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Digital media collections hold an unprecedented source of knowledge and data about

the world. Yet, even at current scales, the data exceeds by many orders of magnitude

the amount a single user could browse through in an entire lifetime. Making use

of such data requires computational tools that can index, search over, and organize

media documents in ways that are meaningful to human users, based on the mean-

ing of their content. This dissertation develops an automated approach to analyzing

digital media content based on topic models. Its primary contribution, the Infinite-

Word Topic Model (IWTM), helps extend topic modeling to digital media domains

by removing model assumptions that do not make sense for them – in particular,

the assumption that documents are composed of discrete, mutually-exclusive words

from a fixed-size vocabulary. While conventional topic models like Latent Dirichlet
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Allocation (LDA) require that media documents be converted into bags of words,

IWTM incorporates clustering into its probabilistic model and treats the vocabu-

lary size as a random quantity to be inferred based on the data. Among its other

benefits, IWTM achieves better performance than LDA while automating the selec-

tion of the vocabulary size. This dissertation contributes fast, scalable variational

inference methods for IWTM that allow the model to be applied to large datasets.

Furthermore, it introduces a new method, Incremental Variational Inference (IVI),

for training IWTM and other Bayesian non-parametric models efficiently on grow-

ing datasets. IVI allows such models to grow in complexity as the dataset grows,

as their priors state that they should. Finally, building on IVI, an active learning

method for topic models is developed that intelligently samples new data, resulting

in models that train faster, achieve higher performance, and use smaller amounts of

labeled data.
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Chapter 1

Introduction

Over the past decade, rapid technological advances have lead to a surge in the

amount of digital media produced across the world. Many consumer electronic de-

vices today, including computers, cellular phones, and mobile devices, come equipped

with built-in cameras and microphones that can readily capture high-quality digital

photographs, videos, and audio recordings. Not only are these devices ubiquitous,

they are far less costly to operate than their traditional, analog equivalents. Due

to the low cost of digital storage, the cost of taking pictures on one’s smart phone,

for example, is near zero. In effect, modern technology provides us with both the

ability and opportunity to take a seemingly-limitless stream of photos, videos, and

other recordings. While past generations collected shoeboxes of old photos and

home moves in closets and attics, the present generation accumulates its vast media

collections on hard drives, cloud storage accounts, and social media networks. A

recent estimate puts the number of online photos in the tens of billions [49, 1]. On

YouTube, approximately one hour of new video is uploaded every second [2].

Such digital media collections hold an unprecedented source of knowledge and

data about the world. Yet, even at current scales the data exceeds by many orders

of magnitude the amount a single user could browse through in an entire lifetime.
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Making use of such datasets requires computational tools that can index, search over,

and organize media documents in ways that are meaningful to human users, based

on the meaning of their content. Such systems do not exist yet, but someday might

– they would be much faster than humans but nonetheless understand images and

sounds in terms of human semantic concepts. Such systems could look through huge

photo libraries to find photos to accompany news articles, listen to years of music to

answer queries like singers who sound like Tom Waits, automatically discover events

going on in a city by analyzing the images recently posted on social media, and any

number of other tasks. This dissertation aims to make them a step closer to reality.

It does so by introducing a new probabilistic topic model to automatically infer

semantic descriptions of media documents, as well as efficient methods for training

it on large, growing datasets.

1.1 Motivation

Currently, many systems for searching and browsing collections of digital media rely

on the use of tags or other text annotations of content. These annotations are easily

indexed to allow users to find documents quickly by making text-based searches.

However, tagging must be done manually by human users, and can be tedious and

time-consuming. Indeed, users tend to tag very sparsely or are unwilling to put

forth the effort to tag at all: An analysis of 52 million images from Flickr found

that 64% of photos had 3 or fewer tags [50]. A further problem is that many tags

describe the circumstances under which a photo was taken (e.g. 2008, wedding),

rather than the image content itself. Clearly, text annotations offer at best a limited

description of document content. Rather than relying on human annotations, it

would be preferable to have intelligent systems that can understand a document’s

content directly.

The difficulty of designing such systems lies in bridging the so-called se-
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mantic gap – that is, connecting a machine’s low-level document representation to

high-level semantic concepts. How might a machine represent the visual concept

of mountains, for example, in terms of the pixel values of photographs? Individual

pixels contain almost no information about the concept; rather, “mountainness”

must be conferred through visual abstractions above the pixel level. An additional

challenge is that there are many possible photographs of mountains, of different

ranges, taken in different weather, with different perspectives or lighting conditions.

A useful representation of mountains must account for such natural variability. Ad-

ditionally, mountains is just one visual concept. How can systems be designed that

understand many such concepts without a prohibitive amount of human engineering

effort? Finally, images are only one type of digital media. Can similar systems be

designed to understand concepts in sound and video?

This dissertation develops an approach to automated content analysis based

on topic models. Topic models are a general class of Bayesian hierarchical models

that automatically uncover latent structure in document collections. Originally

developed for text analysis, they decompose the content of each document in terms

of latent topics, or groups of words that frequently occur together. As their name

suggests, topics tend to be semantically coherent. When topic models are trained

on a set of news articles, for example, topics typically group together words related

to government (tax, program, Congress, etc.), arts (film, music, movie, etc.), and

education (school, student, teacher, etc.) [14]. Topic models express the content

of each document as a weighted mixture over such topics. These topic weights

serve as a quantitative representation of the document’s semantics. They have

been used successfully as features for document classification, collaborative filtering,

exploratory analysis, and other tasks [14, 44].

Building on this prior work, this dissertation applies topic models to the

automated analysis of content in non-text domains. Its primary contribution, the

3



Infinite-Word Topic Model (IWTM), helps extend topic modeling to such domains

by removing model assumptions that do not make sense for them – in particular, the

assumption that documents are composed of discrete, mutually-exclusive words from

a fixed-size vocabulary. Among other benefits, IWTM achieves better performance

than existing text-based models while simplifying the modeling process considerably.

This dissertation also contributes fast, scalable variational inference [29] methods

for IWTM, as well as tools for training it efficiently on growing datasets. The focus

of the dissertation is on the analysis of images; however, the model and methods

it develops are also applicable to other types of digital media, such as videos and

audio recordings. The next section describes existing methods for topic modeling

on image collections.

1.2 Topic Models for Image Analysis

Even though topic models were originally developed for text documents, a number

of studies have demonstrated their utility in image domains as well. In particular,

topic models have been applied to object recognition [34, 51], segmentation [52, 64],

and natural scene classification [36, 58, 22]. This dissertation mainly focuses on

applications of the last type – natural scene classification.

One text-based topic model discussed throughout this dissertation is Latent

Dirichlet Allocation (LDA) [14]. In order to use LDA on a collection of images, the

images must first undergo preprocessing that converts them into a text-like bag-of-

words (BOW) representation. Typically, this process is performed as follows. First,

a set of local multivariate features is extracted from each image. Common choices

are SIFT descriptors [39], densely-sampled Histograms of Oriented Gradients (HoG)

[20], or local image patches. The features are then pooled across all images and

used to train a clustering model, typically with the K-means algorithm. Finally,

the image features are quantized against the clustering model, yielding a set of

4



integer counts in NK for each document. In this representation, the clusters of

image features are termed visual words, the set of all K clusters comprises a visual

vocabulary, and the parameter K is referred to as the vocabulary size.

The BOW representation allows text-based topic models like LDA to be used

“out of the box” for image analysis tasks. However, in practice, BOW comes with a

number of practical difficulties. One concern is how to select an optimal value for K,

the visual vocabulary size. In practice, this quantity can have a significant impact

on the subsequent performance of the topic model [22]. Unfortunately, because

clustering is performed as an off-line preprocessing step, the vocabulary size cannot

be learned as part of the topic model’s training. Instead, optimizing the vocabulary

size requires training and evaluating separate models with different values of K

and picking the best according to some performance metric. Such a procedure is

computationally expensive, since both a clustering model and topic model must be

trained for each vocabulary size evaluated. Furthermore, when the dataset is large,

the selection of the visual vocabulary size can be prohibitive.

Bayesian non-parametric clustering models, such as the Dirichlet Process

Mixture Model (DPMM) [7], offer a potential solution. Rather than using a fixed

model complexity K, DPMMs infer the number of cluster components based on

the size and complexity of the data. In theory, bags of words could be formed by

quantizing image features against a DPMM, rather than K-means. However, this

approach, too, has undesirable properties. First, since the image representations

going into the topic model are determined by an offline clustering step, any updates

to the clustering require completely retraining the topic model. Second, although

DPMMs define a full posterior distribution over each datum’s cluster assignment,

the quantization process assigns each datum entirely to its closest cluster. Doing so

throws away information about the features that could be useful to the topic model.

A guiding principle of IWTM is to account for uncertainty in the topic model-

5



ing process that arises in non-text document domains. There are two such sources.

First, media documents are not comprised of discrete, mutually-exclusive words;

rather, they are groups of noisy, continuous, multivariate features. Second, it does

not make sense to divide such features into a prescribed number of clusters. Instead,

the visual vocabulary size should be inferred based on the data. IWTM accommo-

dates the first issue by incorporating the clustering of features into the topic model

itself. It addresses the second by using Bayesian nonparametrics to learn the visual

vocabulary size along with the rest of the model.

1.3 Outline of the Dissertation

The next chapter discusses background relevant to the development of the Infinite-

Word Topic Model and its inference procedures. It reviews a typical approach to

topic modeling in image domains (Latent Dirichlet Allocation with bags of visual

words) and provides background on Bayesian non-parametric clustering that moti-

vates the design of IWTM.

Chapter 3 defines the Infinite-Word Topic Model, the primary contribution

of this dissertation. It discusses the design of the model, motivated by limitations

of existing text-based topic modeling approaches. Further, it compares IWTM to

other models in machine learning and computer vision literature.

Chapters 4, 5, and 6 derive posterior inference methods for IWTM. Chapter

4 first develops a collapsed Gibbs sampler for the model. Using it, the advantages of

IWTM over LDA are demonstrated on a natural scene classification task. Chapter

5 develops a variational inference procedure for IWTM that is far more efficient and

scalable than the Gibbs sampler, as shown on the same dataset. Chapter 6 scales

IWTM even further by deriving a stochastic variational inference (SVI) procedure

for it. Using SVI, IWTM is applied to a large-scale scene classification dataset with

thousands of images and millions of image features.

6



Chapters 7 addresses a challenge presented by real-world applications –

namely, how to handle the case where the datasets periodically grow, rather than

being fixed for the lifetime of the model. This chapter introduces Incremental Varia-

tional Inference (IVI), a general method for training Bayesian non-parametric mod-

els incrementally with variational inference. Further, it develops an active learning

method for topic models that allows new training data to be sampled intelligently.

Such sampling allows making best use of the data, in order to learn faster and

achieve higher final classification accuracy.

Chapters 8 and 9 consider the dissertation in hindsight. The former suggests

directions for future work, and the latter summarizes the primary contributions of

this dissertation: a new non-parametric topic model for digital media documents,

efficient inference methods that scale it to large problems, and tools for efficiently

training it and other models on growing datasets.

7



Chapter 2

Background

This chapter provides background material relevant to the development of the

Infinite-Word Topic Model and its inference procedures. It reviews a typical ap-

proach to topic modeling in image domains (LDA with bags of visual words) and

provides background on the Bayesian non-parametric clustering method that moti-

vates the design of IWTM.

2.1 Images as Sets of Local Descriptors

A prerequisite for the automated analysis of image content is a scheme for extracting

representations of visual appearance from images. A number of studies in computer

vision have demonstrated that representations based on local descriptors are effective

for many tasks, including object recognition, image classification, segmentation, and

image retrieval [39, 22, 35, 23, 62, 64]. In this scheme, an image is divided into small

patches, and the appearance of each patch is described by a vector of real numbers.

Each image is then represented as a set of such multivariate descriptors.

A number of approaches, such as the scale-invariant feature transform (SIFT)

[39] and histograms of oriented gradients (HOG) [20], describe patch-level appear-
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(a) Input image (b) Histogram of oriented gradients

Figure 2.1: Dense SIFT representation of a sample image. Each 8 × 8 pixel patch
of the image is represented as a histogram of the orientations of local illumination
gradients. Such histograms describe local appearance, and are used as inputs to
subsequent modeling.

ance in terms of local illumination gradients. Each patch is passed through filters

that estimate the gradient magnitude in some number N regularly spaced directions,

i.e. at angles 0, πN , . . .
(N−1)
N π. For each of C local cells that subdivide the patch,

the gradients at each pixel are used to “vote” on the local dominant orientation.

To form a patch-level descriptor, the statistics for the C cells are normalized and

concatenated, yielding a real-valued descriptor of dimension C × N . Altogether,

the image is represented as a set of such descriptors, one for each patch. Figure

2.1 shows HOG descriptors computed over a regular grid of 8-by-8 pixel cells for a

sample image.

Although both SIFT and HOG represent patches in the same manner, the

approaches differ in how patches are selected. HOG simply uses a dense sampling

of patches over a regular grid of the image (as in Figure 2.1), while SIFT uses

a keypoint detector to extract patches of different sizes and orientations. Such a

detector selects a sparse set of patches that can be identified in a manner invariant
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to changes in scale, rotation, and perspective. Such invariance provides robustness

that can be beneficial in object recognition tasks [39]. However, this dissertation

applies topic models to a different vision task – scene classification – in which sparse,

invariant features are typically eschewed in favor of densely sampled ones like HOG.

For the remainder of this dissertation, the set of local features for the dth image is

denoted xd = {xd1, . . .xd,Nd
}, where each xdi ∈ RNdim represents the appearance

of a single patch, and Nd is the total number of local features (or, equivalently the

number of local patches represented).

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [14] is an unsupervised probabilistic model that

was originally developed to analyze collections of text documents, where each doc-

ument is represented as a discrete bag of words from a fixed vocabulary. To apply

the model to non-text domains, the documents must be converted to conform to

this representation.

2.2.1 Bag of Visual Words

The bag of visual words representation of a image corpus is formed by extracting

a set of local features from each image and quantizing them into a text-like repre-

sentation. First, a set of Ndim-dimensional local features xd = {xd1,xd2, . . .xdNd
} is

extracted from each image d ∈ 1 . . . Ndoc in the corpus. Second, the features from all

images are pooled and used to train a clustering model with K components. Third,

the clustering model is used to quantize the image features by mapping each feature

xdi to the index of its nearest cluster. For each document d, quantization yields a

set of visual word indicators wd = {wd1, wd2, . . . , wdNd
}, with each wdi an integer in

{1, 2, . . .K}.
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2.2.2 Model Definition

LDA models the corpus using T topics φ1, . . . ,φT , with each document maintain-

ing a separate distribution θd that describes the contribution of each topic. LDA

assumes that each document is generated through the following procedure:

1. For each document d, draw a set of topic weights θd.

2. For each word i in document d,

(a) Draw a topic zd,i by sampling from θd

(b) Draw the word wd,i from the chosen topic φzd,i

The full generative model is

φt|β ∼ Dir(β), t ∈ 1 . . . T, (topics)

θd|α ∼ Dir(α), d ∈ 1 . . . D, (topic weights)

zd,i|θd ∼ θd, i ∈ 1 . . . nd, (topic indicators)

cd,i|φzd,i ∼ φzd,i , i ∈ 1 . . . nd, (“words”),

where α and β are hyperparameters smoothing the per-document weights and per-

topic word distributions, respectively.

LDA can be thought of as a latent-factor model that attempts to explain the

Ndoc observed documents in terms of T topics, which are latent distributions over

words. Because generally T � Ndoc, the model is pressured to infer topics that

place mass on groups of commonly co-occurring – and thus semantically related –

words. In image analysis tasks, the inferred topics capture groups of related visual

features. For example, in Fei-Fei and Perona’s analysis of a corpus of natural scene

images [22], the topics appear to group together patches containing the trunks and

leaves of trees, different parts of the roofs of houses, and so on. The contribution

of the topics to each document is described by the per-document topic weights
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θd. Throughout this dissertation, the topic weights are used as a low-dimensional

semantic representations of the documents.

Although LDA can learn semantic descriptions of documents that are useful

for supervised learning tasks, LDA itself is an unsupervised model. Some additional

mechanism must be used to, for example, predict documents’ class labels. This dis-

sertation explores two options for applying topic models to document classification

tasks. Chapter 4 turns the models into generative classifiers by adding an extra layer

for document labels to their graphical models. In chapters 5 and 6, the topic mod-

els are instead trained in an unsupervised way, and the document representations

learned by them are fed into external support vector machine classifiers.

2.2.3 Issues

Although LDA has been used successfully for image classification and other tasks,

representing images as bags of words has a number of shortcomings. Most impor-

tantly, the vocabulary size is not a parameter of the model itself, but rather one

chosen in preprocessing that determines the image representations given to LDA.

As a result, there is no way to tune this parameter during inference to maximize the

likelihood of the observed data or the classification accuracy of the overall system.

Instead, the best vocabulary size must be determined by empirically by evaluating

LDA with many different vocabulary sizes. This process is computationally expen-

sive, since it involves training separate K-means and LDA models in each case.

In addition to the issue of the vocabulary size, bag of words makes it difficult

to train LDA effectively in an incremental manner. Because the image representa-

tions used by LDA are determined by an offline clustering method, an update to

the clustering requires completely retraining the topic model. When new training

data becomes available, one is forced to choose between keeping the visual vocab-

ulary static and updating LDA, or updating the visual vocabulary and completely
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retraining LDA. Both of these choices are undesirable.

IWTM overcomes these issues by incorporating the clustering of document

features into the probabilistic model itself, rather than clustering in a separate pre-

processing step. As will be discussed in chapter 3, IWTM’s clustering layer is a type

of Gaussian Dirichlet Process Mixture Model (GDPMM). The following section mo-

tivates the use of GDPMM by drawing connections between it and the K-means

algorithm used to form the bag-of-words representations for LDA. In particular, the

GDPMM is shown to be a Bayesian non-parametric extension of the well-known

mixture of Gaussians model, which in turn can be viewed as a fully probabilistic,

soft-clustering version of K-means clustering.

2.3 Clustering models

In general, clustering attempts to partition a set of data X = {x1,x2, . . .xn}, xi ∈
RNdim into a number of groups or clusters, where the data in each cluster are close

together according to some distance measure. Given the data, the goal of clustering

is to learn the parameters of the components and determine which data points belong

to which clusters. This section traces the connections between three increasingly

powerful clustering methods: K-means, Gaussian mixtures, and Gaussian Dirichlet

process mixtures.

2.3.1 K-means

K-means seeks a partition of the data into exactly K clusters, where K is a fixed

parameter of the algorithm. The goal of the algorithm is to determine the centers

{µ1 . . .µK} of the clusters as well as assignments {c1 . . . cn} so that the data in

each cluster are close to the center in terms of Euclidean distance. More formally,
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K-means seeks the values of these parameters that minimize the objective function

J =
n∑
i=1

K∑
k=1

cik‖xi − µk‖2, (2.1)

where ci: is a 1-of-K binary indicator vector that represents the cluster to which

datum xi belongs, i.e. cik = 1 if and only if xi is a member of cluster k. K-means

is said to be a hard-clustering algorithm because each data point belongs to exactly

one cluster.

A global optimum of equation (2.1) is difficult to find because the parameters

interact and the function is non-convex. Finding an optimal solution with respect

to both c and µ jointly is known to be NP-Hard [3]. K-means instead finds a

local optimum by optimizing equation (2.1) iteratively with respect to the cluster

indicators and centers individually. Given some initial values of the centers µ, the

algorithm proceeds iteratively in two steps. First, the cluster indicators are updated

by allocating each data point to its closest cluster in (squared) Euclidean distance:

ci ← arg min
k
‖xi − µk‖2. (2.2)

Second, the cluster centers are set to the mean of the data points assigned to it:

µk =
1

# {i : ci = k}
∑
i:ci=k

xi. (2.3)

Update (2.3) can be derived by differentiating the objective, setting the derivatives

to zero, and solving for the parameter µk. Typically the algorithm is run until

convergence (no cluster assignments are changed during the course of an iteration),

until the change in the objective dips below a predefined threshold, or until some

maximum number of iterations is exceeded. Given a sufficient number of iterations,

K-means is guaranteed to converge because each step decreases or maintains the
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value of its objective [10].

Note that K-means is posed as an optimization problem; strictly speaking, it

does not provide a probabilistic interpretation of the data. This presents a number of

difficulties. First, it is unclear how many clusters K should be used to describe the

data, or even what it objectively means to have a “correct” number of clusters. By

contrast, probabilistic clustering methods come with principled metrics for choosing

the model complexity, such as the likelihood of held-out data. Second, because K-

means is not a generative model, it is not possible to combine it with or embed

it inside of probabilistic models in order to capture more complex structure in the

data. Thus, when used in conjunction with LDA, K-means must always be run as

an offline preprocessing step.

2.3.2 Gaussian Mixtures

Although K-means itself is not a probabilistic model, it has a strong connection to

the well-known Gaussian Mixture Model (GMM), which is a probabilistic clustering

model. The GMM assumes each datum xi ∈ RNdim is generated by first selecting

a cluster component ci ∈ {1, . . . ,K} and then drawing xi from its multivariate

Gaussian distribution

ci ∼ Discrete(π) (2.4)

xi |µ,Σ, ci ∼ N (xi |µci ,Σci), (2.5)

where π = {π1, . . . , πK},
∑

i πi = 1 defines a global set of weights with which each

cluster is selected, and mean vectors µk ∈ RNdim and positive-definite covariance

matrices Σk ∈ RNdim×Ndim parameterize the Gaussian components. As in K-means,

the GMM assumes that there are a fixed number of clusters K in the data.

The goal of inference in GMMs is similar to that of K-means: given observed

data x, it is of interest to estimate the assignments ci and Gaussian parameters µk
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and Σk that explain the data. Whereas K-means makes hard assignments of data

to clusters, GMMs define probabilistic or “soft” cluster assignments. Given settings

of the cluster parameters, the posterior probability that datum xi was generated

from component k is given by Bayes’ rule:

p(ci = k |xi) =
πkN (xi |µk,Σk)∑
k′ πk′N (xi |µk′ ,Σk′)

. (2.6)

The full posterior over cluster assignments defined by the GMM is always at least

as informative as the hard assignments given to the data by K-means. If a datum

lies between clusters or the clusters are overlapping, the posterior will split mass

among many clusters, reflecting the ambiguity of the assignment. If the clusters are

well separated, the posterior will concentrate mass at xi’s closest cluster, resembling

a hard assignment. A hard cluster assignment can be thought of as a compressed

version of the posterior: The former contains 0 bits of uncertainty about the cluster

assignment, while the latter contains up to log2K bits about it.

The connection between the methods can also been seen in the procedures

used to train them. Indeed, the K-means algorithm can be shown to be a degenerate

version of the Expectation Maximization (EM) algorithm commonly used to train

Gaussian mixtures [10]. The EM algorithm for GMMs is an iterative procedure

that makes maximum-likelihood estimates of the parameters µ, Σ, and π. At each

iteration, new values for the parameters are estimated by maximizing the expected

complete data log likelihood

E[log p(X, c |µ,Σ,π)] =

N∑
i=1

K∑
k=1

p̃(ci = k) (log πk + logN (xi |µk,Σk)) , (2.7)

where p̃(ci = k) is the posterior cluster assignment evaluated under the parameter

16



settings of the previous iteration. The optimal updates to the parameters are:

µk ←
1∑

i p̃(ci = k)

∑
i

p̃(ci = k)xi (2.8)

Σk ←
1∑

i p̃(ci = k)

∑
i

p̃(ci = k)(xi − µk)T (xi − µk). (2.9)

K-means can be recovered from the EM procedure by making two simplifi-

cations to it. First, the clusters are assumed to have the same spherical covariance,

i.e. Σk = λI. By doing so, the Gaussian density reduces as

N (xi | ci = k,µk,Σk) =
|Σk|−1/2

(2π)M/2
exp

(
−1

2
(xi − µk)>Σ−1

k (xi − µk)
)

(2.10)

=
1

(2πλ)M/2
exp

(
− 1

2λ
‖x− µk‖2

)
. (2.11)

The second simplification is that the data are given hard cluster assignments, rather

than probabilistic ones. Hard assignments can be achieved by taking the limit of

the GMM as λ → 0. As the cluster covariance shrinks, the posterior assignments

become concentrated at the cluster closest in Euclidean distance to each datum, i.e.

p(ci |xi) = δ(c∗i ) where c∗i = arg min
k
‖xi − µk‖2. (2.12)

In the limit, the EM objective (2.7) reduces to

Ec [log p(X, c |µ, λ,π)] = −1

2

N∑
i=1

K∑
k=1

I[ci = k]‖xi − µk‖2 + C, (2.13)

with C a constant [10]. The quantity (2.13) is equivalent to the K-means objective

(2.1) with opposite sign. Thus, maximizing it with respect to the parameters is

equivalent to minimizing the K-means objective.
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2.3.3 Gaussian Dirichlet Process Mixtures

The previous section showed that the K-means algorithm can be viewed as a hard-

clustering approximation of a GMM with restricted covariance structure. GMMs

have several advantages over K-means: They provide probabilistic description of

the data that is at least as informative as hard cluster assignments and, as proper

probabilistic models, they can be embedded in other, more complex models. How-

ever, both methods still require that the number of clusters K be specified a priori,

even though in general the optimal number of components is not known. Picking

an appropriate value for K is important for the model to generalize well to unseen

data. In general, using too few clusters will underfit the data, and using too many

will overfit it.

The machine learning literature provides a number of methods for choosing

the complexity of probabilistic models robustly – for example, measuring good-

ness-of-fit using held-out data or the Bayesian information criterion [46]. However,

these methods only provide metrics to compare models of different complexities;

generally, selecting the optimal complexity requires evaluating a number of models

and choosing the best among them.

Bayesian non-parametric clustering methods, such as the Dirichlet Process

Mixture Model (DPMM) [7], offer an appealing solution to this model-selection

problem. Rather than using a fixed number of components K, DPMMs treat the

number of clusters as a random quantity to be inferred based on the data. The

DPMM actually supports an infinite number of clusters a priori ; however, condi-

tioned on a finite amount of observed data, the model concentrates mass on a small,

finite number of clusters. The Gaussian DPMM (that is, the DPMM with Gaus-

sian likelihood) is closely related to the Gaussian Mixture Model discussed in the

previous subsection. In fact, the Gaussian DPMM (GDPMM) can be derived as a

particularly type of GMM whose number of clusters K is taken to infinity.
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The GDPMM is derived by making two modifications to the GMM. First,

the GMM is made into a fully Bayesian model by putting priors on its parameters.

The weights π and cluster parameters µk and Σk are given priors as follows:

π | α0 ∼ Dir(γ/K, . . . , γ/K)

(µk,Σk) | H ∼ H

ci | π ∼ Discrete(π)

xi | µ,Σ, ci ∼ N (µci ,Σci).

Here, the cluster parameters come from a prior distribution H, and cluster weights

π are drawn from a symmetric K-dimensional Dirichlet distribution with parameter

γ/K. Note that as the number of clusters K increases, so does the sparsity of the

Dirichlet prior on the cluster weights π. The overall result is that the effective

number of clusters used by the model remains small, even for large K, and grows

instead as a function of the number of data points N and the parameter γ. In the

limit K →∞, the Dirichlet prior becomes the Dirichlet process.

Using Dirichlet Process notation, the same mixture model (now with infinite

capacity) is written as

φ | γ ∼ DP(γH)

Ωi | φ ∼ φ
xi | Ωi ∼ N (Ωi).

The latent variable φ, which is a sample from the Dirichlet Process, is itself a dis-

tribution. It can be expressed as a mixture over an infinite set of cluster parameters

drawn from H; that is, φ =
∑∞

k=1 φkδ (Ψk) with Ψk ∼ H. The concentration pa-

rameter γ controls the prior over the component weights φk. Each datum in the

mixture model is generated by selecting cluster parameters Ωi from φ, and then

drawing xi from the corresponding Gaussian component.

It is important to note that the cluster parameters Ωi, which come from
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the set {Ψ1,Ψ2, . . . }, will generally not be unique to a single datum. Indeed, a

key property of the Dirichlet process is that a sequence of draws from it exhibits

grouping. That is, for some k there will be many data indices S such that Ωi = Ψk

for all i ∈ S. In other words, the DP prior prefers to use a number of clusters that

is proportional to γ and scales slowly with the size of the dataset. The clustering

properties of the Dirichlet process are made clearer in the next section, where the

DP is given a more precise definition.

