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Traditional computer vision algorithms try to understand the world

using visible light cameras. However, there are inherent limitations of this

type of data source. First, visible light images are sensitive to illumination

changes and background clutter. Second, the 3D structural information of the

scene is lost when projecting the 3D world to 2D images. Recovering the 3D

information from 2D images is a challenging problem. Range sensors have

existed for over thirty years, which capture 3D characteristics of the scene.

However, earlier range sensors were either too expensive, di�cult to use in

human environments, slow at acquiring data, or provided a poor estimation of

distance. Recently, the easy access to the RGBD data at real-time frame rate

is leading to a revolution in perception and inspired many new research using

RGBD data.

I propose algorithms to detect persons and understand the activities

using RGBD data. I demonstrate the solutions to many computer vision
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problems may be improved with the added depth channel. The 3D struc-

tural information may give rise to algorithms with real-time and view-invariant

properties in a faster and easier fashion. When both data sources are avail-

able, the features extracted from the depth channel may be combined with

traditional features computed from RGB channels to generate more robust

systems with enhanced recognition abilities, which may be able to deal with

more challenging scenarios.

As a starting point, the �rst problem is to �nd the persons of various

poses in the scene, including moving or static persons. Localizing humans

from RGB images is limited by the lighting conditions and background clutter.

Depth image gives alternative ways to �nd the humans in the scene. In the

past, detection of humans from range data is usually achieved by tracking,

which does not work for indoor person detection. In this thesis, I propose a

model based approach to detect the persons using the structural information

embedded in the depth image. I propose a 2D head contour model and a 3D

head surface model to look for the head-shoulder part of the person. Then,

a segmentation scheme is proposed to segment the full human body from the

background and extract the contour. I also give a tracking algorithm based

on the detection result.

I further research on recognizing human actions and activities. I pro-

pose two features for recognizing human activities. The �rst feature is drawn

from the skeletal joint locations estimated from a depth image. It is a compact

representation of the human posture called histograms of 3D joint locations
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(HOJ3D). This representation is view-invariant and the whole algorithm runs

at real-time. This feature may bene�t many applications to get a fast estima-

tion of the posture and action of the human subject.

The second feature is a spatio-temporal feature for depth video, which

is called Depth Cuboid Similarity Feature (DCSF). The interest points are

extracted using an algorithm that e�ectively suppresses the noise and �nds

salient human motions. DCSF is extracted centered on each interest point,

which forms the description of the video contents. This descriptor can be

used to recognize the activities with no dependence on skeleton information

or pre-processing steps such as motion segmentation, tracking, or even image

de-noising or hole-�lling. It is more �exible and widely applicable to many

scenarios.

Finally, all the features herein developed are combined to solve a novel

problem: �rst-person human activity recognition using RGBD data. Tradi-

tional activity recognition algorithms focus on recognizing activities from a

third-person perspective. I proposed to recognize activities from a �rst-person

perspective with RGBD data. This task is very novel and extremely challeng-

ing due to the large amount of camera motion either due to self exploration or

response of the interaction. I extracted 3D optical �ow features as the motion

descriptors, 3D skeletal joints features as posture descriptors, spatio-temporal

features as local appearance descriptors to describe the �rst-person videos. To

address the ego-motion of the camera, I proposed an attention mask to guide

the recognition procedures and separate the features on the ego-motion region
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and independent-motion region. The 3D features are useful at summarizing

the discerning information of the activities. In addition, the combination of the

3D features with existing 2D features brings more robust recognition results

and make the algorithm capable of dealing with more challenging cases.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Overview of 3D Sensing

The development of computer vision, the use of a camera and a com-

puter to recognize objects began in the early 1960s. It has matured fairly

quickly and contributes to the solution of some of the most serious societal

problems. Until now, most of the vision algorithms were built on 2D intensity

images. However, 3D geometric structure is important for many computer

vision applications such as navigation and object search, and it may bring

signi�cant improvement to the current computer vision tasks including ob-

ject and scene recognition, activity analysis, human-computer interaction and

robot vision. The acquisition of 3D geometric structure is a di�cult problem.

There are basically two ways to address it. The �rst way is to estimate 3D

structures from 2D images. Upon seeing a 2D image, a human usually has little

di�culty understanding its 3D structure. Thus, there might be cues embedded

in the 2D image to infer 3D. However, it is extremely challenging for current

computer vision systems to infer 3D structures from 2D images, due to the

considerable loss of information when projecting the 3D scene into a 2D image.

Such processes require high computational cost and good-quality images. Even
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though, there is still di�culty at estimating the 3D structure of texture-less

areas. The second way is to capture 3D structure directly from sensors. How-

ever, earlier range sensors were either too expensive, di�cult to use in human

environments, slow at acquiring data, or provided poor estimation of distance.

It was very di�cult to acquire two dimensional depth images in real-time in

the past. Laser scanners give measurements of one point of the scene at a

time, multiple co-planar scanners were sometimes used to generate multiple

measurements along a 2D line of the scene. Multiview-stereo systems com-

pute depth by comparing a pair of intensity images acquired by two cameras

at a certain distance apart. The computational cost for the stereo geometry

is high. Such data are usually used to analyze static objects of scenes. To the

best of my knowledge, there was no literature addressing activity recognition

using depth videos in the past.

The development of range cameras has progressed rapidly over the past

decade. Recently, the advent of depth cameras at relatively inexpensive costs

and smaller sizes give us easy access to the 3D data at a higher frame rate

and resolution. The easy access to real-time RGBD data is leading to a rev-

olution in computer vision, robotics, and other related �elds. Combining the

strengths of optical cameras and range sensors, RGBD sensing makes visual

perception more robust and e�cient, leading to the emergence of systems that

reliably recognize everyday objects and daily activities in complex scenes, as

well as systems that build detailed 3D models of indoor spaces. The quality

of the depth sensing, given the low-cost and real-time nature of the devices,
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is compelling, especially when compared with the previous commercial range

sensors. The only imperfection is the noise of the data. Depth measurements

often �uctuate and depth maps contain "holes" where no estimation of depth

are obtained in case of speci�c material, re�ection, interference, or fast motion.

I propose to take advantage of this readily available RGBD data to

improve the performance of existing computer vision algorithms. Especially, I

propose to address the problem of human activity recognition with this added

depth channel. I demonstrate that even under the current constraint of the

quality of the depth images, the improvement of the results made by the 3D

information is still quite encouraging. With the rapid development of new

depth sensors, we believe that the future generations of the depth sensors

will bring us better quality images and our 3D algorithms will bene�t more

applications.

1.1.2 Human Detection

Human detection is an important and basic task for many computer

vision systems. It may o�er a starting point for pose estimation, action recog-

nition, and human-computer interaction tasks. It is a crucial component for

autonomous systems such as intelligent cars and social robots. Detecting hu-

mans in images or videos is a challenging problem due to variation in poses,

clothing, lighting conditions, and the complexity of the backgrounds. The

problem becomes more di�cult when there are several persons moving in the

same area, or interacting with each other. In these cases, individual persons
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may be partially or totally occluded by other persons. There has been a signif-

icant amount of research in the past decade on human detection, and various

methods have been proposed [19, 20, 72]. Most of the research is based on

images captured by visible-light cameras. We may divide the algorithms of

�nding persons from visible-light images into three categories: detection from

tracking, sliding-window approach, and part-based approach. Tracking based

algorithms assume that a person is moving in speci�c patterns, such as walking

with a relatively smooth speed. The limitation is that static persons cannot

be detected, which happens very often in indoor scenes. The sliding-window

approach was �rst proposed to detect pedestrians [19]. It assumes a more

restricted pose of the person and has di�culty generalizing to persons with

various poses and rotations. The part-based approaches model the person as

a collection of parts, it is more �exible with the pose of the person, and may

handle partial occlusions. The parts are usually detected beforehand using

texture characteristics. Although these methods give satisfactory detection

results under certain scenarios, e.g. pedestrian on the road, RGB image based

methods encounter di�culties in perceiving the shapes of the human subjects

with articulated poses when the background is cluttered, or when the color of

the person is hardly distinguishable from the background (which often happens

in poor lighting areas).

Depth information is an important cue for humans to recognize objects,

since the objects may consists of many color blocks and various textures but

must occupy a continuous region in space. Depth image gives an alternative

4



to �nd human in the scene. In the past, there was research on detecting

humans using range data, which was single or multiple 2D scan lines of laser

measurements. The detection is usually achieved from tracking, the vertical

moving blobs are usually considered to be a human. These type of algorithms

may not work for indoor person detection when the persons may be static or

occluded by objects. In this thesis, I proposed to detect humans from a single

depth image. The person may be walking, sitting, dancing, or interacting

with other objects or persons. Despite the advantages of depth sensors, it is

still quite a challenging task since the "appearance" of a human in a depth

image may change drastically as a function of body pose, distance to the

sensor, self-occlusions, and occlusion by other objects. Unlike the previous

works, I do not rely on tracking to �nd the person. Furthermore, since I aim

to �nd persons under various poses, the traditional sliding-window approach

would not be appropriate to give good performance. I present a novel model

based method for human detection from depth images based on the 3D shapes.

Our algorithm utilizes depth information only. It can also be combined with

traditional gradient based approaches on RGB imagery to give more accurate

detection when the visual input is reliable. The detection algorithm may serve

as an initial step of the research on pose estimation, tracking, or activity

recognition using depth information.
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1.1.3 Human Activity Recognition

Recognizing human activity is one of the important areas of computer

vision research today. The goal of human activity recognition is to automat-

ically detect and analyze activities from sensors, e.g. a sequence of images,

either taken by RGB cameras, range sensors, other sensing modalities, or a

combination of a few sensing modalities. Its applications include surveillance

systems, video analysis, robotics and a variety of systems that involve in-

teractions between persons and electronic devices including computers. Its

development began in the early 1980s. Past research has mainly focused on

learning and recognizing actions from video sequences taken by a single visible

light camera [1, 86]. The major issue with this type of data is that capturing

articulated human motion from monocular video sensors results in a consider-

able loss of information, which limits the performance of video-based human

action recognition. Despite the e�orts in the past decades, recognizing human

activities from videos is still a challenging task.

Depending on the situation, human activity may have di�erent forms

ranging from simple actions to complex activities. They can be conceptually

categorized into 4 categories [1]: atomic actions, activities that contains a

sequence of di�erent actions, person-object interaction, and person-to-person

interaction, ranging from two person interaction to group activities. Research

on atomic action recognition from 3D began more than 20 years ago, while

complex activities and interactions were studied more recently, especially after

easy access of 3D data become available. In this thesis, I will cover atomic
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action recognition, daily activity recognition, and person-to-person interaction

from a �rst-person viewpoint.

We enumerate four major challenges to vision based human action

recognition. The �rst is low level challenges. Occlusions, cluttered back-

ground, shadows, and varying illumination conditions can produce di�culty

for motion segmentation and alter the way actions are perceived. This is one

of the major types of di�culty of activity recognition from RGB videos. The

introduction of 3D data largely alleviates the low-level di�culties by providing

the structure information of the scene. The second challenge is view changes.

The same actions can generate di�erent "appearances" from di�erent perspec-

tives. Solving this issue with a traditional RGB camera is done by introducing

multiple synchronized cameras, which is not an easy task for some applications.

For recognition from range images, this problem is partially alleviated since

the "appearance" from a slightly rotated view can be inferred from the depth

data. The problem is not totally solved, though, because the range image only

provides information on one side of the object in view, nothing is known about

the other side. If skeletal joint information can be inferred accurately using a

single depth camera, the recognition algorithm which builds upon the skeletal

joint information can be view-invariant. The third challenge is scale variance,

which can result from a subject appearing at di�erent distances to the camera

and subjects of di�erent body size. In RGB videos, this can be solved using

windows or �lters at multiple scales, which largely increases the computa-

tional cost. In depth videos, this can easily be adjusted because the dimension
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of the object can be estimated from the depth data. The fourth challenge

is intra-class variability and inter-class similarity of actions. Individuals can

perform an action in di�erent directions with di�erent characteristics of body

part movements, and two actions may be only distinguished by very subtle

spatio-temporal details. This remains a di�cult problem for most algorithms

using various types of data.

1.1.4 First-Person Activity Recognition

Action and activity recognition systems have attained crucial impor-

tance in recent years. Most of the works focus on recognizing activities that

are not directly performed in relation to the observer: some of them recognize

activities and actions that are independently executed by a single person, such

as running, drinking, or jumping [11]. Other researchers analyze interactions

between two persons [38] or groups of people [18,43] from a third-person per-

spective. Works on recognizing �rst-person human interaction activities, i.e.

activities performed by a person that are directly related to the presence or

behavior of the explorer is very limited [70]. In particular, the �rst-person

recognition task can be formulated as follows: given a moving subject that

is actively exploring the scene, e.g. an observer equipped with a sensor, the

interesting activities are those that directly involve the observer. Examples

of such activities are punching, shaking hands, and throwing an object at the

observer. Analyzing this class of activities enables to understand whether the

persons surrounding the observer are friendly or hostile, and whether there will
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Figure 1.1: Sample RGB image frames from our �rst-person dataset.

be a threat. This novel problem is useful in contexts such as video surveillance,

where the security camera would need to understand if somebody is trying to

damage it. Human-machine interaction, where the machine has to properly

react to a person's behavior, is also a domain where classifying �rst-person

activities is fundamental. Even recently developed wearable devices such as

the Google Glass [80], may use these features.

In this thesis, I propose to study the problem of human interaction-level

activities using RGBD data from a �rst-person view-point. Several types of

features are investigated for this new task including both 2D and 3D features.

To the best of my knowledge, the only previous work on human interaction

recognition from a �rst-person perspective was proposed in [70]; neverthe-

less, they used simple RGB features to classify activities. I experimentally

demonstrate that adjoining depth, skeleton, and 3D information signi�cantly
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increases the activity classi�cation accuracy.

First-person activity videos are notably di�erent from classic action

recognition videos, as the videos present a strong ego-motion component. Sam-

ple images recorded from our datasets are shown in Figure 1.1. In this thesis,

I proposed an attention mask to help focusing the descriptors and di�erentiat-

ing ego-motion regions from independent-motion regions Unlike the majority

of the works in the literature, which suppresses ego-motion data, I exploit

both pieces of information. I show that this technique improves our results

signi�cantly.

1.1.5 Overview of My Work

Given a depth image, the �rst problem to consider is to detect the

persons in the scene. Localizing humans from RGB images is limited by the

lighting conditions and background clutter. Depth image gives alternative

ways to �nd the human in the scene. In the past, there was research on

detecting humans using range data, which was single or multiple 2D scan lines

of range data. The detection is usually achieved from tracking, which does not

work for indoor person detection where the persons may be static and occluded

by objects. In this thesis, I presented an algorithm to detect humans of various

appearances and poses from a single depth image. Since the depth images lack

of texture, I propose a model based approach to detect the persons using the

structural information embedded in the depth images. The most stable feature

of a person in the depth image is the head and shoulder part, the structure
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of which does not change too much with di�erent poses and body shapes.

Also, the shape of the body and shoulder stays similar from frontal, back,

and side views. The major detection process contains two stages. Firstly, a

2D chamfer model is matched across the whole image and gives the regions

that possibly contain a human head. Secondly, an occlusion mask is extracted

for each region. A 3D head model is constructed at the correct scale and �t

onto the regions with the occlusion mask, resulting in the �nal estimation.

Both matching stages are guided by the depth value to adjust the model to

the correct scale. A region growing algorithm is proposed to �nd the entire

human body, and the body contour is extracted. All planar surfaces in the

depth image are extracted to avoid the human region growing onto the planar

regions in the scene such as �oors and tables. Furthermore, a simple tracking

algorithm was developed based on the detection result. The algorithm was

tested on 2 datasets captured by a Kinect in two di�erent indoor settings and

presented superior results than state-of-the-art works on RGB images or depth

images [19, 34,77].

I further researched on recognizing human actions and activities. I

proposed two features for recognizing human activities. The �rst one is drawn

from the skeletal joint locations of the person, which is a high level abstraction

of the human posture and can be directly extracted from depth images [75].

I designed a compact representation of the human posture called histograms

of 3D joint locations (HOJ3D) from the skeleton. View-invariant property

is achieved by building the reference coordinates in the 3D skeleton space.
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A spherical coordinate is constructed according to the joints on the torso of

the person. Joints on the limbs are casted into the 3D spherical coordinates

and concatenated into a histogram, which constitutes the HOJ3D feature.

The HOJ3D computed from the depth sequences are reprojected using LDA

and then clustered into posture visual words, which represent the prototypical

poses of actions. The temporal evolutions of those visual words are modeled

by discrete hidden Markov models (HMMs). This feature may bene�t many

applications to get a fast estimation of the posture and action of the humans

in the scene. However, this feature is limited by the dependence of the skeletal

joints estimation result. The skeletal estimation algorithm is not reliable or

may fail under some real-world scenarios, e.g. when the human body is partly

in view, when the person touches the background, when the person is not in

an upright position, or when the sensor is mounted on a higher location and

angled downwards.

