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Supervisor:  Lesli J. Wood 

 

This dissertation focuses on understanding the relative importance of external 

(eustacy) versus local tectonic and sedimentary processes in controlling continental-

margin depositional architectures and their implications for sediment distribution. The 

emphasis of this study is the interpretation of clinoform geometries and stratigraphic 

relationships observed on 3D and 2D seismic reflection data in the Taranaki Basin, which 

is characterized by a variety of clinoform architectures on its Pliocene-Recent margin 

(Giant Foresets Formation). I combined seismic stratigraphic interpretations and 

biostratigraphic studies using a dataset that consists of 1,700 km2 of 3D seismic lines, 

4,000 km of 2D regional seismic lines, and data from six wells. The study was divided 

into three sections. First, three major stages of clinoform evolution were identified based 

on their architectural and geomorphological characteristics. Isochron maps were 

generated to identify correlations between stratigraphy and paleostructures, and seismic 

attribute maps were elaborated to identify and characterize geological features and 

depositional elements. In the second phase of the study, 2D stratigraphic forward 

modeling techniques were applied in an effort to quantitatively determine the relative 

importance of the mechanisms acting in the basin (eustacy, tectonism and sediment 

supply). Finally, a similar approach was applied using clinoform morphologies in the 
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eastern Trinidad margin where the tectonic configuration of the basin was completely 

different to the one in the Taranaki Basin. The objective was to compare the results in a 

region with different a tectonic setting to validate the applicability of the methodology in 

other basins worldwide. 

The results of this research indicate that the methodology that was developed for 

the quantitative analysis of clinoform architectures in the Taranaki Basin is applicable to 

other basins worldwide and that the work flow provides a more comprehensive 

understanding of the factors that influence continental margin development. Generic 

observations of this research showed that (1) underlying structures in the shelf and slope 

area can play an important role in influencing the location and morphology of the shelf 

edge area and controlling sediment distribution; (2) high sediment supply, along with 

accommodation, play a key role in the construction of high-relief clinoforms and earlier 

dispersal of sediments into deep water; and (3) lateral variations associated with high 

sediment discharge sources (e.g. paleo Orinoco shelf-edge delta) can generate important 

changes in continental-scale clinoform architectures alongstrike in continental margins 

influence sediment distribution patterns in the deep-water component of the basin.  
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CHAPTER 1: INTRODUCTION 

PROBLEM AND SIGNIFICANCE 

The study of continental margins has received increasing attention in recent years 

because of the interest of the oil industry in the exploration of deepwater deposits. 

Understanding how sediment is transferred and distributed along continental margins is 

crucial for the development of exploration-oriented sedimentary models of continental 

margin evolution. The development of continental margins is the result of the complex 

interactions between external (e.g., eustacy and climate) and local (e.g., tectonics and 

sediment supply) processes that operate from the source areas to the final sink. These 

processes are not easy to isolate because they may occur at the same time and generate 

similar sedimentary responses (Galloway, 1989). Clinoform stratal architectures are 

commonly identified in different time and geographic scales on seismic profiles 

worldwide. Clinoforms are inclined depositional surfaces, associated with strata 

prograding into deep water, that are composed of three geometric elements (Rich, 1951): 

(1) a topset, the shallowest and lowst-angle area, (2) a foreset, the central and steepest 

area, and (3) a bottomset, the flat area farther basinward. Because of their broad 

distribution and sensitivity to variations in the basin conditions, continental-scale 

clinoforms have been studied by several workers worldwide to investigate the response of 

depositional systems to relative sea-level variations and to predict the accumulation of 

deepwater deposits (Johannessen and Steel, 2005; Carvajal and Steel, 2009; Henriksen et 

al., 2009). This research is concerned with the study of continental-scale clinoforms, how 

these systems develop, and the implications associated with sediment distribution in an 

outer shelf to sink configuration. Understanding how clinoforms form, evolve and 

degrade is critical to the understanding of the transport mechanisms affecting the shelf 

margin region as well as sediment partitioning of a given basin. 
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OBJECTIVES 

The objectives of this study are:  

- To develop a method that will allow for the quantification of the temporal 

and spatial variability within a clinoformal succession by using observations extracted 

from seismic and well data. 

- To deduce the processes acting in the basin (from global to local scales) 

through the study of clinoform morphologies and their distribution, and to identify 

changes in basin conditions through the study of variations in clinoform morphologies 

and architectures through time. 

- To separate out the stratigraphic signatures of tectonics versus sediment 

supply and relative sea level fluctuations in a structurally active shelf margin region.  

- To understand the partitioning of sediments in a given basin through the 

study of morphological characteristics of continental-scale clinoforms. 

- To examine under what conditions high relief clinoforms (height > 700m) 

can be developed. 

These objectives are achieved by pursuing a detailed geomorphological study of 

clinoform architectures within the Pliocene-Pleistocene stratigraphic section of the 

northern Taranaki Basin of New Zealand. The study seeks to better understand the 

evolution of these continental margins and to deduce the relationships between clinoform 

development and the variables that influenced sediment movement in the shelf edge and 

slope regions, including sea-level fluctuations, sediment input and tectonics. The 

quantitative data were also used as input to forward model clinoform architectures in the 

Taranaki Basin so that the main controlling factors influencing the genesis of clinoforms 

could be identified (sediment supply, relative sea-level fluctuations, tectonics, etc). The 

methodology for clinoform characterization was applied to continental-scale clinoforms 
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documented in the eastern offshore Trinidad (Moscardelli et al., 2012) allows me to 

compare results in a region where tectonics and other geologic conditions vary from the 

Taranaki Basin.  

AREA OF STUDY 

The Taranaki Basin of New Zealand was selected for this study because: (1) the 

presence of high-quality seismic datasets; (2) well-developed clinoform architectures 

(Giant Foresets Formation, GFF) in the Neogene section; (3) clinoforms characterized by 

having high relief similar to continental-scale clinoforms deposited in the Magallanes 

Basin (Chile) and the North Slope of Alaska (Figure 1.1); and (4) the occurrence of 

different tectonic episodes that should be expressed on the basin architectures and 

clinoform morphologies.   

 

Figure 1.1: Comparison of clinoform lengths and heights from various slope systems. Of 
the slope systems considered, the relief and angle of the clinoforms mapped 
in the Taranaki Basin are most comparable to those of the North Slope, 
Alaska. 
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OVERVIEW OF SUBSEQUENT CHAPTERS 

This dissertation has been structured into six main chapters. Chapters 2 to 4 are 

manuscripts that are either submitted, in revision or in preparation for publication.  

Chapter 2 

Chapter 2 documents the methodology that was followed to collect quantitative 

data associated with clinoform architectures (height, length, slope inclination, rollover 

trajectories). This chapter also describes the methodology that was followed to define 

seismic units and stages of clinoform evolution within the northern Taranaki Basin, and 

contains all the elements linked to the regional geologic setting of the basin. 

Chapter 3 

Chapter 3 incorporates 2D stratigraphic forward modeling techniques to define 

the predominant mechanisms acting in the basin. This chapter discusses in detail the 

methodology that was used to generate the modeling. The aim of this section is to discuss 

which geologic factors most likely represented the main controls influencing clinoform 

architectures and if they varied in space and time. 

Chapter 4 

Chapter 4 uses a similar procedure to that in Chapter 3 to quantify clinoform 

morphologies in the eastern Trinidad margin. The purpose of this chapter is to investigate 

to what degree our results can be extrapolated to other basins.  

Chapter 5 

Chapter 5 compares the clinoform systems in the northern Taranaki Basin and 

eastern offshore Trinidad to present a discussion surrounding the applicability of the 

methodologies developed in this work in other basins. 
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Chapter 6 

Chapter 6 summarizes the major contributions of this research and explores the 

implications of these results for other studies and for a better understanding of the 

Taranaki Basin. 
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CHAPTER 2: UTILIZING CLINOFORM ARCHITECTURE TO 
UNDERSTAND THE DRIVERS OF BASIN MARGIN EVOLUTION: 

A CASE STUDY IN THE TARANAKI BASIN, NEW ZEALAND   

ABSTRACT  

The study of morphological variations within continental-margin clinoforms is 

critical to the understanding of sediment dispersal, composition, and transport 

mechanisms affecting the shelf margin region. In this study, I combine the analysis of 2D 

and 3D reflection data with paleontological studies to document variations in clinoform 

morphologies within the Pliocene-Recent Giant Foresets Formation of the northern 

Taranaki Basin, New Zealand. Quantitative analysis of slope geometries, shelf edge 

trajectories and incisional patterns allowed for the identification of three major stages of 

clinoform evolution. These results were combined with the analysis of isochron maps and 

seismic attribute extractions to determine relationships with depositional and tectonic 

settings. Clinoforms developed during Stage 1 (early Pliocene) have gentle and smooth 

architectures, low-angle foresets, and rising rollover trajectories. Seismic 

geomorphological analysis suggests a stable shelf-edge region, and the development of a 

few slope fans. Stage 2 (early–late Pliocene) clinoforms are characterized by concave 

profiles, increased foreset steepness, mostly flat rollover trajectories and dissected shelf-

edge regions. This stage reflects an increase in canyon incision and sediment bypass 

toward the basin acting on a background of relative sea level fall. In addition, the 

activation of a back-arc rifting structure (Northern Graben) during this stage allowed 

local changes in basin physiography and redirection of sediment pathways through the 

structure, potential deep water deposits are expected in deeper parts of this structure.  

Stage 3 (late Pliocene-Recent) is characterized by sigmoidal, higher and steeper 

clinoforms, rising rollover trajectories and dissected slopes without a clear connection to 
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the shelf edge area. Increase in sediment supply and accommodation were necessary for 

molding these geometries.  The progradation of the system into deeper water resulted in 

gradually steeper slope gradients that triggered mass-wasting processes. This work 

highlights the way systematic description of clinoform architectures can be coupled with 

process-oriented interpretations associated with paleoenvironmental and tectonic 

conditions at the time of deposition.  

INTRODUCTION 

The amount of sediment that ultimately ends up in the deep-water regions of a 

continental margin is influenced by the character of the source area, the nature of the 

fluvial systems that reach the shoreline and the accommodation regime from source to 

sink. However, it is the deltaic and shelf repositories that sequester sediment, where it is 

often acted upon by marine processes that influence the nature and distribution of these 

shallow marine sediments, before they are ultimately transferred to the slope and deep-

water basins.   

The geomorphology and efficiency of shelf-to-basin transfer zones are influenced 

by a variety of factors including relative sea-level fluctuations, tectonism, variations in 

sedimentation rates, and current-controlled processes among others (Martinsen & 

Helland-Hansen, 1995; Carvajal & Steel, 2009; Kertznus & Kneller, 2009; Moscardelli et 

al., 2012). It is widely recognized that the clinoform is the primary architecture of 

sediment storage in shallow marine settings prior to sediment transfer to deeper waters 

(Muto and Steel, 2002).  A clinoform is an inclined depositional plane whose dip section 

is composed of three geometric elements: a topset (the most shallow and low-angle part 

of the depositional profile), a foreset (the central and steepest portion of the depositional 

profile), and a bottomset (the region of the depositional profile that is furthest basinward) 

(Mitchum & Vail, 1977; Figure 2.1). The break in seafloor slope between the topset and 



8 
 

the foreset is often called the rollover point. Several different types of clinoforms have 

been described (Wolinzky & Pratson, 2007; Helland-Hansen and Hampson, 2009), 

including: delta front clinoforms (subaerial); subaqueous delta clinoforms; and large scale 

continental margin clinoforms which include as part of their configuration the shelf-

slope-continental rise (e.g., the Giant Foresets Formations).  

 

Figure 2.1: Sketch showing idealized clinoform morphologies and geometric parameters 
for each seismic unit. 

Clinoform dimensions are often calculated by measuring clinoform height 

(vertical distance between the bottomset and the upper portion of a clinoform foreset) 

(Figure 2.1). Clinoform heights can vary from tens of meters (delta scale) to hundreds of 

meters (continental scale) (Wolinsky & Pratson, 2007; Helland-Hansen & Hampson, 

2009).  Analysis of clinoform architectures has applications for the study of continental 

margin evolution including the estimation of paleo-water depth (e.g., Schlager, 1981; 

Kominz & Pekar, 2001), lithologies (Orton & Reading, 1993), and tracking temporal 

changes in margin growth (Johannessen & Steel, 2005; Carvajal & Steel, 2009).  Some 

studies suggest that the correlation between deltaic clinoform inclination (downward 

slope) and lithology is a relationship that can be extended to continental margin 

clinoforms (e.g., O’Grady et al., 2000; Adams & Schlager, 2000; Wolisky & Pratson, 

2007). Finally, clinoform rollover positions can be used as a means to predict continental 
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margin trajectories through time (Figure 2.1) (Johannessen & Steel, 2005; Carvajal & 

Steel, 2009; Henriksen et al., 2009).  

Although modelers looking at continental margin evolution have historically 

placed emphasis on the influence of relative sea-level on continental margin 

development, several researchers have begun to give considerable attention to the 

influence that tectonism and current-controlled processes may have on shaping these 

margins (e.g., Jordan and Flemings, 1991; Martinsen & Helland-Hansen, 1995; Boyd et 

al., 2008; Hubble et al., 2011; Georgiopoulou et al., 2011; Moscardelli et al., 2012). 

Tectonics can influence the bathymetric profile as well as the tortuosity of sedimentary 

pathways that bypass sediment from the shelf to the slope region.   

Tectonic pulses occurring in sediment source areas can trigger variations in 

sediment supply that can influence depositional styles along these margins (e.g., Miall, 

1986). Likewise, current-controlled processes play an increasingly evident role in 

redistributing sediments in both shelfal and deep-water environments (Boyd et al., 2008; 

Zhu et al., 2010; Georgiopoulou et al., 2011; Hubble et al., 2011; Moscardelli et al., 

2012). Researchers using high quality, 3D seismic have been able to obtain a spatially-

dense, three-dimensional understanding of architectures within many of the modern and 

ancient shelf-edge regions. When integrated with temporally detailed lithologic, faunal 

and floral information from well logs and core, the resulting integrated depositional 

framework provides the type of architectural and stratigraphic detail that can help unravel 

the roles of tectonics, eustasy and sediment supply in the construction of such continental 

margins and basin infilling (e.g., Posamentier & Kolla, 2003; Moscardelli et al., 2006; 

Carvajal & Steel, 2009; Kertznus & Kneller, 2009; Moscardelli et al., 2012).  

The main objective of this work is to pursue a detailed seismic architecture and 

geomorphological study of shelf-edge architectures of the Giant Foresets Formation 
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within the Taranaki Basin of New Zealand (Figure 2.2) in order to better understand the 

evolution of this continental margin from the Pliocene to Recent times. In addition, I 

deduce the relationships between clinoform development and controlling variables (e.g., 

ocean processes, sea-level fluctuations, sediment input and tectonics) that influenced 

sediment movement in the shelf edge and slope region during the Pliocene–recent.          
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Figure 2.2: (A) Map showing the study area along the western margin of New Zealand’s 
North Island. Light-gray-shadowed area highlights the location of the 3-D 
seismic volume used in this study. Semiregional 2D seismic lines are also 
shown. (B) Small map shows relative location of Taranaki Basin, including 
its northwestern deepwater extension and corresponding tectonic framework 
along Australian-Pacific plate boundary zone.  
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Geological Setting 

The Taranaki Basin is a Cretaceous to modern sedimentary basin that covers a 

total area of 330,000 km2 along the western coast of New Zealand and has both an 

onshore and offshore component (Figure 2.2). The eastern boundary of the basin is 

delineated by the Taranaki Fault, part of a system of reverse faults associated with the 

converging boundary between the Australian and Pacific tectonic plates (King & 

Thrasher, 1992) (Figure 2.2). To the south, the basin merges with the small subbasins of 

New Zealand’s South Island, and to northwest in the Deepwater Taranaki Basin, the 

basin merges with the New Caledonian Basin (King & Thrasher, 1992; King & Thrasher, 

1996) (Figure 2.2). Within the Taranaki Basin, King & Thrasher (1996) distinguished 

two main tectonic regions, divided by the Cape Egmont Fault Zone (Figure 2.2): the 

tectonically active Eastern Mobile Belt, which includes the Central and Northern grabens 

and an associated buried Miocene andesitic volcanic arc (Mohakatino Volcanic Center, 

MVC), and the tectonically quiescent and structurally simple Western Stable Platform, 

which lacks fault activity. The study area includes the Northern Graben and eastern 

portions of the Western Stable Platform (Figure 2.2).  

The basin has undergone a complex and diverse tectonic history that includes 

phases of rifting and passive margin development overprinted by several stages of 

foreland evolution and volcanism associated with the evolving Pacific and Australian 

convergent plate boundary (King & Thrasher, 1992; King & Thrasher, 1996). The 

Northern Graben, the subject of this study, is a northeast-southwest-oriented structure 

that opens towards the northeast, where it reaches a maximum width of about 40 km, The 

Northern Graben was formed during back-arc rifting in the early Pliocene (King & 

Thrasher, 1996). The Cape Egmont and Turi fault zones constitute its western and eastern 

boundaries, respectively (Figure 2.2). Extension in the Taranaki Basin was preceded by 
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mid–late Miocene volcanism (12–16 Ma) (King & Thrasher, 1992; Giba et al., 2010) and 

the formation of submarine andesitic stratovolcanoes located along the axis of the graben 

(MVC, Figure 2.2).  

The main lithostratigraphic units related to the Pliocene–Recent tectonic event 

within the Taranaki Basin are associated with the Rotokare Group (King & Robinson, 

1988) (Figure 2.3). The Mangaa Formation is the lowermost stratigraphic unit contained 

within the Northern Graben, and is composed of a series of basin floor fan deposits 

(Hansen & Kamp, 2002). The Giant Foresets Formation comprises a thick (up to 2,000 

m) shelf-to-basin succession of mostly fine-grained sediments (King & Thrasher, 1996; 

Hansen & Kamp, 2002; Hansen & Kamp, 2004; Morgans, 2006). This succession is 

characterized by the development of high relief clinoforms (as high as 1,500 m; Figure 

2.4a). The approach for this study involves quantification of clinoform architectures 

within the Giant Foresets Formation in order to address the following set of questions: (1) 

Are there geomorphological differences among the various clinoform architectures in the 

Giant Foresets Formation and if so are they controlled by changes in tectonism, sediment 

supply, fluctuations of relative sea level, or current-controlled processes? If 

geomorphological differences are controlled by a combination of geologic factors, what 

are the dominant processes? (2) Can the Giant Foresets Formation clinoforms be 

categorized quantitatively based on their differing depositional profiles? What can their 

morphologies tell about sediment supply and transport mechanisms and is there a 

relationship between clinoform architecture and lithological composition? (3) Does 

clinoform development, structural domain, and tectonic regime within the Taranaki Basin 

drive sediment partitioning? Can I predict areas of sediment accumulation along the shelf 

margin and areas of sediment bypass and accumulation in deep-water regions?  
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Figure 2.3: Miocene–Recent chronostratigraphic chart for Taranaki Basin (modified from 
Hansen and Kamp, 2002) including the offshore Pliocene–Recent Giant 
Foresets Formation of the northern Taranaki Basin composed of continental-
scale clinoforms with heights that exceed 100 m. 
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Figure 2.4: Uninterpreted and interpreted composite seismic profile (including 2D and 3D datasets) along depositional dip (see 
inset map for location). (a) Seismic image showing well-defined clinoforms of the Giant Foresets Formation. (b) 
Composite seismic line including the interpretations of key surfaces (Sa to Seabed), seismic units (SU1–SU9), 
stages of clinoform evolution (Stages 1–3), and shelf-edge trajectories. Notice progressive northward migration of 
shelf break through time and change from mostly progradational (SU1–SU6) to aggradational margin (SU6–
SU9). 
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DATASET AND METHODOLOGY  

Seismic and Well Data 

The primary datasets used to conduct this study were 2D and 3D seismic 

reflection data and well data (Figure 2.2). The 3D seismic volume was acquired in 2005 

and covers an area of 1,700 km2, with vertical resolution of about 10–15 m in the 

Pliocene–Recent section. Four thousand line kilometers of 2D seismic profiles located 

within the offshore area of the Taranaki Peninsula were also available for this study. The 

vertical seismic resolution of these 2D seismic lines varies between 20–30 m (Figure 

2.4a) in the Pliocene to Recent section. Imaging depths reach a maximum of 7 seconds 

(s) TWTT across the study area for both the 2D and 3D seismic surveys.  

Geophysical logs, biostratigraphic, and lithological information from six 

exploratory wells (see Figure 2.2 and Table 2.1) were also integrated into this study. One 

of the wells is located within the 3D seismic volume and the others are located in close 

proximity to the seismic volume (Figure 2.2). Two-dimensional seismic lines allowed for 

the correlation of key picks from these adjacent wells into the seismic volume. Two other 

wells located in the Taranaki Peninsula (Figure 2.2) lack quality biostratigraphic and 

lithological information and could not be used in the correlation of key picks. 

Paleoenvironmental and age interpretations, based on existing biostratigraphic zonations 

(Hoskins & Raine, 1984; Morgans, 1984; Crundwell et al., 1992; Hansen & Kamp, 2004; 

Morgans, 2006; Crundwell, 2008), were performed within the study area (Figure 2.5). In 

addition, original micropaleontological counts were used to reinterpret and refine the age 

control within the stratigraphic interval of interest.  

 

 



18 
 

Well Year 
Total 
Depth 

(m) 

Time/    
Depth GR Resist. Sonic Density 

Biostratig. 
Info. 

Litho. 
Info. 

Well 
Report 

Arawa-1 1991 3055 Yes Yes Yes Yes Yes Yes Yes Yes 

Kanuka-1 2007 2879 Yes Yes Yes Yes Yes Yes Yes Yes 

New 
Plymouth-
2 

1965 4451 No Yes Yes Yes Yes Yes Yes Yes 

Okoki-1 1989 4250 Yes Yes Yes Yes Yes Yes Yes Yes 

Taimana-
1 

1983-
84 

4195 No Yes Yes Yes Yes Yes Yes Yes 

Witiora-1 1984 4229 No Yes Yes Yes Yes Yes Yes Yes 

Table 2.1: Summary table of attributes from available well data in the Taranaki Basin. 
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Figure 2.5: Cross section showing the correlation of key wells including Witiora-1, Taimana-1, Arawa-1, and Kanuka-1 (see 
inset map for locations). Cross section includes bioevents as well as lithostratigraphic and paleoenvironmental 
interpretations including basin deepening toward north. Biostratigraphic markers originally reported by Morgans 
(2006) and Crundwell (2008) but reinterpreted in this study. 
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Velocity information within the study area was available for three key wells in the 

form of check shots and sonic logs (Table 2.1). Seismic velocity information derived 

from the wells was calibrated with seismic using the elaboration of four synthetic 

seismograms (e.g., Figure 2.6). Synthetic seismograms were also used to tie the age and 

paleoenvironmental interpretations from the wells to seismic data. Approximate time-

depth conversion within the interval of interest is 100 milliseconds (ms) two-way-travel-

time (TWTT) are equivalent to 100 m. In addition, a velocity model was built using the 

interpolation of calibrated time-depth curves. This analysis facilitated the depth-

conversion of key seismic transects and allowed to describe the true geometric 

relationships associated with the structural and stratigraphic configuration of the Giant 

Foresets Formation (Figure 2.7). Backstripping analyses performed in the 3D survey 

show that the difference between the compacted (measured) and decompacted 

(calculated) Pliocene–Recent section is no more than 12% (Cardona, 2009; Giba et al., 

2012); therefore, no correction was made for burial compaction.  
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Figure 2.6: Seismic-well calibration using synthetic seismogram generated using Syntool for well Arawa-1. Image includes 
time-depth, gamma ray, resistivity and density logs, as well as seismic line tied to with well information.  
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Figure 2.7: Interpreted depth-converted seismic profile, showing the three stages of clinoform development (Stages 1–3) 
interpreted here. Gamma ray logs are displayed for each well. Vertical exaggeration=9x. 
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Definition of Seismic Units and Stages of Clinoform Evolution 

The Giant Foresets Formation is recorded in the seismic data as a well-developed 

stacked succession of clinoforms that prograde towards the northwest (King & Thrasher, 

1996; Hansen and Kamp, 2002) (Figure 2.4a). Structure maps on key stratigraphic 

horizons and interval isochron maps of key stratigraphic units were generated using 

conventional interpretation methods (i.e., seismic facies analysis and identification of 

reflection terminations; Mitchum & Vail, 1977). Ten key surfaces (including the seabed) 

were identified and mapped across the study area (surfaces “Sa” to “seabed”, Figures 

2.4b and 2.7). These surfaces define the top and base of nine major seismic units (SU1 to 

SU9).  Seismic units were defined based on seismic facies analysis and individual 

clinoform characteristics. I used only data from the 3D seismic survey to generate 

isochron maps of individual seismic units (SU1 to SU9), because the spacing and 

resolution of the 2D seismic grid were insufficient to confidently and meaningfully 

extend the interpretation of bounding surfaces associated with individual seismic units 

(Figure 2.2). However, seismic packages (SU1 to SU9) were combined into three stages 

of basin fill and data from both the 2D seismic grid and the 3D seismic volume were used 

to generate gross isochron maps that represent these three stages of fill (stages 1 to 3). In 

addition, extraction of root-mean square (RMS) seismic amplitude was also performed 

using key stratigraphic surfaces. RMS amplitude extractions were used to help in the 

identification of local amplitude anomalies, lineaments, and any other geological features 

that might have depositional and/or structural significance (Posamentier & Kolla, 2003; 

Posamentier, 2005). Paleoenvironmental information obtained from key wells was 

included in order to generate well-controlled paleogeographic maps. 
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Definition of Clinoform Morphometric Parameters  

The Pliocene–Recent clinoforms from the Giant Foresets Formation were 

classified according to their morphology. Morphometric parameters of foreset inclination, 

and foreset height and length, were measured for each clinoform. Progradation and 

aggradation rates were calculated for each clinoform (Figure 2.1). Restoration of data to 

pre-faulted/folded stages was necessary before these measurements were confidently 

determined (Henriksen et al., 2011).  

Shelf trajectories were documented through analysis of temporal changes in 

clinoform rollover points. The shelf-edge position for various stages in a basin’s history 

has been defined as coincident with clinoform rollover points (Adams & Schlager, 2000; 

Kertznus & Kneller, 2009). Because all clinoforms that form part of the Giant Foresets 

Formation are defined as continental-scale clinoforms (foreset heights >100 m; Emery, 

1981; Helland-Hansen and Hampson, 2009), the shelf-edge position always coincides 

with the location of the clinoform rollover point at any given time (Figure 2.1). Shelf-

edge trajectories were traced in each of the seismic transects by identifying and 

connecting rollover points of temporally unique units (Figure 2.4b). The base of the slope 

was defined as the point in a dip profile where a significant decrease in slope occurs 

(O’Grady & Syvitski, 2002). The foreset inclination is defined as the angle () measured 

on a right angle triangle defined by the foreset height and length, as shown in Figure 2.1. 

If an important change in slope was observed close to the shelf edge region, 

measurements of upper-slope inclination () were also taken in order to estimate the 

degree of incision and deformation affecting the upper slope region of a given clinoform. 

From these measurements a series of plots showing the relationships between the 

different parameters inside and outside the Northern Graben were generated.  This 

detailed documentation of individual clinoform geometries and rollover positions within 
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seismic units (SU1 to SU9) enabled deduction of stacking patterns and shelf-edge 

trajectories to a high degree of vertical resolution. This level of detail was needed in order 

to compare the Giant Foresets Formation clinoform morphologies with postulated 

eustatic (Haq et al., 1987; Miller et al., 2005) and 18O isotope curves (Lisiecki & 

Raymo, 2005), as a means of determining the relative role of eustatic fluctuations in the 

Taranaki Basin.  

DESCRIPTION OF STRUCTURAL AND STRATIGRAPHIC ELEMENTS 

A series of maps were created to provide information from which I could assess, 

for each seismic unit (depositional interval): (1) thickness and distribution, (2) 

depositional strike and dip, (3) clinoform rollover trajectories, and (4) the location, 

steepness and orientation of paleoshelf to slope transitions.  

 Structure maps were created for the top and base of each seismic unit SU1 to 

SU9 (surfaces Sa to seabed) (Figure 2.8).  These maps expose the importance of the 

Northern Graben in influencing the shelf physiography and clinoform dimensions. The 

Northern Graben is recognizable in the structural maps by the presence of en echelon 

faults that are separated by relay ramps in the northern portions of the 3D survey. These 

en echelon faults form part of the Cape Egmont and Turi fault zones to the west and east, 

respectively (Figure 2.2). All structural surfaces, except for the seabed, are characterized 

by a steepening of their contours around the position where the Northern Graben starts 

(northern portions of the 3D survey; Figure 2.8a–i). This steepening is interpreted to 

indicate a change in gradient of the paleo-structural slope.  
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Figure 2.8: Time-structure maps of seismic unit bounding surfaces (Sa to Seabed) in area 
covered by the 3D seismic volume. Colored well symbols represent 
paleoenvironmental interpretations based on biostratigraphic assemblages as 
interpreted by Morgans (2006) and Crundwell (2008).  

 An additional map compiles the clinoform rollover positions identified in both 

2D and 3D seismic transects for all interpreted horizons (Sa to seabed) to help visualize 

the evolution of paleoshelf edge trajectories through time (Figure 2.9 and dotted black 

lines in Figure 2.8).  Variations in the location of clinoform rollover points across the 

study area over time also provide a measure of progradation, yielding insight into basin 

margin history. In addition, isochron maps (Figure 2.10) of individual seismic units (SU1 

to SU9) bounded by structural horizons were used to pinpoint depocenter locations, their 

relation with their main structural elements and to assess their changes over time. The 

nine seismic units (SU1 to SU9) were separated into three groups (stages 1 to 3) on the 

basis of similarities in morphologies, seismic facies and their overall trajectories.   
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Figure 2.9: Graphic showing the migration of individual shelf edges (Sa - Seabed) from 
early Pliocene to Holocene. Rollover points were correlated using seismic 
data as proxies to identify paleoshelf edge locations for base and top of 
individual seismic units. Note overall northward migration of the shelf edge.  

Stage 1: Seismic Unit SU1 (4.5–5.3 Ma)   

Seismic reflections associated with individual clinoforms in SU1 are laterally 

continuous, showing high to moderate amplitudes. In addition, clinoform profiles are 

characterized by the presence of laterally extensive bottomsets that thin basinward 

(Figure 2.7). SU1 exhibits a relatively uniform thickness with an apparent increase 

towards the southeast, near the location of the MVC (Figure 2.10a). The depocenter of 

SU1 has a northeast-southwest orientation and its location could be related to flexural 

subsidence associated with the Miocene-active Taranaki Fault. Sediment is inferred to 

have been derived from the east, where active sediment sources were present between 4.5 

to 5.3 Ma. The formation of the mid-to-late Miocene MVC also caused uplift of Eocene 

and early Miocene strata, forming paleo-bathymetric highs that acted both as additional 

sources of sediment and as sediment routing systems that partially controlled 

accommodation in this part of the basin. Structural maps for surfaces Sa and Sb suggest 

that paleoshelf edges were oriented predominantly southwest-northeast (Figures 2.8a-b 

and 2.9). The majority of sediments during SU1 accumulated in a position that was close 

to but outboard of the paleoshelf edge. The orientation of the main depocenter at this time 

was not completely aligned with the graben, suggesting that SU1 was deposited before 

the opening of the Northern Graben was complete.  
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Figure 2.10: Isochron maps from seismic units SU1 through SU9 in area covered by 3D 
seismic volume. Depocenter axes indicated with double-headed arrow for 
each unit.   