2.4 Dirichlet Processes

The previous section defined the Dirichlet process in terms of a K-dimensional

Dirichlet distribution taken to the limit of K →∞. This mathematical definition is

of little use in practice because, computationally, infinite-dimensional distributions

cannot be represented explicitly. To perform posterior inference with Dirichlet pro-

cesses, it is necessary to turn to other representations of them. This section details

two different representations of the DP – the Chinese Restaurant Process (CRP)

and the stick-breaking construction. Although they are equivalent, each describes

the DP in a different way and lends itself to a different type of posterior inference

method. Compared to the previous section’s definition, these representations also

make the clustering properties of the DP more explicit.

2.4.1 Chinese Restaurant Process

The CRP defines the Dirichlet Process indirectly in terms of a set of conditional

draws from it. As in section 2.3.3, let φ ∼ DP(γH) be a Dirichlet process and let

{Ωi}Ni=1 denote draws from it. Consider the case where the Ωi are drawn sequen-

tially. Suppose that, in the first i draws, K unique values {Ψ1, . . . ,ΨK} have been

observed. Then, it can be shown that the conditional distribution of the (i + 1)st
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draw is (in mixture notation)

Ωi+1 |Ωi, . . . ,Ω1, H, γ ∼
K∑
k=1

mk

i+ γ
δ{Ψk}+

γ

i+ γ
H, (2.14)

where mk is the number of times the value Ψk has previously been drawn [11, 54].

This statement says that Ωi+1 is set to a previously sampled value with a probability

proportional to the number of times that value has been drawn, or Ωi+1 is set to a

new value from H with probability proportional to γ.

Equation (2.14) shows that DP follows a “rich get richer” scheme: the more

times an atom has been sampled in the past, the more likely it is to be sampled

again in the future. As a result, N consecutive draws are very unlikely to produce N

unique values. Instead the draws will be grouped into K(N) unique values (clusters),

where K(N) � N with high probability. Indeed, the expected number of clusters

can be computed exactly using the definition of the CRP. Specifically, the expected

number of clusters in N draws is the expected number of clusters in (N − 1) draws

plus the probability that the Nth draw creates a new cluster, i.e.

E[K(N)] = E[K(N − 1)] +
γ

γ +N − 1

= γ
N∑
i=1

1

γ + i− 1
. (2.15)

The sum can be written in closed form using the digamma function ψ(·), and ap-

proximated as:

E[K(N)] = γ(ψ(γ +N)− ψ(γ))

≈ γ log(1 +N/γ). (2.16)

The first line uses the property that ψ(x) = ψ(x−1) + 1/x, and the second uses the
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fact that ψ(x) ≈ log(x) for large arguments [16]. Thus, the Dirichlet process prior

prefers to use a number of clusters that scales linearly with γ and approximately

logarithmically in the number of data. Importantly, the number of clusters is a

random quantity. The posterior of the DP may manifest more or fewer clusters

than the mean, depending on the data being modeled.

Although the CRP only defines the conditional distributions of the Dirich-

let process, the conditionals are sufficient to devise Markov Chain Monte Carlo

(MCMC) methods for posterior inference. In chapter 4, a hierarchical version of the

CRP called the Chinese Restaurant Franchise is used to develop a collapsed Gibbs

sampler, an MCMC method, for IWTM.

2.4.2 Stick-Breaking Construction

The CRP defines the Dirichlet process implicitly, in terms of conditional draws from

it. This subsection reviews Sethuraman’s stick-breaking construction [47], which

instead gives an explicit definition of the atoms and weights of the DP.

The stick-breaking construction states that if φ ∼ DP(γH) is a Dirichlet-

process distributed random measure, it can be written as the infinite mixture

φ =
∞∑
k=1

βkδ {Ψk} , (2.17)

where atoms Ψk ∼ H. Furthermore, it gives an explicit definition of the atom

weights as

βk = β′k

k−1∏
j=1

(1− β′j) (2.18)

in terms of random variables β′k that are independent draws from the beta distribu-

tion Beta(1, γ). Note that
∑∞

j=1 βj = 1 almost surely. Thus, β is a random (discrete)

probability distribution over the atoms Ψ. The weights defined by (2.18) are said

22



to follow a Griffiths-Engen-McCloskey distribution, and the generative process is

sometimes written β ∼ GEM(γ) [54].

The stick-breaking construction is so-named because the process of generat-

ing the weights is analogous to breaking a unit-length stick into a set of progressively

smaller pieces. The first stick piece, of size β1 = β′1, is formed by breaking off pro-

portion β′ from the whole stick; the second stick, of size β2 = β′2(1 − β′1), results

from breaking off a proportion β′2 of the remaining stick; and so on. Throughout

this dissertation, the β random variables are referred to as the stick weights of the

Dirichlet process.

Although the CRP and the stick-breaking construction are both representa-

tions of the Dirichlet process, they describe it in a subtly different ways: The CRP

defines a distribution over partitions of data, while the stick-breaking prior (SBP) is

a distribution over non-interchangeable cluster labels [43, 31]. The difference can be

observed by noting that the prior probability of selecting a stick in the SBP depends

on the stick’s index. Indeed, the prior expectation of the stick weights are

E[βk] = E[β′k]

k−1∏
j=1

E[1− β′j ] =
γk−1

(1 + γ)k
, (2.19)

which makes use of the independence of the β′s and the formula for the beta mean,

E[β′k] = γ
1+γ . Note that expected stick weight decreases exponentially with its index.

The stick-breaking construction is said to give a size-biased ordering of the Dirichlet

process: The largest cluster is most likely to occur at index one, the second-largest

cluster is most likely to occur at index two, and so on [43, 31, 16]. In contrast, the

definition of the CRP has no notion of cluster indices.

The difference between the CRP and SBP is further illustrated through a

simple example. Suppose two draws from a DP, denoted z1 and z2, are assigned to

the same cluster. The CRP defines the probability of such an event directly: it is
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1/(1+γ). The same probability can be computed from the SBP, but only indirectly.

It is found by calculating the probability that both z1 and z2 are assigned to a specific

cluster index k and then marginalizing over the value of k. Specifically, the joint

probability of assigning both z1 and z2 to the kth cluster is

p(z2 = z1 = k) = p(z2 = k | z1 = k)p(z1 = k)

=
2(1 + γ)k−1

(2 + γ)k
γk−1

(1 + γ)k

=
2γk−1

(1 + γ)(2 + γ)k
. (2.20)

Marginalizing over the cluster label k recovers the probability of interest:

∞∑
k=1

p(z2 = z1 = k) =
2

γ(1 + γ)

( ∞∑
k=0

(
γ

2 + γ

)k
− 1

)

=
1

(1 + γ)
. (2.21)

Thus, the CRP and SBP are equivalent descriptions of the Dirichlet process, but the

former implicitly marginalizes out the labels and describes the partitions induced by

the DP, while the latter describes a size-biased ordering of its clusters. The choice of

which one to use depends on the inference method. With MCMC procedures where

only the conditional distributions of the DP are needed, the collapsed space of the

CRP is preferable. Variational inference (explored in later chapters) requires that

the joint probability of all cluster weights be defined; it thus operates better on the

stick-breaking construction.

2.5 Conclusions

When applied to non-text domains, text-based topic models like LDA require that

document features be preprocessed into bags of words. This requirement leads to a
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number of issues. First, the vocabulary size K is a fixed parameter, and therefore

selecting an optimal value for it requires training and evaluating many separate

clustering and topic models. Doing so is computationally expensive and can be

prohibitive for large datasets. Second, quantizing the document features throws

away information about the data that may be useful for subsequent modeling steps.

Third, K-means cannot be merged into a topic model like LDA because it is not

actually a probabilistic model. Fourth, the fact that visual vocabulary is determined

in preprocessing means that it must remain fixed for the lifetime of the topic model.

This restriction makes incremental training difficult – that is, adapting or grow the

visual vocabulary when new training documents become available.

All of these problems motivate the use of a more flexible and powerful method

for clustering document-level features – namely, one based on Gaussian Dirichlet pro-

cess mixtures. The analysis carried out in this chapter shows that the GDPMM can

be thought of as a fully Bayesian, soft-clustering version of the K-means algorithm,

equipped with a non-parametric prior that allows the visual vocabulary size to be

inferred along with the rest of the model. Because the GDPMM is a proper prob-

abilistic model, it can be integrated into, and trained jointly with, a topic model.

The next chapter does just that, resulting in the Infinite-Word Topic Model.
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Chapter 3

The Infinite-Word Topic Model

Chapter 2 described the conventional approach to topic modeling in non-text do-

mains: document-level feature vectors are first converted to bags of words (BOW)

using a offline clustering model like K-means, and then a text-based topic model

like LDA is applied to them. This chapter defines the Infinite-Word Topic Model

(IWTM), the primary contribution of this dissertation. IWTM integrates the clus-

tering of the feature vectors into its generative process, which allows it to operate

directly on such features without a separate preprocessing step. By building off of

the hierarchical Dirichlet process, IWTM infers the number of clusters to use based

on the size and complexity of the dataset being modeled.

3.1 Infinite-Word Topic Model

This section defines the Infinite-Word Topic Model. Section 3.1.1 first defines the

model generally, in terms of an unspecified cluster likelihood and HDP base measure.

Then, section 3.1.2 describes the likelihood and base measure used throughout this

dissertation for image analysis tasks.
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3.1.1 General Model

IWTM differs from LDA with bags of words (BOW) in two key ways. First, instead

of quantizing image features in an offline preprocessing step, feature clustering is

incorporated into the probabilistic model. In LDA, the observed documents come in

the form of a set of discrete cluster indicators wd; in IWTM, the multivariate image

features xd are observed and the cluster indicators are latent variables. Second,

whereas the BOW representation requires a fixed vocabulary size K, IWTM treats

the number of visual words (clusters) as a random quantity to be inferred. A non-

parametric prior is placed on the clustering parameters, allowing a priori an infinite

number of visual words to be used. In practice, when conditioned on a finite dataset,

the model uses a finite number of clusters that grows with the size and complexity

of the data.

In LDA, topics are distributions over the same vocabulary, with each topic

placing different weights on the words. Likewise, topics in IWTM are distributions

over the same (countably infinite) set of cluster components, with each topic assign-

ing different weights to the components. IWTM topics are modeled as a set of T

dependent Dirichlet processes, with all DPs sharing the same set of atoms:

φ0 ∼ DP(γH) φt ∼ DP(α0φ0) for t ∈ {1, . . . , T}.

This construction is known as a Hierarchical Dirichlet Process (HDP) [54], where H

is the base measure, a prior distribution over the cluster parameters. Both φ0 and

the topics φt take the form of discrete mixtures over a shared, countably infinite set

of cluster parameters {Ψ1,Ψ2, . . . }, where Ψk ∼ H. That is, each topic φt can be

written as a distribution

φt =
∞∑
k=1

φtkδ (Ψk) , (3.1)

where the parameters {Ψ1,Ψ2, . . . },Ψk ∼ H are shared among all topics. In effect,
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the first Dirichlet Process draw φ0 generates the infinite set of cluster parameters,

and each topic φ1, . . .φT is a reweighted mixture of the same set. The concentration

parameter α0 controls the variance of the weights around the mean topic φ0, while

γ controls the prior number of clusters. Like the Dirichlet process, the hierarchical

Dirichlet process has multiple equivalent representations, and the representation

used typically depends on the posterior inference method used. This chapter focuses

on the remainder of IWTM, deferring a more precise definition of the hierarchical

Dirichlet process until chapter 5.

Given the topics, a document corpus is generated using a procedure similar

to that of LDA. The key difference is that IWTM generates a set of multivariate

features xd for each document, rather than a set of discrete “word” indicators:

• For each document d,

1. Draw a set of topic weights θd ∼ Dir(α).

2. For each datum index i in document d,

(a) Draw a topic zd,i by sampling from θd

(b) Draw cluster parameters Ωdi from the chosen topic φzd,i

(c) Draw datum xdi from cluster density F (Ωdi).

The complete generative model for IWTM is

φ0 | γ ∼ DP(γH)

φt | α0,φ0 ∼ DP(α0φ0), t ∈ 1 . . . T, (topics)

θd | α ∼ Dir(α), d ∈ 1 . . . D, (topic weights)

zd,i | θd ∼ θd, i ∈ 1 . . . nd, (topic indicators)

Ωd,i | φ, zd,i ∼ φzd,i , i ∈ 1 . . . nd, (cluster parameters)

xd,i | Ωd,i ∼ F (Ωd,i), i ∈ 1 . . . nd, (data).

As in LDA, each document is described by a set of T topic weights θd = (θd1, . . . , θdT ),
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where
∑

t θdt = 1, and the topic for each datum i = 1 . . . Nd is chosen randomly ac-

cording to these weights. However, whereas LDA draws a discrete word indicator

from the selected topic, IWTM draws cluster parameters Ωdi from the topic and

then generates the multivariate feature vector xdi from that cluster.

Note that the cluster parameters Ωdi are draws from φzdi , which is a Dirichlet

process. As discussed in section 2.4, a key property of the Dirichlet process is that

draws from it exhibit grouping. In IWTM, the Ωdi values will generally not be

unique to a single datum. Rather, there will be a small number of unique values

that are shared by many data across many different documents. Specifically, each

Ωdi is one of the cluster parameters {Ψk}∞k=1 common to all topics.

3.1.2 A Likelihood and Base Measure for Image Analysis Tasks

Up to now, IWTM has been defined in terms of a general, unspecified likelihood

function F and base measure H. For the domains considered in this dissertation, F

is a multivariate normal likelihood with spherical covariance, with the base measure

H putting a multivariate normal-gamma prior over the cluster means and precisions.

That is, each set of cluster parameters Ψk is a pair consisting of a mean vector µk

and scalar precision λk generated as

Ψk = (µk, λk) µk |λk ∼ N (m, (β0λk)
−1I) λk ∼ Gam(χ1, χ2), (3.2)

where χ1 and χ2 are hyperparameters specifying the prior precision of the clusters,

m is the prior mean of the cluster centers, and β0 is the ratio of the precision of the

centers to that of the clusters themselves.

Using a spherical covariance multivariate normal likelihood for F and a mul-

tivariate normal-gamma prior for H is appropriate for the following four reasons:

First, making these choices for F and H turns the clustering portion of IWTM into

a fully Bayesian, soft-clustering version of the K-means algorithm (see section 2.3).
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Doing so enables comparisons between IWTM and the combination of LDA and

K-means.

Second, using clusters with a simple, spherical covariance structure makes

posterior inference in IWTM faster. Both the collapsed Gibbs sampler and vari-

ational inference procedures described in later chapters can be adapted to more

complex covariances, such as diagonal-, semi-tied or full-covariance Gaussians, al-

though at a greater computational cost.

Third, in the domains for which IWTM was designed, the data xdi being

clustered are of high dimensionality, and complex covariance structures with many

parameters may overfit the data. For example, in the image analysis experiments

throughout this dissertation, the observed data are typically 128-dimensional dense

SIFT descriptors. At this dimension, the full covariance matrix of a single cluster

would have 1282 = 16384 parameters, which is greater than the number of data

points that would be in many clusters. Therefore, using more complex covariances

structures would most likely be detrimental to IWTM’s performance.

Fourth, the multivariate normal-gamma distribution is a conjugate prior to

the multivariate normal likelihood [18], and conjugacy makes it possible to construct

inference procedures for IWTM that actually perform better (in addition to being

faster) than non-conjugate pairs. In the Gibbs sampling procedure defined in chapter

4, conjugacy allows the cluster parameters to be integrated out of the model in closed

form, yielding a collapsed Gibbs sampler with better mixing properties. In chapter

5, conjugacy is used to derive a coordinate-ascent variational inference procedure

with closed-form updates, and in chapter 6 it plays a vital role in the derivation of

a stochastic variational inference for IWTM.
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3.2 Related Work

IWTM is a novel contribution of this dissertation: it is the first topic model that

integrates a non-parametric clustering layer into its graphical model. This section

connects aspects of IWTM to existing work in the statistical machine learning and

computer vision literature.

Several prior models have integrated the clustering of document-level features

into a topic model, namely the Correspondence LDA model of Blei et al. [13], the

Latent Mixture Vocabularies of Larlus and Jurie [34], and the Topic Random Field

[64] of Zhao et al. [64]. These models differ from IWTM in three main ways. First,

they are parametric models with a fixed vocabulary size. Picking the optimal vocab-

ulary size thus requires training and evaluating multiple, separate models. Doing so

is computationally expensive and becomes prohibitively costly for large datasets. In

contrast, IWTM automatically infers the number of clusters to use based on the size

and complexity of the data. Second, these existing models learn the parameters of

their clusters using maximum likelihood, while IWTM makes Bayesian estimates of

the cluster parameters. One benefit of doing so is that IWTM can make use of prior

beliefs about the cluster means and variances to help prevent overfitting. Third, the

existing models each assume that the topics are generated from a symmetric Dirich-

let prior. In IWTM, the HDP induces sharing between topics, so that clusters likely

to appear in one topic are pressured to appear in other topics.

Although there are a number of existing topics models that use non-parametric

priors, IWTM uses the HDP orthogonally to such cases. For example, the HDP-

LDA model [53] and SparseTM [57] use the HDP as a prior on the number of topics

in the model, where each topic is a distribution over a fixed, finite vocabulary. The

Focused Topic Model [61] uses the hierarchical beta process to similar effect. By

contrast, the non-parametric prior in IWTM induces a fixed number of topics that
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Figure 3.1: Plate diagrams for IWTM and HDP-LDA. IWTM uses the HDP orthog-
onally to HDP-LDA. IWTM generates feature vectors xdi using T topics, each of
which is an infinite mixture over cluster parameters. HDP-LDA generates discrete
“word” indicators wdi using a countably infinite number of topics, each of which is
a distribution over a fixed, finite vocabulary.

are distributions over an infinitely-sized vocabulary.1 Graphical models for IWTM

and HDP-LDA are shown in figure 3.1, which makes the distinction between the

two methods clear.

More recently, Li et al. [36] developed a non-parametric model that, like

IWTM, operates on document-level features directly. This work differs from IWTM

in two key ways. First, the model itself is different: It is based on the hierarchical

beta process [56] and is a combination of a topic model and dictionary learning

method. That is, each observed image feature is generated as a weighted combina-

tion of dictionary atoms that are shared amongst all data, and the model’s topics

are corpus-wide patterns in the atom weights. In contrast, IWTM clusters the doc-

ument features, and the topics have the usual interpretation as co-occurring sets

of features. Second, inference on the dictionary learning topic model is limited to

a Gibbs-slice sampler, which is slow and difficult to scale to large datasets: Infer-

ence on 1600 low-resolution images (250×250 pixels) takes approximately a week of

CPU time [36]. In contrast, this dissertation develops efficient, parallelizable infer-

ence methods for IWTM that make it feasible to use it in place of existing modeling

1A possible extension of IWTM would place non-parametric priors on both the numbers of topics
and clusters of the model. To limit the scope of this dissertation, such a model is reserved for future
work (section 8.1).
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tools such as K-means and Latent Dirichlet Allocation.

Another, more technical distinction of IWTM regards its use of the HDP. In

general, the HDP defines a set of dependent DP mixtures where all mixtures share

the same infinite set of atoms. In IWTM, the DP responsible for generating each

datum is controlled by the latent variables zdi, while in most HDP-based models it is

a fixed property of the data. For example, HDP-LDA [54] models a document corpus

using Ndoc dependent Dirichlet process mixtures – one for each document – and

each document is generated from a mixture specific to it. Likewise, a HDP mixture

model defines a set of mixtures over multiple, related groups of data, where group

assignments are known a priori. For example, Xing et al. [63] used a HDP mixture

to model gene haplotype data, where the data groups correspond to individuals’

known ethnic groups. In contrast to such models, IWTM generates each datum

from a random weighted mixture of dependent Dirichlet process mixtures.

3.3 Inference

In general, using a Bayesian hierarchical model to analyze a dataset requires poste-

rior inference. That is, given a set of observed data and the model hyperparameters

it is of interest to infer the posterior distribution over the latent variable settings

that generated the data. IWTM’s posterior is given by the expression

p(φ,Ω,θ, z |X, a, b, β0,m, γ, α0) =
p(X,Ω,φ,θ, z | a, b, β0,m, γ, α0)

p(X | a, b, β0,m, γ, α0)
, (3.3)

where, as discussed in section 3.1, φ are the topics, Ω are the cluster parameters,

θ = {θd} are the per-document topic weights, and z are the topic assignments

for each document feature. The posterior topic weights are of particular interest:

They describe each document in terms of the T topics in the model and provide

a low-dimensional semantic description of the document’s content. Throughout
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this dissertation, the topic weights are used to represent documents in classification

tasks.

Unfortunately, it is not possible to compute the exact posterior directly, due

to the complexity of the denominator in equation (3.3). The denominator is the

normalization constant of the posterior or, equivalently, the marginal likelihood, i.e.

the likelihood of the data after integrating out all possible settings of the latent

variables:

p(X |χ1, χ2, β0, γ, α0) =
y ∑

z

p(X |Ω)p(Ω | z,φ)p(z |θ)p(θ)p(φ) dφ dθ dΩ. (3.4)

This quantity is intractable to compute; one reason is that the sum must be taken

over an exponential number of topic assignment states z, which is prohibitively ex-

pensive even for small datasets. Although it is not possible to compute the posterior

directly, there are a number of established methods that can be used to approxi-

mate it. This dissertation applies several of them to IWTM, namely collapsed Gibbs

sampling [37], coordinate ascent variational inference [29], and stochastic variational

inference [26]. These are explained further in later chapters.

3.4 Conclusions

The primary contribution of this dissertation is IWTM, a new topic model specifi-

cally designed for modeling collections of digital media documents. It removes the

assumption, common to text-based models like Latent Dirichlet Allocation, that the

documents are sets of discrete, mutually exclusive words from a fixed vocabulary.

To do so, it incorporates the clustering of document-level features into the topic

model itself and places a non-parametric prior on the clustering parameters.

IWTM has four main advantages over existing text-based methods. First,
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it simplifies the process of modeling digital media collections. LDA requires that

document-level features be quantized into a bag of words representation, while

IWTM operates on such features directly. Second, IWTM obviates the need to

tune the visual vocabulary size. In LDA, determining the optimal vocabulary size

requires training and evaluating separate models. In contrast, IWTM treats the

vocabulary size as a random quantity and infers it based on the size and complexity

of the data. Third, IWTM uses more information about the document-level features

than LDA. Its probabilistic cluster assignments contain more information about the

features than bag of words, which assigns each feature entirely to a single cluster.

Fourth, IWTM is better suited to online or incremental training. LDA’s visual vo-

cabulary is determined in preprocessing and must remain fixed for the lifetime of the

model. In IWTM, the visual vocabulary is learned jointly with the topic structure

and can adapt to changes in underlying dataset.

IWTM’s strengths are discussed in detail and demonstrated experimentally

throughout this dissertation. The next chapter derives a collapsed Gibbs sampler

[37] for IWTM and, using it, demonstrates the model’s key advantages over an

LDA-based approach. Chapters 5 and 6 then focus on making inference in IWTM

fast and scalable to large datasets. Specifically, chapter 5 develops a mean-field

variational inference procedure [29] for IWTM that is an order of magnitude faster

than Gibbs sampling. Chapter 6 then develops a stochastic variational inference

procedure [26] for IWTM that leverages ideas from stochastic optimization to scale

variational inference to much larger datasets. Chapter 7 develops a method for

training IWTM efficiently on growing datasets, showcasing its ability to adapt the

vocabulary based on the data.
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Chapter 4

Gibbs Sampling

Like that of a vast majority of Bayesian hierarchical models, IWTM’s posterior is

intractable to compute directly and must be approximated instead (as was discussed

in section 3.3). This chapter derives a posterior inference method for IWTM using

collapsed Gibbs sampling [37]. Later, chapter 5 presents an alternative inference

method based on mean-field variational inference [29] that allows IWTM to be scaled

to large datasets.

4.1 Background

In general, Gibbs sampling is a Markov chain Monte-Carlo method that approxi-

mates a probability distribution by generating a sequence of samples from it. The

algorithm is useful because it can be applied to distributions that are too complex

for direct sampling methods to be possible. In the context of Bayesian probabilistic

modeling, Gibbs sampling is popular as a method for posterior inference, that is,

when the distribution being approximated is the posterior over the model’s latent

variables given a set of observed data.

In general, for a joint distribution p(Z) over a set of random variables Z =
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Algorithm 1 Gibbs sampling on joint distribution p(Z)

Initialize the random variables to some state Z(0).
for each sample t = 1, 2 . . . do

for each random variable j = 1→ n do

Sample z
(t)
j ∼ p(z

(t)
j | z1, . . . z

(t)
(j−1), z

(t−1)
(j+1), . . . z

(t−1)
n )

end for
end for

{z1, . . . zn}, Gibbs sampling generates a sequence of samples Z(1),Z(2), . . . through

the procedure described in algorithm 1. In the innermost loop, each individual

random variable is resampled from its conditional distribution given the current state

of all other variables. In many cases, it is simple to sample from these distributions,

even though sampling directly from the joint distribution p(Z) is not possible. Under

mild assumptions, it can be shown that the samples {Z(t)} form a Markov chain

that converges to the joint distribution of interest, p(Z) [6].

It should be noted that Gibbs sampling does not generate independent sam-

ples from p(Z); rather, consecutive samples are correlated with one another. This

fact is clear from the definition of the procedure: in any given iteration, the next se-

lected value of a random variable depends on the current values of the other random

variables. A corollary of this fact is that samples generated in the early iterations

of the algorithm are affected by the choice of the initial state Z(0) and do not reflect

the underlying distribution p(Z). In practice, this problem is remedied by running

the sampler for an initial burn-in period, which allows the Markov chain to move

closer to the target distribution, before using any of the samples it produces.

In some situations, such as the experiments later in this chapter, it is not

strictly necessary to estimate the full distribution p(Z), but rather to find the mode

of the distribution, i.e. the most probable configuration of the random variables. The

desired mode can be estimated simply by running the sampler for T iterations and

retaining the sample with the largest joint probability, i.e. Z∗ = arg maxTt=1 p(Z
(t)).
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A heuristic that works nearly as well in practice is to use the last sample Z(T ) as

the mode estimate. This method works because the samples reflect the underlying

density p(Z), and as the Markov chain converges to that distribution it is naturally

drawn to high-probability configurations.

The remainder of this chapter applies Gibbs sampling to the task of pos-

terior inference in IWTM, which is a novel contribution of this dissertation. The

procedure for Gibbs sampling in IWTM is identical to that outlined above except

that, rather than a generic distribution p(Z), the sampled distribution is the joint

posterior over the model’s latent variables given a set of documents (equation (3.3).

First, section 4.2 shows that several of IWTM’s latent variables can be integrated

out exactly, producing a collapsed model on which Gibbs sampling is simplified.

Section 4.3 describes the Chinese Restaurant Franchise (CRF), the representation

of the hierarchical Dirichlet process that is amenable to Gibbs sampling. Section 4.4

derives the actual Gibbs sampling procedure for IWTM based on the CRF. Then,

using that procedure, section 4.5 evaluates IWTM on two scene classification tasks.

4.2 Model Modifications

The Gibbs sampling method for IWTM makes two modifications to the standard

model presented in chapter 3. First, following prior work applying topic models

to image classification tasks, an additional layer is added to IWTM to use and

make predictions for documents’ class labels. Second, some latent variables are

integrated out of the model exactly, so that they do not need to be estimated by the

Gibbs sampling procedure. The following subsections describe these modifications

in detail.
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4.2.1 Incorporating Supervision

IWTM was described in chapter 3 as a purely unsupervised model. Using the model

for image classification tasks requires an additional mechanism for using the class

labels of training documents and predicting the labels of test documents. There

have been a number of supervised topic models proposed in the literature such

as Supervised LDA [12] and Discriminative LDA [33]. The Gibbs sampler in this

dissertation adopts the approach of Fei-Fei and Perona [22], which requires only a

simple change to IWTM’s generative model. Rather than generating topic weights

θd from a global Dirichlet distribution, they are drawn from a Dirichlet with a class-

specific set of parameters. That is, given a document label yd, the topic weights are

generated as θd |α, yd ∼ Dir(αyd). Essentially, this approach makes the assumption

that each class of documents can be described as a unique distribution over topic

weights. Labels for test documents are treated as unobserved parameters to be

optimized by the Gibbs sampling procedure.

4.2.2 Collapsing

A benefit of using Gibbs sampling for inference in IWTM is that several parts

of the generative model – namely, the per-document topic weights θd and cluster

parameters Ψk – actually do not need to be explicitly resampled. Instead, they can

be collapsed or integrated out of the model when sampling other random variables.

This particular approach is called collapsed Gibbs sampling. In general, collapsing

out layers of a graphical model leads to sampling procedures that converge faster to

the target distribution and are less susceptible to getting stuck in local modes [37].

