085 -0.473 2.26E-01 -0.532 

BMd5 -0.042 1.84E-03 -0.055 -0.329 1.10E-01 -0.389 

BMn3 0.000 4.41E-20 0.000 -0.248 6.23E-02 -0.286 

BMn5 0.000 4.14E-21 0.000 -0.163 2.73E-02 -0.204 

IV
 

BMd3 -0.042 2.20E-03 0.084 -0.508 2.59E-01 -0.548 

BMd5 -0.028 9.54E-04 0.055 -0.366 1.35E-01 -0.409 

BMn3 0.000 6.34E-09 0.000 -0.262 6.87E-02 -0.287 

BMn5 0.000 3.47E-12 0.000 -0.180 3.28E-02 -0.205 

Table 27. Distribution-specific method errors in the mean and variance for the main 
Pearson types. 
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  Skewness Kurtosis 

  AE ASE ME AE ASE ME 

B
et

a 
(U

) BMd3 -0.439 2.74E-01 2.004 -0.513 3.14E-01 -0.752 

BMd5 -0.097 2.94E-02 0.639 -0.170 6.73E-02 0.552 

BMn3 -0.141 1.07E-01 1.051 -0.266 1.67E-01 0.905 

BMn5 -0.125 2.65E-02 -0.312 -0.185 6.59E-02 -0.494 

B
et

a 
(J

) 

BMd3 -0.664 4.47E-01 -0.792 -0.701 5.03E-01 -0.832 

BMd5 -0.416 1.84E-01 -0.609 -0.533 3.03E-01 -0.748 

BMn3 -0.399 1.72E-01 -0.575 -0.562 3.39E-01 -0.758 

BMn5 -0.376 1.50E-01 -0.542 -0.517 2.86E-01 -0.728 

B
et

a 
(N

) BMd3 -0.754 5.71E-01 -0.798 -0.638 4.25E-01 -0.827 

BMd5 -0.542 2.98E-01 -0.609 -0.521 2.94E-01 -0.742 

BMn3 -0.467 2.26E-01 -0.571 -0.502 2.82E-01 -0.750 

BMn5 -0.455 2.11E-01 -0.540 -0.498 2.70E-01 -0.721 

II
I 

(G
am

m
a)

 BMd3 -0.778 6.20E-01 -0.802 -0.724 5.32E-01 -0.833 

BMd5 -0.596 3.64E-01 -0.612 -0.626 4.03E-01 -0.750 

BMn3 -0.536 2.95E-01 -0.577 -0.618 3.96E-01 -0.759 

BMn5 -0.510 2.67E-01 -0.545 -0.603 3.75E-01 -0.730 

V
I 

(B
et

a 
P

ri
m

e)
 

BMd3 -0.822 6.76E-01 -0.854 -0.796 6.37E-01 -0.849 

BMd5 -0.654 4.29E-01 -0.710 -0.719 5.20E-01 -0.792 

BMn3 -0.599 3.59E-01 -0.659 -0.716 5.17E-01 -0.790 

BMn5 -0.570 3.25E-01 -0.628 -0.698 4.91E-01 -0.775 

V
 

(I
n

v
er

se
 

G
am

m
a)

 BMd3 -0.834 6.96E-01 -0.854 -0.743 5.59E-01 -0.847 

BMd5 -0.672 4.53E-01 -0.711 -0.660 4.46E-01 -0.789 

BMn3 -0.607 3.69E-01 -0.658 -0.650 4.34E-01 -0.787 

BMn5 -0.579 3.36E-01 -0.628 -0.640 4.20E-01 -0.772 

IV
 

BMd3 -0.876 7.68E-01 -0.914 -0.789 6.26E-01 -0.850 

BMd5 -0.749 5.62E-01 -0.820 -0.724 5.29E-01 -0.804 

BMn3 -0.692 4.81E-01 -0.776 -0.716 5.19E-01 -0.799 

BMn5 -0.662 4.41E-01 -0.748 -0.707 5.06E-01 -0.793 

Table 28. Distribution-specific method errors in the skewness and kurtosis for the main 
Pearson types. 
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Figure 24 through Figure 27 show the absolute percentage errors in the moments 

for BMd3, Bmd5, BMn3, and Bm5, respectively. The contour levels are the same as 

those for the shortcuts in the previous sections.  

BMd3 and BMd5 produced significant errors over most of PH . BMd3 

underestimated the variance by more than 50% in approximately half of the area of the 

plot in Figure 24b. This occurs because the conditional distributions are skewed, and 

therefore the conditional median is not equal to the conditional mean. Below the type I-J 

region, error increased with skewness. Adding more points clearly improved the 

performance of BMd, although it was still inferior to the shortcut methods. For example, 

BMd5 still performed worse than does MCS, albeit slightly. 

Figure 26b and Figure 27b imply that the BMn errors in the variance are far less 

sensitive to distribution shape than are those for the shortcut methods. Error in the 

variance is primarily a function of kurtosis for both BMd and BMn. BMd’s performance 

was especially poor, although error was reduced by adding more discretization points. 

Yet, even a five-point BMn can underestimate the variance of low-skew type I-∩ 

distributions by more than 10%. This suggests that a different discretization approach 

may be needed if preserving the variance is important. Even though BMd and BMn are 

tailored to the underlying distribution, the errors in the variance for each of these 

methods, over most of PH , were significantly larger than those for EPT and ZDI. 

However, the BMn methods exhibited more gradual increases in error in and around the 

type I-U region than did the shortcut methods. 

Although the BMn3 method provided the foundation for MCS, the errors in the 

variance, skewness, and kurtosis in Figure 26b through d are significant, even though 

BMn3 produced a discretization that is specific to a given distribution. MCS, in contrast, 

applied a single set of percentiles over this whole region, producing generally higher 

errors in all of the moments, as seen by comparing Figure 26 to Figure 14. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 24. BMd3 errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 25. BMd5 errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 26. BMn3 errors in matching moments in the Pearson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 27. BMn5 errors in matching moments in the Pearson system. 

  



 93 

JOHNSON SYSTEM 

We used the same framework for the Johnson system as for the Pearson system. Many of 

the conclusions from the Pearson system extend to the Johnson system as well. We give 

all of the corresponding results for discretization error, but focus on the generalized 

lognormal distribution, SL, given its importance in many applications. 

General Shortcut Moment Errors 

The errors in the mean and variance for the shortcuts are given in Table 29, and the errors 

in the skewness and kurtosis in Table 30. The results in these tables for the SB type do not 

include U-shaped distributions. As seen previously with the Pearson distribution, 

shortcuts generally performed very poorly on U-shapes, which would skew the results for 

this type.  

EPT and ZDI generally had the lowest average errors in all four moments for each 

of the three Johnson types. These two shortcuts had the two lowest errors by each 

measure for SL and SU, and had the two best ASEs for SB. In the variance for SB, ESM 

had a lower ME and ZDT a lower AE. MRO had a lower ME in the skewness, where ZDI 

actually had the highest ME of these methods. Figure 31c shows that this is due to ZDI’s 

high error in the skewness near  1 20, 1    and that the error over most of the SB 

region was much lower. EPT displays similar performance in Figure 30c. 
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  Mean Variance 

  AE ASE ME AE ASE ME 

SB 

 

ESM 0.016 8.41E-04 0.095 -0.097 1.96E-02 -0.234 

MCS -0.034 1.31E-03 -0.051 -0.233 6.22E-02 -0.353 

EPT 0.003 9.25E-05 0.046 0.048 1.21E-02 0.399 

ZDI -0.003 1.26E-04 -0.066 0.068 1.52E-02 0.443 

ZDT 0.049 3.68E-03 0.160 -0.009 1.22E-02 0.289 

MRO -0.003 2.27E-04 0.051 -0.107 1.99E-02 -0.239 

SL 

ESM -0.006 4.39E-05 -0.010 -0.131 2.03E-02 -0.215 

MCS -0.034 1.25E-03 -0.047 -0.271 7.57E-02 -0.339 

EPT -0.001 7.06E-07 -0.002 -0.036 1.77E-03 -0.071 

ZDI -0.001 1.04E-06 -0.001 -0.020 5.08E-04 -0.040 

ZDT 0.013 1.64E-04 0.014 -0.038 5.56E-03 -0.133 

MRO -0.014 2.24E-04 -0.021 -0.158 2.70E-02 -0.226 

SU 

ESM 0.006 3.88E-05 0.011 -0.202 4.36E-02 -0.294 

MCS 0.023 6.40E-04 0.046 -0.333 1.13E-01 -0.411 

EPT 0.001 1.16E-06 0.002 -0.073 6.13E-03 -0.130 

ZDI 0.001 7.15E-07 0.001 -0.046 2.51E-03 -0.091 

ZDT -0.006 4.68E-05 -0.014 -0.115 1.66E-02 -0.215 

MRO 0.010 1.32E-04 0.021 -0.220 5.02E-02 -0.300 

Note: SB U-shapes are not included. 

Table 29. Shortcut method errors in the mean and variance for the Johnson types. 
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  Skewness Kurtosis 

  AE ASE ME AE ASE ME 

SB 

 

ESM -0.600 3.76E-01 -0.748 -0.672 4.69E-01 -0.829 

MCS -0.464 2.38E-01 -0.658 -0.588 3.72E-01 -0.788 

EPT -0.139 6.45E-02 0.946 -0.385 2.01E-01 -0.685 

ZDI -0.028 5.68E-02 1.203 -0.295 1.54E-01 0.665 

ZDT -0.679 4.73E-01 -0.800 -0.711 5.20E-01 -0.848 

MRO -0.438 2.16E-01 -0.635 -0.582 3.66E-01 -0.785 

SL 

ESM -0.716 5.14E-01 -0.749 -0.709 5.12E-01 -0.827 

MCS -0.613 3.77E-01 -0.659 -0.645 4.29E-01 -0.787 

EPT -0.306 9.89E-02 -0.409 -0.494 2.67E-01 -0.684 

ZDI -0.198 4.70E-02 -0.323 -0.427 2.10E-01 -0.637 

ZDT -0.775 6.01E-01 -0.801 -0.740 5.55E-01 -0.847 

MRO -0.585 3.43E-01 -0.637 -0.641 4.24E-01 -0.783 

SU 

ESM -0.735 5.72E-01 -0.833 -0.767 5.92E-01 -0.833 

MCS -0.657 4.58E-01 -0.772 -0.718 5.22E-01 -0.800 

EPT -0.426 1.98E-01 -0.590 -0.608 3.81E-01 -0.730 

ZDI -0.344 1.33E-01 -0.525 -0.560 3.28E-01 -0.700 

ZDT -0.779 6.42E-01 -0.868 -0.791 6.29E-01 -0.850 

MRO -0.636 4.29E-01 -0.755 -0.715 5.18E-01 -0.798 

Note: SB U-shapes are not included. 

Table 30. Shortcut method errors in the skewness and kurtosis for the Johnson types. 

The absolute percentage errors for the shortcuts in Figure 28 through Figure 33 

show very similar results for the Johnson system as those seen for the Pearson system in 

Figure 13 through Figure 18. The methods performed poorly over the U-shaped 

distributions, near the impossible area, and the error contours typically show very similar 

behaviors as functions of 1  and 2 .  

Figure 28a indicates that ESM quite accurately preserved the mean of the 

lognormal distribution throughout the range of shapes that we considered, with errors 

generally less than 1% (the lognormal distribution on which Hurst et al. (2000) 

demonstrated ESM corresponds to the point 1 2( 0.377, 3.678)   ). However, the 
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lower right corner of Figure 28b shows that ESM's error in the variance exceeds 20% and 

is less than 5% only near the normal distribution when squared skewness is less than 

about 0.5. Figure 28c and Figure 28d indicate that, even for lognormal distributions close 

to the normal distribution, ESM’s skewness and kurtosis errors exceeded 60% and 40%, 

respectively. This indicates that ESM accurately matched the mean and variance for 

lognormal distributions with very low skewness, but did not accurately represent the 

shape of skewed distributions. As with the Pearson system, Figure 29 shows that MCS 

incurred significant errors of about 17% in the variance and 30% in the kurtosis on the 

normal distribution. MCS’s errors in these moments rise quickly as skewness and 

kurtosis increase along the SL line. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 28. ESM errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 29. MCS errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 30. EPT errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 31. ZDI errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 32. ZDT errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 33. MRO errors in matching moments in the Johnson system. 
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New Shortcut Moment Errors 

This section discusses EPT+, EPT++, and SP methods for the Johnson distribution types. 

Their AE, ASE, and ME for each type are given in Table 31 for the mean and variance, 

and in Table 32 for the skewness and kurtosis. Results for symmetric distributions are 

excluded for EPT++. The EPTSB+ and EPTSB++ are identical because the methods use 

the same percentiles and probabilities. Both tables for EPTSU++ show that, as with the 

Pearson system EPT++ methods, EPTSU+ had lower errors, despite having the more 

constrained regression fit. This indicates that EPTSU++ is very sensitive to the probability 

weights.  

SP distinctly outperformed ESM and MCS in the mean of each Johnson type by 

each measure (except for SB ME, which is lower for MCS). SP was also better than ESM 

and MCS by each measure in the variance for SL and SU, but inferior to ESM in the SB 

variance. This shows that ESM, while similar to SPSL, can be improved for estimating 

the mean and variance of lognormal distributions. This issue will be further discussed 

later in this chapter. Finally, MCS again had lower errors in the skewness and kurtosis 

than did either SP or ESM, despite typically having higher errors in the mean and 

variance than did those methods. 
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  Mean Variance 

  AE ASE ME AE ASE ME 

SB 

EPTSB+ -0.002 7.35E-05 -0.046 0.032 1.08E-02 0.381 

EPTSB++* -0.001 3.77E-05 0.029 -0.055 1.09E-02 0.247 

SPSB -0.004 3.49E-04 0.056 -0.151 3.19E-02 -0.282 

SL 

EPTSL+ 0.000 8.08E-09 0.000 -0.010 1.61E-04 -0.026 

EPTSL++ 0.000 8.08E-09 0.000 -0.010 1.61E-04 -0.026 

SPSL 0.000 1.84E-06 -0.002 -0.100 1.35E-02 -0.188 

SU 

EPTSU+ 0.000 1.73E-08 0.000 -0.033 1.40E-03 -0.075 

EPTSU++* 0.000 2.87E-07 0.002 -0.122 1.72E-02 -0.218 

SPSU 0.000 1.84E-06 -0.004 -0.160 2.87E-02 -0.256 

Note: SB U-shapes are not included. 

