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Abstract: Earthquake-induced landslides are a significant seismic hazard that can 

generate large economic losses.  Predicting earthquake-induced landslides often involves 

an assessment of the expected sliding displacement induced by the ground shaking.  A 

deterministic approach is commonly used for this purpose.  This approach predicts 

sliding displacements using the expected ground shaking and the best-estimate slope 

properties (i.e., soil shear strengths, ground water conditions and thicknesses of sliding 

blocks), and does not consider the aleatory variability in predictions of ground shaking or 

sliding displacements or the epistemic uncertainties in the slope properties.   

In this dissertation, a probabilistic framework for predicting the sliding 

displacement of flexible sliding masses during earthquakes is developed.  This 

framework computes a displacement hazard curve using: (1) a ground motion hazard 

curve from a probabilistic seismic hazard analysis, (2) a model for predicting the dynamic 

response of the sliding mass, (3) a model for predicting the sliding response of the sliding 

mass, and (4) a logic tree that incorporates the uncertainties in the various input 

parameters.  The developed probabilistic framework for flexible sliding masses is 
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applied to a slope at a site in California.  The results of this analysis show that the 

displacements predicted by the probabilistic approach are larger than the deterministic 

approach due to the influence of the uncertainties in the slope properties.  Reducing 

these uncertainties can reduce the predicted displacements.   

Regional maps of seismic landslide potential are used in land-use planning and to 

identify zones that require detailed, site-specific studies.  Current seismic landslide 

hazard mapping efforts typically utilize deterministic approaches to estimate rigid sliding 

block displacements and identify potential slope failures.  A probabilistic framework that 

uses displacement hazard curves and logic-tree analysis is developed for regional seismic 

landslide mapping efforts.  A computationally efficient approach is developed that 

allows the logic-tree approach to be applied for regional analysis.  Anchorage, Alaska is 

used as a study area to apply the developed approach.  With aleatory variability and 

epistemic uncertainties considered, the probabilistic map shows that the area of high/very 

high hazard of seismic landslides increases by a factor of 3 compared with a deterministic 

map.   
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Chapter 1 Introduction 

 

1.1 RESEARCH SIGNIFICANCE 

 

A landslide is the downslope movement of soil or rock materials (i.e., sliding 

mass).  Most slopes are stable under static conditions, but when an earthquake occurs the 

seismically-induced ground shaking is often sufficient to cause failures of slopes which 

were marginally to moderately stable under static conditions. 

Tremendous amounts of damage have been caused by earthquake-induced 

landslides in previous earthquakes.  In some earthquakes, landslides have been 

responsible for more than half of the total damage caused by all the seismic hazards.  In 

the 1964 Alaska earthquake, earthquake-induced landslides caused an estimated 56% of 

the total cost of damage (Youd 1978, Wilson and Keefer 1985).  More than half of all 

deaths in large (M>6.9) earthquakes in Japan between 1964 and 1980 were caused by 

seismic landslides (Kobayashi 1981).  The 1920 Haiyuan earthquake (M=8.5) in the 

Ningxia Province of China induced hundreds of large landslides, which took away 

100,000 lives (Close and McCormick 1922).  Predicting earthquake-induced landslides 

is essential for reducing losses of lives and properties caused by earthquakes, thus it is an 

important activity for geotechnical engineers.  

Predicting earthquake-induced landslides often involves an assessment of the 

expected sliding displacement induced by the ground shaking.  The current deterministic 

approach predicts sliding displacements using the expected ground shaking and the best-
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estimate slope properties (i.e., soil shear strengths, ground water conditions and 

thicknesses of sliding blocks).  In the deterministic approach, neither the aleatory 

variability in predictions of ground shaking or sliding displacement nor the epistemic 

uncertainties in the slope properties are considered.  Such aleatory variability and 

epistemic uncertainties have significant influence on the predicted seismic performance 

of slopes, and should be taken into account to properly evaluate the seismic risk 

associated with earthquake-induced landslides.  Rathje and Saygili (2008) proposed a 

probabilistic approach using displacement hazard curves to deal with the aleatory 

variability, and they introduced a logic-tree analysis for slope properties to take epistemic 

uncertainties into account (Rathje and Saygili 2009).   However, this probabilistic 

approach is based on a rigid sliding block analysis, which assumes the sliding mass is a 

rigid block sliding on a plane and ignores the dynamic response of deep/soft soil masses.   

In this dissertation, a probabilistic framework for predicting the sliding 

displacement of flexible sliding masses during earthquakes is developed.  This 

framework computes a displacement hazard curve using: (1) a ground motion hazard 

curve from a probabilistic seismic hazard analysis, (2) a model for predicting the dynamic 

response of the sliding mass, (3) a model for predicting the sliding response of the sliding 

mass, and (4) a logic tree that incorporates the uncertainties in the various input 

parameters.  After developing the framework, the practical implementation of the 

approach is demonstrated through application to an actual site in California.  This 

example demonstrates how the developed framework can be implemented using existing 

ground motion hazard information from the U.S. Geological Survey and conventional 

geotechnical site characterization.  The influence of different sources of uncertainty are 

explored through this example.    
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On a regional scale, the locations of potential seismic landslides across a region 

can be mapped through the computation of sliding displacements.  Seismic landslide 

hazard maps are used in land-use planning and emergency-response planning, and to 

identify zones that require detailed, site-specific studies.  The United States Geological 

Survey (USGS) and California Geological Survey (CGS) have been creating seismic 

landslide hazard maps (e.g., Jibson et al. 2000, McCrink 2001) by assigning hazard 

categories across areas based on displacements computed using the deterministic 

approach.  Yet there are significant uncertainties regarding the input parameters used to 

predict displacement, particularly when applied at a regional scale.  In this dissertation, a 

logic-tree approach that describes the epistemic uncertainties in the slope properties is 

used to incorporate uncertainty into the regional mapping of seismic landslide hazard.  

The direct application of the logic-tree approach is very time-consuming for regional 

mapping, thus this dissertation develops an efficient computational scheme (i.e., the 

Mean λD Threshold approach) that allows the logic-tree approach to be applied more 

easily to regional analysis.  As a result, we develop a practical approach to rigorously 

incorporating variability and uncertainty into seismic landslide hazard mapping without 

significantly increasing the computational complexity compared with the deterministic 

approach.  Anchorage, Alaska is selected as a study area to demonstrate the logic-tree 

approach. The application of the approach to a real study area allows the influence of 

different sources of uncertainty on the seismic landslide hazard map to be quantified, and 

it allows for a comparison with various deterministic approaches. 
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1.2 SCOPE OF RESEARCH 

 

This dissertation focuses on the development of probabilistic analysis to predict 

the earthquake-induced sliding displacements of flexible slopes and the improvement of 

probabilistic seismic landslide hazard mapping. 

Chapter 1 briefly discusses the significance of modeling earthquake-induced 

landslides and the current approaches to site-specific and regional analyses.   

Chapter 2 introduces sliding displacements for the evaluation of seismic landslide 

potential.  The sliding resistance of a slope is characterized as a yield acceleration, which 

can be computed through a seismic slope stability analysis.  An infinite slope model is 

adopted for shallow landslides, and slice methods are used to perform the seismic slope 

stability analysis for deep failures.  Empirical models for rigid and flexible sliding 

displacements are presented along with supplemental empirical models for the seismic 

loading parameters and mean period of ground motion. 

Chapter 3 presents the current deterministic and probabilistic approach to 

predicting sliding displacements.  The dynamic response of flexible sliding masses is 

investigated and compared with the behavior of rigid sliding blocks.  The probabilistic 

approach is extended to flexible sliding masses by considering the dynamic response.  A 

logic-tree analysis is introduced to incorporate epistemic uncertainties in shear strengths, 

as well as the aleatory variability in the prediction of the mean period of the ground 

motion. 

Chapter 4 demonstrates the application of the probabilistic framework for flexible 

sliding displacements.  The Lexington Elementary School site, located in a region with 

frequent seismic activity, is selected to perform the probabilistic analysis.  The 

interpolation of shear strength data, the calculation of yield accelerations, and the 
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specification of the ground motion hazard are discussed to construct a logic tree.  The 

importance of uncertainties is revealed by exploring the influence of the logic-tree 

analysis on the dynamic response and sliding displacements. 

Chapter 5 first reviews the current seismic landslide mapping procedures using 

the deterministic approach and through displacement hazard curves.  The procedure to 

create a logic tree for regional mapping based on epistemic uncertainties in slope 

properties and among empirical displacement models is discussed.  The Mean λD 

Threshold approach is developed to reduce the heavy loads of computation required to 

implement the regional logic-tree analysis. 

Chapter 6 describes the application of the probabilistic seismic landslide hazard 

mapping approach developed in Chapter 5.  Anchorage, Alaska, which has a significant 

seismic hazard from crustal faults and a subduction zone, is selected as the study area.  

The topography, geology, ground water conditions and ground motion hazard are 

described and characterized to determine the values and associated weights used in the 

logic-tree analysis.  The results show the significance of logic-tree analysis for regional 

mapping. 

Chapter 7 presents the conclusions of this dissertation, and discusses future 

improvements on the study of this dissertation. 
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Chapter 2 Evaluating Seismic Landslide Potential 

 

2.1 INTRODUCTION 

 

Under static conditions, a landslide/slope failure occurs when a slope is 

“permanently” destabilized by extra driving forces and/or reduced shear strengths that are 

commonly due to increased pore water pressures.  During an earthquake, extra driving 

forces are applied to the slope due to the inertial forces related to earthquake shaking.  

The inertial forces vary with time in the same way that acceleration with time during 

earthquake shaking.  Although the maximum seismic loading during earthquake shaking 

may exceed the shear strength of the soil, the exceedance of the strength may occur for 

only a short time and the cumulative deformation of the sliding mass may not be large 

enough to cause considerable damage.   

The first efforts for estimating the influence of seismic shaking on slopes were 

initiated in the 1950s.  Terzaghi (1950) developed a static limit-equilibrium analysis 

based on adding an earthquake force to the sliding mass.  His concept was so valuable 

that it was widely known and accepted as pseudo-static analysis (Jibson 2011).  A few 

years later the finite element method (FEM), which is also known as stress-deformation 

analysis, was developed and applied to the computation of permanent deformation in the 

soil mass.  However, finite element analysis requires much more detailed information on 

the soil properties and site conditions such that, even today, it is only performed for 

important projects by well-trained engineers.  To bridge the gap between these two types 
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of analyses, Newmark (1965) proposed a rigid sliding block analysis for assessing the 

sliding displacement and failure of slopes during earthquakes.  In this approach, 

accelerations that are greater than the yield acceleration result in downslope movement of 

a slope mass.  The yield acceleration (ky), when multiplied by the mass of the sliding 

mass, represents the horizontal destabilizing force that results in a factor of safety of 1.0.  

The yield acceleration can be computed through a pseudo-static slope stability analysis.  

Acceleration-time histories are required for the computation of cumulative sliding 

displacements during the ground shaking.  The magnitude of sliding displacement relates 

well with observations of seismic performance of slopes (e.g., Jibson et al. 2000), and 

thus has been a useful parameter in seismic design and hazard assessment.  Since the 

development of the rigid sliding block approach in the 1960s, it has been extended to 

flexible sliding masses.   

This chapter introduces the limit equilibrium analyses used to compute the ky 

required for sliding displacement analyses.  The procedures to estimate sliding 

displacements for rigid and flexible sliding masses are also presented. 

 

2.2 SEISMIC SLOPE STABILITY ANALYSIS 

 

Under static conditions, the factor of safety (        ) is used to evaluate slope 

stability.  The factor of safety is calculated from the force and/or moment equilibrium of 

a potential failure surface.  The factor of safety is defined as the ratio of shear strength to 

the equilibrium shear stresses on the potential failure surface.  A stable slope has a static 

factor of safety greater than 1.0.  A failure occurs when the static factor of safety drops 
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below 1.0 and it cannot reach above 1.0 until the failure stops and a new force/moment 

equilibrium is established, 

During an earthquake, the soil mass on a slope experiences inertial forces due to 

the ground shaking.  The seismic loading force can be represented by the mass of the soil 

(W/g) multiplied by a seismic coefficient (k), F =      .  The seismic coefficient 

varies with time in much the same way as an earthquake acceleration-time history.  If the 

maximum seismic loading force exceeds the sliding resistance of the slope, the seismic 

factor of safety (         ) falls below 1.0.  However, the time during which           is 

less than 1.0 may be small and failure may not occur.  Therefore,           may not be 

the best representation of the seismic stability of a slope.  Instead the sliding 

displacement induced by the seismic loading provides a better assessment of the seismic 

performance of slopes.  The computation of sliding displacements requires the yield 

acceleration ky to characterize the sliding resistance.  ky represents the seismic loading 

that initiates instability and is equal to the seismic coefficient that produces           

   .  A pseudo-static analysis, which assumes the seismic loading as a static force, is 

performed to calculate ky.   

In natural slopes, a common failure mode for seismic landslides is a thin, veneer 

slope failure (Keefer 2002).  Jibson (2011) noted that about 90% of earthquake-induced 

landslides are shallow slides and falls in rock and debris.  Considering various studies, 

the depth of shallow seismic landslides has been defined as: (1) about 1 to 2 m (Kieffer et 

al. 2006, Parise and Jibson 2000), (2) about 1 to 5 m (Harp and Jibson 1996), and (3) less 

than 3 m (Keefer 1984, 1999 and 2002).  Jibson et al. (2000) used a thickness (t) of 2.4 

m (8 ft) for a seismic landslide hazard map in Southern California, which was 

representative of typical failures in the 1994 Northridge earthquake.  In this case, the 

depth of the failure surface (typically several meters) is much smaller than the length of 
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the slope failure (dozens of meters to hundreds of meters) and an infinite slope model can 

be used to assess the stability of the slope. 

Figure 2.1 shows an infinite slope model for static conditions.  W is the weight of 

the failure block, σ and τ are the normal and shear stresses on the failure surface, c’ is the 

effective cohesion, ϕ’ is the effective friction angle, γ is the material unit weight, γw is the 

unit weight of water, α is the slope angle, t is the slope-normal thickness of the rigid 

block, and m is the proportion of the block thickness that is saturated and thus represents 

pore water pressure.  The static Factor of Safety can be expressed as: 

 

         
   (      )            

        
 

  

        
 

     

    
(    

  

 
)        (2.1) 

 

 

 

Figure 2.1  Infinite Slope Model under Static Condition 

 

By assuming ground shaking parallel to the slope, the yield acceleration that 

produces               can be calculated as:   
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   (      )             

                ⁄
     

   (          )                       (2.2) 

 

where g is the acceleration of gravity.  The ground shaking can also be assumed as 

horizontal, but in most cases the resulting yield acceleration only has a small difference 

(Saygili, 2008).   

The yield acceleration is calculated by using the static factor of safety derived 

from an effective stress analysis of the infinite slope model.  However, the effective 

stress analysis under seismic conditions requires the knowledge of excess pore water 

pressures generated by the seismic loading on the failure surface.  For gravels and coarse 

sands, no excess pore water pressure is built up due to the rapid drainage of soils.  For 

silts and clays, undrained shear strengths with zero friction angles are used in Equation 

2.1, so that a total stress analysis is performed and the excess pore water pressures are not 

required for the          calculation.  For fine sands, soil liquefaction can be triggered if 

the high excess pore water pressures are established, but the liquefaction mechanism is 

beyond the scope of this dissertation.     

Seismic landslides can also occur as deep rotational/translational slides.  

Softer/deeper soil masses typically have deeper failures, and the failure depth can be up 

to dozens of meters.  Keefer (1984) describes common deep failures (depth > 3 m) as 

coherent slides, including rock and soil slumps, rock and soil block slides, and some slow 

earth flows.  Harp and Jibson (1996) found that deep, coherent landslides (depth > 5 m) 

triggered by the 1994 Northridge Earthquake were far less numerous than shallow 

landslides, but their contribution to the total volume of landslide materials is significant 
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due to their much larger volume per slide.  Limit equilibrium analyses of circular and/or 

non-circular failure surfaces are required to evaluate the factor of safety of these types of 

failures.  Many methods of slices (e.g., Spencer 1967) have been developed for the 

analysis of these types of failure surfaces.  In these approaches, the soil mass sitting on a 

failure surface is divided into slices (Figure 2.2), and force and/or moment equilibriums 

are satisfied in each slice.  For seismic conditions, a seismic force is applied to each slice 

based on the seismic coefficient and weight of the slice.  The yield acceleration is the 

seismic coefficient that produces               under the pseudo-static condition (i.e., 

the seismic loading is applied as a static force on the soil mass). 

 

 

Figure 2.2  Slices of a slope under pseudo-static conditions 
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2.3 SLIDING BLOCK DISPLACEMENTS 

 

Sliding block displacements are computed for a given yield acceleration (ky) and 

earthquake ground motion.  For rigid sliding block analysis, the slope is considered a 

rigid block sitting on a base (i.e. failure surface).  Given an acceleration-time history, 

sliding starts when the acceleration-time history exceeds the yield acceleration and it 

continues until the relative velocity between the sliding block and base drops back to 

zero.  Figure 2.3 shows a schematic of the rigid sliding block analysis.  At point X, 

where the ground acceleration reaches the level of the yield acceleration, sliding starts.  

The relative acceleration between the base and ky is numerically integrated to obtain the 

relative velocity, and the relative velocity is numerically integrated to obtain the relative 

sliding displacement.  At point Y, the ground acceleration decreases to the ky level, but 

the sliding does not stop due to non-zero relative velocity.  At point Z, the relative 

velocity becomes zero and sliding stops.  Sliding is triggered each time the ground 

acceleration exceeds the ky level.  To calculate the relative displacement between the 

sliding block and base for the entire time history, the relative acceleration-time is 

integrated twice with respect to time in the ranges when sliding occurs. 
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Figure 2.3  Illustration of rigid sliding block analysis (adapted from Wilson and Keefer 

1983 by Jibson et al. 2000)  

 

The rigid sliding block assumption is good for computing sliding displacements 

of shallow landslides, because the seismic behaviors at different depths only have 

negligible difference within the thin soil mass.  Therefore the seismic coefficient (k)-

time histories of shallow soil masses can be assumed the same as the input acceleration-

time histories on the base (Figure 2.4a).  However, such assumption is not appropriate 

for deeper and/or softer sliding masses, which behave as flexible bodies subjected to high 
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frequency input signals (Figure 2.4b).  The dynamic response of flexible sliding masses 

must be taken into account for the computation of flexible sliding displacements through 

a decoupled sliding block analysis (e.g., Makdisi and Seed 1978).  In this analysis, the 

seismic loading force induced by the spatially variable accelerations within the sliding 

mass at any time is represented by an equivalent, average seismic coefficient, k (Figure 

2.4b).  The k-time history can be computed from dynamic analysis of the sliding mass 

and this k-time history is used in the sliding block analysis to predict displacements.   

The dynamic response of flexible sliding masses can be computed through two-

dimensional (2-D) finite element analysis.  Alternatively, modeling the sliding mass as a 

one-dimensional (1-D) soil column can provide an adequate estimate of the seismic 

loading for flexible sliding masses (Rathje and Bray 2001, Vrymoed and Calzascia 1978).  

This 1-D modeling simplification is convenient for computing the average k-time history 

of a flexible sliding mass from an input acceleration-time history.  

 

 

 

 



 15 

 

(a) 

 

 

(b) 

Figure 2.4  Seismic loading for (a) rigid sliding masses and (b) flexible sliding masses 

(Rathje et al. 2013) 
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2.4 EMPIRICAL MODELS FOR RIGID SLIDING DISPLACEMENT  

 

Sliding block analysis requires the yield acceleration of a slope and the 

acceleration-time history at a site.  Because of the variable nature of earthquake ground 

motions, a suite of at least 7 to 10 acceleration-time histories are commonly used for 

analysis.  However, the identification, selection, and scaling of appropriate acceleration-

time histories is a difficult and time-consuming process.  Instead of directly using 

acceleration-time histories to predict rigid sliding block displacements, many empirical 

models have been proposed in the past decades for computing sliding block 

displacements based on various characteristics of ground shaking and the yield 

acceleration.  Theses empirical displacement models are from the regression analysis of 

thousands of cases in which the complete sliding block analysis was conducted. 

Ground motion parameters (GMs), such as Peak Ground Acceleration (PGA), 

Peak Ground Velocity (PGV), mean period of ground motion (Tm) and Arias Intensity 

(Ia), have been used individually or in combination to represent the level of ground 

shaking in empirical displacement models.  The general form of an empirical 

displacement model is expressed as: 

 

ln(D) = f(ky, GMs)                        (2.3) 

 

Here, the natural logarithm of the predicted sliding displacement (D) is a function of the 

yield acceleration and the ground motion parameters (GMs).  The most commonly 

available ground motion parameters for seismic hazard predictions are PGA, response 

spectral acceleration, and PGV.  Bray and Travasarou (2007), Jibson (2007), and Rathje 

and Saygili (2009) have proposed empirical displacement models for rigid sliding masses 
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that use PGA to represent the level of ground shaking and earthquake magnitude (M) to 

provide an indirect measure of frequency content.  Because only one ground motion 

parameter is used in these models, they are considered scalar models.  If more than one 

ground motion parameter is included in an empirical model, the standard deviation (i.e., 

variability) of the predicted sliding displacement can be significantly reduced (Saygili 

and Rathje 2008).  Saygili and Rathje (2008) proposed a rigid sliding block model using 

PGA and PGV as the ground motion parameters, and such a model is a vector model.  

Jibson (2007) proposed vector models using PGA and Ia.   

Four empirical displacement models are used to compute rigid sliding 

displacements in following chapters: Bray and Travasarou (2007, BT07), Jibson (2007, 

J07), Rathje and Saygili (2009, RS09), and Saygili and Rathje (2008, SR08).  The three 

scalar models (BT07, J07 and RS09) and one vector model (SR08) are expressed as: 
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(2.4d) 

 

where D is the rigid sliding displacement in units of cm, PGA and ky are in units of g, and 

PGV is in units of cm/s.  The BT07 model requires one first to calculate the probability 

of zero displacement (P[D = 0]), then the calculated D value is conditional on the 

probability of non-zero displacement (P[D > 0]). 

Figure 2.5 plots the displacement predicted by each of the four models as a 

function of ky for deterministic ground motions representing M = 7.5 and a distance of 5 

km.  Using a ground motion prediction equation for rock conditions, the corresponding 

median PGA is 0.35 g and PGV is 42 cm/s.  For all of the models, the predicted sliding 

displacement decreases with increasing yield acceleration.  However, at any given value 

of ky the displacements predicted by the various models vary by a factor of 3. 
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Figure 2.5  Predicted sliding displacements as a function of ky 

 

The ground motion values used in the empirical displacement models can be 

specified from a deterministic seismic hazard analysis (DSHA), in which a ground 

motion prediction equations (GMPE) is used to predict the ground shaking based on the 

expected earthquake magnitude (M), site-to-source distance (R), and shear wave velocity 

(e.g., Vs,30 = average shear wave velocity within 30-m depth).  Today it is more common 

to specify ground motions from a probabilistic seismic hazard analysis (PSHA).  PSHA 

computes a seismic hazard curve which provides the annual probability (or frequency) of 

exceedance of different ground motion levels.  PSHA accounts for all M and R within 

the study area and their probability of occurrence, as well as the aleatory variability in 

ground motions.  The ground motion hazard curves are used to identify ground motions 

associated with a prescribed seismic hazard level (e.g., often 10% or 2% probability of 

M = 7.5 

R = 5 km 

PGA = 0.35 g 

PGV = 42 cm/s 
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exceedance in 50 years).  Seismic hazard deaggregation provides information about the 

contribution of different earthquake scenarios (M and R values) to the ground motion 

hazard. 

 

2.5 EMPIRICAL MODELS FOR FLEXIBLE SLIDING DISPLACEMENT  

 

Similar to rigid sliding block analysis, flexible sliding displacement can also be 

predicted using empirical models.  However, these empirical models must predict both 

the dynamic response and sliding displacement of the sliding mass.  Two seismic 

loading parameters, kmax and k-velmax, for flexible sliding masses are analogous to the 

parameters PGA and PGV for rigid sliding masses and are used to represent the dynamic 

response of flexible sliding masses.  kmax is the maximum seismic coefficient of the k-

time history. k-vel is the integral of the k-time history over time, as shown in Figure 2.4b, 

k-velmax is the maximum value of the k-vel-time history.  Rathje and Antonakos (2011) 

developed empirical models for kmax and k-velmax based on 400 site response analyses of 

1-D soil columns, thus kmax and k-velmax can be predicted without directly computing the 

k-time history from dynamic analysis.  The empirical models for kmax and k-velmax are 

expressed as: 

 

For Ts/Tm  0.1:    (       ⁄ )  (               )    ((    ⁄ )    ⁄ ) 

                                      (                )    ((    ⁄ )    ⁄ )    

                                      

For Ts/Tm < 0.1:    (       ⁄ )       

                           

   (       ⁄ )                                  (2.5a) 
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For Ts/Tm  0.2:     ( -         ⁄ )  (     )    ((    ⁄ )    ⁄ ) 

                                         (                )    ((    ⁄ )    ⁄ )  

 

For Ts/Tm < 0.2:     ( -         ⁄ )           

                      

   (           ⁄ )                               (2.5b) 

 

where Ts is the natural period of the sliding mass, calculated as          for 1-D soil 

columns with H the thickness of the sliding mass,    the average shear wave velocity of 

the sliding mass, and Tm is the mean period of the ground motion.  A site with higher Ts 

is softer, and a larger Tm represents a motion that contains more energy at long periods. 

