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We connect the Mimetic Finite Difference method (MFD) with the

finite-volume two-point flux scheme (TPFA) for Voronoi meshes. The main

effect is reducing the saddle-point system to a much smaller symmetric-positive

definite matrix. In addition, the generalization allows MFD to seamlessly inte-

grate with existing porous media modeling technology. The generalization also

imparts the monotonicty property of the TPFA method on MFD. The connec-

tion is achieved by altering the consistency condition of the velocity bilinear

operator. First-order convergence theory is presented as well as numerical

results that support the claims.

We demonstrate a methodology for using MFD in modeling fluid flow

in fractures coupled with a reservoir. The method can be used for nonplanar

fractures. We use the method to demonstrate the effects of fracture curva-

ture on single-phase and multi-phase flows. Standard benchmarks are used

to demonstrate the accuracy of the method. The approach is coupled with

existing reservoir simulation technology.
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Chapter 1

Introduction

1.1 Overview

Early subsurface flow models often assumed a simple rectangular do-

main with a structured, rectangular mesh. With advances in reservoir char-

acterization methods, there has been an increasing demand for models that

honor complex geometric features. Further model complexity arises from new

drilling technology. Wells have gone from perfectly straight and vertical to

horizontal and sometimes branching structures [Fig. 1.1]. These effects are

compounded when considering hydraulic fractures. Properly capturing the

geometry of such problems while solving multiphase flow is a challenging task.

In this work, we demonstrate how the Mimetic Finite Difference method is

ideally suited for modeling flow with complex subsurface geometries.

The Mimetic Finite Difference (MFD) method has found widespread

application in many areas of numerical modeling. The basic premise of MFD

has been around for many years. The central theme is to create discretizations

that “mimic” the fundamental properties of the underlying partial differential

equation. The MFD method is a constructive approach to discretization, MFD

discretizations defined in the literature follow the same basic steps. MFD has

1



been used to solve elliptic and parabolic equations and has found applications

in the areas of gas dynamics [54], Maxwell’s equations [13, 31] and Stokes

flow [22]. It is also possible to apply the Mimetic Finite Difference method to

cell-faced [15] and nodal discretization [14]. MFD can be used both to define

higher-order methods [57], and on meshes with curved faces [39]. More recent

work in higher order methods related to MFD has been in the area of the

Virtual Element Method [21].

Early examples of MFD were defined with certain mesh restrictions,

e.g., logically rectangular grids [30, 54]. In 2005, Brezzi et al. presented a

definition of MFD that applied to a general set of polygonal and polyhedral

meshes [15, 16]. This opened a door to many new applications of MFD in

the modeling community. Properties that make MFD an attractive option for

porous media problems include the following:

1. Local conservation by construction;

2. Approximation of both pressure and velocity unknowns;

3. Handling of full tensor coefficients;

4. Accommodation of hanging nodes and non-matching grids.

While these properties are powerful, there remain challenges to overcome.

First, MFD results in a saddle-point linear system. Such systems are more

difficult and time-consuming to solve than positive definite problems. Second,

MFD generates a large system of equations by solving simultaneously for both

2



(a) Fault (b) Horizontal Well

(c) Pinch-Out

Figure 1.1: Examples of geometrically complex reservoir features.

pressure and velocity unknowns. Finally, the MFD method will not, in general,

produce a solution that satisfies the maximum principle of elliptic PDE.

These challenges are shared by the related mixed finite element (MFE)

method. In 1983, Wheeler and Russell proposed a popular approach to ad-

dressing these challenges [50]. They demonstrated a connection between cell-

centered finite volumes and mixed finite elements on rectangular grids. This

connection was accomplished by defining a special quadrature rule. The re-

sulting linear system was sparse, symmetric positive definite, and it had only

pressures as unknowns. Their technique led to an elegant proof of convergence

for finite volumes over variably spaced grids based on the theory of MFE.

Our approach follows in the same spirit as the approach developed

by Wheeler and Russell. However, instead of using RT0 as the underlying

discretization, we will use MFD. For orthogonal, rectangular grids, the relation

3



between MFD and cell-centered finite volumes has already been established.

In fact, over simplicial grids, RT0 spaces are a special case of MFD [41]. We

present a generalization of MFD that reduces to a TPFA approximation for

a more general set of meshes. The new method is based on combining and

modifying two generalizations existing in the literature [24,38]. The new form

of MFD is defined in Chapter 2 with proof of first-order convergence. In

Chapter 3, we examine the implications of the modification for general Voronoi

diagrams, 2.5-dimensional Voronoi diagrams. In addition, we demonstrate the

relationship to point-centered schemes.

The second part of this work is to apply the MFD method to solving

flow problems with fractures. We use MFD to create a coupled system of flow

in a fracture with flow in the reservoir. Due to the geometric flexibility of

MFD, we are able to demonstrate the effects of fracture curvature on flow.

In addition, we use the MFD method implemented in Python to couple with

an existing reservoir simulator, IPARS. Details of this work are provided in

Chapter 4.

In Chapter 5 we present an overview of the code used to run the numer-

ical results of this work. Our code leverages both the general nature of MFD

and its simplicity to create an extensible research platform. We demonstrate

the use of MFD for single-phase, two-phase, and fracture flow problems.
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1.2 Historical Development of MFD

The Mimetic Finite Difference method finds its origins in work by Fa-

vorskii, Samarskii, Tishkin and Shashkov [26,53], with earlier papers published

in Russian. The first translations of their work referred to the MFD method

as the support-operator method (SOM). The term “support-operator” is a

translation of the original Russian name, �îïîðíûõ îïåðàòîðîâ,” phonetically

pronounced “opornykh operatorov” [54]. The term means primary-operator

or main-operator, and it refers to the constructive way in which the method

is formulated.