*Symmetric distributions are not included for EPT++. 

Table 31. New shortcut method errors in the mean and variance for the Johnson types. 

 

  Skewness Kurtosis 

  AE ASE ME AE ASE ME 

SB 

EPTSB+ -0.125 6.22E-02 0.980 -0.372 1.93E-01 -0.679 

EPTSB++* -0.236 1.02E-01 -1.030 -0.416 2.22E-01 -0.701 

SPSB -0.549 3.19E-01 -0.714 -0.643 4.33E-01 -0.815 

SL 

EPTSL+ -0.172 3.82E-02 -0.303 -0.411 1.98E-01 -0.626 

EPTSL++ -0.172 3.82E-02 -0.303 -0.411 1.98E-01 -0.626 

SPSL -0.736 5.43E-01 -0.767 -0.720 5.27E-01 -0.834 

SU 

EPTSU+ -0.325 1.20E-01 -0.510 -0.549 3.16E-01 -0.693 

EPTSU++* -0.634 4.05E-01 -0.703 -0.743 5.56E-01 -0.817 

SPSU -0.757 6.06E-01 -0.851 -0.779 6.11E-01 -0.842 

Note: SB U-shapes are not included. 

*Symmetric distributions are not included for EPT++. 

Table 32. New shortcut method errors in the skewness and kurtosis for the Johnson types. 

Figure 34 and Figure 35 show the absolute percentage errors in the moments for 

EPT+ and EPT++. The scalloping along the lognormal line is due to the grid of discrete 

samples used and that the discretization method changes at this border. The errors over 
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the Johnson system for the SP shortcuts are shown in Figure 36. In these figures, the 

errors given in each region are only for the shortcut corresponding to that region.  

The contours in the plots denoting different error levels display distinct 

discontinuities in several places, most notably in the variance for each method. These 

discontinuities are even more distinct than in the Pearson system, because the new 

Johnson system shortcuts must minimize ASE over larger areas of the system. Unless 

there is a specific reason to use the Johnson system, the new Pearson system shortcuts 

should be used, since they were fit to smaller regions of that system and hence will be 

more accurate. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 34. EPT+ errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 35. EPT++ errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 
c) Skewness 

 

d) Kurtosis 

 

Figure 36. SPS shortcut errors in matching moments in the Johnson system. 

 
  



 109 

Comparing Individual Distributions 

Again, EPT+ and EPT++ can be compared to EPT for individual distributions. Figure 37 

shows for which distributions each method had the lowest error in the mean and variance. 

EPT++ performed best in the white regions, EPT+ in the light grey, and EPT in the dark 

grey. Much like in Figure 22 for the Pearson system shortcuts, there was no clear 

dominance in the SB region, but EPT+ appeared best in both the mean and variance over 

nearly the entire SU region. 

a) Mean 

 

b) Variance 

 

Figure 37. Distributions for which EPT++, EPT+, or EPT had the lowest absolute error in 

the distribution mean and variance. 

Figure 38 presents the regions in which each of SP, ESM, or MCS best matched the 

mean. Areas colored white indicate distributions for which SP had the lowest absolute 

error in the mean. Light grey and dark grey indicate that ESM and MCS, respectively, 

had the lowest absolute error. Our new SP shortcut had the lowest error for nearly the 

entire SU region, most of the SL line, and a portion of the SB region. Either ESM and MCS 

had the lowest error for other portions of the SB region. The order of the regions where 
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each method is best for the SB type reflects the ordering of the weights they each place on 

the P10 and P90. MCS, which weights the P10 and P90 each at 0.250, performed best for 

distributions at the top of the feasible region. The largest region where SP performed best 

for this type is just below MCS’s region, and this shortcut weights the P10 and P90 with 

0.278. Finally, ESM was best at the bottom of the SB region. 

a) Mean 

 

b) Variance 

 

Figure 38. Distributions for which SP, ESM, or MCS has the lowest absolute error in the 

distribution mean and variance. 
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Distribution-Specific Method Moment Errors 

The BMd and BMn summary statistics are shown in Table 33 for the mean and variance 

and in Table 34 for the skewness and kurtosis. These results, like those for the Pearson 

system in Table 27 and Table 28, show BMn5 to dominate the other three methods, and 

BMd5 to dominate BMd3. ESM had lower AE and ASE in the variance of SL 

distributions than did BMn5, and both SP and ESM had lower AE in the variance for 

each type than did BMn5. SPSL with AE of 0.000 in the mean for SL and less error in the 

variance than BMn5, may be a better choice for discretizing lognormal distributions, even 

though it has fewer points and is a shortcut. 

Figure 39 through Figure 42 show the absolute percentage errors in the four 

moments for the four distribution-specific methods. These plots are nearly identical to 

those for the Pearson system in Figure 24 through Figure 27.  

  



 112 

  Mean Variance 

  AE ASE ME AE ASE ME 

SB 

BMd3 -0.087 8.28E-03 -0.131 -0.478 2.37E-01 -0.640 

BMd5 -0.049 2.59E-03 -0.069 -0.307 1.01E-01 -0.414 

BMn3 0.000 3.80E-09 0.001 -0.250 6.42E-02 -0.305 

BMn5 0.000 2.74E-09 0.000 -0.161 2.78E-02 -0.222 

SL 

BMd3 -0.069 5.08E-03 -0.093 -0.475 2.28E-01 -0.543 

BMd5 -0.043 2.05E-03 -0.060 -0.329 1.10E-01 -0.398 

BMn3 0.000 1.09E-12 0.000 -0.250 6.33E-02 -0.294 

BMn5 0.000 1.09E-12 0.000 -0.164 2.79E-02 -0.211 

SU 

BMd3 0.044 2.47E-03 0.092 -0.536 2.89E-01 -0.608 

BMd5 0.029 1.03E-03 0.059 -0.391 1.55E-01 -0.468 

BMn3 0.000 2.17E-12 0.000 -0.275 7.60E-02 -0.314 

BMn5 0.000 2.37E-12 0.000 -0.195 3.86E-02 -0.240 

Note: SB U-shapes are not included. 

Table 33. Distribution-specific method errors in the mean and variance for the Johnson 

types.  

  Skewness Kurtosis 

  AE ASE ME AE ASE ME 

SB 

BMd3 -0.728 5.42E-01 -0.842 -0.711 5.20E-01 -0.848 

BMd5 -0.507 2.76E-01 -0.689 -0.578 3.56E-01 -0.786 

BMn3 -0.476 2.43E-01 -0.642 -0.590 3.74E-01 -0.787 

BMn5 -0.446 2.12E-01 -0.610 -0.559 3.34E-01 -0.768 

SL 

BMd3 -0.826 6.83E-01 -0.843 -0.740 5.55E-01 -0.847 

BMd5 -0.658 4.34E-01 -0.691 -0.654 4.39E-01 -0.785 

BMn3 -0.594 3.54E-01 -0.643 -0.644 4.28E-01 -0.786 

BMn5 -0.566 3.21E-01 -0.611 -0.633 4.12E-01 -0.767 

SU 

BMd3 -0.817 7.05E-01 -0.897 -0.791 6.29E-01 -0.850 

BMd5 -0.685 4.97E-01 -0.788 -0.722 5.27E-01 -0.801 

BMn3 -0.642 4.37E-01 -0.758 -0.718 5.21E-01 -0.800 

BMn5 -0.610 3.95E-01 -0.724 -0.705 5.03E-01 -0.788 

Note: SB U-shapes are not included. 

Table 34. Distribution-specific method errors in the skewness and kurtosis for the 

Johnson types.  
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 39. BMd3 errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 40. BMd5 errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 41. BMn3 errors in matching moments in the Johnson system. 
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a) Mean 

 

b) Variance 

 

c) Skewness 

 

d) Kurtosis 

 

Figure 42. BMn5 errors in matching moments in the Johnson system. 

  



 117 

U-shaped SB Distributions 

Here we briefly consider the U-shaped SB distributions that were excluded from the 

previous summary statistics in this chapter. Table 35 gives the AE, ASE, and ME for the 

mean and variance, and Table 36 for the skewness and kurtosis, for all of the 

discretization methods. Of the original six shortcuts, EPT performed best in the mean, 

and EPT++ performed even better. Although of the distribution-specific methods, BMn5 

performed best in the mean and variance, BMd5 performed best in the skewness and 

kurtosis and also had lower AE in the variance than BMn5. BMd5 also had the lowest AE 

in the variance, skewness, and kurtosis for the Pearson type I-U in Table 27 and Table 28. 

BMn5 appears to be the best overall method for the U-shapes.  

 

 Mean Variance 

 AE ASE ME AE ASE ME 

ESM 0.151 3.30E-02 0.473 0.297 1.22E-01 0.768 

MCS 0.041 8.55E-03 0.323 0.145 5.08E-02 0.579 

EPT -0.025 8.27E-03 -0.295 0.248 1.17E-01 0.592 

ZDI -0.064 1.16E-02 -0.333 0.190 9.61E-02 0.551 

ZDT 0.224 6.34E-02 0.572 0.385 1.83E-01 0.871 

MRO 0.072 1.33E-02 0.345 0.273 1.07E-01 0.693 

EPTb+ -0.033 8.57E-03 -0.301 0.232 1.08E-01 0.572 

EPTb++ -0.016 7.13E-03 -0.275 0.227 9.16E-02 0.543 

SPb 0.107 2.02E-02 0.413 0.239 8.97E-02 0.697 

BMd3 -0.036 6.25E-03 -0.187 -0.328 1.85E-01 -0.893 

BMd5 0.005 1.15E-03 0.174 -0.019 1.72E-02 0.347 

BMn3 0.001 2.33E-05 0.038 -0.205 4.63E-02 -0.397 

BMn5 0.001 2.25E-05 0.038 -0.102 1.27E-02 -0.208 

Table 35. Errors in the mean and variance for U-shaped SB Distributions 
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 Skewness Kurtosis 

 AE ASE ME AE ASE ME 

ESM -0.336 1.83E-01 1.234 -0.461 2.66E-01 -0.712 

MCS -0.125 1.39E-01 2.000 -0.296 1.72E-01 0.702 

EPT 0.236 3.22E-01 3.288 0.081 1.86E-01 1.553 

ZDI 0.364 4.64E-01 3.748 0.245 2.93E-01 1.926 

ZDT -0.459 2.59E-01 0.791 -0.537 3.31E-01 -0.754 

MRO -0.113 1.41E-01 2.034 -0.287 1.69E-01 0.721 

EPTb+ 0.256 3.41E-01 3.360 0.105 1.98E-01 1.609 

EPTb++ 0.198 2.97E-01 3.195 0.013 1.57E-01 1.459 

SPb -0.256 1.53E-01 1.524 -0.403 2.27E-01 -0.679 

BMd3 -0.469 2.65E-01 0.785 -0.537 3.31E-01 -0.754 

BMd5 -0.120 2.77E-02 -0.325 -0.205 7.30E-02 -0.505 

BMn3 -0.181 9.36E-02 0.870 -0.305 1.71E-01 0.667 

BMn5 -0.147 3.12E-02 -0.328 -0.222 7.63E-02 -0.506 

Table 36. Errors in the skewness and kurtosis for U-shaped SB Distributions  

Extended Lognormal Analysis 

The lognormal distribution is heavily used in several industries. Shortcut methods are not 

recommended for highly skewed distributions, but we need to quantify "highly skewed" 

to determine the applicability of a shortcut. In particular, we look at the best P10, P50, 

and P90 weights for individual lognormal distributions over a wider range of skewness 

and kurtosis than was examined in the previous section. 

As before, we will require that the probability weightings 1p , 2p , and 3p  of the 

percentile points 1x , 2x , and 3x  be symmetric 1 3( )p p  and sum to one. We can then 

find the probability weighting 1p  of the P10 and P90 that matches the mean for a 

distribution F with mean , 

 
1

1 1 1 1

(0.5)

(0.1) (0.9) 2 (0.5)

F
p

F F F

 
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


 
. (52) 

Figure 43 plots 1p  as a function of the skewness for the lognormal. The dashed curve 

denotes the error in matching the mean for ESM. As the lognormal distributions become 
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more skewed, more probability should be placed on the P10 and P90 to compensate for 

the thickening tail. The three points are equally weighted, with probability 1/3, when 

skewness reaches 4.29 (a P90/P50 ratio of approximately 3.0). Beyond a skewness of 

4.29, the optimal discrete approximation is bimodal. We take this point as the limit on the 

applicability of P10-P50-P90 approximations of the lognormal distribution. At this limit, 

ESM, for example, underestimates the mean by 3%, the variance by 49%, and the 

skewness by 85%.  