Figure 2.6 and Figure 2.7 show the variations of kmax/PGA and k-velmax/PGV as a 

function of Ts/Tm developed by Rathje and Antonakos (2011) using the results of 400 1-D 

site response analyses.  The empirical model predicts kmax = PGA at Ts/Tm  0.1, 

indicating rigid sliding conditions.  kmax is larger than PGA for PGA < 0.2 g and for 

Ts/Tm < 0.5, and the ratio of kmax/PGA generally decreases with increasing PGA or Ts/Tm.  

For k-velmax the rigid sliding conditions extend to Ts/Tm  0.2.  k-velmax can be slightly 

greater than PGV for small PGA values, and k-velmax/PGV deceases slowly with 

increasing PGA or Ts/Tm.   
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Figure 2.6  Variation of kmax/PGA as a function of Ts/Tm (Rathje and Antonakos 2011) 

 

 

Figure 2.7  Variation of k-velmax/PGV as a function of Ts/Tm (Rathje and Antonakos 

2011) 
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The mean period Tm represents the frequency content of an earthquake ground 

motion and was firstly proposed by Rathje el al. (1998).  When the frequency content of 

a ground motion closely matches the natural period of a sliding mass, the dynamic 

response is enhanced due to resonance.  The calculation of Tm utilizes the Fourier 

Amplitude Spectrum, averaging the periods weighted by the Fourier amplitudes of the 

ground motion.  Rathje et al. (2004) developed an empirical model for Tm as a function 

of earthquake moment magnitude (M), closest distance to the fault rupture (R, unit of 

km), site classifications (Rodriguez-Marek et al. 2001), and forward directivity (FD). 

 

  (  )            (   )                            

                      (     ⁄ )     

 

    (  )  √(           )                         (2.6) 

 

where magnitude is limited to 7.25 for M > 7.25.  SC and SD are indicator variables for 

site classes (SC = 0 and SD = 0 for site class B, SC = 1 and SD = 0 for site class C, and SC 

= 0 and SD = 1 for site class D).              is 0.42 for site class B, 0.38 for site class C, 

and 0.31 for site class D.  FD indicates forward directivity conditions (FD = 1 for sites 

with M ≥ 6.0, R ≤ 20 km, azimuth angle ≤ 30°, and rupture length ratio ≥ 0.5, FD = 0 

otherwise). 

Tm generally increases with increasing M and R, because larger magnitude 

earthquakes generate more energy at long periods and short-period motions are 

attenuated faster with increasing distance.  However, Tm is larger with closer distance to 

the earthquake source when forward directivity is taken into account.  Sites with softer 
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soil have larger Tm values, because short-period motions are damped out and long-

periods are amplified during the propagation in deeper/softer soils. 

With predictions of the seismic loading parameters, Rathje and Antonakos (2011) 

also developed empirical models for flexible sliding displacements based on the RS09 

and SR08 models.  kmax and k-velmax are used in lieu of PGA and PGV in Equations 2.4c 

and 2.4d, and additional modification terms are added to the RS09 and SR08 models.  

The scalar and vector empirical models are expressed as: 
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               (
  

    
)                 (2.7b) 

 

where DPGA,M and DPGA,PGV represents the median displacements predicted by the RS09 

and SR08 rigid sliding block models.  kmax and k-velmax are used in lieu of PGA and 

PGV for the calculation of DPGA,M and DPGA,PGV. 

The displacements computed by empirical models are not exact predictions of 

actual, measureable displacements.  Sliding displacement analysis only models seismic 

displacements directly caused by the ground shaking.  Soil materials may weaken by the 

sliding displacement, leading to reduction of the static factor of safety and continuing 
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post-seismic displacement.  The predicted results indicate the likelihood of continuing 

deformation and the occurrence of landslides, which means that a larger displacement 

represents a higher probability of landslide occurrence (Jibson et al. 2000).  In fact, 

Jibson et al. (1998, 2000) developed an empirical relationship between predicted rigid 

sliding displacements and actual landslide occurrence based on the observed landslides 

triggered by the 1994 Northridge earthquake.  These probabilities were used by USGS 

(Jibson and Michael 2009) to define seismic hazard categories based on the estimated 

displacements and probability of landslide occurrence (Table 2.1).  The displacement 

thresholds currently used by the California Geological Survey (McCrink and Real 1996, 

McCrink 2001) for its seismic landslide maps are 5cm, 15cm, and 30cm, which result in 

four landslide hazard categories (very low, low, moderate, and high).  The CGS 

approach assumes no shear strength contribution from cohesion (c’ = 0), thus the 

predicted displacements are relatively larger than the USGS approach.  Therefore, the 

CGS thresholds are higher than the USGS thresholds for the same hazard categories.  In 

this study, the USGS displacement thresholds are adopted to determine seismic landslide 

hazard categories. 

 

Table 2.1 Seismic Hazard Categories based on Newmark Displacement (Jibson and 

Michael 2009) 

Hazard 

Category 

Sliding 

Displacement (cm) 

Probability of 

Landslide (%) 

Low 0 - 1 0 - 2 

Moderate 1 - 5 2 - 15 

High 5 - 15 15 - 32 

Very High > 15 > 32 
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2.6 SUMMARY  

 

Rigid sliding block displacement can be used to evaluate seismic landslide 

potential of slopes.  The computation of rigid sliding displacements requires the yield 

acceleration of the slope and the acceleration-time history.  For shallow landslides, a 

pseudo-static infinite slope model is introduced to characterize a sliding block sitting on a 

base and to compute the yield acceleration.  For deep failure surfaces, the yield 

acceleration is computed through a limit equilibrium analysis under the pseudo-static 

condition with the seismic factor of safety equal to 1.0.   

To simplify the computation of rigid sliding displacement, many researchers have 

developed empirical displacement models using ground motion parameters rather than 

acceleration-time histories.  These displacement models were introduced.  Empirical 

models for flexible sliding masses are also available.  Unlike rigid sliding blocks, the 

dynamic response of flexible sliding masses has significant influence on sliding 

displacements and must be taken into account.  The empirical models for flexible sliding 

masses predict both the dynamic response and sliding displacement of the slope.  For 

both rigid and flexible sliding masses, the predicted sliding displacements are used to 

indicate the likelihood of landslide occurrence and to assign seismic landslide hazard 

categories.   
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Chapter 3 Probabilistic Framework for Flexible Sliding 

Displacements1 

 

3.1 INTRODUCTION 

 

Seismic landslide potential can be evaluated by computing sliding displacements 

using sliding block analysis.  For shallow landslides, the dynamic response of sliding 

masses can be ignored, so rigid sliding displacements are appropriate for the evaluation 

of seismic landslide potential.  However, the dynamic response of deeper/softer sliding 

masses is significantly different from rigid sliding masses. This dynamic response can be 

taken into account through a decoupled sliding block analysis, which uses the results 

from a dynamic response analysis as input into a rigid sliding block analysis.  Empirical 

models provide a simple and fast way for predicting the dynamic response and sliding 

displacement without the need of choosing suitable ground motions for the analysis. 

Empirical models predict sliding displacements as a function of ground motion 

parameters and site parameters.  There is significant aleatory variability (i.e. large 

standard deviation,     ), also known as natural randomness, associated with each 

empirical model, so that a given set of input parameters relates to a large range of 

possible displacements.  Earthquake ground motions also have significant aleatory 

variability.  The current deterministic approach for computing sliding displacements 

either ignores or does not rigorously treated the aleatory variability in the expected 

                                                
1 This Chapter is based on a published paper authored by Rathje et al. (2013).  Dr. Ellen Rathje and 

Yubing Wang did the major work.  Dr. Peter Stafford provided feedback and assistance.  Dr. Rathje’s 

former students, George Antonakos and Dr. Gokhan Saygili, also contributed to this paper. 
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ground motion, dynamic response, and predicted displacement.  Therefore, the 

deterministic approach may underestimate the seismic landslide potential. 

Alternatively, Rathje and Saygili (2008) developed a probabilistic approach to 

incorporate the aleatory variability displacement calculation through the use of 

displacement hazard curves, which can quantify the hazard levels for different levels of 

slope displacement.  The developed probabilistic approach is only applicable to rigid 

sliding displacement analysis.  This chapter extends the probabilistic approach to 

flexible sliding masses by taking into account the dynamic response of slope. 

Additionally, a logic tree approach is introduced that allows one to incorporate the 

epistemic uncertainties associated with the slope properties (i.e., soil shear strengths, 

ground water table and thickness of sliding blocks) and different empirical displacement 

models.   

 

3.2 PROBABILISTIC FRAMEWORK FOR RIGID SLIDING DISPLACEMENT 

3.2.1 Deterministic Approach 

 

The current deterministic approach computes the median displacement from a 

displacement prediction model given the expected ground motion intensity.  The ground 

motion parameters, such as PGA and PGV, required by the empirical models are obtained 

from seismic hazard curves that may come from site-specific probabilistic seismic hazard 

analysis or from the USGS website.  A PGA hazard curve (Figure 3.1) provides a 

seismic hazard level (i.e., annual frequency of exceedance) for different values of PGA at 

a location of interest.  The two most commonly used hazard levels are 0.0021 1/year 

(i.e., 10% probability of exceedance in 50 years) and 0.0004 1/year (i.e., 2% probability 
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of exceedance in 50 years).  These hazard levels represent approximately 500-year and 

2500-year return periods for a motion, respectively.  For the PGA hazard curve in Figure 

3.1, the 10% in 50 year motion is 0.54 g and the 2% in 50 year motion is 0.88 g. 

 

 

Figure 3.1  PGA Hazard Curve for a site in northern California (Rathje and Saygili 

2011) 

 

The current deterministic approach does not consider any aleatory variability in 

ground shaking and the sliding displacement predictions, or epistemic uncertainty in the 

slope properties.  Only a single value of each input parameter (shear strength, yield 

acceleration, ground motion level) is used to calculate the sliding displacement.  For 

example, the ky value of a site is computed from specified slope properties by using 
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Equations 2.1 and 2.2, and the sliding displacement can be predicted by using Equation 

2.3 with the PGA value derived from a ground motion hazard curve (e.g., Figure 3.1) at a 

selected seismic hazard level.  The predicted median sliding displacement is compared 

with a determined acceptable value or thresholds (e.g., Table 2.1) to evaluate the seismic 

landslide potential. 

 

3.2.2 Displacement Hazard Curve 

 

A displacement hazard curve (e.g. Figure 3.3), similar to a ground motion hazard 

curve (e.g. Figure 3.1), directly relates the predicted sliding displacement (i.e. slope 

performance) with the seismic hazard level (i.e. mean annual rate of exceedance).  

Rathje and Saygili (2008) proposed a scalar approach, which utilizes an empirical 

displacement model with only one (i.e., a scalar) ground motion parameter (typically 

PGA), to compute a displacement hazard curve from a ground motion hazard curve.  The 

standard deviation      of the empirical displacement model is included in the 

computation of the displacement hazard curve.  Later, Saygili and Rathje (2009) 

modified their scalar approach by adding earthquake magnitude (M), because the scalar 

empirical model without magnitude did not provide unbiased estimates of the sliding 

displacement relative to magnitude. 

In the scalar approach, the mean annual rate of exceedance (λD) for a 

displacement level x is defined as: 

 

         ( )  ∑ ∑      |               |                    (3.1) 
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where D is sliding displacement,      |         is the probability of D > x given the 

occurrence of acceleration level PGAi and earthquake magnitude Mk,     |      is the 

conditional probability of Mk given PGAi, and         is the mean annual probability of 

occurrence of ground motion level PGAi.  The double summation represents numerical 

integration over bins for PGA and M, and it represents the combined application of the 

total probability theorem and conditional probability. 

For a given PGAi and Mk, the empirical model provides a lognormal distribution 

of the displacement with mean      (or median D = exp (    )) and standard deviation 

    .  Given a displacement level x, the probability of D > x can be calculated by using 

the cumulative distribution function for the normal distribution as: 

 

       |            (
      

    
)                  (3.2) 

 

        is the annual probability of occurrence of acceleration level PGAi and it 

can be approximated from the annual probability of exceedance as: 
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where  [            ] and  [            ] represent the annual probability of 

exceedance associated with PGA values halfway between adjacent PGA values (i.e. 

PGAi−1, PGAi and PGAi+1).  Assuming that the annual probability and annual rate of 

exceedance are approximately the same for rare events, the hazard values λi-1, λi and λi+1 

from the PGA hazard curve can represent the annual probability of exceedance of 

PGAi−1, PGAi and PGAi+1.  

Theoretically, the annual probability of exceedance             can be 

derived from the annual rate of exeedance λi by using the Poisson process as: 

 

                                      (3.4) 

 

where t is equal to 1 year for annual probability.  Figure 3.2 shows that the ratio of λi to 

            is between 1.0 and 1.05 for low annual rate of exceedance (λ<0.1).  The 

PGA values associated with high annual rate of exceedance are small enough that they 

will not cause damage to slopes and structures.  Therefore, for the λ values considered in 

real engineering problems, the annual probability of exceedance can be approximated by 

using the annual rate of exceedance.  

Equation 3.3 assumes that hazard values over one PGA bin vary linearly and that 

the annual probabilities for the PGA levels estimated in this way will be closer to the 

exact values with smaller bin sizes.  If the discretization of the PGA hazard curve is 

small enough, there is no need to account for the nonlinear variation of hazard values 

over the bin. 
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Figure 3.2  Ratio of Annual Rate to Annual Probability of Exceedance 

 

    |      can be derived from the seismic hazard deaggregation for PGA, 

which is available on the USGS website or is commonly provided with a site-specific 

PSHA.  The seismic hazard deaggregation describes the contributions of all 

combinations of earthquake magnitude (Mk) and source-to-site distance (Rl) given a PGA 

level.  The sum of all contributions to a given PGA hazard level is equal to 1.0.  The 

expression of a hazard deaggregation is        |         .  Therefore, the 

conditional probability     |      can be obtained from the total probability theorem 

(Equation 3.5) as (Bradley 2010): 

 

       |      ∑        |                        (3.5) 

 

       |      
 [                  ]   [                  ]

       
 

(3.6) 
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 [                  ]  
                                     

 
 

(3.7) 

                         |                           (3.8) 

 

The two terms in the numerator of Equation 3.6 can be computed via Equation 

3.7.  Equation 3.8 is used to compute the two terms on the right side of Equation 3.7.  

Again, the annual probability of exceedance is assumed to be equal to the annual rate of 

exceedance for this calculation.   

 

 

Figure 3.3  Displacement hazard curve for a site in northern California using the scalar 

approach 
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Finally, a displacement hazard curve is created by using Equation 3.1.  One thing 

to be noted is that Equation 3.1 provides the annual probability of exceedance for a 

displacement level x due to the use of annual probability on the right side of the equation.  

However, the annual probability can be assumed equivalent to the annual rate, as 

validated before.  Furthermore, the second conversion from the annual probability to the 

annual rate on the left side of Equation 3.1 can reduce the errors of the first conversion 

made on the right side of Equation 3.1. 

Figure 3.3 shows a displacement hazard curve and deterministic displacement 

values from the same PGA hazard curve used for the displacement hazard curve (Figure 

3.1).  The scalar probabilistic approach results in greater displacements (67 cm and 208 

cm) than the deterministic approach (43 cm and 113 cm), due to the consideration of 

aleatory variability.  

If more than one ground motion parameter is included in an empirical model, the 

aleatory variability in the sliding displacement predictions can be significantly reduced 

(Saygili and Rathje 2008).  Saygili and Rathje (2008) proposed several vector empirical 

displacement models (i.e., models that use a vector of ground motion parameters), and 

the model that includes both intensity (PGA) and frequency content (PGV) parameters 

was preferred to use for the vector probabilistic approach (Rathje and Saygili 2008).  

Similar to the scalar approach, for the vector approach the mean annual rate of 

exceedance (λD) for a displacement level x is defined as: 

 

          ( )  ∑ ∑      |              [         ]         (3.9) 
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where  [   |         ] is the probability of D > x given ground motion levels PGAi 

and PGVj, and  [         ] is the joint annual probability of occurrence of ground 

motion levels PGAi and PGVj.   

For given values of PGAi and PGVj, a vector predictive model provides a 

lognormal distribution of the sliding displacement with mean μlnD and standard deviation 

σlnD.  Given a displacement level x, the probability of D > x can be calculated by using 

Equation 3.2.   [         ] can be computed using a vector PSHA computer code 

(VPSHA, Bazzurro and Cornell 2002).  Alternatively, the joint probability 

 [         ] can be derived from the scalar hazard information for PGA along with the 

seismic hazard deaggregation, GMPEs for PGA and PGV, and the correlation coefficient 

between PGA and PGV using: 

 

             [         ]        |                          (3.10) 

 

where P[PGAi] is the annual probability of occurrence of ground motion level PGAi and 

can be calculated from Equation 3.3.       |      is the conditional probability of 

PGVj given PGAi and is computed using: 

 

            |      ∑ ∑         |                   |         (3.11) 

 

where        |      is derived from the seismic hazard deaggregation (Equations 3.6 

to 3.8).  The PGA and PGV GMPEs and the correlation coefficient for PGA and PGV 

are required to compute       |            (Bazzurro and Cornell 2002, Rathje and 
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Saygili 2008).  The conditional PGV required for       |            also follows a 

lognormal distribution with its conditional mean and standard deviation defined as: 

 

      |          
       |     

  
      |     

      |     

(             |     
)   (3.12) 

 

      |          
       |     

 √                  (3.13) 

 

where       |     
,       |     

,       |     
 and       |     

 are derived from 

GMPEs for PGA and PGV.  The correlation coefficient   between PGA and PGV has 

been estimated as 0.6 (Rathje and Saygili 2008, Baker 2007). Thus,       |            

can be obtained from a normal distribution with mean and standard deviation calculated 

from Equations 3.12 and 3.13. 

Figure 3.4 shows hazard curves for displacement computed using the scalar and 

vector approaches for the same site as Figure 3.3.  As shown in Figure 3.4, the vector 

approach predicts smaller displacements than the scalar approach at all seismic hazard 

levels.  These reductions occur because more ground motion information is utilized in 

the vector approach (i.e., PGA and PGV vs. only PGA), so that the vector empirical 

displacement model predicts a smaller median displacement and a smaller standard 

deviation than the scalar empirical displacement model. 
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Figure 3.4  Displacement hazard curves for a site in northern California using both scalar 

and vector approaches 

 

3.3 PROBABILISTIC ASSESSMENT OF THE DYNAMIC RESPONSE OF FLEXIBLE 

SLIDING MASSES 

 

As discussed in Section 2.3, the dynamic response of sliding masses should be 

considered for deeper/softer slopes because they respond as flexible sliding masses.  For 

these sites, the appropriate seismic loading time history is the seismic coefficient (k)-time 

history and this time history is used as input into a rigid sliding block analysis.  

Empirical models for flexible sliding masses (e.g. Rathje and Antonakos 2011) can be 
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used to predict the dynamic response, the corresponding seismic loading parameters, and 

the flexible sliding block displacements. 

The parameters kmax and k-velmax (introduced in Section 2.3) for flexible sliding 

masses are analogous to parameters PGA and PGV for rigid sliding masses and are used 

to represent the dynamic response of flexible sliding masses.  Similar to PGA and PGV, 

seismic hazard curves can also be constructed for kmax and k-velmax, although such curves 

are not explicitly required for the computation of flexible displacement hazard curves.  

The hazard curves of kmax and k-velmax can be computed independently of one another as: 

 

     
( )  ∑ ∑         |               |                  (3.14) 

 

         
( )  ∑ ∑             |                              (3.15) 

 

where         |         is the probability of kmax > y given ground motion level 

PGAi and earthquake magnitude Mk, and             |           is the 

probability of k-velmax > z given ground motion levels PGAi and PGVj.  All other 

components in Equation 3.14 and 3.15 are the same as shown in Equation 3.1 and 3.9, 

respectively.  The distributions of kmax and k-velmax are also assumed lognormal with 

means and standard deviations from empirical models (e.g. Equation 2.5).  Thus, 

        |         and             |           can be calculated using 

Equation 3.2.  As seen in the empirical models for kmax and k-velmax, the dynamic 

response of flexible sliding masses also depends on the site period Ts and the mean 

period of the ground motion Tm but these values are taken as constant.   

Figure 3.5 to Figure 3.8 illustrate the dynamic response predictions of flexible 

masses by using the same hazard information as shown in Figure 3.1.  The mean period 



 40 

of the ground motion Tm is assumed deterministically to be equal to 0.5 s, and the ratio 

Ts/Tm selected for the calculations are 0.0, 0.25, 0.5, and 1.0.  These conditions represent 

rigid sliding (Ts = 0) and flexible sliding for Ts = 0.125, 0.25 and 0.5 s.   

 

 

Figure 3.5  kmax hazard curves (Tm=0.5s) 

 

 

Figure 3.6  Variation of kmax with PGA from Equation 2.5a for different values of Ts/Tm 
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Figure 3.5 shows a series of kmax hazard curves with different Ts/Tm ratios, and 

Figure 3.6 displays the variation of kmax as a function of PGA for different Ts/Tm ratios.  

As seen in Figure 3.5, the seismic loading for a flexible sliding mass represented by kmax 

is generally smaller than for the rigid condition, except at higher values of λ with smaller 

PGA values. The reason is that the empirical model for kmax generally predicts kmax < 

PGA for larger PGA values (Figure 3.6).  The predicted kmax is only greater than PGA 

for Ts/Tm<0.5 and for PGA smaller than about 0.2 g.  Furthermore, the kmax generally 

decreases with increasing Ts/Tm ratio, which is also shown in Figure 3.5.   

Intuitively, the dynamic response kmax should increase with increasing input 

ground motion PGA. However, the empirical model predicts a median kmax that reaches a 

maximum at a certain PGA and it starts decreasing for larger PGA.  The reason for this 

behaviour is that the input PGA values used for deriving the empirical model are mostly 

less than 0.4 g, and only a few PGA values up to 1.0 g are considered.  Therefore, the 

empirical model has a limitation when extrapolated beyond the range of input PGA used 

to develop it.  This issue was not readily apparent when the model was developed 

because deterministic PGA values rarely exceed 0.7 to 0.8 g.  Yet in probabilistic 

analyses we must integrate over the entire hazard curve and incorporate large PGA.  A 

simple modification can be used to extend the application of the empirical model to high 

PGA levels.  The PGA value that predicts the maximum kmax is defined as the PGA 

threshold, and kmax value is set equal to this maximum for PGA values greater than this 

threshold.  The PGA threshold is a function of Ts/Tm, and it can be calculated by taking 

the derivative of Equation 2.5a with respect to PGA and setting it equal to zero.  The 

resulting expression is: 
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The influence of this modification can be seen in Figure 3.6 for Ts/Tm=1.0 with PGA 

threshold is 0.82 g and the corresponding maximum kmax is 0.26 gFigure 3.6.   

Table 3.1 summarizes the predicted kmax values from both probabilistic and 

deterministic approaches at two commonly concerned seismic hazard levels for the three 

values of Ts/Tm.  All probabilistic values are generally 10-25% greater than the 

corresponding deterministic values due to incorporating aleatory variability.  For the 

cases shown the difference is largest for Ts/Tm=1.0 and λ=0.0004 1/yr, because the 

deterministic kmax is limited to its maximum median value given that the PGA (0.88 g) is 

larger than the PGA threshold, but the probabilistic kmax is can exceed the maximum due 

to the consideration of the standard deviation in the calculation. 

 

Table 3.1 Probabilistic and deterministic kmax predictions 

 kmax Comparisons 

 Ts/Tm = 0.25 Ts/Tm = 0.5 Ts/Tm = 1.0 

l 
(1/yr) 

Probabilistic Deterministic Probabilistic Deterministic Probabilistic Deterministic 

0.0021 0.55 g 0.50 g 0.42 g 0.38 g 0.27 g 0.24 g 

0.0004 0.77 g 0.66 g 0.56 g 0.45 g 0.35 g 0.26 g 

Note: l = 0.0021 represents a 10% probability of exceedance in 50 years 

      l = 0.0004 represents a 2% probability of exceedance in 50 years 
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Figure 3.7 shows a series of k-velmax hazard curves for different Ts/Tm ratios, and 

Figure 3.8 displays the variation of k-velmax/PGV as a function of PGA (not PGV) for 

different Ts/Tm ratios.  Unlike for kmax, the k-velmax hazard curves are much closer to the 

PGV hazard curve that represents the rigid condition. This behavior is a result of the ratio 

k-velmax/PGV being slightly higher than 1.0 for Ts/Tm<0.5 and only slowly decreasing 

with increasing PGA (Figure 3.8) or Ts/Tm (Figure 2.7).  As a consequence, the predicted 

k-velmax from the empirical equation continues to increase with increasing PGA or PGV, 

and it does not reach a maximum for PGA<2.0 g.  Because PGA values generally do not 

exceed 2.0 g in a seismic hazard curve, it is not necessary to develop a PGA or PGV 

threshold for the prediction of k-velmax.  

 

  

 

Figure 3.7  k-velmax hazard curves (Tm=0.5s) 
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Figure 3.8  Variation of k-velmax/PGV with PGA from Equation 2.5b for different values 

of Ts/Tm 

 

Table 3.2 summarizes probabilistic and deterministic k-velmax values for 10% and 
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Table 3.2.  Table 3.1 and Table 3.2 both shows larger difference between probabilistic 

and deterministic values as Ts/Tm increases.  To further display this trend, Figure 3.9 

illustrates the ratio between deterministic and probabilistic values as a function of Ts/Tm.  

It is clearly observed that the ratio decreases with increasing Ts/Tm, and the reduction of 

the ratio is larger for kmax than k-velmax at a given Ts/Tm value.   

The deterministic k-velmax values are more similar to the probabilistic predictions 

because essentially perfectly correlated (     ) values of PGA and PGV are used for the 
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calculation of            in the probabilistic predictions of k-velmax (Equation 3.15, 
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deterministic prediction leads to greater ground motion levels used in the deterministic 

calculation.  Therefore, although the aleatory variability in the k-velmax prediction is 

ignored in the deterministic calculation of k-velmax, the difference between deterministic 

and probabilistic results is reduced by using larger ground motion levels for the 

deterministic k-velmax. 