To be able to recognize the activity when the skeleton information

is not available/reliable, a more general feature is desired. Inspired by the

success of the spatio-temporal interest point method on RGB videos, I develop

a spatio-temporal feature to describe the local 3D patches in the depth video.

First, interest points are extracted using a �ltering algorithm that e�ectively

suppresses the noisy measurements and �nds the salient motion in the depth

video. Then, a novel depth cuboid similarity feature (DCSF) was proposed

to describe the local 3D depth cuboid around the DSTIPs with an adaptable

supporting size and handles the noise in the depth video. The DCSF feature
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was designed based on self-similarity notion, which has been proved to be more

robust on depth data than gradient based feature that has been widely used on

RGB data [34]. The DCSF features from all the DSTIPs form the description

of a video, and the activity contents of the video can be classi�ed using a

bag-of-words approach. We tested this feature using our own dataset and

the MSRAction3D and MSRDailyActivity3D public datasets. Experimental

evaluations showed that the proposed approach outperforms state-of-the-art

features and algorithms on depth videos, and this framework is more widely

applicable than existing methods.

Finally, all the features herein developed are employed and combined

to solve a novel problem: �rst-person human activity recognition using RGBD

data. This task is very novel and extremely challenging due to the large

amount of motions of the camera. I extracted 3D optical �ow features as

the motion descriptors, 3D skeletal joints features as posture descriptors, and

HOG/HOF from RGB channels and DCSF from depth channel as the local

appearance descriptors to describe the �rst-person videos. As mentioned, the

skeleton is not available for some sequences or some part of the sequence, in

those cases, a symbol for the missing skeleton is inserted. To address the ego-

motion of the camera, an attention mask was proposed to guide the recognition

procedure and separate features on the ego-motion region and independent-

motion region. Studies conducted on primates suggest that ego-motion and

independent-motion are perceived by two di�erent areas of the brain [54, 84].

Motivated by these �ndings, I propose a new version of state-of-the-art descrip-
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tors, explicitly di�erentiating ego-motion regions from independent-motion re-

gions. Unlike the majority of the works in the literature, which suppresses

ego-motion data, I exploit both pieces of information. I show that this tech-

nique improves our results signi�cantly.

1.2 Main Contributions

I developed algorithms constituting a pipeline from human detection to

activity recognition using 3D data. The algorithms developed here are in line

with the fast development of RGBD hardware and the rapid growing number

of research conducted using RGBD perception in the past several years. The

existing resources and related works for each category were limited at the time

of developing the algorithms. The proposed work made contributions to the

fast growing literature of the related areas. I summarized the contribution into

the following 5 aspects.

Human detection algorithm using a single depth image I proposed an

algorithm on human detection from a single depth image that is able to detect

moving or static persons in various poses and appearances. The model-based

approach enables the system to �nd the persons in the scene, which provides

initialization of a variety of tasks such as pose estimation, gesture recognition,

activity recognition, human-computer interaction, and so on.

Real-time HOJ3D feature for action recognition I proposed a view-

invariant feature for action recognition using skeletal joints information. This

algorithm recognizes the action of persons in real-time and independent of the
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viewing angle, which is desirable for many applications.

Depth cuboid similarity feature for activity recognition I proposed a

novel spatio-temporal feature for depth video that specially handles the noise

of the depth video and gives robust and discerning descriptions of the human

motion in depth video. This feature o�ers the possibility to understand the

contents of the depth video or the activity of persons without the dependence

on the skeleton, which is unreliable or not even available in many real-world

applications.

First-person interaction activity recognition with RGBD data I pro-

posed to analyze the activities or interactions of persons from a �rst-person

view-point using RGBD perception. I demonstrated that depth information

is helpful at this task where the camera presents signi�cant ego-motion, and

combining features extracted from RGB and depth channels gives the optimum

result in this challenging task.

RGBD datasets on human detection and activity recognition I made

publicly available one depth dataset on human detection, one RGBD dataset

on action recognition, and two RGBD datasets on �rst-person activity recog-

nition using two di�erent �rst-view settings.

The algorithms proposed here have been cited more than 200 times by

Mar. 2014.
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1.3 Road Map

In the following Chapter, I describe related work to my thesis. In Chap-

ter 3, I present my human detection algorithm from a depth image. In Chapter

4, I describe the skeletal joint feature for action recognition. In Chapter 5, I

give details of extracting spatio-temporal interest points from depth video and

the construction of depth cuboid similarity features to describe depth cuboids.

In Chapter 6, I describe my work on �rst-person activity recognition from

RGBD data. Finally, in Chapter 7, I conclude the dissertation.
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Chapter 2

Related Work

2.1 Human Detection

Human detection has been intensively studied in the past decade. Most

of the works focus on pedestrian detection in outdoor scenes for vehicular

applications. Both visible light video cameras and range sensors have been

explored for this task.

Approaches on visible light images or videos include the following 3

categories. The �rst category �nds humans from tracking. Foreground objects

are usually distinguished through a background subtraction process, and the

foreground blobs are tracked and veri�ed based on the motion or geometric

shape of the blob [30,35]. Depending on the approach, static background im-

ages may be needed to initialize the background model, and a shape model of

the pedestrian may be needed for recognition [30]. The limitation of this type

of approach is that the humans have to be moving in the desired pattern to be

recognized. The second category is sliding-window based methods, which are

also popular among researchers. Earlier ones, such as [63], used 2D wavelets

(vertical, horizontal, diagonal) as the detection window and Dalal et al. [19]

developed the widely known sliding-window HOG feature for pedestrian de-
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tection. Simple as it is, the sliding-window approach has the tacit assumption

that the human body has a general restricted geometric shape, e.g. a vertical

walking person. Special e�ort has to be made to handle occlusions. The third

category is part-based methods. Part based algorithms are more �exible at

modeling shape articulations. The individual human is modeled as an assem-

bly of body parts. It handles partial-occlusions e�ciently. Di�erent features

are selected to detect body parts. Parts are then combined to form a joint

likelihood model, and the human detection problem may be formulated as

a MAP estimation problem [56, 95]. Alternatively, humans may be detected

in a hierarchal way by combining a global template and local parts using a

Bayesian approach [50].

Despite the detailed approaches, human detection algorithms from vis-

ible light images or videos su�ers from di�culties caused by cluttered back-

grounds or lighting changes. Due to the information loss from 3D to 2D, it is

very hard to perceive the contour of the human when the color of the human

is not easily distinguished from the background objects. Lighting may change

the appearance of the human body or parts drastically in the image, which

may cause di�culty for the gradient features or part detectors.

There are also a number of works on human detection from range data.

Early works looked for a moving local minimal in the scan for person detec-

tion [27]. Due to the natural performance limit for people detection using a

single 2D range sensor, multiple co-planar 2D scanners might be used. Fod et

al. [27] used multiple planar laser range �nders to build a background/fore-
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ground model. Range measurements are grouped into entities such as blobs

and objects, and a Kalman �lter was employed to estimate trajectories for

these objects. With the development of sensors, 3D data was later explored

for human detection tasks. Bajracharya et al. [3] detect upright human adults

in point clouds from stereo vision by perocessing vertical objects and consid-

ering a set of geometrical and statistical features of the cloud based on a �xed

pedestrian model. Navarro-Serment et al. [59] employs 3D LADAR measure-

ments to �nd salient vertical objects above ground. Motion feature is extracted

from the tracked objects to compute the potential of the object being human

and each object was then classi�ed using a pattern recognition technique based

on geometric features. The above human detection algorithms developed on

range data all depend on motion, which may not work when the person is not

moving.

There are also researchers who equipped the system with multiple sen-

sors to boost detection performance. Several researchers use depth as a cue

to segment foreground blobs and then use visual algorithms to detect hu-

mans [71, 78, 99]. Cui et al. [17] employ laser scanners to provide feet trajec-

tory tracking and combine it with visual body region tracking techniques in

a Bayesian formulation. Similarly, Bellotto et al. [7] combine laser-based leg

detection and visual face detection into a Kalman �lter to detect and track the

persons from a mobile robot. Choi et al. [16] fuse image-based pedestrian and

upper body detectors, a face detector, a skin detector, as well as a depth-based

shape detector and motion detector into a sampling framework to construct a
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tracking-by-detection formulation. In another way, Rivera-Bautista et al. [69]

use a face detector and a skin color detector to �nd the person and then em-

ploy a 3D region growing method to �nd the full body. Furthermore, Spinello

et al. [77] design a counter-part of the HOG feature in depth data called the

Histogram of Oriented Depths (HOD) which is combined with HOG to detect

pedestrians. All the above methods depend on visual channels for detection,

depth information is mostly used as an auxiliary for the visual image detectors.

Work on human detection from depth channels only is very limited [34].

Human detection algorithms with depth inputs only are desirable. There

may be cases when visual inputs are not available, e.g. when the environ-

ment is very dark (surveillance at night). Also, compared to the multi-modal

method, depth-only algorithms save the budget of one sensor as well as the

computational cost for the additional channels.

In this thesis, I consider human detection in indoor settings. Indoor

human detection is more challenging because of the possibilities of various pos-

tures. Simplistic assumptions in outdoor pedestrian detection may no longer

be valid in indoor settings where people may stand, sit, lean on a wall, interact

with objects, and so on. The persons may also get truncated by the image

boundary or occluded by furniture or other persons.

2.2 Activity Recognition

Activity recognition has a long history; past research has mainly fo-

cused on learning and recognizing actions from video sequences taken by a
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single visible light camera. The literature has been surveyed in many pub-

lications [1, 86]. Here I will mainly focus on introducing the related works

on human activity recognition from depth or RGBD images [2]. Based on

the features used, they may be divided into �ve categories: features from 3D

silhouettes, features from skeletal joint or body part locations, local spatio-

temporal features, local occupancy patterns, and 3D scene �ow features.

2.2.1 Recognition From 3D Silhouettes

Among the early attempts on action recognition from intensity images,

researchers have extracted 2D silhouettes as a simple representation of human

body shape from the intensity or RGB images and model the evolution of

silhouettes in the temporal domain to recognize actions. It was shown that

the silhouettes, or, extremities of the silhouettes, carry a great deal of shape

information of the body. By tracking the person's silhouette over time, Davis

et al. [21] generated a Motion History Image (MHI) which is a scalar-valued

image where intensity is a function of recency of motion. Fujiyoshi et al. [28]

extracted a "star" skeleton from silhouettes for motion analysis. Yu et al. [103]

extracted extremities from 2D silhouettes as semantic posture representation

in their application for the detection of fence climbing. However, the silhou-

ettes extracted from intensity images are view-dependent, and only suitable

for describing actions parallel to the camera. Also, extracting the correct sil-

houettes of the actor can be di�cult when there is background clutter or bad

lighting conditions.
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In a depth image, the silhouette of a person can usually be extracted

more easily and accurately. In addition, the depth image provides the body

shape information not only along the silhouettes, but also the whole side facing

the camera. Thus, more information can be acquired from depth images. Many

algorithms have been proposed to recognize actions using representations built

from 3D silhouettes. Li et al. [48] sample a bag of 3D points on the contours

of the planar projections of the 3D depth map to characterize a set of salient

postures that correspond to the nodes in the action graph. The number of

points can be controlled by the number of projection planes used. Yang et

al. [101] also project depth maps onto three orthogonal planes. They propose

Depth Motion Maps (DMM) which stack the motion energy through the entire

video sequences on each plane. HOG is employed to describe the DMM. Ni et

al. [60] propose a Three-Dimensional Motion History Image (3D-MHI) which

equip the original MHI with two additional channels, i.e. two depth change

induced motion history images (DMHIs): forward-DMHI and backward-DHMI

which encode forward and backward motion history. Jalal et al. [36] use Radon

transform (R transform) to compute a 2D projection of depth silhouettes along

speci�ed view directions, and employ R transform to transform the 2D Radon

projection into a 1D pro�le for every frame. Fanello et al. [24] propose a Global

Histogram of Oriented Gradient (GHOG) by extending the classic HOG [20]

which was designed for pedestrian detection from RGB images. The GHOG

describes the appearance of the whole silhouettes without splitting the image

into cells. The gradient of the depth stream shows the highest response on the
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contours of the person thus indicating the posture of the person. Wu et al. [96]

propose extended-MHIs by fusing MHI with gait energy information (GEI) and

inversed recording (INV) at an early stage. GEI compensates for non-moving

regions and multiple-motion-instance regions. INV provides complementary

information by assigning a larger value at initial motion frames instead of the

last motion frames. The extended-MHI was proved to outperform the original

MHI on an action recognition scenario. Kurakin et al. [42] divide the depth

image into sectors and compute the average distance from the hand silhouettes

in each sector to the center of the normalized hand mesh as a feature vector

to recognize hand gestures.

Current algorithms using 3D silhouettes are suitable for single per-

son action recognition and perform best on simple atomic actions. There is

di�culty in recognizing complex activities due to the limitation of the repre-

sentation. Occlusion and noise can mar the silhouettes dramatically, and the

extraction of accurate silhouettes may be di�cult when the person interacts

with background objects (e.g. sitting on sofa). Furthermore, the depth map

only gives the 3D silhouettes of the person facing the camera. Thus, the 3D

silhouettes based algorithm are usually view-dependent, even though they are

not limited to only modeling parallel motions as in intensity images.

2.2.2 Recognition From Skeletal Joints or Body Parts Tracking

The human body is an articulated system of rigid segments connected

by joints, and human action is considered a continuous evolution of the spatial
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con�guration of these segments. Back in 1975, Johansson's experiment showed

that humans can recognize activity with only seeing the light spots attached

to a person's major joints [37]. In computer vision, there is plenty of research

on extracting the joints or detecting body parts and tracking them in the

temporal domain for activity recognition. In intensity images, researchers

tried to extract "skeletons" from silhouettes [28], or label main body parts [9]

such as arms, legs, torso, and head for activity recognition. Researchers also

tried to extract joints or body parts from stereo images or to directly get them

from motion capture systems.

In 2011, Shotton et al. [75] propose to extract 3D body joint locations

from a depth image using an object recognition scheme. The human body is

labeled as body parts based on the per-pixel classi�cation results. The parts

include LU/ RU/ LW/ RW head, neck, L/R shoulder, LU/ RU/ LW/ RW arm,

L/ R elbow, L/ R wrist, L/ R hand, LU/ RU/ LW/ RW torso, LU/ RU/ LW/

RW leg, L/ R knee, L/ R ankle and L/ R foot (Left, Right, Upper, Lower).

This o�ers us easy access to the skeletal joint locations of the persons with

overall better accuracy, and this excited considerable interest in the computer

vision society. Many algorithms have been proposed after that recognizing

activities using skeletal joint information. The most straight forward feature is

the pairwise joint location di�erence feature, which is a compact representation

of the structure of the skeleton posture of the current frame. By computing

the di�erence of the joint positions from the current frame and previous frame,

one can get the joint motion between the two frames. Especially, supposing
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the �rst frame is a neutral pose, taking the joint position di�erence between

the current frame and �rst frame can generate an o�set feature. Masood et

al. [53], Zhang et al. [106] and Yang et al. [100] concatenates these features

and test its e�ectiveness at recognizing activities.

From the skeletal joint locations, joint orientation can be computed,

which is invariant to human body size. Sempena et al. [74] build a feature

vector from joint orientation along time series and apply dynamic time warping

onto the feature vector for action recognition. Bloom et al. [10] concatenates

5 types of features: pairwise joint position di�erence, joint velocity, velocity

magnitude, joint angle velocity w.r.t. the x-y plane and x-z plane, and 3D

joint angle between three distinct joints. In total, 170 features were computed

to recognize gaming actions.

Researchers also tried to group the joints and construct planes from

joints and measure joint-to-plane distance and motion as features. Yun et

al. [104] construct a feature that captures the geometric relationship between

a joint and a plane spanned by 3 joints. This feature is intended to describe

information such as how far the right foot lies in front of the plane spanned

by the left knee, hip, and torso. Sung et al. [81] compute each joint's rotation

matrix with respect to the person's torso and hand position as features and

use a maximum-entropy Markov model (MEMM) to learn the actions.

The skeleton posture feature I developed came around the same time as

these related works, and it o�ers an alternative method for action recognition

with a real-time and view-invariance features.
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2.2.3 Recognition Using Local Spatio-Temporal Features

Local spatio-temporal features have been a popular description for ac-

tion recognition in intensity videos. The video is regarded as a 3D volume

along space (x, y) and temporal t axis. Generally, local spatio-temporal in-

terest points (STIPs) are �rst detected, then descriptors are built around the

STIPs on the volume. Classi�cation can be made from the descriptors using,

e.g., bag-of-words approach. Many di�erent STIP detectors [22,44,61,94] and

descriptors [22, 41, 45, 73, 94] have been proposed in the literature during the

past decade. The local spatio-temporal features have demonstrated successful

at recognizing a number of action classes with varying di�culties [89].