Collapsing Topic Proportions

The topic proportions θd can be integrated out of the model in closed form, so that

the distribution over the topic assignments zd can be written as a function of only
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the document’s class label y and the hyperparameters α:

p(zd |α, yd = y) =

∫ nd∏
i=1

p(zdi |θd)p(θd |α, yd = y) ∂θd

=

∫ ( nd∏
i=1

θd,zdi

)(
Γ(
∑

t αyt)∏
t Γ(αyt)

T∏
t=1

θ
αyt−1
dt

)
∂θd

=
Γ(
∑

t αyt)∏
t Γ(αyt)

∫ T∏
t=1

θ
αyt+Ndt−1
dt ∂θd

In the last line, Ndt = # {i : zdi = t} denotes the number of features in the docu-

ment assigned to topic t. Although the expression inside the integral appears quite

complicated, the trick is to observe that it is actually the normalization constant of

the distribution Dir(θd |αy +Nd:). That is,

∫ T∏
t=1

θ
αyt+Ndt−1
dt ∂θd =

∏
t Γ(αyt +Ndt)

Γ(
∑

t αyt +Ndt)
.

Altogether, the marginal joint probability of the topic assignments for a document

d in class y is:

p(zd |α, yd = y) =
Γ(
∑

t αyt)∏
t Γ(αyt)

∏
t Γ(αyt +Ndt)

Γ(
∑

t αyt +Ndt)
. (4.1)

Bayes’ rule can be used to derive the prior conditional distributions as well. The

conditional of a topic assignment zdi, given the state of all others (denoted z−di,

with topic counts N−di) is:

p(zdi = z | z−di,α, yd = y) =
p(zdi, z

−di |α, yd = y)

p(z−di |α, yd = y)

=
αyz +N−didz∑
t(αyt +N−didt )

(4.2)

This simply makes use of equation 4.1, along with the property Γ(x) = (x− 1) Γ (x− 1).
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For test documents where yd is unobserved, the conditional can be computed

by marginalizing out the class label in the above formulae:

p(zdi = z | z−di,α) ∝
∑
y

p(zdi = z, z−di |α, yd = y)p(y) (4.3)

The other sampling steps, i.e. for the table and dish assignments, are identical to

those for labeled documents.

Collapsing Cluster Parameters

As discussed in section 3.1.2, this dissertation gives IWTM a multivariate normal

likelihood and sets H to a normal-gamma prior on the cluster means and precisions.

That is, for k = 1, 2, . . . each set of cluster parameters Ψk is a pair (µk, λk) generated

as

λk ∼ Gam(a, b) (4.4)

µk |λk ∼ N (m, (βλk)
−1I), (4.5)

where a and b are hyperparameters specifying the prior precision of the clusters, m is

the prior mean of the cluster centers, and β is the ratio of the precision of the centers

to the precision of the clusters themselves. This subsection derives a collapsed cluster

likelihood for IWTM where the means and precisions are integrated out in closed

form. In the collapsed likelihood, the density of each cluster is a function only of

its data and the hyperparameters m, β0, a and b. The integration over cluster

parameters is derived first, followed by the integration over the cluster precisions.

Collapsing Cluster Means

The starting point in deriving the collapsed likelihood is to write down the joint

density of drawing n data points X = x1 . . .xn, xi ∈ Rd from the same cluster,
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given its mean vector µ and its precision matrix Σ. The joint density can be written

as:

p(x1, . . . ,xn |µ,Σ) =
|Σ|n/2

(2π)nd/2
exp

(
−n

2
(x̄− µ)>Σ(x̄− µ)− n

2
tr(SΣ)

)
, (4.6)

where S = 1
n

∑
(xix

>
i ) − x̄x̄> is the scatter matrix and tr(·) denotes matrix trace.

The mean vector µ can be integrated out as:

p(X |Σ) =

∫
p(X |µ,Σ)p(µ |Σ)dµ

=
βd/2|Σ|(n+1)/2

(2π)(n+1)d/2
exp

(
−n

2
x̄>Σx̄− β

2
m>Σm− n

2
tr(SΣ)

)
×
∫

exp

(
−β + n

2
µ>Σµ+ µ>Σ(nx̄+ βm)

)
dµ. (4.7)

Here, the last factor is the only one that depends on µ. Let y = (nx̄+βm)
n+β and

Σ′ = (β + n)Σ. Completing the square on the last factor yields the following:

∫
exp

{
−β + n

2
µ>Σµ+ µ>Σ(nx̄+ βm)

}
dµ

= exp

{
y>Σ′y

2

}∫
exp

{
−(µ− y)>Σ′(µ− y)

2
dµ

}
= exp

{
y>Σ′y

2

}
(2π)d/2

|Σ′|1/2 . (4.8)

The last two lines are equivalent because the expression in the integral is the nor-

malization constant of the the distribution N(µ | y,Σ′). Plugging (4.8) into (4.7)

yields a closed-form for the marginal joint density of the sample

p(X |Σ) =
|Σ|n/2

(2π)nd/2

(
β

(β + n)

)d/2
exp

{
−1

2
tr(ΣM)

}
(4.9)

where M =
(
βn
n+β

)
(x̄−m)(x̄−m)> + nS is a modified scatter matrix.
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Collapsing Cluster Precisions

In this dissertation, IWTM is assumed to have spherical covariance clusters. Thus,

the precision matrix has the form Σ = λI, where λ ∈ R+ is a scalar and I is the

identity matrix in d dimensions. As discussed previously, the cluster precisions are

given a prior λ ∼ Gam(a, b). Under these assumptions, the joint density of the

sample and the cluster precision λ is

p(X) =

∫
p(X |λ)p(λ | a, b)dλ

=

(
β

(2π)n(β + n)

) d
2 1

baΓ(a)

∫
λ

nd
2

+a−1 exp

{
−λ
(

tr(M)

2
+

1

b

)}
dλ (4.10)

The integral can be solved by observing that it is the normalization constant of a

gamma density with parameters a′ = nd/2 + a and b′ = 1
tr(M)/2+1/b . Therefore,

p(X) =

(
β

(2π)n(β + n)

)d/2 1

baΓ(a)
b′a
′
Γ(a′). (4.11)

Having integrated out both the cluster means and precisions, the collapsed likelihood

is now only a function of the data and the model hyperparameters m, β0, a, and

b. Implicitly, it also depends on the cluster assignments. (The analysis here has

considered only a single cluster and assumed all data X are assigned to it.) In

IWTM, the cluster assignments of the data are latent variables that are sampled by

the inference procedure.

4.3 Chinese Restaurant Franchise

IWTM uses the Hierarchical Dirichlet Process to model topics as distributions over a

shared, countably infinite set of clusters. One convenient aspect of using Gibbs sam-

pling for inference is that the HDP can be defined simply in terms of its conditional
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distributions using a metaphor called the Chinese Restaurant Franchise (CRF) [54].

This section describes the CRF, which defines the prior conditional distributions of

the HDP. In the next section, they are adapted to form the posterior conditional

distributions needed by Gibbs sampling.

The Chinese Restaurant Franchise describes the HDP in terms of its condi-

tional distributions, described by the metaphor of customers entering one of several

Chinese restaurants to dine. When a new customer enters a restaurant, she is either

randomly seated at a table with other people, or sits alone at a new unoccupied

table. All customers seated at the same table share the same dish. The set of

restaurants comprises a franchise in the sense that every restaurant serves the same

set of dishes from a shared menu. To ground the metaphor in IWTM, each datum

xdi is a customer; there are T “restaurants”, each corresponding to a topic; a “dish”

is a unique set of Gaussian cluster parameters; and a “table” defines a subset of data

in a topic being drawn from the same cluster. The process of seating a customer in

a restaurant corresponds to resampling the cluster assignment for a single datum.

In order to define the CRF conditional distributions, the following notation

is introduced, borrowing from Teh et al. [54]. The latent variable zdi is the index of

the restaurant (topic) in which datum i in document d is currently dining, and tdi is

the index of the customer’s table inside the restaurant. For any table t in restaurant

r, krt is used to denote the dish being served at the table. Finally, nrt represents

the number of customers at table t in restaurant r, and mrk denotes the number

of tables in restaurant r serving dish k. Dots are used to indicate that a particular

index should be marginalized (summed) over. For example, m·k represents the total

number of tables in all restaurants serving dish k. Note that because the assignment

of customers to restaurants is determined by the latent variables z, the summary

statistics n and m should be considered functions of z as well.

The CRF specifies that when a new customer enters restaurant zdi she is
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either seated at an existing or new table with the following probabilities:

p(tdi = t | t−di,k) ∝


nrt if t already exists

α0 if t = tnew .

(4.12)

If the table already exists, the customer eats the dish currently at the table. If a new

table is created, a dish must be chosen to be served at the table. It is either selected

from a global menu of dishes already being served at other tables, or a completely

new dish knew is created for the table. Specifically, the dish is selected by

p(krtnew = k | t−rtnew) ∝


m·k if k already exists

γ if k = knew .

(4.13)

The conditional distributions for the table and dish assignments define the

Chinese Restaurant Franchise or, equivalently, the hierarchical Dirichlet process. In

effect, the tables in each of the T restaurants, along with the weights with which

customers are assigned to them, comprise the T topics {φt}Tt=1. The global menu

of dishes, along with the weights with which they are assigned to tables, comprise

IWTM’s master topic φ0.

Note that the CRF makes the clustering properties of the HDP clear (section

2.4). The expected number of tables in each restaurant depends on the number of

customers and the parameter α0, while the number of unique dishes depends on

the number of tables and the parameter γ. More specifically, if N customers enter

a restaurant, the expected number of tables that will be created is approximately

α0 log(1 + N
α0

). Likewise, if restaurants have a total of M tables between them, the

expected number of unique dishes is approximately γ log(1 + M
γ ) [16].

Finally, given a dish assignment, the new datum xdi is generated by drawing
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from the cluster indicated by its dish index

p(xdi | zdi = r,X−di, tdi = t,k) = f−dikrt
(xdi),

where the right side denotes the marginal conditional likelihood of drawing xdi from

cluster krt, given all other data currently in the cluster, i.e.

f−dik (xdi) = p (xdi | {xuv : kzuv ,tuv = k ∧ (u, v) 6= (d, i)}) .

This expression is readily computed by applying Bayes’ rule to the collapsed likeli-

hood in Equation 4.11.

4.4 Collapsed Gibbs Sampling for IWTM

This section defines the collapsed Gibbs sampling procedure for IWTM. The sampler

is derived for the collapsed, supervised variant of IWTM described in section 4.2,

using the Chinese Restaruant Franchise representation of the HDP.

4.4.1 Resampling assignments

Because the cluster parameters Ψ and the topic weights θ can be marginalized out in

closed form, Gibbs sampling in IWTM consists of iteratively resampling the discrete

latent variables z, t, and k. In the implementation developed in this dissertation,

all of the assignments of a single datum are resampled jointly. That is, for each

datum index i in each document d, the following steps are performed. First, the

datum is removed completely from the model by removing it from its dish, table and

restaurant assignments and updating the sufficient statistics. Second, the restaurant

assignment is resampled, marginalizing over table and dish assignments. Finally, the

table and dish assignments for the datum are resampled, given the new restaurant.
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The sampling updates are best explained in terms of the likelihood of xdi,

marginalizing over restaurant, table and dish assignments. Fixing the restaurant z,

the likelihood of xdi, marginalizing over table assignments is:

p(xdi |X−di, z, zdi = z, t−di,k−di)

=

mz·∑
t=1

nzt
nz· + α0

f−dikzt
(xdi) +

α0

nz· + α0
p(xdi |X−di, z, tdi = tnew,k−di)

The first sum above corresponds to the case where the customer is assigned to one

of the mz· existing tables. The final term is the data likelihood given a new table,

marginalizing over the choice of dish at the table. It is computed as:

p(xdi |X−di, z, tdi = tnew,k−di) =

K∑
k=1

m·k
m·· + γ

f−dik (xdi) +
γ

m·· + γ
f−diknew(xdi).

Here, the sum is taken over the K+ 1 possible choices for the dish at the new table:

It is either chosen to be the K dishes currently being served, or it is a completely

new dish.

Using these quantities, Gibbs sampling proceeds as follows. For datum xdi,

a new restaurant is first selected by sampling from the distribution:

p(zdi = z | z−di,X, α0, t
−di,k−di)

∝ p(xdi | zdi = z,X−di, α0, t
−di,k−di)p(zdi = z | z−di). (4.14)

Given a new restaurant z, the customer is seated at either an existing table, or a new

table is created. The table assignment is sampled from the following conditional:

p(tdi = t | z−di,X, α0, t
−di,k−di) ∝


nztfkzt(xdi) if t exists

α0p(xdi | z, tdi = tnew) if t = tnew .
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If an existing table is selected, the customer eats the dish already at the table (that

is, the datum is added to cluster kzt). If a new table is created, the dish (cluster)

for the new table is chosen according to

p(krtnew = k | t,X) ∝


m·kf

−di
k (xdi) if k exists

γfnew
k (xdi) if k = knew .

In either case, the datum xdi is added to the specified cluster and its sufficient

statistics are updated appropriately.

4.4.2 Making Class Predictions

In document classification tasks, it is of interest to use IWTM to infer the class

labels of unlabeled test documents. For a test document with topic assignments

z(test), the posterior distribution over the document’s class labels is computed as:

p(ytest = y | ztest,α) =
p(ztest | ytest = y)p(y)∑
y′ p(z

test | ytest = y′)p(y′)

∝ Γ(
∑

t αyt)∏
t Γ(αyt)

∏
t Γ(αyt +Ndt)

Γ(
∑

t αyt +Ndt)
p(y). (4.15)

The prior p(y) can be set to the empirical proportion of class y in the training

corpus. An unlabeled document’s class is predicted to be

y∗d = arg max
y

p(yd = y | zd,α). (4.16)

That is, the predicted class is the one with maximum probability given the current

model state.
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Hyperparameter updates

The decision rule in (4.16) depends only on the topic assignments z and the hyper-

parameter matrix α, whose rows αy describe each class y in terms of a distribution

over topic weights. For IWTM to achieve high classification accuracy, it is important

to fit α to the training data.

To do so, α is set to maximize the posterior probability of the current model

state at regular intervals throughout the Gibbs sampling procedure. Maximizing

the posterior with respect to α is equivalent to maximizing the log joint probability

with respect to each class’s parameters αy. Therefore, the posterior is maximized

with respect to α by setting αy ← α∗y, where

α∗y = arg max
αy

∑
d:yd=y

log p(zd |αy, yd = y). (4.17)

The solution to (4.17) can be found by computing the formulae for the gradients of

this expression and plugging them into a standard numerical optimization method.

The implementation developed for this dissertation uses the L-BFGS optimizer pro-

vided by the open-source SciPy library [28].

4.5 Experiments

In order to evaluate IWTM and compare it to other models, the model was run on

two natural scene classification datasets used in the topic modeling literature. The

first is the 13-scene dataset from [22]. The second is an eight-class subset of that

data used by Li et al. [36] to evaluate a model that combines topic modeling with

dictionary learning. For each dataset, IWTM’s performance is compared against

that of the other models.
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4.5.1 Scene classification: 13-scene

In this task, IWTM is used to classify images by their natural scene type, using

the 13-scene database of Fei-Fei and Perona [22]. The dataset consists of 3859

grayscale images over 13 image classes, both of indoor scenes (bedroom, livingroom,

kitchen, office) and outdoor scenes (coast, mountain, citystreet, open country, suburb,

highway, forest, inside city). As a baseline, the same task is performed using the

supervised extension of LDA described in section 2.2. The LDA-based model is

equivalent to Theme Model 1 in Fei-Fei and Perona’s paper.

Following Fei-Fei and Perona [22], SIFT descriptors are densely sampled from

each image over a regular grid with a step size of 10 pixels. This process yields a

set of approximately 600 128-dimensional SIFT descriptors per image.

To convert the images into the appropriate representation for LDA, K-means

is used to train a vector quantization model on the descriptors from the training

set. Then, the data from all images are quantized by mapping each descriptor to

the index {1 . . .K} of its closest cluster. The quantization process yields a set of

visual word counts in NK for each document. Because the optimal vocabulary size

for LDA+K-means is not known a priori, it is necessary to train and evaluate LDA

under multiple values of K. These experiments sweep over a variety of values in

the range 25-2000, with a smaller step size at lower values where the effect is more

sensitive. In IWTM, there is no need to sweep over the vocabulary size because

number of feature clusters is a random quantity inferred by the model.

Each model is evaluated with different numbers of topics T = {25, 50}. To

see the behavior of the models with different amounts of training data, models are

trained with ntrain = {25, 50, 100} labeled images per class. The remaining 2856

images are used as the test set. In both IWTM and LDA, each test document is

classified by its maximum a posteriori class label using the decision rule in 4.17 after

undergoing 50 iterations of Gibbs sampling.
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For each experimental trial, IWTM and LDA models are trained for 500

iterations of Gibbs sampling, with hyperparameters updated every 10 iterations

after a burn-in period of 100 iterations. In both models, the α matrix containing

the parameters to the per-class Dirichlet prior on topic weights is optimized. In

addition, the topic concentration hyperparameters β in LDA and α0 in IWTM are

both optimized. LDA is initialized with β = 1; IWTM is initialized with α0 = 50

and γ = 1. Hyperparameter m is set to an estimate of the corpus mean, and a, b,

and β are set to induce a vague prior on the cluster precisions.

4.5.2 Results

Both IWTM and LDA achieve their best results with a large amount of training

data (100 documents per class) and large number of topics (T = 50). LDA has its

highest mean accuracy, 65.15% ± 0.4 with a vocabulary size of K = 1000. IWTM

infers a vocabulary with mean size 1240, with slightly higher mean accuracy than

LDA (66.8% ± 0.3). For comparison, Fei-Fei and Perona [22] report getting 65.2%

accuracy with their LDA model on the same size dataset.

Figure 4.1 shows detailed comparisons of IWTM and LDA+BOW broken

down over different numbers of topics (4.1(a), 4.1(b)) and different amounts of train-

ing data (4.1(c), 4.1(d)). IWTM accuracy exceeds the best LDA result in all but

one scenario, showing larger improvements for small amounts of training data. The

exception is (ntrain = 100, T = 25), where IWTM performs approximately as well

as LDA models with large vocabularies.

Note that these are comparisons between IWTM and the best LDA result

in each setting, maximizing over the vocabulary size K. Empirically determining

the best value of K can be a computationally expensive process, since it requires

training both a clustering model and topic model for each choice of vocabulary size.

To complicate matters further, the results suggest that the optimal vocabulary size

51



0 500 1000 1500 2000
Vocabulary size

0.45

0.50

0.55

0.60

0.65

A
cc

u
ra

cy

ntrain=25

ntrain=50

ntrain=100

(a) T = 25

0 500 1000 1500 2000
Vocabulary size

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

u
ra

cy

ntrain=25

ntrain=50

ntrain=100

(b) T = 50

0 500 1000 1500 2000
Vocabulary size

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

A
cc

u
ra

cy

25 topics
50 topics

(c) ntrain = 50

0 500 1000 1500 2000
Vocabulary size

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

A
cc

u
ra

cy

25 topics
50 topics

(d) ntrain = 100

Figure 4.1: IWTM vs. LDA performance on the 13-scene classification task. Results
are broken down over different numbers of topics (T ) and the number of training
images per class (ntrain). Lines represent the results of LDA with bag of words, over a
number of different vocabulary sizes; solid dots indicate the results of IWTM, which
automatically infers the vocabulary size. In each setting, IWTM automatically infers
an appropriate vocabulary size and outperforms LDA models with any vocabulary
size.

for LDA can vary with the number of topics (see, e.g. figure 4.1(c)) and increase with

the size of the training set (figure 4.1(a)). This observation supports the argument

that it is best to train the vocabulary jointly with the rest of the model parameters,

as is done in IWTM.

Interestingly, the results demonstrate that vocabulary size alone does not

account for the performance difference between the models: in every experimental

setting, IWTM accuracy meets or exceeds the accuracy of LDA models trained with

approximately the same vocabulary size. This fact suggests that IWTM benefits
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Figure 4.2: Confusion matrices for the best-performing IWTM and LDA models on
the 13-scene classification task.

from its soft clustering of the data, in contrast to the hard cluster assignments used

to form LDA’s bag of words representation. An alternate hypothesis is that, even

when both models use the same number of clusters, IWTM is somehow able to

find better clusters than the K-means algorithm. However, this explanation seems

unlikely, since both methods assume the clusters are spherical-covariance Gaussians.

To investigate this further, a simple post-hoc experiment was performed in

which LDA was allowed to use the clusters learned by IWTM. Specifically, rather

than quantizing LDA’s data against a K-means codebook, the data was quantized

against clusters from IWTM by assigning each datum to the index of the highest

likelihood cluster. LDA was then trained and tested on the same datasets as the

source IWTM model.

The results are summarized in table 4.1. In each case, IWTM achieves a

much higher accuracy than LDA, even though both models essentially use the same

set of clusters. These results indicate that IWTM benefits significantly from the use

of soft cluster assignments – in fact, IWTM performs approximately as well as a

corresponding LDA model trained with twice the training data. For example, IWTM
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ntrain Vocab. size LDA+BOW IWTM

325 867 51.0 58.0
650 1116 58.0 61.3
1300 1247 61.8 64.0

Table 4.1: Mean accuracy on the 13-scene task for IWTM and LDA with features
quantized against IWTM’s clusters (LDA+BOW column). Results are shown for
T = 25 with three different training set sizes ntrain; Vocab. size indicates the
number of clusters used by IWTM in the model state used to quantize data for
LDA. In each case, IWTM achieves much higher accuracy than LDA using the same
clusters, indicating that IWTM benefits from the use of soft cluster assignments.

achieves 58% accuracy using 325 documents, while LDA requires 650 documents to

attain this level of performance. The superiority of soft-clustered representations

over bags of words is further supported by previous work by Philbin et al. [42], who

showed similar results (outside the context of topic modeling) on image retrieval

tasks.

4.5.3 Eight-Scene Task

In a second set of experiments, IWTM is compared against a topic model recently

proposed by Li et al. [36]. Their model, like IWTM, operates on image features

directly, rather than a quantized bag of words representation. However, rather than

clustering the image features, their model uses non-parametric dictionary learning

to infer sparse code representations of the features, and learns a topic-like structure

on top of the document-level sparse code patterns. This model is referred to as the

Dictionary Learning Topic Model (DLTM).

To compare against DLTM, IWTM was trained on the eight-class subset

of 13-scene. Following Li et al., 100 images per class were randomly selected for

training and testing, and models were given T = 100 topics. Otherwise, the same

experimental setup was used as in the 13-scene experiment: dense SIFT descriptors
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Figure 4.3: (left) Confusion matrix for IWTM on the eight-scene task. (right)
IWTM’s classification accuracy is comparable to the dictionary learning topic model
[36], supporting the notion that modeling the image features directly, rather than
through a quantized representation, is beneficial.

are computed on a regular grid, etc.

Figure 4.3 summarizes the results. Overall, IWTM achieves classification

accuracy of 76.4%± 0.2, which is slightly higher than the 76.25% accuracy reported

for the dictionary learning method. These results are encouraging. That the models

perform comparably supports the hypothesis that it is beneficial to model the image

features directly, rather than through a quantized representation.

4.6 Conclusions

The results on the 13-scene and eight-scene tasks show that IWTM performs as

well or better than the baseline LDA model under a variety of parameter settings.

Such results indicate that collapsed Gibbs sampling is an effective way of performing

inference in IWTM. Nonetheless, one significant disadvantage to Gibbs sampling is

that it is difficult to scale to large datasets, or to speed up inference significantly

using parallel processing. In general, Gibbs sampling requires that groups of inter-

dependent latent variables be updated sequentially, since changes to one variable
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will affect the way others are subsequently resampled. The latent variables in col-

lapsed IWTM – the restaurant, table, and dish assignments z, t, and k, respectively

– are all interdependent, and as a result the entire sampling procedure must be per-

formed sequentially. For large datasets, the time required to train a model with

Gibbs sampling would be prohibitive.

Mean-field variational inference [29] is an alternative inference method that

is appealing for its speed and scalability. In contrast to Gibbs sampling, variational

inference operates by making a series of batch updates to the model state, with each

iteration re-estimating large groups of latent variables independently. Generally,

these updates only require computing closed-form expressions of the current model

state. Moreover, because groups of parameters can be updated independently within

each iteration, it is simple to speed up the algorithm by dividing work across multiple

processors or machines. Variational inference is therefore a natural candidate for

scaling inference to large datasets, as will be discussed in the next chapter.
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Chapter 5

Variational Inference

In general, the task of inference in a Bayesian probabilistic model is to compute

the posterior distribution of the model’s latent variables, denoted p(Z |X), given a

set of observed data X. For most models of interest, including LDA and IWTM,

p(Z |X) is intractable to calculate exactly, and instead it is of interest to approxi-

mate the posterior. The previous chapter described a Gibbs sampling method that

approximates the posterior by constructing a Markov chain to sample from it. This

chapter describes mean-field variational inference [29, 10], which takes a much dif-

ferent approach to approximating the posterior. In variational inference, the key

idea is to estimate p(Z |X) by a simpler, tractable distribution q(Z) and improve

the approximation on each successive iteration.

5.1 Background

Variational inference poses posterior inference as optimization. Formally, for some

family of approximating distributions Q, it seeks the optimal distribution q∗(Z) ∈ Q
that is closest to the true model posterior in terms of KL divergence. That is, the
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problem is to find

q∗(Z) = arg min
q∈Q

KL(q‖p) (5.1)

where

KL(q‖p) = −
∫
q(Z) log

{
p(Z |X)

q(Z)

}
dZ. (5.2)

It is not feasible to solve (5.1) directly because the KL divergence is a function of the

true model posterior, which is assumed to be intractable to compute. However, this

minimization problem can be tackled indirectly by observing that it is equivalent to

a simpler maximization problem. For any distribution q(Z) over the latent variables,

the following decomposition holds [10]:

log p(X |θ) =

∫
log p(X,Z)dZ

= L(q, θ) + KL(q‖p) (5.3)

where

L(q, θ) =

∫
q(Z) log

{
p(X,Z)

q(Z)

}
dZ

= Eq [log p(X,Z)]− Eq [log q(Z)] . (5.4)

Here, the expectations are taken with respect to the distribution q(Z). This decom-

position expresses the marginal likelihood of the data as a sum of the function L(·)
and the KL divergence of interest. Note that the divergence term is strictly non-

negative (with KL(q‖p) = 0 if and only if q ≡ p), so L is in fact a lower bound on the

marginal likelihood. Because the marginal likelihood, i.e. the sum of the two terms,

is functionally independent of q(Z), minimizing the KL divergence term is equiva-
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lent to maximizing the function L(q, θ). The search for the optimal approximating

distribution can then be recast as:

q∗(Z) = arg max
q∈Q

L(q, θ). (5.5)

Unlike the KL divergence, this expression is a function of the joint distribution

p(X,Z), which is generally easy to compute. The function L(q, θ) to be maximized

is known as the Evidence Lower BOund (ELBO).

Because the decomposition above holds for any distribution q(Z), the family

of approximating distributions can be chosen in such a way that makes maximizing

the ELBO tractable. In mean-field variational inference – the strategy adopted here

— the joint distribution q(Z) is assumed to factor into some J groups [29]:

q(Z) =

J∏
j=1

q(Zj). (5.6)

That is, the J groups of latent variables are assumed to be independent in q. Note

that this is not an assumption of independence in the model posterior; we are merely

choosing a factored distribution to approximate the posterior.

The task of variational inference is to find, from the set of factored distri-

butions, the one that maximizes the ELBO objective. Although finding a global

optimum is not generally possible, it can be shown [10] that the ELBO is locally

maximized with respect to the jth factor when q(Zj) = q∗(Zj), where

q∗(Zj) =
1

C
exp {Ei 6=j log p(X,Z)} . (5.7)

Here, the expectation is taken with respect to the approximating distribution q

over all latent variables except Zj , and C is a normalizing constant that does not

depend on Zj . The right hand side of (5.7) depends on the other factors {q(Zi)}i 6=j ,
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meaning that it is the optimal distribution over Zj given fixed distributions over

the other latent variables. When the model contains conjugate exponential family

distributions, the optimal parametric forms of the factors are also exponential family

distributions, and updates implied by (5.7) can be carried out in closed form [26, 29].

Variational inference works by updating one factor at a time, keeping the others

fixed, and cycling through these updates until a suitable convergence criterion is

met. Each update is guaranteed to increase the ELBO (or, at worst, keep it the

same). This procedure can be viewed as a form of block coordinate ascent [9] on

the ELBO objective.