 

Table 3.2 Probabilistic and deterministic k-velmax predictions 

 k-velmax Comparisons 

 Ts/Tm = 0.25 Ts/Tm = 0.5 Ts/Tm = 1.0 

l 
(1/yr) 

Probabilistic Deterministic Probabilistic Deterministic Probabilistic Deterministic 

0.0021 46 cm/s 45 cm/s 48 cm/s 46 cm/s 43 cm/s 39 cm/s 

0.0004 77 cm/s 74 cm/s 78 cm/s 72 cm/s 66 cm/s 56 cm/s 

 

 

Figure 3.9  Ratio of deterministic to probabilistic predictions of kmax and k-velmax 
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3.4 PROBABILISTIC ASSESSMENT OF THE SLIDING DISPLACEMENT OF FLEXIBLE 

SLIDING MASSES 

 

For flexible sliding masses, the displacement hazard curve can be constructed in a 

similar way as for the rigid condition.  The seismic loading parameters kmax and k-velmax 

are used for the calculation of flexible sliding displacements rather than PGA and PGV.  

The computation of displacement hazard curves for flexible sliding masses also can be 

performed using scalar or vector approaches.  For the scalar approach, the mean annual 

rate of exceedance (  ) for a displacement level x is defined as: 

 

  ( )  ∑ ∑      |       
      [     

   ]             (3.17) 

 

where D is sliding displacement,      |     
     is the probability of D > x given 

the occurrence of seismic loading level      
 and earthquake magnitude Mk.      

 |     
     can be calculated by using the mean and standard deviation provided by 

the scalar empirical models for flexible sliding displacements.   [     
   ] is the joint 

annual probability of occurrence of      
 and Mk.  The double summation represents 

numerical integration over bins for kmax and M, and it represents an application of the 

total probability theorem. 

The joint annual probability of occurrence of  [     
   ] can be computed by 

using the annual probability of occurrence of ground motion level PGAi (i.e.        ) 

and the conditional probability     |     : 

 

 [     
   ]  ∑        

|             |                   (3.18) 
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where        
|         is the conditional probability of occurrence of      

 given 

PGAi and Mk and is approximated from the cumulative density functions of two adjacent 

kmax levels as: 

 

 [     
|       ]  

 [            
|       ]                

|          

 
 

(3.19) 

 

These cumulative density functions are derived from the mean and standard deviation 

from the empirical predictive model for kmax.  Although the earthquake magnitude Mk is 

not required for the kmax prediction, it is required in the scalar empirical displacement 

model for flexible sliding displacements and therefore must be carried through the 

calculation. 

Using the same Ts (0.0, 0.125, 0.25 and 0.5 s) and Tm (0.5 s) values as Section 

3.3, displacement hazard curves for the (kmax, M) model are computed and shown in 

Figure 3.10.  The predicted flexible displacements with Ts/Tm=0.25 is greater than for 

the rigid condition.  For larger Ts/Tm, the predicted displacements generally decrease 

with increasing Ts/Tm.  These observations show that different sites (Ts) have different 

seismic behaviours with the same input ground motions (PGA hazard curve and Tm). 
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Figure 3.10 Displacement hazard curves for (kmax, M) model with baseline Ts and Tm 

 

To further examine the impact of the absolute values of Ts and Tm on the 

predicted displacements, displacement hazard curves are computed by using different 

combinations of Ts and Tm.  As discussed in Section 3.3, the empirical models for kmax 

and k-velmax (Equation 2.5) depend only on the ratio of Ts/Tm but not the individual 

values of Ts or Tm.  The empirical models for flexible displacements (Equation 2.7) have 

modification terms as a function of Ts and thus Ts directly influences the computed 

displacement.   

To illustrate the impact of Ts on the predicted displacements, the ratio Ts/Tm is 

kept the same as before and the Ts values are increased and decreased by 30%.  Note that 

this approach essentially increases Tm in the same way as Ts, and the dynamic responses 

of flexible sliding masses do not change with Ts.  The resulting displacement hazard 

Baseline Ts 

Baseline Tm 
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curves for the -30% Ts, baseline Ts, and +30% Ts are shown in Figure 3.11.  The 

displacement hazard curves show that the predicted displacements increase with 

increasing Ts, although the predicted kmax and k-velmax are the same for these analyses.  

The result indicates that the same dynamic responses generally induce larger sliding 

displacements in softer sliding masses. 

To illustrate the effect of changing Tm alone, the baseline site periods (Ts = 0.0, 

0.125, 0.25 and 0.5 s) are kept the same and Tm is increased and decreased by 30% (Tm = 

0.35 and 0.65 s).  Increasing Tm reduces Ts/Tm, and decreasing Tm does the opposite. 

The resulting displacement hazard curves are shown in Figure 3.12.  Generally, an 

increase in Tm results in more displacement.  It is noticeable that the impact of Tm is 

significantly greater for softer sites than for stiffer sites.  For Ts=0.125 s, an increase in 

Tm from 0.35 s to 0.65 s increases predicted displacement by 30 ~ 40%, while the 

predicted displacements are increased by a factor of 2 ~ 3 for Ts=0.5 s. 
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     (a) 

 

 

     (b)                                  (c) 

Figure 3.11 Displacement hazard curves for (kmax, M) model for different Ts with same 

Ts/Tm 

 

-30%Ts   

 

Baseline Ts 

 

+30%Ts  
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     (a) 

 

  

      (b)                                  (c) 

Figure 3.12 Displacement hazard curves for (kmax, M) model for different Tm with 

baseline Ts 

Baseline Ts 

-30%Tm  

 

Baseline Ts 

Baseline Tm 

Baseline Ts 

+30%Tm  
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Similar as the vector approach for rigid sliding, the flexible displacement hazard 

is computed by substituting PGA and PGV with kmax and k-velmax in Equation 3.9, or the 

mean annual rate of exceedance (  ) for a displacement level x is defined as: 

 

  ( )  ∑ ∑      |       
          

   [     
          

]    (3.20) 

 

where      |     
          

  is the probability of D > x given the occurrence of 

seismic loading levels      
 and          

.       |     
          

  can be 

calculated by using the mean and standard deviation provided by the vector empirical 

models for flexible sliding displacements.   [     
          

] is the joint annual 

probability of occurrence of      
 and          

.  This joint annual probability can 

be computed from              and the probabilities of obtaining      
 and   

       
 given      and      using: 

 

 [     
          

]  ∑ ∑           
|

  

     
             

 [     
|         ]                  (3.21) 

 

where  [     
|         ] is calculated from the empirical model for k-velmax and its 

standard deviation.             
|     

            requires the conditional mean 

and standard deviation of k-velmax, which are calculated by substituting PGA and PGV 

with kmax and k-velmax in Equations 3.12 and 3.13.  The correlation coefficient ρ between 

kmax and k-velmax was evaluated by using the residuals of the computed values of kmax and 

k-velmax from Rathje and Antonakos (2011) relative to the median values from their 
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empirical models.  This approach is similar to the approach taken by Baker (2007) when 

considering the correlation between various ground motion parameters.  Figure 3.13 

shows moderate correlation between kmax and k-velmax residuals.  The computed 

correlation coefficient is 0.45.   

 

 

Figure 3.13 Correlation between kmax and k-velmax 

 

Using the same ideas as Figure 3.10 to 3.12, Figure 3.14 to 3.16 are created by 

using different combinations of Ts and Tm values.  Comparing Figure 3.14 with Figure 

3.10, the vector approach clearly predicts considerably less sliding displacements than the 

scalar approach due to the reduction of uncertainty by taking more ground hazard 

information into the computation.  The difference is typically between a factor of 2 and 

3, indicating the value of incorporating frequency content via k-velmax when making 

displacement predictions. 
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Figure 3.14 shows that predicted flexible displacements with Ts/Tm=0.25 is 

greater than the rigid condition.  For larger Ts/Tm, the predicted displacements generally 

decrease with increasing Ts/Tm while Tm is constant.  As discussed for the scalar 

approach, Figure 3.15 (a) (b) and (c) illustrate that different site (different Ts) may have 

the same dynamic response kmax and k-velmax with the same Ts/Tm, but the resulting 

sliding displacements should be different.  One thing may be noticed is that, the 

displacement curves for Ts/Tm=1.0 in Figure 3.15 (a) and (c) are identical because the Ts 

values are 0.5 and 0.65, which provide the same modification term (i.e. constant 

modification term for Ts ≥ 0.5) in the empirical model (Equation 2.7).   

 

 

Figure 3.14 Displacement hazard curves for (kmax, k-velmax) model with baseline Ts and 

Tm 

Baseline Ts 

Baseline Tm 
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      (a) 

  

      (b)                                  (c) 

Figure 3.15 Displacement hazard curves for (kmax, k-velmax) model for different Ts with 

same Ts/Tm 

 

Baseline Ts +30% Ts 

-30% Ts 
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To illustrate the effect of changing Tm alone, the baseline site periods (Ts = 0.0, 

0.125, 0.25 and 0.5 s) are kept the same and Tm is increased and decreased by 30% (Tm = 

0.35 and 0.65 s).  The resulting displacement hazard curves are shown in Figure 3.16.  

The displacement increment for Ts=0.125 s is about 10 ~ 20% with an increase in Tm 

from 0.35 s to 0.65 s, while the predicted displacements increases by a factor of 3 ~ 4 for 

Ts=0.5 s.  Same as the scalar approach, the impact of Tm is significantly greater for softer 

sites than for stiffer sites.   

Overall, the variation of vector displacement curves due to Ts/Tm in each plot is 

clearly smaller than the scalar displacement curves (Figure 3.10 to 3.12), because it is 

reduced by the small variation of k-velmax hazard curves (Figure 3.7).   
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     (a) 

 

  

      (d)                                  (e) 

Figure 3.16 Displacement hazard curves for (kmax, k-velmax) model for different Tm with 

baseline Ts 

Baseline Ts 

Baseline Tm 

Baseline Ts 

+30% Tm 

Baseline Ts 

-30% Tm 
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Again, the probabilistic predictions of sliding displacements are compared with 

the results from traditional deterministic analysis.  Here, the deterministic analysis takes 

the ground motions (i.e., PGA and PGV) from a hazard curve for a given hazard level, 

uses these values to predict a median dynamic response (i.e., kmax and k-velmax), and uses 

the median dynamic response to predict a median displacement.   

Two common hazard levels (2% and 10% probability of exceedance in 50 years) 

and two ky values (0.1 and 0.2 g) are selected for the comparison between deterministic 

and probabilistic analyses.  These analyses were performed for the hazard defined in 

Figure 3.1 with Tm=0.5 s and Ts/Tm = 0.0, 0.25, 0.5, and 1.0 s using both scalar and 

vector models.  Figure 3.17 plots the ratio of the deterministic to probabilistic 

displacements versus Ts/Tm for all of the analyses performed.  These data clearly show 

that the deterministic analysis predicts smaller sliding displacements (except at Ts/Tm=0 

for the vector model), and the under-prediction increases with larger Ts/Tm.  The reason 

the underprediction because larger is that very small deterministic displacements are 

predicted due to the deterministic kmax approaching ky.  On the other hand, the 

probabilistic analysis considers the full kmax distribution, not only the median value, in 

the displacement calculation, such that larger displacements are predicted even if the 

median kmax is close to ky.   

For the case where the deterministic results are larger (i.e. vector model at 

Ts/Tm=0), the (kmax, k-velmax) model directly chooses PGA and PGV from separate 

ground motion hazard curves at the same hazard level, which essentially assumes perfect 

correlation (ρ ~ 1.0) between PGA and PGV.  But the probabilistic approach 

incorporates the correlation as ρ ~ 0.6 for the calculation of           .  Thus, the 

deterministic approach overestimates the PGV relative to PGA, and its over-prediction in 

ground motion balances out, or even larger than, the effect of ignoring the uncertainty in 
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the displacement prediction.  Even with the overestimation of PGV, the deterministic 

approach still mostly under-predicts the sliding displacements via the (kmax, k-velmax) 

model.   

The small sample of analyses presented in Figure 3.17 indicates that the 

deterministic analysis maybe un-conservative and that performing fully probabilistic 

analysis can be important and helpful.   

 

 

Figure 3.17 Ratio of deterministic to probabilistic predictions of displacements 

 

3.5 INCORPORATING EPISTEMIC UNCERTAINTY  

 

Uncertainties always exist when characterizing the slope properties (e.g., soil 

shear strengths, ground water conditions, and sliding block thickness) for a stability 

analysis.  Ignoring these epistemic uncertainties and assuming a single set of slope 
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properties leads to a single value of ky, which simplifies the computation of the dynamic 

response of the slope, but it may lead to an inaccurate assessment of the seismic slope 

performance during earthquakes.   

 

 

Figure 3.18 Logic tree for the assessment of yield acceleration 

 

A logic tree analysis can be used to account for epistemic uncertainties in the 

assessment of the seismic slope stability hazard (Saygili 2008).  A logic tree is made of 

nodes and branches, as illustrated in Figure 3.18.  Nodes represent the input parameters 

under consideration and the branches associated with a node represent discrete, possible 

values for that parameter.  Each branch is associated with a weight, and the weights from 
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all branches from one node must equal 1.0.  Following branches through each node 

defines the input parameters for a single ky value and the product of the weights of the 

branches represents the weight associated with that ky.  

For the logic tree shown in Figure 3.18, three discrete values are assumed for both 

c and  resulting in nine possible values of ky computed for an infinite slope analysis.  

The other parameters in the infinite slope analysis (i.e., slope angle, thickness, saturation 

ratio, and unit weight) are held constant.  To incorporate the multiple values of ky into 

the seismic displacement analysis, a displacement hazard curve is computed for each ky 

given the ground motion hazard curve.  The displacement hazard curves for the 9 ky in 

the logic tree are shown by the gray curves in Figure 3.19.  A mean displacement hazard 

curve (solid black line in Figure 3.19) is calculated from the multiple hazard curves and 

their weights.  This averaging is done on the hazard levels (i.e., lD) for each 

displacement level.  To illustrate the influence of epistemic uncertainties on the seismic 

displacement hazard, the displacement hazard curve for the best estimate ky=0.15g 

(c=24kPa, =30
o
) is also shown in Figure 3.19.  The mean displacement hazard curve 

from the logic tree analysis is higher than the hazard curve using the best estimate ky, 

indicating that the seismic slope performance is underestimated when one does not 

incorporate uncertainties in the soil properties.   
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Figure 3.19 Rigid Displacement Hazard Curves for Logic Tree 

 

A logic tree analysis can be applied to all uncertain parameters and models within 

the seismic slope stability analysis, including the sliding block properties (i.e. t and m) 

and sliding displacement models. The application of the logic tree approach should 

include each of these components.   
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3.6 SUMMARY 

 

This chapter described the probabilistic framework for computing sliding block 

displacements for flexible slopes.  The generation of displacement hazard curves from 

the empirical models for the seismic loading parameters (kmax, k-velmax) and the scalar 

and vector displacement models was provided.  Deterministic and probabilistic estimates 

of seismic loading and sliding displacements were compared.  Finally, the logic tree 

approach was introduced to incorporate epistemic uncertainties existing in the slope 

properties, such as shear strengths, ground water conditions and sliding block thickness.  

The results show that the seismic slope performance is underestimated when uncertainties 

in soil properties are not incorporated in the analysis.   
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Chapter 4 Application of Probabilistic Framework: Lexington 

Elementary School 

 

4.1 INTRODUCTION 

 

In Chapter 3, the probabilistic framework for flexible sliding displacements was 

described and this framework was demonstrated using hypothetical values of yield 

acceleration ky, site period Ts, and mean period of ground motion Tm.  These parameters 

play a critical role in evaluating the seismic performance of slopes, and the estimation of 

these parameters for a site-specific analysis requires significant site information including 

the slope geometry, soil profile, field and lab testing, ground water conditions, seismic 

hazard assessment, etc.  The available site information may not clearly lead to the 

required inputs for a probabilistic sliding displacement analysis, and engineering 

judgment may be required.  Additionally, the uncertainties in the site information must 

be characterized, so that the logic tree analysis can be performed without overestimating 

or underestimating the uncertainties. 

Lexington Elementary School (W-121.99 N37.18) in Santa Clara County, 

California is selected for the implementation of the probabilistic analysis.  The school 

location is within less than a mile of the San Andreas Fault (Figure 4.1) in an area of high 

seismic hazard.  The terrain around the site is slightly inclined from the west to the east 

with about an 8
o
 slope.  Fugro Consultants Inc. (2011, 2012) performed static and 

dynamic slope stability analyses for the Lexington Elementary School using standard 

deterministic methods.  Static and pseudo-static limit equilibrium slope stability analyses 
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were performed to determine the factor of safety and yield acceleration for the idealized 

soil profiles, which were developed based on local geology and laboratory test results.  

These values were then used to estimate the expected level of deformation from ground 

shaking for a 475-year return period.  Because of the available subsurface and seismic 

hazard information for this site, it is well suited for application of the developed 

probabilistic method.  

 

 

 

Figure 4.1  Map of Lexington Elementary School (Google Map) 

 

 

San Andreas Fault 
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This chapter first describes the available site information for the Lexington 

Elementary School.  This information is used to identify the best estimate properties and 

their uncertainty, which are then used to perform a pseudo-static slope stability analysis 

for identifying the critical failure surface and associated yield acceleration.  A logic tree 

is developed that incorporates the uncertainties in slope properties (e.g. shear strengths) 

and ground motions (i.e. mean period Tm).  Then the full probabilistic analysis is 

performed to evaluate the seismic landslide potential of this site.   

 

4.2 INPUT PARAMETERS 

4.2.1 Site Conditions and Slope Geometry 

 

As seen in Figure 4.1, Lexington Elementary School is located just east of the 

Santa Cruz Highway, and the Lexington reservoir is about 500 ft away to the east of the 

school site.  The school site is about 400 ft long from east to west and 350 ft wide from 

north to south, and its elevation is about 760 ft above sea level.  The terrain around the 

school is slightly sloped 8
o
 from west to east, but the slope that has the most significant 

landslide potential near the school site is sloped at about 18
o
.  The San Andreas Fault is 

less than a mile to the south, and it dominates the seismic hazard of this site.  Although 

the 1989 Loma Prieta Earthquake (W-121.877 N37.04) occurred about 18 km away, there 

are no indications of previous landslide movements at the surface of the site or within 

about 170 ft of the ground surface (Fugro, 2011).  However, future earthquakes may be 

much closer and stronger, so it is necessary to evaluate the seismic performance of the 

slopes at the school site.   
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Figure 4.2a shows a geologic cross-section of the school site and Figure 4.2b 

provides an idealized cross-section for stability analyses.  The surficial soils (Qsur) are 

fluvial deposits and alluvial fan deposits (Qriver, Qfan). The underlying soil is the Plio-

Pleistocene Santa Clara formation (QTsc), which consists of fluvial boulder to pebble 

gravel, sandstone, and siltstone locally including thin bedded lacustrine mudstone.  The 

upper part of the Santa Clara formation has relatively smaller shear strengths, but beyond 

200 ft depth (QTsc_deep) it can be treated as very dense soil or soft rock. 



 68 

 

 

 

(a) 

Figure 4.2 
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(b) 

Figure 4.2  Site cross-section of Lexington Elementary School (a) geologic and (b) idealized 
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The ground water table rises slowly from the Lexington Reservoir, and the school 

site is very close to the reservoir (Figure 4.2).  Therefore, the ground water table of the 

school site is assumed to be at the same elevation as the Lexington Reservoir (650 ft).  

Based on this assumption, the ground water table is located at about 110 ft depth at the 

site, within the upper Santa Clara formation (QTsc).   

Slope stability analyses by Fugro (2011, 2012) found that a potential shallow 

failure surface near the school site (Figure 4.2b) was more critical than a large-scale deep 

failure that extended into the deep Santa Clara formation (QTsc_deep).  In this case, the 

ground water beneath the site does not influence the slope stability analysis, because the 

shallow failure surface does not reach the ground water table (Figure 4.2b). 

There is a vertical surcharge load of 1,500 psf corresponding to the building zone 

on the school site, but this load may help stabilize the shallow failure at the toe rather 

than drive the failure.  To be conservative, this surcharge load is not considered for the 

slope stability analysis. 

 

4.2.2 Shear Strengths and Shear Wave Velocity 

 

The shear strengths of the surficial soils (Qsur) were interpreted based on 

laboratory test results from direct shear tests (DS) and unconsolidated-undrained triaxial 

compression tests (UTC) conducted by Pacific Crest Engineering (2011).  The DS and 

UTC tests were performed at multiple values of normal stress and the total stress shear 

strength parameters (c and ) were reported.  In plotting the shear strength as a function 

of depth from the various tests and samples, the total normal stress at the sample depth 

was used along with the reported c and  for that specimen to compute the shear strength.  
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The measured shear strengths of the surficial Qsur deposits are plotted versus 

depth in Figure 4.3.  The data vary widely, indicating significant uncertainty in the 

strength of these materials.  The best estimate shear strength profile developed by Fugro 

(2012) increases linearly with depth and is shown in Figure 4.3.  Also shown are low 

strength and high strength profiles that we developed to account for the uncertainty in the 

shear strength characterization.  The low and high strength profiles roughly represent 5
th

 

and 95
th

 percentile levels of the measured shear strengths, respectively.  The slope of the 

shear strength profile is assumed the same for the low, high, and best-estimate 

relationships.   

The test results for the upper Santa Clara formation (QTsc) are shown in Figure 

4.4.  The deep Santa Clara formation (QTsc_deep) beyond 200 ft depth is very stiff and 

strong such that potential landslides will not extend into this layer.  The best estimate 

shear strength profile developed by Fugro (2012) is shown in Figure 4.4, along with the 

corresponding values of c and .  Low strength and high strength profiles were 

developed as part of this study to account for the variability in the test data (Figure 4.4).  

These profiles parallel the best estimate profile and thus are modeled through a change in 

cohesion combined with the best-estimate .   
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Figure 4.3  Shear strength of surficial deposits Qsur (Fugro, 2012) 

 

 

 

 

 

High strength 

Low strength 
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Figure 4.4  Shear strength of the upper Santa Clara formation (QTsc). Note depth is 

referenced to the top of QTsc. (Fugro, 2012) 

 

Low strength High strength 
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A shear wave velocity (  ) profile is required for the dynamic response analysis.  

In the absence of direct measurements, the    profile is estimated through empirical 

relationships.  The    profile for the Qsur deposits was estimated by Fugro (2012) using 

an empirical relationship by Dickenson (1994) that relates Vs with the undrained shear 

strength, Su for alluvial soils in the San Francisco Bay Area.  The data used by 

Dickenson (1994) to develop the relationship are shown in Figure 4.5 along with the best 

fit power law relationship.  The power law relationship is given by: 

 

          
 
                                 (4.1) 

 

where A = 18 and n = 0.475 for    in units of ft/s and Su in units of psf.  Most of the Su 

data in Figure 4.5 range from 0 to 3,000 psf, and this range is similar to the measured 

shear strengths shown in Figure 4.3 for the Lexington School site.   

The scatter of data around the fitted curve in Figure 4.5 suggests uncertainty in 

the empirical model.  Although Dickenson (1994) did not explicitly provide an 

estimation of the uncertainty in his model, the scatter of data is well represented by the 

dashed lines shown in Figure 4.5.  These lines can be represented by a power law with 

the same exponent (n = 0.475) and values of A equal to Alow = 15 and Ahigh = 21. 
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Figure 4.5  Variation of shear wave velocity with undrained shear strength of cohesive 

soils (Dickenson 1994) 

 

The underlying QTsc material is older (Plio-Pleistocene) and stiffer than the Qsur 

deposits such that the relationship in Figure 4.5 is not appropriate.  Instead,      is 

related to Su using another empirical model developed by Dickenson (1994) and then    

is computed from      and the mass density (i.e.,    √     ⁄ ).  This relationship 

between      and Su is linear and taken as: 

 

                                  (4.2) 

 

where Su and      are both in units of psf and   is a dimensionless model 

parameter.  Dickenson (1994) recommended that the coefficient   depends on Su, 

overconsolidation ratio (OCR), Plasticity Index (PI) and effective confining stress.  For 
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the QTsc material (PI = 15, OCR = 1), Fugro (2012) took B=1280 from a range of 

published values (500 ~1450) summarized by Dickenson (1994) from other researchers.  

Such selection is based on the assumption that    profile has no large change at 

boundaries between soil layers (Figure 4.6).  Beyond 200 ft depth (i.e., QTsc_deep 

deposits),   =1800 ft/s was selected by Fugro (2012) as representative of “very dense 

soil or soft rock” conditions (NEHRP Soil Type C).   

The uncertainties in    for the QTsc and QTsc_deep layers are assumed to be 

proportional to the uncertainty in Qsur.  As a result, the high and low values of    for 

the QTsc deposits can be calculated by scaling the parameter B based on the baseline, 

low, and high values of A.  The resulting B values are Blow = 890 and Bhigh = 1740.  The 

resulting low and high values of    for QTsc_deep are 1,500 to 2,100 ft/s, and such 

values are compatible with the NEHRP site class C (1,200 ~ 2,500 ft/s) determined for 

the deep Santa Clara formation.  The resulting baseline, low and high shear wave 

velocity profiles are illustrated in Figure 4.6 for the Lexington school site, and the best-

estimate, low and high shear strengths are used to create Figure 4.6a, Figure 4.6b and 

Figure 4.6c respectively.  It should be noted that the thickness of Qsur layer is about 50 

ft directly below the school site (Figure 4.2b), but it is up to 80~90 feet thickness at the 

location of the potential shallow failure surface. 