Encouraged by the success in intensity video, researchers also tried the

spaio-temporal features in depth videos. Ni el al. [60] use depth information

to partition the space into layers, extract STIPs from RGB channels of each

layer using a Harris3D detector [44], and use HOG/HOF [45] to describe the

neighborhood of STIPs in the RGB channel. In this approach, depth was only

served as a auxiliary for the extraction of STIPs from RGB videos, the de-

tector and descriptor was applied on the RGB channels. Zhang et al. [107]

extract a 4D cuboid from RGBD video by calculating a response function

from both depth and RGB channels and use the intensity and depth gradients

along x, y, t directions as the local feature. Cheng et al. [15] extract STIPs

from depth video using a Harris3D detector. They propose a Comparative

Coding Descriptor(CCD) feature to describe the 3 × 3 × 3 depth cuboid by

comparing the depth value of the center point with 26 nearby points. Sim-
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ilarly, Zhao et al. [108] use a Harris3D detector [44] to extract STIPs from

RGB or depth channels and combine HOGHOF [45] and the proposed local

depth pattern(LDP) feature for representation. The LDP feature is de�ned by

the di�erence of average depth values between nearby cells of the 3D cuboid.

In this paper, IPs extracted from RGB channels perform better than IPs ex-

tracted from the depth channel using Harris3D for about 2.5% on the RGBD-

HuDaAct dataset [60]. It is reasonable since the Harris3D was designed for

intensity videos with rich textures, and the depth videos are usually noisy and

have many missing values. To deal with this, I propose in this thesis a �ltering

scheme to �nd the STIPs from depth videos with noise suppression functions.

Also, I propose a new type of feature which published around the same time as

these related works but conveys more information of the local 3D patch than

the CCD [15] and LDP [108].

Local spatio-temporal features capture shape and motion characteris-

tics in video and provide independent representation of events. It is invariant

to spatio-temporal shifts, scales, and background clutter. Also, it naturally

deals with partial occlusions, multiple motions, person-to-person interaction

and person-object interaction. Since such features are directly extracted from

the video without the need for motion segmentation and tracking, these algo-

rithms are more robust and have a wider range of applications.
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2.2.4 Recognition Using Local 3D Occupancy Features

Instead of representing the depth video as 3D spatio-temporal volume,

the points may be projected to the 4D (x, y, z, t) space. In this 4D space,

some location will be occupied by the data points from the video, i.e. the

points that the sensor captured from the real world, those locations will have

a value of 1, others 0. In general, the local occupancy pattern is quite sparse,

that is, the majority of its elements are zero. The local occupancy pattern

has been proposed individually by several researchers for activity recognition.

In fact, the local occupancy feature can be de�ned in the (x, y, z) space or

(x, y, z, t), the former one describes the local depth appearance at a certain

time instant while the latter describes the local atomic events within a certain

time range. Wang et al. [90] design a 3D Local Occupancy Patterns (LOP)

feature to describe the local "depth appearance" at joint locations to capture

the information for person-object interactions. The intuition is, when the

person fetches a cup, the space around the hand is "occupied" by the cup.

The x, y, z space around the joint is partitioned into a Nx × Ny × Nz spatial

grid, the number of points that fall into each bin are counted and normalized to

obtain the occupancy feature of that bin. This work is an example of combining

skeleton joints features and local occupancy features to recognize activities and

also to model person-object interactions. Wang et al. [91] de�ned the random

occupancy patterns in the (x, y, z, t) domains. Similarly, the occupancy feature

is the sum of the pixels in a sub-volume of the 4D space normalized by a sigmoid

function. A weighted sampling approach was proposed to sample sub-volumes
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from the 4D space, and occupancy patterns were extracted from those locations

to give an overall description of the depth video. Instead of random sampling,

Vieira et al. [88] divided the whole space-time volume into 4D grids, and

extracted occupancy patterns from every partition. Interestingly, a saturation

scheme was proposed to enhance the role of the sparse cells, which typically

lie on the silhouettes or moving parts of the body. To deal with the sparsity

of the feature, a modi�ed-PCA called Orthogonal Class Learning (OCL) is

employed to cut the length of the feature to 1/10 of its original.

The local occupancy feature de�ned in the (x, y, z, t) space is similar to

local spatio-temporal features in that they both describe local "appearance" in

the space-time domains. Local spatio-temporal features treat the z dimension

as "pixel values" in the (x, y, t) volume while local occupancy patterns project

the data onto a (x, y, z, t) 4D space containing 0-1 values. They may both

be extracted from selected locations or random sampling. However, the local

occupancy features can be very sparse while the spatio-temporal feature is not.

Furthermore, spatio-temporal features contain information on the background

since the cuboid is extracted from the (x, y, t) space, while local occupancy

features only contain information around a speci�c point at a (x, y, z, t) space.

This characteristic is not positive or negative as the background is helpful in

certain scenarios while disturbing in some other cases.
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2.2.5 Recognition From 3D Optical Flow

Optical �ow is the distribution of apparent velocities of movement of

brightness patterns in an image, which arises both from the relative objects'

and the viewer's motion [29]. It is widely used in intensity images for motion

detection, object segmentation and stereo disparity measurement [5]. Also, it

is a popular feature in activity recognition from videos [14, 102]. When mul-

tiple cameras are available, the integration over di�erent viewpoints allows a

3D motion �eld, the scene �ow [87]. However, intensity variations alone are

not su�cient to estimate motion and additional constraints such as smoothness

must be introduced in most scenarios. Works on estimating 3D scene �ow from

stereoscopic include [12,93] and [33]. These algorithms usually have high com-

putational cost due to the fact that they estimate both the 3D motion �eld and

disparity changes at the same time. Depth cameras advantageously provide

useful geometric information from which additional consistent 3D smoothness

constraints can be derived. With a stream of depth and color images coming

from calibrated and synchronized cameras, we have a simpler way of getting

optical �ow in (x, y, z) space. Among the more straight forward and faster

methods, Swadzba et al. [83] and Fanello et al. [24] compute 3D scene �ow by

transforming the 2D optical �ow vectors to 3D using the 3D correspondence

information of each point, i.e., each 2D pixel x, y is projected into 3D using

the depth value z and the focal length f : X = (x− x0)Z/f, Y = (y − y0)Z/f .

(x0, y0) is the principal point of the sensor. They compute the 2D optical �ow

using traditional methods such as [32] or [52]. The 3D scene �ow may be
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obtained by di�erencing the two corresponding 3D vectors in two successive

frames Ft−1 and Ft using equation D = (Xt −Xt−1, Yt − Yt−1, Zt − Zt−1) [24].

The 3D scene �ow estimated using the above method has been proven e�ec-

tive at recognizing arm gestures [31] and upper/full body gestures (ChaLearn

dataset) [24]. However, this method is not the best estimation of the 3D scene

�ow, since only the 2D information is considered when �nding the correspon-

dences between frames.

Recently, Letouzey et al. [47] cast the problem of estimating 3D scene

�ow from a calibrated depth and RGB image sequence as an optimization

problem with photometric consistency constraints and motion �eld regulariza-

tion. Ballin et al. [4] compute the 3D scene �ow from point cloud data using

1-nearest neighbor search driven by both the 3D geometric coordinates and

the RGB color information. The 3D scene �ow is only computed for relevant

portions of the 3D scene. They represent each tracked person by a cluster

which is de�ned as a 4D point cloud. The 3D scene �ow vector is then sum-

marized within a 3D grid surrounding each cluster, and 3D average velocity

vector is computed for each 3D cube and all these vectors are concatenated

into a column vector. This feature is tested on a human action recognition

task and shows reasonable performance on a new dataset containing six simple

human actions.

Compared to the success of traditional 2D optical �ow, the research

on scene �ow is still in its preliminary stage [57]. Currently, 3D scene �ow

is often computed for all the 3D points for the subject or scene, resulting

31



in a large computational cost. Computing the 3D scene �ow with real-time

performance is a challenging task. We may imagine that after the emergence

of more e�ective ways to compute 3D scene �ow, it can be a more popular

type of feature for human action recognition and bene�t more applications.

2.3 First-Person Activity Recognition

Over the past few years, low-cost high-end wearable cameras have been

made available to the public. This resulted in an explosion of �rst-person

viewpoint videos that make the analysis of �rst person activity an increasingly

popular topic within the computer vision community. The majority research

in the �eld of �rst-person video analysis regards daily household activities

from ego-centric videos [26, 39, 55, 65, 79]. These works are usually object-

driven and focus on analyzing the relationship between the object and the

body parts that manipulate the objects [6]. In a di�erent category, Kitani

et al. [40] learn the ego sport activities from �rst-person videos collected by

sports enthusiasts for indexing and retrieval. Lee et al. [46] develop techniques

for video summarization by discovering important people and objects in the

egocentric videos. All the above mentioned works try to analyze the ego-

activity of the person who wears the camera.

In this thesis, I focus on recognizing the activities that a person per-

forms with respect to the explorer. Our task is di�erent from the previous

ego-centric activity analysis in that we are trying to answer the question:

what are they doing to me, while the previous category of works are trying to
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answer the question: what am I doing. Michael et al proposed to study the

�rst-person interaction activity recognition using a webcam last year [70]. In

this thesis, I studied this problem using RGBD videos to gain more informa-

tion which resembles more the human binocular vision system. Additionally,

in [70] the motion and appearance descriptors are extracted from the whole

scene, therefore the ego-motion and the independent motion components are

mixed together. On the contrary, I distinguished between regions that move

due to ego-motion, and regions that move independent of camera. In the

literature, there are several works that segment the person/body parts from

the background [64] to localize the independent motion for activity recog-

nition; Most of these techniques aim to suppress the information from the

surrounding regions. In contrast, I demonstrate that, for the �rst-person task,

descriptors extracted from both the areas contribute in a di�erent manner to

the recognition procedure; using both of them indeed, is crucial to improving

the classi�cation rate.
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Chapter 3

Human Detection Using a Single Depth Image

In this Chapter, I will describe the algorithm for detecting humans from

a single depth image. A 2D chamfer model is �rst matched across the whole

image and gives the regions that possibly contain a human head. An occlusion

mask is extracted for each region. Then, a 3D head model is built at the correct

scale and �t onto the regions with the occlusion mask, resulting in the �nal

estimation. Both matching stages are guided by the depth value to adjust to

the correct scale of the object in the scene. A region growing algorithm is

applied to �nd the entire human body, and the body contour is extracted. All

planar surfaces in the depth image are extracted to avoid the human region

growing onto the planar regions in the scene such as �oors and tables. Further,

a simple tracking algorithm is proposed based on the detection result. The

algorithm is tested on 2 datasets captured by a Kinect in two indoor settings

and presents superior results than state-of-the-art works.
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3.1 Algorithm

3.1.1 Preprocessing

The resolution of the original depth image is 640 × 480. To make

the detection faster, the images are down sampled by a factor of 2. Simple

preprocessing steps are performed to make the depth image less noisy. First, a

nearest neighbor interpolation is employed to �ll the holes in the depth image.

Then, a median �lter with a 4×4 window is applied onto the image to smooth

the depth values.

3.1.2 Regression on the Diameter of the Head

One of the advantages of the depth data is that true dimensions of

the objects may be inferred from the depth value. The variant scales result-

ing from subjects appearing at di�erent distances to the camera are usually

addressed using windows or �lters at multiple scales, which largely increases

the computational cost. Here, an experiment is conducted to �nd the relation

between the depth value and the scale of the head in the depth image. Head

diameters (in pixel) and depth values are manually annotated in a set of im-

ages. This information is used to compute a scale-depth regression shown in

Fig. 3.1. The regression curve can be expressed by:

H(d) =
f ·Hr

d
=

1.3× 105

d
. (3.1)

Here, d is the depth value of the center of the head in millimeter, H is the

diameter of the head in the depth image, measured by pixels, f is the focal
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Figure 3.1: Regression curve of the relation between head diameter (in pixels)
and depth value (in millimeters)

length of the camera, Hr is the real size of a standard human head in the scene.

For any location of the scene in the depth image, the approximate dimension

of a standard head can be computed from this equation if a head appears at

that location. This reduces the computational cost of the matching process,

and might also increase the detection accuracy by neglecting objects of the

wrong scale.

3.1.3 2D Template Matching

In this section, we describe our detection process. The �rst stage is

a rough scanning step where a 2D head template is searched throughout the

image to locate possible regions that may contain a head. In this stage, only

the edge information in the depth image is used, which corresponds to the

spatial discontinuities of the scene. A 2D chamfer distance matching algorithm

is employed for quick processing.
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3.1.3.1 2D Chamfer Distance Matching

A Canny edge detector is applied onto the depth image to �nd all edges.

The parameter for the Canny edge detector is chosen so that the contour of

the human is mostly complete and continuous, but �ne details are neglected.

Then small or short edges are removed to reduce the disturbance from small

or irregular shaped objects.

The binary head template is manually generated (shown in Fig. 3.2(d)).

To increase the e�ciency, a distance transform is computed before the match-

ing process. Distance Transform is a function D(·) that for each image pixel p

assigns a non-negative number D(p) corresponding to distance from p to the

nearest feature point in the image I. This results in a distance map where

pixels contain the distances to the closest edge pixels. The matching process

consists of translating and positioning the template at various locations of the

distance map. We summarize it as a minimization process:

Given:

� Binary edge image B, where B(i, j) = 1 at edges and B(i, j) = 0 otherwise

� Binary head edge template, T , of shape we want to match. T (i, j) = 1 at

edges and T (i, j) = 0 otherwise

� Let DB be the distance map of edge image B, [Xw, Xh] be the size of the

size of the depth image, [a, b] be the size of the template.

Goal: Find placement of T in D that minimizes the sum, M , of the distance
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transform multiplied by the pixel values in T , i.e.

Minimize : M(i, j) =
1

|DT |
∑

DB ⊗ T (i, j) (3.2)

s.t. a/2 < i < Xw − a/2 (3.3)

b/2 < j < Xh − b/2 (3.4)

Here, ⊗ represent element-wise product (Hadamard product), |DT | is a nor-

malization term.

|DT | =
∑
s,t

|D(i+ s, j + t)| (3.5)

−a/2 < s < a/2,−b/2 < t < b/2 (3.6)

If T is an exact match to B at location (i, j) then M(i, j) = 0. If the edges

in B are slightly displaced from their ideal locations in T , we will get a small

non-zero number depending on the displacement. Without the normalization

term, if the local patch of the image contains dense edges, it will get a close

match (small M value) even if the shape does not resemble the template.

As we do not assume one person in each image, we compute M(i, j)

for all the locations in the image. The smaller the M values are, the better

the match between image and template at this location. If the distance value

lies below a threshold τ , the target object is considered detected at this place,

which means that a possible head is found. In this stage, a high threshold

is set to guarantee a low false negative rate. The result of chamfer distance

matching is shown in Fig. 3.2
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The head template here is able to �nd the head of a person in various

poses and views only if the person is in an approximate upright position. If

the person is lying down or upside down, the algorithm needs to be adjusted

by rotating the template and running the same detection process.

3.1.3.2 Depth Guided Pyramid Matching

An important and novel part in this matching process is that we do not

run this 2D template matching at multiple scales across the whole image like

the normal practice. With equation 3.1, the correct scale of the head that we

are looking for at a particular location of the image can be computed. Then

we just match at that location using the correct scale, we call it depth guided

matching.

We de�ne the level of the pyramid to be L, in each level, the image

shrink by a factor of γ (γ = 4/5 in our experiments). Let the diameter of the

head template to be H0. First, we �nd the range of the depth that a person

may appear [dmin, dmax], this can be set manually to the depth range that

we are interested in, or simply by �nding the maximum and minimum valid

depth value in the image. By setting H0 = H(dmin), we only need to down

sample the image at every level when generating the image pyramid, without

the need to up-sample the image. Note the pyramid matching can be done

in two equivalent manners: either generate an image pyramid or a template

pyramid. Since the template is a binary edge image, the down/up sampled

template edge image does not look good when γ is not a integer, so we chose
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to generate an image pyramid.

The number of levels of the pyramid can be computed:

L = logγ
dmax
dmin

(3.7)

A table is generated that records the correct template scale C(i, j) =

c, c ∈ 1, 2, ..., L for all the locations in the image I(i, j). First, we compute the

equivalent template scale for each pyramid levels.

Hi =
Hi−1

γ
, i = 2, ..., L (3.8)

Then the depth value corresponding to the head template scales can be com-

puted from equation (3.1). With this equation, the depth value d(i) corre-

sponded to the template scales H(i) is computed simply by d(i) = 1.3 ×

105/(H(i)), i = 1, ..., L. Then, each image location I(i, j) is assigned to one of

the pyramid levels by matching the pixel value to the nearest d(i). Each pixel

location is only matched to the template at the recorded pyramid level. This

on average reduces the computational cost to 1/L compared to traditional

pyramid matching. The 2D matching step is a rough scanning process that

gives a rough detection result with a very low false negative rate and high false

positive rate. In the next stage, each location is further examined to rule out

false positives.

3.1.4 3D Model Fitting

In this section we utilize the relational depth information in the depth

image to verify the head. We generate a 3D head model to �t onto the image.
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Figure 3.2: Intermediate results of 2D Chamfer distance matching. (a) Prepro-
cessed depth image. (b)Binary edge image calculated by Canny edge detector.
(c) Distance map generated from binary edge image (d). The binary head
template (e). 2D template matching result (yellow dots indicate the detected
locations).