Stage 2: Seismic Units SU2–SU5 (2.4–4.5 Ma)  

Seismic reflections associated with the topsets of individual clinoforms within 

SU2 are characterized by a low-amplitude, continuous character while laterally 

equivalent seismic reflections associated with the foreset and bottomset segments of these 

clinoforms display a high-amplitude and continuous response (Figure 2.4b). Seismic 

reflections linked to the topsets of clinoforms associated with seismic unit SU3 continue 

to show a low-amplitude and continuous character, but their foresets and bottomsets are 

characterized a low-amplitude and semicontinuous (wavy) response in some areas. 

Clinoforms contained within seismic unit SU4 show continuous and low- to medium-

amplitude topsets that are affected by incisions located near the rollover points to the 

north while the foreset and bottomset portions of these clinoforms have discontinuous 

and low-amplitude reflections (Figure 2.4b). Clinoforms associated with seismic unit 

SU5 are characterized by semicontinuous and low-amplitude reflections, with their 

topsets filling incisions in the outer shelf and their foresets occupying a relatively 

restricted area in the upper slope region. In general, the topset portions of clinoforms 

associated with seismic units SU2 to SU5 tend to be very thin while there is a progressive 

increase in foreset declivities as the section becomes younger (Figure 2.4). 

Structural maps for surfaces Sb to Sf (Figure 2.8b–f) indicate that the orientation 

of paleoshelf edges progressively shifted from northeast-southwest (Sb) to almost east-

west (Sf) during this time (4.5 to 2.4 Ma; Figure 2.9). Mapping of paleoshelf edges 

through time also shows a progressive northward migration (Figure 2.9). Isochron maps 

for seismic units SU2–SU5 (Figure 2.10b–e) show a gradual migration of depocenters 
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toward the northeast. This migration reflects the opening of the Northern Graben and 

creation of accommodation, allowing for the redistribution of sediments toward the 

northeast. Depocenters for seismic units SU2–SU5 are northwest-southeast oriented, with 

the bulk of sediments accumulating on the hanging-wall of faults that bounded the 

Northern Graben (Cape Egmont and Turi fault zones) (Figure 2.10b–e). The alignment 

between structural fabric (fault control) and physiographic boundaries (shelf-edge 

location) reached its maximum during deposition of seismic unit SU4 (2.6 to 2.8 Ma), 

when interpreted paleoshelf edges for surfaces Sd and Se coincided with the southern 

boundary of the Northern Graben (Figures 2.8 and 2.10). Structural deformation 

associated with the activation of the Northern Graben during this period influenced 

clinoform architectures, sediment distribution, and accommodation within the basin. 

Stage 3: Seismic Units SU6–SU9 (0–2.4 Ma)  

There is an increased level of sediment preservation on the topsets of clinoforms 

associated with seismic units SU6–SU9. In addition, deep, channelized incisions are also 

observed on the distal portion of the topsets near the shelf edge (Figure 2.7). Topsets are 

characterized by continuous and medium- to high-amplitude reflections that transition to 

low-amplitude and sometimes chaotic seismic facies on the foresets (Figure 2.4). 

Clinoform foresets within this interval tend to be steeper than in older seismic units and 

the foreset to bottomset transition is more evident on seismic profiles. Structural maps of 

surfaces Sf to the seabed (2.4–0 Ma; Figure 2.8f–j) document a progressive change in 

paleoshelf edges from an east-west orientation (SU2–SU5) to a northeast-southwest 

orientation (SU6–SU9) (Figure 2.9). In addition, isochron maps for seismic units SU6–

SU9 show the development of a northwest-southeast V-shaped depocenter (Figure 2.10f-

i). This depocenter had an opening toward the northeast and likely represented a local 

minibasin that was infilled by shelfal facies suggested by the predominance of clinoform 
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topsets (Figure 2.7). The bulk of sedimentation was occurring toward the north, where 2D 

seismic lines show clinoform profiles covering the outer-shelf, slope, and basin floor 

portions of the basin (Figure 2.7).  

In general structural and isochron maps and well information indicate an overall 

migration of paleoshelf edges and depocenters toward the north-northwest within the 

Taranaki Basin during Pliocene–Recent (Figures 2.7 and 2.9). 

CLINOFORM ARCHITECTURE AND STACKING 

Shelf-Edge Trajectories 

Seismic transects inside (T1) and outside (T2) the Northern Graben were used to 

examine shelf-edge trajectories within these two different structural domains (Figure 

2.11). Visual examination of shelf-edge trajectories on the seismic profiles (Figures 2.7 

and 2.11) and measurements of aggradational and progradational rates for individual 

clinoform packages (Figure 2.12a–b and Table 2.2) indicate that there are remarkable 

differences that occurred inside and outside the graben region.   
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Figure 2.11: Line drawings of two depth-converted seismic lines. Each transect 
showcases interpretation of seismic units (SU1–SU9), three stages of 
clinoform evolution (Stages 1–3), and rollover locations for individual 
clinoforms (blue dots). Rollover points used as proxy to identify paleo shelf-
edge locations at specific times. (a) Map showing location of seismic 
transects (T1 and T2) and location of individual paleoshelf breaks (Sa to 
Seabed). Shelf-edge trajectories indicate progressive northward migration of 
continental margin from early Pliocene to Holocene. (b) Seismic transect 1 
(T1) located inside graben region; lateral continuity toward northeast 
hindered by lack of seismic coverage. (c) Seismic transect 2 (T2) located 
outside graben region. Shelf-edge trajectories for seismic units SU4 through 
SU6 are falling inside graben (T1) but are flat to slightly rising outside 
graben region (T2).  
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Figure 2.12: Graphs illustrating quantitative relationships between morphological parameters through time. Parameters are 
calculated using measurements of clinoform architectures inside (T1) and outside (T2) Northern Graben. Lack of 
data coverage inside graben region allowed for only measurements of parameters for seismic units SU1 through 
SU5. (a) Aggradational rates of shelf-edge trajectories. (b) Progradational rates of shelf-edge trajectories. (c) 
Clinoform heights. (d) Clinoform lengths. (e) Crossplot of clinoform height versus length outside graben region. 
(f) Average clinoform foreset inclination values. (g) Upper slope inclination values. (h) Difference between upper 
slope and average clinoform foreset inclination values. 
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Transect Surface 
Age 
(Ma) 

Foreset 
inclin. 

(degrees) 

Upper 
slope 
inclin. 

(degrees) 

Height 
(m) 

Length 
(km) 

Stage 
Seismic 

unit 

Progra-
dation 
(km)  

Aggra-
dation 

(m) 

Progradation 
rate (km/my)  

Aggradation 
rate (m/my) 

Ratio of 
aggradation 

to 
progradation 

(/1000) 

In
si

de
 G

ra
be

n 

Sa 5.3 2 3 1296 44 1 SU1 4 253 5 317 63 

Sb 4.5 2 3 1477 47 2A SU2 17 110 11 73 7 

Sc 3.0 3 4 1451 31 

2B 

SU3 14 35 69 173 3 

Sd 2.8 4 5 1318 17 SU4 4 -77 20 -385 -19 

Se 2.6 5 6 1130 13 SU5 6 -160 29 -800 -28 

Sf 2.4 5 7 1061 12             

Sg 2.1 

NO DATA 
Sh 1.8 

Si 1.2 

seabed 0.0 

O
ut

si
de

 G
ra

be
n 

Sa 5.3 1 1 342 14 1 SU1 3 305 4 381 105 

Sb 4.5 2 4 510 13 2A SU2 17 79 11 53 5 

Sc 3.0 1 1 413 20 

2B 

SU3 12 104 59 521 9 

Sd 2.8 2 2 495 16 SU4 14 -90 71 -451 -6 

Se 2.6 3 3 739 17 SU5 11 -72 54 -361 -7 

Sf 2.4 4 4 808 12 

3 

SU6 4 174 14 581 41 

Sg 2.1 5 5 892 11 SU7 8 62 28 207 7 

Sh 1.8 5 7 916 10 SU8 7 164 12 274 23 

Si 1.2 3 4 810 13 SU9 19 625 15 521 34 

seabed 0.0 3 6 800 14             

Table 2.2: Summary of geometrical measurements of seismic units interpreted in the northern Taranaki Basin. 
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Inside the Graben Region (Seismic Transect T1) 

Inside the graben region, shelf-edges show a slightly rising to flat trajectory from 

SU1 through SU3 (early–late Pliocene) and a falling trajectory from SU3 to SU6 (late 

Pliocene) (Figure 2.11a). Unfortunately, lack of seismic coverage inside the graben 

region prevent following shelf-edge trajectories and obtaining quantitative measurements 

of aggradational and progradational rates for the late Pliocene–Recent interval (SU6 to 

SU9) (e.g., Figures 2.2 and 2.12). Measurements of aggradational rates for individual 

clinoform packages were calculated in meters per million years (m/my), showing a 

consistent decrease from 317 to -800 m/my from the early to late Pliocene (SU1–SU5) 

(Table 2.2 and Figure 2.12a). Two distinctive aggradational trends were identified for the 

early–late Pliocene section inside the graben region. The first trend shows positive 

aggradational rates that decrease from 317 to 73 m/my (SU1–SU2) (Figure 2.12a), and 

coincide with a slightly rising to flat shelf-edge trajectory (Figure 2.11a). The second 

trend shows negative aggradational rates that decrease at a faster pace from 173 to -800 

m/my (SU3–SU5) (Figure 2.12a), and coincide with a falling shelf-edge trajectory 

(Figure 2.11a). Negative aggradational rates and falling shelf-edge trajectories indicate an 

increase in sediment erosion and bypass from the outer shelf to the upper slope region  in 

the late Pliocene (SU3–SU5). Measurements of progradational rates for individual 

clinoform packages were calculated in kilometers per million years (km/my) for the 

early–late Pliocene, exhibiting values that range from 5 to 69 km/my (Table 2.2 and 

Figure 2.12b). Variations on early–late Pliocene progradational rates inside the graben 

region can again be subdivided into two distinctive trends. The early–late Pliocene period 

(>3.0 Ma) was characterized by an increase in progradational rates from 5 to 69 km/my, 

associated with an increase in sediment supply around this time (Figure 2.12a and Table 

2.2). The second trend during the late Pliocene (SU3 to SU5) was defined by an abrupt 
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decrease in progradational rates, from 69 to 29 km/my, indicating a slowdown of the 

basinward advance of the shelf edge (Table 2.2).  

Outside the Graben Region (Seismic Transect T2) 

Overall, shelf edges outside the graben region are characterized by flat trajectories 

from SU1 through SU5 (early–late Pliocene) and a fast-rising trajectories from SU5 

through SU9 (late Pliocene–Recent) (Figure 2.11b); however, small variations in these 

patterns can be discerned. For example, shelf-edge trajectories from SU1 through SU3 

are slightly rising, whereas shelf-edge trajectories from SU3 to SU5 are slightly falling 

(Figure 2.11b). On the other hand, rising trajectories from SU6 through SU8 (late 

Pliocene–early Pleistocene) are not as steep as rising trajectories recorded within the 

youngest clinoform package, SU9 (early Pleistocene–Recent) (Figures 2.8b and 2.12a).  

The magnitude of aggradational and progradational rates inside and outside the graben 

region appears comparable (Table 2.2 and Figure 2.12). However, aggradational rates 

inside the graben region during the late Pliocene (SU4–SU5) seemed to experience a 

sustained decline, while values rebounded outside the graben for time-equivalent units 

(Figure 2.12a). On the other hand, progradational rates were almost identical during the 

early Pliocene across the study area, experiencing a notable increase during the late 

Pliocene.  This increase in progradational rates was seen earlier inside the graben region 

(Figure 2.12b).  

Significance of Shelf-Edge Trajectories in the Taranaki Basin 

Many authors suggest that shelf-edge trajectories can be used to examine base-

level changes through time (e.g., Johannessen & Steel, 2005; Henriksen et al., 2009; 

Sanchez et al., 2012). Johannessen & Steel (2005) suggest that flat and slightly 

downward-directed shelf-edge trajectories are associated with a relative sea level that is 
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stable to slightly falling through time, facilitating optimal delivery of sediment across the 

shelf to deep-water regions. In contrast, rising shelf-edge trajectories reflect an overall 

rising relative sea level, implying that a much greater percentage of the sediment budget 

is stored on the shelf and coastal plains (Johannessen & Steel, 2005). In the case of the 

Taranaki Basin, I believe that shelf-edge trajectories reflect the combined influence 

exerted by relative sea-level fluctuations, sediment supply, and underlying structural 

controls on the development of the Pliocene–Recent stratigraphic succession. During the 

early–late Pliocene (SU1–SU3), flat to slightly rising shelf-edge trajectories were 

dominant inside and outside the graben region, supporting the idea of a stable to slightly 

rising relative sea level that encouraged moderate preservation of sediments on shelfal 

areas. Negative aggradational rates and falling shelf-edge trajectories during the late 

Pliocene (Figure 2.12a and Table 2.2) marked the onset of intense erosion on the outer 

shelf region and an increase in sediment bypass into the upper slope.   These conditions 

are associated with stages of falling relative sea level. 

Shelf-edge trajectories as well as aggradational and progradational rates show 

similar trends inside and outside the graben region (Figures 2.8 and 2.12a–b); however, 

some differences are evident. For instance, during the late Pliocene (SU3–SU5) erosion 

and sediment bypass were more intense inside the graben region, as revealed by a steeper 

fall in shelf-edge trajectory and a sharper decrease in aggradational rates (Figures 2.8 and 

2.12a). Progradational rates inside and outside the graben region show similar trends and 

magnitudes, but variations were first recorded inside the graben region during the late 

Pliocene (Figure 2.12b). Although the overall decrease in aggradation and increase in 

progradation during the late Pliocene could have been partially controlled by the overall 

drop in eustatic sea-level fluctuations (Figure 2.12) (Miller et al., 2005; Lisiecki & 
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Raymo, 2005), local changes such as an increase in sediment supply within the basin 

(Tippett & Kamp, 1995) may also have played an important role. 

The presence of growth strata along fault systems that define the boundaries of 

the Northern Graben (Cape Egmont and Turi fault zones) suggests that the opening of the 

graben was episodic, starting during the early Pliocene (Figure 2.10b) and continuing 

during the Pleistocene (Figure 2.10i) (Giba et al., 2012). 

Clinoform Heights and Lengths  

For the early–late Pliocene portion of the succession clinoform heights inside the 

graben region are significantly larger than those outside the graben region (Figure 2.12c). 

Clinoform heights inside the graben region during the early–late Pliocene (surfaces Sa to 

Sf) ranged from 1061 to 1477 m, whereas time-equivalent units outside the graben ranged 

between 342 and 808 m. In addition, clinoform heights outside the graben region 

remained constant, around 400 m during the early–late Pliocene (Sa to Sd), although 

registering a noteworthy increase to 739 m during the late Pliocene (Figure 2.12c). Larger 

clinoform heights inside the graben are likely a reflection of the influence that the 

underlying paleobathymetry (controlled by the underlying structures) exerted on the 

development of clinoform morphologies that must adapt their depositional profiles to the 

steepness of the margin. In addition, the abrupt changes on clinoform heights that were 

registered during the late Pliocene in both transects (T1 and T2) appear to coincide with 

the activation of underlying structures associated with the development of the Northern 

Graben (Figure 2.12c) suggesting a linkage between these two events. Paleobathymetric 

reconfiguration of the basin during the late Pliocene as a result of structural deformation 

caused readjustments in clinoform profiles that were registered as significant changes in 

clinoform heights (Figure 2.12c). 
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Inside the graben region, clinoform lengths decreased systematically during the 

early–late Pliocene, from 44 to 12 km (SU1 to SU5; Figure 2.12d and Table 2.2), 

indicating narrowing of the slope as a potential response to increased accommodation 

owing to the activation of the Northern Graben (Figurs 2.8a and 2.12d).  However,  

clinoform lengths outside the graben region stayed more-or-less constant at around 15 km 

during the early–late Pliocene, experiencing a decrease during the late Pliocene (SU6), at 

which time values stabilized remaining at around 14 km during the Pleistocene–Recent 

period (SU8 to SU9; Figure 2.12d). A negative correlation between clinoform heights and 

lengths outside the graben region, starting during the late Pliocene (SU4), is also 

observed (Figure 2.12e). This inverse correlation, during which clinoform heights 

increased while clinoform lengths decreased, reflected the advance of the shelf edge 

while the steepness of the slope increased (Figure 2.11b).  

Average Foreset Inclination and Upper Slope Inclination  

During the Pliocene–Recent (SU1–SU9), foreset and upper-slope declivities (see 

Figure 2.1) increased both inside and outside the graben region (Figures 2.12f-g). In 

general, clinoform declivities inside the graben region seem to be slightly higher than 

those outside the graben region, but trends seem similar across both regions (Figure 

2.12f). During the early–late Pliocene (SU1–SU2), foreset declivities ranged from 1° to 

3° both inside and outside the graben region. A sharp increase in foreset declivities is 

evident during the late Pliocene (SU3–SU7) (1°–5°). Data from inside the graben region 

was not available for the upper Pliocene–Holocene section (SU6–SU9), but foreset 

inclination values calculated outside the graben region vary from 3° to 5° for this interval 

(Figure 2.12f).  

Discrepancies between foreset and upper slope inclination values are due to 

variations along the depositional profile, where the upper part of the slope is more prone 
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to gravitational collapse. Foreset and upper slope inclination values throughout the study 

area seem to follow the same trend, exhibiting increased values through time (Figures 

2.12f-g). However, inside the graben region, upper-slope inclination values are higher 

than foreset declivities (0.5°–2.5° difference; Figure 2.12h), indicating that the upper part 

of the slope was always steeper than the overall geometry of the depositional profile 

(Figures 2.1 and 2.12f-g). This shift inside the graben region (separation between upper-

slope and foreset inclination values; Figure 2.12h) indicates substantial truncation of 

strata at the shelf edge. This truncation is likely due to sediment bypass, mass wasting 

episodes, and potential deposition of fans on the deep basin. On the other hand, upper-

slope inclination and average inclination values outside the graben region generally 

follow the same trend and show similar values for the early–late Pliocene interval, 

suggesting that truncation and incision of the upper slope were not as pervasive as they 

were inside the graben region (Figure 2.12h). In the upper succession (SU6-SU9), 

however, upper-slope inclination values reached 6°–7° (Table 2.2).  In cross section these 

surfaces (Sh and seabed) show clear evidence of slumping having affected the upper part 

of the slope (Figures 2.8b). 

MARGIN CLASSIFICATION AND CLINOFORM INCLINATION VALUES 

Several authors have attempted to study the morphology of modern passive 

continental margins and their associated depositional settings by utilizing measurements 

of clinoform declivities (e.g., O’Grady et al., 2000; Adams & Schlager, 2000; Kertznus & 

Kneller, 2009). I apply a similar approach to the Giant Foresets Formations of the 

northern Taranaki Basin, taking into consideration that this stratigraphic succession was 

deposited in a back-arc basin and not on a passive margin. Figure 2.13 includes plots of 

average clinoform declivities versus depth for seismic units both inside and outside the 

graben region. Measurements were taken from seismic transects T1 and T2, following the 
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methodology of O’Grady et al. (2000) (Figure 2.11). Average foreset declivities within 

the study area are, in general, higher than those reported for passive margins (Figure 

2.13).  This difference can be attributed to oversteepening of clinoform foresets caused 

by the influence of active tectonics. The initial assumption was that, because the Giant 

Foresets Formation was deposited in a tectonically active back-arc basin near the zone of 

collision between the Pacific and Australian plates (Figure 2.2), the distribution of data 

points on the foreset inclination/depth plots would be dramatically different from the 

patterns observed on passive margins. This is somewhat true inside the graben area, 

where foreset inclination values range from 0 to 10 and the distribution of data points is 

somewhat scattered (Figure 2.13a–f). However, despite these differences, it would not be 

unreasonable to categorize patterns observed inside the graben region within the deep and 

steep category defined by O’Grady et al. (2000) for passive margins (Figure 2.13a–f). 

The deep and steep category indicates conditions of low sediment supply, exposed 

margins, and the development of abundant canyons (O’Grady et al., 2000). On the other 

hand, foreset inclination patterns observed outside the graben region in the Taranaki 

Basin (Figure 2.13g–p) can be more easily correlated to some of the categories that were 

defined using data from passive margins.  For seismic units SU1–SU3 (early–late 

Pliocene), inclination values outside the graben fluctuated between 0 to 4 and, although 

data was scarce below the 1 km mark, the pattern seems to be consistent with gentle and 

smooth morphologies that have been linked to supply-dominated margins with unstable 

substrates and poor canyon development. For seismic units SU4–SU5 (middle part of the 

late Pliocene), foreset inclination values outside the graben region fluctuated between 0 

to 8 and the pattern resembles a steep and rough geometry, implying conditions of low 

sediment supply, higher erosional rates, and high canyon development. For seismic units 

SU6–SU9, inclination values typically range from 0 to 6 with some outliers reaching 



44 
 

10; in this case a clear pattern associated with the sigmoidal category can be identified, 

suggesting conditions of high sediment supply and more stable substrates that supported 

progradation and development of few canyons (Figure 2.13).  
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Figure 2.13: Plots showing variations on clinoform inclination values versus depth (a) 
inside (T1) and (b) outside (T2) the Northern Graben.  
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I also applied the methodological approach developed by Adams & Schlager 

(2000), obtaining best-fit curves for the different slope profiles in the Taranaki Basin 

Giant Foresets Formation (Sa to seabed; Figure 2.14). Table 2.3 shows the main 

parameters for each equation as well as the goodness of fit (R2). The results indicate that 

first-order continental margin morphologies, both inside and outside the graben region, 

are expressed by either linear or exponential functions for the lowest Pliocene interval 

(SU1; Figures 2.14a–b and h–i) and by exponential functions for the lower to upper 

Pliocene succession (SU2–SU4; Figures 2.14c–p and j–l). Adams & Schlager (2000) 

pointed out that linear morphologies have been associated with margins in which 

sediments rest at an angle of repose that can be disturbed by a minor addition of 

sediments. Exponential profiles, on the other hand, can form in settings where high rates 

of sedimentation are dominant, causing rapid progradation with minimal vertical 

movement of the shelf edge (Adams & Schlager, 2000). This exponential profile 

configuration also implies active transport of sediments by gravity-induced processes 

acting on the outer shelf and upper part of the slope. This interpretation, based on foreset 

inclination patterns as described by Adams & Schlager (2000), fits well with shelf-edge 

trajectories observed for the lower to upper Pliocene succession (SU1–SU4; Figure 2.11), 

as well as with the high progradational/low aggradational rates that were recorded for 

these units (see ratio of aggradation to progradation in Table 2.2). There is not a complete 

coverage of the upper part of the succession inside the graben region, but morphologies 

associated with the upper Pliocene–Recent (SU5–SU9) stratigraphic succession inside 

and outside the graben region (Figures 2.14f–g and m–p) seem to showcase a transitional 

state from exponential to mainly Gaussian morphologies (Figure 2.14 and Table 2.3). 

Gaussian morphologies have been linked to continental margins subjected to the 

modifying effects of extrinsic processes like fluctuations of base level (e.g., changing 
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tides and seasonal weather and/or high-amplitude changes in sea level) and the action of 

ocean currents (Adams & Schlager, 2000). Development of Gaussian profiles in the 

Taranaki Basin during the late Pliocene–Recent could indicate a rapid increase of relative 

sea level, as well as an increase in the redistribution of sediments by the action of ocean 

currents (e.g., strong wave action). An overall eustatic sea-level fall is recorded in most 

of the interval (Miller et al., 2005; Lisiecki & Raymo, 2005); therefore, the increase in 

accommodation observed in rising shelf-edge trajectories and aggradational patterns may 

have been generated by a different geological process than eustatic sea-level rise, most 

likely tectonics. 
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Figure 2.14: Plots of the geometry of individual clinoform profiles (base and top of seismic units) inside (T1) and outside (T2) 
Northern Graben. Plots fit lineal, exponential, or Gaussian functions.  
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Seismic 
Profile 

Stage 
Seismic 

Unit 

Seismic 
Unit 

Upper 
Boundary 

 
Age 
(Ma) 

Slope 
average 

inclination 
(degrees) 

Maximum 
Slope 

inclination 
(degrees) 

Best Fit 
a 

(Linear 
eq.) 

b 
(Linear 

eq.) 

b 
(Exponential 

eq.) 

V 
(Gaussian 

eq.) 
R2 

In
si

d
e 

gr
ab

en
 

st
ru

ct
ur
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2B 

SU5 Sf 2.4 
4.4 7.0 Gaussian       0.14 0.982 

SU4 Se 2.6 
4.9 6.2 Exponential     0.028   0.989 

SU3 Sd 2.8 
4.5 5.2 Exponential     0.001   0.992 

2A SU2 Sc 3.0 
2.7 3.8 Exponential     0.132   0.987 

1 SU1 
Sb 4.5 

1.8 3.4 Exponential     0.015   0.989 

Sa 5.3 1.7 3.3 Linear 0.054 0.102   0.962 

O
ut

si
de

 g
ra

be
n 

st
ru

ct
ur

e 

3 

SU9 Seabed 0.0 
3.1 6.0 Exponential     0.057   0.987 

SU8 Si 1.2 
5.3 5.3 Gaussian     —  0.17 0.995 

SU7 Sh 1.8 
4.1 8.1 Gaussian       0.16 0.993 

SU6 Sg 2.1 
4.0 5.3 Gaussian     —  0.13 0.990 

2B 

SU5 Sf 2.4 
4.1 4.7 Exponential     0.205   0.988 

SU5 Sf 2.4 
3.7 5.0 Gaussian       0.12 0.993 

SU4 Se 2.6 
2.3 2.3 Exponential     0.022   0.992 

SU3 Sd 2.8 
1.9 1.9 Exponential     0.015   0.991 

2A SU2 Sc 3.0 
1.1 1.3 Exponential     0.007   0.983 

1 SU1 
Sb 4.5 

2.3 3.6 Linear 0.015 0.004     0.789 
Sa 5.3 

1.4 1.4 Exponential —  —  0.018   0.891 
 

Table 2.3: Fitting parameters for seismic units within the study area. Methodology for data collection and interpretation 
follows Adams and Schlager (2000). 
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Adams & Schlager (2000) estimated that the curvature of exponential profiles (b 

in their Figure 2.2B) has a range of 0.438–2.074 in sand-dominated slopes, compared to a 

range of 0.043–0.225 in mud-dominated slopes. On the other hand, the peakedness value 

on Gaussian profiles (V in their Figure 2.2C) ranges from 0.031 to 0.086 in clay-

dominated slopes, and from 0.088 to 0.214 in slopes containing sand (Adams & Schlager, 

2000; see their Figure 2.2). I applied these criteria to the Giant Foresets Formation and 

the data suggest that seismic units SU1–SU5 are mainly composed of fine-grained 

lithologies, whereas seismic units SU6–SU9 contain sandier intervals (Figure 2.15). This 

lithological prediction seems to also be supported by well log correlations (Figure 2.5).  

 

Figure 2.15: Curvature (b) and peakedness (V) for modern continental margins (Adams 
and Schlager, 2000) and for subsurface of Taranaki Basin (this paper). 
Curvature and peakedness parameters are linked to lithological composition 
(Adams and Schlager, 2000).  
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STAGES OF CLINOFORM EVOLUTION / SUMMARY AND INTEGRATION OF 

SEISMIC AND MORPHOLOGICAL ANALYSIS 

Three stages of clinoform evolution were defined within the region (Figure 2.7) 

based on geometrical measurements and the analysis of clinoform morphologies (i.e., 

clinoform trajectories, heights, lengths, and declivities; Figures 2.12, 2.13 and 2.14). In 

addition, I also incorporated results that were derived from the application of 

classification systems developed by O’Grady et al. (2000) and Adams & Schlager (2000) 

into the analysis (Figures 2.13 and 2.14). Stage 1 contains seismic unit SU1, whose 

individual clinoform profiles display a gentle and smooth architecture, clinoform foresets 

are low-angle, and rollover trajectories are flat to rising. Stage 2 includes seismic units 

SU2–SU5; in this unit, individual clinoforms are characterized by concave profiles and 

rising to flat rollover trajectories . Stage 2A (SU2) and Stage 2B (SU3–SU5) were 

defined based on variations in shelf-edge trajectories, progradational rates and degree of 

topset incision Finally, Stage 3 contains seismic units SU6–SU9, characterized by 

sigmoidal clinoforms with a convex-to-concave geometry and mostly rising rollover 

trajectories.  

Isochron maps for Stages 1 through 3 are shown in Figure 2.16. Unlike isochron 

maps derived from individual seismic units (SU1–SU9; Figure 2.10), these maps were 

generated by incorporating data points from the 2D seismic survey, and therefore provide 

a semi regional view of the Pliocene–Recent stratigraphic infilling of the Taranaki Basin.  
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Figure 2.16: Semiregional isochron maps, generated using 2D and 3D seismic surveys (a) 
during Stage 1, (b) Stage 2A,  (c) Stage 2B, and  (d) Stage 3. 
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Stage 1 (SU1)–Deposition of planar clinoforms (early Pliocene) 

Shelf-edge trajectories within Stage 1 are mainly flat to ascending (Figure 2.7).  

Margin aggradational rates range from 317 to 381 m/my across the study area, and 

progradational ranges from 4 to 5 km/my (transect T1). Clinoform heights and lengths are 

larger to the east (T1), with foreset inclination values ranging between 1° and 2° across 

the study area (Figure 2.12). Clinoform morphologies to the west (transect T2) were 

classified as gentle and smooth, owing to their low foreset angles and the lack of 

irregularities associated with canyon incisions. On the other hand, steeper clinoform 

morphologies to the east (T1) were tentatively classified as deep and steep (O’Grady et 

al., 2000). Clinoform profiles across the study area fitted either linear or exponential 

functions according to the Adams & Schlager (2000) classification system (Figure 2.14). 

Curvature parameters suggest that units within Stage 1 are mainly of a fine-grained 

nature (mudstones and claystones) (Figure 2.15).  

The isochron map of Stage 1 indicates that the paleoshelf edge had a northeast-

southwest orientation (Figures 2.9 and 2.16a). Thick intervals can be observed along the 

outer shelf, suggesting that sediments were retained in this region. No clear indication 

exists of structural deformation affecting the geometry of the margin at this time (Figure 

2.16a). The RMS attribute extraction map of Stage 1 shows two distinctive zones 

separated by a northeast-southwest-oriented moderate-amplitude region (Figure 2.17a) 

that may indicate the orientation and position of the paleoshelf edge. The two zones are 

interpreted as the outer-shelf and upper-slope regions (Figure 2.17b). To the southwest 

and within the shelf-edge region, localized high amplitude bodies can be seen, arranged 

in a semilinear pattern which have been interpreted to represent deposits of a series of 

channels. These channels bypassed sediments from the outer shelf to the upper part of the 

slope. Just down dip of the paleoshelf edge, a broad zone of high-amplitude reflections 
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with a fan-like plan form is observed (Figure 2.17). These reflectors have been 

interpreted as a slope fan.  Distributary channels are also interpreted to occur on the fan 

as semilinear, thin, high amplitude streaks trending parallel to the fan axis (Figure 2.17a). 