To develop the logic tree and associated weights for both the shear strength 

parameters and the shear wave velocity profiles, a normal distribution is assumed.  The 

baseline values are taken to represent the mean () and the low and high values are taken 

as the 5% and 95% values.  To approximate a standard normal distribution N(0,1) with 

three points at 5%, 50%, and 95% (i.e.,  - 1.6, ,  + 1.6), the corresponding weights 

are 0.2, 0.6, and 0.2.   
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(a) 

 

   

(b)                                 (c) 

Figure 4.6  Baseline, low, and high shear wave velocity profiles based on (a) best-

estimate, (b) low, and (c) high shear strengths 
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The logic tree branches for the shear strength and shear wave velocity profiles for 

each of the geologic units are summarized below. 

 

Table 4.1 Logic tree for shear strengths 

 Qsur QTsc Weight 

Low                            0.2 

Best Estimate                              0.6 

High                               0.2 

            *Note: Su in units of psf, z in units of feet. 

 

Table 4.2 Logic tree for shear wave velocity 

 Qsur QTsc Weight 

Low         
                  0.2 

Baseline         
                   0.6 

High         
                   0.2 

                   *Note:    in units of ft/s,      in units of psf. 

 

4.2.3 Yield Acceleration and Site Period 

 

The yield acceleration ky, which characterizes the sliding resistance of a slope 

against earthquake shaking, is required by empirical displacement models for predicting 

sliding displacements.  With the slope geometry, soil profile and shear strengths, the 

yield acceleration ky can be computed through a pseudo-static slope stability analysis, 

which uses an inertial force (   ) acting on the failure mass to represent the effects of 

earthquake shaking.  The value of k that produces a pseudo-static factor of safety (FS) 



 79 

equal to 1.0 (i.e., full shear strengths are mobilized to resist sliding along the critical 

failure surface) is the yield acceleration ky of the slope. 

The pseudo-static slope stability analysis can be fulfilled by various limit 

equilibrium methods.  The Spencer’s slice method is chosen for this analysis, because 

both force and moment equilibriums are enforced.  The inertial force (   ) is applied 

to the center of gravity of each slice.  No pore water pressure is considered in the static 

slope stability analysis because 1) the ground water table is much lower than the critical 

failure surface and 2) total stress analysis (undrained shear strengths) is used for Qsur and 

QTsc layers.  

  

 

Figure 4.7  Critical failure surface with best-estimate shear strengths under pseudo-static 

condition 

 

Assuming that the seismic loading acting on the slope is horizontal, the ky value 

can be computed under the pseudo-static condition.  The critical failure surface with 

best-estimate shear strengths is shown in Figure 4.7, and the associated yield acceleration 
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is 0337 g.  The failure mass extends into the QTsc layer with a maximum thickness 

(Hmax) of 151.9 ft. The average thickness (Havg) across the entire failure surface is 90.4 ft.   

Similarly, ky values for the low and high shear strengths are computed by the 

pseudo-static analyses and result in ky values of 0.241 g and 0.390 g, respectively.  The 

ky value changes significant (i.e., -28% ~ +16%) with changes in shear strength.  The 

results of all ky computations are summarized in Table 4.3, and the critical failure 

surfaces for the low and high shear strengths are shown in Figure 4.8 and Figure 4.9.  

The maximum thickness (Hmax) and average thickness (Havg) of the failure surface 

decreases by 65% when using the low shear strength, indicating that the critical failure 

surface becomes shallower with smaller shear strength.  The critical failure surface 

computed for high shear strength is deeper than the one with best-estimate shear strength.  

Any changes in the thickness of the failure surface will influence the site period used in 

the sliding displacement analysis.   

 

Table 4.3 Results of pseudo-static slope stability analyses 

Shear Strength ky (g) Hmax (ft) Havg (ft) Weight 

High 0.390 189.3 116.3 0.2 

Best-Estimate 0.337 151.9 90.4 0.6 

Low 0.241 48.6 32.2 0.2 
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Figure 4.8  Critical failure surface with high shear strengths under static condition 

 

 

 

Figure 4.9  Critical failure surface with low shear strengths under static condition 

 

 

 

 

 



 82 

With shear wave velocity and thickness of failure mass, The site period   , is 

computed from the average thickness of the failure mass (Havg) and the average shear 

wave velocity over that thickness using         .  The uncertainty in    is due to 

uncertainty in the shear wave velocity, as well as uncertainty in the thickness of the 

failure mass, as predicted for different shear strengths.  Table 4.4 summarizes the 

different values of    that result from different combinations of Havg and   .  The 

resulting    values range from 0.22 s to 0.52 s. 

 

Table 4.4 Variation of    with shear strengths and    predictions 

Thickness (ft) 

Uncertainty 

In Shear 

Strength 

Uncertainty in    Predictions 

Average    (m/s)    (s) 

High Mean Low High    Mean    Low    

Havg 

116.3 High 384 329 274 0.37 0.43 0.52 

90.4 Best-Estimate 317 272 226 0.35 0.41 0.49 

32.2 Low 179 153 128 0.22 0.26 0.31 

 

One thing to be noted is that the site period calculation and dynamic response 

prediction in this study are based on one-dimensional (1D) site response analysis.  

However, the site and critical failure surfaces described here are two-dimensional (2D) 

problems.  Rathje and Bray (2001) found that the dynamic response predicted by 1D 

analysis is generally greater than for 2D analysis, although the 1D sliding displacement is 

not always greater than the 2D result.  Nonetheless, a 1D site period using an average 

thickness is selected for analysis.   

Intuitively, materials with smaller shear strength are associated with smaller 

stiffness (i.e.,   ), which was the basis for the shear strength and    relationships used in 

Section 4.2.2.  A failure mass with lower shear strengths should be treated as softer in 
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the dynamic response analysis.  However, in Table 4.4, the failure mass with low shear 

strengths has a smaller    than the failure masses with idealized and high shear strengths, 

indicating that low shear strengths give a more rigid failure mass for this special case.  

The reason of this unusual observation is that the reduction of the failure mass thickness 

dominates the change of   , when low shear strengths are used.  In another word, a thin 

soft soil mass may have a more rigid seismic performance than a thick hard soil mass. 

 

4.2.4 Ground Motion Hazard 

 

The ground motion seismic hazard curve and seismic hazard deaggregation are 

required for the computation of the dynamic response and sliding displacements.  The 

PGA hazard curve can be obtained from the hazard curve application tools developed by 

the 2008 National Seismic Hazard Map Project (NSHMP, 

http://geohazards.usgs.gov/hazardtool/).  This tool provides the ground motion hazard 

for 19 levels of ground shaking.  For PGA, these 19 levels range from 0.005 to 2.13 g. 

The USGS website also provides the 2008 Interactive Deaggregations, which contains 

seismic hazard deaggregation information (i.e., distribution of magnitude and distances 

contributing to the selected ground motion hazard) of the 48 continental states in the 

United States (http://geohazards.usgs.gov/deaggint/2008/).  There are 36 seismic hazard 

levels available for generating seismic hazard deaggregation.  The deaggregation 

information is used to identify the dominant earthquake magnitude or magnitudes 

corresponding to a given ground motion, and it is also used to develop vector hazard 

information (Section 3.2.2).  
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Figure 4.10 PGA hazard curve and selected hazard levels of deaggregation 

 

Figure 4.10 shows the NSHMP PGA hazard curve of the Lexington school site 

and the hazard levels of deaggregation.  It is not necessary to use all 36 hazard levels of 

deaggregation because some hazard levels are very close to each other.  Therefore, 18 

seismic hazard levels (Table 4.5) are selected for generating seismic hazard 

deaggregation information.  Figure 4.10 shows that the selected seismic hazard levels are 

evenly distributed along the PGA hazard curve.   

As seen in Table 4.5, the maximum PGA level is 2.11 g at 1% probability of 

exceedance in 200 years (19,900 year return period), and the minimum PGA level is 0.11 

g at 50% probability of exceedance in 21 years (30 year return period).  The two most 

10% in 50 years 

2% in 50 years 
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commonly used seismic hazard levels in design are 10% and 2% probabilities of 

exceedance in 50 years, which correspond with 475 year and 2,475 year return periods, 

respectively.  The corresponding PGA levels for the Lexington School site are 0.67 g 

and 1.26 g.  The mean annual probability of occurrence, P[PGA], as derived from 

differencing the hazard values (Equation 3.3), is also presented in Table 4.5. 

 

Table 4.5 Selected hazard levels of deaggregation for Lexington Elementary School 

Probability Years λ (1/yr) 
Return 

Period (yr) 
PGA (g) P[PGA] 

50% 21 3.301E-02 30 0.1115 4.951E-03 

50% 30 2.310E-02 43 0.14093 9.572E-03 

50% 50 1.386E-02 72 0.1975 6.931E-03 

50% 75 9.242E-03 108 0.2629 3.466E-03 

50% 100 6.931E-03 144 0.3278 2.390E-03 

20% 50 4.463E-03 224 0.4428 1.978E-03 

20% 75 2.975E-03 336 0.5647 1.178E-03 

10% 50 2.107E-03 475 0.6709 7.852E-04 

10% 75 1.405E-03 712 0.8074 5.407E-04 

5% 50 1.026E-03 975 0.9142 3.604E-04 

5% 75 6.839E-04 1462 1.0614 2.565E-04 

5% 100 5.129E-04 1950 1.1678 1.399E-04 

2% 50 4.041E-04 2475 1.2593 1.218E-04 

2% 75 2.694E-04 3712 1.4217 1.015E-04 

1% 50 2.010E-04 4975 1.5425 6.768E-05 

1% 75 1.340E-04 7462 1.6979 5.025E-05 

1% 100 1.005E-04 9950 1.8146 4.188E-05 

1% 200 5.025E-05 19900 2.1081 7.538E-05 
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Three types of seismic hazard deaggregation are provided by the USGS website: 

geographic deaggregation, deaggregation bins and text-format deaggregation,.  As 

explained later, the text-format deaggregation data are used in subsequent calculations, 

but the other forms of deaggregation allow for a better visualization of the magnitude and 

distance distributions.   

The geographic deaggregation plots the source contribution deaggregation on a 

map, which allows for a magnitude and distance deaggregation to be related to the fault 

in the area.  Figure 4.11 plots the sources of ground motion hazard and their 

contributions for the Lexington school site for the 475 year and 2,475 year return period 

ground motions.  The yellow dot at the center of the blue circle is the Lexington school 

site.  The orange lines represent faults, and the fault closest to the school site is the San 

Andreas Fault.  Figure 4.11 shows that the major source of ground motion hazard is the 

San Andreas Fault and the associated magnitude is about 7.5. 
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(a) 

 

(b) 

Figure 4.11 Geographic seismic hazard deaggregation for Lexington Elementary School 

at (a) 10% in 50 years, and (b) 2% in 50 years 
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Deaggregation bins, as shown in Figure 4.12, can visually display the 

contributions of all sources with respect to magnitude and site-to-source distance.  The ε 

value represents the difference, in terms of the number of standard deviations, between 

the considered PGA level (e.g. 0.67 g at the 475 year return period) and the predicted 

median PGA value given each combination of M and R.  In another words, the ε value 

shows the probability of exceedance of the considered PGA level given a combination of 

M and R.  Therefore, ε values are larger for smaller magnitudes and longer distances, 

because such M and R values predict lower median PGA values.  The mean magnitude 

for 2475-year return period is 7.46, higher than the magnitude 7.33 for 475-year return 

period.  The modal events (i.e. largest source contribution) in both cases represent a 

magnitude of 8.0 and a distance of 1.2 km.  Most of the events with large source 

contributions have magnitude values between 7.0 and 8.0, and these events are all about 

1.0 km away from the school site.  This reveals the same trend as observed in Figure 

4.11; i.e., the source contribution is dominated by events on the San Andreas Fault. 
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(a) 

 

(b) 

Figure 4.12 Seismic hazard deaggregation bins for Lexington Elementary School at (a) 

475-year return period, and (b) 2,475-year return period 
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One thing to be noted is that there are some ambiguities in the definition of the 

site-to-source distance reported in the seismic hazard deaggregation because multiple 

ground motion prediction equations (GMPE) .are used in the seismic hazard calculation.  

On the USGS website it explains that the reported site-to-source distance has the same 

metric as the GMPE used for ground motion predictions.  However, different GMPEs 

use different distance definitions, yet the deaggregation plot only uses a single distance 

definition (i.e., closest distance).  For instance, the seismic hazard calculation and 

associated deggregation for the Lexington school site use the GMPEs of Boore and 

Atkinson (2008, BA08), Campbell and Bozorgnia (2008, CB08), and Chiou and Youngs 

(2008, CY08).  BA08 uses RJB, which is the closest distance from the site to the ground 

surface projection of a fault rupture, while the others use Rrup, which is defined as the 

closest distance from the site to the fault rupture plane.  For an event that ruptures the 

ground surface on a vertical, strike-slip fault, these distance metrics are the same.  

However, for dip-slip faults and ruptures that do not break the ground surface, the 

distance metrics will be different.  This issue is most important when developing the 

vector ground motion hazard from the scalar ground motion hazard (i.e., Equation 3.11 in 

Chapter 3). 

The text-format deaggregation contains more details of the deaggregation.  Each 

M, R, and ε scenario is listed in a table along with its contribution to the hazard at each 

ground motion level, and such a table can be converted into a matrix of magnitude bins 

and distance bins.  The M values are taken every 0.01 magnitude units and the R values 

every 0.1 km.  Using this information we can combine the contribution of defined 

magnitude and distance bins.  The magnitude bins are defined by the lower end of the 

magnitude bins (e.g. 4.0, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 and 8.4), and the bin sizes are 

about 0.5 magnitude units wide.  The distance bins are also defined by the lower end of 



 91 

the distance bin (e.g. 0, 2, 5, 10, 20, 50, 100, 200 and 500 km), but these bin sizes 

increase with distance to account for the large distances considered and the logarithmic 

decay of amplitude with distance.  For instance, an event with M=7.3 and R=1.4 km is 

put into the magnitude bin 7-7.5 and the distance bin 0-2 km, and its contribution will be 

summed up with all other events in the same bin.  The sum of the contributions for each 

magnitude bin    and distance bin    represents        |         , which is used 

to develop the vector ground motion hazard (e.g., Equation 3.8). 

As mentioned above, three GMPEs (BA08, CB08, and CY08) were used for the 

computation of the seismic hazard and associated deaggregation.  Each GMPE 

contributes a part of the total deaggregation, and the contribution of each GMPE varies 

with different return periods.  For instance, the contribution of the CY08 model 

decreases from 62% to 33% when the hazard changes from 1% probability in 200 years 

to 50% probability in 21 years.  Nonetheless, these three GMPEs predict very similar 

ground motions for the school site, and therefore the variation of the model contributions 

will not significantly influence the vector hazard calculation.  As a result, the percent 

contribution of each GMPE is assumed constant and taken as equal to the average 

contribution over all return periods. The model contributions of BA08, CB08, and CY08 

are assigned as 33%, 19% and 48%, respectively.  The percent contributions are required 

to take into account the different GMPE when computing the vector ground motion 

hazard.  In particular, it is used in the calculation of       |           , as required in 

Equation 3.11.  Here, the median values and standard deviations of PGA and PGV used 

for computing       |            are computed for each GMPE given Mk and Rl, and 

they are weighted based on the percent contribution of each GMPE.  An alternative 

approach is to only use the deaggregation from one attenuation model, and thus the 

percent contribution for the different GMPEs is not an issue. 
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With the PGA hazard curve and the seismic hazard deaggregation, the joint 

annual probability of occurrence P[PGA,PGV], as shown in Figure 4.13, can be 

computed using Equations 3.10 and 3.11.  Generally, pairs of larger PGA and PGV have 

smaller annual probabilities of occurrence, while pairs of smaller PGA and PGV have 

larger probabilities of occurrence.  In addition, the probability of a small PGA occurring 

with a large PGV is very small, and vice versa, because of the relatively high correlation 

between PGA and PGV (i.e.,  = 0.6). The total annual probability of occurrence 

summed across all P[PGA,PGV] bins is 0.033 1/yr, which is equal to the mean annual 

rate of exceedance of the smallest PGA level considered in the analysis (Table 4.5).  The 

P[PGA,PGV] information will be ultimately used to compute the displacement hazard 

using the vector approach (Equation 3.9). 
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Figure 4.13 Joint annual probabilities of occurrence for (PGA, PGV) pairs for the 

Lexington school site 
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For the probabilistic analysis of flexible sliding masses, the mean period of 

ground motion    is required.  Rathje et al. (2004) proposed an empirical model for 

predicting    (Equation 2.6) by using magnitude, distance, site class and forward 

directivity.  As seen in the seismic hazard deaggregation, many earthquake sources can 

contribute to the seismic hazard of a site.  Such earthquake sources have different values 

of M and R, and this variability coupled with the aleatory variability associated with the 

prediction of    results in significant variability in the mean period of ground motion.  

The rigorous approach to incorporating the variability in    would be to include it in the 

vector of ground motion parameters required for the displacement hazard calculation.  

This approach requires the estimation of the joint probability of occurrence of PGA, 

PGV, and    (i.e., P[PGA, PGV,   ]) and the 3x3 covariance matrix between these 

three parameters.  Extension of the vector hazard approach to 3 parameters increases the 

complexity of the calculations significantly, therefore in this study the uncertainty in    

is taken into account through a logic tree approach, as described below. 

Given a PGA level, the median    is predicted using the mean M and R from the 

seismic hazard deaggregation.  Table 4.6 summarizes the mean M and R values for all 

seismic hazard levels at the Lexington School site.  In computing   , the site class is 

assigned as C (i.e.,            ft/s) and Forward Directivity is taken into account 

because the school site is very close to a major earthquake source .  The best estimate 

   for the school site may be approximated as: 

 

1) The weighted mean of the median    values, or 

2) The weighted mean of all mean       values, or 

3) The median    value predicted by using the weighted mean M and R. 
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where the weight is taken as the mean annual probability of occurrence of each PGA 

level, P[PGA].  The smaller ground motions have the larger weights and will overly 

influence the predicted   , but such low PGA levels cannot induce landslide movement 

because they are unlikely to exceed the ky values (Table 4.3).  Considering the smallest 

ky in Table 4.3, the ground motion levels with PGA < 0.26 g should be excluded from the 

prediction of   . 

 

Table 4.6    predictions for Mean M and R at each hazard level 

Probability Years PGA (g) P[PGA] Mean M 
Mean R 

(km) 

Median    

(s) 

50% 21 0.1115 4.951E-03 6.44 25.2 0.427 

50% 30 0.14093 9.572E-03 6.53 20.6 0.468 

50% 50 0.1975 6.931E-03 6.72 14.0 0.538 

50% 75 0.2629 3.466E-03 6.90 9.1 0.602 

50% 100 0.3278 2.390E-03 7.03 6.2 0.646 

20% 50 0.4428 1.978E-03 7.18 3.7 0.691 

20% 75 0.5647 1.178E-03 7.27 2.6 0.712 

10% 50 0.6709 7.852E-04 7.33 2.2 0.717 

10% 75 0.8074 5.407E-04 7.37 1.9 0.721 

5% 50 0.9142 3.604E-04 7.40 1.8 0.722 

5% 75 1.0614 2.565E-04 7.43 1.7 0.723 

5% 100 1.1678 1.399E-04 7.44 1.6 0.724 

2% 50 1.2593 1.218E-04 7.46 1.6 0.724 

2% 75 1.4217 1.015E-04 7.48 1.5 0.725 

1% 50 1.5425 6.768E-05 7.49 1.5 0.725 

1% 75 1.6979 5.025E-05 7.50 1.4 0.726 

1% 100 1.8146 4.188E-05 7.52 1.4 0.726 

1% 200 2.1081 7.538E-05 7.54 1.4 0.726 

Weighted mean for PGA>0.26 g 7.12 5.3 0.66 
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Tm values were predicted using the three approaches.  For approach three, the 

weight mean M and R values considering only PGA  0.26 g are 7.12 and 5.3 km.  The 

three methods provide very similar results (0.664 s, 0.662 s, and 0.666 s).  As a result, 

the best-estimate Tm value is taken as 0.66 s.  The other branches of the logic tree are 

taken as the 5
th
 and 95

th
 percentiles (i.e., -1.6 and +1.6), and using the      

 value of 

0.416 reported in Rathje et al. (2004) the resulting values of    are 0.34 s and 1.29 s.  

The associated weights for the logic tree are equal to 0.2, 0.6, and 0.2.  The two most 

commonly used seismic hazard levels (i.e., 10% and 2% probabilities of exceedance in 50 

years) have large and similar    values (         ), which are about 10% greater 

than the best-estimate    adopted above.  However, because a large level of uncertainty 

in    has already been considered through the logic tree, the small difference between 

the different approaches to select a best-estimate    is not significant.  

 

4.2.5 Summary of Logic Tree for Lexington School Site 

 

Summarizing all of the above discussions, the logic tree for the Lexington School 

site is shown in Figure 4.14.  The logic tree consists of three sections representing the 

uncertainties in ky,   , and   .  The ky values and    values are correlated, because 

different shear strengths lead to different thicknesses of the failure mass.  The    values 

are not correlated to the ky and    values.  There are 27 branches in the logic tree, and 

the best-estimate branch has          ,           and          . 
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Figure 4.14 Logic tree of Lexington Elementary School 
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4.3 PROBABILISTIC ESTIMATE OF SEISMIC STABILITY  

4.3.1 Dynamic Response 

 

The dynamic response of the flexible sliding mass, as characterized by kmax, will 

have widely distributed amplitudes due to the large uncertainties in the site period (  ) 

and the mean period of the ground motion (  ), as seen in the logic tree above.  The kmax 

hazard curves for the Lexington school site are shown in Figure 4.15.  The 27 kmax 

hazard curves have       ratios from 0.17 to 1.53.  The probabilistic kmax values range 

from 0.19 to 0.68 g at 10% probability of exceedance in 50 years (l = 0.0021 1/yr), and 

range from 0.24 to 1.06 g at 2% probability of exceedance in 50 years (l = 0.0004 1/yr).  

The 27 kmax hazard curves are weighted by their associated weights to generate a mean 

kmax hazard curve.  Note that the weights are applied to the hazard (i.e., l) at each kmax 

value, and not to the kmax values themselves.  Also shown in Figure 4.15 is the kmax 

hazard curve using the best-estimate soil properties and Tm characterization (i.e., Ts = 

0.41 s and Tm = 0.66 s from Figure 4.14).  Note that this curve falls below the mean 

hazard curve showing that incorporating uncertainty in the soil properties and Tm 

generally leads to a larger seismic hazard.  The difference between these curves 

increases as l decreases.   
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Figure 4.15 kmax hazard curves for Lexington School site 

 

Deterministic values of kmax for 10% and 2% probabilities of exceedance in 50 

years are also shown in Figure 4.15.  These values are calculated by using the mean M 

and R from the seismic hazard deaggregation (Table 4.6), the associated median   , and 

the best estimate   .  The resulting deterministic values of kmax are 0.436 g and 0.491 g 

at 10% and 2% probabilities of exceedance in 50 years, respectively.  At 10% 

probability of exceedance in 50 years, the deterministic kmax is close to the values from 

the probabilistic approach.  At 2% probability of exceedance in 50 years, the 

deterministic kmax is much lower than the probabilistic kmax, because it reaches a limiting 
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value at large PGA as discussed in Section 3.3, while the probabilistic kmax can take on 

values larger than the limiting value due to the consideration of the variability in the kmax 

prediction (i.e., lnkmax). 

To further investigate the influence of different sections of the logic tree on the 

probabilistic estimates of dynamic response, kmax hazard curves associated with each 

section of the logic tree (Figure 4.14) are shown in Figure 4.16.  For the hazard curves 

shown, the best-estimate values associated with other sections of the logic tree are used 

while varying the parameters within the selected section of the logic tree.  It should be 

noted that although the kmax hazard curve does not explicitly depend on ky , the different 

ky values are derived from different shear strength and shear wave velocity profiles that 

result in different thicknesses of the failure mass and average Vs over the thickness of the 

failure mass.  As a result, the best-estimate    is different for each ky value (Table 4.4).  

Figure 4.17a shows the kmax hazard curves for the three best-estimate Ts values 

associated with the ky section of the logic tree, while Figure 4.17b shows the kmax hazard 

curves for the three central Ts values within the Ts section of the logic tree, which are 

associated with the best-estimate ky. For all of these hazard curves, Tm is taken as 0.66 s.  

The hazard curves in Figure 4.17 (a) and (b) indicate that uncertainties in Ts associated 

with the ky and    sections of the logic tree generate small variations in kmax, which is 

about 10 ~ 20% of the mean values.  Figure 4.17c shows the kmax hazard curves for the 

three potential values of Tm, assuming the best-estimate Ts.  It is clear that the 

uncertainty of    generates a larger variation in kmax predictions because    varies over 

a wider range than    in the logic tree. 
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(a)               

          

  

    (b)                                (c) 

Figure 4.16 Influence of different sections of the logic tree on the kmax hazard curves 

 

 

 

ky section of logic tree 

Ts section of logic tree Tm section of logic tree 
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Hazard curves for k-velmax are not created due to the fact that they are not used in 

the vector probabilistic analysis.  Instead, the joint annual probability of occurrence of 

kmax and k-velmax is computed from P[PGA, PGV] by using Equation 3.21.  The resulting 

P[kmax, k-velmax] for the best-estimate branches of the logic tree is shown in Figure 4.17.  

