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John F. Stanton

Dmitrii E. Makarov

Charles B. Mullins



Approximate Quantum Dynamics Methods for Time

Correlation Functions

by

Kyle Kurt Gabriel Smith, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014



Dedicated to the Lord God Jesus Christ.



Acknowledgments

I would like to thank my advisor, Peter Rossky, for introducing me to

the realm of approximate quantum time correlation function methods, which

has resulted in this dissertation. In addition, Peter has been there to provide

the guidance and mentorship necessary to complete this work. If it was not for

his parent like advice, I probably would have dropped out of grad school due

to the strong desire to get a real job and, what I would describe as, actually

start my life. In addition, I would like to thank our collaborator in Sweden,

Jens Poulsen. I was actually very blessed to have been able to work with Jens,

and his bright ideas have been a huge contribution to this dissertation. Maybe

one day I will make a trip to Sweden to thank him in person.

During my studies at UT, I have come to develop a friendship with a

mathematical physicist, Prof. Arno Bohm, to whom I also owe thanks. Our

friendship begun while taking his graduate level quantum mechanics course.

One day after class, he told me that my homeworks were typically much better

than the rest of the classes, and then asked what type of physics I was doing

for my PhD work. Very much to his surprise, I told him that I was actually in

the chemistry program doing theoretical chemistry. He then told me that he

thought that I would make a good theoretical physicist, but now he thinks that

I will make a great theoretical chemist! And this is where our friendship begun.

v



After that class I went on to take two more classes with Prof. Bohm, another

quantum mechanics class and then a mathematical physics class. While I never

had to worry about Gamow Vectors, Gel’fand Triplets, or the rigged Hilbert

space formulation of quantum mechanics in my PhD work, the classes I took

from Prof. Bohm really helped to develop my mathematical abilities/talent

even further, which has contributed to a significant part of this dissertation.

In addition, I would like to thank my wife Megan, who has put up

with, and supported me, during all of these years of school. During both

undergraduate and grad school I have, unfortunately, become somewhat of a

workaholic, which has resulted in a significant amount of isolation. Hopefully,

I will be able to tune this down a bit and begin to experience more of a

life outside of work in the near future. What fuels my workaholism is the

extremely strong drive to complete my education in the minimum amount of

time, such that I am then able to provide a better life for ourselves, as well

as our families. Now that I have completed my PhD, hopefully we will soon

begin reaping what I have so diligently sowed.

Most of all, I would like to thank the Lord God Jesus Christ. God

has taken me, once hopeless and lost, and turned my life and circumstances

completely around to give me a new hope and purpose in life, and I am very

excited to experience the future He has for me!

vi



Approximate Quantum Dynamics Methods for Time

Correlation Functions

Publication No.

Kyle Kurt Gabriel Smith, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Peter J. Rossky

The dynamic structure factor of liquid para-hydrogen and ortho-deuterium

in corresponding thermodynamic states, (T = 20.0 K,n = 21.24 nm−3) and

(T = 23.0 K,n = 24.61 nm−3) respectively, has been computed by both

the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer

Molecular Dynamics (RPMD) methods and compared with Inelastic X-ray

Scattering spectra. The combined use of computational and experimental

methods enables a reduction in experimental uncertainties for the determi-

nation of the true sample spectrum. Furthermore, the refined experimental

spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by

both FK − LPI and RPMD at momentum transfers lower than 12.8nm−1.

At larger momentum transfers the FK − LPI results agree with experiment

much better for ortho-deuterium than for para-hydrogen. More specifically we
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found that for k ∼ 20.0 nm−1 para-hydrogen provides a test case for improved

approximations to quantum dynamics.

We meet this demand for an improved approximate quantum dynamics

method by developing two classes of quasi-classical dynamics that are shown

to conserve the initial quantum ensemble when used in conjunction with the

Feynman-Kleinert approximation of the density operator. As shown, both

classes of dynamics are able to recover the exact classical and high temperature

limits of the quantum time correlation function, while a subset is able to

recover the exact harmonic limit. A comparison of the approximate quantum

time correlation functions obtained from both classes of dynamics are made

with the exact results for the challenging model problems of the quartic and

double-well potentials. It is found that this new Feynman-Kleinert Quasi-

Classical Wigner (FK-QCW) method provides a great improvement over the

Feynman-Kleinert implementation of the classical Wigner approximation, also

known as FK-LPI, in which purely classical dynamics are used. Furthermore,

it is shown that the first class of dynamics reduces to Centroid Molecular

Dynamics (CMD) when used within the framework of the classical Wigner

approximation for the Kubo transformed time correlation function.

Finally, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK-

QCW) method to the same liquid para-hydrogen and ortho-deuterium system,

previously studied using FK-LPI and RPMD. When applied to this challenging

system, it is shown that this new FK-QCW method consistently reproduces the

experimental dynamic structure factor for all momentum transfers considered.
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This shows that FK-QCW provides a great improvement over FK-LPI for

not only model problems, but also realistic systems. Furthermore, for small

momentum transfers, where RPMD is applicable, it is shown that FK-QCW

provides nearly the same results as RPMD, thus suggesting that FK-QCW

provides a potentially more appealing algorithm than RPMD since one is not

limited to correlation functions involving linear operators. This then suggests

that the FK-QCW method is a top contender in the realm of approximate

quantum dynamics methods which allow for the practical evaluation of time

correlation functions.
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Chapter 1

Introduction

1.1 Introduction

The main goal of quantum statistical mechanics is the evaluation of

finite temperature expectation values of quantum mechanical operators, which

in the canonical ensemble takes the general form

〈
B̂
〉

=
1

Z
Tr
(
e−βĤ B̂

)
, (1.1)

where Z is the partition function and β is the inverse temperature 1/kbT . The

reason these quantities are so important is because one can know essentially

any thermal equilibrium property of a quantum mechanical system if they are

able to evaluate this expression exactly. In fact, Feynman said that

”This fundamental law is the summit of statistical mechanics, and the

entire subject is either the slide-down from this summit, as the principle is

applied to various cases, or the climb-up to where the fundamental law is

derived and the concepts of thermal equilibrium and temperature T clarified.”

R. P. Feynman – Statistical Mechanics: A Set of Lectures

Of even more importance are finite temperature expectation values that

involve a product of two operators, in which one of these operators is evolved
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in time 〈
Â(0)B̂(t)

〉
=

1

Z
Tr
(
e−βĤÂ eiĤt/~ B̂ e−iĤt/~

)
. (1.2)

These time dependent expectation values are known as quantum time

correlation functions and they provide extremely valuable dynamical informa-

tion of a quantum system. That is because, for example, the dipole moment

correlation function will yield absorption spectra, the flux correlation function

will yield reaction rates, the velocity correlation function give the diffusion

constant, and the list goes on. However, these quantities are extremely dif-

ficult if not impossible to evaluate exactly. This is because one is required

either to compute a full real time path-integral or solve the corresponding time-

dependent Schrodinger equation, which is not practical for realistic many-body

systems due to the intense computational load. In order to overcome this diffi-

culty, it is desirable to develop approximate quantum dynamics methods which

are as accurate and efficient as possible, and enable the practical evaluation

of Eq. 1.2.

Currently, there exists multiple approximation schemes including the

Classical Wigner approximation (CW)[2, 17, 19], Centroid Molecular Dynam-

ics (CMD) [15], as well as Ring-Polymer Molecular Dynamics (RPMD)[26] in

which one uses a form of approximate dynamics to evaluate quantum time

correlation functions approximately. While all of these methods provide rela-

tively accurate and practical approximations to Eq. 1.2, each have their own

downfalls. For example, while both CMD and RPMD have been shown to be

exact in the harmonic, high temperature, and short time limits, both of these
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methods begin to break down for correlation functions involving non-linear

operators[15, 26, 28]. In addition, the intrinsic dynamics of the ring-polymer

in RPMD can introduce artificial frequencies in the spectrum of the correla-

tion function, which becomes especially important when simulating absorption

spectra[32]. On the other hand, the CW approximation is also exact in the

harmonic, high temperature, and short time limits, even for correlation func-

tions involving non-linear operators[2, 20]. However, the CW approximation

does not in general correctly produce time invariant thermodynamic proper-

ties of thermal equilibrium systems. Explicitly, for Â = 1 the exact quantum

expression in Eq. 1.2 has the property that

〈B̂(t)〉 = 〈B̂(0)〉, (1.3)

however this is generally not true for the CW approximation due to the classical

dynamics used.

This dissertation begins in Ch. 2 by providing a benchmark com-

parison of two of these leading approximate methods. Specifically, I apply

RPMD and the Feynman-Kleinert implementation of the CW approximation,

known as the Feynman-Kleinert linearized path-integral (FK-LPI)[2] method,

for the determination of the dynamic structure factor of low temperature liquid

para-hydrogen and ortho-deuterium. This benchmark calculation establishes

a challenging test case where both of these methods fail. In Ch. 3, I meet

this demand for an improved approximate quantum dynamics method by de-

veloping two classes of quasi-classical dynamics that are shown to conserve

3



the initial quantum ensemble. In addition, I apply this new Feynman-Kleinert

Quasi-Classical Wigner (FK-QCW) method in 1-D for the challenging model

problems of the quartic and double-well potentials, and then compare these re-

sults with the exact quantum mechanical predictions, as well as that obtained

by the three leading methods (FK-LPI, CMD, and RPMD). In Ch. 4, I apply

the FK-QCW method to the same liquid para-hydrogen and ortho-deuterium

system, previously studied using FK-LPI and RPMD. It is found that this

new FK-QCW method performs excellent where RPMD and FK-LPI previ-

ously failed. This then suggests that the FK-QCW method is a top contender

in the realm of approximate quantum dynamics methods which allow for the

practical evaluation of time correlation functions.
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Chapter 2

Refinement of the Experimental Dynamic

Structure Factor for Liquid para-Hydrogen

and ortho-Deuterium using Semi-classical

Quantum Simulation

2.1 Introduction

In the last decades the study of quantum effects [47] in the dynamics

and structure of liquids has greatly benefited from advances in both experimen-

tal techniques and computational methods investigating the so called meso-

scopic regime, corresponding to distances and timescales respectively matching

nearest neighbor separations and ’cage oscillation’ periods. In fact, the quan-

tum behavior of a fluid emerges only as far as the probed distance match both

the mean free path of its microscopic components of a fluid and its quantum

coherence length, i.e. the de Broglie wavelength λ = h/
√

(2πmkBT ), with h,

kB, m, and T being the Planck and Boltzmann constants, molecular mass, and

temperature. In moderately quantum fluids this occurs in a dynamic window

lying by some decades beyond the range covered by Brillouin Visible Light

Scattering and rather matching the domain of THz spectroscopic techniques

such as Inelastic X Ray and Neutron Scattering (IXS and INS respectively).

Although the behavior of the spectral lineshape is rather well understood in the
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classical limit, to date no rigorous theoretical prediction is available to handle

quantum deviations. This would hypothetically require a quantum mechani-

cally exact theoretical expression for the quantum time correlation function,

which, for a many-body system in the canonical ensemble takes the general

form:

〈
Â(0)B̂(t)

〉
=

1

Z
Tr
(
e−βĤÂ eiĤt/~ B̂ e−iĤt/~

)
, (2.1)

Z being the partition function and β the inverse temperature 1/kbT . The time

correlation functions defined by Eq. 2.1 is of pivotal interest since the spec-

trum measured by most spectroscopic techniques is proportional to it through

linear response theory. In order to determine this quantity, one is, in principle,

required either to compute a full real time path-integral for the many-body

system or solve the corresponding time-dependent Schrodinger equation. This

can, in principle, be achieved to arbitrary accuracy since the underlying laws

of physics are known; however, such a calculation is not practical for realistic

systems, even using the world’s most advanced supercomputers. In order to

overcome this difficulty, it is thus desirable to develop approximate quantum

methods which are as accurate and efficient as possible, and enable the practi-

cal evaluation of Eq. 2.1. Two such approximation schemes are the Feynman-

Kleinert linearized path-integral method (FK-LPI) [2], as well as Ring-Polymer

Molecular Dynamics (RPMD)[26] in which one uses semi-classical methods to

calculate quantum time correlation functions approximately.

The FK − LPI method is intimately related to the so-called classical
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Wigner (CW) approximation[17], or equivalently the linearized semiclassical

initial value representation (LSC-IVR)[19], which can be derived from mul-

tiple starting points. For example, the CW approximation can be shown to

follow not only from a path linearization approximation implemented within

the semiclassical initial value representation (SC-IVR) of the propagator, but

also from a linearization of the action difference between the forward-backward

time paths in the corresponding exact path-integral expression for a general

time correlation function[2, 18].

The other approach (RPMD) exploits the isomorphism between the

imaginary time-sliced path-integral expression of a many-body quantum par-

tition function and the classical partition function of a system of ring-polymer

molecules to evaluate the Kubo-transformed quantum time correlation func-

tion.

This method has been found to perform relatively well for realistic

systems as long as the correlation function is not highly non-linear in position

or momentum[27, 28]. In fact, as long as at least one of the operators in the

correlation function is linear in either position or momentum, RPMD is exact

in the limit that the number of beads n goes to infinity for a harmonic system,

in the high-temperature limit, as well as when t → 0 [26]. Furthermore,

RPMD by construction gives the correct t→ 0 limit of the Kubo-transformed

time correlation function for both linear and non-linear operators, provided

that the n → ∞ limit is taken[28]. In contrast, FK − LPI is not limited to

linear operators and is exact in the harmonic and high temperature limit for

7



non-linear operators as well[2, 20].

The purpose of this chapter is to apply the methods of FK − LPI

and RPMD to obtain the dynamic structure factor of low-temperature liq-

uid para-Hydrogen and ortho-Deuterium in order to provide a comparison

between the two methods as well as to the experimental dynamic structure

factors from IXS data. The low-temperature liquid para-hydrogen and ortho-

deuterium system has been chosen because they have become a standard

benchmark in the development of semi-classical quantum nuclear dynamics

methods[3, 14, 21, 27, 29, 35, 40]. This is due to pronounced nuclear quantum

effects being exhibited in their dynamical properties, which is a direct con-

sequence of their low molecular mass which in turn causes their thermal de

Broglie wavelength to be comparable to the intermolecular distance. Luckily

however, this quantum delocalization is not significant enough that one must

worry about the quantum statistics of molecular indistinguishability, which

greatly simplifies matters. Thus low-temperature liquid para-Hydrogen and

ortho-Deuterium are very well suited benchmark systems for semi-classical

quantum nuclear dynamics methods, such as FK − LPI and RPMD. At the

same time, IXS provides an unambiguous result with which to compare the

performance of such methods.

We note at the outset that there are uncertainties in the experimental

data, discussed further below, as well as in the approximate quantum dynamics

theory used. Hence, a level of uncertainty that cannot currently be quantified

will necessarily remain in the data after refinement by the combined analysis.
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Nevertheless, the data refinement using these currently best available methods

will lead to what we believe are the best available estimates of the true dynamic

structure factors. At the same time, an inability to bring the experimental

data and calculations into agreement will certainly indicate a limitation of the

theory, and hence establish a test case for improved methods.

We finally remark that within the low k range considered here (k ≤

12.8nm−1) theRPMD method can be safely applied based on the linearization

of e−ikx̂ ≈ 1 − ikx̂ (x being the space coordinate). This approximation is

consistent with the previous findings of Ref. [27] suggesting that the non-

linearity of the correlation function does not influence RPMD results so long

as k ≤ 15nm−1. As will be shown in Section III, this accuracy is consistent

with present data.

This chapter is organized as follows: A brief overview of the basic theory

of inelastic scattering, the FK −LPI methodology, and RPMD is presented

in Section II. In Section III we begin by discussing the computational details

of our simulations, as well as an overview of the method used to refine the

experimental dynamic structure factor from the raw IXS data of Cunsolo

and coworkers[41, 42]. This is followed by a comparison of the refined quantity

with the theoretical predictions of FK−LPI and RPMD. Lastly, we compare

the FK − LPI and RPMD dynamic structure factors. The conclusions are

presented in Section IV.
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2.2 Theory and Methodology

2.2.1 Inelastic Scattering

The dynamic variable of interest in this chapter is the dynamic struc-

ture factor, which is accessible through inelastic neutron or X-ray scattering.

In such an experiment, what one measures is the inelastic scattering cross-

section of the sample as a function of the change in energy and momentum

of the scattered particle, which is a measurement of the probability that a

neutron or photon transfers momentum ~(~kf − ~ki) and energy ~(ωf − ωi) to

the sample. In this work, using IXS rather than neutrons, we will assume that

the incoherent part of the scattering is negligible and the measured intensity

is proportional to the dynamic structure factor[11]. Under this reasonable

assumption, a straightforward comparison can be achieved between the out-

comes of computational and experimental results. Van-Hove[13] showed that

within the first Born approximation, the inelastic scattering cross-section is

proportional to the dynamic structure factor, S(~k, ω), which is defined as the

Fourier transform over space and time of the time-dependent pair distribution

function G(~r, t).

S(~k, ω) =
1

2π

∫
d3~r dt ei(

~k·~r−ωt)G(~r, t) (2.2)

where G(~r, t) for a system of N particles is defined as

G(~r, t) =
1

N

N∑
i,j=1

〈∫
d3~r′ δ(~r + r̂i(0)− ~r′) δ(~r′ − r̂j(t))

〉
. (2.3)
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Here, 〈· · · 〉 denotes a canonical ensemble average, and r̂i(t) is the time-dependent

position operator of the i−th particle, which, in the Heisenberg formalism is

given by r̂i(t) = eiĤt/~ r̂i e
−iĤt/~. By working in the basis of energy eigenstates,

one can also show that the dynamic structure factor obeys the principle of de-

tailed balance

S(~k, ω) = eβ~ωS(~k,−ω). (2.4)

It is convenient to define the intermediate scattering function F (~k, t)

as the spatial Fourier transform of G(~r, t) so that

S(~k, ω) =
1

2π

∫ ∞
−∞

dt e−iωt F (~k, t), (2.5)

where

F (~k, t) ≡
∫
d3~r ei

~k·~rG(~r, t) =
1

N

N∑
i,j=1

〈
e−i

~k·r̂i(0) ei
~k·r̂j(t)

〉
. (2.6)

By defining the density fluctuation operator[12]

ρ̂(~k, t) ≡
N∑
i=1

e−i
~k·r̂i(t), (2.7)

the intermediate scattering function takes the compact form

F (~k, t) =
1

N

〈
ρ̂(~k, 0) ρ̂†(~k, t)

〉
. (2.8)

From the relation in Eq. 2.5, one sees that the dynamic structure factor gives

the spectrum of density fluctuations. For an isotropic system as a fluid, the

intermediate scattering function does not depend on the direction of ~k, but

only on its amplitude k such that F (~k, t) = F (k, t) and, of course, S(~k, ω) =

S(k, ω).
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The shape of the dynamic structure factor is defined by its n-order

spectral moments

〈ωn〉 ≡
∫ ∞
−∞

dω ωn S(k, ω) = i−n
[
∂nF (k, t)

∂tn

]
t=0

. (2.9)

The comparison between measured and computed values of the spectral mo-

ments can be used as a metric to judge the quality of a theoretical simulation.