The remainder of this chapter applies the theory of variational inference

to IWTM. Section 5.2 shows that, by using the stick-breaking construction of the

Dirichlet Process, IWTM can be expressed as a model with fully conjugate ex-

ponential family distributions. As previously noted, conjugacy simplifies inference

considerably because the factors of the approximating distribution are also exponen-

tial families and the update rules have simple closed forms. Section 5.3 describes

the form of the approximating distribution, and section 5.4 contains the update

rules for each factor. In section 5.5, variational inference for IWTM is evaluated on

the 13-scene image classification task. Results show that IWTM trained with vari-

ational inference – just as with Gibbs sampling – achieves higher accuracy than an

LDA-based method. However, variational inference is an order of magnitude faster

than Gibbs sampling, and makes IWTM’s computational requirements comparable

to those of LDA and K-means.

5.2 Stick-Breaking Construction of IWTM

Recall that IWTM uses a two-level hierarchical Dirichlet process (HDP) to model

topics. The Gibbs sampling procedure described in the previous chapter made use of

the Chinese restaurant franchise representation of the HDP. The CRF is convenient
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for Gibbs sampling because it provides simple formulae for conditional draws from

the HDP. However, the CRF is not amenable to efficient mean-field variational

inference, which requires working with the model’s log joint density log p(X,Z).

Under the CRF, the joint density of the HDP is a complex function of all table

assignments t and dish assignments k in the model, and does not factor across the

data or tables [60, 55]. As a result, it is not possible to derive exact, closed form

update rules for a factorized approximation to the posterior. Fortunately, under

a different representation of the HDP – a stick-breaking construction – the joint

density has a more tractable form. Further, the resulting construction of IWTM

contains only conjugate exponential family distributions, so that the update rules

resulting from equation (5.7) have simple closed forms.

Recall that the topics in IWTM are T dependent Dirichlet processes gener-

ated using a common Dirichlet process as a base measure. That is,

φ0 ∼ DP(γH) φt ∼ DP(α0φ0) for t ∈ {1, . . . , T}

We have previously stated that both the master topic φ0 and the topics φt take the

form of discrete mixtures over a shared, countably infinite set of cluster parameters

{Ψ1,Ψ2, . . . }, where Ψk ∼ H. This relationship is made explicit by representing

both levels of DPs using Sethuraman’s stick-breaking construction (see section 2.4.2;

[47]). The result is a stick-breaking construction of the hierarchical Dirichlet pro-

cess [60], which is the representation on which variational inference for IWTM will

operate.

The stick-breaking construction is first applied to φ0. By its definition, the

master topic φ0 is a random measure over atoms (cluster parameters) {Ψk} drawn

from the base measure H. The stick-breaking construction states that the atom
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weights, denoted β, are generated as follows:

βk = β′k
∏k−1
j=1(1− β′j) β′k ∼ Beta(1, γ)

Ψk ∼ H

φ0 =
∑∞

k=1 βkδ {Ψk}

(5.8)

Likewise, each topic φt ∼ DP(α0φ0) is a random measure over atoms drawn from

the master topic φ0. Because φ0 is already a discrete distribution, the topics have

the same set of atoms as φ0 and are effectively reweighted copies of it. Applying

the stick-breaking construction to φt shows that it has the following form:

πtk = π′tk
∏k−1
j=1(1− π′tj) π′tk ∼ Beta(1, α0)

ctk ∼ βt

φt =
∑∞

k=1 πtkδ {Ψctk}

(5.9)

Here, indicator variables c are introduced to make the mapping between the two

levels of DPs explicit, where ctk is the index (in the master topic) of the kth atom

in topic t.

Using the stick-breaking construction of the HDP, the IWTM generative

model becomes the following:

β | γ ∼ GEM(γ) (master stick weights)

π | α0 ∼ GEM(α0) (topic stick weights)

Ψk | H ∼ H, k = 1, 2, . . . (cluster parameters)

ct,k | β ∼ β, t = 1 . . . T, k = 1 . . . , (topic atom-cluster map)

θd | α ∼ Dir(α), d ∈ 1 . . . Ndoc, (topic weights)

zd,i | θd ∼ θd, i ∈ 1 . . . nd, (topic indicators)

kd,i | π, zd,i ∼ πzd,i , i ∈ 1 . . . nd, (atom indicators)

xd,i | Ψ, zd,i, kd,i ∼ F (Ψczdi,kdi
), i ∈ 1 . . . nd, (data)

62



The benefit of the HDP construction above is that IWTM has full exponential-

family conjugacy, which allows for a variational inference procedure with closed-form

update rules. However, as discussed in section 2.4.2, the stick-breaking construction

requires special care during posterior inference because it assumes a size-biased

ordering of the DP atoms [30]. As is apparent from the form of β and π above,

the stick weights in each DP decrease exponentially in expectation, so that “larger”

atoms (ones drawn more times within the model) are more likely to appear at lower

indices. During variational inference it is important to reorder the atoms of each DP

according to their size. For IWTM, this means reordering topics’ atoms according to

the number of data each generates, and reordering the master topic by the number of

topic atoms mapped to each cluster. The reordering process is described in greater

detail in section 5.4.5.

5.2.1 Decoupled Classification

The experiments in this chapter, as in chapter 4, apply IWTM to the task of docu-

ment classification. Note, however, that the construction of IWTM above is unsu-

pervised: By itself, it contains no mechanism to use or predict document labels. In

the Gibbs sampling experiments in chapter 4, document classification was performed

by adding an additional layer to IWTM’s graphical model. The approach taken in

this chapter and the remainder of the dissertation is to decouple the topic model

and classification mechanism. That is, the topic model is trained in a completely

unsupervised manner, and classification is performed by training a separate classifier

on document representations generated by the model. Decoupling the topic model

and classifier has three main advantages:

Flexibility: A variety of document representations can be derived from the model’s

latent variable estimates, and a wide variety of classifiers can be trained on

those representations, without modifying the graphical model and inference
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procedure. In general, different datasets have specific properties that make

one representation or classification method more advantageous than another.

Performance: State-of-the art classifiers such as support vector machines (SVMs)

[19] make assumptions about the mapping between features and labels that are

difficult to encode in graphical models. SVMs are used in the scene classifica-

tion experiments later in this chapter, where they achieve significantly better

accuracy on the 13-scene task than the generative classifier used in chapter 4.

Extensibility: The scene classification experiments in section 5.5 use an SVM clas-

sifier trained on topic weights from IWTM, where all documents are assumed

to have observed labels. In section 5.7, that method is extended to accom-

modate semi-supervised training. Later, in chapter 7, the method is further

extended to active learning, where new unlabeled examples can be selected for

labeling.

5.3 Approximating Distribution

Variational inference approximates the posterior over IWTM’s latent variables with

a simpler, factored distribution. This section describes the form and properties of

the variational approximation.

5.3.1 Mean-Field Approximation

Under the stick-breaking construction, the posterior of the latent variables in IWTM

is the distribution p(β′,π′, c,µ,λ, z,k,θ |X). As discussed in section 3.3, the true

posterior is intractable to work with. In particular, it is a complex, non-convex func-

tion of all of the latent variables, and computing its normalizing constant requires

summing over an exponential number of states.
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In the the variational inference method developed in this dissertation, IWTM’s

posterior is approximated by the distribution q(β′,π′, c,µ,λ, z,k,θ). To make vari-

ational inference tractable, it is assumed to have the following factored form:

q(β′,π′, c,µ,λ, z,k,θ) =

(
C∏
c=1

q(β′c)q(µc, λc)

) (
T∏
t=1

Kt∏
k=1

q(π′tk)q(ctk)

)
(∏

d

q(θd)

Nd∏
i=1

q(zdi, kdi)

)
. (5.10)

Each factor is parametrized by its own set of free parameters (denoted with tildes)

that are optimized by the inference procedure. The factors are q(β′c | ũc, ṽc) and

q(π′tk | ãtk, b̃tk) (beta distributed); q(µc, λc | m̃c, ν̃c, χ̃1c, χ̃2c) (multivariate normal-

gamma); q(ctk | β̃k) and q(zdi, kdi | θ̃dk) (discrete). The parametric families of these

distributions and the update rules for their parameters are derived from the general

result in equation (5.7).

5.3.2 Truncation Limits

Following [30, 60, 26] the posterior approximation of the DPs are truncated to

a finite number of atoms. Topics are allowed a maximum of K atoms by fixing

q(π′tK = 1) = 1 so that q(πtk) = 0 for all k > K. Similarly, the master topic is

truncated to a maximum of C clusters, with q(β′C = 1) = 1 fixed so that q(βc) = 0

for c > C. Note that C and K are finite limits on the approximating distribution q,

not on the model itself. (The numbers of clusters and atoms in the true posterior

remain bounded only by the number of observed data.) The truncation limits act as

upper bounds on the numbers of clusters and atoms that can be manifested during

inference. It suffices to set them to large values that are greater than the number of

clusters and atoms that would feasibly be needed to model the dataset. Although

it is possible to set the truncation limits to values that are too small, this condition
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can easily be detected. Only a small subset of the available clusters and atoms

should actually be used by the model (i.e. assigned non-zero posterior mass). When

the number of clusters or topic atoms in use is close to the truncation limit, the

truncation limits should be increased.

5.3.3 Shared Topic Atom to Cluster Mappings

An important property of the approximating distribution is that the factors q(ctk | β̃k),
by design, have no dependence on the topic index t. In other words, the atoms at

corresponding indices in each topic are assumed to map to an identical distribution

over clusters in the posterior. This assumption makes the inference procedure much

more efficient because the atom-to-cluster mappings for all topics can be accessed

through a single K × C matrix β̃, rather than T such matrices.

As we will see in the following sections, this assumption puts only a minor

restriction on the form of the approximate posterior. Although the topics must

share a common set of atom mappings, each topic still maintains a separate set of

weights over its atoms. Furthermore, while this assumption would appear to prevent

reordering the topics independently, we show in section 5.4.5 that it is possible to

simulate reordering the atoms without actually permuting their representations in

memory.

5.4 Update Rules

Variational inference for IWTM proceeds by repeatedly maximizing each set of pa-

rameters in (5.10) one at a time in a coordinate-ascent procedure. The per-datum

and per-document latent variables are updated given the global model state, and

then these local estimates are used to update the global parameters of the model

(the topics, clusters, and topic atom mappings). In general, each update rule is

derived by applying equation (5.7) to the corresponding factor in the approximating
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distribution (5.10).

5.4.1 Document-Level Updates

For each document d, local inference consists of estimating the posterior topic-atom

assignments of each datum, q(zdi, kdi | θ̃di) = Discrete(θ̃di), and the topic weights of

the document, q(θd | α̃d) = Dir(α̃d). Both sets of parameters are first initialized to

appropriate values. Then, for each datum i = 1 . . . Nd, the topic-atom assignments

are updated as

θ̃ditk ∝ exp
{
E[log θdt] + E[log πtk] +

∑
c β̃kcE[log p(xdi |µc, λc)]

}
(5.11)

for topic indices t ∈ {1, . . . , T} and atom indices k ∈ {1, . . . ,K}. (The θ̃’s are nor-

malized over the last two dimensions, so that
∑

t,k θ̃ditk = 1.) Using these quantities,

the posterior topic weights for the document are updated by setting:

α̃dt = α+

Nd∑
i=1

K∑
k=1

θ̃ditk for t ∈ {1, . . . , T} (5.12)

A change in α̃ causes a corresponding change in the value of the expectation

E[log θdt] = ψ(α̃dt)− ψ(
∑

t α̃dt) used in (5.11). Local inference proceeds by cycling

between steps (5.11) and (5.12) repeatedly until a suitable convergence criterion is

met.

In the expressions above, E[log θdt] are the log topic weights, E[log πtk] is the

log weight of the kth atom in topic t, and E[log p(xdi |µc, λc)] are the expected data

log likelihoods. All expectations are taken with respect to the approximating distri-

bution q and are therefore functions of q’s parameters and the observed data. These

expectations can be expressed in single closed forms using well-known properties of

exponential family distributions. Table 5.1 provides a list of the expectations used

throughout the inference procedure.
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After optimizing over the document-level parameters θ̃ and α̃ for each docu-

ment in the corpus, these quantities are then used the update the model’s “global”

latent variables, i.e. the cluster parameters, the topic and master topic stick weights,

and the assignments of topic atoms to clusters.

5.4.2 Cluster Parameter Updates

The posterior over cluster parameters is approximated by the factors

q(µc, λc) = N (µc | m̃c, (ν̃cλcI)−1)Gam(λc | χ̃1c, χ̃2c),

which are multivariate normal-gamma distributions. For convenience, let ρdic =∑
t

∑
k β̃tkcθ̃ditk denote the posterior responsibilities of cluster index c generating

datum (d, i) (note
∑

c ρdic = 1) and let nc =
∑

d,i ρdic be the pseudo-count of data

generated from cluster c. The cluster parameter posteriors are updated as follows:

χ̃1c =
ncD

2
+ χ1 (5.13)

χ̃2c =

β0

2
‖m̃c −m‖2 +

1

2

∑
d,i

ρdic‖xdi − m̃c‖2 + χ2

−1

(5.14)

m̃c =

β0m +
∑
d,i

ρdicxdi

 / (β0 + nc) (5.15)

ν̃c = β0 + nc (5.16)

5.4.3 Topic Atom to Cluster Mapping Updates

The mapping between topic atoms and clusters is modeled by the factors q(ck) =

Discrete(β̃k) for atom indices k ∈ {1, . . . ,K}. The mapping parameters are updated
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as

β̃kc ∝ exp

E[log βc] +
∑
d,i

T∑
t=1

θ̃ditkE[log p(xdi |µc, λc)]

 (5.17)

where the normalization is over the last index, so that
∑C

c=1 β̃kc = 1. The parameter

β̃kc can be interpreted as the posterior estimate that the atoms at index k are

mapped to the cth cluster.

As (5.17) makes apparent, the mappings will concentrate probabilty mass on

the clusters that best fit (in terms of expected log likelihood) the data assigned to

each atom (as estimated by θ̃). In practice, there are few such clusters, and each

row β̃k contains very few entries that are numerically non-zero. This phenomenon

is illustrated in figure 5.1, which shows the β̃ matrix learned by IWTM on a small

dataset of images. The sparsity of β̃ is significant for two reasons. First, it serves

to justify the sharing of mappings between topics. Since the topic atom mappings

resemble point masses, this suggests there would be little benefit to modeling them

on a per-topic basis. Instead, a single β̃ matrix of sufficient size can play the

functional role of mapping all topic atoms to their respective clusters. Second,

the sparsity of β̃ can be exploited to make the inference procedure more efficient.

Although the full mapping matrix contains K×C parameters, its nonzero values can

be stored in a sparse-matrix format of size O(K). Correspondingly, computations

over β̃ can be sped up using sparse matrix operations. The mapping matrix must

be read during document-level inference, so these time savings are significant.

5.4.4 Stick Weight Updates

Recall that the stick weights of each topic φt are defined in terms of the beta-

distributed random variables π′tk. The posterior weights for the topic sticks are

captured by the factors q(π′tk) = Beta(ãtk, b̃tk), for topics t ∈ {1, . . . , T} and atom

indices k ∈ {1, . . . ,K − 1}. For convenience, let ζ̃tk =
∑

d,i θ̃ditk denote the pseudo-
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count of data being mapped to the kth atom in topic t. (They are given a tilde to

denote that they are functions of the variational parameters.) Then the topic stick

parameters are updated as follows:

ãtk = 1 + ζ̃tk (5.18)

b̃tk = α0 +
∑K

j=k+1 ζ̃tj (5.19)

The master topic stick updates have a similar form. The stick weights for the master

topic are defined in terms of the beta-distributed random variables β′c, and their pos-

teriors are captured by factors q(β′c | ũc, ṽc) = Beta(ũc, ṽc). Let ξ̃c =
∑T

t=1

∑K
k=1 β̃tkc

be the pseudo-count of topic atoms mapped to cluster c. The master topic stick

weights are updated by setting:

ũc = 1 + ξ̃c (5.20)

ṽc = γ +
∑C

j=c+1 ξ̃j . (5.21)

5.4.5 Optimal Reordering

As discussed in section 2.4.2, the stick-breaking construction of the Dirichlet process

assumes a size-biased ordering of the atoms. In rough terms, the “largest” atom is

most likely to be at the first index, followed by the second “largest” at the second

index, and so on. More formally, the joint probability of a DP’s stick weights and

a set of draws from those weights is maximized when the atoms are sorted in non-

increasing order by size. In variational inference, this sorted ordering of the atoms is

also the ordering that maximizes the ELBO objective [32, 31]. Therefore, variational

inference should maintain each DP in sorted order to achieve the best approximation

of the posterior.

IWTM contains two levels of Dirichlet process that must be reordered during
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Variable Type Expectations

θ Dirichlet E[log θdt] = ψ(α̃dt)− ψ(ΣK
j=1α̃dj)

µ,λ Normal-gamma E[log p(xdi |µc, λc)] = D
2

(
E[log λc]− log 2π − 1

ν̃c

)
−1

2E[λc]‖xdi − m̃c‖2
E[λc] = χ̃1cχ̃2c

E[log λc] = ψ(χ̃1c) + log(χ̃2c)

c Discrete E[ctkc] = β̃tkc
β′ Beta E[log βc] = E[log β′c] +

∑c−1
j=1 E[log(1− β′j)]

E[log β′c] = ψ(ũc)− ψ(ũc + ṽc)
E[log(1− β′c)] = ψ(ṽc)− ψ(ũc + ṽc)

π′ Beta E[log πtk] = E[log π′tk] +
∑k−1

j=1 E[log(1− π′tj)]
E[log π′tk] = ψ(ãtk)− ψ(ãtk + b̃tk)

E[log(1− π′tk)] = ψ(b̃tk)− ψ(ãtk + b̃tk)

Table 5.1: Expectations of various latent variables used in variational inference. All
expectations are taken with respect to the approximating distribution q. The stick-
weight expectations E[βc] and E[πtk] assume that the sticks in each DP are sorted
in non-increasing order by size.

variational inference. In the master topic, atoms should be sorted by decreasing wc,

the pseudo-count of topic atoms mapped to the cth cluster. Additionally, within

each topic, the atoms should be sorted in decreasing order by vtk, the pseudo-count

of data generated from the atom. Due to the restriction on β̃, the atoms in the

topics cannot be independently reordered in memory. However, it is not necessary

to change how the stick counts are stored as long as their relative orderings are

known and the expectations over the stick weights are computed appropriately.

To put it another way, the purpose of “reordering” a Dirichlet process is not

to permute how it is stored in memory per se, but rather to compute its stick weight

parameters and expectations with respect to a size-ranked ordering of its atoms. For

example, the update b̃tk = α0 +
∑K

j=k+1 vtj involves a sum of pseudo-counts at atom

indices greater than k. When the atoms are sorted by decreasing pseudo-count,

the sum is effectively taken over atoms of smaller size than atom k. Likewise, the

71



expected log topic stick weight for the kth atom,

E[log πtk] = E[log π′tk] +
∑k−1

j=1 E[log(1− π′tj)] (5.22)

contains a sum over over indices less than k. Under the optimal ordering of the

atoms, the sum is taken over atoms larger than atom k. Sorting the atoms is a

convenient way of performing these size-aware summations since it puts the atom

indices in direct correspondence with the atom sizes. However, the equivalent calcu-

lations can be performed without sorting by incorporating the rank statistics of the

atoms directly into the above formulae. We term this method simulated reordering.

Updates that use simulated reordering appear throughout remainder of this

chapter and chapter 6. To write them succinctly, some new notation is introduced.

Let n denote a K-length vector. Then, define r(n, j) to be the rank of element

nj within n, with ties broken arbitrarily – that is, r(n, j) is the new index that nj

would have if n were sorted in decreasing order. 1 Let 1 ≤ k ≤ K be an index of an

element in n. Then, define {j >n k} , {j : r(n, j) > r(n, k)} as the set of indices j

such that nj has higher rank than nk.

As before, let ζ̃tk =
∑

d,i θ̃ditk denote the pseudo-count of data being mapped

to the kth atom in topic t. Then, using simulated reordering, the topic stick param-

eters are updated as

ãtk = 1 + ζ̃tk (5.23)

b̃tk = α0 +
∑
j>ζ̃t

k

ζ̃tj . (5.24)

The sum in (5.24) is taken over the atoms whose pseudo-counts are smaller than

ζ̃tk. This update is equivalent to (5.19) when the atoms in each topic are reordered

1One such definition is: rank(n, j) =
∑

i[ni > nj ] + [ni = nj and i > j].
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by decreasing pseudo-count. It could be written equivalently in a longer form as

b̃tk = α0 +
K∑
j=1

[r(ζ̃t, j) < r(ζ̃t, k)] · ζ̃tj

where [·] is the Iverson bracket ([x] = 1 if condition x is true and [x] = 0 otherwise).

The stick-weight expectations must also be computed using simulated reordering.

Using the new notation they are,

E[log πtk] = E[log π′tk] +
∑
j<ζ̃t

k

E[log(1− π′tj)] (5.25)

Here, the sum is effectively taken over the atoms in topic t with pseudo-counts lower

than ζ̃tj . The resulting expectation is equal to that in table 5.1 when the topic’s

atoms are sorted in decreasing order by pseudo-count.

Unlike the topics, the master topic can be reordered in memory. (This process

involves permuting both the master topic pseudo-counts and the columns of β̃, and

then recomputing expectations E[log βc].) Therefore, it is not necessary to formulate

the master topic updates and expectations in an order-aware manner. Nonetheless,

for completeness, order-aware updates are derived for the master topic.

As before, let ξ̃c =
∑T

t=1

∑K
k=1 β̃kc pseudo-count of topic atoms mapped to

cluster c. The stick-weight parameters and expectations are updated as follows:

ũc = 1 + ξ̃c (5.26)

ṽc = γ +
∑
j>ξ̃c

ξ̃j . (5.27)

Simiarly, the order-aware expectations as computed as

E[log βc] = E[log β′c] +
∑
j<ξ̃c

E[log(1− β′j)] (5.28)
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As in the formulae for the topic stick weights, the update for the cth stick in the

master topic effectively takes a sum of clusters smaller than cluster c, and the

expected log stick weights take a sum over clusters larger than cluster c.

5.4.6 Algorithmic Structure

Variational inference is a form of coordinate ascent: It cycles through each set of

latent variables in IWTM and updates its variational parameters, holding the others

fixed. Each iteration is divided into two phases. In the first, the document-level

variational parameters are estimated for each document, holding the shared compo-

nents of the model fixed. Within each document, this is accomplished by repeatedly

updating the topic atom assignments and the topic weights until convergence. In

the second phase, the document-level variational parameters are fixed and used

to update the shared model components: the cluster parameters, the topic atom

weights, the master topic, and the topic atom to cluster mappings. By construc-

tion, each update is guaranteed to increase (or maintain the current value of) the

ELBO objective.

The first stage requires estimating the variational parameters of all Ndoc

documents, which can be computationally expensive. In general, the computational

effort required to do so grows linearly with the dataset size. Fortunately, the updates

for the document-level parameters only depend on the shared model components,

not the parameters of other documents. Such updates can therefore be parallelized

by distributing them over up to Ndoc separate cores or machines. The ability to be

parallelized gives variational inference a significant advantage the collapsed Gibbs

sampler from chapter 4, which must resample variables one at a time in sequence.

Although a single-core implementation of variational inference is already much faster

than Gibbs sampling (as demonstrated in the next section), the former can be sped

up further by giving it additional computational resourcess.
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5.4.7 Initialization

Because the update for each set of variational parameters depends on the values of

the others, all parameters must be set to some initial values at the start of inference.

In all experiments in this dissertation, the variational parameters are initialized as

follows:

Cluster parameters The cluster means are set to random data points taken from

the training corpus, and the cluster precisions are set to those of the prior (χ̃1c = χ1,

χ̃2c = χ2, ν̃c = β0). The initial number of clusters in the model is C, the truncation

limit of the master topic.

Stick weights The pseudo-counts for the topic sticks are set to small random

values, wtk ∼ Unif(0, 0.1). The master topic stick weights are set to the prior by

setting vc = 0 for all c. There are initially T sticks in each topic and C sticks in the

master topic.

Topic atom to cluster mappings The topic atom to cluster mappings are ini-

tialized so each cluster has two atoms per topic primarily assigned to it. For each

atom, the mapping parameters are smoothed so that there is a non-zero probability

of being assigned to other, close sufficiently clusters.

5.5 Experiments: Scene Classification

Variational inference for IWTM is evaluated on 13-scene image classification task

described in the previous chapter.

As before, IWTM is compared against LDA using bags of words formed

through an offline clustering step. In the first baseline, Lda+KMeans, bags of

words are formed in the usual manner using K-means clustering. That is, K-means is
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Figure 5.1: Topic atom to cluster mappings β̃ = {β̃kc} learned by IWTM on a small
dataset of images. Each row contains the estimated posterior cluster assignment
for a different topic atom (only the first 100 atoms are shown). Most atoms map
to a single cluster with probability 1, with all other entries in the row numerically
indistinguishable from zero. Such structure allows β̃ to be stored in an efficient
sparse-matrix format and motivates the sharing of atom-to-cluster mappings be-
tween topics (section 5.4.3).

first trained on the descriptors from the training set, and then all images’ descriptors

are quantized by mapping each one to the index of its closest cluster. The vocabulary

size K is a fixed parameter in this method. These experiments sweep over a range

of values K ∈ [125, 8000], training separate K-means and LDA models for each

vocabulary size.

In the second baseline, Lda+Gdpmm, bags of words are formed by quan-

tizing descriptors against a Gaussian Dirichlet Process Mixture Model (GDPMM)

with spherical covariance clusters. Like IWTM, GDPMM is a non-parametric model

that infers the number of clusters to use based on the size and complexity of the

data. However, GDPMM is merely a clustering model – it takes the place of K-

means in the modeling pipeline. To form the bag of words representations for the

images, a GDPMM is trained (using variational inference) on the descriptors from

the training set. Then, the descriptors for all images are quantized by assigning each

one to the cluster in the model with highest predictive density. Although GDPMM

is a probabilistic model that provides “soft” cluster assignments for the data, the

process of quantizing the data throws away this information.

Each topic model is trained on a set of Ntrain = {325, 650, 1300} images
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and then used to infer the posterior mean topic weights for both the training set

and Ntest = 2859 test images. The training set weights are used to train an SVM

classifier, which then predicts the labels of the test images. Out of several kernels

tested, both LDA and IWTM perform best with a histogram intersection kernel [8].

The SVM soft-margin parameter C is selected using 10-fold cross validation.

For each trial, IWTM and LDA models are trained for 50 iterations of varia-

tional inference.2 LDA’s smoothing parameters are set to β = α = 1/T ; for IWTM,

DP concentrations are α0 = 1 and γ = 10. (Results do not change significantly

when any of these parameters are varied within reasonable ranges.) The cluster

hyperparameters are set so that χ1 = 32Ndim and E[λc] ≡ χ1χ2 = precision(x),

m = x̄, and β0 = 1. These settings are the same as those used in Gibbs sampling

experiments in the previous chapter, with the exception of χ1. The choice of χ1

is motivated by the fact that spherical covariance clusters are being used to model

high-dimensional data. A large value that scales with the data dimension pressures

the model away from discovering many tiny clusters that do not generalize well.

5.5.1 Results

Figure 5.2 shows detailed comparisons of all three methods broken down over differ-

ent numbers of topics and amounts of training data. Unsurprisingly, both models

performed best with a large amount of training data (Ntrain=1300 images) and many

topics (T = 50). IWTM had the highest accuracy, 71.28%, with a mean vocabulary

size of 2784. LDA+Kmeans achieved slightly lower accuracy, 70.18%, at K = 750,

with close peaks in performance around K = {1750, 3000}. (For comparison, Fei-

Fei & Perona [22] report getting 65.2% accuracy with an LDA-like model using the

same amount of training data.)

This pattern is repeated throughout the results. In each experimental setting,

2These experiments use the LDA implementation in the open-source gensim package.
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Figure 5.2: Mean classification accuracy of IWTM (diamonds), Lda+Kmeans
(line series), and Lda+Gdpmm (stars) on the 13-scene task. Results are broken
down over different numbers of topics and training images (ntrain). IWTM out-
performs all LDA models in each setting, regardless of the vocabulary size chosen
(in Lda+Kmeans) or learned (in Lda+Gdpmm). Note that Lda+Kmeans suf-
fers when its vocabulary is too small or too large, following typical underfitting-
overfitting curves. Overall, such results support the approach of IWTM: training
the vocabulary jointly with the topic model and inferring its size based on the data.
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IWTM met or exceeded the performance of the best Lda+Kmeans trained with

any vocabulary size. In each case, IWTM’s vocabulary size was near (although

slightly larger than) the optimal size for Lda+Kmeans. The key difference is that

IWTM automatically learns its vocabulary as part of inference, whereas the best

value for K-means is determined by sweeping over different values and training many

separate models.