Comparing Figure 4.13 and Figure 4.17, P[kmax, k-velmax] and P[PGA, PGV] have a 

similar shapes.  However, the P[kmax, k-velmax] values are more widely distributed than 

the P[PGA, PGV] values, and the kmax and k-velmax values associated with the peak 

P[kmax, k-velmax] are smaller that PGA and PGV values associated with the peak P[PGA, 

PGV].  Figure 4.18 plots the difference between P[kmax, k-velmax] and P[PGA, PGV] for 

each bin.  As seen in Figure 4.18, the difference is negative (i.e., P[kmax, k-velmax] < 

P[PGA, PGV], colored blue) for the bins that represent the peaks in P[PGA, PGV].  This 

means that the dynamic response has reduced the probability of occurrence of these 

values.  The difference becomes positive (i.e., P[kmax, k-velmax] > P[PGA, PGV], colored 

red) for bins associated with combinations of large/small kmax and k-velmax levels.  As a 

result, P[kmax, k-velmax] is distributed over a wider range of (kmax, k-velmax) combinations. 
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Figure 4.17 Joint annual probabilities of occurrence for (kmax, k-velmax) pairs for the best-

estimate branches of the logic tree 
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Figure 4.18 Difference between joint annual probabilities of occurrence for (PGA, PGV) 

pairs and (kmax, k-velmax) pairs for the best-estimate branches of the logic tree 

 

4.3.2 Displacement Hazard Curves 

 

Through the steps described in Sections 3.2 and 3.4, displacement hazard curves 

for the Lexington School site are constructed using both the scalar and vector approaches.  

Figure 4.19a shows the displacement hazard curves from the (kmax, M) scalar model and 

Figure 4.19b shows the displacement hazard curves from the (kmax, k-velmax) vector 

model.  Table 4.7 summarizes the predicted sliding displacements along with the ground 

motions and dynamic responses at l = 0.0021 1/yr and 0.0004 1/yr.  The conditional 
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PGV correlated with PGA is used to compute k-velmax in the deterministic approach, and 

it can be derived from Equation 3.12.  For both of these models, the displacement from 

the mean hazard curve is larger than the displacement from the hazard curve associated 

with the best-estimate properties and significantly larger than from the deterministic 

approach.  The mean hazard curve produces larger displacements than the best-estimate 

hazard curve because it accounts for uncertainty in the site properties and Tm.  These 

differences are most significant at longer return periods (i.e., smaller l).  At l = 0.0021 

1/yr, the difference between the deterministic value and the mean hazard curve may be on 

the order of a factor of 4 to 6, but at l = 0.0004 1/yr the difference may be larger than a 

factor of 10.  This large difference is caused by the fact that the kmax predictive model 

has a limiting mean value at large input PGA, which cannot be exceeded when this model 

is used deterministically.  However, the kmax data shows variability about this limiting 

value and when this variability is taken into account in the probabilistic approach larger 

displacements develop. 

Figure 4.19c shows the mean hazard curves from the scalar and vector models.  

Generally, the mean hazard curve for the vector model predicts smaller displacements 

than the scalar model at each seismic hazard level because the (kmax, k-velmax) vector 

displacement model generally predicts smaller displacements with less variability. 
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     (a) 

 

     (b) 

    Figure 4.19 

(kmax, M) model 

(kmax, k-velmax) model 
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     (c) 

Figure 4.19 Displacement hazard curves of Lexington Elementary School (a) (kmax, M) 

model, (b) (kmax, k-velmax) model and (c) mean hazard curves 

 

Table 4.7 Deterministic and probabilistic predictions of sliding displacements 

 
l  

(1/yr) 

Ground Motions Dynamic Response Sliding Displacement (cm) 

 
PGA  

(g) 

Conditional 

PGV (cm/s) 

kmax  

(g) 

k-velmax  

(cm/s) 
Deterministic 

Probabilistic 

with Logic Tree 

Scalar 
Model 

0.0021 0.67 - 0.44 - 0.22 1.4 

0.0004 1.26 - 0.49 - 1.4 34 

Vector 
Model 

0.0021 0.67 72 0.44 77 0.15 0.61 

0.0004 1.26 112 0.49 111 1.3 18 

   *Tm and M are shown in Table 4.6 
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The seismic landslide hazard categories of the Lexington school site determined 

from the deterministic results are low hazard at l = 0.0021 1/yr and moderate at l = 

0.0004 1/yr.  Instead, the probabilistic approach predicts low/moderate hazard and very 

high hazard at 10% and 2% probabilities of exceedance in 50 years, respectively.  The 

increment of hazard is significant with uncertainties in input parameters, thus the results 

of the probabilistic analysis should be accepted to better estimate the seismic 

performance of the Lexington school site.  Further dynamic slope stability analyses 

using numerical methods and ground motion records must be performed to fully evaluate 

the landslide potential of the Lexington school site. 

The influence of ky,    and    on sliding displacements are individually 

illustrated in Figure 4.20 using displacement hazard curves derived from the (kmax, M) 

model.  Only the parameters within the selected section of the logic tree are varied while 

all other parameters are set to the best-estimate values.  The different ky values within 

the logic-tree explicitly affect the displacement hazard curves, and the resulting variation 

of sliding displacement is significant (Figure 4.20a), with the displacement at a given 

hazard value varying by about an order of magnitude for the lower and upper ky values.  

The uncertainty of    (Figure 4.16b) leads to a relatively smaller variation in predicted 

sliding displacements, about a half of an order of magnitude.  Figure 4.20c shows that 

the variation of sliding displacements caused by the uncertainty of    can be very large, 

several orders of magnitude.  The large difference is driven by the very small 

displacements predicted by the lower bound           in the logic tree.  The 

displacements are extremely small because the corresponding kmax values are very close 

to or even smaller than the best-estimate          .  The uncertainties of ky and    

together dominate the variation of predicted sliding responses.  Similar observations can 
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be made about the influence of each section in the logic tree when using the (kmax, k-

velmax) model.   

 

 

 

(a) 

 

(b) 

Figure 4.20 

ky section of logic tree 

TS section of logic tree 
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    (c) 

Figure 4.20 Influence of different sections of the logic tree on the displacement hazard 

curves 

 

The ground motions used in the above analysis are the geometric mean of two 

orthogonal horizontal components of motions.  The maximum component could be 20% 

on average higher than the geometric mean.  Since the Lexington school site is very 

close to the the San Andreas Fault, the effect of using maximum components of ground 

motions may be taken into account for the probabilistic analysis.   

A scale factor equal to 1.2 is applied to the PGA levels shown in Figure 4.10, and 

the associated seismic hazard deaggregation is assumed to be the same as before.  The 

median PGA and PGV values predicted by GMPEs are also scaled up by 20%, so that the 

P[PGA, PGV] and P[kmax, k-velmax] used in the vector approach can be accordingly 

updated.   

 

Tm section of logic tree 
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Figure 4.21 Displacement hazard curves using geometric mean and maximum component 

of ground motions 

 

The effect of using the maximum component of ground motions on sliding 

displacements is illustrated in Figure 4.21 for both the scalar and vector displacement 

models.  After applying the scale factor, the sliding displacements predicted by the scalar 

and vector models are 1.4 cm (vector) and 1.9 cm (scalar) at l = 0.0021 1/yr, and 26 cm 

(vector) and 44 cm (scalar) at l = 0.0004 1/yr.  These predicted displacements are 

generally 30 ~ 40% larger than those predicted with the original ground motions..  

Although the maximum components of ground motions may lead to conservative 

predictions of sliding displacements, such an unfavorable condition may be considered 

for the Lexington school site due to the short site-to-source distance.  However, the best 

approach to incorporating this effect would be to model it within the ground motion 
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hazard calculation such that the effect is only modeled for near-fault earthquake 

scenarios.  The approach utilized above assumes each earthquake scenario represents a 

near-fault scenario. 

 

4.4 SUMMARY 

 

This chapter demonstrated the application of the probabilistic framework for 

flexible sliding masses by investigating the Lexington Elementary School site.  The 

uncertainty in soil shear strengths influences not only the yield acceleration, but also the 

shape of the critical failure surface, which affects the thickness of failure mass and 

associated site period.  The uncertainty in yield acceleration, ky, is determined from the 

different shear strengths, and the uncertainty in the site period    is determined from the 

different failure mass thicknesses and different shear wave velocity profiles.  The mean 

period of the ground motion    also has significant uncertainty, as indicated from the 

empirical predictive model for Tm.  A logic tree analysis is applied to incorporate all 

uncertainties in ky,    and   .  The results show that the uncertainty in    dominates 

the variation of dynamic response and sliding displacements.  The deterministic analysis 

may considerably under-estimate the dynamic response and sliding response of flexible 

sliding masses.    
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Chapter 5 Probabilistic Seismic Landslide Hazard Mapping  

 

5.1 INTRODUCTION 

 

Seismic landslides have been responsible for a tremendous amount of economic 

losses in earthquakes.  For instance, the 2008 Sichuan Earthquake (Mw = 7.9) in China 

induced significant landslides and these landslides not only buried dozens of towns, but 

also blocked roads, which are the lifelines connecting those ruined towns and nearby 

large cities.  Knowledge of the locations and scale of potential seismic landslides is 

essential for reducing losses caused by earthquakes. 

Regional maps of potential seismic landslides are used in land-use planning and 

emergency-response planning, and are used to identify zones that require detailed, site-

specific studies.  Current seismic landslide hazard mapping efforts utilize empirical 

predictions of sliding displacement based on the expected ground shaking and the general 

slope properties (e.g. Jibson el al. 2000).  The seismic landslide hazard is assigned 

qualitatively as high, medium, or low based on the different displacement thresholds 

(Table 2.1).  However, these maps typically utilize a deterministic approach that does 

not consider the aleatory variability in predictions of ground shaking or sliding 

displacement; nor do they consider the epistemic uncertainty in the slope properties (i.e., 

soil shear strengths, ground water table and thickness of sliding blocks). 

A recently developed probabilistic approach, as discussed in Chapter 3, uses a 

sliding displacement hazard curve to quantify the seismic landslide hazard.  The 



 114 

displacement hazard curve incorporates aleatory variability to compute the annual 

frequency of exceedance (i.e., hazard) of different displacement levels, and it is used to 

identify the displacement associated with a specified hazard level (Saygili and Rathje 

2009).  Using the displacements associated with the specified hazard level (typically 

10% or 2% probability of exceedance in 50 years), a seismic landslide hazard map is 

produced using the same displacement thresholds used in deterministic approaches.  

However, this probabilistic approach does not incorporate any epistemic uncertainty in 

the slope properties.  Yet, at a regional scale the uncertainties in the slope properties are 

significant and should be taken into account. 

In Chapter 3, the logic-tree analysis was introduced to incorporate the epistemic 

uncertainties in the slope properties into the probabilistic framework.  This chapter 

describes the probabilistic approach to seismic landslide hazard mapping and the 

incorporation of a logic-tree to account for various sources of epistemic uncertainties.  

An efficient computational scheme is described that allows the logic-tree approach to be 

applied more easily to regional analysis. 

 

5.2 SEISMIC LANDSLIDE HAZARD MAPPING 

5.2.1 Input Parameters 

 

To produce a seismic landslide hazard map, either the deterministic or 

probabilistic approach must be applied to a regional area containing hundreds of 

thousands to millions of sites.  The input parameters for the analysis (e.g., slope angle, 

shear strength) take on different values at different locations.  In a Geographic 

Information System (GIS), such location-dependent data is stored as raster data (Figure 
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5.1), which is made of small square grid cells (typical cell sizes are the scale of meters).  

An entire study area can be divided into millions of grid cells, each storing a single value.  

The resolution of a raster data describes the detail level of the data.  Finer resolution 

means smaller grid cells, more detail and larger storage space.   

The spatial distribution of the yield acceleration ky, which represents the sliding 

resistance of a slope, is the critical slope parameter for predicting sliding displacement 

and needs to be computed for each grid cell in the study area.  As discussed in Chapter 2, 

the most common type of earthquake-induced landslide is a thin, veneer slope failure, so 

the infinite slope model can be used to calculate ky (Equations 2.1 and 2.2).  This 

approach allows the ky of each grid cell to be computed easily.  Each grid cell is treated 

as an independent infinite slope, which may not be realistic for all types of landslides but 

it is the most practical way to perform a regional analysis.  Slope stability analysis of 

finite slopes using circular or non-circular failure surfaces would be too difficult to be 

applied for seismic landslide hazard mapping, because 1) it requires much more site 

information (e.g. soil profiles), 2) the geometry of slopes are different from one location 

to another, and 3) the number of slopes is incredibly large in a region.  However, slope 

stability analysis of detailed geometries of finite slopes can be used in site-specific 

analysis of the slopes that are identified by the seismic landslide hazard mapping. 
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Figure 5.1  Convert the real world into raster and vector data 

(http://www.sfu.ca/rdl/GIS/tour/gis_wrk.html) 

 

The infinite slope model requires slope angle, shear strength and ground water 

condition for the computation of ky.  Each of these input parameters are stored in raster 

format so that ky can be computed for each grid cell.  The calculation of the input 

parameters within the GIS is described below.  A region within Niigata Prefecture, Japan 

is used to demonstrate the process. 

A Digital Elevation Model (DEM), which contains the elevation at the center of 

each grid cell (e.g. Figure 5.2), is used to compute the slope angle of each grid cell.  The 

slope angle is computed for a center grid cell by using its elevation data and its eight 

adjacent grid cells.  A slope map (e.g. Figure 5.3) can be created using this slope 
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algorithm as incorporated within the Slope tool in the ArcGIS© software developed by 

the Environmental Systems Research Institute (ESRI).   

 

 

 

Figure 5.2  Hillshade DEM in Niigata Prefecture, Japan 
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Figure 5.3  Slope map in Niigata Prefecture, Japan 

 

The shear strength data required for the ky calculation are usually derived from a 

geologic map.  A geologic map (Figure 5.4a) is made of polygons, and each polygon 

represents a single geologic unit.  Polygons are vector data in the GIS framework (Figure 

5.1), and they need to be converted into raster data for further computation.  The 

conversion divides polygons into raster grid cells, and each grid cell obtains a single 

value from the polygon to which it belongs.  Shear strengths are assigned to each 

geologic unit prior to the conversion.  Because there are two shear strength parameters (c 

and ϕ), a separate cohesion map and friction angle map are developed from the geologic 

map (Figure 5.4b and c). 
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(a) 

 

(b)                                  (c) 

Figure 5.4  (a) Geologic map, (b) cohesion map, and (c) friction angle map in Niigata 

Prefecture, Japan 
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Figure 5.5  Yield acceleration map of Niigata, Japan 
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The other inputs for the calculation of ky are t (slope normal thickness), m 

(proportion of block thickness that is saturated), and γ (unit weight of soil).  These 

values commonly are assigned as constant values across the study area in the 

deterministic approach.  The t value, which represents the failure depth of shallow 

landslides, is typically up to several meters as discussed in Chapter 2.  It can be 

determined from the thickness of surficial weak soils underlain by stiff soil or rock layer, 

or from observations of local shallow failures.  The m value, which represents the pore 

water pressure on the failure surface, depends on the ground water table and may 

fluctuate due to seasonal change and precipitation.  In deterministic analysis, the selected 

m value often is selected to represent the most unfavorable conditions for seismic 

landslides, so that seismic landslide hazard map is conservative.  The unit weight of soil 

γ can be assigned differently to each geologic unit if there are available testing results.  

However the difference in γ values is usually small, so that using a constant γ value 

across the study area is convenient for the ky computation.  Jibson el al. (2000) used t = 

2.4 m, m = 0 and γ = 15.7 kN/m
3
 for the Oak Mountain quadrangle in southern 

California, because such values are representative for local conditions.   

With all above-mentioned input data, a yield acceleration map (e.g. Figure 5.5) is 

created by applying Equations 2.1 and 2.2 to each grid cell.  Combined with ground 

motion parameters, the sliding displacement in each grid cell is predicted by empirical 

models. 

For ground motion parameters, it is not practical to obtain a ground motion hazard 

curve for each grid cell due to the heavy computation required; additionally there will be 

almost no difference in the hazard curves for adjacent cells and little difference within a 

study area (typically smaller than 25 km by 25 km).  The seismic hazard curves provided 

by USGS are based on the NSHM 2008 Gridded Data, which has 0.05 degree increments 
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in longitude and latitude.  It means that the seismic hazard curve is assumed to be the 

same within a distance range of several kilometers.  Using the same seismic hazard 

across a study area may not be rigorous, but it simplifies the analysis without introducing 

large errors.  Therefore, ground motion hazard curves are selected at a representative 

location within the study area and the same curves are used for the entire study area.  Of 

course, if the area to be analyzed is too large to have a consistent seismic hazard, such 

area should be divided into several smaller areas and one set of ground motion hazard 

curves assigned to each smaller area. 

Overall, the selected input parameters for seismic landslide hazard mapping are 

not as accurate as those used in site-specific analysis.  However, the purpose of seismic 

landslide hazard mapping is to quantitatively assign hazard categories to grid cells, to 

distinguish zones with high hazard from other low-hazard zones, and to identify high-

hazard zones that require further site-specific analysis.   

 

5.2.2 Deterministic Approach 

 

A deterministic seismic landslide hazard map is created for ground shaking 

associated with a given seismic hazard level.  An example of a deterministic seismic 

landslide map is shown in Figure 5.6 for Anchorage, Alaska for 2% probability of 

exceedance in 50 years.  To develop this type of map, a sliding displacement map is 

computed by applying an empirical displacement model to the yield acceleration map.  

Such computation can be carried out by the Map Algebra tool in the ArcGIS© software.  

The ground motion parameters required by empirical models are obtained from ground 

motion hazard curves at a given seismic hazard level (e.g. PGA=0.69 g for Figure 5.6).  
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Only one set of ground motion hazard curves is used for the entire study area.  Finally, a 

deterministic seismic landslide hazard map is produced by comparing the predicted 

sliding displacement map with the displacement thresholds that define the seismic hazard 

categories (Table 2.1).  An example of a deterministic seismic landslide hazard map is 

given in Figure 5.6 for the Anchorage, Alaska area.  

 

 

Figure 5.6  Deterministic Seismic Landslide Hazard Map at 2% probability of 

exceedance in 50 years in Anchorage, Alaska (Jibson and Michael 2009) 
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The deterministic approach ignores aleatory variability and epistemic uncertainty, 

which may significantly influence the seismic landslide hazard prediction.  Table 5.1 

shows median and plus one standard deviation (σlnD) displacements predicted by four 

different empirical models for ky = 0.18 g using a deterministic scenario with ground 

motions of PGA = 0.54 g, PGV = 43 cm/s, and M=6.75 at 10% probability of exceedance 

in 50 years.  These ground motions were adopted from a site in the San Francisco Bay 

Area (Rathje and Saygili 2011).  The median predicted displacements mostly indicate 

high seismic landslide hazard (5 cm < D < 15 cm).  For the median plus one standard 

deviation displacements, the seismic landslide hazard increases to very high (D > 15 cm).  

However, these displacements are less likely than the median displacements.  This issue 

can be taken into account through a probabilistic analysis that incorporates the aleatory 

variability in predicted displacement.  There are also significant differences between the 

displacements predicted by each of the empirical models, which represents a source of 

epistemic uncertainty.  This issue can be taken into account through logic-tree analysis.  

 

Table 5.1 Predicted Newmark Displacements with Standard Deviation 

Predictive Model Median D (cm) +1σ D (cm) 

Scalar 

Rathje and Saygili 2009 12.6 32.0 

Jibson 2007 2.8 4.4 

Bray and Travasarou 2007 8.7 16.8 

Vector Saygili and Rathje 2008 8.2 14.6 

       *PGA = 0.54 g, PGV = 43 cm/s, M = 6.75, ky = 0.18 g 
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5.2.3 Probabilistic Approach Incorporating Aleatory Variability 

 

The probabilistic approach incorporating aleatory variability utilizes a 

displacement hazard curve to define the displacement associated with a given hazard 

level (Chapter 3).  This approach utilizes only one representative set of ground motion 

hazard curves for an entire region and ignores epistemic uncertainties in the slope 

properties.  Ignoring epistemic uncertainties allows the probabilistic approach to be 

applied through the use of yield acceleration thresholds that correspond to the 

displacement thresholds associated with each seismic landslide hazard category.  Yield 

acceleration thresholds were originally used by the CGS for regional mapping using the 

deterministic approach (McCrink 2001).   

Given a representative ground motion, the predicted sliding displacement from an 

empirical model is a function of ky.  CGS identifies the ky value that produces each of 

the displacement thresholds associated with a seismic landslide hazard category (e.g. 

Table 2.1).  These ky values are defined as ky thresholds, and they are equivalent to the 

displacement thresholds.  These ky thresholds are used with a yield acceleration map, in 

which ky is computed for each grid cell, to identify the seismic landslide hazard category 

for each grid cell.  This approach provides the same result as computing the 

deterministic displacement for each grid cell and applying the displacement thresholds. 

When epistemic uncertainty is not taken into account, the ky-threshold approach 

can also be applied to the probabilistic framework (Saygili and Rathje 2009).  In this 

case, displacement hazard curves are computed for a range of ky values using the 

representative ground motions hazard curves and seismic hazard deaggregation for the 

study area.  The displacement hazard curves are used to identify the ky values that 

produce a given displacement threshold (e.g. 15 cm) for a specified seismic hazard level 
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(e.g. 10% probability of exceedance in 50 years).  These ky values are defined as the ky 

thresholds.  For example, Figure 5.7 shows displacement hazard curves for three ky 

values (0.21g, 0.16g and 0.12g), which exactly produce the displacement thresholds of 

5cm, 15cm and 30cm associated with a 10% probability of exceedance in 50 years.  

These ky thresholds are applied to the yield acceleration map to create a probabilistic 

seismic landslide hazard map.  For example, grid cells with ky between 0.16g and 0.21g 

will have predicted sliding displacements between 5cm and 15cm, and they assigned a 

high seismic landslide hazard.  Since only hazard categories, not the exact predictions of 

sliding displacements, are shown on a seismic landslide hazard map, the ky-threshold 

approach is equivalent to the displacement-threshold approach.  

 

 

Figure 5.7  Displacement hazard curves for determining ky thresholds (from Saygili and 

Rathje 2009) 



 127 

The ky-threshold approach avoids the computation of displacement hazard curves 

for each grid cell, thus it saves huge computational efforts in the probabilistic seismic 

landslide hazard mapping.  However, the epistemic uncertainties in slope properties 

cannot be taken into account in this approach.   

 

5.3 LOGIC TREE APPROACH FOR SEISMIC LANDSLIDE HAZARD MAPPING 

 

To incorporate epistemic uncertainties in slope properties, a logic-tree analysis is 

introduced into the probabilistic seismic landslide hazard mapping.  Specifically, the 

epistemic uncertainty in the shear strengths, m value and t value should be considered in 

the logic-tree analysis, because such parameters are used to determine the ky value of 

each grid cell.  Additionally, the epistemic uncertainty among empirical displacement 

models should also be considered in the logic-tree analysis. 

 

5.3.1 Development of Logic Tree 

 

The uncertainty in shear strengths can be estimated from lab and field testing 

results.  However, at a regional scale the most practical way to assign uncertainty may be 

through published uncertainty estimates or, if available, through the variability in in situ 

test parameters, such as SPT blow count, across a geologic unit.  As an example of 

published uncertainty estimates, Phoon and Kulhawy (1999) summarized that the 

coefficient of variance is about 10 to 50% for undrained shear strength and 5 to 15% for 

effective friction angle.  If enough testing results are not available to evaluate the 

uncertainty in shear strengths, one may refer to the above coefficients of variance and use 



 128 

engineering judgment to develop specific values to be used in the logic-tree analysis.  

The weights of branches can be determined based on three-point estimation of a normal 

distribution, as discussed in Chapter 4.   

The thickness of sliding block t is typically several meters for shallow failures.  It 

depends on the thickness of surficial weak soil, and it is also correlated with the shear 

strengths of underlying soil layers.  If the underlying soil layers are strong enough, the 

failure will be restrained in the surficial weak layer.  Smaller shear strengths of 

underlying layers may lead to deeper landslides.  Slope stability analysis may be 

necessary to determine the critical failure depth for complicated slope geometries.  

Nevertheless, the shallow-failure assumption is generally valid and convenient for 

regional mapping.  The selection of representative t values should be based on the 

knowledge of local geology and engineering observations.  In the logic tree, three 

branches can be used to represent a typical range of t values, and a uniform distribution 

should be used to assign weights unless there is specific information indicating that some 

depths are more likely than others. 

The m value, defined as the proportion of the block thickness that is saturated, is 

calculated by the ground water table and the t value.  The ground water table will 

fluctuate due to seasonal changes and precipitation.  Topography, seepage, and artesian 

water can cause complicated spatial variations of the ground water table in a region.  The 

estimation of the ground water table relies on survey records and precipitation forecasts.  

Because of these complications, a uniform distribution is most likely applied to the 

ground water table levels. The selected ground water table levels, and corresponding m 

values, should represent the likely range of values indicated by observations.  If one 

wants to incorporate the most unfavorable location of the ground water table, it can be 
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included in the logic tree with a corresponding weight that indicates its likelihood of 

occurrence.  

The unit weight of soil γ generally has a small variation in the same soil and a 

small difference between different soils.  The coefficient of variance in γ is less than 

10% according to Phoon and Kulhawy’s study (1999).  Therefore, using a constant γ 

value across the study area is acceptable.   

 

 

Figure 5.8  Example logic tree for probabilistic seismic landslide hazard mapping 
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Several empirical displacement models should be adopted, rather than only one 

model, to incorporate the epistemic uncertainty among the different models.  All 

empirical models should be equally weighted unless some models are believed to be 

more accurate than others.  For instance, a vector model (e.g. SR08) may be assigned a 

higher weight than scalar models because the vector model takes more ground motion 

information in the calculation and, theoretically, should provide a more accurate 

prediction of displacement. 

