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This dissertation focuses on interpreting the spatial variations of seismic 

amplitude data as a function of rock properties for the Haynesville Shale. To achieve this 

goal, I investigate the relationships between the rock properties and elastic properties, and 

calibrate rock-physics models by constraining both P- and S-wave velocities from well 

log data. I build a workflow to estimate the rock properties along with uncertainties from 

the P- and S-wave information. I correlate the estimated rock properties with the seismic 

amplitude data quantitatively.  

The rock properties, such as porosity, pore shape and composition, provide very 

useful information in determining locations with relatively high porosities and large 

fractions of brittle components favorable for hydraulic fracturing. Here the brittle 

components will have the fractures remain opened for longer time than the other 

components. Porosity helps to determine gas capacity and the estimated ultimate recovery 

(EUR); composition contributes to understand the brittle/ductile strength of shales, and 

pore shape provides additional information to determine the brittle/ductile strength of the 
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shale. I use effective medium models to constrain P- and S-wave information. The rock-

physics model includes an isotropic and an anisotropic effective medium model. The 

isotropic effective medium model provides a porous rock matrix with multiple mineral 

phases and pores with different aspect ratios. The anisotropic effective medium model 

provides frequency- and pore-pressure-dependent anisotropy.  

I estimate the rock properties with uncertainties using grid searching, conditioned 

by the calibrated rock-physics models. At well locations, I use the sonic log as input in 

the rock-physics models. At areas away from the well locations, I use the prestack 

seismic inverted P- and S-impedances as input in the rock-physics models. The estimated 

rock properties are correlated with the seismic amplitude data and help to interpret the 

spatial variations observed from seismic data. I check the accuracy of the estimated rock 

properties by comparing the elastic properties from seismic inversion and the ones 

derived from estimated rock properties. Furthermore, I link the estimated rock properties 

to the microstructure images and interpret the modeling results using observations from 

microstructure images.  

The characterization contributes to understand what causes the seismic amplitude 

variations for the Haynesville Shale. The same seismic reservoir characterization 

procedure could be applied to other unconventional gas shales.  
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estimated aspect ratio decreases. The pattern of the scattered points indicates 

estimation uncertainties. The more scattered points correspond to lower 

estimated clay percentages, higher estimated porosities, and larger estimated 

aspect ratios. The more condensed points correspond to higher estimated clay 

percentages, lower estimated porosities, and smaller estimated aspect ratios.
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Figure 5.6: The rock-physics modeling result. Crossplot of S-impedance versus P-
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decrease at the bottom of the Haynesville Shale between about 720 ms and 
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the original horizon picked from the post-stack amplitude data (Figure 2.6).
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properties. c) The difference between the two S-impedances, which is mostly 

less than 3%. The black dashed line indicates Well A. ................................ 123 

Figure 5.16: A map view showing the prestack inverted P-impedance (a), S-impedance 

(b) and VP/VS (c) for the horizon at the base of the Haynesville Shale (black 

dashed curve in Figure 5.9). In each panel, the hot colors represent large 

amplitudes, and cold colors represent small amplitudes. Both the inverted P- 

and S-impedances show low amplitudes in the north area and large 

amplitudes in the southeast area. The VP/VS shows spatial variation, but the 

patterns are not necessarily the same as shown from P- or S-impedance map. 

The black line marks the 2D profile shown in Figures 5.9–5.15. ................ 125 

Figure 5.17: The estimated rock properties. In each panel, the hot colors indicate large 

values, and cold colors indicate smaller values. Those rock properties are all 

correlated to the elastic properties shown in Figure 5.16. (a) Porosity 

estimation, which is generally negatively correlated with P-impedance and S-

impedance. (b) Pore-shape distribution estimation, which is negatively 

correlated with VP/VS. (c) Quartz fraction estimation, which is negatively 

correlated with VP/VS. (d) Clay fraction estimation, which is positively 

correlated with VP/VS. The black line marks the 2D profile shown in Figures 

5.9–5.15. ....................................................................................................... 126 

Figure 5.18: A map view showing the P-impedance (a), S-impedance (b) and VP/VS (c) 

derived from the estimated rock properties from Figure 5.17 for the horizon 

at the base of the Haynesville Shale (black dashed curve in Figure 5.9). In 

each panel, the hot colors represent large amplitudes and cold colors 

represent small amplitudes. These elastic properties are very similar to the 

ones inverted from seismic data (Figure 5.16). The colorbar scale is slightly 

different from Figure 5.16 due to the software (Landmark) performance. The 

black line marks the 2D profile shown in Figures 5.9–5.15. ....................... 127 

Figure 5.19: A map view showing showing the residual of P-impedance (a), S-impedance 

(b) and VP/VS (c) for the horizon at the base of the Haynesville Shale (black 



	   xxvii	  

dashed curve in Figure 5.9). Those residuals are the difference between the 

rock-property derived elastic properties and the seismic-inverted elastic 

properties. ..................................................................................................... 128 

Figure 5.20: Phase velocities and group velocities for VP (upper), VSH (middle) and VSV 

(lower) for a model. In the model, the composition includes quartz, calcite, 

kerogen and clay with percentages similar to core-measured results for Well 

A. The total porosity was set as 5%, which is close to the average values of 

the Haynesville Shale. The phase angle varies from 0o to 90o. The solid 

curves show phase velocities, and dashed curves show group velocities. ... 133 

Figure 5.21: Phase angles and group angles for VP (upper), VSH (middle) and VSV (lower) 

for a model. In the model, the composition includes quartz, calcite, kerogen 

and clay with percentages similar to core-measured results for Well A. The 

total porosity was set as 5%, which is close to the average values of the 

Haynesville Shale. The group angles are very close to phase angles. ......... 134 

Figure B.1: (a) Illustration of the differential effective medium model. The rock with 

effective moduli is created through multiple steps. (b) The effect of adding 

phase 2 inclusions to phase 1 (limestone) in different orders. The phase 2 

inclusions are 4 pores with aspect ratios of 0.001, 0.01, 0.1, and 1. The solid 

line represents adding the 4 pores in descending aspect ratio order; while the 

dashed line represents adding the 4 pores in ascending aspect ratio order. . 144 

Figure B.2: (a) Histograms of the pore inclusions. (b) DEM results showing the pore-

shape effect for Well A in the Haynesville Shale formation. (c) A zoomed in 

view of (b) showing the separation of solid and dashed lines. .................... 145 

Figure B.3: (a) Histogram of pore inclusion aspect ratios used in both the DEM 

modeling. (b) The DEM result showing the composition effect for Well A in 

the Haynesville Shale formation. (c) A zoomed in view of (b) showing the 

separation of solid and dashed lines. ............................................................ 148 

Figure B.4: The DEM result showing the different combinations of the five minerals. 149 



	   xxviii	  

Figure B.5: The DEM result for Well B in the Haynesville Shale formation. Different 

lines represent results from different porosities, and within each line, both 

compositions and pore shapes are varied from bottom to top. ..................... 149 

Figure C.1: Flowchart to estimate porosity. A uniform prior distribution of porosity was 

input into the specific SCM calibrated from the well to calculate the IP in the 

decision space. Then the absolute error between the modeled and observed IP 

was calculated as objective function. By evaluating the objective function, 

the distribution of porosity was estimated. .................................................. 151 

Figure C.2: Flowchart to estimate pore aspect ratio. The distributions of porosity and IP 

based on the log data were compared with the ones from the group of SCMs 

with all possible pore aspect ratios. If porosities and IP satisfied the specific 

criteria, the corresponding pore aspect ratios were accepted. ...................... 152 

Figure C.3: (a) Cross plot of IP versus porosity for the well. Black points are from well 

log data. The blue line is the SCM approximation with pore aspect ratio ~ 

N(0.05, 0.012), and composition assemblage of 37% clay, 33% quartz, 14% 

limestone, 8% plagioclase, 5% kerogen, 2% pyrite, 0.8% dolomite, and 0.2% 

feldspar. (b) IP from well log data (black curve) and the SCM approximation 

(blue curve). ................................................................................................. 154 

Figure C.4: (a) Observed IP from the well. (b) Porosity estimations. Hot colors represent 

porosity with smaller error, and cold colors represent porosity with larger 

error. The solid black curve is the observed porosity, and the green curve is 

the estimated porosity with smallest error. .................................................. 156 

Figure C.5: (a) The input porosity distributions within the Haynesville Shale formation. 

The black curve is the observed porosity. At each depth, porosity was 

normally distributed with mean value equal to the observed porosity. 

Background color shows probability. (b) The input IP distribution, plotted in 

the same way as in a). .................................................................................. 157 

Figure C.6: (a) Crossplot of S-impedance versus porosity, colored by pore shape, with 

possible aspect ratio values from 0.001 to 1. Background color shows the 



	   xxix	  

variation for aspect ratio. Black points are from well log data. (b) Pore aspect 

ratio estimation. The background color represents probability. Black curve 

marks the pore aspect ratio estimation with the highest probability. ........... 158 

Figure C.7: Crossplot of S-impedance versus porosity, colored by pore shape, with 

possible aspect ratio values from 0.001 to 1. Background color shows the 

variation for aspect ratio. Black points are from well log data. ................... 159	  

 

	  

	  

	  

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	   1	  

Chapter 1: Introduction 

1.1 MOTIVATIONS AND OBJECTIVES 

Reservoir characterization of unconventional gas shales is challenging due to their 

heterogeneity and anisotropy. Shales are heterogeneous in terms of depth, thickness, rock 

matrix, organic maturity, porosity, permeability, pressure, temperature, and fractures. 

Although the estimation of reservoir properties from seismic data for conventional clastic 

systems has been performed for several decades, seismic characterization of gas-bearing 

organic-rich shales (gas shales) in terms of their reservoir properties is a young and active 

area of research.  

The reservoir properties, such as porosity, composition, and pore shape are 

important for understanding the gas shales. These reservoir properties contribute to 

identifying zones of economic production and locating sweet spots for hydraulic 

fracturing. Porosity estimation helps to determine gas capacity, as well as the bulk 

density of shales. The pore shape distribution and composition estimations help to 

understand where the stiffest or softest intervals are, and along with density, more 

favorable for hydraulic fracturing. Estimating the reservoir properties for areas away 

from wells requires seismic data. The seismic responses depend on impedance contrasts, 

and the responses often vary spatially in the reservoirs. Understanding which rock 

properties or combination of properties cause these spatial variations is important.  

Rock-physics models describe the relationships between reservoir properties and 

the elastic properties, calibrated by well log and core data at well locations. Numerous 

contact-theory models, empirical rock-physics relationships and inclusion-based models 
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have been developed. However, few of them are capable of modeling complex shales in 

terms of pore and grain shapes, composition, and anisotropy. Therefore, to model and 

understand gas shales, we must utilize more complicated and more physically 

representative models. In addition, most of the existing studies focus on modeling only P-

wave velocity or P-impedance, whereas very few of them model both P- and S-wave 

velocities or P- and S-impedances simultaneously. This S-wave information is important 

to have because it adds another piece of independent information in the seismic reservoir 

characterization of the unconventional gas shales.  

The main contribution of this dissertation is building a workflow to estimate the 

porosity, composition, and pore shape distributions of the Haynesville Shale constrained 

by both P- and S-wave velocities or P- and S-impedances. This workflow contains both 

forward and inverse calculations, including rock-physics modeling and grid searching (a 

grid-based modeling) at well log scale, as well as prestack seismic inversion at the 

seismic scale. The forward calculation is rock-physics modeling, which combines an 

isotropic effective medium model with an anisotropic effective medium model. The 

isotropic effective medium model provides a porous rock matrix with multiple mineral 

phases and pores with different shapes. The anisotropic effective medium model provides 

frequency- and pore-pressure-dependent anisotropy. The inverse calculation is grid 

searching, which provides probabilistic estimates of reservoir properties conditioned by 

the relationships between reservoir properties and elastic properties from the rock-physics 

modeling. Rock properties are estimated at the well log scale using P- and S-impedance 

logs, and at the seismic scale using prestack seismic inverted P- and S-impedances. 
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The variations of these estimated rock properties help to interpret the spatial 

variations in the seismic amplitude data, including P- and S-impedances and VP/VS. The 

results show that P- and S-impedances correlated negatively with porosity, and the VP/VS 

correlated positively with clay fraction and negatively with the pore-shape distribution 

and quartz fraction. These rock properties are validated through the comparisons between 

the elastic properties inverted from seismic data and derived from the estimated rock. The 

two sets of elastic properties are similar.  

 

1.2 STRUCTURE OF THE DISSERTATION  

Chapter 2 introduces the study area and the data used in the project. The geologic 

background of the Haynesville Shale is reviewed. The data, including prestack and 

poststack seismic data from a 3D seismic survey, well log data from two vertical wells, 

and core measurements, are described in detail. In addition, the mineral and fluid 

properties used in each chapter are presented in this chapter.  

Chapter 3 investigates the rock-physics relationships between elastic and reservoir 

properties in the Haynesville Shale. An effective medium model, the self-consistent 

model, is applied to accommodate the composition and pore shape. The chapter shows 

that the physical rock properties that significantly affect the elastic properties include 

porosity, composition and pore shape. The best modeling results explain trends in 

velocity measurements corresponding to joint variations of composition and pore shape.  

Chapter 4 is the most important contribution to the dissertation. It presents a 

workflow to invert for the reservoir properties from the elastic properties of the 
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Haynesville Shale. The workflow combines the isotropic self-consistent model and the 

anisotropic Chapman’s model with a grid-search method. The self-consistent model 

accounts for the complex mineral grains and pores of different shapes and sizes, and 

Chapman’s model accounts for the anisotropy of shales through aligned fractures. Both 

P- and S-wave velocities are modeled by the rock-physics modeling. The grid searching 

provides distributions of porosity, composition, and pore shapes by considering all the 

possible modeled solutions without bias. The feasibility of the workflow is examined at 

the well log scale. The porosity and composition estimations at the well location matches 

the observations from log and core data quite well. The pore shape estimation suggests 

that the pores, cracks, and fractures within the Haynesville Shale have elongated shapes.  

Chapter 5 estimates the rock properties (porosity, pore shape distribution and 

composition) at the seismic scale by applying the workflow in Chapter 4 to the prestack 

seismic inversion results. It shows that all the above rock properties affect the seismic 

velocities, and the combined effects of these rock properties on the seismic amplitude 

need to be investigated simultaneously. The P- and S-impedances correlates negatively 

with porosity. The VP/VS correlates positively with clay fraction and negatively with the 

pore-shape distribution and quartz fraction. These estimated rock properties at the seismic 

scale are validated further through the comparisons between the elastic properties derived 

from the estimated rock properties and the ones inverted from the prestack seismic data. 

These correlations between the seismic amplitude variations and the rock properties 

contribute to the seismic reservoir characterization of the Haynesville Shale.  
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Chapter 6 presents the overall conclusions of the dissertation, as well as possible 

future work. The relationships between the rock properties and elastic properties of the 

Haynesville Shale are investigated, the rock properties are estimated with both P- and S-

wave velocities or P- and S-impedances constrained, and the seismic amplitude variations 

are quantitatively interpreted through the rock properties. All the investigated rock 

properties, including porosity, pore shape and composition, affect the seismic velocities. 

The P- and S-impedances correlate negatively with porosity, and the VP/VS correlate 

positively with clay fraction and negatively with the pore-shape distribution and quartz 

fraction. The rock property derived elastic properties are very similar to the seismic 

inverted elastic properties, with differences less than a few percent.  

This dissertation also contains several appendices: Appendix A, B, C, and D. 

Appendix A presents the composition percentage at different depths within the 

Haynesville Shale. The core analysis and XRD measurement provides accurate matrix 

density assumption for porosity calculation, as well as provides composition constraint 

for calibrating the rock-physics models. Appendix B shows another isotropic modeling 

work for the Haynesville Shale in addition to the self-consistent model. It uses isotropic 

differential effective medium (DEM) model to obtain the relationships between the P-

wave velocity and porosity, pore shape and composition. The DEM modeling results are 

similar to the self-consistent modeling results in Chapter 3. Appendix C uses the isotropic 

self-consistent model and grid searching to estimate the porosity and pore shape of the 

Haynesville Shale. Two separate algorithms are built for estimating porosity and for 

estimating pore shape. In the algorithms, porosity is estimated by assuming the pore 



	   6	  

aspect ratio, and pore aspect ratio is estimated by assuming the porosity. The porosity 

estimation matches with the observed porosity in terms of both overall trend and absolute 

value; the pore shape estimation indicates that the pores in the Haynesville Shale are 

mostly flattened. Appendix D shows the details of Chapman’s model, which comes from 

Chapman (2003).   
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Chapter 2 : Study Area and Data 

 This chapter introduces the study area and used data in the project. This project 

focused on the upper Jurassic Haynesville Shale, located in the East Texas basin of East 

Texas and northwestern Louisiana at the boundary between Texas and Louisiana. The 

data in this project came from eastern Texas, donated by BP. The prestack and poststack 

seismic data from a 3D seismic survey in eastern Texas, well log data from two vertical 

wells, and core measurements from one of the two wells were analyzed. The mineral and 

fluid properties are also presented in this chapter.  

 

2.1 GEOLOGY 

The Haynesville Shale is an upper Jurassic organic-rich mudrock in the East 

Texas basin of East Texas and northwestern Louisiana at the boundary between Texas 

and Louisiana (Figure 2.1). It lies stratigraphically above the Smackover formation and 

beneath the Cotton Valley Group (Figure 2.2). Although debate exists for the 

interpretation of the depositional setting and sequence stratigraphy, its general 

depositional environment has been suggested as an offshore setting with water depth no 

more than 100 m. Deposition was below wave action, in a relatively quiet environment, 

but susceptible to small changes in sea level (Hammes et al., 2011). This formation is 

relatively deep (about 3000 to 4000 m) with extremely low permeability low (less than 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 	  	   Figures 2.12–14 were published in Jiang, M., and K. T. Spikes, 2013a, Estimation of reservoir 
properties of the Haynesville Shale by using rock physics modeling and grid searching: Geophysical 
Journal International, 195, 315-329. The coauthor Spikes supervised the project.  
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0.001 mD on average), and moderate porosity, ranging from about 3% to 14% (Wang and 

Hammes, 2010. Few natural fractures were apparent in core samples that we examined. 

However, the burial and thermal history of the Haynesville indicate high temperatures 

and overpressure (Ewing, 2001; Becker et al., 2010; and Nunn, 2011). The overpressure 

brings high initial production rate, as well as a dramatic decline rate (Hammes et al., 

2011). The Haynesville Shale has been shown to exhibit vertical transverse isotropy 

(VTI) at the well log scale (Horne et al., 2012). At the lab scale, the pores and clay 

platelets are mostly aligned along the horizontal bedding direction (Chalmers et al., 2012; 

Curtis et al., 2010), supporting that the Haynesville Shale exhibits VTI anisotropy.  

Based on Hammes et al. (2011), the facies of the Haynesville Shale include 

bioturbated calcareous mudstone, laminated calcareous mudstone, silty peloidal siliceous 

mudstone, and unlaminated siliceous organic-rich mudstone. The more calcareous areas 

are in the south and southwest, and the more siliceous areas are in the north and northeast 

of the Haynesville Shale depositional extent. The major mineralogic components are 

clay, quartz and calcite, and the gas capacity is estimated at more than 2.8×1010 m3. The 

Haynesville Shale has two depocenters: one in east Texas and northwest Louisiana, and 

one within the East Texas Salt Basin, separated by carbonate platform (Gilmer platform) 

(Figure 2.3). The thickness of the Haynesville Shale varies spatially for both of the two 

depocenters, from less than 15 m to more than 106 m. For the eastern depocenter, the 

Haynesville Shale is thicker in the north and northeast and thinner in the south and west. 

For the western depocenter, the Haynesville Shale is thicker in the southwest and thinner 

in the northeast. Besides thickness, the depth of the Haynesville Shale also varies 
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spatially (Figure 2.4), from about 3030 m in the northeast to about 4545 m in the 

southwest for the eastern depocenter, and from about 4848 m in the east to about 3030 m 

in the west for the western depocenter.   

 

2.2 DATA DESCRIPTION 

The data used in the project includes prestack and poststack seismic data from a 

proprietary 3D seismic survey, well log data from two vertical wells, and core 

measurements from one of the two wells. The survey area and the two wells (Well A and 

Well B) are shown in Figure 2.5. The seismic survey area is about 4 by 4 km2. Totally, 

there are 341 inlines (1001 to 1341) and 347 crosslines (2001 to 2367), with line spacing 

of about 12 m. Both prestack and poststack seismic data are available. Well log data from 

two vertical wells (Well A and Well B) are available. Well A is within the seismic block, 

and Well B is about 1 km east of the seismic block. Well A is the vertical pilot hole of a 

horizontal well, and its core data is available. The core analysis and x-ray diffraction 

(XRD) measurements were used to constrain the composition. The borehole environment 

of Well A is very rugose. Therefore, the log data from Well B was used to calibrate the 

rock physics model. The colors in the white square indicate the maximum negative 

seismic amplitudes from the base of the Haynesville Shale, with hot colors representing 

smaller negative values and cold colors representing larger negative values. The thick 

white line marks the seismic profile (crossline 2184) shown in Figure 2.6. 
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Figure 2.1: From Hammes et al. (2011), the red striped area marks the Haynesville Shale 

productive area as of 2010. Green areas are basins, and blue areas are structural 
highs. The extent of the Sabine Uplift is marked by the blue dotted area.  
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Figure 2.2: Stratigraphic column for the Haynesville Shale. The Haynesville Shale is a 

Jurassic-aged rock formation (about 150 Ma) below the Cotton Valley Group and 
above the Smackover Formation.   
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Figure 2.3: From Hammes et al. (2011), a thickness map (in ft) of the Haynesville Shale 
for the eastern and western depocenters. The blue area is the carbonate platform, 
and black dots represent well control studied in Hammes et al. (2011). 
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Figure 2.4: From Hammes et al. (2011), depth map of the Haynesville Shale. Shallow 
depths are marked by yellow and orange colors and deep depths are marked by 
green and blue colors. The black numbers in the map mark the depth (×1000 ft) 
below mean sea level. 
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2.2.1 Seismic Data 

The 3D seismic survey area is about 4 by 4 km2, composed of 341 inlines and 367 

crosslines, and the tracing space is about 12 m. Both prestack and poststack seismic data 

were available in the study area. Figure 2.6 shows an example of the poststack P-wave 

seismic along the profile (roughly east-west direction) marked in Figure 2.5. The blue 

colors (Figure 2.6) represent positive amplitudes and red colors represent negative 

amplitudes. The Haynesville Shale top and bottom are marked by the two gray arrows at 

about 700 ms and 750 ms (the two-way artificial time is used due to the confidence of the 

true data). The bottom of the Haynesville Shale can be clearly seen by the strong positive 

reflection event at about 750 ms, due to the transition from the Haynesville Shale to 

Smackover Limestone that sits below. The top of the Haynesville Shale (~700 ms) is not 

as clearly seen as the bottom because the impedance contrast between the Haynesville 

Shale and Bossier shale is not large. More accurate identification of the top and bottom of 

the Haynesville Shale comes from the well log data. At the lower part of the Haynesville 

Shale between 720 ms and 740 ms, there is a strong negative reflection. The color 

intensity changes from trace to trace, indicating the amplitude of this negative reflection 

varies spatially. Accordingly, the colors in Figure 2.5 show the negative base of the 

Haynesville Shale between about 720 ms and 740 ms in the map view. The spatial 

variation of the P-wave seismic data can be clearly seen from the different colors.  