The complexity of 3D model �tting is much higher than 2D template �tting.

To simplify the process, we expect the model to generalize the characteristics

of the head from any view: frontal, back, side, and also higher and lower

viewing angles when the sensor is placed higher or lower or when the person is

higher or lower. To meet these constraints, we chose a hemisphere as the 3D

head model.

3.1.4.1 Head Radius

Instead of taking the result from equation 3.1 as the diameter of the

3D model, we propose to look for the true diameter of the head from the

image. This makes the algorithm invariant to scale di�erences of the head of

di�erent persons. Interestingly, the true radius of the head has already been

computed in Section 3.1.3.1. Recall that a pixel in the distance map is the

distance from the pixel to the closest data pixel in the edge image. Supposing

the head is a circular shape, the pixel value at the center of the head (i0, j0)

on the distance map is just an approximation of the radius of the head, so we
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take Rt = maxDB(i, j), i0 − 1 ≤ i ≤ i0 + 1, j0 − 1 ≤ j0 + 1. The variation of

the humans head size is limited, the head grows about 1.67 times in size from

infancy to adulthood [92]. With this statistics Rt, some false positives can be

removed. We remove the detection if Rt > 1.4 ∗ H or Rt < 0.5H, H is the

average adult head diameter from section 3.1.2.

A 3D hemisphere model is generated from radius Rt:

z = α

√
R2
t − x2 − y2

Rt

(3.9)

x ∈ [−Rt, Rt] (3.10)

y ∈ [−Rt, Rt] (3.11)

Here, α is a scaler to adjust the depth value according to the standard adult

head size, which is 9 inches in diameter.

3.1.4.2 Occlusion Mask

Occlusion relations can be inferred from the depth value. Here, an

occlusion mask is generated for every region prior to the 3D model �tting.

This will reduce the in�uence of the objects before and behind the head, and

render the algorithm certain robustness against occlusion. Suppose the region

center is (i0, j0), the occlusion mask is de�ned as:
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O(i0, j0) =


1 if I(i, j) < I(i0, j0)−∆

or I(i, j) > I(i0, j0) + ∆

0 else

(3.12)

i ∈ [i0 −Rt/2, i0 +Rt/2] (3.13)

j ∈ [j0 −Rt/2, j0 +Rt/2] (3.14)

here ∆ is the threshold for the depth range. We take ∆ = 200 millimeters in

our experiments, which is approximately the diameter of a human head.

3.1.4.3 3D Model Fitting

The 3D model is �tted onto every region detected by the previous

step. For every location, a patch is extracted centered on that pixel from the

preprocessed depth image. The patch is �rst normalized:

dn(i, j) = d(i, j)−mini,j(d(i, j)) (3.15)

i ∈ [i0 −Rt, i0 +Rt] (3.16)

j ∈ [j0 −Rt, j0 +Rt] (3.17)

Here, d(i, j) is ,the depth value of pixel (i, j). dn(i, j) is the normalized

depth value. The summed square error between the circular patch and the 3D

hemisphere is computed by:

Er =
1

|O|
∑
i,j∈CR

O(i, j)⊗ |dn(i, j)− T (i, j)|2 (3.18)

Here, ⊗ represents an element-wise product (Hadamard product). If Er < Eθ,

we believe a head is found.
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(a) (b) (c)

Figure 3.3: (a) Input of the 3D �tting algorithm. (b) Fitting process. (c)
Output of 3D model �tting. Yellow dots indicate detection points.

Fig. 3.3. illustrates this stage and shows the result of the 3D matching.

3.1.5 Extract Contours

Up to this point, we have located the head in the depth image. In this

section, we further �nd the whole contour of the person. The body contour

may serve as a start point for many algorithms such as human body part/joints

estimation, human pose estimation, and so on. In most cases, a human body

appears as a continuous region in the depth image. This largely simpli�es

the processing of extracting the whole body region. The largest di�culty lies

where the human body touches the background. In this case, the boundary of

the body part cannot be distinguished from the background even with human

eyes. As the feet always touch the ground in the image, it is a serious problem

to segment the feet from the ground. We propose a simple solution to segment

the feet from the �oor. Since the �oor is horizontal and the leg touches the
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(a) (b)

Figure 3.4: (a) Original depth array. Some parts of the body are merged with
the ground plane and wall. (b) The input depth array to the region growing
algorithm. The ground plane is delineated by the thresholded F �lter response.
The edges along the feet well separate the persons from the �oor.

ground vertically, we propose a simple �lter: F = [1, 1, 1,−1,−1,−1]T to

extract the boundary between the legs/feet and the ground.

Since the �oor near the bottom of the image is always closer to the

camera, pixels on the �oor will give a larger response to this �lter F than the

pixels on the person's legs and feet. With a proper threshold, we can easily

�nd all the planar areas that are parallel to the �oor. We add the edges of

those planar areas to the original depth image and feed this into the region

growing algorithm. Fig. 3.4 shows an example of extracting the edges of the

planar surfaces.

We develop a simple and intuitive region growing algorithm to extract

the whole body contours from the depth array. It is assumed that the depth

values on the surface of a human object are continuous and vary within a
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limited range. The algorithm starts with a seed location, which is the centroid

of the head detected by 3D model �tting. The rule for growing a region is

based on the similarity between the region and its neighboring pixels. The

similarity between two pixels (x1, y1) and (x2, y2) in the depth array is de�ned

as:

S(p(x1, y1), p(x2, y2)) = |d(x1, y1)− d(x2, y2)| (3.19)

Here, S is similarity and d(·) returns the depth value of the pixel. The depth

of a region is de�ned by the mean depth of all the pixels in that region:

d(R) =
1

N

∑
p(i,j)∈R

d(i, j) (3.20)

The pixel of the highest similarity score with the region is added to

the region in every loop until the similarity score exceeds a certain value. To

prevent the region from growing onto the background when the person touches

the background, we set a limit on the area of the whole region. The pseudo-

code of the region growing algorithm is summarized in Table 1. The results

of the region growing algorithm are shown in Fig. 4.6.

Depending on the image quality and the scene, further re�nement of

the result can be incorporated after the region growing step to either make the

contour better, or further adjust the human detection result. Simple morpho-

logical �ltering may smooth the irregular contours, and the detection result

can be further re�ned because the whole body of the person is supposed to be

known at this stage. Some body properties may be employed to �lter out false
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Algorithm 1: Region Growing Algorithm
Input: seed s
Output: region R

1 begin

2 Initialize: R = s, dmin = 0, area(R) = 1, mean(R) = ds
3 while dmin < dθ ∧ area(r) < Smax do
4 for {all neighboring pixels of region R} do
5 Measure the di�erence of the pixel depth di and the

region mean mean(R): d1, d2, · · ·
6 dmin ← min(d1, d2, · · · )
7 Add the pixel with the smallest distance dmin to the region

R
8 Update mean(R)

9 return R

positives, e.g. head should be at the top of the body region, the region should

have a body part, etc. The criteria we employed are: head width, head upper

radius (distance from the center of the detected head to the top of the person's

contour), and area of the region. These are all computed from the region R.

Note that although head radius is used in the previous 2D matching and 3D

matching steps, that radius value may di�er from the radius computed from

the �nal contour.

3.1.6 Tracking

A simple tracking algorithm is proposed to track the person based on

detection. Tracking in RGB image is usually based on color, the assumption

is that the color of the same object in di�erent time frames should be similar.

There is no color information in depth images. We propose to utilize the 3D
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(a) (b)

Figure 3.5: (a) Result of the region growing algorithm. (b) The extracted
whole body contours superimposed on the depth map.

spatial information to track the persons. We assume the motion of the person

is smooth, i.e. with limited acceleration.

The input are the head locations of the persons in each frame P (i)
t (x, y, Z), i =

1, · · · , N(t), t = 1, · · · , T . N(t) indicates the total number of persons at frame

t. (x, y) are the image coordinates and Z is the depth value at pixel (x, y).

Since the x-axis and y-axis of the location is in image coordinates and the

z-axis of the location is in real world coordinates, we transform all the axis to

real world coordinates:

X =
Z

f
(x− x0 + δx) (3.21)

Y =
Z

f
(y − y0 + δy) (3.22)

where (X, Y ) are the real world coordinates, (x0, y0) are the image center, δx

and δy are the correction parameters for lens distortion. We set them to zero

for our experiment since the person location does not need to be very accurate
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for the tracking scenario.

In the �rst frame, we label the person in turn according to the detection

order. In frame t, we match each person to one of the persons in the previous

frame t−1, the total number of possible matching is Cmin(N(t),N(t−1))
max(N(t),N(t−1)). For each

matching, we take the 3D coordinates of the persons in frame t: P (i)
t (X, Y, Z),

and frame t − 1: P
(j)
t−1(X, Y, Z), compute the speed of the person's motion

~Vt
(ij)

= P
(i)
t − P

(j)
t−1. We de�ne an energy score E of status transformation as:

E
(i,j)
t =

∑
i

(P
(i)
t − P

(j)
t−1)2 + α(~Vt

(ij)
− ~Vt−1

(i)
)2 (3.23)

We choose the matching with the minimum energy score as the solution.

3.2 Experimental Results

The algorithm is tested on two datasets and it is compared with state

of the art algorithms on depth images [34] and a traditional intensity based

human detection algorithm using the HOG descriptor [19]. Both qualitative

and quantitative results are given.

3.2.1 Datasets

Two datasets are collected each of which contains 100 depth images.

They are captured by the Kinect for XBOX 360 in indoor environments. The

resolution of the depth image is 640×480. The depth value is given in millime-

ters and the points that failed to be measured are o�set to 0. Figure 3.6 shows

the image from the two datasets. In the �rst dataset, 0-2 persons appear in
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Figure 3.6: Example images from datasets. Images in the upper two rows are
from dataset 1; images in the bottom two rows are from dataset 2.

each image. In the second dataset, 1-4 persons appear in each image. The

background may contain tables, chairs, shelves, computers, an overhead lamp,

and so on. The persons have a variety of poses; they may have interaction

with others or the surrounding objects.

3.2.2 Detection Results

Fig. 3.6 shows some of the results of our algorithm. The quantitative

result is given in Table 3.1. From the experimental result we can see our

detection algorithm detects the person accurately in most cases. The false
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Figure 3.7: Examples of the human detection result.

True True False False Precision Recall Accuracy
Positive Negative Positive Negative % % %

1 169 266 0 7 100 96 98.4

2 251 298 2 20 99.2 92.6 96.1

Table 3.1: Accuracy of our algorithm on the two datasets
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.8: Failure cases.

positive rates are very low and false negative happens when the person's head

is occluded or the image quality of the head region is very bad. Figure 3.8

shows typical failure cases. In image (a), the head of the person at the back

is occluded by the person in front. In image (b), half of the person/head is

out of the frame. In image (c), the person is hiding his head. In image (d),

the detection is correct, but the contour is not accurate because that person

touches the background. In image (e), the quality of the head region is very

bad. An enlarged image is shown in (f). Image (f) shows a false positive, the

second detection from the left side is a shelf.

We compare our algorithm with state-of-the-art algorithms on human

detection [19, 34, 77]. They are sliding-window based algorithms using HOG

features on intensity images [19], HOD features on depth images [77], and
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Precision Recall Accuracy

Ikemura [34] 90.0% 32.9% 85.8%

HOD [77] 39.05% 75.86% 71.95%

HOG [19] 51.33% 62.37% 78.12%

Proposed 100% 96.0% 98.4%

Table 3.2: Comparison of performance

relational depth similarity features on depth images [34]. To prove the privilege

of using depth data and the e�ectiveness of our algorithm, we also include

the human detection algorithm performed on RGB data [19], and run this

algorithm on the RGB images. (Because we did not store the corresponding

RGB images when we originally took the dataset, we recaptured the RGB

images later in the same room and with the same persons. Even though

the RGB images and the depth images are not one to one corresponded, the

detection di�culties are similar.) The result of the HOG pedestrian detection

is shown in Figure 3.9. The �rst row shows examples of typical success cases.

The second row shows that the background clutter causes confusion for the

HOG descriptor. The third row shows that the whole body of the person must

be in view to make the pedestrian detection algorithm work. Even though a

small portion of the lower leg is out of the �eld of view, the pedestrian detector

cannot detect the person. The fourth row gives examples when the algorithm

totally missed the person even though the person is fully in view. The �fth

row shows examples when the algorithm totally messed up the detection. It

is clear that our algorithm give much better detection.

We perform the same preprocessing on the depth data and then run the
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other two algorithms [34, 77]. We manually generated positive and negative

windows from our dataset. About 0 to 500 windows are extracted from each

frame and we subsample them and use the odd number of frames for training

and even number of frames for testing. There are 770 positive examples and

2922 negative examples in the training set and 738 positive examples and

2930 negative examples in the test set. Table 3.2 shows the comparison of

performances of all the methods. From table 3.2, we can see that our algorithm

outperforms state of the art algorithms on this dataset. The sliding window

based algorithm is better at handling the instances when the people in the

frame are in an upright position. However, people in this dataset are presented

in all kinds of postures and rotations.

3.2.3 Tracking Results

Fig. 3.10 shows the results of the tracking algorithm on dataset 1. 15

consecutive frames are shown, which includes two people walking past each

other, one person gets occluded, and appears again.

3.3 Conclusion

In this chapter, I presented a human detection method that takes as

input a single depth image. The algorithm outputs the head location and

human body contour. This algorithm does not require background subtraction

or motion detection. The experimental results show that the algorithm can

e�ectively detect the persons in various poses and appearances from the depth
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Figure 3.9: Detection Results using HOG pedestrian detection algorithm.
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Figure 3.10: Tracking result. Results are shown at every two frames. The
original frame rate is about 0.4 spf. The two tracked persons are labeled
number one and number two respectively.
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images, and it provides an accurate estimation of the whole body contour of the

person. In addition, I proposed a tracking algorithm based on the detection

results. The algorithm is generally applicable to depth images acquired by

other types of range sensors.

The advantages of this algorithm are the following. Firstly, the method

may easily adjust to new datasets, no training is needed. Secondly, the algo-

rithm uses a bilayer detection process with 2D chamfer matching in the �rst

layer which largely reduces computational cost. Thirdly, it does not assume

certain human poses or motion for accurate detection. Furthermore, this algo-

rithm does not use background subtraction, thus applicable to cases where the

camera is non-stationary. Last but not least, due to the nature of the device,

the method is generally more robust to illumination changes, and may work

in total darkness, as long as the environment does not contain an excessive

amount of light of the speci�c wavelength used by the device. The limitation

is the high dependency on accurate head detection, which implies that if the

head is totally occluded or if the person is wearing a strange shaped hat, it

may not be detected.

If the corresponding RGB imagery is available, this detection process

can run parallelly with the detection algorithm on RGB image. The results

from the two di�erent channels may be combined to provide more accurate

detection results.
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Chapter 4

Histogram of Skeletal Joint Feature for Action

Recognition

In this Chapter, I describe the proposed 3D skeletal joint feature. A

reference coordinate is aligned to the joints on the torso of the person. 12

informative joints are selected, the polar angle and azimuth angle are com-

puted and vote into the bins of every 30 degrees, which generates a compact

feature called histograms of 3D joints (HOJ3D). To make the representation

robust against minor posture variation, votes of 3D skeletal joints are cast

into neighboring bins using a Gaussian weight function. The collection of

HOJ3D vectors from training sequences are �rst reprojected using LDA and

then clustered into k posture words. By encoding sequences of skeletons into

sequential words, action sequences are classi�ed using HMMs [67]. Experi-

ments show that this algorithm achieves superior results on our challenging

dataset and also outperforms the state-of-the art algorithms [49, 100, 109] on

activity recognition from depth images.
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(a) (b)

Figure 4.1: (a) Depth image. (b). Skeletal joints locations.

(a) (b)

Figure 4.2: (a) Reference coordinates the HOJ3D. (b) Modi�ed spherical co-
ordinate system for joint location binning.
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4.1 Algorithm

4.1.1 Body Part Inference and Joint Position Estimation

The human body is an articulated system of rigid segments connected

by joints and human action is considered as a continuous evolution of the

spatial con�guration of these segments (i.e. body postures) [105]. Here, we

use 3D joint locations to build a compact representation of postures. 3D joint

locations can be extracted from a depth video [75], which include hip center,

spine, shoulder center, head, L/ R shoulder, L/ R elbow, L/ R wrist, L/ R

hand, L/ R hip, L/ R knee, L/ R angle and L/ R foot. Fig. 4.1 shows

an example of 3D skeletal joint locations of a depth frame. Among these

joints, hand and wrist and foot and ankle are very close to each other and

thus redundant for the description of body part con�guration. In addition,

spine, neck, and shoulder do not contribute discerning motion while a person

is performing indoor activities. Therefore, I compute the histogram based

representation of postures from 12 of the 20 joints, including head, L/ R elbow,

L/ R hands, L/ R knee, L/ R feet, hip center and L/ R hip. The hip center

is taken as the center of the reference coordinate system, the vector direction

from the left hip joint to the right hip joint is de�ned as the α direction, the

normal vector of the �oor plane is de�ned as the θ direction. The rest 9 joints

are used to compute the 3D spatial histogram. The estimated joint locations

provide information regarding the direction the person. This enables us to

compute the reference direction of a person independent of the viewpoints.
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Figure 4.3: Voting using a Gaussian weight function.