Considering all uncertainties discussed above, a logic tree may have dozens to 

hundreds of branches.  Each branch leads to one ky value for a grid cell and each ky has a 

corresponding displacement hazard curve.  As a result, each grid cell has dozens to 

hundreds of displacement hazard curves associated with the weights from the logic tree.  

A mean displacement hazard curve is computed from the individual hazard curves by 

summing the weighted hazard values at each displacement level.  Considering a logic 

tree with n values of ky, the mean hazard for displacement x can be computed as: 

 

               
̅̅ ̅( )    ∑      ( )  

 
                              (5.1) 

 

where   
̅̅ ̅( ) is the weighted mean annual rate of exceedance for displacement x,   ( )  

is the displacement hazard from the i
th

 branch of the logic tree for displacement x, and wi 

is the weight associated the i
th
 branch of the logic tree. 

 

 

 



 131 

5.3.2 Applying Logic-Tree Analysis to Seismic Landslide Hazard Mapping 

 

When the logic-tree analysis is applied to seismic landslide hazard mapping, each 

grid cell has dozens of possible ky values with associated weights.  Therefore, the 

approach of using ky thresholds to define seismic landslide hazard categories is no longer 

applicable.  A mean displacement hazard curve could be computed for each grid cell 

across an entire region but this would require a large amount of computation and is not 

practical.  To address this issue, an efficient computational scheme is developed which 

does not sacrifice any accuracy. 

The approach to applying the logic tree to regional analysis is based on computing 

the weighted mean annual rate of exceedance   
̅̅ ̅( )  at each grid cell for the 

displacement thresholds associated with the seismic landslide hazard categories.  This 

approach is called the Mean λD Threshold approach. Comparing   
̅̅ ̅( ) of each grid cell 

and for each displacement threshold with the hazard level under consideration (target 

hazard level λ*) allows each grid cell to be assigned to an appropriate seismic landslide 

hazard category.  An example is given in Figure 5.9.  At λ* = 0.0021 1/yr, the sliding 

displacement is 8 cm for a grid cell, and this grid cell should be categorized as high 

seismic landslide hazard (5 cm < D < 15 cm).  Instead, comparing λ* with   
̅̅ ̅(   ) and 

  
̅̅ ̅(    ) can also provide the same result.  If   

̅̅ ̅(   ) for a grid cell is greater than 

λ* = 0.0021 1/yr, then the sliding displacement for that grid cell associated with λ* = 

0.0021 1/yr is greater than 5 cm.  If   
̅̅ ̅(    ) is less than λ* = 0.0021 1/yr for the 

same cell, then the sliding displacement for that cell associated with λ* = 0.0021 1/yr is 

smaller than 15 cm.  Therefore, this grid cell would be placed in the 5 to 15 cm bin, 

which corresponds with the high seismic landslide hazard category.  Similar as the ky-

threshold approach, only hazard categories, not exact predictions of sliding 
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displacements, are assigned to grid cells to create a seismic landslide hazard map.  The 

Mean λD Threshold approach is equivalent to the displacement-threshold approach. 

 

 

Figure 5.9  Illustration of Mean λD Threshold approach 

 

The key to applying the Mean λD Threshold approach to each cell is the efficient 

computation of   
̅̅ ̅( ) from Equation 5.1 for each displacement threshold so that it can 

be compared with λ*.  Equation 5.1 requires the λD(x) values associated with each ky 

value.  An interpolation relationship between ky and λD(x) is used to efficiently compute 

the λD(x) values for Equation 5.1.  The development of this interpolation relationship is 

described below.   

For a single empirical displacement model (e.g. RS09) and single ground motion 

hazard curve, one ky value leads to one displacement hazard curve.  At a displacement 
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threshold of x cm (e.g. 5 cm), one ky value corresponds to one λD(x) value.  This concept 

is demonstrated in Figure 5.10 for x = 5 cm.  To establish a relationship between ky and 

λD(5cm) for this case, λD(5cm) is compiled for a range of ky values from the associated 

displacement hazard curves, and the data are fit with a 4
th
 order polynomial regression 

model in log-log space (Figure 5.11).  This relationship can then be used to quickly 

calculate λD(5cm) for a given ky value.  

 

 

Figure 5.10 Displacement hazard curves for ky values between 0.1 and 0.2 g 

 

The typical range of ky values of slopes that are potentially unstable during 

earthquakes is from 0.01 to 0.70 g.  Any slope with ky below 0.01g is essentially 

statically unstable (FS ≤ 1.0) and slopes with ky larger than 0.70 g are either very flat or 
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are made of strong soils/rocks, meaning that such slopes can be assumed as seismically 

stable.  Using a small ky increment (e.g. 0.01g) and assuming all ky values are between 

0.01 to 0.70 g, there are only several dozens of possible ky values to consider within a 

study area, despite the presence of millions of grid cells.  Additionally, the difference 

between two displacement hazard curves is very small for a small change in ky.  Figure 

5.10 shows a series of displacement hazard curves for ky values between 0.1 and 0.2 g 

using an increment of 0.01 g, and these curves change gradually.  Therefore several 

dozens of displacement hazard curves and interpolation between these hazard curves can 

be used to approximate all possible displacement curves in a region. 

 

 

Figure 5.11 λD(x) vs. ky for x= 5 cm and 54 ky values between 0.01 and 0.7 g. 

 

RS09 Model 
x = 5 cm threshold 
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Relationships between λD(x) and ky can be derived for each empirical 

displacement model and each displacement threshold.  The general form of the 

regression relationships is expressed as: 

 

  (  ( ))    (   (  ))
    (   (  ))

    (   (  ))
       (  )       (5.2) 

 

where a1 to a5 are coefficients of the regression model.  Using the regression 

relationships, the multiple ky values associated with each grid cell can be quickly related 

to the associated λD(x) values needed for Equation 5.1 and the   
̅̅ ̅( ) of each grid cell 

calculated.  By comparing   
̅̅ ̅( ) values for the displacement thresholds of x = 1, 5 and 

15 cm with the target hazard level (λ*), the seismic landslide hazard category can be 

determined for each grid cell. 

 

5.3.3 Screening Analysis 

 

To further reduce the computation time for the regional analysis incorporating 

epistemic uncertainties, a screening analysis using the worst-case scenario of the logic 

tree is carried out.  The worst-case scenario is associated with the minimum ky, and is 

represented by the smallest shear strength and the largest m and t values.  This analysis 

can highlight the grid cells that have low seismic landslide potential because if the 

displacement hazard for 1 cm (i.e., the lower bound displacement threshold for the 

moderate landslide hazard category) is less than λ* for the minimum ky, then the 

displacement hazard computed using the full logic tree will also be less than λ*.  

Therefore, the full logic-tree analysis does not need to be performed for these grid cells. 
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The screening analysis can be performed for all displacement thresholds.  For 

larger displacement thresholds, more grid cells are excluded from the full logic-tree 

analysis.  The screening analysis may remove as many as 70% to 90% (or even more) of 

the grid cells from the full logic-tree analysis.   

 

5.4 SUMMARY 

 

This chapter discussed the development of probabilistic seismic landslide hazard 

maps.  These maps represent an improvement from current deterministic approaches so 

that they incorporate the aleatory variability and epistemic uncertainties in the 

displacement predictions.  A logic-tree analysis is introduced to incorporate the 

epistemic uncertainties associated with the slope properties and among empirical 

displacement models.  A weighted mean displacement hazard curve is computed from 

the branches of the logic tree for each grid cell.   

To reduce the computational efforts, an efficient approach to computing the 

weighted mean displacement hazard was developed.  This Mean lD Threshold approach 

computes the weighted mean hazard at each displacement threshold (  
̅̅ ̅( )) directly from 

the ky values through regression models that relate the displacement hazard at the 

displacement threshold (  ( )) to ky.  The   
̅̅ ̅( ) values are compared with the target 

hazard level to determine the seismic landslide hazard category for each grid cell.  A 

screening analysis using the worst-case scenario of the logic tree can further reduce the 

computational effort. 
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Chapter 6 Application of Regional Probabilistic Framework: 

Anchorage Seismic Landslide Hazard Map 

 

6.1 INTRODUCTION 

 

To implement the regional probabilistic framework described in Chapter 5, 

Anchorage, Alaska is selected as the study area.  This location was selected based on the 

history and occurrence frequency of earthquakes, the availability of the required data in 

GIS format, access to databases of soil properties in the study area, and the availability of 

PGV ground motion prediction models for the tectonic region.   

Anchorage has experienced several large earthquakes in the past, such as the 1964 

Alaska earthquake (M=9.2).  Seismic landslides caused most of the deaths and economic 

losses during the 1964 earthquake in Anchorage (Keefer, 1984).  Since then, many 

studies have been conducted to identify areas susceptible to potential landslides in future 

earthquakes.  Jibson and Michael (2009) recently created seismic landslide hazard maps 

for Anchorage using the deterministic approach, and thus this is an ideal study area 

because the data required for analysis are available. 

The Anchorage, Alaska study area is about 24 km by 25 km (Area = 301 km
2
, 

Figure 6.1) and represents the extent of the recently developed seismic landslide hazard 

map by Jibson and Michael (2009).  The northern, western and central areas are mostly 

plains, and downtown Anchorage is located at the northwestern corner.  The study area 

boundaries along the northwest to southwest are mostly coastlines.  The Chugach 
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Mountains cover the eastern and southern parts and extend beyond the boundaries of the 

study area.   

 

 

Figure 6.1  Overview of the study area in Anchorage, Alaska (based on National 

Geographic, ESRI) 

 

6.2 CURRENT SEISMIC LANDSLIDE HAZARD MAP 

 

Jibson and Michael (2009) produced seismic landslide hazard maps for 

Anchorage using sliding displacements predicted from a deterministic approach.  The 

maps are based on ground motions associated with two different seismic hazard levels, 

2% probability of exceedance in 50 years and 10% probability of exceedance in 50 years, 

which correspond to PGA values of 0.69 g and 0.43 g respectively (Wesson et al. 2007).  

In defining the slope properties for the calculation of the infinite slope ky the slab 

thickness (t) was assumed to be 15 meters (50 ft), which is the upper bound of commonly 

observed landslides in Anchorage (personal communication with Dr. Randall W. Jibson).  
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By assuming a groundwater table at 3-meter (10 ft) depth, the saturation factor (m) is 

relatively large at 0.8.  The combination of the large slab thickness and high 

groundwater level is very conservative and results in small values of ky.  The unit weight 

of soil was held constant at 18.8 kN/m
3
 (120 lb/ft

3
), and used for the entire study area.  

The friction angle and cohesion intercept were assigned across the study area based on 

geologic units.  Displacements were computed across the study area using yield 

acceleration values determined at 6-m (20 ft) intervals, and the empirical displacement 

model of Jibson (2007) that uses only PGA, without magnitude, to characterize the 

ground motion. 

Figure 6.2 shows the Jibson and Michael (2009) seismic landslide hazard map 

given a PGA with a 2% probability of exceedance in 50 years.  The landslide hazard 

categories are assigned from displacements using the displacement thresholds previously 

described in Table 2.1.  For this map, about 1.5% and 2.7% of the study area are 

classified as high hazard (5cm < D < 15cm) and very high hazard (D > 15cm), 

respectively.  Another 5.5% of the study area was defined as moderate hazard (1cm < D 

< 5cm).  Most areas with high or very high hazard are within colluvium units along the 

coastal bluffs and stream valleys in the lowland, colluvium units within the inland 

Chugach Mountains, and alluvium units along abandoned or modern stream-banks.  A 

similar hazard map with 10% probability of exceedance in 50 years was also produced 

through the deterministic approach, and the results are summarized in Table 6.1.  The 

smaller ground motions associated with this hazard level results in less of the study area 

assigned to the moderate, high, and very high hazard categories. 
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Figure 6.2  Deterministic seismic landslide hazard map at 2% probability of exceedance 

in 50 years of Anchorage, Alaska (Jibson and Michael 2009) 
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Table 6.1 Percentage of study area in hazard categories from deterministic maps 

Hazard 

Category 

Sliding 

Displacement (cm) 

Percentage of Study Area 

2% in 50 years 10% in 50 years 

Low 0 - 1 90.31% 95.69% 

Moderate 1 - 5 5.53% 1.63% 

High 5 - 15 1.48% 0.75% 

Very High > 15 2.68% 1.93% 

 

6.3 INPUT PARAMETERS 

6.3.1 Topography and Geology 

 

Figure 6.3 is a shaded relief map of the study area derived from a DEM.  The 

entire study area is about 301 km
2
 (8,370,622 grid cells), with a width of 24 km and a 

length of 25 km.  The highest elevation is 1,026 m (3,363 feet) and the largest slope 

angle is 77
o
.  The DEM was derived from Light Detection and Ranging (LIDAR) data 

produced by the Municipality of Anchorage in 2004.  The original LIDAR DEM was at 

1.5 m (5 ft) resolution and the vegetation and buildings had been removed.  Jibson and 

Michael (2009) resampled the LIDAR data to a 6-m (20 ft) resolution DEM and used this 

DEM to generate a slope map (Figure 6.4).   

The original DEM with very fine resolution provides too many details about the 

local topography, with very small, steep surfaces on generally flat slopes identified.  The 

influence of the DEM resolution the slope distribution across the study area is shown in 

Figure 6.5.  Using a higher resolution DEM results in more steep slopes, and the increase 

is most significant for slope angles above 40.  These small, steep surfaces, which 

include earth retaining structures, are not a significant seismic slope stability hazard, but 
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they will be predicted to experience large sliding displacements during an earthquake.  

Therefore, we found it unnecessary to preserve the very fine resolution for seismic 

landslide hazard mapping purposes.  Additionally, the using the 6-m resolution DEM 

instead of the 1.5-m resolution DEM will accelerate the speed of computation by 

approximately 16 times and decrease the required storage capacity of data.  Finally, if 

one considers the 6-m resolution DEM in Figure 6.3, it is clear that this DEM captures 

the important topographic features across the study area.  For example, the stream 

channels associated with the creeks north and south of downtown Anchorage area are 

clearly observed, as the Anchorage International Airport located to the southwest of the 

downtown area.   

The 6-m resolution DEM is used to develop the slope map (Figure 6.4) required 

to compute the yield acceleration information across the study area.  Most of the steep 

terrain is along the coastal bluffs, stream valleys, and in the southern and eastern 

mountain areas.  These locations of steep terrain are, of course, more susceptible to 

seismic landslides than other areas, as also seen in the deterministic seismic landslide 

hazard map (Figure 6.2).  The distribution of slope angles derived from the 6-m 

resolution DEM is shown in Figure 6.5.  About 1.0% of the study area has slope angles 

greater than 30
o
, and about 4.6% of the area is steeper than 20

o
.    
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Figure 6.3  Shaded relief map of Anchorage, Alaska 
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Figure 6.4  Slope map of Anchorage, Alaska 
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(a) 

 

 

(b) 

Figure 6.5  Slope angle distributions of the study area with different DEM resolutions (a) 

all slopes (b) slopes > 15
o
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Jibson and Michael (2009) used digitized versions of the surficial geologic maps 

of Schmoll and Dobrovolny (1972) and Yehle et al. (1992) to assign shear strengths 

across the study area.  There are 17 geologic units across the study area: a map of these 

units is shown in Figure 6.6 and the shear strength properties from Jibson and Michael 

(2009) are listed in Table 6.2. 

The famous Bootlegger Cove Clay (bc unit) is related to the deeper landslides 

from the 1964 earthquake, because at depth it is weak with the potential for cyclic 

degradation of shear strength.  However, the Bootlegger Cove Clay was assigned 

relatively larger shear strength when exposed at the ground surface based on the 

relatively larger values of SPT blowcount indicated near the surface as compared to at 

depth.  Although the Bootlegger Cove Clay is not widely shown on the surficial geologic 

map, it is the main underlying soil layer of man-made fills and sand deposits.  

Silt deposits (s) are along the coastal lines.  The units af, al and an are alluvium 

on plains and along stream channels with similar shear strengths, and the glacial alluvium 

(ga) on irregular-shaped hills has higher shear strength.  Glacial material units (gm, m 

and mg) all have high shear strength, and they form the underlying soil layer of most 

surficial geologic units in Anchorage.  Sand deposits (sl and sh) cover the central west 

part of the study area.  The colluvium unit c-bl mostly covers coastal bluffs and valley 

walls in the lowland.  The other colluvium unit c-br is distributed in the eastern area on 

the slopes of the Chugach Mountains.   
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Figure 6.6  Surficial Geologic Map of Anchorage, Alaska 
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Table 6.2 Geologic Units and Shear Strengths (Jibson and Michael 2009) 

units 

Friction 

Angle 

(deg) 

Cohesion 

(kPa) 
Compositions 

af 36 24 
Deposits in alluvial fans, alluvial cones, and emerged 

deltas 

al 36 19 
Alluvium in abandoned stream channels and in 

terraces along modern streams 

an 36 24 Coarse-grained surficial deposits 

b 40 192 Bedrock 

bc 0 120 Bootlegger Cove Clay 

c-br 38 38 
Colluvium derived from bedrock on slopes of the 

Chugach Mountains 

c-bl 0 38 
Colluvium derived from glacial materials along 

coastal bluffs 

f 34 48 Manmade fill 

ga 32 38 
Glacial alluvium in irregular-shaped hills (including 

kames, eskers, and kame terraces) 

gm 38 48 
Glacial and (or) marine deposits, typically in elongate 

hills 

l 0 144 Lake and pond deposits 

ls 30 24 Landslide deposits, similar to an unit 

m 38 43 
Morainal deposits, generally in long ridges marking 

the margins of former glaciers 

mg 37 38 Marine, glacial, and (or) lacustrine deposits 

s 0 72 Silt 

sh 34 24 
Sand deposits in broad, low hills, and windblown 

sand deposits in cliffhead dunes near Point Campbell 

sl 34 19 
Sand deposits in a wide low-lying belt around 

Connors Lake 
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Sands and gravels were characterized using effective (drained) shear strengths.  

Clays and silts were characterized as total (undrained) shear strengths with zero friction 

angle.  The shear strengths in Table 6.2 are considered best estimates and were compiled 

by Jibson and Michael (2009) using triaxial test, direct shear, vane shear and standard 

penetration test (SPT) results.   

The variability in shear strengths can be estimated from the study of Phoon and 

Kulhawy (1999).  They summarized that the coefficient of variation (COV, equal to the 

standard deviation divided by the mean) is about 10 to 50% for undrained shear strength 

and 5 to 15% for effective friction angle.  For this study, the COV for the undrained 

shear strength is taken as 30%, and for the effective friction angle it is taken as 10%.  

The COV for the effective cohesion is taken as 20%, so that the total uncertainty in the 

drained shear strength is similar to the undrained shear strength.  Dr. Randall W. Jibson 

from the USGS (personal communication) also suggested similar levels of uncertainty for 

shear strength based practical experience and engineering judgment in Anchorage, 

Alaska. 

Assuming that shear strengths follow a normal distribution, the weights of the 

logic tree branches assigned to the high, mean and low shear strengths are determined 

based on a three-point estimation of the normal distribution.  To approximate a standard 

normal distribution the three points are taken at 10%, 50%, and 90% (i.e.,  - 1.3, ,  + 

1.3), the corresponding weights are 0.3, 0.4, and 0.3. The weights of the logic tree 

branches for shear strengths are summarized in Table 6.3. 
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Table 6.3 Weights of logic tree branches for shear strengths 

Shear Strength No. of σ CDF Weight 

High 1.3 90% 0.3 

Mean 0 50% 0.4 

Low -1.3 10% 0.3 

 

The typical thickness and the underlying soil layers of the different surficial 

geologic units are summarized from the studies of Schmoll and Dobrovolny (1972) and 

Combellick (1999), as shown in Table 6.4.  The underlying units are listed in order of 

their predominance across the main geologic unit.  Such information will be used in the 

2-D slope stability analyses in the next section to determine failure surfaces and 

associated failure depths of each geologic unit. 

 

Table 6.4 Thickness and underlying soil layers of surficial geologic units 

Units Thickness (m) Underlying Soil Layers 

al 3 ~ 9 m, gm, mg, ga, bc 

an, af, ga 6 ~ 15 m, gm, mg, bc 

bc 
up to 18 in the sea bluffs 

up to 60 in the central part of lowland area 
m, gm, mg 

c-bl  up to 3  m, gm, mg, ga, bc 

c-br up to 3  b 

f 3 ~ 6 bc, l, an, af, ga, al 

l 6 ~ 20 m, gm, mg 

ls 6 ~ 9 bc 

m, gm, mg 
mostly > 30  

6 ~ 15 on mountains 
b 

sl, sh 6 ~ 18 m, gm, mg, bc, l 
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6.3.2 Sliding Block Properties 

 

As discussed in Section 2.2, the thickness of seismic landslides is typically 

shallow, on the order of several meters.  Jibson and Michael (2009) used t = 15 m (50 ft) 

for the seismic landslide hazard maps in Anchorage, Alaska.  Such a large thickness was 

used because t ≤ 15 m is the typical range of landslide depths observed in Anchorage and 

it was decided to use the larger value because it leads to smaller ky and thus is 

conservative (personal communication, Dr. Randall W. Jibson).  In this study, instead of 

using a large and conservative t value, the epistemic uncertainty in t values is considered.   

Shallow landslides usually occur within the surficial weak soils or on the contact 

surface between the surficial soil and underlying stiff soil/rock.  Table 6.4 lists the 

general thickness of surficial geologic units, and it provides an initial estimate of failure 

depths.  To further investigate failure depths for the most critical geologic units, the 

landslide hazard distribution across geologic units according to the Jibson and Michael 

(2009) deterministic map are used.  The number of grid cells with high or very high 

hazard (D > 5 cm) in each geologic unit from the Jibson and Michael (2009) study is 

summarized in Table 6.5.  In this table, Landslide Cells are grid cells with predicted 

displacement greater than the 5-cm threshold.  The % of Study Area represents the 

percentage of study area covered by each geologic unit.  The % of Geo Unit is the 

percentage of grid cells with D > 5 cm for each geologic unit.  The % of Landslide Cells 

is the contribution of each geologic unit to all landslide cells in the study area.  Identified 

in Table 6.5 are the geologic units that are covered with more than 5% landslides (% of 

Geo Unit > 5%) and the geologic units that contribute more than 5% to the total number 

of landslide cells (% of Landslide Cells > 5%).  Seven geologic units fit into these 

categories and represent about 87% of the landslide cells.  The other geologic units, 
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which have high shear strength and are underlain by stiff soil/rock (e.g. gm, m and mg) or 

exist mostly on flat terrain (e.g. an, f and l), do not contribute significantly to the seismic 

landslide hazard. The seven geologic units are investigated in detail to identify 

representative slope geometries that will help guide the selection of an appropriate range 

of slab thicknesses, t, through 2-D slope stability analysis. 

 

Table 6.5 Deterministic landslide prediction in geologic units (5 cm threshold, 2% 

probability of exceedance in 50 years) 

Geo Units Landslide Cells 
% of 

Study Area 

% of 

Geo Unit 

% of 

Landslide Cells 

af 21441 11.4% 2.2% 6.1% 

al 24446 22.0% 1.3% 7.0% 

an 4982 9.8% 0.6% 1.4% 

b 812 2.2% 0.4% 0.2% 

bc 4373 2.8% 1.9% 1.2% 

c-br 95859 6.1% 18.9% 27.4% 

c-bl 98628 1.3% 93.0% 28.2% 

f 1666 3.0% 0.7% 0.5% 

ga 33788 5.3% 7.7% 9.6% 

gm 2917 3.9% 0.9% 0.8% 

l 1051 1.8% 0.7% 0.3% 

ls 19434 1.0% 22.4% 5.6% 

m 14729 6.0% 3.0% 4.2% 

mg 6379 9.5% 0.8% 1.8% 

s 4731 2.0% 2.8% 1.4% 

sh 10378 2.1% 5.8% 3.0% 

sl 4527 10.0% 0.5% 1.3% 

Total 350141 100.0% 
 

100.0% 
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First we consider the slope angle distribution for the seven geologic units (Figure 

6.7).  Alluvium units af and al are widely spread on flat plains in Anchorage, which 

results in a significant portion of these units on flatter slopes (about 80% < 5).  

Nonetheless, these units contribute to the landslide hazard at locations of stream-banks 

covered by af and al which have steeper slopes.  Glacial Alluvium (ga) exists on 

moderate slopes and contains significantly more steeper slopes than af and al.  For the 

colluvium units, c-bl is mostly on coastal bluffs and valley walls, and c-br covers steep 

slopes of the Chugach Mountains.  Sand deposits (sh) are found in low hills that have 

some landslide hazard under ground shaking.  Landslide deposits (ls) cover bluffs and 

slopes along stream valleys in the central and western study area, and moderate to steep 

slopes in the southern mountainous area.   

 

 

  (a) 

Figure 6.7 
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  (b) 

 

 

  (c) 

Figure 6.7  Slope angle distributions of (a) af, al and ga (b) c-br and c-bl (c) sh and ls 
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In Anchorage, slopes are found at two different spatial scales.  The geologic units 

in the eastern and southern mountainous areas, (e.g. ga and ls) mostly exist as large-scale 

slopes (i.e., extend for significant distance uphill) with strong underlying soils, and the 

failure surfaces in these geologic units are typically shallow and extend long distances.  

The slopes on low hills and along coastal bluffs and stream valleys usually have smaller 

spatial scales, and the underlying soils may not be significantly stronger.  It is impossible 

to illustrate all of the slopes for different surficial soils and underlying layers in such a 

large study area.  However, some typical slopes can be analyzed using 2-D slope 

stability analysis to assist in the selection of t values used in seismic landslide hazard 

mapping. 