The amplitude spectrum (Figure 2.7) was extracted from the poststack seismic 

data along crossline 2184, with a time range from 0 ms to 3000 ms. It shows that the 

dominant frequency range is 25 to 30 Hz. Assuming the average P-wave velocity within 
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the Haynesville Shale is about 3 km/s, then the wavelength is about 100 m for frequency 

of 30 Hz. Therefore, the vertical resolution of the seismic data, one fourth of the 

wavelength, is about 25 m.  

 

 

Figure 2.5: A map view showing the relative locations of the 3D seismic survey area 
(white block) and the two vertical wells (Well A as black star and Well B as white 
star). The white horizontal ticks show the crossline from 2001 to 2367, and white 
vertical ticks show the inline from 1001 to 1341. The thick white line marks the 
seismic profile (crossline 2184) shown in Figure 2.6. The black line marks the 
seismic profile shown in Chapter 5. The colors in the white square indicate the 
maximum negative seismic amplitudes from the base of the Haynesville Shale.  
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Figure 2.6: Poststack P-wave seismic data. Blue colors represent positive reflections and 
red colors represent negative reflections. The seismic profile is marked by the 
thick white line in Figure 2.5, and the profile is oriented roughly along the east-
west direction. Well A is in the middle of the seismic profile, at inline 1166, with 
the top and bottom of the Haynesville Shale marked by gray arrows. The green 
curve shows the horizon at the bottom of the Haynesville Shale. The correlation 
coefficient of the seismic well tie was 0.79. The artificial tow-way reflection time 
is used to maintain confidence of the true data location.  

   

 
Figure 2.7: Amplitude spectrum of the poststack seismic data. The dominant frequency is 

about 25 to 30 Hz.  
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An example of prestack seismic data is shown in Figure 2.8. Offset gathers from 

three inlines (1165, 1166, and 1167) are plotted along the same crossline (crossline 

2184). Well A is at inline 1166, whose P-impedance is plotted in red. The offset ranges 

from about 273 m to 4242 m, with increment of about 61 m. Therefore, the fold is about 

66 on average. For the displayed inlines, the seismic amplitudes are larger at the far 

offsets than at the near offsets. Similar to the poststack seismic data, the bottom of the 

Haynesville Shale is indicated by the positive reflection at about 745 ms for these three 

inlines close to Well A. The amplitude spectrum (Figure 2.9) was extracted from the 

prestack seismic data along crossline 2184 between 0 ms and 3500 ms. It shows that the 

dominant frequency is about 25 Hz, which is similar to the one from the poststack 

seismic data as expected. Because there are much more traces in prestack seismic data, its 

amplitude spectrum looks smoother than the one from poststack seismic data. There is 

almost no energy from about 0 to 5 Hz in the seismic data, and the well log data provides 

part of the low frequency information.  

Figure 2.10 shows the extracted root mean square (RMS) velocity field along the 

profile, which generally increases from shallow to deep formations, and with little lateral 

variation. Based on the RMS velocity, the CDP offset gathers was converted to angle 

gathers (Figure 2.11). At inline location 1166 (Well A), the angle gathers range from 

about 4° to 50°. Similar to offset gathers, the seismic amplitudes at larger angles are 

larger than the ones at smaller angles for the displayed angle gathers at the well location. 

The signal-to-noise ratio at the larger angles is smaller than the one at the small angles.  
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Figure 2.8: The prestack CDP offset gathers. Three CDPs along one crossline are shown 
with different offsets. The offset range is from about 273 m to 4242 m. The 
seismic amplitudes in the far offsets are larger than the ones in the near offsets. In 
the shallower part (above about 400 ms), the far offset gathers were muted. The 
red curve in the vertical direction shows the P-impedance log from Well A. The 
yellow box indicates the Haynesville Shale.    
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Figure 2.9: Amplitude spectrum of the prestack seismic data. The dominant frequency is 

about 25 Hz.  
 

 

 
Figure 2.10: The root mean square (RMS) velocity that was used to convert CDP offset 

gathers to angle gathers. The RMS velocity generally increases from shallow to 
deep depth. The gray dashed vertical line marks the location of Well A. The black 
dashed square between about 700 ms and 750 ms marks the Haynesville Shale.  
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Figure 2.11: The prestack CDP offset gathers (a) and angle gathers (b). The angle gathers 

were calculated from offset gathers using the RMS velocity model from Figure 
2.10. Similar as shown in Figure 2.8, the offset range is from about 273 m to 4242 
m, and the angle range is from about 4° to 50°. The red curve in each panel shows 
P-impedance log from Well A. The yellow box indicates the range of the 
Haynesville Shael. From near to far offset or small to large angles, the seismic 
amplitude is increasing and the signal-to-noise ratio is decreasing. 
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2.2.2 Well Log Data 

The logs (gamma ray, sonic, caliper, density, and resistivity) from two vertical 

wells (Well A and Well B) are available. The logs were edited using the caliper curve in 

an attempt to eliminate questionable measurements that corresponded to local borehole 

conditions. However, uncertainty remains in some of the data. The data from Well A 

comes from the vertical pilot hole through the entire Haynesville Shale of a horizontal 

well (Figure 2.12). Curves shown are the gamma ray, caliper, density, P-wave velocity, 

dipole S-wave velocity and P-impedance. Depth on the vertical axis is artificial for 

confidentiality purposes. The Haynesville Shale (gray shaded zone) was identified based 

on the increase of gamma ray log (Well A) and decrease of the density log (Well B, 

Figure 2.13). Overall, P- and S-wave velocities in each well show very similar pattern, 

and they present roughly inverse pattern from the gamma ray log. The logs from these 

two wells show very similar features. Well B has better data quality than Well A whose 

borehole environment is rugose within the Haynesville Shale as indicated by the caliper 

log. Therefore, the log data from Well B was used to calibrate the rock physics models. 

In Well A, within the Haynesville Shale formation, density varies from 2.35 to 2.64 

g/cm3 with an average of 2.49 g/cm3, P-wave velocity varies from 2.75 to 4.42 km/s, with 

an average of 3.29 km/s, and S-wave velocity varies from 1.67 to 2.53 km/s, with an 

average of 1.97 km/s. In Well B, within the Haynesville Shale formation, density varies 

from 2.43 to 2.67 g/cm3 with an average of 2.53 g/cm3, P-wave velocity varies from 2.93 

to 4.07 km/s, with an average of 3.26 km/s, and S-wave velocity varies from 1.68 to 2.47 

km/s, with an average of 1.94 km/s. 
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Figure 2.12: Well log data and seismic data from Well A. Gamma ray, caliper, density, P- 
and dipole S-wave velocities (VP and VS), and P-impedance are plotted. Depth is 
artificial for confidentiality. The Haynesville Shale is marked as the gray shaded 
zone. It is identified based on the increase of gamma ray log. On the right seismic 
data at Well A is plotted. The caliper log has many fluctuations, indicating a 
rugose borehole environment that causes fluctuations in the density and velocity 
logs. The blue seismograms are five duplicates of the synthetic seismic data, and 
red seismograms are five duplicates of the observed full stacked seismic data at 
the well location. Seismic data were tied to the well log data with a correlation 
coefficient of 0.79. The seismic data indicate large reflectivity at the bottom of the 
Haynesville Shale, whereas the top of Haynesville Shale is not as clearly 
identifiable as the bottom.  
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Figure 2.13: Well log data from Well B. Gamma ray, caliper, density, P- and dipole S-
wave velocities (VP and VS), and P-impedance are plotted. Depth is artificial. The 
Haynesville Shale is marked as the gray shaded zone, identified by the decrease of 
density due to high kerogen content. Well B has better data quality than Well A. 
On the right, synthetic seismic data from Well B is plotted, generated by the same 
wavelet from Well A. Both have five duplicates. Because these two wells are 
close to each other (less than 3 km), their synthetic seismograms are similar.  
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For both wells, we generated the zero-offset synthetic seismograms from the 

impedance logs using the convolutional model (Yilmaz, 2001). These synthetic 

seismograms are plotted with the log data. In Well A (Figure 2.12), the observed 

poststack seismic data (red seismograms) were tied with the log data by using time-to-

depth information generated by VSP travel times from an adjacent well, which was not 

included in this work. The observed seismic data and synthetic seismic data are very 

similar with a correlation coefficient of 0.79. Because no observed seismic data were 

available for Well B, its synthetic seismograms were compared with the synthetic ones 

from Well A. The same wavelet (extracted from observed seismic data at Well A) were 

used for both Well A and Well B. Because the impedance log of Well A fluctuated due to 

the rugose borehole environment, the synthetic seismogram for Well A contained higher 

frequencies than the one from Well B. The seismic data indicate a large reflectivity 

difference between the Haynesville Shale and the underlying Smackover Limestone due 

to the large increase of P-wave velocity and density. However, the boundary between the 

Hayesville Shale and Bossier Shale is not as clearly defined as the one between the 

Haynesville Shale and Smackover Limestone.  

In this project, the porosity log was calculated using  

      (2.1)  

as a function of measured density log (ρb), density of the rock matrix (ρm), and density of 

the pore fluid (ρfl). The pore fluid density was computed as an arithmetic average of the 

water and gas densities, weighted from the water saturation and gas saturation calculated 

φ =
ρm − ρb
ρm − ρ fl
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from the resistivity log. In the early stage of this study, the rock matrix was assumed to 

be calcite (Chapter 3 and Appendix B). Later on, the rock matrix was updated to the 

combination of different minerals from core analysis and XRD measurements Chapters 4 

and 5, and Appendix C) to more accurately represent the shale.  

 

2.2.3 Core Data  

In addition to log and seismic data, Well A also has cores, providing both 

composition percentages and scanning electron microscope (SEM) images (courtesy Dr. 

Ursula Hammes).  

2.2.3.1 Composition Percentage 

Core analysis and x-ray diffraction (XRD) measurements were done for 

composition percentage on forty-eight samples within the Bossier and Haynesville Shale 

formations at about a 3-m interval (Appendix A, courtesy Dr. Ursula Hammes). Among 

these 48 samples, 20 samples were for Bossier and 28 samples were for Haynesville 

Shale. Both the Bossier and Haynesville Shales contain quartz, feldspar (potassium 

feldspar), plagioclase (calcium feldspar), calcite, dolomite, pyrite, kerogen and clay 

(Figure 2.14). A clear boundary exists between the Bossier and Haynesville Shale due to 

the composition change at about 2350 m. From the Bossier to the Haynesville, the 

average quartz percentage increases from 28.9% to 31.6%, average calcite percentage 

increases from 4.8% to 14.2%, average kerogen percentage increases from 1.2% to 5.3%, 

and average clay percentage decreases from 56.1% to 35.3%. In general, the Haynesville 
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Shale is richer in organic matter but contains less clay than the Bossier Shale, with an 

accompanying increase in carbonate.  

 

Figure 2.14: Mineralogic composition of the Bossier and Haynesville Shale from core 
analysis and XRD (in volume) for Well A. The depth scale is not linear because 
the 48 samples were not measured at exactly equal spacing along depth. A clear 
boundary exists between Bossier and Haynesville Shale due to the increase of 
quartz, calcite and kerogen and the decrease of clay at about 2350 m.  

 

Because core analysis and XRD measurement was done at every 3 m, whereas log 

data was measured at a 0.15-m interval, we interpolated the 28 samples linearly within 

the Haynesville Shale formation when calculating the porosities in Chapters 4 and 5, and 

Appendix C.  
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2.2.3.2 Microstructure Images  

At the micro- and nano-scales scale, the Haynesville Shale tends to have flattened 

or elongated grains and pores (Curtis et al., 2010; Chalmers et al., 2012). Figure 2.15a 

(from Curtis et al., 2010) is a back-scatter electron (BSE) image that shows the 

microstructure of the Haynesville Shale. Overall, the pores and the clay platelets appear 

flat and elongated, aligned along the bedding direction. The field emission scanning 

electron microscope (FE-SEM) image (Figure 2.15b) shows that the interparticle pores 

around quartz grains and macropores created from dissolution of carbonate matrix or 

cement are aligned horizontally (Chalmers et al., 2012).   

The porosity in the Haynesville Shale is mostly interparticle along the quartz or 

calcite grains (Figure 2.16). The SEM image from a sample of Well A at artificial depth 

of 2434 m (Figure 2.16a) shows a lot of quartz grain related interparticle pores. Similarly, 

the field emission scanning electron microscope (FE-SEM) image of the Haynesville 

Shale (Figure 2.16b) from Chalmers et al. (2012) shows that at the given scale and 

resolution, the porosity in the Haynesville Shale is mostly interparticle, sitting in between 

quartz grains. Besides the interparticle pores associated with quartz or calcite grains, the 

Haynesville Shale also contains other types of pores (Figure 2.17), such as moldic 

porosity, pores in the organic matter, pores associated with clay mineral grains, and pores 

between the crystals of pyrite framboids.  
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a)   

b)  

Figure 2.15: a) From Curtis et al. (2010). A back-scatter electron (BSE) image showing 
the microstructure of the Haynesville Shale. The clay platelets and pores are 
elongated, aligned along the bedding direction. b) From Chalmers et al. (2012). A 
field emission scanning electron microscope (FE-SEM) image of the Haynesville 
Shale. The macropores are created from dissolution of carbonate matrix or 
cement. The pores are mostly interparticle, and are aligned horizontally. Quartz, 
mica, and organic matter (OM) can also be observed from the image. 
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a)  

b)  

Figure 2.16: a) Courtesy Dr. Ursula Hammes. A Ar-ion milled scanning electron 
microscope (SEM) image of the Haynesville Shale. The sample is from Well A at 
artificial depth of 2434 m. Most of the pores are interparticle pores, related to 
quartz or calcite grains. The very bright spots are pyrite framboids. b) From 
Chalmers et al. (2012). A field emission scanning electron microscope (FE-SEM) 
image of the Haynesville Shale. At the given scale and resolution, the porosity in 
the Haynesville Shale is mostly interparticle, sitting in between quartz grains.  
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Figure 2.17: Courtesy Dr. Ursula Hammes. A scanning electron microscope (SEM) 
image of the Haynesville Shale. The sample is from Well A at artificial depth of 
2434 m. The image shows moldic porosity, interparticle pores associated with 
quartz grains and clay mineral grains, pores associated with organic matter, and 
pores between the crystals of pyrite framboids.  

 
 
2.3 MINERAL AND FLUID PROPERTIES  

 In the rock physics modeling, the effective moduli and density of the shale depend 

on the moduli of each inclusion, including solid and fluid inclusions. Table 2.1 lists these 

properties used in my early research stage (Chapter 3 and Appendix B) and table 2.2 lists 

these properties in my later research stage (Chapters 4 and 5, and Appendix C). The main 

difference between the two tables comes from the elastic properties for clay, kerogen and 
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fluids that are less certain. The elastic properties for quartz, calcite, pyrite, and dolomite 

are relatively well-known.  

 
Table 2.1. Moduli and densities of the solids and fluids (Chapters 3 and Appendix B) 

(Mavko et al., 2009; Ward, 2010; Lucier et al., 2011) 
Mineral/Fluid Density (g/cm3) Bulk modulus (GPa) Shear modulus (GPa) 

Quartz 2.65 36 45 
Calcite 2.71 69 33 
Clay 2.58 18 7 
Pyrite 4.93 147.4 132.5 

Kerogen 1.3 7 4 
Water 1.29 2.8 N/A 
Gas 0.16 0.07 N/A 

Dolomite 2.87 45 95 
 

Table 2.2. Moduli and densities of the solids and fluids (Chapters 3, 4 and Appendix C) 
Mineral/Fluid Density (g/cm3) Bulk modulus (GPa) Shear modulus (GPa) 

Quartz  2.65 36.6 45 
Calcite 2.71 69 33 

Clay[4, 5] 2.58 21 7 
Pyrite 4.93 147.4 132.5 

Kerogen[1,2,3] 1.45  2.9 2.7 
Brine  1.09 2.8 N/A 
Gas 0.16 0.07 N/A 
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Chapter 3 : Rock-physics relationships between elastic and reservoir 

properties in the Haynesville Shale 

3.1 ABSTRACT 

Modeling the elastic properties of the Haynesville Shale using rock-physics 

techniques is part of characterizing this shale that could be used to improve predictions of 

economic drilling locations. The goal of this modeling is to relate the reservoir properties 

of interest (e.g., porosity, pore shape, and composition) to the elastic properties. Rock 

physics modeling for conventional reservoirs has similar goals, but the modeling 

approach for shale is more complex. Within the Haynesville Shale, the physical rock 

properties that significantly affect the elastic properties include not only porosity, but also 

include composition and pore shape. Accordingly, the rock-physics modeling requires an 

effective-medium theory, notably the self-consistent model, to accommodate the 

composition and pore shape. Composition was estimated through a combination of well 

log and core data. Pore shapes were estimated using estimated stress conditions and 

numerical studies. The best modeling results explain trends in velocity measurements 

corresponding to correlated variations of composition and pore shape. Accordingly, this 

rock-physics model could be used in conjunction with seismic data interpretation to 

identify locations with low velocity and potentially higher organic content and zones with 

faster velocity more suitable for fracturing. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
   This chapter was published in Spikes, K. T. and M. Jiang, 2013, Rock physics relationships 
between elastic and reservoir properties in the Haynesville Shale: AAPG Memoir, 105, 189–203. Spikes 
supervised the project.  
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3.2 INTRODUCTION 

For the last several decades, measurements of seismic data have been related to 

lithology, porosity, and fluid content and volume for reservoir characterization. The most 

successful applications have been for reservoirs consisting of clean sandstones, clay-

bearing sandstones, and to some extent carbonate rocks. However, a similar approach for 

gas shale has not been explored extensively, particularly in the Haynesville Shale, likely 

because of the relative lack of experience with shale plays and their natural complexity. 

The goal of modeling velocity data using a rock-physics model or transform is to relate 

the reservoir properties to the elastic (seismic) properties. This is important, especially in 

North America, because of the need to identify locations from surface seismic 

observations where hydrocarbon production in shale may be optimal.  

 Rock-physics modeling in clastic reservoirs relates the measured compressional and 

shear velocity to the porosity, lithology or mineralogy, fluid type, and volume. One 

reliable approach is to apply an empirical law derived from laboratory measurements of 

velocity and reservoir properties (Tosaya, 1982; Greenberg and Castagna, 1992). These 

laws typically are for very specific lithologies, fluids, and porosity ranges. In addition, 

theoretical models have been developed (Mindlin, 1949; Dvorkin and Nur, 1996; Norris 

and Johnson, 1997; and Jenkins et al., 2005) to approximate sands with spherical particles 

under different conditions of grain-to-grain contacts and normal and tangential stresses. 

Carbonate reservoirs tend to be more complex, in which pore type and fractures are 

added to the list. Rock-physics models applicable to carbonate reservoirs also include 

empirical laws. Theoretical models can account for fractures (e.g., Hudson, 1980; 
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Schoenberg and Douma, 1988), different porosity types (Eberli et al., 2003) and in some 

cases for both fractures and porosities (Chapman, 2003). 

For clastic and carbonates systems, typically the lithology is fairly well 

constrained, and petroleum systems analyses have helped to predict fluid migration 

pathways. Gas shales may be composed of a much wider range of lithologies than either 

clastic or carbonate reservoirs, and in particular kerogen or organic matter. Furthermore, 

fractures (both in situ and induced) may prove to provide a significant role in some shale 

plays (Gale et al., 2007). One advantage in terms of characterizing gas shales is that the 

fluid type might be better known from regional information compared to either a clastic 

or carbonate system because these shales are often the source rocks for themselves and 

for formations in close stratigraphic proximity. However, predicting the volume of the 

fluid is difficult because it depends on the kerogen type and quantity.  

This chapter shows a modeling routine in the Haynesville Shale to relate the 

composition, pore stiffness, and fluid content to the velocity and density through an 

effective-medium model. An effective-medium model is one that characterizes a complex 

medium, whether it is heterogeneous and/or anisotropic, as a single homogeneous (and 

potentially isotropic) medium. In terms of seismic velocity and resolution, this can be 

considered as finding a single seismic velocity that represents multiple layers (each with 

different velocities and each below seismic resolution) as a single layer. A correct 

application of an effective-medium model results in identical seismic responses if either 

the original layers were in place or if the effective-medium model replaced them. More 

specific to our purposes, seismic velocities are affected by composition, pore shape, fluid 
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content, grain shape, grain contacts, pore size, and fluid distribution, among others. These 

are inputs into the effective medium model. The outputs are effective elastic properties 

that can be compared with measured seismic velocity. 

The effective-medium model chosen in this chapter is the n-phase self-consistent 

approximation (SCA) of Berryman (1980, 1995). It links the composition, total porosity, 

and fluid saturation to the elastic properties by mixing together matrix components and 

pores, each with different shapes. Composition was estimated from observations from 

core data. Pore shapes were estimated from in situ stress and numerical experimentation. 

SEM images could be used if available. We use a statistical formulation of the model by 

implementing distributions of solid and pore aspect ratios to extend the possible ranges of 

velocity values to match the well data.  

Modeling results for two wells provide different sets of theoretical model curves 

that explain the data in terms of variable composition, variable distributions of pore 

shapes, and a combination of the two. One major limitation of this model is that it is 

isotropic and does not account for anisotropy of shales, whereas shales are anisotropic 

due to the alignment of clay platelets, pores, and/or fractures. Other limitations of this 

model are that it includes neither temperature nor pressure variations. Furthermore, grain 

and pore shapes are approximated with regular, geometrically convenient shapes. These 

approximations, and the lack of pressure and temperature parameters, prevent us from 

incorporating diagenetic effects likely present in the shale. Despite these limitations, this 

work, consistent with present knowledge, ultimately could be applicable to field seismic 

data to identify locations within the Haynesville Shale that contain more organic material, 
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which might be more productive. This may be in contrast to more brittle zones where 

hydraulically induced fractures might remain open for longer durations, thus increasing 

permeability. The modeling here does not attempt to explain every single point 

measurement; rather, model trends in the data. The disadvantage of this approach is that 

the rock-physics model does not provide a succinct combination of reservoir properties 

for every velocity. The advantage is that the modeling of the trends allows for 

extrapolations to other rock-property combinations not necessarily observed in the data. 

This is important for quantitative interpretation of surface seismic data when rock 

property combinations in between wells may not be represented at well locations. 

Measurements of seismic wave velocity acquired in a laboratory setting, in a 

wellbore, or from field seismic data (crosswell, VSP, or surface) are dynamic 

measurements. The dynamic bulk and shear moduli are computed from seismic wave 

velocity and density. Alternatively, values of elastic moduli can be obtained by 

deforming the rock with a known applied stress. In general, the dynamic values are 

greater than the static values. The difference typically is attributed to anelastic effects 

during deformation as opposed to elastic deformation during seismic wave propagation. 

The modeling performed in this work is done based on measurements of dynamic P-wave 

and S-wave velocities, and thus dynamic elastic properties are modeled. However, it 

should be noted that the static properties (i.e., the geomechanical properties) are of 

interest for drilling applications and hydraulic fracturing in shale (Sayers, 2010). To 

relate the dynamic properties to static properties, a transformation must be performed. 
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The focus here is not in this transformation; rather, we concentrate on the dynamic 

moduli and relate the measured velocities to shale reservoir properties.  