The zeroth moment is the static structure factor[11], S(~k), which is related to

the spatial Fourier transform of the pair distribution function by

S(~k) ≡
〈
ω0
〉

= 1 +

∫ ∞
−∞

d3~r ei
~k·r̂ g(~r). (2.10)

The first moment of S(~k, ω) is of special interest since for a system which

interacts through a momentum-independent potential [12], the first moment

of the dynamic structure factor can be rigorously expressed as

〈ω〉 ≡
∫ ∞
−∞

dω ω S(~k, ω) =
~k2

2m
. (2.11)

It has been shown that the FK−LPI approximation to the dynamic structure

factor obeys this sum rule exactly[4].

2.2.2 Classical Wigner

The CW[2, 17, 19] expression for a general quantum time correlation

function of a system of N particles in three dimensions is given by〈
Â(0)B̂(t)

〉
≈ 1

Z (2π~)3N

∫ ∞
−∞

d~pN0 d~q
N
0 [e−βĤÂ]W (~qN0 , ~p

N
0 )

×[B̂]W (~qNt , ~p
N
t ) (2.12)
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where ~qNt ={~qj(t)}Nj=1 and ~pNt ={~pj(t)}Nj=1 is the classically evolved quantum

phase space,
(
~qN0 , ~p

N
0

)
being the initial quantum distribution, and the Wigner

transform of a general operator Ĉ is given by

[Ĉ]W (~qN , ~pN) ≡
∫ ∞
−∞

N∏
j=1

[
d3~ηj e

−i~pj ·~ηj/~
]

×
〈
~qN +

~ηN

2

∣∣∣Ĉ∣∣∣ ~qN − ~ηN

2

〉
(2.13)

where
∣∣~xN〉 ≡ |~x1〉 ⊗ |~x2〉 · · · ⊗ |~xN〉 is the direct product of the single particle

position kets |~xj〉.

The CW approximation can be conjectured from the exact Wigner

representation of the quantum time correlation function given by〈
Â(0)B̂(t)

〉
=

1

Z (2π~)3N

∫ ∞
−∞

d~pNd~qN [e−βĤÂ]W (~qN , ~pN)

×[B̂(t)]W (~qN , ~pN), (2.14)

since the CW approximation simply amounts to replacing the exact quantum

evolution of B̂(t) = eiĤt/~ B̂ e−iĤt/~ with the classical evolution of the quantum

phase-space such that

[B̂(t)]W (~qN , ~pN)→ [B̂]W (~qNt , ~p
N
t ). (2.15)

It is worth noting that for an operator B̂ which is a function of only

the system’s momentum or position operators, the analytical evaluation of

[B̂]W (~qNt , ~p
N
t ) is readily performed and is given by the corresponding classical

expression

13



[B̂({x̂j}Nj=1)]W (~qNt , ~p
N
t ) = B(~qNt )

[B̂({p̂j}Nj=1)]W (~qNt , ~p
N
t ) = B(~pNt ) (2.16)

2.2.3 Feynman-Kleinert Linearized Path-Integral Method

As seen in Eq. 2.12, the Wigner transform of e−βĤÂ needs to be per-

formed in order to implement the CW approximation. Hence, for a realistic

many-body system one must invoke an approximation to e−βĤ that allows

for an efficient numerical evaluation of [e−βĤÂ]W (~qN0 , ~p
N
0 ). The FK − LPI

method accomplishes this by casting e−βĤ into a harmonic form using the effec-

tive frequency variational theory of Feynman[8] and Kleinert[9] along with the

quasidensity operator formalism of Jang and Voth[16]. The harmonic form of

the density operator allows for an analytical expression of [e−βĤÂ]W (~qN0 , ~p
N
0 )

to be obtained since only gaussian integrals are required. The details of the

method are described in Refs. [2], [4] and [5] and a brief summary is provided

in Appendix A.

Choosing ~k to be parallel to the x-axis, the FK − LPI approximation

to the intermediate scattering function takes the form

F (~k, t) ≈ 1

Z(2π~)3N

1

N

N∑
i,j=1

∫ ∞
−∞

N∏
j=1

[
d3~p

(j)
0 d3~q

(j)
0

]
×[e−βĤe−ikx̂i ]W (~qN0 , ~p

N
0 ) [eikx̂j ]W (~qNt , ~p

N
t ) (2.17)

where

[eikx̂j ]W (~qNt , ~p
N
t ) = eikxj(t). (2.18)
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The rather lengthy expression of [e−βĤe−ikx̂i ]W (~qN0 , ~p
N
0 ) is derived in Ref. [4]

(see Eq. 18 therein). The FK−LPI approximation to the dynamic structure

factor can be obtained from the FK−LPI approximation of the intermediate

scattering function by a simple Fourier transform as prescribed by Eq. 2.5.

2.2.4 Ring-Polymer Molecular Dynamics

As previously mentioned, Ring-Polymer Molecular Dynamics is a semi-

classical method which allows one to calculate the Kubo-transformed quantum

time correlation function of a many-body system, defined as〈
Â(0)B̂(t)

〉
Kubo

≡ 1

βZ

∫ β

0

dλTr
(
e−(β−λ)ĤÂ(0)e−λĤB̂(t)

)
. (2.19)

Its Fourier transform

C̃AB(ω) ≡
∫ ∞
−∞

dt e−iωt
〈
Â(0)B̂(t)

〉
Kubo

, (2.20)

is related to its standard quantum counterpart, CAB(ω), through:

CAB(ω) =
β~ω

1− e−β~ω
C̃AB(ω). (2.21)

In RPMD, the N particle quantum many-body system with a Hamiltonian of

the form

Ĥ =
N∑
i=1

p̂2
i

2m
+ V ({q̂j}Nj=1) (2.22)

is mapped onto a classical system of N ring-polymer necklaces with n beads

and described by a Hamiltonian
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Hn({~q (k)
i }, {~p

(k)
i }) =

N∑
i=1

n∑
k=1


(
~p

(k)
i

)2

2m
+

m

2β2
n~2

(
~q

(k)
i − ~q

(k−1)
i

)2


+

n∑
k=1

V ({~q (k)
j }Nj=1) (2.23)

where (~q
(k)
i , ~p

(k)
i ) is the position and momentum of the k−th bead on the i−th

ring, βn ≡ β/n, and ~q
(0)
i ≡ ~q

(n)
i . It is worth noting that in the ring-polymer

Hamiltonian, bead k on ring i interacts with bead k on ring j through the

systems original potential, while bead k and bead k + 1 on the same ring

interact through a harmonic potential.

Within the RPMD approximation, the Kubo-transformed time corre-

lation function takes the form〈
Â(0)B̂(t)

〉
Kubo

≈ 1

Zn(2π~)3Nn

×
∫ ∞
−∞

N∏
i=1

n∏
k=1

[
d3~q

(k)
i d3~p

(k)
i

]
e−βnHn An(0)Bn(t) (2.24)

where

Zn =
1

(2π~)3Nn

∫ ∞
−∞

N∏
i=1

n∏
k=1

[
d3~q

(k)
i d3~p

(k)
i

]
e−βnHn (2.25)

and

An(0) =
1

n

n∑
k=1

A( {~q (k)
j , ~p

(k)
i }Nj=1 ), (2.26)

Bn(t) =
1

n

n∑
k=1

B( {~q (k)
j (t), ~p

(k)
i (t)}Nj=1 ). (2.27)
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The equations of motion propagating classically the positions and momenta

of the ring-polymer from the initial phase space point (~q
(k)
i , ~p

(k)
i ) to the the

space point (~q
(k)
i (t), ~p

(k)
i (t)) are generated from the Hamiltonian in Eq. 2.23

and explicitly read

d

dt
~p

(k)
i = − m

β2
n~2

(
2~q

(k)
i − ~q

(k−1)
i − ~q (k+1)

i

)
−~5

(k)

i V ({~q (k)
j }Nj=1), (2.28)

d

dt
~q

(k)
i =

~p
(k)
i

m
. (2.29)

In a RPMD simulation, evaluation of the Kubo-transformed time cor-

relation function in Eq. 2.24 is performed by using the standard methods of a

molecular dynamics simulation in which one uses the classical dynamics in Eqs.

2.28 and 2.29 to not only explore the configuration space of the ring-polymer

system, but also for the explicit evaluation of Bn(t).

TheRPMD approximation to the Kubo-transformed intermediate scat-

tering function takes the following form

F̃ (~k, t) ≈ 1

Zn(2π~)3Nn

∫ ∞
−∞

N∏
i=1

n∏
k=1

[
d3~q

(k)
i d3~p

(k)
i

]

× e−βnHn
1

N
ρn(~k, 0) ρ∗n(~k, t), (2.30)

where in analogy to Eq. 2.7 we have defined

ρn(~k, t) ≡ 1

n

N∑
i=1

n∑
k=1

e−ikx
(k)
i (t). (2.31)
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Table 2.1: The simulation parameters used for the FK − LPI calculation of
Eq. 2.17.

D2

k (nm−1) N l (bohr) ρ (nm−3) MC steps acc %
5.5 37 21.65 24.61 3.2x106 60%
12.8 78 27.76 24.61 1.5x106 59%
15.3 109 31.03 24.61 1.5x106 53%
20.0 95 29.64 24.61 1.5x106 56%

H2

k (nm−1) N l (bohr) ρ (nm−3) MC steps acc %
5.5 32 21.66 21.24 3.2x106 62%
12.8 68 27.85 21.24 1.6x106 60%
15.3 94 31.03 21.24 1.5x106 61%
20.0 82 29.65 21.24 1.5x106 56%

Table 2.2: The simulation parameters used for the RPMD calculation of Eq.
2.30.

D2 H2

k (nm−1) N l (bohr) ρ (nm−3) N l (bohr) ρ (nm−3)
5.5 37 21.65 24.61 32 21.66 21.24
12.8 79 27.88 24.61 68 27.85 21.24

in which, once again, ~k is taken parallel to the x-axis. The RPMD approxima-

tion to the dynamic structure factor can be obtained from the Kubo-transform

of the intermediate scattering function by using Eq. 2.21 and is given by

S(~k, ω) =
β~ω

1− e−β~ω
S̃(~k, ω) (2.32)

where

S̃(~k, ω) ≡ 1

2π

∫ ∞
−∞

dt e−iωt F̃ (~k, t). (2.33)
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2.3 Results

2.3.1 Computational Details

In order to obtain the dynamic structure factor for liquid para-hydrogen

and ortho-deuterium at a state point of (T = 20.0 K,n = 21.24 nm−3) and

(T = 23.0 K,n = 24.61 nm−3) respectively, the FK − LPI approximation to

the intermediate scattering function in Eq. 2.17 as well as the RPMD ap-

proximation to the Kubo-transformed intermediate scattering function in Eq.

2.30 were evaluated by using the Silvera-Goldman (SG) potential[7]. The SG

potential has been used in a number of previous studies[14, 20, 21, 27, 29, 35]

and has been shown to provide very accurate descriptions of the fluid and

solid thermodynamics, except at extremely high pressure[36, 37]. This semi-

empirical isotropic pair potential, applicable to both para-hydrogen and ortho-

deuterium, treats each molecule as a spherical particle which is justifiable at

low temperatures since only the J=0 rotational state is populated in each

isotope. When performing the FK − LPI simulation, to expedite the deter-

mination of the FK centroid potential we represented the SG potential as a

sum over four Gaussian functions whose parameters can be found in Table II

of Ref. [3].

Both the FK − LPI and RPMD simulations were performed by em-

ploying cubic periodic boundary conditions with the minimum image conven-

tion and a spherical cutoff at half box length. It should be noted that in

the RPMD simulations the truncation of the interaction was determined by

the centroid-to-centroid distance. Furthermore, due to the isotropic nature of
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the SG potential, in both simulations, the momentum transfer ~k was chosen,

without loss of generality, to be in the x-direction. In order to fulfill the Laue

condition [10] k = 2πn/l where l is the length of the simulation cell and n is

an integer, the number of particles N treated in the simulation had to be var-

ied for each momentum transfer and these, as well as the simulation box size

used, for each k are listed in Tables. I and II for the FK − LPI and RPMD

simulations, respectively. It should be noted that for a momentum transfer of

k = 5.5nm−1, the only choice for the number of particles was either N = 32

(N = 37) or N = 253 (N = 294) for the para-hydrogen (ortho-deuterium)

system. Therefore, due to the computational load involved with obtaining the

variational effective frequency in the FK − LPI method, we chose a system

size of N = 32 (N = 37) for the para-hydrogen (ortho-deuterium) system.

However, in order to make sure that a system size of N = 32 (N = 37) can

faithfully describe the para-hydrogen (ortho-deuterium) system, we evaluated

system size dependence using RPMD and found no significant dependence.

In the FK−LPI simulation, centroid positions were generated by per-

forming a Monte Carlo (MC) walk using the multidimensional generalization

of the centroid phase-space density in Ref. [5]. At every 30th MC step, 10

phase-space points (~qN0 , ~p
N
0 ) were generated from the corresponding weight

factor defined in Eq. 25 of Ref. [4]. These phase-space points were then prop-

agated classically to (~qNt , ~p
N
t ) for 5.9 ps using the velocity Verlet algorithm

with a time step of 2.9 fs. The FK − LPI intermediate scattering function

was then constructed using Eq. 2.17. In order to obtain statistical uncertain-
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ties, two independent initial configurations were equilibrated. From these two

initial configurations, two intermediate scattering function calculations were

performed employing a minimum of 1.5 million MC steps each. The standard

deviation was then obtained by first obtaining averages of the two results over

a minimum of 300,000 MC step blocks, and then calculating the standard de-

viation between the different block averages. For the exact number of MC

steps employed for each k as well as the MC acceptance ratios see Table. I.

The FK − LPI approximation to the dynamic structure factor was obtained

from the intermediate scattering function by invoking the relation in Eq. 2.5.

The RPMD simulation was performed by first generating initial ring-

polymer configurations of n = 48 beads from an equilibrated PIMD simu-

lation in which we invoked the symplectic integration algorithm as well as

the path-integral Langevin equation (PILE) thermostat of Ref. [45]. From

an equilibrated configuration, the Kubo-transformed intermediate scattering

function in Eq. 2.30 was obtained by averaging over 1000 consecutive 3 ps

trajectories in which we employed the symplectic integration algorithm of Ref.

[45] with a time step of 1 fs. To ensure a canonical ensemble average, before

each trajectory, we resampled the ring-polymer momentum from the boltz-

mann distribution at inverse temperature βn. In order to obtain statistical

uncertainties, this entire process was repeated six times. After the Kubo-

transformed intermediate scattering function was obtained, the corresponding

RPMD approximation to the dynamic structure factor was computed by in-

voking the relation in Eq. 2.32.
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Table 2.3: The fitting parameters used in Eq. 2.34 to refine the experimental
dynamic structure factor using the FK − LPI results.

D2

k (nm−1) α(~k) T (~k) δ (meV ) θ (meV ) |δ − θ| R2

5.5 7.49x104 0.897 -0.564 -0.380 0.184 0.96
12.8 1.46x105 0.896 0.109 0.372 0.263 0.99
15.3 2.15x105 0.895 -0.329 -0.128 0.201 0.98
20.0 3.48x105 0.893 -0.812 -0.241 0.571 0.96

H2

k (nm−1) α(~k) T (~k) δ (meV ) θ (meV ) |δ − θ| R2

5.5 5.39x104 0.731 0.048 0.578 0.530 0.99
12.8 1.87x105 0.954 0.486 0.833 0.347 0.97
15.3 1.54x105 0.740 0.019 0.655 0.636 0.98
20.0 3.53x105 0.952 -1.060 -0.936 0.124 0.89

2.3.2 Refinement of the Experimental Dynamic Structure Factor

When performing an inelastic scattering experiment on a liquid, one

must cope with the spurious scattering from the container which must be care-

fully subtracted from the raw intensity. However, for the present measurements

such a subtraction is not completely straightforward due to a random uncer-

tainty in the zero of energy transfer (ω = 0) between the sample+container

and empty container scattering measurements, which is caused by random

temperature drifts in the analyzer crystal [39]. Owing to the rather intense

empty container scattering, neglecting such a small relative shift can nonethe-

less cause significant distortions of the corrected spectral shape.

Taking into account this unknown shift in ω, the experimentally mea-
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sured dynamic structure factor Sexp(~k, ω) of the sample can be expressed as

Sexp(~k, ω) = α(~k)
(
Iraw(~k, ω − δ)− T (~k)IEC(~k, ω − θ)

)
, (2.34)

where Iraw(~k, ω) and IEC(~k, ω) are the measured intensities scattered by the

sample+container system and by the empty container, respectively. It should

be noted that, due to the finite resolution of the experiment, the experimental

dynamic structure factor is related to the sample’s true dynamic structure

factor, S(~k, ω), through a convolution with the instrument resolution function,

R(ω), such that

Sexp(~k, ω) = S(~k, ω)⊗R(ω) =

∫ ∞
−∞

dω′S(~k, ω′)R(ω − ω′). (2.35)

The parameter α(~k) in Eq. 2.34 is the ~k dependent proportionality

factor that relates the dynamic structure factor to the inelastic scattering

cross-section, and |δ − θ| is the sought after random shift in the zero of en-

ergy transfer. Assuming that Iraw(~k, ω) and IEC(~k, ω) are normalized to the

incident flux, T (~k) is the transmission coefficient of the sample which can be

determined by the following relation

T (k) = e−d(θ)/λ, (2.36)

where

d(θ) =
l

2

(
1 +

1

cos(θ)

)
(2.37)

is the effective sample length at a given scattering angle θ, l being the actual

thickness of the sample slab (here l = 10mm), and λ is the absorption length

[46] of the sample.
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The determination of the experimental dynamic structure factor has

previously been accomplished by performing a fit to a model function derived

from the classical viscoelastic theory of liquids multiplied by a quantum correc-

tion factor, which ensures both the detailed balance and first moment sum rule

fulfillment [41, 42]. The dynamic structure factor obtained by the FK − LPI

method has been shown to obey the detailed balance condition as well as the

first moment sum rule [4, 6] and it can be used to fix the unknown spectral

shift |δ − θ|. Here the outcome of the FK − LPI computation has been used

as an input to refine the spectral line-shapes reported in Refs. [41] and [42],

by performing a least squares fit of Eq. 2.34 to the FK − LPI results. We

have opted to use the FK − LPI rather than the RPMD results, since the

latter do not rigorously obey the first moment sum rule and cannot access

high k. During the fit of Eq. 2.34 to the FK −LPI results, for each (δ, θ) we

determined α(~k) through the following relation

α(~k) =

∫∞
−∞ dω ω SFK(~k, ω)⊗R(ω)∫∞

−∞ dω ω
(
Iraw(~k, ω − δ)− T (~k)IEC(~k, ω − θ)

) , (2.38)

where SFK(~k, ω)⊗R(ω) is the convolution of the FK−LPI dynamic structure

factor with the instrumental resolution function. This form for α(~k) can be

derived from Eqs. 2.34 and 2.35 by superimposing the fulfillment of the first

moment sum rule
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∫ ∞
−∞

dω ω Sexp(~k, ω) =

∫ ∞
−∞

dω ω S(~k, ω)⊗R(ω)

=
~k2

2m

∫ ∞
−∞

dω R(ω) + S(~k)

∫ ∞
−∞

dω R(ω)ω, (2.39)

and furthermore assuming that the FK − LPI method provides an exact

determination of the static structure factor. This assumption is justified since

the CW approach is exact for t = 0, where one has F (k, 0) = S(k). The

only approximation the FK − LPI method relies on, when deriving S(k) for

this quantity is the local harmonic approximation (FK approximation) of the

density operator. The parameters obtained by using this method to refine the

experimental dynamic structure factor from the raw inelastic x-ray scattering

data of Cunsolo et al. [41, 42] are shown in Table III [48].