The MFD method was originally motivated by a desire to define con-

servative finite difference methods over unstructured grids. The idea was to

construct a discrete form of vector calculus. To this end, first-order discrete

differential operators are defined to bear the same relationships to each other

as their continuous counterparts. Let us take Laplace’s equation as an exam-

ple,

−∇ · ∇u = 0. (1.1)

The two operators needed to create a Laplacian are the divergence (∇· ) and

the gradient (∇). These two operators share a connection through the inte-

gration by parts formula,∫
Ω

∇p · v dV =

∫
∂Ω

(pv) · n dS −
∫

Ω

p∇ · v dV. (1.2)
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One may state that the ∇ and the ∇· operators are formal adjoints relative

to the L2(Ω) and (L2(Ω))d inner products,

(∇p, v)(L2(Ω))d = −(p,∇ · v)L2(Ω), (1.3)

and, therefore,

∇· = (∇)∗. (1.4)

Implicit in this relationship is the divergence theorem, which is the conser-

vative property for the diffusion problem. By defining appropriate discrete

inner products that correspond to the continuum case, it is possible to create

discrete ∇ and ∇· operators, denoted by G and DIV , that share the adjoint

relationship,

[G p, v]vector = −[p,DIV v]scalar. (1.5)

With this objective in mind, the general steps for defining a mimetic

discretization for Laplace’s problem are as follows:

1. Define discrete scalar and vector spaces, which we denote as Qh and Xh,

respectively.

2. Define discrete scalar and vector inner products [·, ·]Qh
and [·, ·]Xh

.

3. Define one of the differential operators in the equation. This choice is

typically dependent on the discrete vector and scalar spaces chosen. For

our purposes we first define DIV . This is the “reference” operator for

the method, which is where the original name is sourced.

6



4. Derive the second operator based on the adjoint relationship. For exam-

ple, if we have defined DIV , then G is defined as

[G p, v]Xh
= [p,DIV v]Qh

∀v ∈ Xh and∀p ∈ Qh. (1.6)

All MFD discretizations defined in the literature follow this basic model. In

the case of cell-centered schemes, the natural primary operator is DIV , and,

for nodal discretizations, G is the primary operator. Typically, one of the

inner products is defined with ease, while the other requires special care. In

Appendix A, we present a brief overview of the the cell-node and cell-surface

methods. These are presented for historical reference.

7



Chapter 2

Generalized Mimetic Finite Differences

We introduce a generalized form of the original MFD defined in [15].

In the following sections, we establish stability of the method, as well as first-

order convergence for the velocity and pressure unknowns. Our methodology

in developing the theoretical work is to use the same approach followed by

the authors of [38], making modifications where needed due to the modified

consistency assumption suggested.

2.1 Basic Definitions

Consider the homogeneous Dirichlet problem,

v = −K∇p in Ω,

∇ · v = f in Ω,

p = 0 on ∂Ω. (2.1)

The domain Ω ⊂ Rd is divided into a nonoverlapping, conformal partition T

of elements E. In three dimensions, E is a polyhedron with planar polygonal

faces. In two dimensions, E is polygonal with line segments for faces. For

the remainder of this work, we refer to elements E as polyhedra, with the

understanding that the results also apply directly to the two-dimensional case.
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Let the permeability tensor K be elliptic, and every component of K

is in W 1,∞(Ω). We make the following assumptions about the mesh:

(1) Ω is a polyhedron with a Lipschitz boundary.

(2) There exists an upper bound on the number of faces and edges in the

mesh.

(3) There exist constants v∗ and a∗ such that for all E

v∗h
d
E ≤ |E|,

a∗h
d−1
E ≤ |e|.

(4) The mesh faces are planar and star-shaped.

(5) The mesh cells are non-degenerate and shape regular.

Define the space of discrete pressures and velocities as Qh ⊂ RNQ and

Xh ⊂ RNX , respectively, with

ph ∈ Qh and ph = {pE}E∈Th
such that pE ∈ R, (2.2)

vh ∈ Xh and vh = {veE}e∈∂EE∈T such that vE ∈ R. (2.3)

Each velocity degree of freedom veE represents the flux normal to the face

e facing out of cell E. The above definition for Xh results in two degrees

of freedom per internal face in the mesh and a single degree of freedom for

9



each boundary face. We require continuity of velocity in Xh, that is, for two

adjacent elements Ea and Eb sharing a face e, let

veEa
+ veEb

= 0.

Continuity of velocity reduces the total number of degrees of freedom in Xh

to NX .

For q ∈ L1(Ω), define a projection operator on Qh as

(qI)|E =
1

|E|

∫
E

q dV. (2.4)

For v ∈ (Ls(Ω))d, s > 2 and ∇ · v ∈ (L2(Ω))d, define the projection operator

on Xh as

(vI)eE =
1

|e|

∫
e

v · neE dS. (2.5)

Let K denote a constant tensor over E such that

max
ij
‖Kij −KE,ij‖L∞(E) ≤ ChE.

Define the scalar inner product as,

[qh, ph]Qh
=
∑
E∈T

pEqE|E|.

Define the vector bilinear form as,

[vh, uh]Xh
=
∑
E∈T

[vh, uh]E =
∑
E∈T

uThMEvh.

This form approximates the continuous inner-product, that is,

[vh, uh]Xh
≈
∫

Ω

K−1v · u dV.

We require the following conditions on the velocity inner product:
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(S1) (Stability) There exist two positive constants, s∗ and S∗, such that, for

all ξ ∈ RkE and E ∈ T ,

s∗|E|ξT ξ ≤ ξTMEξ ≤ S∗|E|ξT ξ, (2.6)

and

ξTMT
EMEξ ≤ (S∗)2|E|2ξT ξ.