Well Arawa-1 shows sand-rich lithologies deposited in upper to middle bathyal depths 

that may correspond to fan sands (Figure 2.18). In well Witiora-1, located to the south, 

this interval is reported to have been deposited in upper-bathyal environments, whereas 

wells Taimana-1, Arawa-1, and Kanuka-1, to the north, contain middle- to lower-bathyal 

environments (Morgans, 2006; Crundwell, 2008), which support the paleogeographical 

interpretation proposed in this work. The morphometric analysis (Adams & Schlager, 

2000; O’Grady et al., 2000) suggesting limited canyon development in this region agrees 

with these observations. The lack of canyons suggests that sediments were fed to the 

slope and sequestered in a stable environment as slope aprons.  Only in areas where 

sudden fluxes of sediment addition destabilized the slope (northeast), slope fans were 

disrupted and moved downslope.   
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Figure 2.17: (a) RMS amplitude extraction map of seismic unit SU1 (early Pliocene) in area covered by 3D seismic survey. 
Extraction window is 20 ms below Sb. (b) Paleoenvironmental interpretation of seismic unit SU1 showing 
location of paleoshelf break and  deepwater fan connected by slope channels to outer shelf. 
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Figure 2.18: Lithological information, Gamma Ray and Resistivity logs for well Arawa-1 

Stage 2A (SU2)–Deposition of oblique clinoforms (early–late Pliocene) 

Shelf-edge trajectories within Stage 2A are flat to slightly rising (SU2 in Figure 

2.7); aggradational rates range from 53 to 73 m/my, and progradational rates are close to 

11 km/my. Structural deformation associated with the emplacement of the Northern 

Graben seems to have started at this time (Figure 2.16b). Clinoform heights and lengths 

are larger inside the graben region (transect T1; Figures 2.12c-d), and foreset inclination 

values are slightly higher than in Stage 1 (Figure 2.12f). Clinoform morphologies outside 

the graben can be categorized as gentle and smooth (O’Grady et al., 2000; Figure 2.13) 

and clinoform profiles, both inside and outside the graben region, fit exponential 
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functions (Adams & Schlager, 2000; Figure 2.14). Curvature parameters predict 

dominance of fine-grained lithologies for this interval (Figure 2.15). The isochron map of 

Stage 2A reflects the influence of the fault system on sediment accumulation. The fault 

system is associated with the development of the Northern Graben at this time (Figure 

2.16b). Thicker intervals on the isochron map correspond to areas where accommodation 

was created as a response to graben evolution-associated normal faulting. Development 

of the Northern Graben triggered a change in the orientation of the paleoshelf edge 

compared to the previous stage (Stage 1; Figure 2.16). During Stage 2A, the western 

portion of the paleoshelf edge developed an approximately east-west orientation that 

deflected toward the south as it approached the Northern Graben (Figure 2.16b). Two 

main depocenters existed at this time: one parallel to the east-west-oriented paleoshelf 

edge to the west, and an eastern depocenter contained within the Northern Graben (Figure 

2.16b).  

  RMS amplitude attribute maps for Stage 2A (Figure 2.19) show two distinct 

zones of unique amplitude character. The southwestern corner of the 3D seismic volume 

is a zone with moderate to high amplitude seismic response. Low-amplitude, narrow and 

sinuous ribbon-shaped features with a southwest-northeast orientation are arranged in a 

dendritic pattern.   Based on the geomorphological features observed in RMS maps, this 

zone is likely the topset portion of the margin (Figure 2.18b), where high-amplitude 

responses are believed to correlate with shelfal deposits. The background seismic 

response of the zone located to the northeast is dominated by low- to moderate-amplitude 

reflections. High-amplitude channelized features in this area have a northeast-southwest 

orientation; these features are moderately sinuous and are interpreted as slope channels 

(Figure 2.19) that branch out in the downslope direction and connect with high-

amplitude, lobate features that are interpreted as possible slope fans (Figure 2.19b). In 
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addition, straight and narrow, high-amplitude lineations are also observed and interpreted 

as slope gullies (Figure 2.19b). There is an apparent connection between the dendritic-

channelized system in the southern zone and the slope channels observed towards the 

north. The boundary between these two zones of different seismic response defines the 

paleoshelf edge for the interval, when sediments were transported from the southwest to 

the northeast by subaqueous mechanisms from the inboard area to the shelf edge, 

developing slope channels and fans (Figure 2.19b). Seismic profiles also show the 

development of continental-scale clinoforms prograding to the north.  
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Figure 2.19: (a) RMS amplitude extraction map of seismic unit SU2 (early–late Pliocene) in area covered by 3D seismic 
survey. Extraction window is 20 ms below Sc. (b) Paleoenvironmental interpretation of seismic unit SU2 (Stage 
2A) showing location of paleoshelf break and outer-shelf deltaic channels that transferred sediments into two 
deepwater fans through slope channels.  
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Stage 2B (SU3-SU5)– Deposition of oblique clinoforms (late Pliocene) 

Shelf-edge trajectories were remarkably flat outside the graben region, while flat-

to-falling trajectories were dominant inside the graben (Figure 2.11). There are also 

significant differences during Stage 2B in aggradational and progradational rates inside 

and outside the graben region. Progradational rates increased significantly during this 

time, especially outside the graben region, reaching a peak during the late Pliocene (71 

km/my for SU4; Table 2.2). In contrast, aggradational rates across the study area 

registered their lowest values, with values reaching -800 m/my inside the graben region 

(Figure 2.12a; Table 2.2). The negative aggradational rate indicates a decreasing shelf-

edge trajectory that may be associated with both a relative sea level fall and subsequent 

erosion of topsets.  Clinoform heights outside the graben increased from 413 to 808 m 

whereas clinoform heights inside the graben decreased from 1451 to 1061 m. Foreset and 

upper-slope declivities also registered increases from 2° to 5° across the region (Figure 

2.12). Outside the graben region, clinoform morphologies transitioned from gentle and 

smooth (SU3) to steep and rough (SU4 to SU5; Figure 2.13) while functions that fit 

clinoform profiles transition from exponential (SU3–SU4) to Gaussian (SU5) (Figure 

2.14f; O’Grady et al., 2000; Adams & Schlager, 2000). Curvature parameters suggest that 

lithologies in this interval are composed mainly of mudstones and claystones (Figure 

2.15). 

The isochron map of Stage 2B shows the deflection in the orientation of the 

paleoshelf edge associated with the development of the Northern Graben (Figure 2.16c). 

When looking at a series of seismic profiles, it also can be seen the advance of the 

paleoshelf edge toward the north (Figure 2.9). Two different segments associated with the 

paleoshelf edge are identified on the isochron map: a western segment with a northeast-

southwest orientation and an eastern segment with a northwest-southeast orientation. 
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Depocenters shifted outboard toward the north, where most sediments were deposited 

under slope water depths in relatively narrow troughs (10 to 15 km wide). The change in 

geometry registered in the eastern segment of the paleoshelf edge from Stages 2A to 2B 

was likely related to the progressive infilling of the southeastern portion of the Northern 

Graben by sediments coming from the southwest (Figure 2.16).  

The RMS amplitude map of seismic unit SU4 (Figure 2.20a) exhibits a series of 

linear, high amplitude, narrow amplitude threads trending perpendicular to the interpreted 

shelf edge. These are interpreted to represent deposits of a dendritic, outer shelf channel 

system with a northeast-southwest orientation in the southern portion of the 3D seismic 

survey. Toward the north, a different pattern is observed in which high-amplitude and 

elongated bodies have a west-northwest to east-southeast orientation parallel to the 

paleoshelf edge (Figure 2.20b). Patterns within this area are interpreted as mass wasting 

deposits derived from the eastern and western flanks of the graben structure (Figure 

2.20b). It is possible that the geometry of these deposits was influenced by current-

controlled processes.  
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Figure 2.20: (a) RMS amplitude extraction map of seismic unit SU4 (late Pliocene) in 
area covered by 3D seismic survey. Extraction window is 20 ms below Se. 
(b) Paleoenvironmental interpretation of seismic unit SU4 (early Stage 2B) 
showing location of paleoshelf break, sinuous channels in outer shelf, and 
slumped material and gullies in upper part of slope. (c) RMS amplitude 
extraction map of seismic unit SU5 (late Pliocene) in area covered by 3D 
seismic survey. (d) Paleoenvironmental interpretation showing location of 
paleoshelf break to north of well Kanuka-1 and dendritic channels 
occupying topset portions of clinoforms. 
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The RMS amplitude extraction map of seismic unit SU5 (Figure 2.20c) represents 

a later stage of infilling, when the paleoshelf edge was located to the northeast and 

outside the coverage of the 3D seismic volume. This RMS amplitude extraction map 

(SU5) images the topsets of highly progradational clinoforms that already infilled most of 

the pre-existing accommodation (Figure 2.20c). The attribute extraction map of SU5 also 

contains a series of linear, highly sinuous amplitudes that amalgamate into broad regions 

of high amplitude response. Individual threads exhibit a dendritic pattern. These seismic 

morphologies are interpreted to represent channels >2 km wide that migrated on the outer 

shelf. Individual channels are arranged in a well-defined dendritic pattern, and seismic 

lines show that the channels are highly incised. In addition, en-echelon faults and 

associated relay ramps appear to have controlled the location and geometry of these 

channelized systems (Figure 2.20d). By the time seismic unit SU5 was deposited, the 

entire area covered by the 3D seismic volume was occupied by a highly progradational 

system that was associated with low sea level conditions (Figure 2.20).  

Stage 3 (SU6–SU9)—Deposition of sigmoidal clinoforms (late Pliocene–Recent) 

Clinoform packages associated with Stage 3 are characterized by high 

aggradation-to-progradation ratios that translate into a higher degree of sediment 

preservation on the shelf (Table 2.2 and Figure 2.7). Aggradational rates outside the 

graben region reached 521 m/my during deposition of the younger section (SU9; Figure 

2.12). Clinoform heights and lengths were relatively constant at this time, displaying an 

inverse relationship (Figure 2.12e). Clinoform morphologies were classified as sigmoidal 

outside the graben region (O’Grady et al., 2000; Figure 2.13), but clinoform profiles 

mainly fitted Gaussian distribution curves across the entire study area (Adams & 

Schlager, 2000; Figure 2.14). Curvature parameters predict the presence of sandstones 
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(Figure 2.15). However, none of the available wells drilled the foresets of these 

clinoforms and, therefore, the increase of sand content cannot be verified (Figure 2.5). 

The isochron map of Stage 3 shows thickening of the sediment wedge toward the 

north-northwest, where depocenters now covered the entire outboard region (Figure 

2.16d). The paleoshelf edge had advanced more than 30 km toward the north, developing 

two distinctive segments: a western portion with a northeast-southwest orientation, and 

an eastern segment with an almost north-south alignment (Figure 2.16d). A later stage of 

tectonic subsidence affected the southern end of the graben, generating accommodation 

on the shelf and a fault-bounded v-shaped depocenter (Figure 2.16d). The RMS attribute 

extraction map from SU6 (Figure 2.21a) shows narrow and high-amplitude linear trends 

that are interpreted as deposits of dendritic channels active to the west of the fault system 

that defines the western boundary of the graben structure. These channels were located 

within the topsets of the clinoforms and were transporting sediments from the southwest 

to the northeast into the v-shaped shelfal depocenter through graben relay ramps (Figure 

2.21b). High-amplitude reflections are ubiquitous to the east of the Cape Egmont Fault 

Zone, which defines the western boundary of the graben structure (Figure 2.21c). 

Southwest-northeast-oriented anomalies are aligned with the graben structure and may 

indicate a preferential direction of sediment transport. In addition, the progradation of 

clinoforms into deeper basin positions allowed the deposition of progressively steeper 

clinoforms that most likely triggered slope collapse as observed in seismic sections. The 

lack of connection of this features and shelf incisions also suggest that they are not 

related to sea level falls. Consequently, deep water deposits are most likely fine grained.   
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Figure 2.21: (a) RMS amplitude extraction map of seismic unit SU6 (late Pliocene) in area covered by 3D seismic survey. 
Extraction window is 15 ms below Sg. (b) Detailed area showing higer-resolution image of dendritic-channelized 
systems on shelf. (c) Paleoenvironmental interpretation of seismic unit SU6 (early Stage 3) indicating location of 
paleoshelf break to north of well Kanuka-1. Image also shows northeast-southwest dendritic channels on shelf 
feeding localized shelfal depocenter.   
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DISCUSSION 

Role of sea-level fluctuations in the development of the Giant Foresets Formation 
clinoform morphologies  

During Stage 1, sea-level curves show the initiation of a falling trend in eustatic 

sea level (Figure 22e–g; Miller et al, 2005; Lisiecki and Raymo, 2005). However, flat to 

slightly rising shelf-edge trajectories are dominant inside and outside the graben region 

suggesting that other factors likely controlled sedimentation (Figures 2.22h). I suggest 

that the fact that the Northern Graben started to open in the late Miocene in northern 

positions of the North Island coast (Giba et al., 2010) could have manifested itself in the 

form of generation of low to moderate accommodation in the study area. Regardless, 

most sediment was bypassed toward deeper waters during Stage 1 (Figures 2.7 and 2.22). 
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Figure 2.22: (a) Chronologic framework. (b) Stacking pattern from seismic data. (c) Seismic stages (Stages 1–3). (d) Seismic 
units (SU1–SU9) (e) Global sea-level curve from Haq et al. (1987). (f) Global sea-level curve from Miller et al. 
(2005). (g) δ18O excursions based on benthic foraminifera from Lisiecki and Raymo (2005). (h) Paleoshelf edge 
trajectories  from seismic data in the Taranaki Basin (this study). (i) Vertical position of paleoshelf break in 
Taranaki Basin presented as cumulative aggradation (this study). (j) Principal tectonic events affecting Taranaki 
Basin during Pliocene–Recent. (k) Climate systems affecting the Taranaki Basin during Pliocene–Recent times. 
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During Stage 2, a correlation between aggradation/progradation curves and 

postulated global sea levels is observed, except at the beginning of Stage 2A, when rising 

shelf-edge trajectories might reflect initial and very rapid graben subsidence rates (Giba 

et al., 2012) (Figure 2.22). The good correlation between relative sea-level curves and the 

shelf-edge position during Stage 2 is evident in the two peaks of eustatic sea-level fall 

(indicated by circled numbers in Figure 2.22) occurring around 2.4 and 3.8 Ma. Stage 2 

developed during a general lowering in global sea level. This trend started during the late 

Pliocene and was influenced by the growth of ice sheets in the southern and then northern 

hemispheres (Haq et al., 1987; Miller et al., 2005; Naish & Wilson, 2009). This period of 

relative sea-level fall may have acted as a major driver of margin progradation and 

siliciclastic shelf building across the Taranaki Basin during the lower and mid-Pliocene. 

However, high tectonic subsidence rates, associated with the opening of the Northern 

Graben, were already present and may have been responsible for the apparent 

transgressive pulses observed in the interval. High rates of sediment supply, intensified 

by the increasing Southern Alps relief (Tippett & Kamp, 1995), and reorientation of 

sediments by the Northern Graben caused sediment supply to outpace tectonic 

subsidence, resulting in progradational stacking patterns and flat-to-falling shelf-edge 

trajectories. Consequently, clinoform stacking patterns observed in the seismic units 

within Stage 2 are attributed to a combination of both global sea-level drop and sediment 

bypass associated with the Northern Graben activity. 

Sea-level curves and shelf-edge trajectories show different trends during Stage 3. 

Sea-level curves exhibit an overall falling sea-level, whereas aggradational patterns 

recorded during most of the period are indicative of sea-level rise (Figure 2.22; 

Johannessen & Steel, 2005). The onset of major Northern Hemisphere glaciations 

occurred in the late Pliocene, close to the Stage 2/Stage 3 boundary (~2.5 Ma), and this 
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period is characterized by greater climatic variability and higher amplitude sea-level 

change than previous periods (Figure 2.22g; Naish & Wilson, 2009). Eustatic amplitudes 

during the last 0.8–0.9 my were greater than 100 m, in contrast to Neogene (Miocene and 

early Pliocene) amplitudes of 50–100 m (Williams, 1988).  

Increased convergence rate of the Pacific-Australian plates in the Pleistocene and 

the migration of the subduction zone towards the west (Tippett & Kamp, 1995) generated 

rapid uplift of the Southern Alps and greater availability of sediment to the northwest. 

The mid-Pleistocene transition (MPT) records fundamental changes in the Earth’s 

climate, when shorter 41-ky obliquity-dominated cycles gave way progressively to the 

100 ky fluctuations that characterize the later Pleistocene and Holocene, beginning 

around one million years ago (Hayward et al., 2012). High aggradation-to-progradation 

ratios in SU9 (Table 2.2) may be related to this event and could be responsible for the 

slight increase in variability observed in the shelf edge trajectory when compared with 

SU7 and SU8 (see smoother character in Figure 2.22h). On the other hand, asymmetrical 

“saw-tooth” patterns of climate cycles after about 700 ka (Hayward et al., 2012) indicate 

slow buildup of ice and subsequent rapid melting that, in the case of the Taranaki Basin, 

translated into rapidly rising sea levels and slow sea-level falls. Slow sea level fall was 

likely compensated for by subsidence related to sediment loading (Holt and Stern, 1991), 

generating an overall rising shelf-edge trajectory and higher aggradation-to-progradation 

ratios (Figures 2.7 and 2.22i). Individual sea-level falls were probably insufficient to 

expose the entire shelf because of the high rate of basin subsidence, explained by 

sediment loading on the Western Platform (Holt and Stern, 1991; Cardona, 2009), which 

increased after ~3 Ma with compacted sedimentation rates of 300–400 m/my (Baur, 

2012; King & Thrasher, 1996).  
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Role of the Northern Graben in sediment partitioning and physiography of the 
margin  

The analyses suggest that the Northern Graben played a key role in defining the 

geometry and location of sediments and sedimentary pathways in the shelf-edge region. 

Development of the graben through time also controlled (1) the location and migration of 

local and regional depocenters, and (2) changes in its depositional conditions from the 

shelf to deep-water. The architecture of channelized features interpreted from attribute 

maps (Figures 2.17 to 2.20) suggests that sediment was preferentially funneled to the 

northeast through the Northen Graben. Lower progradational rates recorded inside the 

graben region during Stage 2B suggest that at the time of deposition of these units, 

accommodation was already created by the graben (Figure 2.23). The 3D perspective in 

Figure 2.23 helps visualize how the sediment, sourced from the southwest, may have 

been redirected to fill the space generated by the graben. Relay ramps, formed between 

fault segments, acted to “funnel” channels, down toward the graben center in Figures 

2.19a and 2.19d.  
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Figure 2.23: Three-dimensional visualization of surface Sc (clinoform defining base of seismic unit SU3), looking from west 
to east. Image shows character of sedimentary pathways on shelf that transported sediments from southwest to 
northeast.  
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CONCLUSIONS   

The application of several techniques of clinoform morphology characterization 

in the early Pliocene–Recent succession of the northern Taranaki Basin allows 

identifying three stages of margin evolution. These stages are primary associated with 

variations in the shelf edge transition, clinoform trajectory, incision location and 

clinoform dimension that reflect long-term changes in relative sea level; size and position 

of sediment sources; mechanisms of sediment transport; and different episodes of graben 

activity.  

Comparison of clinoform architectures and global sea level fluctuations indicate 

that low stand conditions dominated during the first two stages and relative sea level fall 

played the main role in shaping the observed geometries. However, a different 

mechanism had to prevail in the last stage, when both high accommodation and sediment 

supply were needed to developed “Giant” clinoforms. I propose that these increases were 

generated by the migration of the Pacific-Australian subduction zone and associated 

uplifting of the Southern Alps. 

This study shows that the analysis of clinoform morphologies can help predict the 

occurrence of prospective deep-water deposits in the distal parts of the basin. The 

presence of sharp and deeply incised shelf edges and flat clinoform trajectories are likely 

associated with sediment bypass and the transport of sediment into deeper-water 

positions as expected in Stage 2. Smoother shelf edge transitions, slope incisions not 

connected with the shelf, and rising clinoform trajectories suggest that potential deep-

water deposits may be associated with slope failure and collapse and are most likely fine 

grained as proposed for Stage 3. 

The presence of underlying structures is also crucial in the development of 

stratigraphic sequences in continental margins and prediction of deep-water deposits. The 
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opening of the Northern Graben at the beginning of Stage 2 played an important role in 

defining the position of the shelf edge as well as funneling sediment into the structure 

towards the northeast. Reactivation of the graben faults during Stage 3 may have also 

played an important role in storing coarser grained sediment on the shelf as suggested by 

high amplitude anomalies aligned with the graben.  
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CHAPTER 3: 2D STRATIGRAPHIC FORWARD MODELING OF 
CLINOFORMS TO DEDUCE DRIVING MECHANISMS OF 

STRATA FILL, NORTHERN TARANAKI BASIN, NEW ZEALAND  

ABSTRACT 

Clinoforms, the basic large-scale architectural form within which sediments are 

stored and eventually fed down depositional dip in clastic wedges, are found in many 

shapes and sizes. Extremely large clinoforms, or “giant” clinoforms, are found on both 

modern and ancient continental margins. Understanding how these clinoforms form, 

evolve, and degrade is critical to understanding how transport mechanisms affect the 

shelf margin and sediment partitioning in any given basin. The Neogene stratigraphic 

succession of the Taranaki Basin in New Zealand contains clinoform packages that 

display a variety of architectures. Quantitative characterization of this unit was used to 

unravel the processes by which clinoforms evolve along a tectonically active margin that 

was under the influence of tectonic- and isostatic-driven subsidence, sea-level change, 

and sediment supply fluctuations. Nine different clinoform packages were identified on 

the basis of changes in their seismic stratigraphic characteristics, and two-dimensional 

stratigraphic forward modeling was used to define which geologic controls were 

influencing their genesis. The results of this study show that during the early to late 

Pliocene, clinoform architectures were influenced by the opening of a back-arc rifting 

structure in the Taranaki Basin (Northern Graben) that controlled sediment redistribution 

and partitioning. At the same time a drop in global sea level allowed sediment bypass to 

distal portions of the basin. During the late Pliocene, changes in the Australian-Pacific 

subduction zone forced rapid uplifting of the Southern Alps, generating a significant 

increase in sediment supply. Model simulations suggest that clinoform architectures 

during the late Pliocene were controlled by this increase in sediment supply and loading. 



76 
 

INTRODUCTION 

Clinoforms are the basic depositional morphology for sedimentary accumulations 

at scales ranging from bars to deltas and continental margins. Deposits bounded by 

clinoform surfaces are referred to as clinothems (Rich, 1951; Figure 3.1). Clinoforms are 

found in many shapes and sizes but are always characterized by three geometric elements 

(Pirmez et al., 1998): topset, foreset, and bottomset (Figure 3.1). Continental-scale 

clinoforms have slope reliefs on the order of hundreds of meters, and their depositional 

profile covers the entire shelf, slope, and basin-floor transitions (Wolinsky and Pratson, 

2007; Helland-Hansen and Hampson, 2009). Extremely large continental-scale 

clinoforms (>700 m), termed “giant” clinoforms by some workers, are observed on both 

modern and ancient continental margins (Hubbard et al., 2010). Changes in basin 

architectures and clinoform morphologies can be the result of interactions between 

different geological variables at any given time (global and relative sea-level fluctuations, 

changes in the location of sedimentary sources, variations in sediment supply, tectonic 

subsidence, isostatic compensation, changes in physiography, and oceanic currents, etc.) 

(Martinsen and Helland-Hansen, 1995; Cathro et al., 2003; Burgess et al., 2006; Boyd et 

al., 2008). Identifying which factors exert the predominant control on clinoform 

architecture in a particular basin is not an easy task. Sequence stratigraphic models do not 

always capture the complexities associated with the processes operating in a given basin; 

instead these models focus too much on the impact of accommodation and eustatic sea-

level changes as primary controls to predict basin architectures and sediment distribution 

(e.g., Mitchum et al., 1977; Posamentier and Vail, 1988; Johannenssen and Steel, 2005). 

One of the main caveats of the sequence stratigraphic model is that sediment supply, 

which can vary significantly and rapidly in tectonically active regions, is commonly 

considered as a constant or quasi-constant variable (Burgess et al., 2006). In addition, the 
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effects of sediment loading and isostatic compensation are typically neglected (Reynolds 

et al., 1991). 

 

Figure 3.1: Sketch showing clinoform geometrical elements (topset, foreset, and 
bottomset) and parameters collected in this study for each seismic unit. 
Deposits bounded by clinoform surfaces are referred to as clinothems (Rich, 
1951). 

In Chapter 2, seismic stratigraphic interpretations and paleontological studies 

were combined to understand the framework and history of the Pliocene to Recent 

stratigraphic succession within the northern Taranaki Basin, where “giant” clinoforms 

(Giant Foresets Formation, GFF) were deposited. Chapter 2 highlights how the 

systematic description of clinoform architectures can be coupled with process-oriented 

interpretations associated with paleoenvironmental and tectonic conditions. In this study, 

the quantitative characterization of the architectural elements of the GFF performed in 

Chapter 2 is used as input to generate 2D stratigraphic forward models. This study uses 

clinoform architectures from the GFF and stratigraphic forward-modeling techniques to 

bridge the limitations commonly encountered when using sequence stratigraphic models 

and to obtain a more accurate picture of the geologic conditions that controlled the 

architecture and sediment partitioning within this basin during the Pliocene to Recent 

time. To achieve this goal, the models that are presented in this paper (1) demonstrate the 

expected stratigraphic/clinoform response of the northern Taranaki Basin to eustatic sea-
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level variations while keeping sediment flux and subsidence rates constant, (2) consider a 

dynamic basin model in which subsidence and sediment supply are not kept constant 

through time but instead respond to changing tectonics and evolving topography, 

comparing and contrasting the stratigraphic signatures of variable eustasy and variable 

tectonics, (3) demonstrate the importance of sediment loading and isostatic compensation 

on clinoform development, and (4) analyze the impact of back-arc rifting and the opening 

of the Northern Graben on clinoform architectures. Key questions that this study seeks to 

answer are (1) What were the dominant geologic controls (e.g., tectonics, sediment 

supply, and global sea-level fluctuations) that influenced the character of the different 

clinoform architectures that are observed within the GFF, and did these controls vary 

through time? (2) Are there any architectural differences between clinoforms that 

developed inside and outside the Northern Graben structure, and was the opening of the 

graben capable of producing changes in both clinoform morphology and basin 

physiography? and (3) Did the uplift of the Southern Alps generate an important source 

of sediments for the Taranaki Basin during the Pliocene to Recent time, and if so, is there 

any geomorphological signature within the GFF’s clinoforms that could be linked to this 

event? 

Stratigraphic Forward Models  

Quantitative forward modeling of the stratigraphic record is a form of prediction 

that presupposes prior understanding of the processes of erosion, transport, and 

deposition, and attempts to predict facies distribution and basin architectures at some 

time in the future (Griffiths, 2001). Stratigraphic forward modeling represents a powerful 

tool to understand depositional processes within a basin, which results in the prediction of 

realistic depositional products (e.g., clinoform geometries) and provides insights into the 

influence and relative weight that different geologic processes (tectonic subsidence, 
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Type of model Approach Strengths Weaknesses 

Geometric models 
(Jervey, 1988; 
Reynolds at al. 
1991) 

Equilibrium profiles 
of sediment 
distribution 
modified by the 
competing effects 
of subsidence and 
erosion. 

Capable of producing 
reasonable 
approximations to 
observed stratal geometry. 

Computationally simple.  
Useful to understand the 

effects of sea level, 
sediment supply, and 
tectonism at large regional 
scales. 

 

Depositional surface does 
not evolve according to 
the actual stratigraphic 
processes of sediment 
transport and deposition.  

Unable to create small-scale 
stratal geometries. 

 

Process-based or 
hydraulic models 
(Tetzlaff and 
Harbaugh, 1989) 

Numerical 
approximations to 
the equations of 
fluid flow. 

Useful at small scales such 
as understanding the 
internal geometry of 
reservoirs and predicting 
grain-size distributions. 

Necessity to specify a large 
number of input 
parameters that may make 
it computationally 
intensive to simulate flow 
and sediment transport at 
the continental margin 
scale. 

Diffusion models 
(Kenyon and 
Turcotte, 1985; 
Jordan and 
Flemings, 1991) 

Derived from the 
equations of slope-
driven motion and 
conservation of 
mass.  

Use of a few assumptions 
and simple equations.  

Useful at larger scales 
including simulations of 
stratal geometries in semi-
regional seismic sections. 

Diffusion coefficients are 
hard to define and relate 
to physical processes. 

Only models slope-driven 
processes (e.g., creep, 
sliding, and slumping), 
cannot model other 
processes such as effects 
of waves and currents.  

Table 3.1: Comparison of the different types of stratigraphic forward models 

The software STRATA was created at the Massachusetts Institute of Technology 

(MIT) by Peter Flemings and John Grotzinger (1996) to determine reasonably quickly the 

relative importance of various transport conditions (e.g., tectonic subsidence, sediment 

flux, and eustasy) that control the geometries of clinoforms. STRATA has been 

successfully used in modeling high-relief clinoforms similar in size to those in the GFF 

(e.g., North Slope, Alaska; Kaba, 2004). STRATA uses sediment flux instead of sediment 

rate as the input parameter to constrain boundary conditions for stratigraphic models. 

Sediment flux refers to the amount of sediment delivered to a basin, whereas 
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sedimentation rate refers to a measure of the flux of sediment being deposited or 

preserved in a certain point or area (Petter et al., 2013).  

GEOLOGIC SETTING AND TECTONIC HISTORY 

The Taranaki Basin is a Cretaceous- to Recent-age sedimentary basin having a 

stratigraphic infill more than 10,000 m in thickness in the deepest parts of the basin (King 

and Thrasher, 1996). The Taranaki Basin, located along the western coast of New 

Zealand’s North Island, has a total area of 330,000 km2 when including its deeper water 

portions (called the Deepwater Taranaki Basin; Figure 3.2). The Taranaki Fault is a 

north-south-oriented reverse fault that delineates the eastern boundary of the basin 

(Figure 3.2). The origin of this fault is linked to the converging boundary between the 

Pacific and Australian tectonic plates (King and Thrasher, 1992). The other borders of the 

Taranaki Basin are not clearly defined: to the south, the basin merges with the small 

subbasins of the northwestern coast of the South Island, and to the northwest and north, it 

merges with the bathyal New Caledonia and Northland Basins, respectively (King and 

Thrasher, 1996) (Figure 3.2). The Cape Egmont Fault Zone (CEFZ) defines the boundary 

between two well-defined tectonic regions within the Taranaki Basin (King and Thrasher, 

1996): (1) the tectonically active Eastern Mobile Belt that includes the Central and 

Northern Grabens and their associated buried Miocene andesitic volcanic arc and (2) the 

tectonically quiescent Western Stable Platform, where fault activity was mostly absent 

(Figure 3.2). The area covered by this study includes offshore portions of both the 

Eastern Mobile Belt, where the Northern Graben is located, and its continuation into the 

Western Stable Platform to the west (Figure 3.2).  



82 
 

 

Figure 3.2: Map showing area of study, located in the western margin of New Zealand’s 
North Island. The 3D seismic volume that was used in this study is outlined. 
Semiregional 2D seismic lines and modeled seismic profiles are also shown. 
SP1: Seismic profile 1 is located outside the Northern Graben. SP2: Seismic 
profile 2 is located inside the Northern Graben. Location of the Taranaki 
Basin, relative to the tectonic framework along Australian-Pacific plate 
boundary, is presented in the index map at the lower left corner of the 
figure. NCB = New Caledonia Basin; DTB = Deepwater Taranaki Basin; 
TB = Taranaki Basin; NB = Northland Basin; WB = Wanganui Basin. 
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The tectonic history of the basin is complex and includes rifting, passive margin 

development, and several stages of foreland evolution associated with the evolving 

Pacific-Australian convergent plate boundary (King and Thrasher, 1992, 1996). The 

Northern and Central Grabens formed during back-arc rifting from the early Pliocene to 

Recent time (King and Thrasher, 1996; Giba et al., 2010). The Northern Graben is a 

northeast-southwest-oriented graben that opens toward the northeast, reaching a 

maximum width of about 40 km. The Turi and Cape Egmont Fault Zones define the 

eastern and western boundaries of the Northern Graben (Figure 3.2). This graben 

represents an important structural element that greatly influenced the character of the 

stratigraphic infilling within the northern Taranaki Basin during Pliocene to Recent time 

(Chapter 2).  