Figure 4.4: Example of the HOJ3D of a posture.

4.1.2 HOJ3D as Posture Representation

The estimation of 3D skeleton from RGB imagery is subject to error and

signi�cant computational cost. With the depth image, we may acquire the 3D

locations of the body parts in real-time with better accuracy. Eventhough, the

joint locations is not perfect, inaccurate estimations occur when parts of the

body is occluded. I propose a compact and viewpoint invariant representation

of postures based on 3D skeletal joint locations, which also deals with moderate

estimation error of the joint locations.
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4.1.2.1 Spherical Coordinates of Histogram

The methodology is designed to be view invariant, i.e., descriptors of

the same type of pose are similar despite being captured from di�erent view-

points. This is achieved by aligning a spherical coordinate with the personâ��s

direction, as shown in Fig. 4.2(a). We de�ne the center of the spherical co-

ordinates as the hip center joint. De�ne the horizontal reference vector α to

be the vector from the left hip center to the right hip center projected on the

horizontal plane (parallel to the ground), and the zenith reference vector θ as

the vector that is perpendicular to the ground plane and passes through the

coordinate center.

The 3D space is partitioned into n bins as shown in Fig. 4.2(b) (n=84

in the experiment). The inclination angle is divided into 7 bins from the zenith

vector θ: [0, 15], [15, 45], [45, 75], [105, 135], [165, 180]. Similarly, from the

reference vector α, the azimuth angle is divided into 12 equal bins with 30

degrees resolution. The radial distance is not used in this representation to

make the method scale-invariant. With our spherical coordinate, each 3D joint

falls into a unique bin.

4.1.2.2 Probabilistic Voting

The HOJ3D descriptor is computed by casting the rest 9 joints into

the corresponding spatial histogram bins. For each joint location, weighted

votes are contributed to the geometrically surrounding 3D bins. To make the

representation robust against moderate errors of joint locations, we vote the
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3D bins using a Gaussian weight function:

p(X,µ,Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2

(X−µ)Σ−1(X−µ) (4.1)

, where p(X,µ,Σ) is Gaussian probability density function with mean

vector µ and co-variance matrix Σ (a identity matrix is used for simplicity).

Each joint vote into the bin which it falls in and the 8 neighboring bins.

We calculate the probabilistic voting on θ and α separately since they are

independent. The probabilistic voting for each of the 9 bins is the product

of the probability on α direction and θ direction. Let the joint location be

(µα, µθ). The vote of a joint location to bin [θ1, θ2] is

p(θ1 < θ < θ2;µθ, 1) = Φ(θ2;µθ, 1)− Φ(θ1;µθ, 1) (4.2)

, where Φ is the CDF of Gaussian distribution. Similarly, the vote of joint

location (µα, µθ) to the bin [α1, α2] is

p(α1 < α < α2;µα, 1) = Φ(α2;µα, 1)− Φ(α1;µα, 1) (4.3)

Then, the probability voting to bin [α1, α2], [θ1, θ2] is:

p(θ1 < θ < θ2, α1 < α < α2;µ, I)

= p(θ1 < θ < θ2, µθ, 1) · p(α1 < α < α2, µα, 1) (4.4)

The votes are accumulated over the 9 joints. A posture is represented

by an n-bin histogram. Fig. 4.4 shows an instance of the computed histogram.
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4.1.2.3 Feature Extraction

Linear discriminant analysis (LDA) is performed to extract the domi-

nant features. LDA is based on the class speci�c information which maximizes

the ratio of between-class scatter and the within-class scatter matrix. The

LDA algorithm looks for the vectors in the underlying space to create the best

discrimination between di�erent classes. In this way, a more robust feature

space can be obtained that separates the feature vectors of each class. In our

experiment, we reduce the dimension of the HOJ3D feature from n dimensions

to nClass-1 dimensions.

4.1.3 Vector Quantization

As each action is represented by an image sequence or video, the key

procedure is to convert each frame into an observation symbol so that each

action may be represented by an observation sequence. Note that the vector

representation of postures is in a continuous space. In order to reduce the

number of observation symbols, we perform vector quantization by clustering

the feature vectors. We collect a large collection of indoor postures and cal-

culate their HOJ3D vectors. We cluster the vectors into K clusters (a K-word

vocabulary) using K-means. Then each posture is represented as a single num-

ber of the visual word. In this way, each action is a time series of the visual

words.
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4.1.4 Action Recognition Using Discrete HMMs

Human actions are modeled and recognized by the discrete HMM tech-

nique similar to what Rabiner did in speech recognition [11]. In discrete HMM,

discrete time sequences are treated as the output of a Markov process whose

states cannot be directly observed. Previously, each action sequence has been

coded as a vector of posture words, this vector is used to learn the HMM model

and this model is used to predict for the unknown sequence.

A HMM that has N states S = {s1, s2, , sN} and M output symbols

Y = y1, y2, , yM is fully speci�ed by the triplet λ = A,B, π. Let the state at

time step t be St. The N ×N state transition matrix A is,

A = {aij|aij = P (st+1 = qj|st = qi) (4.5)

The N timesM output probability matrix B is,

B = bi(k)|bi(k) = P (vk|st = qi) (4.6)

And the initial state distribution vector π is

π = {πi|πi = P (s1 = qi)} (4.7)

A HMM model is constructed for each of the actions. Then, I take an action

sequence V = v1, v2, vT and calculate its probability of a model λ for the

observation sequence, P (V |λ) for every model, which can be solved by using

the forward algorithm. Then the action can be classi�ed as the one which has
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No. 1 2 3 4 5

Mean 43.60 34.15 25.60 35.50 58.15

SD 8.89 9.40 6.44 11.89 27.04

No. 6 7 8 9 10

Mean 11.95 10.30 15.05 45.70 31.00

SD 4.10 4.24 7.72 16.30 20.14

Table 4.1: The mean and standard deviation of the sequence lengths measured
by number of frames at 30 fps.

the largest posterior probability.

decision = arg max
i=1,2,...,M

{Li} (4.8)

Li = Pr(O|Hi) (4.9)

Where Li indicates the likelihood of i-th HMM Hi and M number of

activities. This model can compensate for the temporal variation of the actions

caused by di�erences in the duration of performing the actions.

4.2 Experiments

The algorithm is tested on a challenging new dataset I collected and

made publicly available. In addition, it is also evaluated on the public MSRAc-

tion3D dataset and compared with state-of-the-art algorithms [49,100,109].

4.2.1 Data

To test the robustness of the algorithm, we collected a dataset contain-

ing 10 types of human actions in indoor settings. We take the sequence using

a single stationary Kinect. The RGB images and depth maps were captured

66



Figure 4.5: Sample images from videos of the 10 activities in the database.
Note only depth images are used in the proposed algorithm. Action type from
left to right, top to bottom: walk, stand up, sit down, pick up, carry, throw,
push, pull, wave hands, clap hands.

Figure 4.6: Di�erent views of the actions are presented in the dataset.
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Figure 4.7: The variations of subjects performing the same action.

Action Accuracy Action Accuracy

Walk 96.5% Throw 59.0%

Sit down 91.5% Push 81.5%

Stand up 93.5% Pull 92.5%

Pick up 97.5% Wave 100%

Carry 97.5% Clap hands 100%

Overall: 90.92%

Table 4.2: Recognition rate of each action type

Algorithm Accuracy

STIP(Harris3D+HOG3D) [109] 80.8%

pair-wise joint distance 83.4%

Skeleton Joint Features [109] 87.9%

Proposed 90.92%

Table 4.3: Comparisons on the UTKinect dataset
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AS1 AS2 AS3

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick

Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

Table 4.4: The three subsets of actions used for the MSR Action3D dataset.

Li [49] Yang [100] Proposed

AS1One 89.5 94.7 98.5

AS2One 89.0 95.4 96.7

AS3One 96.3 97.3 93.5
AS1Two 93.4 97.3 98.6

AS2Two 92.9 98.7 97.9
AS3Two 96.3 97.3 94.9
AS1CrSub 72.9 74.5 98.0

AS2CrSub 71.9 76.1 85.5

AS3CrSub 79.2 96.4 79.0

Table 4.5: Recognition results of our algorithm on the MSRAction3D dataset,
compared with Li et al. [49] and Yang et al. [100] . In test one, 1/3 of the
samples were used as training samples and the rest as testing samples. In test
two, 2/3 samples were used as training samples. In the cross subject test, half
of the subjects were used as training and the rest of the subjects were used as
testing.
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at 30 frames per second (FPS). The resolution of the depth map is 320× 240

and resolution of the RGB image is 640× 480. The 10 actions include: walk,

sit down, stand up, pick up, carry, throw, push, pull, wave and clap hands.

Each action was collected from 10 di�erent persons for 2 times: 9 males and

1 female. One of the persons is left-handed. Altogether, the dataset contains

6220 frames of 200 action samples. The length of sample actions ranges from

5 to 120 frames. Sample RGB images from the dataset are shown in Fig.

3.4. Note that we only use the information from the depth image for action

recognition in our algorithm; the RGB sequences are just for illustration.

As shown in Fig. 4.6, we took action sequences from di�erent views to

highlight the advantages of our representation. In addition to the varied views,

our dataset features 3 other challenges which are summarized as follows. First,

there is signi�cant variation among di�erent realizations of the same action.

For example, in our dataset, some actors pick up objects with one hand while

others prefer to pick up the objects with both hands. Fig. 4.7 is another

example, individuals can toss an object with either their right or left arm and

producing di�erent trajectories. Second, the durations of the action clips vary

dramatically. Table 4.1 shows the mean and standard deviation of individual

action length. In this table, the standard deviation of the carry sequence

lengths is 27 frames, while the mean duration of carry is 48 frames longer than

that of push. Third, object-person occlusions and body part out of �eld of

view (FOV) also add to the di�culty of this dataset.
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4.2.2 Experimental Results

The proposed algorithm is tested on the new dataset using leave-one-out

cross validation (LOOCV). As there is randomness in the initialization of the

cluster centroids and the HMM algorithm, 20 experiments is runned and the

mean performance is reported in Table 4.2. The number of clusters is K=125,

and the number of states is N=6. By experiments, the overall mean accuracy

is 90.92%, the best accuracy is 95.0% and the standard deviation is 1.74%. On

a 2.93GHz Intel Core i7 CPU machine, the estimation of 3D skeletal joints and

the calculation of HOJ3D is real-time using C implementation. The average

testing time of one sequence is 12.5ms using Matlab. The total processing is

real-time. I compared the performance with three other features. The �rst

one is spatio-temporal features, which use Harris3D to �nd the spatio-temporal

interest points and use HOG3D feature to describe the local patches [109]. The

second feature is the widely used pair-wise joint distance feature. The third

feature is consist of three parts [100]: (1) current posture: pair-wise joint

distances in current posture; (2) motion: joints di�erence between current

posture and the original (in the �rst frame); and (3) o�set: joints di�erences

between current posture and the previous one. A concatenation of the three

feature vectors is used to represent the feature for a speci�c action. From

table 4.3 we can see that our algorithm outperforms the other features on this

challenging dataset which contains various viewing angles.

The algorithm is also tested on the public MSRAction3D database that

contains 20 actions: high arm wave, horizontal arm wave, hammer, hand catch,
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forward punch, high throw, draw x, draw tick, draw circle, hand clap, two hand

wave, side-boxing, bend, forward kick, side kick, jogging, tennis swing, tennis

serve, golf swing and pickup & throw. As originally proposed in [49], the

actions are divided into 3 subsets each comprising 8 actions (see table 4.4).

I use the same parameter settings as previously. Each test is repeated 20

times, and the average performance is shown in Table 4.5. I compared the

performance with Li et al. [49] and Yang et al. [100]. It can be seen that the

proposed algorithm achieves considerably higher recognition rates than Li et

al. [49] in all the testing setups on AS1 and AS2. On AS3, our recognition rate

is slightly lower. It is stated in [49] that the goal of AS3 was intended to group

complex actions together. However, Li et al.'s algorithm actually achieves

much higher recognition accuracy on this complex action set while ours have

higher accuracy on the other two action set. We conjecture the reason to be

that the complex actions e�ects adversely the HMM classi�cation when the

number of training samples is small. Yang et al.'s algorithm is published after

my HOJ3D feature, the feature is based on di�erences of skeleton joints [100].

From table 4.5, we can see that my proposed work perform better on 5 of the

9 action sets.

4.3 Conclusion

This chapter presents a methodology to recognize human action as

time series of representative 3D poses. It takes as input 3D skeletal joints

locations inferred from depth maps. A compact representation of postures
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named HOJ3D is proposed that characterizes human postures as histograms

of 3D joint locations within a modi�ed spherical coordinate system. A posture

vocabulary is built by clustering HOJ3D vectors calculated from a large col-

lection of postures. Discrete HMMs are learned and used to classify sequential

postures into action types. The major components of the algorithm are real-

time, which include the extraction of 3D skeletal joint locations, computation

of HOJ3D, and classi�cation. Experimental results show the salient advan-

tage of the view invariant representation and the excellent performance of the

algorithm.
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Chapter 5

Spatio-Temporal Depth Cuboid Similarity

Feature for Action Recognition

In this Chapter, I describe the spatio-temporal features I developed for

depth video. Local spatio-temporal interest points (STIPs) and the resulting

features from RGB videos have been proven successful at activity recognition

that can handle cluttered backgrounds and partial occlusions. I design its

counterpart in depth video and show its e�cacy on activity recognition. A �l-

tering method is employed to extract STIPs from depth videos (called DSTIP)

that e�ectively suppress the noisy measurements and �nd the salient locations

in the video. Further, a novel depth cuboid similarity feature (DCSF) is de-

signed to describe the local 3D depth cuboid around the DSTIPs with an

adaptable supporting size. This feature is tested on activity recognition ap-

plication using the public MSRAction3D, MSRDailyActivity3D datasets and

our own dataset. Experimental evaluation shows that this approach outper-

forms state-of-the-art activity recognition algorithms on depth videos, and the

framework is more widely applicable than existing approaches. Detailed com-

parisons with other features and analysis of choice of parameters are given as

a guidance for applications.
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5.1 Algorithm

5.1.1 DSTIP Detection

As much of the work on interest point detection, a response function

is computed at each pixel in the 3D spatio-temporal volume. Our response

function is calculated by application of separable �lters.

5.1.1.1 Spatio-Temporal Filtering

First, a 2D Gaussian smoothing �lter is applied onto the spatial dimen-

sions:

Ds(x, y, t) = D(x, y, t) ∗ g(x, y | σ) (5.1)

where ∗ denotes convolution, D and Ds denote the original depth volume and

that after spatial �ltering respectively. g(x, y;σ) is a 2D Gaussian kernel:

g(x, y | σ) =
1

2πσ2
e−(x2+y2)/(2σ2) (5.2)

σ controls the spatial scale along x and y. Then we apply a temporal �lter

along the t dimension:

Dst(x, y, t) = Ds(x, y, t) ∗ h(t | τ, ω) ◦ s̄(x, y, t | τ) (5.3)

where Dst denotes the depth volume after spatio-temporal �ltering. ◦ denotes

element wise matrix multiplication and h(t | τ, ω) is a 1D complex Gabor �lter:

h(t | τ, ω) = e−t
2/2τ2 · e2πiωt (5.4)
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where τ controls the temporal scale of the �lter. We use ω = 0.6/τ . s̄(x, y, t |

τ) is a correction function for the noise of the depth sequence at location

(x, y, t). τ is the same control parameter as in the Gabor �lter. The next

section introduces the correction function in detail.

5.1.1.2 Noise Suppression

In RGB videos, smoothing functions usually serve to suppress noise.

The reason we choose a correction function instead of using �lters is based on

the di�erent nature of the noise in depth videos. One may divide the noise

in depth videos into three categories: The �rst category of noise comes from

the variation of the sensing device, which is evenly distributed throughout

the entire image, the magnitude of which is comparatively small. The second

category of noise occurs around the boundary of objects, the values jump from

the depth of the background to the depth of the foreground, back and forth

frequently. The magnitude of the jump can be a few thousand (mm). The

third category of noise is the "holes" that appear in the depth images, caused

by special re�ectance materials, fast movements, porous surfaces, and other

random e�ects. The magnitude of the noise can be a few thousand (mm)

as well. Figure 5.1 gives the temporal evolution of pixel values at di�erent

locations in the scene.

The �rst category is similar to the noise in RGB images, it is usually less

distinguishable than real movements. This noise may be reasonably removed

using smoothing �lters, but in the second and third categories, the magnitude
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(a) Signal from pixel on object boundary: the value �ips from 0 to about 3000 (mm) at a
high frequency.
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(c) Signal from pixel where movement happens.

