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Ray theory plays an important role in seismic imaging and velocity model

building. Although rays are the high-frequency asymptotic solutions of the wave equa-

tion and therefore do not usually capture all details of the wave physics, they provide a

convenient and effective tool for a wide range of geophysical applications. Especially,

ray theory gives rise to traveltimes. Even though wave-based methods for imaging

and model building had attracted significant attentions in recent years, traveltime-

based methods are still indispensable and should be further developed for improved

accuracy and efficiency. Moreover, there are possibilities for new ray theoretical

methods that might address the difficulties faced by conventional traveltime-based

approaches. My thesis consists of mainly four parts. In the first part, starting from

the linearized eikonal equation, I derive and implement a set of linear operators by

upwind finite-differences. These operators are not only consistent with fast-marching

eikonal solver that I use for traveltime computation but also computationally effi-

cient. They are fundamental elements in the numerical implementations of my other
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works. Next, I investigate feasibility of using the double-square-root eikonal equa-

tion for near surface first-break traveltime tomography. Compared with traditional

eikonal-based approach, where the gradient in its adjoint-state tomography neglects

information along the shot dimension, my method handles all shots together. I show

that the double-square-root eikonal equation can be solved efficiently by a causal

discretization scheme. The associated adjoint-state tomography is then realized by

linearization and upwind finite-differences. My implementation does not need adjoint

state as an intermediate parameter for the gradient and therefore the overall cost for

one linearization update is relatively inexpensive. Numerical examples demonstrate

stable and fast convergence of the proposed method. Then, I develop a strategy for

compressing traveltime tables in Kirchhoff depth migration. The method is based on

differentiating the eikonal equation in the source position, which can be easily imple-

mented along with the fast-marching method. The resulting eikonal-based traveltime

source-derivative relies on solving a version of the linearized eikonal equation, which

is carried out by the upwind finite-differences operator. The source-derivative enables

an accurate Hermite interpolation. I also show how the method can be straightfor-

wardly integrated in anti-aliasing and Kirchhoff redatuming. Finally, I revisit the

classical problem of time-to-depth conversion. In the presence of lateral velocity vari-

ations, the conversion requires recovering geometrical spreading of the image rays.

I recast the governing ill-posed problem in an optimization framework and solve it

iteratively. Several upwind finite-differences linear operators are combined to imple-

ment the algorithm. The major advantage of my optimization-based time-to-depth

conversion is its numerical stability. Synthetic and field data examples demonstrate

practical applicability of the new approach.
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Chapter 1

Introduction

RAY THEORY AND TRAVELTIMES IN SEISMIC
IMAGING

In exploration geophysics, the major task of imaging, or equivalently, migration, is

to place recorded reflection events in their correct geological positions. The concept

of seismic imaging can be explained by a simple example. Consider in Figure 1.1 an

Earth model of two layers. In a seismic survey, multiple sources are shot at the surface

in order to achieve illumination of a target sub-surface area. The source wavefield

propagates mainly downward until it hits the layer boundaries, where it is reflected

and transmitted. The reflected wave then propagates upward and is finally recorded

by the receivers. Given the Earth model of top layer, seismic imaging locates the layer

boundary, i.e. reflector, by first finding source wavefield us and receiver wavefield ur

in the sub-surface, and then zero-lag cross-correlating these two wavefields in time:

I(x) =
∫ ∫ ∞

t=0
us(x, t; s) · ur(x, t; s) dt ds . (1.1)

Equation 1.1 is commonly referred to as the imaging condition (Claerbout, 1985).

Here x is a vector containing depth, in-line and cross-line coordinates. Ideally, us

and ur should coincide with each other at the reflector, where the cross-correlation is

maximum in magnitude. An integration (summation) over shots s helps reconstruct

the part of reflector that is under illumination. Note that the image I obtained by

equation 1.1 is only a map of the reflectors and the magnitude of I should not be

1



interpreted as the Earth reflectivity.

 

Layer 1

Layer 2

s r

us ur

ut

Figure 1.1: Schematic drawing of a seismic survey with one source-receiver pair s− r.
The three wavefields us, ur and ut are source, receiver (reflected) and transmitted

wavefields, respectively. chapter-introduction/figs layer

Seismic imaging can be divided into two broad categories according to the

methods used for wave simulation (Etgen et al., 2009), which is critical for obtaining

us and ur in equation 1.1. Intuitively, we may consider solving the wave equation.

This gives rise to the wave-based algorithms (Jones et al., 2008). There are many

techniques that fall into this category, ranging from traditional one-way wave equation

migration (Claerbout and Doherty, 1970; Loewenthal et al., 1976; Berkhout, 1979;

Gazdag, 1981; Stoffa et al., 1990; Ristow and Ruhl, 1994; Zhang et al., 2005) to mod-

ern reverse-time (two-way wave equation) migration (Baysal et al., 1983; Etgen, 1986;

Symes, 2007; Fletcher et al., 2009; Zhang and Zhang, 2009; Fowler et al., 2010; Fomel

et al., 2013). Thanks to increasing computation power, the evolution follows a trend

of applying less approximation in mathematics and physics. For example, the one-
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way wave equation considers waves propagating either upward or downward. From

one-way to two-way migration, we are able to handle the dip limitation and prismatic

wave problems but at a higher cost. Meanwhile, going from acoustic wave equation

to orthorhombic or even full elastic wave equation enables us to better honor the re-

alistic wave propagation. All these advancements are important for seismic imaging

in complex geological areas such as sub-salt and deep water environments (Farmer

et al., 2006).

Traveltime-based migration

The other category of seismic imaging algorithms is the traveltime ray-based

methods. Ray theory was introduced into seismic imaging at its earliest age and has

since then been an indispensable tool (Červený, 2001; Yilmaz, 2001; Popovici and

Sethian, 2002). Consider a wavefield in the frequency domain u = u(x, ω), ray theory

expands u into

u(x, ω) ≈ exp{iωT (x)}
∞∑

j=0

Aj(x)

(iω)j
. (1.2)

The asymptotic series 1.2 include a traveltime term T and an amplitude term A.

Expression 1.2 is then inserted into the wave equation. For simplicity, I use the

constant-density acoustic wave equation

∇2u(x, ω) +
ω2

v2(x)
u(x, ω) = 0 , (1.3)

where v(x) is the velocity. After collecting terms in (angular) frequency ω, the leading

order term of (iω)2 leads to the eikonal equation (Chapman, 2002):

∇T (x) · ∇T (x) =
1

v2(x)
≡ w(x) . (1.4)
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Here I define w as slowness-squared. Equation 1.4 means traveltimes T can be com-

puted by solving a nonlinear partial differential equation. The next term of order iω

results in so-called transport equation that gives amplitude A. In case of anisotropy,

v(x) is replaced with v(x,∇T/|∇T |) because it depends on the angle of wave propa-

gation (Červený, 2001).

A classical method for solving the eikonal equation 1.4 is ray tracing. As

characteristics of the eikonal equation, rays intuitively connect the velocity model

with traveltimes. To illustrate the effectiveness of traveltimes in explaining kinemat-

ics of the wavefield, I compare in Figure 1.2 several wavefield snapshots and their

corresponding traveltime contours. The source is placed in the middle of the model

and traveltimes are computed for the earliest possible values, i.e. first-arrivals, from

the source according to equation 1.4. A remarkably good agreement between the

wave-front and traveltime verifies the applicability of traveltimes in seismic imaging.

Also note that the first-arrival is not necessarily the most energetic arrival. However,

their separation does not take place immediately but after a certain duration of wave

propagation.

There are several traveltime-based imaging methods, among which Kirchhoff

migration is the most familiar one. The Kirchhoff migration can be implemented

in either depth domain or time domain. While the Kirchhoff depth migration is

performed in the physical space x, the Kirchhoff time migration adopts a different

coordinate, i.e. time coordinate. The depth-to-time coordinate transformation is ben-

eficial especially when it comes to velocity estimation. The Kirchhoff time migration,

as well as time-to-depth conversion, will be introduced later in this chapter. On the

4



Figure 1.2: The model (top) is a smoothed cross-line section of SEG/EAGE over-
thrust model. A point source wavefield is synthesized (bottom). The travel-
time contours are overlaid on top of the wavefield snapshots as red dashed lines.
chapter-introduction/overthrust wave0
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other hand, a Kirchhoff depth migration links the kinematic operation of diffraction

stack to an asymptotically correct solution of downward-continued seismic wavefield

(French, 1975; Schneider, 1978). Its general form is

I(x) =
∫ ∫

M(x; s, r)
∂

∂t
D(T (x; s) + T (x; r); s, r) ds dr , (1.5)

where D is the recorded data at receivers and M is an optional data weighting opera-

tor. Figure 1.3 shows the impulse response of the Kirchhoff depth migration operator

for one source-receiver pair. Comparing equations 1.1 and 1.5, the imaging condition

is replaced by an integration. At the same time, wavefields in the sub-surface are

approximated by the traveltimes between sources/receivers and the image locations.

The summation T (x; s) + T (x; r) implies zero-lag cross-correlation. Thanks to these

asymptotic approximations, the Kirchhoff depth migration is significantly cheaper

than the wave-based imaging methods. Over the years, it has been the most widely

used method in the industry.

In order to perform the integration in equation 1.5, traveltimes between image

location x and both source s and receiver r are required. Neglecting M , formula

1.5 accounts for only traveltime but still provides a kinematically correct I. Develop-

ments in true-amplitude Kirchhoff migration (Beylkin, 1985; Bleistein, 1987; Bleistein

et al., 2001; Schleicher et al., 2007) further combine eikonal equation with transport

equation that prescribes M by taking into account A in the ray series 1.2, resulting in

good fidelity in both kinematics and dynamics. Moreover, Kirchhoff migration offers

efficiency and flexibility. It can be easily implemented in a target-oriented fashion (se-

lective x) for cost-effective 3-D migrations (Audebert, 2001). Common-image-gathers

(CIGs) are its convenient by-products that are important for tomography purposes

(Xu et al., 2001). The idea is that for a (kinematically) correct model, the image I

6



s r

x

t

T (x ; s) T (x ;r )

Figure 1.3: Impulse response of the Kirchhoff depth migration. For a given source-
receiver pair s−r and a reflection signal at time t, equation 1.5 spreads the signal in x
along a constant traveltime contour (dashed line) that satisfies t = T (x; s) + T (x; r).
For a constant velocity model v0, this contour is an ellipse with two foci at s and r
and a transverse diameter of v0t. chapter-introduction/figs depkirdraw

should be coherent between various source-receiver pairs, because the same reflector

should stay stationary regardless of illumination. As illustrated in Figure 1.4, a ve-

locity update can be obtained by examining the flatness of CIGs along either offset or

angle axis. This concept will be revisited in the next section when discussing velocity

model building.

In the family of Kirchhoff-type migrations, a significant extension is beam mi-

gration (Hill, 1990, 2001; Gray, 2005). Instead of real-valued traveltimes in classical

ray theory, Gaussian beams add a complex correction term to the traveltimes so that

the beam allows certain width but the energy quickly attenuates away from the cen-

tral ray (Li et al., 2011). It has been shown that summation of Gaussian beams will

approach a solution of the wave equation (Liu et al., 2013). Consequently, compared
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Figure 1.4: The Kirchhoff depth migration can output two types of CIGs. Both types
are based on extending the image I(x) to an additional dimension, where I along this
extra axis should be flat (coherent). For a 2-D model (left), the offset h, i.e. distance
between source and receiver, and reflection angle θ are popular choices. They are
called surface-offset CIG I(x, h) (top right) and angle domain CIG I(x, θ) (bottom

right), respectively. chapter-introduction/figs cigintro
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with standard Kirchhoff migration, Gaussian beam migration is more consistent with

the wave equation migration 1.1.

Traveltime computation

Figure 1.5: Traveltimes are computed in the Pluto model with both ray tracing (solid
cyan and magenta lines) and FMM (dashed yellow line). The rays and FMM contour
coincide at approximately (7.3, 17.2) km. Due to salt complexity, multi-pathing is

common in deep part of the model. chapter-introduction/pluto pluto

In Kirchhoff migrations, traveltime computation and storage are usually the

first steps. Aside from ray tracing, the eikonal equation can also be solved by var-

ious finite-difference methods (Reshef and Kosloff, 1986; Vidale, 1988, 1990). Two

popular finite-difference eikonal solvers are fast-marching method (FMM) (Sethian,

1999; Sethian and Popovici, 1999) and fast-sweeping method (FSM) (Zhao, 2005).

In Figure 1.5 I solve the eikonal equation in Pluto model (Stoughton et al., 2001)

by both ray tracing and FMM for the same source at (0, 16) km, where traveltimes
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develop along the rays and are plotted in a contour in FMM. FMM, as well as FSM,

are limited to computing only the first-arrival branch because they consider the vis-

cosity solution of eikonal equation. Figure 1.5 demonstrates that ray tracing, on the

other hand, can directly handle multi-pathing but requires extra irregular mapping

from ray coordinate to migration coordinate. However, recent developments in finite-

difference eikonal solvers show not only possible strategies to accommodate all arrivals

(Fomel and Sethian, 2002; Symes and Qian, 2003; Bashkardin et al., 2012) but also

improved efficiency (Kim, 2001; Jeong and Whitaker, 2008; Chacon and Vladimirsky,

2012a), accuracy (Popovici and Sethian, 2002), and extensions to anisotropic wave-

front propagation (Sethian and Vladimirsky, 2001; Fomel, 2004).

Figure 1.6: The eikonal equation is solved by FMM at three sources. Traveltime
contours are overlaid on top of the model. A traveltime interpolation in source po-
sition might save computation and storage, if a sparse source sampling (solid cyan
and magenta) can be used to approximate another source in-between (dashed yellow).

chapter-introduction/pluto plutos
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In practice, due to the dense sampling of shots and a large number of dis-

cretized grid points, especially in 3-D, traveltime computation still takes considerable

cost (Mendes, 2000). Many works have been proposed to reduce the cost. One in-

tuitive idea would be to compute traveltime tables on a coarse source sampling and

then interpolate the results to a finer one. Figure 1.6 shows in the same model as Fig-

ure 1.5 three traveltime contours by FMM. These contours are for sources at (0, 15)

km, (0, 16) km and (0, 17) km, respectively, and they intersect with each other at

an image location around (7.2, 16.9) km. In this case, the motivation is to find the

traveltime between this image location and the middle source from those of other two

sources. An interpolation in source might achieve higher accuracy than the simplest

linear interpolation if the derivatives are taken into account. Vanelle and Gajew-

ski (2002) advocate estimating the derivative of traveltime with respect to source

position by explicit finite differences and then using these derivatives for traveltime

interpolation. Their method relies on a fine source sampling for accurate traveltime

derivatives. Alternatively, it is more desirable to find a traveltime source-derivative

that is independent of source sampling and build a high-order traveltime interpolation

scheme.

RAY THEORY AND TRAVELTIMES IN VELOCITY
MODEL BUILDING

The velocity model is of crucial importance for a successful seismic imaging. In gen-

eral, the Earth model may contain not only the seismic velocity but also other earth

medium parameters that should be accounted for, such as density (Aki and Richards,

1980), anisotropy (Tsvankin, 2012) and attenuation (Liu et al., 1976; Carcione et al.,
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1988). Usually the velocity model building and the imaging are interleaved. Several

iterations of model refinements based on optimizing the image qualities are necessary

(Jones, 2010). Commonly this iterative process is referred to as tomography, which

is a type of inversion based on linearization (Backus and Gilbert, 1968). Due to the

fact that the tomographic inversion is mostly ill-conditioned, a good prior model and

proper constraints must be supplied in order to obtain a satisfying final result.

Similarly to the classification of methods in seismic imaging, tools for velocity

model building are either traveltime-based or wave-based. The wave-based tomogra-

phy has attracted noticeable attentions following the recent progress in wave-based

imaging. Full-waveform inversion (FWI) was first proposed by Tarantola (1984) as a

data-domain nonlinear optimization. Applying partial derivative in velocity to both

sides of the wave equation 1.3 results in(
∇2 +

ω2

v2

)
δu =

2ω2u

v3
δv , (1.6)

where for conciseness I omit x. Equation 1.6 means the wavefield perturbation δu

in response to a velocity perturbation δv can be found by solving the wave equation

again, where the source is replaced with a scaled background u located at δv. Equa-

tion 1.6 is a linearization of equation 1.3 and retains only the first-order term. This

linearization is referred to as the Born approximation.

At the limit, FWI tries to predict and fit observed refraction and reflection

data in both kinematics and dynamics (Zhou et al., 2012). It can be superior to

ray-based approach for its finite frequency wave-path kernel (Woodward and Rocca,

1988; Tromp et al., 2005; Xie and Yang, 2008). However, in practice the effective part
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of FWI is limited to refraction energies (Luo and Schuster, 1991; Sheng et al., 2006;

Brenders and Pratt, 2007). More crucially, FWI requires an accurate low wavenum-

ber prior model to keep the inversion away from local minima (Virieux and Operto,

2009). A straightforward least-squares FWI cost function is vulnerable because it

might compare two seismograms that are out of phase by more than one signal cy-

cle. A number of alternative cost functions and regularizations have been proposed

to overcome this difficulty (Causse et al., 1999; Shin and Min, 2006; Guitton et al.,

2012; Ma et al., 2012; Zhang et al., 2012; Baek et al., 2013; Tang et al., 2013).

Another branch of wave-based tomography addresses so-called migration ve-

locity analysis (MVA). The basic methodology of MVA is that, after migration, the

CIGs should be flat (Ehinger and Lailly, 1995). If not, the residual moveout (RMO)

indicates errors in the model (Liu and Bleistein, 1995; Biondi and Symes, 2004). In

Figure 1.4, wave-based MVA replaces Kirchhoff integral 1.5 with wave-based imag-

ing 1.1, and uses sub-surface offset instead of surface offset. The sub-surface offset

is created by cross-correlating us and ur at shifted image locations during imaging

condition, for example us(x− h) and ur(x + h). In consistent with Figure 1.4, MVA

assumes that a correct model should focus energies at zero sub-surface offset (Sava

and Fomel, 2003). If not, a model update can be computed following the relationship

between an image perturbation with respect to a velocity perturbation:

δI =
∫ ∫ ∞

t=0
[δus · ur + us · δur] dt ds . (1.7)

Equation 1.7 is derived by linearizing equation 1.1 and I omit t, and x in us and ur.

Note δus and δur satisfy equation 1.6. Therefore, a velocity perturbation δv influences

both wave-paths between s to x and r to x, as illustrated in Figure 1.7.
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Figure 1.7: In a wave-based MVA, the image perturbation δI at sub-surface off-
set h is linked to scattered us (left) and ur (right) under the Born approximation.
In comparison, FWI measures the data-misfit from s to δv and then directly to r.
chapter-introduction/figs mvadraw

Wave-based MVA can be carefully implemented as an automatic procedure

(Symes and Carazzone, 1991; Mulder and ten Kroode, 2002; Sava and Biondi, 2004;

Shen and Symes, 2008; Tang et al., 2013; Weibull and Arntsen, 2013; Zhang and

Biondi, 2013; Perrone et al., 2014). But the underlying Born approximation demands

preprocessing of the data to minimize non-primary reflection events, or else the in-

version might be misled to nonphysical solution. Meanwhile, the computational costs

of both FWI and wave-based MVA are exceptionally high. Ray-based tomographies

are frequently revisited because they are commonly used to construct the prior model

for FWI and wave-based MVA.