(S̃2) (Consistency) For every element E, for every linear function q1 on E,

and for every vh ∈ Xh, there exists wE and we such that

[(KE∇q1)I , vh]E =
∑
e∈∂E

veE

∫
e

weq
1 dS −

∫
E

wEq
1(DIV vh)E dV. (2.7)

where the function wE : Rd → R satisfies∫
E

wE dx = |E|, (2.8)∫
E

gwE dx = |E|xE, (2.9)

where xE is a point in E and g : Rd → Rd is the linear function,

g(x, y, z) =

 x
y
z

 ,

and where the function we : Rd → R satisfies,∫
e

we dx = |e|,∫
e

gwe dx = |e|xe,
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where xe is a point in the plane of e. The functions we and wE must be

bounded by positive constants independent of the mesh wmax
e and wmax

E ,

max
E∈T
‖wE‖L∞(E) < wmax

E ,

max
E∈T

max
e∈∂E
‖we‖L∞(e) < wmax

e .

We further require that wE is strictly positive over E, that is,

wE(x) > wmin
E > 0, ∀E ∈ T and ∀x ∈ E.

The addition of weighting functions in (S̃2) is only modification of the original

(S2) condition in [15]. The addition of weighting functions on the integrals

was inspired by the modification suggested in [25] and [38]. Details about the

relation to previous work can be found in Chapter 3.

Define the discrete divergence operator DIV : Xh → Qh as,

(DIV vh)E =
1

|E|
∑
e∈∂E

veE|e|.

Finally, define a discrete gradient operator G : Qh → Xh as the adjoint of

DIV ,

[G ph, vh]Xh
= −[ph,DIV vh]Qh

. (2.10)

The final problem can be represented in “weak” saddle-point form.

That is, find vh ∈ Xh and ph ∈ Qh such that,

[vh, uh]Xh
− [ph,DIV uh]Qh

= 0, ∀uh ∈ Xh, (2.11)

[DIV vh, qh]Qh
= [f I , qh]Qh

, ∀qh ∈ Qh. (2.12)
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2.2 Stability Analysis

The analysis follows the classical approach to stability for mixed meth-

ods. We start by defining the following norms over the pressure and velocity

spaces,

‖vh‖2
Xh

= [vh, vh]Xh
,

‖ph‖2
Qh

= [ph, ph]Qh
.

We also define a “div” norm

‖vh‖2
div = ‖vh‖2

Xh
+ ‖DIV vh‖2

Qh
.

Let Zh represent the divergence-free subspace of Xh,

Zh = {uh ∈ Xh | DIV uh = 0} . (2.13)

Lemma 1. The bilinear operators [· , ·]Xh
and [· ,DIV ·]Qh

are continuous, in

the sense that

[vh, uh]Xh
≤ C‖vh‖Xh

‖uh‖Xh
∀vh, uh ∈ Xh, (2.14)

[ph,DIV vh]Qh
≤ C‖ph‖Qh

‖vh‖div ∀ph ∈ Qh, vh ∈ Xh. (2.15)

Inequality (2.14) is a consequence of Cauchy-Schwarz inequality and

condition (S1). Inequality (2.15) is a result of Cauchy-Schwarz.

Lemma 2. The bilinear operator [· , ·]Xh
is coercive on Zh:

[vh, vh]Xh
≥ C‖vh‖2

div ∀vh ∈ Zh. (2.16)
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Inequality (2.16) is a direct consequence of condition (S1). Before we

can establish the inf-sup condition for the bilinear operator [· ,DIV ·]Qh
, we

will need the following two lemmas.

Lemma 3. For any q ∈ L2(Ω) there exists v ∈ (H1(Ω))d such that

∇ · v = q (2.17)

and

‖v‖(H1(Ω))d ≤ C‖q‖L2(Ω).

Proof. The function v can chosen by solving the problem,

∆φ = q,

with homogeneous Dirichlet boundaries. We can then set v = ∇φ and use

Lax-Milgram and elliptic regularity.

We also use the following trace inequality originally attributed to Ag-

mon [1].

Lemma 4. For all χ ∈ H1(E)

‖χ‖2
L2(e) ≤ C

(
h−1
E ‖χ‖

2
L2(E) + hE|χ|2H1(E)

)
.

Theorem 1 (inf-sup). There exists a positive β such that, for any qh ∈ Qh,

sup
{vh∈Xh,vh 6=0}

[DIV vh, qh]Qh

‖vh‖div
≥ β‖qh‖Qh

.
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Proof. It is sufficient to show that there exists vh ∈ Xh for each qh ∈ Qh such

that

DIV vh = qh,

‖vh‖Xh
≤ C‖qh‖Qh

.

Since

‖vh‖2
div = ‖vh‖2

Xh
+ ‖DIV vh‖2

Qh

= ‖vh‖2
Xh

+ ‖qh‖2
Qh

≤ (1 + C)‖qh‖2
Qh
. (2.18)

We start by defining q ∈ L2(Ω),

q = qh|E.