 

3.3 THE SELF-CONSISTENT APPROXIMATION  

To investigate the effects of pore shape and composition, we modeled 

observations from well-log data in the Haynesville Shale using the self-consistent 

approximation (O’Connell and Budiansky, 1974; Berryman, 1980). Contact-theory 

models (e.g., Norris and Johnson, 1997) and empirical rock-physics relationships (e.g., 

Greenberg and Castagna, 1992) do not provide the flexibility to model heterogeneous 

compositions or specific distributions of pore shapes. The self-consistent approximation 

(SCA) is not limited to specific compositions. It is capable of modeling multiple 

mineralogical phases, as well as approximations to their shapes and spatial distributions, 

for an elastically isotropic rock. Similar models exist that could be used for modeling 

isotropic distributions of solid materials and pores. These include the Kuster-Toksöz 

model (e.g., Kuster and Toksöz, 1974; O’Connell and Budiansky, 1974) and differential 

effective media (DEM, Norris, 1985). The DEM models two-phase composites. The 

inclusion phase is incrementally added into the matrix phase, and the order of adding in 

phase affects the effective moduli of the rock. Yet the SCA is a multiple-phase model, 

and the order of adding in phases does not affect the effective moduli of the rock. 

The generalized version of the SCA provides the use of n phases, including 

multiple solid and multiple pore-space phases (equations 3.1–3.2). These two equations 

must be solved iteratively to find the yet-to-be determined values of  and (the KSC
* µSC

*
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self-consistent or effective bulk and shear moduli, respectively) as a function of the 

volumetric quantities and elastic moduli of the constituents. 

f j (K j −KSC
*

j=1

N

∑ )β* j = 0,     (3.1) 

 f j (µ j −µSC
*

j=1

N

∑ )ζ * j = 0.     (3.2) 

Each  denotes a phase, either a material or pore space, with a corresponding 

volume fraction  and bulk ( ) and shear ( ) modulus for that phase. The shapes of 

all grains and pores to be modeled must also be described. Every grain and pore is 

considered to be an ellipsoidal-shaped inclusion. The shape is described by the aspect 

ratio ( ), which is the ratio of the shortest to the longest axis. We considered only 

prolate ellipsoidal inclusions where ≤1. The factors β* j  and  (equations 3.3 and 

3.4) describe the geometry of an inclusion made of phase  within a background medium 

(denoted with the  subscript). 
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       (3.4) 

Then the seismic velocities can then be calculated from the effective bulk and 

shear moduli and density (equation 3.5). 

j
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VP =
KSC
* +

4
3
µSC
*

ρ

VS =
µSC
*

ρ

                                        (3.5)
 

Figure 3.1 is a schematic illustration of the self-consistent model. A rock to be 

modeled (the circle) is embedded in an infinite matrix (the square). The rock consists of 

isolated mineral grain inclusions (white ellipses) and pore inclusions (black ellipses) with 

different aspect ratios. The self-consistent elastic moduli of the rock depend on the elastic 

properties of the solid and pore inclusions.  

 

Figure 3.1: Illustration of the self-consistent model. The square represents an infinite 
matrix with a given effective moduli, and the circle represents a rock. Inside the 
rock, white ellipses represent mineral grain inclusions, and black ellipses 
represent pore inclusions. The elastic moduli of the rock and the infinite matrix 
depend on the elastic properties of grain and pore inclusions. The moduli of the 
infinite matrix and rock are made the same by iteratively solving for the effective 
elastic moduli. 

 

The SCA isolates the pores from each other, so they are not in hydraulic 

communication. As a result, this model is considered to be high frequency. High 

frequency in this case refers to seismic wave propagation and pressures within the pore 
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space. More specifically, as a seismic wave passes through the rock, pore pressures 

within the pore space do not have sufficient time to equilibrate during one wave period. 

The effect is that pore space acts more stiffly, and the rock as a whole behaves as if it is 

stiffer than it would be if a low-frequency wave propagated through the rock. If the pores 

are in hydraulic communication (connected porosity), and the frequency is low, then the 

pore space stiffness will not be affected by the fluid.  

 

3.3.1 Model Parameters: Composition 

Visual examination of cores from a well drilled through the Haynesville Shale 

does not reveal distinct lithologies, fluid content, or pore structure. In addition, vertical 

natural fractures were not observed in the cores that we observed. Core analysis and XRD 

data provided a range of mineralogies (Figure 2.14). The structure of the shale has been 

observed in terms of size and shapes from micro- and nano-scale imaging techniques 

(Curtis et al., 2010). Accordingly, the rock-physics modeling we perform combines 

variations in likely lithologies. Modeling velocities with different mineral assemblages 

requires defining the elastic properties of each mineral constituent. The minerals chosen 

to model (guided by the core analysis and XRD data) include kerogen, clay, quartz, 

calcite, and pyrite. The latter three have relatively well-known values (Table 2.1) for their 

mineral moduli and density (Mavko et al., 2009). On the other hand, kerogen and clay 

have very poorly determined elastic moduli and density, but published information 

provides some useful values (Ward, 2010; Lucier et al., 2011). 
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3.3.2 Model Parameters: Pore Shapes 

To model pore shapes with different aspect ratios, we first determined a minimum 

and maximum  that could be present at the depths under consideration. Pores will be 

closed at different depths because of effective stress, depending on the aspect ratio. 

Images of pores (Curtis et al., 2010) illustrate that in the Haynesville Shale, elongated 

and isolated pores exist at the nano- and micro-scales that appear to be open. Thus, the 

range of aspect ratios is designed to include these. An analytical expression (equation 

3.6) relates the confining stress needed to close a single, isolated ellipsoidal pore to its 

aspect ratio and an infinite elastic solid surrounding that pore (Mavko et al., 2009). In this 

equation, σ 0  is the confining stress, νm  is the solid Poisson’s ratio, Km  is solid bulk 

modulus, µm 	  is	   solid	   shear	  modulus, and α0  is pore aspect ratio that is closed at the 

confining stressσ 0 . 

.                      (3.6) 

This equation indicates a simple linear relationship between pore aspect ratio (α0 ) 

and the confining stress (σ 0 ): the larger the aspect ratio of a pore, then a larger stress is 

required to close it. Pores with small aspect ratios are considered soft or compressible and 

more easily closed. Those with large aspect ratios are considered incompressible. An 

example of quartz mineral (Km  = 36 GPa, µm = 45 GPa) containing a single pore 

indicates that the closing stress of the pores can vary from 76 MPa with aspect ratio of 

0.001 to ~75500 MPa with aspect ratio of 1. From this argument, we can obtain a lower 

α

α0 =
2σ 0 (1−νm

2 )(3Km + µm )
9Kmµm
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bound for the open pores at the depth ( ≈0.001) of the Haynesville Shale (about 3000 to 

4000 m). If pore pressure is high, then the minimum value of  can be much smaller. 

The upper bound for the open shape is more difficult to obtain because nearly any pore 

with  >0.001 can be open. If multiple pores exist, this expression does not work, 

because when there are more pores, the rock is more compliant. 

 

3.3.3 Model Parameters: Fluid 

The fluid type in a gas shale is a combination of gas and water. The volume of 

each, however, can be uncertain. Calculated water saturation curves obtained from the 

use of conventional techniques, specifically Archie’s (1942) law, yielded an average 

value of about 0.3 in both wells within the Haynesville. This matches published values 

(Hammes et al., 2011). However, we recognize that the calculated values from well logs 

may not be accurate because Archie’s law is based on calculating saturations for clean 

sandstones. This issue is not part of our modeling scheme. In our work, two choices had 

to be made: (1) When to include the fluid, and (2) how to mix fluids.  

The first choice must be made because the SCA is a high-frequency model (the 

pores are isolated from each other). If we believe that this accurately represents the pore 

space, relative to the frequency of measurement, then it is appropriate to include the fluid 

directly in the SCA. If the pores are connected, then the preferred operation is to model 

the dry-rock properties of the rock and then add the fluid afterward using Gassmann 

(1951) fluid substitution. Both options were explored, revealing small differences in the 

modeled elastic properties between the two, regardless of the pore shapes. Thus, the 

α

α

α
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former option was chosen, where the fluid was considered directly within the SCA. This 

also eliminates the requirement of knowing the exact mineral moduli for Gassmann’s 

equation. 

Options for how to mix together different fluid components were a homogeneous, 

fine-scale mixture of the fluid bulk moduli versus a patchy mixture (Knight and Nolen-

Hoeksema, 1990). Assuming that the gas should be located in close proximity to kerogen, 

and that clay in different locations contains bound water, the two fluids may not be mixed 

homogeneously. Thus, we used a patchy mixture. The fluid used throughout the modeling 

was a mixture of 70% gas and 30% water. The resulting bulk modulus, using the 

arithmetic average, of the fluid was 0.89 GPa and density 0.5 g/cm3. Initially, the fluid 

was varied in the modeling, but the results showed little sensitivity to this. Thus, variable 

fluid saturations are not discussed in this chapter. 

 

3.4 MODELING RESULTS  

3.4.1 Pore-Shape Analysis 

The first set of modeling results corresponds to an analysis of the variable  for 

the pores. The SCA requires definitions of for both the solid and pore constituents. The 

Haynesville Shale includes calcite, quartz, clay, kerogen and pyrite, and their percentages 

was assigned as 55%, 10%, 26%, 3%, and 4%, respectively. A constant value for the 

solids was selected at  = 0.8. Here the aspect ratio is relatively large considering the 

solids are relatively stiff. The resulting density of this mixture is 2.72 g/cc, very close to 

that of pure calcite. This definition is important because it allows for modeling the data as 

α

α

α
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a function of only the pore shape, without considering variable composition. Moreover, 

this allows us to examine velocity as a function of density porosity, as calculated from 

equation 2.1. 

Figure 3.2a is a crossplot of  versus  for Well A. The data from the 

Haynesville are the points, and the correlation between them is about –0.67. Also in the 

plot are five lines and a shaded region. Each line represents the modeling result for a 

normal distribution of the aspect ratio for the 50 pores. In each line, each point 

corresponds to a case that has a particular porosity composed by 50 pores with 50 aspect 

ratios. The uppermost line corresponds to a normal distribution of  for those 50 pores 

with mean 10–1 and standard deviation 10–2. The next line down is for a distribution of 

mean 10–1.25 and standard deviation 10–2.5. The lowermost line corresponds to a 

distribution of mean 10–3 with standard deviation 10–5. Histograms for these distributions 

are displayed in Figure 3.2e. These were generated numerically, so their apparent lack of 

smoothness is a function of the number of values drawn (50) and the number of bins (10) 

used to plot each. The shaded region in Figure 3.2a represents the interpolated values of 

those pore shapes. On any individual line, the highest velocity corresponds to the stiffest 

pore in the normal distribution. Thus, the decrease in velocity along a line corresponds to 

an increase in the porosity and to more compliant pore shapes. The model lines explain 

the data in that a given velocity can be related to both porosity and aspect ratio.  

VP φDen

α
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Figure 3.2: Crossplots of P- and S-wave velocity versus porosity (a and b) for Well A and 
(c and d) for Well B. Shading corresponds to the pore aspect ratio. Lines 
correspond to single composition of calcite with different aspect ratios of pores, 
as indicated on the plots. For each line, 50 pores were modeled, with normally 
distributed aspect ratios shown in (e). These six distributions were computed 
numerically and independently from one another. Every time they were 
computed, slightly different values were drawn for each, but these small 
variations did not alter the modeling noticeably. In (a) and (b), slightly different 
model lines represent the P- and S-wave velocity. These suites of models can 
partially explain the data in terms of pore shape, in that the range of pore shapes 
explains overall velocity-porosity trend. However, pore shape alone cannot 
explain the variability of velocity for a given value of porosity.  
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Figure 3.2b contains a plot of  as a function of , which are slightly less 

correlated (at –0.62) than are  and . Lines are plotted for the same distributions of 

 as in Figure 3.2a. In the plot of , the data fall closer to models with larger aspect 

ratios relative to , which indicates differences in aspect ratios for  relative to . 

Consequently, the  ratio would be misrepresented, and this would occur for any 

composition. This difference in predictions of  and  is relatively common in 

effective-medium models because the modeling of the shear modulus cannot always take 

into account all the geometric details of shear-stress interactions between inclusions. In 

addition, anisotropy is an important aspect to be considered in order to model both  

and  (anisotropy rock-physics modeling is done in Chapter 4). Although VP /VS  is often 

used successfully as an indicator of gas saturation, the slight differences in the modeling 

of the VP and VS discouraged us from using their ratio in the analysis. 

Data from Well B was analyzed in a similar way to the first, in that  and  

were plotted as a function of (Figure 3.2c and 3.2d). The crossplot (Figure 3.2c) 

shows little dependence of  on . The same set of model lines as in Figure 3.2a with 

distributions of  are superimposed on the crossplot of the data. The data fall over areas 

of smaller aspect ratios than do the data in Figure 3.2a, for both  and . Figure 3.2d 

also indicates that  and  are not highly correlated. Distributions of  are smaller 

than those seen to fit the data from Well A (Figure 3.2b). Furthermore, the distributions 

of aspect ratios that explain the  data in Figure 3.2c do not explain the  data. This is 
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similar to that observed in Figures 3.2a and 3.2b, and it is because of difficulties in 

modeling the shear stresses that occur among inclusions. For both wells, a combination of 

porosity and pore shape can explain the velocity variations, but this is for a single 

composition. Composition most certainly varies in both wells. However, modeling 

variable pore shapes for a single composition allowed us to determine a range of 

acceptable and useful pore aspect ratios.  

 

3.4.2 Composition Analysis 

The second set of modeling results examines the effect of variable composition. 

The previous results implemented a constant composition (similar to calcite) with 

different distributions of aspect ratios for the pores. This is now changed to analyze 

variable composition with a single distribution of aspect ratios for the pores. Mineral 

assemblages included different fractions of calcite, quartz, clay, and constant values of 

kerogen (3%) and pyrite (4%). Only  is analyzed here given the slight mismatch in the 

 modeling from Figure 3.2a. Furthermore, we are limited to dealing with a single 

porosity calculation, which again comes from an average of the mineral constituents. 

The crossplot in Figure 3.3a is again  as a function of  for Well A. The 

color code is gamma ray, where the dark colors represent high counts and the light colors 

low counts. Within the Haynesville Shale, GR continuously increases with depth (Figure 

2.13), which may be an indication of a lithology variation. However, a significant amount 

of scatter is present when the gamma ray log is used to try to discriminate the lithology. 

Although a clear lithology trend cannot be established, the data points with higher GR 

VP

VS

VP φDen
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tend to correspond to lower values of  between 3 and 3.5 km/s. These high GR values 

cut across all values of porosity. Partial explanation of the scatter present in the plot could 

be made from combined analysis of , GR, density and depth, shown in the next three 

paragraphs.  

 

Figure 3.3: In (a) data from Well A, with P-wave velocity as a function of porosity and 
colored by the GR count. Five different models overlay the data, which 
correspond to different compositions of calcite, quartz, clay, kerogen, and pyrite. 
Each line also contained the same distribution of pore shapes. The GR does not 
provide a clear separation of the data, which suggests that composition is a factor 
in addition to the pore shape. In (b) crossplot of P-wave velocity as a function of 
GR, colored by density. This plot along with (c), where the plot is colored by 
depth, indicates trends observed in the well data plot in Figure 2.13. (c) Crossplot 
of P-wave velocity as a function of GR, colored by depth. The arrows with 
numbers are described in the text, indicating the variation trends of the data. 
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Also in Figure 3.3a are five model lines. They correspond to varying fractions of 

calcite, quartz, and clay (annotated in the figure), with constant values of kerogen (3%) 

and pyrite (4%). Each line was computed independently using a normal distribution of 

pore aspect ratios with mean of 0.095 and standard deviation of 0.01. Aspect ratios of the 

solids were 1 for calcite, quartz, and pyrite; 0.1 for clay; and 0.01 for kerogen. We do not 

know the grain shapes everywhere for every mineral. Therefore, we modeled the stiffest 

grains with the largest aspect ratios, and softer materials with lower aspect ratios. This set 

of model lines suggests that lithology could vary from calcite and quartz rich down to 

some combination of carbonate and high clay content. Only one realization of these 

models is displayed here. Slight variations in the lines can occur when a different 

realization of pore aspect ratios is used within the model, but these do not significantly 

change the values of modeled . These sets of model lines follow the general trend of 

decreasing velocity with increasing porosity. 

Additional analysis of the well data can provide at least a partial explanation of 

the scatter present in the plot. Figures 3.3b and 3.3c are crossplots of  as a function of 

GR colored by and depth, respectively. The highest  values (2.6 to 2.7 g/cm3) 

correspond to shallowest depths (1682 to 1697 m). From a combination of these two plots 

and Figure 2.13, at least two trends can be interpreted from the data. The first trend is for 

the shallowest part of the Haynesville where large  and  values occur.  Density and 

velocity increase with depth and then decrease, as indicated by arrows 1 and 2 in the 

plots, but GR steadily increases. Below about 2370 m, GR continues to increase and  

VP

VP

ρb ρb

ρb VP

ρb
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shows a slight increase to 2400 m followed by a decrease from 2415 to 2446 m. The , 

however, stays approximately constant. Arrow 3 in Figures 3.3b and 3.3c indicates this 

second trend. Although we are able to see these trends in the crossplots of GR versus , 

they are not easy to interpret in Figure 3.3a.  

 

Figure 3.4: Well B. (a) Crossplot of P-wave velocity as a function of density, colored by 
GR. Higher GR values tend to correspond to lower velocity values. In (b), a 
crossplot of P-wave velocity as a function of porosity, colored by GR. Lines of 
constant composition cannot separate the data into different regimes. In (c) the 
same set of compositionally varying model lines used Figure 3.3a cannot explain 
the variation in the velocity as a function of porosity. 
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These trends reveal some depth dependence on  and  that may indicate 

compositional variation. In the shallowest part of the Haynesville,  and potentially 

indicate a composition of carbonate and quartz. In the lower part of the Haynesville, the 

lower  and lower  indicate more clay content as part of the matrix, which is 

consistent with the higher GR values. These depth-dependent compositions are consistent 

with information from cores. 

A similar investigation is performed on the data set from Well B. Figure 3.4a 

shows a plot of  as a function of , colored by GR. Immediately noticeable is the 

apparent scatter in the data, where little visible correlation exists. Examination of this 

figure in conjunction with Figure 2.13 provides an interpretation. Within the Haynesville, 

 does not vary substantially, with values between 2.45 and 2.6 g/cc. The P-wave 

velocity gradually decreases with depth, except at the top where an increase and decrease 

exist. On the other hand, GR shows noticeably different behavior. A slow increase with 

depth occurs from about 2325 m to 2385 m. From 2385 m to the bottom of the 

Haynesville, the GR increases sharply and remains relatively high. This sharp increase 

correlates to small decreases in  and . Accordingly, there is some correlation 

between  and GR, where the lowest  values correspond to the highest GR values. 

Figure 3.4a also illustrates this relationship, where velocity may indicate variation in the 

composition.  

Figure 3.4b contains a plot of  as a function of GR colored by depth. The trends 

observed in Figures 3.3b and 3.3c are not present, or are less distinct than in Figures 3.4a 
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and 3.4b. Figure 3.4c is a plot VP  as a function of , which shows nearly constant 

velocity for nearly all porosity values. This plot also contains the same model lines that 

are plotted on Figure 3.3a. However, for Figure 3.4c, the composition lines do not 

represent very well the decrease in GR with increasing . Lines for a constant 

composition cut across the data that have relatively high GR values. 

Comparisons of Figures 3.3, 3.4, and 3.5 suggest that both pore shape and 

composition play major roles in the variation of velocity. For Well A this is because of 

the overall trend in the porosity-velocity plane, with the ability of pore shape and 

composition models both to span the data. In the case of Well B, the apparent lack of 

correlation of velocity with porosity suggests that both composition and pore shape need 

to be considered jointly. 

 

3.4.3 Joint Pore Shape and Composition Analysis 

To perform this modeling, it was necessary to vary jointly distributions of pore 

shapes and variable composition, where both depend on the bulk density. For the pores, 

this involved uniform distributions of pore aspect ratios, of which 50 values comprised 

each distribution. Furthermore, the modeling included different bulk density values, 

where the bulk density changed as a function of composition.  

P-wave velocity is plotted versus  and colored by GR (Figure 3.5a) for Well B. 

Data points are the same as for Figure 3.4a. Each subvertical, solid black line on this plot 

corresponds to a mineral assemblage that consists of 56% calcite, 3% kerogen, 4% pyrite, 

and variable quartz (35% to 10.5%) and clay content (2% to 26.5%). The set up of this 

φDen
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composition variation is an example showing the composition effect on seismic velocity. 

Other composition assemblages can be found in Jiang and Spikes (2011) using the self-

consistent model. Porosity varies from the left to the right vertical line, and composition 

and pore aspect ratio vary from the bottom to top horizontal line. The solid diamonds at 

the end of each line corresponds to the most quartz-rich composition; triangles at the 

bottom refer to the most clay-rich composition. A different  corresponds to each line. 

Figure 3.5b, where the shading corresponds to clay content, illustrates the change in 

mineralogy for the different lines in 3.5a. The diamonds and triangles in 3.5b are placed 

identically to those in 3.5a. Although the correlation between density and VP is not 

apparent, the combination of composition, pore shape, and porosity were investigated to 

allow us to interpret the data.  

Each subvertical line in Figure 3.5a, in addition to a variable composition, also 

corresponds to a different set of pore shapes. Shading Figure 3.5c corresponds to the 

variable aspect ratios. The aspect ratios where the filled diamonds sit are all equivalent. 

However, the triangles are located at different values of aspect ratios. Thus, the change in 

 along any particular subvertical line in Figure 3.5a is a function of both a change in 

composition and a change in the pore shape. The appearances of the shaded areas in 

Figures 3.5b and 3.5c indicate that clay content and the pore shape are highly correlated. 

A clear illustration of that correlation is in Figure 3.5d, with pore aspect ratio plotted as a 

function of clay fraction. All the lines meet at low clay content and high aspect ratio, 

which corresponds to the locations of the diamonds (i.e., constant clay and constant 

aspect ratio).  

ρb

VP
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Figure 3.5: For (a) data points are the same as for Figure 3.4a. Model lines of both 
variable composition and variable pore shapes for a mineral assemblage of 56% 
calcite, 3% kerogen, 4% pyrite, and variable quartz (35% to 10.5%) and clay 
content (2% to 26.5%). These overlay velocity-density data, colored by GR. In 
(b), the range of clay content values is displayed in the shading, as is the pore 
aspect ratio in (c). The crossplot of aspect ratio and clay content shows the 
correlation between the two (d). This set of model parameters provides the ability 
to explain the lack of velocity variation with density, as a combination of pore 
shape, pore size, and composition. The black arrow indicates an area of low 
velocity and high density, where small pore aspect ratios are interpreted to be the 
dominant effect on the velocity. For low velocity and low density (gray arrow), 
the dominant effect on velocity is the porosity. 
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This combination of modeling parameters is able to explain the density-velocity 

data relatively well. More specifically, the high GR values for low velocity are 

represented by the clay-rich model locations, along with small pore aspect ratios. 

Moreover, the nearly horizontal trend between measured velocity and porosity can be 

explained by nearly constant composition from left to right (from Figure 3.5b), along 

with decreasing pore aspect ratios from left to right (from Figure 3.5c). An interpretation 

of pore size can then be made. For high density and low velocity, smaller pore size 

accompanies smaller aspect ratios (black arrow in Figure 3.5a). In this area, the dominant 

effect on velocity is the pore shape. On the other hand, the low-velocity and low-density 

area (gray arrow) can be interpreted as higher porosity that consists of larger pores with 

larger aspect ratios, where the dominant effect on velocity is the porosity. 