The requirement that 10 1p   gives Equation (52) the theoretical bounds 

1/2

10 15,162  . As skewness increases, the mean moves farther from the median 

1( (0.5))F 
, reaching the limit at which any symmetric weighting of the P10, P50, and 

P90 can match the mean when 

  1 1 1 1 1(0.5) (0.9) (0.5) (0.5) (0.1) .F F F F F            (53) 

This limit is reached when the mean is as far from the median as the difference in the 

distances of the P90 from the median and the P10 from the median. For the lognormal 

distribution, this limit is reached when skewness is greater than 15,162 (a P90/P50 ratio 

of approximately 25.7). As skewness decreases, the lognormal distribution approaches 

the normal distribution as a limiting case, which has a skewness of zero. This occurs 

when both sides of Equation (53) are zero, meaning that the P10 and P90 are equidistant 

from the median. The resulting division of zero by zero in Equation (52) implies that any 

value of 1p  is feasible; i.e., any symmetric weighting will match the mean.  

Since any symmetric weighting will match the mean of a symmetric distribution, 

this gives another degree of freedom, whereby we can attempt to match a second attribute 

of the distribution, such as the variance, by adjusting the amount of weight placed equally 

on the P10 and P90. If we choose 1p such that the discretization matches the variance of a 

normal distribution, the result is almost exactly the 0.300, 0.400, 0.300 weighting of 
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ESM. This follows since, as shown by Bickel et al. (2011), ESM is a GQ for the normal 

distribution when the values are fixed to be the P10, P50, and P90. 

 

Figure 43. The P10 and P90 probabilities that match the mean of a lognormal distribution 

defined by skewness, and the corresponding ESM error. 

Figure 43 can be used to fine-tune probability weights to a specific lognormal 

distribution. Accurate estimates of the moments of an assessed or empirical distribution 

are not often available, but can be determined from the P10, P50, and P90 assessments. 

For a lognormal distribution X with parameters µ and σ (equivalently, an SL distribution 

translated so that its lower bound is at the origin), we have 

 ln P50    (54) 

 
1

1 P90
ln

(0.9) P50






, (55) 

With these parameters, we can determine the distribution’s skewness and read the 

appropriate weighting off Figure 43. 

Best Mean-Matching Methods for Distributions in the Johnson System 

The analysis of optimal lognormal weights can be extended to determine the optimal 

weighting of the P10, P50, and P90 across the range of distributions in the Johnson 

system. As in the previous section, we summarize this weighting by specifying only the 
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weight on the P10, since the discretizations are symmetric. The results are shown in 

Figure 44. The contours corresponding to MCS and ESM are labeled. The ESM 

weighting runs diagonally from about the normal distribution point to the bottom right of 

Figure 44. This indicates that ESM can tolerate (in terms of matching the mean) 

increasing skewness as long as there is an accompanying increase in kurtosis. ESM is 

also near-optimal for matching the mean of SL distributions with skewness less than one 

(a P90/P50 ratio less than approximately 1.5), but SP (near the 0.31 contour) is better for 

higher skewness. The contour corresponding to MCS lies in the upper portion of the SB 

region that contains the U-shaped distributions and also runs diagonally through most of 

the region, but curves upward near a skewness of one. The region where an equal 

weighting of the three percentiles is optimal requires a kurtosis greater than 10 and is not 

shown in Figure 44. Over most of the regions in Figure 44, increasing kurtosis requires 

that more weight should be placed on the P10 and P90 in order to match the mean. 

 

 

Figure 44. Mean-Matching Symmetric Weightings of the P10, P50, and P90 Percentiles. 
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SUMMARY AND DISCUSSION 

In this chapter, we have tested the accuracy of existing discretization methods over a 

much wider set of distributions than in previous work. We also examined our new 

discretization shortcuts, which are more accurate in many cases than previously proposed 

methods. Our use of the Pearson and Johnson systems, which together include many 

common distributions as special cases, allowed us to make a thorough and systematic 

analysis. While considering only a finite portion of each of these infinite systems, we 

were able to identify performance relations to distribution shape and make broader 

conclusions. 

The discretization methods’ (both shortcuts and bracket methods) ability to 

preserve the mean and variance, but not skewness and kurtosis, indicates that their 

fidelity is often sufficient for preserving the location and scale, but not the shape or tails 

of a distribution. The higher moments are highly dependent on the tails, which are 

typically difficult to capture without using extreme percentiles, especially for unbounded 

distributions.  

Keefer and Bodily (1983) and Keefer (1994) concluded that EPT is a good general 

discretization method, and our results extended this conclusion to a much wider range of 

distribution shapes and for different support ranges. EPT’s and ZDI’s similarities with 

EPT+ and EPT++ in both systems indicate that the former methods are near-optimal for 

matching moments in the class of three-point shortcuts using the P50. However, our new 

SP methods showed distinct improvement over both ESM and MCS in matching the 

mean and variance, with only somewhat degraded performance in the skewness and 

kurtosis. Allowing the shortcuts’ weights to be asymmetric did not appreciably improve 

their accuracy. Further, replacing the median with the mode did not improve performance 

or lead to reasonable weightings. Increasing the number of points used for BMd or BMn 

decreased their errors, but BMd5 and BMn5 often still had higher errors than some three-
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point shortcuts. Increasing the number of points used by BMn can decrease the errors, but 

can also cause the complexity of the decision model to rapidly increase. 

We saw that ESM and MCS are special cases of a general symmetric-weighting 

scheme and that each is appropriate for different kinds of distributions. However, on 

average, ESM was more accurate than MCS in matching both the mean and variance for 

most of the distributions in the Johnson system, in particular the lognormal. By tailoring 

the probability weights in either the Pearson or Johnson system with the SP methods, we 

can improve the performance of P10, P50, P90 discretizations in matching the mean and 

variance. 

Our new methods' poor performance in preserving the higher moments of a 

distribution is a broad indication of the limits of shortcut methods, and it reinforces that 

they are approximations that should be refined during the analysis. Shortcuts are 

nonetheless valuable modeling tools with appropriate uses. Which method is "best" 

depends on the decision problem, but in a broad sense we can improve upon both by 

using basic information about the underlying uncertainty. 

Guidelines for Practice 

If the goal of a discretization is to match the moments of the underlying pdf, GQ should 

ideally be used because it can match the most moments using a given number of points of 

any distribution with finite moments. However, GQ can be difficult to implement and 

might not always be feasible in practice. Unless one is discretizing a common family 

(e.g., normal, uniform, triangular) for which GQs have been tabulated (Bickel et al. 

2011), use of GQ requires software. In addition, GQ requires that the moments of the 

underlying distribution be known.  

BMn matches the mean and is relatively simple to use, as discussed in Chapter 2. 

However, BMn can significantly underestimate the variance, and usually has more error 
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than some shortcut methods (e.g., EPT). BMn’s accuracy can be increased somewhat by 

using more points. One drawback, however, of both the BMn and BMd methods is that 

the entire distribution is required, whereas shortcut methods need only specific 

percentiles. That aside, BMd performs quite poorly and should be avoided if one’s goal is 

to closely approximate a distribution’s moments. 

If the distribution is not known, and especially if assessments are time consuming, 

we are left with the shortcut methods. Of the pre-existing shortcut methods, EPT and ZDI 

are good general choices, but better performance can generally be obtained using the 

EPT+ and EPT++ shortcuts for their respective distribution types. If a distribution is 

thought to have low skew, then EPT+ might be better than EPT++. If one is constrained 

to use the common P10, P50, and P90 percentiles, then choosing one of the SP methods 

provides distinct improvements over ESM or MCS. By considering the bounds (or 

support) of a distribution, we can make an appropriate selection from these new methods. 

However, even our new shortcuts severely underestimate the skewness and kurtosis of 

most distributions, and they should be cautiously applied if the distribution shape is 

important. 

If the skewness and kurtosis of a distribution are well-estimated, the symmetric 

mean-matching weighting of the P10, P50, and P90 can be determined from Figure 44. 

The practical applicability of shortcuts using the P10, P50, and P90 is limited to the 

unimodal distributions for which the mean-matching symmetric weighting places more 

weight on the P50 than on the P10 or the P90 (which for the lognormal is limited to 

skewness below 4.29; in general, the limit is a function of both skewness and kurtosis). 

Beyond this limit, the mean-matching weighting is no longer unimodal, and the errors in 

the moments are large. If the distribution falls outside this limit, other discretization 

methods using more extreme percentiles (e.g., EPT, ZDI, EPT+) should be used.  
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An analyst might not be working with a distribution that belongs to the Pearson or 

Johnson systems. However, Pearson and Tukey (1965) showed that distributions that 

share the same skewness and kurtosis are often very close in shape, even if they are not 

contained within the Pearson system. We also showed the similarity between Pearson and 

Johnson shapes in Chapter 3. With this knowledge, the appropriate EPT+, EPT++, or SP 

shortcut can be determined by considering the distribution's support (bounded at both 

ends, bounded at one end, or unbounded). This basic characteristic is determined by the 

nature of the uncertain quantity and should be apparent (for example, the volume of oil in 

a reservoir cannot be negative, and uncertainty about it should be moedeled with a 

distribution that is bounded below). If the distribution is bounded on both ends, then the 

analyst might be able to use knowledge of its shape (e.g., whether it is ∩-shaped) to 

further specify the appropriate type I approximation. If there is sufficient knowledge of 

the distribution to more narrowly specify its location in Figure 1 (if it indeed falls within 

this region), then Figure 22 and Figure 23 for the Pearson system, or Figure 37 and 

Figure 38 for the Johnson system, can be used to recommend a particular shortcut.  

The Pearson system is comprised of smooth distributions, most of which are 

unimodal, with the type I-U as the exception. This type, and perhaps other oddly shaped 

or multi-modal distributions, should be discretized with care. Neither the pre-existing 

shortcut methods we analyze, nor the new shortcuts we present, perform well over even a 

quarter of the type I-U region, which is strong evidence that general shortcut methods 

will not accurately represent them. A method that takes the actual distribution into 

account, such as BMn, is better for these kinds of distributions. 

As a general approach, shortcut methods are useful as a first approximation, which, 

when aided by sensitivity analysis, will help identify important uncertainties. These 

uncertainties can then be given more attention when ascertaining the full distribution and 

using discretization methods such as Gaussian quadrature or BMn with several points. 
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Decision analysis is iterative. As the analysis evolves, the discretizations that are used 

can and should be adapted to the importance of specific uncertainties. How a distribution 

is ultimately treated in a decision problem is a function not only of the distribution itself, 

but of its relation to other aspects of the problem. Often, analysis arbitrarily does not 

consider refinement of uncertainty assessments or discretizations (Bickel et al., 2011). 

Although refinement is not always necessary, its appropriateness should be determined 

from characteristics of the decision. 
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Chapter 5: Assessment Error 

The previous chapter assumed perfect knowledge of the continuous distribution, which is 

often an unrealistic assumption. As discussed in Chapter 2, the assessments made by an 

expert might not precisely reflect their actual beliefs, in which case they would have what 

we term assessment error.  

This chapter will examine the effects of incorrect percentile assessments on 

moment estimates, building upon the work of the previous chapter. There, we determined 

the best moment-preserving discretizations for different distributions, and we now 

consider how assessment error affects those choices. 

INTRODUCTION 

The best shortcut methods can preserve the mean and variance of many distributions 

quite well, but are quite poor in preserving higher moments, such as the skewness and 

kurtosis. The methods’ varying degrees of accuracy, particularly for approximating the 

mean of a distribution, can be small for the best methods. In practice, the underlying 

continuous distribution may not be precisely known, raising the question of whether the 

differences in methods’ accuracies are significant. For example, ESM and MCS use the 

same percentiles but different probability weights. The different weightings result in 

distinctly different estimates of the moments of many distributions. However, it is not 

clear whether these differences are significant when the continuous distribution is not 

completely known. 

In this analysis, we consider only five discretization methods. We consider three 

shortcuts: ESM and MCS, for their propensity in practice, and EPT, as one of the most 

accurate shortcuts. The effectiveness of EPT’s increased discretization accuracy is 

questioned, since it uses more extreme, and hence more difficult to assess, percentiles 

than does ESM. We also consider two distribution-specific methods: BMn5 and BMd3. 



 128 

Chapter 4 found these to be the best and worst, respectively, of the four distribution-

specific methods considered.  

We present a model of assessment error in the percentile assessments, which we 

use to compare the discretization methods over the Pearson type I distribution family. 

Our results compare the differences between discretization moment-estimates to the 

assessment error of a single discretization method, to show how differences in percentile 

assessment error can influence the effects of using different discretization methods. 

We first present the assessment error model and formally define the framework we 

use to investigate the effects of assessment error. The framework is illustrated with a 

numerical example. Next we give our analysis for selection of discretization methods we 

examine. We also cast the results of several empirical studies of assessor calibration into 

our error framework, to give context to our results. The chapter concludes with a 

summary and discussion of the results. 

ASSESSMENT ERROR MODEL  

Error in probabilistic assessments can be viewed in multiple ways. Wallsten and Budescu 

(1983) used an error model in which the variation was described explicitly as a difference 

between the value of the percentile requested and that given by the expert. Specifically, 

for a requested percentile ( )F t q , where t is the true value, the value x = t + e is given, 

with error e. We instead model assessment error as a deviation in the percentile 

assignment F(t) of a given value t as ( )F t q   . Rather than assume a specific 

distribution on δ, we quantify the error as a range: 

    .  (56) 

This gives a scale-invariant error model that naturally yields larger error ranges for 

portions of the distribution that have low density. This corresponds to the observation  
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that extreme percentiles are more difficult to assess, and have higher errors, than 

percentiles closer to the median (Alpert and Raiffa, 1982). 

Suppose an expert is asked for the P10 of a distribution h and gives a value of y, 

which is actually the expert’s P12, or a deviation of δ = 0.02 in the cumulative probability 

assigned to y. We refer to the bound of absolute deviation as Δ, so that Δ = 0.05 indicates 

that an assessed P10 could feasibly be any percentile from P5 to P15. We assume 

identical Δ for each assessed percentile. Then, given a set of percentile assessments from 

h, 1,...,( , )h

i i i nx q   and an assessment error Δ, any distribution f that satisfies the following 

constraints on its cdf F is feasible. 