The Rotokare Group is the main stratigraphic unit deposited in the Taranaki Basin 

under back-arc rifting conditions during Pliocene to Recent times (King and Robinson, 

1988; Figure 3.3). The Mangaa and the Giant Foresets Formations (GFF) are part of the 

Rotokare Group, but this work is only concerned with the study of the younger GFF 

(Figure 3.3). In the study area, the GFF is as much as 2 km thick and is composed of 

mostly fine-grained shelf to basin-floor deposits (King and Thrasher, 1996; Hansen and 

Kamp, 2002, 2004; Morgans, 2006).  
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Figure 3.3: Miocene to Recent chronostratigraphic chart for the Taranaki Basin (modified 
from Hansen and Kamp, 2002). Interval of interest covers offshore Pliocene 
to Recent GFF of the northern Taranaki Basin. Giant Foresets Formation is 
composed of continental-scale clinoforms with heights that exceed 100 m. 

DATA AND METHODS 

Data 

Seismic reflection datasets (2D and 3D) and well information were used in this 

study (Figure 3.2). The 3D seismic volume covers an area of about 1,700 km2 and has a 

vertical resolution of 10 to 15 m within the Pliocene to Recent interval; 4,000 km of 2D 

seismic data was also available (Figure 3.2). The seismic resolution of the 2D lines 

ranges between 20 and 30 m within the Pliocene to Recent stratigraphic interval. Imaging 

depths reach a maximum of 7 s two-way travel time (TWTT) for both the 2D and the 3D 

seismic surveys. Geophysical logs, as well as biostratigraphic and lithological 
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information from four exploratory wells (Witiora-1, Taimana-1, Arawa-1, and Kanuka-1; 

Figure 3.2), were available and integrated into the study. Well Arawa-1 is the only well 

located within the 3D seismic survey. Wells Taimana-1, Witiora-1, and Kanuka-1 are 

located close to the western boundary of the seismic volume and were either projected or 

tied into the 3D volume using 2D lines (Figure 3.2). Age and paleoenvironmental 

interpretations were based on existing biostratigraphic zonations (Hoskins and Raine, 

1984; Morgans, 1984; Crundwell et al., 1992; Hansen and Kamp, 2004; Morgans, 2006; 

Crundwell, 2008). Check shots and sonic logs provided velocity information. The 

approximate time-depth conversion within the interval of interest is 100 ms (TWTT) 

equivalent to 100 m. Synthetic seismograms were used to tie chronostratigraphic and 

paleoenvironmental interpretations from the wells to the seismic data, and they were also 

used to depth-convert key seismic lines that revealed the true geometry related to the 

structural and stratigraphic configuration of the GFF clinoform system.  

Methods 

Two seismic profiles normal to the shelf edge that were previously interpreted in 

Chapter 2 were selected. The first profile (SP1) is located outside the graben structure 

and captures clinoform morphologies in an area that was not intensively affected by 

structural deformation (Figure 3.4). The second profile (SP2) is located inside the graben 

structure and captures architectures from an area affected by intense structural 

deformation and tectonic subsidence (King and Thrasher, 1996; Figure 3.5). Nine seismic 

units (SU1 to SU9) and ten key surfaces (Sa to seabed) were defined on the basis of 

seismic facies analysis and individual clinoform characteristics (Chapter 2). Foreset 

declivities, clinoform heights and lengths, and progradation and aggradation rates were 

measured and calculated for each clinoform unit (Figure 3.1, Table 3.2). A systematic 
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description of how these parameters were collected is provided in Chapter 2. I focus here 

on using these previously collected data for modeling purposes.  

 

Figure 3.4: Uninterpreted and interpreted composite seismic profile along depositional 
dip outside the graben structure (SP1) (see index map for location). (A) 
Seismic image shows well-imaged clinoforms that developed during 
Pliocene to Recent times and are part of the GFF. Wells Arawa-1 and 
Kanuka-1 are projected onto this line. (B) Composite seismic line showing 
interpretation of key surfaces (Sa–seabed), seismic units (SU1–SU9), and 
shelf-edge trajectories. Notice progressive northward migration of the shelf 
edge through time and change from mostly progradational (Sa–Sf) to 
aggradational margin (Sf–seabed).  
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Figure 3.5: Uninterpreted and interpreted composite seismic profile along depositional 
dip inside the Northern Graben (SP2) (see index map for location). (A) 
Seismic image shows well-imaged clinoforms that developed during 
Pliocene to Recent times and are part of the GFF. (B) Composite seismic 
line showing interpretation of key surfaces (Sa–seabed), seismic units (SU1-
–SU9), and shelf-edge trajectories. Notice progressive northward migration 
of shelf break through time. 
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Seismic 
Profile 

Surface Age 
(Ma) 

foreset 
decliv. 

(°) 

upper 
slope 
decliv. 

(°) 

height 
(m) 

length 
(km) 

Section Seismic 
Unit 

Progradation* 
(km) 

Aggradation* 
(m) 

Progradation 
rate (km/my) 

Aggradation 
rate (m/my) 

SP
1 

(O
ut

si
de

 G
ra

be
n)

 

Sa 5.3 1 1 342 14 

Lower 

SU1 3 305 4 381 

Sb 4.5 2 4 510 13 SU2 17 79 11 53 

Sc 3.0 1 1 413 20 SU3 12 104 59 521 

Sd 2.8 2 2 495 16 SU4 14 -90 71 -451 

Se 2.6 3 3 739 17 SU5 11 -72 54 -361 

Sf 2.4 4 4 808 12 

Upper 

SU6 4 174 14 581 

Sg 2.1 5 5 892 11 SU7 8 62 28 207 

Sh 1.8 5 7 916 10 SU8 7 164 12 274 

Si 1.2 3 4 810 13 SU9 19 625 15 521 

seabed 0.0 3 6 800 14 -- --  --  --  --  

SP
2 

(In
si

de
 G

ra
be

n)
 

Sa 5.3 2 3 1296 44 

Lower 

SU1 4 253 5 317 

Sb 4.5 2 3 1477 47 SU2 17 110 11 73 

Sc 3.0 3 4 1451 31 SU3 14 35 69 173 

Sd 2.8 4 5 1318 17 SU4 4 -77 20 -385 

Se 2.6 5 6 1130 13 SU5 6 -160 29 -800 

Sf 2.4 5 7 1061 12 

Upper 

N.D. N.D. N.D. N.D. N.D. 

Sg 2.1 N.A. N.A. N.A. N.A. N.D. N.D. N.D. N.D. N.D. 

Sh 1.8 N.A. N.A. N.A. N.A. N.D. N.D. N.D. N.D. N.D. 

Si 1.2 N.A. N.A. N.A. N.A. N.D. N.D. N.D. N.D. N.D. 

seabed 0.0 N.A. N.A. N.A. N.A. -- --  --  --  --  
N.D. = no data 
* See text for explanation of how values are measured 

Table 3.2: Measurements of geometrical parameters on clinoforms outside (SP1) and inside (SP2) the Northern Graben 
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2D Stratigraphic Forward Modeling 

The geometry of the GFF clinoforms was modeled two-dimensionally using the 

software STRATA (Flemings and Grotzinger, 1996). Subsidence values, relative sea-

level fluctuations, flexural rigidities, and diffusivity coefficients are input parameters to 

perform the simulations of STRATA. These parameters were obtained from studies 

performed in the Taranaki Basin by previous authors (Holt and Stern, 1991; King and 

Thrasher, 1996; Cardona, 2009) and from publications covering clinoform development 

in general, as well as the application of stratigraphic modeling techniques (Jordan and 

Flemings, 1991; Reynolds et al., 1991; Paola et al., 1992; Pirmez et al., 1998). Several 

models were run to test the influence of a variety of geologic controls on the development 

of clinoform geometries. First, I explored the nature of the stratigraphic response of a 

geometrically simple margin to eustatic sea-level variations (Haq et al., 1987; Miller et 

al., 2005) to try to reproduce the geometries observed in seismic profile SP1. I run these 

simulations using a steady-state basin having constant subsidence and sediment flux. 

Secondly, I examined dynamic basin models where subsidence and sediment flux were 

not kept constant through time but responded to the tectonic settings (e.g., the opening of 

the Northern Graben back-arc basin, the migration of the Australian-Pacific plate 

subduction zone, and changes in the Southern Alps uplift). Thirdly, I considered the 

effects of isostatic compensation on the creation of accommodation. Finally, I analyzed 

the geometric differences between the profiles inside and outside the graben (SP1 and 

SP2) and evaluated different conditions hypothesized to reproduce the profile outside the 

graben (SP2).  

For each model, input parameters were varied individually to isolate the relative 

effects that sea-level fluctuations, sediment flux, subsidence, and isostatic compensation 

had on clinoform geometries and margin architectures. Table 3.3 summarizes the range of 
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values for the different parameters used in each set of models. In order to quantify the 

goodness of the fit between the real GFF clinoform architectures and the simulation 

results, the parameters that were measured or calculated directly from the seismic lines 

were used (foreset declivities, heights and lengths, progradation and aggradation rates) 

(Figure 3.1). Iterative simulations were run until the closest geometric matches were 

produced for each case. To simplify this comparison process, the GFF clinoforms were 

divided into an upper and a lower section (Figures 3.4 and 3.5) according to their 

geometric characteristics. The lower GFF section contains seismic units SU1 and SU5 

(Figures 3.4 and 3.5), which are characterized by clinoforms that present oblique and 

linear geometries having abrupt topset to foreset transitions (Chapter 2). The upper GFF 

section contains seismic units SU6 and SU9 (Figures 3.4 and 3.5), which are 

characterized by sigmoidal shapes and smoother topset to foreset transitions (Chapter 2).  
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 Set of Models 1 Set of Models 2 Set of Models 3 Set of Models 4 
 Fig. 3.14 Fig. 3.15 Fig. 3.16 Fig. 3.18 
Marine diffusivity 
coefficient Km (m2/y) 100-500  100-500 100-500 100-500 

Non marine 
diffusivity coefficient 
Knm (m2/y) 

10,000-50,000  10,000-50,000  10,000-50,000  10,000-50,000 

Sediment flux (m2/y) 
Constant 

through time 
(5-100) 

Variable through 
time, results from 

Petter et al. 
(2013) in SP1 (9-

79) 

Variable through 
time, results from 

Petter et al. 
(2013) in SP1 (9-

79) 

Variable through 
time, results from 

Petter et al. 
(2013) in SP2 (17-

76) 

Subsidence rate 
(m/my) 

Constant 
through time 

(100-500) 

Variable through 
time (backstripped 

subsidence 
curves  from wells 
Witiora-1, Arawa-
1, and Kanuka-1) 

Variable through 
time (backstripped 

subsidence 
curves  from wells 
Witiora-1, Arawa-
1, and Kanuka-1) 

Variable through 
time (backstripped 

subsidence 
curves  from wells 
Witiora-1, Arawa-
1, and Kanuka-1) 

Sea level curve  
Miller et al. 

(2005) and Haq 
et al. (1987) 

Miller et al. (2005) Miller et al. (2005) Miller et al. (2005) 

Flexural rigidity (Nm) None None 5.6x1022-15x1022 5.6x1022-15x1022 

Table 3.3: Range of values of the input parameters used in strata 
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Model Design 

Time and Length of the Modeling 

Although the GFF was deposited between 5.3 and 0 Ma, simulations presented in 

this study were extended to cover the last 7.5 m.y. of basin evolution. Extending the 

simulation period was necessary to generate enough accommodation to form the surface 

that defines the base of the GFF clinoform package (top Miocene horizon) toward the 

south and to allow for proper development of clinoforms in the focus area (Kaba, 2004). 

Additional modifications were made to the reference lines in order to properly condition 

the simulation. For instance, seismic profile SP1 (outside graben structure) was originally 

114 km long but was extended to 400 km to remove a blanking distance that is 

automatically generated by STRATA (10% of total section length at the proximal end of 

the model) and any residual boundary effect at the distal end of these profiles (Kaba, 

2004). Likewise, the length of seismic profile SP2 (inside graben structure) was increased 

from ~45 to 400 km to standardize the length of the lines and to allow for proper 

simulation of the topset geometries of clinoforms contained within the Plio-Pleistocene 

section.  

Sea-Level Fluctuations 

Two global sea-level curves were used to simulate changes in sea level through 

time for these models: the Haq et al. (1987) global sea-level curve and the Miller et al. 

(2005) sea-level curve that was derived by performing backstripping in the coast of New 

Jersey.  

Sediment Flux 

Sediment flux was kept constant through time in the steady-state model, using the 

values shown in Table 3.3 for different STRATA runs. For the dynamic models, the 
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approach proposed by Petter et al. (2013) was applied to the Taranaki Basin GFF 

clinoforms in order to estimate sediment flux. This method simplifies the computation of 

sediment fluxes because it uses parameters that are easily estimated from 2D seismic 

profiles (clinoform height, thickness, and progradation and aggradation rates) (Figures 

3.1 and 3.6).  

 

Figure 3.6: Sketch illustrating the parameters used for calculations of sediment flux 
according to Petter et al. (2013). The datum (h=0) corresponds to the surface 
onto which the profiles downlap, and the coordinate origin (x=0) is located 
at the clinothem proximal pinchout. 

Three main steps were followed to calculate sediment flux in the Taranaki Basin 

(Petter et al., 2013) and summarized in Figure 3.7: (1) progradation and aggradation rates 

for seismic profiles SP1 and SP2 were calculated following the shelf-edge trajectory as 

defined by clinoform rollovers (Table 3.2); (2) the distal clinothem pinchout positions 

(Figure 3.6) were calculated as defined by Petter et al. (2013)—this procedure involved 

plotting both the clinothem thickness and the elevation against basinward position 
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(Figures 3.8 to 3.11) in order to find the best-fitting exponential equations (Figure 3.7); 

and finally, (3) sediment flux was calculated using the relationship established by Petter 

et al. (2013; Figure 3.7). Table 3.4 shows the final product with sediment flux estimates 

associated with each seismic unit inside and outside the Northern Graben. 

 

Figure 3.7: Steps to estimate shelf-edge sediment flux (modified from Petter et al., 2013).
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Figure 3.8: Plots showing the change in clinoform thickness (m) along the seismic profile located outside the graben (SP1) for 
different seismic units (SU1–SU9). The thin black line shows the variation in thickness. The thick black line 
represents exponential functions fitting the general trends. Seismic profile SP1 is ~100 km long, and the origin (0 
m) is defined in its southern end. 
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Figure 3.9: Plots showing the change in clinoform elevation (m) along the seismic profile located outside the graben (SP1) for 
different seismic unit boundaries (Sb–seabed). The thin black line shows the variation in thickness. The thick 
black line represents exponential functions fitting the general trends. Seismic profile SP1 is ~100 km long, and 
the origin (0 m) is defined in its southern end. 
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Figure 3.10: Plots showing the change in clinoform thickness (m) along the seismic profile located inside the graben (SP2) for 
different seismic units (SU1–SU5). The thin black line shows the variation in thickness. The thick black line 
represents exponential functions fitting the general trends. Seismic profile SP1 is ~100 km long, and the origin (0 
m) is defined in its southern end. Lack of data coverage inside the graben region only allowed registering 
parameters for seismic units SU1 to SU5. 
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Figure 3.11: Plots showing the change in clinoform elevation (m) along the seismic profile located inside the graben (SP2) for 
different seismic unit boundaries (Sb–Sf). The thin black line shows the variation in thickness. The thick black 
line represents exponential functions fitting the general trends. Seismic profile SP1 is ~100 km long, and the 
origin (0 m) is defined in its southern end. Lack of data coverage inside the graben region only allowed 
registering parameters for surfaces Sa to Sf. 
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Seismic 
Profile 

Unit  Porosity  Progra‐
dation 
rate 

(km/my) 

Aggra‐ 
dation 
rate 

(m/my) 

Thickness vs. Basinward 
position (exponential 

parameters) 

Surface  Age 
(Ma) 

XSE* 
(km) 

SE* 
(km) 

Elevation vs. Basinward 
position (exponential 

parameters) 

Distal 
pinchout 
position 
Xd (km) 

Distal 
pinchout 
position 
d (m) 

XadjSE† 
(km) 

adjSE† 
(m) 

q(XSE)* 
(m2/y) 

a  b  R2  a  b  R2 

SP
1
 (
O
u
ts
id
e 
G
ra
b
en

) 

SU1  0.2  4  381  332  ‐0.028  0.77  Sb   4.5  13  1819  1922  ‐0.009  0.91  89  604  77  1215  27 

SU2  0.2  11  53  2242  ‐0.051  0.97  Sc  3  38  1807  2952  ‐0.013  0.98  72  1020  34  787  9 

SU3  0.2  59  521  4570  ‐0.067  0.89  Sd   2.8  41  1981  4112  ‐0.018  0.99  65  1263  24  718  44 

SU4  0.2  71  0  62840  ‐0.092  0.87  Se  2.6  56  1836  9998  ‐0.030  0.95  75  942  19  894  50 

SU5  0.2  54  0  8304000  ‐0.153  0.94  Sf  2.4  64  1835  35690  ‐0.047  0.96  89  607  25  1228  53 

SU6  0.2  14  581  1165000  ‐0.106  0.92  Sg  2.1  70  1902  44380  ‐0.046  0.96  92  555  22  1347  25 

SU7  0.2  28  207  35620000  ‐0.135  0.93  Sh  1.8  79  1925  55660  ‐0.044  0.93  117  333  38  1592  42 

SU8  0.2  12  274  44370  ‐0.045  0.88  Si  1.2  86  2082  31880  ‐0.032  0.98  202  47  116  2035  44 

SU9  0.2  15  521  121100  ‐0.047  0.95  seabed   0  104  2662  50500  ‐0.030  0.95  217  69  113  2593  79 

SP
2
 (
In
si
d
e
 G
ra
b
en

)  SU1  0.2  5  317  448  ‐0.030  0.74  Sb   4.5  0  2397  2461  ‐0.021  0.84  89  604  89  1793  30 

SU2  0.2  11  73  1237  ‐0.033  0.97  Sc  3  16  2526  4340  ‐0.029  0.87  72  1020  57  1506  17 

SU3  0.2  69  173  923  ‐0.023  0.91  Sd   2.8  30  2560  8198  ‐0.040  0.96  65  1263  35  1297  76 

SU4  0.2  20  0  651  ‐0.025  0.67  Se  2.6  30  2749  8718  ‐0.039  0.97  75  942  45  1807  29 

SU5  0.2  29  0  7120  ‐0.071  0.93  Sf  2.4  39  2348  5939  ‐0.025  0.95  89  607  51  1741  40 

*XSE = Basinward position of shelf edge; SE = Elevation of shelf edge; q(XSE) = Sediment flux at shelf edge position  
*XadjSE = Basinward position of shelf edge relative to clinothem pinchout position; adjSE = Elevation of shelf edge relative to clinothem pinchout position 

Table 3.4: Sediment flux calculation for SP1 and SP2 using the procedure of Petter et al. (2013) 
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Tectonic Subsidence 

For the steady-state models, subsidence values were assumed to be constant over 

the entire depositional period, but they were gradually increased for each simulation 

(Table 3.3) in order to find the values that produced the best matches to the seismic 

section. For the dynamic models, curves of tectonic subsidence were obtained from the 

geohistory analyses performed by Cardona (2009) in wells Arawa-1, Taimana-1, and 

Witiora-1, and by Bates and Heid (2007) in well Kanuka-1. The subsidence trends 

observed in the wells were not uniform across the basin (Figure 3.12), as expected in a 

basin affected by a variety of underlying structural features. Therefore, individual well 

curves were used. Subsidence curves from wells close to the seismic profiles were used 

directly in the projected position of the well whereas, when the wells were too far from 

the seismic profiles, only general trends of subsidence could be assumed through the 

interpolation of the curves. On the basis of this criterion, wells Kanuka-1 and Arawa-1 

were projected into seismic profile SP1 and their curves used in those positions whereas 

an average of subsidence rates that included data from wells Arawa-1 and Witiora-1 was 

used in the southern end of seismic profiles SP1 and SP2.  
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Figure 3.12: Subsidence curves for wells Witiora-1, Taimana-1, Arawa-1, and Kanuka-1 
compiled from Cardona (2009) and Bates and Heid (2007). Locations of 
wells on which subsidence curves are based are shown in Figure 3.1.  

Flexural Rigidity 

The flexural rigidity that was used ranged from 5.6 × 1022 to 15 × 1022 Nm. These 

values were obtained from previous studies that performed forward modeling of the 

gravity and isostatic responses of the Plio-Pleistocene sedimentary load in the northern 

Taranaki shelf margin (Holt and Stern, 1991). This range includes the values of 8 ×1022 

Nm obtained by Stern (1990) in southern positions of the Taranaki Basin and 7.5 × 1022 

Nm reported by Stern and Davey (1990) in the adjacent Wanganui Basin (Figure 3.2). 
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RESULTS 

First set of models: steady-state models. Variations in sea level. 

The global sea-level curves derived by Haq et al. (1987) and Miller et al. (2005) 

were used to extract the values of relative sea level. Both curves produced similar results 

in terms of dimensions (height and length of clinoforms) and stacking patterns 

(progradation and aggradation amounts), as shown in Figure 3.13. However, model runs 

using the curve of Miller et al. (2005) generated smoother, convex shelf-edge regions, 

whereas the curve of Haq et al. (1987) produced sharper shelf-edge regions (Figure 3.13). 

The modeling indicates that lower resolution sea-level curves (e.g., Haq et al., 1987) fail 

to reproduce sigmoidal clinoform morphologies (rounded and smoother shelf breaks) 

such as those observed in the upper section of the GFF (>2.4 Ma). As suggested by 

Adams (2001), these sigmoidal geometries can be better reproduced by using curves that 

record smaller sea-level fluctuations (e.g., Miller et al., 2005). Models performed in this 

study confirmed this observation. Consequently, I used the global sea-level curve of 

Miller et al. (2005) as input for all the models. Subsidence profiles using passive-margin 

basal topographies were chosen to run the models because, although the Taranaki Basin 

is not considered a passive margin, the topography of the top Miocene horizon (base of 

the GFF clinoform packages) shows a passive margin as defined by STRATA (deepening 

basinward; Figures 3.4 and 3.5). Subsidence profiles associated with the formation of 

foreland basins and cratonic conditions were also used, but these runs generated 

unrealistic saglike basins and flat basements that do not match the geometries observed in 

the study area. 
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Figure 3.13: Clinoform morphologies obtained from (A) Haq et al. (1987) and (B) Miller 
et al. (2005). Modeling results are very similar. However, the curve of Haq 
et al. (1987) generates abrupt topset to foreset transitions, whereas the curve 
of Miller et al. (2005) generates smoother transitions and more oblique 
shelf-edge geometries. Input sediment flux and subsidence rates were taken 
from the Taranaki Basin well and seismic information for SP1. 

To reproduce the topset and foreset declivities observed in the seismic profiles, 

the nonmarine and marine diffusivity values were gradually increased (Knm and Km), 

with the result that lower diffusivity values were associated with higher declivities. The 

values of diffusivity coefficients changed slightly depending on the sediment flux and 

subsidence rates that were used as input; however, values that better reproduce the GFF 
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geometries ranged from 40,000 to 50,000 m2/y for the nonmarine diffusivity coefficient 

(Knm) and from 100 to 200 m2/y for the marine case (Km). The high foreset declivities 

observed in the upper section (late Pliocene to Recent succession) were better reproduced 

when low marine diffusivity coefficients were used in the models. However, simulations 

using higher values of the marine diffusivity coefficient better matched the lower section 

(early to late Pliocene succession). I found that establishing a very low inclined basement 

configuration at the beginning of the simulation slightly increased slope values in the 

lower section.  

Variations in sediment flux and subsidence rates were introduced systematically 

(Figure 3.14) to determine if sea-level fluctuations alone could reproduce observed 

clinoform architectures in the northern Taranaki Basin. Simulations of the GFF clinoform 

system were initiated with the minimum values of tectonic subsidence and sediment flux. 

An initial approach was to estimate the maximum subsidence rate on the basis of the 

seismic profiles. To achieve this goal, the height of the youngest clinoform was measured 

(difference in elevation between the clinoform rollover point and the topography of the 

base of the clinoform package, top Miocene horizon), and this value was divided by the 

estimated depositional period (5.3 m.y.), obtaining a maximum subsidence rate of 428 

m/m.y. on SP1 and 509 m/m.y. on SP2. The subsidence values that were considered 

cover a range from 100 to 500 m/m.y. (Table 3.3) to include subsidence rates published 

for the Plio-Pleistocene succession of the Taranaki Basin by previous authors (King and 

Thrasher, 1996; Cardona, 2009; Baur, 2012). Similar to subsidence values, the sediment 

flux was kept constant for the depositional period, but a range of values were used to run 

multiple models (Table 3.3). The initial values for sediment flux were estimated using the 

progradation and aggradation rates calculated from the clinoform geometries observed in 

the seismic data (Chapter 2). Progradation rates were multiplied by aggradation rates, and 
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then the product was divided by the time in which these units were deposited to obtain 

the minimum sediment flux needed to reproduce the GFF architectures. For SP1 the 

estimated minimum sediment flux necessary to reproduce these geometries was 25 m2/y, 

whereas a value of 15 m2/y was obtained for SP2. Despite these estimates for minimum 

sediment fluxes, smaller values (5 m2/y) were also used in the modeling to evaluate the 

impact that little sediment input could have on the generation of clinoform architectures. 

To appreciate the sensitivity of the model to changes in sediment flux, these values were 

increased gradually until reaching a maximum value of 100 m2/y (Table 3.5). In general, 

increases in subsidence rates produced higher relief clinoforms (larger clinoform 

heights), increases in aggradation rates, and decreases in progradation rates (Figure 3.14; 

Table 3.5). Alternatively, increases in sediment flux generated higher progradation rates 

(Figure 3.14; Table 3.5).  
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Figure 3.14: Results for set of models 1. The figures illustrate clinoform growth and progradation simulated outside the graben 
(SP1) under values of sediment supply and tectonic subsidence constant through time (red lines). For different 
model runs, sediment flux values increase in the vertical direction and tectonic subsidence values increase in the 
horizontal direction. Sea-level fluctuations were simulated using the curve of Miller et al. (2005). No isostatic 
compensation due to sediment loading was included. Constant values of sediment flux and tectonic subsidence 
did not simultaneously reproduce the geometry of the lower and upper sections of the GFF in SP1.  
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Figure Knm 
(m2/y) 

Km 
(m2/y) 

Tectonic 
subsidence 

(m/y) 

Sediment 
flux 

(m2/y) 

Flexural 
rigidity 
(Nm) 

Aggrad. 
Lower 

(m) 

Aggrad. 
Upper 

(m) 

Total 
Agrad. 

(m) 

Prog. 
Lower 
(km) 

Prog. 
Upper 
(km) 

Total 
prog. 
(km) 

Height  
Lower 

(m) 

Length 
Lower 
(km) 

Angle 
Lower 

(degrees)

Height  
Upper 

(m) 

Length 
Upper 
(km) 

Angle 
Upper 

(degrees)

GFF N.A. N.A. N.A. N.A. N.A. 291 738 1030 64 40 104 655 23 2 940 20 3 
3.14A 10,000 100 200 5 None 161 175 337 0 -7 -7 304 27 1 599 57 1 
3.14B 10,000 100 300 5 None 275 147 421 -8 -4 -13 490 33 1 727 50 1 
3.14C 40,000 100 100 25 None 206 267 473 40 8 48 435 20 1 702 30 1 
3.14D 40,000 100 200 25 None 351 321 672 16 1 16 720 29 1 1018 37 2 
3.14E 40,000 100 300 25 None 365 411 776 23 5 28 848 26 2 1314 37 2 
3.14F 50,000 200 100 50 None 234 283 517 64 24 88 597 25 1 946 39 1 
3.14G 50,000 200 200 50 None 474 522 995 33 0 33 969 36 2 1619 64 1 
3.14H 50,000 200 300 50 None 674 619 1293 21 0 21 1314 31 2 2064 50 2 
3.14I 50,000 300 100 100 None 321 438 759 114 40 154 747 24 2 1300 47 2 
3.14J 50,000 300 200 100 None 493 703 1195 68 19 87 1188 37 2 2012 59 2 
3.14K 50,000 300 300 100 None 831 782 1613 41 8 48 1726 47 2 2711 76 2 
   Note: “Lower” refers to the lower section (early-late Pliocene), including seismic units SU1 to SU5 whereas “Upper” refers to the upper section (late Pliocene-recent), 
including seismic units SU6 to SU9.  
   N.A. = not applicable 
   Aggrad. = Aggradation; Prog. = Progradation 

Table 3.5: Input parameters and geometrical measurement for clinoforms produced by set of models 1 (modeling of SP1 with 
only sea-level variations)
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A small sediment flux (e.g., 5 m2/y) produced smaller relief clinoforms than the 

GFF clinoforms (Figures 3.14A to 3.14B; Table 3.5). Progressive increases in sediment 

flux and/or subsidence rates in the computer models generated clinoform morphologies 

that started to resemble those observed in the basin. However, none of the models could 

reproduce in the same run a carbon copy of the geometries observed for both the lower 

(early to late Pliocene) and the upper (late Pliocene to Recent) clinoform packages. When 

the sediment flux was increased to 25 m2/y and tectonic subsidence rates to 300 m/m.y., 

the models successfully reproduced the dimensions (i.e. height and length; Table 3.5) of 

the lower, early to late Pliocene clinoforms in the Taranaki Basin, but they failed to 

mimic their shelf-edge trajectories (Figure 3.14E). For sediment fluxes of 50 m2/y and 

tectonic subsidence rates of 100 m/m.y., the position and trajectory of the shelf edge gets 

a better match, and the modeled clinoform dimensions are still very close to the GFF 

lower section (Figure 3.14F) with regards to the upper, late Pliocene to Recent unit, a 

sediment flux of 100 m2/y increased the accuracy of the shelf-edge position and 

trajectory, as well as the clinoform morphologies (Figure 3.14I; Table 3.5). These results 

indicate that a sediment flux of 50 m2/y, combined with a tectonic subsidence of 100 

m/m.y. generated the best match both for shelf-edge positions and trajectories and for 

clinoform morphologies of the lower stratigraphic package (Figure 3.14F). However, an 

increase of sediment flux to 100 m2/y was needed to generate the best match for 

clinoform morphologies of the upper stratigraphic package (Figure 3.14I). 

The set of models discussed above allows me to conclude that (1) sediment flux 

and tectonic subsidence rates have to be greater than 25 m2/y and 100 m/m.y., 

respectively, to form continental-scale clinoforms in the Taranaki Basin; (2) the lack of a 

unique solution to reproduce clinoform morphologies simultaneously in both the lower 

and the upper stratigraphic succession suggests that a time-variable sediment flux model 
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is necessary where sediment flux increases with time; (3) the basal surface over which 

clinoforms are reproduced in these models does not resemble the real geometry observed 

in the seismic profiles, making a nonuniform lateral subsidence function using well data 

necessary; and (4) despite some of the limitations inherent in this set of models, results 

indicate that under this set of conditioning factors, the GFF clinoforms could have been 

formed when tectonic subsidence rates were similar or greater than 100 m/m.y., and 

sediment flux between 25 and 100 m2/y. 