Interestingly, Lda+Gdpmm performed worst of all methods, achieving its

best accuracy of 68.59% with inferred vocabulary size 3445. The GDPMMs consis-

tently inferred vocabulary sizes that were close to those of IWTM. However, when

LDA was trained on bags of words from the GDPMMs, it consistently performed

worse than IWTM. This phenomenon suggests that converting image features into

the bag of words representation throws away information about the data that is

useful for the topic model.

The full profile of Lda+Kmeans results in figure 5.2 suggests a larger trend:

that the effect of vocabulary size in topic models follows a typical underfitting-

overfitting curve. Performance suffers if too few or too many clusters are used to fit

the data. This phenomenon demonstrates the necessity of the tuning vocabulary size

through one method or another. However, the results also indicate that the optimal

vocabulary size varies with respect to training set size and, to a lesser extent, the

number of topics in the model. Furthermore, the performance of the system does

not always vary as a smooth function of the vocabulary size. These facts indicate

that simple heuristics to pick the vocabulary size – like always using a single value

that seems “big enough” – may be ineffective. Instead, Lda+Kmeans will generally

need to be evaluated with multiple values of K to maximize performance.
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5.5.2 Runtime Speed

To evaluate the efficiency of IWTM’s variational inference procedure, training times

for both it and the Lda+Kmeans baseline were recorded on a standard reference

machine. All software was run in a single thread on one processor; however, all three

components – Kmeans, variational inference for LDA, and variational inference for

IWTM – can easily be parallelized by splitting up the dataset over multiple cores or

machines. The speed-ups of parallelization should be the same for all methods, so the

single-processor runtimes are a fair comparison of the methods’ relative efficiencies.

Kmeans is implemented using Lloyd’s algorithm [38]. The implementation

has been optimized to be as fast as possible. For example, distances are computed

for blocks of data at a time using highly-tuned matrix multiplication operations.

Although much work has been done to improve the efficiency of Kmeans over

Lloyd’s algorithm – for example, by storing the cluster centers in a kd-tree – these

variants are most effective in low to moderate dimensionality (i.e. up to about 50

dimensions) and can actually be slower than Lloyd’s algorithm in higher dimension

[25].

Figure 5.3 shows the training times with different numbers of training docu-

ments and, for Lda+Kmeans different vocabulary sizes. In general, training times

in both methods increase with the dataset size, and Lda+Kmeans generally takes

longer with larger vocabulary sizes. Figure 5.3(b) shows the training times normal-

ized against those of IWTM. A single run of Lda+Kmeans takes approximately

one half to one fifth the time of IWTM on the same dataset, depending on the vo-

cabulary size used in the former model. However, the former provides no mechanism

for optimizing the vocabulary size. When Lda+Kmeans is trained multiple times

with different vocabulary sizes, the total computation time is comparable to that of

IWTM.
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Figure 5.3: (Left) Training times for Lda+Kmeans with different vocabulary sizes.
(Right) The same training times normalized against those of IWTM on the same
datasets. A single run of Lda+Kmeans is 2-5 times faster than a single run of
IWTM. However, after sweeping over multiple vocabulary sizes, both methods re-
quire approximately the same total computation time.

5.6 Discussion

Variational inference for IWTM is much faster than the Gibbs sampler: On the

13-scene task, it takes about 20 hours to train with 1300 document using variational

inference, compared to about 14 days with Gibbs sampling. (Naturally, the training

times depend on the number of training iterations. Both methods can be made faster

by training for fewer iterations, with some corresponding loss in performance.)

The results show that vocabulary size does have a significant effect on the

performance of topic models, and that there is a need to tune the vocabulary size

through one manner or another. Indeed, in each experimental setting, the effect of

vocabulary size on the performance of Lda+Kmeans was at least as large as that

of the number of topics in the model. This is significant: Although the literature

contains a number of non-parametric models that infer the number of topics in the

model, IWTM is the first topic model that infers the vocabulary size. It is thus a

valuable tool for topic modeling in digital media domains.
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Finally, although IWTM is a more complex model than LDA, the varia-

tional inference procedure makes the required computation time competitive with

the baseline Lda+Kmeans method. One reason variational inference is so fast is

that the approximating distribution shares topic atom to cluster mappings between

all topics. This technique – using a single mapping between the atoms of the first-

and second-level DPs – may be useful in variational inference procedures for other

HDP-based models. Sharing of mappings is made possible by simulated reorder-

ing, which enables the DPs to be operated over in optimally ordered forms without

permuting their representations in memory.

5.6.1 Decoupled Topic Model Based Classification

The 13-scene experiments in the last section use decoupled topic model based classi-

fication, where a topic model is trained in a fully unsupervised manner and, using

document representations derived from it, an external classifier is used to predict

document labels. The experimental results implicitly validate such an approach.

Although the topic models do not use the document labels in any way, they au-

tomatically infer structure in the corpus that is useful for image classification. In

contrast, the Gibbs sampling implementations in chapter 4 incorporated supervision

into the generative model and performed worse than the method in this chapter.

With 100 training documents per class, the combination of IWTM and SVM had a

mean accuracy of 71.5% on 13-scene, compared to 68.5% with the supervised Gibbs

sampling model. The improved performance stems from the fact that SVM general-

izes better than the generative classifier and, potentially, that variational inference

achieves better fits of the data than the Gibbs sampler.

The power and flexibility of decoupled topic model based classification are

explored further in the next section, which extends the method to semi-supervised

learning.
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5.7 Experiments: Semi-Supervised Classification

This section extends decoupled topic model based classification to semi-supervised

learning, so that additional, unlabeled documents can be used to make labeled

documents more effective. The proposed semi-supervised classification method is

first described. Then, the method is evaluated by on the 13-scene task, where it is

used to train IWTM on a combination of labeled and unlabeled documents.

5.7.1 Leveraging Unlabeled Documents

In general, semi-supervised classification is the practice of using unlabeled examples,

together with labeled examples, to improve performance on a classification task [65].

Methods that can leverage unlabeled examples are beneficial because such examples

can typically be acquired easily and at low cost. In contrast, getting new labeled

examples requires effort by a human annotator, which can be time-consuming and

expensive.

Decoupled topic model based classification can be extended to the semi-

supervised case in a number of ways, depending on whether unlabeled documents are

incorporated into the topic model, the classifier, or both. The method proposed here

is to train the topic model on all available documents (both labeled and unlabeled)

and then, using the document representations generated by the topic model, train a

standard SVM on the labeled documents. This method is identical to that used in

the 13-scene experiments in section 5.5, except that the topic model is trained on a

combination of labeled and unlabeled documents.

Another semi-supervised approach to classification with topic models would

be train a semi-supervised classifier, like transductive SVM [27] or label propagation

[66], on both labeled and unlabeled documents. Such a method is not considered in

this dissertation for two reasons. First, changing a single component of the document

classification method makes it possible to isolate the effect of the topic model, which
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is the focus of this dissertation. Second, the standard SVM is simpler to use than

semi-supervised classifiers, and its performance is actually difficult to beat. For

example, early experiments showed that label propagation performed significantly

worse than the standard SVM on the 13-scene task, even when the former was given

a large number of unlabeled documents. Despite the simplicity of the proposed

method, the experiments in the following subsection demonstrate that it is effective.

Why should the addition of unlabeled examples help in such a method?

Although a variety of semi-supervised classification methods exist (see [65] for a

survey), most share, at a high level, the same common idea: unlabeled examples

contain information about the statistical structure of the data that can be exploited

to make labeled examples more effective. The idea here is the same: Training the

topic model on more documents allows it to discover topics that better capture the

semantics of the documents. By improving the document representation going into

the classifier, the classification accuracy on the supervised task should improve.

5.7.2 Experimental Method

The proposed semi-supervised learning method is evaluated on the 13-scene dataset.

The experimental set-up is similar to that of section 5.5, except that IWTM is

trained on a combination of labeled and unlabeled documents. Specifically, each

experimental trial follows the following procedure. First, IWTM is trained on a

combination of labeled and unlabeled documents for 50 iterations of variational

inference. For simplicity, models are given T = 25 topics; the hyperparameter

settings and initialization are the same as in section 5.5. Second, the model is used

to infer the mean topic weights for the labeled documents, which are then used to

train an SVM classifier with a histogram intersection kernel. Finally, at test time,

the topic model is used to infer the mean topic weights for the new documents, and

those representations are fed into the classifier, which predicts their class labels.
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Figure 5.4: Semi-supervised classification results on 13-scene. Training the topic
model on additional, unlabeled images increases classification accuracy. The clas-
sifier does not use the unlabeled examples directly; rather, it benefits from the
improved document representations produced by the topic model. Unlabeled exam-
ples are most beneficial when labeled data are few, but provide some improvement
regardless of the amount of labeled data.

To see the effect that unlabeled data has on the system’s performance, models

are trained with different proportions of labeled and unlabeled data. Specifically,

the total number of image in the topic model’s training set, Ntotal is varied between

65 and 650. Of these, NL = {5, 10, 15, 20, 25} image per class are selected to be the

labeled examples that are used to train the SVM classifier. Classification accuracy is

evaluated using the 2589 images in the 13-scene test set. Each experimental setting

is repeated over a number of trials: Ten runs of IWTM are performed with each

setting of Ntotal, and each set of NL labeled examples is selected at random 10 times

from each model.

5.7.3 Results

Figure 5.4 shows the test accuracy of IWTM with the SVM as the numbers of labeled

and unlabeled documents are varied. Training the topic model on extra unlabeled

images is clearly beneficial: Doing so almost always improves the classification accu-
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racy of the system, and the benefit increases with the number of unlabeled examples

used.

The unlabeled examples have the greatest benefit when labeled data are few,

and have a diminishing effect as the labeled data increases. With five labeled images

per class, adding 585 unlabeled images improves the mean classification accuracy

by 5.8% absolute (from 43.7% to 49.5%), while with 10 labeled images per class,

the accuracy is improved by 4.3% absolute (52.2% to 56.5%). The diminishing

effect of unlabeled data is not surprising considering that the marginal benefit of

more labeled data also decreases. For example, moving from 5 to 10 labeled images

per class increases classification accuracy by approximately 7% absolute, while the

difference between 10 and 15 images per class is on average about 3.5% absolute.

Overall, such results are significant for three reasons. First and foremost,

they show that the proposed method is useful: In real-world settings where limited

labeled data are available, unlabeled examples can be leveraged to achieve higher

classification accuracy. Second, the results highlight the topic model’s ability to

learn semantic descriptions of documents in an unsupervised manner. The SVM,

which makes the class predictions, does not use the unlabeled documents in any

way. Unlabeled documents improve its performance only because they help the

topic model infer better semantic descriptions of the labeled documents. Third, more

broadly, the success of the method demonstrates the extensibility of decoupled topic

model based classification. Semi-supervised learning is only one possible extension.

Chapter 7 extends it to active learning, where the classifier actively selects new

documents to be both labeled and added to the model’s training corpus.

5.8 Conclusions

This chapter developed a mean-field variational inference procedure for IWTM,

a novel contribution of this dissertation. In general, variational inference poses
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inference as an optimization problem and tries to find an approximating distribution

that is as close as possible to the true posterior in KL divergence. Its main advantage

over Gibbs sampling is its speed: Using it to train IWTM on the full 13-scene dataset

takes only a matter of hours where it previously took weeks. Moreover, although not

explored in this chapter, variational inference can easily be parallelized. Doing so

only requires dividing the corpus among multiple cores or machines and distributing

the document-level inference tasks among them.

Despite such qualities, variational inference is still difficult to scale to large

datasets. Each iteration of the algorithm requires that local inference be run on all

documents before the the global latent variables can be updated. In general, the

computational effort required to do so scales linearly with the dataset size. When

there are many training documents, the time required to perform even a single itera-

tion will be prohibitive. The next chapter develops a stochastic variational inference

(SVI) method for IWTM that addresses such an issue and allows variational infer-

ence to scale further. SVI applies ideas from stochastic optimization to the task of

variational inference, using small mini-batches of the training corpus to make small,

easily-computable updates to the model state.
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Chapter 6

Stochastic Variational Inference

The previous chapter demonstrated that variational inference for IWTM is much

faster than inference with a collapsed Gibbs sampler. Variational inference makes

the training time of IWTM comparable to LDA with visual vocabularies trained

with K-means, making it practical to use for the 13-scene task. However, varia-

tional inference is still too slow to scale to much larger datasets. In this chapter,

a stochastic variational inference [26] algorithm is developed to scale IWTM fur-

ther. Using the method, IWTM is trained on a subset of the SUN dataset [62] with

about one and a half times the number of images and seven times the number of

image descriptors as 13-scene. Applying IWTM to SUN showcases its ability to

learn semantic descriptions of documents by automatically grouping semantically-

related image patches into topics. In addition to scaling the model to larger data,

stochastic variational inference is faster and produces better fits of the data than

the coordinate-ascent method described in the previous chapter.
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6.1 Approach

The primary impediment to scaling the variational inference procedure from chapter

5 is that it is a batch-style algorithm: Local inference must be performed on every

document in the corpus before the global latent variables of the model can be up-

dated. Such an algorithm is unappealing for two reasons. First, the computational

cost of each iteration of inference scales linearly with the dataset size. When there

are many training documents, it will take a prohibitively long time to perform even

a single iteration. Second, batch-style inference is particularly inefficient at the be-

ginning of training, when the shared components of the model have been initialized

to random values that do not explain the data well. The local parameters of all

documents must be estimated based on these initial values before they are ever up-

dated. In IWTM, the early iterations of training are particularly expensive because

the model is initialized with more clusters than it will eventually use.

Motivated by such issues, stochastic variational inference was recently de-

veloped [26, 60]. At a high level, stochastic variational inference (SVI) applies ideas

from stochastic optimization to the framework of variational inference. In general,

the goal of variational inference is to maximize the ELBO objective with respect to

the parameters of the posterior approximation. Whereas “batch” variational infer-

ence maximizes the ELBO by coordinate ascent, SVI uses a variant of stochastic

natural gradient ascent to maximize it.

SVI works by repeatedly sampling a “mini-batch” of documents, using them

to estimate the natural gradient of the ELBO with respect to the variational pa-

rameters, and moving the parameters a small step in that direction. SVI has two

key benefits over coordinate-ascent variational inference. First, the mini-batch is

typically chosen to be a small fraction of the training corpus, and a single iteration

of SVI is therefore much faster than an iteration of coordinate ascent. Correspond-

ingly, SVI begins updating the model much sooner at the beginning of training.
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Second, natural gradients are estimated on a mini-batch of documents, rather than

computed exactly. The noise in the gradients allows SVI to escape poor local optima

that coordinate ascent cannot. Both of these benefits are experimentally demon-

strated later in the chapter.

Rather than following the standard gradient of the ELBO, SVI moves in the

direction of the natural gradient. The natural gradient is analogous to the standard

(Euclidean) gradient, except that it takes into account the information geometry

of the parameter space [4]. Natural gradients have two benefits over Euclidean

gradients. First, when performing stochastic optimization to fit parameters of prob-

ability distributions, using natural gradients leads to faster convergence rates [26, 5].

Second, in fully conjugate-exponential family models like IWTM, the natural gra-

dients of the ELBO objective are far simpler and easier to compute than Euclidean

gradients.

The remainder of this chapter is structured as follows. The next section re-

views the theory underlying stochastic variational inference and derives the method

for a general class of conjugate exponential-family models. Section 6.3 uses the

general theory to derive a stochastic variational inference IWTM, which is a novel

contribution of this dissertation. SVI for IWTM then evaluated in two sets of exper-

iments. In section 6.4, the method is applied to the 13-scene dataset for the purposes

of comparing it to coordinate-ascent variational inference. Then, in section 6.5, SVI

is used to apply IWTM to a scene classification dataset almost seven times the size

of 13-scene. In that task, the image representations learned by IWTM are found

to perform as well or better than a number of features from the computer vision

literature. Finally, section 6.6 concludes and discusses ideas for future work.
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6.2 Background

This section briefly reviews the theory underlying stochastic variational inference.

Some material presented here is largely a summary of seminal papers by Hoffman

et al. [26] and Wang, Paisley, and Blei [60], and borrows some of their notation.

6.2.1 Natural Gradients

In general, the notion of a function’s gradient is implicitly defined by the Riemannian

metric used to measure distances between points in the function’s domain. In the

standard (Euclidean) gradient, this metric is defined by Euclidean distance. When

the domain being considered is the parameter space of a probability distribution,

the Euclidean metric is not appropriate, because the distance between two points

does not reflect the difference in the distributions that they define. This fact can be

observed by considering some simple examples. As pointed out by Hoffman et al.

[26], the distributions N (10, 10000) and N (0, 10000) are almost indistinguishable,

but the Euclidean distance between their parameters is 10. On the other hand, the

distributions N (0, 0.01) and N (0.1, 0.01) have very little overlap, but the Euclidean

distance between their parameter vectors is 0.1. A further deficiency of the Euclidean

metric is that it is sensitive to the chosen parameterization of the distributions. If the

distributions above were represented by the natural parameters of their exponential

family, 〈µ/σ2, −1/(2σ2)〉, the Euclidean distance between them would be different.

The natural gradient is the gradient that results when the distance between

points in parameter space is given a more appropriate definition, namely, the sym-

metrized KL divergence between the distributions they define. Amari [5] showed

that it can be computed by making an adjustment to the standard Euclidean gra-

dient. In general, the gradient under an arbitrary Riemannian metric G can be
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computed by premultiplying by the metric’s inverse,

∇̂λf = G(λ)−1 · ∇λf(λ). (6.1)

When the distance between λ and another point is considered to be the symmetrized

KL divergence between the distributions they define, G(λ) is the Fisher information

matrix evaluated at λ [26]. The resulting Riemannian gradient is called the nat-

ural gradient. Unlike the Euclidean gradient, the natural gradient is invariant to

parameterization. When used to fit parameters of probability distributions, natural

gradients lead to faster convergence rates than Euclidean gradients [5].

6.2.2 A General Conjugate Exponential-Family Model

Deriving stochastic variational inference requires a more detailed definition of vari-

ational inference than that given in chapter 5. In particular, stochastic variational

inference assumes that the model falls into a general class of conjugate exponential-

family models. Doing so allows the ELBO objective to be written down in a more

detailed manner, which facilitates the calculation of its natural gradients. SVI makes

the following assumptions about the model:

Data There are N groups of data x = {xd}Nd=1, each containing Nd observations

xd = {xdi}Nd
i=1.

Global latent variables The model has “global” latent variables β that are used

to model the entire dataset. The prior over the global latent variables is controlled

by hyperparameters α.

Local latent variables The model contains “local” latent variables z. Each data

group has a corresponding group of such variables; that is, z = {zd}Nd=1.
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Factorization The relationship between the global latent variables, local latent

variables, and the data is formalized by the following factorization of the model:

p(x, z, β |α) = p(β |α)

N∏
d=1

p(zd |β)p(xd | zd, β).

The global variables β play a role in generating the all data, while each local variable

zi is only responsible for generating the ith group of data.

Conjugate Exponential Families The factors p(β |α), p(zi |β), and p(xi | zi, β)

are assumed to be in the exponential family. Further, the distributions for the global

and local variables are assumed to be conjugate [18], as are the distributions for the

local variables and the data.

The assumptions above describe a variety of Bayesian hierarchical models,

including but not limited to Bayesian mixture of Gaussians [10], Latent Dirichlet

Allocation [14], and the Infinite-Word Topic Model. In IWTM, the global latent vari-

ables are the cluster parameters, the master topic stick weights, the topics sticks, and

the mapping between topic atoms and clusters. The local latent variables, defined

at the document level, are the topic atom assignments and topic weights. Although

IWTM has multiple levels of global and local latent variables, the forthcoming anal-

ysis will lump all of the global variables together in β and all of the local variables

for the ith document into zi.
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6.2.3 Complete Conditionals

Because the model contains conjugate exponential-family distributions, its complete

conditionals are also in the exponential family [26]:

p(β |x, z, α) = h(β) exp{ηg(x, z, α)>t(β)− ag(ηg(x, z, α))} (6.2)

p(zdi |xd, zd¬i, β) = h(zdi) exp{η`(xd, zd¬i, β)>t(zdi)− a`(η`(xd, zd¬i, β))} (6.3)

In the terminology of exponential families, the h(·) is called the base measure, a(·)
is the log normalizer, η(·) is the natural parameter, t(·) is the sufficient statistic [18].

(The first two are scalar functions, and the last two are vector-valued.) The natural

parameters and log normalizer play a key role in stochastic variational inference.

Note that the natural parameters are a function of the variables being conditioned

on, and the log normalizer is a function of the natural parameters. The subscript on

these functions is used to differentiate the global (g) and local (`) latent variables.

6.2.4 Form of the ELBO

As discussed in chapter 5, variational inference approximates the true model poste-

rior with a fully-factored approximating distribution. For the general model under

consideration, it is

q(β,z) = q(β |λ)
N∏
d=1

Nd∏
i=1

q(zdi |φdi). (6.4)

Strictly speaking, variational inference does not prescribe the parametric forms of

q’s factors. Here, they are assumed to be in the same exponential families as their

complete conditionals in the model. For example, q(zdi |φdi) is in the same exponen-

tial family as p(zdi | zd,¬i, β,xd). This is done for two reasons. First, these families

form the optimal approximating distribution out of all distributions that factor as
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(6.4) [10]. Second, endowing q with such structure leads to simpler variational infer-

ence procedures. In coordinate-ascent variational inference, it produces closed-form

update rules. In stochastic variational inference, it enables natural gradients to be

computed in closed form [26].

The goal of variational inference is to minimize the KL divergence between

an approximating distribution q and the true model posterior – or, equivalently,

to maximize the ELBO objective with respect to q’s parameters. To do so, it is

necessary to isolate the terms of the ELBO that depend on each set of variational

parameters. The parts that depend on λ are

L(λ) = Eq[log p(β |x, z)]− Eq[log q(β |λ) + const

= Eq[ηg(x, z, α)]>∇λag(λ)− λ>∇λag(λ) + const (6.5)

where const denotes a constant that does not depend on λ. Likewise, the parts of

the ELBO that depend on each local variational parameter are

L(φdj) = Eq[log p(zdi |xd, zd¬i, β)]− Eq[log q(znj |φnj) + const

= Eq[η`(xd, zd¬i, β)]>∇φnj
a`(φnj)− φ>nj∇φnj

ag(φnj) + const. (6.6)

These equations use the property that, for exponential family distributions, the

expectation of the sufficient statistic is the gradient of the log normalizer with respect

to the natural parameter, Eq[t(β)] = ∇λag(λ) and Eq[t(znj)] = ∇φnj
a`(φnj) [18].

The gradients of the ELBO are the starting point for both coordinate-ascent

and stochastic variational inference. Taking gradients with respect to each varia-

tional parameters yields,

∇λL = ∇2
λag(λ) (Eq[ηg(x, z, α)]− λ) (6.7)

∇φnj
L = ∇2

φnj
a`(φnj) (Eq[η`(xn, zn,¬j , β)]− φnj) . (6.8)
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The next subsection shows how the Euclidean gradients of the ELBO are used to

compute the natural gradients of it.

6.2.5 Natural Gradients of the ELBO

The natural gradient of the ELBO is formed by plugging the formula for the Eu-

clidean gradient into the definition in (6.1),

∇̂λL = G(λ)−1 · ∇2
λag(λ) (Eq[ηg(x, z, α)]− λ) . (6.9)

As discussed in the section 6.2.1, G(λ) is the Fisher information matrix, the Rie-

mannian metric that defines the natural gradient. A benefit of having variational

distributions in the exponential family is that the expression of the natural gradient

reduces considerably. For such distributions, the Fisher information matrix is equiv-

alent to the Hessian of the log normalizer, i.e. G(λ) = ∇2
λag(λ) [26, 18]. Therefore,

the natural gradient simplifies to the following [26]:

∇̂λL = Eq[ηg(x, z, α)]− λ. (6.10)

Compared to Euclidean gradients, the natural gradients have a simpler functional

form and are far simpler to compute. However, in another sense, calculating the

natural gradient is still inefficient: The expectation on the right side of (6.10) is

a function of all the data in the corpus and local latent variables in the model.

Stochastic variational inference addresses this last inefficiency by estimating the

natural gradient using a small sample of the dataset. The following subsection

completes the derivation of stochastic variational inference.

96



6.2.6 Stochastic Optimization with Natural Gradients

Stochastic variational inference is essentially a stochastic natural gradient ascent

procedure. It is an iterative algorithm that maximizes the ELBO by repeatedly

moving each global variational parameter a step in the direction of its (estimated)

natural gradient. It is stochastic in the sense that the natural gradients are esti-

mated noisily, using small, random samples or mini-batches of the training set. This

subsection derives SVI by first giving a natural gradient ascent algorithm that uses

exact natural gradients, and then showing how to estimate the natural gradients

using a mini-batch.

The natural gradients are the direction of greatest change in the ELBO with

respect to each variational parameter, and thus iteratively following the natural

gradients locally maximizes the ELBO with respect to those parameters. This pro-

cedure is natural gradient ascent, analogous to standard gradient ascent. In each

iteration, a new value for the global variational parameter is made by taking a step

away from current value and in the direction of the natural gradient, as

λ(t+1) = λ(t) + ρt∇̂λL

= (1− ρt)λ(t) + ρtEq[ηg(x, z, α)] (6.11)

where ρt > 0 is the learning rate, which controls the step size made in iteration t.

Equation 6.11 says that each natural gradient ascent step is equivalent to setting

the new value of the variational parameter to a weighted combination of its current

value and the expected value of the natural parameter of the complete conditional.

As defined in (6.11), natural gradient ascent follows the exact natural gra-

dient, which is expensive to compute. Stochastic variational inference instead ap-

proximates the natural gradients on a randomly selected mini-batch of data. Each

update resembles (6.11), except the natural gradient is estimated on a mini-batch
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M . First, |M | data are sampled uniformly without replacement from the N training

data. Second, local variational parameters are estimated the data in the mini-batch.

Third, the expected natural parameter is estimated using only the data and latent

variables from the mini-batch, as

Eq[ηg(x, z, α)] ≈ Eq[ηg(x
(N/|M |)
M , z

(N/|M |)
M , α)], (6.12)

where x
(N/|M |)
M and z

(N/|M |)
M denote the data and the local latent variables in the

mini-batch replicated N/|M | times [26]. Note that the right-hand side of (6.12)

depends on M, which is a random quantity. Its expected value, averaging over the

random mini-batch is

EM
[
Eq[ηg(x

(N/|M |)
M , z

(N/|M |)
M , α)]

]
= Eq[ηg(x, z, α)]. (6.13)

Thus, stochastic variational inference moves the variational parameters along noisy

natural gradients whose expectations are the true natural gradients. In general, the

variance of the natural gradient estimates depends on the size of the mini-batch

used: The fewer the data, the higher the variance. When the mini-batch is the

entire dataset (|M | = N), the natural gradient estimates become exact.

6.2.7 Connection to Coordinate Ascent

Note that there is a strong connection between the updates of (exact) natural gra-

dient ascent and those of coordinate-ascent variational inference: When ρt ≡ 1,

the two methods are equivalent. Coordinate ascent sets the variational parame-

ter λ directly to Eq[ηg(x, z, α)], while natural gradient ascent sets it to a weighted

combination of the current parameter and that expectation. Stochastic natural gra-

dient ascent, a.k.a. stochastic variational inference, sets the variational parameter

to a weighted combination of its current value and an estimate of the expectation
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computed on a mini-batch.

As discussed in chapter 5, coordinate ascent variational inference cycles

through the variational parameters, setting each to the value that locally maximizes

the ELBO. Coordinate ascent update rules can be derived from the formulae of the

ELBO gradients because locally maximizing the ELBO with respect to a parameter

is equivalent to setting the corresponding gradient to zero. A local parameter φdj is

at a local optimum when the gradient (6.8) is zero. This condition can be achieved

by setting

φdj ← Eq[η`(xn, zd,¬j , β)]. (6.14)

Likewise, a global parameter λ is at a local optimum when (6.7) is zero, which is

accomplished by setting

λ← Eq[ηg(x, z, α)]. (6.15)

Thus, coordinate-ascent consists of repeatedly applying updates of the form (6.14)

and (6.15). First, using the current estimate of the global parameters, the local

parameters within each group are optimized by cycling through updates of the

form (6.14) until convergence. Then, using the local parameters from all groups,

the global parameters are updated using equation (6.15). Each coordinate ascent

update is guaranteed to increase the ELBO objective (or, at worst, maintain its

current value).

The coordinate ascent update rules above are identical to that those from

chapter 5, although they are presented in a different manner. To illustrate this

point, consider the setting of λ that locally maximizes the ELBO, λ = Eq[ηg(x, z, α)].
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Under this parameter setting, the factor q(β |λ) becomes

q(β |λ) ∝ exp{h(β) + Eq[ηg(x, z, α)]>t(β)}

∝ exp{E¬β[log p(β |x, z)]} (6.16)

∝ exp{E¬β[log p(x, z, β)]}.