Although theRPMD results do not fulfill the first moment sum rule, we

also performed a separate set of refinements using the RPMD results, in order

to establish that the fit of Eq. 2.34 to the FK−LPI results does not skew the

refined experimental dynamic structure factor. The non-compliance of RMPD

with this sum rule was circumvented by invoking the following relation for

α(~k) (see Eq. 2.38)

α(~k) =
~k2
2m

∫∞
−∞ dω R(ω) + S(~k)

∫∞
−∞ dω R(ω)ω∫∞

−∞ dω ω
(
Iraw(~k, ω − δ)− T (~k)IEC(~k, ω − θ)

) , (2.40)

which takes advantage of the appearance of the exact first moment in Eq. 2.40

and also makes explicit use of the RPMD static structure factor.
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2.3.3 Dynamic Structure Factor

The FK − LPI and RPMD results for the intermediate scattering

function are shown in Fig. 2.1. The RPMD results were obtained from

the Kubo-transformed intermediate scattering function by first computing the

dynamic structure factor using Eq. 2.32 and then inverse Fourier transforming

this quantity. As readily noticed, both theoretical methods predict a significant

imaginary contribution to the intermediate scattering function in all cases.

Further, the imaginary part of the intermediate scattering function of para-

hydrogen is systematically larger for all k values, consistent with expectations

that quantum effects are more relevant for para-hydrogen, which exhibits larger

quantum effects. In fact, the amplitude of the imaginary component vanishes

classically (i.e. for small de Broglie wavelength) and provides a measure of

the quantum deviations. Although the FK − LPI and RPMD results are

qualitatively similar, they tend to show the most significant differences after

about 0.3 ps. The agreement between the FK − LPI and RPMD results

for short times is consistent with the expectation that both methods should

be accurate mainly for times up to ∼ β ~, i.e. 0.38 ps and 0.33 ps for para-

hydrogen and ortho-deuterium respectively.

In Fig. 2.2 the FK − LPI and RPMD dynamic structure factor is

compared with the experimental dynamic structure factor of Ref. [41] and

[42] refined using FK−LPI as the input as described in the previous section.

The analogous spectral shapes refined using RPMD as the input along with

the variable α(~k) in Eq. 2.40 are also shown in Fig. 2.2 for comparison. As
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Figure 2.1: The FK − LPI (blue line) and RPMD (magenta dashed line at
low k’s) approximation to the intermediate scattering function for both ortho-
deuterium (upper four panels) and para-hydrogen (lower four panels) for the
different momentum transfers considered (as labeled). The real part of the
correlation function is the upper curve while the negative imaginary part is
the lower curve in each figure.
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Figure 2.2: The refined experimental dynamic structure factors of Refs.[41]
and [42], as obtained by using either FK − LPI (black dots) or RPMD (red
dots) as the input (see text). The FK−LPI (blue line) and RPMD (dashed
magenta line) dynamic structure factors are convoluted with the instrumental
resolution function. The layout of the figure is the same as that in Fig. 2.1.
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readily noticed, the difference between the experimental line-shapes refined

using either theoretical method as an input is negligible. The FK −LPI and

RPMD dynamic structure factors have both been convoluted with the instru-

ment resolution function in order to provide a meaningful comparison with the

experimental results. As seen in Fig. 2.2, the more sharply resolved frequency

spectrum of RPMD appears to somewhat better reproduce the refined ex-

perimental dynamic structure factors for a momentum transfer of 5.5nm−1 as

compared to the broader spectrum of FK-LPI, although a preference is un-

clear at 12.8nm−1. This discrepancy between the FK − LPI and RPMD

results is plausibly linked to the differences in the long time behavior of the

corresponding intermediate scattering functions and, specifically, to the more

pronounced oscillations of the RPMD profiles.

For the two largest k values, RPMD is not applicable due to the in-

creased non-linearity of the associated correlation function. One can recognize

an overall increase in the decay time of the FK−LPI intermediate scattering

function (see Fig. 2.1) for both para-hydrogen and ortho-deuterium, with that

of 20.0nm−1 showing the slowest decay. The decay time of the ortho-deuterium

intermediate scattering function is longer than that of para-hydrogen for the

two highest k values. One should expect that FK − LPI will perform better

for ortho-deuterium than for para-hydrogen, since the latter exhibits a more

pronounced quantum behavior, while the FK − LPI approach mainly relies

upon classical dynamics. This should become particularly evident when the

long-time behavior of the correlation function becomes relevant. This expec-

29



tation is apparently confirmed by the data in Fig. 2.2, where it is evident that

FK − LPI agrees more closely with the ortho-deuterium experimental data

than that of para-hydrogen. This is most evident at the highest momentum

transfer (20.0nm−1) where FK − LPI closely reproduces the experimental

spectra of ortho-deuterium, while for para-hydrogen it consistently underesti-

mates the intensity and overestimates the width of the spectrum. This allows

us to roughly identify k = 20.0nm−1 as a k-threshold to perform a challenging

test for semi-classical simulations in para-hydrogen. In fact, for k ∼ 20.0nm−1

the classical propagation inherent to FK − LPI evidently does not correctly

account for the quantum behavior of the correlation function.

The static structure factor obtained from the FK − LPI and RPMD

methods are shown in Fig. 2.3. Also shown in the figure are the results from

a classical simulation for ortho-deuterium, which was performed identically to

that of RPMD, the only difference being that we set the number of beads

n equal to 1, which limit reduces to the classical time correlation function.

Classical simulations were not performed for para-hydrogen due to the simi-

larity of our para-hydrogen state points with those in Ref. [43] in which they

found that for para-hydrogen, the state points (T = 25K,n = 19.0nm−3) and

(T = 14K,n = 23.5nm−3) lie in the liquid-vapor coexistence region of the clas-

sical phase diagram. The FK − LPI static structure factor was obtained by

simply taking the t = 0 value of the intermediate scattering function, while the

RPMD and classical static structure factors were obtained by first computing

the dynamic structure factor using the relation in Eq. 2.21, and then integrat-
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Figure 2.3: The static structure factors obtained from the the intermediate
scattering function using the relation in Eq. 2.10 for both ortho-deuterium (left
panel) and para-hydrogen (right panel) using FK−LPI (blue cirlcle), RPMD
(magenta cross), and the Classical simulation with the harmonic correction
factor (black square).
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Figure 2.4: The first moment of the dynamic structure factors obtained from
the the intermediate scattering function using the relation in Eq. 2.11 for both
ortho-deuterium (left panel) and para-hydrogen (right panel) using FK−LPI
(blue cirlcle), RPMD (magenta cross), and the Classical simulation with the
harmonic correction factor (black square). These results are compared with
the exact relation of Eq. 2.11 (black line).
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ing this quantity over ω, as in Eq. 2.10. It should be noted that by computing

the classical quantity this way, we are actually applying the well known har-

monic quantum correction factor[44]. One finds in Fig. 2.3 that both the

FK −LPI and RPMD methods reproduce the experimental static structure

factors of ortho-deuterium and para-hydrogen published in Ref. [42] to within

the combined uncertainty of the experiment and simulation, while the classical

quantity with the harmonic correction factor consistently overestimates this

quantity for ortho-deuterium. The agreement between the FK − LPI and

experimental static structure factors validates a posteriori the assumption,

made in Eq. 2.38, that FK − LPI provides an exact result for S(k), thus

also demonstrating the accuracy of the FK local harmonic approximation for

the density operator. Furthermore, the fact that the classical quantity with

the harmonic correction factor consistently overestimates the static structure

factor for ortho-deuterium shows that this quantity could not be used as an

input to refine the experimental quantity, since the resulting refined quantity

would have an incorrect static structure factor. This is due to the fact that

while the refinement process guarantees the experimental quantity to have the

correct first moment, there are no constraints imposed on the zeroth moment

(static structure factor).

Upon comparison of the first moment of the dynamic structure factor

in Fig. 2.4 obtained from the FK − LPI and RPMD methods with the

exact relation in Eq. 2.11, one clearly sees that RPMD gives a relatively

good estimate for this quantity at the k values where it can be applied. This
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fact shows that the non-linearity of the correlation function does not degrade

the quality of the RPMD results in this range of momentum transfers, in

agreement with the findings of Ref. [27].

2.4 Conclusions

We have provided a benchmark comparison between FK − LPI and

RPMD simulated dynamic structure factors and the one measured by Inelas-

tic X-ray Scattering in low-temperature para-hydrogen and ortho-deuterium.

As a result, we have proposed a successful method to cope with spurious ex-

perimental effects by using either of the computational methods as an input,

while using a best fit approach. The consistency between the experimental

line-shapes refined by either computational method indicates that the used

procedure provides the best available estimate for the true dynamic structure

factor of the samples.

Furthermore, we observed that FK − LPI is able to reproduce the

refined experimental spectrum of ortho-deuterium and para-hydrogen rela-

tively well at low momentum transfers. Small differences between RPMD

and FK − LPI low-k results may reflect the higher accuracy of the former

computational method, even though results were not completely systematic in

this regard.

At higher k, FK −LPI provides an overall better agreement with the

experimental spectra of ortho-deuterium, compared to para-hydrogen. This is

ascribed to the less pronounced quantum behavior of ortho-deuterium, conse-
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quent to its higher molecular mass, which makes more accurate the classical

approximation inherent to the FK − LPI approach. Conversely, the sub-

stantial disagreement between FK − LPI and the experimental spectrum of

para-hydrogen at k = 20.0nm−1 strongly suggests that we have identified

a challenging test system which can serve as a benchmark for new method

development.

Overall, both FK − LPI and RPMD consistently showed residual

differences in the small energy transfer region when compared to experimental

data. While this is most likely due to the classical dynamic propagation used

by both of these methods, which does not properly account for the long time

behavior of the quantum time correlation function, the use of a semi-empirical

potential to model the para-hydrogen and ortho-deuterium system cannot be

ruled out as an error source.
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Chapter 3

A New Class of Ensemble Conserving

Algorithms for Approximate Quantum

Dynamics: Theoretical Formulation and

Model Problems

3.1 Introduction

One of the main goals in quantum statistical mechanics is the calcula-

tion of quantum time correlation functions, which in the canonical ensemble

takes the general form〈
Â(0)B̂(t)

〉
=

1

Z
Tr
(
e−βĤÂ eiĤt/~ B̂ e−iĤt/~

)
, (3.1)

Z being the partition function and β the inverse temperature 1/kbT . The time

correlation functions defined by Eq. 3.1 are of pivotal interest since they are

accessible by most experimental spectroscopic techniques. For example, the

dynamic structure factor, which is measured by either Inelastic X Ray or Neu-

tron Scattering, the diffusion constant, and absorption spectra are just some

of the quantities that can be related to quantum time correlation functions

of the form of Eq. 3.1. Unfortunately, in order to compute these quantities

exactly, one is required either to compute a full real time path-integral or

solve the corresponding time-dependent Schrodinger equation, which is not
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practical for realistic systems due to the intense computational load. In order

to overcome this difficulty, it is desirable to develop approximate quantum

methods which are as accurate and efficient as possible, and therefore enable

the practical evaluation of Eq. 3.1. To date, there exists multiple approxima-

tion schemes including the Classical Wigner approximation (CW)[2, 17, 19],

Centroid Molecular Dynamics (CMD) [15], as well as Ring-Polymer Molecular

Dynamics (RPMD)[26] in which one uses semi-classical methods to calculate

quantum time correlation functions approximately.

While all of these methods provide relatively accurate and practical

approximations to Eq. 3.1, each have their own downfalls. For example, while

both CMD and RPMD have been shown to be exact in the harmonic, high

temperature, and short time limits, both of these methods begin to break down

for correlation functions involving non-linear operators[15, 26, 28]. In addition,

the intrinsic dynamics of the ring-polymer in RPMD can introduce artificial

frequencies in the spectrum of the correlation function, which becomes espe-

cially important when simulating absorption spectra[32]. On the other hand,

the CW approximation is also exact in the harmonic, high temperature, and

short time limits, even for correlation functions involving non-linear opera-

tors[2, 20]. However, the CW approximation does not in general correctly

produce time invariant thermodynamic properties of thermal equilibrium sys-

tems. Explicitly, for Â = 1 the exact quantum expression in Eq. 3.1 has the

property that

〈B̂(t)〉 = 〈B̂(0)〉, (3.2)
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however this is generally not true for the CW approximation due to the classical

dynamics used. While both CMD and RPMD also use a form of classical

dynamics, these methods are able to retain the desirable property in Eq. 3.2

of the exact quantum time correlation function because the form of classical

dynamics used in these methods conserves the initial quantum ensemble, while

the purely classical dynamics used in the CW approximation do not. Recently,

Liu and Miller[20, 22, 24] have proposed a route to remedy this downfall of the

CW approximation by replacing the classical propagation of the initial phase

space distribution with a form of dynamics that conserves the initial quantum

ensemble. Similarly, we set out to present a simple form of dynamics which

conserve the ensemble and can be used to improve upon the Feynman-Kleinert

implementation of the CW approximation, known as the Feynman-Kleinert

linearized path-integral (FK-LPI)[2] method.

This chapter is organized as follows: An introduction to the CW ap-

proximation and the Feynman-Kleinert (FK) approximation of the density

operator is presented in Section II and III. Based upon the FK approximation

of the density operator, we then present two different classes of ensemble con-

serving dynamics in Section IV and V. In Section VI, we apply these dynamics

within the CW approximation for both the quartic and double-well potentials,

and a comparison with the exact quantum time correlation function, as well as

RPMD, CMD, and FK-LPI is made. The conclusions are presented in Section

VII.
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3.2 Classical Wigner Approximation

The CW[2, 17, 19] expression for a general quantum time correlation

function of a system in one dimension is given by

〈
Â(0)B̂(t)

〉
≈ 1

Z 2π~

∫ ∞
−∞

dpdq [e−βĤÂ]W (q, p)[B̂]W (qt, pt) (3.3)

where (qt, pt) is the classically evolved quantum phase space, (q, p) being the

initial quantum distribution, and the Wigner transform of a general operator

Ĉ is given by

[Ĉ]W (q, p) ≡
∫ ∞
−∞

dη e−ipη/~
〈
q +

η

2

∣∣∣Ĉ∣∣∣ q − η

2

〉
. (3.4)

The CW approximation can be shown to follow not only from a path

linearization approximation implemented within the semiclassical initial value

representation (SC-IVR) of the propagator[19], but also from a linearization

of the action difference between the forward-backward time paths in the cor-

responding exact path-integral expression for a general time correlation func-

tion[2, 18]. Furthermore, the CW approximation is exact in the limit that

t → 0 since in this limit Eq. 3.3 reduces to the Wigner representation of

〈ÂB̂〉.

In fact, the CW approximation can be conjectured from the exact

Wigner representation of the quantum time correlation function given by〈
Â(0)B̂(t)

〉
=

1

Z 2π~

∫ ∞
−∞

dpdq [e−βĤÂ]W (q, p)[B̂(t)]W (q, p) (3.5)
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since this approximation simply amounts to replacing the exact quantum evo-

lution of B̂(t) = eiĤt/~ B̂ e−iĤt/~ with the classical evolution of the quantum

phase space such that

[B̂(t)]W (q, p)→ [B̂]W (qt, pt). (3.6)

However, the classical evolution of the quantum phase space does not, in gen-

eral, conserve the initial quantum phase space distribution, which results in

thermodynamic properties of equilibrium systems being, incorrectly, time de-

pendent. Liu and Miller[20, 22, 24] have proposed a route to remedy this down-

fall of the CW approximation by replacing the classical propagation of the

initial phase space distribution with a form of dynamics that preserves the

time invariance of thermodynamic properties, such that 〈B̂(t)〉 = 〈B̂(0)〉 in

accord with the exact correlation function. As we show in Appendix B, the

CW expression in Eq. 3.3 can be made to share this property so long as the

dynamics fulfil

dqdp[e−βĤ ]W (q, p) = dqtdpt[e
−βĤ ]W (qt, pt), (3.7)

such that they conserve the initial quantum phase space probability within

the infinitesimal phase space volume along the trajectory, which is equivalent

to the initial quantum ensemble being conserved. As we will show in Sec. IV

and V, we are able to find two classes of dynamics that preserve this property

and can therefore be used to improve the CW approximation.
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3.3 Feynman-Kleinert density operator

Regardless of the dynamics used, the first step in invoking the CW

approximation is obtaining the corresponding density matrix, since the Wigner

transform of e−βĤÂ is required. As in the FK-LPI method, we accomplish

this by combining the effective frequency variational theory of Feynman[8]

and Kleinert[9] (FK) with the quasidensity operator formalism of Jang and

Voth[16]. This FK approximation to the density operator enables one to obtain

an analytical expression for the Wigner transform of e−βĤÂ which in turn

allows for an efficient numerical evaluation of the CW approximation. The

FK approximation of the density operator is exact in the harmonic and high

temperature limits. Furthermore, the FK approximation to e−βĤ gives the

best local harmonic approximation to the systems free energy and has been

shown to be very accurate[1–6].