Although this set of models did not generate a carbon copy of the geometries for 

both the lower and the upper clinoform packages, results provided valuable insights into 

the influence that sediment flux and subsidence had in the development of clinoform 

stacking patterns within the Taranaki Basin. Because global sea-level curves show an 

overall sea-level drop for the interval of interest (ending in the latest Pleistocene), it was 

expected that the models would produce low aggradation/progradation ratios, thin topset 

successions, and flat to slightly descending shelf-edge trajectories (Johannessen and 

Steel, 2005; Carvajal and Steel, 2009) in most of the section. The models clearly showed 

that low sediment fluxes (e.g., 5 m2/y) could not generate these patterns and that instead 

landward movement of the shelf edge was produced. It was when sediment fluxes were 

increased (e.g., sediment flux must be higher than 50 m2/y when subsidence is 300 

m/m.y., but higher than 100 m2/y when subsidence is 400 m/m.y.) that the observed 

patterns in the basin could be better reproduced (Figure 3.14). 

Second set of models: dynamic models. Variations in sediment flux and subsidence. 

A separate set of models was run by applying the procedure as described by Petter 

et al. (2013) to seismic profile SP1 to estimate sediment flux values that ranged from 9 to 

79 m2/y (Table 3.4). In this case, the average values for the lower and the upper section 

are 20 m2/y and 59 m2/y, respectively, which are considerably smaller (40–60%) than the 
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values that produced the best results in the previous set of models (50 m2/y and 100 

m2/y). Despite this difference in terms of the magnitude of sediment flux between the 

previous set of models and the Petter et al. (2013) simulation, overall results continued to 

indicate a considerable increase in sediment flux through time for the study section. 

Several values of marine and nonmarine diffusion coefficients were tested again to see if 

any changes were observed in the newly generated clinoform geometries. Values of 

50,000 m2/y and 100 m2/y worked the best for the nonmarine and marine coefficients, 

respectively, and produced the best matches in terms of declivities and topset thicknesses 

(Figure 3.15; Table 3.6). 
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Figure 3.15: Results for set of models 2. The figures illustrate clinoform growth and 
progradation simulated outside the graben (SP1) under values of sediment 
supply and tectonic subsidence variable through time. Clinoforms were 
modeled using the tectonic subsidence curves of key wells (Witiora-1, 
Arawa-1, and Kanuka-1). Subsidence at the end of SP1 was varied from one 
to three times the values of the Kanuka-1 well to reproduce the geometry of 
the GFF. Clinoforms modeled using tectonic subsidence values of Kanuka-1 
have lower relief than those of the GFF (A). Clinoforms developed higher 
reliefs using tectonic subsidence 1.5 times higher than the values reported in 
Kanuka-1, but still smaller than those of the GFF (B). Clinoforms modeled 
using tectonic subsidence 2.0 times higher than the values of Kanuka-1 have 
geometries similar to those of the GFF (C). Clinoforms modeled using 
tectonic subsidence 3.0 times higher than the values of Kanuka-1 are bigger 
than the GFF (D). All simulations used the sea-level curve of Miller et al. 
(2005) and diffusivity coefficients of 50,000 m2/y (knm) and 100 m2/y (km). 
The abrupt deepening of the base of the clinoform package does not 
properly replicate what is observed in the seismic transect SP1.  

Third set of models: dynamic models. Simulation of sediment loading and isostatic 
compensation. 

Isostatic compensation was introduced into this set of models through variations 

in the input parameter of flexural rigidity (Table 3.7), generating considerable increases 

in clinoform heights and aggradation/progradation ratios (Figure 3.16). Flexural rigidity 

values from 5.6 × 1022 to 15 × 1022 Nm produced good results. However, smaller values 

of flexural rigidity generated narrower and thicker clinoform packages (compare Figures 

3.16A and 3.16B). The larger value of the range (15 × 1022 Nm) better reproduced the 

GFF geometry, generating a wider configuration and a gradual increase in depth 

basinward (Figure 3.16A). Subsequent runs used this value as input. 
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Figure Knm 
(m2/y) 

Km 
(m2/y) 

Tectonic 
subsidence 

curve 

Sediment 
flux input 

(Table 3.4)

Flexural 
rigidity 
(Nm) 

Agrad. 
Lower 

(m) 

Agrad. 
Upper 

(m) 

Total 
Agrad. 

(m) 

Prog. 
Lower 
(km) 

Prog. 
Upper 
(km) 

Total 
Prog. 
(km) 

Height  
Lower (m) 

Length 
Lower 
(km) 

Angle 
Lower 

(degrees)

Height  
Upper 

(m) 

Length 
Upper 
(km) 

Angle 
Upper 

(degrees)
GFF N.A. N.A. N.A. N.A. N.A. 291 738 1030 64 40 104 655 23 2 940 20 3 
3.15A 50,000 100 Witiora-1, 

Arawa-1 
and 
Kanuka-1 

Results 
from 
Petter et 
al. (2013)

none -383 502 119 139 80 219 180 23 0 784 30 1 

3.15B 50,000 100 Witiora-1, 
Arawa-1 
and 1.5x 
Kanuka-1 

Results 
from 
Petter et 
al. (2013)

none -561 682 121 110 60 171 384 46 0 1099 34 2 

3.15C 50,000 100 Witiora-1, 
Arawa-1 
and 2x 
Kanuka-1 

Results 
from 
Petter et 
al. (2013)

none -613 745 132 97 49 147 685 51 1 1468 41 2 

3.15D 50,000 100 Witiora-1, 
Arawa-1 
and 3x 
Kanuka-1 

Results 
from 
Petter et 
al. (2013)

none -128 367 238 59 52 111 1031 28 2 2160 42 3 

   Note: “Lower” refers to the lower section (early-late Pliocene), including seismic units SU1 to SU5 whereas “Upper” refers to the upper section (late Pliocene-recent), including seismic 
units SU6 to SU9.  
   N.A. = not applicable 
   Aggrad. = Aggradation; Prog. = Progradation 

Table 3.6: Input parameters and geometrical measurement for clinoforms produced by set of models 2 (modeling of SP1 with 
variations in sediment flux and subsidence rates through time) 
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Figure 3.16: Results for set of models 3 in SP1. The figures illustrate clinoform growth and progradation simulated outside the 
graben (SP1) using isostatic compensation. Overall, considerable increases in clinoform heights and 
aggradation/progradation ratios that better match the GFF are observed. Flexural rigidity values of 15 × 1022 Nm 
produced better results than smaller values that did not reproduce well the base of the clinoform package (A and 
B). The use of the average tectonic subsidence of Witiora-1 and Arawa-1 at x = 0 km better reproduced the 
southern end of seismic profile SP1 (C and D). Diffusivity coefficients (Km) of 100 m2/y and 300 m2/y produced 
good matches to the GFF; however, 300 m2/y is slightly better in the lower section (C and E). An increase of 
tectonic subsidence at the end of the profile generated higher clinoforms than those of the GFF (F). All 
simulations used the sea-level curve of Miller et al. (2005).  
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Figure Knm 
(m2/y) 

Km 
(m2/y) 

Tectonic subsidence 
curve 

Sediment 
flux input 

(Table 3.4) 

Flexural 
rigidity 
(Nm) 

Aggrad. 
Lower 

(m) 

Aggrad. 
Upper 

(m) 

Total 
Aggrad. 

(m) 

Prog. 
Lower 
(km) 

Prog. 
Upper 
(km) 

Total 
Prog. 
(km) 

Height  
Lower  

(m) 

Length 
Lower 
(km) 

Angle 
Lower 
(de-

grees)

Height  
Upper 

(m) 

Length 
Upper 
(km) 

Angle 
Upper 
(de-

grees) 
GFF N.A. N.A. N.A. N.A. N.A. 291 738 1030 64 40 104 655 23 2 940 20 3 
3.16A 50,000 100 Average Witiora-1 

and Arawa-1 and 
Kanuka-1 

Results 
from 
Petter et 
al. (2013) 

1.50E+23 126 739 865 72 36 108 601 27 1 1437 29 3 

3.16B 50,000 100 Average Witiora-1 
and Arawa-1 to 
Kanuka-1 

Results 
from 
Petter et 
al. (2013) 

8.00E+22 -129 882 753 71 28 99 631 22 2 965 34 2 

3.16C 50,000 100 Witiora-1, Arawa-1 
and Kanuka-1 

Results 
from 
Petter et 
al. (2013) 

1.50E+23 12 836 848 24 36 60 823 53 1 1060 56 1 

3.16D 50,000 100 Average Witiora-1 
and Arawa-1, 
Arawa-1 and 
Kanuka-1 

Results 
from 
Petter et 
al. (2013) 

1.50E+23 72 890 962 68 24 92 820 16 3 1442 39 2 

3.16E 50,000 300 Average Witiora-1 
and Arawa-1, 
Arawa-1 and 
Kanuka-1 

Results 
from 
Petter et 
al. (2013) 

1.50E+23 4 738 742 75 33 108 743 37 1 1394 47 2 

3.16F 50,000 100 Average Witiora-1 
and Arawa-1, 
Arawa-1, Kanuka-1 
and 1.5xKanuka-1 

Results 
from 
Petter et 
al. (2013) 

1.50E+23 -117 854 738 70 29 100 597 22 2 1270 29 3 

   Note: “Lower” refers to the lower section (early-late Pliocene), including seismic units SU1 to SU5 whereas “Upper” refers to the upper section (late Pliocene-recent), including seismic 
units SU6 to SU9.  
   N.A. = not applicable 
   Aggrad. = Aggradation; Prog. = Progradation 

Table 3.7: Input parameters and geometrical measurement for clinoforms produced by set of models 3 (modeling of SP1 with 
the introduction of isostatic compensation) 
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Fourth set of models: dynamic models. Modeling conditions inside the graben. 

Estimates of sediment flux inside the graben structure along seismic profile SP2 

show a similar value to that calculated outside the graben during the earliest Pliocene 

time (~5.3–4.5 Ma; see SU1 values in Figure 3.17). These similarities are thought to be 

indicative of graben inactivity in this part of the basin. This observation agrees with 

previous interpretations that suggest the activation of the CEFZ faults started around 3.4 

to 3.7 Ma (Giba et al., 2012). However, differences in sediment flux become increasingly 

larger inside the graben structure (SP2) during the late Pliocene (~4.5–2.8 Ma; Figure 

3.17) when sediment influx increases in the zone of higher subsidence that is linked to the 

opening of the Northern Graben. Sediment flux decreased again during the deposition of 

seismic units SU4 and SU5 (~2.8 Ma; Figure 3.17). This decrease could be associated 

with a variety of causes, including shifting of sediment sources and feeding systems 

associated with the Northern Graben dynamics.  

 

Figure 3.17: Graph illustrating sediment flux through time. Values calculated using 
geometrical measurements of clinoform outside (SP1) and inside (SP2) the 
Northern Graben. Lack of data coverage inside the graben region only 
allowed registering parameters for seismic units SU1 to SU5. 
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In the modeled sections, generation of accommodation in the proximal portions 

(southern end) of seismic profile SP2 was reproduced well by using the average 

subsidence curves of the Witiora-1 and Arawa-1 wells (Figure 3.18). Even though well 

Arawa-1 is located relatively close to the distal end (northern end) of seismic profile SP2 

(Figure 3.2), subsidence of this well failed to reproduce clinoform morphologies inside 

the graben structure because the well is located in a different structural block (Figures 3.2 

and 3.18A; Table 3.8). Because data from wells inside the graben structure were not 

available (Figure 3.2), gradual increments of subsidence were applied to the original 

subsidence curve of the Arawa-1 well to model conditions that could have generated the 

clinoform morphologies inside the graben region. Subsidence values that were 2.0 times 

larger than the reported values in well Arawa-1 generated clinoforms having shorter 

lengths and overall geometries that did not resemble the morphology of the GFF 

clinoforms inside the graben (Figure 3.18B; Table 3.8). However, the model successfully 

replicated these clinoform morphologies and associated shelf-edge trajectories when 

subsidence values were increased to 3.5 times the original values reported by well 

Arawa-1 (Figures 3.18C and 3.18D; Table 3.8). These subsidence values ranged between 

150 and 400 m/m.y., which are comparable to the subsidence reported in a variety of 

synrift areas worldwide (Allen and Allen, 2005; Xie and Heller, 2009). However, the 

resulting clinoforms in the upper section had an average height of 2,250 m (Figure 

3.18C), making them considerably larger than those measured on the seismic profile 

outside the graben. To reproduce clinoforms having similar foreset heights, subsidence 

values of the Kanuka-1 well were used in the distal portions of seismic profile SP2 

(southern end). Resulting clinoforms had average heights of 1,500 m, but an unusual 

“saglike” geometry was generated in the base of the clinoform system (~top Miocene 

horizon; Figure 3.18D). Without any further information, both solutions are possible and 
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suggest that clinoforms in the upper section of SP2 are considerably larger than those 

observed in SP1. Finally, the abrupt increase in dip that shows the stratigraphic section in 

the middle portions of SP2 (Figure 3.5) and that does not correspond to the shelf edge 

was also modeled. To reproduce this geometry, a rapid increase in tectonic subsidence 

from an average of 150 to 200 m/m.y. was simulated close to that position.  
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Figure 3.18: Results for set of models 4. The figures illustrate clinoform growth and progradation simulated inside the 
Northern Graben (SP2) using isostatic compensation. Tectonic subsidence of Arawa-1 failed to reproduce 
clinoform morphologies inside the graben because the well is located in a different structural block (A). 
Clinoforms modeled using values of tectonic subsidence 2.0 times larger than the reported values in Arawa-1 
generated clinoforms having shorter lengths and overall geometries that did not resemble the morphology of the 
GFF clinoforms (B). Clinoforms modeled using values of tectonic subsidence 3.5 times the original values 
reported by Arawa-1 successfully replicated clinoform morphologies and shelf-edge trajectories of the GFF (C). 
Clinoforms modeled using values of tectonic subsidence of Kanuka-1 at the southern end of SP2 developed 
smaller heights and a “saglike” geometry (D).  
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Figure Knm 
(m2/y) 

Km 
(m2/y) 

Tectonic 
subsidence 

curve 

Sediment 
flux input 

(Table 3.4) 

Flexural 
rigidity 
(Nm) 

Agrad. 
Lower 

(m) 

Agrad. 
Upper 

(m) 

Total 
Agrad. 

(m) 

Prog. 
Lower 
(km) 

Prog. 
Upper 
(km) 

Total 
Prog. 
(km) 

Height  
Lower 

(m) 

Length 
Lower 
(km) 

Angle 
Lower 

(degrees)

Height  
Upper 

(m) 

Length 
Upper 
(km) 

Angle 
Upper 

(degrees)
GFF N.A. N.A. N.A. N.A. N.A. 326 1026 1352 57 38 95 1683 33 4 No info. No info. No info. 
3.18A 50,000 100 Average 

Witiora-1 
and Arawa-
1 at x=0 km, 
Arawa-1 at 
x=75 km 
and 
Kanuka-1 at 
x=100 km 

Results 
from 
Petter et 
al. (2013) 
– SP2 

1.50E+23 -312 1065 753 92 24 116 548 17 2 1460 27 3 

3.18B 50,000 300 Average 
Witiora-1 
and Arawa-
1 at x=0 km, 
2x Arawa-1 
at x=75km  

Results 
from 
Petter et 
al. (2013) 
- SP2 

1.50E+23 -211 991 780 70 24 93 739 19 2 1721 49 2 

3.18C  50,000 100 Average 
Witiora-1 
and Arawa-
1 at x=0 km, 
3.5x Arawa-
1 at x=75km 

Results 
from 
Petter et 
al. (2013) 
- SP2 

1.50E+23 541 522 1063 26 59 85 1665 19 5 1771 21 5 

3.18D 50,000 100 Average 
Witiora-1 
and Arawa-
1 at x=0 km, 
3.5x Arawa-
1 at x=75 
km, 
Kanuka-1 at 
x=100 km 

Results 
from 
Petter et 
al. (2013) 
- SP2 

1.50E+23 514 627 1142 25 54 80 1345 20 4 1810 18 6 

   Note: “Lower” refers to the lower section (early-late Pliocene), including seismic units SU1 to SU5 whereas “Upper” refers to the upper section (late Pliocene-recent), including seismic units 
SU6 to SU9.  
   N.A. = not applicable 
   Aggrad. = Aggradation; Prog. = Progradation 

Table 3.8: Input parameters and geometrical measurement for clinoforms produced by set of models 4 (modeling of SP2) 
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By creating a series of crossplots I established some relationships between 

clinoform morphologies and geologic processes. For example, crossplots of progradation 

rate vs. sediment flux indicate that, in general, higher sediment flux translates to higher 

progradation rates both outside and inside the graben (SP1 and SP2 in Figures 3.19A and 

3.19B). However, inside the graben region (SP2) an almost linear correlation exists 

between these two parameters, whereas data are more scattered outside the graben (SP1) 

(Figures 3.19A and 3.19B). Some outliers are observed in the upper section of the profile 

outside the graben (SP1) where a high sediment flux, due to isostatic compensation, 

translated into higher aggradation rates instead of higher progradation rates (Figure 

3.19A). Crossplots of progradation rate vs. height inside the graben (SP2) (Figure 3.19D) 

generally show an inverse linear correlation (progradation rates decrease, whereas heights 

increase) because tectonic subsidence generated enough accommodation to increase 

clinoform heights but their progradation distance is decreased in order to conserve mass. 

SU3 is also an outlier point associated with a considerable increase in sediment flux 

(Figure 3.17, Table 3.4), which is reflected as an increase in progradation rates. In 

contrast, no relationship is apparent in the profile outside the graben (SP1) (Figure 

3.19C). In the lower section, increases in progradation rates are associated with small 

increases in clinoform heights that may also result from a regional sediment flux increase 

(Figure 3.17). Nevertheless, increases in clinoform height outside of the graben were not 

as large as those inside the graben. Small increases in sediment flux could therefore keep 

steady or even increase progradation rates outside the graben; however, a very large 

increase in sediment flux, such as is seen during the deposition of SU3, would be 

required to do the same in SP2. 
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Figure 3.19: Crossplots of (A) progradation rate vs. sediment flux outside the graben; (B) 
progradation rate vs. sediment flux inside the graben; (C) progradation rate 
vs. foreset height outside the graben; and (D) progradation rate vs. foreset 
height inside the graben. 

DISCUSSION: CONTROLS ON BASIN ARCHITECTURES AND CLINOFORM 

MORPHOLOGIES IN THE NORTHERN TARANAKI BASIN 

The clinoforms of the GFF show morphological variations through time (lower 

vs. upper section) that suggest that transport conditions varied during progradation of the 
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clinoforms. One of the objectives was to use forward-modeling techniques to determine if 

eustatic sea-level fluctuations alone could reproduce the changes in clinoform 

morphologies within the Taranaki Basin, with little to no variations in sediment flux and 

tectonic subsidence. A unique solution for both the lower (early to late Pliocene) and the 

upper (late Pliocene to Recent) section was not found by modeling only sea-level 

fluctuations (Figure 3.14). Instead, results suggest that a considerable increase in 

sediment flux during deposition of the upper section was needed to reproduce the GFF 

geometries. Sediment flux estimates using the procedure described by Petter et al. (2013) 

also suggest that increases in sediment flux occurred from the early Pliocene to the 

present day (Figure 3.17).  

Most of the studied stratigraphic interval developed during a general lowering of 

global sea level (Miller et al., 2005). This trend began during the Pliocene and was most 

likely influenced by ice sheet growth in the Southern and then Northern Hemisphere 

(Naish and Wilson, 2009). The lower section (early to late Pliocene) is characterized by 

geometries that might be associated with this sea-level drop because of the development 

of flat to descending shelf-edge trajectories, thin topset thicknesses, and low 

aggradation/progradation ratios, which are expected in this kind of scenario (Johannessen 

and Steel, 2005). On the basis of this scenario, I conclude that relative sea-level fall most 

likely acted as a major driver of clinoform and margin progradation across the Taranaki 

Basin during the early to late Pliocene. This influence is even more evident inside the 

graben (SP2), where high tectonic subsidence rates associated with the opening of the 

Northern Graben were made less significant by the interplay of sea-level fall and 

increased sediment supply, resulting in progradational stacking patterns and flat to falling 

shelf-edge trajectories. The effect of sea-level change on clinoforms is not as easily 

identified in the upper section. Although the effect of sea-level fall should manifest itself 
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in this interval, stacking patterns reflect an apparent increase in relative sea level with 

increasingly higher aggradation/progradation ratios, higher topset thicknesses, and 

ascending shelf-edge trajectories (Johannessen and Steel, 2005). Simulations demonstrate 

that the development of transgressive/progressive patterns in clinoforms was sensitive not 

only to sea-level fluctuations but also to changes in the magnitude of sediment flux and 

the rate of subsidence within the basin. Figure 3.14 illustrates how variations in sediment 

flux and subsidence can influence clinoform stacking patterns using the same global sea-

level curve. The relevance of this finding is that the end configuration for each case 

scenario could be interpreted differently from a sequence stratigraphic perspective. For 

example, simulations using very small sediment flux inputs (e.g., 5 m2/y; Figures 3.14A 

and 3.14B) generated geometries that reflect apparent transgressive conditions 

(movement of the shelf edge landward) and sea-level rise. To obtain progradational 

patterns, increases in sediment flux had to be applied to the model. In the case of the 

northern Taranaki Basin, architectures interpreted in the upper clinoform section were 

only reproduced successfully when sediment supply was increased considerably and 

isostatic compensation due to sediment loading was included as a mechanism to generate 

accommodation. These results suggest that sediment flux might have been a major 

control on clinoform architecture and the development of high-relief clinoforms during 

the late Pliocene to Pleistocene in the Taranaki Basin. 

Sediment flux in the northern Taranaki Basin  

Investigating the tectonic history of the region may clarify the increase in 

sediment flux that must have occurred in the Taranaki Basin for the models to be correct. 

An increased convergence rate between the Pacific and Australian plates and the 

migration of the associated subduction zone toward the southwest generated rapid uplift 

of the Southern Alps, creating a potential sediment source to the southwest (Tippett and 
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Kamp, 1995; Allis et al., 1998). After deposition of the Miocene section the main source 

of sediment shifted from the eastern North Island (Taranaki Fault and highs) to the 

southern South Island (Southern Alps; Tippett and Kamp, 1995). In addition to this 

change in source, an adjustment to sediment pathways and clinoform progradation toward 

the northeast was observed, most likely generated by the opening of the Northern Graben 

(Chapter 2). Thicknesses of different clinoforms were mapped in Chapter 2 to identify the 

source of the clastic influx since the Pliocene. That study suggested that most of the 

sediment was derived from the South Island, an area associated with uplift of the 

Southern Alps. A secondary sediment source may have been located along the eastern 

margin of the Taranaki Basin (North Island), but it was probably smaller and has little 

contribution owing to the presence of the Turi Fault highs (Nodder, 1995; King and 

Thrasher, 1996), reinforcing the idea that sediment was transported from the southwest to 

the northeast.  

Subsidence in the northern Taranaki Basin  

There is great variability from well to well in the subsidence curves observed in 

the study area. Variability such as this is expected in active rift zones and may be 

associated with different rates and timing of fault segment development, and the location 

of the wells in different fault blocks (Steckler et al., 1988). The southwest migration of 

the Pacific-Australian convergence zone and episodes of uplifting of both the Taranaki 

Peninsula and the Southern Alps may also have added to the effects of individual faults 

on subsidence. Figure 3.12 shows the results from the geohistory analysis of several wells 

in the northern Taranaki Basin performed by Bates and Heid (2007) and Cardona (2009). 

Subsidence curves in all the wells show generally consistent patterns; however, the 

changes in subsidence rates do not occur at the same time, and the amount of increase is 

highly variable (increasing basinward). Characteristics common to the Northern Graben 
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wells (except for the Witiora-1 well) include a period of high tectonic subsidence (7.5 to 

5.5–5 Ma), an interval showing uplifting (5.5–5 to 3 Ma), and renewal of subsidence to 

the present day. Stern and Davey (1990) suggested similar stages for the Wanganui area, 

where rifting was followed by thermal contraction and then a signature of thrusting and 

loading. Well Witiora-1 shows completely different subsidence trends, its area having 

undergone uplifting from 7.5 to 6.5 Ma and showing relatively low subsidence rates 

thereafter.  

The early phase of subsidence occurs during the latest Miocene to the earliest 

Pliocene (7.5 to 5.5–5 Ma), when tectonic subsidence rates were high. Subsidence values 

from the wells (120 to 300 m/m.y.) are too high to be considered the result of thermal 

subsidence. In fact, thermal subsidence values found by Baur et al. (2013) in the 

Caledonian and Deepwater Taranaki Basin are much smaller (~20 m/m.y.), as are other 

global values for the thermal cooling phase of many continental rifted basins (Xie and 

Heller, 2009). Because most contractional deformation in the basin (~90%) was located 

near the subduction thrust that is located east of the Taranaki Fault (Nicol et al., 2007; 

Baur, 2012), there is not an uplifting component affecting subsidence of this area at this 

time of the basin history. However, flexural subsidence related to the Australia-Pacific 

subduction zone and eastern uplifting (Taranaki Fault highs) may have played an 

important role in generating these high subsidence values.  

During the second tectonic phase in the early to late Pliocene (5.5–5 to 3 Ma), 

tectonic subsidence rates are negative, implying uplifting that was linked to tectonic 

convergence affecting the region. This event could be linked to the uplifting of the 

Taranaki Peninsula and the Southern Alps as a result of the migration of the Pacific-

Australian plate subduction zone toward the west (Stern et al., 1992; Holt and Stern, 

1994; Stern and Holt, 1994; Allis et al., 1998; Bache et al., 2012; Baur et al., 2013). On 



129 
 

the basis of studies in mudstone porosities, Stern et al. (2006) estimated as much as 1,000 

m of Pliocene uplift in the proximity of the study area (see their Figure 3.8). Although the 

CEFZ became active by 3.7 to 3.4 Ma (Giba et al., 2012), its effects are not easily 

distinguished in the tectonic subsidence curves, most likely because the wells are 

positioned outside the zone of maximum graben subsidence. 

Tectonic subsidence rates increased abruptly (68 to 198 m/m.y.) during the 

deposition of the late Pliocene to Recent section (3 to 0 Ma; Figure 3.12). Increasing 

subsidence curves may indicate the migration of uplifting farther toward the southwest 

and a higher effect of both flexural (associated with the migrating subduction zone) and 

graben subsidence. During this stage, subsidence increased toward the north, with the 

highest tectonic subsidence observed in the northern well (Kanuka-1) and lowest values 

in the southern well (Witiora-1). Well Taimana-1 does not show renewed subsidence in 

the analyzed interval, but a relative uplifting that may be associated with its position in a 

graben footwall block.  

Although there is no well information on Northern Graben subsidence, the 

modeling results indicate subsidence values between 150 and 400 m/m.y. This 

subsidence range is consistent with syn-rift predictions based upon lithosphere thinning 

by moderate factors of <2 (McKenzie, 1978) and worldwide compilations (Allen and 

Allen, 2005; Xie and Heller, 2009). In addition, the abrupt increase in the dip of the 

stratigraphic section that required an increase in tectonic subsidence to be modeled 

suggests that the Northern Graben formed in segments instead of during a single event 

and that the northern fault segments are younger than the southern segments, which 

agrees with previous observations (Giba et al., 2012).  
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Role of Northern Graben in GFF clinoform morphologies and sediment 
redistribution 

Tectonic subsidence rates obtained inside the Northern Graben generated enough 

accommodation to develop higher relief clinoforms and smaller progradation rates (SU4–

SU5) compared with time-equivalent clinoforms outside the graben. However, in the 

initial stages of evolution of the graben, higher progradation rates (when compared with 

SP1) are observed (SU2–SU3, Table 3.3). The increase in progradation rates can be 

explained by evoking an increase in sediment flux (Figure 3.17), which may be the result 

of initial reorientation of sediment pathways toward the recently formed structure, 

following the graben axis. This scenario suggests that the graben opened around 3 to 4 

Ma. High rates of sediment supply, intensified by the increasingly higher relief of the 

Southern Alps (Tippett and Kamp, 1995), and funneling of sediments by the Northern 

Graben outpaced high tectonic subsidence rates, resulting in the increase in progradation 

rates and flat to falling shelf-edge trajectories observed on seismic lines. By the time of 

deposition of SU4, however, activation of northern CEFZ segments and deactivation of 

southern segments allowed for more accommodation that, at the same time, generated a 

decrease in progradation rates. The apparent decrease in sediment flux (Figure 3.17 and 

Table 3.4) by this time might suggest increased bypass associated with an active Northern 

Graben and potential deposition of deeper water fans.  

CONCLUSIONS  

Two-dimensional stratigraphic forward-modeling techniques, in conjunction with 

the analysis of clinoform geometries, can be important tools to identify the main controls 

on basin development and assess the relative importance of eustatic sea-level 

fluctuations, tectonics, and sediment flux on clinoform morphologies. The ability to 
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match models to seismically interpreted geometries allowed constraining the conditions 

needed for the development of the GFF high-relief clinoforms.  

The methodology to calculate sediment flux as provided by Petter et al. (2013) 

proved effective in calculating sediment flux, generating clinoform morphologies similar 

to those found in seismic profiles. Values of sediment flux were constrained considerably 

using this procedure, obtaining a maximum value of 79 m2/m.y.  

GFF clinoforms show different geomorphological characteristics in the early to 

late Pliocene section (lower section) and the late Pliocene to Pleistocene section (upper 

section) that could not be successfully modeled using only eustatic sea-level variations 

but could be successfully modeled when time-variable sediment flux and time- and 

space-variable subsidence rates were introduced. Eustatic sea-level fluctuations and the 

opening of the graben structure most likely played the main roles controlling basin 

architectures during the early to late Pliocene. High sediment flux derived from the 

uplifting of the Southern Alps and associated sediment loading played a major role in 

basin architectures since the late Pliocene, making possible the development of high-

relief clinoform packages.  

Stratigraphic forward modeling allowed the estimation of realistic graben 

subsidence values, obtaining values around three to four times larger than in the profile 

outside the graben. Implications in terms of mechanisms associated with graben 

development were also found, such as that the Northern Graben evolved under conditions 

where individual fault segments dominated at different times. 

These results demonstrate the power of stratigraphic forward-modeling 

techniques, especially where data are scarce. They can provide valuable information 

about the relative importance of basin controls (sea level, subsidence, sediment supply) 

and guide predictions of clinoform geometries and sediment partitioning. 
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CHAPTER 4: IMPLICATIONS OF ALONG STRIKE CHANGES IN 
CLINOFORM DEVELOPMENT AND LOCAL MORPHOLOGICAL 

VARIABILITY: A CASE STUDY FROM EASTERN OFFSHORE 
TRINIDAD 

ABSTRACT  

The geometries and stratigraphic relationships that characterize the last maximum 

glacial lowstand shelf margin succession in eastern Trinidad offer the opportunity for an 

expanded assessment of the complex interactions between external and local geological 

processes in controlling continental-margin depositional architectures, sediment 

partitioning, and sediment delivery to the basin. Two along-dip seismic transects were 

chosen from different structural domains of the eastern Trinidad margin and analyzed 

with respect to clinoform morphologies in order to examine the depositional history of 

the continental margin and how deposits change along strike. The Northern Structural 

Domain (NSD) is influenced by transpressional tectonics linked to the Caribbean Plate 

Boundary Zone (CPBZ). The Southern Structural Domain (SSD) is influenced by growth 

faulting and paleo-Orinoco dynamics. Temporal variations in clinoform morphologies are 

linked to the formation of an underlying paleo-canyon in the NSD and to changes in 

sediment supply from the Orinoco delta in the SSD. Along-strike variations (south to 

north) in clinoform morphologies include an increase in clinoform height and earlier 

development of shelf edge deltas associated with the paleocanyon in the NSD. Sediment 

distribution is also influenced by the presence of structural elements. In the NSD, the 

paleocanyon produced a narrower shelf that allowed sediment transport into deep water 

areas whereas in the SSD the location of growth faults on the shelf forced most sediment 

to be stored there. When compared with the Taranaki Basin of western New Zealand, 

another basin containing a variety of clinoform morphologies, the Trinidad margin 
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exhibits more pronounced lateral variations that highlight the role that deltaic systems 

play in the delivery of sediment. 