Figure 5.1: Temporal evolution of pixel values at di�erent locations in the
scene.

of the noise is usually many times larger than real movements. We can hardly

smooth out the noise while leaving the real movement signals una�ected.

The �ip of the signal caused by sensor noise usually happens much

faster than human movements, and it can happen from once to dozens of times

during the whole video. In view of this, we calculate the average duration of

the �ip of the signal, and use it as a correction function:

s(x, y, t0 | τ) =

∑nfp

i=1 δti(x, y)

nfp(x, y)
(5.5)
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(a) without correction function (b) with correction function

Figure 5.2: DSTIPs projected onto x-y dimensions on top of one frame of the
video drink

where nfp(x, y) is the total number of �ips during the time interval [t0−τ, t0+τ ]

at location (x, y), and δti(x, y) is the duration of the i-th �ip. We de�ne

the number of �ips as the number of zero-crossing of the normalized signal

d̃(t) = d(t)− (d(t)max + d(t)min)/2.

This correction function is an indicator of the noise-signal ratio of the

pixel at location (x, y, t) during interval [t0− τ, t0 + τ ]. It has a higher value at

the pixels where real movement happens thus highlight those movements. We

take a threshold so that it only a�ects the noises and does not discriminate

between di�erent movements:

s̄ =

{
s0, if s > s0

s, else
(5.6)

where s0 is selected to best separate the value s(x, y, t) at the location of

noises and location of real motions (e.g.s0 = 2). Figure 5.2 shows the DSTIPs

before and after the correction function. We can see the correction function

e�ectively removes interest points resulting from noise.
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Figure 5.3: Illustration of extracting DCSF from depth video

5.1.1.3 Interest Point Extraction

Finally, we take the response as:

R(x, y, t) = ‖Dst(x, y, t)‖2
2 (5.7)

The overall response can be written in a closed form:

R(x, y, t) = (D ∗ g ∗ hev ◦ s̄)2 + (D ∗ g ∗ hod ◦ s̄)2 (5.8)

hev(t | τ, ω) = cos(2πωt)e−t
2/2τ2

hod(t | τ, ω) = sin(2πωt)e−t
2/2τ2

(5.9)

DSTIP is selected at the local maximum of R in spatio-temporal do-

mains and also in scale domain. We take the local maximum with top Np

largest response value as the DSTIPs for each video.

5.1.2 Interest Point Description

Here we propose a descriptor for the local 3D cuboid centered at DSTIP.

Note it is 3D instead of 4D because the depth image is a function of x and y,
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not all 3D points {x, y, z}, but it still provides useful information along the z

dimension.

5.1.2.1 Adaptable Supporting Size

We extract a 3D cuboid which contains the spatio-temporally windowed

pixel values around the DSTIP. Considering objects appear smaller in the

image at a farther distance, we design the cuboid size to be adaptable to the

depth. We de�ne the spatial size of the cuboid to be proportional to the scale

at which it was detected and inversely proportional to the depth at which it

locates:

∆(i)
x = ∆(i)

y = σ
L

d(i)
(5.10)

where σ is the scale at which the i-th cuboid was detected, and d(i) denotes

the depth of the i-th cuboid. Notice that we do not take the depth pixel

value at the interest point D(xi, yi, ti) as d(i), because the DSTIP sometimes

lands at the edge of body parts. Instead, we compute the minimum non-

zero depth value in the 2τ time interval round the location (xi, yi, ti), i.e.

{D(xi, yi, ti−τ), . . . ,D(xi, yi, ti+τ)}. This usually gives the depth we want for

the cuboid locations. In this way, the size of the cuboid is adjusted according

to the real-world size of the object, which corresponds to smaller pixel-size

at farther distances and vice-versa. This renders noticeable improvement as

compared to a �xed pixel size in our experiments.

The side length of the temporal dimension of a cuboid is simply de�ned

80



as:

∆
(i)
t = 2τ (5.11)

cuboid similarity feature

Di�erent from RGB data, depth data lacks texture, and is inherently

noisy. We de�ne a DCSF feature based on the self-similarity to encode the

spatio-temporal shape of the 3D cuboid, and we show in Section 5.2 that this

feature is better than other commonly used features.

As shown in Fig. 5.3, we divide the cuboid into nxy × nxy × nt voxels.

(We cut the borders when needed to make sure each voxel contains an integer

number of pixels). We de�ne the block as containing 1×1×1 to nxy×nxy×nt

voxels.

We compute a histogram of the depth pixels contained in each block,

normalize them to make the total value of every histogram to be 1. Let the

histogram calculated from block p and q be hp and hq respectively, we use the

Bhattacharyya distance to de�ne the similarity:

S(p, q) = ΣM
n=1

√
h

(n)
p h

(n)
q (5.12)

which describes the depth relationship of the two blocks. M denotes the

number of histogram bins. Note in this de�nition, the length of the feature

depends on nxy and nt only, it does not relate to the actual size of the cuboid

which o�ers greater freedom for the interest point detection and the cuboid

extraction process.
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We generate a feature vector by concatenating the similarity scores

for all combinations of blocks. Varying spatial-size from 1 × 1 to nxy × nxy

gives nxy(nxy− 1)(2nxy− 1)/6 possibilities, varying temporal-size from 1 to nt

gives nt(nt + 1)/2 possibilities. In total, the number of blocks Nb generated

by varying the number of voxels it contains is at the order of n2
tn

3
xy/6, and the

total length of the DCSF feature is C2
Nb
.

To reduce computational cost, we use integral histograms [66] to com-

pute the depth histograms rapidly. We quantize the depth pixels into M bins,

M = (dmax − dmin)/∆d, where ∆d is chosen according to the spatial level of

movements to recognize, e.g. ∆d = 100mm. Then we generate M quantized

video volumes Q(n), n = 1, . . . ,M , corresponding to the M bins:

Q(n)(x, y, t) =

{
1, if(n− 1)∆d+ 1 ≤D(x, y, t) ≤ n∆d

0, else
(5.13)

We compute an integrated video volume I(n), n = 1, . . . ,M for each of

the quantized video volume Q(n):

r(n)(x, y, t) = r(n)(x, y − 1, t) + Q(n)(x, y, t)

c(n)(x, y, t) = c(n)(x− 1, y, t) + r(n)(x, y, t)

I(n)(x, y, t) = I(n)(x, y, t− 1) + c(n)(x, y, t)

(5.14)

where r(n)(x, y, t) denotes the sum of pixels in the rows ofQ(n)(x, y, t), c(n)(x, y, t)

denotes the sum of pixels in the columns of r(n)(x, y, t), and I(n)(x, y, t) denotes

the sum through the temporal dimension of c(n)(x, y, t). The calculation of the
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histogram of a block at bin n can be obtained using only 7 add operations:

B(n) = {I(n)(p8)− I(n)(p7)− I(n)(p6) + I(n)(p5)}

−{I(n)(p4)− I(n)(p3)− I(n)(p2) + I(n)(p1)}
(5.15)

the label of the locations p1, . . . , p8 is given in Figure 5.3. The integral video

volume is computed once for each video, and the histogram of each block is

computed with 7M add operations.

Note the histogram technique renders invariants to small translation

and rotations. We intentionally do not rotate the cuboid itself to retain the

direction of the movements so that we can distinguish between actions such as

stand up and sit down. The local feature captures characteristic shapes and

motion, thus it provides robust representation of events that is invariant to

spatial and temporal shifts, scales, background clutter, partial occlusions, and

multiple motions in the scene.

5.1.3 Action Description

5.1.3.1 Cuboid Codebook

Inspired by the successful bag-of-words approach at RGB image clas-

si�cation and retrieval, we build a cuboid codebook by clustering the DCSF

using K-means algorithm with Euclidean distance. The spatio-temporal code-

words are de�ned by the center of the clusters and each feature vector can

be assigned to a codeword using Euclidean distance or rejected as an outlier.

Thus, each depth sequence can be represented as a bag-of-codewords from the

codebook. These bag-of-codewords describe what's happening in the depth
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sequences in a simple yet powerful way. To incorporate the positional infor-

mation of the cuboid, we concatenate the spatio-temporal information x, y, z, t

with the DCSF feature before clustering. This gives small improvements under

our experimental settings. Dimension reduction methods such as PCA can be

incorporated before clustering without sacri�cing the performance when choos-

ing a suitable number of dimensions while making the clustering process much

faster. We use a histogram of the cuboid prototypes as the action descriptor

and SVM [13] for classi�cation with histogram intersection kernel:

K(a, b) = Σn
i=1min(ai, bi), ai ≥ 0, bi ≥ 0 (5.16)

5.1.3.2 Mining Discriminative Feature Pool

Not all the cuboid prototypes give the same level of discrimination

among di�erent actions, some cuboids may be related with movements that

do not o�er good discrimination among di�erent actions, e.g. the sway of the

body. To select the discriminative feature set from the pool, we use F-score.

In a binary class case, given training vectors xk, k = 1, . . . ,m, if the number

of positive and negative instances are n+ and n− respectively, the F-score of

the i-th feature F (i) is de�ned as:

(x̄
(+)
i − x̄i)2 + (x̄

(−)
i − x̄i)2

1
n+−1

∑n+

k=1(x
(+)
k,i − x̄

(+)
i )2 + 1

n−−1

∑n−
k=1(x

(−)
k,i − x̄

(−)
i )2

(5.17)

where x̄i, x̄
(+)
i , x̄

(−)
i are the average of the i-th feature of the whole, positive,

and negative data. x(+)
k,i is the i-th feature of the k-th positive instance, and

x
(−)
k,i is the i-th feature of the k-th negative instance. The F-score indicates
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the discrimination between the positive and negative sets. We rank the cuboid

prototypes by their F-scores and select features with high F-scores. The thresh-

old is manually selected to cut between low and high F-scores. The number of

features to keep generally depends on how good the STIPs are. In our exper-

iments, small improvement is observed by deleting 1-2% cuboid prototypes.

We also tested the well-known TF-IDF weighting or stop-words, it turns out

it does not give noticeable improvement in our experiments.

5.2 Experimental Results

We test our algorithm on two public datasets: MSRAction3D dataset [48]

and MSRDailyActivity3D dataset [90], and our own dataset. We compare

our algorithm with state-of-the-art methods on activity recognition algorithms

from depth videos [48, 88, 90, 91, 97, 100]. Experimental results show that our

algorithm gives signi�cantly better recognition accuracy than algorithm based

on low-level features and gives even better results than algorithm using high-

level joint features. We also give detailed comparisons on other choices of

detectors or features and evaluation of parameters on our model. We take

support region size L = 6 in all experiments.

5.2.1 MSRAction3D Dataset

The MSRAction3D dataset [48] mainly collects gaming actions. The

depth image is clean, there are no background objects, and the subjects appear

at the same depth to the camera. On this dataset, we take σ = 5, τ =
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Method Accuracy

High Dimensional Convolutional Network [91] 72.5%
Bag of 3D points [48] 74.7%
HOJ3D feature [97] 79.0%

STOP [88] 84.8%
Eigenjoints [100] 82.3%

Random Occupancy Pattern [91] 86.50%
Actionlet [90] 88.2%

Ours 89.3%

Table 5.1: Comparison of accuracy on MSRAction3D dataset.

T/27, T/17 (T denotes the duration of the action sequence) and Np = 160

for DSTIP extraction, and take the number of voxels for each cuboid to be

nxy = 4, nt = 2. We �x the cuboid spatial size ∆x = ∆y = 6σ because all

actions take place at the same depth.

Table 5.1 shows the comparison of our algorithm with state-of -the-art

algorithms on the MSRAction3D dataset. All algorithms are tested on the 20

actions, and we select half of the subjects as training and the rest as testing.

Our algorithm outperforms the algorithms based on 3D silhouette features [48],

skeletal joint features [90,100] and local occupancy patterns [88, 91].

5.2.2 MSRDailyActivity3D Dataset

The MSRDailyActivity3D dataset collects daily activities in a more

realistic setting, there are background objects and persons appear at di�erent

distances to the camera. Most action types involve human-object interaction.

In our testing, we removed the sequences in which the subject is almost still

(This may happen in action type: sit still, read books, write on paper, use
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laptop and play guitar). Note that Li et al.'s algorithm [48] cannot work

without segmenting out the human subjects from the depth image, which

is not a trivial work considering the human appears at di�erent depths and

interacts with objects. Such dependence on important preprocessing largely

limits the application of this algorithm. Here, we compare to Wang et al. [90]

and other choices of STIP detectors and features, and we show the evaluation

of parameters on this dataset.

Table 5.2 shows the accuracy of di�erent features and methods. We

take σ = 5, 10, τ = T/17, Np = 500 for DSTIP extraction and take the number

of voxels for each cuboid to be nxy = 4, nt = 3 . Wang et al.'s low-level feature

LOP only achieves 42.5% while our DCSF feature achieves 83.6%, which is

also better than Wang's high-level joint position feature. When concatenate

our DCSF feature with joint position feature, it presents an accuracy of 88.2%

which is higher than LOP combined with Joint position feature reported in

[90] 85.75%.

We also compared our DCSF descriptor with widely used descriptors in

RGB images: Cuboid descriptor and HOG descriptor. To control the variables,

we use the same set of DSTIP locations detected by our DSTIP detector at

σ = 5, τ = T/17 for all the descriptors and perform no feature selection. For

the Cuboid descriptor, we use a �xed cuboid size ∆x = ∆y = 6σ, because it

does not handle di�erent sizes. For the HOG descriptor, we incorporate the

adaptable cuboid size and take nxy = 6, nt = 4 and use 4-bin histograms of

gradient orientations, which is the best parameter for HOG on this dataset.
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Method Accuracy

LOP feature [90] 42.5%
Joint position feature [90] 68.0%

DSTIP(ours)+Cuboid descriptor [22] (on depth) 73.6%
DSTIP(ours)+HOG [45] (on depth) 79.1%

Cuboid detector + Cuboid descriptor [22] (on RGB) 77.3%
DSTIP(ours)+DCSF(Ours) (on depth) 83.6%

LOP+Joint [90] 85.75%
DCSF+Joint(Ours) 88.2%

Table 5.2: Comparison of recognition accuracy on MSRDailyActivity3D
dataset.

Figure 5.4: Example of STIPs extracted using our algorithm. They are pro-
jected onto x-y dimensions with one depth frame from the video for display.
Action type from left to right, up to down: drink-sit, eat, drink-stand,call
cellphone, play guitar, sit down, stand up, toss, walk and lay-down

Our DCSF descriptor performs signi�cantly better than the Cuboid descriptor

or gradient based descriptor even with adaptable cuboid size.

Figure 5.4 shows some examples of extracted DSTIPs on the MSR-

DailyActivity dataset using our detector. We also compared our DSTIP de-

tector with widely used detectors in RGB images, including the Harris3D

detector [44] and Cuboid detector [22]. We implemented the Cuboid detec-

tor and keep the same setting of spatial and temporal scale with our DSTIP

detector. Figure 5.5 shows the STIPs extracted by the Cuboid detector and
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our DSTIP detector when take the STIPs at local maximum with the top

50,100,200,300,500,800 response values. As we can see, the Cuboid detector

�rst captures the noise in the background, then gradually begins to capture a

few points around the moving arm at Np = 200, but those informative points

are overwhelmed by the large number of noisy points. This also suggests that

the noise is at a larger magnitude than the real movements. Our DSTIP de-

tector e�ectively captures the movement of the arm, and noisy points begin to

appear as late as Np = 800, but the majority of the STIPs still gather around

the person.

For the Harris3D detector, we use the code on-line1 and use the stan-

dard parameters: number of spatial pyramid equals 3 combined with σ2 = 4, 8,

τ 2 = 2, 4, k = 0.0005. For the tool to work, we smooth and scale the depth

pixels to 0-255. Figure 5.6 shows the STIPs extracted. Only a small fraction

of STIPs locates around the moving body parts, most of them appear near

edges or static objects. We tried varying the parameters but it gives similar

results.

Figure 5.7 shows the in�uence of parameters on the average accuracy

of our algorithm. The parameter tested are No. of STIPs per video Np, No.

of bins for the depth histogram M , No. of voxels for a cuboid nxy, nt, support

region L, and codebook size k.

1http://www.di.ens.fr/ laptev/interestpoints.html
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(a) Cuboid detector

(b) DSTIP detector

Figure 5.5: Comparison of our DSTIP detector with Cuboid detector. Ex-
ample video is action drink. Column from left to right is taken Np =
50, 100, 200, 300, 500, 800 respectively.

(a) drink-sit (b) drink-stand

Figure 5.6: STIPs extracted using Harris3D detector [44]

5.2.3 UTKinect Dataset

Our dataset contains 10 actions: hello, push, pull, boxing, step, forward-

kick, side-kick, wave hands, bend, and clap hands. These actions cover the

movements of hands, arms, legs, and upper torso. Each action was collected

from 10 di�erent persons each performing the actions 3 times. The resolution

of the depth map is 320× 240. Each action sample spans about 8− 46 frames.

We take σ = 5, 10, τ = T/8, T/5, T/3 when �ltering and take the number of

voxels for each cuboid to be nxy = 4, nt = 2.