The FK approximation for e−βĤ in one dimension is given by

e−βĤ ≈
∫ ∞
−∞

dxc dpc ρFK(xc, pc) δ̂FK(xc, pc) (3.8)

where (xc, pc) are the classical centroid phase space variables describing the

average position and momentum of a particle during thermal time β~ and are

defined as

xc ≡
1

β~

∫ β~

0

dτ x(τ) pc ≡
1

β~

∫ β~

0

dτ p(τ). (3.9)

The FK approximation to the centroid phase space density ρFK(xc, pc) is given

by

ρFK(xc, pc) ≡
1

2π~
exp

{
−β
(
p2
c

2m
+W1(xc)

)}
, (3.10)
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W1(xc) being the FK approximation to the centroid potential. The effective

frequency quasidensity operator δ̂FK(xc, pc) is defined as

δ̂FK(xc, pc) ≡

√
mΩ(xc)

π~α(xc)

∫ ∞
−∞

dx dx′ |x′〉 〈x|

× exp

{
i
pc
~

(x′ − x)− mΩ(xc)

~α(xc)

(
x′ + x

2
− xc

)2
}

× exp

{
−mΩ(xc)α(xc)

4~
(x′ − x)

2

}
, (3.11)

where the centroid dependent variational effective frequency Ω(xc) is deter-

mined from the local curvature of the systems Gaussian smeared potential,

and is given by

Ω2(xc) =
1

m

[
∂2Va2(xc)

∂x2
c

]
a2=a2(xc)

. (3.12)

The smeared potential, Va2(xc), which accounts for quantum-statistical path

fluctuations is defined as

Va2(xc) ≡
√

1

2πa2

∫ ∞
−∞

dy V (y) exp

{
−(y − xc)2

2a2

}
, (3.13)

the smearing width a2(xc) being

a2(xc) =
1

mβΩ2(xc)

(
β~Ω(xc)

2
coth

(
β~Ω(xc)

2

)
− 1

)
(3.14)

which measures the importance of quantum fluctuations around the classical-

like position xc. In Eq. 3.11, α(xc) is related to the smearing width a2(xc)

by

α(xc) =
2mΩ(xc)a

2(xc)

~
= coth

(
β~Ω(xc)

2

)
− 2

β~Ω(xc)
. (3.15)
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Note that when using Eq. 3.12 to determine the effective frequency Ω(xc), the

derivative is taken while treating a2(xc) as a constant. Furthermore, by using

Eq. 3.12 and 3.13 one can write the explicit form that Ω2(xc) takes in terms

of a2(xc), and it is given by

Ω2(xc) =
1

m

√
1

2πa2(xc)

∫ ∞
−∞

dy
∂2V (y + xc)

∂x2
c

× exp

{
− y2

2a2(xc)

}
. (3.16)

Once Ω(xc) is determined by solving Eq. 3.14 and 3.16 iteratively, the

FK approximation to the centroid potential W1(xc) is given by

W1(xc) =
1

β
ln

sinh
(
β~Ω(xc)

2

)
β~Ω(xc)

2

+ Va2(xc)

−1

2
mΩ2(xc)a

2(xc). (3.17)

Using this FK approximation of the density operator, the Wigner dis-

tribution function, [e−βĤ ]W (q, p), takes the form

[e−βĤ ]W (q, p) =

∫
dxcdpc ρFK(xc, pc)[δ̂FK ]W (q, p), (3.18)

where the Wigner transform of the QDO is written explicitly as

[δ̂FK ]W (q, p) =
2

α
exp

{
−mΩ

~α
(q − xc)2 − (p− pc)2

m~Ωα

}
. (3.19)
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3.4 The Feynman-Kleinert Quasi-Classical Wigner method:
FK-QCW(1)

As it turns out, there are multiple ways of generating dynamics that

conserve the initial quantum ensemble and can be used to evaluate the CW

approximation. For example, Liu and Miller[22] proposed a clever way of

generating ensemble conserving dynamics by making an analogy to Liouville’s

theorem in classical mechanics and set

d

dt
[e−βĤ ]W (qt, pt) = 0, (3.20)

and then proceed to generate the dynamics from this relation by choosing

q̇t =
pt
m

(3.21)

from which it will follow that the effective force will be given by

ṗt = −∂Veff (qt, pt)
∂qt

= −pt
m

∂

∂qt
[e−βĤ ]W (qt, pt) /

∂

∂pt
[e−βĤ ]W (qt, pt). (3.22)

However, if one takes this Equilibrium Liouville Dynamics[22] route for the

FK approximation of the Wigner distribution function then, as shown in Ref.

[23], the dynamics involve an integration over the centroid distribution at each

time step, which adds a significant computational load.

However, within the FK approximation to the density operator, one

can find another set of dynamics that conserves the ensemble and avoids this

complication. This is accomplished by first casting the FK Wigner distribution
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function into another form by making a dummy variable substitution of the

integration variables in Eq. 3.18 from (xc, pc)→ (xc(t), pc(t)) (see Appendix C

for a rigorous proof) such that this function evaluated at a point (qt, pt) takes

the form

[e−βĤ ]W (qt, pt) =

∫
dxc(t)dpc(t) ρFK(xc(t), pc(t))

×[δ̂FK(t)]W (qt, pt), (3.23)

where δ̂FK(t) ≡ δ̂FK(xc(t), pc(t)) and the centroid variables evolve according

to the classical like equations

ẋc(t) =
pc(t)

m

ṗc(t) = −
[
∂Va2(xc(t))

∂xc(t)

]
a2=a2(xc(t))

. (3.24)

However, as we show in Appendix D, the centroid distribution fulfills Liou-

ville’s theorem such that

dxcdpcρFK(xc, pc) = dxc(t)dpc(t)ρFK(xc(t), pc(t)), (3.25)

and using this identity in Eq. 3.23 we have that

[e−βĤ ]W (qt, pt) =

∫
dxcdpc ρFK(xc, pc)[δ̂FK(t)]W (qt, pt). (3.26)

Thus, using this form of the FK Wigner distribution function, in order

for

dqtdpt[e
−βĤ ]W (qt, pt) = dqdp[e−βĤ ]W (q, p) (3.27)

such that the ensemble is conserved, the dynamics must fulfil
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∫
dxcdpc ρFK(xc, pc)

(
dqtdpt[δ̂FK(t)]W (qt, pt)

−dqdp[δ̂FK(0)]W (q, p)

)
= 0 (3.28)

which we see can be satisfied independent of the centroid distribution function

if the dynamics fulfill the less restrictive condition

dqtdpt[δ̂FK(t)]W (qt, pt) = dqdp[δ̂FK(0)]W (q, p). (3.29)

Furthermore, the phase space volume element at time t is related to the initial

volume element through

dqtdpt = det(J(t))dqdp (3.30)

where det(J(t)) is the determinant of the Jacobian matrix and explicitly given

by[22]

det(J(t)) = exp(

∫ t

0

∂q̇t
∂qt

+
∂ṗt
∂pt

dt), (3.31)

such that Eq. 3.29 is equivalent to

det(J(t))[δ̂FK(t)]W (qt, pt) = [δ̂FK(0)]W (q, p). (3.32)

As we now show, we are able to easily find a set of dynamics that fulfil

this relation and therefore are guaranteed to conserve the ensemble. This is

accomplished by working in terms of the dimensionless relative coordinates

q̃(t) ≡
√
mΩt

~αt
(qt − xc(t))

p̃(t) ≡
√

1

m~Ωtαt
(pt − pc(t)) (3.33)
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in which the Wigner transformed QDO takes the simple form

[δ̂FK(t)]W (qt, pt) =
2

αt
exp(−q̃(t)2 − p̃(t)2), (3.34)

and, as shown in Appendix E, the determinant of the Jacobian matrix in Eq.

3.31 takes the form

det(J(t)) = exp

(∫ t

0

∂q̇t
∂qt

+
∂ṗt
∂pt

dt

)

= exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
dt

)
αt
α0

. (3.35)

Thus, using these relations in Eq. 3.32, we have that the ensemble will be

conserved as long as the dynamics fulfil

exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
dt

)
exp(−q̃(t)2 − p̃(t)2)

= exp(−q̃(0)2 − p̃(0)2). (3.36)

Therefore, if we require the dynamics to satisfy

exp(−q̃(t)2 − p̃(t)2) = exp(−q̃(0)2 − p̃(0)2), (3.37)

or equivalently

q̃(t) ˙̃q(t) + p̃(t) ˙̃p(t) = 0, (3.38)

and furthermore require

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
= 0, (3.39)

then the ensemble will be conserved.

This then gives us two conditions that must be met, however, it does

not give us a way to generate dynamics without first assuming a form for either
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˙̃q(t) or ˙̃p(t). Therefore, to guide us in this matter, we look to the harmonic limit

in which Ω is constant and the exact dynamics of the centroid and quantum

phase space variables are given by their corresponding classical equations. In

this limit, it is straightforward to show that the exact relation for ˙̃q(t) is

˙̃q(t) = Ωp̃(t). (3.40)

Thus, assuming this harmonic form and furthermore introducing an arbitrary

frequency function f such that for a general potential ˙̃q(t) takes the form

˙̃q(t) = fp̃(t), (3.41)

then from the condition in Eq. 3.38 we have that

˙̃p(t) = −f q̃(t). (3.42)

Furthermore, the second condition in Eq. 3.39 that must be met for these

dynamics to conserve the ensemble is

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
=

∂f

∂q̃(t)
p̃(t)− ∂f

∂p̃(t)
q̃(t) = 0. (3.43)

However, by using Eq. 3.33 we can make a change of variables for the partial

derivatives and this condition can be equivalently written as√
~αt
mΩt

∂f

∂qt
p̃(t)−

√
m~Ωtαt

∂f

∂pt
q̃(t) = 0, (3.44)

which we recognize is always satisfied as long as our arbitrary function f does

not depend on qt or pt. Therefore, the dynamics of the general form
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˙̃q(t) = f (xc(t), pc(t)) p̃(t)

˙̃p(t) = −f (xc(t), pc(t)) q̃(t) (3.45)

are guaranteed to conserve the ensemble since they fulfill the relation in Eq.

3.36 and therefore Eq. 3.27. Furthermore, using Eq. 3.33 these dynamics can

be written explicitly in terms of the quantum phase space variables as

q̇t = ẋc(t) +
f

mΩt

(pt − pc(t))−
1

2

d

dt
ln

(
Ωt

αt

)
(qt − xc(t))

ṗt = ṗc(t)− fmΩt (qt − xc(t)) +
1

2

d

dt
ln (Ωtαt) (pt − pc(t)) (3.46)

from which one can show that the determinant of the Jacobian matrix is given

by

det(J(t)) =
αt
α0

. (3.47)

Therefore, since we are able to introduce an arbitrary function f(xc(t), pc(t))

into the dynamics, we have found an entire class of dynamics that conserve the

ensemble and can be used within the CW expression for the time correlation

function. Furthermore, the direct propagation of the (qt, pt) variables through

the dynamics in Eq. 3.46 is not necessary due to the fact that once the dimen-

sionless and centroid variables have been propagated according to Eq. 3.45

and 3.24, respectively, we can obtain the instantaneous quantum phase space

variables through

qt =

√
~αt
mΩt

q̃(t) + xc(t)

pt =
√
m~Ωtαt p̃(t) + pc(t), (3.48)
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which is the inversion of Eq. 3.33. Furthermore, the multi-dimensional gen-

eralization of this method is relatively straightforward since it amounts to

propagating the dimensionless relative coordinates through the same dynam-

ics in Eq. 3.45, only now written in terms of the mass-weighted normal mode

coordinates defined in Ref. [2].

However, there does exist one drawback to this entire class of dynamics

since the momentum becomes imaginary when the FK effective frequency takes

on imaginary values. Explicitly, when Ω2
t < 0 the Ωtαt term in Eq. 3.48

becomes negative which does not allow us to transform from p̃(t) to pt. Thus,

there exists a limitation in these dynamics since in order to use it for barriers

one must adopt the convention to set pt = pc(t), which is the limiting value of

pt for Ωt → 0, as seen from Eq. 3.48. While this convention does not present

a problem when used within the CW expression for the time correlation of

linear operators, it would be desirable to have a similar method that conserves

the ensemble and is also able to handle imaginary frequencies in a robust

way. This is the motivation for an additional class of dynamics which are

presented in Sec. V. However, as we show in Appendix F, this entire class of

dynamics when used within the CW approximation for the Kubo-transformed

time-correlation function reduces to CMD for linear operators.

3.4.1 Harmonic limit

Although a whole class of dynamics exist which conserve the initial

quantum ensemble, one can easily conjecture that only a subset of these would
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actually be useful and provide a reasonable approximation to the real quantum

dynamics. Therefore, we now provide a way to tailor the general frequency

function introduced into the dynamics such that we recover exact quantum

dynamics in the harmonic limit.

For a harmonic potential, Ωt and αt are simply constants. Furthermore,

as we alluded to in Eq. 3.40, the exact dynamics of the dimensionless variables

in Eq. 3.33 in the harmonic limit takes the form

˙̃q(t) = Ωp̃(t)

˙̃p(t) = −Ωq̃(t), (3.49)

which is easily shown by using the fact that the exact dynamics of the centroid

and quantum phase space variables are given by their corresponding classical

equations. Therefore, if we choose for our arbitrary function in the dynamics

of Eq. 3.45 the FK effective frequency

f (xc(t)) = Ω(xc(t)), (3.50)

then these dynamics will be exact in the harmonic limit, since in this limit

Ω(xc(t)) → Ω. Furthermore, since the CW approximation is exact in this

limit, the time correlation function will also be exact.

3.4.2 Classical and high temperature limits

In both the classical (~ → 0) and high temperature (β → 0) lim-

its, it is easy to show from Eq. 3.48 that qt and pt become fixed at xc(t)
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and pc(t), respectively. Furthermore, the centroid equations of motion reduce

to the corresponding classical equations of motion since the smearing width

a2(xc(t)) → 0 in both of these limits. Using these properties, it is straight-

forward to show that when the FK approximation to the density operator is

used, the CW expression for the time correlation function in Eq. 3.3 reduces

to the corresponding classical expression. Thus, the entire class of dynamics

in Eq. 3.45 are able to recover both the classical and high temperature limits

of the quantum time correlation function exactly.

3.4.3 Low temperature limit

At low temperatures the centroid distribution in Eq. 3.11 singles out

pc = 0 as well as the xc value corresponding to the global minimum of the

centroid potential W1(xc), denoted xmc . Therefore, from Eq. 3.24 we have that

(xc(t), pc(t)) will be fixed at (xmc , 0), and the dynamics of Eq. 3.45 reduce to

q̇t =
pt
m

ṗt = −mf(xmc , 0)Ω(xmc ) (qt − xmc ) . (3.51)

Furthermore, as discussed in Refs. [8] and [9], in the low temperature limit

~Ω(xmc ) provides an approximation to the energy difference between the ground

and first excited state. Thus, choosing for the dynamics the FK effective

frequency f = Ω(xc(t)), then in the low temperature limit we have that f →

Ω(xmc ) and the solution to Eq. 3.51 is
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qt = xmc + (q − xmc ) cos(Ω(xmc )t) +
p

mΩ(xmc )
sin(Ω(xmc )t)

pt = p cos(Ω(xmc )t)−mΩ(xmc ) (q − xmc ) sin(Ω(xmc )t), (3.52)

Therefore, since in the low temperature limit the exact dynamics are domi-

nated by the ground and first excited states, then, similar to CMD[34], this

method produces coherent quantum dynamics in this limit when the FK ef-

fective frequency is used in the dynamics.

3.5 An additional Feynman-Kleinert Quasi-Classical Wigner
method: FK-QCW(2)

The imaginary frequency problem encountered in the dynamics of Sec.

IV occurs because the Ωtαt factor in Eq. 3.48 becomes negative for imaginary

frequencies. Looking back at how we defined the dimensionless variables, we

see that the root of this problem stems from the exp{−(pt − pc(t))2/m~Ωtαt}

factor contained within the FK Wigner distribution function in Eq. 3.26,

which in addition becomes divergent for imaginary frequencies. However, the

FK Wigner distribution function is Gaussian in the centroid momentum, and

after integrating this variable out takes the form

[e−βĤ ]W (q, p) =

∫
dxcρFK(xc)

×

√
8πm tanh(β~Ω0

2
)

βα0

ρ̃(xc, q, p), (3.53)

where we have defined

ρFK(xc) ≡
1

2π~
exp {−βW1(xc)} (3.54)

53



and

ρ̃(xc, q, p) ≡ exp

{
−mΩ0

~α0

(q − xc)2

}

× exp

{
−

tanh(β~Ω0

2
)

m~Ω0

p2

}
. (3.55)

One can show that this form is well defined for imaginary frequencies so long

as |Ω0| < π/~β.

As we now show, we are able to use this form to find another class of

ensemble conserving dynamics that are well defined for this range of imaginary

frequencies. This is accomplished by multiplying Eq. 3.53 by

1 =

√
β

2πm

∫
dpc exp

{
−βp2

c

2m

}
, (3.56)

after which we obtain

[e−βĤ ]W (q, p) =

∫
dxcdpcρFK(xc, pc)

×

√
4 tanh(β~Ω0

2
)

α0

ρ̃(xc, q, p). (3.57)

Thus after making a dummy variable substitution in this expression by chang-

ing the integration variables from (xc, pc) → (xc(t), pc(t)), we have that this

function evaluated at a point (qt, pt) becomes

[e−βĤ ]W (qt, pt) =

∫
dxc(t)dpc(t)ρFK(xc(t), pc(t))

×

√
4 tanh(β~Ωt

2
)

αt
ρ̃(xc(t), qt, pt). (3.58)
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Furthermore, since we have made the full centroid distribution function reap-

pear in this expression, we can use Liouville’s theorem such that

[e−βĤ ]W (qt, pt) =

∫
dxcdpcρFK(xc, pc)

×

√
4 tanh(β~Ωt

2
)

αt
ρ̃(xc(t), qt, pt). (3.59)

Therefore, using Eqs. 3.59 and 3.57 we have that in order for

dqtdpt[e
−βĤ ]W (qt, pt) = dqdp[e−βĤ ]W (q, p) (3.60)

such that the ensemble is conserved, the dynamics must fulfil∫
dxcdpcρFK(xc, pc)

×
(
dqtdpt

√
4 tanh(β~Ωt

2
)

αt
ρ̃(xc(t), qt, pt)

−dqdp

√
4 tanh(β~Ω0

2
)

α0

ρ̃(xc, q, p)

)
= 0 (3.61)

which, after using Eq. 3.30, can be satisfied by requiring

det(J(t))

√
tanh(β~Ωt

2
)

αt
ρ̃(xc(t), qt, pt)

=

√
tanh(β~Ω0

2
)

α0

ρ̃(xc, q, p). (3.62)

However, similar to our previous analysis in Sec. IV, this condition for

the dynamics to conserve the ensemble can be greatly simplified by working

in the new dimensionless coordinates defined as
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q̃(t) ≡
√
mΩt

~αt
(qt − xc(t))

p̃(t) ≡

√
tanh(β~Ωt

2
)

m~Ωt

pt, (3.63)

in which

ρ̃(xc(t), qt, pt) ≡ ρ̃(q̃(t), p̃(t)) = exp
(
−q̃(t)2 − p̃(t)2

)
. (3.64)

Furthermore, one can show, by using an argument similar to that in Appendix

E, that the determinant of the Jacobian matrix in terms of these new dimen-

sionless coordinates takes the form

det(J(t)) = exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
dt

)√
αt tanh(β~Ω0

2
)

α0 tanh(β~Ωt

2
)

(3.65)

Therefore, using these relations in Eq. 3.62, we have that the ensemble will

be conserved as long as these new dynamics fulfil

exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
dt

)
exp(−q̃(t)2 − p̃(t)2)

= exp(−q̃(0)2 − p̃(0)2), (3.66)

which we recognize is the same condition as Eq. 3.36, only now written in

terms of these new dimensionless variables. Therefore, as long as these new

dynamics simultaneously fulfil

q̃(t) ˙̃q(t) + p̃(t) ˙̃p(t) = 0 (3.67)

and

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
= 0, (3.68)
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the ensemble will be conserved.