Figure 3.6 is a plot for Well A, similar to Figure 3.5a. The sets of model lines are 

the same, and the data plotted is as a function of , colored by GR. The models 

extend to slightly lower density. Similar to Figure 3.5a, the low velocity data can be 

modeled by high clay content. The trend of increasing velocity and density can be 

explained by decreasing clay content. Furthermore, a secondary trend that is nearly 

horizontal (centered around 3 km/s) can be explained the same way that the flat velocity-

density trend is interpreted in the data from Well B.  

VP ρb
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Figure 3.6: Velocity, density, and GR data from Well A, with the same set of models 
superimposed as for Figure 3.5. Decreasing clay content (increasing quartz) 
explains the trend of increasing velocity and density. Pore shape, pore size, and 
composition explain low velocity and high density measurements. 

 

3.5 DISCUSSION 

Various approaches to modeling the velocity data link the shale reservoir 

properties to velocity and density. The first approach was to analyze only the effect of the 

pore shapes for a constant composition. Modeling results for Well A indicated that the 

trend in the  and  data with  could be explained by variations in the aspect 

ratios of the modeled pores. These aspect ratios varied from approximately 10–1 to 10–3. 

Although slightly larger aspect ratios explained the  data, Figure 3.2a–b provided 

adequate explanations of the data, but in the absence of compositional variability. The 

same analyses applied to the data from Well B provided similar results (Figure 3.2c–d).  

Data from both wells indicated compositional variations as demonstrated by the 

GR logs. Velocity variations as a function of composition appear to be less 
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distinguishable in Well A relative to Well B. For Well A, when  is plotted versus  

and colored by GR (Figure 3.3a), significant scatter is present, and the GR values do not 

successfully separate the data. For Well B, Figure 3.4a shows that the  increases as GR 

deceases although scatter is present in the crossplot. Attempting to explain this variation 

in velocity by changing only composition, as in Figure 3.4b, provides a partial 

explanation of the data. Furthermore, Figure 3.4c illustrated that composition models 

with constant aspect ratios misrepresented the apparent composition trend in the data. 

This was motivation to vary jointly pore shapes and composition. Those modeling results 

(Figures 3.5 and 3.6) demonstrated that different mineral assemblages, coupled with 

variable pore shapes, provide a way to interpret the data in terms of pore size, pore shape, 

porosity, and composition. More specifically, low velocity can be linked to softer 

composition (clay and kerogen), but with potentially a wide range of pore shapes. The 

larger the aspect ratio of the pore, the longer that pore will be open, because round pores 

are stiffer than flattened pores. Furthermore, high velocity and high density combinations 

could correspond to zones suitable for inducing hydraulic fracturing.  

In addition to the self-consistent model, I also used the differential effective 

medium (DEM) model to calibrate the relationships between reservoir and elastic 

properties for the Haynesville Shale. The DEM modeling results were quite similar to the 

self-consistent modeling results. The details can be seen in Appendix B.  

In this chapter, the porosity was calculated from the density log assuming a single 

limestone matrix. More accurately, in the rest of this dissertation, the porosity was 

calculated from the density log using an interpolated composition based on the core 

VP φDen

VP
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analysis and XRD results. The updated density porosity was lower than the older one, and 

was closer to the average porosity observed for the Haynesville Shale (Wang and 

Hammes, 2010).  

Using the self-consistent model, we built up two workflows to estimate porosity 

and pore shape separately (Jiang and Spikes, 2012, Appendix C). In the workflows, the 

composition was assumed to have the average percentages of different minerals from 

core analysis and XRD results: 37% clay, 33% quartz, 14% limestone, 8% plagioclase, 

5% kerogen, 2% pyrite, 0.8% dolomite, and 0.2% feldspar. Based on P-impedance, the 

workflows provided good estimates of porosity given the pore shape distribution, as well 

as estimation of pore shape distribution given density porosities. However, the self-

consistent model was not able to model P- and S-wave velocities or impedances 

simultaneously (Figure 3.7), although most of the data points were modeled as shown in 

the crossplots of P-impedance vesurs porosity (Figure C.6a) and S-impedance versus 

porosity (Figure C.7). This is mainly because the self-consistent model itself did not 

account for the anisotropy. In the following chapters, anisotropy was included to build a 

more complete rock-physics model for the Haynesville Shale.  

 

3.6 CONCLUSION  

This work shows how the P-wave velocities (and to a limited extent S-waves) in 

the Haynesville Shale can be modeled using an effective-medium model. The goal was to 

explain trends in the measured velocities in two wells by modeling isotropic distributions 

of variable composition, grain shapes, and pore shapes. Results of the modeling indicated 
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that the self-consistent approximation is one model that could be used for this purpose. 

Importantly, joint variations of composition and pore shape provided the best 

explanations of the elastic properties in terms of the rock properties. The procedure and 

results from this investigation could be applied at the seismic scale. Well data combined 

with core information would provide the calibration of a seismic-inversion routine or 

guide calculations of seismic attributes. The composition variation could be extended to 

quartz, calcite, clay and kerogen (Chapter 4). Then, the intent would be to identify and 

characterize locations of high organic matter in the Haynesville Shale (likely lower 

velocity) that might be more productive, as well as to identify more brittle zones (higher 

velocity) where fractures could be kept open for longer durations.  
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Figure 3.7: Crossplot of S-impedance versus P-impedance (Well A). A lot of the data 
points (black dots) were not covered by the modeling lines with different pore 
shapes (gray lines). This indicates that the self-consistent model was not able to 
model both P- and S-impedances simultaneously. For the gray lines, the pore 
aspect ratio increases from lower right to upper left.  
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Chapter 4 : Estimation of reservoir properties of the Haynesville Shale 

by using rock-physics modeling and grid searching 

4.1 ABSTRACT 

This chapter presents a workflow that combines an isotropic and an anisotropic 

effective medium model with a grid-search method to invert for the reservoir properties 

(porosity, composition, and pore shape) of the Haynesville Shale. The reservoir 

properties inverted from this workflow closely matched the observed data, and they 

provide very useful information in determining locations with relatively high porosities 

and relatively large fractions of brittle components favorable for hydraulic fracturing. The 

isotropic effective medium model represents a complex medium as a single homogeneous 

medium by including grains and pores of different shapes and sizes. The anisotropic 

effective medium model introduces vertical transversely isotropic media through aligned 

fractures. After building the relationships between the reservoir properties and P- and S-

wave velocities, we used grid searching to obtain porosity, composition and pore shape 

distributions conditioned by the rock-physics models. The modeled seismic velocities 

that satisfied criteria from objective functions provided estimated reservoir properties. 

The porosity and composition estimations at the well location matched the observations 

from log and core data quite well. The pore shape estimation suggested that the pores, 

cracks, and fractures within the Haynesville Shale have elongated shapes. Future 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 	  	   This chapter was published in Jiang, M., and K. T. Spikes, 2013a, Estimation of reservoir 
properties of the Haynesville Shale by using rock physics modeling and grid searching: Geophysical 
Journal International, 195, 315-329. The coauthor Spikes supervised the project. 
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application of this workflow at the seismic scale will provide continuous spatial 

distributions of these reservoir properties.  

 

4.2 INTRODUCTION 

Estimation of reservoir properties, such as porosity, composition, and pore shape 

of gas shales and other unconventional hydrocarbon systems is important for both 

exploration and production. Understanding these reservoir properties contributes to 

identifying zones of economic production and possible optimal zones for hydraulic 

fracturing. Porosity estimation helps to determine gas capacity and the estimated ultimate 

recovery (EUR); composition contributes to understand shale brittleness, and pore aspect 

ratio provides additional information to determine the stiffness of the shale.  

To understand reservoir properties of shales, rock-physics models are very 

important. Rock-physics models describe the relationships between reservoir properties 

and the elastic properties, calibrated by well log and core data at well locations. The 

specific rock-physics model to be used depends on the rock type and complexity of the 

rock. The complexity of gas shales results from relationships between lithology, porosity, 

fluid, pore shape, pressure and anisotropy. Although numerous contact-theory models 

(Dvorkin and Nur, 1996; Gal et al., 1998; Avseth et al., 2000), empirical rock-physics 

relationships (Tosaya and Nur, 1982; Castagna et al., 1985) and inclusion-based models 

(Kuster and Toksoz, 1974; O’Connell and Budiansky, 1974) exist, few of them are 

capable of modeling complex shales in terms of pore and grain shapes, composition, and 

anisotropy. The Haynesville Shale tends to have flattened or elongated grains and pores 
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(Curtis et al., 2010). These flattened or elongated grains and pores significantly reduce 

the propagating velocities in the shale, because pores of such shape are compliant, which 

reduce the rock moduli, depending on the orientation of pores relative to wave 

propagation and/or polarization directions. In addition, shales are typically anisotropic 

due to intrinsic alignment of clay platelets and/or alignment of pores, cracks or fractures. 

Therefore, to model and understand gas shales, we must utilize more complicated 

models.  

Unlike conventional clastic reservoirs, for which distributions of porosity, clay 

content, water saturation, lithology facies and fluid types from seismic data were 

estimated in numerous studies (e.g., Mukerji et al., 2001; Eidsvik et al., 2004; Bachrach, 

2006; Spikes et al., 2007; Grana and Della Rossa, 2010; Rimstad et al., 2012), 

characterizing reservoir properties of gas shales is still a young and very active area of 

research. Vanorio et al. (2008) used vitrinite reflectance data to generate relationships 

between maturity and Thomsen’s (1986) anisotropic parameter ε to understand how 

maturation processes cause anisotropy changes. Delle Piane et al. (2011) investigated the 

intrinsic and crack-induced anisotropy of brine-saturated shale samples under different 

external stresses. They found that elastic anisotropy of these samples depended on the 

composition and spatial distributions of different minerals and microfractures, and the 

change of anisotropy depended on the applied stresses, their orientations and the degree 

of stress anisotropy. Nadri et al. (2012) presented an approach to estimate the anisotropy 

parameters of transversely isotropic shales of arbitrary geometry. They successfully 

applied this approach to ultrasonic P-wave velocity data from a spherical shale sample 
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and a cylindrical shale sample. In addition to experimental investigations, modeling 

studies of the elastic properties of shales have been presented. Dræge et al. (2006) 

combined the self-consistent model and a differential effective medium model with a 

shale compaction theory to model the effective elastic stiffness of shales as a function of 

depth, as well as estimating the effect of cementation on the effective elastic stiffness of 

shales. Their results were consistent with the vertical P- and S-wave velocities from three 

wells. Avseth et al. (2008) used rock physics and AVO depth trend modeling to 

understand the physical properties (intrinsic anisotropy, smectite-to-illite transition, AVO 

attributes) of mechanically compacted shales as function of burial depth, and, therefore, 

improved characterization of sandstone reservoirs embedded in shales. Ciz and Shapiro 

(2009) were able to explain the compliance tensor, anellipticity, and three anisotropic 

parameters under different stresses for transversely isotropic shales through a porosity-

deformation approach and its anisotropic extension. Pervukhina et al. (2011) described 

the five stress-dependent elastic coefficients of transversely isotropic shales using a 

model that treated the orientation of clay platelets and compliance ratio of the platelet 

contacts as inputs. Their model was able to predict simultaneously the stress dependency 

of all five elastic compliances. Recently, Jiang and Spikes (2012) used the self-consistent 

model and a grid search method to estimate porosity and pore shape distributions for the 

Haynesville Shale. In that study, only P-impedance was included to estimate either 

porosity or pore shape under isotropic conditions, and anisotropy was not considered.  

The objective of this chapter is to provide a comprehensive understanding of the 

porosity, composition, and pore shape distributions of the Haynesville Shale constrained 
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by both P- and S-wave velocities through a combination of rock-physics models and grid 

searching. We combined an isotropic effective medium model (the self-consistent model, 

O’Connell and Budiansky, 1974; Berryman, 1980) with an anisotropic effective medium 

model (Chapman, 2003). The self-consistent model provided a porous rock matrix with 

multiple mineral phases and pores with different aspect ratios. The anisotropic effective 

medium model based on Chapman (2003) provided frequency- and pore-pressure-

dependent anisotropy. Relationships between reservoir properties and elastic properties 

were obtained by correlating input rock property distributions and combining these two 

models. Based on these relationships, the grid search provided distributions of porosity, 

composition, and pore shapes by considering all the possible modeled solutions without 

bias.  

 

4.3 DATA 

In this chapter, well log data from Well B (Figure 2.13) and core data from Well 

A (Figure 2.14) were used. The two wells show very similar features in the logs (Figure 

2.12 and 2.13), and it is valid to apply the core data from Well A to Well B. The porosity 

was calculated from  

      (4.1)  

as a function of measured density log (ρb), density of the rock matrix (ρm), and density of 

the pore fluid (ρfl), assuming the rock matrix as a combination of different minerals from 

core analysis and XRD results. To simplify the modeling to an extent, we included only 

φ =
ρm − ρb
ρm − ρ fl
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quartz, calcite, pyrite, kerogen and clay in the rock-physics models. We transferred the 

percentages of feldspar (potassium feldspar), plagioclase (calcium feldspar), and 

dolomite from the core analysis and XRD measurement to calcite. Then the average 

percentages of quartz, calcite, pyrite, kerogen, and clay are about 31.6%, 25.8%, 2%, 

5.3%, and 35.3% for Well A, respectively. Fluid density was calculated from a brine and 

gas mixture with an average water saturation of approximately 25% based on the 

resistivity log.  

 

4.4 METHOD 

This chapter combines both forward and inverse calculations to estimate 

simultaneously the distributions of porosity, composition and pore shape for the 

Haynesville Shale. This section emphasizes the rock-physics modeling and inversion 

reasoning. The following section provides the parameter values used in each step of the 

modeling. The forward calculation is rock-physics modeling that provides relationships 

between the reservoir properties and elastic properties, calibrated to P- and S-wave 

velocity measurements. The inverse calculation of rock properties is done through grid 

searching, which provides probabilistic estimates of reservoir properties conditioned by 

the relationships between reservoir properties and elastic properties from the rock-physics 

modeling. The grid searching provides a range of reservoir property estimations, and help 

to understand the uncertainty of results due to the uncertainty of log measurements.  

For vertically transversely isotropic (VTI) media, such as the Haynesville Shale 

(Horne et al., 2012), five independent stiffness tensor components are required in the 
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Voigt notation (Thomsen, 1986): C11, C33, C44, C66, and C13. Velocities propagating along 

and perpendicular to the axis of symmetry, and at angles in between, depend on these five 

components and the bulk density. The P- and S-wave velocities (VP and VS) perpendicular 

to the fractures (Thomsen, 1986) were calculated using  

.                 (4.2)  

We used Chapman’s (2003) model to calculate the five components based on the rock 

matrix that contain multiple mineral and pore phases (equations D1–D5). The rock matrix 

was built from the self-consistent model (O’Connell and Budiansky, 1974; Berryman, 

1980).  

Chapman’s model (Chapman, 2001; Chapman et al., 2002; Chapman, 2003) was 

introduced to account for squirt flow in the computation of effective moduli of either 

isotropic or anisotropic rocks. Squirt flow is the fluid interaction caused by the pressure 

gradient at the micro-scale during wave propagation when the wavelength is smaller than 

the pore size (Dvorkin and Nur, 1993; Dvorkin et al., 1994). The localized fluid flow 

usually follows directions different from the direction of wave propagation. The model 

(Chapman, 2003) imposes anisotropy from one set of aligned fractures. As an extension, 

Chapman (2009) developed a technique to include two fracture sets with different scale 

lengths and orientations. Because the Haynesville Shale was treated as a VTI medium 

with only one axis of symmetry, we implemented the model from Chapman (2003) in this 

chapter. Compared to other transversely isotropic models (Hornby et al., 1994; Dræge et 

VP = C 33
ρ

VS = C 44

ρ
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al., 2006; Ciz and Shapiro, 2009; Kuila et al., 2011; Pervukhina et al., 2011; Nadri et al., 

2012), this model considers frequency and pore pressure effects, and it is consistent with 

both Gassmann’s theorem and Biot’s prediction of a slow compressional wave 

(Chapman, 2001). In addition, most parameters in the model can be directly measured or 

estimated from measurements, and they all correspond to well defined rock properties 

and have physical interpretations.  

In Chapman’s model, the rock contains spherical pores, randomly aligned cracks, 

and aligned fractures that generate anisotropy. Cracks and fractures both have idealized 

ellipsoidal shapes, and they have the same aspect ratio that is defined as the ratio between 

the smallest axis and largest axis. Then the crack porosity (φc) and fracture porosity (φf) 

can be calculated based on their aspect ratios and crack density (εc) and fracture density 

(εf): 

.                  (4.3) 

The total porosity in Chapman’s model can be expressed as the summation of round pore 

porosity (ϕrp), crack porosity and fracture porosity, i.e., 

.  (4.4) 

Because pores in Haynesville Shale are unlikely to be spherical, the contribution from 

round pores ϕrp should be very small. Elongated pores will be introduced in the next part 

of the modeling.  

φc =
4πα
3

εc

φ f =
4πα
3

ε f

φchap = φ rp+φc+φ f
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The spherical pores and cracks are assumed to have the same radius as the grain 

size (ς). The radius of fracture (af) can be either larger or the same as grain size. In this 

chapter, we estimated the grain and fracture sizes of the Haynesville Shale from 

microstructure images (Curtis et al., 2010). Both grain and fracture sizes are about 1 µm 

on average. Therefore, the fractures in this case are similar to microcracks in terms of 

size, and they are aligned along the bedding direction. The sizes of spherical pores, 

cracks, and fractures affect the characteristic frequency of the squirt flow, attenuation and 

velocity dispersion. The relaxation-time terms for a crack (τm) and a fracture (τf) that 

define the ‘microstructural’ squirt-flow frequency are linearly related to the viscosity of 

the pore fluid, and their ratios are the same as the ratio between the grain size and fracture 

size  

τ m
τ f

= ς
af

.  (4.5) 

In Chapman (2003), τm for water-saturated sandstone was 20 µs. Because the pore fluid 

in the Haynesville Shale contains a mixture of water and gas, whose viscosity is less than 

that of pure water, we used 2 µs for τm. Correspondingly, the relaxation-time term for a 

fracture is the same as the one for a crack, and their characteristic frequencies are also 

identical (Table 4.1). The five stiffness components are calculated from equation D1 to 

D5.  
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Table 4.1. Parameters used in Chapman’s model 
Parameter Symbol Value Unit 

Round Pore Porosity φrp 0.001 Fraction 
Fracture Density εf 0.04 Fraction 
Crack Density ε 0.01 Fraction 

Relaxation-Time Term for Cracks τm 2.00×10-6 s 
Relaxation-Time Term for Fractures τf 2.00×10-6 s 

Grain Size ς 1.00×10-6 m 
Fracture Size af 1.00×10-6 m 

 

Some limitations arise when applying Chapman’s model to the Haynesville Shale. 

For example, the model assumes that the anisotropy only comes from aligned fractures, 

whereas aligned clay minerals likely contribute to the VTI anisotropy. Also, Chapman’s 

model contains only one solid phase, and it assumes the pores are spherical, whereas the 

Haynesville Shale contains multiple minerals phases. Furthermore, its pores are primarily 

non-spherical based on microstructure images (Curtis et al., 2010).  

To address the above limitations, we combined an additional model, the self-

consistent model (O’Connell and Budiansky, 1974; Berryman, 1980), with Chapman’s 

model to account for multiple mineral phases and non-spherical pores (Figure 4.1). The 

self-consistent model is not limited to specific compositions, and it is able to incorporate 

multiple mineralogical and pore phases, as well as their shapes and spatial distributions. 

The details of the self-consistent model are described in Chapter 3 (only the self-

consistent model was applied in Chapter 3). 
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Figure 4.1: Schematics that illustrate the rock-physics models. (a) The self-consistent 
model. In the background matrix (green square), there are inclusions of quartz 
(purple), calcite (brown), pyrite (yellow), kerogen (black), clay (red) and non-
spherical pore (orange). These inclusions have different fractions and shapes. The 
inclusion sizes in the self-consistent model are not specified, and their relative 
fractions and shapes affect the effective moduli of the rock. (b) The homogeneous 
rock matrix that is built by the self-consistent model, with different mineral and 
non-spherical pore inclusions. (c) Chapman’s model. In the rock matrix that is 
built by the self-consistent model (light blue square), there are randomly 
distributed round pores (white), randomly distributed and oriented microcracks 
(dark blue), and aligned fractures (gray). Cracks and fractures have the same 
aspect ratio as the non-spherical pores in the self-consistent model, and cracks and 
fractures have the same size. Anisotropy comes from the aligned fractures.  

 

(a)

(b)

(c)
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The self-consistent model and Chapman’s model have their own pore systems, 

and these two pore systems are not connected. In other words, this is a dual porosity 

representation. The self-consistent model builds an isotropic porous rock matrix that 

contains multiple mineral phases and non-spheric pores, and the porous rock matrix is 

then treated as the background rock matrix in the Chapman’s model. The self-consistent 

model contains non-spherical pores that are isolated, while Chapman’s model contains 

spherical pores, cracks and fractures that are connected to each other. Fractures are not 

connected to other fractures, and every crack and spherical pore connects to at most only 

one fracture (Chapman, 2003). 

In the self-consistent model, the inclusion sizes are not defined because the major 

factor that affects the velocities are the pore shape and concentration. In Chapman’s 

model, the spherical pores, cracks and fractures all have the same scale as grain sizes, 

assumed to be 1 µm. The fracture size affects the squirt flow effect, with larger fracture 

sizes having lower characteristic frequencies and smaller fracture sizes having higher 

characteristic frequencies of the squirt flow.  

The combination of Chapman’s model and the self-consistent model provided 

relationships between elastic and reservoir properties for the Haynesville Shale. After 

that, a grid search method (Sen and Stoffa, 1995) was used to invert the reservoir 

properties from the elastic properties. The reservoir properties were obtained by 

systematically searching the model space that is composed of elastic properties. 

Specifically, the model space was represented by a large number of points on a uniform 
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grid. The computational cost is not expensive due to the relatively simple objective 

functions for VP and VS: 

,          (4.6) 

.          (4.7) 

The modeled P- and S-wave velocities are expressed as VPmodel and VSmodel, and the 

observed P- and S-wave velocities are expressed as VPobserved and VSobserved. The modeled 

velocity values that provided the minima of the objective functions corresponded to the 

best solutions of the reservoir properties. In this chapter, three reservoir properties (pore 

aspect ratio, porosity, and composition) were jointly inverted from two elastic properties 

(VP and VS). Therefore, correlations among the prior distributions of these three reservoir 

properties were introduced when generating VP and VS from the rock-physics models. 

Those correlations are described in the next section. The most likely solutions and 

probability distributions at each depth point were obtained. The advantage of the grid 

search method is that the range of values for the model space can be specified, and all the 

possible solutions are equally considered without any bias. The disadvantage of the grid 

search method is that it can be time consuming and computationally expensive, 

depending on the number of points in the model space. The computational cost increases 

exponentially each time one more property is added (LaValle et al., 2004). In addition, 

the range of values for the model space should be carefully selected in order to include all 

physically reasonable possibilities. 