There is no skeleton information recorded so skeleton feature based
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Figure 5.7: Parameter evaluation around optimum value on the MSRDailyAc-
tivity3D dataset. The average accuracy with the standard deviation denoted
by error bar is plotted.

algorithms [90,100] cannot be applied onto it. On this dataset, we tried another

method in which we take the 3D point clouds of the whole body in each frame

and map it to a posture word. Then each action is represented by a sequence

of posture words and we classify upon that (we refer to it as the "posture word

method"). Table 5.3 gives the results of the two algorithms on three testing

cases. The proposed DSTIP+DCSF pipeline performs signi�cantly better than

posture words method in that it focuses on the location of movement instead

of trying to model the whole body, and the DSTIP pipeline automatically

�nds the movements without requiring segmentation of the human body as

the posture word method does.

Notice from the experiments that our algorithm does not depend on
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Test One Test Two Cross Subject

DSTIP+DCSF 93.5% 96.7% 85.8%

Posture Word 83.89% 75.65% 79.57%

Table 5.3: Comparison of recognition rate on our own dataset. In test one,
1/3 of the samples were used as training samples and the rest as testing sam-
ples; in test two, 2/3 samples were used as training samples; In cross subject
test, half of the subjects were used as training and the rest as testing.

the availability of skeleton information or preprocessing as other methods do.

By this means, our algorithm is a more general approach to processing depth

videos and recognizing activities, which may also be used for a wider variety

of settings, e.g. group activities, local body parts activities, or non-human

behavior studies.

5.3 Conclusion

This chapter presents algorithms to extract DSTIPs from depth videos

and calculate descriptors for the local 3D depth cuboid around the DSTIPs.

The descriptor may be used to recognize activities with no dependence on

skeleton information or preprocessing such as human detection, motion seg-

mentation, tracking, or image denoising or hole-�lling. It is more �exible

than existing algorithms. It has been applied on three di�erent datasets and

presents better recognition accuracy than other state-of-the art algorithms

based on either low-level features or high-level features.

As shown in the experiment, there is rich possibility for extensions.

When skeletal joint information is available, the DCSF feature can be com-
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bined with the joint features to bring more accurate recognition results. Or,

joint locations can be regarded as a type of interest points and cuboids can be

extracted from those locations. On the other hand, when the corresponding

RGB video is available, the DCSF features can be easily combined with STIP

features from RGB videos to integrate information from two sources. Addi-

tionally, the STIP locations extracted from the depth videos and RGB videos

can be combined or �ltered to provide more stable and discriminate interest

point locations and render better recognition performance.
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Chapter 6

First-Person Activity Recognition Using RGBD

Data

In this chapter, I describe the my work on �rst-person activities recog-

nition using multi-modal data. The goal is to analyze the reactions and in-

teractions of persons with a moving robot (the explorer) that wears a RGBD

camera. This allows understanding whether the persons surrounding the ex-

plorer are friendly or hostile, and whether there will be a threat. We recorded

two multi-modal �rst-person interaction datasets using a humanoid and non-

humanoid robots bundled with Kinect. Multiple 2D and 3D descriptors are

investigated and evaluated on our datasets; it is demonstrated that 3D in-

formation renders signi�cant improvement to this recognition task. Further-

more, the videos contain a high percentage of ego-motion due to the robot self-

exploration as well as its reactions to the persons' interactions. It is shown that

separating the descriptors extracted from ego-motion and independent motion

areas, and using them both, allows us to achieve superior results. Experi-

ments show that the proposed algorithm recognizes the activities e�ectively

and outperforms other state-of-the-art methods.
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6.1 Algorithm

6.1.1 Feature Extraction

It is widely known from the neuroscience literature that the body struc-

ture is learned in the early stages of human development [58] and that adults

have prior knowledge of body appearance. Johansson [37] has demonstrated

that for humans the movement of the main body joints are su�cient to discrim-

inate among di�erent action patterns. Given this evidence, we can consider

motion and body appearance to be suitable to classify activities. The Kinect

device already provides skeleton joint positions and orientations. This data

is not always accurate or available though, especially if the camera is mov-

ing or the person that is performing the activity is very close to the camera.

Therefore, we cannot rely on the skeleton data only; we need to de�ne addi-

tional features that represent motion or body appearance. In particular, we

select four di�erent descriptors that have shown to perform well in classic ac-

tivity recognition tasks: 3D optical �ow, spatio-temporal interesting points,

depth spatio-temporal interesting points, and body posture descriptors. At

the same time, their combination aims at reproducing a mechanism similar to

that we humans experience when recognizing activities. Some examples of the

mentioned features are depicted in Fig. 6.1.

6.1.1.1 Motion Descriptor

We use histograms of 3D optical �ow as our motion descriptors. Specif-

ically, each RGB frame is divided into c× c cells, in order to explicitly capture
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Figure 6.1: Sample frames from the dataset with the extracted features over-
laid. The �rst row shows down-sampled dense optical �ow features. The
second row depicts the STIP cuboids. The third row illustrates the DSTIP
cuboids (red), and skeletal joint locations (green) (skeleton feature for the ac-
tivity in the third row is missing). The sample frames are extracted from run,
stand up, and hug activities respectively.
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local motion. For each frame Ft and its consecutive frame Ft+1, we compute

the dense 2D optical �ow [25]. It returns, for every pixel (xt, yt) in frame Ft, its

velocity along the x and the y components, necessary to reach its new position

(xt+1, yt+1) in frame Ft+1. To bene�t from depth information, we proceed in

projecting every pixel in frame Ft, in 3D [23]:

 Xt

Yt
Zt

 =


(xt − x0)d(xt, yt)t

f

(yt − y0)d(xt, yt)t
f

d(xt, yt)t

 , (6.1)

where (xt, yt) is the pixel in 2D at time t, (Xt, Yt, Zt) is the pixel in 3D at time

t, d(xt, yt)t is the depth of pixel (xt, yt) obtained from the depth image, f is the

focal length, and (x0, y0)T is the principal point of the sensor. We then project

in 3D all the pixels in Ft+1, obtaining for each pixel the optical �ow vector

projected in 3D as (Xt+1, Yt+1, Zt+1)T − (Xt, Yt, Zt)
T . At this point, each 3D

vector so computed is converted in spherical coordinates (r, θ, φ)T . We drop

the norm r, and we model each vector as its direction v = (θ, φ)T ; this way, the

descriptor will be invariant to the speed of the action (represented by r). At

this stage, we have retrieved a set of vectors v1, . . . ,vn ∈ R2. We now group

these vectors with respect to the speci�c cell from which they were extracted.

For each cell, we compress the vector directions into a 2D histogram. After

the whole procedure, we provide for each frame a histogram h ∈ Rc×c×b×b,

where b is the number of bins that represent the possible angle directions, and

c× c is the number of the cells in the current frame.
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In order to compact motion information over the entire video, we use a

Vector Quantization (VQ) approach: all the possible motion descriptor vectors

are clustered into k groups via a simple k-means procedure, and the centroids

of the k groups represent the atoms of a codebook. Then, each frame is coded

as an occurrence of a visual word, hence we obtain a new descriptor z ∈ Rk: its

components are all 0 with the exception of one 1, in the position correspondent

to the selected visual word. We �nally sum all the frame descriptors, obtaining

a histogram that contains, for each atom, the number of its occurrences in the

video.

6.1.1.2 Local Appearance Descriptors

Sparse spatio-temporal features are employed to describe the local ap-

pearance of the videos. This representation has been found to be suitable

for activity recognition tasks, as it handles cluttered backgrounds and partial

occlusions in both RGB and depth videos [8, 45, 98]. Speci�cally, each video

is represented as a 3D X-Y-T volume by concatenating the 2D image frames

along the temporal axis T . For RGB videos, we use the gray-scale inten-

sity value of the RGB channels, so each pixel p(x, y, t) inside the 3D volume

I(x, y, t) corresponds to the intensity value of the pixel (x, y) at time t. For

depth videos, each value q(x, y, t) of the 3D volume D(x, y, t) corresponds to

the depth value of the pixel (x, y) at time t. We use Harris3D to detect the

sparse spatio-temporal interesting points (STIPs), and HOGHOF to conse-

quently describe the 3D cuboids extracted from the intensity videos [45]. In a
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similar manner, we use the method in [98] to detect the local spatio-temporal

interest points (DSTIPs) from the depth volume, and use the depth cuboid

similarity feature (DCSF) to describe the cuboids extracted from the depth

videos.

As for the optical �ow descriptors, we build codebooks to obtain a

single descriptor for each video. In particular, we build two separate codebooks

for intensity and depth features. We consequently generate two bag-of-words

histograms for each video. Since the bag-of-words model omits spatio-temporal

information, we concatenate scaled spatial and temporal data (α1x, α2y, α3t)

to each feature vector before the clustering stage, i.e. F̄ = [F, α1x, α2y, α3t],

where (x, y) is the position of the pixel and t is the time instant. This expedient

produces noticeable improvements.

6.1.1.3 Human Posture Descriptor

We use the skeletal joints information estimated from the depth images

as a compact representation of the human posture [76]. This type of informa-

tion has been employed in many frameworks [90] and gives promising results.

Unlike the traditional third-person view settings, the skeleton in our �rst-

person scenario is often missing or subject to noise and errors, especially when

the person is too close or too far from the camera. Nevertheless, the absence of

human detection, or the skeleton confused position, can still be indicative for

our task. For example, if a skeleton is not detected, usually the person is very

close to the camera, i.e. he is performing activities such as hug or punch, or
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very far from it, i.e. he is running away. To handle noise and also incorporate

the information from the missing and corrupted skeleton data, we employ a

skeletal joint voting scheme.In particular, we use the hip center joint as the

origin O of a 3D reference system, and we transform the other joint positions

in spherical coordinates (r, θ, φ) with respect to O. Finally, we calculate an

equally spaced 2D histogram on θ and φ, and we compress them into a single

histogram. We construct a posture codebook using all the "good" postures

from the training set, collecting a bag-of-words histogram for each video. In

the meantime, we keep track of the number of frames that contain corrupted

skeleton data, and devote a bin h′ of the �nal histogram to this information

H = [h1, h2, ..., hn, h
′].

6.1.2 Separating Ego-Motion from Independent-Motion

Ego-motion can be de�ned as the camera motion; in our context, the

ego-motion is mainly due to the robot's autonomous movements as well as the

consequences of the performer's interactions with the robot � e.g. a punch

action may drive the robot in a di�erent position. On the contrary, the real

motion happening in the scene is de�ned as independent motion: the person

that moves to punch the robot is an example of independent motion. In nature,

mammals' high-resolution fovea is usually driven towards objects that move

with independent motion [85]; this mechanism allows them to process images

fast, and improve their recognition capabilities. We aim at reproducing the

same behavior, building an attention mask around the movements interpreted
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as independent motion, and considering the rest of the scene as subject to

ego-motion. We then extract motion and appearance descriptors from the two

areas separately, assuming that ego-motion and independent motion regions

give di�erent contributions to the recognition procedure. In the following, we

propose a simple motion-based segmentation algorithm to separate indepen-

dent motion areas from ego-motion ones. As opposed to the other works in

the literature, which tend to suppress background regions, we demonstrate

that using both ego-motion and independent motion areas to recognize �rst-

person interaction activities is crucial to improve the overall accuracy. Our

independent-motion separation method does not rely on person/body part de-

tector, therefore it is more �exible and particularly suitable for our task, where

the person may be very close or seriously occluded.

6.1.2.1 Independent Motion Vectors

We can assume that the largest part of the independent motion is gen-

erated by the person that is performing the activity. A person detector thus,

could implicitly catch the likely independent motion regions in a dataset where

the person stands at a reasonable distance from the camera. A �rst-person

activity dataset though, contains many videos where the person is extremely

close, or very far from the camera, therefore some body parts such as the head

are not visible. In these speci�c situations, person detectors are not always reli-

able. Therefore, instead of segmenting the person, we propose a new algorithm

that explicitly seeks for independent motion regions. Speci�cally, we rely on
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the fact that ego-motion typically induces only coherent motion on the image

plane, whereas independent motion is usually very di�erent. We use sparse op-

tical �ow, which focuses only on motion vectors between pixels that are easily

detected in the image. For each frame, we compute the Lucas-Kanade sparse

optical �ow [51]; we then build a Multivariate Gaussian model on the pixel

velocities so obtained, retrieving a couple of variables (µ,Σ) that represent

respectively the mean and the covariance matrix. At this point we compute,

for each pixel pi in the frame, the Mahalanobis distance between its velocity vi

and the Gaussian model previously estimated: DM =
√

(vi − µ)TΣ−1(vi − µ).

If DM > ε, where ε is a parameter experimentally chosen, the vector is consid-

ered independent motion, otherwise it is considered ego-motion. In Fig. 6.2

second row, the independent motion is represented, whereas in the �rst row

the original sparse optical �ow is depicted.

6.1.2.2 Attention Mask

The proposed procedure may su�er from outliers, such as motion vec-

tors detected due to sudden changes of lighting. In order to avoid such false

detections, we process the motion vectors to obtain a reliable attention mask.

We �rst use k-means to cluster the motion vectors with respect to their depth;

the maximum density cluster is selected, and it represents our focus of atten-

tion along the depth component. Since the independent motion is generated by

a person, we measured the proportions of humans with respect to the depth to

build a spatial x-y window around the focus of attention. In particular, given a
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certain depth value d, we compute a windows height h and width w as follows:

h = 5.2× 105/d, w = 3h/4. The windows so generated are represented in Fig.

6.2, third row. We �nally perform an AND operation between the depth value

retrieved by the focus of attention and the spatial window, obtaining the �nal

attention mask (Fig. 6.2 fourth row). Notably, our algorithm is able to handle

situations where the person is very close or very far from the camera.

The attention mask is able to capture precisely the contour of the hu-

man body, therefore it is particularly useful for separating the optical �ow gen-

erated by the person from the optical �ow caused by the camera. Given a set

of 3D motion vector directions expressed in spherical coordinates v1, . . . ,vn,

as explained in Sec. 6.1.1.1, we split them into two groups: the �rst group I

represents the optical �ow related to pixels belonging to the attention mask,

whereas the second group E represents the ego-motion optical �ow vectors. At

this point, for both sets we apply the rest of the procedure explained in Sec.

6.1.1.1, computing two codes zI and zE for each frame. We sum the codes of

all the frames belonging to a video, obtaining two histograms hI and hE that

count the visual words occurring in the video. We �nally concatenate the two

descriptors.

Di�erently, for the appearance descriptor extraction, a wider mask is

needed. Our appearance descriptor is extracted by analyzing the video for

a certain duration of time, thus pixels very close to the person are actually

"a�ected" by the person's movement and, in this context, they can be con-

sidered as independent motion. To separate the independent pixels from the
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others, we directly use the attention window (Fig. 6.2, third row). As for the

optical �ow descriptors, we split the interesting points into two groups: the

�rst group contains descriptors extracted from the window and the second one

contains the remaining pixels. We obtain a histogram of each group applying

the procedure explained in Sec. 6.1.1.2, and we concatenate them into the

�nal descriptor of a video.

6.1.3 Multiple Channel Kernels

So far we have generated a Bag-of-Words histogram for each type of

feature. We would like the classi�er (e.g. SVM) to integrate all the descriptors

in an e�ective way, being able, in speci�c situations, to privilege a descriptor

with respect to another one. A promising approach aiming to assign di�erent

weights to di�erent typologies of features is the multi-channel kernel. We

de�ne the multi-channel kernels that integrate the aforementioned features as

follow:
K(x,x′) = exp(−

∑M
m=1 dmKm(x,x′))∑M

m=1 dm = 1, dm ≥ 0,∀m
(6.2)

where each basis kernel Km uses a subset of variables stemming from di�erent

data sources, and M is the total number of kernels. We select the following

basis kernel:

Km(x,x′) =
n∑
i=1

2xix
′
i

xi + x′i
, (6.3)

We are now looking for a decision function in the form f(x) + b =

ΣM
m=1fm(x) + b, where each function fm is associated with a kernel Km. We
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use Support Vector Machines (SVM) as our classi�ers. Both the coe�cients

of the problem and the weights dm can be solved via a single optimization

problem:
min
{f},b,ε,d

1
dm
||fm||2H + C

∑
i εi

s.t. yi
∑

m fmxi + yib ≥ 1− εi,∀i
εi ≥ 0, ∀i∑

m dm = 1, dm ≥ 0,∀m

(6.4)

Equation 6.4 can be transformed into a constrained optimization problem, and

solved by a simple gradient method [68].

6.2 Experiments

There are several public datasets on RGBD human activity recogni-

tion [60, 82, 90]. These datasets though, focus on 3rd-person recognition and

the observer/camera itself is not involved in interactions. In our setting, the

camera shows a salient amount of ego-motion due to interactions, unlike any

previous RGBD datasets. To the best of our knowledge, there does not exist

any RGBD dataset with any human-camera physical interactions, and it is not

meaningful to test our algorithm on a dataset that does not have camera mo-

tion. For this reason, we propose two new datasets for 3D �rst-person activity

recognition. We evaluate other state-of-the-art algorithms on the two datasets

noticing that they do not perform well; this con�rms that our scenario is dif-

ferent from the traditional 3rd-person view problem and classic methods are

not suitable for the 1st-person tasks.