Thus, after assuming the same harmonic like form of ˙̃q(t) as in Sec. IV,

one can show that these two conditions determine these new dynamics as

˙̃q(t) = f (xc(t)) p̃(t)

˙̃p(t) = −f (xc(t)) q̃(t), (3.69)

where now q̃(t) and p̃(t) are given by Eq. 3.63. Furthermore, by using Eq.

3.63 these new dynamics can be written explicitly in terms of the quantum

phase space variables as

q̇t = ẋc(t) +
f
√
αt tanh(β~Ωt

2
)

mΩt

pt −
1

2

d

dt
ln

(
Ωt

αt

)
(qt − xc(t))

ṗt = − fmΩt√
αt tanh(β~Ωt

2
)

(qt − xc(t))

−1

2

d

dt
ln

(
tanh(β~Ωt

2
)

Ωt

)
pt. (3.70)

from which one can verify that the determinant of the Jacobian matrix is given

by

det(J(t)) =

√
αt tanh(β~Ω0

2
)

α0 tanh(β~Ωt

2
)
. (3.71)

Thus we have found another class of dynamics which conserve the en-

semble, and can be used within the CW approximation of the quantum time

correlation function. Furthermore, the direct propagation of the (qt, pt) vari-

ables is also not necessary for this new class of dynamics since the instanta-

neous quantum phase space variables can be obtained through
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qt =

√
~αt
mΩt

q̃(t) + xc(t)

pt =

√
m~Ωt

tanh(β~Ωt

2
)
p̃(t). (3.72)

In addition, one can show from this relation that pt is real as long as |Ωt| <

π/~β and we are therefore able to use these dynamics in the presence of bar-

riers. Furthermore, by adopting the same convention as FK-LPI[2] in which

we set pt = 0 for frequencies outside of this range, we are able to apply this

method for imaginary frequencies so long as |Ωt| < 2π/~β, which is the entire

range where the FK approximation to the density operator is well defined.

Thus this new class of dynamics allow us to handle imaginary frequencies in

a robust way. Similar to the dynamics in Sec. IV, the multi-dimensional gen-

eralization of this method is relatively straightforward since it only amounts

to propagating the dimensionless coordinates written in terms of the mass-

weighted normal mode coordinates defined in Ref. [2] through the dynamics

in Eq. 3.69.

3.5.1 Harmonic limit

In general, there does not exist a frequency function, f(xc(t)), such

that we are able to recover the harmonic limit exactly for these dynamics.

This hindrance can be traced back to the way we defined p̃(t), in which pc(t)

is absent. However, if one chooses for the frequency function the FK effective

frequency f = Ωt, then one can show that in the harmonic limit these dynam-

ics used within the CW approximation gives for the position autocorrelation
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function

〈x̂(0)x̂(t)〉 =
~

2mΩ

[
coth

(
β~Ω

2

)
cos(Ωt)

+i

√
α tanh

(
β~Ω

2

)
sin(Ωt)

]
, (3.73)

while the exact expression is

〈x̂(0)x̂(t)〉exact =
~

2mΩ

[
coth

(
β~Ω

2

)
cos(Ωt) + i sin(Ωt)

]
. (3.74)

Thus one sees that these dynamics correctly reproduce the real part of the

position autocorrelation function, but not the imaginary part. In addition,

one can show that

lim
T→0

α tanh

(
β~Ω

2

)
= 1 (3.75)

and

lim
T→∞

α tanh

(
β~Ω

2

)
= 0 (3.76)

such that Eq. 3.73 reduces to the exact expression in both the high and low

temperature limits.

3.5.2 Classical and high temperature limits

Using an argument similar to that presented in Sec. IV B, one can

show that this entire class of dynamics produces the correct classical and

high temperature limits of the quantum time correlation function for position

dependent operators when used within the CW approximation.
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3.5.3 Low temperature limit

For low temperatures, the dynamics in Eq. 3.69 with f = Ω(xc(t))

reduce to the same low temperature limit of Eq. 3.52 in Sec. IV C. Thus

it follows that when the FK effective frequency is used in the dynamics of

Eq. 3.69, one also obtains coherent quantum dynamics in the low temperature

limit that approximate the exact dynamics.

3.6 Application to model problems

As we have shown, the CW approximation in Eq. 3.3 evaluated with

the dynamics of Secs. IV and V, which we term FK-QCW(1) and FK-QCW(2)

respectively, is able to recover the exact classical and high temperature limits of

the quantum time correlation function. In addition, the FK-QCW(1) method

is able to recover the exact harmonic limit when the function f = Ωt is used in

the dynamics. To find out how well these dynamics perform outside of these

limits, we compute the quantum time correlation function of two challenging

systems, the quartic potential and the double-well potential, in which quantum

coherence effects are very important. However, since the CW approximation

in Eq. 3.3 lacks the phase information necessary to capture these effects, the

main goal of studying these model problems is to see how FK-QCW(1) and

FK-QCW(2) compare to exact results and other approximate methods over

relatively short times. This is because ultimately we would like to apply these
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dynamics to realistic condensed phase systems, in which the coupling to the

many degrees of freedom quenches long time quantum coherence effects[2, 25],

and the behavior of the correlation function over relatively short times is most

important. To this end, we compute both linear and non-linear correlation

functions for these two model systems using FK-QCW(1) and FK-QCW(2)

and then provide a comparison to the exact results, as well as to those ob-

tained by RPMD, CMD, and FK-LPI. It should be noted that the results we

present here can also be compared with those previously obtained by Jang and

Voth[15], Craig and Manolopoulos[26], and Liu[24].

In all of the following simulations, we have used natural units in which

m = ~ = kB = 1. The quantum time correlation function was evaluated

using the FK-QCW(1) and FK-QCW(2) methods by performing a molecular

dynamics simulation of the centroid variables, which are propagated according

to Eq. 3.24. For each centroid trajectory, 100 (q̃(0), p̃(0)) values were sampled

according to the gaussian distribution exp(−q̃(0)2− p̃(0)2). For FK-QCW(1) (

FK-QCW(2) ), these dimensionless coordinates were then propagated through

Eq. 3.45 (Eq. 3.69) and then by using Eq. 3.48 (Eq. 3.72) the instantaneous

(qt, pt) values were obtained. For all of the time correlation functions presented

in this section, we constructed the CW approximation of 〈Â(0)B̂(t)〉 in Eq.

3.3 by averaging over 50,000 consecutive centroid trajectories, in which the

centroid momentum was resampled at the beginning of each trajectory and

a time step of .005 was used. To illustrate the applicability of multiple sets

of dynamics, we have performed the simulations using two different frequency
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functions:

f1 = Ωt (3.77)

and

f2 =
Ωt√

αt tanh(β~Ωt

2
)
, (3.78)

where f2 is a temperature dependent effective frequency such that f2 ≥ Ωt,

and the equality is met in the limit that T → 0.

The evaluation of CMD using the FK approximation of the density

operator was accomplished by also performing a molecular dynamics simula-

tion of the centroid variables in which the centroid momentum was resampled

at the beginning of each trajectory and a time step of .005 was used. The

Kubo transformed time correlation function was constructed by averaging over

50,000 consecutive centroid trajectories. For the implementation of RPMD, a

molecular dynamics simulation in the extended ring-polymer phase space was

performed in which we used n = 48 beads. At the beginning of each trajectory

the momentum was resampled from the Boltzmann distribution at an inverse

temperature of β/n, and a time step of .005 was used. The Kubo transformed

time correlation function was also constructed by averaging over 50,000 consec-

utive trajectories. For both RPMD and CMD, the standard time correlation

function was obtained from the Kubo transformed quantity by inverse Fourier

transforming the relation in Eq. F.2.
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3.6.1 The double-well potential

The first model system is the double-well potential in which

V (x) = −1

2
x2 +

1

10
x4. (3.79)

This system presents a very challenging case due to the presence of a barrier,

the maximum of the barrier being located at x = 0. For imaginary frequencies

encountered within FK-QCW(1), we used the convention to set pt = pc(t).

For imaginary frequencies |Ω| ≥ π/~β encountered within FK-QCW(2) we set

pt = 0 which is the limiting value for |Ωt| → π/~β in Eq. 3.72.

In Fig. 3.1 we present a representative trajectory that really shows the

differences between these new ensemble conserving dynamics and the classical

dynamics used within the normal CW approximation. As seen, the coupling of

the quantum phase space to the time evolved centroid through the dynamics in

Eqs. 3.45 and 3.69 results in relative motion about the centroid. Furthermore,

one sees that when the initial momentum is not enough to make it over the

barrier for the classical dynamics, a particle undergoing relative motion about

the centroid is essentially pulled over the barrier by the centroid, which evolves

on a smeared potential.

As seen in Fig. 3.2, for 〈x̂(0)x̂(t)〉 at β = 8 the exact dynamics exhibit

significant coherent tunneling and none of the approximate methods are able

to reproduce this behavior since they all show significant dephasing. While

FK-QCW(1) and FK-QCW(2) give results comparable to RPMD, FK-CMD

penetrates the potential barrier the deepest. However, as we show in Appendix
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Figure 3.1: A representative trajectory for the double well potential in Eq.
3.79 for β = 8. Black line: xc(t); Blue line: qt from FK-LPI; Red line: qt from
FK-QCW(2) (f = Ωt). Both the FK-LPI and FK-QCW(2) dynamics were
propagated from the same initial conditions.
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Figure 3.2: The real part of the autocorrelation function for the double well
potential in Eq. 3.79 for β = 8. Black points: exact; Green dot-dashed line:
RPMD; Orange dot-dashed line: FK-CMD; Gold line: FK-LPI; Blue dashed
line: FK-QCW(1) (f = Ωt); Magenta dashed line: FK-QCW(2) (f = Ωt).
The exact results were taken from Ref. [15].
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Figure 3.3: The real part of the autocorrelation function for the double well
potential in Eq. 3.79 for β = 8. Black points: exact; Gold line: FK-LPI;
Blue dashed line: FK-QCW(1) (f = Ωt); Magenta dashed line: FK-QCW(2)
(f = Ωt); Red line: FK-QCW(2) with f given by Eq. 3.78. The exact results
were taken from Ref. [24].

66



F, the entire class of dynamics in FK-QCW(1) reduces to FK-CMD when used

in the expression for the Kubo transformed time correlation function for lin-

ear operators. This then suggests that there exist an advantage in obtaining

the standard correlation function from the Kubo transformed version when

possible (e.g linear operators). In comparing FK-QCW(1) and FK-QCW(2)

to FK-LPI, one sees that even in this challenging case where none of the ap-

proximate methods are able to correctly produce the behavior of the exact

correlation function except at very short times, the ensemble conserving dy-

namics used within these two new methods extends the accuracy of the CW

approximation to significantly longer times.

Shown in Fig. 3.3 are the results for 〈x̂2(0)x̂2(t)〉 at β = 8. Due

to the non-linear operators, we did not apply RPMD or FK-CMD for this

correlation function. As seen, the use of f1 = Ωt is able to produce somewhat

coherent oscillations which agree at least qualitatively with the exact results.

However, the use of f2 in Eq. 3.78 results in a slightly higher frequency in the

correlation function that is closer to the exact. Once again, in comparison to

FK-LPI, it is evident that these new dynamics extends the accuracy of the

CW approximation.

3.6.2 The quartic potential

The next model system we look at is the quartic potential in which the

potential energy takes the form

V (x) =
1

4
x4. (3.80)
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This model system presents a challenging test case due to the lack of a har-

monic term. The results for 〈x̂(0)x̂(t)〉 at β = 8 are shown in Fig. 3.4. As

seen, both FK-QCW(1) and FK-QCW(2) give essentially the same results for

the linear correlation function. Furthermore, both of these methods are able

to maintain coherent oscillations longer than RPMD, which in comparison

shows significant dephasing. Out of all of the approximate methods employed,

FK-CMD seems to maintain coherent oscillations the longest for this correla-

tion function. This again suggest that there is an advantage in working with

the Kubo transformed correlation function, since FK-QCW(1) and FK-CMD

are equivalent for this quantity. In comparison to FK-LPI, which is almost

completely quenched after the first oscillation, it is evident that these new en-

semble conserving dynamics extends the accuracy of the CW approximation

to much longer times.

Presented in Fig. 3.5 is 〈x̂2(0)x̂2(t)〉 at β = 8. Once again, due to the

failure of RPMD and CMD for non-linear operators, neither of these methods

were applied for this correlation function. One notices in Fig. 3.5 that the use

of f1 = Ωt in FK-QCW(1) and FK-QCW(2) results in a slight frequency shift

as compared to the exact correlation function, while, similar to the results in

Fig. 3.3, the use of f2 in Eq. 3.78 results in a slightly higher frequency which

seems to corrects this. Furthermore, while FK-QCW(1), FK-QCW(2), and

FK-LPI are all very accurate for short times, once again, the ensemble con-

serving dynamics used in FK-QCW(1) and FK-QCW(2) maintains coherent

oscillations much longer than FK-LPI, which suffers from strong dephasing.
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Figure 3.4: The real part of the autocorrelation function for the quartic po-
tential in Eq. 3.80 for β = 8. Black points: exact; Green dot-dashed line:
RPMD; Orange dot-dashed line: FK-CMD; Gold line: FK-LPI; Blue dashed
line: FK-QCW(1) (f = Ωt); Magenta dashed line: FK-QCW(2) (f = Ωt).
The exact results were taken from Ref. [15].
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Figure 3.5: The real part of the autocorrelation function for the quartic po-
tential in Eq. 3.80 for β = 8. Black points: exact; Gold line: FK-LPI;
Blue dashed line: FK-QCW(1) (f = Ωt); Magenta dashed line: FK-QCW(2)
(f = Ωt); Red line: FK-QCW(2) with f given by Eq. 3.78. The exact results
were taken from Ref. [24].
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3.7 Conclusions

We have developed two classes of quasi-classical dynamics that have

been shown to conserve the initial quantum ensemble. When used within the

CW approximation of the quantum time correlation function, both classes pro-

duce the exact classical and high temperature limits, and one set produces the

exact harmonic limit (FK-QCW(1) with f = Ωt). Although FK-QCW(1) and

FK-QCW(2) were shown to fail at capturing the long time quantum coher-

ence effects for the model potentials studied, overall, these dynamics maintain

coherent oscillations much longer than the classical dynamics implemented

within FK-LPI and therefore significantly extend the accuracy of the CW

approximation. Furthermore, the fact that these new dynamics fails in this

regard is not surprising since they lack the phase information necessary to

capture these effects. However, this does not in general present a problem for

realistic condensed phase systems, since the coupling to the many degrees of

freedom acts as a bath that quenches quantum coherence effects[2, 25].

The fact that these new dynamics were shown to be comparable to

both RPMD and CMD suggests that they provide a potentially more appeal-

ing algorithm than these methods, since one is not limited to correlation func-

tions involving linear operators. In addition, one will not encounter artificial

frequencies when using FK-QCW(1) or FK-QCW(2) to simulate absorption

spectra, as compared to RPMD[32]. Furthermore, the practical application

of these two new methods to realistic condensed phase systems is not out of

reach since they present only a minimum amount of additional computational
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load as compared to FK-LPI. This potential will be realized in a forthcoming

paper (chapter) in which we present the multidimensional generalization of

these dynamics and apply FK-QCW(2) for the determination of the dynamic

structure factor in low temperature liquid para-hydrogen and ortho-deuterium

and compare the results with those presented in Ref. [1] (Ch.2).
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Chapter 4

Application of a New Ensemble Conserving

Quantum Dynamics Simulation Algorithm to

Liquid para-Hydrogen and ortho-Deuterium

4.1 Introduction

Low-temperature liquid para-hydrogen and ortho-deuterium have be-

come a standard benchmark in the development of approximate quantum dy-

namics methods[1, 3, 14, 21, 27, 29, 35] which allow for the practical evaluation

of a general quantum time correlation function of the form〈
Â(0)B̂(t)

〉
=

1

Z
Tr
(
e−βĤÂ eiĤt/~ B̂ e−iĤt/~

)
, (4.1)

Z being the partition function and β the inverse temperature 1/kbT . The rea-

son that these systems provide such a good testing ground for the development

of these methods is because pronounced nuclear quantum effects are exhibited

by their dynamical properties. This is due to their low molecular mass, which

in turn causes their thermal de Broglie wavelength’s to be relatively large at low

temperatures. However, these quantum effects are not significant enough that

one must worry about the quantum statistics of molecular indistinguishabil-

ity[33], and in addition there exists a relatively simple pair potential[7], which

provides a very accurate description of their molecular interactions[7, 36, 37].
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Hence, low-temperature liquid para-hydrogen and ortho-deuterium are quan-

tum liquids which are relatively easy to model, thus being an ideal testing

ground for the development of novel approximate quantum dynamics meth-

ods.

Presently, the most successful approximate quantum dynamics methods

are the Classical Wigner approximation (CW)[2, 17, 19], Centroid Molecular

Dynamics (CMD) [15], and Ring-Polymer Molecular Dynamics (RPMD)[26].