 

Obj _ P =|VPmodel −VPobserved |

Obj _ S =|VSmodel −VSobserved |
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4.5 WORKFLOW 

Given the prior distributions of the reservoir properties (composition, porosity, 

and pore shape), the combination of the self-consistent model and Chapman’s model 

provided VP and VS. The prior distributions of these reservoir properties were assumed to 

contain all possible cases within the defined range. Each group of reservoir properties 

corresponded to a set of modeled VP and VS that were calculated from a set of reservoir 

properties. Therefore, the sets of modeled VP and VS that met the criteria from the 

objective functions provided the sets of reservoir properties as estimations.  

In the workflow, we first assumed the prior composition distribution contained 

400 mineral assemblages with different percentages of quartz, calcite, pyrite, kerogen, 

and clay (Figure 4.2a). This number (400) is enough to maintain high accuracy but low 

computational cost. In each case, percentages of quartz, calcite, kerogen and clay were 

varied. Pyrite was fixed as 2%. From the composition assemblages 1 to 400, percentages 

for quartz and calcite decreased, and percentages for kerogen and clay increased, so the 

stiffness of the rock matrix decreased as the case number increases. Because the self-

consistent model requires aspect ratios for both mineral and pore phases, we assumed the 

aspect ratios were 1 for stiff quartz, calcite and pyrite, 0.1 for clay, and 0.01 for kerogen. 

Pore aspect ratio was defined later, based on the prior composition and porosity.  

The total porosity in the workflow was defined as a function of four different 

porosity types. Those four included the non-spherical pore porosity in the self-consistent 

model (SCM porosity) and spherical pores, cracks, and fractures in the Chapman’s 

model. Prior SCM porosity (ϕscm) was uniformly distributed between 0 and 0.4, with an 
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increment of 0.01, for each of the 400 composition assemblages. This large porosity 

range assured that all the likely porosity values were included in the model. Because 

there are three properties to be inverted from two known variables (VP and VS), 

correlations among the three reservoir properties need to be assumed. We linearly 

correlated the prior aspect ratio (α) with the prior composition assemblage (Ncomp) and 

prior SCM porosity using the relationship  

.        (4.8) 

In equation 4.8, Ntotal is 400, the total number of composition assemblages, Ncomp 

is the composition number index, ϕscm is the prior SCM porosity, and Cf is a coefficient 

that determines the aspect ratio value for each prior composition and SCM porosity. The 

composition assemblage is in specific order, with increasing stiffness from high case 

number to low case number. The value of 0.3 was used to generate a suitable aspect ratio 

range. The aspect ratio was positively related to the rock matrix stiffness and negatively 

related to the SCM porosity (Figure 4.2b). As the clay percentage increased, the pore 

aspect ratio decreased; as SCM porosity increased, the pore aspect ratio decreased. The 

aspect ratio decreases from 0.12 for the stiffest rock matrix with smallest SCM porosity 

to nearly 0 for softest rock matrix with largest SCM porosity. Based on the prior 

distributions of composition, SCM porosity and pore aspect ratio, a porous rock matrix 

(Figure 4.1b) was generated from the self-consistent model.  

 

α =
(Ntotal − Ncomp+1)×Cf

Ntotal
× (max(φ scm)−φ scm)
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Figure 4.2: (a) The 400 prior composition assemblages used in the modeling. In each 
case, percentages of quartz, calcite, kerogen and clay were changed. The 
percentage of pyrite was fixed as 2%. (b) The prior aspect ratio distribution based 
on both prior composition and porosity distribution. To solve three unknowns 
based on two knowns, the prior aspect ratio was correlated with the prior 
composition and prior SCM porosity based on equation 4.8. (c) The total prior 
porosity distribution. It contains porosity for SCM and Chapman’s model. The 
porosity from Chapman’s model varies with aspect ratio. Therefore, the prior total 
porosity distribution is not a simple uniform distribution between 0 and 0.4.  
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The total porosity (ϕtotal) depended on the porosities from both the Chapman’s 

model (equation 4.4) and the self-consistent model. It was calculated from the solid 

fraction in the self-consistent model (1-ϕscm) and solid fraction in Chapman’s model (1-

ϕchap) using  

φtotal = 1− (1−φscm )× (1−φchap ) .        (4.9) 

The porosity in Chapman’s model ϕchap is calculated from equation 4.4. This total 

porosity was correlated with the prior composition and the prior SCM porosity (Figure 

4.2c).  

In the rock-physics modeling, squirt flow was considered to be related with the 

porosities in Chapman’s model, and the SCM porosities do not contribute to squirt flow. 

We computed the velocity dispersion behaviors for a model that contains compositions 

similar to measured results from Well A and with total porosity of 5% that is close to the 

average porosity of the Haynesville Shale (Figure 4.3). The curves show that the 

velocities, especially P-wave velocity, show dispersive behavior at about 10 kHz. 

Because the relaxation-time term for cracks and fractures are the same, they have the 

same characteristic frequency. In the modeling, we set the frequency as 10 kHz, which is 

also near the frequency of the log data.  

From the combination of the self-consistent model and Chapman’s model, we 

obtained modeled VP and VS values for each set of composition, porosity, and aspect 

ratio. The modeled VP and VS were compared with observed VP and VS from the log data 

(equations 4.6 and 4.7). If the differences between the modeled and observed VP and VS 

were less than 0.08 km/s (~2% error for VP and ~4% error for VS), then the corresponding 
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set of reservoir properties (pore aspect ratio, porosity, and composition) were accepted. In 

this work, we not only obtained the best solutions, but also probability distributions of 

multiple solutions. The procedure was repeated at each depth in the log data to obtain the 

distributions of porosity, composition and pore aspect ratio.   

 

 

Figure 4.3: Velocity dispersion curves for VP and VS. Although both the self-consistent 
model and Chapman’s model were applied, the dispersion only came from 
Chapman’s model. In the model, the composition includes quartz, calcite, kerogen 
and clay with percentages similar to measured results for Well A. The total 
porosity was set as 5%, which is close to the average values of the Haynesville 
Shale. The dotted verticle lines marks the typical log frequency level (1 KHz) and 
typical lab frequency level (1 MHz).   
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4.6 ELASTIC PROPERTIES OF CLAY, KEROGEN AND FLUID 

The shale model we built contained quartz, calcite, pyrite, kerogen, clay, and 

pores/cracks/fractures with brine and gas saturation. Elastic properties for quartz, calcite 

and pyrite are very well known, and they have small uncertainties. However, the 

properties for clay, fluid, and kerogen are ambiguous and have large uncertainties. We 

investigated how different clay and fluid property values affected the modeling results. 

It is difficult to measure the elastic properties of clay because clay mineral grains 

are very small, and they tend to have chemical reactions with organic polar molecules 

(Theng, 1974; Wang et al., 2001; Vanorio et al., 2003; Moyano et al., 2012). Different 

types of clay, such as smectite, chlorite and kaolinite, have different bulk and shear 

moduli and densities due to different mineralogy, structure, and ability to hold clay-

bound water. For example, smectite absorbs much more water in volume than illite 

(Whitney, 1990; Saffer and Marone, 2003), and it has much lower bulk and shear 

modulus than illite and other clays as a result (Wang et al., 2001). From extrapolation of 

empirical dependences to pure clay, Castagna et al. (1985), Tosaya and Nur (1982) and 

Han et al. (1986) obtained similar elastic properties with each other. Wang et al. (2001) 

obtained much higher bulk and shear moduli through measurements on clay epoxy 

artificial samples. Vanorio et al. (2003) obtained very low bulk and shear moduli of clay 

as functions of pressure and saturation through independent experimental methods. By 

using a generalized singular approximation method of effective media theory, Bayuk et 

al. (2007) were able to invert a stiffness tensor of clay and obtain its anisotropy 

parameters. Overall, the elastic properties of various clay minerals have large 
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uncertainties, with the bulk modulus variations from less than 10 GPa to greater than 60 

GPa.  

To investigate the effects of varying clay properties on the modeling, we tested 

the combined model using bulk modulus of clay from 10 GPa to 60 GPa. The shear 

modulus of clay was set as 0.47 times the bulk modulus based on Wang et al. (2001). 

Clay density varied from 2.4 g/cm3 to 2.7 g/cm3, and porosity was assumed to be 5%, 

which is about the average value in the Haynesville Shale. The effective VP, VS and VP/VS 

ratio from the combined self-consistent model and Chapman’s model are shown in Figure 

4.4. From the softest clay to stiffest clay, both VP and VS increase about 30%, and VP/VS 

ratio decreases about 2.2%, suggesting that the effect of clay on velocities is not 

negligible. Because clay minerals typically absorb water, which makes in situ clay 

composites softer than pure clay minerals (Wang et al., 2001; Vanorio et al., 2003), we 

used the relatively soft clay properties from classic gulf type clays (Tosaya, 1982; Han et 

al., 1986; Blangy, 1992), with bulk modulus of 21 GPa, shear modulus of 7 GPa, and 

density as 2.58 g/cm3 (4.2).  

Due to its undefined structure and mineralogy, kerogen also has large 

uncertainties for its moduli and density. Based on vitrinite reflectance, a measurement of 

the maturity of the organic material, Eastwood and Hammes (2011) obtained the kerogen 

density as 1.45 g/cm3 for the Haynesville Shale. The bulk and shear moduli (2.9 GPa and 

2.7 Gpa) of kerogen we used were from Carmichael (1989) and Blangy (1992) (Table 

2.2).  
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Figure 4.4: Investigation of how VP, VS, and VP/VS vary with different clay elastic moduli 
and densities, due to large uncertainties on elastic properties of clay. (a) VP (solid) 
and VS (dashed) increase about 30% from the softest clay to stiffest clay; (b) VP/VS 
ratio decreases about 2.2% from the softest clay to stiffest clay.  
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As for the fluid, we used the fluid mixing equation  

K fluid = (Kb −Kg )(1− Sg )
e +Kg   (4.10) 

from Brie et al. (1995) to calculate the effective fluid moduli of a brine and gas mixture. 

In equation 4.10, the effective bulk modulus depends on the bulk moduli of brine (Kb) 

and gas (Kg) (Table 2.2), the gas saturation (Sg) and an empirical exponent (e). The gas 

saturation is from the average water saturation (~25%) in the Haynesville Shale. The 

empirical exponent e varies from 1 for patchy saturation to 3.4 for uniformly saturation. 

Here the patchy saturation provides the upper bound of effective bulk modulus of the 

mixed fluids, and uniform saturation provides lower bound of effective bulk modulus of 

the mixed fluids.  

In Brie’s fluid mixing equation, different exponents correspond to different fluid 

properties. We investigated how two specific cases of exponents in the equation affect the 

model results (Figure 4.5). One is uniform saturation with e=3.4 (Figure 4.5a), and 

another one is very close to patchy saturation with e=1.17 (Figure 4.5b). The crossplots 

of modeled VS and VP in these two cases show different shapes and color patterns, and the 

gray data dots fall into locations with different color ranges, indicating the two cases 

provide slightly different porosity estimates. For the uniform saturation case, the dark 

blue areas covered by most of data points suggests that porosity estimations are mostly 

close to 0; for the nearly patchy saturation case, the blue and cyan areas covered by most 

of the data points suggests that porosity estimations are mostly around 5%, which is 

about the average porosity value of the Haynesville Shale. Therefore, for this data, 1.17 is 

a suitable value to be used for the exponent e in Brie’s fluid mixing equation. 
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Figure 4.5: The effect of fluid mixing using different exponent values in Brie’s fluid 
mixing equation (equation 4.10). (a) Exponent value e=3.4. In the crossplot of VS 
versus VP, gray dots are data from Well B, and background color shows the 
modeling result colored by prior total porosity. (b) Exponent value e=1.17. Gray 
dots are data from Well B, and background color shows the modeling result 
colored by prior porosity. In this case, the data points correspond to a more 
accurate porosity range than in (a) based on porosity from the well. 
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4.7 RESULTS 

Results of the rock-physics modeling (Figure 4.6) showed that VP and VS were 

constrained both separately and simultaneously by the combination of the self-consistent 

model and Chapman’s model. The crossplots of VP versus porosity (Figure 4.6a) and VS 

versus porosity (Figure 4.6b) colored by prior composition demonstrate how VP and VS 

vary with prior porosity and prior composition. In both plots, gray points are observed 

data from Well B. When the composition varies from clay- and kerogen-rich (cold colors) 

to quartz- and calcite-rich (hot colors), VP and VS increases because the bulk moduli of 

quartz and calcite are larger than those of clay and kerogen. To determine if the model 

works for both VP and VS simultaneously, we generated a crossplot of VS versus VP, with 

modeling results colored by both prior distributions of porosity (Figure 4.5b) and 

composition (Figure 4.6c). The variations of modeled VP and VS depend on the combined 

effects of porosity, composition and aspect ratio. Although it appears that VS increases 

with porosity (Figure 4.5b), it is the increase of rock stiffness (Figure 4.6c) that causes 

the increase of VS. Both figures (Figures 4.5b and 4.6c) show that most of the data points 

fall within the model, and the model followed the trends of data very well, suggesting 

that Chapman’s model worked well for both VP and VS simultaneously, given the prior 

distributions of porosity, composition, and pore aspect ratio. Therefore, by combining the 

modeled VP and VS results, the porosity, composition, and pore aspect ratio distributions 

could be estimated simultaneously. 
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Figure 4.6: (a) Crossplot of VP versus porosity. Gray points are data from Well B. 
Background color shows the modeling result with the prior composition 
distribution. (b) Crossplot of VS versus porosity. Gray points are data from Well 
B. Background color shows the modeling result with the prior composition 
distribution. (c) Crossplot of VS versus VP, colored by prior composition 
distribution. Almost all the data points were covered by the modeling results, and 
the modeling results followed the data trend very well. The data points that were 
missed by the model likely correspond to dolomite-rich composition excluded 
from the prior composition distribution.   
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In the model (Figures 4.5b and 4.6c), the area that covers the majority of the data 

points has different colors, indicating there are variations in porosity, composition and 

aspect ratio. Meanwhile, although a few points fall in the blue area, they correspond to a 

small range of porosity and composition, and relatively large uncertainty of their 

estimations. The model missed only a few points. One possible reason is that the prior 

distribution of composition did not account for some extreme cases with very high 

dolomite percentages. Using a different parameterization of the rock-physics model based 

on rock-type classification might make the model work even better.  

Grid searching was used to estimate distributions of porosity, composition, and 

pore aspect ratio after rock-physics modeling. The combination of the self-consistent 

model and Chapman’s model provided trends of VP and VS that explain the variations in 

the log data. By comparing modeled VP and VS with observed VP and VS, we 

simultaneously inverted porosity, composition, and aspect ratio. The criteria was to 

accept modeled VP and VS that have differences less than 0.08 km/s (~2% error for VP and 

~4% error for VS) comparing to the observed VP and VS. At each depth, multiple 

porosities, compositions and aspect ratios satisfy the criteria. We calculated the 

probability of each accepted value based on the number of accepted values and number of 

total values. In this way, we obtained not only just the best-fit reservoir properties, but 

also multiple fitted sets of reservoir properties with different probabilities.  

The porosity estimation closely matched the porosity within the Haynesville Shale 

(Figure 4.7). At each depth, we obtained porosity estimates with different probabilities 

(Figure 4.7a), showing by the background colors, with the hot colors representing higher 
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probability and cold colors representing lower probability. The porosity estimation fits 

the density porosity in terms of both value and the overall depth trend even though the 

inversion was performed independently at each depth location. The average estimated 

porosity is 4.6%, and density porosity is about 4.2%. They both have standard deviation 

of about 0.02. The estimated porosity shows a small systematic bias toward the high 

value side, mainly due to the fluid property uncertainty in the rock physics models. The 

histograms of density porosity (Figure 4.7b, top) and the best fit porosity (Figure 4.7b, 

bottom) are very similar.  

The best-fit composition assemblage was estimated at each depth in the 

Haynesville Shale formation (Figure 4.8a). The average percentages for quartz, calcite, 

pyrite, kerogen, and clay are very close to the ones from core analsyis and XRD results in 

Well A (Table 4.2). They are not exactly the same because lithology from Well A and 

Well B may be slightly different. Certain depths, such as 2360 m, 2406 m and 2413 m, 

display much higher percentages of quartz (~39%) and calcite (~31%), and much lower 

percentage of clay (~24%) than average within the Haynesville Shale. These features are 

consistent with the peaks in VP and VS logs (Figure 4.8b), and they likely correspond to 

more brittle zones.  

 

Table 4.2. Comparison of compositions in percentage from modeling and measurement 

 
Qtz (%) Calcite (%) Pyrite (%) Kerogen (%) Clay (%) 

Model (Well B) 31.3 23.3 2 4.7 38.7 

Measurement (Well A) 31.6 25.8 2 5.3 35.3 
 
[1] Blangy (1992); [2] Carmichael (1989); [3] Eastwood and Hammes (2011); [4] Han et al. (1986); [5] 
Tosaya (1982) 
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Figure 4.7: (a) Porosity estimation. Background color represents probability, with the hot 
colors representing estimations with higher probability, and cold colors 
representing estimations with lower probability. The black curve marks the 
estimation with the highest probability, and the white curve shows the density 
porosity from log data. (b) Histograms of observed and modeled porosity. 
Average estimated porosity is 4.6%, average density porosity is 4.2%, and both 
have standard deviation of about 0.02.  
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Figure 4.8: (a) Composition assemblages along artificial depth. Each depth contains 
different percentages of quartz, calcite, pyrite, kerogen and clay. (b) P- and S-
wave velocities within the Haynesville Shale. A few peaks (marked by the blue 
line) of VP and VS at certain depths (~2360 m, ~2406 m, and ~2413 m) correspond 
to more brittle zones with high quartz percentage (about 39%), high calcite 
percentage (about 31%) and low clay percentage (about 24%).  
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standard deviation of about 0.016. It is difficult to verify the pore aspect ratio estimation 

because there was no direct maesurement available. However, by looking at 

microstructure images of core samples, we can obtain some idea of the 

pore/crack/fracture shapes and partially verify the aspect ratio estimation.  

 

 

Figure 4.9: (a) Pore aspect ratio estimation. Hot colors represent estimates with higher 
probability, and cold colors are for lower probability. The black curve marks the 
estimation with the highest probability. (b) Histogram of the estimated aspect 
ratio. It generally follows a normal distribution, with a mean of about 0.04 and 
standard deviation of about 0.016.  
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The porosity and aspect ratio estimations are from a dual pore system based on 

the self-consistent model and Chapman’s model. The self-consistent model has randomly 

oriented non-spherical pores that are isolated, and Chapman’s model contains spherical 

pores, cracks and fractures that are connected. Most of the inverted porosity and aspect 

ratio distributions are dominated by the randomly oriented non-spherical pores from the 

self-consistent model. The fractures in Chapman’s model do not contribute significantly 

to the total porosity, but they do affect the directional velocities.  

From the correlations among the estimated porosity, composition and aspect ratio 

(Figure 4.10), the estimated aspect ratio decreases as the clay percentage in estimated 

composition increases (composition # increases) and estimated porosity decreases (hot 

color to cold color). The estimated aspect ratio increases as clay percentage decreases 

(composition # decreases) and estimated porosity increases. These correlations are 

consistent with the fact that it is easier to compress soft clay than other stiffer minerals 

and therefore generate more flatten pores. Also, the points with higher estimated clay 

percentages, lower estimated porosities and lower estimated aspect ratios are not as 

scattered as the ones with lower estimated clay percentages, higher estimated porosities 

and larger estimated aspect ratios. The pattern of these scattered points indicates that 

uncertainties are relatively small for the locations with higher clay percentage, lower 

porosities and smaller aspect ratios.  
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Figure 4.10: Correlations among estimated porosity, composition and aspect ratio. These 
correlations are preserved from correlations among their prior distributions. As 
estimated clay percentage increases and estimated porosity decreases, the 
estimated aspect ratio decreases. The pattern of the scattered points indicates 
estimation uncertainties. The more scattered points correspond to lower estimated 
clay percentages, higher estimated porosities, and larger estimated aspect ratios. 
The more condensed points correspond to higher estimated clay percentages, 
lower estimated porosities, and smaller estimated aspect ratios.  
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that the Haynesville Shale falls in the high-frequency regime, and the low-frequency 

assumption of Gassmann’s equation fails (Batzle et al., 2006). In addition, in the self-

consistent model, the pores are isolated with respect to fluid flow and pore pressures are 

not equilibrated. Therefore, we believe it is correct to model the elastic components with 

the fluid placed in the void space as opposed to modeling dry rock and then applying 

fluid substitution. The frequency used in Chapman’s model (10 kHz) is right at the edge 

of where dispersion begins, and the amount of dispersion is very small. Even though the 

dual porosity system is not exactly consistent with Gassmann, we consider the velocity 

dispersion to be negligible.  

Reservoir properties (composition, porosity and pore shape) were estimated for 

the Haynesville Shale, along with the associated uncertainty. Sources of uncertainty that 

might affect these results, in addition to elastic properties of clay, kerogen, and fluid, are 

the log measurements and calculations made from those measurements. Porosity is not 

directly measured at the log scale, and is calculated from either the density log or neutron 

log. In this chapter, the porosity log was calculated from the density log. This calculation 

relied on the accuracy of density log measurement, which is very sensitive to the 

borehole environment. The calculation also relied on the assumptions of fluid density and 

rock matrix density at each depth, which is sensitive to the composition assemblage and 

water saturation at each depth. In this chapter, composition is partially constrained by 

core measurements of Well A.   

This chapter focused on reservoir characterization at a single well location. The 

process can be expanded to the larger seismic scale by combining the modeling with 3D 
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surface seismic data. Seismic inversion, calibrated properly, provides VP and VS for a 3D 

volume. Once those elastic properties at the large scale are input to our algorithm, we will 

be able to estimate the 3D distributions of the reservoir properties. On the one hand, 

measurement scale is an issue when comparing seismic velocities from rock-physics 

models and from seismic inversion. Log data are measured at sub-meter resolution and at 

frequency of tens of kHz, whereas seismic data is a time measurement with frequencies 

of tens of Hz. Upscaling is required from the log scale to seismic scale. The Backus 

(1962) average, a long wavelength effective medium approximation, can be used to help 

solve this issue. On the other hand, non-uniqueness also is present in both seismic 

inversion and rock-physics modeling. In seismic inversion, different inverted impedances 

may provide equally well fitted seismic traces, and it is impossible to obtain unique 

solutions of the P- and S-impedances. In this case, constraints at well locations are very 

important. In the rock-physics modeling, different combinations of prior reservoir 

properties may result in the same elastic properties, adding more non-uniqueness in 

estimating the reservoir property distributions. Therefore, assessment of uncertainties and 

ambiguity is important when characterizing the reservoir properties at each scale and 

across scales.   

The continuous distributions of the reservoir properties will contribute to 

understand the spatial variations of seismic attributes within this study area of the 

Haynesville Shale. The procedures in this chapter could also be applied to other gas 

shales other than the Haynesville Shale in order to characterize their reservoir properties. 

Applications to other shales, however, must begin with determining the site-specific 
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reservoir properties that most significantly affect the seismic properties as well as the 

associated uncertainty.  