The major difference between wave-based and traveltime-based approaches is

the amount of information involved in model construction. Ray-based methods focus
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mainly on the kinematic information carried by traveltimes. They have been suc-

cessfully applied in many disciplines, ranging from exploration geophysics to global

seismology and medical imaging (Nolet, 1987). Traveltime-based tomography can be

further categorized by refraction and reflection tomography, depending on the do-

main for inversion. The traveltime-based reflection tomography is connected with

MVA, both targeting deep structures and operating in the image domain. Instead

of wave-paths, in this case the velocity updates follow rays. For near-surface model

construction, however, refraction tomography is more favorable than reflection to-

mography.

First-break traveltime tomography

In distinction to tomographies in the image domain, first-break traveltime

tomography, or turning-ray tomography (Zhu et al., 1992), is a data-domain approach

that seeks to minimize the misfits between forward modeled and observed refraction-

arrival traveltimes. It is capable of resolving near-surface medium-to-long wave-length

velocity structures. Conventionally for each iteration, one needs to first solve eikonal

equation 1.4 for traveltimes, and then calculate a gradient (model update) from the

data residual according to the linearized eikonal equation (Aldridge, 1994):

2 (∇T · ∇) δT = δw . (1.8)

Equation 1.8 can be derived by differentiating equation 1.4. In first-break traveltime

tomography, δT is the data residual limited by acquisition and δw is the model per-

turbation. The linear operator ∇T · ∇ corresponds to the Fréchet derivative matrix.
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Great potentials remain in improving the reliability and resolution of first-

break traveltime tomography (Bube and Washbourne, 2008; Hardy, 2013). In case

of 3-D as well as large 2-D models, an eikonal solver combined with the adjoint-state

formulation (Plessix, 2006) is advantageous to an explicit evaluation of the Fréchet

derivative matrix for solving equation 1.8 (Leung and Qian, 2006; Taillandier et al.,

2009). However, such an implementation assembles the gradient in a summation-over-

shots fashion and therefore forbids communication between individual shots. Possible

improvements in convergence and robustness may be gained by switching from the

eikonal equation 1.4 and its linearization 1.8 to the so-called double-square-root (DSR)

eikonal equation (Belonosova and Alekseev, 1974). Unlike eikonal equation, the DSR

eikonal equation allows both source and receiver positions to move along the refraction

ray-path and, consequently, considers the prestack data as a whole. The DSR eikonal

equation can be derived by considering a ray-path and its segments between two depth

levels. Figure 1.8 illustrates a diving ray (Zhu et al., 1992) in 2-D with velocity v =

v(z, x). I use T (z, r, s) to denote the total traveltime of the ray-path beneath depth

z, where r and s are sub-surface receiver and source lateral positions, respectively. At

both source and receiver sides traveltimes satisfy the eikonal equation 1.4, therefore

∂T

∂z
= −

√√√√ 1

v2(z, s)
−
(
∂T

∂s

)2

−

√√√√ 1

v2(z, r)
−
(
∂T

∂r

)2

. (1.9)

Obviously, from equation 1.4 to equation 1.9, both the forward modeling and to-

mographic inversion of the DSR tomography are fundamentally different from the

traditional eikonal-based tomography. This means detailed investigations must be

done in order to verify the feasibility of DSR tomography.
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Figure 1.8: A diving ray and zoom-in of the ray segments between two depth levels.
chapter-introduction/../dsrtomo/figs raypath

Time-domain model building and time-to-depth conversion

Historically, the first velocity model building technique was to perform nor-

mal moveout (NMO) correction to the prestack data (Sheriff and Geldart, 1995).

Considering the tomographic methods introduced above, this traditional approach

could be interpreted as MVA in the data-domain. By NMO correction, an effective

velocity model is defined in time (commonly two-way traveltime) instead of depth,

where the optimum NMO velocity flattens the primary reflection events in a common

midpoint (CMP) gather. In case of dipping reflectors, a dip moveout (DMO) (Hale,

1984; Anderson and Tscankin, 1997) after NMO attempts to correct the effect of

non-vertical zero-offset rays. Afterwards, if there is no lateral velocity variations, Dix

(1955) proved that the NMO velocity equals the root-mean-square (RMS) velocity

and a Dix inversion can find the interval velocity. No tomographic update is needed.

When lateral velocity variations are present, the above work-flow is no longer
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valid. Instead, proper time migration should be performed. Time migration takes a

different route from depth migration by reducing the problem of velocity estimation

to a parameter scan. This is done with the help of a coordinate transformation, i.e.

from depth coordinate x to time coordinate. Following Hubral (1977), I denote the

time coordinate in 2-D as x̂ = (t0, x0). An important concept in understanding time

migration and time coordinate is the image ray. Here x0 is the location of the image

ray at the earth surface. t0 is the traveltime along the image ray, which is traced

with a source at location x0 and a direction normal to the earth surface. Figure 1.9

illustrates image rays in 2-D and a mapping from depth coordinate to time coordinate.

x x0

Depth Coordinate Time Coordinate

t0(*)

t0(**)

t0(*)

t0(**)

z

x0

t0

Figure 1.9: Each depth coordinate (z, x) (left) along the image ray is mapped into
(right) the time coordinate (t0, x0) by using its corresponding traveltime t0 and source

location x0. chapter-introduction/../time2dep/figs imageray

If the image rays do not intersect each other, i.e. there are no caustics, then
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a unique inverse transformation z(t0, x0) and x(t0, x0) exists. The forward map-

ping t0(z, x) and x0(z, x) can be done with a knowledge of seismic velocity in depth

v(z, x). The counterpart for v in the time-domain is the time-migration velocity

vm = vm(t0, x0), where vm is defined from the traveltime approximation commonly

used in prestack Kirchhoff time migration (Yilmaz, 2001):

T̂ (t0, x0; s, r) ≈ T (z, x; s) + T (z, x; r) , (1.10)

where s and r are source and receiver positions in 2-D, respectively, and

T̂ (t0, x0; s, r) =

√√√√t20 +
|x0 − s|2
v2

m(t0, x0)
+

√√√√t20 +
|x0 − r|2
v2

m(t0, x0)
. (1.11)

Based on equations 1.10 and 1.11, a general form of the Kirchhoff time migration

reads

I(x̂) =
∫ ∫

M(x̂; s, r)D(T̂ (x̂; s, r)) ds dr . (1.12)

Equation 1.11 is the result of a truncated Taylor expansion for traveltimes around

location x0. According to equations 1.10 and 1.11, the total traveltime from source

s to an image point (z, x) and then to receiver r is estimated by using the traveltime

t0 of an image ray passing through (z, x) and the distances between s, r and x0. An

important feature of vm is that it is independent of each other for different (t0, x0).

Finding vm amounts to a parameter search for each point in the (t0, x0) space (Fomel,

2003). As a result, the estimation of time-migration velocity is rather automatic and

velocity model building in the time domain is more convenient than in the depth do-

main. However, note the time coordinate x̂ is distorted and time migration velocity

vm does not trivially equal to interval velocity v.
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Given the advantages of time-domain processing, it is of great interest to con-

vert time migration velocity and time-migrated image to the depth domain. Unfortu-

nately, the explanations of Hubral (1977) did not result in a constructive generalized

Dix inversion that deals with lateral velocity variations. This last step in time-to-

depth conversion is studied by Cameron et al. (2007), who proved by applying paraxial

ray theory to image rays that the problem is governed by a system of ill-posed nonlin-

ear partial differential equations (PDEs). Cameron et al. (2009) also explained that,

due to ill-posedness of the problem, algorithms based on extrapolation are subject to

numerical instability. In this regard, a robust time-to-depth conversion algorithm is

worth studying, which may serve as a bridge between the convenient time processing

and a reasonable prior for further depth model refinement.

THESIS OUTLINE

My thesis consists of six chapters:

• Chapter 1: Introduction

• Chapter 2: Linear Operators by Upwind Finite-differences

I introduce in this chapter four linear operators by upwind finite-differences.

The first operator is inspired by the linearized eikonal equation, while the other

three operators are its adjoint, inverse, and adjoint of the inverse. The methods

I propose in the following chapters 3-5 rely on these operators in their numerical

implementations.

• Chapter 3: First-break Traveltime Tomography with the Double-square-root

Eikonal Equation
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The first-break traveltime tomography is capable of near-surface velocity model

construction. In this chapter, I investigate the feasibility of DSR-based first-

break traveltime tomography. I provide an efficient DSR eikonal solver with

causal implicit discretization and demonstrate that the DSR gradient does not

suffer from conflicting information among shots as in standard eikonal-based

framework.

• Chapter 4: Kirchhoff Redatuming and Migration Using Eikonal-based Compu-

tation of Traveltime Source-derivatives

Once the near-surface velocity model is at hand, the prestack data can be re-

datumed. I examine in this chapter the response of eikonal equation in source

location perturbation and obtain an eikonal-based traveltime source-derivative

that is independent of source sampling. A Kirchhoff depth migration and reda-

tuming can make use of these derivatives for accurate traveltime interpolation

and anti-aliasing.

• Chapter 5: A Robust Approach to Time-to-depth Conversion and Interval Ve-

locity Estimation from Time Migration in the Presence of Lateral Velocity Vari-

ations

For deeper parts of the velocity model that are not resolved by first-break trav-

eltime tomography, I turn to reflection energy and employ time domain pro-

cessing. I revisit in this chapter the problem of time-to-depth conversion and

propose a novel optimization formulation. A key advantage of my method is

that it addresses the stability issue faced by previous works.

• Chapter 6: Conclusions
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I organize chapters 3-5 in a sequence that resembles a work-flow in seismic

data processing. To make connections between these chapters, I create a synthetic

dataset that will be introduced in the following section. Because the contents of each

chapter are relatively independent of each other, I start each chapter by first giving

a more specific introduction. Next, I provide details on theoretical derivations and

numerical implementations. I then demonstrate applications of the proposed methods

by several examples, including the common synthetic dataset. Each chapter is finally

concluded with some discussion on limitations and possible future extensions.

SYNTHETIC DATASET

Figure 1.10: A common synthetic model used in chapters 3-5. Overlaid white lines
are horizontal reflectors for synthesizing reflection signals. The model is Cartesian
discretized into 10 m grid spacings in z and x. chapter-introduction/thesis exact
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To create a synthetic model and dataset that consist typical problems tar-

geted in chapters 3-5, I first make a v(z) model where the velocity increases linearly

in depth z. Several sinuous inclusions with low velocity are added to the model to

represent near-surface geologies. Moreover, a strong positive Gaussian anomaly in

deeper part of the model results in significant lateral velocity variations. The final

model is illustrated in Figure 1.10.

The synthetic dataset includes both refraction and reflection signals. I use

a Ricker wavelet of peak frequency 10 Hz. There are in total 401 shots uniformly

distributed between (0, 3) km and (0, 8) km with an absolute maximum offset of 5

km. The refraction part is obtained by a two-way wave equation modeling (Fomel

et al., 2013). For the reflection part, I use a one-way wavefield extrapolation with

the multi-reference split-step Fourier method (Stoffa et al., 1990; Popovici, 1996).

Figure 1.11 shows the synthetic data at zero-offset as well as in prestack. From the

zero-offset data, it is easy to observe the influence of near surface, which creates the

short-period oscillations along shot axis. The positive anomaly, on the other hand, is

responsible for the asymmetry in offset that is prominent in shot gathers.

Due to the presence of both near-surface and deep velocity complexities, ap-

propriate time-domain processings should be performed after correcting the influences

of near surface. Chapter 3 will reconstruct the sinuous near-surface structures from

first-breaks of the refractions. Next, based on this reconstructed near-surface model,

Chapter 4 redatums the reflection signals. Finally, Chapter 5 will use the redatumed

reflections that are free of near-surface effects for velocity estimation and migration.
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Figure 1.11: The synthetic data of model in Figure 1.10. Top and bottom plots are the
zero-offset section and prestack data, respectively. chapter-introduction/thesis rcmp
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Chapter 2

Linear operators by upwind finite-differences

INTRODUCTION

Traveltimes play a key role throughout this thesis. I adopt the fast-marching eikonal

solver (FMM) for computing traveltimes. Sethian (1999) provides a detailed discus-

sion on FMM. FMM is a non-recursive algorithm with a global update scheme that

ensures monotonic wave-front propagation and a local update scheme that consid-

ers only causal solution of the viscous eikonal equation. The local scheme employs

upwind finite-differences in discretizing the eikonal equation. It uses traveltimes of

neighboring grid points to advance the wave-front to the current grid point. The

sequence of visiting all the grid points is actively maintained by a priority queue ac-

cording to the global scheme.

Franklin and Harris (2001) studies upwind finite-difference scheme for a family

of first-order partial differential equations, of which the linearized eikonal equation 1.8

is a member. Essentially, the linearized eikonal equation is first discretized such that

at each grid point the finite-difference stencil is chosen towards the upwind direction

of a background traveltime table. Next, the linearized eikonal equation is solved, one

grid point at a time, in the same order which FMM would follow in computing the

background traveltime. Franklin and Harris (2001) showes that the upwind finite-

difference scheme is stable, accurate and efficient.

25



There are in total four linear operators based on upwind finite-differences that

are necessary for the methods I propose in chapters 3-5. In this chapter, I show their

derivations as well as implementations.

FAST-MARCHING METHOD

The global scheme of FMM defines three labels: IN, FRONT and OUT. As indi-

cated by their names, these flags stand for the status of grid points during traveltime

computation:

• IN : the traveltime of this grid point is already computed and should not be

modified;

• FRONT : the traveltime of this grid point has a temporary value and can be

updated;

• OUT : this grid point has never been visited.

FMM starts with labeling all grid points as OUT (and assigning a large trav-

eltime value). Next, the source is initiated. At the core of FMM is a priority queue

that stores the index of grid points and arranges them in an decreasing order in their

traveltimes. The source wave-front is pushed into priority queue with IN attached.

The rest of the algorithm is a dynamic process that keeps looping over until the

priority queue is empty (Sethian, 1996):

• Extract the minimum traveltime grid point from queue:
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1. Label it as IN if it is not;

2. For each of its neighbors that is not IN, compute a temporary traveltime

by the local update scheme;

3. Replace the neighbor’s current traveltime with the temporary one if the

latter is smaller;

4. If the temporary traveltime is accepted and the neighbor is outside of

queue, label the neighbor as FRONT and insert it into queue.

• Restore the priority queue.

Conceptually, IN, FRONT and OUT denote regions where the wave-front has

swept through, is current at, and has not yet reached. Clearly, the version FMM I

outline here is limited to first-arrival traveltimes. If there are in total N discretized

grid points, FMM has a computational complexity of O(N logN), where the logN

factor comes from the priority queue.

UPWIND FINITE-DIFFERENCES

Consider in 3-D a domain discretized into Cartesian grids with uniform grid size of

(∆x,∆y,∆z). Let T k
i,j be the given background traveltime at vertices xk

i,j = (xi, yj, zk)

and define difference operator D±x for x direction as

D±x T
k
i,j = ±

T k
i±1,j − T k

i,j

∆x
, (2.1)

where the ± sign corresponds to the two neighbors of T k
i,j in x direction. An upwind

scheme (Franklin and Harris, 2001) picks the sign by

DxT
k
i,j = max

(
D−x T

k
i,j,−D+

x T
k
i,j, 0

)
. (2.2)
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After similar definitions for Dy and Dz, the linearized eikonal equation 1.8 can be

discretized as

(DxT
k
i,j ·Dx) δT k

i,j + (DyT
k
i,j ·Dy) δT k

i,j + (DzT
k
i,j ·Dz) δT k

i,j =
1

2
δwk

i,j . (2.3)

Here the subscript and superscript i, j and k of δT and δw have the same meaning

as of T . Note in equation 2.3 ∇δT k
i,j is also discretized by upwind finite-differences.

However, its choice of upwind neighbors follows T k
i,j instead of itself. DmT ·Dm with

m = x, y, z are linear operators, from which ∇T ·∇ can be assembled. In fact, ∇T ·∇

is one of the four linear operators that build numerical implementations of the meth-

ods in chapters 3-5. The other three operators are namely the adjoint (∇T ·∇)T , the

inverse (∇T · ∇)−1, and finally adjoint of the inverse (∇T · ∇)−T .

The upwind stencil 2.1 is first-order accurate. It is possible to construct high-

order upwind stencils in the same fashion as 2.1, as long as the stencil is strictly

one-sided (Franklin and Harris, 2001). For instance, a third-order upwind stencil

reads:

D+
x T

k
i,j =

2T k
i+3,j − 9T k

i+2,j + 18T k
i+1,j − 11T k

i,j

6∆x
, (2.4)

where the coefficients are determined by Taylor series. In my thesis I adopt only the

first-order stencil.

For a Cartesian ordering of T k
i,j, the discretized operators DmT ·Dm are matri-

ces. Thanks to upwind finite-differences, these matrices are sparse and contain only

two non-zero entries per row. For instance, suppose T k
i,j has its upwind neighbor in z
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at T k−1
i,j , then

DzT ·Dz =



. . .
. . .

. . .

−κz κz

. . .


, (2.5)

where

κz ≡
DzT

k
i,j

∆z
=
T k

i,j − T k−1
i,j

(∆z)2
. (2.6)

Definitions of κx and κy follow their upwind approximations, respectively. In equation

2.5, ±κz are located in the same row as that of T k
i,j. While κz sits on the diagonal,

−κz has a column index equals to the row of T k−1
i,j . At T = 0, there is no upwind

neighbor and the corresponding row contains all zeros. It is evident that the cost of

applying ∇T · ∇ to a vector is O(N).

DERIVATION AND IMPLEMENTATION OF THE
LINEAR OPERATORS

According to equation 2.3, computing δw for given T and δT amounts to simple

sparse matrix-vector multiplication. The ordering of T k
i,j, δT

k
i,j and δwk

i,j is not im-

portant. However, if we change T k
i,j in equation 2.5 from ordinary Cartesian ordering

to upwind ordering, we effectively perform column-wise permutations to DmT ·Dm.

The resulting matrices are not only sparse but also lower triangular. A pre-sort of T

here is not necessary if it is computed by FMM, because such an upwind ordering is

maintained and updated by the priority queue during eikonal solving and thus can

be conveniently imported for usage. From another point of view, this means that

the linear operator ∇T · ∇ is consistent with FMM. In implementing ∇T · ∇, both
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the sparsity and triangularization should be fully exploited for optimum performance.

The next operator is the inverse (∇T · ∇)−1 appearing in traveltime tomogra-

phy:

1

2
(∇T · ∇)−1 δw = δT . (2.7)

In order to find the expression for inverse, let us further assume the upwind neighbors

of T k
i,j in x and y are T k

i−1,j and T k
i,j−1, respectively. Then with notations 2.6, I re-write

equation 2.3 as

2κx (δT k
i,j − δT k

i−1,j) + 2κy (δT k
i,j − δT k

i,j−1) + 2κz (δT k
i,j − δT k−1

i,j ) = δwk
i,j , (2.8)

which in a matrix-vector form reads

. . .
. . .

. . .

−2κx −2κy −2κz 2 (κx + κy + κz)
. . .





...

...

...
δT
...


=



...

...

...
δw
...


. (2.9)

After regrouping the terms, equation 2.8 gives

δT k
i,j =

2κx δT
k
i−1,j + 2κy δT

k
i,j−1 + 2κz δT

k−1
i,j + δwk

i,j

2 (κx + κy + κz)
. (2.10)

Equation 2.10 means the linear operator (∇T · ∇)−1 does not need to be computed

by an explicit matrix inversion as shown in equation 2.9. Instead, its application to a

vector can be performed by a single sweep based on upwind ordering of T . Note that

unlike the implementations of ∇T · ∇ where upwind ordering is optional, (∇T · ∇)−1

must be carried out sequentially so that δT k
i,j could access its own neighbors at exactly

the positions prescribed by the upwind stencils 2.2. For the singularity at T = 0, we
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can set entries of the corresponding row to zero.