All of these methods have been shown to provide relatively accurate and prac-

tical approximations to Eq. 4.1, and, in addition, to become exact in the

harmonic, high temperature and short time limits[2, 15, 19, 20, 26]. However,

each of these methods have their own downfalls. For example, CMD and

RPMD begin to break down for correlation functions involving non-linear op-

erators[15, 26, 28], while the CW approximation is equally valid for non-linear

operators, but, in general, it does not produce time invariant thermodynamic

properties for systems at thermal equilibrium. Explicitly, for Â = 1 the exact

quantum expression in Eq. 4.1 has the property that

〈B̂(t)〉 = 〈B̂(0)〉, (4.2)

while the purely classical propagation of the initially quantized phase space

distribution in the CW approximation does not ensure this property. As shown

in Ref. [31], this downfall can have a significant impact for slow processes like

diffusion due to zero point energy leakage from intramolecular to intermolec-

ular modes as the system is propagated.
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Recently, Liu and Miller[20, 22–24] have proposed a route to remedy

this downfall of the CW approximation by replacing the classical propagation

of the initial quantum phase space distribution with a form of dynamics that

ensures the equality in Eq. 4.2. Similarly, we developed in Ch. 3 a different

form of dynamics that also ensures this property by requiring the dynamics

to conserve the initial quantum ensemble within the Feynman-Kleinert (FK)

approximation of the density operator[2, 8, 9].

This Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method was

shown to greatly extend the accuracy of the Feynman-Kleinert implementa-

tion of the CW approximation (FK-LPI)[2] in the challenging model problems

of both the quartic and double well potentials, in which numerically exact

solutions are obtainable. Furthermore, we were able to show that one can

introduce an arbitrary frequency function into the dynamics of this method,

resulting in an entire class of ensemble conserving dynamics that preserve the

equality in Eq. 4.2. The FK-QCW method was shown to recover the exact

classical and high temperature limits of the quantum time correlation function,

and, in addition, to recover the exact harmonic limit when the FK effective

frequency is used within the dynamics. Furthermore, since this method is de-

veloped within the framework of the CW approximation, no problems arise

for non-linear operators.

The purpose of this work is to test how well the FK-QCW method per-

forms when applied to the standard benchmark systems of low-temperature

liquid para-hydrogen and ortho-deuterium. We accomplish this task by com-
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puting the dynamic structure factor, which is experimentally accessible by in-

elastic X-ray scattering (IXS). We then provide a comparison between present

calculations and the experimental determinations, as well as with the ones

obtained by RPMD and FK-LPI previously published in Ref. [1] (Ch. 2).

Specifically, it was found in Ref. [1] (Ch. 2) that for a momentum trans-

fer of k = 20nm−1, the FK-LPI method fails to correctly reproduce the IXS

spectrum for the para-hydrogen system, in which quantum effects are more

prevalent. In addition, due to the increased non-linearity of the correlation

function at high momentum transfers, RPMD could not be applied to this

specific case. Hence, a challenging test case has been established for the devel-

opment of improved methods, and it would therefore be interesting to check

how the FK-QCW method performs where these leading methods fail.

This chapter is organized as follows: In Section II, we provide an intro-

duction to the classical Wigner (CW) approximation to quantum time correla-

tion functions, as well as the multidimensional generalization of the FK-QCW

method. In addition, we also give a brief introduction to the theory of inelas-

tic scattering. In Section III we begin by discussing the computational details

of our simulations, followed by a comparison of the FK-QCW method with

the the experimental dynamic structure factor and that obtained by RPMD

and FK-LPI previously published in Ref. [1] (Ch. 2). The conclusions are

presented in Section IV.
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4.2 Theory and Methodology

4.2.1 Classical Wigner

The CW[2, 17, 19] expression for a general quantum time correlation

function of a many-body system is given by

〈
Â(0)B̂(t)

〉
≈ 1

Z (2π~)3N

∫ ∞
−∞

dq dp [ e−βĤÂ ]W (q,p)

×[ B̂ ]W (q(t),p(t)) , (4.3)

where (q(t),p(t)) are the classically evolved quantum phase space variables

propagated from the initial quantum distribution (q,p). Here the Wigner

transform of a general operator Ĉ is given by

[ Ĉ ]W (q,p) ≡
∫ ∞
−∞

dη e−ip·η/~
〈
q +

η

2

∣∣∣Ĉ∣∣∣ q − η
2

〉
, (4.4)

where |q〉 is the direct product of the single particle position kets.

Although the CW approximation has been shown to perform relatively

well[1–6, 19], as we previously noted, the classical evolution of the quantum

phase space results in thermodynamic properties of equilibrium systems be-

ing incorrectly time dependent. Our newly developed FK-QCW method cor-

rects this inconsistency by simply replacing the purely classical dynamics used

within Eq. 4.3 with a time evolution that ensures that the initial quantum

ensemble is conserved such that

dq dp [e−βĤ ]W (q,p) = dq(t) dp(t) [e−βĤ ]W (q(t),p(t)) , (4.5)
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from which it follows that 〈B̂(t)〉 = 〈B̂(0)〉, in accord with the exact quan-

tum time correlation function. However, since these dynamics were devel-

oped within the Feynman-Kleinert (FK) approximation to the density oper-

ator[2, 8, 9], before we present their multidimensional generalization, we first

provide an introduction to the FK density operator, which allows for a practi-

cal evaluation of the Wigner function [ e−βĤÂ ]W (q,p) appearing in Eq. 4.3.

4.2.2 Many-body Feynman-Kleinert density operator

The most difficult part in evaluating the CW expression of Eq. 4.3 is

obtaining the Wigner transform of e−βĤÂ, since knowledge of the many-body

density matrix is required. As in the FK-LPI method, we accomplish this

within the FK-QCW method by combining the effective frequency variational

theory of Feynman[8] and Kleinert[9] (FK) with the quasidensity operator

formalism of Jang and Voth[16]. This Feynman-Kleinert approximation to the

density operator allows for an efficient evaluation of the Wigner transform of

e−βĤÂ and has been shown to be very accurate when applied to realistic many-

body systems[1–6]. In addition, the FK approximation to the density operator

gives the best local harmonic approximation to the systems free energy[8, 9]

and becomes exact in the harmonic and high temperature limits[2]

For a many-body system, the FK approximation to the density operator

is explicitly given by

e−βĤ ≈
∫ ∞
−∞

dxc dpc ρFK (xc,pc) δ̂FK(xc,pc), (4.6)
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where δ̂FK(xc,pc) is the effective frequency quasidensity operator (QDO), and

the FK approximation to the centroid phase space density, for a system of N

particles, is given by

ρFK (xc,pc) ≡
1

(2π~)3N
exp

(
−β

2
M−1pTc pc − βW1 (xc)

)
, (4.7)

W1 (xc) being the FK approximation to the centroid potential. In Eq. 4.7, M

is the diagonal matrix of particle masses and (xc,pc) are the 3N dimensional

vectors of centroid positions and momenta, the x, y, and z components of the

kth centroid being the 3(k − 1) + 1, 3(k − 1) + 2, and 3(k − 1) + 3 elements,

respectively.

The FK variational effective frequency matrix is determined from the

local curvature of the systems Gaussian smeared potential by

Ω2(xc) =
1√

(2π)3N det(A(xc))

×
∫ ∞
−∞

dqM−1/2H(q)M−1/2

× exp

{
−1

2
(q − xc)T A−1(xc) (q − xc)

}
, (4.8)

H(q) being the 3N × 3N classical Hessian matrix and A(xc) the smearing

width matrix which measures the importance of quantum fluctuations around

the classical-like centroid positions. Defining U(xc) as the orthonormal matrix

containing the eigenvectors of the effective frequency matrix, then

U †(xc)Ω
2(xc)U(xc) = Iω2(xc) (4.9)
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where ω2(xc) is the 3N dimensional vector of eigenvalues and I is the identity

matrix. Using this, one can define the mass-weighted normal modes as

η ≡ U †(xc)M 1/2q

ηc ≡ U †(xc)M 1/2xc

ν ≡ U †(xc)M−1/2p

νc ≡ U †(xc)M−1/2pc, (4.10)

and the smearing width matrix can be diagonalized through

U †(xc)M
1/2A(xc)M

1/2U(xc) = Λ(xc), (4.11)

where

[Λ(xc)]ij = δij
1

βω2
i (xc)

[
β~ωi(xc)

2
coth

(
β~ωi(xc)

2

)
− 1

]
. (4.12)

In terms of the eigenvalues of the effective frequency matrix, the cen-

troid potential in Eq. 4.7 is explicitly written as

W1(xc) =
1

β

3N∑
i=1

ln

2 sinh
(
β~ωi(xc)

2

)
β~ωi(xc)

+ VA(xc)

−1

2

3N∑
i=1

Λii(xc)ω
2
i (xc), (4.13)

where

VA(xc) =
1√

(2π)3N det(A(xc))

∫ ∞
−∞

dq V (q)

× exp

{
−1

2
(q − xc)T A−1(xc) (q − xc)

}
(4.14)
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is the FK smeared potential. In 3N dimensions, the effective frequency QDO

written in terms of the mass-weighted normal modes is simply a direct product

of 1-dimensional QDOs and is given by

δ̂FK (xc,pc) =
3N∏
k=1

√
ωk(xc)

π~αk(xc)

∫ ∞
−∞

dηk dη
′
k |η′k〉 〈ηk|

× exp

{
i
νck
~

(η′k − ηk)−
ωk(xc)

~αk(xc)

(
η′k + ηk

2
− ηck

)2
}

× exp

{
−ωk(xc)αk(xc)

4~
(η′k − ηk)

2

}
, (4.15)

with

αk(xc) ≡ coth

(
β~ωk(xc)

2

)
− 2

β~ωk(xc)
. (4.16)

For all but the simplest potentials, determination of the FK effective

frequency matrix is the main computational load in applying the FK approx-

imation to the density operator since Eqs. 4.8 and 4.11 must be solved it-

eratively. For a discussion of efficient ways to determine the FK effective

frequency matrix using different numerical schemes, the interested reader is

referred to Ref. [5].

Using the FK approximation to the density operator, the Wigner trans-

form of e−βĤÂ becomes

[ e−βĤÂ ]W (q,p) ≈
∫ ∞
−∞

dxc dpc ρFK (xc,pc)

×[ δ̂FK(xc,pc)Â ]W (q,p) . (4.17)
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Due to the Gaussian form of the QDO in Eq. 4.15, an analytical expression

for the Wigner transform of δ̂FK(xc,pc)Â is readily obtained for any operator

Â depending only on position or momentum.

4.2.3 FK-QCW in many dimensions

The multi-dimensional generalization of the FK-QCW dynamics de-

rived in Eq. 69 of Ch. 3 simply become

˙̃qk(t) = fk(xc(t))p̃k(t)

˙̃pk(t) = −fk(xc(t))q̃k(t), (4.18)

where

q̃k(t) ≡

√
ωk(xc(t))

~αk(xc(t))
(ηk(t)− ηck(t))

p̃k(t) ≡

√√√√tanh
(
β~ωk(xc(t))

2

)
~ωk(xc(t))

νk(t) (4.19)

are the kth elements of the dimensionless normal mode coordinates (q̃(t), p̃(t)),

and fk(xc(t)) is an arbitrary frequency function. As shown in Ch. 3, the 1-

dimensional version of these dynamics gives the exact real part of the position

autocorrelation function in the harmonic limit if the FK effective frequency

is chosen for the frequency function. Similarly, one can show that this exact

limit is also obtained in the multi-dimensional case if we choose

fk(xc(t)) = ωk(xc(t)). (4.20)

In Eq. 4.19, the time evolved normal modes are given by
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η(t) = U †(xc(t))M
1/2q(t)

ηc(t) = U †(xc(t))M
1/2xc(t)

ν(t) = U †(xc(t))M
−1/2p(t)

νc(t) = U †(xc(t))M
−1/2pc(t), (4.21)

where U(xc(t)) diagonalizes the the effective frequency matrix evaluated at

xc(t), and the centroid dynamics are governed by the classical-like equations

ẋc(t) = M−1pc(t)

ṗc(t) = −∇c [VA(xc(t))]A=A(xc(t)) , (4.22)

the gradient with respect to xc(t) being taken while holding the smearing

width matrix constant.

Once the centroid and dimensionless normal mode coordinates have

been propagated through Eqs. 4.18 and 4.22, the instantaneous quantum

phase space variables can be obtained from

q(t) = xc(t) +M−1/2U (xc(t)) η̃(t)

p(t) = M 1/2U (xc(t)) ν̃(t), (4.23)

where

η̃(t) ≡ η(t)− ηc(t)

ν̃(t) ≡ ν(t), (4.24)
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and in terms of the dimensionless normal mode coordinates have the elements

η̃k(t) =

√
~αk(xc(t))
ωk(xc(t))

q̃k(t)

ν̃k(t) =

√√√√ ~ωk(xc(t))

tanh
(
β~ωk(xc(t))

2

) p̃k(t). (4.25)

The FK-QCW approximation to the quantum time correlation function

takes the same form as the CW expression in Eq. 4.3〈
Â(0)B̂(t)

〉
≈ 1

Z (2π~)3N

∫ ∞
−∞

dq dp [ e−βĤÂ ]W (q,p)

×[ B̂ ]W (q(t),p(t)) . (4.26)

However, within FK-QCW [ e−βĤÂ ]W (q,p) is obtained through Eq. 4.17,

and (q(t),p(t)) are propagated from the initial quantum distribution (q,p)

using the ensemble conserving dynamics in Eq. 4.18. It should be noted that

the Wigner transform of B̂ in this expression is easily obtainable when B̂ is

a function of only position or momentum operators, since in this case one

obtains the corresponding classical expression

[B (x̂) ]W (q(t),p(t)) = B (q(t)) (4.27)

or

[B (p̂) ]W (q(t),p(t)) = B (p(t)) . (4.28)

For completeness, we note that the the multi-dimensional generalization

of the dynamics within the FK-QCW method that was derived in Eq. 45 of
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Ch. 3 are very similar to Eq. 4.18, the only difference is that p̃k(t) in Eq. 4.19

takes the form

p̃k(t) ≡

√
1

~ωk(xc(t))αk(xc(t))
(νk(t)− νck(t)) , (4.29)

and Eq. 4.23 is changed accordingly. As shown in Appendix F, these dynamics

reduce to CMD when used within the expression for the Kubo transformed

time correlation function and also become exact in the harmonic limit, if one

uses Eq. 4.20 for the frequency function. However, they are not very practical

when used within Eq. 4.26 for non-linear operators since they are ill-defined

when ωk(xc(t)) becomes imaginary. This then makes the FK-QCW dynamics

in Eq. 4.18 preferable for condensed phase systems since one can show that

these dynamics are well defined in this case so long as |ωk(xc(t))| < π/β~.

In addition, by adopting the same convention as FK-LPI[2] in which we set

νk(t) = 0 for frequencies outside of this range, we are then able to apply these

FK-QCW dynamics for imaginary frequencies so long as |ωk(xc(t))| < 2π/~β,

which is the entire range that the FK approximation to the density operator

is well defined.

4.2.4 Inelastic Scattering

The quantum time correlation function we apply the FK-QCW method

to in this chapter is the intermediate scattering function given by

F (k, t) =
1

N

N∑
i,j=1

〈
e−ik·x̂i(0) eik·x̂j(t)

〉
, (4.30)
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where 〈· · · 〉 denotes a canonical ensemble average, and x̂i(t) is the time-

dependent position operator of the ith particle, given in the Heisenberg picture

by x̂i(t) = eiĤt/~ x̂i e
−iĤt/~. This correlation function is related to the dynamic

structure factor, S(k, ω), through

S(k, ω) =
1

2π

∫ ∞
−∞

dt e−iωt F (k, t). (4.31)

The dynamic structure factor gives the spectrum of density fluctuations and

Van Hove[13] showed that within the first Born approximation this quan-

tity is proportional to the inelastic scattering cross-section. Measured by

either inelastic neutron or X-ray scattering, the inelastic scattering cross-

section measures the probability that a neutron or photon transfers momentum

~k = ~(kf − ki) and energy ~ω = ~(ωf − ωi) to the sample.

The shape of the dynamic structure factor is defined by its n-order

spectral moments

〈ωn〉 ≡
∫ ∞
−∞

dω ωn S(k, ω) = i−n
[
∂nF (k, t)

∂tn

]
t=0

. (4.32)

The comparison between measured and computed values of the spectral mo-

ments can be used as a metric to judge the quality of a theoretical simulation.

The zeroth moment of the dynamic structure factor is referred to as the static

structure factor[11], S(k), which is related to the spatial Fourier transform of

the pair distribution function by

S(k) ≡
〈
ω0
〉

= 1 +

∫ ∞
−∞

d3r eik·r g(r). (4.33)
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The first moment of S(k, ω) is of special interest since for a system which

interacts through a momentum-independent potential [12], this quantity is

exactly given by

〈ω〉 ≡
∫ ∞
−∞

dω ω S(k, ω) =
~k2

2m
, (4.34)

where m is the molecular mass. This relation, in principal valid for monatomic

systems, can be extended to molecular ones provided the rotational and vi-

brational motions of the molecule can be neglected in the probed dynamic

range.

Since the dynamic structure factor is related to the temporal Fourier

transform of a quantum time correlation function, it obeys the principle of

detailed balance

S(k, ω) = eβ~ωS(k,−ω), (4.35)

which is straightforward to show by working in the basis of energy eigenstates.

Using this principal of detailed balance along with the symmetry of Eq. 4.30,

F (k, t) = F (k,−t)∗, one can show that the dynamic structure factor can be

equivalently written using only the real part of the intermediate scattering

function as

S(k, ω) =
2

1 + e−β~ω
1

2π

∫ ∞
−∞

dt e−iωtRe[F (k, t)]. (4.36)

For an isotropic system such as a liquid, the intermediate scattering

function depends only on the magnitude of k, such that F (k, t) = F (k, t).