INTRODUCTION 

A clinoform is defined as a depositional shape, which in dip section is 

characterized by a gently sloping topset, a steeply sloping foreset, and a gently sloping 

bottomset (Rich, 1951; Pirmez et al., 1998) (Figure 4.1). Clinoforms are found in nature 

at different scales and include delta front clinoforms (tens of meters high) and continental 

margin clinoforms (hundreds of meters high) (Wolinzky and Pratson, 2007; Helland-

Hansen and Hampson, 2009). The point where the topset and foreset intersect is called 

the rollover point and corresponds to the shelf edge in continental scale clinoforms.  The 

intersection between the foreset and bottomset is known as the toe of the slope (Figure 

4.1). When a delta has prograded as far as the shelf edge, the delta front typically 

coincides with the upper slope of the shelf margin (Johannessen and Steel, 2005). These 

systems are called shelf-edge deltas. Because clinoforms are the basic architectural form 

by which sediments are stored and eventually fed down depositional dip along the 

continental margin, several authors have used clinoform characteristics to infer 

paleoenvironmental and paleotransport conditions (O’Grady et al., 2000; Adams and 

Schlager, 2000; Kertznus and Kneller, 2009; Salazar et al., in review) as well as temporal 

and spatial fluctuations. Shelf-edge trajectories (the pathway taken by the shelf edge 

during the development of accreting clinoforms; Steel and Olsen, 2002) have also been 

used to predict sediment partitioning and sediment volumes in deep-water settings 

(Johannessen and Steel, 2005): flat to slightly downward trajectories suggest a stable to 

slightly falling relative sea level and optimal delivery of sediment across the shelf; rising 

shelf-edge trajectories reflect an overall rising relative sea level, and less or even no sand 

delivery into deepwater areas. The Taranaki Basin of New Zealand is well known for the 
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variety of clinoform architectures that characterize its Neogene margin (Hansen and 

Kamp, 2002). Clinoform classification techniques were used in Chapter 2 to identify 

three stages of clinoform development associated with the interplay between eustacy, 

tectonics and sediment supply. The continental margin of eastern Trinidad is also 

characterized by a variety of clinoform morphologies and dimensions. In this study, I use 

a method which includes seismic stratigraphic interpretations and a detailed clinoform 

morphological analysis to document and interpret the last maximum glacial low-stand 

shelf-margin succession along the eastern Trinidad margin. Herein, I deduce the 

relationships between clinoform development and the variables that influenced sediment 

movement in the shelf edge and slope region, including sea-level fluctuations, sediment 

input, and tectonics. I also evaluate the validity of this analysis in areas with 

characteristics dissimilar to those observed in the northern Taranaki Basin. These 

characteristics include different (1) regional tectonic settings, (2) sediment supply 

sources, (3) time intervals (3rd vs. 4th order stratigraphic intervals), and (4) degrees of 

clinoform geometry preservation.  

 

Figure 4.1: Graphic showing idealized clinoform morphologies and geometric parameters 
recorded for each seismic unit. 
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Geologic Settings 

The study area is located in the southeastern region of the tectonically active 

Caribbean Plate Boundary Zone (CPBZ) in eastern offshore Trinidad (Figure 4.2A). It is 

characterized by different structural styles. Moscardelli et al. (2012) defined two different 

structural domains: the Northern Structural Domain (NSD) and the Southern Structural 

Domain (SSD) (Figure 4.2B). Transpressional tectonics associated with the CPBZ control 

the faulting style and the geometry of deposits along the NSD. The Darien Ridge, which 

limits the NSD towards the north (Figure 4.2B), is a northeast-southwest uplift composed 

of folded and thrusted Cretaceous and lower Tertiary carbonates and clastics deformed 

during the Miocene (Wood, 2000; Garciacaro et al., 2011). The presence of this ridge 

confined sediment transport to areas immediately southwest of the uplift, contributing to 

the formation of a Pliocene-Pleistocene incised paleocanyon (Figures 4.2B and 4.3) that 

funnelled sediments downslope during the last maximum glacial lowstand (Moscardelli et 

al., 2006). In the SSD, the main structural elements developed along the southern 

continental margin are a series of Pliocene-Pleistocene northwest-southeast regional and 

counterregional growth faults and their associated rollover anticlines (Figures 4.2B and 

4.4). These structures are controlled by extensional and gravitational tectonics 

(Moscardelli et al., 2012). Similar to the NSD paleocanyon, these growth fault structures 

played an important role in constraining the position of the shelf edge through time 

because subsidence in the hanging wall generated accommodation (Sydow et al., 2003; 

Moscardelli et al., 2012). Along with accommodation enhanced by tectonics, high 

sediment supply, associated with the Orinoco delta system, allowed the filling of these 

depocenters and the deposition of thick, prograding megasequences in the margin (Wood, 

2000).  
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Figure 4.2: (A) Map showing the area of study located in northeastern South America 
along the Caribbean plate boundary zone (CPBZ). Contours represent 
bathymetry in meters. The area of three-dimensional (3-D) seismic data is 
outlined. The light-gray–shadowed area in the map highlights the deep-
water blocks where gravity-induced deposits were studied and documented 
by Moscardelli et al. (2006) and Moscardelli and Wood (2008). The dark-
gray–shadowed area highlights the 3-D seismic data that have been 
incorporated into this work and where fluvial and deltaic sequences were 
documented by Maher (2007) and Moscardelli et al. (2012). Transects A and 
C represent the location of two seismic transects used in this study located in 
the northern and southern structural domains, respectively.  (B) Map 
highliting the main structural elements and the location of the North and 
South Structural Domains. Modified from Moscardelli et al. (2012). 
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Figure 4.3: Seismic Transect A (TA) along the main axis of a paleocanyon located in the 
NSD (erosional shelf margin). (A) Three-dimensional seismic transect taken 
from the NSD of the eastern offshore Trinidad continental margin and (B) 
interpretation showing key surfaces (a1 to a10), clinoform packages (A1 to 
A9), stages of basin evolution (stages 1-2), and clinoform trajectories (see 
Figure 4.1 for location). LST = lowstand systems tract; TST = transgressive 
systems tract; MTC = mass-transport complex. 

 

Figure 4.4: Seismic Transect C (TC), showing growth-fault sediment traps in the SSD. 
(A) Three-dimensional seismic transect taken from the NSD of the eastern 
offshore Trinidad continental margin and (B) interpretation showing key 
surfaces (c1 to c17), clinoform packages (C1 to C16), stages of basin 
evolution (stages 1-2), and clinoform trajectories (see index map for 
location). LST = lowstand systems tract; HST = highstand systems tract; 
TST = transgressive systems tract; mfs = maximum flooding surface. 
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DATASET AND METHODOLOGY  

Seismic and Well Data 

3D seismic reflection data was the primary dataset used for this study (Figure 

4.2A). Six unique 3D seismic volumes were acquired and merged into a single 

continuous volume, covering a total area of 15,000 km2. The average vertical resolution 

in the interval of interest (<120 ky) is approximately 10-15 m with imaging depths 

reaching a maximum of 5 seconds (s) TWTT. Two seismic transects previously 

interpreted by Moscardelli et al. (2012) were reconstructed and reinterpreted in this study. 

Transect A (TA) is a dip line that was recorded across the main axis of the paleocanyon 

located in the NSD (Figures 4.2 and 4.3). Transect C (TC) is a dip line located to the 

south of the outlet of the Columbus sedimentary pathway (Figure 4.2B), which captures 

active growth and counterregional faults that form sediment traps in the SSD (Figure 

4.4). Several exploratory wells have been drilled through the interval of interest; 

however, geophysical logs and core were not available because the section is shallow and 

is not of commercial interest to the oil industry. Velocity information, in the form of 

check shots and sonic logs, was available for two key wells (wells 1 and 2, Figure 4.2A) 

close to each of the selected seismic transects, TA and TC. Approximate time-depth 

conversion within the interval of interest is 100 ms (TWTT) equivalent to 75 m. This 

analysis facilitated the depth-conversion of the seismic transects and allowed to describe 

the real geometrical relationships associated with the structural and stratigraphic 

configuration of the study area clinoform packages.  

Definition of Seismic Units and Age Estimation  

Clinoform packages were interpreted individually in each of the two seismic 

transects on the basis of seismic facies and individual clinoform characteristics. Ten key 

surfaces, including the seabed (clinoform a10), were identified and digitized in TA 
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(clinoforms a1 to a10, Figure 4.3). These surfaces define the top and the base of nine 

major seismic units (A1 to A9, Figure 4.3). For TC, seventeen key surfaces were 

identified and digitized (clinoforms c1 to c17, Figure 4.4), defining the top and base of 

sixteen major seismic units (C1 to C16).  

The studied stratigraphic section is shallow (<800m) and lacks biostratigraphic 

markers. Age estimations for the youngest section are based on the occurrence of a 

regional erosional surface that has been identified by numerous authors as the last glacial 

maximum lowstand surface (P4-SB2 sequence boundary) with an assigned age of 18-20 

ky (Moscardelli et al., 2006; Maher, 2007; Moscardelli et al., 2012). Clinoforms a5 and 

c13 correspond to this erosional surface in seismic transects TA and TC, respectively 

(Figures 4.3 and 4.4). Another sequence boundary (P10-SB1) corresponding to the base 

of a mass-transport complex has been mapped by several authors (Moscardelli et al., 

2006; Maher, 2007; Moscardelli et al., 2012);  however,  no age for this surface has been 

put forth. Wood (2000) provided age control for a seismic transect within the study area 

with the youngest horizon (TD in Wood, 2000) dated at 500 ky. This horizon is 

considerably deeper in the stratigraphy than the interval used for this study, indicating 

that the section of interest is younger than 500 ky. Also, sequence stratigraphic 

interpretations of the area (Sydow, 2003; Moscardelli et al., 2012) suggest the presence of 

fourth order cycles (40-100 ky), indicating that the section between sequence boundaries 

P4-SB2 and P10-SB1 was deposited during a 40 to 100 ky time period with an 

approximate age between 60 and 120 ky for P10-SB1. 120 ky may be the best candidate 

for P10-SB1 because it corresponds to an important sea level fall seen in eustatic sea 

level curves (Miller et al., 2005) which may have generated a regional sequence 

boundary. Because the focus of this study is the analysis of clinoform morphologies and 

their relative temporal and spatial variations, an accurate estimation of age is preferred, 
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although not mandatory. Because of the data presented above, I chose to use 60 and 120 

ky as boundary values to estimate the ranges of progradation, aggradation, and sediment 

flux rates within the section. It is, however, important to note that estimates of 

progradation, aggradation and sediment rates within the interval may contain a significant 

error due to erosion, specifically in the interval directly below P4-SB2. 

Clinoform Classification  

Clinoforms interpreted in TA and TC are classified according to their 

morphologies. Restoration of data to pre-faulted stages was necessary in TC in order to 

obtain accurate measurements. I define the rollover position (Figure 4.1) as the point that 

shows the first significant change in curvature along a depositional dip profile (Adams 

and Schlager, 2000; Kertznus and Kneller, 2009) and the foreset to bottomset transition 

as the point in a dip profile where a significant decrease in the foreset inclination occurs 

(O’Grady and Syvitski, 2002). Morphometric parameters, including foreset height, length 

and inclination (Figure 4.1) were measured for each clinoform (Table 4.1). Rollover 

trajectories, as well as aggradation and progradation distances, were documented through 

analysis of temporal changes in clinoform rollover points (Table 4.1 and Figures 4.3 and 

4.4). Progradation and aggradation rates were calculated for each clinoform package, 

using the estimated age for the individual package. Clinoforms were classified on the 

basis of their morphologies using the methodologies developed by O’Grady et al. (2000) 

and Adams and Schlager (2000). The method of Adams and Schlager (2000) was also 

used to estimate potential variations in lithology within the study area.  
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Seismic 
Transect Stage 

Age 
for 

shorter 
period 
(years) 

Age 
for 

longer 
period 
(years) 

Clinoform Height 
(m) 

Length  
(km) 

Inclination 
(°) 

Seismic 
Unit 

Progradation 
for shorter 

period 
(km/my) 

Aggradation 
for shorter 

period 
(m/my) 

Progradation 
for longer 

period 
(km/my) 

Aggradation 
for longer 

period 
(m/my) 

A 

1 

70000 120000 a1 454 9.5 2.7 A1 23 -716 11 -358
57500 95000 a2 419 10.9 2.2 A1 23 -716 11 -358
45000 70000 a3 364 10.6 2.0 A2 12 55 6 28
32500 45000 a4 309 10.5 1.7 A3 21 363 11 182
20000 20000 a5 256 9.3 1.6 A4 104 -3050 52 -1525

2 

A 
17000 17000 a6 167 5.8 1.7 A5 556 -7158 556 -7158
9000 9000 a7 121 5.3 1.3 A6 210 292 210 292

B 
6000 6000 a8 102 10.2 0.6 A7 741 -11287 741 -11287
3000 3000 a9 85 14.2 0.3 A8 16 5368 16 5368

0 0 a10 85 14.2 0.3 A9 5 4405 5 4405

C 

1 

A 

70000 120000 c1 105 1.8 3.3 C1 -505 15361 -253 7681
65833 111667 c2 168 3.9 2.5 C1 -505 15361 -253 7681
61667 103333 c3 205 3.8 3.1 C2 244 5715 122 2858
57500 95000 c4 227 4.4 2.9 C3 249 -264 125 -132
53333 86667 c5 318 6.4 2.8 C4 244 -1090 122 -545
49167 78333 c6 332 6.8 2.8 C5 -21 6310 -10 3155
45000 70000 c7 208 3.7 3.3 C6 904 -17938 452 -8969

B 

40833 61667 c8 80 1.4 3.3 C7 -1585 51634 -793 25817
36667 53333 c9 88 1.2 4.1 C8 336 -496 168 -248
32500 45000 c10 112 1.7 3.8 C9 384 -4889 192 -2445
28333 36667 c11 214 2.7 4.5 C10 448 -5187 224 -2593
24167 28333 c12 215 1.5 8.2 C11 637 -21142 318 -10571
20000 20000 c13 217 1.5 8.1 C12 205 -5054 103 -2527

2 

10500 10500 c14 139 3.4 2.3 C13 10 3854 10 3854
7000 7000 c15 251 8.3 1.7 C14 652 -9360 652 -9360
3500 3500 c16 277 8.9 1.8 C15 321 5820 321 5820

0 0 c17 257 8.6 1.7 C16 80 905 80 905

Table 4.1: Summary of geometrical measurements for clinoforms interpreted in seismic transects TA and TC. Values measured 
using the procedure described in Figure 4.1. Progradational and aggradational rates were calculated using 
estimated ages for the area. Two cases of shorter and longer periods are provided before 20ky. 
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Estimations of Sediment Flux  

Sediment flux for individual seismic packages was estimated using the method of 

Petter et al. (2013). First, progradation and aggradation rates were calculated for each 

seismic unit. Secondly, the distal clinothem pinchout positions were calculated as defined 

by Petter et al. (2013; Figure 3.6) —this procedure involved plotting both the clinothem 

thickness and the elevation against basinward position (Figures 3.7, 4.5, 4.6, 4.7 and 4.8). 

To obtain thickness graphs valid to calculate sediment flux it was necessary to group 

some of the clinoforms into thicker packages. Average values were calculated and 

assigned to each clinoform in the group. In the case of TA, units A1-A2, A3-A4 and A7-

A9 were grouped together and the parameters for the fitting equations were used for each 

unit in the same group (Figure 4.5; Table 4.2). Only the data points associated with the 

first order geometry of the margin profile were considered for the calculations. High 

values of thickness in the basinward direction (Figure 4.5b-e) indicate the presence of 

mass transport complex deposits associated with seismic units A3 to A9. In the case of 

TC, only units C5-C6 and C15-C16 were grouped together to obtain valid thickness 

graphs, and the same method was applied (Figure 4.6; Table 4.2). Finally, sediment flux 

was calculated using the relationship established by Petter et al. (2013; Figure 3.7). Table 

4.3 shows all data with sediment flux estimates associated with each seismic unit in TA 

and TC. Because sediment flux calculations have a potential error associated with the 

uncertainty in age estimations (e.g. the interval between P10-SB1 and P4-SB2), I chose to 

assess relative temporal and spatial changes in this parameter, rather than report absolute 

values.  
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Figure 4.5: Clinothem thickness vs basinward position in TA.  
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Figure 4.6: Clinothem thickness vs basinward position in TC.  
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Figure 4.7: Clinoform elevation vs. basinward position in TA. Fitting equation parameters were used to calculate sediment flux 
according to Petter et al. (2013) procedure. 
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Figure 4.8: Clinoform elevation vs. basinward position in TC. Fitting equation parameters were used to calculate sediment flux 
according to Petter et al. (2013) procedure. 
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Seismic 
Transect 

Seismic 
Unit 

a b R2 

A 

A1-A2 856 -0.068 0.920 

A3-A4 673 -0.075 0.882 

A5 775 -0.092 0.721 

A6 636 -0.122 0.860 

A7-A9 1890 -0.135 0.952 

C 

C1 134900 -1.198 0.868 

C2 49330 -0.766 0.911 

C3 90450 -0.698 0.915 

C4 196300 -0.549 0.851 

C5-C6 26780 -0.304 0.783 

C7 5186 -0.694 0.854 

C8 2791000 -1.399 0.978 

C9 35550 -0.618 0.909 

C9 118900 -0.735 0.876 

C10 163600 -0.629 0.905 

C11 149300000 -1.028 0.918 

C12 485300 -0.551 0.811 

C13 219300 -0.399 0.962 

C14 2242 -0.143 0.858 

C15-C16 4744 -0.186 0.804 

Table 4.2: Fitting parameters for thickness of seismic units in seismic transects TA and 
TC. Notice that seismic units A1-A2, A3-A4, A7-A9, C5-C6 and C15-C16 
were grouped together because individual curves did not show typical 
thickness trends. The values obtained for each individual unit is the average 
of the group. 
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Table 4.3: Sediment Flux estimated for seismic units in transects TA and TC. 

S horter Longer S horter Longer

P (km/my) A (m/my) P (km/my) A (m/my) a b R
2 Age 

(years)
Age 

(years)
a b R

2 q(XadjS E) 
(m2/y)

q(XadjS E) 
(m2/y)

A1 23 0 11 0 330 -0.070 0.937 a2 63750 107500 6.67 557 1159 -0.122 0.988 23 56 17 501 9 5

A2 12 55 6 28 330 -0.070 0.937 a3 51250 82500 6.82 557 963 -0.090 0.991 60 4 53 553 8 4

A3 21 363 11 182 265 -0.079 0.880 a4 38750 57500 7.09 561 808 -0.062 0.971 50 36 43 524 21 11

A4 104 0 52 0 265 -0.079 0.880 a5 26250 32500 8.39 523 820 -0.057 0.985 50 47 42 476 40 20

A5 556 0 556 0 287 -0.092 0.722 a6 18500 18500 10.05 502 787 -0.048 0.978 44 95 34 407 181 181

A6 210 292 210 292 235 -0.122 0.860 a7 13000 13000 11.73 504 692 -0.029 0.929 32 281 20 223 42 42

A7 741 0 741 0 688 -0.134 0.926 a8 7500 7500 13.95 470 693 -0.027 0.983 24 371 10 99 59 59

A8 16 5368 16 5368 688 -0.134 0.926 a9 4500 4500 14.00 487 658 -0.020 0.974 37 317 23 169 100 100

A9 5 4405 5 4405 688 -0.134 0.926 a10 1500 1500 14.01 500 658 -0.020 0.974 37 317 23 182 81 81

C1 0 15361 0 7681 49934 -1.198 0.868 c2 67917 115833 5.26 338 1043 -0.190 0.949 7 277 2 61 25 12

C2 244 5715 122 2858 18260 -0.766 0.911 c3 63750 107500 6.27 362 1268 -0.202 0.956 10 161 4 201 56 28

C3 249 0 125 0 33481 -0.698 0.915 c4 59583 99167 7.31 361 1808 -0.225 0.956 12 131 4 230 46 23

C4 244 0 122 0 72662 -0.549 0.851 c5 55417 90833 8.33 356 1514 -0.178 0.892 15 33 6 323 63 31

C5 0 6310 0 3155 9913 -0.304 0.783 c6 51250 82500 8.24 382 1762 -0.181 0.921 16 40 7 343 38 19

C6 904 0 452 0 9913 -0.304 0.783 c7 47083 74167 12.05 307 1345 -0.134 0.922 25 48 13 259 187 94

C7 0 51634 0 25817 1920 -0.694 0.854 c8 42917 65833 5.40 523 857 -0.096 0.930 9 378 3 145 131 66

C8 336 0 168 0 1033104 -1.399 0.978 c9 38750 57500 6.80 521 1278 -0.129 0.951 9 412 2 109 29 15

C9 384 0 192 0 13159 -0.618 0.909 c10 34583 49167 8.40 500 1673 -0.148 0.960 13 254 4 246 76 38

C10 448 0 224 0 60557 -0.629 0.905 c11 30417 40833 10.27 479 3702 -0.2044 0.954 15 175 5 304 109 54

C11 637 0 318 0 55264208 -1.028 0.918 c12 26250 32500 12.92 391 26392 -0.3341 0.829 16 136 3 255 130 65

C12 205 0 103 0 179636 -0.551 0.811 c13 22083 24167 13.78 370 48416 -0.3664 0.923 19 45 5 324 53 27

C13 10 3854 10 3854 81175 -0.399 0.962 c14 15250 15250 13.87 406 2084 -0.1199 0.985 24 113 10 294 35 35

C14 652 0 652 0 830 -0.143 0.858 c15 8750 8750 16.16 374 2459 -0.1164 0.986 36 38 20 335 175 175

C15 321 5820 321 5820 1756 -0.186 0.804 c16 5250 5250 17.28 393 3412 -0.1263 0.995 32 63 14 330 151 151

C16 80 905 80 905 1756 -0.186 0.804 c17 1750 1750 17.56 397 3028 -0.1168 0.995 32 76 14 321 31 31

C

1

A

B

2

  P = Progradation rate; A = Aggradation rate; XSE = Shelf Edge distance; hSE = Shelf Edge elevation; Xd = Distal p inchout distance  hd = Distal p inchout elevation; XadjSE = Xd - XSE; hadjSE = hSE - hd.

XadjS E 
(km)

hadjS E 
(m)

A

1

2

A

B

Clino-
form

XS E 
(km)

hS E 
(m)

Elevation Xd 
(km)

hd 
(m)

S eismic 
Transect

S tage
S eismic 

Unit

S horter Period Longer Period Thickness
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RESULTS 

Clinoform Morphometrics 

Transect TA 

Seismic transect A is located across the Darien Ridge (Figures 4.2B and 4.3) and 

contains the major structural elements within the NSD, including regional and 

counterregional growth faults, high-angle thrusts arranged in a flowerlike structure (core 

of the structural high associated with the Darien Ridge; Garciacaro et al., 2011; 

Moscardelli et al., 2012), and a series of high angle normal faults associated with mud-

volcano ridges in the southeastern portion (slope region) of TA (Sullivan et al., 2004; 

Moscardelli and Wood, 2008; Figure 4.2B). Sequence boundary P10-SB1 (clinoform a1) 

represents the base of the paleocanyon. A visual examination of TA reveals an important 

change in height, length and inclination around clinoform a5 that allow to classify TA 

into two sections: a lower section bounded by clinoforms a1 to a5 (seismic units A1 to 

A4; Figure 4.3), and an upper section bounded by clinoforms a5 to a10 (seismic units A5 

to A9; Figure 4.3). Both sections are characterized by high-amplitude, continuous 

reflectors (Figure 4.3); however, the upper section exhibits more gently dipping 

clinoforms (average of 2.0° in Table 4.1) than the lower section (average of 0.8° in Table 

4.1; Figure 4.3). This seismic character was defined by Moscardelli et al. (2012) as 

Sigmoid Clinoform Package seismic facies, whose geometries are commonly associated 

with the development of shelf-edge deltas. In both the lower and upper sections, the toe 

of the slope is difficult to identify, but the rollover point, which corresponds to the shelf 

edge, is relatively easy to identify because of the abrupt transition between topsets and 

foresets. Moscardelli et al. (2006; 2012) suggest that these abrupt transitions are 

associated with a series of slumps and slides that indicate the rollover point of clinoform 
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packages at the paleocanyon head, and signify sediment bypass toward deep-water 

depocenters. As sediments were transported downslope, the system evolved into a 

regional mass transport complex (MTC-1 in Figure 4.3; Moscardelli et al., 2006; 2012).  

In figure 4.9, geometrical parameters in TA, including clinoform height, length, 

inclination, progradation and aggradation rates, and sediment flux are plotted. TA 

exhibits a progressive decrease in height from the oldest (a1) to the youngest (a10) 

clinoform (Figure 4.9a). Length trends from clinoforms a1 to a5 (Figure 4.9b) are similar 

to height trends, indicating that clinoform height decreases are accompanied by slight 

decreases of length and that clinoforms are becoming smaller. Clinoforms reflecting the 

youngest part of the section (clinoforms a8-a10) show the highest length values although 

their heights are the smallest. Foreset declivities (Figure 4.1) in TA show a slight 

decrease from clinoform a1 to a7 (Figure 4.9c). A larger decrease is observed during 

deposition of clinoform a8.  
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Figure 4.9: Graphs illustrating quantitative relationships between morphological 
parameters through time in the NSD (TA) and in the SSD (TC) including (a) 
Clinoform heights. (b) Clinoform lengths. (c) Average clinoform foreset 
inclination values. (d) Progradational rates. (e) Aggradational rates. (f) 
Sediment flux. Results using the shorter and longer periods are shown. 

Determining the absolute values of progradation and aggradation rate within units 

A1 to A4 was not possible due to the lack of biomarkers in the interval and, thus the high 

level of uncertainty associated with age estimations. Regardless, graphs were constructed 

for the purpose of comparing relative rates between the different clinoform packages 

rather than absolute rates.  Progradation rates in the lower section of TA (A1 to A4) are 

relatively steady (average of 40 km/my or 20 km/my, depending on the selected time 

period; Figure 4.9d; Table 4.1). An relative increase in progradation rate is recorded 

during deposition of clinoform package A5 (~550 km/my; Figure 4.9d; Table 4.1) that 

was most likely controlled by increased sediment flux (Figure 4.9f). A relatively larger 

increase in progradation rate (~740 km/my; Figure 4.9d; Table 4.1) occurs during the 

deposition of seismic unit A7.   

Intensive slope erosion and the presence of mass transport deposits in TA 

(Moscardelli et al., 2006; 2012) produced trends in clinoform thickness different to those 

predicted using the method of Petter et al. (2013), where maximum thicknesses are 

located close to the shelf edge and decrease until reaching the clinoform pinchout 

position. For TA (both shorter and longer time periods) plots of sediment flux (Figure 

4.9f) show: (1) a general increase in sediment flux with time from A1 to A4 (Table 4.3); 

and (2) two peaks in sediment flux during deposition of clinoform packages A5 and A8. 

The values for A5 are the highest for the entire section, reaching 181 m2/y. The increase 

in sediment flux during A8 is not as large as A5, reaching 100 m2/y, and might be related 

to the Saddler effect (Saddler, 1981). The Saddler effect proposes that the longer the time 

interval measured, the lower the sedimentation rate will appear to be because of the likely 
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occurrence of more erosional surfaces (and times of non-deposition) that reduce the 

overall calculated values for sedimentation rate. Also, aggradation and sediment flux 

calculations in the younger, upper section may result larger than in the older, lower 

section because of the small effect of compaction. 

Transect TC 

Seismic transect C is located in the southern continental margin of eastern 

offshore Trinidad (Figure 4.2). The main structural elements in the SSD correspond to a 

series of Plio-Pleistocene northwest-southeast–oriented regional and counter-regional 

growth faults as well as their associated rollover anticlines (Figures 4.2B and 4.4). 

Sediment sequestration in the outer shelf and upper slope region could have been favored 

by the presence of the landward-dipping counter-regional faults (Figure 4.4). Through 

visual examination, it is easy to distinguish three sections based on seismic character. The 

lower section (C1-C6) is characterized by high-amplitude, continuous and parallel 

seismic reflectors that dip gently towards the east (up to 3°; Table 4.1, Figure 4.4). 

Clinoforms units within this section have average heights of 220 m, and thicknesses of up 

to 180 m. This interval has been identified by Moscardelli et al. (2012) as Continuous 

and Parallel seismic facies and is interpreted as prodelta to upper slope deposits,  

associated with fine-grained deposition (Sydow et al., 2003; Moscardelli et al.; 2012). In 

this section the toe of the slope is easy to identify, but the rollover point is not. The 

presence of a seafloor multiple at similar depths (Sydow et al., 2003; Moscardelli et al.; 

2012) makes it difficult to image the interval properly. The middle section of TC (C7-

C12) is characterized by clinoforms with steeper inclines (up to 8°, Table 4.1, Figure 

4.4), and smaller heights (average of 150 m, Table 4.1, Figure 4.9). Moscardelli et al. 

(2012) identified this section as Steep Clinoform Package seismic facies, which are 

constrained mainly to the SSD. These seismic facies have been correlated with outer-
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shelf deposits found near the shelf edge and associated with the northeasterly migration 

of the paleo-Orinoco delta system (Moscardelli et al., 2012). The topsets of the older 

clinoforms (c8-c10) are characterized by low-angle, high-amplitude, and relatively 

continuous reflectors (Figure 4.4); however, the topsets of clinoforms c10 to c13 present 

a low-amplitude and discontinuous character that may indicate a higher degree of incision 

(Figure 4.4). Clinoform foresets in C7-C12 are the steepest of all the sections of TC, 

reaching up to 8° (Table 4.1). The rollover point and toe of the slope are both easy to 

identify. The upper section of TC (C13-C16) is characterized by the most gently dipping 

reflectors (up to 2°, Table 4.1, Figure 4.4). This section was defined by Moscardelli et al. 

(2012) as Sigmoid Clinoform Package seismic facies, which occur in both the NSD and 

SSD (Figures 4.3 and 4.4). Clinoform heights for Sigmoid Clinoform seismic facies 

typically exceed 200 m in TC (Table 4.1). The toe of the slope and the rollover point are 

both difficult to identify because of the lack of significant inclination changes, but mat be 

better recognized by seismic facies (occurrence of chaotic reflectors associated with 

MTC and other deeper basin conditions) instead of changes in the clinoform profile (e.g., 

inclination).  