 
( ) , 1,..., ,

( ) , 1,..., .

h

i i

h

i i

F x q i n

F x q i n

  

  
  (57) 

We define a truth set as the set of distributions satisfying these constraints, which is given 

by 

  | ( ) , ( ) , 1,...,h h h

i i i iT F F x F x i n        . (58) 

Because the distributions in the Pearson system have four parameters and four 

degrees of freedom, constraining on only three percentiles does not generally form a 

bounded truth set. However, the ∩-shaped Pearson type I is itself bounded in 1  and 2 , 

as seen in Chapter 3. Despite these limitations, this distribution family is a generalization 

of the beta distribution, which can take on a wide range of shapes that occur in practice 

(Keefer and Bodily, 1983). Chapter 4 showed that the performance of the best methods 

did not change drastically over much of the Pearson system outside of the ∩-shaped type 

I. For these reasons, this chapter’s numerical analysis will consider only distributions of 

this type. 

An Illustrative Example 

We use an example distribution to illustrate concepts throughout this chapter. Suppose 

we have P10, P50, and P90 assessments, through which a Pearson type I-∩ distribution, 
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exh , is fit with moments 1 21, 1, 0.5, 3.5       and support [-0.997, 11.517]. 

Figure 45 shows the cdf (solid curve) and percentile bounds for two levels of assessment 

error (dashed lines) of this distribution for which the P10, P50, and P90 are assessed with 

error Δ = 0.02 and 0.05. Figure 46 shows the ranges of error in the percentiles. The full 

range of error for Δ = 0.02 is 0.04 for the P10, P50, and P90, but reaches approximately 

0.08 for the P23. Similarly, the full range of error for Δ = 0.05 is 0.10 for the P10, P50, 

and P90, but reaches nearly 0.16 in the P33 and P50. The percentiles with the largest 

error for each level of Δ are not necessarily the same. It is also evident that the percentile 

errors in the longer right tail taper off more slowly than for the shorter left tail. 

 

 

Figure 45. CDF for exh  and bounds on Pearson type I-∩ distributions with assessment 

errors 0.02   and 0.05  . 
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Figure 46. Error ranges for all percentiles using P10, P50, and P90 assessments of exh . 

ANALYSIS METHOD 

Comparison Measures 

We will consider a subset ' PH H  of Pearson type I-∩ distributions as our test set. Each 

distribution 'h H will be taken in turn as the distribution actually assessed, with errors 

in its assessed percentiles. These distributions are shown in 1 2( , )   space in Figure 48. 

This plot uses 2 1 1    instead of 2  on the vertical axis to emphasize the area of 

interest, following Pearson and Tukey (1965). 

We compare two primary quantities of interest: the difference between using two 

discretization methods 1d  and 2d  on the assessed distribution 'h H , and the difference 

between using one discretization method    on the assessed distribution h and on another 

Δ-feasible distribution f. We define the difference between methods 1d  and 2d for 

distribution h and moment k as 

 
1 2 1 2
, ( ) ( )( )

d d

k k k

d d D h D hh     . (59) 

Consider our example assessment, where exh  is the assessed distribution and we wish to 

compare ESM and EPT. The ESM discretization of this distribution, ( )ESM ESM exg D h , 
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has mean 1.001 and variance 0.979. The EPT discretization, ( )EPT EPT exg D h , has mean 

1.001 and variance 1.002. The difference in these methods’ means is 1 4

, 4.4 10ESM EPT    

(which we round to 0.000), and the difference in their variances is 2

, 0.023ESM EPT  . 

The difference between the discretization of distributions exh and f for moment k 

using discretization method d is 

 
( ) ( )( , )

d d

k k k

d D h D fh f     . (60) 

In our example, consider a distribution 0.05

hf T  with 1.05, 
2 1.21, 

1 0.5,  2 3.3  . 1 0.048ESM   is the difference in the means, and 
2 0.206ESM   the 

difference in the variances, using ESM on exh  and f. This is effectively ESM’s 

transformation of the assessment error in the moments between the two distributions. The 

actual differences in the mean and variance are 0.050 and 0.210, respectively. Similarly 

for EPT, 1 0.049EPT   and 2 0.208EPT  .  

Figure 47 illustrates these error measures in 1 2( , )   space for an assessed 

distribution h and feasible distribution 
hf T . The black circles denote these two 

distributions in 1 2( , )   space within the truth set, and the black squares denote their 

corresponding discrete distributions under ESM and MCS. As before, 
h

d  is the 

discretization error induced by discretization d. 
1 2, ( )k

d d h  is the difference between the 

moment estimates of two discretization methods. ( , )d h f  is the difference between 

distributions h and f as represented by discretization d in the model. Our concern is 

whether the difference due to using different discretizations, 
1 2, ( )k

d d h , is significant as 

compared to the difference between discretizing different feasible distributions, ( , )d h f . 
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Figure 47. Assessment error measures. 

The previous work on discretization accuracy was concerned only with 
1 2, ( )k

d d h  

when comparing methods. Assessment error manifests as ( , )k

d h f , where distribution 

exh  is discretized, but f is the “true” distribution. To compare the effects of assessment 

error to the effects of using different discretizations, we consider the ratio 

 1

1 2

1 2

,

,

( , )
( , )

( )

k

dk

d d k

d d

h f
h f

h





 , (61) 

which will be abbreviated as   when the context is clear. When 
1 2, ( , ) 1k

d d h f 

 
1 2, ( , ) 1k

d d h f  , the assessment error for the k
th

 moment of discretization d1 between h 

and f is larger (smaller) than the difference between the estimates of the k
th

 moment 

estimates by d1 and d2  for h. In our example, 
1

, ( , ) 107.478ESM EPT exh f  , 

2

, ( , ) 8.941ESM EPT exh f  , 
1

, ( , ) 110.787EPT ESM exh f  , and 
2

, ( , ) 9.032EPT ESM exh f  . The 

assessment errors in the mean and variance preserved by both ESM and EPT are much 

larger than their differences in the moments of exh . Considering that f might be the true 

h

EPT

h

ESM
 ,EPT h f

f

EPT
f

ESM

 ,ESM h f

h

ESMh

EPTh

,

h

EPT ESM

hT

ESMf

EPTf
f

1
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distribution instead of exh , this difference in distribution is much more significant than 

the difference in discretization error. However, this considers only individual 

distributions, and we are really concerned with the entire truth set. 

As an aggregate measure over the truth set, define 
1 2, ( , )

k

d d h   as the proportion of 

distributions hf T  having 
1 2, ( , ) 1k

d d h f  . 
1 2, ( , )

k

d d h   measures for how much of hT the 

model assessment error   is more significant than the difference in the discretizations  . 

Let ( )h hR n T   be a set of n distributions sampled uniformly with respect to the four-

dimensional moment space 4M  of the first four standardized moments. Formally, the 

proportion is 

  
1 2 1 2, 1 ,

( )

1
( , ) lim ( , )

h

k k

d d d d
n

f R n

h I h f
n

 







   , (62) 

where 1I  is the indicator function, 

 1

1 1
( )

0 1

x
I x

x



 


. (63) 

Because the discretization methods can have different magnitudes of discretization error, 

this measure is not necessarily symmetric, i.e., 

 
1 2 2 1, ,( , ) ( , )k k

d d d dh h    .  (64) 

1 2, ( , )k

d d h   is the fraction of the truth set 
hT  for which the estimation differences 

between the two methods for 
k

h  are smaller than the estimation differences for 

discretization d1 due to assessment error. This can be interpreted as the proportion of the 

truth set for which the difference of using method d2 instead of d1 is not significant. 

Simulation Methodology 

We use acceptance-rejection sampling of the truth sets, sampling 1 million uniform 

points in the four-dimensional moment space of the Pearson system that contains the ∩-

shaped type I distributions. The set of samples for a given h and Δ is denoted 
h hS T  . 

Although the distributions 'h H  are either symmetric or right-skewed, the truth sets 
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(and samples) may include left-skewed or right-skewed distributions. And although the 

'h H  are normalized with 1   , the truth sets include feasible distributions with 

1   and 1  . We estimate 
1 2, ( , )

k

d d h   with 

  
1 2 1 2 1 2, , 1 ,

1
( , ) ( , ) ( , )

h

k
k k

d d d d d dh
f S

h h I h f
S

  






     . (65) 

We compare discretization methods only on their accuracies in the mean and 

variance, due to their generally large errors in the skewness and kurtosis. The errors in 

matching the first four moments over the set of distributions 'H  for the methods we 

consider are shown in Table 37. For each distribution 'h H , we construct the 

discretization and measure the error between the moments of the discretization and the 

actual moments of the associated distribution. Positive error means that the discretization 

moment is larger than the true moment. With the exception of MCS and BMd3, the 

methods tend to perform well on the mean, and to a lesser extent, the variance. However, 

all of the methods have very wide ranges of error in the skewness and kurtosis, 

suggesting that methods such as these should not be used if the shape or tails of a 

distribution are very important to the decision model.  

  



 136 

 

Figure 48. H’ grid of ∩-shaped type I region of the Pearson distribution system. 

a) Mean 

 Avg. Err. Max + Max - 

ESM 0.446 1.819 -0.084 

MCS -2.885 -0.000 -4.845 

EPT 0.080 0.148 -0.263 

BMd3 -6.584 -0.000 -10.514 

BMn5 0.000 0.000 0.000 
 

b) Variance 

 Avg. Err. Max + Max - 

ESM -4.641 13.289 -18.536 

MCS -19.889 -5.593 -30.922 

EPT -0.208 2.077 -4.001 

BMd3 -39.805 -18.365 -52.536 

BMn5 -12.749 -5.000 -19.750 
 

c) Skewness 

 Avg. Err. Max + Max - 

ESM -60.708 -33.682 -67.688 

MCS -46.572 -9.472 -56.345 

EPT -7.141 58.137 -28.300 

BMd3 -75.379 -58.538 -79.351 

BMn5 -45.415 -24.179 -53.210 
 

d) Kurtosis 

 Avg. Err. Max + Max - 

ESM -57.852 -16.667 -78.654 

MCS -48.366 -0.000 -73.123 

EPT -25.717 35.135 -58.922 

BMd3 -62.448 -25.000 -81.250 

BMn5 -48.244 -10.921 -70.312 
 

Table 37. Percentage errors in the moments without assessment error. 
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SIMULATION ANALYSIS 

We first provide a more detailed analysis of one method, ESM, on our distribution exh to 

demonstrate the comparison measures. We then present a summarized analysis over all 

'h H . 

Detailed Example 

This section completes our example and demonstrates the   metric that will be used for 

our primary analysis in the next section. In this section, we perform a detailed analysis of 

exh , shown in Figure 45, as the assessed distribution. We compare ESM to each of EPT, 

MCS, BMd3, and BMn5. Figure 49 shows the distributions of   for the truth set samples 

exhS 
, comparing ESM to the other four methods for 1%,3%,5%  . The vertical dashed 

line in each plot indicates where 1  . The fractions of these samples with 1   are 

given in Table 38, which includes   = 2% and 4%. Figure 49a shows that 
1,

, 1ESM EPT    for 

the vast majority of samples, even for Δ = 1%, and is quite large for many of these 

samples; over 400 for 5%  . This indicates that the difference between ESM’s and 

EPT’s estimates of the mean of the assessed distribution is extremely small compared to 

the differences in ESM’s mean estimates for different distributions in the truth set. For 

this distribution, ESM and EPT do not have an appreciable difference in the mean 

estimate for imperfect assessments. However, the variance estimates have 
2,

, 1ESM EPT    for 

about 61.69% of the samples for     , indicating that the difference in variance 

estimates between ESM and EPT might not be negligible for small assessment errors. At 

3%  , over 85% of the samples have
2,

, 1ESM EPT   , greatly diminishing the methods’ 

relative differences. 

Comparing ESM to MCS in Figure 49b and Table 38b indicates marked differences 

in the methods’ mean and variance estimates, particularly under low assessment error. 

The last chapter conveyed significant differences in ESM and MCS estimates of means 

and variances, and we see here that for 5%  , errors in the mean estimates are relatively 
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significant for 20.42% of the truth set, and for the variance, 46.11% of the truth set. We 

also saw significant differences between the errors of ESM and BMd3, which, as seen in 

Figure 49c and Table 38c, are relatively significant even up to 5%  , with 

1

, 3( ,5%) 56.47%ESM BMd h   and 2

, 3( ,5%) 12.10%ESM BMd h  . Comparing BMn5 in Figure 

49d and Table 38d indicates that assessment error overwhelms discretization differences 

in the mean, similar to the comparison with EPT. BMn5 perfectly matches the means, 

and because ESM has very little error in the means of these distributions, as seen in Table 

37, the methods’ differences are not significant. Unlike EPT, BMn5 provides poor 

estimates of the variances, and we see that 
2

, 5( ,1%) 0.00%ESM BMn h   for 1%  , and at 

     is only just over half (52.23%). 
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Figure 49. Distributions of  , comparing ESM to EPT, MCS, Bmd3, and BMn5. 
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Figure 49. cont. 
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a) ESM compared to EPT. 

    

Δ 1% 2% 3% 4% 5% 

Mean 96.75 99.01 99.37 99.55 99.64 

Variance 61.69 80.16 86.81 90.93 93.06 
 

b) ESM compared to MCS. 

   

Δ 1% 2% 3% 4% 5% 

Mean 12.99 47.43 65.23 74.20 79.58 

Variance 0.00 0.81 21.16 41.02 53.89 
 

c) ESM compared to BMd3. 

   

Δ 1% 2% 3% 4% 5% 

Mean 0.00 7.39 28.82 45.09 56.47 

Variance 0.00 0.00 0.00 1.50 12.10 
 

d) ESM compared to BMn5. 