Hence when computing the intermediate scattering function of an isotropic

system, we are free to choose the direction of k.
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The FK-QCW approximation to the intermediate scattering function

takes the form

F (k, t) ≈ 1

Z(2π~)3N

1

N

N∑
i,j=1

∫ ∞
−∞

dq dp

×[e−βĤe−ik·x̂i ]W (q,p) [eik·x̂j ]W (q(t),p(t)), (4.37)

where, after choosing k to be parallel to the x-axis,

[eik·x̂j ]W (q(t),p(t)) = exp
(
i k q(t)

3(j−1)+1

)
, (4.38)

and in terms of the FK approximation to the density operator,

[e−βĤe−ik·x̂i ]W (q,p) =

∫ ∞
−∞

dxc ρFK (xc)

× exp (−i k q
3(i−1)+1

)
3N∏
n=1

√√√√8πmn tanh
(
β~ωn(xc)

2

)
βαn(xc)

× exp
{
−q̃ 2

n − p̃ 2
n

}
× exp

tanh
(
β~ωn(xc)

2

)
ωn(xc)

km
−1/2
j U(xc)3(j−1)+1,n

νn


× exp

−~ tanh
(
β~ωn(xc)

2

)
4ωn(xc)

(
km
−1/2
j U(xc)3(j−1)+1,n

)2

 , (4.39)

where

ρFK (xc) ≡
1

(2π~)3N
exp (−βW1 (xc)) . (4.40)

We note that the derivation of Eq. 4.39 is shown in Ref. [4] (see Appendix A

therein), where it was derived for FK-LPI, which uses the same FK approxi-

mation to the density operator in Eq. 4.6.
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4.3 Results

4.3.1 Computational Details

To obtain the dynamic structure factor for liquid para-hydrogen and

ortho-deuterium at the state points (T = 20.0 K,n = 21.24 nm−3) and (T =

23.0 K,n = 24.61 nm−3) respectively, the FK-QCW approximation to the in-

termediate scattering function in Eq. 4.37 was evaluated by using the Silvera-

Goldman (SG) potential[7]. The SG potential has been used in a number of

previous studies[14, 20, 21, 27, 29, 35] and has been shown to provide very accu-

rate descriptions of the fluid and solid thermodynamics, except at extremely

high pressure[36, 37]. This semi-empirical isotropic pair potential, applica-

ble to both para-hydrogen and ortho-deuterium, treats each molecule as a

spherical particle which is justifiable at low temperatures since only the J=0

rotational state is populated in each isotope. To expedite the determination of

the FK centroid potential we represented the SG potential as a sum over four

Gaussian functions whose parameters can be found in Table II of Ref. [3].

Starting from an equilibrated centroid configuration, the real part of

the intermediate scattering function was evaluated using the FK-QCW ap-

proximation by performing a molecular dynamics simulation of the centroid

variables, which are propagated according to Eq. 4.22. For each centroid tra-

jectory, 100 sets of initial dimensionless normal mode coordinates (q̃(0), p̃(0))

were sampled according to their Gaussian distribution

exp
(
−q̃T (0)q̃(0)− p̃T (0)p̃(0)

)
=

3N∏
n=1

exp
{
−q̃ 2

n − p̃ 2
n

}
, (4.41)
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which appears in the FK approximation of [ e−βĤÂ ]W (q,p) (see for example

Eq. 4.39). Using the the frequency function in Eq. 4.20, the dimensionless nor-

mal mode coordinates were then propagated through Eq. 4.18 and the instan-

taneous (q(t),p(t)) values were obtained from the relations in Eq. 4.23. The

real part of the intermediate scattering function was constructed by averaging

over 1,000 consecutive 3 ps centroid trajectories, in which the centroid momen-

tum was resampled at the beginning of each trajectory and a time step of 1 fs

was used. In order to obtain statistical uncertainties, this entire process was re-

peated six times. For an exact outline of the algorithm used for the integration

of the centroid and dimensionless normal mode coordinates over one time step

∆t, which allows for the propagation of (q(t),p(t))→ (q(t + ∆t),p(t + ∆t)),

the interested reader is referred to Appendix G.

Within the simulation, we employed cubic periodic boundary conditions

with the minimum image convention and a spherical cutoff at half box length.

Furthermore, due to the isotropic nature of the SG potential, the momentum

transfer k was chosen, without loss of generality, to be in the x-direction. In

order to fulfill the Laue condition [10] k = 2πn/l, where l is the length of the

simulation cell and n is an integer, the number of particles N treated in the

simulation had to be varied for each momentum transfer. These, as well as

the simulation box size used, for each k are listed in Table. I.

The dynamic structure factor was obtained from the real part of the FK-

QCW approximation to the intermediate scattering function using the relation

in Eq. 4.36, which ensures that this quantity fulfills the detailed balance
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Table 4.1: The simulation parameters used for the FK-QCW calculation of
Eq. 4.37.

D2 H2

k (nm−1) N l (bohr) n (nm−3) N l (bohr) ρ (nm−3)
5.5 37 21.65 24.61 32 21.66 21.24
12.8 78 27.76 24.61 68 27.85 21.24
15.3 109 31.03 24.61 94 31.03 21.24
20.0 95 29.64 24.61 82 29.65 21.24

condition. The imaginary part of the intermediate scattering function was then

obtained from the inverse Fourier transform of this quantity. By processing

the data in this manner, we are ensuring that the approximate quantum time

correlation function fulfils the detailed balance condition. Furthermore, since

the detailed balance condition in Eq. 4.35 holds for the spectrum of any

quantum time correlation function, this procedure could be applied to any

correlation function involving hermitian operators[49], since in this case the

general relation

CAB(ω) =
2

1 + e−β~ω
1

2π

∫ ∞
−∞

dt e−iωtRe[CAB(t)] (4.42)

will always hold due to the symmetry[26] relation CAB(t) = CAB(−t)∗, where

CAB(t) is given by Eq. 4.1 and CAB(ω) is its Fourier transform.

4.3.2 The Experimental Dynamic Structure Factor

In an IXS experiment on a liquid, one must cope with the spurious

scattering from the container which must be carefully subtracted from the

raw intensity. Due to random temperature drifts in the analyzer crystal[1, 39]
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which introduce an uncertainty in the zero of energy transfer (~ω = 0) between

the sample+container and empty container scattering measurements, such a

subtraction was not completely straightforward for the experimental data used

in our previous study[1]. In order to deal with these spurious experimental

effects, we developed in Ref. [1] (Ch. 2) a method that enables one to use the

dynamic structure factor obtained from a simulation as an input to fix this

unknown spectral shift.

Denoting Iraw(k, ω) and IEC(k, ω) as the measured intensities scattered

by the sample+container system and by the empty container, respectively, the

unknown shift in the zero of energy transfer, |δ − θ|, can be taken into account

within the experimental dynamic structure factor by writing this quantity as

Sexp(k, ω) = α(k) (Iraw(k, ω − δ)− T (k)IEC(k, ω − θ)) , (4.43)

where α(k) is the proportionality factor that relates the dynamic structure

factor to the inelastic scattering cross-section, and T (k) is the transmission

coefficient of the sample[1]. Due to the finite resolution of the experiment,

the experimental dynamic structure factor, Sexp(k, ω), in Eq. 4.43 is related

to the sample’s true dynamic structure factor, S(k, ω), through a convolution

with the instrument resolution function, R(ω), such that

Sexp(k, ω) ≡ S(k, ω)⊗R(ω) =

∫ ∞
−∞

dω′S(k, ω′)R(ω − ω′). (4.44)

Using the procedure developed in Ref. [1] (Ch. 2), the refined experi-

mental dynamic structure factor is obtained by performing a least squares fit
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Table 4.2: The fitting parameters used in Eq. 4.43 to refine the experimental
dynamic structure factor using the FK-QCW results. Here the R2 values are
the coefficients of determination for the various fits.

D2

k (nm−1) α(k) T (k) δ (meV ) θ (meV ) |δ − θ|(meV ) R2

5.5 7.51x104 0.897 -0.616 -0.545 0.070 0.97
12.8 1.41x105 0.896 -0.090 0.143 0.233 0.99
15.3 2.12x105 0.895 -0.391 -0.205 0.186 0.99
20.0 3.78x105 0.893 -0.678 0.228 0.906 0.99

H2

k (nm−1) α(k) T (k) δ (meV ) θ (meV ) |δ − θ|(meV ) R2

5.5 5.27x104 0.731 -0.134 0.233 0.367 0.97
12.8 1.79x105 0.954 0.183 0.531 0.348 0.93
15.3 1.57x105 0.740 0.188 0.929 0.742 0.97
20.0 4.05x105 0.952 -0.734 -0.703 0.032 1.00

of Eq. 4.43 to the results of a theoretical simulation which have been con-

voluted with the instrument resolution function, R(ω), for the determination

of the unknown spectral shifts (δ, θ). Within this fitting procedure, α(k) is

determined for each (δ, θ) through

α(k) =
~k2
2m

∫∞
−∞ dω R(ω) + S(k)

∫∞
−∞ dω R(ω)ω∫∞

−∞ dω ω (Iraw(k, ω − δ)− T (k)IEC(k, ω − θ))
, (4.45)

which ensures that the refined experimental quantity fulfills the first moment

sum rule in Eq. 4.34. We note that S(k) in Eq. 4.45 is the static struc-

ture factor, which in the present work has been obtained from the theoretical

simulation. However, if the experimental measurement of this quantity was

available, one could in principal use it within the fitting procedure.

Within this study we have reperformed this refinement process of the

experimental quantity using the FK-QCW method as an input, and the result-
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ing fitting parameters are shown in Table II. In the next section, we provide

a comparison of the new experimental dynamic structure factors obtained us-

ing the FK-QCW method, and compare this with the experimental quantities

previously published in Ref. [1] (Ch. 2), which were obtained using FK-LPI

as an input. In addition, we also compare the theoretical dynamic structure

factors obtained using the FK-QCW method with the results of FK-LPI and

RPMD, also published in Ref. [1] (Ch. 2).

4.3.3 Dynamic Structure Factor

The FK-QCW results for the intermediate scattering function are shown

in Fig. 4.1. Also included in Fig. 4.1 are the results obtained by FK-LPI and

RPMD previously published in Ref. [1] (Ch. 2). Interestingly, for low momen-

tum transfers where RPMD is applicable, due to the approximate linearity of

Eq. 4.30, the FK-QCW method predicts nearly the same results as RPMD.

This suggests that FK-QCW provides a method with an accuracy comparable

to RPMD that does not suffer from the non-linear operator problem, since

FK-QCW was developed within the framework of the CW approximation and

therefore is able to access correlation functions involving non-linear operators.

When comparing the intermediate scattering functions of FK-QCW and

FK-LPI in Fig. 4.1, one notices a significantly longer decay time predicted by

FK-QCW for both para-hydrogen and ortho-deuterium at k = 20.0nm−1. Due

to the fact that in Ref. [1] (Ch. 2) we attributed the failure of FK-LPI for para-

hydrogen at this momentum transfer to the purely classical propagation within
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this method not being able to correctly account for the long-time behavior of

the correlation function, the fact that the dynamics within FK-QCW predicts

a significantly longer decay time suggests that this method may be able to

stand up to this challenging test case where FK-LPI failed and RPMD was

not applicable.

This hypothesis is confirmed in Fig. 4.2, where for the case of para-

hydrogen at k = 20.0nm−1 FK-QCW is in almost exact agreement with the

experimental dynamic structure factor obtained using this method as an in-

put. This then shows that the ensemble conserving dynamics of FK-QCW

extends the accuracy of the FK-LPI method to longer times, where the classi-

cal propagation within the CW approximation fails. In addition, one sees that

the experimental quantities obtained using FK-QCW and FK-LPI as an input

are in relatively good agreement for all of the momentum transfers considered.

The fact that this is true for para-hydrogen at k = 20.0nm−1, where FK-LPI

fails, shows that the process we developed in Ref. [1] (Ch. 2) to refine the ex-

perimental dynamic structure factor provides a robust method that allows one

to correct for spurious experimental effects, even when the theoretical input is

relatively inaccurate.

For the case of ortho-deuterium at k = 20.0nm−1, one sees in Fig. 4.3

that, similar to the case of para-hydrogen, the FK-QCW method reproduces

the experimental quantity almost exactly. While FK-LPI is in relatively good

agreement with the experimental quantity for this momentum transfer, the fact

that FK-QCW is more accurate shows that the longer decay time predicted in
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Figure 4.1: The FK-QCW (black line with error bars), FK-LPI (blue line), and
RPMD (magenta dashed line at low k’s) approximation to the intermediate
scattering function for both ortho-deuterium (upper four panels) and para-
hydrogen (lower four panels) for the different momentum transfers considered
(as labeled). The real part of the correlation function is the upper curve while
the negative imaginary part is the lower curve in each figure. Both the FK-LPI
and RPMD results were taken from Ref. [1] (Ch. 2).
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Figure 4.2: The refined experimental dynamic structure factors for para-
hydrogen, as obtained using either FK-QCW (red dots) or FK-LPI (blue
squares) as the input (see text). The FK-QCW (black dashed dot line), FK-
LPI (blue line), and RPMD (magenta dashed line) dynamic structure factors
are convoluted with the instrumental resolution function. The FK-LPI and
RPMD results, as well as the experimental quantity obtained using FK-LPI
as an input were taken from Ref. [1] (Ch. 2).
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Figure 4.3: The refined experimental dynamic structure factors for ortho-
deuterium, as obtained using either FK-QCW (red dots) or FK-LPI (blue
squares) as the input (see text). The FK-QCW (black dashed dot line), FK-
LPI (blue line), and RPMD (magenta dashed line) dynamic structure factors
are convoluted with the instrumental resolution function. The FK-LPI and
RPMD results, as well as the experimental quantity obtained using FK-LPI
as an input were taken from Ref. [1] (Ch. 2).
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Figure 4.4: The first moment of the dynamic structure factors obtained from
the the intermediate scattering function using the relation in Eq. 4.34 for both
ortho-deuterium (left panel) and para-hydrogen (right panel) using FK-QCW
(red circle), FK-LPI (blue circle), and RPMD (magenta cross). These results
are compared with the exact relation of Eq. 4.34 (black line).
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the correlation function by the ensemble conserving dynamics of this method,

once again, better reflects the true dynamics of the system.

As seen in Figs. 2 and 3, the similarity of the FK-QCW and RPMD in-

termediate scattering functions for both para-hydrogen and ortho-deuterium

at low momentum transfers translates to similar predictions for their corre-

sponding dynamic structure factors. While not completely systematic due to

the case of para-hydrogen at k = 12.8nm−1, overall one sees a better agreement

between the predictions of these two methods and the experimental quantity

for both systems, as compared to FK-LPI. This then suggests that the more

pronounced oscillations in the intermediate scattering functions of FK-QCW

and RPMD more accurately describes the large wavelength density fluctua-

tions of both the para-hydrogen and ortho-deuterium systems, consistent with

the ensemble conserving dynamics used within FK-QCW being comparable to

RPMD and more accurate than the purely classical dynamics of FK-LPI.

We note that for para-hydrogen, particularly at k = 12.8nm−1, the

disagreement of FK-QCW with the experimental quantity appears, at first

glance, to be due to this method somewhat underestimating the area un-

derneath the experimental dynamic structure factor. However, this area is

precisely the static structure factor S(k) = F (k, t = 0), for which FK-QCW

and FK-LPI are equivalent, to within statistical accuracy. The FK-LPI static

structure factor was published in Ref. [1] (Ch. 2), where it was found to be in

agreement with the experimental measurements of Ref. [38]. It is reasonable,

then, to turn to alternative explanations. One possibility is an uncertainty in
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the normalization of the empty container scattering contribution; this was the

case for para-hydrogen at k = 5.5nm−1 and k = 15.3nm−1.

The first moment of the dynamic structure factor obtained by FK-

QCW, FK-LPI, and RPMD are shown in Fig. 4.4. The different dynamics of

these three methods becomes relevant for the first moment since this quantity

depends on the time derivative of the intermediate scattering function through

Eq. 4.32. However, as seen in Fig. 4.4, FK-QCW exactly reproduces the

first moment of the dynamic structure factor to within the uncertainty of the

simulation for all of the momentum transfers considered. While FK-LPI is

also able to exactly reproduce this quantity for all of the momentum transfers

considered, this is not true for RPMD. The fact that these new ensemble

conserving dynamics are shown to obey this exact quantum mechanical sum

rule testifies even more to the accuracy of this new method.

4.4 Conclusions

We have shown that the ensemble conserving dynamics of the FK-QCW

method can be easily applied to realistic condensed phase systems, such as low

temperature para-hydrogen and ortho-deuterium. Furthermore, it was found

that the dynamics of the FK-QCW method greatly extend the accuracy of

the FK-LPI approximation when the long-time behavior of the quantum time

correlation function becomes important. This was evidenced by the FK-QCW

method nearly exactly reproducing the experimental dynamic structure factor

of para-hydrogen at k = 20.0nm−1, where the purely classical dynamics used
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within the FK-LPI approximation fail and RPMD is not applicable.

In addition, where RPMD was applicable due to the approximate lin-

earity of Eq. 4.30, we found that FK-QCW provides an accuracy compara-

ble to RPMD. This then suggests that FK-QCW may be a top contender in

the realm of approximate quantum dynamics methods since, unlike RPMD,

FK-QCW is not only able to access correlation functions involving non-linear

operators, but will also not encounter artificial frequencies in the simulated

absorption spectra arising from unphysical high frequency oscillations within

the dynamics[30–32].
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Appendix A

Overview of the FK-LPI method

To illustrate the main idea of the FK−LPI method and for simplicity,

we present it here for a single particle in one dimension (the generalization to a

system of N particles in three dimensions is relatively straight forward, see for

example Ref. [5] ). The FK −LPI approximation for e−βĤ in one dimension

is given by

e−βĤ ≈
∫ ∞
−∞

dxc dpc ρFK(xc, pc) δ̂FK(xc, pc) (A.1)

where (xc, pc) are the classical centroid phase-space variables describing the

average position and momentum of a particle during thermal time β~ and are

defined as

xc ≡
1

β~

∫ β~

0

dτ x(τ) pc ≡
1

β~

∫ β~

0

dτ p(τ). (A.2)

The FK approximation to the centroid phase-space density ρFK(xc, pc) is given

by

ρFK(xc, pc) ≡
1

2π~
exp

{
−β
(
p2
c

2m
+W1(xc)

)}
, (A.3)

W1(xc) being the FK approximation to the centroid potential. The effective

frequency quasidensity operator δ̂FK(xc, pc) is defined as
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δ̂FK(xc, pc) ≡
√
mΩ(xc)

π~α

∫ ∞
−∞

dx dx′ |x′〉 〈x|

×exp
{
i
pc
~

(x′ − x)
}

×exp

{
−mΩ(xc)

~α

(
x′ + x

2
− xc

)2

− mΩ(xc)α

4~
(x′ − x)

2

}
, (A.4)

where the centroid dependent variational effective frequency Ω(xc) is deter-

mined from the local curvature of the systems Gaussian smeared potential,

and is given by

Ω2(xc) =
1

m

[
∂2Va2(xc)

∂x2
c

]
a2=a2(xc)

. (A.5)

The smeared potential, Va2(xc), which accounts for quantum-statistical path

fluctuations is defined as

Va2(xc) ≡
√

1

2πa2

∫ ∞
−∞

dy V (y) exp

{
−(y − xc)2

2a2

}
, (A.6)

the smearing width a2(xc) being

a2(xc) =
1

mβΩ2(xc)

(
β~Ω(xc)

2
coth

(
β~Ω(xc)

2

)
− 1

)
(A.7)

which measures the importance of quantum fluctuations around the classical-

like position xc. In Eq. A.4, α is related to the smearing width a2(xc) by

α =
2mΩ(xc)a

2(xc)

~
= coth

(
β~Ω(xc)

2

)
− 2

β~Ω(xc)
. (A.8)

Note that when using Eq. A.5 to determine the effective frequency Ω(xc), the

derivative is taken while treating a2(xc) as a constant. Furthermore, by using
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Eq. A.5 and A.6 one can write the explicit form that Ω2(xc) takes in terms of

a2(xc), and it is given by

Ω2(xc) =
1

m

√
1

2πa2(xc)

∫ ∞
−∞

dy
∂2V (y + xc)

∂x2
c

×exp
{
− y2

2a2(xc)

}
. (A.9)

For all but the simplest potentials, determination of Ω(xc) is the main

computational load in applying the FK − LPI methodology since Eq. A.7

and A.9 must be solved iteratively (see Ref. [5] for a discussion of efficient

ways to determine Ω(xc) using different numerical schemes). Once Ω(xc) is

determined, the FK approximation to the centroid potential W1(xc) is given

by

W1(xc) =
1

β
ln

sinh
(
β~Ω(xc)

2

)
β~Ω(xc)

2

+ Va2(xc)

−1

2
mΩ2(xc)a

2(xc). (A.10)

The main advantage of the FK − LPI prescription is that due to the

harmonic form of e−βĤ an analytical expression for the Wigner transform of

e−βĤÂ is readily obtained for an operator Â depending only on position or

momentum since for example Â = Â(x̂), [e−βĤÂ(x̂)]W (q0, p0) becomes
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[e−βĤÂ(x̂)]W (q0, p0) =

∫ ∞
−∞

dxc dpc

√
mΩ(xc)

π~α
ρFK(xc, pc)

×exp
{
−mΩ(xc)

~α
(q0 − xc)2

}
×
∫ ∞
−∞

dη A(q0 −
η

2
) exp

{
−mΩ(xc)α

4~
η2 − i

~
(p− pc) η

}
. (A.11)

Hence, under the FK−LPI approximation an analytical expression of [e−βĤÂ(x̂)]W (q0, p0)

in terms of the centroid phase-space density ρFK(xc, pc) is easily obtained for

any operator in which the gaussian integral in Eq. A.11 can be performed.