We find v ∈ (H1(Ω))d by Lemma 3 such that

∇ · v = q.
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Next, we set vh = (v)I ∈ Xh, and note that

[vh, vh]E ≤ C|E|
∑
e∈∂E

|veE|2 (condition S1)

= C|E|
∑
e∈∂E

(
1

|e|
|
∫
e

v · neE dS|
)2

≤ C
∑
e∈∂E

|E|
|e|
‖v‖2

L2(e)

≤ C
∑
e∈∂E

|E|
|e|

(
h−1
E ‖v‖

2
L2(E)d + hE|v|2H1(E)d

)
(Lemma 4)

≤ C
∑
e∈∂E

(
‖v‖2

L2(E)d + h2
E|v|2H1(E)d

)
≤ C2‖v‖2

(H1(E))d . (2.19)

Therefore,

‖vh‖Xh
≤ C2‖v‖(H1(Ω))d . (2.20)

From Lemma 3 we have that

‖v‖(H1(Ω))d ≤ C1‖q‖L2(Ω)

= C1‖qh‖L2(Ω)

= C1‖qh‖Qh
. (2.21)

Therefore,

‖vh‖Xh
≤ C‖qh‖Qh

. (2.22)
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2.3 Velocity Convergence

In this section we establish a first-order a-priori error estimate for the

velocity variable. We will use the following lemma from [12].

Lemma 5. For φ ∈ H2(E), there exists a linear function φ1
E such that

‖φ− φ1
E‖L2(E) ≤ Ch2

E|φ|H2(E), (2.23)

‖φ− φ1
E‖H1(E) ≤ ChE|φ|H2(E). (2.24)

Combining Lemma 5 and Lemma 4, we get the following lemma.

Lemma 6. For φ ∈ H2, there exists a linear function φ1
E such that

‖φ− φ1
E‖2

L2(e) ≤ Ch3
E|φ|2H2(E). (2.25)

Lemma 7. If v ∈ (H1(E))d, then, for any face e,

‖v · n‖2
H1/2(e) ≤ c

(
h−1
E ‖v‖

2
(L2(E))d + hE|v|2(H1(E))d

)
. (2.26)

Lemma 7 was proven in [38]. The main result of this section is the

following theorem bounding the velocity error for the proposed form.

Theorem 2 (Velocity Estimate). For the exact solution (p, v) of (2.1) and

MFD approximation (ph, vh) solving (2.11-2.12) , there exists a C, independent

of h, such that

‖vI − vh‖Xh
≤ Ch(|p|H2(Ω) + |p|H1(Ω) + |v|(H1(Ω))d). (2.27)
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Proof. Set v = vI − vh. Note that

DIV v = DIV (vI − vh) = f I − f I = 0.

Thus,

‖vI − vh‖2
Xh

= [vI − vh,v]Xh

= [vI ,v]Xh
− [ph,DIV v]Qh

= [vI ,v]Xh
. (2.28)

By adding and subtracting (K∇p1)I ,

[vI ,v]Xh
= [vI + (K∇p1)I ,v]Xh︸ ︷︷ ︸

I1

−[(K∇p1)I ,v]Xh︸ ︷︷ ︸
I2

. (2.29)

We now bound I1 and I2. Starting with I1,

|I1| ≤ C‖(v + K∇p1)I‖Xh
‖v‖Xh

≤ C

(∑
E∈Ω

∑
e∈∂E

(
((v + KE∇p1)I)eE

)2 |E|

)1/2

‖v‖Xh
(using (2.6))

= C

(∑
E∈Ω

∑
e∈∂E

(
1

|e|

∫
e

(v + KE∇p1) · neE dS

)2

|E|

)1/2

‖v‖Xh
(using (2.5))

≤ C

(∑
E∈Ω

∑
e∈∂E

(
1

|e|
‖(v + KE∇p1) · neE‖2

L2(e)|E|
)1/2

)
‖v‖Xh

(using Hölder)

≤ C

(∑
E∈Ω

∑
e∈∂E

(
‖(v + KE∇p1) · neE‖2

H1/2(e))hE

)1/2
)
‖v‖Xh

≤ C

(∑
E∈Ω

(
h−1
E ‖(v + KE∇p1‖2

(L2(E))d + hE|v|2(H1(E))d

)
hE

)1/2

‖v‖Xh

(using Lemma (7)). (2.30)
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Taking the first term, we add and subtract both K∇p and K∇p1
E. By doing

so, we are left with

||v + KE∇p1
E||(L2(E))d ≤ ||K∇(p− p1

E)||(L2(E))d + ||(K −KE)∇p1
E||(L2(E))d

≤ C
(
hE|p|H2(E) + hE||∇p1

E||(L2(E))d

)
(using Lemma(5))

≤ C
(
hE|p|H2(E) + hE|p1

E|H1(E)

)
.

For the last inequality, we use

||∇p1
E||(L2(E))d ≤ ||∇p||(L2(E))d + ||∇(p− p1

E)||(L2(E))d ≤ C|p|H1(E).

The final bound on I1 is,

|I1| ≤ Ch
(
|p|H2(Ω) + |p|H1(Ω) + |v|(H1(Ω))d

)
‖v‖Xh

.

Given that DIV v = 0 and condition (S̃2), the expression for I2 becomes

I2 = −
∑
E∈Ω

∑
e∈∂E

veE

∫
e

wep
1
E dS. (2.31)

Due to the continuity of p, we can subtract it from each element face in the

summation above, giving us,

|I2| =

∣∣∣∣∣∑
E∈Ω

∑
e∈∂E

veE

∫
e

we(p
1
E − p) dS

∣∣∣∣∣
≤
∑
E∈Ω

∑
e∈∂E

|e|1/2|wmaxe | |veE| ‖p1
E − p‖L2(e)

≤ C
∑
E∈Ω

(
|E|

∑
e∈∂E

|veE|2
)1/2

hE|p|H2(E)

≤ Ch|p|H2(Ω)‖v‖Xh
. (2.32)

Combining the bounds on I1 and I2 gives us our desired estimate.
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2.4 Pressure Convergence

We start by defining a weighted projection operator, Iw,

(p)Iw =
1

|E|

∫
E

wEp dV (2.33)

We proceed by establishing pressure convergence for a weighted version of the

norm. We later establish a bound on the unweighted norm.