   

Δ 1% 2% 3% 4% 5% 

Mean 96.10 97.39 98.33 98.68 98.96 

Variance 0.00 28.49 52.23 65.69 73.23 
 

Table 38. Comparing ESM to EPT, MCS, BMd3, and BMn5 using  , the fraction of 

samples with 1   . 

This example of a single assessed distribution, with varying levels of assessment 

error, leads to several conclusions. First and foremost, even differences between methods 

apparent under perfect assessments can become insignificant with only a small degree of 

assessment error (e.g., ESM’s and EPT’s performance in the variance). Second, methods 

that do not perform similarly can be significantly different even at higher levels of 

assessment error (ESM compared to MCS and BMd3). Third, high similarity between 

methods in estimating one moment does not necessitate high similarity in estimating 
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other moments (ESM’s and BMn5’s similarity in the mean but larger difference in the 

variance). 

Analysis of the Pearson Type I Distributions 

Now we broaden the analysis by considering the distribution of   over the set H’ for 

each pairwise combination of methods. Table 39 gives the average, minimum, and 

maximum percentage assessment errors in the mean and variance for hS , each averaged 

over all h H . The average assessment errors in the mean and variance display positive 

biases, due to the h H being right-skewed. 

 

 Δ 1% 2% 3% 4% 5% 

M
ea

n
 Avg. 0.121 0.226 0.353 0.521 0.758 

Min -3.511 -7.522 -11.626 -15.866 -19.984 

Max 3.899 8.275 12.801 17.243 21.855 

       

 Δ 1% 2% 3% 4% 5% 
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Avg. 0.672 0.960 1.454 2.068 2.821 

Min -7.137 -11.550 -15.354 -19.199 -23.084 

Max 7.751 14.494 21.653 29.062 36.403 

Table 39. Average, minimum, and maximum percentage assessment error in 
hS  averaged 

over all h H . 

We first directly extend the analysis of our example by comparing ESM to each of 

EPT, MCS, BMd3, and BMn5 over all of the distributions in H’. Figure 50 shows 

histograms of  for the mean and variance for each comparison at three levels of 

assessment error. Figure 50a shows that 
1

,EPT ( ,1%) 50%ESM h   for almost all 'h H  and 

that 
1

,EPT ( ,5%) 80%ESM h   for all 'h H . Comparing these results to those for the single 

'h H  in the example, it is clear that ESM and EPT are practically indistinguishable for 

the mean estimate with low assessment error for most of H’, though not always. The 
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variance estimates are still significantly different for low assessment error, as evidenced 

by 2

,EPT ( ,1%)ESM h  being close to zero for most of H’, but that  2

,EPT ( ,5%) 60%ESM h   

for the majority of distributions indicates that assessment error tends to dominate. 

These plots show only a one-sided comparison between the difference in 

discretization errors between ESM and the other methods and the assessment error 

preserved by ESM. When the difference in discretization accuracy is significant, the more 

accurate method can be determined by comparing 
1 2

1

, ( , )d d h   to 
2 1

1

, ( , )d d h  . Comparing 

Figure 50a to Figure 51a, that the distributions of 1

,EPT ( , )ESM h   and 1

, ( , )EPT ESM h  are 

almost identical, but 
2

,EPT ( , )ESM h   and 
2

, ( , )EPT ESM h  show distinct differences, 

particularly for 1%  . Both methods have smaller ranges of discretization errors in the 

mean (Table 37a) than the ranges of assessment errors over hS  (Table 39) for all 5% 

. However, ESM’s range of discretization error in the variance (Table 37b) is larger than 

the average ranges of assessment error in the variance (Table 39) for 1,2%  , whereas 

EPT’s range of discretization error is smaller than the average range of assessment error 

for all 5%  . That ESM is less accurate in matching the variance than is EPT means 

that the difference between ESM’s and EPT’s discretization accuracy, 
2

, ( )ESM EPT h , is 

more significant to ESM’s model assessment error than to EPT’s. 

Comparing ESM to MCS in Figure 50b, the results for all of the distributions in H’ 

tend to coincide with those seen in Figure 49. For low assessment error, the estimate 

differences are significant, as 
1

,MCS( ,1%)ESM h  and 
2

,MCS( ,1%)ESM h  are close to zero for 

almost all h. At     5%  , 
1

,MCS( ,5%)ESM h  and 
2

,MCS( ,5%)ESM h  are tightly 

clustered around 70% and 50%, respectively. The comparison with BMd3 in Figure 50c 

is starker. Except for the few symmetric distributions in H, for which 
1

,BMd3( ,5%)ESM h  is 

close to 100%, 
1

,BMd3( ,5%)ESM h  is less than 80%, with most 'h H  between 20% and 

50%. All of the distributions in H have 
2

,BMd3( ,5%) 30%ESM h  .  
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Figure 50. ESM compared to EPT, MCS, BMd3, and BMn5. 
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Figure 50. cont. 

Figure 51 compares EPT against ESM, MCS, BMd3, and BMn5. As mentioned 

previously, EPT’s greater accuracy than ESM’s in matching the variance is evident in 

comparing Figure 50a to Figure 51a, with  
2

, ( , )EPT ESM h   shifted more to the right than is 

2

,EPT ( , )ESM h  . Figure 51b and c, which compare EPT to MCS and BMd3, respectively, 

show results that are very similar to the comparison of ESM to MCS and BMd3, which 

should not be surprising considering ESM’s and EPT’s similarity. That EPT is more 

accurate than MCS or BMd3 in both the mean and variance is again apparent in the 

generally higher 
2, ( , )k

EPT d h  . Figure 51c shows EPT and BMn5 to be virtually 

indistinguishable in the mean, with 
1

, 5( ,1%) 90%EPT BMn h   'h H  . The difference in 

variance estimates is significant at small Δ, decreasing as Δ increases, but 

2

,BMn5( ,5%) 80%EPT h   for most 'h H . That EPT is more accurate than BMn5 in the 

variance is again evident in 
2

, 5( , )EPT BMn h   being shifted more to the right than is 

2

5, ( , )BMn EPT h  . 
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Figure 51. EPT compared to ESM, MCS, BMd3, and BMn5. 
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Figure 51. cont. 

Figure 52 compares MCS to the other methods. MCS’s performance as compared 

to ESM and EPT has already been noted, but Figure 52 shows the discretization 

difference between MCS and each of the other methods to be highly significant in both 

the mean and variance, with 
2, ( ,1%)k

MCS d h close to 0% for almost all h H . The 

comparison to BMd3 in panel (c) shows very low 
1

MCS,BMd3( ,1%)h  and 
2

MCS,BMd3( ,1%)h  

for most of H. These rise to a range of 50–85% (for asymmetric h) in the mean, and not 

greater than 60% in the variance. Although both MCS and BMd3 can have significant 

errors, their errors are different, and not surmounted by large assessment error. 

Comparing BMd3 to BMn5 in panel (d) shows that the low similarity for small Δ mostly 

disappears when Δ = 0.05, where both 
1

MCS,BMn5( ,5%)h  and 
2

MCS,BMn5( ,5%)h  are greater 

than 55% h H  .  

Figure 53 compares BMd3 to the other four methods. It is apparent that BMd3’s 

discretization differences with the other methods is large, and very significant even at 

5%  , especially for the variance. Chapter 4 showed BMd3 to be the worst of the 

methods we considered, which here remains true even for higher assessment error. 



 147 

Finally, Figure 54 shows the BMn5 comparisons. This method has already been 

discussed in relation to the other methods, but although its highest similarities in the 

mean are with ESM and EPT (Figure 54a and b), its highest similarity in the variance 

tends to be with MCS. BMn5’s and MCS’s averages and ranges of errors in the variance 

in Table 37 are also similar, despite their errors for the mean being very different.  
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Figure 52. MCS compared to ESM, EPT, BMd3 and BMn5. 
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Figure 52. MCS compared to ESM, EPT, BMd3 and BMn5. 

 

  



 149 

M
ea

n
 

a) BMd3 compared to ESM 

 

V
ar

ia
n
ce

 
M

ea
n

 

b) BMd3 compared to EPT 

 

V
ar

ia
n
ce

 
M

ea
n

 

c) BMd3 compared to MCS 

 

V
ar

ia
n
ce

 

Figure 53. BMd3 compared to ESM, EPT, MCS, and BMn5. 
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Figure 53. BMd3 compared to ESM, EPT, MCS, and BMn5. 
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Figure 54. BMn5 compared to ESM, EPT, MCS, and BMd3. 
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Figure 54. BMn5 compared to ESM, EPT, MCS, and BMd3. 
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ASSESSMENT ERROR IN PRACTICE 

The previous section showed how various levels of assessment error affect the practical 

impact of using different discretization methods in an experimental setting. However, this 

section examines empirical studies in probability assessment and calculates the minimum 

equivalent feasible assessment error Δ in our model. Lichtenstein et al. (1982) gave an 

excellent overview of work on this topic up to 1980, which they summarized using two 

measures of calibration: the interquartile index (II) and surprise index (SI). The II is the 

proportion of actual values that fell between the elicited 25
th

 and 75
th

 percentiles and 

should be close to 50% for well-calibrated experts. The SI is the proportion of actual 

values that fell outside the most extreme assessments. An II lower (greater) than 50% and 

an SI greater (lower) than the amount of probability outside the most extreme percentile 

assessments indicates overconfidence (underconfidence), or that the assessed distribution 

is too narrow (wide). 

Table 40 summarizes results from six studies on calibration. We consider the 

results of only those studies that elicited distributions using the percentile method. The 

first five are a selection from the results surveyed by Lichtenstein et al. (1982), and the 

sixth is included to broaden the scope of experts. The first three of these (Alpert and 

Raiffa, 1969; Schaefer and Borcherding, 1972; Selvidge, 1975) used university students 

as the participants. The last three elicited distributions from meteorologists (Murphy and 

Winkler, 1974, 1977) and accounting auditors (Tomassini et al., 1982). We report the 

percentiles elicited in each study, the number of usable distribution assessments N (in 

most cases multiple subjects each assessed multiple uncertain quantities), the II, the SI 

and corresponding ideal value, and the minimum feasible assessment error Δ. The 

minimum feasible Δ was found by calculating the larger deviation of either the II or the 

SI and dividing by two. The II and SI are both two-sided measures, and the smallest 
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feasible percentile deviation assumes symmetric3 distribution of errors. For example, the 

34% SI in the “Before Training” elicitation of Alpert and Raiffa (1969) means that 34%, 

rather than 2%, of true values fell outside the assessed P1 and P99. In our error model of 

uniform Δ in each percentile, the feasible Δ is smallest when the excess 32% of values 

outside the extreme percentiles are divided equally (or are equally likely to manifest) 

below the P1 and above the P99. This corresponds to giving the P17 and P83 when asked 

for the P1 and P99, respectively, or a Δ = 0.16. 

The studies in Table 40 show a wide range of assessment errors, from Δ = 0.185 in 

the first round of elicitations by Schaefer and Borcherding (1972) to Δ = 0.02 of Murphy 

and Winkler (1977). Based on the results of the previous section, which cover only 

0.01 0.05,    choosing a more accurate discretization would be of little use for 

assessment errors as high as those of the first two studies. However, training and 

calibration significantly reduce this error. The students in Selvidge (1975), the well-

calibrated meteorologists in Murphy and Winkler (1974, 1977), and the second group of 

accounting auditors in Tomassini et al. (1982) all displayed assessment errors well within 

the scope of our analysis. 

 

  

                                                 
3 Murphy and Winkler (1974) actually did report that approximately 26% of true values fell below the P25 

and 29% above the P75, and 11% fell below the P12.5 and 16% above the P87.5, indicating only minor 

asymmetry in assessment errors. 
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Study Percentiles Elicited N 
Interquartile 

Index 

Surprise Index 
Min Δ 

Observed Ideal 

Alpert and Raiffa 

(1969)  2270     

Before Training 1,25,50,75,99  34 34 2 16 

After Training 1,25,50,75,99  44 19 2 8.5 

Schaefer and 

Borcherding 

(1972)  396     

First Day 1,12.5,25,50,75,87.5,99  23 39 2 18.5 

Fourth Day 1,12.5,25,50,75,87.5,99  38 12 2 6 

Selvidge (1975)       

Five Percentiles 1,25,50,75,99 400 56 10 2 4 

Seven Percentiles 1,10,25,50,75,90,99 520 50 7 2 2.5 

Murphy and 

Winkler (1974)       

 12.5,25,50,75,87.5 132 45 27 25 2.5 

Murphy and 

Winkler (1977)       

 12.5,25,50,75,87.5 432 54 21 25 2 

Tomassini et al. 

(1982)       

First Group 1,10,25,50,75,90,99 341 71.4 4.7 2 10.7* 

    7.8 20 10.7** 

Second Group 1,10,25,50,75,90,99 341 54.4 10.8 2 4.4* 

        22.1 20 2.2** 

*Both the 2% and 20% surprise indices are considered, along with the interquartile index. 

**Only the 20% surprise index is considered, along with the interquartile index. 

Table 40. Results of selected calibration studies. 

Table 41 summarizes results from a fourth study of professionals by Garthwaite 

and O'Hagan (2000) to elicit assessments of pumping station refurbishment costs and the 

length of unrecorded S24 sewers in four towns in the UK, using three sets of percentile 

assessments. The authors gave the frequency of actual values that fell below the lowest 

quantile and that above the highest quantile. These results indicate a significant tendency 

to overestimate pumping station refurbishment costs. However, in the discussion of the 

questionnaires used in the studies, the possibility of anchoring bias is evident: in 
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estimating the actual refurbishment costs of the pumping stations, the experts were given 

the cost estimates from refurbishment feasibility studies of previous projects, which 

tended to be distinctly higher than the actual costs realized in those projects. The 

assessments of the unrecorded length of S24 sewers display less bias, but more 

overconfidence. The minimum feasible Δ’s reflect the asymmetry in the errors and are 

high in all six cases. The results clearly display some of the biases that careful assessment 

is designed to avoid. 