The third operator to study is the adjoint (∇T · ∇)T . Let us consider

1

2
(∇T · ∇)T δw = δT . (2.11)

A direct matrix transpose of equation 2.5 gives

(DzT ·Dz)T =



. . .
. . . −κz

. . .

κz

. . .


. (2.12)

Now −κz has a row index equals to that of T k−1
i,j . It means in equation 2.11 δT relies

on its downwind neighbors. The same analysis applied to (DxT ·Dx)T , (DyT ·Dy)T

and consequently (∇T · ∇)T . It might be more straightforward to draw this conclu-

sion by noticing the fact that the lower triangularized ∇T · ∇ after upwind sorting

becomes upper triangularized by transposition.

The last operator of interest is adjoint of the inverse (∇T · ∇)−T . Based on

equation 2.9, the matrix-vector form of

1

2
(∇T · ∇)−T δT = δw (2.13)

is 

. . . −2κx

. . . −2κy

. . . −2κz

2 (κx + κy + κz)
. . .





...

...

...
δw
...


=



...

...

...
δT
...


(2.14)
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As an upper triangular matrix-vector multiplication, the value of δwk
i,j depends on the

input δT k
i,j as well as its neighbors in T ’s downwind directions. Similarly to (∇T ·∇)T ,

I solve equation 2.14 by following the downwind ordering of T .

CONCLUSION

I show derivations and implementations of four linear operators by upwind finite-

differences. These operators are consistent with FMM in the sense that their applica-

tions to a vector are performed sequentially by either upwind ordering or downwind

ordering. It is possible, however, to supply a background traveltime table from an-

other eikonal solver other than FMM. If so, the extra cost of background traveltime

sorting can not be avoided. The cost of sorting with the quicksort algorithm is

O(N logN) (Knuth, 2011).

My implementation of these linear operators consists of two major compo-

nents. One is the upwind (downwind) ordering that is critical in (∇T · ∇)−1 and

(∇T · ∇)−T . The other is upwind stencil 2.2, for which I store only the sparse co-

efficients. All operators have a low computational complexity of O(N), and can be

further combined to construct more involved operators.
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Chapter 3

First-break traveltime tomography with the
double-square-root eikonal equation

INTRODUCTION

The first-break traveltime tomography (Zhu et al., 1992; Osypov, 2000; Leung and

Qian, 2006; Taillandier et al., 2009; Noble et al., 2010) is an established tool for es-

timating near-surface macro-feature seismic velocities. Starting from a prior model,

tomographic inversion gradually modifies the velocities such that the misfits between

predicted and observed first-breaks decrease. Since the problem is nonlinear, several

linearization iterations may be required until convergence. Moreover, inversion must

be carried out with careful choice of regularization in order to avoid local minima

(Stefani, 1993; Simmons and Bernitsas, 1994). The estimated model has a direct

influence on subsequent applications, such as static corrections (Marsden, 1993; Cox,

1999; Bergman et al., 2004) where it provides a medium-to-long wavelength near-

surface model, and waveform tomography (Sheng et al., 2006; Brenders and Pratt,

2007; Virieux and Operto, 2009) where it serves as a low-frequency prior.

The traditional first-break traveltime tomography is based on the eikonal equa-

Parts of this chapter were published in Li, S., A. Vladimirsky, and S. Fomel, 2013, First-break
traveltime tomography with the double-square-root eikonal equation: Geophysics, 78, no. 6, U89-
U101. This work started during Vladimirsky’s visit to Austin during his sabbatical in 2011 and was
then done under the supervision of Fomel.
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tion that arises from high-frequency approximation of the wave equation (Chapman,

2002). During forward modeling, the first-breaks computed through the eikonal equa-

tion are naturally shot-indexed because only receiver coordinates move while the

source is fixed. At tomography stage, one may formulate the minimization of cost

function as a sequence of explicitly linearized problems or directly as a nonlinear op-

timization problem. The first choice (Zelt and Barton, 1998; Zhu et al., 2000; Dessa

et al., 2004; Pei, 2009) requires computation of Fréchet derivatives, which is usually

carried out by combining an eikonal solver with posterior ray tracing. Then an al-

gorithm such as conjugate gradients (Hestenes and Stiefel, 1952) or LSQR (Paige

and Saunders, 1982) is applied to solve the linearized tomographic system iteratively.

While this approach accounts for information from both source and receiver dimen-

sions, it faces computational limitations when the Fréchet derivative matrix becomes

difficult to handle because of a large number of model parameters. The nonlinear

optimization approach, on the other hand, can be combined with the adjoint-state

method (Plessix, 2006) and avoids an explicit computation of Fréchet derivatives

(Taillandier et al., 2009). The cost of computing the gradient is equivalent to twice

the solution of the forward modeling problem, regardless of the size of input data.

However, one major drawback of this approach, as I will show later, is that the re-

sulting gradient disregards information available along the shot dimension.

The drawback of eikonal-based adjoint-state tomographies is that they always

face conflicting information that propagates across different shots. Such conflicts

must be resolved during inversion, or else an erroneous model update may appear. In

practice, the inversion may be less robust and may take more iterations to converge,

compared with the situation where we replace the eikonal equation with another
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governing equation that allows both source and receiver positions to change along

ray-paths. The double-square-root (DSR) eikonal equation is a promising candidate

in this regard, because it describes the prestack data as a whole by linking the evolu-

tion of traveltimes to both sub-surface source and receiver positions. In this chapter, I

investigate the feasibility of using the DSR eikonal equation for first-break traveltime

tomography with the adjoint-state method.

The DSR eikonal was analyzed previously by Belonosova and Alekseev (1974),

Duchkov and de Hoop (2010) and Alkhalifah (2011b). Ray-tracing methods applied to

DSR are capable of providing multi-arrivals by extrapolating isochron rays (Iversen,

2004) or using perturbation theory, but their extra cost in computing non-first-breaks

is not necessary for first-break tomography purposes. Li et al. (2013) prove that an

implicit discretization of the DSR eikonal equation is causal and thus can be solved

by a Dijkstra-like non-iterative method (Dijkstra, 1959). The DSR singularity and

two DSR branches that are non-causal need special treatment.

My current implementation employs a modified fast-marching method (FMM)

(Sethian, 1999) DSR eikonal solver. I first test its accuracy by DSR forward mod-

eling. Next, I linearize the DSR eikonal equation and use the resulting operators

in adjoint-state tomography. For comparison, I apply an analogous linearization and

adjoint-state formulation to the traditional tomography based on shot-indexed eikonal

equation. Then I demonstrate the differences between the proposed and traditional

approaches and justify advantages of the new method using several synthetic model

examples. I conclude by discussing possible further improvements and extensions of

the proposed method.
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THEORY

DSR eikonal equation

I continue here from the discussion on DSR eikonal equation and Figure 1.8

in Chapter 1. The negative signs before the two square-roots in equation 1.9 corre-

spond to a decrease of traveltime with increasing depth, or, geometrically, a downward

pointing of slowness vectors on both s and r sides. Since the slowness vectors could

also be pointing upward and the directions may be different at r and s, the DSR

eikonal equation (Belonosova and Alekseev, 1974) should account for all the possibil-

ities (Figure 3.1):

∂T

∂z
= ±

√√√√ 1

v2(z, s)
−
(
∂T

∂s

)2

±

√√√√ 1

v2(z, r)
−
(
∂T

∂r

)2

. (3.1)

The boundary condition for DSR eikonal equation is that traveltimes at the subsur-

face zero-offset plane, i.e. r = s, are zero: T (z, r = s) = 0.

Equation 3.1 has a singularity when ∂T/∂z = 0, in which case the slowness

vectors at s and r sides are both horizontal and equation 3.1 reduces to(
∂T

∂s

)2

=
1

v2(z, s)
;

(
∂T

∂r

)2

=
1

v2(z, r)
. (3.2)

The two independent equations in 3.2 are not in conflict according to the source-

receiver reciprocity, because they are the same with an exchange of s and r.

Note that equations 3.1 and 3.2 describe T in full prestack domain (z, r, s)

by allowing not only receivers but also sources to change positions. In contrast, the
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eikonal equation 1.4 with x = (z, x) and boundary condition T (z = 0, x = s) = 0 can

be used only for one fixed source position at a time and thus traveltimes of different

shots are independent of each other. Here s is surface source lateral position. For 3-D

model, prestack traveltime is in a 5-D space. The analysis in this chapter is restricted

to 2-D for simplicity. I consider the 3-D extension in the Discussion section.

s r s r

s r s r

1

3

2

4

Figure 3.1: All four branches of DSR eikonal equation from different combination of
upward or downward pointing of slowness vectors. Whether the slowness vector is
pointing leftward or rightward does not matter because the partial derivatives with
respect to s and r in equation 3.1 are squared. Figure 1.8 and equation 1.9 belong to
the last situation. dsrtomo/figs root

Similarly to the eikonal equation, the DSR eikonal equation is a nonlinear

first-order partial differential equation. Its solutions include in general not only first-

breaks but all arrivals, and can be computed by solving separate eikonal equations

for each sub-surface source-receiver pair followed by extracting the traveltime and

putting its values into prestack volume (Iversen, 2004; Duchkov and de Hoop, 2010;

Serdyukov and Duchkov, 2013). However, such an implementation is impractical due

to the large amount of computations. Meanwhile, for first-break tomography pur-

poses, we are only interested in the first-arrival solutions but require an efficient and
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accurate algorithm. In this regard, a finite-difference DSR eikonal solver analogous

to the fast-marching (Sethian, 1999) or fast-sweeping (Zhao, 2005) eikonal solvers is

preferable.

Causal discretization

In upwind discretizations of the DSR eikonal equation on the grid in (z, r, s)

domain, one has to make a decision about the z-slice, in which the finite differences

are taken to approximate ∂T/∂s and ∂T/∂r. In Figure 1.8, it appears natural to

approximate these partial derivatives in the z-slice below T (z, r, s). I refer to the

corresponding scheme as explicit, since it allows to directly compute the grid value

T (z, r, s) based on the already known T values from the next-lower z. Assuming that

T i is the upwind neighbor of T in the i’s direction for i = z, r, s, Figure 3.3 illustrates

the explicit scheme. An alternative implicit scheme is obtained by approximating

∂T/∂s and ∂T/∂r in the same z-slice as T (z, r, s) as shown in Figure 3.2, which

results in a coupled system of nonlinear discretized equations.

It is necessary to study the properties of both explicit and implicit discretiza-

tions and decide which one is more appropriate for DSR forward modeling. Li et al.

(2013) proved the following:

1. The explicit scheme is very efficient to use on a fixed grid, but only conditionally

convergent. This property is also confirmed numerically in Synthetic Model

Examples section.

2. The implicit scheme is monotone causal, meaning T (z, r, s) depends on the
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s

z

T sT

T r

T z

Figure 3.2: An explicit discretization scheme. Compare with Figure 3.3. The ar-
row depicts a DSR characteristic with its root confined in the simplex T zT rT s.
dsrtomo/figs update2t

r

s

z

T s

T

T r

T z

Figure 3.3: An implicit discretization scheme. The arrow indicates a DSR character-
istic. Its root is located in the simplex T zT rT s. dsrtomo/figs update1
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smaller neighboring grid values only. This enables me to apply a Dijkstra-like

method (Dijkstra, 1959) to solve the discretized system efficiently. Importantly,

the DSR singularity requires a special ordering in the selection of upwind neigh-

bors, which switches between equations 1.9 and 3.2 when necessary. I provide a

modified fast-marching (Sethian, 1999) DSR eikonal solver along with such an

ordering strategy in Implementation section.

3. The causality analysis in Li et al. (2013) applies only to the first and last causal

branches out of all four shown in Figure 3.1. Additional post-processings, albeit

expensive, can be used to recover the rest two non-causal branches as they may

be decomposed into summations of the causal ones.

In practice, I find that, for moderate velocity variations, the first-breaks cor-

respond only to causal branches. An example in Synthetic Model Examples section

serves to illustrate this observation. Therefore, for efficiency, I turn off the non-causal

branch post-processings in forward modeling and base the tomography solely on equa-

tions 1.9 and 3.2.

DSR tomography

The first-break traveltime tomography with DSR eikonal equation (DSR to-

mography) can be established by following a procedure analogous to the traditional

one with the shot-indexed eikonal equation (standard tomography). To further reveal

their differences, in this section I will derive both approaches.

For convenience, I use slowness-squared w defined in equation 1.4 instead of
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velocity v in equations 1.9 and 3.2. Based on the causal analysis, the velocity model

w(z, x) and prestack cube T (z, r, s) are Eulerian discretized and arranged as column

vectors w of size nz×nx and t of size nz×nx×nx. I denote the observed first-breaks

by tobs, and use tstd and tdsr whenever necessary to discriminate between t computed

from shot-indexed eikonal equation and DSR eikonal equation.

The tomographic inversion seeks to minimize the l2 (least-squares) norm of

the data residuals. I define an objective function as follows:

E(w) =
1

2
(t− tobs)T (t− tobs) , (3.3)

where the superscript T represents transpose. A Newton method of inversion can be

established by considering an expansion of the misfit function 3.3 in a Taylor series

and retaining terms up to the quadratic order (Bertsekas, 1982):

E(w + δw) = E(w) + δwT∇wE(w) +
1

2
δwT H(w)δw +O(|δw|3) . (3.4)

Here∇wE and H are gradient vector and Hessian matrix, respectively. I may evaluate

the gradient by taking partial derivatives of equation 3.3 with respect to w, yielding

∇wE ≡
∂E

∂w
= JT (t− tobs) , (3.5)

where J is the Fréchet derivative matrix and can be found by further differentiating

t with respect to w.

I start by deriving the Fréchet derivative matrix of standard tomography, which

is based on the linearized eikonal equation 1.8. Denoting

D̂m ≡
∂

∂m
; m = z, x, r, s (3.6)
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as the partial derivative operator in the m’s direction, equation 1.4 can be re-written

as

D̂zt
std
k · D̂zt

std
k + D̂xt

std
k · D̂xt

std
k = w ; k = 1, 2, 3, ..., nx . (3.7)

Here I assume that there are in total nx shots and use tstdk for first-breaks of the kth

shot. Applying ∂/∂w to both sides of equation 3.7, I find

Jstd
k ≡ ∂tstdk

∂w
=

1

2
(D̂zt

std
k · D̂z + D̂xt

std
k · D̂x)−1 ; k = 1, 2, 3, ..., nx . (3.8)

Kinematically, each Jstd
k contains characteristics of the kth shot. Because

shots are independent of each other, the full Fréchet derivative is a concatenation of

individual Jstd
k , as follows:

Jstd =
[
Jstd

1 Jstd
2 · · · Jstd

nx

]T
. (3.9)

Inserting equation 3.9 into equation 3.5, I obtain

∇wE =
nx∑

k=1

(
Jstd

k

)T
(tstd

k − tobs
k ) , (3.10)

where, similar to tstdk , tobs
k stands for the observed first-breaks of the kth shot.

Figure 3.4 illustrates equation 3.10 schematically, i.e. the gradient produced

by standard tomography. The first step on the left depicts the transpose of the kth

Fréchet derivative acting on the corresponding kth data residual. It implies a back-

projection that takes place in the z − r plane of a fixed s position. The second step

on the right is simply the summation operation in equation 3.10.
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Figure 3.4: The gradient produced by standard tomography. The solid curve indicates
a shot-indexed characteristic. dsrtomo/figs cartonstd

To derive the Fréchet derivative matrix associated with DSR tomography, I

first re-write equation 1.9 with definition 3.6

D̂zt
dsr = −

√
ws − D̂stdsr · D̂stdsr −

√
wr − D̂rtdsr · D̂rtdsr , (3.11)

where ws and wr are w at sub-surface source and receiver locations, respectively. Note

that in equation 3.11 w appears twice. Thus a differentiation of tdsr with respect to

w must be carried out through the chain-rule:

Jdsr ≡ ∂tdsr

∂w
=
∂tdsr

∂ws

∣∣∣∣∣
wr

∂ws

∂w
+
∂tdsr

∂wr

∣∣∣∣∣
ws

∂wr

∂w
. (3.12)

I recall that w and tdsr are of different lengths. Meanwhile in equation 3.11,

both ws and wr have the size of tdsr. Clearly in equation 3.12 ∂ws/∂w and ∂wr/∂w

43



must achieve dimensionality enlargement. In fact, according to Figure 1.8, ws and wr

can be obtained by spraying w such that ws(z, r, s) = w(z, s) and wr(z, r, s) = w(z, r).

Therefore, ∂ws/∂w and ∂wr/∂w are essentially spraying operators and their adjoints

perform stackings along s and r dimensions, respectively.

To derive the Fréchet derivative, I start from equations 3.11 and 3.12. Applying

∂/∂ws to both sides of equation 3.11 results in

D̂z
∂tdsr

∂ws

= − 1

2
√
ws − D̂stdsr · D̂stdsr

+

 D̂st
dsr · D̂s√

ws − D̂stdsr · D̂stdsr
+

D̂rt
dsr · D̂r√

wr − D̂rtdsr · D̂rtdsr

 ∂tdsr

∂ws

. (3.13)

Analogously

D̂z
∂tdsr

∂wr

= − 1

2
√
wr − D̂rtdsr · D̂rtdsr

+

 D̂st
dsr · D̂s√

ws − D̂stdsr · D̂stdsr
+

D̂rt
dsr · D̂r√

wr − D̂rtdsr · D̂rtdsr

 ∂tdsr

∂wr

. (3.14)

Inserting equations 3.13 and 3.14 into 3.12 and regrouping the terms, I prove

Jdsr = B−1(Cs + Cr) , (3.15)

where

B = D̂z −

 D̂st
dsr · D̂s√

ws − D̂stdsr · D̂stdsr

−
 D̂rt

dsr · D̂r√
wr − D̂rtdsr · D̂rtdsr

 , (3.16)

and

Cs = − 1

2
√
ws − D̂stdsr · D̂stdsr

∂ws

∂w
; (3.17)
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Cr = − 1

2
√
wr − D̂rtdsr · D̂rtdsr

∂wr

∂w
. (3.18)

At the singularity of DSR eikonal equation, the operators B, Cs and Cr take

simpler forms and can be derived directly from equation 3.2. Combining equations

3.5 and 3.15 results in

∇wE =
(
CT

s + CT
r

)
B−T (tdsr − tobs) . (3.19)

Note that unlike equation 3.10, equation 3.19 can not be expressed as an explicit

summation over shots.

Figure 3.5 shows the gradient of DSR tomography. Similarly to the standard

tomography, the gradient produced by equation 3.19 is a result of two steps. The

first step on the left is a back-projection of prestack data residuals according to

the adjoint of operator B−1. Because B contains DSR characteristics that travel in

prestack domain, this back-projection takes place in (z, r, s) and is different from that

in standard tomography, although the data residuals are the same for both cases. The

second step on the right follows the adjoint of operators Cs and Cr and reduces the

dimensionality from (z, r, s) to (z, x). However, compared to standard tomography

this step involves summations in not only s but also r.
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Figure 3.5: The gradient produced by DSR tomography. The solid curve indicates a
DSR characteristic, which has one end in plane z = 0 and the other in plane s = r.
Compare with Figure 3.4. dsrtomo/figs cartondsr

IMPLEMENTATION

Forward modeling

Following the analysis by Li et al. (2013), I consider an implicit Eulerian

discretization. The uniform grid spacing of v(z, x) is ∆z and ∆x. s and r are

discretized in the same way as x, i.e. ∆s = ∆r = ∆x. For forward modeling, I

solve the DSR eikonal equation by a version of FMM. The source is a plane-wave at

subsurface zero-offset r = s. To properly handle the DSR singularity, I design an

ordering of the combination of upwind neighbors in the FMM local update scheme.