Theorem 3. Let (p, v) be the exact solution to (2.1), and let (ph, vh) be the

MFD approximation. Assuming p ∈ H2(Ω) and v ∈ (H1(Ω))d, there exists a

constant C, independent of h, such that,

‖pIw − ph‖Qh
≤ Ch(|p|H2(Ω) + |v|(H1(Ω))d). (2.34)

Proof. From Theorem (1) we know that

‖pIw − ph‖Qh
≤ 1

β
sup

v∈Xh,v 6=0

[DIV v, pIw − ph]Qh

‖v‖div

.

Adding and subtracting (wEp
1)IE, we get

[DIV v, pIw − ph]Qh
= [DIV v, (p− p1)Iw ]Qh

− [DIV v, ph]Qh
+ [DIV v, (p1)Iw ]Qh

.
(2.35)

Using for the second term Equation (2.11) and condition (S̃2) for the third

term, we have

[DIV v, pI − ph]Qh
= [DIV v, (p− p1)Iw ]Qh︸ ︷︷ ︸

I3

− [vh,v]Xh︸ ︷︷ ︸
I4

+
∑
E

∑
e

veE

∫
e

wep
1
E dS︸ ︷︷ ︸

I5

−
∑
E

[(KE∇p1
E)I ,v]E︸ ︷︷ ︸

I6

.
(2.36)
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We can bound I3 by

[DIV v, (p− p1)Iw ]Qh
≤ ‖(p− p1)Iw‖Qh

‖DIV v‖Qh
(2.37)

≤ |wmax
E |‖(p− p1)I‖Qh

‖DIV v‖Qh
. (2.38)

Then, using Lemma 5, we have

|I3| ≤ |wmax
E |Ch2‖v‖div|p|H2(Ω). (2.39)

Expression I5 is identical to I2 in (2.31), giving us

|I5| ≤ Ch‖v‖div|p|H2(Ω). (2.40)

Taking I4 and I6, and adding and subtracting uI , we have

I4 + I6 = [(K∇p1)I + vI ,v]Xh
− [vI − vh,v]Xh

, (2.41)

= Ĩ4 + Ĩ6. (2.42)

Expression Ĩ4 is identical to I1 in (2.29), giving the bound

|Ĩ4| ≤ Ch(|p|H2 + |v|(H1(Ω))d)‖v‖Xh
. (2.43)

Expression Ĩ6 is bounded by the velocity estimate in Theorem 2,

|Ĩ6| ≤ ‖vI − vh‖Xh
‖v‖Xh

≤ Ch(|p|H2 + |v|(H1(Ω))d)‖v‖Xh
. (2.44)

Combining the bounds on I3 - I6 gives the desired result.
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We can now bound the original projection operator (2.4), using the

pressure estimate in Theorem 3, giving us,

‖pIw − ph‖2
Qh

=
∑
E

(
1

|E|

∫
E

wE(p− ph) dV

)2

≥ wmin
E

∑
E

(
1

|E|

∫
E

(p− ph) dV

)2

. (2.45)

Therefore,

‖pI − ph‖2
Qh
≤ 1

wmin
E

‖pIw − ph‖2
Qh
. (2.46)

2.5 Weighting Functions

The generalization presented requires the existence of weighting func-

tions wE and we. Since we have placed no restrictions on the positivity of we,

an affine function will suffice. The authors of [24] presented a proof of the

existence of such functions.

Since function wE must be strictly positive, an affine function may not

suffice. To see why this is the case, consider the following example. Let cell

E be a line segment of length 1, that is, E = [0, 1]. Set the shifted point

xE = .75. We seek the function wE = ax+ b such that∫ 1

0

wE dV = |E| = 1. (2.47)∫ 1

0

gwE dV = |E|(.75) = .75 (2.48)

To find wE, construct a linear system of equations with a and b as unknowns.

A simple calculation shows that wE = 3x − 1
2

is the only affine choice. This
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function does not satisfy the condition of strict positivity. We can still con-

struct a function wE that satisfies the conditions if we consider non-affine

functions. By inspection, we find that

wE = 3.6x2 − .6x+ .1

satisfies Equations (2.47-2.48) and is strictly positive over [0, 1]. There are an

infinite number of functions that would satisfy the criteria in this example. In

the next lemma we will establish the existence of such functions for polyhedra

in any dimension.

Lemma 2.5.1. Given polyhedron E and a point xE strictly on the interior of

E, there exists a bounded function wE that is strictly positive over E such that∫
E

wE dV = |E|,∫
E

gwE dV = |E|xE.

Proof. Let C be the centroid of E, d(C, xE) the distance between C and xE,

and r be the minimum distance between xE and the nearest boundary. Define

point A on the line joining C and xE, with a distance of r/2 from xE, so xE

is between A and C. Define Br/2(A), the ball of radius r/2 centered at A

(Fig. 2.5). Define the function wE as,

wE :=
d(C,A)− d(C, xE)

d(C,A)
+

|E|
|Br/2(A)|

d(C, xE)

d(C,A)
1Br/2(A).
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The choice of wE satisfies Equation 2.47,∫
E

wE =

∫
E

d(C,A)− d(C, xE)

d(C,A)
dV +

∫
E

|E|
|Br/2(A)|

d(C, xE)

d(C,A)
1B1/2(A) dV

= |E|d(C,A)− d(C, xE)

d(C,A)
+ |E|d(C, xE)

d(C,A)

= |E|.