 

Uncertain 

Quantity 

Percentiles 

Elicited 
N 

Below 

Quantiles 

Between 

Quantiles 

Above 

Quantiles 
Min Δ 

Pumping Stations  184     

 33,50,67  65.2 32.6 2.2 32.2 

 25,50,75  50 45.7 4.3 25 

 17,50,83  40.1 57.3 2.6 23.1 

S24 Sewers  252     

 33,50,67  48.1 20.5 31.4 15.1 

 25,50,75  46 25.7 28.3 21 

  17,50,83   44.8 28.2 27  27.8 

Table 41. Garthwaite and O'Hagan (2000) assessment results. 

SUMMARY AND DISCUSSION 

This chapter extends previous work on discretization by considering the practical issue of 

error in the assessment of the continuous distribution to be discretized. Using an error 

model consistent with empirical results from the literature, and a large set of distributions 

covering a variety of shapes, we have examined the differences in the moment estimates 

of various discretization methods relative to the errors arising from imprecise assessment. 

Earlier chapters confirmed the published finding that EPT is superior to ESM in 

matching the moments of perfectly assessed distributions. Our results here show that 

even for small assessment error, such as the level found with well-calibrated 
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meteorologists there is little practical difference in EPT’s and ESM’s estimates of the 

mean, in particular, and the variance.  

We also concluded that ESM is superior to MCS in matching the moments of 

perfectly assessed distributions. Unlike EPT, MCS’s poorer estimates of the moments are 

large enough that ESM is still superior under moderate assessment error, such as the 

levels seen in Alpert and Raiffa (1969) and Schaefer and Borcherding (1972) after 

training and calibration. BMn, although an exact estimator of the mean, can significantly 

underestimate the variance, often more so than does EPT. The difference in variance 

estimates between EPT and BMn5 can also be significant for low degrees of assessment 

error. BMd3’s poor performance, found to be the worst in the previous chapter, continues 

to be significant throughout our entire range of assessment error, as compared to other 

methods. 

A large body of work exists on probability elicitation, calibration, and training and 

has been shown both in academic studies and in practice to greatly improve the quality of 

assessments. Our work indicates that the fidelity of the model (e.g., discretization 

approximation accuracy in preserving moments) should be matched to, or no lower than, 

that of the assessment. A carefully elicited assessment from a calibrated expert warrants 

the most accurate discretization possible, given model complexity constraints (i.e., the set 

of percentiles or number of discretization points to use). Conversely, a quick, first-pass 

assessment likely to be of lower quality is not likely to benefit significantly from 

increases in discretization accuracy, and the simplest method that provides reasonable 

accuracy is more economical. 

Assessment error presents a precision/accuracy tradeoff. More accurate methods 

will have less discretization error, but will also retain more of the assessment error. In 

this way, more accurate methods will be more impacted by which distribution is the true 

one, but might more fully represent the range of possibilities. Fully representing this 
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range is particularly important for sensitivity analysis. An inferior method might not 

represent the distributions for which the decision would change, and thus mask the 

necessity for a more accurate discretization and refinement of the assessments. 

As noted previously, decision analysis is an iterative process of discovery and 

refinement of the decision problem and model. Shortcut methods are useful tools for first 

approximations and initial analysis, but if the assessments of some uncertainties, 

particularly those to which the decisions are highly sensitive, are refined and improved, 

the quality of their representation in the model should also be appropriately improved to 

reflect and preserve that fact. 
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Chapter 6: Discretization in PERT4 

This chapter examines several PERT mean and variance estimation formulae. These 

formulae are related to the discretization methods considered throughout the rest of this 

work, but the different context yields different constraints. Unlike discretization methods, 

PERT formulae are not intended for use as discrete probability distributions. Chapter 2 

described several new approximation formulae that use common percentiles, which we 

also examine here. We compare the accuracy of our approach to existing methods by 

using the Pearson type I-J and I-∩ distributions. The analysis shows that our new method 

outperforms existing methods when estimating means and variances of most of these 

distributions.  

ANALYSIS METHOD 

Our accuracy analysis in this chapter used a different subset of the Pearson distributions 

than previous chapters, '' PH H . As before, we standardized the distributions to have 

unit mean and variance. This causes the endpoints of the support to differ from 0 and 1, 

and because of this, our error results are not directly comparable to those given in the 

PERT literature, which typically uses the standard (0, 1) beta distribution. Our set ''H  of 

Pearson test distributions contains 274 type I-∩ distributions and 581 type I-J 

distributions.  

For each distribution in ''H , we applied the methods under consideration and 

measured the error between the mean and variance from each method and the 

distribution’s actual mean and variance, respectively.  

                                                 
4 The work presented in this chapter was performed in collaboration with Prof. Seong Dae Kim of the 

University of Alaska Anchorage. Results of this chapter are summarized in 

Kim, Seong Dae, Robert Hammond and J. Eric Bickel. 2014. Improved mean and variance estimating 

formulas for pert analyses. IEEE Transactions on Engineering Management 61(2) 362-369. 
. 
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ANALYSIS 

We considered the performance of the mean and variance separately, because many of 

the methods compared use different formulae for these moments. For ∩-shapes and J-

shapes, the AE, ASE, and ME for the mean for each method are given in Table 42, and 

for the variance in Table 43. The best-performing method for each error measure is 

highlighted in gray.  

Many of the largest errors are seen for PERT variants that use P0 and P100 to 

estimate the mean. Of these, FS tended to have the lowest errors, because it uses different 

formulae when the mode is close to a boundary, adapting somewhat to the distribution to 

reduce error. Both FP methods that use the P0 and P100 had lower errors than the other 

methods that use these percentiles. These FP methods place almost no weight on the P0 

or P100, implying that these percentiles do not add much useful information to that of the 

median or mode for these distributions. 

Classical PERT and GG tend to overestimate the mean for I-∩ or I-J distributions. 

Most of the PERT variants, including the FP methods that use the P0 and P100, tend to 

underestimate the mean, although the ME is usually positive. Because all of our test 

distributions were symmetric or right-skewed, the right tail appears to have caused large 

errors in some cases. 

Our new FP method always estimated the mean more closely when using the P50 

instead of the mode in either I-∩ or I-J distributions. For example, in I-J, the ASE of FP 

10-50-90 is 0.000, whereas that of FP 10-m-90 is 0.003.  

For all methods using the mode, less extreme percentiles led to better accuracy in 

estimating the mean in either I-∩ or I-J. When using FP 0-m-100 in I-J, the ASE was 

0.540, but when using FP 10-m-90, it was reduced to 0.003. When using the P50 instead 

of the mode, however, using less extreme percentiles did not necessarily lead to better 
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performance. For example, for type I-∩, FP 5-50-95 had the same AE and lower ASE and 

ME in the mean than did FP 10-50-90. 

One of the FP methods had the lowest average error measure in the mean for type I-

∩ and I-J, except for ME in the I-∩ mean, which was lowest for EPT. The error table 

shows that FP performed best among those methods using the P5, P50, and P95. 

However, among those using the P5, mode, and P95, PG had the lowest ASE and ME, 

and only a slightly larger AE than did FP. FP was fit to minimize ASE, which was lower 

for PG, again indicating that rounding the weights affected the performance, although 

only on the order of 10
-3

. Among those formulae using the P0, mode, and P100, FS had 

the lowest AE and ASE, with a ME only slightly larger than that of FP. Although FP was 

fitted to match these moments, FS has more flexibility to adapt to the distribution. FP 

generally performs better when it uses the P50 instead of the mode. 

Unlike for the I-∩ distributions, the FP formulae had the lowest ASEs for the I-J 

distributions, as compared to the other methods using the same points. The reason may be 

that PERT variant methods are typically considered for ∩-shaped beta distributions, and 

the less regular shape of the I-J distributions left more room for improvement over those 

methods.  

In sum, our new FP methods generally outperformed existing PERT mean-

estimation formulue. The FP 5-50-95 or 10-50-90 methods performed the best, having 

very low errors for ∩- and J-shaped distributions. All of the most accuate measures in 

Table 42 use the P50 instead of the mode. This is further evidence that discretizations 

using the mode are generally not as accurate as those using the P50. 

The AE, ASE, and ME error measures of variance estimation methods are 

summarized in Table 43. Both the FP 5-50-95 and FP 5-m-95 methods performed the 

best on average, for both the I-∩ and I-J distributions. For type I-∩, FP 0-m-100 had the 

lowest errors in the variance, among methods using the P0 and P100. For type I-J, FP 0-
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m-100 performed slightly worse than FP 0-50-100. However, FP 0-50-100 had a large 

ME of 23.874 for type I-∩. The FP methods using the P10 and P90 also performed well 

for both distribution types, but those methods did not have the lowest errors. 

 

 I-∩ I-J 

Method AE ASE ME AE ASE ME 

PERT 3.581 5.14E+01 37.189 0.637 5.22E+00 39.172 

FS -0.259 4.31E-01 2.186 -0.887 8.12E-01 -1.471 

GG 3.248 4.34E+01 34.252 0.520 4.37E+00 36.083 

FP 0-m-100 -0.692 7.41E-01 1.978 -0.595 5.40E-01 6.720 

FP 0-50-100 -0.155 5.51E-02 0.796 -0.271 1.15E-01 2.814 

PERT mod -0.222 6.33E-02 -0.724 -0.188 6.44E-02 -0.887 

MR -0.378 1.66E-01 -0.764 -0.378 1.65E-01 -0.919 

PG -0.003 1.81E-03 -0.279 0.148 4.17E-02 0.462 

FP 5-m-95 0.001 4.81E-03 -0.345 -0.003 3.97E-03 -0.232 

EPT 0.001 1.00E-06 -0.002 -0.005 9.40E-05 -0.041 

FP 5-50-95 0.000 1.00E-07 -0.003 -0.002 7.50E-05 -0.037 

FP 10-m-90 0.001 1.48E-03 -0.254 -0.001 2.53E-03 0.124 

FP 10-50-90 0.000 1.90E-05 0.014 0.001 1.61E-04 0.035 

Table 42. Errors of mean estimation for different methods 

 

Method 

I-∩ I-J 

AE ASE ME AE ASE ME 

PERT 58.538 3.81E+04 1457.400 6.202 4.91E+03 1612.140 

FS -0.164 2.40E+00 12.111 -1.000 1.00E+00 -1.000 

GG 37.203 1.50E+04 910.298 3.499 1.91E+03 1006.580 

FP 0-m-100 -0.901 1.14E+00 7.985 -0.994 9.88E-01 -1.000 

FP 0-50-100 -0.410 2.84E+00 23.874 -0.922 8.55E-01 -0.999 

PERT mod -0.458 2.12E-01 -0.663 -0.510 2.65E-01 -0.697 

MR -0.028 3.65E-03 -0.142 -0.104 1.20E-02 -0.163 

PG -0.062 6.46E-03 -0.172 -0.135 1.92E-02 -0.192 

FP 5-m-95 0.000 2.98E-04 -0.098 0.000 1.12E-03 0.087 

EPT -0.003 2.09E-04 -0.082 0.099 2.00E-02 0.394 

FP 5-50-95 -0.001 1.98E-04 -0.090 0.000 1.43E-03 0.107 

FP 10-m-90 0.010 3.90E-03 0.270 0.004 5.19E-03 0.168 

FP 10-50-90 -0.002 3.48E-03 0.152 0.004 1.06E-02 0.244 

Table 43 Errors of variance estimation for different methods. 
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Comparing Individual Distributions 

The previous section showed that EPT and FP had similar performance, with FP tending 

to have the lower errors. As discussed in Chapter 4, for our new shortcuts, optimizing FP 

with respect to ASE does not mean it will have lower error for all distributions. Although 

FP 5-50-95 performed better on average, EPT had lower ME for I-∩ distributions. This 

section makes a more granular comparison between EPT and FP methods that use the P5 

and P95 for individual distributions in the Pearson distribution system. Figure 55 displays 

the portion of the Pearson system that encompasses the distributions used in our error 

comparison of the previous section. We again use the parameterization of 2 1 1    

instead of 2  on the vertical axis in Figure 55 to improve the presentation of the area of 

interest.  

Figure 55 shows which of FP 5-50-95, FP 5-m-95, or EPT had the lowest absolute 

error for a given distribution. When estimating the mean, FP 5-50-95 had the lowest error 

for most of the I-∩ region. FP 5-50-95 and EPT were each best for large portions of the I-

J region. For the variance, the areas where each method was best divide up the entirety of 

both regions roughly equally. Either FP 5-50-95 or EPT was best for most of the type I-∩ 

distributions, whereas each of the three was best for large parts of the I-J distributions. 
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Mean 

 

Variance 

 

Figure 55. Comparison of FP 5-50-95, FP 5-m-95, and EPT in the type I-∩ and I-J 

Pearson distributions. 

SUMMARY AND DISCUSSION 

This chapter compared the performance of several existing PERT methods to each other 

and to our new methods, for a portion of the Pearson system commonly used to evaluate 

PERT approximations. The FP methods have two primary merits: accuracy and 

flexibility. They are more accurate than previous methods for a given set of points, often 

by significant margins. They are also flexible, in that the appropriate method can be 

chosen based on the points used, distribution shape, and moment to be estimated. 