The last two lines are equivalent because p(x, z, β) = p(β |x, z)p(x, z), and p(x, z)

does not depend on β or λ. The final line shows that the setting of the natural

parameters that locally maximizes the ELBO is equivalent to the solution implied

by equation (5.7) in the previous chapter. Both say that the local optimum of an

approximating factor is found by exponentiating the expected log joint density of

the model. The analysis in this chapter is more precise; it expresses the ELBO and

related quantities in terms of exponential families. This greater level of detail is

necessary to derive stochastic variational inference.

The inefficiency of coordinate-ascent variational inference stems from the

way global parameters are updated. The update 6.15 calls for setting λ to the

expected natural parameter of the complete conditional, which is a function of all

the data in the corpus and the posterior estimates of all local latent variables in

the model. This quantity is expensive to compute, and the time required to do so

scales linearly with the dataset size. Stochastic variational inference uses ideas from

stochastic optimization to ameliorate this inefficiency. Rather than making exact

updates to the global parameters using all of the data, it uses small samples of the

data to make a series of noisy, partial updates.

6.3 Stochastic Variational Inference for IWTM

The theory discussed in the previous section was defined for a general class of

exponential-family model. This section uses the general theory to derive stochastic
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variational inference for IWTM, which is a novel contribution of this dissertation.

After giving an overview of the procedure, the update rule for each set of latent

variables is derived.

6.3.1 Preliminaries

Three aspects of stochastic variational inference for IWTM are identical to the

coordinate-ascent case and will only be reviewed briefly. First, SVI operates on

the same stick-breaking construction of IWTM. This construction is amenable to

stochastic variational inference because it defines the model using only conjugate

exponential-family distributions. Second, the form of the approximate posterior q

is the same. Specifically, it is assumed to have the form

q(β′,π′, c,µ,λ, z,k,θ) =

(
C∏
c=1

q(β′c)q(µc, λc)

) (
T∏
t=1

Kt∏
k=1

q(π′tk)q(ctk)

)
(∏

d

q(θd)

Nd∏
i=1

q(zdi, kdi)

)

where factors q(β′c | ũc, ṽc) and q(π′tk | ãtk, b̃tk) are beta distributed, q(µc, λc | m̃c, ν̃c, χ̃1c, χ̃2c)

are multivariate normal-gamma, and q(ctk | β̃k) and q(zdi, kdi | θ̃dk) are discrete. Fi-

nally, stochastic variational inference uses the exact same document-level inference

procedure as coordinate ascent. The key difference between the methods is how

many documents inference must be performed on to update a global parameter:

SVI only needs a mini-batch of documents to update a global parameter, whereas

coordinate-ascent must perform local inference on all documents to do so.

The following subsections derive the update rule for each set of global latent

variables in IWTM. In general, each update is performed by setting the natural

parameter of an approximating factor to a weighted combination of its current value

and the expected natural parameter of the complete conditional. A potential source
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of confusion is that, for some families of distributions, the natural parameterization

is not the one commonly used. For example, the natural parameters of a univariate

Gaussian are µ/σ2 and −1/(2σ2), not the mean and variance. It will be helpful to

talk about such distributions using their typical parameterization most of the time

and then switch to the natural parameterization when defining the update rules. In

general, the two parameterizations are bijective functions of one another, and it is

possible to switch back and forth between them as necessary.

Some new notation is required to distinguish between the natural parameters

of the approximating distributions and the complete conditionals of the model. For

a latent variable z, ηq(z) is used to denote the natural parameters of the posterior

approximation q(z). Similarly, ηp(z) is used to denote the natural parameter of the

complete conditional of z in the model. (To simplify notation, the latent variables

being conditioned on are dropped.)

6.3.2 Overview

Each iteration of SVI operates the same way on IWTM as was described in the pre-

vious section. First, a mini-batch of documents S of predetermined size is sampled

from the corpus. Second, using the current estimate of the model’s global compo-

nents, local inference is performed on each document. This step computes the topic

weights of the documents and topic-atom assignments of the individual data that

locally maximize the ELBO. Third, the mini-batch is used to move the topic stick

weights, topic atom to cluster mappings, and cluster parameters in the direction of

their estimated natural gradients. The update for each parameter is performed by

using the mini-batch to estimate its new value and then setting the new value to

a weighted combination of the current value and the mini-batch estimate. Finally,

the master topic stick weights are set to their optimum exactly, using an update

identical to the one in coordinate ascent. The reason that the master topic sticks

102



are not updated stochastically is explained in section 6.3.6.

SVI for IWTM deviates slightly from the method described in the last section

because there are multiple sets of global latent variables in IWTM, rather than a

single global variable β. This more complex scenario is accommodated simply by

updating each global variable one at a time in sequence. In this algorithm, the

cluster parameters are updated first, followed by the atom to cluster mappings,

followed by the topic stick weights, and then finally the master topic sticks.

6.3.3 Cluster Parameters

In IWTM, the complete conditional of the cth set of cluster parameters is a multivariate-

normal gamma distribution,

p(µc, λc |x, z,k, c) = NG

β0m +
∑

d,i rdicxdi

β0 +
∑

d,i rdic
, β0 +

∑
d,i

rdic

χ1 +
∑
d,i

rdic/2, χ2 +
∑
di

rdic
2
‖xdi + x̄c‖2 −

β0nc
β0 + nc

‖x̄c −m‖2
2

)
. (6.17)

For convenience, rdic is defined to be an indicator variable that is one when datum

i in document d is assigned to cluster c, nc is the count of data assigned to cluster

c, and x̄c is the average of the data assigned to cluster c:

rdic =
∑
k

∑
t

[zdi = t ∧ kdi = k ∧ ctk = c] (6.18)

nc =
∑
d,i

rdic (6.19)

x̄c =
1

nc

∑
d,i

rdicxdi. (6.20)

Stochastic variational inference calls for moving the natural parameters of

q(µc, λc) towards the expected natural parameters of the complete conditional. The

103



parameterization in (6.17) is not the natural parameterization of the normal-gamma

distribution. Its natural parameters are

ηp(µc,λc) =

〈
β0m +

∑
d,i

rdicxdi, β0 +
∑
d,i

rdic, χ1 +
∑
d,i

rdic/2

−χ2 −
∑
di

rdic
2
‖xdi − x̄c‖2 −

β0nc
β0 + nc

‖x̄c −m‖2
2

〉
(6.21)

Note that the first natural parameter is the same dimension of the data (Ndim),

while other three are scalar values.

The posterior for the cth set of cluster parameters is approximated by the

multivariate-normal gamma factor q(µc,λc) = NG(m̃c, ν̃c, χ̃1, χ̃2). Its natural pa-

rameters are:

ηq(µc,λc) = 〈m̃cν̃c, ν̃c, χ̃1c − 1, −1/χ̃2c〉. (6.22)

The new natural parameters are estimated by taking the expectation of (6.21) on a

replicated copy of the document mini-batch:

η̂q(µc,λc) =

〈
β0m +

Ndoc

|S| (ES [x̄c]) ,

β0 +
Ndoc

|S| (ES [nc]) ,

Ndoc

|S|

(
ES [nc]

Ndim

2

)
+ χ1 − 1,

Ndoc

|S|

(
−1

2

∑
d∈S

nd∑
i=1

E[rdic]‖xdi − m̃c‖2
)
− β0

2
‖m̃c −m‖2

〉
. (6.23)

Here, E[rdic] is the expectation of the cluster assignment, and ES [nc], ES [x̄c] are the
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expectations of the cluster sizes and data means computed on the mini-batch S:

E[rdic] =
∑
t

∑
k

β̃kcθ̃ditk (6.24)

ES [nc] =
∑
d∈S

Nd∑
i=1

ρdic (6.25)

ES [x̄c] =
1

ES [nc]

∑
d∈S

Nd∑
i=1

ρdicxdi (6.26)

The natural parameters of the approximating distribution are then updated

as

η
(t+1)
q(µc,λc) = (1− ρ)η

(t)
q(µc,λc) + ρ · η̂q(µc,λc). (6.27)

The natural parameters of the clusters are related to their standard parameterization

(m̃c, ν̃c, χ̃1, χ̃2) through equation (6.22). Thus, updating the natural parameters

induces an update on the standard parameters as well.

6.3.4 Topic Atom to Cluster Mappings

The complete conditional for the topic atom to cluster mappings is a discrete dis-

tribution,

p(ck = c |β′,µ, λ,z,k) ∝ exp

βc∏
d,i

T∏
t=1

p(xdi |µc, λc)[zdi=t∧kdi=k]

 (6.28)

In general, the natural parameters of discrete distributions are defined in terms of

their log probabilities. To simplify notation, let `kc denote the unnormalized log
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probability of atom k being assigned to cluster c,

`kc = log(βc) +
∑
d,i

T∑
t=1

[zdi = t ∧ kdi = k] log p(xdi |µc, λc). (6.29)

The natural parameter is the vector of log probabilities with an arbitrarily chosen

“pivot” index subtracted out. For convenience, the variational truncation limit C

is chosen as the pivot,

ηp(ck) = 〈`kc − `kC〉∞c=1. (6.30)

The use of the pivot sets the Cth element to zero, so that the natural parameter effec-

tively has one fewer dimension. Doing so corrects for the fact that a N -dimensional

discrete distribution only has N − 1 free parameters, and is necessary to express

the discrete distribution as a canonical (non-curved) exponential family [18]. Note

that although the complete conditional has infinite dimension, inference only has to

estimate the parameter up to the truncation limit C.

In the approximating distribution, the natural parameters of kth atom as-

signment is the C-length vector

ηq(ck) = 〈log β̃kl − log β̃kC〉Cl=1. (6.31)

As in the other updates, the mini-batch S is used to estimate new parameters, which

are the expectation of the complete conditional’s natural parameters:

ˆ̀
kc = E[log βc] +

Ndoc

|S|
∑
d∈S

∑
i

T∑
t=1

θ̃ditkE[log p(xdi |µc, λc)] (6.32)

η̂q(ck) = 〈ˆ̀kl − ˆ̀
kC〉Cl=1. (6.33)
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The natural parameters of the approximating factors are then updated by setting

η
(t+1)
q(ck) = (1− ρ)η

(t)
q(ck) + ρ · η̂q(ck). (6.34)

The new β̃ values can then be computed by inverting equation (6.31), i.e. exponen-

tiating and normalizing the new natural parameters.

6.3.5 Topic Stick Weights

The update for the topic weights is slightly different from that of the other param-

eters due to the reordering of topic atoms. Recall that the topic sticks weights are

defined in terms of the count of data associated with each atom. The complete

conditionals for the topic stick weights are beta distributions

p(π′tk | z,k) = Beta

1 + ntk, α0 +
∑
j>ntk

ntj

 , (6.35)

where ntk =
∑

d,i[zdi = t ∧ kdi = k] is the number of observed data generated

from the kth atom in topic t, and the sum in the second parameter is over atoms

in the topic whose counts are greater than ntk (using notation defined in section

5.4.5). Equation (6.35) is the natural parameterization of the beta distribution, and

both natural parameters are determined entirely by the counts (and, implicitly, the

relative ranks of the counts). The natural gradient update can therefore be defined

directly in terms of such counts.

The variational approximation of the topic stick weights is modeled by factors

q(πtk) = Beta(πtk | ãtk, b̃tk). The parameters ã and b̃ are determined entirely by the

pseudo-counts ζ̃tk. Let ζ̃
(t)
tk denote the data count associated with the kth atom in

topic t in the current iteration. Similar to other updates, a mini-batch of documents
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is used to estimate the new pseudo-counts as

ζ̂tk =
Ndoc

|S|
∑
d∈S

Nd∑
i=1

θ̃ditk, (6.36)

and the current counts are set to a weighted average of the old and new ones:

ζ̃
(t+1)
tk = (1− ρ)ζ̃

(t)
tk + ρζ̂tk. (6.37)

The topic weight parameters themselves are then set using the new count estimates

via simulated reordering. That is,

ã
(t+1)
tk = 1 + ζ̃

(t+1)
tk (6.38)

b̃
(t+1)
tk = α0 +

∑
j>ζ̃k

ζ̃
(t+1)
tj . (6.39)

6.3.6 Master Topic Stick Weights

The updates for the master topic stick weights are the same as in coordinate-ascent

variational inference. The reason is that their complete conditionals depend only on

other global latent variables in the model, not on document-level latent variables.

As a result, the natural gradient can be computed exactly with minimal effort – it

does not have to be estimated from the data. Correspondingly, the stick weights

can be set to a local optimum exactly.

The complete conditionals of the master sticks weights are beta distributed,

p(β′c | c) = Beta(1 + nc,
∑
c′>nc

nc′), (6.40)

where nc =
∑

t,k[ctk = c] is the number of topic atoms associated with the cth

cluster, and the sum in the second parameter is taken over clusters with counts

greater than nc. As with the topic sticks, the natural parameters of (6.40) are
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defined entirely by the counts and their order statistics.

The posterior approximation of the master topic stick weights is captured by

factors q(β′c) = Beta(ũc, ṽc), where both variational parameters are defined by the

pseudo-counts ξ̃c. The update sets the pseudo-counts directly to their expectation,

ξ̃(t+1)
c = E[nc] =

T∑
t=1

K∑
k=1

β̃kc. (6.41)

The parameters themselves are then computed from the pseudo-counts as

ũ(t)
c , 1 + ξ̃(t)

c (6.42)

ṽ(t)
c , γ +

∑
c′>ξ̃c

ξ̃
(t)
c′ (6.43)

where the sum is taken over cluster indices c′ with counts larger than c. Note that

the variational parameters and the pseudo-counts are bijections of each other; the

pseudo-count estimates can be recovered from the natural parameters themselves

and vice versa.

6.3.7 Learning Rate and Mini-Batch Size

The learning rate parameter ρ has not yet been specified. In general, it should

satisfy 0 < ρ ≤ 1. When ρ = 0, the algorithm effectively does nothing. When ρ = 1,

each iteration completely replaces the current variational parameters with their new

values estimated from the document mini-batch. A special case occurs when ρ = 1

and |S| = Ndoc, i.e. when the mini-batch is the entire training corpus. In this

case, the natural gradient estimates are exact, and each update sets the variational

parameters exactly to their local maximum. The algorithm for stochastic variational

inference then reduces to the coordinate-ascent procedure described in chapter 5.

In this case, each update made by inference is guaranteed to increase the ELBO

109



objective.

When the corpus is large and coordinate-ascent variational inference is pro-

hibitively expensive, the mini-batch size will typically be a fraction of the training

corpus (|S| � Ndoc). The natural gradient estimates will therefore be noisy. In

general, moving in the direction of the noisy natural gradient is not guaranteed to

increase the ELBO objective, but will tend to do so when the estimate is close enough

to the true natural gradient. Estimates taken on a small set of documents will tend

to have high variance but be inexpensive to compute, while larger mini-batches will

yield lower-variance estimates that are expensive to compute. To balance these

concerns, the experiments in this dissertation set the learning rate proportional to

the mini-batch size, ρ = |S|/Ndoc. Under this scheme, updates made with noisier

gradients have a smaller effect on the model. In addition, setting |S| = Ndoc leads

to a learning rate of 1, so that stochastic variational inference reduces to coordinate

ascent.

Despite the practical appeal of this learning rate scheme, the resultant algo-

rithm is not formally guaranteed to converge to a local optimum. The convergence

of stochastic optimization methods is typically achieved by using a learning rate

that decreases over time. When the learning rate schedule satisfies the conditions∑∞
t=1 ρt = ∞ and

∑∞
t=1 ρ

2
t < ∞, convergence to a local maximum is guaranteed

[15, 26].1 Hoffman et al. [26] suggest using ρt = (t + τ)−κ, where k ∈ (0.5, 1]

and τ ≥ 0 are free parameters [26]. While appealing in theory, such learning rate

schedules are not useful in practice for two reasons. First, they are computationally

wasteful. Decreasing learning rates cause later iterations to have diminishing effect;

however, the natural gradients in each iteration still have a fixed, non-trivial cost

to compute. Second, convergence is an asymptotic property; when the algorithm is

run for a finite amount of time, there is no guarantee that the final solution will be

1Additionally, that the function being optimized must satisfy some requirements, such as being
thrice-differentiable. The ELBO objective satisfies such properties [26].
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a local optimum. In light of these issues, a decreasing learning rate is eschewed in

favor of the fixed learning rate scheme described above.

6.3.8 Escaping Local Optima

While stochastic variational inference has been motivated as being more efficient

than coordinate ascent, it has another advantage as well: the ability to escape

(some) poor local optima. Coordinate ascent’s updates are exact and determinis-

tic, and each one is guaranteed to increase (or maintain the value of) the ELBO.

It can therefore never escape any local optimum; by definition, doing so would re-

quire making at least one update that lowers the ELBO. In contrast, SVI’s natural

gradient estimates are noisy, so its updates will not always increase the ELBO. Some-

what paradoxically, this property is beneficial because the objective is non-convex.

Making updates that are locally suboptimal enables it to escape local optima and

(sometimes) find better solutions. In general, the ability of SVI to do so depends on

the mini-batch size, which determines the variance of the natural gradient estimates.

Smaller mini-batches produce noisier natural gradients, making SVI less suscepti-

ble to getting stuck in poor solutions. Of course, such noise may also prevent SVI

from converging on a good solution. The effect of noise in the natural gradients is

evaluated experimentally in the next section.

6.4 Experiments on the 13-Scene Dataset

To understand stochastic variational inference for IWTM better, the method is first

applied to the same 13-scene dataset used in chapters 4 and 5. By doing so, SVI

can be compared to coordinate-ascent variational inference.
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6.4.1 Method

The purpose of this experiment is to compare SVI and coordinate-ascent varia-

tional inference in terms of their speed and ability to fit the dataset. To do so,

IWTM is trained on 13-scene under a variety of learning rates and mini-batch sizes.

Specifically, models are trained with ρ = {0.25, 0.5, 0.75, 1.0} and, per section 6.3.7,

mini-batch sizes are set as |S| = ρNdoc. On one extreme, the ρ = 1 setting reduces

stochastic variational inference to coordinate-ascent variational inference. In this

case, all natural gradients are computed exactly and each update has a large effect

on the model; however, computing the exact natural gradients is expensive because

it requires performing local inference on every document in the corpus. On the other

extreme, the ρ = 0.25 and |S| = 0.25Ndoc causes SVI to make small updates based

on noisy but efficiently-computable natural gradient estimates.

To account for the fact that different settings will use different numbers of

documents per iteration, the number of iterations is varied appropriately. Specif-

ically, all models are trained until they have seen a total of 65000 documents, or

the equivalent of 50 iterations of coordinate-ascent variational inference. There-

fore, models with ρ = 1 train for 50 iterations, models with ρ = 0.5 train for 100

iterations, and so on.

The evaluation metrics of interest are the model ELBOs, which measure how

well each fits the training corpus, and the speed of inference itself. To measure the

former, snapshots of the model state are saved at regular intervals (after every 10%

of the training iterations have been completed). Regardless of the mini-batch size

used to train the model, the ELBO is always measured on the entire training corpus.

To make training times comparable, all models are trained on identical machines 2

using a single-threaded implementation.

For simplicity, all models are trained with T = 25 topics. The hyper-

2Specifically, narsil-*.cs.utexas.edu, a set of 13 machines with 3.06GHz processors and 96
GB of RAM each. (The inference procedure only needs a few hundred MB of RAM at most.)
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Figure 6.1: Effect of varying the learning rate and mini-batch of stochastic vari-
ational inference on the 13-scene task. (a) Stochastic variational inference (ρ =
0.25, 0.5, 0.75) results in models that train faster and fit the training data better
than coordinate-ascent variational inference (ρ = 1). (b) The reason is that noise in
the natural gradients allows stochastic variational inference to escape local optima.
Coordinate ascent, and SVI with “cleaner” natural gradients, get stuck using an
unnecessarily large number of clusters, leading to suboptimal solutions.

parameters are given the same settings as in chapter 5, specifically γ = α0 = 10, β0 =

1, α = 1/T . The truncation limits are also the same: The master topic is truncated

at C = 4000 clusters and the topics are truncated at T = 8000 atoms. Finally,

IWTM is also initialized in the same way as in coordinate ascent.

6.4.2 Results

Results are summarized in figure 6.1. Figure 6.1(a) shows the mean ELBO of each

setting, averaged over five runs, as a function of training time. SVI not only pro-

duces models with higher ELBO than coordinate ascent, it also trains them faster.

Coordinate ascent takes about 1400 minutes (23 hours) to train and performs the

worst of all settings; meanwhile, the fastest SVI (ρ = 0.25) is also the setting that

produces the highest ELBO. It surpasses the best ELBO of coordinate ascent after

only 600 minutes (10 hours), less than half the training time of the latter. SVI fin-
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Figure 6.2: Training times of LDA+K-means on 13-scene, normalized against
IWTM’s training time on the same amount of data. Using stochastic variational
inference, IWTM only takes about 2.5-3 times as long to train as a single run of
LDA+K-means, while obviating the need to manually sweep over the vocabulary
size. (Compare to figure 5.3.)

ishes training altogether in 1150 minutes (19.2 hours), or about 16.5% faster than

coordinate ascent, at which point its ELBO is significantly higher.

Given that all methods see an equal number of training documents, what

accounts for the difference in their speed and performance? Both stem from the

fact that SVI makes noisy natural gradient updates that allow it to escape poor

local optima. Specifically, variational inference has a tendency to get stuck in poor

local optima where it uses too many clusters, which slows down the inference proce-

dure. Such an explanation is supported by figure 6.1(b), which shows the number of

clusters used by each method as training progresses. The slowest, worst-performing

method, coordinate ascent, uses the most clusters; meanwhile the fastest, best-

performing method, SVI at ρ = 0.25, uses the fewest clusters.3 Furthermore, the

lower ρ is, the faster clusters are pruned from the model. Thus, the noise in SVI’s

3One should not conclude that IWTM’s ELBO is always higher when fewer clusters are used.
This is not so, as demonstrated in section 7.4.
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natural gradients benefits IWTM doubly: It allows better solutions to be found and,

as a side-effect of doing so, makes inference faster.

Such results show that SVI for IWTM is superior to coordinate-ascent varia-

tional inference even on modestly-sized datasets where the latter is a viable option.

On datasets of sufficient scale, coordinate ascent is too expensive to be run at all.

The next section uses SVI to train IWTM on one such dataset, SUN397, which is

about seven times the size of 13-scene.

6.5 Experiments on the SUN Dataset

To demonstrate that stochastic variational inference allows IWTM to be scale to

much larger datasets, the method was applied to the SUN397 dataset [62]. SUN397

contains over 39700 photographs of 397 different categories of indoor and outdoor

scenes. In these experiments, a randomly-selected subset of 1985 images (5 images

per class) is selected for the training set, and 19850 (50 images per class) are set

aside for testing. Even after sampling, the training set is much larger than IWTM

has been applied to previously. It contains over 50% more images than the largest

training set used in the 13-scene task. More significantly, the SUN images are higher

resolution than those in 13-scene, and produce over 6.7 times the total number of

local descriptors. Running IWTM on a dataset of this size is made vastly more

practical by stochastic variational inference.

As in 13-scene, IWTM is evaluated for its ability to generate image descrip-

tions that are useful for scene classification. SUN397 is a challenging task. Due to

the large number of classes, guessing randomly gets only 0.25% accuracy. Further-

more, some categories are differentiated by nuanced details – for example, abbey,

church, and cathedral. IWTM’s performance on the task hinges on its ability to

generate image descriptions that capture semantic content.
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6.5.1 Method

The methods considered in this experiment are based on the image features and

type of classifier reported to work the best on the task by the dataset creators [62].

Specifically, the image features used are HOG2x2 descriptors, and the classifiers are

support vector machines with spatial pyramid histograms as kernels (both defined

in this subsection). The rest of this section is structured as follows. First, the base

image features and the approach used by Xiao et al. [62] are described. Building

on that method, a modification is then developed that uses features derived from

IWTM. In the next subsection, both methods are evaluated on the SUN397 task.

HOG2x2 Features

Both methods considered in this chapter use HOG2x2 as the base image features,

though the different methods do different things with them. HOG2x2 features are

generated using the code of Xiao et al. [62], which performs the following steps.

First, large images are downsized so that their maximum dimension is 640 pixels;

small images are not upscaled. Second, histograms of oriented gradients (HOGs)

are extracted at intervals of eight pixels over a regular grid. This step yields a 31-

dimensional descriptor for each image patch. Finally, the HOGs for adjacent 2× 2

patches are concatenated together, producing a 124-dimensional feature vector for

each patch. The number of feature vectors used to represent each image depends

on the image size. The median number is 3619, but some images have as many as

5929 and one image has as few as 40. The 1985 images in the training set comprise

a total of 5,646,426 HOG2x2 descriptors.

Classification using Visual Words

In the method of Xiao et al. [62], the HOG2x2 features are clustered and quantized

into K = 300 visual words using K-means. Then, using the visual words represen-
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tation, one-versus-all support vector machines are trained using three-level spatial

pyramid histograms as the kernel [35]. This approach is the best known single-

feature method for the SUN397 task.4 The topic model-based approaches are not

necessarily expected to outperform it.

The three-level spatial pyramid is formed by dividing each image into three

spatial grids of different resolutions: 1 × 1, 2 × 2, and 4 × 4. The appearance of

the image within each spatial bin is represented as a histogram of the visual words

occurring within that bin. The 1× 1 grid produces a single K-length histogram of

the entire image’s visual words; the 2 × 2 grid produces four K-length histograms,

one for each quadrant of the image; and the 4 × 4 grid produces 16 K-length his-

tograms. Within each level, the kernel similarity between two images is defined by

histogram intersection. The kernel matrices at the three levels are normalized by

their respective means and combined using equal weights.

At a high level, the visual words and pyramid match kernel can be thought

of as defining two similarity measures – one between the appearance of local image

patches, and one between images as a whole. The similarity of local image patches is

implicitly defined by the visual words. Specifically, two image patches are considered

similar if they map to the same visual word and otherwise they are dissimilar.

The pyramid match kernel then defines similarity between images in terms of the

number of similar-looking patches they share. The use of multiple levels increases

the similarity for cases where the corresponding patches lie in approximately the

same image region.

6.5.2 Classification Using IWTM

Intuitively, visual words define a limited notion of patch-level similarity: Patches

that are semantically related but have sufficiently different appearances will be di-

4Classifier ensembles combining HOG2x2 with other feature types perform better on the task
[62]. To limit the scope of this chapter they are not considered here.
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vided into separate visual words. For example, different parts of the same cloud

or tree are expected to be divided into multiple, distinct visual words, even though

they belong to the same texture or object. Motivated by this fact, a modification

of the above method was developed in this dissertation wherein topic features from

IWTM are used in place of visual words.

IWTM is trained directly on the HOG2x2 representation of the images

IWTM is with T = 100 topics. Due to the large size of the dataset, stochastic varia-

tional inference with a learning rate ρ = 0.1 and a mini-batch size |S| = Ndoc/10 are

used. The features provided to the classifier are the maximum a posterior (MAP)

topic assignment of each image patch,

θ̃∗d,i = arg max
t

K∑
k=1

θ̃ditk (6.44)

where θ̃ditk are the posterior topic atom assignments estimated by variational in-

ference. As in the visual words method, classification is performed by support

vector machines with a three-level pyramid match kernel. Using topic assignments

in place of visual words changes the notion of patch-level similarity – specifically,

two patches are considered similar if and only if their posterior topic assignments

are the same. Intuitively, the topics should group together commonly co-occurring

clusters of features, and the topic assignment of each patch should capture some

higher-level semantic meaning of its content.

6.5.3 Results

Both the visual-words and IWTM-based method were evaluated on the test set of 10

images per class. Overall, the visual words method achieves a mean recognition rate

of 11.7%± 0.1 on the test set, while IWTM gets 7.1%± 0.2. Both methods perform

the best on the same three categories, car front seat, car back seat, and cockpit.
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Figure 6.3: Images from the SUN dataset along with the topic assignments generated
by IWTM (middle) and the visual word assignments (right). Colors are arbitrarily
chosen and are used to visually differentiate the feature values. IWTM groups
semantically-related patches together in the same topic, while visual words make a
more fine-grained categorization of visual appearance.
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However, each feature type also has some categories on which it outperforms the

other. On average, visual words perform better (by at least a margin of 1% absolute)

on 219 categories, topics features perform better on 91 categories, and the two

methods tie on the remaining 87 categories. The categories on which visual words

most outperforms topic features are street (50% vs. 5%), skatepark (58% vs. 16.7%),

and football stadium (50% vs. 10%). On the other hand, topic features fare better

on carrousel (16.7% vs. 0%), snowfield (20% vs. 8%), and raft (20% vs. 8%).