Large-scale slopes commonly have failure depths equal to a few meters, up to the 

thickness of the surficial weak soil.  The c-br unit is selected for 2-D slope stability 

analysis, because it exists in the southern mountainous area and a large portion of this 

unit is categorized as high hazard and above.  Figure 6.8 shows a typical slope within the 

c-br unit, as developed from cross-sections provided in the geologic map of Combellick 

(1999).  The surficial c-br unit has a thickness of 3 m and is underlain by the bedrock 

(b), as indicated in Table 6.2.  The groundwater table (blue line) is placed at 3-m depth.  

Three slope configurations, representing moderate (3H:1V), moderately steep (2H:1V) 

and steep (1.3H:1V) slopes are analyzed with UTEXAS4 Educational Version to 

compute the critical failure depths.  The results indicate that all critical failure surfaces 

are restrained by the contact surface between the surficial weak soil and underlying bed 

rock.   
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(a) 

 

(b) 

 

(c) 

Figure 6.8  Critical failure surface of ls unit on (a) a 3H:1V slope (18
o
), (b) a 2H:1V 

slope (27
o
), and (c) a 1.3H:1V slope (37

o
) in mountainous areas. 

           

       

Bed rock 

 

          

       

Surficial layer 

80 m 

80 m 

80 m 
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Glacial Alluvium (ga) is another unit that exists widely in the eastern mountain 

area and is investigated through 2-D slope stability analysis (Figure 6.9).  Based on 

geologic information (Table 6.4), the surficial layer of ga can be characterized with a 

thickness of 6 to 9 m and it is underlain by morainal deposits (m).  A 3H:1V slope is 

analyzed based on the slope histogram in Figure 6.9, the slab thickness is taken as 9 m, 

and the groundwater table is placed at about 3-m depth.  The slope stability analysis 

shows a shallow failure within the surficial layer.  The 2-D slope stability analyses for c-

br and ga indicate that failures are constrained within the surficial unit.  This is not 

surprising considering that the underlying material is stronger than the surficial unit.  

These analyses indicate for the thickness of the surficial unit can be used to guide the 

selection of slab thickness when the underlying unit is stronger than the surficial unit.   

 

 

Figure 6.9  Critical failure surface of ga unit on a 3H:1V slope (18
o
) 

 

The sub-surface geometry of small-scale slopes on low hills or along coastal 

bluffs and stream valleys is more complex than those associated with large-scale slopes.  

In these cases, the failure may extend into an underlying layer with lower shear strength.  

          

       

Underlying layer 

          

       

Surficial layer 

90 m 
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These types of geometries are common in the c-bl unit, as well as the ls unit.  Figure 

6.10 shows a moderate steep slope (2H:1V) with about 30-m horizontal distance from toe 

to crest. Such a slope is very common along the stream valleys.  The surficial ls unit has 

a thickness of 6 m and is underlain by the coarse-grained deposits (an) and Bootlegger 

Cove clay (bc).  The groundwater table is at 3-m depth.  This cross-section was 

developed from a cross-section shown on the geologic map of Combellick (1999).  

Analyses were performed with the undrained shear strength of the bc unit assigned at its 

mean and lower values.  The critical failure surface is constrained to the surficial 

landslide deposits when the mean strength is assigned to the bc unit, but a deeper failure 

(> 30 m deep) surface occurs when the lower shear strength is used for the bc unit.  The 

Bootlegger Cove Clay exposed at the ground surface has relatively high shear strength, as 

assigned in Table 6.2.  However, the shear strength can be lower at depth due to the 

presence of weaker facies that are prone to cyclic degradation and sensitivity of shear 

strength (Jibson and Michael 2009).  Low shear strength in the bc layer may cause deep 

failures, as shown in Figure 6.10b.  Seismic landslide hazard mapping do not typically 

focus on predicting deep-seated landslides because their failure is a function of the 2-D 

geometry which cannot be modeled at regional scale.  Nonetheless, seismic landslide 

hazard maps can identify dangerous zones that require site-specific analysis for deep 

failures.    
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(a) 

 

 

(b) 

Figure 6.10 Critical failure surface of ls unit on a 2H:1V slope (28
o
) with (a) mean shear 

strength in bc unit and (b) low shear strength in bc unit 

 

Another type of small-scale slope that occurs around Anchorage is a coastal bluff, 

which consists of a thin layer (3 m) of colluvium (c-bl) derived from glacial materials 

(e.g. m unit) underlain by the Bootlegger Cove Formation.  Coastal bluffs are usually 

steep (greater than 30), and this slope geometry is illustrated in Figure 6.11.  Because 

bc unit 
Su = 120 kPa 
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the surficial colluvium has low shear strength, the critical failure surface is a thin, veneer 

failure within the surficial layer.  However, if the shear strength of the Bootlegger Cove 

Clay is smaller than about 100 kPa, a deeper failure (> 30 m deep) may become the 

critical failure mode. 

 

 

(a) 

 

 

(b) 

Figure 6.11 Critical failure surface of c-bl unit on a 1.3H:1V slope (37
o
) with (a) mean 

shear strength in bc unit and (b) low shear strength in bc unit 
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One thing to be noted is that the true effective cohesion of surficial soils at 

shallow depths (i.e., small confining pressures) may be smaller than the assigned value 

due to the curvature of the failure envelope at small confining pressures.  If the surficial 

soils have lower shear strength, then the failure surface should stay in the surficial layer 

rather than extend into underlying layers. 

Overall, 2-D static slope stability analysis indicates that both large-scale and 

small-scale slopes have shallow critical failure surfaces that stay within surficial weak 

soils, except when the Bootlegger Cove clay at depth is assigned a low shear strength.  

As noted earlier, regional seismic landslide maps do not typically account for deep seated 

failures and therefore they will not be considered here.  As a result, for shallow failures 

the thickness of the surficial soil is the main controlling factor of the t values.  The data 

summarized in Table 6.4 describe typical thickness values for the different geologic units.  

These values are based on limited information, such that the actual surficial soils may be 

thinner or thicker across the study area, but these values are the best estimates available 

and appropriate for regional analysis.  Generally, the surficial soil layers are thicker in 

flat terrain, and thinner in steep terrain.  Based on this information and the thicknesses in 

Table 6.4, the thickness of surficial soils in the landslide-prone units can range from 

between 3 to 15 m.  Thicknesses between 3 to 9 m are considered the most 

representative for moderate steep to steep slopes because the soil layers should be thinned 

on steeper slopes.  Such estimates are consistent with the engineering observation that 

landslide depths in Anchorage can extend to a depth of 15 m (Jibson and Michael 2009).  

The colluvium units (c-br and c-bl) are treated differently based on the thickness 

estimates shown in Table 6.4.  These units are assigned a thickness of 3 m with no 

uncertainty.  The resulting logic-tree for t values is summarized in Table 6.6.   
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Table 6.6 t values and associated weights in logic-tree analysis 

t value 

(m) 

weights for 

c-br and c-bl 

weights for 

other units 

3 1 0.3 

6 0 0.4 

9 0 0.3 

 

The m value, which is the proportion of the block thickness that is saturated, 

depends on the groundwater conditions, subsurface hydraulic conductivity, and 

precipitation, as these parameters influence the groundwater table location.  Topography 

and artesian conditions can cause complicated spatial variations in the ground water table 

across a region.  The estimation of ground water table relies on survey records and 

average annual precipitation.  Jibson et al. (2000) used m = 0 to characterize the pore 

water pressure for slopes in the Oat Mountain quadrangle during the 1994 Northridge 

earthquake.  This value was selected because the coarse-grained surficial slope material 

was very dry due to no rainfall over the preceding several months, and therefore the 

groundwater table was below the defined failure depth (t = 2.4 m).   
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Figure 6.12 Conceptual models of the aquifer systems in Anchorage area (updated by 

Moran and Galloway, 2006) 

 

The groundwater in Anchorage mostly comes from the Chugach Mountains as 

illustrated in Figure 6.12.  In the eastern study area in the foothills of the mountains, the 

groundwater table should be high because this area is the so-called “Principal recharge 

area” which is close to the Chugach Mountains.  In the central and western study area, 

slopes along stream valleys and coastal bluffs should also have relatively high 

groundwater table.  Some groundwater data, collected from wells or borings in or around 

the downtown area, show that the groundwater table is tens of meters below the ground 

surface, but these data cannot represent the groundwater condition outside the urban area, 
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in which groundwater table is significantly reduced by heavy pumping (Moran and 

Galloway 2006).  

The most commonly observed groundwater table in the Anchorage area is about 3 

to 6 m (personal communication, Dr. Randall W. Jibson), and Jibson and Michael (2009) 

used a 3-m deep groundwater table to calculate their m value.  For this study, a uniform 

distribution is used to simply describe the uncertainty in the groundwater table between 3 

and 6 m.  We assign 50% probability to the 3-m depth, and another 50% probability to 

the 6-m depth.  The logic tree branches for t and m values are shown in Figure 6.13.  

The two m values associated with each t value represent 3-m depth and 6-m depth 

groundwater table, respectively.  For colluvium units (c-bl and c-br), a constant t = 3 m 

is used, and m is set equal to 0 with the shallowest ground water table at 3 m.  Thus, 

there are not logic tree branches for the colluvium units. 

 

 

Figure 6.13 Logic tree branches for t and m values except for colluvium units (t = 3 m 

and m = 0) 
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6.3.3 Static Factor of Safety 

 

The shear strengths and sliding block properties assigned to geologic units should 

satisfy slope stability under static conditions.  For surficial soils on very steep slopes, the 

thicknesses are inherently thin and the shear strengths are usually high, so that the worst 

slope properties are unlikely to be present on very steep slopes.  Therefore, instead of 

using the maximum slope angle, the slope angle at 99.5 percentile in each geologic unit is 

selected to calculate the static factor of safety.   

As shown in Table 6.7, the static factors of safety using the best estimates of the 

slope properties (i.e. mean shear strengths, t = 6 m and m = 0.25) are all greater than 1.0, 

meaning that static slope stability is satisfied in each geologic unit.  For the worst-case 

condition (i.e. low shear strengths, t = 9 m and m = 0.67), most geologic units still have 

static factors of safety greater than or approximately equal to 1.0.  The probability of the 

worst-case condition is only about 1% according to the assigned weights in Table 6.3 and 

Figure 6.13, and such condition may be even rarer on very steep slopes as discussed 

above.  The negative ky values associated with static factors of safety less than 1.0 are 

set to 0.01 g. 
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Table 6.7 Static factor of safety 

units 

Slope angle at 

99.5 percentile 
(deg) 

Static FS 

(best estimate) 

Static FS 

(worst case) 

af 28 1.64 0.97 

al 23 1.92 1.15 

an 20 2.36 1.40 

b 52 2.72 1.42 

bc 29 2.19 0.89 

c-br 40 1.99 1.56 

c-bl 43 1.00 0.61 

f 23 2.47 1.41 

ga 29 1.68 0.97 

gm 27 2.27 1.29 

l 21 3.55 1.44 

ls 34 1.12 0.66 

m 30 1.94 1.11 

mg 24 2.31 1.33 

s 22 1.70 0.69 

sh 35 1.21 0.71 

sl 17 2.50 1.50 

 

6.3.4 Ground Motion Hazard 

 

The PGA seismic hazard for Anchorage is obtained from the 2008 National 

Seismic Hazard Mapping (NSHM) project (http://geohazards.usgs.gov/hazardtool/, 

Petersen et al. 2008).  USGS provides a NSHM application through which a PGA hazard 

curve can be calculated at any location within the United States.  Figure 6.14 shows the 

PGA hazard curve (solid line) from the 2008 NSHM project for Anchorage (N61.22, 

W149.90). 

http://geohazards.usgs.gov/hazardtool/
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Figure 6.14 PGA Hazard Curve and deaggregation hazard levels in Anchorage (N61.22, 

W149.90) 

 

The seismic hazard deaggregation data required by Equations 3.5 through 3.8 can 

also be downloaded from the USGS website.  As seen in Figure 6.15, the geographic 

seismic hazard deaggregation presents the spatial distribution of all earthquake sources, 

providing a more intuitive representation of the seismic hazard deaggregation.  The 

yellow dot, representing the location for which seismic hazard deaggregation is created, 

is downtown Anchorage.  The red line north of Anchorage is the Castle Mountain Fault.  

The areas enclosed by orange lines at the southeast are megathrust subduction zones, 

where the northwestward-moving Pacific plate is subducting beneath the North American 

plate.   
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These maps show that the deaggregation contributions generally come from two 

major sources.  Much of the hazard comes from earthquake events close to Anchorage, 

which are shallow crustal events with magnitude generally less than 7.0.  Subduction 

zone events further away also have significant contributions.  

The PGA values from the deaggregation are 0.61 g and 0.37 g at 2% and 10% 

probabilities of exceedance in 50 years, respectively.  These PGA levels are smaller than 

the values used by Jibson and Michael (2009) (i.e., 0.690 g and 0.433g), because the 

seismic hazard deaggregation for Alaska was published by the USGS in 1998 while 

Wessen et al. (2007, 2008) updated the PGA seismic hazard in Alaska a decade later.  

Because the deaggregation information is required to compute the displacement hazard 

curves, the PGA hazard curve used in the analyses is derived from the PGA values 

reported in the deaggregation.  This maintains consistency between the ground motion 

values and the deaggregation. 
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(a) 

 

 

(b) 

Figure 6.15 Geographic seismic hazard deaggregation in Alaska at (a) 10% in 50 years 

and (b) 2% in 50 years 
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Figure 6.16 shows the same deaggregation information in terms of percent 

contribution to the hazard for discrete magnitude and distance bins.  The percent 

contribution represents        |         , as used in Equations 3.5 through 3.8. 

Similar to Figure 6.15, this deaggregation shows that significant contributions from the 

hazard come from smaller/closer events and larger/farther events.  The binning process 

sums the contributions of sources within each bin, and assigns the average M and R to 

that bin.  For example, all sources with M = 6 ~ 6.5 and R = 10 ~ 20 km are combined 

and their contributions are summed together for this bin.  This bin is then assigned a 

mean magnitude (Mk = 6.25) and a mean distance (Rl = 15 km).  The mean magnitude 

and distance are 6.74 and 36.7 km for 2% probability of exceedance in 50 years, and 6.66 

and 41.7 km for 10% probability of exceedance in 50 years.  However, these mean M, R 

combinations contribute almost nothing to the hazard.  The identification of mean M, R 

scenarios that contribute little hazard occurs when the deaggregation is bi-modal, which 

is the case in Figure 6.16.  Because the probabilistic approaches developed in this work 

incorporate the entire deaggregation, this issue will not be a problem for our results. 
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(a) 

 

 

(b) 

Figure 6.16 Seismic hazard deaggregation bins in Anchorage at (a) 10% in 50 years and 

(b) 2% in 50 years 
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The USGS published seismic hazard deaggregation data in 1996 for the 

continental 48 states.  In the following decade, two updated versions were published in 

2002 and 2008.  The 2008 version provides deaggregation data for dozens of seismic 

hazard levels, but the previous versions only provided deaggregation data for 6 seismic 

hazard levels.  For the State of Alaska, seismic hazard deaggregation data was only 

published in 1998 and it represents an extension of the 1996 analysis for the continental 

48 states.  The seismic hazard deaggregation for Alaska was never updated in 2002 or 

2008.  Therefore, as shown in Figure 6.14, the 1998 Alaska deaggregation only covers a 

range of hazard levels from 1% probability of exceedance in 50 years (λ = 0.0002 1/yr 

and PGA = 0.73 g) to 50% probability of exceedance in 75 years (λ = 0.009 1/yr and 

PGA = 0.21 g).  This range does not represent the entire seismic hazard curve.   

The deaggregation information is used to compute        |      for use in the 

calculation of the sliding displacement.  To deal with the limited amount of 

deaggregation information, the        |      for hazard values outside the range 

available is assumed to be the same as for the closest hazard level.  For example, the 

       |      for λ < 0.0002 1/yr is assigned the values from λ = 0.0002 1/yr and the 

       |      for λ > 0.009 1/yr is assigned the values from λ = 0.009 1/yr.  Such 

assumption ignores the tendency that shallow crustal events close to Anchorage have 

more contributions at smaller λ, while subduction zone events contribute more to the 

seismic hazard at larger λ.  Nonetheless, the associated errors should be small. 
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6.3.5 Vector Ground Motion Hazard 

 

As discussed in Section 3.2.2, the vector approach requires the computation of 

      |     .  This calculation requires ground motion prediction equations (GMPEs) 

for PGA and PGV for use in Equations 3.12 and 3.13.  When selecting appropriate 

GMPEs, the most important issue to consider is the tectonic environment (e.g., active 

crustal earthquakes vs. subduction earthquakes).  The Anchorage study area is 

complicated by the fact that active crustal events occur close to Anchorage, yet there is 

also a large subduction zone located as close as 60 to 70 km southeast of the city (Figure 

6.15).  Therefore, GMPEs for both active crustal and subduction events must be used 

and these two types of earthquakes must be distinguished from each other in the seismic 

hazard deaggregation data.  The distinction of these events and the GMPEs used to 

model them are described below.   

The shallow crustal events around Anchorage typically have magnitudes smaller 

than 7.0 (Wesson et al. 1999 and 2007) and are mostly within 50 km of the city.  Thus, 

all events closer than 50 km are considered shallow crustal events and all events at 

distances larger than 50 km are considered subduction events.  Subduction events are 

generally distinguished between intraslab and interface events using the focal depth 

(Youngs et al. 1997, Kanno et al. 2006).  Youngs et al. (1997) summarized that: (1) 

interface earthquakes are typically shallow (focal depth < 50 km) and occur at the 

interface between the subducting oceanic plate and overriding continental plate (Figure 

6.17), and (2) intraslab earthquakes are relatively deeper (focal depth > 50 km) and occur 

within the subducting oceanic plate.  Similarly, Wesson et al. (1999 and 2007) classified 

subduction zone events with focal depth greater than 50 km as intraslab events, which 

typically have magnitude smaller than 7.0.  They also classified earthquakes with M > 
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7.0 as interface events.  There is no focal depth information provided with the 

deaggregation data, therefore magnitude is used distinguish between intraslab and 

interface events.  Events with magnitudes less than 7.0 and distance greater than 50 km 

are considered intraslab events and events with magnitudes greater than 7.0 and distance 

greater than 50 km are considered interface events. 

 

 

Figure 6.17 Illustration of subduction zone (http://www.platetectonics.com/) 

 

The GMPEs for PGA were selected based on the GMPEs used in the hazard 

calculations.  The USGS open-file report by Wesson et al. (1999) listed the GMPEs used 

in the 1998 hazard and deaggregation analysis and we selected one shallow crustal 

GMPE (Boore et al. 1997) and one subduction GMPE (Youngs et al. 1997) from that list 

for use in this study (Table 6.8).  The GMPEs for PGV was selected based on the 

currently availability relationships.  The Boore and Atkinson (2008) GMPE for PGV 

was selected for shallow crustal events because it is the most simply of the Next 

Generation Attenuation (NGA) relationships.  The availability of a PGV GMPEs for 

subduction zone events is very limited, because PGV was not considered an important 
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ground motion parameter until relatively recently.  The most recent GMPE for PGV for 

subduction zone events was developed by Kanno et al. (2006) using ground motion data 

in Japan and this relationship is used in this study (Table 6.8). 

 

Table 6.8 GMPEs for PGA and PGV in Anchorage 

Seismic event categories PGA GMPEs PGV GMPEs Distance metrics 

R<50 km  
Shallow Crustal Events 

BJF97 BA08 RJB 

R>50 km, M<7 
Subduction Intraslab Events 

Youngs97 Kanno06 Rrup 

R>50 km, M>7  
Subduction Interface Events 

Youngs97 Kanno06 Rrup 

 

The correlation coefficient between PGA and PGV also is required to calculate 

the conditional probability       |           .  The correlation coefficient has been 

estimated as 0.6 (Rathje and Saygili 2008, Baker 2007).  Thus, the joint probability 

             can be calculated for the vector approach, as shown in Figure 6.18.  

Generally, pairs of larger PGA and PGV have smaller annual probabilities of occurrence, 

while pairs of smaller PGA and PGV have larger probabilities.  In addition, the 

probability of a small PGA occurring with a large PGV is very small, and vice versa. 
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Figure 6.18 Joint annual probabilities of occurrence for (PGA, PGV) pairs 

 

6.4 LOGIC TREE 

 

To incorporate the epistemic uncertainties into the seismic landslide hazard 

mapping, a logic-tree analysis is applied to the various sources of uncertainties.  The 

logic tree is separated into three parts, representing epistemic uncertainties in shear 

strength, slope properties, and displacement prediction models.  The logic tree is shown 

in Figure 6.19 and its components are explained below. 

Part 1 of the logic tree shows possible combinations of shear strengths and 

associated weights.  Best estimate properties (cbest and φbest) as well as high (c
+
 and φ

+
) 

and low (c
-
 and φ

-
) values were assigned to each geologic unit based on the discussion in 

Section 6.3.1.  The best estimates of shear strength for all geologic units are shown in 

Table 6.2.  The undrained shear strength has a coefficient of variation (COV) equal to 
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30%, and the effective friction angle has a COV equal to 10%.  The COV for effective 

cohesion is assumed to be 20% so that the total uncertainty in drained shear strength is 

similar to undrained shear strength.  Therefore, for those geologic units with  = 0, the 

cohesion assigned as an undrained shear strength varies +/-39% (i.e., +/-1.3COV) 

above/below (c
+
/c

-
) the best estimate value.  For those units with drained shear strengths, 

the effective friction angle is varied +/-13% based on its COV, and the effective cohesion 

has is varied +/-26% based on its COV.  The weights are assigned first to friction angle 

as: (1) 0.4 to the best estimate and (2) 0.3 to the values above/below the best estimates as 

shown in Table 6.3.  When assigning weights to the associated cohesion values, it is 

considered that the combinations of (c
+
, φ

+
) or (c

-
, φ

-
) are less likely than (c

+
, φ

-
) or (c

-
, 

φ
+
).  Therefore, the weights for cohesion values associated with (c

+
, φ

+
) or (c

-
, φ

-
) are 

taken as 0.25 and the weights for cohesion values associated with (c
+
, φ

-
) or (c

-
, φ

+
) are 

taken as 0.35.  The weight for the cohesion values associated with (cbest, φbest) is equal to 

0.4. 

The epistemic uncertainties for the t and m values are presented in Part 2 of the 

logic tree.  The best estimate t value is 6 m for all geologic units except the collvium 

units of c-br and c-bl.  Additional values of 3 m and 9 m are selected to represent the 

potential range of landslide depths across Anchorage, and the associated weights are 0.3, 

0.4 and 0.3 as noted in Section 6.3.2.  Because the colluvium units (c-br and c-bl units) 

exist on the surface of slopes as a thin layer, their depths were assumed as 3 m, and no 

variability was considered in the logic-tree analysis.  Two groundwater depths (i.e. 3 m 

and 6 m) are selected to calculate m values for each of the t values.  For example, if the t 

value is 6 m, the two corresponding m values are 0 and 0.5 for the different groundwater 

depths.  The two m values for each t value are equally weighted. 
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(a) 

Figure 6.19 
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(b) 

Figure 6.19 Logic tree with weights of (a) colluvium units (c-bl and c-br) and (b) all other 

geologic units for Anchorage 
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The first two parts of the logic tree are related to the calculation of the yield 

acceleration using the infinite slope model.  The different branches result in 56 different 

values of ky and corresponding weights associated with each grid cell.  These 56 values 

of ky will be used to define the mean displacement hazard curve using the procedure 

outlined in Section 5.3. 

Finally, the epistemic uncertainty associated with the different empirical 

displacement models is incorporated in Part 3 of the logic tree.  Three scalar models that 

use PGA and earthquake magnitude are selected for use (Rathje and Saygili 2009, Jibson 

2007, Bray and Travasarou 2007) as well as one vector model that uses PGA and PGV 

(Saygili and Rathje 2008).  These models are labeled RS09, J07, BT07, and SR08.  

Figure 6.20 shows the predicted sliding displacements as a function of ky/PGA for the 

four empirical models for M = 6.74, PGA = 0.61 g, and PGV = 34 cm/s.  The PGA and 

M values come directly from the hazard information for Anchorage, while the PGV 

represents the conditional value given PGA = 0.61 g and correlation coefficient 

            .  The four empirical models in Figure 6.20 predict displacements the 

range by a factor of about 4 for this scenario.  For other scenarios there may be more or 

less difference between these models.  Such difference is the epistemic uncertainty to be 

captured.  To assign the weights, the scalar models are equally weighted at 0.22 and the 

vector model is weighted at 0.34.  The vector model is more heavily weighted because 

the use of a second ground motion parameter provides a better estimate of sliding 

displacement.   
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Figure 6.20 Comparison of Predictive Models for a scenario of M = 6.74, PGA = 0.61 g 

and PGV = 34 cm/s 

 

Combining the 54 ky values and four displacement models within the logic tree, 

216 displacement hazard curves can be computed for each grid cell across the study 

region.  A weighted mean displacement hazard curve is calculated from the 216 curves 

and their weights through Equation 5.1.  To illustrate this calculation, Figure 6.21 shows 

displacement hazard curves computed for the 9 branches associated with the shear 

strength part of the logic tree (i.e., all other parameters held constant at the values 

indicated in Figure 6.21), as well as the mean displacement hazard curve.  The mean 

displacement hazard curve is above the hazard curve associated with the best estimate ky, 

indicating that the seismic slope performance may be underestimated when one does not 
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incorporate the uncertainties in the soil properties.  The mean displacement hazard curve 

indicates D = 2.1 cm at 10% probability of exceedance in 50 years (l = 0.0021 1/yr) and 

D = 25 cm at 2% probability of exceedance in 50 years (l = 0.0004 1/yr).  Thus, at these 

hazard levels this cell would be considered moderate hazard (1 cm < D < 5 cm) and very 

high hazard (D > 15 cm) respectively. 