Following the notations in Figure 3.3, I summarize the ordering as follows:

1. First try a three-sided update:
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Solve the following equation

T − T z

∆z
=

√√√√ 1

v2
r

−
(
T − T r

∆r

)2

+

√√√√ 1

v2
s

−
(
T − T s

∆s

)2

(3.20)

and return T if T ≥ max(T z, T r, T s);

2. Next try a two-sided update: solve equations

T = min
(
T r +

∆r

vr

, T s +
∆s

vs

)
, (3.21)

T − T z

∆z
=

√√√√ 1

v2
r

−
(
T − T r

∆r

)2

+
1

vs

, (3.22)

T − T z

∆z
=

1

vr

+

√√√√ 1

v2
s

−
(
T − T s

∆s

)2

, (3.23)

and keep the results as Trs, Tzr and Tzs, respectively.

If Tzr ≥ max(T z, T r) and Tzs ≥ max(T z, T s), return min(Tzr, Tzs, Trs);

If Tzr < max(T z, T r) and Tzs ≥ max(T z, T s), return min(Tzs, Trs);

If Tzr ≥ max(T z, T r) and Tzs < max(T z, T s), return min(Tzr, Trs);

3. Finally try a one-sided update:

Solve equation

T − T z

∆z
=

1

vr

+
1

vs

. (3.24)

and return min(T, Trs).

An optional search routine may be added after the update to recover all branches of

the DSR eikonal equation (Li et al., 2013):

T (z, r, s) = min
q∈(s,r)

{T (z, q, s) + T (z, r, q)} . (3.25)
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The overall cost can be reduced roughly by half by acknowledging the source-receiver

reciprocity and thus computing only the positive (or negative) subsurface offset region.

On the other hand, a DSR forward modeling with the explicit scheme in Fig-

ure 3.2 does not require solving a polynomial equation such as the three-sided implicit

scheme 3.20. Instead, it can be solved in a single sweep in the −z direction:

T − T z

∆z
=

√√√√ 1

v2
r

−
(
T z − T r

∆r

)2

+

√√√√ 1

v2
s

−
(
T z − T s

∆s

)2

, (3.26)

Tomographic inversion

For an implementation of linearized tomographic operators 3.10 and 3.19, I

choose upwind approximations 2.2 for the difference operators in equation 3.6. Op-

erator 3.8 after upwind finite-differences includes exactly (∇T · ∇)−1 discussed in

Chapter 2. Because the upwind finite-differences result in triangularization of matri-

ces 3.9 and 3.15, the costs of applying Jstd and Jdsr and their transposes are inexpen-

sive. Moreover, although our implementation belongs to the family of adjoint-state

tomographies, I do not need to compute the adjoint-state variable as an intermediate

product for the gradient.

Additionally, the Gauss-Newton approach approximates the Hessian in equa-

tion 3.4 by H ≈ JT J. An update δw at current w is found by taking derivative of

equation 3.4 with respect to δw, which results in the following normal equation:

δw =
[
JT J

]−1
JT (tobs − t) . (3.27)
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To add model constraints, I combine equation 3.27 with Tikhonov regularization

(Tikhonov, 1963) with the gradient operator and use the method of conjugate gradi-

ents (Hestenes and Stiefel, 1952) to solve for the model update δw.

EXAMPLES

The numerical examples in this section serve several different purposes. The first

example will test the accuracy of modified FMM DSR eikonal equation solver (DSR

FMM) and show the drawbacks of the alternative explicit discretization. The second

example will demonstrate effect of considering non-causal branches of DSR eikonal

equation in forward modeling. The third example will compare the sensitivity kernels

of DSR tomography and standard tomography in a simple model. The fourth exam-

ple will present a tomographic inversion and demonstrate advantages of DSR method

over the traditional method. Finally the proposed method is applied to the synthetic

dataset introduced in Chapter 1.

Comparison between implicit and explicit discretizations

Figure 4.6 shows a 2-D velocity model with a constant-velocity-gradient back-

ground plus a Gaussian anomaly in the middle. The traveltimes on the surface z = 0

km of a shot at (0, 0) km are computed by DSR FMM at a gradually refined ∆z or ∆x

while fixing the other one. For reference, I also calculate first-breaks by a second-order

FMM (Rickett and Fomel, 1999; Popovici and Sethian, 2002) for the same shot at a

very fine grid spacing of ∆z = ∆x = 1 m. In Figure 3.7, a grid refinement in both ∆z

and ∆x helps reducing errors of the implicit discretization, although improvements in
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the ∆z refinement case are less significant because the majority of the ray-paths are

non-horizontal. The results are consistent with the causal analysis in Li et al. (2013),

which shows that the implicit discretization is unconditionally convergent. On the

other hand, as shown in Figure 3.8, the explicit discretization is only conditionally

convergent when ∆z/∆x → 0 under grid refinement in order to resolve the flatter

parts of the ray-paths. This explains why its accuracy deteriorates when refining ∆x

and fixing ∆z.

Figure 3.6: The synthetic model used for DSR FMM accuracy test. The overlaid
curves are rays traced from a shot at (0, 0) km. dsrtomo/accuracy modl

Effects of non-causal DSR branches

Next, I use a smoothed Marmousi model (Figure 3.9) and run two DSR FMMs,

one with the search process for non-causal DSR branches turned-on and the other

turned-off. In Figure 3.10, again I compute reference values by a second-order FMM.

The three groups of curves are traveltimes of shots at (0, 0) km, (0.75, 0) km and
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Figure 3.7: Grid refinement experiment (implicit discretization). In both figures, the
solid blue curve is the reference values and the dashed curves are computed by DSR
FMM. Top: fixed ∆x = 10 m and ∆z = 50 m (cyan), 10 m (magenta), 5 m (black).
Bottom: fixed ∆z = 10 m and ∆x = 50 m (cyan), 10 m (magenta), 5 m (black).

dsrtomo/accuracy imp
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Figure 3.8: Grid refinement experiment (explicit discretization). The experiment

set-ups are the same as in Figure 3.7. dsrtomo/accuracy exp
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(1.5, 0) km, respectively. The maximum absolute differences between the two DSR

FMMs, for all three shots, are approximately 5 ms at the largest offset. This shows

that, if the near-surface model is moderately complex, then the first-breaks are of

causal types described by equations 1.9 and 3.2, and I therefore can use their lin-

earizations 3.15 for tomography.

Figure 3.9: A smoothed Marmousi model overlaid with rays traced from a shot at
(0, 0) km. Because of velocity variations, multi-pathing is common in this model,

especially at large offsets. dsrtomo/causal marmsmooth

Sensitivity kernels for tomography

According to equations 3.9 and 3.15, the sensitivity kernels (a row of Fréchet

derivative matrix) of standard tomography and DSR tomography are different. Fig-

ure 3.11 compares sensitivity kernels for the same source-receiver pair in a constant

velocity-gradient model. I use a fine model sampling of ∆z = ∆x = 2.5 m. The stan-
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Figure 3.10: DSR FMM with non-causal branches. The solid black lines are reference
values. There are two groups of dashed lines, both from DSR FMM but one with the
optional search process turned-on and the other without. The differences between
them are negligible and hardly visible. dsrtomo/causal causal

dard tomography kernel appears to be asymmetric. Its amplitude has a bias towards

the source side, while the width is broader on the receiver side. These phenomena

are related to my upwind finite-differences implementation. Note in the top plot of

Figure 3.11, the curvature of first-break wave-front changes during propagation. Up-

wind finite-differences take the curvature variation into consideration and, as a result,

back-project data-misfit with different weights along the ray-path. Meanwhile, the

DSR tomography kernel is symmetric in both amplitude and width, even though it

uses the same discretization and upwind approximation as in standard tomography.

The source-receiver reciprocity may suggest averaging the standard tomography ker-

nel with its own mirroring around x = 1 km, however the result will still be different

from the DSR tomography kernel as the latter takes into consideration all sources at

the same time.
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Marmousi model

Figure 3.12 illustrates a prestack first-break traveltime modeling of the Mar-

mousi model by DSR FMM. I use a constant-velocity-gradient model as the prior

for inversion. There are 287 shots evenly distributed on the surface, each shot has a

maximum absolute receiver offset of 6 km. Figure 3.13 shows a zoom-in of the exact

model that is within the tomographic aperture. The DSR tomography and standard

tomography are performed with the same parameters: 10 conjugate gradient itera-

tions per linearization update and 4 linearization updates in total. Figure 3.14 shows

the convergence histories. While both inversions converge, the relative l2 data misfits

of DSR tomography decreases faster than that of standard tomography. Figure 3.15

compares the recovered models. Although both results resemble the exact model in

Figure 3.13 at the large scale, the standard tomography model exhibits several unde-

sired structures. For example, a near-horizontal structure with a velocity of around

2.75 km/s at location (0.85, 4.8) km is false. It indicates the presence of a local min-

imum that has trapped the standard tomography. In practice, it is helpful to tune

the inversion parameters so that the standard tomography takes more iterations with

a gradually reducing regularization. The inversion parameters are usually empirical

and hard to control. My analysis in preceding sections suggests that part of the role

of regularization is to deal with conflicting information between shots. In contrast, I

find DSR tomography less dependent on regularization and hence more robust.

The advantage of DSR tomography becomes more significant in the presence

of noise in the input data. I generate random noise of normal distribution with zero
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Figure 3.11: (Top) model overlaid with traveltime contours of a source at (0, 0) km
and sensitivity kernels of (middle) the standard tomography and (bottom) the DSR

tomography. dsrtomo/hessian grad
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Figure 3.12: DSR first-break traveltimes in the Marmousi model. The original model
is decimated by 2 in both vertical and lateral directions, such that nz = 376, nx =
1151 and ∆z = ∆x = 8 m. dsrtomo/marm data
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Figure 3.13: (Top) a zoom-in of Marmousi model and (bottom) the initial model for

tomography. dsrtomo/marm marm
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Figure 3.14: Convergence history of DSR tomography (solid) and standard tomogra-
phy (dashed). There is no noticeable improvement on misfit after the fourth update.

dsrtomo/marm conv

mean and a range between ±600 ms, then threshold the result with a minimum

absolute value of 250 ms. This is to mimic the spiky errors in first-breaks estimated

from an automatic picker. After adding noise to the data, I run inversions with

the same parameters as in Figures 3.14 and 3.15. Figures 3.16 and 3.17 show the

convergence history and inverted models. Again, the standard tomography seems to

provide a model with higher resolution, but a close examination reveals that many

small scale details are in fact non-physical. On the other hand, DSR tomography

suffers much less from the added noise. Adopting a l1 norm in objective function 3.3

can improve the inversion, especially for standard tomography. However, it would

also raise the difficulty in selecting appropriate inversion parameters.
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Figure 3.15: Inverted model of (top) standard tomography and (bottom) DSR to-

mography. Compare with Figure 3.13. dsrtomo/marm tomo
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Figure 3.16: Inversion with noisy data. Convergence history of DSR tomography
(solid) and standard tomography (dashed). No significant decrease in misfit appears

after the fourth update. dsrtomo/marm nconv

Synthetic dataset

Finally, I apply DSR tomography to the synthetic dataset described in Chapter

1 Figure 1.10. Figure 3.18 shows a shot gather and the corresponding first-breaks.

Note that the near-surface inclusions have effects on both refractions and reflections.

However, the reflections are also influenced by velocity variations in deeper part of

the model. Refractions on the other hand carry mostly near-surface information,

including topography that might be a prominent factor in land datasets. I use the

background v(z) model in Figure 1.10 as the prior for DSR tomography. After 7

linearization updates (10 conjugate gradient iterations per update), the l2 data misfit

drops to relative 1.5%. The near surface is well recovered as illustrated in Figure 3.19.
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Figure 3.17: Inversion with noisy data. Inverted model of (top) standard tomography

and (bottom) DSR tomography. Compare with Figure 3.15. dsrtomo/marm ntomo
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Figure 3.18: (Top) a shot gather at (0, 6) km. First-breaks are overlaid on top of the

seismograms. (Bottom) input first-breaks for DSR tomography. dsrtomo/thesis cmp
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Figure 3.19: The inverted near-surface model (top) and its difference with exact model

in Figure 1.10 (bottom). dsrtomo/thesis dsrt
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DISCUSSION

There are three main issues in the DSR tomography. The first issue comes from a large

dimensionality of the prestack space, which results in a considerable computational

domain size after discretization. The memory consumption becomes an immediate

problem for 3-D models, where the prestack traveltime belongs to a 5-D space and

may require distributed storage.

The second issue is related to the computational cost. The FMM DSR I have

introduced in this chapter has a computational complexity of O(N logN), where N is

the total number of grid points after discretization, N = nz×nx2. Same as FMM for

the eikonal equation 1.4, the logN factor in FMM DSR arises in the priority queue

used for keeping track of expanding wave-fronts. Some known extensions could accel-

erate FMM to an O(N) complexity and may be applicable to the DSR eikonal equa-

tion (Kim, 2001; Yatziv et al., 2006). A number of alternative fast methods developed

for the eikonal equation might be similarly applicable to the DSR eikonal equation.

These include fast sweeping (Zhao, 2005), hybrid two-scale marching-sweeping meth-

ods and label-correcting algorithms (Chacon and Vladimirsky, 2012a).

The last issue is possible parallelization of the proposed method. My cur-

rent implementation of the FMM DSR tomography algorithm is sequential, while the

traditional tomography could be parallelized among different shots. However, I no-

tice that the DSR eikonal equation has a plane-wave source, therefore a distributed

wave-front propagating at the beginning followed by a subdomain merging is possible.

A number of parallelizable algorithms for the eikonal equation have been developed
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(Zhao, 2007; Jeong and Whitaker, 2008; Weber et al., 2008; Chacon and Vladimirsky,

2012b; Detrixhe et al., 2013). Extending these methods to the DSR eikonal equation

would be the first step in parallelizing DSR tomography.

CONCLUSIONS

I propose to use the DSR eikonal equation for the first-break traveltime tomography.

The proposed method relies on an efficient DSR solver, which is realized by a ver-

sion of the fast-marching method based on an implicitly causal discretization. Since

the DSR eikonal equation allows changing of source position along the ray-path, its

linearization results in a tomographic inversion that naturally handles possible con-

flicting information between different shots. My numerical tests in this chapter show

that, compared with the traditional tomography with a shot-indexed eikonal equa-

tion, the DSR tomography is more robust and provides more accurate solutions. Its

benefits may be particularly significant in the presence of noise in the data.
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Chapter 4

Kirchhoff redatuming and migration using eikonal-based
computation of traveltime source-derivatives

INTRODUCTION

The quality of traveltime computation has a direct influence on Kirchhoff-type migra-

tions since it determines the kinematic behavior of the imaged wavefields. In practice,

traveltime tables can be pre-computed on coarse grids and saved on disk, then serve as

a dictionary when read by Kirchhoff migration algorithms. It is common to carry out

certain interpolations in this process in order to satisfy the needs of depth migration

for fine-gridded traveltime tables at a large number of source locations (Mendes, 2000;

Vanelle and Gajewski, 2002; Alkhalifah, 2011a). Kirchhoff migrations with traveltime

tables computed on the fly face the same issue.

During the traveltime computation stage, accuracy requirements from eikonal

solvers may lead to a fine model sampling. Combined with a large survey, traveltime

computation for each shot can be costly. Because all traveltime computations handle

one shot at a time, the overall cost increases linearly with the number of sources.

Moreover, we need to store a large amount of traveltimes out of a dense source sam-

pling. For saving storage, a sparse source sampling is preferred. In this chapter, I

Parts of this chapter were published in Li, S., and S. Fomel, 2013, Kirchhoff migration using
eikonal-based computation of traveltime source-derivatives: Geophysics, 78, no. 4, S211-S219. This
work is done under the supervision of Fomel.
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address the problem of traveltime table interpolation between sparse source samples.

The traveltime table estimated with simple nearest-neighbor or linear inter-

polation may not provide satisfying accuracy unless the velocity model has small

variations. One possible improvement is to include derivatives in interpolation. Dur-

ing ray tracing, traveltime source-derivatives are directly connected to the slowness

vector at the source and stay constant along individual rays, thus could be outputted

as a by-product of traveltimes. For finite-difference eikonal solvers, such a convenience

is not easily available. In these cases, we would like to avoid an extra differentiation

on traveltime tables along the source dimension to compute such derivatives (Vanelle

and Gajewski, 2002), because its accuracy in turn relies on a dense source sampling

and induces additional computations.

Alkhalifah and Fomel (2010) derived an equation for the traveltime perturba-

tion with respect to the source location changes. The governing equation is a first-

order partial differential equation (PDE) that describes traveltime source-derivatives

in a relative coordinate moving along with the source. I will show that the travel-

time source-derivative desired by interpolation is related to this relative-coordinate

quantity by a simple subtraction of the slowness vector. Unlike a finite-difference

approach, traveltime source-derivatives computed by the proposed PDE method are

source-sampling independent. The extra costs are relatively inexpensive. I then ap-

ply this method to Kirchhoff redatuming and migration with first-arrival traveltimes

computed by the fast-marching (FMM) eikonal solver.
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This chapter is organized as follows. In the first section, I present the the-

ory and implementation of eikonal-based traveltime source-derivatives. Next, I use

both simple and complex synthetic models to demonstrate the accuracy of a cubic

Hermite traveltime table interpolation using the source-derivatives, and show effects

of incorporating such an interpolation into Kirchhoff migration. I will focus mainly

on the kinematics in these experiments by neglecting possible true-amplitude weights

in Kirchhoff migration (Schleicher et al., 2007). Finally, I discuss limitations and

possible extensions of the proposed method.

THEORY

In this chapter, I focus on point-source solutions of the eikonal equation 1.4, i.e. those

with the initial condition T (xs) = 0 where xs denotes the source location. The point-

source traveltime T (x) clearly depends on the source location xs. To explicitly show

such a dependency in the eikonal equation, I define a relative coordinate q as

q = x− xs , (4.1)

and use T̃ (q; xs) to denote traveltime expressed in the relative coordinates. After

inserting this definition into equation 1.4, I obtain

∇qT̃ · ∇qT̃ = w(q + xs) . (4.2)

Here the differentiation ∇q stands for gradient operator in the relative coordinate q

and is taken with a fixed source location xs. In 3-D, if q = (q1, q2, q3) and denoting

ei with i = {1, 2, 3} to be the unit vector in depth, inline and crossline directions,

respectively, then

∇q ≡
∂

∂q1
e1 +

∂

∂q2
e2 +

∂

∂q3
e3 . (4.3)
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Because I am interested in the traveltime derivative with respect to the source, i.e.

∂T/∂xs, I apply the directional derivative ∂/∂xs to T̃ (q; xs) and apply the chain-rule

according to equation 4.1:

∂T

∂xs

≡ ∂T̃

∂xs

=
∂T̃

∂x

∂x

∂xs

+
∂T̃

∂q

∂q

∂xs

=
∂T̃

∂x
− ∂T̃

∂q
. (4.4)

Equation 4.4 describes a gradient vector that contains the traveltime source-

derivatives in depth, inline and crossline directions. In accordance with ∂/∂xs, ∂/∂x

and ∂/∂q are also directional derivatives. All numerical examples in this chapter

are based on a typical 2-D acquisition, where I assume a constant source depth and

thus only the inline traveltime source-derivative is of interest. The quantity ∂T̃ /∂q

coincides with the slowness vector of the ray that originates from xs. For a finite-

difference eikonal solver such as FMM and FSM, it is usually estimated by an upwind

scheme during traveltime computations at each grid point and thus can be easily

extracted. Applying ∂/∂x to both sides of equation 4.2, I find

∇qT̃ · ∇q
∂T̃

∂x
=

1

2

∂w

∂x
. (4.5)

Equation 4.5 has the form of the linearized eikonal equation 1.8 and was previously de-

rived, in a slightly different notation, by Alkhalifah and Fomel (2010). It implies that

∂T̃ /∂x, as needed by equation 4.4, can be determined along the characteristics of T̃ .