The fact that IWTM does not perform as well as the visual words method

is not surprising, considering that the latter has been reported to be the best-

performing single-feature method on SUN397. However, the results for IWTM are

considered positive for following two reasons. First, the model performs comparably

with a number of computer vision based approaches. Based on published results by

Xiao et al. [62], IWTM’s accuracy with 5 training documents per class is slightly

better than GIST [40] and texton histograms, and is slightly worse than dense

SIFT features. In the context of these methods, IWTM performs quite reasonably.

Second, it has been demonstrated that multiple feature types can be combined

to achieve a higher recognition rate on SUN397 than any single-feature method,

including HOG2x2 visual words [62]. Topic assignments are yet another feature

type that can added to the mix.

6.5.4 Discussion

To gain insight into why the methods perform as they do on, the image representa-

tions produced by each were more closely examined. Figure 6.3 shows some training

images along with the representations produced by both methods. The left column

shows the original image, the middle column shows the topic assignments produced

by IWTM, and the right column shows the cluster indices produced by the visual

word method; each row corresponds to a single image.
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As expected, IWTM groups many semantically-related patches together into

the same topic. For example, in the top image of figure 6.3, the courthouse windows

all fall into a single topic (visualized by dark red), as does the white stone exterior

(visualized by light blue). In the middle image, much of the pagoda exterior is

grouped together (the light blue topic), as are the cloudy patches of the sky (the

mint green topic). Finally, in the last image, most of the mountainous terrain

surrounding the river is assigned to the same topic (visualized by bright yellow). In

contrast, the visual-words representation makes a more fine-grained categorization

of patch appearance. Each of the aforementioned image regions is broken into many

distinct visual words.

In general, IWTM is able to group together disparate-looking but related

patches because its topics capture co-occurring patterns of visual appearance. The

topic assignments can be thought of as a mid-level semantic representation: They

provide an abstraction over patch-level appearance that cannot be captured by the

HOG2x2 features or visual words alone. Although the topic assignments arguably

capture more meaningful semantics, the results indicate that they are not superior

features for scene classification. Abstracting over patch-level appearance seems to

wash out the fine visual details needed to discriminate between some similar classes.

For example, 85% of the misclassified car back seat images are predicted to be car

front seat, and 30% of the misclassified car front seat images are predicted to be

car back seat. Another illustrative example is that outdoor tennis court images are

often mistaken for baseball field or outdoor basketball court.

6.5.5 Future Work

IWTM’s ability to group together semantically-related image patches suggests that

its features may be useful for other image analysis tasks, in particular image seg-

mentation. Such an idea is supported by existing work that has successfully applied
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related topic models to segmentation. Two examples are the spatially-coherent la-

tent topic model (Spatial-LTM) [17] and the topic random field (TRF) model [64].

In both models, the most likely topic assignment of each image region is used as

its segment label. Because these topic models were designed with segmentation in

mind, they have additional complexity that enforces spatial coherence in the topic

labeling – that is, adjacent image regions are pressured to be assigned to the same

topic. In future work, spatial coherence could also be added to IWTM to make it

more suitable for segmentation. Such a model would inherit the strengths of IWTM,

including its ability to infer the feature vocabulary non-parametrically, and could

be trained on large datasets with a slight modification to the existing stochastic

variational inference procedure.

As demonstrated in the previous chapter, manually tuning the visual vo-

cabulary size (number of clusters) used by a topic model is expensive, since doing

so requires training and evaluating separate models with different vocabulary sizes.

When the dataset is very large, as in the SUN task, manual tuning of the visual

vocabulary becomes prohibitive. Bayesian non-parametric models like IWTM are

particularly appealing in such settings because they infer the model complexity

based on the data. Stochastic variational inference is the key to training such mod-

els on large datasets. Per the results on the SUN task, a good fit of the data can be

achieved using as little as one tenth of the dataset in each iteration.

6.6 Conclusions

Stochastic variational inference applies ideas from stochastic optimization to the task

of variational inference. This chapter developed a stochastic variational inference

procedure for IWTM, which is a novel contribution of this dissertation. SVI allows

IWTM to be scaled to large datasets. Furthermore, even on more modestly-sized

datasets like 13-scene, it trains faster and produces objectively better models than
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coordinate ascent. This is in part because SVI can escape from poor local optima

that coordinate ascent cannot.

The next chapter switches gears and addresses how to train IWTM (and other

Bayesian nonparametric models like it) efficiently on growing datasets. There, SVI

is used to develop an incremental training method for IWTM, where new documents

can be added to the training set and the model’s complexity grows commensurately.

SVI is key in making incremental training effective: Its ability to escape poor local

optima actually prevents the incremental training from growing the model complex-

ity too much when new documents are added.
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Chapter 7

Incremental Training and

Active Learning

The previous chapters make important advances towards applying the Infinite-Word

Topic Model in realistic settings. Variational inference makes the training time of

IWTM comparable to that of LDA with K-Means clustering, and allows the model

to be scaled up to larger datasets than Gibbs sampling. Semi-supervised training

allows IWTM to train on unlabeled data, which is typically plentiful, to improve per-

formance on supervised tasks. This chapter addresses another challenge presented

by real-world applications – namely, how to handle the case where the datasets

periodically grow, rather than being fixed. In the streaming data setting, new doc-

uments periodically become available for inclusion in the topic model’s training set.

For example, the new documents could be a daily batch of photographs posted by

users of a social networking website during the last 24 hours.
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7.1 Motivation

Datasets that grow over time pose challenges to machine learning systems. To

maximize performance, it is generally desirable to train on datasets that are as large

as possible and include data that are up-to-date as possible. These are, however,

competing goals: training takes longer on large datasets, and such long training

times make the models less “fresh” at the time of deployment. For example, if it

takes 24 hours to train a model before it can be deployed, that model’s training set

cannot (conventionally) contain examples generated within 24 hours of the time of

deployment.

In situations where datasets grow, training can be sped up significantly by

using an existing model as a starting point when fitting a larger dataset. This

approach is incremental training. Such an approach exploits the idea when the

dataset grows gradually over time, the model should change gradually over time as

well. To fit a dataset that is 10% larger, for example, it should suffice to adjust the

current model rather than training a completely new one from scratch.

These issues have been partially addressed by work in stochastic variational

inference and, more broadly, online learning. These methods use small batches of

data to make a series of small updates to the model, and are naturally designed to

handle streams of training data. In this sense, they are well suited to incremental

training: New training data can be piped into the inference procedure as they

become available.

Unfortunately, a key property of mean-field variational inference – includ-

ing stochastic variational inference – makes it less useful when training Bayesian

non-parametric models on growing datasets. Specifically, variational inference will

not increase the number of components in a BNP model in response to new data

being added to the training set. In general, BNP models display a “paring back”

phenomenon throughout training: They must be initialized with a large number of
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components, and variational inference monotonically reduces the model complexity

over time. This issue is discussed at length in the next section. Its consequence

is that BNP models trained with variational inference on growing datasets have an

artificially low complexity because variational inference fits the model’s complexity

to the initial training set and is then unable to move to regions of the posterior

where new components are added. As the dataset continues to grow, the model

achieves a progressively suboptimal fit of the data.

This chapter introduces a novel extension of variational inference, called in-

cremental variational inference (IVI), to support incremental training of Bayesian

non-parametric models better. Incremental variational inference is identical to stan-

dard variational inference, except that the former executes an operation to grow the

model’s complexity when new data is added to its training set. Section 7.3 first de-

scribes the method in general, and then applies it to incremental training in IWTM.

Section 7.4 demonstrates the speed and efficacy of IVI for IWTM experimentally.

Section 7.5 then uses IVI to develop an active learning method for IWTM, where

new data added to the model are intelligently subsampled to get better scene clas-

sification accuracy with smaller amounts of labeled data.

7.2 Variational Inference in Non-Parametric Models

As discussed in the previous section, variational inference pares back the complexity

of Bayesian non-parametric models as training progresses. This section discusses the

phenomenon at greater length, and explains why it occurs and why it is an obstacle

to incremental training.

7.2.1 The Paring-Back Phenomenon

The paring back phenomenon has been noted by several authors in the literature.

Figure 7.1 demonstrates it occurring in two BNP models – a DP mixture and Hdp-

126



Lda – in a study by Wang, Hoffman, and Blei [59]. In both cases, the models are

initialized with a large number of components (clusters in the DP mixture; topics

in Hdp-Lda) and use fewer and fewer components as training progresses. (That

is, fewer components are associated with any data.) Later in the chapter, the same

phenomenon is demonstrated in IWTM. The numbers of clusters and topic atoms

used by the model start out large and are decrease monotonically as variational

inference progresses.

Adding new components to a Bayesian non-parametric model involves going

through configurations of the latent variables that have low posterior density. For

example, consider adding a new cluster to a Dirichlet process mixture model – that

is, having an empty cluster begin to be associated with some data. Because the

cluster is initially empty, its expected stick weight in the Dirichlet process is very

small. Moreover, the cluster’s parameters are initially set to those of the prior, so

that it provides a poor fit for any of the data. This combination makes it extremely

unlikely for any data to be assigned to the cluster initially. Even if instantiating the

new cluster would yield a better fit of the dataset, the intermediate configurations of

the latent variables are very unlikely. Therefore, it can be difficult for some inference

methods to add new clusters.

Thinking of inference as an optimization procedure leads to further insight.

Variational inference directly optimizes the ELBO objective, while Gibbs sampling

indirectly optimizes the joint posterior p(Z |X) (because its Markov chain naturally

moves towards high probability configurations of the latent variables). These objec-

tives are known to be non-convex for a broad class of models, including Gaussian

mixtures. Configurations where new clusters are added lie in different local optima.

In this sense, the ability of an inference method to add components in a BNP model

depends on how well it can escape local optima.

In Gibbs sampling, the ability to move between local optima (alternatively,
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to mix or mode-switch) is a common concern. Generally, mode-switching is possible

in Gibbs sampling because the procedure may produce a new configuration of latent

variables that has a lower probability than the current one. It has generally been

shown that mixing is improved in collapsed Gibbs sampling, i.e. where some param-

eters of the model can be integrated out [37]. In this light, it is helpful to look back

at the collapsed Gibbs sampler for IWTM discussed in chapter 4. In that sampler,

the cluster parameters of the model were completely integrated out. Additionally, it

operated on the Chinese Restaurant Process representation of the Dirichlet Process.

The CRP is effectively a collapsed version of the stick-breaking construction, where

the non-interchangable cluster labels in the latter are marginalized over to produce

a distribution over partitions [43] (section 2.4). Both of these facts help IWTM’s

Gibbs sampler to move between local optima and add new clusters.

In contrast, variational inference does not have a natural mechanism for

escaping local optima, as discussed in chapter 6. In coordinate-ascent variational

inference, each update is guaranteed to locally maximize (or maintain the same

value of) the ELBO objective. Thus, coordinate ascent will never escape any local

optimum. On the other hand, stochastic variational inference moves in the direction

of noisy natural gradient estimates. Noise allows the ELBO to decrease (or increase

suboptimally) sometimes and escape its current local optimum. However, in practice

doing so results in fewer clusters being used rather than new clusters being added.

This phenomenon is demonstrated in section 6.4 and again later in this chapter.

The fact that stochastic variational inference will not add components in

BNP models can be explained theoretically. As observed by Bishop [10], mean-field

variational inference (whether stochastic or coordinate ascent) is “zero-avoiding”.

That is, it systematically underestimates regions of low density in the model poste-
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rior. Variational inference minimizes KL(q‖p), defined as

KL(q‖p) =

∫
q(Z) log q(Z)− q(Z) log p(Z |X)dZ,

where Z denotes the latent variables of the model, p(·) is the true posterior, and q(·)
is the variational approximation. By this measure, the largest difference between

the two distributions occurs in configurations where p(·) is very small (− log p is very

large) and q(·) is not zero. Thus, minimizing the KL divergence causes q to be set to

zero in such areas. To put it another way, variational inference is unlikely to move

to low probability configurations because doing so would make the KL divergence

much higher. Thus, the variational objective exacerbates the issue of escaping local

minima and, in the context of BNP models, all but assures that new components

will not be created.

Since standard variational inference will not venture on its own into parts

of the parameter space where clusters are added, another method external to it

must be used to grow the complexity of the model. The next subsection discusses

the limitations of existing work that has addressed similar issues. Following that,

incremental variational inference is developed.

7.2.2 Related Work

A limited amount of work has addressed issues related to, but not directly con-

cerning, incremental training of Bayesian non-parametric models with variational

inference. Kurihara, Welling, and Vlassis [32] devised a split-merge method to grow

and shrink the truncation limit (and, effectively, the number of clusters) in a vari-

ational inference procedure for Gaussian Dirichlet process mixtures. This method

has two main limitations. Primarily, the method is specific to Gaussian mixtures,

and it is unclear how it could be applied to more complex models like IWTM, which

has two levels of DPs that must be dynamically resized. In contrast, incremen-
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tal variational inference can be applied to a wide range of Bayesian non-parametric

models. Secondarily, split-merge does not integrate with stochastic variational infer-

ence. The proposed method naturally allows a stochastic implementation, making

it scalable to larger datasets.

More recently, Wang and Blei introduced a method called truncation-free

variational inference [59] that is also capable of growing the model complexity

throughout training. The key idea is to use collapsed Gibbs sampling instead of

variational approximations to estimate document-level latent variables. Unlike vari-

ational inference, the Gibbs sampler can “explore” the parameter space and make

moves to low-probability configurations where new components are instantiated.

While general enough to apply to IWTM, the speed of truncation-free variational

inference depends on the speed of the embedded Gibbs sampling steps. Wang and

Blei [59] apply the method to inference in Hdp-Lda, which has a very efficient

collapsed Gibbs sampler. Unfortunately, this method is impractical for models like

IWTM, whose Gibbs samplers are relatively slow. Indeed, the inefficiency of sam-

pling is typically the motivation to use variational inference in the first place.

Unlike truncation-free variational inference and split-merge methods, the

proposed method for growing the model complexity, incremental variational infer-

ence (IVI), is conceptually simple and only requires an implementation of variational

inference. All inference steps are performed with variational inference, making the

method fast and scalable to large datasets. The next section describes IVI in greater

detail.

7.3 Incremental Variational Inference

IVI is a general method that can be used to train a wide range of Bayesian non-

parametric model incrementally. This section first describes the method at a high

level and gives a general recipe for implementing it. It then details how IVI is
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(a) DP Mixture (b) Hdp-Lda

Figure 7.1: Variational inference on a Bayesian non-parametric model shrinks the
model’s complexity over time. (a) Number of clusters used by a DP mixture model
and (b) number of topics used by Hdp-Lda as training progresses with standard
mean-field variational inference (dots) and truncation-free variational inference (tri-
angles). Non-parametric models trained with standard variational inference are
initialized with a large number of components and “shrink” over time, making them
unsuited to incremental training. Truncation-free variational inference grows the
model complexity as training progresses, but is too slow to apply to IWTM, which
motivates incremental variational inference. (Figures taken from Wang, Hoffman,
and Blei [59].)

implemented for IWTM specifically, and discusses its expected behavior.

7.3.1 General Method

IVI is equivalent to standard variational inference during periods where the train-

ing set size remains constant. However, when the training set grows, IVI triggers

an operation called Extend that adds additional components to the model. The

extended model is then trained for some number of iterations on the new, larger

dataset.

The purpose of Extend is to circumvent the “paring back” phenomenon

that makes standard variational inference unsuitable for growing datasets. Standard
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Figure 7.2: To overcome the paring back phenomenon of variational inference, IVI’s
Extend operation increases a model’s complexity when new data is added to its
training set. Extend does so by concatenating the variational parameters of the
new data model M′ with those of the existing model M. The topics of the new
model are permuted so that they best correspond to the topics of the existing model.

variational inference uses an ever-smaller number of clusters to fit a dataset as

training progresses. As demonstrated later in the chapter, the number of clusters

will not increase even if the dataset grows to several times its original size during

training. By allowing the model complexity to grow as the dataset grows, IVI

achieves vastly better fits of the data in such situations. IVI is also much faster

than training a new model each time the dataset grows, since it simply extends an

existing model to fit new data.

IVI is a general method for incremental training of Bayesian non-parametric

models. While some details of the Extend operation depend on the type of model

being used, a general recipe is provided for implementing it using variational in-

ference as a subroutine. This chapter focuses on the application of IVI to IWTM.

However, the method can be applied to Dirichlet process mixtures (or, more gen-

erally, Pittman-Yor process mixtures), infinite latent factor models [24], and other

Bayesian non-parametric models. Implementing IVI only requires a variational in-
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ference procedure for the model of interest, and can be implemented using either

batch or stochastic methods.

The recipe for Extend is conceptually simple. Given a model M trained

on a dataset D and a set of new data D′, the task is to produce an extended

model MExt with additional components to fit the new data. To accomplish this,

a separate modelM′ is first trained on the new data D′ using variational inference.

The extended model is then formed by taking the union of the components fromM
and M′. This “union” is implemented simply by concatenating the corresponding

variational parameters ofM andM′ and recomputing the expectations used by the

inference procedure. Thus, rather than adding randomly-generated components that

may not help fit the new data, the components added by Extend are specifically

designed to fit such data.

The following subsection describes the implementation of Extend for IWTM.

7.3.2 Extend for IWTM

Recall that IWTM contains two levels of Dirichlet processes. Correspondingly, IVI

grows IWTM’s complexity in two directions – it adds additional clusters to the the

master topic φ0 as well as new atoms to the topics {φt}Tt=1. In general, if the current

model M has C clusters and a truncation of K atoms per topic, and the new data

modelM′ has C ′ clusters and K ′ atoms per topic, Extend produces a modelMExt

with CExt = C+C ′ clusters and KExt = K+K ′ atoms per topic that contains the

union of the clusters and atoms of the constituent models.

Because M and M′ are trained with variational inference, each model state

can be represented as a tuple of its variational parameters, i.e.

M = (m̃, ν̃, χ̃1, χ̃2, ζ̃, ξ̃, β̃)

M′ = (m̃′, ν̃ ′, χ̃′1, χ̃
′
2, ζ̃
′
, ξ̃
′
, β̃
′
).
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The first four sets of parameters in each model (m̃, ν̃, χ̃1, χ̃2) are the cluster param-

eters; the next two (ζ̃, ξ̃) are pseudo-counts of the master topic and topic sticks; and

the last is the topic atom to cluster mapping. For the most part, the “union” of the

models can be formed simply by concatenating the corresponding sets of variational

parameters together and then recomputing the expectations used by variational

inference.

Cluster parameters The first four sets of parameters approximate the poste-

rior over cluster parameters in each model. Parameters m̃ ∈ RNdim×C and m̃′ ∈
RNdim×C′ are matrices of cluster centers, ν̃ ∈ RC and ν̃ ′ ∈ RC′ are the degrees of

freedoms (cluster pseudo-counts), and χ̃1, χ̃2 ∈ RC and χ̃′1, χ̃
′
2 ∈ RC′ define the

shape and scale of the cluster precisions. Concatenating each set of parameters

along its last axis yields cluster means m̃Ext = m̃ ⊕ m̃′ (a Ndim × (C + C ′) ma-

trix), degrees of freedom ν̃Ext = ν̃ ⊕ ν̃ ′ (a (C + C ′)-length vector), and precision

parameters χ̃Ext
1 = χ̃1⊕ χ̃′1 and χ̃Ext

2 = χ̃2⊕ χ̃′2 (both (C+C ′)-length vectors). In

the extended model, the original model’s clusters are at indices 1 . . . C and the new

model’s clusters are at indices (C + 1) . . . (C + C ′).

Master topic stick weights Pseudo-counts ξ̃ and ξ̃
′

represent the posterior ap-

proximation of the master topic in each model. They define distributions over C

sticks inM and C′ sticks inM′, respectively, and the goal of Extend is to combine

them together to form a distribution over C + C ′ sticks in the extended model.

Doing so only requires concatenating the pseudo-count vectors together and using

order-aware updates to generate the other variational parameters. Let ξ̃
Ext

= ξ̃⊕ ξ̃′

denote the concatenated pseudo-counts, a (C +C ′)-length vector. The stick weight

parameters are then formed by applying the formulae for the order-aware updates
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in (5.27), i.e.

ũExtc = 1 + ξ̃Extc (7.1)

ṽExtc = γ +
∑
j>ξ̃c

ξ̃Extj . (7.2)

Note that the way Extend combines the models’ master topic stick weights is

consistent with how it combines their cluster parameters: The original model’s

clusters are at indices 1 . . . C and the new model’s clusters are at indices (C +

1) . . . (C + C ′).

Topic stick weights Pseudo-counts ζ̃ and ζ̃
′

represent the posterior approxima-

tion of the topic weights in each model. They define distributions over K atoms per

topic in M and K ′ atoms per topic in M′, respectively. Extend should combine

them to define a distribution over K + K ′ atoms per topic in the extended model.

One challenge to doing so is that the correspondence between the two models’ topics

is not known. To address this issue, a correspondence between them is estimated

in the following manner. First, a sample of Ncorr documents is selected randomly

from the corpus. Second, their mean topic weights are computed using both mod-

els, yielding two weight matrices W and W ′, both of size Ncorr× T . These matrices

describe the documents in terms of each models’ topics. Third, the topic correspon-

dence is estimated using such matrices. Specifically, the optimal correspondence is

defined as the T × T permutation matrix that minimizes the distortion

P ∗ = arg min
P∈πT

‖W −W · P‖F , (7.3)

where ‖·‖F denotes the Frobenius norm. The solution P ∗ can be computed efficiently

in O(T 3) time using Hungarian matching [21].

Given a correspondence between the constituent models’ topics, the extended
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model’s topics are formed in a two-step process. First, the extended model’s pseudo-

counts are formed by combining those of the constituent models under the optimal

topic correspondence – that is, they are constructed as ζ̃
Ext

= ζ̃ ⊕ (ζ̃
′ · P ∗). Then,

the variational topic weight parameters are computed using the order-aware update

in equation (5.24). That is,

ãExttk = 1 + ζ̃Exttk (7.4)

b̃Exttk = α0 +
∑

j>
ζ̃
Ext
t

k

ζ̃Exttj (7.5)

In the extended model, the topic atoms of the original model are at indices 1 . . .K

and the indices of the new model are at indices (K + 1) . . . (K +K ′). The final step

of Extend is to map the new topic atoms to their appropriate clusters, which is

described next.

Topic-atom to cluster mapping The last parameters to set in the extended

model are the topic-atom to cluster mappings. Parameters β̃ ∈ RK×C+ and β̃
′ ∈

RK
′×C′

+ map the topic atoms to the clusters in the two constituent models. In the

extended model, the mapping matrix β̃
Ext

has size (K +K ′)× (C +C ′) and maps

the total (K +K ′) atom indices to all of the (C +C ′) clusters. It is constructed by

combining the mappings of the constituent model in the following block structure:

β̃
Ext

=

 β̃ 0K×C
′

0K
′×C β̃

′

 . (7.6)

Thus, both the topic atoms from M and those from M′ map to the same clusters

that they did originally, but the extended model contains the union of all topic

atoms and clusters.
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7.3.3 Expected Behavior

As discussed previously, the purpose of IVI is to allow a Bayesian non-parametric

model’s complexity to grow when the training set grows, since standard variational

inference will not grow it at all. However, properties of BNP priors predict that

IVI will actually grow the model’s complexity too much – that is, the DPs in the

extended model will contain an artificially large number of components relative to

the dataset size. The extended model contains the union of the components of the

two constituent models, specifically, one that uses C clusters to fit |D| data and

another one that uses C ′ clusters to fit |D′| data. It thus uses C +C ′ clusters to fit

the combined |D|+ |D′| data. However, the expected number of components under

the DP grows logarithmically, and thus subadditively, with the dataset size (section

2.4).1 In other words, it pressures the model to use fewer than C + C ′ clusters to

fit |D|+ |D′| data.2

That Extend may produce models with artificially high complexity is not a

major concern; when the extended model is trained subsequently, (non-incremental)

variational inference can pare its complexity back. Because stochastic variational

inference is particularly effective at removing extra components (section 6.4), it is

used in IVI in the next section’s experiments.

7.4 Incremental Variational Inference Experiments

To evaluate incremental variational inference for IWTM, the method was used to

train models on the 13-scene corpus described in chapters 4-6. This experiment

simulates a situation where new training documents periodically become available

and are added to the model’s training set.

1A function f : R→ R is subadditive iff ∀x, y, f(x + y) ≤ f(x) + f(y).
2This argument is a little loose because IWTM is built on the HDP, not the standard DP.

However, its conclusion is the same, since the expected number of clusters under the HDP is also
subadditive in the dataset size.
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7.4.1 Method

In an initial “burn-in” phase, each model initially has a training set of 65 documents

(5 per class) on which it is trained for 100 iterations. Subsequently, additional

training documents are added to the model 65 at a time until the size of the dataset

reaches 650 documents. Each time new data are added, the model is extended in

the manner described in the previous section. Specifically, a separate model of the

new data is trained for 50 iterations and then used to extend the existing model.

The combined model is then trained for 20 iterations on the augmented dataset to

allow it to remove extra components.

To understand the behavior of incremental variational inference better, the

method is compared to two baselines. First, to highlight the effect of extending the

model, another set of models is trained using a version of IVI with the Extend op-

eration ablated. This method is called Ivi-No-Extend. Each time new documents

become available, they are simply added to the model’s active training set; no new

components are explicitly added to the model. As in IVI, the models are trained

for additional 20 iterations each time the training set grows.

The second baseline compares IVI to non-incremental training. In this

method, new models are trained “from scratch” for 100 iterations each time docu-

ments are added to the training set. Because training a new model does not leverage

an existing model’s solution to fit a larger dataset, it is expected to be more com-

putationally expensive than IVI.

The training for all methods uses stochastic variational inference with a learn-

ing rate of 0.5 and a mini-batch size of half of the model’s current document set. As

discussed in the previous chapter, stochastic variational inference achieves a better

fit of the data than batch variational inference, and it helps avoid getting stuck in

local optima where the model uses an unnecessarily large number of components.

IWTM is initialized in the same manner and run with the same hyperparameter
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settings as in chapters 5 and 6.

Model performance is evaluated by looking at the value of the ELBO, i.e.

the objective being optimized by variational inference. It is a lower bound on the

marginal log-likelihood of the data under the model. Larger values are better and

indicate that the mean-field approximation is closer in KL-divergence to the true

model posterior.

To assess training times for the two methods, all models are trained on

the same reference machine (Dell Precision-T3400, dual 3.15 GHz Intel processors

and 2 GB of RAM). In these experiments, variational inference runs in a single

thread on only one processor. However, as discussed in section 5.4.6, document-

level inference can be distributed easily over multiple cores or multiple machines to

achieve significant speedups.

7.4.2 Results

Figure 7.3 shows the results for the two incremental training methods: Ivi and the

Ivi-No-Extend baseline. The difference between the two methods can be seen in

figure 7.3(a), which shows the complexity of the respective models as incremental

training progresses. Both start with a large number of clusters and use progressively

fewer over time during the burn-in period. However, the methods diverge when

the training set begins to grow at iteration 100. In Ivi-No-Extend the number of

clusters continues to decrease monotonically throughout training, even as the dataset

grows to several times its original size. As discussed earlier in this chapter, this

paring back behavior is standard in variational inference. Ivi avoids such behavior

by forcing the model to increase in complexity whenever the training set grows.

Although each Extend operation adds more components than are necessary to fit

the larger dataset, the extra components are removed in subsequent iterations of

training. The result is that the number of clusters used by Ivi over time exhibits a
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Figure 7.3: Numbers of clusters (left) and mean ELBOs (right) of Ivi and the Ivi-
No-Extend baseline as training progresses. (Error bars are present on the right,
but too small to be seen.) Both methods first train for 100 iterations on a seed
set of 65 documents; then 65 new documents are added every 20 iterations. Ivi
gets progressively better ELBOs because the Extend operation grows the model
complexity each time new documents are added. In the baseline, the number of
clusters shrinks over time, which is the standard behavior of variational inference.

jigsaw pattern. At the end of training, Ivi uses around 1400 clusters to fit the final,

650-document dataset, whereas the baseline uses around 380.

Figure 7.3(b) shows the ELBOs of both methods, measured on the full

dataset, as incremental training progresses. Ivi achieves a significantly better fit

than the baseline. Although Ivi-No-Extend does improve as new documents are

added to its training set, Ivi always improves more because its model complexity

grows with the training set size. Note that the gap in the ELBOs of the two methods

widens each time the training set grows. The baseline performs increasingly poorly

because it has a limited number of clusters with which to fit a growing set of data.

Table 7.1 compares the speed and fit of IVI and retraining from scratch.