 

4.9 CONCLUSION 

In this chapter, we developed a workflow to characterize the reservoir properties 

of the Haynesville Shale. We modeled both VP and VS simultaneously using a 

combination of the self-consistent model and Chapman’s model, and inverted porosity, 

composition and pore aspect ratio distributions from grid searching. The self-consistent 

model provided a porous rock matrix that contained different mineral phases and non-

spherical pores as inputs in the Chapman’s model. Chapman’s model outputs anisotropic 

stiffnesses as function of frequency, porosity, fracture density, and lithology. The 

modeling was successful for Well B and provides relationships between the reservoir 

properties (porosity, composition, and pore aspect ratio) and elastic properties (VP and 

VS). The integration of the rock-physics model with grid searching provided simultaneous 

estimates of porosity, composition and pore aspect ratio distributions for the Haynesville 

Shale. Estimation of porosity helps to determine gas capacity and the estimated ultimate 

recovery (EUR). Estimations of composition and pore aspect ratio help to understand the 

stiffness and brittleness of rock formations, which might contribute to locating sweet 

spots and identifying zones of economic production in unconventional reservoirs. Here, 

sweet spots are preferable locations at which to place hydraulic fractures in rock 

formations that contain more brittle compositions and with relatively high porosities and 

large pore aspect ratios. 



	   96	  

Chapter 5: Application of rock-physics modeling, grid searching, and 

prestack seismic inversion in seismic reservoir characterization of the 

Haynesville Shale 

5.1 ABSTRACT 

Seismic reservoir characterization of unconventional gas shales is challenging due 

to their heterogeneous and anisotropic complexity. Rock properties of unconventional gas 

shales such as porosity, pore-shape distribution, and lithology are important for 

interpreting seismic data amplitude variations for shales. This chapter estimates these 

rock properties at the seismic scale by applying rock-physics modeling, grid searching, 

and prestack seismic inversion, using the Haynesville Shale as a case study. This seismic 

reservoir characterization procedure accounted for the complex composition, pore-shape 

distribution, and anisotropy. All of the above rock properties affected the seismic 

velocities, and the combined effects of these rock properties on the seismic amplitude 

were investigated simultaneously. The P- and S-impedances correlated negatively with 

porosity. The VP/VS correlated positively with clay fraction and negatively with the pore-

shape distribution and quartz fraction. These estimated rock properties at the seismic 

scale were validated further through the comparisons between the elastic properties 

derived from the estimated rock properties and the ones inverted from the prestack 

seismic data. The differences between the two sets of elastic properties were less than a 

few percent. These correlations between the seismic amplitude variations and the rock 

properties contribute to the seismic reservoir characterization of the Haynesville Shale.  
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5.2 INTRODUCTION 

Seismic data provides images of structures and stratigraphy in the subsurface for 

reservoirs of interest. In exploration and production, seismic amplitude data can be used 

to predict reservoir properties for areas away from wells. The seismic responses depend 

on impedance contrasts, and the responses often vary spatially in the reservoirs, 

particularly for unconventional gas shales, due to their complexity and heterogeneity. In 

seismic reservoir characterization, understanding which rock properties or combination of 

properties cause these spatial variations is important. For complex unconventional gas 

shales, rock properties, including porosity, pore-shape distribution, and lithology are 

important to identify optimal drilling locations. Porosity helps to determine gas capacity 

and estimated ultimate recovery (EUR), and, therefore, zones of economic production. 

Pore-shape distribution and lithology are related to the brittle/ductile strength of shales 

and, therefore, contribute to identify zones suitable for hydraulic fracturing. 

Shales are heterogeneous, with low porosity, low permeability, and commonly 

they contain natural fractures. There are large petrophysical and elastic variations for 

shales in terms of depth, thickness, porosity, permeability, pressure, temperature, and 

TOC (Roth, 2011). On the production side, gas shales present large variations in thermal 

maturity, adsorbed- or absorbed-gas fractions, reservoir thickness, total organic carbon 

(TOC), and volume of gas in place (Curtis, 2002). Because of the heterogeneity and 

anisotropy, seismic reservoir characterization for shales is challenging. Chopra et al. 

(2013) reviewed current workflows for shale gas reservoir characterization, including 

calculating TOC content, estimating brittleness of rock formation from Poisson’s ratio 
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and Young’s modulus, and detecting natural fractures in shale formations from azimuthal 

variations of velocity and/or impedance fields. Zhu et al. (2011) used rock-physics 

relationships and seismic modeling to understand the geophysical responses of shale-gas 

plays at both well log and seismic scales. They found that the mineral composition and 

interaction among minerals affected geophysical responses and/or rock strength and 

fracability of the rock. Koesoemadinata et al. (2011) introduced a workflow that involved 

seismic acquisition, processing, and prestack inversion to characterize the Marcellus 

Shale and classify the lithofacies. They identified four major lithofacies (silts and sand, 

shale, limestone, and dolomite) and found that the Marcellus formation in their study area 

was highly heterogeneous elastically. Sena et al. (2011) developed a workflow that 

integrated prestack azimuthal seismic data analysis and well-log information to estimate 

geomechanical properties of shales and to identify sweet spots. They estimated 

differential horizontal stress ratio, fracture-initiation pressure, and closure pressure, 

which are critical parameters for the fracture simulation process. Guo et al. (2013) 

constructed a rock-physics workflow in which the clay and kerogen particle orientations 

were defined, and applied this workflow to the Barnett Shale and evaluated porosity, 

lithology and brittleness index. They found that Poisson’s ratio and Young’s modulus 

along the well path decrease as clay content increases, and Poisson’s ratio is a more 

reliable indicator than Young’s modulus to discriminate clay content and shale texture 

(orientation of clay particles) at high porosities. Loseth et al. (2011) built a relationship 

between TOC and acoustic impedance and used this relationship to predict TOC volumes 

from inverted acoustic impedance volumes. They showed a significant nonlinear 
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reduction in acoustic impedance with increasing kerogen content, and they mapped the 

source rock presence, thickness, and basin-wide variations in TOC.   

The anisotropy of shales is always an important aspect to be considered when 

performing seismic reservoir characterization. Sayers (2013) examined the effect of 

anisotropy (partial orientation of clay particles, the presence of silt particles, kerogen 

inclusions, microcracks and low-aspect ratio pores) on the directionally dependent 

Young’s moduli and Poisson’s ratios for transversely isotropic shales. He pointed out that 

the degree of alignment of clay particles and presence of low-aspect ratio pores in shales 

affects the Poisson’s ratios and Young’s moduli along different directions. The presence 

of silt inclusions increases the Young’s moduli and decreases the Poisson’s ratios, and the 

presence of kerogen inclusions decreases the Young’s moduli and Poisson’s ratios. 

Bachrach et al. (2013) applied both deterministic and stochastic rock-physics modeling to 

predict anisotropy and constrain the ranges of anisotropic parameters of shales and sandy 

shales. Their anisotropy predictions were consistent with effective medium theory, and 

they were able to use the rock model to fit an anisotropy profile derived from checkshot 

data.  

Jiang and Spikes (2011) investigated the pore shape and composition effects on 

the P-wave velocity for the Haynesville Shale at the well log scale and showed that shales 

with stiffer composition and more rounded pores have higher velocities than the ones that 

have softer composition and flattened pores. A workflow that accounted for heterogeneity 

and anisotropy of shales was introduced to characterize the above rock properties of the 

Haynesville Shale (Jiang and Spikes, 2013a). The estimated compositions at the well log 



	   100	  

scale were similar to the log data/core measurements. A preliminary study on applying 

that workflow at the seismic scale was done (Jiang and Spikes, 2013b). However, only a 

small number of seismic traces were analyzed, and the relationship between the rock 

properties and seismic attributes were investigated at a few individual locations instead of 

continuous slices or volume.   

This chapter combined rock-physics modeling, seismic inversion, and grid 

searching to provide rock-property estimations at the seismic scale for the Haynesville 

Shale. The estimated rock properties were also validated. Although the seismic-inversion 

algorithm was isotropic, the anisotropic rock-physics modeling was able to account for 

anisotropy of shales. The estimated rock properties from the workflow generated similar 

P- and S-impedances to the ones obtained from prestack seismic inversion. The variations 

of these rock properties were correlated with the seismic amplitude data variations. The 

P- and S-impedances correlated negatively with porosity, and the VP/VS correlated 

positively with clay fraction and negatively with the pore-shape distribution and quartz 

fraction. These correlations contribute to the seismic reservoir characterization of the 

Haynesville Shale.  

 

5.3 STUDY AREA 

5.3.1 Seismic Data Observation  

The bottom of the Haynesville Shale can be clearly seen in the poststack P-wave 

seismic data (Figure 2.6). The strong positive reflection event at about 740 ms is due to 

the transition from the Haynesville Shale to Smackover Limestone. The top of the 
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Haynesville Shale (~700 ms) is not as evident as the bottom. There is a strong negative 

reflection (Figure 2.6) at the lower part of the Haynesville Shale between 720 ms and 740 

ms. The color intensity changes from trace to trace, indicating the amplitude of this 

negative reflection varies spatially. Figure 2.5 shows a map view of the negative 

reflection near the base of the Haynesville Shale. The spatial variation of the P-wave 

seismic amplitudes can be clearly seen from the different colors. Understanding which 

rock properties cause the spatial variations in the seismic amplitude data is quite 

important for the exploration and production of the Haynesville Shale.  

 

5.3.2 Petrophysical and Rock Property Observations 

The well log data (Figure 5.1a) shows porosity, P-wave velocity (VP), S-wave 

velocity (VS) and density within the Haynesville Shale. Porosity is calculated from the 

density log maintaining the assumption that the rock matrix contains similar 

compositions to the interpolated core measurements (Figure 5.1b). At about 2418 m, 

there is a decrease in the VP, VS and density logs. On average, VP decreases from 3.33 

km/s to 3.16 km/s, VS decreases from 2.00 km/s to 1.86 km/s, and density decreases from 

2.50 g/cc to 2.47 g/cc. These variations correspond to the negative reflection at the base 

of the Haynesville Shale in the seismic data (Figure 2.6). Accordingly, there is an 

increase in the porosity log, which makes porosity a potential rock property that 

contributes to the spatial variations in the seismic amplitude.  
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Figure 5.1: (a) Well log data within the Haynesville Shale from Well A. From left to 
right, density porosity, VP, VS, and density logs are plotted. At an artificial depth 
of about 2418 m, the velocity logs and the density log values decrease while the 
porosity values increase. (b) Composition percentages at different depths within 
the Haynesville Shale. Clay percentage increases and quartz and calcite 
percentages decrease at the bottom of the Haynesville Shale. The percentages of 
kerogen and other minerals do not show clear variations at about 2418 m.  
 

Based on the core analysis and XRD measurements, the Haynesville Shale 

contains quartz, feldspar (potassium feldspar), plagioclase (calcium feldspar), calcite, 

dolomite, pyrite, kerogen and clay (Figure 5.1b). The dominant composition includes 

quartz, calcite and clay. The percentages of other minerals are relatively small. However, 

at certain depths, such as about 2368 m and 2429 m, there is a relatively large amount of 

dolomite. The organic matter, kerogen, varies from about 1.7% to 7.1%, with an average 

of about 5.3% within the Haynesville Shale. In the rock-physics models, to simplify the 

computation, the percentages of feldspar, plagioclase, and dolomite were transferred to 

calcite. Therefore, the average percentages of quartz, calcite, pyrite, kerogen, and clay 

from core are about 31.6%, 25.8%, 2%, 5.3%, and 35.3%, respectively. At about 2418 m, 

there is an increase of clay percentage and decrease of quartz and calcite percentages. 
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This composition variation is consistent with the velocity and density drops at the same 

depth because clay has lower density and bulk and shear moduli than quartz and calcite. 

Therefore, composition is another potential rock property that causes the spatial 

variations in the seismic amplitude.  

Another rock property, the pore shape, was considered in this chapter. Pore shape 

is one of the rock properties that affects the elastic properties of rocks, and it is an 

important aspect to be considered for the reservoir characterization. Sayers and den Boer 

(2011) applied the self-consistent scheme on deepwater subsalt Gulf of Mexico shales 

and showed that different pore aspect ratios corresponded to different effective moduli. 

Bai et al. (2013) accounted for variable pore aspect ratios in the Xu-White model (Xu and 

White, 1995, 1996) and predicted more accurate shear-wave velocity than the 

conventional Xu-White model. The Haynesville Shale tends to have flattened or 

elongated grains and pores at the micro- and nano-scales scale (Curtis et al., 2010). 

Previous studies (Jiang and Spikes, 2011, 2012) showed that pore shape has a strong 

effect on the velocity for the Haynesville Shale. Generally, with the same composition 

and porosity, rocks that contain more rounded pores have higher velocities than the ones 

that have more flattened pores (Jiang and Spikes, 2011; Sayers and den Boer, 2011). 

 

5.4 METHOD 

Distributions of porosity, pore shape, and composition at the seismic scale were 

jointly inverted from P- and S-impedances for the Haynesville Shale. The seismic 

reservoir characterization workflow (Figure 5.2) included three major parts: rock-physics 
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modeling, grid searching, and prestack seismic inversion. In the seismic inversion step, 

bandpass filtering and partial stacking were applied to increase the S/N. The processed 

angle stacks were inverted for P- and S-impedances. The inverted P- and S-impedances 

were then input into the rock-physics modeling and grid searching process to estimate 

rock properties at the seismic scale. The elastic properties derived from the estimated 

rock properties and the ones inverted from the prestack seismic data were compared to 

validate the estimated rock properties. Both sets of impedances were at the seismic scale, 

because the estimated rock properties were at the seismic scale.  

 

Figure 5.2: Workflow for the seismic reservoir characterization. Bandpass filtering and 
partial stacking was applied to the prestack angle gathers. The angle stacks were 
inverted for P- and S-impedances, which were then input into the rock-physics 
modeling and grid searching process to estimate rock properties at the seismic 
scale. To validate further the estimated rock properties, the elastic properties 
derived from the estimated rock properties were compared to the ones inverted 
from the prestack seismic data. Both sets of impedances are at the seismic scale. 
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5.4.1 Rock-Physics Modeling  

The rock-physics modeling established quantitative relationships between the 

rock properties (porosity, pore-shape distribution and lithology) and the elastic properties 

(P- and S-wave velocities or P- and S-impedances. The rock-physics modeling included 

the self-consistent model (O’Connell and Budiansky, 1974; Berryman, 1980) and 

Chapman’s model (Chapman, 2003). The details of the rock-physics modeling are 

described in Chapter 4. The self-consistent model initiates the numerical simulation by 

including grains and pores of different shapes and sizes, and Chapman’s model treats the 

shale as a vertical transversely isotropic (VTI) medium by introducing aligned fractures. 

In the rock-physics modeling, the effective shale was built based on different mineral and 

pore phases. The mineral phases included quartz, calcite, clay, kerogen and pyrite. The 

pore phases included non-spherical/spherical pores, non-spherical cracks and aligned 

fractures. Calibration of the rock-physics model is described in detail in chapter 4.  

In the rock-physics modeling, prior distributions of porosity, composition and 

pore shape were included. The prior composition included quartz, calcite, pyrite, kerogen 

and clay. Because pyrite comprised only a small portion of the composition, it was fixed 

at 2% in the rock-physics modeling. The percentages of the other compositions varied for 

400 scenarios. The quartz and calcite contents were negatively related to the kerogen and 

clay contents. The prior porosity was from 0 to slightly more than 0.4, and the prior 

aspect ratio was from almost 0 to 0.12. The ranges of these prior distributions were large 

enough to contain most combinations expected in this interval. At the well log scale, the 
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porosity and composition estimations matched the observations quite well, with error less 

than a few percent (Jiang and Spikes, 2013a).  

 

5.4.2 Grid Searching 

After the rock-physics models were built, a grid searching method was used to 

estimate the rock properties and the associated uncertainties. In the grid searching, P- and 

S-impedances from the rock-physics models were compared with the ones inverted from 

the seismic data. The modeled impedances that satisfied specific criteria provided the 

estimated rock properties (equation 5.1).  

Obj _ P =| IPmodel − IPinverted |≤ 0.2
      (5.1) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Obj _ S =| ISmodel − ISinverted |≤ 0.1
 
 

For each trace at each time, grid searching provides a large number of estimated 

rock properties based on the objective function (equation 5.1). The mean value and 

standard deviation were calculated for each rock property at each point. The standard 

deviation shows the uncertainty of the estimations spatially and vertically.  

 

5.4.3 Prestack Seismic Inversion 

Simultaneous inversion (Hampson et al., 2005) of prestack seismic data was 

applied to obtain P-impedance, S-impedance and density. This algorithm was based on 

three assumptions (Hampson et al., 2005): a linearized approximation for reflectivity, the 

reflectivity as a function of angle can be calculated by Aki-Richards equations (Aki and 
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Richards, 2002), and the logarithm of P-impedance, S-impedance and density are linearly 

related.  

The angle gathers at the well location (Figure 5.3a) were calculated from migrated 

offset gathers using the RMS and interval velocities. Incidence angles range from about 

4° to 50°. Overall, these angle gathers have a relatively low S/N. In particular, the traces 

at large incidence angles (between about 30° to 50°) are noisier than the traces at smaller 

angles. A seismic-well-tie was done based on poststack seismic data that has much higher 

S/N than the prestack seismic data, with a correlation coefficient of 0.79. To enhance the 

S/N in the prestack data, super gather analysis and partial stacking were applied. Super 

gather process collects adjacent CDPs and adds them together to enhance the S/N. The 

number of CDPs to be added can be 3 by 3, 5 by 5, 7 by 7, and so on. The effect of CDP 

number was tested, and the grid of 5 by 5 was chosen to increase the S/N (particularly for 

the large angle gathers between about 30° to 50°), while preserving the main features 

shown in the original angle gathers (Figure 5.3b). Partial stacking further enhanced the 

S/N (Figure 5.3c). Three angle ranges were selected: 5°–15°, 15°–25°, and 25°–35°. 

Angles from 35°–50° were excluded due to relatively low S/N and nonexistence below 

about 700 ms. For each of the three angle ranges, the middle angle value was assigned to 

the angle stack, e.g., the angle stack from angle range 5°–15° had an angle value of 10°. 

In the simultaneous inversion, these three angle stacks (10°, 20°, and 30°) were treated as 

prestack angle gathers.  
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Figure 5.3: Prestack seismic data. a) The original CDP angle gathers at the well location 
(Well A), ranging from about 4° to 50°. The red curve shows P-impedance from 
Well A. From small to large angle ranges, the S/N decreases, and the traces at the 
largest angles (30°–50°) appear very noisy. b) The angle gathers after applying 
super gather process. The S/N increased, particularly at the very large angles 
(between about 30° to 50°). c) The angle stacks at the well location. Angle stacks 
were generated from angle ranges 5°–15°, 15°–25°, and 25°–35°. The middle 
values for each of the angle ranges (10°, 20°, 30°) were assigned to the angle 
stacks, respectively. Partial stacking significantly increased the S/N. The large 
amplitudes at large angle range correspond to data with low S/N and approaching 
criticle angle.   

 

Analysis of the prestack inversion results at the well location is shown in Figure 

5.4. The well log P- and S-impedances, density, and VP/VS are plotted in blue, the initial 

model is indicated by the black curves, and the inverted results are plotted in red in the 

first four panels. The initial P-impedance comes from the poststack inverted result, and 

initial density and VP/VS are from the log-derived low frequency model. The reason to use 

the poststack inverted P-impedance as the initial model is to get more constrain through 

the poststack seismic data that has higher S/N. The Haynesville Shale is marked by the 
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black box. In general, the inverted P- and S-impedance fit the measured impedances. 

Density matching between inversion and well log data is not as good as impedances 

because the density log itself fluctuates due to the rugose borehole environment. The 

inverted VP/VS has some obvious misfit with the borehole measurements, but fits the log 

measurements fairly closely within the Haynesville Shale. Synthetic seismic traces were 

created by convolving the inverted P-impedance with the wavelets extracted from the 

angle stacks. The synthetic angle stacks (red seismograms) are similar to the seismic data 

(black seismograms). The correlation coefficient is about 0.90, with relatively small error 

(red seismograms on right). The similarity between the synthetic seismic traces and 

observed seismic data indicates that the inversion results are generally acceptable. The 

crossplots between the inverted and well log P-impedances (Figure 5.5a) and S-

impedances (Figure 5.5b) show nearly one-to-one relationships, indicating that the 

inverted P- and S-impedance are similar to the well log data.  

 

5.4.4 Validation of the Inverted Rock Properties 

The spatially continuous rock properties were estimated simultaneously by 

inputting the prestack seismic inverted elastic properties from the Haynesville interval 

into the rock-physics modeling and grid searching. For each of the rock properties, both 

the estimation and uncertainty (standard deviation) were calculated. These rock 

properties were validated further through the comparisons between the elastic properties 

derived from them and the ones inverted from the prestack seismic data. Based on the 

estimated rock properties at the seismic scale, the calibrated rock-physics model 
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generated a set of elastic properties. Those elastic properties should be close to the ones 

from the prestack seismic inversion if the estimated rock properties are valid.  

 

 

Figure 5.4: Prestack seismic inversion analysis at Well A location. The first four panels 
show P-impedance, S-impedance, density, and VP/VS. The blue curves indicate 
blocked well logs, black curves indicate initial model, and red curves indicate 
seismic inverted results. The fifth panel shows wavelets extracted from the partial 
stacked angle gathers at small, middle, and large angle ranges. The right three 
panels show the synthetic seismic traces, partial stacked angle gathers from data, 
and the difference between the two. The synthetic seismic traces are very similar 
to the observed angle gathers, with a correlation coefficient of about 0.90. The 
black box indicates the Haynesville Shale, to which the rock-physics modeling 
and grid searching was applied.  
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Figure 5.5: a) Crossplot of P-impedance from inversion versus the one from well log 
(from about 450 ms to 750 ms). b) Crossplot of S-impedance from inversion 
versus the one from well log (from about 450 ms to 750 ms). The red curve in 
each panel is the one-to-one line. Both crossplots indicate similarity between the 
well and inverted impedances.  

 

5.5 RESULTS  

5.5.1 Rock-physics Modeling Results and Calibration at the Well Location 

The rock-physics models in Chapter 4 modeled the P- and S-wave velocities from 

the well log data simultaneously. In this chapter, the same rock physics models were 

applied to the seismic inverted P- and S-impedances. The modeling result at the seismic 

scale (Figure 5.6) shows that the rock-physics models also modeled the seismic inverted 

P- and S-impedances simultaneously. In Figure 5.6, the crossplot of S-impedance versus 

P-impedance were colored by the prior porosity (Figure 5.6a) and prior composition 

(Figure 5.6b). The black points are from the well logs, gray points are from the smoothed 

well logs, and magenta points are from the seismic inversion for Well A. The three sets of 

P- and S-impedances show similar trend. All the magenta points were covered by the 
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modeled results, and the modeling trend followed the magenta point trend very well, 

indicating that the rock-physics models explained the inverted P- and S-impedances. 

Therefore, the porosity, composition and pore shape distribution at the seismic scale were 

obtained. 

 

 

Figure 5.6: The rock-physics modeling result. Crossplot of S-impedance versus P-
impedance, colored by prior porosity (a) and prior composition (b). Black points 
show the P- and S-impedances from the well log, gray points show the P- and S-
impedances from the smoothed well log, and magenta points show the P- and S-
impedance from the seismic inversion at the Well A. The three sets of P- and S-
impedances show similar trend. All the magenta points were covered by the 
modeling results, indicating that the rock-physics models explain the seismic 
inverted P- and S-impedance simultaneously.  