Here we �rst describe the datasets used in this study, then provide
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detailed experimental results. In particular, we carried out three di�erent

experimental sessions:

• In the �rst experiment, we investigate the in�uence of 2D and 3D fea-

tures on our recognition task. We show that adjoining 3D information

to the RGB stream signi�cantly improves the classi�cation results.

• In the second experiment, we show that descriptors extracted from re-

gions that move of independent motion and regions that move of ego-

motion provide di�erent contributions in the recognition of activities. In

particular, explicitly separating the two components and using both of

them enables the achievement of signi�cantly higher accuracy.

• In the third experiment, we present the results combining di�erent types

of descriptors. We �nally compare our results to [70] and some other

approaches that show to perform very well on classic activity recognition

tasks.

6.2.1 Dataset

We collect two benchmark datasets for �rst-person human interaction

activity recognition. We record data from a Kinect device mounted on top

of the �rst-person. We use a humanoid �rst-person (a Teddy Panda bundled

on a wheelchair) and a non-humanoid autonomous �rst-person. They are

both able to move and rotate horizontally, but the ego-motion appears in

di�erent patterns. The humanoid �rst-person has head and arm and it is able
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to react to a variety of motion patterns derived from the interaction, i.e. it

may shake when a person shakes hands with it, and it may fall down when

a person punches it. The non-humanoid �rst-person more closely resembles a

battle-�eld robot and it has more steady self-motions. Sample images of the

9 activities taken from the humanoid �rst-person dataset are shown in �gure

6.1. The 9 classes in the non-humanoid �rst-person dataset are: ignore, pass

by the �rst-person, point at the �rst-person, reach an object, run away, stand

up, stop the �rst-person, throw at the �rst-person, and wave to the �rst-person.

For each dataset, we invited 8 subjects, between the ages of 20 to 80,

to perform a variety of reactions and interactions with our explorer. We ask

each subject to perform 7− 9 di�erent continuous sequences of activities, in a

few di�erent background settings. Each group of activities performed by one

subject forms a set. Some examples of sequences may be:

• wave hands→approach→shake hands→hug

• stand up → reach an object→ throw [something] at the explorer

• approach → pass by the explorer

The continuous sequences are then segmented so that each video represents a

single activity. Each set contains around 20 − 35 samples of the 9 activities,

with at least one sample for each activity. In total, we collect 8 sets and 177

single activity samples for the humanoid �rst-person dataset, and 8 sets and

189 single activity samples for the second dataset.
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wave hug point punch reach run throw stand up shake

Table 6.1: Sample images of 9 activities in our humanoid �rst-person dataset.
The �rst row presents RGB images. The second row shows depth images. The
last row represents skeleton images. If no skeleton is detected for a particular
frame, a black image is shown.

We record the RGB video, the depth video, and the 3D skeleton joint

locations from the Kinect simultaneously; the frame rate is about 30fps. The

depth image is a 16-bit single channel image of resolution 320×240. We use the

full range of the Kinect (0.8m to 8m) to record more information. The RGB

image is an 8-bit 3 channel lossy compressed image of resolution 640× 480.

For all the experiments, we used a cross-subject test: in particular,

we use subject No. 1-4 as training and No. 5-8 as testing. In order to also

account for randomness due to the clustering of the codebooks, we assessed

our algorithm over 10 − 20 di�erent codebook trials. We report, for each

experiment, the mean accuracy and the maximum accuracy over all the trials.

The �rst two experiments are conducted on our humanoid �rst-person dataset.

Finally, we evaluate our complete features on both the described datasets.
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Feature Mean Accuracy Max Accuracy

2D HOF 45.92% 56.79%

3D HOF 55.22% 61.72%

Table 6.2: The table illustrates the comparison between 2D and 3D optical
�ow descriptors.

6.2.2 2D vs 3D

In this �rst experiment, we show that depth and 3D cues are funda-

mental to obtain superior results on our �rst-person activity dataset.

6.2.2.1 Optical Flow

In this section, 2D and 3D optical �ow performance is compared. Both

the descriptors are extracted without using the attention mask. For the 2D

optical �ow, we use the equivalent of our 3D descriptor: we compute the dense

optical �ow motion vectors, then model their directions as the arctangent of

their velocities, and divide the frame in c× c cells. We compute the histogram

of the directions of the �ow vectors extracted from every cell, and we concate-

nate them. Finally, we use the Bag of Words technique to retrieve a single

descriptor for the entire video. We used 8 main motion directions (i.e. num-

ber of bins) and 9 cells for the 3D optical �ow, obtaining a frame descriptor

h ∈ R576. For the 2D version, we tested histograms with 8, 16 and 64 bins,

and we divide each frame in 9 cells. We �nally build, for both the 3D and

2D optical �ow, 10 di�erent codebooks of visual words. In Table 6.2, the �nal

comparison between 2D and 3D optical �ow descriptors is presented. We only

show the best 2D results, which are achieved using 16 bins. Notably, the ac-
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curacy of the 3D optical �ow is always higher in comparison to the 2D motion

descriptors. These results show that 3D information allows obtaining a boost

in the recognition rate.

6.2.2.2 STIP

In this section, we compare the performance of the spatio-temporal

features from 2D intensity image sequences (STIP+HOGHOF) [45] to the

spatio-temporal features from depth image sequences (DSTIP+DCSF) [98].

The descriptors evaluated here are computed without applying our attention

mask. Some activity segments are very short and may not contain salient

intensity changes, resulting in 0 STIPs for several sequences; we use a 0-

histogram to represent this case. For the sake of completeness, we report the

performance including those 0-word videos (96 training, 81 testing, indicated in

Table 6.3 as "all"), and without including them (93 training, 76 testing, labeled

as "non-empty"). In this experiment, DSTIP features perform signi�cantly

better than STIPs, while usually, when there is little camera motion, the

performance of the two descriptors are similar. A possible reason may be

that the lighting changes due to the camera motion has a great impact on

the STIPs, whereas DSTIPs are very robust against it. When combining the

STIPs with DSTIPs though (see Table 6.3), we achieve better results than

single STIP or DSTIP features. This experiment demonstrates that adding

the depth dimension in �rst-person activity tasks signi�cantly improves the

performance.
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Feature(s) Mean Max
Accuracy Accuracy

STIP all 48.46% 50.62%
non-empty 57.63% 61.84%

DSTIP 72.83% 79.01%

STIP single kernel 74.07% 76.54%
+DSTIP multi-kernel 77.47% 80.25%

Table 6.3: Comparison of results for spatio-temporal features.

Feature(s) No Mask Ind-motion Ego-motion Ind+ego
Mean Max Mean Max Mean Max Mean Max

3D optical Flow 55.22% 61.72% 54.07% 60.49% 46.34% 56.79% 59.25% 69.13%
STIP 57.63% 61.84% 57.63% 60.53% 28.55% 32.89% 62.63% 69.74%
DSTIP 72.83% 79.01% 74.69% 77.78% 39.14% 45.68% 75.93% 80.24%

Table 6.4: This table illustrates the comparison between raw descriptors and
features extracted using the attention mask.

6.2.3 Mask

In this section, we apply our attention mask to the optical �ow and

appearance features, and compare the performance (table 6.4). In order to

show that the cause of the improvement is the combination of the two compo-

nents, we also show the accuracy achieved by the descriptors extracted from

ego-motion and independent motion regions singularly (table 6.4, second and

third column). It is worth noticing that single descriptors extracted from ego-

motion or independent motion do not necessarily obtain superior results. On

the contrary, when we use the attention mask to combine the contribution

of ego-motion and independent motion regions, we obtain higher accuracy on

both motion and appearance descriptors (table 6.4 last column).
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6.2.4 Single Features vs Concatenated

In this section, we present the results using multiple combinations of

features to give an insight on the contributions and characteristics of each

descriptor (Table 6.5). Results are reported using both the described datasets.

Due to the di�erent characteristics of the two datasets, single features

perform di�erently. For instance, in the humanoid �rst-person dataset, spatio-

temporal appearance features give better results over motion or posture de-

scriptors. Di�erently, in the non-humanoid �rst-person dataset, the subjects

are usually at a further distance from the explorer; in this case, the quality

of the depth images deteriorate, and all our depth-based features experience

a decrease in the results. The quality of the skeleton data instead, improves

with respect to the previous dataset, where the person is very close the the

explorer. Therefore, we obtain superior results using posture features. Finally,

the performance of the combined descriptors using the multiple-channel ker-

nels give similar results on the two datasets. This indicates that the proposed

work may constitute a stable framework for �rst-person activity recognition.

We also compared our results with the algorithm developed by Ryoo et

al. [70], which, to the best of our knowledge, is the only work on �rst-person

human interaction activity recognition. Table 6.5 also summarizes the accu-

racy achieved by other methods [45, 62, 98] that demonstrated to be suitable

for general activity recognition tasks. It is possible to notice that the best

results are obtained using the combination of our features.
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Figure 6.3 presents the confusion matrix of the 4 features and the com-

bination of them using our multi-channel kernels on our humanoid �rst-person

dataset. The 4 features o�er di�erent discerning abilities for the activity

classes. For example, optical �ow and STIPs show a very low accuracy in

the recognition of the "wave" activity, whereas the posture descriptor achieves

high results. This behavior, noticed for several activities, explains the great

improvement gained by combining optical �ow with posture features.

6.3 Conclusion

This Chapter presents a framework and algorithm to recognize �rst-

person activities using multi-modal data. The proposed algorithm helps the

robot to gain consciousness of the surrounding environment, to be aware of the

intention of the persons around it, and to take action in case of a threat. This

kind of frameworks can also be embedded into wearable cognitive assistant

systems to give instructions or warning the person.

I propose and make publicly available two new �rst-person activity

datasets, which incorporate RGBD and skeleton data. This additional infor-

mation allows us to extract 3D cues, which meaningfully increases the clas-

si�cation rate. I investigate several intensity, depth and skeleton features,

evaluating their contributions and their combinations on our new task. I also

separate the regions of ego-motion and independent motion and utilize them

both. I demonstrate that descriptors extracted from the foreground and back-

ground give di�erent contributions to the recognition, and their combination
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Feature(s) Humanoid robot Non-humanoid robot

Mean Max Mean Max

Ryoo et al. [70] 57.1% 64.19% 58.48% 63.33%

Laptev et al. [45] 48.46% 50.62% 50.83% 57.14%

Xia et al. [98] 72.83% 79.01% 53.25% 57.14%

Liu al. [62] 52.54% 52.54% 45.55% 45.55%

OF 59.25% 69.13% 52.07% 57.77%

ST 76.85% 80.25% 64.38% 67.78%

P (all) 56.79% 60.49% 70.0% 75.56%

P (non-empty) 62.66% 70.31% 75.74% 81.82%

OF+P 78.60% 80.25% 80.41% 84.44%

OF+ST 77.98% 81.48% 65.54% 68.89%

ST+P 83.88 % 85.60% 80.94% 84.44%

OF+ST+P 85.60% 86.42% 83.70% 87.78%

Table 6.5: All the comparisons are illustrated. The �rst rows are dedicated to
the results obtained using state-of-the-art methods. Flowing that are the per-
formance of the descriptors we have investigated. The results of the proposed
features applying the attention mask are shown starting from the �fth row: 3D
optical �ow features (OF), combination of depth and intensity spatio-temporal
features (ST), posture descriptor (P), and di�erent combinations. The last row
indicates our best results, attained using the combination of all the features
together.

notably improves the results. The presented methodology has never been uti-

lized in the literature to the best of my knowledge.

The contribution of this work is threefold. Firstly, we propose and make

publicly available the �rst datasets for �rst-person interaction activity recog-

nition that provide RGB, depth and skeleton data. Secondly, we show that

additional 3D information is fundamental to achieving improved performance.

Thirdly, we propose a new concept: ego-motion and independent motion re-

gions are both important to improve the recognition results when ego-motion

is present.

114



Figure 6.2: In the �rst row, the sparse optical �ow is depicted. The second row
shows the vectors identi�ed as independent motion. The third row presents the
attention window used for the STIP features. In the fourth row, the attention
mask used for the optical �ow features is represented.

(a) 3D optical �ow (b) STIP (c) DSTIP (d) Posture (e) All

Figure 6.3: Confusion matrices of the four di�erent features on the humanoid
�rst-person dataset.
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Chapter 7

Conclusion

My thesis presented algorithms to �nd persons in the scene and recog-

nize the actions and activities of the persons using RGBD imagery. Further-

more, I proposed to study a novel problem of recognizing human interactions

from a �rst-person perspective using RGBD data and gave a robust solution.

I �rst presented a model-based algorithm to localize the persons in

an indoor scene. Unlike the previous works, I did not assume certain poses or

motion patterns of the person. I proposed a 3D shape model to �nd the humans

in the depth image, it is more robust to lighting changes and background

clutter. It may work alone on a depth image, or it can be combined with

detection algorithms from RGB imagery to compliment the drawbacks in both

data sources. Instead of running the detection window at multiple scales to

�nd the body part as is usually done in the RGB images, I took advantage

of the depth information to estimate the scale, and adjust the model to the

correct scale for detection. The detection process involves two models: a 2D

edge template, and a 3D shape model. The 2D edge template summarizes

the contour shape of the head and upper shoulder part, which is a relatively

stable shape from either a front, back, or side view. Then, a 3D model is
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�tted onto the regions returned by the 2D template �tting process to verify

if the object is of a spherical shape. An occlusion mask is extracted before

�tting the 3D model to remove the objects that occlude or occluded by the

head. After localizing the head, a region growing algorithm is employed to

�nd the whole body of the person and a contour is extracted. Furthermore, a

tracking algorithm is proposed based on the detection result. This algorithm

was tested on two datasets and outperformed state-of-the-art algorithms on

RGB imagery and depth imagery.

Furthermore, I proposed a view-invariant posture feature from the hu-

man skeletons extracted from a depth video. I constructed a reference coordi-

nate in the 3D skeleton space, which rotates according to the direction of the

person and makes the representation view-invariant. The polar angle and az-

imuth angle of a joint are computed on this reference coordinates and casted

into 30 degrees bins, the votes are then concatenated into a feature vector

called HOJ3D. This feature is a good abstraction of the posture of the person

and the computation is real-time. It o�ers a simple and e�ective feature for

the real-time systems to recognize human actions.

Since skeleton is not always available for real applications, I designed

a more general feature for activity recognition. It describes local contents of

a depth video using spatio-temporal concepts. The image frames in a video

are concatenated along the time dimension, interesting locations are extracted

from this chunk of data, and local voxels around these interesting locations are

extracted and described using the proposed feature. Considering the charac-
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teristics of depth video, I designed a �ltering approach with a noise suppressor

to localize the points around human motions. A new descriptor was proposed

to describe the local 3D voxels around the interest points with a self-similarity

notion that o�ers �exibility and also handles the noise. This feature may be

directly extracted from the depth video without the need for human detection,

skeleton estimation, background subtraction, or motion tracking. It is widely

applicable for a variety of scenarios.

Finally, I proposed a novel problem of recognizing human interaction-

level activities from a �rst-person perspective combining RGB and depth data.

This problem is novel in the sense that the activities are recorded from the

perspective of one of the persons involved in the interaction, while traditional

computer vision algorithms recognize activities from a 3rd-view camera irrele-

vant to the activity. First-person activity recognition is a challenging problem

due to the presence of a signi�cant amount of ego-motion in the video. Re-

search on this topic came out very recently and previous researchers addressed

this problem using only a RGB camera. I proposed to use RGBD videos to

solve this problem and gave a more robust solution. The independent-motion

and ego-motion regions in the video are separated with the help of the depth

channel. Then, features are extracted from the two di�erent regions for an-

alyzing the ongoing activity. 3D optical �ows are computed to estimate the

motion of the scene/person, spatio-temporal features are extracted from RGB

channels and depth channel to describe the local contents, and skeletal features

are built to provide information about the posture of the person. I compared
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the proposed algorithm with state-of-the-art approaches on activity recogni-

tion from 3rd-person view or 1st-person view. Results showed that adding the

depth channel signi�cantly improved the performance.

In summary, the main impact of my thesis is that I developed several

robust features on the depth imagery for activity recognition and addressed

the novel problem of �rst-person activity recognition using RGBD data. I

made publicly available several RGBD datasets. This thesis showed that depth

information is very useful for activity recognition tasks in computer vision.

At the same time with the rapid development of the depth sensor, a

growing number of research projects are being conducted using RGBD data.

I believe this is just the beginning of the low-cost high-end range sensors and

the related research. With future developments, range sensors will have a

higher resolution, less noise, and an extended sensing range. Furthermore,

depth sensors accompanied by traditional cameras on laptops and cell phones

are coming out in the near future, which will provide broader computer vision

research topics and applications. I believe that my thesis will contribute to

many of the real-world applications and also open the doors to more interesting

problems related to RGBD vision and activity recognition.
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