 

 

Figure 6.21 Displacement hazard curves associated with the shear strength part of the 

logic tree. 

 

 

RS09 model, ls unit 
γ = 18.8 kN/m3, α = 25o 

cbest = 24 kPa, ϕbest = 30o      

t = 6 m, m = 0.25 
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6.5 REGRESSION MODELS 

 

As mentioned in Section 5.3, the Mean λD Threshold approach to applying the 

logic tree analysis on a regional scale requires an interpolation relationship between ky 

and λD(x), which can be expressed as a 4
th
 order polynomial regression model in the form 

of: 

  (  ( ))    (   (  ))
    (   (  ))

    (   (  ))
       (  )       (6.1) 

 

The regression relationship is specific to a specified ground motion hazard, a specified 

level of displacement x, and a specified empirical displacement model.  The coefficients 

used in Equation 6.1 are provided in Table 6.9 for the Anchorage ground motion hazard, 

three displacement thresholds, and the four empirical displacement models considered.  

The three displacement thresholds (1cm, 5 cm and 15 cm) represent moderate, high and 

very high seismic landslide hazard categories (Table 2.1). 

 

Table 6.9 Coefficients of regression models  

Displacement 
Threshold 

Empirical 
Displacement Models 

a1 a2 a3 a4 a5 

1 cm 
Scalar 

RS09 0.0067 0.0673 -0.2122 -3.5961 -10.7348 

J07 0.0089 0.1051 -0.0672 -3.7699 -11.8035 

BT07 0.0116 0.1377 0.0984 -3.2727 -11.0939 

Vector SR08 -0.0024 -0.0088 -0.3859 -3.7557 -11.4605 

5 cm 
Scalar 

RS09 0.0044 0.0529 -0.1717 -3.4082 -11.3582 

J07 -0.0013 0.0061 -0.3379 -4.1157 -13.0937 

BT07 -0.0036 -0.0161 -0.3892 -3.9692 -12.2431 

Vector SR08 -0.0139 -0.1396 -0.8389 -4.3842 -12.7071 

15 cm 
Scalar 

RS09 -0.0029 -0.0212 -0.3917 -3.6514 -12.1558 

J07 -0.0224 -0.2211 -1.1387 -5.3158 -14.6797 

BT07 -0.0512 -0.5404 -2.35 -7.037 -15.0673 

Vector SR08 -0.0397 -0.4348 -2.0095 -6.3164 -14.6476 
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(a)                                 (b) 

Figure 6.22 Comparison between displacement hazards from regression models at (a) 

10% and (b) 2% probabilities of exceedance in 50 years  

 

With these regression models and Equation 5.1, the mean annual rate of 

exceedance for a specific displacement threshold (  
̅̅ ̅( ), where x is the displacement 

threshold) at each grid cell can be computed from the 216 branches in the logic tree and 

the associated weights.  After comparing the computed   
̅̅ ̅( )  with the hazard level 

under consideration (λ*), the seismic landslide hazard category of each grid cell can be 

determined.  Figure 6.22 demonstrates this approach to assigning seismic landslide 

hazard categories at 10% and 2% probabilities of exceedance in 50 years (λ* = 0.0021 

1/yr and 0.0004 1/yr).  For this example, a slope angle of 25 is assumed along with the 

properties of the ls unit.  Only the shear strength part of the logic tree is considered, 

which is the same as shown in Figure 6.21.  The gray dots in Figure 6.22 represent the 

RS09 model, ls unit 
γ = 18.8 kN/m3, α = 25o 
cbest = 24 kPa, ϕbest = 30o      
t = 6 m, m = 0.25 
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  ( ) values for the 9 ky values for each of the three displacement thresholds (x = 1, 5, 

and 15 cm), and the triangles represents   
̅̅ ̅( ) computed from the   ( ) values for each 

displacement threshold.  At 10% probability of exceedance in 50 years, the associated 

λ*=0.0021 1/yr falls between   
̅̅ ̅(   )  and   

̅̅ ̅(   ) , which indicates that the 

displacement at this hazard level is between 1 cm and 5 cm and this cell should be 

assigned to the moderate seismic landslide hazard category.  At 2% probability of 

exceedance in 50 years,   
̅̅ ̅(    )  is greater than the associated λ*=0.0004 1/yr, 

resulting in very high hazard category assigned to this cell.  These are the same results 

that were obtained when computing the full hazard curves (Figure 6.21).   

 

6.6 SCREENING ANALYSIS 

 

To further reduce the computation time, a screening analysis is performed first 

using the worse-case scenario of the logic tree.  The lowest shear strengths (c
-
 and φ

-
) 

and the largest m and t values (0.67 and 9 m for drained units, 0 and 3 m for undrained 

units) are used to compute the minimum factor of safety for each grid cell.  The RS09 

scalar model is selected for the screening analysis because it generally predicts the largest 

sliding displacement relative to the other three models, as seen in Figure 6.20.  All grid 

cells in which λD(5cm) is greater than λ* = 0.0004 1/yr (i.e., 2% probability of 

exceedance in 50 years) are colored red in Figure 6.23.  All non-red grid cells are 

excluded from the full logic-tree analysis for a hazard level greater than 2% in 50 years, 

because these grid cells do not have landslide potential for the 5-cm threshold even under 

the worst-case condition.  Similar screening analysis is carried out for the 1-cm and 15-

cm thresholds.   
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For the 5-cm threshold, only 9.0% of grid cells in the study area are colored red, 

which means that about 91% of the study area is removed from the full logic-tree 

analysis.  For the 1-cm and 15-cm thresholds, about 73% and 95% of study area is 

removed from analysis by applying the screening analysis first.  Therefore, the full logic-

tree analysis for a specified displacement threshold performed using Python codes in 

ArcGIS® can be completed within an hour for the Anchorage study area. 

 

 

Figure 6.23 Cells with λD(5cm) > 0.0004 1/yr for worst-case condition (5-cm threshold, 

2% in 50 years) 



 187 

6.7 RESULTS 

 

Using the procedures described above, a probabilistic seismic landslide hazard 

map was created by running Python codes in ArcGIS®.  Figure 6.24 plots such a hazard 

map of Anchorage for a 2% probability of exceedance in 50 years (λ* = 0.0004 1/yr) and 

the three seismic landslide categories (moderate, high, and very high).  The area with 

moderate hazard (1 cm < D < 5 cm, colored orange) and high hazard (5 cm < D < 15 cm, 

colored red) are about 0.85% and 0.33% of the entire study area respectively, and the area 

with very high hazard (D > 15 cm, colored blue) covers 0.96% of the entire study area.  

These results cannot be compared directly with the current deterministic map developed 

by Jibson and Michael (2009), because the deterministic map assumed a worst-case 

scenario (t = 15 m and m = 0.8). 

As seen on the map, most areas with high or very high hazard are along coastal 

bluffs, stream valleys or in mountainous areas.  More detailed landslide predictions are 

shown on Figure 6.24b for downtown Anchorage, located between Ship Creek to the 

north and Chester Creek on the south.  Colluvium and landslide deposits on slopes along 

coastal bluffs and stream valleys are most susceptible to seismic landslides around the 

downtown area.  Figure 6.25 plots the seismic landslide hazard for a 10% probability of 

exceedance in 50 years (λ* = 0.0021 1/yr).  The area with moderate, high and very high 

hazard are about 0.18%, 0.14% and 0.60% of the entire study area, respectively.  The 

seismic landslide hazard at this smaller hazard level is significantly reduced across the 

study area, except for the c-bl unit along coastal bluffs and stream valleys. 
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(a) 

Figure 6.24 
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(b) 

Figure 6.24 Probabilistic seismic landslide hazard map of Anchorage at 2% probability of 

exceedance in 50 years (a) entire study area and (b) downtown area 
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(a) 

Figure 6.25 
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(b) 

Figure 6.25 Probabilistic seismic landslide hazard map of Anchorage at 10% probability 

of exceedance in 50 years (a) entire study area and (b) downtown area 
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To investigate the influence of each part of the logic tree on the seismic landslide 

hazard, a series of displacement maps were created by implementing different parts of the 

logic tree (i.e., epistemic uncertainty).  Also analyzed is the deterministic approach in 

which the 2% in 50 year PGA was used to compute sliding displacements.  This 

deterministic approach is essentially the approach used by Jibson and Michael (2009), 

although with different assumed slope properties.   

The percentage of the study area exceeding different displacement thresholds 

when incorporating different parts of the logic tree is summarized in Table 6.10 and 

Figure 6.26.  Ten different cases are shown.  Cases 1 to 5 only use one empirical 

displacement model (RS09 scalar model), while all four models are applied to Cases 6 to 

10.  The deterministic cases (Cases 1 and 6) use the best estimates of all slope properties 

for the ky computation.  The probabilistic cases (Cases 2-5, 7-10) all incorporate aleatory 

variability but different components of epistemic uncertainty. 

 

Table 6.10 Implementing different parts of the logic tree (2% in 50 years) 

Case 
Aleatory 

Variability 

Epistemic 

Uncertainty 

% of Study Area 

D > 1 cm D > 5 cm D > 15 cm 

R
S

0
9
 s

ca
la

r 
m

o
d
el

 

1 No No 1.22% 0.54% 0.30% 

2 Yes No 1.33% 0.72% 0.43% 

3 Yes Shear Strength 1.90% 1.09% 0.73% 

4 Yes Sliding Block 2.13% 1.16% 0.74% 

5 Yes 
Shear Strength 

and Sliding Block 
2.96% 1.69% 1.13% 

A
ll

 f
o

u
r 

m
o

d
el

s 6 No No 0.82% 0.37% 0.21% 

7 Yes No 0.91% 0.49% 0.32% 

8 Yes Shear Strength 1.35% 0.81% 0.59% 

9 Yes Sliding Block 1.52% 0.84% 0.55% 

10 Yes 
Shear Strength 

and Sliding Block 
2.14% 1.29% 0.96% 
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The results is Table 6.10 are summarized in Figure 6.26a for the RS09 model.  

The area of high/very high hazard (i.e., D > 5 cm) increases by 33% when aleatory 

variability is included (i.e., 0.72% for Case 2 vs. 0.54% for Case 1), and increases by 

more than a factor of 3 when all of the sources of epistemic uncertainty in ky are included 

(i.e., 1.69% for Case 5 vs. 0.54% for Case 1).  The influence of the epistemic uncertainty 

in the sliding block properties (Case 4) is generally greater than the influence of the 

epistemic uncertainty in the shear strengths (Case 3) because the uncertainties in m and t 

are larger than the uncertainties in c and ϕ (Figure 6.19).  However, the difference 

between these two sources of uncertainty is smaller at larger displacement threshold.  

The reason is that the c-bl unit is not assigned uncertainties in t and m values (Figure 

6.19) while it contributes significantly to the landslide hazard in the very high hazard 

category (Figure 6.24). 

The combined influence of the epistemic uncertainties in the shear strength and 

sliding block properties (Case 5) is slightly greater than the simple summation of 

individual influences (Cases 3 and 4), indicating that the combined effect of uncertainties 

may amplify the increase in the seismic landslide hazard.  The same trend is observed 

for 1 cm and 15 cm thresholds.   

Comparing Figure 6.26a and Figure 6.26b, the analyses using all four empirical 

displacement models always predict less area within each seismic landslide hazard level 

than the corresponding analyses using the RS09 model.  This difference is a result of the 

RS09 model generally predicting the largest sliding displacements among all four models 

(Figure 6.20). 
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    (a) 

 

 

    (b) 

Figure 6.26 The influence of different parts of the logic tree on the computed seismic 

landslide hazard at 2% probability of exceedance in 50 years using (a) RS09 

scalar model and (b) all four empirical displacement models 
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To further investigate the hazard distribution among geologic units, the number of 

grid cells with high/very high hazard (D > 5 cm) in each geologic unit is summarized and 

shown in Table 6.11.  Landslide Cells are grid cells with predicted displacements greater 

than the 5-cm threshold, the % of Study Area represents the percentage of the study area 

covered by each geologic unit, the % of Geo Unit is the percentage of grid cells with D > 

5 cm for each geologic unit, and the % of Landslide Cells is the contribution of each 

geologic unit to all landslide cells in the study area.  Also shown in Table 6.11 are the 

corresponding values from the Jibson and Michael (2009) map. 

With 35% of its area predicted as high/very high hazard, the colluvium unit c-bl is 

most susceptible to landslides, because this unit has low undrained shear strength and 

mostly covers steep coastal bluffs and valley walls (Figure 6.6).  Landslide deposits (ls), 

mostly distributed on coastal bluffs, valley walls and the Chugach Mountains, also has a 

large portion of its area (about 15%) classified as high/very high hazard.  Glacial 

alluvium (ga) and sand deposits (sh) in low hills, both having more than 2.5% of their 

area with D > 5 cm, also contribute to the landslide hazard.  Although the alluvium units, 

af and al, contribute more than 20% of all landslide cells (each about 10%), they are 

relatively stable because only 1.1% and 0.6% of these units are classified as high/very 

high hazard.  The only reason these units contribute so much to the overall landslide 

hazard is because they cover a large percentage of the study area.  The other geologic 

units, which either have high shear strength underlain by stiff soil/rock (e.g. m, gm and 

mg) or exist mostly on flat terrain (e.g. an, f and l), do not represent a significant seismic 

landslide risk.  
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Table 6.11 Probabilistic landslide prediction in geologic units (5 cm threshold, 2% 

probability of exceedance in 50 years) 

 This Study Jibson and Michael (2009) 

Geo Units 
Landslide  

Cells 

% of  

Study Area 

% of 

Geo Unit 

% of 

Landslide Cells 

% of 

Geo Unit 

% of 

Landslide Cells 

af 10486 11.4% 1.1% 9.7% 2.2% 6.1% 

al 11327 22.0% 0.6% 10.5% 1.3% 7.0% 

an 2536 9.8% 0.3% 2.3% 0.6% 1.4% 

b 18 2.2% 0.0% 0.0% 0.4% 0.2% 

bc 3071 2.8% 1.3% 2.8% 1.9% 1.2% 

c-br 65 6.1% <0.1% 0.1% 18.9% 27.4% 

c-bl 36796 1.3% 34.7% 34.0% 93.0% 28.2% 

f 362 3.0% 0.1% 0.3% 0.7% 0.5% 

ga 11535 5.3% 2.6% 10.7% 7.7% 9.6% 

gm 491 3.9% 0.2% 0.5% 0.9% 0.8% 

l 471 1.8% 0.3% 0.4% 0.7% 0.3% 

ls 13061 1.0% 15.0% 12.1% 22.4% 5.6% 

m 3262 6.0% 0.7% 3.0% 3.0% 4.2% 

mg 1666 9.5% 0.2% 1.5% 0.8% 1.8% 

s 2966 2.0% 1.8% 2.7% 2.8% 1.4% 

sh 7404 2.1% 4.2% 6.8% 5.8% 3.0% 

sl 2626 10.0% 0.3% 2.4% 0.5% 1.3% 

Total 108143 100.0% 
 

100.0%   

 

Table 6.11 also summarizes the results from the Jibson and Michael (2009) 

deterministic map that uses the 2% in 50 year ground motions.  The colluvium unit in the 

mountainous area (c-br) was predicted as one of the most landslide-susceptible unit in the 

Jibson and Michael (2009) deterministic map (Table 6.5), but it has almost no seismic 

landslide hazard according to the probabilistic analysis.  The use of conservative sliding 

block properties in the deterministic map leads to an overprediction in the landslide 
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hazard for this unit.  In fact, the conservative sliding block properties used by Jobson and 

Michael (2009) resulted in a much larger area of seismic landslide hazard than predicted 

in this study.  This result demonstrates that is may be more useful to use a logic-tree 

approach to assign a range of possible model parameters rather than using conservative 

parameters. 

 

6.8 SUMMARY 

 

In this chapter, probabilistic seismic landslide hazard mapping is applied to 

Anchorage, Alaska.  The shear strengths of the geologic units are assigned based on a 

previous study that created a deterministic seismic landslide map (Jibson and Michael 

2009), and the associated uncertainties are determined from judgment and published 

values (e.g., Phoon and Kulhawy 1999).  The thicknesses of the surficial soils, described 

or roughly estimated from geologic maps, are used to assist the selection of t values in the 

logic tree.  Additionally, 2-D static slope stability analysis is performed for typical 

slopes that are susceptible to seismic landslides, indicating that potential failures will not 

extend into underlying strong soils and, thus the thickness of surficial layer is the main 

controlling factor of failure depths.  m values are determined from the groundwater table, 

representing relatively unfavorable conditions for seismic landslides.  The ground 

motion hazard comes from the hazard calculations performed by USGS and these data 

indicate that both shallow crustal events and subduction zone events affect ground 

shaking at the site.  In developing the vector hazard information for PGA and PGV, 

GMPEs for both shallow crustal events and subduction zone are required. 
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The logic-tree analysis is applied to the study area through the Mean λD Threshold 

approach introduced in Chapter 5.  The results show that incorporating epistemic 

uncertainties significantly increases the seismic landslide hazard.  The combined 

influence of different sources of epistemic uncertainties is greater than the simple 

summation of individual influences.  The geologic units distributed on coastal bluffs, 

valley walls, low hills and Chugach Mountains are most susceptible to seismic landslides. 
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Chapter 7 Summary, Conclusions and Recommendations for Future 

Work 

 

7.1 SUMMARY AND CONCLUSIONS 

 

Accurate evaluations of the potential for earthquake-induced landslides and slope 

failures are essential for reducing losses caused by earthquakes. This assessment involves 

a prediction of the sliding displacements induced by ground shaking.  The predicted 

sliding displacements are used to indicate the likelihood of landslide occurrence and to 

assign seismic landslide hazard categories.   

Current practice uses a deterministic approach to predict sliding displacement.  

The deterministic approach ignores the aleatory variability in the predictions of ground 

shaking or displacements, as well as the epistemic uncertainties in the slope properties.  

A probabilistic framework was developed that computes a displacement hazard curve 

using: (1) a ground motion hazard curve from a probabilistic seismic hazard analysis, (2) 

a model for predicting the dynamic response of the sliding mass, (3) a model for 

predicting the sliding response of the sliding mass, and (4) a logic tree analysis that 

incorporates the uncertainties in the various input parameters.  Both scalar and vector 

approaches to the probabilistic analysis were developed.  The probabilistic framework 

was applied to site-specific analysis of a real slope in California and to regional analysis 

for seismic landslide mapping around the Anchorage, Alaska area.  For both of these 

applications, the ground motion hazard was derived from the seismic hazard data from 
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the USGS and the logic-tree was derived from available field/laboratory data and 

engineering judgment. 

The development of the probabilistic framework for flexible sliding masses 

involved first the calculation of the annual rate of occurrence of the seismic loading 

parameters for the flexible slope and then the calculation of a hazard curve for sliding 

displacement.  A logic-tree analysis was used to incorporate the epistemic uncertainties 

regarding the slope properties.  This framework can be easily implemented in 

engineering practice using available empirical models for the dynamic response and 

sliding response of sliding masses.  The influence of incorporating the various sources of 

epistemic uncertainty was investigated.  The probabilistic approach to predicting sliding 

displacements for flexible sliding masses results in larger displacements than a 

deterministic approach because the probabilistic approach incorporates the variability in 

the seismic response prediction and the displacement prediction.  The probabilistic 

approach can predict displacements 1.5 to 5 times larger than the deterministic approach, 

with the largest difference occurring for sliding masses with large site periods.  

Incorporating epistemic uncertainties further increases the predicted displacements.  

Although incorporating uncertainty consistently increases the displacement hazard, 

acknowledging and accounting for uncertainties provides for a better assessment of the 

potential for slope deformations during earthquakes. 

To demonstrate the probabilistic approach for an actual site and realistic site 

characterization data, the Lexington Elementary School site in California was selected.  

The available site characterization data was used to develop the epistemic uncertainties in 

the shear strength and shear wave velocity profiles.  These uncertainties resulted in 

uncertainties in the yield acceleration (ky) and site period (  ).  An additional source of 

uncertainty was the mean period of the ground motion (   ).  The computed 
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displacement hazard curves were used to predict displacements at 10% and 2% 

probabilities of exceedance in 50 years, and these values were compared with 

deterministic estimates.  The probabilistic displacements were as much as 4 to 6 times 

larger than the deterministic values at 10% in 50 years, and they were more than 10 times 

larger at 2% in 50 years.  The uncertainty in Tm resulted in the largest effect on the 

displacements, while the uncertainty in Ts had the smallest effect.  Again, these results 

indicate that accounting for uncertainty produces displacements that are larger than those 

predicted using deterministic methods and best-estimate properties.  However, efforts to 

reduce the epistemic uncertainties can reduce the displacements, and thus there is an 

incentive for engineers and owners to collect data to reduce uncertainties, where possible. 

The probabilistic framework developed in this research can also be applied to 

regional seismic landslide mapping.  The level of epistemic uncertainty in a regional 

analysis is more significant than for a site-specific analysis, and thus it is even more 

critical to incorporate these uncertainties in regional analysis.  An impediment to 

incorporating epistemic uncertainty in regional mapping is the computational effort 

required to apply logic-tree analysis at hundreds of thousands to millions of grid cells.  

In this research, an efficient scheme (i.e., the Mean λD Threshold approach) for the 

computation of the weighted mean displacement hazard was developed to reduce the 

computational efforts.  To further reduce the computational effort, a screening analysis 

using the worst-case scenario of the logic tree was introduced into the mapping approach.  

The screening analysis removes as many as 73% to 95% of the grid cells from the full 

logic-tree analysis.   

Anchorage, Alaska, which has a significant seismic landslide hazard, was selected 

as an example study area to implement the developed probabilistic approaches to seismic 

landslide hazard mapping.  A previous study provided the best-estimate shear strengths 
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of the geologic units, and the associated epistemic uncertainties were determined from 

the literature.  The reported thicknesses of the surficial geologic units and 2D slope 

stability analyses were used to select the failure surface thicknesses used in the logic tree.  

The saturation thickness values were estimated from reported locations of the 

groundwater table, representing generally unfavorable conditions for seismic landslides.  

The ground motion hazard data and deaggregation data from the USGS were used as 

input into the probabilistic analyses.  A series of seismic landslide maps were created to 

investigate the influence of each part of the logic tree on the seismic landslide hazard and 

to identify the geologic units contributing most to the seismic landslide hazard.   

The resulting seismic landslide hazard maps indicated that 1.29% of the study 

area has high or very high seismic landslide hazard (i.e., displacements greater than 5 cm) 

at 2% probability of exceedance in 50 years.  At 10% probability of exceedance in 50 

years the high/very high seismic landslide hazard areas represents 0.74% of the study 

area.  Most of the areas with high or very high hazard are along coastal bluffs, stream 

valleys or in mountainous areas.  The probabilistic map that includes aleatory variability 

and epistemic uncertainties identified the area with high/very high hazard that is 3 times 

larger than identified through the deterministic approach.  The influence of the epistemic 

uncertainty in the sliding block properties on the computed displacements is generally 

greater than the influence of the epistemic uncertainty in the shear strengths because the 

uncertainties in sliding block properties are larger than the uncertainties in shear strength.  

The combined influence of the epistemic uncertainties in the shear strength and sliding 

block properties is slightly greater than the simple summation of individual influences, 

indicating that the combined effect of uncertainties may amplify the increase in the 

seismic landslide hazard.  Finally, comparison with a previous deterministic seismic 

landslide map developed by the USGS indicates that the seismic landslide hazard from 
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the probabilistic analyses is smaller because the deterministic map used very conservative 

(and in some cases unrealistic) assumptions with respect to the sliding block properties.  

This comparison indicates that the logic-tree approach provides an alternative way to 

rigorously account for uncertainties in slope properties, and it can avoid using overly 

conservative input parameters to capture these uncertainties in a deterministic approach. 

 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

 

The developed probabilistic approaches to evaluate the seismic stability of slopes 

represent an important step forward in accounting for variability and uncertainty in the 

assessment of seismic landslide hazards.  Nonetheless, additional improvements can still 

be made and some recommendations for future work are outlined below. 

The site-specific analysis using the probabilistic approach with a logic tree was 

performed for a slope at a site in California.  The detailed slope geometry and soil profile 

allows a thorough evaluation of the seismic performance of the slope.  However, the 

empirical models for the seismic loading parameters and flexible sliding displacements 

were derived solely from numerical analysis assuming all deformations are localized on a 

failure plane.  Thorough validation of these empirical models should be performed.  

This validation could be achieved through comparisons with well-documented case 

histories in which ground motions and deformations are recorded during earthquakes.  

Additionally, physical model testing (e.g., centrifuge tests) of slopes excited by 

earthquake shaking could be used to validate the models.  

The logic-tree analyses performed for flexible sliding masses showed that the 

mean period of ground motion    has a significant influence on the predicted 
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displacements.  The uncertainty of    was considered through the logic-tree approach, 

but    is a ground motion parameter and should be rigorously incorporated as part of the 

ground motion hazard.  In this approach, the joint annual probability of occurrence of 

PGA, PGV, and Tm combinations would be used to predict the joint annual probability of 

occurrence of kmax and k-velmax, which in turn would be used in the computation of 

displacement hazard curves.  To develop this approach, the correlations between    and 

other ground motion parameters are required, and the computation of displacement 

hazard curves becomes more complex due to the higher dimension of correlation.   

Finally, an important factor that influences the distribution of seismic landslides is 

the spatial variation of the soil shear strength.  For probabilistic seismic landslide hazard 

mapping (and all seismic landslide hazard mapping performed to date), the same shear 

strength parameters are used across an entire geologic unit, which ignores this important 

factor.  The characterization of the spatial variation of shear strength is a difficult task, it 

requires a large amount of field testing data, which may be difficult to obtain in 

mountainous areas.  Alternative approaches to develop the spatial variation in shear 

strength should be considered, including various type of remote sensing. 
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