 

The rock property estimations at the well log scale are shown in Figure 5.7. At 

each time, we calculated multiple estimated pore aspect ratio, porosity and composition 

assemblage based on the objective function in the grid searching, and then randomly 

selected 100 estimates from the calculations. Therefore, we obtained the probability of 

estimations (background color in Figure 5.7a and 5.7b), the mean value of the estimations 
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(blue curve in Figure 5.7a and 5.7b), and estimations with the highest probability 

(magenta curve in Figure 5.7a and 5.7b) for the rock properties at each time. The mean 

value and the value with the highest probability of the estimations are similar, while the 

mean value curve is smoother along the time (or depth). There is an increase of both 

porosity and pore aspect ratio below 720 and 740 ms. The estimated porosity is similar to 

the density porosity (red curve, Figure 5.7b), particularly to the smoothed version (black 

curve, Figure 5.7b). The average value of the estimated porosity indicated by the blue 

curve is 5.4% within the Haynesville Shale, and the average density porosity is 6.1%. The 

composition assemblage (Figure 5.7c) is from the mean value of the estimated 

composition at each time. Different percentages of quartz, calcite, pyrite, kerogen and 

clay at different depths are present at each time. The estimated average percentages for 

quartz, calcite, pyrite, kerogen and clay are 30.8%, 22.8%, 2%, 4.8% and 39.6%, 

respectively.  These numbers are close to the ones from core measurements, which are 

31.6%, 25.8%, 2%, 5.3%, and 35.3%, respectively.   

Further steps were applied to check the validation of the estimated rock 

properties. Based on the estimated rock properties, the calibrated rock-physics model 

generated a set of elastic properties (P- and S-impedances). Those derived elastic 

properties were then compared with the ones from the prestack seismic inversion. The 

black set of impedances (Figure 5.8) indicates the ones from seismic inversion, and the 

blue set of impedances (Figure 5.8) indicates the ones derived from the estimated rock 

properties. These two sets of P- and S-impedances are very similar, indicating that the 

estimated rock properties are valid.  
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Figure 5.7: The rock property estimations at the seismic scale. At each time, 100 
estimations of pore shape, porosity and composition were calculated. For the pore 
shape estimation (a) and porosity estimation (b), the background color represents 
probability, with darker color representing estimations with higher probability, 
and lighter color representing estimations with lower probability. The magenta 
curve marks the estimation with the highest probability, and blue curve marks the 
mean value of the estimations. In the porosity estimation plot (b), red curve shows 
the density porosity from well log data, and black curve is a smoothed version of 
the red curve. (c) The composition estimation. Each time contains different 
percentages of quartz, calcite, pyrite, kerogen and clay.   
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Figure 5.8: Validation of the estimated rock properties. Black solid and dashed curves are 
the P- and S-impedances from seismic inversion, and blue solid and dashed 
curves are the P- and S-impedances derived from the mean values of the 
estimated rock properties (Figure 5.7).  

 

5.5.2 A 2D Slice Example  

Figure 5.9 shows a 2D section of the inverted P-impedance (Figure 5.9a), S-

impedance (Figure 5.9b) and Vp/Vs (Figure 5.9c) in the Haynesville Shale. The seismic 

profile is marked by the black line in Figure 2.5, with Well A (inline 1166) in the middle 

of the seismic profile. The hot colors indicate large values, and cold colors indicate small 

values. Spatial variability is clearly present in each section. Vertically, each inverted 

parameter shows a decrease at the base of the Haynesville Shale between about 720 ms 

and 740 ms. The color intensity changes among different inlines. These variations should 

be related to rock properties, such as porosity, pore-shape distribution and composition.  
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Figure 5.9: The prestack seismic inverted P-impedance (a), S-impedance (b), and VP/VS 
(c) within the Haynesville Shale, based on the bandpass filtered and angle stacks. 
The insert solid curve shows the inverted results at Well A, and dotted curve 
shows the corresponding smoothed log at Well A. The cold colors indicate lower 
values and hot colors indicate higher values. Each of the inverted elastic 
properties varies both vertically and laterally. They all show a decrease at the 
bottom of the Haynesville Shale between about 720 ms and 740 ms. The 
horizontal dashed curve shows the horizon for the map views in Figures 5.16–
5.19. The horizon is an approximate 90 degrees shift up from the original horizon 
picked from the post-stack amplitude data (Figure 2.6).  

 

The estimated porosity (Figure 5.10a) varies vertically and laterally. Within the 

Haynesville Shale, the porosity varies from about 2.3% to 11.1%, with an average of 

about 5.5%. Vertically, the porosity is larger between about 720 ms and 740 ms than the 

other time ranges. This relatively larger porosity is consistent with the low P- and S-
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impedances observed from the inversion result at the same time range. The porosity is 

smaller on the top and very bottom of the Haynesville Shale, which is consistent with the 

large inverted P-impedance values at the top and very bottom of the Haynesville Shale. 

Laterally, the color intensity of the porosity estimation varies at different locations. For 

example, between about 720 ms and 740 ms, the porosity has large values between inline 

1130 and 1140, at inline 1150, 1170, and 1200, and small values at 1140 and 1180. In 

fact, the porosity affects both P- and S-impedances. Generally, large porosity corresponds 

to low P- and S-impedances and vice versa. The relative standard deviation (Figure 5.10b) 

is about 20% to 25%.  

 

Figure 5.10: a) Porosity estimation. The hot colors indicate large values, and cold colors 
indicate smaller values. The porosity estimation is negatively correlated with P-
impedance and S-impedance. b) Relative standard deviation of the porosity 
estimation, showing the estimation uncertainty. The black dashed line indicates 
Well A. 
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The pore-shape distribution represents the range of pore aspect ratios. Similar to 

porosity, the pore-shape distribution also varies vertically and laterally (Figure 5.11). The 

pore aspect ratio varies from about 0.02 to 0.07, with an average of about 0.04 in the 

seismic profile. These variations correlated negatively with the VP/VS (Figure 5.9c): 

higher aspect ratios correspond to lower VP/VS, and vice versa. In particular, between 

about 720 ms and 740 ms, the hot spots in the pore-shape distribution between inline 

1130 and 1140, at inline 1150, 1170, and 1200 correspond to the cold spots in the VP/VS 

(Figure 5.9c), respectively. Similar to porosity estimation, the relative standard deviations 

(Figure 5.11b) of the pore-shape distribution is about 20%.  

The estimations of composition include fractions of clay, quartz, calcite, and 

kerogen. Clay fraction estimation (Figure 5.12) and quartz fraction estimation (Figure 

5.13) are shown as examples. The clay varies from 29% to 44% with an average of about 

39%, and quartz varies from 28% to 37% with an average of about 31%. Similar to the 

pore-shape distribution, the clay and quartz fraction distributions appear to be correlated 

with VP/VS. More clay corresponds to larger VP/VS, and less clay corresponds to smaller 

VP/VS. More quartz corresponds to smaller VP/VS, and less quartz corresponds to larger 

VP/VS. The relationship between clay and VP/VS is consistent with the fact that clay has 

higher VP/VS than the other minerals in the Haynesville Shale. Similarly, the relationship 

between quartz and VP/VS is consistent with the fact that quartz has lower VP/VS than the 

other minerals in the Haynesville Shale. The relative standard deviations for the 

composition estimation are very small (Figure 5.12b and Figure 5.13b).  
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Figure 5.11: a) Pore-shape distribution estimation. The hot colors indicate large values, 
and cold colors indicate smaller values. The pore-shape distribution is negatively 
correlated with VP/VS. b) Relative standard deviation of the pore shape estimation, 
showing the estimation uncertainty. The black dashed line indicates Well A.  
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Figure 5.12: a) Clay fraction estimation. The hot colors indicate large values, and cold 
colors indicate smaller values. The clay fraction is correlated with VP/VS. b) 
Relative standard deviation of the clay fraction estimation, showing the estimation 
uncertainty. The black dashed line indicates Well A.  
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Figure 5.13: a) Quartz fraction estimation. The hot colors indicate large values, and cold 
colors indicate smaller values. The quartz fraction is correlated with VP/VS. b) 
Relative standard deviation of the quartz fraction estimation, showing the 
estimation uncertainty. The black dashed line indicates Well A. 
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After estimating the continuous rock properties at the seismic scale, further 

analysis validated the results. Figure 5.14 shows the comparison of P-impedance. The 

rock-property derived P-impedances are very similar to the inverted P-impedances, with 

average differences less than 4%. Figure 5.15 shows the comparison of S-impedances, 

with average difference between rock property derived one and inverted one less than 3%. 

These similarities indicate that the estimated rock properties are valid. 

 

Figure 5.14: Validation of the estimated rock properties. a) The P-impedance from 
seismic inversion. b) The P-impedance derived from estimated rock properties. c) 
The difference between the two P-impedances, which is mostly less than 4%. The 
black dashed line indicates Well A.  
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Figure 5.15: Validation of the estimated rock properties. a) The S-impedance from 
seismic inversion. b) The S-impedance derived from estimated rock properties. c) 
The difference between the two S-impedances, which is mostly less than 3%. The 
black dashed line indicates Well A. 

 

5.5.3 Application on 3D Volume 

 The same procedure of rock-physics modeling, prestack seismic inversion and 

grid searching was applied to the 3D volume. The seismic scale rock properties were 

obtained for the 3D volume and were correlated with the elastic properties. Figure 5.16 

shows the prestack seismic inverted P-impedance (Figure 5.16a), S-impedance (Figure 

5.16b) and VP/VS (Figure 5.16c) for the horizon at the base of the Haynesville Shale 

(black dashed curve in Figure 5.9). Well A is in the middle of the map view (inline 1166, 
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crossline 2184). In each panel, the hot colors represent large amplitudes, and cold colors 

represent small amplitudes. P- and S-impedances show similar spatial variation pattern. 

In the north area, P- and S-impedances are relatively small, and in the southeast area, P- 

and S-impedances are relatively large. The VP/VS also show spatial variation, whereas the 

variation pattern is different from P- and S-impedances.  

The estimated porosities, pore shape distribution, quartz fractions and clay 

fractions from the same horizon are shown in Figure 5.17. In each panel, the hot colors 

represent higher values and cold colors represent smaller values. These rock properties 

are all correlated with the P- and S-impedances and VP/VS. The porosity estimation 

(Figure 5.17a) is relatively high at the north area and low at the southeast areas. These 

spatially variation patterns in porosity are negatively correlated with the ones in P- and S-

impedances. Similarly, the pore shape distribution and quartz fraction is negatively 

correlated with VP/VS, and the clay fraction is positively correlated with the VP/VS.  

The elastic properties derived from the estimated rock properties from the horizon 

are shown in Figure 5.18. Those elastic properties are very similar to the inverted elastic 

properties in Figure 5.16. Furthermore, the residuals between the rock-property derived 

elastic properties and the seismic-inverted elastic properties are all close to zero (Figure 

5.19). The similarities between the two sets of elastic properties indicate that the 

estimated rock properties are valid. 
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Figure 5.16: A map view showing the prestack inverted P-impedance (a), S-impedance (b) 
and VP/VS (c) for the horizon at the base of the Haynesville Shale (black dashed 
curve in Figure 5.9). In each panel, the hot colors represent large amplitudes, and 
cold colors represent small amplitudes. Both the inverted P- and S-impedances 
show low amplitudes in the north area and large amplitudes in the southeast area. 
The VP/VS shows spatial variation, but the patterns are not necessarily the same as 
shown from P- or S-impedance map. The black line marks the 2D profile shown 
in Figures 5.9–5.15.  
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Figure 5.17: The estimated rock properties. In each panel, the hot colors indicate large 
values, and cold colors indicate smaller values. Those rock properties are all 
correlated to the elastic properties shown in Figure 5.16. (a) Porosity estimation, 
which is generally negatively correlated with P-impedance and S-impedance. (b) 
Pore-shape distribution estimation, which is negatively correlated with VP/VS. (c) 
Quartz fraction estimation, which is negatively correlated with VP/VS. (d) Clay 
fraction estimation, which is positively correlated with VP/VS. The black line 
marks the 2D profile shown in Figures 5.9–5.15. 
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Figure 5.18: A map view showing the P-impedance (a), S-impedance (b) and VP/VS (c) 
derived from the estimated rock properties from Figure 5.17 for the horizon at the 
base of the Haynesville Shale (black dashed curve in Figure 5.9). In each panel, 
the hot colors represent large amplitudes and cold colors represent small 
amplitudes. These elastic properties are very similar to the ones inverted from 
seismic data (Figure 5.16). The colorbar scale is slightly different from Figure 
5.16 due to the software (Landmark) performance. The black line marks the 2D 
profile shown in Figures 5.9–5.15. 
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Figure 5.19: A map view showing showing the residual of P-impedance (a), S-impedance 
(b) and VP/VS (c) for the horizon at the base of the Haynesville Shale (black 
dashed curve in Figure 5.9). Those residuals are the difference between the rock-
property derived elastic properties and the seismic-inverted elastic properties.  
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5.6 DISCUSSION 

The rock properties were estimated at the seismic scale, and they were correlated 

with the seismic amplitude variations. Some correlations are explicit, which include the 

negative correlation between porosity and P- and S-impedances, the negative correlation 

between quartz fraction and VP/VS, the positive correlation between clay fraction and 

VP/VS, the positive correlation between pore shape and quartz fraction, and the negative 

correlation between pore shape and clay fraction. Some correlations are implicit, e.g., the 

relationship between composition and impedances, and the relationship between the pore 

shape and impedances. The rock property estimation result shows low clay fraction and 

high quartz fraction between about 720 ms and 740 ms (Figure 5.12 and 5.13), whereas 

P- and S-impedances are low between the same time range (Figure 5.9). In map view, the 

rock property estimation result shows low clay fraction and high quartz fraction in the 

south area and the north-south strip between inline 1200 and 1300 (Figure 5.17), whereas 

P- and S-impedances are low in the same areas (Figure 5.16). These relationships seem 

contrary to the normal case that stiffer quartz matrix has a higher impedance and softer 

clay matrix has a lower impedance. In fact, the porosity in the Haynesville Shale is 

mostly interparticle and sits in between stiffer mineral grains (i.e., quartz and calcite) 

instead of clay platelets (Figure 2.16b, Chalmers et al., 2012). Accordingly, the estimated 

porosity is higher where the quartz fraction is higher (and clay fraction is lower), and vice 

versa. The higher porosity generates the lower P- and S-impedances. Similarly, once the 

above relationship between composition and porosity is taken into account, the presented 

relationship between pore-shape distribution and impedances would not be difficult to 
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interpret. The explicit and implicit relationships between the rock properties and elastic 

properties imply that the rock properties need to be investigated simultaneously when 

interpreting the seismic attribute variations. These interpretations also rely on the prior 

distributions of the correlations between them and the weight that has been put on for P- 

and S-impedances during the rock-physics modeling. 

In the seismic reservoir characterization workflow presented here, there are three 

major parts: rock-physics modeling, seismic inversion, and grid searching. Each of these 

affects the characterization accuracy. The rock-physics model accounted for the 

anisotropy of shales and was calibrated in Jiang and Spikes (2013a), generating good 

results at the log scale. The grid searching results depend on the objective function 

(equation 5.1). On the one hand, if the maximum values for Obj_P and Obj_S were too 

small, then the constraint would be too harsh. On the other hand, if the maximum values 

for Obj_P and Obj_S were too large, then there would be almost no constraint, and the 

estimated rock properties would be quite random. The objective function used in this 

chapther was the L1 norm, and other types of objective function might provide different 

estimations of the rock properties.  

The accuracy of seismic inversion is very important. If the elastic properties were 

not inverted correctly, then the estimated rock properties would also be inaccurate, and it 

would be difficult to correlate the rock properties with the observed seismic attributes. 

For the Haynesville Shale case, the impedance contrast at the bottom is very large and 

steep (about 40% increase in about 10 m), due to the formation change from shale to 

limestone. Therefore, it is difficult to obtain an accurate inversion result at the bottom of 
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the Hayneville Shale. In addition, the seismic-inversion algorithm is isotropic, whereas 

the rock-physics modeling is anisotropic. On the one hand, it is difficult to perform 

anisotropic seismic inversion with a lack of anisotropy measurements at both the log 

scale and laboratory scale. On the other hand, theoretically, the anisotropic features 

would mainly be related to the far offset signals in the seismic data, whereas in our case, 

the data quality is poor in the far offset (Figure 5.3). Therefore, isotropic seismic 

inversion was performed in this study. Anisotropic seismic inversion could be performed 

if there were anisotropy measurements, and the seismic data quality at far offset was 

better. 

The study combines rock-physics modeling with seismic inversion. During these 

two processes, different types of velocities are mixed. The rock-physics model calculates 

phase velocities, and the well log data is close to phase velocity because it was acquired 

in a vertical well perpendicular to bedding. However, the seismic data does not provide 

phase velocity. The recorded seismic data typically corresponds to group velocity, and 

the seismic-derived velocities are a geometric type of velocity that is composed of some 

type of NMO velocity with some VTI residual. For anisotropic media, such as the 

Haynesville Shale, the group velocity has different value from the phase velocity. The 

phase velocity (Vphase) is calculated from the rock-physics derived stiffness tensor 

components and the phase angle (θ). The group velocity (Vgroup) can be calculated from 

phase velocity (Tsvankin, 2012), indicated as 
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VGx =Vphasesinθ + ∂Vphase
∂θ

cosθ

VGz =Vphasecosθ − ∂Vphase
∂θ

sinθ

Vgroup = VGx 2 +VGz 2
,   (5.2) 

and the group angle (φ) can be calculated from phase angle (θ) (Thomsen, 1986) using  

            

tan(φ) =
Vphasesinθ + ∂Vphase

∂θ
cosθ

Vphasecosθ − ∂Vphase
∂θ

sinθ
.
    (5.3)

 

We observed the difference between the phase velocity and group velocity for a 

model that contains compositions similar to core-measured results from Well A and with 

total porosity of 5% that is close to the average porosity of the Haynesville Shale (Figure 

5.20). The phase velocity and group velocity for VP, VSH and VSV were all calculated with 

phase angle varying from 0o to 90o. For this particular case, the group velocities were 

slightly larger than the phase velocities away from the symmetry planes. Also, the group 

angle (φ) and phase angle (θ) are very close (Figure 5.21). Similarly, the impedances 

generated from the group velocities were slightly larger than the impedances generated 

from the phase velocities at non-zero and non-ninety degrees. These differences were 

smaller than the comparison values of the objective function in the grid searching 

(equation 5.1) and were not able to be distinguished. Therefore, mixing phase and group 

velocities in our case does not have an adverse effect.   
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Figure 5.20: Phase velocities and group velocities for VP (upper), VSH (middle) and VSV 
(lower) for a model. In the model, the composition includes quartz, calcite, 
kerogen and clay with percentages similar to core-measured results for Well A. 
The total porosity was set as 5%, which is close to the average values of the 
Haynesville Shale. The phase angle varies from 0o to 90o. The solid curves show 
phase velocities, and dashed curves show group velocities.  
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Figure 5.21: Phase angles and group angles for VP (upper), VSH (middle) and VSV (lower) 

for a model. In the model, the composition includes quartz, calcite, kerogen and 
clay with percentages similar to core-measured results for Well A. The total 
porosity was set as 5%, which is close to the average values of the Haynesville 
Shale. The group angles are very close to phase angles. 
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To verify the reliability of estimated rock properties, the P- and S-impedances 

derived from the rock properties and the ones from inversion results were compared. 

Furthermore, synthetic seismic traces can be generated from the two sets of impedances, 

and those two sets of synthetic seismic traces can be compared with the observed seismic 

traces. Because the Haynesville Shale itself is only about 50 ms in two way travel time, it 

is too thin to generate reliable synthetic seismic traces given that the dominant frequency 

is about 25 Hz. Although the further validation step may not be applicable for the 

Haynesville Shale, it would be a good approach for other shales that are thicker than the 

Haynesville Shale or for other datasets that have higher frequency seismic data.  

 

5.7 CONCLUSION 

In this chapter, rock properties were estimated at the seismic scale through rock-

physics modeling, grid searching, and prestack seismic inversion. Different distributions 

of the rock properties helped to interpret the seismic amplitude variations. All these rock 

properties affect the seismic velocities, and their effects on the seismic amplitude were 

investigated simultaneously. Generally, the P- and S-impedances are negatively related to 

porosity, and VP/VS is positively related to clay fraction distribution, and negatively 

related to pore shape and quartz fraction distributions. Based on the estimated rock 

properties, it is suggested to do hydraulic fracturing in areas with higher porosity, larger 

pore aspect ratio, more quartz, and less clay.  

The seismic reservoir characterization procedure for the Haynesville Shale 

presented in this chapter considered the complex mineral and pore phases, as well as 
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anisotropy. Each step (rock-physics modeling, prestack seismic inversion and grid 

searching) in the workflow affected the accuracy of the rock property estimations, so it 

was important to validate the estimations. The characterization helped to interpret the 

correlations between the seismic amplitude variations and the rock properties. The same 

seismic reservoir characterization procedure could be applied to other unconventional gas 

shales.  
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Chapter 6: Conclusions and future work 

6.1 CONCLUSIONS 

In this dissertation, the relationships between the rock properties and elastic 

properties of the Haynesville Shale were investigated. The combination of the self-

consistent model and Chapman’s model represented both P- and S-wave velocities or P- 

and S-impedances. A workflow was built to estimate the rock properties based on rock-

physics modeling, prestack seismic inversion and grid searching. Those rock properties 

were correlated with the seismic data amplitude variations.  

The result from Chapter 3 indicated that in addition to porosity, the pore shape 

and composition also have significant effects on the elastic properties of the Haynesville 

Shale. We showed how the trends in velocity measurements corresponding to joint 

variations of composition and pore shape in the Haynesville Shale could be modeled 

using an effective-medium model. In general, larger porosity, softer composition, and 

smaller pore aspect ratios correspond to lower seismic velocities. The investigated 

relationships between the rock properties and elastic properties of the Haynesville Shale 

provided guidance for estimating the rock properties in Chapter 4.  

In Chapter 4, porosity, composition and pore shape for the Haynesville Shale 

were estimated from our workflow that combined an isotropic and an anisotropic 

effective medium model with a grid-search method. The rock-physics models were 

calibrated using well log data and core measurements, and they explained both P- and S-

wave velocities. The rock properties inverted from this workflow were compared to the 

ones from well log data or core measurements. The estimated porosity was very close to 
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the density porosity, in terms of both the variation trend within the Haynesville Shale and 

the measured values. The estimated composition contained very similar average percents 

of quartz, calcite, clay, pyrite and kerogen to the ones from core measurements. The pore 

shape estimation suggested that the pores, cracks, and fractures within the Haynesville 

Shale have elongated shapes, which generally matched from the current observations 

from the microstructure images. The rock-physics modeling assumed a constant fluid 

(25% water and 75% gas) in the entire Haynesville Shale formation. In fact, the fluid 

affects both the density and bulk modulus of rocks. Given that the porosity for the 

Haynesville Shale is small (about 5% on average), the assumption of constant fluid was 

valid. The fluid effect may need to be considered when applying the workflow to other 

plays. Nonetheless, this workflow was also a very important step for interpreting the 

spatial variations of the seismic attributes in Chapter 5.  