In addition, wE satisfies Equation 2.48,∫
E

gwE dV =

∫
E

g

(
d(C,A)− d(C, xE)

d(C,A)

)
dV +

∫
Br/2(A)

x

(
|E|

|Br/2(A)|
d(C, xE)

d(C,A)

)
dV

= C|E|
(
d(C,A)− d(C, xE)

d(C,A)

)
+ |E|Ad(C, xE)

d(C,A)
.

Without loss of generality, we can place C at the origin. Note that Ad(C,xE)
d(C,A)

is

a point of distance d(C, xE) from C on the line joining C and A, which must

be xE. Therefore, ∫
E

gwE dV = |E|xE.

2.6 Constructing the Linear System

We have explicitly defined the DIV operator, as well as the pressure

inner product [·, ·]Qh
. What remains is to define the velocity inner product

[·, ·]Xh
. Recall that this inner product is defined relative to “local” inner prod-

ucts,

[vh, wh]Xh
=
∑
E∈Th

[vh, wh]E. (2.49)
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Figure 2.1: The points needed in the construction of weighting function wE.
The weighting function is the sum of two piece-wise constants: one is defined
over the entire cell, and the other is defined over the ball centered at A. The
result is a shifting of the center of gravity from C to A.

The discretization yields a convergent solution if the inner product satisfies

the stability (S1) and consistency (S̃2) conditions. The second condition is

the main focus of constructing the appropriate inner product. It is helpful to

take a detailed look at constructing a velocity inner product that satisfies this

condition in two dimensions. A linear function q1 can be expressed as

q1 = a1x+ a2y + a3. (2.50)

We want the following to be exact for all q1 and all vh ∈ Xh,

[(KE∇q1)I , vh]E =
∑
e∈∂E

veE

∫
e

weq
1 dS −

∫
E

wEq
1(DIV vh)E dV. (2.51)

Therefore,

[(KE∇(a1x+ a2y + a3))I , vh]E =
∑
e∈∂E

veE

∫
e

we(a1x+ a2y + a3) dS−∫
E

wE(a1x+ a2y + a3)(DIV vh)E dV.
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The constant term does not contribute as ∇a3 = 0 and∫
E

wEa3(DIV vh)E dV = a3|E|(DIV vh)E

= a3

∑
e∈∂E

veE|e|

=
∑
e∈∂E

veE

∫
e

wea3 dS.

Leaving us with

[(KE∇(a1x+ a2y))I , vh]E =
∑
e∈∂E

veE

∫
e

we(a1x+ a2y) dS

−
∫
E

wE(a1x+ a2y)(DIV vh)E dV.

By linearity of the gradient and integration operators, we note that the equality

will hold if it holds for x and y separately,

[(KE∇x)I , vh]E =
∑
e∈∂E

veE

∫
e

wex dS −
∫
E

wEx(DIV vh)E dV, (2.52)

[(KE∇y)I , vh]E =
∑
e∈∂E

veE

∫
e

wey dS −
∫
E

wEy(DIV vh)E dV. (2.53)

Recall from the definitions of wE and we that
∫
E
gwE dS = |E|xE, and

∫
e
gwe dS =

|e|xe, leaving

[(KE∇x)I , vh]E =
∑
e∈∂E

|e|veExxe − |E|(DIV vh)ExxE,

[(KE∇y)I , vh]E =
∑
e∈∂E

|e|veExye − |E|(DIV vh)Ex
y
E.

Let us now examine the left side of the condition (S̃2). First, we partition KE

by columns,

KE = [k1k2]. (2.54)
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Expanding the rest of the expression, we have

[(KE∇x)I , vh]E = [(k1 · ne1 , ..., k1 · nekE
), (ve1E , ..., v

ekE
E )]E

= (ve1E , ..., v
ekE
E )ME(k1 · ne1 , ..., k1 · nekE

)T . (2.55)

Similarly for y,

[(KE∇y)I , vh]E = (ve1E , ..., v
ekE
E )ME(k2 · ne1 , ..., k2 · nekE

)T .

Taking this equality to hold for each component in vh and setting

RE =

 |e1|(xe1 − xE)
...

|ekE
|(xekE

− xE)

 , (2.56)

and

NE =

 KE ne1
...

KE nekE

 , (2.57)

condition (S̃2) becomes

MENE = RE. (2.58)

Note that by setting wE = 1 and we = 1 we retrieve the original standard

definition of MFD, in which case, xE corresponds to the centroid of element

E, and xe would correspond to the centroid of face e. Also note that we do

not require explicit construction of the weighting functions in order to build

the linear system.
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The authors of [16] demonstrated how to construct ME to satisfy (2.58).

This is done by first defining CE ∈ RkE×kE−d such that

NT
ECE = 0.

In [16], they noted without weights,

NT
ERE = |E|KE (2.59)

so they defined M0 as

M0 =
1

|E|
REK−1

E RT
E. (2.60)

The result is that, for any positive-definite UE ∈ R(KE−d)×(KE−d),

ME = M0 + CEUEC
T
E . (2.61)

Due to the modification (S̃2) of condition (S2), equality (2.59) no longer holds.

However, we can still proceed by following the same form proposed by [35]

M0 = RE(RT
ENE)−1RT

E. (2.62)

Doing so, we see that (2.61) gives (2.58), since

M0NE = RE(RT
ENE)−1RT

ENE = RE. (2.63)

Note that RT
ENE automatically reduces to |E|K−1

E in the case when no bound-

ary points are shifted. In general, RT
ENE may not always be invertible. An
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Figure 2.2: Example of a cell with boundary points shifted to the top right
and bottom left corners. In this example, matrix RT

ENE is singular.

example can be seen in (Fig. 2.2), in which the points on the faces have been

shifted to the corners of a square cell. In this case, we have

RE =


2 2
2 2
−2 −2
−2 −2

 and NE =


1 0
0 1
−1 0

0 −1

 .