Training incrementally with IVI takes a fraction of the time that training a new

model does because the former only has to extend an existing model to fit a larger

dataset. For example, training a new model on 130 documents takes over an hour,
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Train time (min.) ELBO
# training docs From scratch Ivi (delta) From scratch Ivi

65 15 – −5.735× 106 –
130 64 6.8 −1.122× 107 −1.126× 107

195 102 14 −1.640× 107 −1.645× 107

260 139 21.4 −2.151× 107 −2.155× 107

325 171 28.4 −2.644× 107 −2.645× 107

390 196 34.5 −3.148× 107 −3.148× 107

455 228 41.8 −3.644× 107 −3.642× 107

520 251 48.3 −4.138× 107 −4.134× 107

585 287 53.2 −4.626× 107 −4.622× 107

650 415 64 −5.100× 107 −5.094× 107

Table 7.1: Results of the incremental training experiment. Each row shows the
training times and ELBOs achieved by incremental variational inference and by
training new models “from scratch” each time the dataset grows. Ivi achieves
nearly identical fits of the data while taking only a fraction of the time of training
new models.

but training a model of 65 documents on an additional 65 documents with IVI takes

only 6.8 minutes, which is almost ten times as fast. Likewise, training on the full 650

documents takes 415 minutes, but adding 65 documents to an existing 585-document

model with IVI takes only 64 minutes, which is nearly six and a half times as fast.

At the same time, the ELBOs of models trained with IVI and from scratch are very

close. IVI actually performs slightly better as time goes on, probably because it has

has trained on the oldest documents for many iterations.

In general, incremental training is fast for two reasons. First, extending the

model itself is fast: Doing so only requires training a separate model on the new

data, which is typically a fraction of the existing dataset. Second, the extended

model only needs to be trained on the full dataset for a small number of stochastic

variational inference iterations to allow extra components to be pared back.
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7.5 Active Learning

The ability to train models incrementally is a vital tool for tasks where new data

periodically become available for training. However, in many real-world situations,

the volume of new data may be far larger than that on which the model can feasibly

be trained, even with scalable methods like stochastic variational inference. Instead

of using all new data, it will generally be necessary to sample new examples from

the data stream. In this case, it is desirable to pick examples that are most useful

for training, rather than ones already well understood by the existing model. Fur-

thermore, if the topic model is being used to support a supervised learning task,

the cost of labeling the new documents must be considered. Rather than labeling

all new examples, it desirable to sample a subset of examples whose labels would be

useful for classification.

To address such challenges, an extension of incremental variational inference

based on active learning was developed in this dissertation. Active learning is typi-

cally performed with a classifier alone, where the goal is to maximize performance

by acquiring labels for as few examples as possible. In the type of active learning

considered in this dissertation, the system is actually a combination of a topic model

and a classifier. In addition to minimizing the number of training examples that

must be labeled, a goal is minimize the training time (or computational resources)

required to train the topic model. Documents are actively selected both for labeling

and inclusion in the topic model’s training set. Such a method can be thought of as

a special case of incremental variational inference where a classifier selects a subset

of new documents for inclusion in the training set. The key idea is that, by choosing

only the most informative examples (according to some criterion), the model-plus-

classifier pair can achieve high performance with relatively small amounts of training

data.

The proposed method is based on pool-based active learning [48]. In this sce-
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Algorithm 2 Pool-based active learning with uncertainty sampling

Select a small initial training set Dtrain.
Train the model M on Dtrain.
while more labeled documents are needed do

Run inference on unlabeled documents Dpool to generate features
Set D′train to top documents ranked by S(·).
Set Dtrain ← Dtrain ∪ D′train and Dpool ← Dpool\D′train
Train the model on the new Dtrain for ntrain more iterations.

end while

nario, the system is given access to a pool of unlabeled documents and can iteratively

select new examples to be labeled and included in the training set. Because the goal

is to train models with high classification accuracy, it should be most beneficial to

label documents that the classifier is most uncertain about labeling. This particular

form of active learning is called uncertainty sampling [48]. Intuitively, uncertainty

sampling should select documents that are different as possible from those already

in the training set, at the exclusion of easy examples that would provide little new

discriminative information to the model.

Algorithm 2 describes the pool-based uncertainty sampling algorithm for

IWTM. The model is initially trained on a small amount of labeled data. Then, at

each iteration of active learning, the model and an external classifier work in concert

to select new examples to add to the model’s training set. To select new examples,

the model is first used to compute features for both the labeled training examples

and the unlabeled pool. A classifier is trained on the labeled examples and used to

score the examples in the unlabeled pool. (All examples are represented using the

features generated from the model). The top-scoring example is then labeled and

added to the training set. The classifier can then be re-trained and used to select

another example, as necessary.

In this topic model active learning method, new training examples are se-
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lected using the margin sampling criterion, defined as

S(x) = p(y = ŷ2 |x)− p(y = ŷ1 |x)

where ŷ1 and ŷ2 are the most and second-most likely class labels according to the

classifier. By construction, it selects examples that lie near a decision boundary in

the classifier, i.e. ones that the classifier is uncertain about how to label.

The active learning algorithm described above is fairly general. The proce-

dure can be used with any topic model that can be trained incrementally and any

classifier from which class label probabilities can be derived. Thus, both IWTM and

LDA may benefit from active learning. However, one appealing property of IWTM

is that the model can adapt its vocabulary and vocabulary size as more documents

are added to the training set; LDA, on the other hand must use a fixed vocabulary

defined offline by K-means. Thus, IWTM is expected to achieve higher gains in

accuracy as a result of actively selecting the dataset.

7.6 Active Learning Experiments

Active learning for IWTM is a special case of incremental variational inference where

new training documents are selected by a classifier. It is therefore evaluated on the

13-scene dataset using an experimental setup similar to that of section 7.4.

7.6.1 Method

As in the incremental training experiments, IWTM is first trained on a seed set

of 65 documents for 100 iterations. Subsequently, 65 new training documents are

periodically selected from an unlabeled pool, labeled, and added to IWTM’s training

set. In one set of models (IWTM active), the new documents are selected by the

classifier’s margin criterion using the method described in the previous section. As
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Figure 7.4: Active learning for IWTM versus random selection. Actively selecting
new labeled training documents results in higher classification accuracy with smaller
amounts of data than random selection, validating the topic model active learning
method.

a baseline, a second set of models (IWTM random) receive a random sample of

new documents from the unlabeled pool. For both selection strategies, IWTM is

extended using incremental variational inference each time the training set grows.

As in the previous experiments, the new data model is trained for 50 iterations of

stochastic variational inference and, after merging, the extended model is trained

for 20 additional iterations.

As a second baseline, active learning for IWTM is compared to a similar pro-

cedure for LDA. The vocabulary size is variedK ∈ {62, 125, 250, 500, 1000, 2000, 4000}.
As in previous chapters, a one-versus-all SVM classifier is trained on topic weights.

The SVM soft-margin parameter C for each classifier is selected using cross-validation.

New documents are selected using the margin criterion. Both models have T = 25

topics. The unlabeled pool contains 1300 unlabeled documents.

7.6.2 Results

Figure 7.4 shows the results of active and random selection in IWTM. Models whose

training sets were selected using active learning achieved significantly higher accu-
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Figure 7.5: (left) Test accuracies of IWTM and LDA during active learning. (right)
Number of clusters used by IWTM as training progresses. Each LDA model uses a
static visual vocabulary that is fixed the start of training. The relative performance
of different vocabulary sizes varies as the training set grows; some that are initially
near-optimal (e.g., K = 62) perform poorly later. In contrast, IWTM adapts its
clustering as training progresses. As a result, it consistently outperforms all LDA
models for the entirety of the experiment.

racy across the entire run of the experiment. The performance difference between

active and random selection starts small and gradually increases as more examples

are added to the training set. At 260 labeled documents, active selection has its

greatest gains over the baseline, achieving an 5.1% higher absolute accuracy. The

margin between the two methods begins to close towards the end of the experiment.

This is for two reasons. First, the accuracy of any classifier, as a function of train-

ing set size, naturally asymptotes. As the training set grows, additional examples

provide smaller marginal gains. Second, active learning is a greedy algorithm and

selects the most discriminative training examples in early iterations. Doing so leaves

a smaller pool of less informative examples for later iterations, making active selec-

tion progressively less effective. This degradation can be mitigated by providing the

learner with a larger unlabeled pool.

Figure 7.5(a) compares the performance of active learning in IWTM and

LDA. LDA’s accuracy varies to some degree with a combination of the vocabulary
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and training set sizes. One important observation is that the relative performance of

a particular vocabulary size sometimes changes as the dataset grows. For example,

on the initial training set, LDA does well with a very small vocabulary (K = 62)

and worse with larger vocabularies such as K = 500 or K = 1000, which overfit.

However, as more documents are added to the training set, the small vocabulary

models fall to among the worst (because they now underfit the data), while the larger

vocabulary models become the best. This phenomenon complicates the selection

of an optimum vocabulary size for active learning in LDA. Indeed, since different

vocabulary sizes “peak” with different amounts of data, there generally will not be

a vocabulary size that is optimal during the entire course of active learning.

In contrast, IWTM has the ability both to pick a vocabulary size that fits

the initial training set and, thanks to IVI, change it dynamically as the dataset

grows. Figure 7.5(b) shows how the number of clusters changes over time during

the course of active learning. IWTM uses approximately 400 clusters to fit the initial

65 documents and about 1400 for the final dataset. As a result, IWTM maintains

about 2-4% better absolute accuracy than LDA – with any vocabulary size – across

the entirety of the experiment. Another interpretation of the same results is that

IWTM can achieve the same level of performance as LDA using a smaller number

of documents. For most iterations, IWTM matches the accuracy of the best LDA

model with about 65 more documents. Towards the end of the experiment, IWTM

matches the best LDA model overall using about 130 fewer training documents.

Although LDA’s active learning performance is outmatched by IWTM’s, ac-

tive selection in LDA is indeed effective. Figure 7.6 compares the performance of

LDA under active learning and random selection, breaking down the results by dif-

ferent vocabulary sizes. In a few cases (K = 125, 250, 2000), active learning is no

more effective than random selection until the training corpus has grown to 200

documents. These cases occur when the training set is small and the vocabulary is
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very large or very small. Such results suggests that over- or under-fitting the visual

vocabulary leads to poor quality topic representations, which makes it difficult for

the classifier to identify informative unlabeled examples.

Nevertheless, actively selecting the training set nearly always yields higher

test accuracy than choosing new examples at random, regardless of the vocabulary

size used. Thus, this style of active learning – with a combination of an unsupervised

model and external classifier – is not specific to IWTM and may be useful for topic

modeling in general. In particular, active learning with LDA might be useful for

subsampling large text corpora, where the vocabulary size is static.

7.7 Conclusions

This chapter presented two contributions of this dissertation that help accommodate

the challenge of learning on growing datasets. Incremental variational inference

allows Bayesian non-parametric models to be trained efficiently on growing datasets

while supporting the property of them that makes them so powerful – namely, that

the model complexity is a random quantity that grows dynamically with the dataset

size. IVI is a general method that can be applied to a variety of BNP models based on

stick-breaking constructions. Furthermore, it is simpler to implement than existing

methods, needing only an implementation of (stochastic) variational inference for

the model of interest. Building on variational inference in such a design makes IVI

fast and allows document-level inference to be parallelized over multiple cores or

machines. Active learning is one application of IVI in supervised learning settings.

Rather than using adding all available documents, it intelligently selects new ones

to add to the topic model and classifier so that the system performs better. Doing

so allows the system to perform better while using a smaller training set.

Overall, the results in this chapter and chapter 6 establish that powerful

models like IWTM, despite their additional complexity, can be trained efficiently
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Figure 7.6: LDA active learning vs. random selection for different vocabulary sizes.
When the vocabulary size is too small or large relative to the initial training set
(K = 125, 250, 2000), active learning must go through multiple iterations before it
is more effective than random selection. These exceptions notwithstanding, active
learning almost always outperforms random selection, regardless of the vocabulary
size used. Such results demonstrate that active learning with topic models is effective
beyond IWTM, and suggests that it may be applied to topic models in general.
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and at scale. The next chapter shifts to reviewing the lessons learned during the

development of this research and discussing avenues for future work.
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Chapter 8

Discussion and Future Work

Previous chapters described the Infinite-Word Topic Model, its inference procedures,

and tools to handle challenges of real-world applications, including partially labeled

and growing datasets. These contributions constitute progress towards the larger

goal of automated, large-scale analysis of digital media, but there is still more work

to do. This chapter discusses some directions for future work, including model

extensions, improvements to the inference procedure, and further applications of

the methods developed in this dissertation.

8.1 Infinite Word Infinite Topic Models

A key feature of IWTM is its ability to infer the visual vocabulary size to use based

on the data. One issue not addressed in this dissertation is how to select the number

of topics in the model. Experimentally, its effect seems to be less important than

vocabulary size; nonetheless, the number of topics must be chosen somehow, and

ideally it should be done in a principled way. Can IWTM be extended to infer the

number of topics as well as the vocabulary size?

Such a model, dubbed the Infinite Word Infinite Topic Model (IWITM), can
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be developed, although it is more complex than IWTM. It consists of an infinite

set of topics over an infinite-sized vocabulary of clusters, where the same clusters

are shared among all topics, and the same topics are shared among all documents.

Generating such structure requires a two-level hierarchy of Dirichlet processes. It is

written as

G0 ∼ DP(γH)

G1 ∼ DP(αDP(γG0)). (8.1)

Here, as in IWTM, H is a prior over the cluster parameters. Random variable G0

is an infinite mixture over cluster parameters drawn from H. Random variable G1

is also an infinite mixture; each of its atoms is a draw from DP(γG0) and is thus

a reweighted copy of G0. Thus, G1 is an infinite mixture over reweighted copies of

G0. In the language of IWTM, it is an infinite collection of topics over an infinitely-

sized vocabulary. The construction in equation (8.1) is a type of Nested Dirichlet

Process [45]. Specifically, it is a Nested Hierarchical Dirichlet Process, a construction

recently proposed to build topic models with tree-structured topics [41].

The remainder of IWITM generates a mixture of topics for each document,

a topic for each feature, a cluster from the feature’s selected topic, and, finally, the

datum itself:

Gd | ρ,G1 ∼ DP(ρG1), d ∈ 1 . . . Ndoc, (per-document topic mixture)

φd,i | Gd ∼ Gd, i ∈ 1 . . . Nd, (topic)

Ωd,i | φd,i ∼ φd,i, i ∈ 1 . . . Nd, (cluster parameters)

xd,i | Ωd,i ∼ F (Ωd,i), i ∈ 1 . . . Nd. (data)

Unlike IWTM, IWITM does not model the per-document topic weights explicitly;

rather, they are implicitly the weights of Gd, which is a document-specific mixture

over topics. All documents share the same topic definitions because, by construction,
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the atoms of Gd are inherited from G1, the global topic mixture.

Like IWTM, IWITM can be expressed using only conjugate exponential fam-

ily distributions by applying the stick-breaking construction to each DP. An efficient

stochastic variational inference procedure can therefore be derived for it. Due to the

need to maintain a large number of topics and clusters simultaneously, stochastic

variational inference for D-IWTM would benefit greatly from the simulated reorder-

ing technique that was developed for IWTM. In short, IWITM is a natural extension

of several parts of this dissertation, making it possible to infer both the vocabulary

and topics nonparametrically. This extension will be explored in future work.

8.2 Flexible Training

In general, topic modeling of digitial media – whether with IWTM or with LDA

and K-means – is more computationally demanding than topic modeling of text

corpora. The reason is that the documents’ local features must be clustered before

a topic structure on them can be learned. That is, clustering is computationally

expensive, but the topic modeling itself is much less so. The difference between the

two steps is seen most clearly in the combination of LDA andK-means. For example,

running K-means on the descriptors of 1300 images from 13-scene typically takes

seven to ten hours, depending on the value of K, while LDA itself takes around ten

minutes to train on the resulting bags of words. The division of labor is less clear

in IWTM, which performs both clustering and topic modeling in a single model.

However, profiling the inference procedure shows that clustering-related operations

consume most of the CPU time. In particular, the most computationally demanding

operation is computing the expected log likelihood of each datum with respect to

each cluster.

When using LDA and K-means, there is a straightforward way to speed up

the modeling process: train K-means for fewer iterations. (Of course, doing so may
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hinder the performance of the topic model, but it will still be faster.) Is there a

similar way to speed up IWTM? That is, can the clustering portion of the model be

turned off after some number of iterations of inference?

The answer is yes, and the solution to doing so involves an optimization

already present in the variational inference implementation. “Turning off” the clus-

tering layer of IWTM amounts to fixing the estimates of the cluster parameters

(m̃, ν̃, χ̃1, and χ̃2) to their current values. By fixing the clusters, the expected data

log likelihoods E[log p(xdi |µ,λ)] become fixed as well. That is, there is no point

in recomputing them in each iteration of inference – they can be cached. Caching

all of the expected log likelihoods, of course, would be very expensive: There are

Nd×C of them per document, and storing them for thousands of documents would

require many gigabytes of storage. Fortunately, there is no need to do so because,

as discussed in section XXX, the inference procedure only uses the Ctop � C most

likely clusters per datum. The top log likelihoods are stored in an efficient sparse

matrix format using O(Nd) memory per document, where entries not explicitly rep-

resented as treated as −∞. When the clustering portion of IWTM is turned off,

these matrices effectively become the new representation of the documents. They

only need to be computed once, and then can be cached in memory or piped to and

from secondary storage. Such a representation can be thought of as a probabilistic

generalization of bag of words. Indeed, when Ctop = 1, the sparse matrix represen-

tation becomes equivalent to a bag of words, and the inference procedure assigns

each datum entirely to its most likely cluster.

Optimizations like the one just described require some technical skill to im-

plement, but are not theoretically challenging to derive. In general, the point is that

using more complex probabilistic models does not have to translate to an intolerably

slow inference procedure as long as inference is implemented in a smart manner.
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8.3 Applications

This section describes future applications that are made possible by various parts

of this dissertation but that have not yet been explored.

8.3.1 Incremental Variational Inference

This dissertation developed incremental variational inference (IVI), a general method

for training Bayesian non-parametric models incrementally with variational infer-

ence. IVI is a powerful method: It allows BNP models to be trained efficiently on

large, growing datasets while preserving their ability to grow the model complexity

with the dataset size.

IVI has two main advantages over truncation-free variational inference (TFVI)

[59], the only existing work that addresses this problem for general BNP models.

First, IVI is simpler to implement. TVFI requires embedding a Gibbs sampler to es-

timate document-level latent variables inside of variational inference, while IVI only

requires a variational inference procedure for the model of interest. Second, IVI

is faster and more scalable than TFVI. The latter’s Gibbs sampling steps are slow

for complex models like IWTM and must be performed serially. In contrast, IVI is

built on variational inference, which is fast and allows document-level inference to

be distributed among multiple cores or machines.

Although IVI so far has been applied only to the Infinite-Word Topic Model,

similar procedures can be built for a wide class of Bayesian non-parametric mod-

els; section 7.3 provided a general recipe for doing using variational inference (or

stochastic variational inference) as a subroutine. IVI for Gaussian Dirichlet Process

mixtures was already developed in the course of this research, although it was not

evaluated in this dissertation. Another candidate application for IVI is HDP-LDA

[54]. IVI would allow HDP-LDA to be trained incrementally while using more top-

ics as its corpus grows. The resulting system could, for example, receive batches of

155



new news articles on an hourly basis and automatically add new topics for emerging

issues that it discovers.

8.3.2 Active Learning

In section 7.5, an active learning method was developed. The purpose was to do bet-

ter on a supervised learning task such as natural scene classification. Active learning

demonstrates that models do not always have to be trained on bigger datasets to

perform better; instead, they can be trained on a relatively small number of infor-

mative examples.

Results of this sort are curious in an age of big data. As datasets continue

to grow to unprecedented sizes, it sometimes seems necessary to develop models

and inference methods that scale along with them. Active learning shows that such

scaling is not always necessary, at least when the goal is a supervised task: By

quantifying how much each example will improve the task performance, the useful

information in a large dataset can be distilled into small set of its most informative

examples. This observation begs the question – what if there is no supervised task?

The goal of modeling might be, for example, exploratory data analysis, clustering,

or dimensionality reduction. In such cases, is it possible to distill large datasets into

small samples without resorting to random sampling?

Although intelligent subsampling is a difficult (and possibly ill-posed) prob-

lem in general, the methods developed in this dissertation allow doing it with topic

models. In the future, this approach can be developed into a more general method

of unsupervised active learning. It would behave in the same way as the method in

section 7.5, except it would select documents according to an unsupervised metric,

i.e. one that does not require training documents to be labeled. In particular, it

could use metrics that are functions of documents’ topic weights, which are mid-

level representations of their content. For example, new training documents could be
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selected on the basis of how much their topic weights differ from documents already

in the training corpus. Such a criterion could conceivably construct small datasets

with high coverage, i.e. ones with documents from many semantically distinct cat-

egories. It would also be an intelligent way to generate subsets without duplicates

or near-duplicates. If a natural scene database contains several similar pictures of

the same river, for example, there is probably little point in training the model on

all of them.

In addition to developing unsupervised active learning, in the future the

existing, supervised active learning method could be applied to datasets where it

will be more effective. While results on 13-scene are promising, active learning would

have a more dramatic effect on the SUN task (section 6.5), where the amount of

data available for training is extremely large.

8.3.3 Topic-Based Segmentation

IWTM’s ability to group together semantically-related image patches (section 6.5)

suggests that its features may be useful for other image analysis tasks, in particular

image segmentation. Such an idea is supported by existing work where topic models

have been applied successfully to segmentation. Two examples are the spatially-

coherent latent topic model (Spatial-LTM) [17] and the topic random field (TRF)

model [64]. In both models, the most likely topic assignment of each image region is

used as its segment label. Because these topic models were designed with segmen-

tation in mind, they have additional layers in their graphical models that enforce

spatial coherence in the topic labeling; that is, adjacent image regions are a priori

more likely to be assigned to the same topic. In future work, spatial coherence could

also be added to IWTM to make it more suitable for segmentation. The resulting

model would inherit the strengths of IWTM, including its ability to infer the fea-

ture vocabulary non-parametrically. Furthermore, a stochastic variational inference
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procedure could be developed for it by modifying IWTM’s, allowing it to be trained

efficiently and at scale.

8.4 Conclusions

Although the contributions of this dissertation constitute progress towards auto-

mated, large-scale analysis of digital media, there are many avenues for future work.

Some, but not all, have been enumerated in this chapter. In particular, applica-

tions in non-text domains besides images have not been considered, although the

widespread attention topic modeling has attracted suggests there would be many.

Additionally, the Infinite-Word Topic Model itself can be extended in an open-ended

manner: It can be embedded inside of other models that have not yet been envi-

sioned to discover more complex types of latent structure in the data.

The next and final chapter concludes. It reviews the contributions made

by this dissertation and puts them in perspective of the larger goal of automated

content analysis.
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Chapter 9

Conclusions

This final chapter summarizes the contributions of this dissertation: the Infinite-

Word Topic Model, the inference procedures used to train it, and the tools that allow

it to accommodate the challenges of real-word settings. It then broadly relates this

dissertation to the field’s goal of automated content analysis.

9.1 Summary of Contributions

Infinite-Word Topic Model The Infinite-Word Topic Model itself is the primary

contribution of this dissertation. IWTM is motivated by the shortfalls of existing

methods for topic modeling in non-text domains, typified by Latent Dirichlet Allo-

cation and K-means. IWTM has a number of advantages over such an approach.

Rather than performing clustering as a separate preprocessing step, it clusters data

probabilistically and integrates clustering into the topic model itself. By making use

of the hierarchical Dirichlet process, IWTM infers an appropriate number of clusters

to use, based on the size and complexity of the dataset, and allows sharing between

topics. Altogether, IWTM is a simpler and more powerful method for topic model-

ing in non-text domains than existing methods. Experiments show that it achieves
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higher performance than LDA and K-means while streamlining the modeling pro-

cess and obviating the need to tune the vocabulary size. While this dissertation

focuses on the application of IWTM to images, the model is sure to have use in

other digital media domains such as speech, audio, and video analysis.

Stochastic Variational Inference for IWTM This dissertation developed a

stochastic variational inference procedure for IWTM that is fast, easily paralleliz-

able, and scalable to large datasets. (The general theory of stochastic variational

inference is not novel to this dissertation, but rather originates from recent work by

Hoffman et al. [26].) As demonstrated experimentally, SVI makes IWTM approx-

imately as efficient to train as LDA and K-means where multiple values of K are

evaluated. Efficiency does not deteriorate the quality of the models produced by

SVI: IWTM still outperforms LDA, regardless of the vocabulary size used in the

latter. Perhaps most importantly, SVI allows IWTM to be trained on large datasets

like SUN, with thousands of images and millions of patch-level features.

Building efficient variational-inference procedures for large-scale Bayesian

non-parametric models has certain challenges. In particular, models that contain

dependent Dirichlet processes with many thousands of atoms each (like IWTM) re-

quire an efficient method for storing and accessing the mappings between DPs. This

dissertation developed a new technique for doing so, wherein mapping parameters

are shared between DPs and their sticks undergo simulated reordering. In IWTM,

this technique makes inference faster and reduces its memory overhead by a factor of

T (i.e. the number of topics; T = 100 in the SUN experiments). It is vital to scaling

IWTM to large datasets. In the future, it could also be used to improve inference

procedures for other large HDP-based models, such as HDP-LDA with many topics.

SVI is also an improvement over coordinate-ascent variational inference (CAVI)

for IWTM. Not only is SVI faster than coordinate ascent, it actually produces mod-

els that fit the data better. Each iteration of SVI examines a fraction of the docu-
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ments in the corpus and is thus faster and more memory-efficient than CAVI. Unlike

CAVI, SVI has the ability to escape (some) local optima, thanks to noise in its nat-

ural gradient estimates. As a result, SVI produces smaller models that achieve a

significantly better fit of the data. Finally, SVI is also a vast improvement over

the collapsed Gibbs sampler for IWTM. Given that the sampler is an order of mag-

nitude slower than SVI, cannot be parallelized easiliy, and produces models with

lower performance, there (frankly) appears to be little reason to use it for most ap-

plications. Perhaps the sole exception is that, on small, lower-dimensional datasets

where a Gibbs sampler can mix well, it may produce a more accurate estimate of the

posterior than variational inference, which systematically underestimates regions of

low posterior density.

Incremental variational inference This dissertation developed incremental vari-

ational inference, a general method for training Bayesian non-parametric models

incrementally. In general, mean-field variational inference is unsuitable for incre-

mental training because the model complexity decreases monotonically over time.

BNP priors assume that the model complexity should grow as a function of dataset

size, however, variational inference always shrinks it over time, and will not grow

it even if new data are added to the training set. IVI overcomes this limitation by

forcing the model complexity to grow when the training set grows. Experiments

show that incremental training with IVI takes a fraction of the time that training

a new model from scratch does, and it produces fits of the data that are just as

good. IVI enables BNP models to be trained incrementally within the fast, scalable

framework of variational inference. Thus, it helps clear a roadblock to the large-scale

application of BNP models.

Active learning with topic models Building upon incremental variational in-

ference, this dissertation developed a method for active learning in topic models.

161



Rather than training on all new data, an external classifier is used to pick out the

most informative examples to train on. Experiments demonstrated that active learn-

ing in both IWTM and LDA outperformed random selection. While LDA’s active

learning performance depends on the size of the training set and visual vocabulary,

IWTM achieved higher accuracy than all LDA models. This result is due in part to

IWTM’s ability to grow its complexity as new training documents are added. The

fact that active learning was successful in both IWTM and LDA suggests that it

can be applied to a broad class of topic models.

9.2 Closing Thoughts

Topic models have become a powerful, general purpose tool for learning latent struc-

ture in document collections. This dissertation overcomes several hurdles to their

large-scale deployment in non-text domains. IWTM itself helps extend topic mod-

eling to such domains by removing assumptions that do not make sense for them –

primarily, that documents are collections of discrete, mutually exclusive word indi-

cators from a fixed vocabulary. By doing so, IWTM can match or exceed the perfor-

mance of existing methods while also simplifying the modeling process. Stochastic

variational inference makes IWTM approximately as fast to train as LDA with bags

of words, and allows the model to be applied to large datasets. Finally, incremen-

tal variational inference and active learning address another challenge of real-world

applications: training models efficiently on growing datasets.

In conclusion, IWTM uses statistical structure within a corpus to infer se-

mantic representations of documents. It is flexible and can be used to analyze

collections of video, audio, and images. Although the model is more complex than

existing ones like LDA, it can still be trained efficiently and at scale. Therefore, al-

though machines are still far from the ultimate goal of automated content analysis,

this dissertation takes a step in that direction.
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