Chapter 5 applied the workflow from Chapter 4 to the seismic reservoir 

characterization of the Haynesville Shale. The procedure was performed on a 2D section, 

and also on a full 3D volume of seismic data. P- and S-impedances were inverted from 

prestack seismic data and were subsequently input into the workflow to estimate the rock 

properties at seismic scale. Each step (rock-physics modeling, prestack seismic inversion 

and grid searching) in the procedure affected the accuracy of the estimations. These 

estimated rock properties were correlated with the seismic amplitude data. All the above 

rock properties (porosity, composition, and pore shape) affected the seismic velocities, 

and their combined effects on the seismic amplitude helped to interpret the seismic 

attribute spatial variations. The P- and S-impedances correlated negatively with porosity, 
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and the VP/VS correlated positively with clay fraction and negatively with the pore-shape 

distribution and quartz fraction. These rock properties were validated through the 

comparisons between the elastic properties derived from the estimated rock properties 

and the ones inverted from the prestack seismic data. The differences between the two 

sets of elastic properties were less than a few percent.  

The main contributions of this dissertation include multiple aspects. First, in the 

rock-physics modeling, both P- and S-wave velocities (and P- and S-impedances) were 

simultaneously calibrated, while most of the previous studies only focused on P-wave 

data. Therefore, our process provided two independent pieces of known information in 

the problem of inverting multiple rock properties. This additional information from S-

wave data helped to reduce the non-uniqueness in the rock-property inversion. Second, an 

inverse calculation of the rock-physics modeling (grid searching) was developed to 

estimate the rock properties at both well log scale and seismic scale. This inverse 

calculation provided distributions of porosity, pore shape and composition for sonic logs 

at each depth and for seismic-inverted impedances at each time and location. Those 

estimated rock properties provided useful information in determining locations with 

relatively high porosities and relatively large fractions of brittle components favorable for 

hydraulic fracturing. The rock properties also helped to interpret the spatial variations 

observed from the seismic data. Third, a wide range of scales, including the seismic scale, 

well log scale and lab scale (microstructure images), were considered in this dissertation. 

These scales were linked together to interpret the rock property estimations and seismic 

data observations.  
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6.2 FUTURE WORK 

In this dissertation, the rock-physics modeling accounted for anisotropy of the 

Haynesville Shale through aligned fractures. However, the anisotropy of shales comes 

from alignment of clay platelets and/or alignment of pores, cracks or fractures. Including 

the orientation of clay platelets would make the rock-physics modeling more 

representative of shales. Although the rock-physics modeling was anisotropic, the 

seismic-inversion algorithm was isotropic. Due to the far offset data quality and the lack 

of anisotropy measurements at both the log scale and laboratory scale, it was difficult to 

perform anisotropic seismic inversion. Performing anisotropic seismic inversion with 

such constraints would make the workflow more comprehensive. When combining the 

rock-physics modeling and seismic inversion, we chose zero incidence angle for the rock-

physics modeled velocities. We also chose zero incidence angle for the seismic-inverted 

velocities because we did isotropic seismic inversion. However, when anisotropy is taken 

into account at both well log scale and seismic scale, the incidence angles of the seismic-

inverted velocities will be difficult to determine. Therefore, it is challenging to resolve 

the incidence angle for the rock-physics modeled velocities at the seismic scale. The 

choice of the angle-dependent rock-physics modeled velocities would be a very good 

future research direction.  
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Appendix A: Composition of Well A from XRD (Abundance in volume 

percent) and Core Analysis 

Courtesy Dr. Ursula Hammes 
Artificial 

Depth 
(m) quartz feldspar plag calcite dolomite pyrite kerogen 

total 
clay 

2293 28.7 0.7 5.4 3.5 0.6 2.1 0.9 57.9 
2296 33.7 0 5.9 2.3 1 3.2 1.7 52.2 
2299 28.7 0.7 5.2 4.4 0.6 1.6 0.9 57.8 
2302 25.4 1 5.3 4.2 0.6 1.4 0.7 61.4 
2305 26.1 0.6 4.3 3.6 0.8 2.1 1 61.5 
2308 28.4 0 5.8 3.3 0.7 1.1 1 59.8 
2311 30.9 0 6.1 3.9 1.2 1.1 1 55.8 
2314 31.2 0 5.4 4.5 2.3 2.2 1 53.4 
2317 29.7 0 5.8 6.1 1.4 2.3 1.1 53.6 
2321 32.3 0 6 7.1 1.3 2 2.1 49.2 
2323 28.2 0 6.7 5.3 1 2.3 1 55.5 
2327 29.6 0 6.5 3.3 1.5 2.4 1.2 55.5 
2329 26.3 0.7 5.2 5.1 1.4 2 1.2 58.1 
2333 28 0.8 5.1 5.1 1 1.6 0.8 57.5 
2336 32.1 0 6.3 6.3 2 2.1 1.3 49.8 
2339 28.2 0.7 5.7 3.4 0.5 1.2 0.7 59.6 
2342 29.2 0 6.2 6.7 1.1 2.5 1.6 52.6 
2345 28.1 0 4.4 5.3 0.5 1.6 1 59.1 
2348 26.6 0 5.6 6.1 1.6 2.6 1.3 56.4 
2351 26.2 0 6.3 6.7 1 2.3 1.8 55.7 
2354 33.6 0 8.1 10.2 1.1 1.6 1.7 43.8 
2357 35.8 0 7.2 4.7 0.6 3.6 2.7 45.6 
2360 37.4 0 10.6 15.9 1.6 1.4 4.5 28.6 
2363 40.4 0 8.1 6.8 0 2.8 5 36.8 
2366 34.6 0.8 9.5 22.1 0 2.1 4.3 26.6 
2368 12.8 0 5.3 26.5 40.2 1.9 2.8 10.4 
2372 30.2 0 7.8 21.9 1.4 2.2 6.7 29.7 
2375 36.6 0 8.1 10.2 0.4 1.9 6.9 35.8 
2378 33.2 0.4 8.2 18.2 0.7 1.7 6.6 31 
2381 21.8 0 8 31.2 3.2 1.7 4.8 29.2 
2384 32.3 0 8.2 13 0 1.8 6 38.8 
2387 31.3 0 8.6 10.8 0 3 7.1 39.2 
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2390 34.8 0.6 8.7 11 0.3 1.9 6.4 36.4 
2393 34.1 0 7.6 15.3 0.8 2.4 4.5 35.4 
2396 34.6 0 8.6 14.7 1.1 1.9 5.2 34 
2399 33.8 0 6.8 6.9 0 1.6 4.8 46.2 
2402 24.4 0 7 31.2 2.9 1.9 6.6 26 
2405 36 0.8 8.1 12.3 0.4 2.3 6.7 33.4 
2408 36.6 0.8 7.5 8 0.6 2.1 5.4 39 
2412 38.1 0.5 9.7 9 0.6 1.7 5.9 34.4 
2414 30 0.7 7.8 21 1.3 1.5 6.4 31.4 
2418 33.8 0.7 6.8 7.3 0 2.1 4.5 44.8 
2420 31.1 0 8.5 10.4 0.3 1.6 6.4 41.7 
2423 32.5 0 7.4 9.6 1 1.5 4.3 43.7 
2426 32.7 0 8.2 6 0.2 2.5 4.3 46.2 
2430 16.6 0 5.5 12.3 29.1 1.1 4.1 31.2 
2433 23.9 1 6.8 22.4 2 1.1 5.8 36.9 
2435 33.8 0 7.7 8.6 0 1.8 6.2 41.8 
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Appendix B: Modeling the Haynesville Shale using Differentiate 

Effective Medium (DEM) model  

The DEM models the effective moduli of the porous elastic materials by 

incrementally adding inclusions of one phase (phase 2) to the background phase (phase 1) 

(Figure B.1a). The matrix starts with only phase 1 as the background material, then phase 

2 with a specified aspect ratio is added, and the effective medium of the new material is 

calculated as the new background material. The process is continued until phase 1 and 2 

have the desired proportions.  

In the DEM, the effective moduli of the elastic material depend on the way the 

host material is treated. Specifically, treating phase 1 as background material will result 

to different effective moduli as treating phase 2 as background material. In addition, 

given phase 1 as background material, the order in which phase 2 inclusions are added 

also affect the effective moduli (Figure B.1b).  

I modeled the elastic properties in Well A and Well B using different 

compositions and pore shapes. The mineral and pore properties used in the modeling are 

shown in Table B.1.  

 

Table B.1: Mineral and pore properties used in the modeling 
Material Quartz Kerogen Clay Limestone Pyrite Pore 
ρ (g/cc) 2.65 1.3 2.58 2.71 4.93 0.8 
µ (Gpa) 45 2.7 7 33 132.5 0 
K (Gpa) 36.6 2.9 18 69 147.4 1 

 

 



	   144	  

(a)  (b)  
Figure B.1: (a) Illustration of the differential effective medium model. The rock with 

effective moduli is created through multiple steps. (b) The effect of adding phase 
2 inclusions to phase 1 (limestone) in different orders. The phase 2 inclusions are 
4 pores with aspect ratios of 0.001, 0.01, 0.1, and 1. The solid line represents 
adding the 4 pores in descending aspect ratio order; while the dashed line 
represents adding the 4 pores in ascending aspect ratio order. 

 

 

Figure B.2 shows the result of modeling the pore-shape effect for Well A using 

the DEM. The colored lines are calculated using 50 pore inclusions whose aspect ratios 

were normally distributed as shown in Figure B.2a. The mineral phase was fixed as 

limestone, and the aspect ratio of mineral phase was 0.1. The lines with larger mean 

values of pore aspect ratios have higher VP, because larger pore aspect ratios have greater 

stiffness. Within each line, VP decreases as porosity increases, which is consistent with 

the trend from the data. The results show that the Haynesville Shale can be modeled 

using pores with aspect ratios in the range of 0.1–0.01, for a constant composition. In 

Figure B.2b, there are a group of solid and dashed lines, which can be clearly seen in 

Figure B.2c as a zoomed in view of Figure B.2b. The solid lines from DEM represent 

adding the pore inclusions in descending order in terms of aspect ratio. The dashed lines 

represent adding the pore inclusions in ascending order. 
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(a)   

(b)  

(c)  

Figure B.2: (a) Histograms of the pore inclusions. (b) DEM results showing the pore-
shape effect for Well A in the Haynesville Shale formation. (c) A zoomed in view 
of (b) showing the separation of solid and dashed lines.  
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Figure B.3 shows the result of modeling the composition effect for Well A using 

DEM. Five individual compositions were examined: pyrite, quartz, clay, limestone, and 

kerogen. Aspect ratios were 0.1 for clay, 0.01 for kerogen, and 1 for quartz, limestone, 

and pyrite. Aspect ratios for 50 pores were normally distributed as shown in Figure B.3a. 

For both models, along each line, VP decreases as the porosity increases. As porosity 

increases, the lines converge, which implies that the composition effect on the velocity is 

more significant for rocks with lower porosities than rocks with higher porosities. The 

solid and dashed lines in Figure B.3b and B.3c illustrate the effect of the order in which 

the pore inclusions were added. Solid lines are from stiffest to softest, and dashed are in 

the reverse order.  

In Figure B.4, different mineral combinations were examined using the DEM. For 

the matrix, the percentages of kerogen and pyrite are fixed as 7% and 1%; the 

percentages of limestone, quartz, and clay are varied. All the lines follow the trend shown 

in the data very well, which indicates that modeling lines from different composition 

combinations can explain the variation in the data. 

Figure B.5 shows the DEM results for Well B, simultaneously varying both 

composition and pore shape effects. The data points are colored by gamma ray count. 

There is no clear trend between VP and density, which might due to multiple reasons, 

such as various compositions, porosities, and fluid saturation. The lines from left to right 

represent porosity changes from 16.5% to 0.5%. Within each line, both composition and 

pore shape vary. The composition assemblage is 56% limestone with grain aspect ratio of 

1, 3% kerogen with grain aspect ratio of 0.01, 4% pyrite with aspect ratio of 1, 10.5% 
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quartz on the bottom to 35% quartz on the top with grain aspect ratio of 1, and 26.5% 

clay on the bottom to 2% clay on the top with aspect ratio of 0.1. The pore aspect ratio 

varies from 0.005 on the bottom to 0.12 on the top. Each line is nearly vertical, which 

indicates that along each line, the modeling result does not depend on the density. From 

the data, the high gamma ray count data points correspond to velocity of about 3 km/s. 

For the modeling lines, the velocities for the high-clay content near the bottom of each 

line follow a decreasing trend from high density to low density, which is not consistent 

with the data. 

The models presented here provide the ability to understand relationships between 

the reservoir and elastic properties. The purpose is not to model each data point 

individually. By representing trends in the data, these modeled relationships can be used 

to interpolate between and extrapolate to reservoir property combinations that are not 

present in the log data. These extended values are important to include in seismic 

inversion scenarios where geologic conditions might differ from what is observed at the 

well. 
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(a)   

(b)  

(c)  

Figure B.3: (a) Histogram of pore inclusion aspect ratios used in both the DEM modeling. 
(b) The DEM result showing the composition effect for Well A in the Haynesville 
Shale formation. (c) A zoomed in view of (b) showing the separation of solid and 
dashed lines.  
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Figure B.4: The DEM result showing the different combinations of the five minerals.  
 

 

Figure B.5: The DEM result for Well B in the Haynesville Shale formation. Different 
lines represent results from different porosities, and within each line, both 
compositions and pore shapes are varied from bottom to top.  
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Appendix C : Using isotropic self-consistent model to estimate the 

porosity and pore aspect ratio of the Haynesville Shale  

The self-consistent model is combined with a grid search method to estimate the 

porosity and pore aspect ratio distributions. In the grid search method, the solutions of the 

reservoir properties are obtained by systematically searching through each point in the 

decision space, which is modeled P-impedance (IP). At each point, the objective function 

(absolute errors between the modeled and observed grid points) is evaluated. The point 

that provides the minimum value of the objective function corresponds to the best 

solution of the reservoir properties. In this work, we not only obtained the best solution, 

but also a probability distribution of multiple solutions.  

Two algorithms were built in this work: one is for estimating porosity, and one is 

for estimating pore aspect ratio. The detailed procedure for estimating porosity is shown 

in Figure C.1. We first calibrated a specific SCM with a representative composition 

assemblage and pore aspect ratio distribution. Then 1000 porosity values that were 

uniformly distributed from 0 to 0.2 at each depth were input into the SCM. The resulting 

IP values represented the decision space. After that, the observed IP from the well was 

compared with the modeled IP, and the absolute errors between them were calculated as 

the objective function. By evaluating the objective function, the porosity was estimated. 

The modeled IP that provided the smallest absolute error corresponded to the best 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 	   This appendix was published in Jiang, M., and K. T. Spikes, 2012, Estimation of the porosity and 
pore aspect ratio of the Haynesville Shale using the self-consistent model and a grid search method: SEG 
Expanded Abstracts, http://library.seg.org/doi/abs/10.1190/segam2012-0134.1. The coauthor Spikes 
supervised the project. 
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solution of porosity, and the ones that provided larger absolute errors corresponded to 

porosities with lower probabilities.  

 

Figure C.1: Flowchart to estimate porosity. A uniform prior distribution of porosity was 
input into the specific SCM calibrated from the well to calculate the IP in the 
decision space. Then the absolute error between the modeled and observed IP was 
calculated as objective function. By evaluating the objective function, the 
distribution of porosity was estimated.  

 

The flowchart of the algorithm used to estimate pore aspect ratio is shown in 

Figure C.2. We first generated a group of SCMs that contained all the possible pore 

aspect ratios from 0.001 to 1. Then distributions of porosity and IP were estimated based 

on the well log data. They were both normally distributed with mean values equal to the 

observations. Then the assumed porosities and IP were compared with the ones from the 

SCMs. If the absolute errors between them were smaller than certain values (1e-3 for 

porosity, and 1e-2 for IP), the corresponding pore aspect ratios in the SCMs were 
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accepted. The whole process was repeated at each depth in order to estimate aspect ratio 

distribution for the whole Haynesville Shale formation, using data from Well A.  

 

 

Figure C.2: Flowchart to estimate pore aspect ratio. The distributions of porosity and IP 
based on the log data were compared with the ones from the group of SCMs with 
all possible pore aspect ratios. If porosities and IP satisfied the specific criteria, the 
corresponding pore aspect ratios were accepted.  

 

Based on the analysis of the composition and pore aspect ratio effects on IP, as 

well as composition based on core analysis and XRD measurements, we obtained a SCM 

with a specific composition assemblage and pore aspect ratio distribution (Figure C.3). 

The composition assemblage included 37% clay, 33% quartz, 14% limestone, 8% 

plagioclase, 5% kerogen, 2% pyrite, 0.8% dolomite, and 0.2% feldspar; the pore aspect 

ratios were normally distributed with mean value 0.05 and standard deviation 0.01. In the 

crossplot of IP and porosity (Figure C.3a), the IP approximation (blue line) follows the 
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overall trend of the data. In Figure C.3b, the IP approximation (blue curve) matches with 

the observed IP (black curve) in terms of both overall trend and amplitude. The difference 

between the observed and modeled IP is mostly around zero, with an average of about 

7%. This indicates that the SCM with the specific composition assemblage and pore 

aspect ratio distribution effectively represents the data from the well.  

To perform the grid search, 1000 porosity values were uniformly distributed 

between 0 and 0.2 at about 600 depth locations (~ 91 m sampled at 0.15 m). This number 

(1000) of porosity values at each depth is enough to keep high accuracy but low 

computational cost. The upper limit (0.2) was selected as about 30% larger than the 

maximum observed value. Values above 0.2 were assumed unlikely to occur. The 

modeled IP from the SCM, calibrated from the well, was then calculated at every point in 

the grid. The absolute error between this modeled IP and observed IP (Figure C.4a) was 

calculated in the objective function. At each depth, the modeled IP with the smallest error 

corresponded to the best solution of porosity. The IP with larger errors corresponded to 

porosity solutions with smaller possibilities (Figure C.4b). In Figure C.4b, the color is the 

error in the porosity estimation from the grid search, the green curve is the best solution 

of porosity, and the black curve is the observed porosity. The estimated porosity 

generally fits the observed porosity in terms of both overall trend and amplitudes. The 

misfit of porosity is primarily due to using only one composition assemblage.  
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(a)  

(b)  

Figure C.3: (a) Cross plot of IP versus porosity for the well. Black points are from well 
log data. The blue line is the SCM approximation with pore aspect ratio ~ N(0.05, 
0.012), and composition assemblage of 37% clay, 33% quartz, 14% limestone, 8% 
plagioclase, 5% kerogen, 2% pyrite, 0.8% dolomite, and 0.2% feldspar. (b) IP 
from well log data (black curve) and the SCM approximation (blue curve).  
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Estimation of pore aspect ratios includes generating a group of SCMs that 

contains all possible aspect ratios, assuming input porosity and IP distributions from 

observed well log data, and evaluating the differences between the input and modeled 

porosities and IP. Both the input porosity (Figure C.5a) and IP (Figure C.5b) were 

normally distributed with mean values equal to the observed values at each depth.  Figure 

C.6a shows the group of SCMs that contained all the possible aspect ratios from 0.001 to 

1, with an increment of 0.001. The composition assemblage was the same as the one from 

Figure C.3. As the composition assemblage is fixed, the modeled IP depends on porosity 

and pore aspect ratio. Therefore, by using the IP and porosity from log data, we can 

obtain the corresponding pore aspect ratio. The estimation for the pore aspect ratio is 

shown in Figure C.6b. Most of the pore aspect ratios are about 0.05. We are not able to 

verify the pore aspect ratio estimation at every location. However, microstructure images 

from core samples provide useful information. By looking at the pore shapes from SEM 

images, we will be able to obtain an average pore aspect ratio at specific locations, and 

therefore get constraint on our estimation.  

The workflows presented here estimated porosity and pore shape distribution 

separately by using P-impedance. Similarly, the relationship between S-impedance and 

porosity and pore shape (Figure C.7) could be included to add one more constrain. If both 

P- and S-impedances can be modeled by the rock-physics modeling, the porosity and 

pore shape distribution can be estimated simultaneously.  
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(a)  

(b)  

Figure C.4: (a) Observed IP from the well. (b) Porosity estimations. Hot colors represent 
porosity with smaller error, and cold colors represent porosity with larger error. 
The solid black curve is the observed porosity, and the green curve is the 
estimated porosity with smallest error. 
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(a)  

(b)  

Figure C.5: (a) The input porosity distributions within the Haynesville Shale formation. 
The black curve is the observed porosity. At each depth, porosity was normally 
distributed with mean value equal to the observed porosity. Background color 
shows probability. (b) The input IP distribution, plotted in the same way as in a). 
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(a)  

(b)  

Figure C.6: (a) Crossplot of S-impedance versus porosity, colored by pore shape, with 
possible aspect ratio values from 0.001 to 1. Background color shows the 
variation for aspect ratio. Black points are from well log data. (b) Pore aspect ratio 
estimation. The background color represents probability. Black curve marks the 
pore aspect ratio estimation with the highest probability.  
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Figure C.7: Crossplot of S-impedance versus porosity, colored by pore shape, with 
possible aspect ratio values from 0.001 to 1. Background color shows the 
variation for aspect ratio. Black points are from well log data. 

 

As conclusion, this study introduced a method that combines rock-physics 

modeling with a grid search method to estimate independently the porosity and pore 

aspect ratio for the Haynesville Shale. The self-consistent model provided constraints on 

the composition and pore shape based on P-impedance. The rock-physics modeling P-

impedance with composition and pore shape constraints matched the well log measured 

P-impedance in terms of both variation trend and amplitude. The matching between the 

rock-physics modeling results and the log measurements provided porosity estimation 

and pore shape estimation separately. The porosity estimation matched with the observed 

porosity in terms of both overall trend and absolute value. The pore aspect ratio 

estimation was about 0.05, which is consistent with the fact that the pores in the 

Haynesville Shale are mostly flattened.  
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Appendix D : Chapman’s Model 

In Chapman’s (2003) model, the following equations (equations D1–D5) were 

used to calculate the five independent stiffness tensor components. These equations are 

the same as equations 51, 52, 54, 59, and 61 in Chapman (2003).  The stiffness 

components calculated from equations D1–D5 are complex numbers. The real parts 

provide frequency-dependent velocities, and the imaginary parts give frequency-

dependent attenuation. The five stiffness tensor components (C11, C33, C44, C66, and C13) 

are 

,(D1) 

 

,                

 (D2) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 	  	   This appendix was published as appendix in Jiang, M., and K. T. Spikes, 2013a, Estimation of 
reservoir properties of the Haynesville Shale by using rock physics modeling and grid searching: 
Geophysical Journal International, 195, 315-329. The coauthor Spikes supervised the project.	  
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,                (D3) 

 

,           (D4) 

3 

 .  (D5) 

 

Contained in equations D1–D5 are Lame’s constant (λ), the shear modulus (µ), 

and Poisson’s ratio of the matrix material (ν). Furthermore, r is the aspect ratio for cracks 

and fractures, ϕp is round pore porosity, ϕc is crack porosity, and ϕf is fracture porosity 

and  
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 .                              (D6) 
 

The D1 and D2 are terms to calculate pore pressure:  
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(D7) 

.             

Crack pressure comes from the G1, G2, and G3 are terms as 

 
        

(D8) 

 .                    

The F1 and F2 terms provide the fracture pressure  

.   (D9)
 

In equations D7–D9, ω is frequency, and τm and τf are relaxation-time terms for 

cracks and fractures that account for squirt flow, which depend on crack/fracture size, 

fluid viscosity, grain size, and matrix bulk and shear moduli. In addition, these equations 

contain  
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and 
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3
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,         (D15)  

where Kf is bulk modulus of fluid and pv and cv are volumes of individual pores and 

cracks, respectively. The two terms ι and β are related to crack density (ε) and fracture 

density (εf). 

 

Finally, L2, L3, and L4 are calculated from λ and µ by   
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