Since the right-hand side contains a slowness-squared derivative, the velocity model

must be differentiable, as is usually required by traveltime computations. The deriva-

tion also indicates that the accuracy of an eikonal-based traveltime source-derivative

is source-sampling independent but model-sampling dependent, as from equations
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4.4 and 4.5 ∂/∂xs relies on T̃ , ∂/∂q and ∂/∂x. The accuracy from a direct finite-

difference estimation on ∂/∂xs, in comparison, is both source- and model-sampling

dependent.

Continuing applying differentiation and the chain-rule to equation 4.4 will

result in higher-order traveltime source-derivatives. For example, the second-order

derivative reads:

∂2T

∂x2
s

≡ ∂2T̃

∂x2
s

=
∂

∂x

∂T̃

∂x
· ∂x

∂xs

+
∂

∂q

∂T̃

∂x
· ∂q

∂xs

− ∂

∂x

∂T̃

∂q
· ∂x

∂xs

− ∂

∂q

∂T̃

∂q
· ∂q

∂xs

=
∂2T̃

∂x2
− 2

∂2T̃

∂x∂q
+
∂2T̃

∂q2
. (4.6)

Further, differentiating equation 4.5 once more by x provides

∇q
∂T̃

∂x
· ∇q

∂T̃

∂x
+∇qT̃ · ∇q

∂2T̃

∂x2
=

1

2

∂2w

∂x2
. (4.7)

It is easy to verify that any order of the traveltime source-derivative will require

the corresponding order of the slowness-squared derivative. An approximation based

on Taylor expansions of the traveltime around a fixed source location can make use of

these derivatives. Previously, Ursin (1982) and Bortfeld (1989) introduced parabolic

and hyperbolic traveltime approximations with the first- and second-order derivatives.

Notice that the need for slowness-squared derivatives may cause instability unless

the velocity model is sufficiently smooth. Alkhalifah and Fomel (2010) proved the

following relationship between ∂w/∂x and ∂T̃ /∂q:

∇qT̃ · ∇q
∂T̃

∂(q + xs)
=

1

2

∂w

∂x
, (4.8)
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which implies that the traveltime source-derivative can be computed from the given

traveltime tables only. However, the velocity smoothness is still implicitly assumed

as the second-order spatial derivatives of traveltimes appear in the equation. For this

reason, I restrict my current implementation to first-order derivatives only.

In a ray-tracing eikonal solver, ∂T/∂xs is the slowness vector of a particular

ray at xs and holds constant along the trajectory. As it may also require irregular

coordinate mappings, one may use the same strategy as for the traveltime tables. In

this way, there is no necessity for any additional effort. Equations 4.4 and 4.5 and

their second-order extensions can also provide important attributes for use in Gaus-

sian beams, which are commonly calculated by the dynamic ray tracing (Červený,

2001). They might be alternatively estimated by the eikonal-based source-derivative

formulas but with the traveltime tables from a finite-difference eikonal solver. How-

ever, this application is beyond the scope of current work. In the following sections,

I consider only the source-derivative estimation from traveltimes computed by the

finite-difference eikonal solver FMM.

IMPLEMENTATION

Because equation 4.5 does not change the nonlinear nature of the eikonal equation, the

resulting traveltime source-derivative can be related to any branch of multi-arrivals,

if one supplies the corresponding traveltime in T̃ . The source-derivatives can be com-

puted either along with traveltimes or separately. Below I describe a first-arrival

implementation based on a modification of FMM.
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First I set up upwind finite-difference stencils 2.2 based on T̃ and obtain linear

operators ∇T̃ · ∇ and its inverse (∇T̃ · ∇)−1 as described in Chapter 2. Then for

∂T̃ /∂x in equation 4.5, I find

DxT̃
k
i,j ·Dx

(
∂T̃

∂x

)k

i,j

+DyT̃
k
i,j ·Dy

(
∂T̃

∂x

)k

i,j

+DzT̃
k
i,j ·Dz

(
∂T̃

∂x

)k

i,j

=
1

2

(
∂w

∂x

)k

i,j

, (4.9)

or equivalently,

∂T̃

∂x
=

1

2
(∇T̃ · ∇)−1

(
∂w

∂x

)
. (4.10)

As explained in Chapter 2, computation of equation 4.10 can be done efficiently in

the upwind ordering of T̃ . Meanwhile, ∂T̃ /∂q in equation 4.4 turns out to be simply

the upwind stencils themselves:

(
∂T̃

∂q

)k

i,j

= DqT̃
k
i,j, q = (x, y, z) . (4.11)

Finally, (
∂T

∂xs

)k

i,j

=

(
∂T̃

∂x

)k

i,j

−
(
∂T̃

∂q

)k

i,j

. (4.12)

To incorporate the computation of traveltime source-derivatives into eikonal

solving, one only needs to add equations 4.9, 4.11 and 4.12 after the FMM local

update stage. An extra upwind sorting and solving after pre-computing T̃ is not

necessary. For a total N grid points, the computational complexity of FMM with

auxiliary traveltime source-derivative output remains O(N logN).
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APPLICATION

Traveltime interpolation

The first-order traveltime source-derivative enables a cubic Hermite interpo-

lation (Press et al., 2007). Geometrically, such an interpolation is valid only when

the selected wave-front in the interpolation interval is smooth and continuous. For

a 2-D model and a source interpolation along the inline direction only, the Hermite

interpolation reads:

T (z, x; zs, xs + α∆xs) = (2α3 − 3α2 + 1)T (z, x; zs, xs)

+ (α3 − 2α2 + α)
∂T

∂xs

(z, x; zs, xs)

+ (−2α3 + 3α2)T (z, x; zs, xs + ∆xs)

+ (α3 − α2)
∂T

∂xs

(z, x; zs, xs + ∆xs) , (4.13)

where α ∈ [0, 1] controls the source position to be interpolated between known val-

ues at (zs, xs) and (zs, xs + ∆xs). For comparison, the linear interpolation can be

represented by:

T (z, x; zs, xs + α∆xs) = (1− α)T (z, x; zs, xs) + αT (z, x; zs, xs + ∆xs) . (4.14)

The linear interpolation fixes the subsurface image point (z, x). A possible improve-

ment is to instead fix the vector that links the source with the image, such that on

the right-hand side the traveltimes are taken at shifted image locations:

T (z, x; zs, xs + α∆xs) = (1− α)T (z, x− α∆xs; zs, xs)

+ αT (z, x+ (1− α)∆xs; zs, xs + ∆xs) . (4.15)
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I will refer to scheme 4.15 as shift interpolation. According to my definition of

the relative coordinate q in equation 4.1, shift interpolation amounts to a linear in-

terpolation in T̃ (q; xs). It is easy to verify that, for a constant-velocity medium, both

Hermite and shift interpolations are accurate, while the linear interpolation is not.

However, the accuracy of shift interpolation deteriorates with increasing velocity vari-

ations, as it assumes that the wave-front remains invariant in the relative coordinate.

Equations 4.13-4.15 can be generalized to 3-D by cascading the inline and crossline

interpolations (for example equation 4.14 in 3-D case becomes bilinear interpolation).

The interpolated source does not need to lie collinear with source samples.

Kirchhoff anti-aliasing

The derivatives themselves can also be directly applied for Kirchhoff anti-

aliasing (Lumley et al., 1994; Abma et al., 1999; Biondi, 2001; Fomel, 2002). Equa-

tions 4.13, 4.14 and 4.15 give rise to their corresponding source-derivative interpola-

tions after applying the following chain-rule to both sides:

∂

∂(xs + α∆xs)
=

∂

∂α

∂α

∂(xs + α∆xs)
=

1

∆xs

∂

∂α
. (4.16)

Applying the chain-rule 4.16 to equation 4.13, I arrive at the interpolation

equation for source-derivatives in the cubic Hermite scheme:

∆xs
∂T (z, x; zs, xs + α∆xs)

∂(xs + α∆xs)
= (6α2 − 6α)T (z, x; zs, xs)

+ (3α2 − 4α + 1)
∂T

∂xs

(z, x; zs, xs)

+ (−6α2 + 6α)T (z, x; zs, xs + ∆xs)
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+ (3α2 − 2α)
∂T

∂xs

(z, x; zs, xs + ∆xs) . (4.17)

Analogously, the interpolation of source-derivatives in the linear scheme 4.14 reads:

∆xs
∂T (z, x; zs, xs + α∆xs)

∂(xs + α∆xs)
= −T (z, x; zs, xs) + T (z, x; zs, xs + ∆xs) , (4.18)

which is a simple first-order finite-difference estimation. Finally, in the case of shift

scheme 4.15, the partial derivative ∂/∂α must be applied to the shifted traveltime

terms at the same time:

∆xs
∂T (z, x; zs, xs + α∆xs)

∂(xs + α∆xs)
= −T (z, x− α∆xs; zs, xs)

− (1− α)∆xs
∂T (z, x− α∆xs; zs, xs)

∂(x− α∆xs)

+ T (z, x+ (1− α)∆xs; zs, xs + ∆xs)

− α∆xs
∂T (z, x+ (1− α)∆xs; zs, xs + ∆xs)

∂(x+ (1− α)∆xs)
.(4.19)

The required spatial derivatives can be estimated from the traveltime table by means

of finite-differences, for example by using the upwind approximation 2.2.

EXAMPLES

Constant-velocity-gradient model

In a 2-D medium of linearly changing velocities, v(z, x) = v0 +ax+ bz where x

is the lateral position and z is the depth, the traveltimes and source-derivatives have

analytical solutions (Slotnick, 1959). Figure 4.1 shows the model used in the first

numerical test and the analytical source-derivative for a source located at (0, 0) km.

The domain is of size 4km × 4km with grid spacing 0.01 km in both directions. I

solve for the traveltime tables at five sources of uniform spacing 1 km along the top
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domain boundary by FMM, as well as their associated source-derivatives using the

method described in previous section. Figure 4.2 compares the errors in computed

source-derivative between the proposed approach and a centered second-order finite-

difference estimation for the same source shown in Figure 4.1. The proposed method

is sufficiently accurate except for the small region around the source. This is due to

the source singularity of the eikonal equation and can be improved by adaptive or

high-order upwind finite-difference methods (Qian and Symes, 2002) or by factoring

the singularity (Fomel et al., 2009). Since I am aiming at using the interpolated trav-

eltime tables for migration purposes and the reflection energy around the sources is

usually low, these errors in current implementation can be neglected. In Figure 4.3, I

interpolate the traveltime table for a source at location (0, 0.25) km from the nearby

source samples at (0, 0) km and (0, 1) km by the cubic Hermite, linear and shift

interpolations. I use the eikonal-based source-derivative in the cubic Hermite inter-

polation. The shift interpolation is not applicable for some q and xs if x = q + xs is

beyond the computational domain. In these regions, I use a linear interpolation to fill

the traveltime table. As expected, the cubic Hermite interpolation achieves the best

result, while its misfits near the source are related to the errors in source-derivatives.

The shift interpolation performs generally better than the linear interpolation, espe-

cially in the regions close to the source where the wave-fronts are simple.

The difference between a cubic Hermite interpolation and a linear or shift one is

in the usage of source-derivatives. In this regard, one may think of supplying the finite-

difference estimated derivatives to the interpolation. Indeed, a refined source sampling

and higher-order differentiation may lead to more accurate derivatives. However the

additional computation is considerable. For the same model in Figure 4.1, I carry out
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Figure 4.1: (Left) a constant-velocity-gradient model v(z, x) = 2 + 0.5x km/s and
(right) its analytical traveltime source-derivative for a source at origin xs = (0, 0) km.

eikods/check model

Figure 4.2: Comparison of error in computed source-derivative by (left) the pro-
posed method and (right) a centered second-order finite-difference estimation based
on traveltime tables. The maximum absolute errors are 0.15 s/km and 0.56 s/km,

respectively. eikods/check diff
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Figure 4.3: Traveltime interpolation error of three different schemes: (top left) the
analytical traveltime of a source at location (0, 0.25) km; (top right) error of the
cubic Hermite interpolation; (bottom left) error of the linear interpolation; (bottom
right) error of the shift interpolation. Using derivatives in interpolation enables a
significantly higher accuracy. The l2 norm of the error are 1.5 s, 9.2 s and 6.0 s
respectively. eikods/check ierror
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both a source sampling refinement experiment and a model grid spacing refinement

experiment. The results are shown in Figures 4.4 and 4.5. Both figures are plotted for

the traveltime at subsurface location (1.5,−0.5) km for the source at location (0, 0)

km. Although the curves vary for different locations, the source sampling refinement

experiment suggests the general need for approximately three times finer source-

sampling than that of Figure 4.2 to achieve the same level of accuracy.

Figure 4.4: Source-sampling refinement experiment. The plot shows, at a fixed model
grid sampling of 0.01 km and increasing source sampling, the error in source-derivative
estimated by a first-order finite-difference (solid) and a centered second-order finite-
difference scheme (dotted) decrease. The horizontal axis is the number of sources
and the source sampling is uniform. The vertical axis is the natural logarithm of the
absolute error. The flat line (dash) is from the proposed eikonal-based method and

is source-sampling independent. eikods/check sfddiff

Kirchhoff migration can use traveltime source-derivatives in two ways: for

traveltime interpolation when the source and receiver of a trace does not lie on the
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Figure 4.5: Gird-spacing refinement experiment. The plot shows, at a fixed source
sampling of 1 km and increasing model grid sampling, the error in source-derivative
estimated by the proposed eikonal-based method decreases. Meanwhile, the errors of
both first- and second-order finite-difference estimations do not improve noticeably.
The horizontal axis is the number of grid points in both directions and the grid
sampling is uniform. See Figure 4.4 for descriptions of the vertical axis and the lines.
eikods/check gfddiff
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source grid of pre-computed traveltime tables, and for anti-aliasing. Figure 4.6 shows

a synthetic model of constant-velocity-gradient with five dome-shaped reflectors. The

model has a 0.01 km grid spacing in both directions. I solve for traveltimes and

source-derivatives by the modified FMM introduced in at 21 sparse shots of uniform

spacing 0.5 km, and migrate synthetic zero-offset data. The interpolation of source-

derivative for the anti-aliasing purpose follows the method described in Application

section. 48 interpolations are carried out within each sparse source sampling interval.

Figures 4.7 and 4.8 compare the images obtained by three different interpolations and

the effect of anti-aliasing. All images are plotted at the same scale. I do not limit

migration aperture for all cases and adopt the anti-aliasing criteria suggested by Abma

et al. (1999) to filter the input trace before mapping a sample to the image, where

the source-derivative and receiver-derivative (in the zero-offset case they coincide)

determine the filter coefficients. As expected, the cubic Hermite interpolation with

anti-aliasing leads to the most desirable image. The image could be further improved

by considering not only the kinematics predicted by the traveltimes but also the

amplitude factors (Dellinger et al., 2000; Vanelle et al., 2006).

Marmousi model

The Marmousi model (Versteeg, 1994) has large velocity variations and is

challenging for Kirchhoff migration with first-arrivals (Geoltrain and Brac, 1993). I

apply a single-fold 2-D triangular smoothing of radius 20 m to the original model (see

Figure 4.9) to remove sharp velocity discontinuities while retaining complex velocity

structures. Because wave-fronts change shapes rapidly, the traveltime interpolation

may be subject to inaccurate source-derivatives and provide less satisfying accuracy
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Figure 4.6: Constant-velocity-gradient background model v(z, x) = 1.5+0.25z+0.25x

km/s with dome shaped reflectors. eikods/migration modl

compared to that in a simple model. Although the derivative computation in the

proposed eikonal-based method is source-sampling independent, in practice we should

limit the interpolation interval to be sufficiently small, so that the traveltime curve

could be well represented by a cubic spline. For the smoothed Marmousi model, I use

a sparse source sampling of 0.2 km based on observations of the horizontal width of

major velocity structures.

Figures 4.9 and 4.10 compare the traveltime interpolation errors of three meth-

ods as in Figure 4.3 for a source located at (0, 3.1) km from nearby source samples at

(0, 3) km and (0, 3.2) km. Figure 4.11 plots a reference traveltime curve for the fixed

subsurface location (2, 3.3) km computed by a dense eikonal solving of 4 m source

spacing against curves produced by the interpolations. While these comparisons vary
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Figure 4.7: Zero-offset Kirchhoff migration image with (top) the cubic Hermite inter-

polation and (bottom) the shift interpolation. eikods/migration hzodmig
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Figure 4.8: Zero-offset Kirchhoff migration image with (top) the linear in-
terpolation and (bottom) the cubic Hermite interpolation without anti-aliasing.

eikods/migration lzodmig
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between different source intervals and subsurface locations, the cubic Hermite inter-

polation out-performs the linear and the shift interpolations except for the source

singularity region. However in Figure 4.9 the errors are relatively large in the upper-

left region. These errors occur due to the collapse of overlapping branches of the

traveltime field (Xu et al., 2001) that causes wave-front discontinuities and under-

mines the assumptions of the proposed method.

Figure 4.9: (Top) the smoothed Marmousi model. The model has a 4 m fine grid.

(Bottom) the traveltime error by the cubic Hermite interpolation. eikods/marm vel
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Figure 4.10: The traveltime error by (top) the linear interpolation and (bottom) the

shift interpolation. eikods/marm slice
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Figure 4.11: Traveltime interpolation for a fixed subsurface location. Compare be-
tween the result from a dense source sampling (solid blue), cubic Hermite interpolation
(dotted magenta), linear interpolation (dashed cyan) and shift interpolation (dashed
black). The l2 norm of the error (against the dense source sampling results) of 49
evenly interpolated sources between interval (0, 3) km and (0, 3.2) km for all locations
but the top 100 m source singularity region are 3.9 s, 9.2 s and 11.6 s respectively.
eikods/marm curve

88



One strategy for imaging multi-arrival wavefields with first-arrival traveltimes

is the semi-recursive Kirchhoff migration proposed by Bevc (1997). It breaks the

image into several depth intervals, applies Kirchhoff redatuming to the next interval,

performs Kirchhoff migration from there, and so on. The small redatuming depth

effectively limits the maximum traveltime and the evolving of complex waveforms

before the most energetic arrivals separate from first-arrivals (see Figure 1.2 for an

example). Since Kirchhoff redatuming also relies on traveltimes between datum levels,

my method can be fully incorporated into the whole process. Again, for simplicity, I

do not consider amplitude factors during migration. I use the Marmousi dataset with

a source/receiver sampling of 25 m. Due to the source and receiver reciprocity, the

receiver side interpolations are equivalent to those on the source side.

Figure 4.12 is the result of a Kirchhoff migration with eikonal solvings at each

source/receiver location, i.e. no interpolation performed. Only the upper portion

is well imaged. Figure 4.13 shows the image after employing the cubic Hermite in-

terpolation with a 0.2 km sparse source/receiver sampling, which means 7 source

interpolations within each interval. Even though a 7 times speed-up is not attainable

in practice due to the extra computations in source-derivative and interpolation, I

are still able to gain an approximately 5-fold cost reduction in traveltime computa-

tions, while keeping the image quality comparable between Figures 4.12 and 4.13.

Next, following Bevc (1997), I downward continue the data to a depth of 1.5 km in

three datuming steps. The downward continued data are then Kirchhoff migrated

and combined with the upper portion of Figure 4.13. I keep the same 0.2 km sparse

source/receiver sampling whenever eikonal solvings are required in this process. Fig-

ure 4.14 shows the image obtained by the semi-recursive Kirchhoff migration. The
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target zone at approximately (2.5, 6.5) km appears better imaged.