The results of Chapter 4 showed that more extreme percentiles generally provided 

better estimates of a distribution’s moments. This chapter indicated some limits to this 

reasoning. PERT methods using the P0 and P100 performed the worst overall. Although 

two of the EPT++ methods used either the P1 or P99, most of these and the EPT+ 

methods used less extreme percentiles, despite having the freedom to use any percentiles 

between the P1 and P20. Our new FP methods, which used the P5 and P95 or the P10 and 

P90, usually outperformed other methods that use similar percentiles. 
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For PERT practitioners, the FP methods improved accuracy and easier assessment 

(for those methods using less extreme percentiles than the P0 and P100) make them 

excellent substitutes for existing PERT methods in most cases. Because we use different 

sets of percentiles for the median and mode, the analyst can choose the most appropriate 

method for the percentiles obtained. The FP methods provided improvements for any of 

these sets of discrete points, but if any percentiles can be used as input points, FP 5-50-95 

performs best and, in most cases, beats the best existing method, EPT, by a small margin. 

Using the mode with these percentiles is better than the median only when estimating the 

variance in the I-J region. 
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Chapter 7: Summary and Future Research 

This chapter concludes with a summary of results and conclusions, and some 

recommendations for future work avenues illustrated by a simple example. 

SUMMARY 

This work has broadly examined the approximation of continuous probability 

distributions by discrete distributions, or discretization. Although this idea has long 

existed in many fields, our particular concern was discretization in decision analysis. We 

examined the accuracy of both simple shortcut methods and distribution-specific methods 

of varying degrees of complexity. We compared the methods’ accuracies in 

approximating the moments of a large set of distributions having a variety of shapes and 

considered the effects of imperfect probability assessments. We also briefly examined 

extensions of this work as new PERT formulae for approximating the means and 

variances of task completion time distributions. 

This work produced three primary sets of results, which were given in Chapters 4-

6. Chapters 2 and 3 laid the foundation for our analysis, by reviewing discretization 

methods and the Pearson and Johnson distribution systems, respectively. Chapter 2 also 

presented a procedure for constructing three-point approximations that minimize the 

average squared error in the mean over sets of distributions. We also used this procedure 

to construct new PERT mean and variance approximation formulae. 

Chapter 4 presented the results of our analysis of error in the moments for a wide 

set of distributions over large portions of the Pearson and Johnson systems. The results 

from these two systems were similar because the shape of distributions from each system 

having the same moments were very similar. Of the previously proposed methods, EPT 

and ZDI generally had the lowest error for unimodal, ∩-shaped distributions. This 

confirms the conclusions in earlier work on EPTs performance. ZDI had not been 
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rigorously studied, but uses similar percentiles and probabilities as does EPT. These 

methods are also close to optimal, because they bear much similarity to several of the 

EPT+ and EPT++ methods, which are optimal with respect to average squared error. 

Even when the methods themselves are not similar, their performances in matching the 

moments often were. These results also indicate that for three-point shortcut methods, the 

P50 is best complemented by percentiles near the P5 and P95. These methods also show 

improved performance over a five-point BMn in matching the variance and higher 

moments. 

Of the shortcut methods using the P10, P50, and P90, which are common in 

practice, ESM typically had smaller errors than did MCS, but still had room for 

improvement. The SP methods, tailored to the distribution type, provided the best overall 

performance for these percentiles. ESM has similar probability weights as the SP method 

for the generalized lognormal distribution, which is close in shape to the distributions for 

which ESM furnishes the optimal weighting of the P10, P50, and P90 for the mean. 

However, this improved performance in the mean does not carry over to moments higher 

than the variance. 

Chapter 5 considered the effects of imperfectly assessed distributions. In decision 

analysis, distributions are often elicited from a subject matter expert who assesses 

percentiles of the distribution, which may be incorrect because of cognitive biases, for 

example. Even minimal assessment error would dominate the differences in the 

accuracies of EPT and ESM in matching the mean and variance. MCS’s and BMd3’s 

larger errors, however, were still significant under larger assessment error.  

Chapter 6 used the discretization error analysis framework to analyze several 

discrete approximation formulae of the mean and variance from the PERT literature. 

Some of the original methods have very large errors in these moments. Our new methods 

greatly improve upon these and provide the analyst additional modeling flexibility. Some 
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of these methods bear resemblance to discretization methods such as EPT and ESM. 

These methods tend to be asymmetric and sometimes place no weight on one of the three 

points. 

CONCLUSIONS 

Several broad conclusions can be drawn from this work. First and foremost, the number 

of discrete points used in an approximation is not nearly as important as how those points 

are chosen. In many instances, three-point shortcut methods had smaller errors in 

preserving the moments than did five-point distribution-specific methods. Gaussian 

quadrature can match the highest number of moments out of any n-point discretization by 

carefully choosing both the values and probability weights used. At the opposite extreme, 

it can take thousands, or tens of thousands, of random Monte Carlo samples to reduce the 

sampling error to where it is equivalent to the discretization error of the three-point 

shortcut method EPT (Bickel et al., 2011). Choosing those points wisely can reduce the 

number of points needed and can increase accuracy. 

Second, the fidelity of discretizations as approximation models should be 

considered in the context of the problem. A highly accurate representation of poor data is 

no more useful than a simpler one. Chapter 5 showed that as the error in assessed 

percentiles increased, the effective differences among discretization models’ moment 

estimates decreased. However, some methods required higher assessment error for this to 

be true. Applying a highly accurate discretization to a distribution that is not assessed 

with much accuracy (e.g., from an uncalibrated expert not familiar with probability) will 

hardly affect the quality of the decision. Conversely, a very carefully assessed 

distribution warrants a highly accurate discretization, to best represent the information 

contained in the distribution. 
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Third, discretization methods presented tradeoffs. GQ is the most accurate method 

for matching moments, but it has several drawbacks. It requires precise knowledge of the 

full probability distribution, uses extreme percentiles, and generally must be implemented 

in software. If the distribution is not known with full accuracy, GQ can still be applied to 

an approximated distribution, but this would raise the issues of fidelity noted in the 

second point above. BMn perfectly matches the mean of any distribution, but it 

systematically underestimates the variance, higher even moments, and often the odd 

moments as well. However, this method can be performed on a graphically fitted 

distribution without requiring precise knowledge of percentiles. BMd is very poor at 

matching moments, but it is even easier to apply than MBn, requiring at minimum only a 

set of percentiles, although to use an arbitrary set of percentiles, the full distribution must 

be known. Shortcut methods generally require the least information, and some can match 

the mean and variance of many distributions quite well. However, they can have large 

errors in the higher moments and do not give the analyst the freedom to choose the 

number of points. By using basic information about the distribution, such as its support 

boundedness or the type of distribution shape, the new EPT+, EPT++, or SP shortcuts can 

be used to better tailor the discretization to the distribution than do general shortcut 

methods. 

Discretization should be treated as a modeling tool, with the method adapted to the 

distribution as indicated by the analysis of the problem. Decision analysis is an iterative 

process (although iteration might not be required in a given situation), and the 

information uncertainty in the problem can change through the analysis, as can the 

structure of the model itself. A discretizated distribution should not be considered a static 

probability distribution, but rather one of many possible representations of the 

uncertainty. 
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SUGGESTIONS FOR FUTURE RESEARCH 

Distribution Characteristics Other than Moments 

Moments are the primary concern of this work, but being that they do not always imply a 

unique distribution, there are several reasons to consider other accuracy measures as well. 

In practice, the expectation of the value function is not the only metric of interest. 

Decision-makers might also be interested in percentiles of the value distribution or the 

probability of a negative-valued outcome. Additionally, for some distributions, such as 

the Cauchy distribution, no moments exist, and measures of accuracy other than moment 

preservation must be used. 

To compare distributions directly via their cdfs, rather than through summary 

statistics such as moments, we could consider Lp-norm measures of distribution 

similarity. The Lp-norm in defined as  
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for a real number 1p  . We take F to be the continuous cdf (and f its pdf), with support 

S, and G to be the discrete approximation cdf. Just as we could consider any of an infinite 

number of moments, we can select from an infinite set of norms. Different p values 

emphasize different aspects of the distributions. Three of the most common norms are 

given below. 

The L1 norm, also called the Kantorovich-Rubinstein distance (Villani, 2009),  
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is the expected absolute difference between the cdfs, with respect to F. The L2 norm, also 

known as the Cramér–von Mises distance (Anderson, 1962),  

  

1/2

2

2 , ( ) ( ) ( )
x S

L F G F x G x f x dx


 
  
 
 ,  (68) 



 171 

is similar to root-mean-squared error, but it places more emphasis on larger errors. 

Finally, the L∞ norm, or Kolmogorov-Smirnov distance (Darling, 1957), 

  , max ( ) ( )
x S

L F G F x G x


   , (69) 

is the maximum absolute error between F and G. 

Multiple Discretizations 

Decision problems of any practical interest typically have multiple uncertainties, often 

with decisions interspersed among the resolution of uncertainties. Throughout this work, 

we have analyzed discretization performance in matching characteristics of only a single 

distribution. Although the univariate Taylor expansion argument extends to multiple 

dimensions, some uncertainties carry more importance in a problem than do others. 

Because the number of discretization points can quickly increase the complexity of the 

model, choosing the smallest number of scenarios that adequately represent the problem 

is an important consideration, and some uncertainties may require better discrete 

approximations than others. 

The following example from Smith (1993) will illustrate some of the issues and 

questions faced when discretizing multiple, possibly dependent, uncertainties. A 

wildcatter is valuing a proven but undeveloped oil field. Assuming a flat production-rate 

model, the field’s net present value (NPV) for an oil volume in barrels (bbl) v, recovery 

factor percentage r, oil price in $/bbl p, and production cost in $/bbl c is given by 
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where k is the constant production rate of 100,000 bbl/year, C is the initial capital 

expenditure of $2.5 million, and   is the discount rate of 5%. Production begins at time t 

= 0 and ends at time T. The four parameters oil volume, recovery factor, oil price, and 
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cost are uncertain, and cost is probabilistically dependent on oil price. The influence 

diagram for this problem is shown in Figure 56. 

Recovery has a gamma distribution with parameters 16, 1   . Reservoir 

volume has a generalized lognormal, or SL, distribution with parameters 1.581   , 

3.162  , 3.5  , 1  , giving it a lower bound of 3.5. Oil price has a Pearson type I-

∩ distribution with 19.362  , 2 40.643  , 1 0.319  , 2 2.700  .  Cost has a 

normal distribution, conditional on oil price p, with parameters / 3 3p   , 

/16.p   

Figure 57 shows a tornado diagram of the uncertainties, using their P50 values as 

the baseline scenario, and setting each uncertainty to its P10 (black) and P90 (grey) 

values individually, while holding the rest at their P50s. Oil price by far has the highest 

impact on NPV, followed by cost, recovery factor, and oil volume, in descending order.  

 

Figure 56. Influence diagram for the Wildcatter Problem. 

 



 173 

 

Figure 57. Tornado diagram for the Wildcatter Problem. 

Tailoring Discretization to the Problem 

An analysis using the same three-point discretization shortcut for each uncertainty will 

model the uncertainty in oil price with the same fidelity as oil volume, even though the 

former has a nearly 10-times-larger impact on NPV than does the latter. Rather than use 

three discretization points for each variable (which would result in nine unique tree 

endpoint combinations of these two uncertainties), we can create a possibly more 

accurate model by discretizing the oil price uncertainty with more points, such as six, and 

treating oil volume as deterministic. This also reduces the computational complexity of 

the model by using only six points for these two uncertainties. 

The tornado diagram indicates the sensitivity of the value function to the uncertain 

inputs, but it does not say which aspects of their distributions are important. This 

sensitivity information provides little guidance on how to refine the discrete 

approximations. Figure 58 shows the KS-distances versus the total number of endpoints 

of the probabilistic model, for all combinations of one to five GQ points for each of the 

four uncertainties of the Wildcatter problem. There is a wide range of performance for 
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the same number of total points, meaning that performance is heavily dependent on how 

points are allocated to specific input distributions. For the optimal allocations of points in 

this problem, which lie along the bottom and to the left of other points in Figure 58, very 

large improvements can be made by increasing the total number of points in the value 

distribution from, say, 10 to 50, but much less improvement from 50 to 500. The best GQ 

discretization scheme using 60 total points has a KS-distance of 0.045, whereas the 

scheme using 625, which assigned 5 points to each uncertainty, has a KS-distance of 

0.033. This is a small decrease in error, considering the large increase in problem 

complexity.  

The 60-point scheme assigns 3 points to reservoir volume, 2 to recovery, 5 to oil 

price, and 2 to cost. It should not be surprising that oil price has the most points, because 

Figure 57 showed it to have the largest impact on NPV. The clusters of points seen in 

Figure 58, such as between a KS-distance of 0.25 and 0.35 and between zero and 100 

points, occur from assigning different numbers of points to the GQ of oil price. To 

display this more explicitly and to contrast oil price with the other distributions, Table 44 

gives the average KS-distances over all discretization schemes having a given number of 

points for each discretization. The same analyses for BMn and BMd (both used with 

equally sized brackets) are given in Table 45 and Table 46, respectively. In each table, 

the average KS-distance is largest when oil price is represented by only one point (which 

for GQ and BMn is the mean oil price, and for BMd is the median) and is smallest when 

represented by five points.  

Sensitivity analysis guides the selection of uncertainties to model and can also 

guide the assignment of their approximation methods. More important uncertainties, such 

as oil price in the Wildcatter problem, warrant more careful assessment and more 

accurate discretization than do less important uncertainties like reservoir volume. This 
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example motivates the question of how to optimally allocate discretization points and 

how to improve this aspect of decision analysis practice. 

 

Figure 58. KS-distance vs. number of discretization points for GQ in Wildcatter problem. 

 Number of Discretization Points 

 1 2 3 4 5 

Volume 0.178 0.154 0.141 0.138 0.135 

Recovery 0.218 0.139 0.133 0.130 0.127 

Oil Price 0.318 0.155 0.111 0.091 0.073 

Cost 0.189 0.143 0.141 0.139 0.135 

Table 44. Average KS-Distance for different numbers of GQ points for each uncertainty. 