Clinoform heights within TC (Figure 4.9a) exhibit three periods of high values 

(clinoforms c5-c6, c11-c13 and c15-c17, with average values of 325, 215 and 260 m, 

respectively; Table 4.1). Length plots (Figure 4.9b) also show three zones with similar 

values of length: clinoform packages c1-c7, c8-c13 and c14-c17, with average values of 

4.4, 1.7 and 7.3 km, respectively (Table 4.1). Inclination values in TC show a slight 

increase from clinoforms c1 to c7 (average of 3°, Figure 4.9c). Inclination values then 

increases in a faster rate until reaching 8° in clinoforms c12 and c13 (with a slight dip at 

c10). Clinoform c14 shows an abrupt decrease in the foreset inclination that reflects a 

inclination that is kept relatively constant for the rest of the transect (average of 1.9°; 
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Figure 4.9c). Clinoform packages with the highest foreset declivities (c8 to c13) are 

characterized by Steep Clinoform Package seismic facies (Moscardelli et al., 2012), 

which are associated with outer shelf deltas. Delta clinoforms in this study are usually 

steeper than their counterparts along the continental margin (compare clinoforms of TA 

and TC). Unit C6 is characterized by a high progradation rate (452 or 904 km/my, 

depending on the selected time period) and negative aggradation rates whereas unit C7 is 

characterized by negative progradation rates and extremely high aggradation rates 

(25,000 or 50,000 m/my). For both time periods, sediment flux estimates (Figure 4.9f) 

also exhibit three peaks with maximum values in clinoform packages C6, C11, and C14. I 

suggest that the longer period produces more realistic sediment flux values than the 

shorter period (Figure 4.9l) for several reasons: (1) sediment flux plots reproduce better 

the trends observed in the graphs of height and length (Figures 4.9a and b) in that the 

peak centered at C11 has relatively small values of sediment flux, and therefore does not 

generate an important increase in foreset lengths when increases in height occur; (2) the 

values of sediment flux in the younger section (<20 ky) are higher than all of the others in 

the loger period case (Figure 4.9f), which is in accordance with the Saddler effect (in the 

shorter period case, C6 has higher values); and (3) the range of aggradation values 

obtained in the shorter period (up to 51,000 m/my) appears to be high when compared 

with other average worldwide ranges (e.g., average of 5,000-6,000 m/my in Syvitsky et 

al., 2009; Saddler, 1981).  

Quantification of clinoform morphologies using the methodology of O’Grady et al. 
(2000)  

O’Grady et al. (2000) generated plots of seafloor slope (equivalent to foreset 

declivities in this study) versus depth on passive margins and the observable patterns 

were classified into five morphological categories: 1) gentle and smooth; 2) sigmoid; 3) 
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steep and rough; 4) deep and steep and 5) stepped (O’Grady et al., 2000; Figure 4.10). 

Each of these morphological patterns was linked to environmental conditions at the time 

of deposition including sediment supply, erosiveness of the margin and degree of canyon 

development (O’Grady et al., 2000; see their Table 4.1). Although the eastern Trinidad 

margin is found in a complex tectonic setting, I systematically collected foreset clinoform 

declivities from the seismic units that were defined within seismic transects TA and TC 

(Figure 4.11). Based on these results, I identified three different geometries within TA: 

(1) Steep and Rough (clinoforms a1-a5), (2) Gentle and Smooth (clinoform a7), and (3) 

Sigmoid (clinoforms a7-a10). Steep and Rough geometries are associated with conditions 

of low sediment supply and erosive slopes with many canyons (O’Grady et al., 2000). 

Calculations from this study support low values of sediment flux in the interval of 

deposition of seismic units A1 to A4 (Figure 4.9f). Clinoforms a1 and a5 exhibit what I 

would consider to be erosion, reflected in high and variable values of inclination and 

sequence boundaries (P10-SB1 and P4-SB2) bounding that interval (Figures 4.11a and 

4.11e). Gentle and Smooth and Sigmoid geometries of O’Grady et al. (2000) are 

associated with supply dominated settings and the development of few canyons, but with 

different substrates. The onset of these geometries correlates with increased values of 

sediment flux. 

 

Figure 4.10: Generalized slope profiles of modern margins identified by O’Grady et al. 
(2000). 
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Figure 4.11: Plots of variations in clinoform inclination values with depth in the NSD (TA). Each stage of basin evolution 
(Stages 1 and 2) is characterized by a specific trend: steep and rough (Stage 1) (a-e), and sigmoid (Stage 3) (f–j) 
following the methodology of O’Grady et al. (2000). 
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O’Grady et al. (2000) type plots for TC show that clinoforms within TC can be 

broken down into different geometries. Sigmoid geometries best described clinoforms c1 

to c4 (Figure 4.12a-d). However, Steep and Rough geometries are most common in 

clinoforms c5 to c7, associated with higher relief and higher degree of erosion (Figure 

4.12e-g). A new transition from Sigmoid to Steep and Rough geometries is observed in 

the middle interval of TC. Clinoforms c8 to c10 (Figure 4.12h-j) are characterized by 

Sigmoid geometries associated with smaller values of height and small levels of erosion 

whereas clinoforms c11 to c13 are characterized by Steep and Rough, associated with the 

largest values of both height and inclination of the entire stratigraphic section (Figure 

4.12k-m). The increase in clinoform dimensions is explained by the increase in sediment 

flux, observed during the deposition of C10 and C11 (Figure 4.9l).  Clinoforms c14 to 

c17 are characterized by higher and longer clinoforms (increase in foreset heights and 

length), with low inclination values (with the exception of several outliers that are likely 

associated with faulting). Using O’Grady et al.’s (2000) classification scheme, these 

clinoforms are defined as Gentle and Smooth with their geometries possibly  related to a 

high sediment supply, unstable substrate, and few modern canyons.   
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Figure 4.12: Plots of variations in clinoform inclination values with depth in the SSD 
(TC). Each stage of basin evolution (Stages 1 and 2) is characterized by a 
specific trend or combination trend: sigmoid to steep and rough (Stage 1) (a-
g and h-m), and gentle and smooth (Stage 2) (n–q) following the 
methodology of O’Grady et al. (2000).  

Quantification of clinoform morphologies using on the methodology of Adams and 
Schlager (2000) 

Adams and Schlager (2000) also developed a methodology to classify the first-

order morphology of continental margins and concluded that these morphologies could 

be mathematically described by linear, exponential or Gaussian distribution functions 

(Adams and Schlager, 2000; Figure 4.13). Applying this procedure to TA and TC, the 

results show that clinoforms in the NSD (TA) are best represented by exponential 

equations, except for the two youngest reflectors, a9 and a10, that are better defined by 

Gaussian distributions (Figure 4.14). I suggest that the presence of the paleocanyon 

generated an abrupt topographic change (deepening of the basin) that controlled the 

position of the rollover point and controlled a sharp break from topset to foreset.  

Although the overall section is better represented by exponential equations (Table 4.4), 

Gaussian distributions also give acceptable solutions for the younger section (A5-A9), 

suggesting complete filling of the structure by this time. 

 

Figure 4.13: Slope types and their governing equations according to Adams and 
Schlager’s classification (2000):  (a) planar morphology, (b) oblique 
curvature, and (c) sigmoidal morphology. 



162 
 

 

Figure 4.14: Geometry of individual clinoform profiles (base and top of seismic units) in the NSD (TA). Plots fit exponential 
functions. Collection and interpretation of data points followed methodology described by Adams and Schlager 
(2000) (See text for discussion).  
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Transect Clinoform Type a 
exp b exp c 

exp Rsq a1 a2 b2 c2 V Rsq 

A 

a1 Exponential 2848
-

0.276 88 0.997      

a2 Exponential 1633
-

0.191 94 0.996      

a3 Exponential 1246
-

0.168 146 0.995      

a4 Exponential 842
-

0.109 143 0.989      

a5 Exponential 793
-

0.076 94 0.988      

a6 Exponential 778
-

0.080 141 0.986      

a7 Exponential 629
-

0.091 272 0.960      

a8 Exponential 538
-

0.067 262 0.988      

a9 Exponential 422
-

0.098 382 0.994      

a10 Exponential 426
-

0.100 395 0.994      

C 

c1 Exponential 4703
-

0.300 195 0.985     
c1 Gaussian 170 148 6.29 2.13 0.098 0.999
c2 Gaussian 170 184 5.85 2.33 0.112 0.999
c3 Gaussian 160 221 6.05 2.62 0.119 0.996
c4 Gaussian 60 396 4.07 6.32 0.089 0.997
c5 Gaussian -84 378.9 9.97 4.89 0.110 0.986

c6 Gaussian 
-

2380000 2638000 3.56 961 3.882 0.996

c7 Gaussian 
-

4111500 4116000 3.48 1280 4.548 0.996
c8 Gaussian 573.9 -116 7.36 1.68 0.097 0.996
c9 Gaussian 599.5 -196 9.71 2.87 0.097 0.981

c10 Gaussian 272.9 281 6.82 4.05 0.098 0.996
c11 Gaussian 44.52 510 8.15 5.60 0.129 0.997
c12 Gaussian 112.6 343 12.10 1.93 0.251 1.000
c13 Gaussian 163.2 270 13.11 1.26 0.302 0.985
c14 Gaussian 199.4 310.9 10.59 5.63 0.078 0.998
c15 Gaussian 87.39 230.6 17.15 6.16 0.053 0.996
c16 Gaussian 100.7 453.8 10.76 10.09 0.064 0.998
c17 Gaussian 117.4 464.3 10.49 10.32 0.064 0.997

Table 4.4: Fitting parameters for different seismic units interpreted in study area. 
Methodology for data collection and interpretation as described by Adams 
and Schlager (2000). 
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Best fitting equations for clinoforms in the SSD (TC) (Figure 4.15) are Gaussian, 

although the youngest section (c16 and c17) could have been fit with exponential 

functions with slightly lower R-square values. Clinoform slopes best represented by 

Gaussian distributions indicate margins with sigmoidal profiles (Adams and Schlager, 

2000). The development of this type of profile is associated with (1) highly aggradational 

margins where fluctuations of the wave base and changes in sea level produce 

redistribution and erosion of sediment at the shelf break, and/or (2) strong influence of 

ocean currents on the morphology of slopes which round the shelf break during 

progradation. In the case of the SSD, high sediment supply associated with activity pulses 

in the paleo-Orinoco, in conjunction with moderate-to high aggradation rates associated 

with the activation of growth faults may have produced conditions suitable for the 

development of sigmoidal clinoforms.  
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Figure 4.15: Geometry of individual clinoform profiles (base and top of seismic units) in the SSD (TC). Plots fit Gaussian 
distribution functions. Collection and interpretation of data points followed methodology described by Adams and 
Schlager (2000) (See text for discussion).  
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Stages of Clinoform Development 

Changes in the morphology of clinoforms and seismic facies through time suggest 

at least two stages of clinoform development in the basin: stage 1 (~120-20 ky) and stage 

2 (~20-0 ky). Stage 1 includes seismic units A1 to A4 in TA and seismic units C1 to C12 

in TC. Stage 2 contains seismic units A5 to A9 in TA and C13 to C16 in TC. However, 

local changes that are particular to each of the structural domains, and that indicate a 

series of changes of transport and deposition conditions in the basin from north to south, 

allowed the subdivision of these stages in substages: substages 1A (C1-C6) and 1B (C7-

C12) in TC, and substages 2A (A5-A6) and 2B (A7-A9) in TA. 

DISCUSSION 

Lithological Composition 

According to Adams and Schlager (2000), the geometry of slopes (i.e. planar, 

oblique and sigmoidal) gives information about depositional environments whereas the 

shape parameters of the three fitting equations (i.e. curvature and peakedness of the 

curve; Figure 4.13) provide information to deduce sediment composition. Overall, mud-

dominated slopes have lower slope angles, curvatures in oblique profiles (b in Figure 

4.13b), and peakednesses in sigmoidal profiles (V in Figure 4.13c) than sand-dominated 

slopes. Adams and Schlager (2000) concluded that the curvature for exponential profiles 

has a range of 0.438–2.074 in sand-dominated slopes, compared with a range of 0.043–

0.225 in mud-dominated slopes. On the other hand, the peakedness range in Gaussian 

distributions for clay-dominated slopes is less than for slopes containing sand: 0.031–

0.086 and 0.088–0.214, respectively.  

As mentioned in the previous section, TA is best represented by exponential 

equations (Figure 4.14). Coefficient of curvature b, which was determined for each 
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clinoform using Matlab algorithms, varies from 0.067 to 0.276, with averages of 0.164 

for the lower section, and 0.087 for the younger section (Table 4.4). These values are 

within the range of muddy slopes. However, the decrease in the value of b from the older 

(0.164) to the younger (0.087) section suggests an apparent decrease in grain size to the 

period when the paleocanyon became filled. These results are in accordance with an 

abrupt topography generated by the paleocanyon that allowed bypass of coarser-grained 

sediment. Best fitting equations for TC are always Gaussian (Figure 4.15), indicating that 

this section is characterized by sigmoidal profiles (Adams and Schlager, 2000). 

Coefficients of peakedness V found for the entire section have a wide range from 0.057 

to 4.548 (Figure 4.16). All profiles have peakedness values below 0.300 except for 

clinoforms c6 and c7 that were fit by curves with extremely higher values of peakedness 

(3.882 and 4.548, respectively; Table 4.4). These values are above the range mentioned 

by Adams and Schlager (2000) and indicate either that the packages are very sandy or 

that the profiles cannot be represented by the approximations proposed by Adams and 

Schlager (2000). When compare with geometrical measurements for the same section 

(Figure 4.9), I notice that this section is characterized by anomalously high progradation 

and aggradation rates, which are responsible for the high estimates of sediment flux. 

Clinoforms pakages c1-c5 and c8-c11 have very similar values of peakedness (with an 

average of 0.105), separated by the anomalous values of clinoforms c6 and c7 (Figure 

4.16). At the moment of deposition of clinoforms c12 and c13, coefficient values increase 

to an average of 0.267 to finally decrease abruptly to an average of 0.065 from clinoform 

c14 to c17 (Figure 4.16). According to the values presented by Adams and Schlager 

(2000), most of the section is sandy, except for this youngest interval (clinoforms c14-

c17), which is below the sand-mud division in Figure 4.16. 
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Figure 4.16: Parameters associated with curvature (b) and peakedness (V) for subsurface 
of the eastern offshore Trinidad margin (this paper). Curvature and 
peakedness parameters have been linked to lithological composition (Adams 
and Schlager, 2000). Curvature and peakedness values within the study area 
indicate the northern seismic transect (TA) is muddier than the southern 
transect (TC), except for the youngest clinoforms, whose values of 
peakedness (V) indicate  seismic units C14 through C16 are composed of 
lithologies rich in mud and clay.  

Comparing the results for the two seismic transects (Figure 4.16), TA seems much 

muddier than equivalent units in TC. Outer shelf deltas (as those observed in TC) are 

generally more sand-rich than shelf-edge deltas (as those observed in TA). There is no 

apparent correlation between sediment composition in the NSD and SSD, except perhaps 

that in both sections the muddier interval corresponds with the younger units (<10.5 ky), 

which indicates that this particular parameter may have been controlled by local 

processes within the basin.  

The classification of the eastern Trinidad margin clinoforms applying Adams and 

Schlager’s technique (2000) shows small changes in the general conditions of the basin 

through this short period of time (<120 ky). The most important changes most likely 

occurred along strike, indicating important differences in the transport conditions in the 
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NSD and SSD, such as general higher sediment flux and sand content in the southern 

region (TC). 

Clinoform morphologies along strike 

The analysis of Adams and Schlager (2000) suggests there is a relationship 

between shelf-edge/outer-shelf deltas and oblique/sigmoidal clinoform morphologies. 

Shelf-edge deltas show oblique morphologies because of the abrupt change in topography 

(deepening of the basin) when the delta reaches the shelf edge, which in the case of the 

NSD is controlled by the position of the paleocanyon.  Alternatively, outer shelf deltas 

developed in areas where accommodation has been gradually generated by growth 

faulting and sediment supply is high (Paleo-Orinoco discharge).  Tidal action that may 

have helped in the development of sigmoidal morphologies has also been suggested for 

the SSD (Moscardelli et al., 2012).  

During Stage 1, shelf-edge delta facies (Sigmoid Clinoform seismic facies) are 

dominant in the NSD (A1 to A9; Figure 4.3) because the paleocanyon development 

created a narrower shelf in this region. However, in the SSD a wider shelf did not allow 

the foresets of the clinoforms to merge with the continental slope and the system did not 

become a shelf-edge delta, instead prodelta and upper slope facies (Continuous and 

Parallel seismic facies), and outer shelf delta facies (Steep Clinoform seismic facies) 

developed during Stage 1A (C1-C6; Figure 4.4) and stage 1B (C7-C12), respectively. 

During Stage 2A, the NSD is still characterized by the deposition of shelf-edge delta 

facies. However, these clinoforms differ considerably from the ones of stage 1 in that 

they have much smaller heights (average of 110 m compared with 360 m in the lower 

section) and lengths (average of 6 km compared with 10 km in the lower section), and 

much higher sediment flux (average of 181 m2/y compared with 10 m2/y in the lower 

section). The development of smaller clinoforms under high sediment supply conditions 
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can be explained by the lack of accommodation and increased rates of progradation 

observed in the succession. This stage is also characterized by the presence of mass 

transport deposits identified in seismic (Figure 4.3). Towards the south, Stage 2A is also 

characterized by the presence of shelf-edge delta facies, indicating that the delta front 

reached the continental slope. Clinoforms in this section show decrease in height, slight 

increase in length, abrupt decrease in inclination as well as, and unlike TA, a slight 

decrease in progradation, increase in aggradation (accommodation) and slight decrease in 

sediment flux (Figure 4.9f). Finally, Stage 2B clinoform packages are characterized by 

shelf-edge delta facies (Sigmoid Clinoform seismic facies) in both TA and TC. However, 

the morphology of clinoforms differs in that clinoform packages in TA (a7 to a10) show 

a progressive decrease in height (from 121 to 85 m), abrupt increase in length (from 5 to 

14 km) and sediment flux (from 40 up to 100 m2/y) as well as variable progradation and 

aggradation rates (Figure 4.9). These changes may be associated with the final stage of 

infill of the structure generated by the paleocanyon. Towards the south (Figure 4.4), 

clinoforms show an important increase in height, length, decrease in inclination, decrease 

in progradation rate, increase in aggradation rates and abrupt decrease in sediment flux 

that may be associated with the generation of accommodation space by normal growth 

faulting.  

Eustatic/Climatic Controls 

Sequence stratigraphic analysis of the eastern Trinidad margin (Sydow et al., 

2003; Maher, 2007) allowed the interpretation of two 4th order cycles in the interval of 

interest, separated by a sequence boundary that has been interpreted as the last glacial 

maximum lowstand surface (P4-SB2), and has an age close to 18-20 ky (Maher, 2007; 

Moscardelli et al., 2012). These cycles represent the two stages of clinoform 

development, stage 1 and stage 2, interpreted in this study. The analysis of the 
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configuration and terminations of seismic reflectors in TC suggests the first cycle (stage 

1) is composed of a transgressive system track (TST1, Figure 4.4), usually characterized 

by Continuous and Parallel seismic facies, and a highstand system track (HST1, Figure 

4.4), characterized by Steep Clinoform seismic facies and observed only in the SSD 

(Moscardelli et al., 2012). TST1 includes seismic units C1 to C6. The base of this 

transgressive system is defined by clinoform c1, which corresponds to a sequence 

boundary (P10-SB1; Figure 4.4), whereas the upper boundary is clinoform c7, whose 

seismic character corresponds to a maximum flooding surface (MFS1; Figure 4.4). HST1 

includes seismic units C7-C12. Its lower boundary is defined by MFS1 (clinoform c7) 

and its upper boundary by sequence boundary P4-SB2 (clinoform c13), associated with 

the last glaciation event. The period of deposition of the first cycle (~120-20 ky) is 

characterized by two trends in the global sea level curve, a warm period followed by a 

cool period, both characterized by low global sea level values (e.g., Lisiecki and Raymo, 

2005; Miller et al., 2005). Great variation in clinoform morphologies compared to those 

expected from the global sea level trend implies that, besides sea level, other factors 

played a key role in controlling the shape and dimension of the margin. The stacking 

patterns associated with transgressive and highstand system tracts observed in the basin, 

and specifically in the SSD, indicate the generation of accommodation probably 

associated with extremely rapid subsidence in the Columbus Basin growth fault 

provenance (Sydow et al., 2003). In fact, TC shows major normal growth faults that may 

be responsible of part of this accommodation (Figure 4.4). However, toward the NSD, a 

transgressive character is not recognized in the section (Figure 4.3), most likely because 

of the lack of growth faults and other changes in accommodation and sediment supply 

associated with the CBTZ, and regressive patterns are recorded during stage 1 (seismic 

units A1 to A4).  
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Following sequence stratigraphy analysis, the second cycle (Stage 2) is 

interpreted as a lowstand system track (LST2), followed by a very thin transgressive 

system track (TST2). In both TA and TC, the stratigraphic succession deposited during 

stage 2 presents most of the elements that have been defined as components of lowstand 

systems tracts in the classical sequence-stratigraphic model (van Wagoner et al., 1990; 

Mitchum et al., 1993) (Figures 3 and 4). For instance, architecture of reflectors between 

clinoforms a6 and a7 and clinoforms c13 and c14 (Figures 3 and 4, respectively) reflect 

that of lowstand system track submarine fans, characterized by the presence of 

downlapping terminations against the younger reflector in both directions. The clinoform 

packages used for the geometrical analysis (A6-A8 and C13-C15) correspond to a 

regional lowstand wedge, composed of a southwest-northeast progradational to 

aggradational clinoform packages that were part of a shelf-edge delta (paleo-Orinoco) 

(Moscardelli et al., 2012). Global sea level curves (e.g., Miller et al., 2005) show a rise in 

sea level that followed the last lowstand maximum (~18-20 ky). Therefore, regressive 

patterns shown within this succession are indicative of high sediment supply, enough to 

counteract the effect of rising sea level. High sediment flux values and the deposition of 

shelf-edge deltas are associated with high sediment delivered by the paleo-Orinoco delta 

(Sydow et al., 2003). In addition, changes in stacking patterns from regressive to 

transgressive in the youngest section (A9 and C16; Figures 3 and 4) reflect a progressive 

decrease in sediment supply within the overall sea level rise.  

Tectonic Control 

Abrupt changes from outer shelf deltas to shelf-edge deltas from south to north 

during Stage 1 suggest that basin physiography and specifically the location of the 

paleocanyon controlled the position of the shelf edge in the NSD, allowing the relatively 

rapid development of shelf-edge deltas in that part of the basin. This configuration might 
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have influenced sediment partitioning in that most sediment in the SSD appears to have 

been stored on the shelf, where the deltas are located (Figure 4.4), whereas sediment in 

the NSD was most likely deposited downdip in deeper water positions, associated with 

mass transport deposits (Figure 4.3). 

Clinoform geometries in the NSD present less variations through time (Figure 

4.9) because they are primarily controlled by the activation and infilling of the 

paleocanyon. The great accommodation developed by this structure allowed the 

development of higher relief clinoforms (Figure 4.3), oblique morphologies, and 

probably a preferential direction of sediment transport. On the other hand, morphologies 

in the SSD present a higher degree of variation through time because they were 

controlled by different episodes of activation of a series of growth faults and the paleo-

Orinoco dynamics. Higher values of sediment flux in the SSD can be explained by its 

proximity to the Orinoco delta, characterized by having one of the largest discharges on 

Earth (Diaz de Gamero, 1996; Moscardelli et al., 2012). Facies transition from prodelta 

and upper slope (stage 1A) to outer-shelf delta (stage 1B), as well as the eventual 

reaching of the shelf edge and deposition of shelf edge deltas (stage 2) can be partially 

attributed to these high values of sediment flux. Overall, three main episodes of high 

sediment flux were identified in TC that may correspond to the activation of Orinoco’s 

lobes near this section. Accommodation was generated by growth faults, but gradually. 

Therefore, clinoform foresets are not as high as in the NSD. 

CONCLUSIONS  

This study demonstrated that detailed morphological analysis of clinoforms can 

be an important tool to infer the conditions of sediment transport and deposition in a 

basin. However, it is important to know the limitations of the methodology and the 

dataset. Estimations of sediment flux (Petter et al., 2013) and slope composition (Adams 
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and Schlager) may be misleading when clinoforms are not well preserved and/or 

important mass transport deposits are present. 

The stratigraphic interval studied in the eastern Trinidad margin is too short to 

recognized important changes in first order morphology through time (oblique vs. 

sigmoidal). However, changes in individual geometrical parameters (i.e., height, 

inclination, rates of progradation and aggradation) allowed for a better understanding of 

the margin evolution, including activation of underlying structures, changes in sediment 

supply, and paleo-Orinoco dynamics. Changes in accommodation, physiography and 

sediment supply linked to different tectonic conditions (transtension vs. growth faulting 

and the Orinoco dynamics), on the other hand, made it possible to develop important 

changes in clinoform morphologies along strike, including (1) oblique morphologies in 

the NSD versus sigmoidal morphologies in the SSD; and (2) shelf-edge deltas in the NSD 

versus outer-shelf deltas in the SSD.  

The analysis of clinoform morphologies, including the study of rollover 

trajectories, helped to infer sediment partitioning within the basin. In the Trinidad 

margin, the steeper, sigmoidal clinoform packages in the SSD represent outer shelf deltas 

that stored most of the sediment coming from the Trinidad mainland. The NSD 

clinoforms, on the other hand, have flatter rollover trajectories that suggest a significant 

portion of the sediment was deposited into deeper water positions. Paleostructures also 

play an important role in redistribution of sediment and the location of sediment 

pathways (bypassing vs. storage in the NSD and SSD, respectively). For instance, the 

presence of the paleocanyon in the NSD might have triggered deep water deposition in 

that region as it played a key role in defining the location and geometry of sedimentary 

pathways, bypass zones, and depocenters.  
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The presence of a regressive system where accommodation is being created by the 

paleocanyon (TA) indicates a possible underestimation of the values of sediment flux 

associated with this system and suggests that Petter et al.’s procedure (2013) may not be 

adequate for areas where the degree of preservation of the slope is low. Mass wasting in 

clinoform foresets may generate thickness responses different to those expected in 

average margins, and may have a big impact on the measurements. Therefore, I propose 

that this methodology be used only in areas with good preservation of clinoform 

architectures and the absence (or low influence) of mass transport deposits. 

Clinoform development and architectures vary along the northern Taranaki and 

eastern Trinidad continental margins because of the interaction of deltas and sediment 

supplies along with different structural elements alongstrike. In the case of the Taranaki 

Basin, those elements include normal faults, relay ramps and graben development. In the 

eastern Trinidad margin, growth faults in the SSD and a paleocanyon in the NSD were 

the most important structural elements controlling clinoform architectures. Although both 

basins show an important tectonic control, tectonic conditions most likely determined 

sediment availability in the Taranaki Basin, especially the Southern Alps uplifting, 

whereas the Orinoco delta dynamics played a major role in the eastern Trinidad margin.  
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CHAPTER 5: COMPARISON OF CLINOFORM 
GEOMORPHOLOGICAL ANALYSES PERFORMED IN THE 

NORTHERN TARANAKI BASIN AND THE EASTERN TRINIDAD 
MARGIN 

INTRODUCTION 

A brief comparison of the results obtained in the northern Taranaki Basin and 

eastern Trinidad margin are presented in this section. Table 5.1 shows a summary of the 

main differences between the two continental margins. Both regions are characterized by 

continental margins having a variety of clinoform architectures (Chapters 2 and 4). 

Although their important tectonic and stratigraphic differences, in both areas, it was 

possible to classify clinoforms according to their morphology and to infer the 

predominant controls on clinoform development, including the effects of tectonics, 

paleostructures and sediment supply. However, one element of consideration is that the 

eastern Trinidad margin, and especially the northern transect TA, shows a high degree of 

incision and development of mass transport complexes that could affect estimations of 

lithology (Adams and Schlager, 2000) and sediment flux (Petter et al., 2013).  
 Northern Taranaki Basin Eastern Trinidad margin 
Regional tectonic 

setting 
Western margin of the Australia-Pacific 

plate boundary deformation  
Southeastern margin of the tectonically 

active Caribbean Plate Boundary Zone 
(CPBZ) 

Major structural 
elements 

Northern Graben (backarc rifting structure) 
close to the shelf edge area 

North and east: slope and deep basin 
affected by several ridges and 
depocenters associated to the regional 
tectonic framework 

South and west: growth faulting on the shelf 

Age of stratigraphic 
interval 

Pliocene-Recent (6 Ma-present) Quaternary (< 120 ky) 

Major source of 
sediment 

Several small, muddy rivers from (1) 
Southern Alps (major) and (2) Taranaki 
Peninsula (minor) 

Paleo-Orinoco River 

Depositional system Clastic Depositional System; inner to outer 
shelfal conditions  

Clastic Depositional System; deltaic 
systems 

Table 5.1: Comparison of tectonic and stratigraphic elements in the northern Taranaki 
Basin and eastern Trinidad margins 
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COMPARISON OF THE TARANAKI BASIN AND EASTERN TRINIDAD 

CONTINENTAL MARGINS 

In Chapter 2, three stages of clinoform development were identified in the 

Taranaki Basin on the basis of changes in first order clinoform morphologies through 

time (planar, oblique and sigmoidal). In Chapter 3, I concluded that these stages are the 

result of changes in accommodation and sediment supply associated with the opening of 

a graben structure in the early Pliocene and the migration of the Pacific-Australian 

subduction zone and related uplifting of the Southern Alps in the late Pliocene-

Pleistocene. One factor that facilitated clinoform classification in the Taranaki Basin is a 

considerable period of time (~6 my) that it made possible to record changes in the 

regional tectonic context.  In Trinidad, temporal changes in clinoform morphologies may 

have been more difficult to grasp because of the shorter period of time of the interval 

(~120 ky). In fact, most of the clinoforms in the North Structural Domain (NSD) reflect 

oblique morphologies whereas clinoforms in the South Structural Domain (SSD) are 

better characterized by sigmoidal morphologies (Chapter 4). The lack of temporal 

variations in the first order geometry of clinoforms in the eastern Trinidad margin may be 

the result of its regional tectonic setting (CBTZ) that did not show significant variations 

during this smaller time period. If comparing both stratigraphic sections, the time interval 

covered in the Trinidad margin is the equivalent to one single clinoform package studied 

in the Taranaki Basin, within which morphologies are also similar (Figure 5.1). This 

comparison would be equivalent to compare 3rd and 4th order cycles, according to 

sequence stratigraphic nomenclature (Vail et al., 1977). 
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Figure 5.1: Clinoforms of theTaranaki Basin with a comparison of temporal scales 
between the Taranaki Basin and eastern Trinidad continental margin. Each 
individual seismic unit in the Taranaki basin is interpreted to have been 
deposited during the entire interval studied along the Trinidad margin.  

More detailed changes in clinoform morphologies are better captured with the 

study of seismic facies and the application of other classification techniques (e.g., 

O’Grady et al., 2000; Petter et al., 2013). In the Taranaki Basin, the application of the 

methodology developed by O’Grady at al. (2000) suggested an important increased of 

sediment supply in the late Pleistocene (Chapter 2) that was later corroborated by 

sediment flux estimations using the procedure of Petter et al. (2013; Chapter 3). In the 

southern portion of the eastern Trinidad margin (TC), both methodologies (O’Grady et 

al., 2000; Petter et al., 2013) suggest changes in sediment supply in a cyclic manner that 

is most likely associated with episodes of activation of the Orinoco lobes close to the 

section. A climatic origin is not likely because this cyclicity is not seen in the northern 

transect (TA). 