Furthermore, due to the dependence of Eq. A.11 on the centroid density, the

evaluation of quantum time correlation functions using the FK−LPI method

can be performed by using a combination of Monte Carlo and molecular dy-

namics methods, with the general computational procedure being given by the

following:

(1) an analytical expression for [B̂]W (qt, pt) is computed using Eq. 2.13,

and an analytical expression for [e−βĤÂ]W (q0, p0) in terms of an integral over

the centroid phase-space density ρFK(xc, pc) is obtained by using Eq. A.11.

(2) a centroid position and momentum (xc, pc) is sampled from ρFK(xc, pc).

(3) for each (xc, pc), one then samples (q0, p0) and these are then prop-

agated classically to (qt, pt) using Hamilton’s equations of motion and the

explicit evaluation of [B̂]W (qt, pt) as a function of time is performed.
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Appendix B

Time invariance of thermodynamic properties

within the CW expression

The classical Wigner (CW) expression for 〈B̂(t)〉 is given by

〈B̂(t)〉 =
1

Z 2π~

∫ ∞
−∞

dpdq [e−βĤ ]W (q, p)[B̂]W (qt, pt), (B.1)

while 〈B̂(0)〉 is

〈B̂(0)〉 =
1

Z 2π~

∫ ∞
−∞

dpdq [e−βĤ ]W (q, p)[B̂]W (q, p). (B.2)

After making a making a dummy variable substitution of the integration vari-

ables from (q, p)→ (qt, pt) in Eq. B.2 we have that

〈B̂(0)〉 =
1

Z 2π~

∫ ∞
−∞

dptdqt [e−βĤ ]W (qt, pt)[B̂]W (qt, pt), (B.3)

which we see is equivalent to 〈B̂(t)〉 in Eq. B.1 if

dpdq [e−βĤ ]W (q, p) = dptdqt [e−βĤ ]W (qt, pt). (B.4)

Therefore, the CW expression can be made to preserve the time invariance

of thermal equilibrium properties as long as the dynamics are chosen to con-

serve the phase space probability within the infinitesimal phase space volume

along the trajectory, which is equivalent to the initial quantum ensemble being

conserved.
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Appendix C

Time-dependent dummy variable substitution

Suppose we have some set of dynamics such that we are able to prop-

agate a phase space point (xc, pc) to (xc(t), pc(t)). By the property of the

delta function we can write the operator ρFK(xc, pc)δ̂FK(xc, pc) evaluated at

any point in phase space (x′c, p
′
c) as

ρFK(x′c, p
′
c)δ̂FK(x′c, p

′
c) =

∫
dxc(t) dpc(t) ρFK(xc(t), pc(t))

×δ̂FK(xc(t), pc(t)) δ(xc(t)− x′c) δ(pc(t)− p′c) (C.1)

Furthermore, by integrating both sides of this equation over (x′c, p
′
c) we

have ∫
dx′c dp

′
c ρFK(x′c, p

′
c)δ̂FK(x′c, p

′
c)

=

∫
dxc(t) dpc(t) ρFK(xc(t), pc(t))δ̂FK(xc(t), pc(t))

×
∫
dx′c dp

′
c δ(xc(t)− x′c) δ(pc(t)− p′c)

=

∫
dxc(t) dpc(t) ρFK(xc(t), pc(t))δ̂FK(xc(t), pc(t)). (C.2)

Thus we have that
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∫
dx′c dp

′
c ρFK(x′c, p

′
c)δ̂FK(x′c, p

′
c)

=

∫
dxc(t) dpc(t) ρFK(xc(t), pc(t))δ̂FK(xc(t), pc(t)). (C.3)

Therefore, after making a change of variables from (x′c, p
′
c) to (xc, pc) in the

LHS of Eq. C.3 this expression becomes∫
dxc dpc ρFK(xc, pc)δ̂FK(xc, pc)

=

∫
dxc(t) dpc(t) ρFK(xc(t), pc(t))δ̂FK(xc(t), pc(t)) (C.4)

for a given set of dynamics. Next, by taking the Wigner transform of both

sides of Eq. C.4 and evaluating it at a point (qt, pt) we arrive at∫
dxc dpc ρFK(xc, pc)[δ̂FK(xc, pc)]W (qt, pt)

=

∫
dxc(t) dpc(t) ρFK(xc(t), pc(t))

×[δ̂FK(xc(t), pc(t))]W (qt, pt), (C.5)

which is equivalent to making a dummy variable substitution of the integration

variables in Eq. 3.23 from (xc, pc)→ (xc(t), pc(t)). In addition, one can form a

similar argument to rigorously justify the dummy variable substitution of the

integration variables in Eq. 3.58.
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Appendix D

Liouville’s theorem for the centroid

distribution function

Liouville’s theorem in classical mechanics states that the phase space

distribution function, ρ(x, p), is time-invariant such that

ρ(x(t), p(t)) = ρ(x, p) (D.1)

or equivalently

d

dt
ρ(x(t), p(t)) = 0. (D.2)

The FK approximation to the exact centroid distribution function is

defined as

ρFK(xc, pc) ≡
1

2π~
exp

{
−β
(
p2
c

2m
+W1(xc)

)}
, (D.3)

where the FK approximation to the centroid potential is given by

W1(xc) =
1

β
ln

sinh
(
β~Ω(xc)

2

)
β~Ω(xc)

2

+ Va2(xc)

−1

2
mΩ2(xc)a

2(xc). (D.4)

The centroid variables evolve according to the classical like dynamics given by
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ẋc(t) =
pc(t)

m

ṗc(t) = −∂W1(xc(t))

∂xc(t)
, (D.5)

such that the time derivative of the centroid distribution function is given by

d

dt
ρFK(xc(t), pc(t)) = −β ρFK(xc(t), pc(t))

×
[
−pc(t)

m

∂W1(xc(t))

∂xc(t)
+
∂W1(xc(t))

∂xc(t)

pc(t)

m

]
= 0, (D.6)

and therefore

ρFK(xc(t), pc(t)) = ρFK(xc, pc). (D.7)

Next, we evaluate det(J(t)) in order to show that the volume element is con-

served. Therefore, using Eq. D.5 we have that

∂ẋc(t)

∂xc(t)
+
∂ṗc(t)

∂pc(t)
=

∂

∂xc(t)

pc(t)

m
− ∂

∂pc(t)

∂W1(xc(t))

∂xc(t)
= 0 (D.8)

such that

det(J(t)) = exp(

∫ t

0

∂ẋc(t)

∂xc(t)
+
∂ṗc(t)

∂pc(t)
dt) = 1, (D.9)

and therefore

dxc(t)dpc(t) = dxcdpc. (D.10)

Thus combining Eq. D.7 and D.10 we have that

dxc(t)dpc(t)ρFK(xc(t), pc(t)) = dxcdpcρFK(xc, pc) (D.11)

We now show that for FK approximation to the centroid distribution

function, the centroid evolves on the FK smeared potential. This can be shown
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by explicitly taking the derivative of W1(xc(t)) in Eq. D.4, which is given by

∂W1(xc(t))

∂xc(t)
=

1

β

∂

∂Ωt

ln

{
sinh

(
β~Ωt

2

)
β~Ωt

2

}
∂Ωt

∂xc(t)

−mΩta
2(xc(t))

∂Ωt

∂xc(t)
− 1

2
mΩ2

t

∂a2(xc(t))

∂xc(t)

+

[
∂Va2(xc(t))

∂xc(t)

]
a2=a2(xc(t))

+
∂Va2(xc(t))

∂a2(xc(t))

∂a2(xc(t))

∂xc(t)
. (D.12)

However, using the definition of a2(xc(t)) one can easily show that

1

β

∂

∂Ωt

ln

{
sinh

(
β~Ωt

2

)
β~Ωt

2

}
= mΩta

2(xc(t)), (D.13)

such that

∂W1(xc(t))

∂xc(t)
= −1

2
mΩ2

t

∂a2(xc(t))

∂xc(t)

+

[
∂Va2(xc(t))

∂xc(t)

]
a2=a2(xc(t))

+
∂Va2(xc(t))

∂a2(xc(t))

∂a2(xc(t))

∂xc(t)
. (D.14)

Furthermore, an equivalent definition of Ω2
t is[9]

Ω2
t =

2

m

∂Va2(xc(t))

∂a2(xc(t))
. (D.15)

Hence we have that

1

2
mΩ2

t =
∂Va2(xc(t))

∂a2(xc(t))
(D.16)

such that the derivative of W1(xc(t)) now becomes

∂W1(xc(t))

∂xc(t)
=

[
∂Va2(xc(t))

∂xc(t)

]
a2=a2(xc(t))

, (D.17)

where the derivative is taken while holding a2(xc(t)) constant. Thus the cen-

troid dynamics can be equivalently written as
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ẋc(t) =
pc(t)

m

ṗc(t) = −
[
∂Va2(xc(t))

∂xc(t)

]
a2=a2(xc(t))

. (D.18)
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Appendix E

Determinant of the Jacobian matrix in terms

of the dimensionless coordinates

The dimensionless coordinates in Eq. 3.33 can be written as

q̃(t) ≡ γt (qt − xc(t))

p̃(t) ≡ ζt (pt − pc(t)) (E.1)

where

γt ≡
√
mΩt

~αt

ζt ≡
√

1

m~Ωtαt
. (E.2)

Furthermore, by taking the time derivative of Eq. E.1 and rearranging terms

one can show that in terms of these coordinates

q̇t = ẋc(t) +
˙̃q(t)

γt
− γ̇t
γ2
t

q̃(t)

ṗt = ṗc(t) +
˙̃p(t)

ζt
− ζ̇t
ζ2
t

p̃(t). (E.3)

In addition, by using the fact that (xc(t), pc(t)) is independent of (qt, pt), since

the centroid variables evolve according to the classical like dynamics in Eq.
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3.24, then from Eq. E.1 we have that

∂

∂qt
= γt

∂

∂q̃(t)

∂

∂pt
= ζt

∂

∂p̃(t)
. (E.4)

Therefore, using Eqs. E.3 and E.4, one has that

∂q̇t
∂qt

+
∂ṗt
∂pt

=
∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
− γ̇t
γt
− ζ̇t
ζt
, (E.5)

such that det(J(t)) in terms of these coordinates takes the form

det(J(t)) = exp

(∫ t

0

∂q̇t
∂qt

+
∂ṗt
∂pt

dt

)

= exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
− γ̇t
γt
− ζ̇t
ζt
dt

)
. (E.6)

Part of this expression can be explicitly integrated to give

det(J(t)) = exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
dt

)
γ0ζ0

γtζt
, (E.7)

which after using Eq. E.2 becomes

det(J(t)) = exp

(∫ t

0

∂ ˙̃q(t)

∂q̃(t)
+
∂ ˙̃p(t)

∂p̃(t)
dt

)
αt
α0

. (E.8)
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Appendix F

Equivalence of FK-QCW and CMD for the

Kubo-transformed time-correlation function of

linear operators

The Kubo transformed time-correlation function〈
Â(0)B̂(t)

〉
K
≡ 1

βZ

∫ β

0

dλTr
(
e−(β−λ)ĤÂ(0)e−λĤB̂(t)

)
(F.1)

is related to the standard quantum time correlation function in Eq. 3.1 through

CAB(ω) =
β~ω

1− e−β~ω
C̃AB(ω), (F.2)

where CAB(ω) and C̃AB(ω) are the Fourier transforms of the standard and

Kubo transformed time correlation functions, respectively. This quantity can

be expressed in terms of the exact centroid distribution and QDO in which it

takes the form[16]

〈Â(0)B̂(t)〉K =
1

Z2π~

∫
dxcdpcρc(xc, pc)Ac(xc, pc)

×Tr
(
δ̂(xc, pc)B̂(t)

)
, (F.3)

where Ac(xc, pc) ≡ Tr(δ̂(xc, pc)Â). This expression is exact so long as Â is

linear in position and/or momentum[16].
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Using the Wigner representation for the trace of two general operators

Tr(ÂĈ) =
1

2π~

∫
dqdp[Â]W (q, p) [Ĉ]W (q, p), (F.4)

we can rewrite Eq. F.3 as

〈Â(0)B̂(t)〉K =
1

Z(2π~)2

∫
dxcdpcρc(xc, pc)Ac(xc, pc)

×
∫
dqdp[δ̂(xc, pc)]W (q, p) [B̂(t)]W (q, p). (F.5)

Invoking the CW approximation, [B̂(t)]W (q, p)→ [B̂]W (qt, pt), along with the

FK approximation to the density operator, Eq. F.5 becomes

〈Â(0)B̂(t)〉K ≈
1

Z2π~

∫
dxcdpcρFK(xc, pc)Ac(xc, pc)

×
∫
dqdp[δ̂FK(xc, pc)]W (q, p) [B̂]W (qt, pt), (F.6)

where a factor of 2π~ has been absorbed into the definition of ρFK . However,

for the entire class of dynamics in Sec. IV the following equality holds

dqdp[δ̂FK(xc, pc)]W (q, p)

= dqtdpt[δ̂FK(xc(t), pc(t))]W (qt, pt). (F.7)

Thus using this equality and then making a dummy variable substitution of

the integration variables from (qt, pt) → (q, p), Eq. F.6 can be equivalently

expressed as
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〈Â(0)B̂(t)〉K ≈
1

Z2π~

∫
dxcdpcρFK(xc, pc)Ac(xc, pc)

×
∫
dqdp[δ̂FK(xc(t), pc(t))]W (q, p) [B̂]W (q, p). (F.8)

Furthermore, switching back from the Wigner representation to the trace, we

have that

〈Â(0)B̂(t)〉K ≈
1

Z

∫
dxcdpcρFK(xc, pc)Ac(xc, pc)

×Bc(xc(t), pc(t)), (F.9)

where we have defined Bc(xc(t), pc(t)) ≡ Tr
(
δ̂FK(xc(t), pc(t)) B̂

)
. Recogniz-

ing this expression as being equivalent to using the FK approximation of the

density operator within the framework of CMD, we see that the entire class

of quasi-classical dynamics in Sec. IV reduces to CMD when used to evaluate

the Kubo transformed correlation function of linear operators. Furthermore,

the fact that one can alternatively arrive at the expression in Eq. F.9 by only

invoking the CMD approximation[16]

e−iĤt/~ δ̂FK(xc, pc) e
iĤt/~ ≈ δ̂FK(xc(t), pc(t)) (F.10)

shows that the CW approximation is equivalent to making the CMD approxi-

mation for the Kubo transformed correlation function, so long as the dynamics

retain the property in Eq. F.7.
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Appendix G

FK-QCW Molecular Dynamics Algorithm

Defining the 3N dimensional vector that contains the FK smeared force

as

F c(t) ≡ −∇c [VA(xc(t))]A=A(xc(t)) , (G.1)

where the gradient is taken with respect to xc(t), the algorithm for integrating

the FK-QCW method dynamics one time step ∆t using the velocity Verlet

algorithm goes as follows:

q̃k(t+ ∆t)← q̃k(t) + fk(xc(t))p̃k(t)∆t (G.2)

p̃k(t+ ∆t)← p̃k(t)− fk(xc(t))q̃k(t)∆t (G.3)

xc(t+ ∆t)← xc(t) +M−1pc(t)∆t+
∆t2

2
M−1F c(t) (G.4)

pc(t+ ∆t)← pc(t) +
∆t

2
[F c(t) + F c(t+ ∆t)] (G.5)

q̃(t+ ∆t)← U †(xc(t+ ∆t))U (xc(t))q̃(t+ ∆t) (G.6)
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p̃(t+ ∆t)← U †(xc(t+ ∆t))U(xc(t))p̃(t+ ∆t). (G.7)

η̃k(t+ ∆t)←

√
~αk(xc(t+ ∆t))

ωk(xc(t+ ∆t))
q̃k(t+ ∆t) (G.8)

ν̃k(t+ ∆t)←

√√√√ ~ωk(xc(t+ ∆t))

tanh
(
β~ωk(xc(t+∆t))

2

) p̃k(t+ ∆t) (G.9)

q(t+ ∆t)← xc(t+ ∆t) +M−1/2U (xc(t+ ∆t)) η̃(t+ ∆t) (G.10)

p(t+ ∆t)←M 1/2U (xc(t+ ∆t)) ν̃(t+ ∆t). (G.11)

It is important to note the intermediate steps G.6 and G.7. These

are performed to ensure that the dimensionless normal modes q̃(t + ∆t) and

p̃(t + ∆t) are formed properly for the use in steps G.8 and G.9 since the

eigenvector within the jth column of the orthonormal matrices U(xc(t)) and

U(xc(t+∆t)) will typically not correspond to the same normal mode due to the

numerical method used for the diagonalization of Ω2(xc(t)) and Ω2(xc(t+∆t)).
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