 Number of Discretization Points 

 1 2 3 4 5 

Volume 0.138 0.120 0.114 0.110 0.107 

Recovery 0.175 0.120 0.105 0.097 0.092 

Oil Price 0.320 0.113 0.067 0.049 0.041 

Cost 0.149 0.121 0.111 0.106 0.102 

Table 45. Average KS-Distance for different numbers of GQ points for each uncertainty. 
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 Number of Discretization Points 

 1 2 3 4 5 

Volume 0.136 0.123 0.117 0.113 0.111 

Recovery 0.173 0.124 0.108 0.100 0.095 

Oil Price 0.294 0.124 0.078 0.057 0.048 

Cost 0.148 0.123 0.114 0.108 0.105 

Table 46. Average KS-Distance for different numbers of BMd points for each 

uncertainty. 

Correlation and Discretization 

A key question in multivariate discretization is how to treat probabilistic dependence. 

Independent uncertainties can be discretized separately, by exploiting the separability of 

this problem as described by Smith (1993). One approach for two variables is to 

discretize the marginal distribution of one uncertainty and then discretize the conditional 

distribution of the other, conditioned on each discrete point of the first. However, this 

procedure considers only one uncertainty at a time, using marginal and conditional 

distributions, rather than the total joint distribution. Thus, the order of discretization may 

affect the overall discrete approximation of the joint distribution. Rather than discretizing 

distributions individually, how can we discretize joint distributions directly, and what 

performance improvements does this provide? 

Evaluating Multivariate Discretization 

Because multivariate joint distributions do not have moments, other measures are needed 

to evaluate multivariate discretizations. For example, a bivariate uniform distribution has 

a well-defined pdf and cdf, but it has no notion of moments without a function mapping 

the two variables to one dimension. However, the cdf of the continuous joint distribution 

can be compared to the discrete joint approximation distribution.  

Moments can be used to evaluate the discretization of value distributions, but Smith 

(1993) warned that certain types of value functions, such as utility functions with small 



 177 

risk tolerances, might not be well approximated by Taylor series expansions. In these 

cases, moments might still perform well, but preserving other characteristics of the input 

distributions might give better approximations of the output value function distribution. 

Bounds on Distributions 

One question raised in comparing distributions is how to bound the moments or cdf of the 

distribution resulting from a discretization, given limited information. This work has 

empirically investigated errors resulting from discretization, but can these errors be 

theoretically bounded? Are there bounds on the percentiles of a value distribution with 

multiple discretized input uncertainties? 

Chebyshev bounds provide limits on expectations of functions of a random variable 

given some of its moments. Karlin and Studden (1966) gave a detailed treatment of the 

theory of Chebyshev systems, including Chebyshev inequalities. Zelen (1954) gave 

specific formulae for Chebyshev bounds that use up to the first four moments. Smith 

(1990, 1995) discussed applications of Chebyshev bounds in decision analysis. Figure 59 

shows the Chebyshev bounds on the NPV distribution of the Wildcatter problem, using 

its first two or first four moments. These bounds are not particularly narrow, even with 

four perfectly known moments. The probability of a negative NPV is anywhere between 

0% and approximately 25% using four moments, and between 0% and 40% using two 

moments. These bounds assume perfect knowledge of the required moments. If it were 

known that the moments were not exact, such as if they were estimated using 

discretization, the bounds should be made even wider. Further research might investigate 

variants of Chebyshev-type bounds that can address these issues. 
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Figure 59. Chebyshev bounds on the value function of our example using up to the first 

four moments. 

Assessment Error 

Our assessment error study in Chapter 5 used a limited set of distributions, for the reasons 

discussed in that chapter. This work can be extended in several ways. Other distributions 

could be considered, but they would need to address the issues that restricted us to 

bounded distributions. The P10, P50, and P90 percentiles were used partly because they 

were easier to assess than more extreme percentiles would have been. However, this 

considers only the magnitude of assessment errors and not their effects on the problem 

when approximated by discretization. Finally, our assessment error model assumed a 

uniform distribution of Δ-feasible distributions in the truth set, but other 

parameterizations and distributions could be considered. The form and distribution of 

errors could be chosen to reflect different assumptions of assessment error. 
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Appendix: Johnson System Moment Fitting Algorithms 

This appendix gives algorithms from Hill et al. (1976) to fit each of the three Johnson 

distribution types to a given set of the first four standardized moments,  , 2 , 1 , 2 . 

The SL distributions only require three, and the first three standardized moments are used. 

The code given below can be copied directly into Mathematica® 9.0, and is also available 

from the author upon request. 

SL DISTRIBUTION 

MatchParamsSL[\[Mu]1_,\[Mu]2_,\[Beta]1_]:=Module[{y,w,\[Delta],\[Omega],\[Gamma

],\[Mu],\[Sigma]}, 

( 

y=w/.Flatten[Solve[{\[Beta]1==(w-1)*(w+2)^2,w>=0},{w}]]//N; 

\[Delta]=Log[y]^(-0.5); 

\[Omega]=Exp[\[Delta]^-2]; 

\[Gamma]=0.5\[Delta]*Log[\[Omega] (\[Omega]-1)/\[Mu]2]; 

\[Mu]=\[Mu]1-Exp[-\[Gamma]*\[Delta]^-1+0.5\[Delta]^-2]; 

\[Sigma]=1; 

Return[{\[Gamma],\[Delta],\[Mu],\[Sigma]}]; 

)] 

SU DISTRIBUTION 

MatchParamsSU[\[Mu]1_,\[Mu]2_,\[Beta]1_,\[Beta]2_]:=Module[{\[Delta]1,A0,A1,A2,\

[Beta]1f,\[Delta],\[Omega],\[Gamma],\[Mu],\[Sigma],a,b,c,m,\[Omega]2,\[Delta]2}, 

( 

\[Delta]1=5; 

A0[w_]:=w^5+3w^4+6w^3+10w^2+9w+3; 

A1[w_]:=8(w^4+3w^3+6w^2+7w+3); 
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A2[w_]:=8(w^3+3w^2+6w+6); 

\[Beta]1f[m_,w_]:=m(w-1)(4(w+2)m+3(w+1)^2)^2/(2(2m+w+1)^3); 

\[Delta]=\[Delta]1; 

\[Omega]=Exp[\[Delta]^-2]//N; 

a=A2[\[Omega]](\[Omega]-1)-4(2\[Beta]2-6); 

b=A1[\[Omega]](\[Omega]-1)-4(\[Omega]+1)(2\[Beta]2-6); 

c=(\[Omega]-1)A0[\[Omega]]-(2\[Beta]2-6)(\[Omega]+1)^2; 

m=(-b+Sqrt[b^2-4a*c])/(2a)//N; 

a=0.5; 

b=1; 

c=3/2-\[Beta]2+\[Beta]1/\[Beta]1f[m,\[Omega]]*(\[Beta]2-

0.5(\[Omega]^4+2\[Omega]^2+3)); 

\[Omega]2=Sqrt[(-b+Sqrt[b^2-4a*c])/(2a)]; 

\[Delta]2=Log[\[Omega]2]^-0.5; 

\[Delta]=\[Delta]2; 

While[Abs[\[Beta]1f[m,\[Omega]]-\[Beta]1]>=10^-6, 

\[Omega]=Exp[\[Delta]^-2]//N; 

a=A2[\[Omega]](\[Omega]-1)-4(2\[Beta]2-6); 

b=A1[\[Omega]](\[Omega]-1)-4(\[Omega]+1)(2\[Beta]2-6); 

c=(\[Omega]-1)A0[\[Omega]]-(2\[Beta]2-6)(\[Omega]+1)^2; 

m=(-b+Sqrt[b^2-4a*c])/(2a)//N; 

If[\[Beta]1f[m,\[Omega]]==0,Break[],{}]; 

a=0.5; 

b=1; 

c=3/2-\[Beta]2+\[Beta]1/\[Beta]1f[m,\[Omega]]*(\[Beta]2-

0.5(\[Omega]^4+2\[Omega]^2+3)); 
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\[Omega]2=Sqrt[(-b+Sqrt[b^2-4a*c])/(2a)]; 

\[Delta]2=Log[\[Omega]2]^-0.5; 

\[Delta]=\[Delta]2; 

]; 

\[Gamma]=ArcSinh[Sqrt[m/\[Omega]]]*\[Delta]; 

\[Sigma]=Sqrt[\[Mu]2/(.5*(\[Omega]-1)(\[Omega]*Cosh[2\[Gamma]/\[Delta]]+1))]; 

\[Mu]=\[Mu]1+\[Sigma]*Sqrt[\[Omega]]Sinh[\[Gamma]/\[Delta]]; 

{Re[\[Gamma]],Re[\[Delta]],Re[\[Mu]],Re[\[Sigma]]} 

)] 

SB DISTRIBUTION 

MatchParamsSB[\[Mu]1_,\[Mu]2_,\[Beta]1_,\[Beta]2_]:=Module[{xbar,sigma,rtb1,b2,H

MU,deriv,dd,tt,tol,limit,rb1,b1,neg,e,u,x,y,w,f,d,g,m,fault,s,h2,t,h2a,h2b,h3,h4,rbet,bet2,d

elta,xlam,xi,gamma,lastd,lastg}, 

( 

(*Inputs*) 

xbar=\[Mu]1; 

sigma=\[Mu]2; 

rtb1=Sqrt[\[Beta]1]; 

b2=\[Beta]2; 

(*Initialize*) 

HMU=ConstantArray[0,6]; 

deriv=ConstantArray[0,4]; 

dd=ConstantArray[0,4]; 

tt=10^-4; 

tol=0.01; 
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limit=50; 

rb1=Abs[rtb1]; 

b1=rb1^2; 

neg=rtb1<0; 

(*Get D as first estimate of delta*) 

e=b1+1; 

u=1/3; 

x=b1/2+1; 

y=rb1*Sqrt[b1/4+1]; 

w=(x+y)^u+(x-y)^u-1; 

f=w^2*(3+w*(2+w))-3; 

e=(b2-e)/(f-e); 

If[Abs[rb1]>tol, 

( 

d=1/Sqrt[Log[w]]; 

If[d<0.64,f=1.25*d,f=2-8.5245/(d*(d*(d-2.163)+11.346))]; 

), 

(f=2;) 

]; 

f=e*f+1; 

If[f<1.8, 

(d=0.8*(f-1);), 

(d=(0.626*f-0.408)*(3-f)^(-0.485);) 

]; 

(*Get g as first estimate of gamma*) 

g=0; 
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If[b1<tt,{}, 

( 

If[d<=1,g=(0.7466*d^1.7973+0.5955)*b1^0.485;, 

( 

If[d<=2.5,(u=0.0623;y=0.4043;),(u=0.0124;y=0.5291;)]; 

g=b1^(u*d+y)*(0.9281+d*(1.0614*d-0.7077)); 

)]; 

)]; 

 

(*Main iteration starts here*) 

m=0; 

While[(Abs[u]>tt||Abs[y]>tt)&&m<=limit, 

( 

m=m+1; 

(*fault=m>limit; 

If[fault,Return[{"Fault","d,g",d,g,m}]];*) 

 

(*get first 6 moments for latest g and d values*) 

HMU=Table[Moment[JohnsonDistribution["SB",g,d,0,1],i],{i,1,6}]; 

s=HMU[[1]]^2; 

h2=HMU[[2]]-s; 

If[h2<=0,(Print["nonpositive variance"];g=lastg;d=lastd;Break[])]; 

t=Sqrt[h2]; 

h2a=t*h2; 

h2b=h2^2; 

(*h3=HMU[[3]]-HMU[[1]]*(3*HMU[[2]]-2*s);*) 



 184 

h3=HMU[[3]]-3*HMU[[1]]*h2-HMU[[1]]^3; 

rbet=h3/h2a; 

h4=HMU[[4]]-HMU[[1]]*(4*HMU[[3]]-HMU[[1]]*(6*HMU[[2]]-3*s)); 

bet2=h4/h2b; 

w=g*d; 

u=d^2; 

 

(*Get derivatives*) 

For[j=1,j<=2,j++, 

For[k=1,k<=4,k++, 

( 

t=k; 

If[j==1,s=HMU[[k+1]]-HMU[[k]],s=((w-t)*(HMU[[k]]-

HMU[[k+1]])+(t+1)*(HMU[[k+1]]-HMU[[k+2]]))/u]; 

dd[[k]]=t*s/d; 

)]; 

t=2*HMU[[1]]*dd[[1]]; 

s=HMU[[1]]*dd[[2]]; 

y=dd[[2]]-t; 

deriv[[j]]=(dd[[3]]-3*(s+HMU[[2]]*dd[[1]]-t*HMU[[1]])-1.5*h3*y/h2)/h2a; 

deriv[[j+2]]=(dd[[4]]-

4*(dd[[3]]*HMU[[1]]+dd[[1]]*HMU[[3]])+6*(HMU[[2]]*t+HMU[[1]]*(s-

t*HMU[[1]]))-2*h4*y/h2)/h2b; 

]; 

t=1/(deriv[[1]]*deriv[[4]]-deriv[[2]]*deriv[[3]]); 

u=(deriv[[4]]*(rbet-rb1)-deriv[[2]]*(bet2-b2))*t; 
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y=(deriv[[1]]*(bet2-b2)-deriv[[3]]*(rbet-rb1))*t; 

 

(*form new estimates of g and d*) 

lastg=g; 

lastd=d; 

g=g-u(*/Log[4,m+4]*); 

If[b1==0||g<0,g=0;]; 

d=d-y(*/Log[4,m+4]*); 

)]; 

(*end of iteration*) 

delta=d; 

xlam=sigma/Sqrt[h2]; 

If[neg,(gamma=-g;HMU[[1]]=1-HMU[[1]];),(gamma=g;)]; 

xi=xbar-xlam*HMU[[1]]; 

Return[N[{gamma,delta,xi,xlam}]]; 

)]  
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