In the Taranaki Basin, two dip-oriented seismic transects characterized by 

different tectonic elements (i.e. a graben associated with Pliocene back-arc rifting) were 

examined in Chapter 2. Although the presence of the graben did promote increases in 
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clinoform dimensions and in the distribution of sediment, both transects developed very 

similar first order morphologies through time (linear to oblique to sigmoidal; Chapter 2) 

because of a common regional tectonic framework. The seismic transects chosen in 

Trinidad (TA and TC) are characterized by very different tectonic settings (NSD vs. 

SSD) that made it possible to develop important changes in clinoform morphologies 

alongstrike, from oblique morphologies in the north to mainly sigmoidal morphologies in 

the south.  These changes are controlled by differences in specific structural elements and 

sediment supply rates in each of the structural domains: the NSD is very close and highly 

influenced by the CBTZ, and associated ridges and troughs, whereas the SSD is mostly 

controlled by changes in the paleo-Orinoco discharge and the activation of local growth 

faults (Moscardelli et al., 2012). Parts of the shelf margin in eastern offshore Trinidad, 

and specifically the NSD (e.g., TA), are characterized by bypass zones and can be 

classified as erosional shelf margins (Ryan et al., 2009; Moscardelli et al., 2012). This 

complicates the application of procedures such as Adams and Schlager’s (2000) and 

Petter et al.’s (2013) that use the first order geometry of clinoforms to estimate lithology 

and sediment supply, respectively. In contrast, some areas in the south (e.g., TC) can be 

classified as accretionary shelf margins (Ryan et al., 2009; Moscardelli et al., 2012) and 

the application of these methodologies is easier and more reliable because sediment is 

deposited and preserved in the shelf and slope positions of the margin.  

Role of Paleostructures 

In the case of the Taranaki Basin, the opening of a graben structure associated 

with Pliocene back-arc rifting (Northern Graben) generated an increase in 

accommodation, recorded by the development of clinoforms characterized by higher 

foresets (Figure 5.2a). Progradation rates were higher at the initial phases of graben 

development because of redistribution of sediment as accommodation was generated, but 
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became smaller as the sediment could not fill the space generated by the structure 

(graben). In the case of Trinidad, a similar situation took place. The presence of the 

paleocanyon in the NSD (Figure 4.3) allowed the deposition of higher-relief clinoforms 

with smaller progradation rates (Figure 5.2d) as a result of the increase in accommodation 

without a simultaneous increase in sediment supply. In fact, sediment flux is apparently 

smaller than in the southern transect (Figure 5.2f). However, it is important to consider 

the lack of clinoform preservation in TA and that part of the sediment was deposited in 

deeper water positions, which could have led to underestimation of sediment flux using 

the procedure of Petter et al. (2013). The geometric arrangement of the different 

structural elements in the SSD also has a significant influence on the architecture of the 

shelf-margin stratigraphic succession in that area. The SSD is characterized by steeper 

and shorter clinoform packages having sigmoidal morphologies. These characteristics are 

associated with the gradual activity of growth faults that were responsible for generating 

accommodation through hanging wall subsidence (Sydow et al., 2003; Moscardelli et al., 

2012) and then stored sediment, especially coarse-grained, within the shelf.  
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Figure 5.2: Graphs illustrating quantitative relationships of series of morphological parameters through time and their 
comparison between the eastern Trinidad margin and northern Taranaki Basin. Parameters calculated using 
measurements of clinoform architectures in seismic transects in the NSD (TA) and in the SSD (TC) include (a) 
Clinoform heights. (b) Clinoform lengths. (c) Average clinoform foreset inclination values. (d) Progradation rates. 
(e) Aggradation rates. (f) Sediment flux. 
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Sediment Flux 

Sediment supply played a major role in the Taranaki Basin, especially in the late 

Pliocene-Pleistocene section (Chapter 3), where high sediment flux sourced by the 

Southern Alps increased accommodation by means of sediment loading and associated 

isostatic compensation, and allowed the development of “giant” clinoforms (>700 m). 

Sediment supply was also fundamental in shaping the architecture of the eastern Trinidad 

continental margin, and specifically in defining areas of sediment bypass and the time of 

development of shelf-edge deltas (Chapter 4). Because the Trinidad margin does not have 

an appropriate age control in the entire section, it is difficult to do a reasonable 

comparison between sediment flux in the Taranaki and Trinidad margins. However, it can 

be seen that, in the case of Trinidad, and specifically the SSD, there are three episodes of 

relatively high sediment flux that might be associated with pulses of activation of the 

paleo-Orinoco system. The last pulse, which does have age control, is characterized by 

higher values of sediment flux (up to 175 m2/y) than those observed in the northern 

Taranaki Basin (up to 75 m2/y during the Southern Alps uplifting). This difference can be 

attributed to two factors. First, the time range used in Trinidad is much smaller than that 

of the Taranaki Basin. According to Saddler (1981), shorter periods of time will always 

show higher values of sediment supply due to a higher degree of preservation (Saddler 

effect). Secondly, high sediment flux in Trinidad indicates the importance of the Orinoco 

discharge as a source of sediment. In fact, the Orinoco River is categorized as one of the 

largest rivers in terms of worldwide discharge (Diaz de Gamero, 1996). The Taranaki 

Basin, on the other hand, is not sourced by one major river, but a series of several small 

muddy rivers whose discharge was intensified by the Southern Alps uplifting and glacial 

conditions (Chapter 2). 
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Figure 5.2f shows the comparison of the values of sediment flux for the northern 

Taranaki Basin and the eastern Trinidad margin. Except for the youngest section, the 

Taranaki Basin shows similar values (same order of magnitude), but smaller variations of 

sediment flux than the Trinidad margin. Higher variations in sediment flux in Trinidad 

are associated with the different episodes of activation of the Orinoco delta lobes. The 

much higher values in the youngest interval may be associated with the Saddler effect 

(Saddler, 1981; Figure 5.2).  The highest values of sediment flux in the Taranaki Basin 

occurred inside the graben structure (Figure 5.2f) when sediment was redistributed inside 

the graben at the initial phases of opening of the structure. 

Indications of Sediment Partitioning 

Clinoform trajectories in the Taranaki Basin were used to infer sediment 

partitioning in the basin, indicating that most sediment moved basinward during the early 

Pliocene whereas most sediment remained in the shelf in the late Pliocene-Pleistocene 

(Chapter 2). The presence of the Northern Graben as a localized depocenter also 

influenced sediment to be stored in this structure. In the eastern Trinidad margin similar 

features are observed. However, these changes are not observed in the temporal scale, but 

along strike. Oblique morphologies and flat trajectories in the NSD (Figure 4.3) indicate 

that an important volume of sediment was likely deposited downdip, in deeper positions 

of the basin (e.g., mass transport deposits). Underlying structural elements (paleocanyon 

in the NSD) played a key role in redistributing sediment into deep water positions and the 

narrowing of the shelf. The SSD, on the other hand, show sigmoidal morphologies 

(Figure 4.4) that, in conjunction with the generation of accommodation by growth 

faulting within the shelf, indicate that most sediment was retained on the shelf.  
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CONCLUSIONS 

This study demonstrated that detailed morphological analysis of clinoforms can 

be an important tool to infer the conditions of sediment transport and deposition in a 

particular basin and that these observations are valid for different ranges of temporal 

scales as proven in the Taranaki and eastern Trinidad margins (3rd vs. 4th order systems). 

Depending on their relative location in the margin, the presence of shelf and upper slope 

structures can influence sediment movements into deepwater regions or their storage on 

the shelf. In addition, high sediment flux is a primary control in clinoform morphologies 

and margin construction. However, it can vary substantially alongstrike (Trinidad case) 

making it a priority to use a three dimensional approach when evaluating these kind of 

systems. 
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CHAPTER 6: INTEGRATION AND IMPLICATIONS OF THIS 
RESEARCH 

INTRODUCTION 

Several methodologies have been applied to study the construction of continental 

margins and sediment delivery to deep water systems. Seismic stratigraphy is one of the 

most common methods used as a predictive tool, providing information about the 

distribution of stratal architecture, and their implication in hydrocarbon/reservoir 

distribution based on seismic data (Vail et al., 1977; Posamentier and Vail, 1988; Van 

Wagoner et al., 1990). Source to sink approaches are also effective to determine sediment 

volume distribution and to infer deposition into deeper waters when information of the 

complete system is provided (Giosan and Bhattacharya, 2005). The analysis of clinoform 

architectures has also been used to study of continental margin evolution, including 

estimation of paleo-water depths (e.g., Schlager, 1981; Kominz and Pekar, 2001), 

estimation of sediment composition (Orton and Reading, 1993; Adams and Schlager, 

2000), and sediment partitioning (e.g. analysis of shelf edge trajectories;  Johannessen 

and Steel, 2005; Carvajal and Steel, 2009; Henriksen et al., 2009). This study grouped 

different methods of clinoform characterization, including quantification of slope 

morphology (O’Grady et al., 2000; Adams and Schlager, 2000), analysis of shelf edge 

trajectory, and occurrence of incision to qualitative infer the history of construction of the 

northern Taranaki Basin margin and potential implication in sediment distribution. The 

integration with geomorphological analysis using the available 3D dataset allows the 

interpretation of geological features and depositional environments. In addition, isopach 

maps allow for establishing relationships between the different stages of margin 

construction and tectonic elements present in the region. A more quantitative model is 

proposed through the use of stratigraphic forward modeling techniques such as STRATA. 
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This methodology provides an alternative to sequence stratigraphic techniques to identify 

controls other than sea level in clinoform development and the distribution of sands in a 

specific basin. The advantages of this methodology are that it is based mainly in seismic 

interpretation and in the detailed description of mainly the shelf edge region. However, 

its integration with other methodologies such as sequence stratigraphy can lead to a better 

understanding of the continental margin and avoid misleading conclusions when only one 

tool is considered. 

GENERAL IMPLICATIONS 

Results from this study indicate the importance of underlying structures in the 

development of distinctive clinoform morphologies, location of the shelf edge, and 

redistribution of sediment within a basin. These results also emphasize the importance of 

sediment flux on clinoform morphologies. In the Taranaki Basin, sediment flux was key 

to the development of high relief clinoforms (“Giant” clinoforms) through isostatic 

compensation. In the eastern Trinidad margin, sediment flux also played an important but 

different role. Three pulses of high sediment flux associated with the Orinoco river 

suggest the activation of the system at different times in different areas, and that 

alongstrike changes can happen in any particular basin where a main river is sourcing the 

system. 

The combination of clinoform morphological analysis, clinoform rollover 

trajectories analysis, and 3D seismic attribute extraction techniques has great potential in 

developing qualitative models for the prediction of sand distribution. Therefore, given 

particular clinoform morphologies, inferences about sand distribution can be made. 

Figure 6.1 shows a summary of the generalizations that came out of this research. A 

column represented deepwater seismic facies was not included because of the limited 

seismic coverage of deepwater positions of the basin, especially towards the northeast. 
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Figure 6.1: Clinoform morphologies that could be potential indicators of deepwater sand 
delivery.  

2D Stratigraphic Forward Modeling and Sediment Distribution  

A quantitative model can refine and add predictive power to a conceptual model 

or show that it is physically impossible. Stratigraphic forward modeling techniques allow 

us to evaluate the individual effect that sediment supply and generation of 

accommodation have in margins construction. Different model runs suggest that 

increases in sediment supply are commonly accompanied by increases in progradation 

and can play an important role in sediment delivery to deeper water positions in (1) 

earlier reaching of the shelf edge (even in wide margins; Trinidad Stage 2), and (2) 

delivery of sediment when accommodation generation is limited (sediment cannot 

accumulate on the shelf). Without an important contribution of sediment supply it is 

likely that sediment retreats (Muto and Steel, 2002). Increases in accommodation 

(simulation of tectonic subsidence) are commonly accompanied by increases in 
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aggradation and decreases in progradation rates that favor sediment storage on the shelf. 

If sediment supply is high enough, the resulting clinoforms are usually characterized by 

progressively steeper clinoforms that can collapse. Modeling techniques also help to 

determine the conditions needed to develop “giant” clinoforms (>700m) (i.e. high 

sediment supply and accommodation) and under what specific conditions isostatic 

compensation can generate enough accommodation. 

IMPLICATIONS SPECIFIC TO THE TARANAKI BASIN 

This study also allowed a better understanding of the history of the Taranaki 

Basin. Based on this study, the basin records three types of clinoform morphologies 

interpreted to be developed during three stages with different conditions of relative sea 

level, tectonic activity, sediment supply and dominant depositional processes. Stage 1 and 

2 clinoforms develop during the lowering of relative sea level. Clinoform morphologies 

are planar and oblique associated with the abrupt transition between the foresets and 

bottomsets of these clinoforms. The shelf during Stage 2 is characterized by erosional 

processes and sediment bypass, suggesting that sediment was delivered to deep-water 

areas. Stage 3 clinoforms developed during relative sea level rise and highstand periods, 

and are characterized by slope-confined, erosional features that are not connected with 

the shelf. The presence of thick topsets and depocenters (graben) on the shelf suggest that 

most coarse grained sediment was stored on the shelf. This configuration is considered 

less efficient for sand delivery to the basin floor. Slope collapse and failure was likely the 

main mechanism of delivery into deep water regions, and muddy deposits are expected.  

By comparing three types of clinoforms, I propose a conceptual model which predicts 

three different styles of slope margin construction in the Taranaki Basin since the 

Pliocene, with their characteristic depositional internal architectural elements and 

dominant depositional processes.  
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Sediment Supply in the Taranaki Basin 

Southern Alps uplifting 

The southwest migration associated with the advance of the Pacific-Australian 

plate subduction zone and related uplifting of the Southern Alps in New Zealand’s South 

Island played a key role in the location of sedimentary sources for the Taranaki Basin 

during the Plio-Pleistocene (Nodder, 1995; King and Thrasher, 1996), and in the 

deposition of the Giant Foresets Formation. The present mountain ranges of New Zealand 

emerged only within the last five million years (Dennis, 2009). In fact, the Southern Alps 

are one of the most rapidly rising mountain ranges in the world (10 mm/yr or more 

according to Dennis, 2009). On reaching the mountains, moisture-laden air rises, 

generating heavy rainfall on the west coast of New Zealand, resulting in very rapid rates 

of weathering and erosion (Tippett and Kamp, 1995; Dennis, 2009). Furthermore, 

temperate glaciers, such as that on the west side of the New Zealand’s South Island, have 

one of the largest natural sediment yields of any runoff in the world (Milliman and 

Syvitski, 1992). Modern sedimentation patterns and rates suggest that the west coast of 

the South Island is presently a major source of sediments deposited on the western North 

Island shelf via a northeasterly-directed longshore drift sediment transport system 

(Nodder, 1995). Estimates of the contribution of suspended sediment to the continental 

shelf by west coast South Island rivers range from 212 x l06 to 440 x l06 tonnes/yr 

(Nodder, 1995), where sediment is derived predominantly from the erosion of the 

Southern Alps (Adams, 1981). Additional sources of sediment delivered to the Taranaki 

shelf include deposits from Mount Taranaki and central North Island and the Mesozoic 

basement rocks of the North Island Axial Ranges (Nodder, 1995). Contributions of 

suspended sediment to the western continental shelf by North Island rivers is, however, 
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considerably less than the amounts supplied by South Island fluvial systems (i.e., 

approximately 9 x l06 tonnes/yr according to Nodder, 1995).  

The southwest migration of the Pacific-Australian plate subduction zone, as well 

as progressive increase in tectonic uplift and associated Southern Alps relief since ~5 Ma 

(Tippett and Kamp, 2005) might have triggered a gradual increase in sediment flux from 

Stage 1 to Stage 3 in the Taranaki Basin. These increases in sediment supply are recorded 

as changes in clinoform morphologies and reflected in the development of “giant” 

clinoforms in the basin. Moreover, glacial-interglacial climate changes and mountain 

glaciations that have occurred in New Zealand since 2.4 Ma may also have contributed to 

the increase in sedimentation rates during Stage 3 (Tippett and Kamp, 1995).  

Action of Waves and Alongshore Currents  

One of the implications of the Pleistocene clinoforms (Stage 3) fitting a Gaussian 

distribution curve is the possibility of strong current action controlling the shelf-edge 

morphology (Adams & Schlager, 2000). There are several lines of evidence that suggest 

that current-controlled processes played an important role in the genesis of the Giant 

Foresets Formation. A section as thick as the Giant Foresets Formation needs high 

sediment-supply rates to develop; however, New Zealand’s North Island during the Plio-

Pleistocene was characterized by a lack of large fluvial systems feeding the Taranaki 

margin. On the other hand, estimates of sedimentation rates on the west coast of the 

South Island are very high due to the uplifting and erosion of the Southern Alps (Nodder, 

1995); therefore a significant percentage of sediments derived from the South Island may 

have been transported northwards during the Plio-Pleistocene as suspended sediment load 

or by current-controlled processes. Also, modern oceanographic conditions in the 

Taranaki Basin favor strong current action, including waves that can reach and affect 

most of the shelf during major storms (Pratson et al., 2007). A northeasterly-directed 
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longshore drift sediment-transport system from the South Island’s west coast is currently 

a major source of sediments for the western offshore region of the North Island shelf 

(Nodder, 1995). This potential modern analogy to the dataset analyzed here suggests that 

waves and current-controlled processes in general could have played an important role 

during the deposition of Stage 3 clinoforms, reworking deposits and moving them into 

deeper, calmer waters where they accumulated. Finally, oceanographic conditions may 

have been even more favorable for current action during the mid-Pleistocene Climate 

Transition (~0.9 Ma). There is evidence that this time was marked by a northward 

migration of the Sub-Tropical Front closer to the North Island (Hayward et al., 2012; see 

their Fig. 9), the absence of the Cook Strait to deviate currents into the south coast of the 

North Island, and the presence of major rivers that carried huge loads of sediment to the 

edge of the continental shelf during the glacial period (Hayward et al., 2012).  

RECOMMENDATIONS 

The use of this methodology was successfully applied in the eastern Trinidad 

margin to infer controls on clinoform morphologies in a different margin. It is 

recommended to apply the methodology in margins with other tectonic regimes (e.g., 

foreland basin) to generate a more complete database and establish generalizations (e.g., 

correlations between sand distribution and clinoform trajectory, topset thickness, margin 

width, and the presence of erosional features in the shelf edge margin).  

Because of the lack of information of deepwater facies in the Taranaki Basin, 

direct correlations of observation and deposition of deepwater sands were not possible. It 

is suggested to apply this methodology in areas where seismic information can image 

deepwater fan facies and/or their presence is corroborated by well information. 
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APPENDIX A: CHRONOSTRATIGRAPHIC FRAMEWORK 

Previous chronostratigraphic interpretations based on biostratigraphic data from 

four wells (Taimana-1, Arawa-1, Witiora-1, and Kanuka-1) located within the study area 

were available for this study (Crundwell et al., 1992; Hoskins and Raine, 1984; Morgans, 

1984; Hansen and Kamp, 2004; Morgans, 2006; Crundwell, 2008). However, some of the 

well picks that were linked to absolute ages were not compatible with sub-regional 

seismic correlations because several mismatches were identified during the mapping 

process. Reports of similar misties have been documented in the past by a variety of other 

researchers working in this area (e.g., Hansen and Kamp, 2004; Morgans, 2006). This 

conflict was bypassed by applying a simplified approach in which the use of bioevents 

was adopted instead of using absolute ages. Bioevents are recognizable where there is a 

significant change in the composition of fossil assemblages over a relative short period of 

time (Sageman et al., 1997; Zhang and Barnes, 2004). Bioevents were identified by 

examining foraminiferal distribution charts from four exploratory wells (Hoskins and 

Raine, 1984; Crundwell et al., 1992; Morgans, 1984; and Crundwell, 2008). On this 

revision, I decided to use first downhole appearances (FDHA) of microfossils to define 

bioevents, because the samples within the Plio–Pleistocene interval came from well 

cuttings and this practice would avoid misleading interpretations triggered by potential 

sample contamination (Morgans, 2006). The age of occurrence was determined using the 

chart of late Miocene–Pleistocene planktonic and benthic foraminiferal events by 

Crundwell et al. (2004). 

Four main bioevents were identified in each well (Table A.1) and correlated 

across the seismic data (Figure A.1). Bioevent 1 (FDHA Globorotalia sphericomiozea) 

corresponds to the Pliocene-Miocene boundary (~5.28 Ma) and coincides with surface Sa 



193 
 

(base of SU1) (Figure A.1). Bioevent 2 (FDHA Globorotalia pliozea) coincides with 

surface Sb (top of SU1) in well Kanuka-1 and is very close to the same surface (Sb) in 

other well locations. According to Crundwell et al. (2004), Bioevent 2 is equivalent to the 

4.48 Ma marker. Bioevent 3 (FDHA Cibicides molestus) presents a good match with 

surface Sc in all wells except for well Arawa-1 (Figure A.1). Surface Sc (Bioevent 3) 

defines the top of clinoform package SU2 and its estimated age is 3.0 Ma. In well Arawa-

1, the FDHA of Cibicides molestus (Bioevent 3) is reported in a slightly deeper position 

than the FDHA of Globorotalia pliozea (Bioevent 2). This -18 m depth difference 

between Bioevents 2 and 3 (see Table A.1) is considered to be a minor mistie that is 

probably related to the significant reduction in thickness in this location (most likely 

indicative of erosion and reworking), as well as to the proximity to a fault zone to the 

northwest that could have caused sampling issues (Figure A.1). Bioevent 4 (2.45 Ma) was 

interpreted on the basis of the occurrence of a dextral coiling event that affected the 

Globorotalia crassaformis zone and that was well documented in all wells. Some 

challenges were encountered when trying to correlate Bioevent 4 from wells Arawa-1 and 

Taimana-1 to well Kanuka-1 to the northwest (Figure A.1). Wells Arawa-1 and Taimana-

1 show the top of the Globorotalia crassaformis zone (dextral coiling) occurring within 

seismic unit SU4, whereas well Kanuka-1 shows this same marker occurring within 

seismic unit SU5. This mismatch on the correlation of Bioevent 4 (top dextral 

Globorotalia crassaformis) was caused by the proximity of the southern wells (Arawa-1, 

Taimana-1, and Witiora-1) to a sediment bypass zone where increased erosion most 

likely caused reworking of the fauna and misplacement of FDHAs (Figure A.1). This 

difficulty was arbitrarily resolved by correlating Bioevent 4 (top dextral Globorotalia 

crassaformis) with surface Sf (top of clinoform package SU5), becausewell Kanuka-1 is 

located in an area where sediment bypass did not prevent preservation of the stratigraphic 
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succession and it is likely that this biostratigraphic event might be “in situ” in this 

location.  

Bioevent 
number 

Bioevent  

Estimated 
Age 

(according 
to 

Crundwell 
et al. 
2004) 

Witiora-1 Taimana-
1 

Arawa-1 Kanuka-1 

  
Topmost 
foraminiferal 
sample 

Variable 220m 220 m 665m 550m 

5 Plio/Pleistocene 1.8 Ma 
Not 

Available 706 m 670 m 690 m 

4 
Top Dextral 
Globorotalia 
crassaformis  

2.45Ma 700m 920 m 1015m 1040m 

3 
FDHA Cibicides 
molestus  3.0Ma 1000m 1180 m 1542m 1630m 

2 
FDHA 
Globorotalia 
pliozea  

4.48Ma 1060m 1470 m 1524m 1740m 

1 
FDHA 
Globorotalia 
sphericomiozea  

5.28Ma 1220m 1580 m 1800m 1760m 

Table A.1: Bioevents identified in key wells. 

In general, the identification of bioevents facilitated the estimation of relative ages 

within the Pliocene section (2.4–5.3 Ma) and it also helped establish an appropriate 

framework for key surfaces that were interpreted using seismic data. However, age 

estimation within the younger stratigraphic succession (<2.4 Ma) was challenging 

because of the scarcity of biomarkers and the absence of proper sampling. The initial 

approach was to divide the younger section (<2.4 Ma) by the number of interpreted 

clinoforms; however, abnormally high rates of aggradation (~2,000 m/my) were obtained 

for this interval (SU9), thus I decided to discard this approach. Instead, I incorporated the 
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Pliocene/Pleistocene boundary as reported in previous studies (Morgans, 2006) to 

constrain age estimations without generating anomalous sedimentation rates. Surface Sh 

(top seismic unit SU7) appears to be the best approximation for this Pliocene/Pleistocene 

boundary. Levels of uncertainty for the Pleistocene section increased because no 

biomarkers were reported for this interval. The only option for the Pleistocene unit was to 

divide the remaining time by the total number of observed clinoforms so that an 

estimated age control could be assigned. 

 

Figure A.1: Composite seismic line connecting wells containing key biostratigraphic 
information (Taimara-1, Arawa-1, and Kanuka-1). Numbers indicate first 
biostratigraphic downhole appearances, used to define bioevents (see text 
for discussion). Dotted lines indicate correlation, calculated using seismic 
data, of bioevents across study area.  
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APPENDIX B: REGIONAL PALEOGEOGRAPHIC MAPS 

Paleogeographic maps generated by King and Thrasher (1996), Hansen and Kamp 

(2002) and Baur (2012) were integrated with the northern Taranaki Basin results (this 

study) to produce paleographic maps of the entire Taranaki Basin. These maps show the 

approximate migration of both the shoreline and paleoshelf edge through time (Figure 

B.1 to B.4). Paleodepths were interpreted using biostratigraphic analysis of well of the 

area (Appendix A). The sedimentary characteristics and the presence and location of 

different depositional elements (channels, incised valleys, canyons and submarine fans) 

are inferred using seismic facies analysis and information from wells (i.e. well logs and 

lithostratigraphy) when present. Location of the shelf, canyons and channels are shown 

where observed in seismic; however, their extension was inferred where not seismic 

available. One common element is that the main sediment source is located in the south 

(Southern Alps; King and Thrasher, 1996; Baur, 2012). This study allowed a more 

detailed interpretation of the northeastern region of the maps, and they emphasize the 

importance of paleostructures located in the shelf and slope regions in shaping the shelf 

edge and in distributing sediment into deep water.  
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Figure B.1: Paleogeographic interpretation of Taranaki Basin during deposition of Stage 
1 (~5.0 Ma). Diversion of gravity flows are deposited in this stage (e.g., 
Mangaa Formation). The Northern Graben was active in north to the study 
area, constraining the location of submarine fans. There is a progressive 
southward migration of extension and volcanism (modified from King and 
Thraser, 1996; Hansen and Kamp, 2002 and Baur, 2012). 
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Figure B.2: Paleogeographic interpretation of Taranaki Basin during deposition of Stage 
2A (~3.0 Ma). Colors and symbols are according to Figure B.1. This stage is 
characterized by deposition of gravity flows in the Northern Graben and the 
subsidence of the Toru Trough towards the east. This structure takes most of 
the sediment delivered by the Taranaki Peninsula (modified from King and 
Thraser, 1996; Hansen and Kamp, 2002 and Baur, 2012). 
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Figure B.3: Paleogeographic interpretation of Taranaki Basin during deposition of Stage 
2B (~2.6 Ma). Colors and symbols are according to Figure B.1. Onset of 
rapid shelf margin progradation is recorded during lowstand conditions. The 
Northern Graben is filled in the study area and possible deposition of 
submarine fans is inferred in northern positions, where there is still 
accommodation associated with the structure. Most sediment is sourced 
from the South Island, most sediment from the Taranaki Peninsula is 
transpoted southward (modified from King and Thraser, 1996; Hansen and 
Kamp, 2002 and Baur, 2012). 
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Figure B.4: Paleogeographic interpretation of Taranaki Basin during deposition of Stage 
3 (~1.5 Ma). Colors and symbols are according to Figure B.1. A rapid shelf 
margin progradation is observed when compared with Stage 2. Presence of 
incisions in the slope are common associated with slope failure and collapse. 
Reactivation of Northern Graben generates a deposcenter on the shelf that 
allows deposition along the graben axis (modified from King and Thraser, 
1996; Hansen and Kamp, 2002 and Baur, 2012). 
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APPENDIX C: STRATIGRAPHIC FORWARD MODEL TYPES 

GEOMETRIC MODELS 

These models do not describe the process itself, but the geometric results of the 

process associated with the total or partial infill of accommodation (Griffiths, 2001). At 

the onset of the simulation, geometric models predefine equilibrium profiles of sediment 

distribution that are then modified by the competing effects of changing sea level, 

tectonic subsidence or uplift, residual slope, and sediment supply (Jervey, 1988; 

Reynolds at al. 1991; Pirmez et al., 1998). The simplest predetermined sediment profile is 

a horizontal plane at sea level that captures only the effects of subsidence in governing 

stratal geometries (rigid-lid models; Sloss, 1962). Sloss (1962) developed models in a 

conceptual basis for situations where the relationship between volume of supplied 

sediment and rate of subsidence varied, demonstrating that variations in sediment supply 

could generate both regressive and transgressive patterns. Harbaugh and Bonham-Carter 

(1970) provided a mathematical treatment of Sloss’ (1962) conceptual model with the 

basic premise that mass is conserved in the system. Over the years additional constraints 

were added (e.g., Pitman, 1978; Jervey, 1988; Ross et al., 1995; Liu et al., 1998; Csato & 

Kendall, 2002). 

Geometric models have been very useful to understand the effects of sea level, 

sediment supply, and tectonics at the continental margin scale. However, assuming 

predefined clinoform shapes, these models forfeit formative constraints provided by 

clinoform geometries (Pirmez et al., 1998). Additionally, they are unable to describe the 

physical processes that determine small-scale stratal geometries (Jordan and Flemings, 

1991; Pirmez et al., 1998; Paola, 2000).  
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HYDRAULIC MODELS 

Hydraulic models (also called process-based models) are derived from the 

equations of fluid flow (Syvitski et al., 1988; Tezlaff and Harbaugh, 1989). Most of these 

models are based on solutions of the Navier-Stokes equations describing flow in three 

dimensions for an isotropic Newtonian fluid (uniform properties in all directions and 

follows Newton’s laws of motion; Tezlaff and Harbaugh; 1989). Sediment transport is a 

function of the transport capacity of the fluid and effective sediment concentration 

(Griffiths, 2001). 

This type of models have proven to be powerful tools to understand several 

sedimentary processes and has been successfully applied to simulate specific depositional 

settings, especially in the reservoir scale, modeling the physical flow processes to a high 

degree of detail (Syvitski et al., 1988; Tetzlaff, 2005). However, the application of these 

models is limited because of the necessity to specify a large number of input parameters 

and they may make computationally intensive to simulate flow and sediment transport in 

the continental margin scale (Pirmez et al., 1998). 

DIFFUSION MODELS 

Diffusion-based models (also called topographic-control or potential-gradient 

models) are derived from the equations of slope-driven motion and conservation of mass 

(Flemings and Grotzinger, 1996; Paola, 2000). They assume that erosion, transport and 

deposition occur via linear diffusion, which means that sediment transport is proportional 

to the topographic slope (Kenyon and Turcotte, 1985; Flemings and Jordan, 1989; Jordan 

and Flemings, 1991; Flemings and Grotzinger, 1996). These models can successfully 

reproduce the filling of a basin and the development of a wide range of clinoform 

architectures, using a few assumptions and simple equations (Jordan and Flemings, 1991; 

Paola et al., 1992; Flemings and Grotzinger, 1996; Pirmez et al., 1998; Paola, 2000). The 
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the use of diffusion coefficients, which are parameters hard to define and relate to 

physical processes. Additionally, diffusion models can only model slope-driven processes 

(e.g., creep, sliding, and slumping; Pirmez et al., 1998). Areas whose predominant 

controls are others (e.g., waves and currents) might not be reproduced by these models.  
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