Figure 4.12: Image of Kirchhoff migration with first-arrivals (no interpolation).

eikods/marm dmig0d

Synthetic dataset

Lastly I return to the synthetic dataset of Figure 1.10. Different from the

Marmousi example above, a (recursive) Kirchhoff migration is not doable because

the velocity model, especially in deep part where the reflections are from, is still un-

available. Following Chapter 3, it is advantageous to redatum the reflections to a

datum beneath the near-surface inclusions and then continue with reflection-oriented

processings such as time migration.
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Figure 4.13: Image of Kirchhoff migration with first-arrivals and a sparse source/re-

ceiver sampling. eikods/marm dmig0
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Figure 4.14: Image of semi-recursive Kirchhoff migration with a three-step redatuming
from top surface to 1.5 km depth and a 0.5 km interval each time. The sparse
source/receiver sampling is the same as in Figure 4.13. eikods/marm dmig2
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I choose z = 0.4 km as the datum depth and use the near-surface model of

Figure 3.19 for traveltime computations. Direct-arrivals are subtracted from the shot

gathers in Figure 3.18. Then sparse sources are sampled at a 100 m interval between

(0, 0) km and (0, 14) km, followed by traveltime interpolation with the traveltime

source-derivatives to a fine source spacing of 10 m. Figure 4.15 compares the result

against that of a dense source sampling. The interpolated traveltimes of Figure 4.15

are then input to Kirchhoff redatuming, as shown by a common shot gather in Fig-

ure 4.16. Note that after redatuming, the kinematic effects of near surface have been

successfully removed from the prestack data. The redatumed data is ready for sub-

sequent time-domain processings.

DISCUSSION

The proposed approach could be implemented either along with a finite-difference

eikonal solver or separately. My current implementation outputs both traveltime and

source-derivative, with a roughly 30% extra cost per eikonal solve compared to a

FMM solver without the source-derivative functionality. An interpolation with these

source-derivatives is superior to the one without them and thus enables an effective

traveltime-table compression. For 3-D datasets, as both inline and crossline directions

may benefit from the source-derivative and interpolation, the overall data compres-

sion savings could be significant. For instance, interpolating 10 shots within each

sparse source sampling interval in both inline and crossline directions leads to an

approximately 100-fold savings in traveltime storage. The method could be further

combined with an interpolation within each source, for example from a coarse grid to

a fine grid, for a greater traveltime compression.
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Figure 4.15: (Top) the result of sparse source interpolation. Values are traveltimes
from sources at surface z = 0 km to the datum at depth z = 0.4 km. (Bottom) relative
absolute errors of the traveltime interpolation against a dense source sampling of 10
m. eikods/thesis green
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Figure 4.16: A common shot gather at (0, 8) km before redatuming (top) and at

(0.4, 8) km after redatuming (bottom). eikods/thesis redat
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While my implementation is for first-arrivals only, the governing equations are

valid also for other characteristic branches, for example the most energetic arrivals.

However, an underlying assumption of the proposed method is a continuous change

in the wave-front of selected arrivals within individual sources. For first-arrivals, this

condition always holds valid. However, the most energetic wave-front can be more

complicated than that of first-arrival, for example only piece-wise continuous, which

may lead to a potential degradation in accuracy. Nichols (1994) showed the most

energetic discontinuous wave-fronts in the Marmousi model. Another assumption is

that the traveltime source-derivatives are continuous between nearby sources. This

condition breaks down when multi-pathing takes place. Vanelle and Gajewski (2002)

suggested to smooth traveltimes around the discontinuities in order to overcome this

limitation. In theory, one can try to identify the discontinuities and only perform

interpolation within individual continuous pieces by using the eikonal-based source-

derivatives. By doing so, one should be able to recover branch jumping in interpolated

traveltimes, but only for those locations within the identified continuous pieces. For

the discontinuities themselves as well as the gaps between them, additional eikonal

solving may be required. An efficient implementation of this strategy remains open

for future research.

CONCLUSION

I have shown an application of computing traveltime source-derivatives in Kirch-

hoff migration. For first-arrivals, a cubic Hermite traveltime interpolation using the
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first-order source-derivatives speeds up computation and reduces storage without no-

ticeably sacrificing accuracy. Anti-aliasing is another direct application of traveltime

source-derivatives which can be easily incorporated into Kirchhoff migration.

Generalization of the method to 3-D is straightforward. The computed deriva-

tive attributes may find applications in other areas besides the kinematic-only Kirch-

hoff migration shown in this chapter. However, an extension to multi-arrival travel-

times needs further investigation.
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Chapter 5

A robust approach to time-to-depth conversion and interval
velocity estimation from time migration in the presence of

lateral velocity variations

INTRODUCTION

Time-domain seismic processing has been a popular and effective tool in areas with

mild lateral velocity variations (Yilmaz, 2001; Robein, 2003; Bartel et al., 2006). Time

migration produces images in the time coordinate as opposed to the depth coordinate.

The time coordinate, along with time-migration velocities, is determined during time

migration by optimizing image qualities. However, it is highly sensitive to lateral

velocity changes (Black and Brzostowski, 1994). Therefore, the time-migrated image

is often distorted (Hubral, 1977; Lynn and Claerbout, 1982; Iversen, 2004; Cameron

et al., 2007, 2008, 2009). For this reason, in many cases time migrations are inad-

equate for accurate geological interpretation of subsurface structures. On the other

hand, time-migration velocities can be conveniently and efficiently estimated either by

repeated migrations (Yilmaz et al., 2001) or by velocity continuation (Fomel, 2003).

Depth migration can handle general media and output images in regular Cartesian

depth coordinates. But it requires an accurate interval velocity model construction,

which is in practice both challenging and time-consuming. An iterative process of

Parts of this chapter will appear in Li, S., and S. Fomel, 2014, A robust approach to time-
to-depth conversion and interval velocity estimation from time migration in the presence of lateral
velocity variations: Geophysical Prospecting, accepted. This work is done under the supervision of
Fomel.
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tomographic updates is often employed, where a good initial interval velocity model

is crucial for achieving the global minimum. It is thus of great interest to convert

the time-migration velocity to the depth domain in order to unravel inherent distor-

tions in time-domain images and to provide a reasonable starting model for building

depth-imaging velocities.

The relationship between time and depth coordinates was first explained by

Hubral (1977) through the concept of image rays. An interval velocity model can

be converted to one in the time domain by tracing image rays that dive into earth

with slowness vector normal to the surface. The time coordinate is then defined by

the traveltime along image rays and its surface location (Larner et al., 1981; Robein,

2003). However this process is not trivially revertible and it does not reveal directly

the connection the between time-migration velocity and the interval velocity. Accord-

ing to Dix (1955), in a layered medium where v = v(z), image rays run straightly

downward and the time-migration velocities are the root-mean-square (RMS) veloci-

ties appearing in a truncated Taylor approximation for traveltimes. The Dix inversion

formula is exact in v(z) medium and the conversion between time- and depth-domain

attributes in this case is theoretically straightforward. However, this is not the case

in the presence of lateral velocity variations.

Even a mild lateral velocity variation can cause image rays to bend and invali-

date the v(z) assumption in Dix inversion. Cameron et al. (2007, 2008, 2009) studied

this problem and established theoretical relations between the time-migration veloc-

ity and the seismic velocity in depth for general media using the paraxial ray-tracing

theory. In 2-D, the conventional Dix velocity is equal to the ratio of the interval
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velocity and the geometrical spreading of image rays. This is consistent with the

Dix formula because when v = v(z) the geometrical spreading equals to one every-

where. In order to carry out the time-to-depth conversion in the presence of lateral

velocity variations, one can solve a nonlinear partial differential equation (PDE) of

elliptic type with boundary conditions on the surface. The problem is mathematically

ill-posed. Cameron et al. (2007, 2008) adopted a two-step numerical procedure for

the time-to-depth conversion. First, they used a Lax-Friedrichs-like finite-difference

method or a spectral Chebyshev method to solve for geometrical spreading in the time

coordinate. Next, they performed a Dijkstra-like solver motivated by fast-marching

method (FMM) for velocity conversion and coordinate mapping. In this approach,

it is crucial to preserve the development of low harmonics and damp the high har-

monics during the first stage. Iversen and Tygel (2008) discussed an extension of the

time-to-depth conversion problem along 2-D profiles in 3-D. Similarly to Cameron

et al. (2007, 2008), an essential part of their algorithm is the time-stepping (integra-

tion) along image-rays. The robustness of these methods may not be satisfactory in

practice because of stability issues that arise from the ill-posed nature of the problem

(Cameron et al., 2009).

In this chapter, I start with the theoretical relations derived by Cameron et al.

(2007) but cast the original problem in a nonlinear iterative optimization framework.

This idea is motivated by the observation that, for arbitrary depth velocity model, two

of the PDEs can be always satisfied, while the remaining one associated with image

ray geometrical spreading can be rewritten as a cost functional that indicates errors

in interval velocity. A key benefit in the new formulation is that each linearization

update on the interval velocity will contain information from the whole computational
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domain. In conparison, the previous approach can only consider information locally

at each time step. Another advantage of the optimization approach is the ability to

adopt regularization in order to deal with the ill-posedness issue. I first show theo-

retical derivations of all necessary components involved in the new approach. Next, I

develop a numerical implementation for 2-D time-to-depth conversion. Finally, I test

the algorithm on both synthetic and field data examples. Some discussions on the

proposed method are given in concluding this chapter.

THEORY

For completeness, I will first review some basic concepts related to the time-to-depth

conversion problem. Then I show the theoretical derivation for an optimization for-

mulation of the problem and a corresponding inversion procedure. For simplicity, I

restrict the analysis to the 2-D case.

Connection between time- and depth-domain attributes

As discussed in Chapter 1, Kirchhoff migration can be performed in both depth

domain 1.5 and time domain 1.12. In Figure 1.9, I illustrate image rays in 2-D and

a forward mapping from depth coordinate x = (z, x) to time coordinate x̂ = (t0, x0)

(Hubral, 1977). Under the assumption of no caustics, for each subsurface location

(z, x) I consider the image ray from (z, x) to the surface, where it emerges at point

(0, x0), with slowness vector normal to the surface. Here x0 is the location of the

image ray at the earth surface and is a scalar. t0 is the traveltime along this image

ray between (z, x) and (0, x0). The forward mapping t0(z, x) and x0(z, x) can be done
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with a knowledge of interval velocity v(z, x). A unique inverse mapping z(t0, x0) and

x(t0, x0) also exists that enables us to directly map the time-migrated image to depth.

In a v(z) medium, vm corresponds to the root-mean-square (RMS) velocity:

vm(t0) =

√
1

t0

∫ t0

0
v2(z(t)) dt . (5.1)

This RMS vm is optimum in a sense that it provides the best traveltime approximation

in equation 1.11. A time-to-depth velocity conversion can be done by first applying

the Dix inversion formula (Dix, 1955), which is theoretically exact in this case:

vd(t) =

√
d

dt0
(t0v2

m(t0)) , (5.2)

followed by performing a simple conversion from vd(t) to v(z) according to z =

1
2

∫ t
0 vd(t)dt.

In equations 5.1 and 5.2, there is no dependency on x0 or x because image

rays are identical in the lateral direction. For an arbitrary medium, image rays will

bend as they travel. Therefore, in general, vm is a function of both t0 and x0 and

no longer satisfies the simple expression 5.1, which limits the applicability of Dix

formula. Cameron et al. (2007) proved that the seismic velocity and the Dix velocity

in this case are connected through geometrical spreading Q of image rays:

vd(t0, x0) ≡
√

∂

∂t0
(t0v2

m(t0, x0)) =
v(z(t0, x0), x(t0, x0))

Q(t0, x0)
. (5.3)

In equation 5.3, the generalized Dix velocity is defined by Cameron et al. (2007) in a

way similar to equation 5.2 with a change from d/dt0 to a partial differentiation with
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respect to t0. The quantity Q is related to x0(z, x) using its definition (Popov, 2002),

as follows:

|∇x0|2 =
1

Q2
. (5.4)

Combining equations 5.3 and 5.4 results in

|∇x0(z, x)|2 =
v2

d(t0(z, x), x0(z, x))

v2(z, x)
. (5.5)

The traveltimes along image rays obey the eikonal equation (Hubral, 1977; Chapman,

2002), thus

|∇t0(z, x)|2 =
1

v2(z, x)
. (5.6)

Finally, since x0 remains constant along each image ray, there is an orthogonality

condition between gradients of t0 and x0 (Cameron et al., 2007):

∇t0(z, x) · ∇x0(z, x) = 0 . (5.7)

Equations 5.5, 5.6 and 5.7 form a system of nonlinear PDEs for t0(z, x) and

x0(z, x). The input is vd(t0, x0), estimated from vm(t0, x0) by equation 5.3. Solving a

boundary-value problem for the PDEs should provide v(z, x), as well as t0(z, x) and

x0(z, x). Because seismic acquisitions are limited to the earth surface, I can only use

boundary conditions at the surface. For a rectangular Cartesian domain with z = 0

being the surface, the boundary conditions are{
t0(0, x) = 0 ,
x0(0, x) = x .

(5.8)
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Ill-posedness of the time-to-depth conversion problem

Let us consider the problem of solving for z(t0, x0) and x(t0, x0) instead of

t0(z, x) and x0(z, x) by recasting equations 5.5, 5.6 and 5.7 in the time coordinate:(
∂x

∂x0

)2

+

(
∂z

∂x0

)2

=
v2(z(t0, x0), x(t0, x0))

v2
d(t0, x0)

, (5.9)

(
∂x

∂t0

)2

+

(
∂z

∂t0

)2

= v2(z(t0, x0), x(t0, x0)) , (5.10)

∂x

∂x0

∂x

∂t0
+

∂z

∂x0

∂z

∂t0
= 0 . (5.11)

The corresponding boundary conditions are{
z(0, x0) = 0 ,
x(0, x0) = x0 .

(5.12)

From equation 5.11

∂x

∂t0
= − ∂z

∂x0

∂z

∂t0

/
∂x

∂x0

. (5.13)

Substituting equation 5.13 into equation 5.10 and combining with equation 5.9 pro-

duces

∂z

∂t0
= vd

∂x

∂x0

; (5.14)

∂x

∂t0
= −vd

∂z

∂x0

, (5.15)

where I assume that both ∂z/∂t0 and ∂x/∂x0 remain positive and there is no caustics.

On the first glance, equations 5.14 and 5.15 seem suitable for numerically

extrapolating x(t0, x0) and z(t0, x0) in t0 direction using the boundary conditions

5.12. After such an extrapolation, one would be able to reconstruct v(t0, x0) from

equation 5.10 and thus solve the original problem. However, by further decoupling

the system using the equivalence of the second-order mixed derivatives, I discover

104



that the underlying PDEs are elliptic. For instance, applying ∂/∂x0 to both sides of

equation 5.15 results in

∂2x

∂t0∂x0

= − ∂

∂x0

(
vd
∂z

∂x0

)
. (5.16)

Meanwhile, dividing by vd and applying ∂/∂t0 to both sides of equation 5.14 leads to

∂

∂t0

(
1

vd

∂z

∂t0

)
=

∂2x

∂x0∂t0
. (5.17)

Comparing equations 5.16 and 5.17, I find

∂

∂x0

(
vd
∂z

∂x0

)
+

∂

∂t0

(
1

vd

∂z

∂t0

)
= 0 . (5.18)

Analogously,

∂

∂x0

(
vd
∂x

∂x0

)
+

∂

∂t0

(
1

vd

∂x

∂t0

)
= 0 . (5.19)

Solving equations 5.18 and 5.19 with the Cauchy-type boundary conditions

5.12 is an ill-posed problem. The missing boundary conditions on sides of the compu-

tational domain other than 5.8 can induce numerical instability when extrapolating

in t0 (equivalently z). Instead, I consider an alternative formulation of the problem

in the following section.

The optimization formulation

Given boundary conditions 5.8, equation 5.6 stands for the traveltime t0 of a

velocity model with a plane-wave source at the surface. For a given t0, equation 5.7

is a first-order PDE on x0 and thus computation of x0 is straightforward. The idea
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of the optimization formulation is inspired by a natural logic: if the resulting x0 does

not satisfy equation 5.5, we need to modify v in a way such that the misfit decreases,

and repeat the process until convergence.

Mathematically, I define a cost function f(z, x) based on equation 5.5:

f(z, x) = ∇x0 · ∇x0 − v2
d w , (5.20)

where for convenience I use slowness-squared w(z, x) instead of v. Note f is dimen-

sionless. The discretized form of equation 5.20 reads

f = (∇x0 · ∇) x0 − vd ? vd ?w ≡ Lx0 x0 − vd ? vd ?w . (5.21)

In equation 5.21, f ,x0,vd and w are all column vectors after discretizing the compu-

tational domain (z, x). For example, x0 is the discretized column vector of x0(z, x).

The vector vd may require interpolation because it is in (t0, x0) while the discretiza-

tion is in (z, x). The interpolation can be done after forward mapping from (z, x) to

(t0, x0) at current velocity model. The symbol ? stands for an element-wise vector-

vector multiplication. Finally, I denote an operator which is a matrix Lx0 = ∇x0 ·∇.

This operator has the same form as ∇T ·∇ introduced in Chapter 2, and I will detail

its implementation in the next section.

As is common in many optimization problems, I seek to minimize the least-

squares norm of f :

E[w] =
1

2
fT f , (5.22)

where the superscript T stands for transpose. The Newton’s method in optimization
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can be derived by linearizing the cost function in equation 5.21:

∂f

∂w
= 2 (∇x0 · ∇)

∂x0

∂w
− 2 vdw

∂vd

∂w
− v2

d . (5.23)

The Fréchet derivative matrix J required by inversion is the discretized form of equa-

tion 5.23, i.e., J = ∂f/∂w.

Using the same notations as introduced in equation 5.21, after discretization

equation 5.23 becomes

J ≡ ∂f

∂w
= 2 Lx0

∂x0

∂w
− 2 diag(vd ?w)

∂vd

∂w
− diag(vd ? vd) , (5.24)

where the operator diag() expands a vector into a diagonal matrix. Because vd is in

time-domain (t0, x0), I need to apply the chain-rule for its derivative with respect to

w, i.e.,

∂vd

∂w
=
∂vd

∂t0

∂t0

∂w
+
∂vd

∂x0

∂x0

∂w
, (5.25)

where t0 is the discretized column vector of t0(z, x). According to equation 5.7 and

after denoting another matrix operator Lt0 = ∇t0 · ∇, I find

∂x0

∂w
= −(∇t0 · ∇)−1(∇x0 · ∇)

∂t0

∂w
≡ −L−1

t0
Lx0

∂t0

∂w
. (5.26)

Another differentiation of equation 5.6 leads to the linearized eikonal equation 1.8

∂t0

∂w
=

1

2
(∇t0 · ∇)−1 =

1

2
L−1

t0
. (5.27)

The operator L−1
t0 in equations 5.26 and 5.27 has been developed in Chapter 2 and

is extended in Chapter 3 for double-square-root eikonal-based tomography. Finally,

by inserting equations 5.25 through 5.27 into 5.24, I complete the derivation of the
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Fréchet derivative matrix:

J = −Lx0L
−1
t0

Lx0L
−1
t0
− diag(vd ?w)

∂vd

∂t0

L−1
t0

+ diag(vd ?w)
∂vd

∂x0

L−1
t0

Lx0L
−1
t0
− diag(vd ? vd) . (5.28)

Equation 5.28 means that J is a cascade and summation of several parts. An update

δw at current w is found by solving the following normal equation arising from Gauss-

Newton approach (Björck, 1996):

δw =
[
JT J

]−1
JT (−f) . (5.29)

Equations 5.22 and 5.29 together indicate a nonlinear inversion procedure for

solving the original system of PDEs 5.5, 5.6 and 5.7. The inversion is similar to the

traveltime tomography but with more complexity. The cost 5.20 can be interpreted

as difference between modeled and observed geometrical spreadings. However, both

of them depend on the model v, while in traveltime tomography the observed arrival

times are independent of v. The forward modeling in my case involves two steps,

which construct a curvilinear coordinate that is sensitive to lateral velocity varia-

tions. On the other hand, the forward modeling in traveltime tomography consists

only one step, i.e., solving equation 5.6 with a point-source boundary condition. Last

but not least, unlike traveltime tomography, we have receivers everywhere, except for

some null spaces created during numerical implementation, as I will discuss later.