The resulting matrix is

RT
ENE =

(
4 4
4 4

)
,

which is singular.
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Chapter 3

MFD and Two-Point Fluxes

In this chapter, we take a closer look at finite volume methods and two-

point fluxes (TPFA). We establish the general conditions for equating an MFD

method to the two-point flux scheme. The generalized MFD definition in the

previous chapter is leveraged to connections to TPFA and MFD in the case

of general K-orthogonal meshes. These include general Voronoi diagrams and

2.5 dimensional Voronoi diagrams. In addition, we demonstrate the connection

between the new form and point-centered schemes.

3.1 Finite Volume Methods (FVM) and MFD

Finite volume methods (FVM) are based on an application of the di-

vergence theorem to each element E in the domain,∫
E

∇ · v dV =
1

|E|
∑
e∈∂E

|e|veE · neE. (3.1)

Finite volume discretizations are distinguished by the manner in which the

flux (veE) is calculated. In the case of porous media applications, the flux of

the fluid in the subsurface is a function of the fluid pressure. Each element in

the domain is given a single, piece-wise constant pressure degree of freedom

(pE), and each face in the mesh is given a single flux representing the normal

30



component of the velocity across that face (veE). The flux is then related to

the pressure via a function

veE = F (ph). (3.2)

The choice of function F is what distinguishes a particular FV method. When

the velocity at face e is approximated using two adjacent pressures, we have

a two-point flux approximation (TPFA). When more than two pressures are

used, the method is referred to as a multi-point flux approximation (MPFA).

The MFD method, much like the related MFE method, produces a

saddle-point problem with both velocity and pressure unknowns:(
M −DIV∗
DIV 0

)(
vh
ph

)
=

(
0
f I

)
. (3.3)

One can observe the relation between FVM and MFD by explicitly forming

the velocity unknown as a function of pressure via the Schur compliment of

the saddle-point problem,

vh = −M−1DIV∗ ph = FMFD(ph). (3.4)

The nature of the relation between ph and vh is a direct consequence of the

structure of M−1. In general, the matrix M−1 is dense, causing the velocity

at every face to be a function of all the pressure degrees of freedom. However,

constructing a diagonal matrix M leads trivially to a diagonal M−1. In this

case, due to the structure of matrix DIV∗ , velocities are a linear function of

two pressures, resulting in a TPFA scheme. Thus our objective in this work

will be to generate diagonal matrices M .
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Figure 3.1: The vectors r are constructed by connecting xE with the
appropriate point xe. These vectors make up the rows of matrix RE,
(|e1|rT1 ...|e4|rT4 ). The rows of matrix NE are the normal vectors multiplied
by KE, ((KEn1)T ...(KEn4)T ). The original MFD sets the point xE to the
centroid of the cells and the points xe to the the centroids of the faces. Our
generalization allows the point xE to be shifted on the interior of the cell, and
the points xe to be shifted on the plane of the faces. By shifting these points,
we can establish collinearity vectors r and n, resulting in a diagonal matrix
ME.

32



Fortunately, there is a simple geometric criterion that indicates when

diagonality can be achieved in MFD. Recall that matrix M is a global matrix

formed from the summation of local matrices, ME,

M =
∑
E

ME. (3.5)

Due to the consistency condition (S̃2), ME must satisfy the relation

MENE = RE. (3.6)

Recall that RE is a kE × d matrix with each row corresponding to the vectors

|e|(xe − xE) (2.56). From (2.57), the rows of matrix NE correspond to the

K-normal components to face e [Fig 3.1]. When the rows of NE are collinear

to the rows of RE, a simple scaling of the rows of NE satisfies (3.6), i.e., a

diagonal matrix ME suffices. Therefore, our objective is to construct matrices

RE with rows collinear to the rows of NE.

3.1.1 Previous Work

In the original definition of MFD, a diagonal matrix ME can be de-

fined immediately for rectangular meshes and for special cases such as regular

polygonal meshes. In order to achieve collinearity of the rows of RE and the

normals of the faces to more elements, it is necessary to detach the definition

of RE from the centroids of the element and faces. This “point-shifting” pro-

cedure is accomplished by modifying the consistency condition (S2), and such

modifications have been suggested in the literature. Recall that the original
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condition (S2) states that for all linear functions q1 and vh ∈ Xh, the local

inner-product [·, ·]E must satisfy

[(KE∇q1)I , vh]E =
∑
e∈∂E

veE

∫
e

q1 dS −
∫
E

q1(DIV vh)E dV. (3.7)

The first example of a modified condition was provided by Droniou et al. [24].

They suggested weighting the volume integral by a linear function wE:

[(KE∇q1)I , vh]E =
∑
e∈∂E

veE

∫
e

q1 dS −
∫
E

wEq
1(DIV vh)E dV. (3.8)

The function wE has the properties
∫
E
wE dV = |E| and

∫
E
gwE dV = |E|xE.

The modification results in a shifting of the point used on the interior of

the element from the centroid to a new point xE. This modification allowed

Droniou et al. to reduce MFD to TPFA for the case of acute triangular meshes

in two dimensions. This works by setting point xE to the intersection of the

orthogonal bisectors of the triangle.

In the work by Lipnikov et al. [38], the authors suggest another mod-

ification of condition (S2). For a subset ē ⊂ e, and all linear functions q1,

let

[(KE∇q1)I , vh]E =
∑
e∈∂E

veE|ē|
∫
ē

q1 dS −
∫
E

q1(DIV vh)E dV. (3.9)

This modification allows the point on the boundary to be shifted to the centroid

of ē. The Lipnikov et al. form of (S2) extended MFD to TPFA for the case of

centroidal Voronoi diagrams.
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3.1.2 General Voronoi Diagrams

A Voronoi diagram is a tessellation of Rd relative to a set of points

known as “generators.”