Note that the inversion is applied directly for seismic slowness-squared w (and

thus velocity), and the update δw will incorporate mutual dependency of velocities

108



throughout the domain, especially in the depth direction, as physically honored by

image rays. Previous methods (Iversen, 2004; Cameron et al., 2007, 2008) that rely

on time-stepping in t0 may fail to sufficiently account for such dependencies.

Before introducing a numerical implementation, I need to point out several

important facts and assumptions that make a successful time-to-depth conversion

possible by the proposed method:

• Caustics must be excluded from the computational domain. In regions where

caustics develop, the gradient ∇x0 goes to infinity and the cost function is not

well-defined. For all numerical examples in this chapter, I do not encounter this

issue. In the Discussion section, I provide a possible strategy to cope with this

limitation;

• According to derivations in equation 5.25, the calculation of δw depends on

values of ∂vd/∂t0 and ∂vd/∂x0. Thus the input vd should be differentiable.

This requirement can be satisfied during vm estimation;

• Similarly to all nonlinear inversions, the proposed method asks for a prior model

that is sufficiently close to desired model at global minimum E = 0. Meanwhile,

to guarantee stability and a smooth output, some form of regularization should

be imposed during inversion (Engl et al., 1996);

• My formulation does not change the ill-posed nature of the original problem.

One assumption is that condition 5.8 describes all in-flow domain boundaries of

t0 and x0. In other words, the image rays are only allowed to be either parallel

to or exiting (out-flow) all other boundaries except the surface.
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For the prior model, I adopt the Dix-inverted model. In other words, I seek to

refine the interval velocity given by equation 5.2 by taking the geometrical spreading

of image rays into consideration.

IMPLEMENTATION

Below I outline sequentially the steps involved in computing one linearization update:

1. Given current v(z, x), solve equation 5.6 for t0(z, x) with t0(0, x) = 0;

2. Given t0(z, x) and x0(0, x) = x, solve equation 5.7 for x0(z, x);

3. Given t0(z, x) and x0(z, x), interpolate vd(z, x) from vd(t0, x0) and compute

f(z, x) based on equation 5.20;

4. Assemble linear operator 5.28 and solve equation 5.29 for δw(z, x).

First, I use FMM to solve the eikonal equation 5.6 by initializing a plane-wave

source at z = 0. Computation for x0 can be incorporated into t0 by adopting the

upwind finite-differences of t0 for equation 5.7. In Figure 5.1, consider a currently

updated grid point C during forward modeling of t0. If it has only one upwind

neighbor A that is inside the wave-front, t0(C) > t0(A), then the image ray must be

aligned with grid segment AC and

x0(C) = x0(A) . (5.30)

If C has two upwind neighbors A and B, t0(C) > max{t0(A), t0(B)}, and they are

both inside the wave-front, then the image ray must intersect the simplex ABC from
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an angle. In this case, I compute x0(C) from

(t0(C)− t0(A))(x0(C)− x0(A))

(∆z)2
+

(t0(C)− t0(B))(x0(C)− x0(B))

(∆x)2
= 0 , (5.31)

where ∆z and ∆x are the uniform grid spacings. Because x0 at certain grid points are

calculated by one-sided scenario 5.30, Lx0 there contains all zeros. Consequently, an

evaluation of the cost f at these locations with Lx0 x0 becomes inaccurate. I exclude

these regions from f and expect inversion to fill the spaces.

C

A

B

Figure 5.1: A modified FMM for forward modeling. Black dots represent region that
is IN, gray dots are FRONT and white dots are region of OUT. See section on FMM
in Chapter 2 for explanations on these labels. time2dep/figs fmm

Next, I apply simple bilinear interpolation for vd(z, x) and estimate δw by

solving equation 5.29 using shaping regularization (Fomel, 2007). I use a triangular
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smoother with adjustable size as the shaping operator. I find in numerical tests that

shaping significantly improves convergence speed compared to that of the traditional

Tikhonov regularization (Tikhonov, 1963) with gradient operators. I also observe

that without regularization the model update is undesirably oscillatory.

Finally, I choose the upwind finite-differences 2.2 based on t0 for both Lt0 and

Lx0 . It is important that Lx0 must be triangularized by the upwind ordering of t0

instead of x0 because of equations 5.30 and 5.31. The computational cost in equation

5.29 is further reduced by adopting the method of conjugate gradients (Hestenes and

Stiefel, 1952), which requires the adjoint JT according to equation 5.28. From Chap-

ter 2, applying J and JT involves only triangularized matrix-vector multiplications

and is therefore inexpensive.

EXAMPLES

Constant velocity gradient model

In a constant velocity gradient medium

v(z, x) = v0 + gzz + gxx , (5.32)

all attributes involved in time-to-depth conversion have analytical solutions. I first

trace image rays in the depth coordinate for z(t0, x0) and x(t0, x0). Then I carry out

an inversion to find t0(z, x) and x0(z, x). The Dix velocity can be obtained at last

following equations 5.3 and 5.4.
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Continuing from equation 5.32, I write the velocity in a coordinate relative to

the image ray

v(z, x) = v0 + gzz + gxx = ṽ0 + g · (x− x0) , (5.33)

where g = [gz, gx]T and ṽ0 = v0 + gxx0. The image ray satisfies
x0 = [0, x0]

T ,
p0 = [ṽ−1

0 , 0]T ,
t0 = t .

(5.34)

Here I denote ray parameter p = ∇t and p0 is the ray parameter at source. The

Hamiltonian for ray tracing reads H(x,p) = p ·p− v−2 ≡ 0. H can be differentiated

with respect to an auxiliary parameter ξ defined along the ray

dH

dξ
= 2

dp

dξ
· p +

2

v3

dv

dξ
= 2

dp

dξ
· p +

2

v3
∇vdx

dξ
≡ 0 . (5.35)

From equation 5.35 I establish the ray tracing system, as follows:
dx/dξ = pv3 ,
dp/dξ = −∇v ,
dt/dξ = ∇t · dx/dξ = p · pv3 = v .

(5.36)

Equation 5.33 indicates ∇v = g, which means dp/dξ can be integrated ana-

lytically and provides

p = p0 − gξ . (5.37)

From the eikonal equation and considering p0 · p0 = ṽ−2
0 and g = |g| =

√
g2

z + g2
x, I

have

v =
1

√
p · p

=
[
ṽ−2

0 − 2p0 · gξ + g2ξ2
]− 1

2 . (5.38)

Integrating equation 5.38 over ξ gives

t =
1

g
arccosh

(
1 +

g2ξ2

ṽ−2
0 + v−1ṽ−1

0 − p0 · gξ

)
. (5.39)
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Meanwhile, combining equations 5.33 and 5.36, I find dp/dξ ·(x−x0)+dx/dξ ·p = ṽ0,

i.e., p · (x− x0) = ṽ0ξ. Suppose

x− x0 = αp0 + βg (5.40)

then {
g · (x− x0) = αp0 · g + βg2 = v − ṽ0 ,
p0 · (x− x0) = αṽ−2

0 + βp0 · g = ṽ0ξ + (v − ṽ0)ξ = vξ .
(5.41)

Solving equation 5.41 provides α(ξ, v) and β(ξ, v), which after substituting into equa-

tion 5.40 leads to

x = x0 +
(v − ṽ0) [g − (p0 · g)ṽ2

0p0] + vṽ2
0 [g2p0 − (p0 · g)g] ξ

g2 − (p0 · g)2ṽ2
0

. (5.42)

Note equation 5.34 states p0 · g = gzṽ
−1
0 and thus equations 5.37, 5.39 and 5.42 can

be further simplified.

To connect depth- and time-domain attributes, I first invert equation 5.39 such

that ξ is expressed by t0 and x0

ξ(t0, x0) =
gz(1− cosh(|gt0|)) + g sinh(gt0)

g2ṽ2
0

. (5.43)

Next, I insert equations 5.38 and 5.43 into 5.42 in order to change its parameterization

from (ξ, v) to (t0, x0). The result is written for the z and x components of x separately,

as follows:

x(t0, x0) = x0 +
ṽ0gx(1− cosh(gt0))

g(g cosh(gt0)− gz sinh(gt0))
, (5.44)

z(t0, x0) =
ṽ0 [gz(1− cosh(gt0)) + g sinh(gt0)]

g(g cosh(gt0)− gz sinh(gt0))
. (5.45)

Inverting equations 5.44 and 5.45 results in

x0(z, x) = x+

√
(v0 + gxx)2 + g2

xz
2 − (v0 + gxx)

gx

, (5.46)

114



t0(z, x) =
1

g
arccosh


g2
[√

(v0 + gxx)2 + g2
xz

2 + gzz
]
− vg2

z

vg2
x

 . (5.47)

In the last step, I derive the analytical formula for the Dix velocity. Note

that from equation 5.46 |∇x0|2 = 1, it is easy to verify that |∇x0| = 1, |∇t0| = 1/v

and ∇x0 · ∇t0 = 0. Because there is no geometrical spreading in this case, the Dix

velocity will be equal to the interval velocity according to equation 5.3. However, a

Dix-inverted model will still be distorted if gx 6= 0 because of the lateral shift of image

rays.

According to equation 5.3 vd = v and is found by combining equations 5.38

and 5.43

vd(t0, x0) =
(v0 + gxx0)g

g cosh(gt0)− gz sinh(gt0)
. (5.48)

The migration velocity vm, on the other hand, reads

vm(t0, x0) =
(v0 + gxx0)

2

t0(g coth(gt0)− gz)
. (5.49)

Figures 5.2 and 5.3 show a velocity model with v(z, x) = 1.5 + 0.75z + 0.5x

km/s and the corresponding analytical vd(t0, x0), x0(z, x) and t0(z, x). Clearly, the

right domain boundary is of in-flow type that violates my assumption. To address

this challenge, I include Dix velocity in regions beyond the original left and right

boundaries during inversion, but mask out the cost in these regions. It means the
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time-to-depth conversion is performed in a sub-domain of time-domain attributes,

such that information on the in-flow boundary is available. Afterwards, I apply Dix

inversion to the expanded model and use the result as the prior model. I use the ex-

act Dix velocity in equation 5.48 for evaluating 5.5. Then, in total three linearization

updates are carried out. At last, I cut the computational domain back to its original

size. Figures 5.4 and 5.5 compare the cost and model misfit before and after inversion.

I also synthesize data using Kirchhoff modeling (Haddon and Buchen, 1981)

for several horizontal reflectors using the exact model, and examine the subsurface

scattering-angle common-image-gathers from Kirchhoff prestack depth migrations

(Xu et al., 2001; Bashkardin et al., 2012) as an evidence of interval velocity im-

provements. In Figure 5.6, the shallower events do not improve significantly because

the image rays have not yet bend considerably. As for those deeper events, the gather

becomes noticeably flatter after applying the proposed method.

Constant horizontal slowness-squared gradient model

Another medium that provides analytical time-to-depth conversion formulas

is

w(z, x) = w0 − 2qxx = w0 − 2q · x , (5.50)

where q = [0, qx]T , i.e., the slowness-squared changes linearly in the horizontal direc-

tion.

Similarly to the constant velocity gradient medium, the eikonal equation can
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Figure 5.2: (Top) a constant velocity gradient model and (bottom) the analytical Dix
velocity vd. A curved image ray is mapped to the time domain as a straight line.
time2dep/vgrad vgrad
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Figure 5.3: Analytical values of (top) t0 and (bottom) x0 of the model in Figure 5.2.
Both figures are overlaid with contour lines that, according to equation 5.7, are per-
pendicular to each other. Each contour line of x0 is an image ray, while the contours
of t0 illustrate the propagation of a plane-wave. time2dep/vgrad analy
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Figure 5.4: The cost defined by equation 5.20 (top) before and (bottom) after
inversion. The least-squares norm of cost E is decreased from 9.855 to 0.057.
time2dep/vgrad cost
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Figure 5.5: The difference between exact model and (top) initial model and (bottom)
inverted model. The least-squares norm of model misfit is decreased from 15.6 km2/s2

to 2.7 km2/s2. time2dep/vgrad error
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Figure 5.6: Comparison of the common-image-gathers at x = 1.5 km of (left) exact

model, (middle) prior model and (right) inverted model. time2dep/vgrad cigv
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be rewritten as Hamiltonian H(x,p) = p · p−w ≡ 0. Differentiating H with respect

to an incremental parameter σ leads to

dH

dσ
= 2p · dp

dσ
− dw

dσ
= 2p · dp

dσ
−∇w · dx

dσ
≡ 0 . (5.51)

From equation 5.51, I write down the ray-tracing system
dx/dσ = p ,
dp/dσ = ∇w/2 ,
dt/dσ = ∇t · dx/dσ = p · p .

(5.52)

Given 5.50, ∇w = −2q and thus dp/dσ = −q. After integration over σ, equation

5.52 becomes 
x = x0 + p0σ − qσ2/2 ,
p = p0 − qσ ,
t = |p0|2σ − p0 · qσ2 + |q|2σ3/3 .

(5.53)

For a particular image ray
x0 = [0, x0]

T ,
p0 = [

√
w0 − 2qxx0, 0]T ,

t0 = t ,
(5.54)

the equation for x in 5.53 simplifies to{
x = x0 − qxσ2/2 ,
z = σ

√
w0 − 2qxx0 .

(5.55)

Solving equation 5.55 for σ as a function of z and x

σ(z, x) =

(w0 − 2qxx)−
√

(w0 − 2qxx)2 − 4q2
xz

2

2q2
x


1
2

. (5.56)

Combining equations 5.53 through 5.56, I find

x0(z, x) = x+
1

2
qxσ

2

=
2w0x+ qxz

2

w0 + 2qxx+
√

(w0 − 2qxx)2 − 4q2
xz

2
, (5.57)
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t0(z, x) = (w0 − 2qxx0)σ +
1

3
q2
xσ

3

=

√
2z
[
2w0 − 4qxx+

√
(w0 − 2qxx)2 − 4q2

xz
2
]

3
[
w0 − 2qxx+

√
(w0 − 2qxx)2 − 4q2

xz
2
] 1

2

. (5.58)

According to equation 5.4, 5.57 can give rise to the geometrical spreading:

Q2(z, x) =
2[(w0 − 2qxx)2 − 4q2

xz
2]

(w0 − 2qxx)
[
w0 − 2qxx+

√
(w0 − 2qxx)2 − 4q2

xz
2
] . (5.59)

It is more convenient to express equations 5.50 and 5.59 in σ and x0 instead of directly

in t0 and x0:

w(σ, x0) = w0 − 2qxx0 + q2
xσ

2 , (5.60)

Q2(σ, x0) = 1 + q2
xσ

2

(
1

w0 − 2qxx0

− 4

w0 − 2qxx0 + q2
xσ

2

)
, (5.61)

where I must resolve σ = σ(t0, x0). This is done by revisiting equation 5.58. For

given t0 and x0, σ is the root of a depressed cubic function of the following form:

σ3 +
3(w0 − 2qxx0)

q2
x

σ − 3

q2
x

t0 = 0 . (5.62)

After some algebraic manipulations, I find

σ(t0, x0) =

3t0 +
√

9t20 + 4(w0 − 2qxx0)3/q2
x

2q2
x


1
3

− w0 − 2qxx0

qx

 2

3qxt0 +
√

9q2
xt

2
0 + 4(w0 − 2qxx0)3

 1
3

. (5.63)

123



Finally, inserting equations 5.60 and 5.61 into equation 5.3 results in the Dix

velocity:

vd(t0, x0) =

√
w0 − 2qxx0

w0 − 2qxx0 − q2
xσ

2
. (5.64)

In Figure 5.7 I illustrate x0(z, x) and t0(z, x) in the model w(z, x) = 1−0.052x

s2/km2. To deal with the in-flow boundary issue, I apply the same method as in the

constant velocity gradient example. Unlike equation 5.46, 5.57 indicates varying

geometrical spreadings in the domain. Figure 5.8 shows the corresponding analytical

Q2(z, x) and vd(t0, x0). Note the geometrical spreading is significant at the lower-

right corner of the domain, which translates to the cost at approximately the same

location in Figure 5.9. I again use analytical Dix velocity in the inversion. Starting

from the Dix-inverted model and after three linearization updates, I decrease E to

relative 0.0045%. The model misfit, as demonstrated in Figure 5.10, is also improved.

Spiral model

Figure 5.11 shows a synthetic model borrowed from Cameron et al. (2008).

The Dix inversion recovers the shallow part of the model but deteriorates quickly as

geometrical spreading of image rays grows in the deeper section.

As a simple verification for the linearization process, I add a small positive

velocity perturbation at location (1, 3) km to the synthetic model. Comparisons be-

tween the exact and linearly predicted attributes are illustrated in Figures 5.12, 5.13
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Figure 5.7: Analytical values of (top) t0 and (bottom) x0, overlaid with contour lines.

time2dep/hs2grad hs2analy
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Figure 5.8: The (top) geometrical spreading and (bottom) Dix velocity associated

with the model used in Figure 5.7. time2dep/hs2grad hs2grad
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Figure 5.9: The cost (top) before and (bottom) after inversion. The least-squares

norm of cost E is decreased from 10.431 to 0.047. time2dep/hs2grad hs2cost
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Figure 5.10: The difference between exact model and (top) initial model and (bottom)
inverted model. The least-squares norm of model misfit is decreased from 5.0 km2/s2

to 0.5 km2/s2. time2dep/hs2grad hs2error
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Figure 5.11: (Top) a synthetic model and (middle) Dix velocity converted to depth.
Both overlaid with image rays. (Bottom) the model perturbation for testing lineariza-

tion. time2dep/synth vz0

129



and 5.14. In accordance with forward modeling, where I solve firstly t0, then x0,

and finally f , the linearization in Appendix B is carried out following the same se-

quence. First, Figure 5.12 justifies my upwind finite-differences implementation of

the linearized eikonal equation. The positive perturbation in v in Figure 5.11 causes

t0 to decrease in a narrow downwind region. Next, the area affected by the pertur-

bation in Figure 5.13 is wider than that in Figure 5.12. It also has both positive

and negative amplitudes. These phenomenon are physical because image rays should

bend in opposite directions in response to the perturbation. Finally, effects in cost

f in Figure 5.14 shows alternating polarities and are broader in width compared to

that of dt0 and dx0. They indicate a complicated dependency of f on w. Note the

good agreements in both shapes and magnitudes between exact and linearly predicted

quantities in all cases.

Because there is no analytical formula for Dix velocity in this model, I compute

vd by tracing image rays numerically in the exact model v. Also, based on Figure 5.11,

there is no in-flow boundary other than z = 0. Therefore, I do not extend the domain

as in the preceding examples. I use again the Dix-inverted model as the prior model

and run the inversion. It turns out that the first linearization update as shown in

Figure 5.15 is sufficient for achieving the desired global minimum.

Field data example

The field data shown in Figure 5.16 is from a section of Gulf of Mexico dataset

(Claerbout, 1996). I estimate vm using the method of velocity continuation (Fomel,

2003) and convert it to vd. Similar to the spiral model, no domain extension is needed.
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Figure 5.12: (Top) exact dt0 and (bottom) linearly predicted dt0 by equation 5.27.

time2dep/synth pdt
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Figure 5.13: (Top) exact dx0 and (bottom) linearly predicted dx0 by equation 5.26.

time2dep/synth pdx
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Figure 5.14: (Top) exact df and (bottom) linearly predicted df by equation 5.28.

time2dep/synth diffcost
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Figure 5.15: (Top) the exact δw and (middle) the computed δw of the first lineariza-
tion step. (Bottom) the inverted interval velocity model. Compare with Figure 5.11.

time2dep/synth bgrad
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In Figure 5.17, the Dix-inverted prior model highly resembles the Dix velocity, be-

cause the Dix formula only scales the vertical axis from time to depth regardless of

horizontal vd variations. Figure 5.18 compares the cost before and after five lineariza-

tion updates. In Figure 5.19, the l2 norm of the cost, E, has a rapid decrease to

relative 1.3%. Figure 5.20 illustrates the inverted model and interval velocity update.

Figure 5.16: (Top) the estimated time-migration velocity of a section of
Gulf of Mexico dataset and (bottom) the corresponding time-migrated image.

time2dep/beinew vdix

Next, I map the time-migrated image to depth using t0 and x0 generated during
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Figure 5.17: (Top) the Dix velocity converted from vm in Figure 5.16 and
(bottom) the Dix-inverted prior model for inversion, overlaid with image rays.

time2dep/beinew init
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Figure 5.18: The costs of (top) prior model (E = 140.25) and (bottom) inverted

model (E = 1.81). time2dep/beinew inv
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Figure 5.19: Convergence history of the proposed optimization-based time-to-depth
conversion. time2dep/beinew hist

inversion. Spline interpolation (Press et al., 2007) is used during the coordinate

mapping. I also migrate the prestack data by Kirchhoff depth migration (Li and

Fomel, 2013) (PSDM) that is developed in Chapter 4. Figure 5.21 compares the time-

mapped image and PSDM image of the inverted model. A good agreement between

these two images justifies that time-to-depth conversion has effectively unraveled the

tilted time coordinate. Figure 5.22 compares PSDM images of the prior and inverted

models. The velocity update in Figure 5.20 results in not only changes in structural

dips (for example at (3, 12) km) but also improved reflector continuity (for example

at (3.7, 11) km). Moreover, the Kirchhoff migration outputs surface offset common-

image gathers. I choose two midpoint locations, x = 11 km and x = 12 km, and show

their common-image gathers in Figures 5.23 and 5.25. In deeper sections, I further

zoom in the gathers in Figures 5.24 and 5.26. Flat dashed lines are overlaid as

references for the flatness of gathers. The two common-image gathers of prior model

appear curved in opposite directions. After time-to-depth conversion, both gathers
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Figure 5.20: (Top) the inverted model, overlaid with image rays, and (bottom) its

difference from the prior model in Figure 5.17. time2dep/beinew dinv
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get flattened across the whole offset range, verifying a correct velocity update.

Figure 5.21: (Top) the time-migrated image in Figure 5.16 is mapped to depth using
products of the time-to-depth conversion. (Bottom) PSDM image using inverted

model in Figure 5.20. time2dep/beinew dmig

Synthetic dataset

The last step in processing the synthetic dataset of Chapter 1 is time migration

and time-to-depth conversion using the redatumed data from Chapter 4. Similarly
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Figure 5.22: PSDM images of (left) the prior model and (right) the inverted model.

Both images are plotted for the same central deep part. time2dep/beinew ddmig0
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Figure 5.23: The surface offset common-image gathers at x = 11 km of (left) prior

model and (right) inverted model. time2dep/beinew cig1a
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Figure 5.24: Zoom-in of deep parts of Figure 5.23. The events of prior model curve
downward. time2dep/beinew cig1
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Figure 5.25: The surface offset common-image gathers at x = 12 km of (left) prior

model and (right) inverted model. time2dep/beinew cig2a
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Figure 5.26: Zoom-in of deep parts of Figure 5.25. The events of prior model curve
upward. time2dep/beinew cig2

145



to the field data example above, the time migration gives an interval velocity model

through Dix inversion, as shown in Figure 5.27. After 6 iterations, the proposed time-

to-depth conversion updates Dix-inverted model by decreasing the cost E to relative

1.6%. Figure 5.28 compares the inverted model and exact model, where the proposed

method has greatly improved the model misfit beneath Gaussian anomaly. The time-

migrated image can be mapped to depth according to both Dix-inverted model and

inverted model. In Figure 5.30, although the proposed method does not result in

perfectly fat reflector images as in Figure 1.10, the undesired image distortion due to

Gaussian anomaly is considerably alleviated.

DISCUSSION

A 3-D extension of the proposed method is possible. Instead of a scalar x0 we have

both in-line and cross-line coordinates x0 = (x0, y0). Consequently, the geometrical

spreading in 3-D becomes a matrix Q, whose determinant relates the generalized Dix

velocity and interval velocity (Cameron et al., 2007). Starting from this relationship,

an iterative time-to-depth conversion can be established by following procedures sim-

ilar to the ones outlined in this chapter.

The main limitation of my approach is the failure of underlying theory at

caustics, which in turn limits either the depth or the extent of lateral velocity vari-

ation of the model. In practice, we could detect and mask out the caustic regions

from cost function at each iteration. Another choice is to divide the original domain

into several depth chunks, then apply velocity estimation and redatuming from one

chunk to another recursively (Bevc, 1997). By doing so, image-ray crossing may not
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Figure 5.27: The time-migrated image (top) of redatumed data that is free of near-

surface effects and the Dix-inverted prior model (bottom). time2dep/thesis tmigt
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Figure 5.28: The inverted model by proposed iterative time-to-depth conversion
(top) and the exact model (bottom). Compare with Figures 1.10 and 5.27.

time2dep/thesis invt
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Figure 5.29: The costs of (top) prior model and (bottom) inverted model.

time2dep/thesis costt
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Figure 5.30: Time-migrated image in Figure 5.27 mapped to depth using (top) Dix-

inverted model and (bottom) inverted model. time2dep/thesis mapdt
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develop within each chunk thanks to a limited depth interval. The latter option is

more attractive in both theoretical and computational aspects. Its implementation

remains open for future research.

Another issue is the handling of in-flow boundaries other than the earth sur-

face. In the constant velocity gradient and constant horizontal slowness-squared gra-

dient examples, I avoid the problem by limiting the interval velocity model within

image ray coverage. Alternatively, I could pad the input vd laterally. The padding

should simply spray the original boundaries. By doing so, image rays at the new left

and right boundaries must run straightly downward as the media there are of v(z)

type. Although we could not expect the inversion to fix the in-flow boundary, the

resulting errors might be local around that boundary. These errors can be negligible

when considering migration, because the image in central region is of the most interest.

Finally, in my approach time-migration velocity not only determines the prior

model but also drives the inversion. Consequently, errors in time-migration velocity

have a direct influence on the accuracy of inverted model. In practice, the estima-

tion of time-migration velocity is carried out with certain smoothing. Combined with

regularization in the time-to-depth conversion, it is understandable that the resulting

interval velocity model may contain limited fine-scale features and high velocity con-

trasts. In this regard, I suggest the method of this chapter as an efficient estimation

of an initial guess for subsequent depth-imaging velocity model refinements.
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CONCLUSIONS

I have introduced a novel nonlinear inversion formulation for time-to-depth velocity

conversion and coordinate mapping, which reduces to solving a nonlinear system of

partial differential equations iteratively. I turn one of the governing equations that

relates seismic velocity to geometrical spreading of image rays into a cost function

and linearize the other two equations: the eikonal equation and the orthogonality

condition. Regularization provides extra constraints during inversion and fills the

null space. The proposed method appears to be robust and fast converging.
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Chapter 6

Conclusions

Contributions and summary

Ray theory plays an important role in exploration seismology. Although

recent developments in wave-based imaging and velocity model building methods

have demonstrated the potential of handling complex geologies, traveltime-based ap-

proaches are still a popular choice when it comes to efficiency, robustness and flexi-

bility. Traveltime-based methods are often the first step in seismic processing. Wave-

based methods can follow up as a second step if necessary, in order to obtain improved

image and refined velocity model. Therefore, developments in traveltime-based ap-

proaches can directly decrease the overall processing cost and enhance the success

rate of wave-based methods. My thesis is dedicated to improving current techniques

and promoting new ideas in the field of traveltime-based methods.

The major contributions of this thesis cover three topics:

• Verification of the feasibility of first-break traveltime tomography based on

double-square-root eikonal equation.

I consider two upwind discretizations of the DSR eikonal equation and show

that the explicit scheme is only conditionally convergent. On the other hand,

an implicit upwind discretization is unconditionally convergent and monotoni-

cally causal. Therefore I develop a DSR eikonal solver with the implicit scheme
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and a special local update strategy that handles the DSR singularity at hori-

zontal waves. I derive theories for the adjoint-state DSR tomography and apply

upwind finite-differences in its implementation. The DSR tomography is com-

pared against traditional eikonal-based tomography and appears to be more

robust and faster to converge.

• Sparse source interpolation of traveltimes through an eikonal-based traveltime

source-derivative.

I adopt a first-order partial differential equation that originates from differen-

tiating the eikonal equation to compute the traveltime source-derivatives con-

veniently. Unlike methods that rely on explicit finite-difference estimations,

the accuracy of the eikonal-based derivative does not depend on input source

sampling. I implement a cubic Hermite traveltime interpolation with the first-

order traveltime source-derivatives, which effectively improves the efficiency of

Kirchhoff migrations. I also make use of the traveltime source-derivatives in

Kirchhoff anti-aliasing.

• New formulation for robust time-to-depth conversion in laterally variant model.

Instead of extrapolation, I formulate the problem as a nonlinear optimization

directly for interval velocity. By doing so, I use inversion to gradually update

the Dix-inverted model in order to account for the geometrical spreading of

image rays. I further derive the linear operators required in the inversion and

explain how each linearization update is obtained as a feedback of information

across the whole computational domain. Finally, I employ regularization to
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mitigate numerical instability of the problem.

Discussion and future work

All methods covered in this thesis belong to the category of traveltime-based

seismic imaging and velocity model building. Although the image quality of traveltime-

based methods such as Kirchhoff migration is not always comparable with that of

wave-based approaches, a fast Kirchhoff algorithm combined with advances in com-

puting power make interactive migration possible. This is highly desirable for practi-

cal seismic processing. In this regard, my proposed method in Chapter 4 can be one

of crucial components in realizing such a possibility. My work on DSR tomography

is an attempt towards prestack data usage in velocity model building. Due to first-

break constraints, the proposed work is limited to near surface. However, the DSR

formula is also valid for depth migration. It means a prestack reflection tomography

is in theory also feasible. Following the dispersion relation prescribed by DSR eikonal

equation, a kinematically correct wave-based migration as well as its adjoint can be

established. The advantage of such a DSR reflection tomography might be simi-

lar to those of DSR first-break tomography. Time-to-depth conversion on the other

hand completes a bridge between the time- and depth-domain seismic processings.

Although the time-migration in my work is carried out by Kirchhoff algorithm, it is

possible to employ a wave-type migration in the time coordinate. After time-to-depth

conversion, the mapped depth image will have the same quality as one from direct

depth-domain wave-based migration. For this reason, time-domain processing plus

time-to-depth conversion can be a very powerful package that addresses both imaging

and velocity model building.
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All three methods I have developed are currently under an isotropic medium

assumption. Specifically, the eikonal equation adopted in this thesis does not consider

anisotropy. The traveltime source-derivative formula can be derived in anisotropic

case in a similar fashion as the current work. The result might require spatial deriva-

tives of not only velocity but also anisotropic parameters. Therefore, differentiability

of these anisotropic parameters is a key assumption for successful traveltime inter-

polation. The DSR forward modeling must be revisited in order to show that the

implicit discretization is still applicable in the presence of anisotropy. If so, an or-

dered upwind scheme might be feasible for solving the equation efficiently. On the

tomography side, due to the under-determined nature of the problem, certain model

preconditioning is recommended for constraining the extra anisotropy parameters.

Similarly, the theory of time-to-depth conversion allows anisotropy conveniently, as

we could replace the isotropic eikonal equation for image-rays with an anisotropic

one, while the other two equations might also need modifications. However, the

linearization of cost with respect to anisotropy parameters might be very different

from that of velocity. The optimization must carefully address these differences such

that the model update is not only numerically stable but also geologically meaningful.
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PROGRAM DOCUMENTATIONS

In the Appendix I list documentations of the main programs developed in Chapters

3-5. These programs are realized following the Implementation sections of these chap-

ters, along with the operators described in Chapter 2.

sfdsreiko: Double-square-root eikonal solver (2D)

sfdsreiko < in.rsf > out.rsf flag=flag.rsf alpha=alpha.rsf velocity=y

thres=5.e-5 tol=1.e-3 nloop=10 causal=y

string alpha= characteristic angle
bool causal=y [y/n] if y, neglect non-causal branches
string flag= upwind stencil flag
int nloop=10 number of bisection root-search
float thres=5.e-5 threshold (percentage)
float tol=1.e-3 tolerance for bisection root-search
bool velocity=y [y/n] if y, velocity; n, slowness-squared
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sfdsrtomo: Prestack first-arrival traveltime tomography (DSR)

sfdsrtomo < in.rsf > out.rsf reco=reco.rsf grad=grad.rsf flag=flag.rsf

mask=mask.rsf prec=prec.rsf adj=n velocity=y velocity=y shape=n

weight=n pow=2. verb=n niter=5 cgiter=10 thres=5.e-5 tol=1.e-3

nloop=10 eps=0. causal=y rect#=(1,1,...) what=

bool adj=n [y/n] adjoint flag (for what=l)
bool causal=y [y/n] if y, neglect non-causal branches
int cgiter=10 number of conjugate-gradients
float eps=0. regularization parameter
string flag= upwind stencil flag
string grad= gradient (for what=l)
string mask= data preconditioner
int niter=5 number of iterations
int nloop=10 number of bisection root-search
float pow=2. power for data weighting
string prec= model preconditioner
string reco= first-breaks
int rect#=(1,1,...) smoothing radius on #-th axis
bool shape=n [y/n] if y, shaping; n, Tikhonov
float thres=5.e-5 threshold (percentage)
float tol=1.e-3 tolerance for bisection root-search
bool velocity=y [y/n] if y, velocity; n, slowness-squared
bool verb=n [y/n] verbosity flag
bool weight=n [y/n] data weighting
string what= [tomography,linear] what to compute
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sfeikods: Fast marching with source perturbation

sfeikods < vel.rsf > time.rsf shotfile=shots.rsf tdl1=tdl1.rsf

tds1=tds1.rsf tdl2=tdl2.rsf tds2=tds2.rsf vel=y order=2

sweep=n br1=d1 br2=d2 br3=d3 plane1=n plane2=n plane3=n

b1=plane[2]?n1:(int)(br1/d1+0.5) b2=plane[1]?n2:(int)(br2/d2+0.5)

b3=plane[0]?n3:(int)(br3/d3+0.5) zshot=0. yshot=o2+0.5*(n2-1)*d2

xshot=o3+0.5*(n3-1)*d3 l=1

int b1=plane[0]?n1:(int)(br1/d1+0.5) source box size in z (sample)
int b2=plane[1]?n2:(int)(br2/d2+0.5) source box size in y (sample)
int b3=plane[2]?n3:(int)(br3/d3+0.5) source box size in x (sample)
float br1=d1 source box size in z (physical)
float br2=d2 source box size in y (physical)
float br3=d3 source box size in x (physical)
float zshot=o1+0.5*(n1-1)*d1 source location in z
float yshot=o2+0.5*(n2-1)*d2 source location in y
float xshot=o3+0.5*(n3-1)*d3 source location in x
string shotfile= shot locations
int l=1 [1:z; 2:y; 3:x] source perturbation direction
int order=2 [1,2] accuracy order
bool plane1=n [y/n] plane-wave source in z
bool plane2=n [y/n] plane-wave source in y
bool plane3=n [y/n] plane-wave source in x
bool sweep=n [y/n] if y, fast sweeping; n, fast marching
string tdl1= 1st order relative source-derivative
string tdl2= 2nd order relative source-derivative
string tds1= 1st order source-derivative
string tds2= 2nd order source-derivative
bool vel=y [y/n] if y, velocity; n, slowness-squared
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sfkirdat: 2D Prestack Kirchhoff redatuming

sfkirdat < in.rsf > out.rsf sgreen=sgreen.rsf rgreen=rgreen.rsf verb=n

datum= aperture=50 taper=10 length=0.025

int aperture=50 aperture (number of traces)
float datum= datum depth
float length= filter length (second)
string sgreen= traveltime table for sources
string rgreen= traveltime table for receivers
int taper=10 taper (number of traces)
bool verb=n [y/n] verbosity flag

161



sfkirmig: 2D Prestack Kirchhoff depth migration

sfkirmig < dat.rsf > mig.rsf table=tbl.rsf deriv=der.rsf adj=y cmp=y

nt= nh=1 ns=1 t0=0. dt= h0=0. dh= s0=0. ds= tau=0. aperture=90.

antialias=1. cig=n type=

bool adj=y [y/n] if y, migration; n, modeling
float antialias=1. antialiasing
float aperture=90. migration aperture (degree)
bool cig=n [y/n] if y, common offset/receiver gathers
bool cmp=y [y/n] if y, CMP gather; n, shot gather
string deriv= traveltime source-derivatives
float h0=0. offset/receiver origin (for adj=n)
float dh= offset/receiver sampling (for adj=n)
int nh= number of offsets/receivers (for adj=n)
float t0=0. time origin (for adj=n)
float dt= time sampling (for adj=n)
int nt= number of time (for adj=n)
float s0=0. source origin (for adj=n)
float ds= source sampling (for adj=n)
int ns= number of sources (for adj=n)
string table= traveltime tables
float tau=0. time-shift (second)
string type= [linear,partial,hermit] type of interpolation
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sfirays: Fast marching for image rays and time coordinate

sfirays < in.rsf > out.rsf t0=t0.rsf x0=x0.rsf f0=f0.rsf velocity=y

order=1 thres=10.

string f0= one-sided stencil locations
int order=1 [1,2] fast-marching accuracy order
string t0= time coordinate
string x0= time coordinate
float thres=10. threshold for caustics
bool velocity=y [y/n] if y, velocity; n, slowness-squared
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sftdconvert: Iterative time-to-depth velocity conversion

sftdconvert < in.rsf > out.rsf dix=dix.rsf t0=t0.rsf x0=x0.rsf

f0=f0.rsf grad=grad.rsf cost=cost.rsf mask=mini.rsf prec=prec.rsf

velocity=y order=1 thres=10. niter=1 cgiter=200 shape=n eps=0.1

nline=0 verb=n tol=1.e-6 rect#=(1,1,...)

int cgiter=5 number of conjugate-gradients
string cost= cost
string dix= Dix velocity
float eps=0.1 regularization parameter
string f0= one-sided stencil locations
string grad= gradient
string mask= data preconditioner
string mval= model preconditioner
int niter=5 number of iterations
int nline=5 number of line-search
int order=1 [1,2] fast-marching accuracy order
string prec= model preconditioner
int rect#=(1,1,...) smoothing radius on #-th axis
bool shape=n [y/n] if y, shaping; n, Tikhonov
string t0= time coordinate
string x0= time coordinate
float thres=10. threshold for caustics
float tol=1.e-3 tolerance for shaping
bool velocity=y [y/n] if y, velocity; n, slowness-squared
bool verb=n [y/n] verbosity flag
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