Definition 1. Voronoi Diagram. Given a set of generating points,

V = {Vi ∈ Rd},

we define the Voronoi tessellation Tv = {Ei} as

Ei = {x ∈ Rd |d(x, Vi) ≤ d(x, Vj) ∀i 6= j}. (3.10)

The set of generating points uniquely defines a Voronoi diagram. Note

that, in this definition, the domain is infinite. For our purposes we will focus on

what is known as a bounded Voronoi diagram, which is defined over a bounded

domain Ω as follows.

Definition 2. Bounded Voronoi Diagram. Given a domain Ω ⊂ Rd, and a set

of generating points V = {Vi ∈ Rd |Vi ∈ Ω}, we define the bounded Voronoi

tessellation Tv = {Ei} of Ω by

Ei = {x ∈ Ω |d(x, Vi) ≤ d(x, Vj) ∀i 6= j}. (3.11)

Since we are only concerned with bounded domains, we refer to a

bounded Voronoi diagram simply as a Voronoi diagram. Each cell Ei is called a

Voronoi polygon/polyhedron. It is often noted that Voronoi diagrams are the
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geometric dual of Delaunay triangulations. This relationship requires the in-

clusion of degenerate faces (|e| = 0) in the Voronoi diagram. For our purposes

we exclude these degenerate faces from the tessellation.

We say that two Voronoi cells (and their generating points) are adjacent

if they share a non-trivial Voronoi face. It is a direct consequence of the

definition of Voronoi diagrams that the line joining two adjacent generating

points is always perpendicular to the common face between them. For two

adjacent cells, Vi and Vj, with associated face e, we refer to the midpoint

between them as be.

Bounded diagrams introduce certain challenges because fundamental

properties of the Voronoi diagram are broken at the boundary. For example,

a non-convex boundary could lead to non-convex cells. An extreme case can

be considered by selecting a single generating point in an arbitrarily shaped

domain. In order to simplify the problem, we only consider convex boundaries.

In addition, we require that the orthogonality of the diagram is maintained at

the domain boundary.

Lemma 3.1.1. For a Voronoi polyhedron with isotropic, piece-wise constant

permeability (KE = κEI), by setting xE = VE and xe = be, a diagonal ME can

be constructed that satisfies both conditions (S1) and (S̃2).

Proof. Since the line joining two adjacent generating points is orthogonal to

the Voronoi face between them, the vectors re are collinear to ne. That is,

re =
|e|‖re‖
κE

ne.
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Therefore, a diagonal matrix ME with choice of entries (ME)ii =
|ei|‖rei‖
κE

sat-

isfies condition (S̃2).

Note that the point be may fall outside of the boundary faces, see

[Fig. 3.2]. This, however, presents no problems for our definition, as we allow

the weighting function we to shift the boundary point xe outside of the face.

In porous media applications, it is common to use the so-called 2.5-

dimensional Voronoi mesh. These diagrams are constructed by forming a two-

dimensional Voronoi diagram. Cells are then vertically extruded into three-

dimensional prisms. A 2.5-dimensional Voronoi mesh allows for slightly greater

flexibility in permeability tensor when establishing TPFA.

Lemma 3.1.2. Given a mesh that is a Voronoi diagram in the x-y direction

and orthogonally extruded in the z direction, let

KE =

 κx 0 0
0 κy 0
0 0 κz

 ,

with κx = κy. A diagonal ME that satisfies (S1) and (S̃2) exists.

Proof. In this case, a diagonal ME can be constructed by setting

(ME)ii =
|ei|‖rei

‖
κx

for faces e facing in the x-y direction, and

(ME)ii =
|ei|‖rei

‖
κz

for faces on the z-plane.
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Figure 3.2: A two-dimensional Voronoi diagram (solid line) and its geometric
dual, the Delaunay triangulation (dashed line). The dashed lines are always
orthogonal to the corresponding solid line. The red circle indicates how the
intersection of the two lines may occur outside of the face boundaries.

3.2 Cell-Centered Schemes

In the cell-centered finite difference scheme, the computational domain

is first divided into rectangles. These rectangles constitute the “control vol-

umes” of the method. For each rectangle, the center of mass is used as the

“center” of the cell. It is from this center that a distance to neighboring cells

is computed. Following the notation used in [17], the rectangles are spec-

ified by a series of points in x ( x−1+1/2, x0+1/2, x1+1/2, ..., xi+1/2 ) and in y

(y−1+1/2, y0+1/2, y1+1/2, ..., yj+1/2). The cell centers of mass are denoted by the

sequences (x0, x1, ..., xi) and (y0, y1, ..., yj). The distance between two adjacent

38



cells is denoted by

hx,i−1/2 = xi − xi−1, (3.12)

hy,j−1/2 = yi − yi−1. (3.13)

(3.14)

Cell widths and heights are computed by

hx,i = xi+1/2 − xi−1/2, (3.15)

hy,j = yi+1/2 − yi−1/2. (3.16)

For cells in the interior of the domain, we have the following stencil [17]:

−
(
pi+1,j − pi,j
hx,i+1/2

+
pi−1,j − pi,j
hx,i−1/2

)
1

hx,i
−
(
pi,j+1 − pi,j
hy,i+1/2

+
pi,j−1 − pi,j
hy,i−1/2

)
1

hy,j
= fij.

(3.17)

We can relate this stencil (3.17) directly to MFD. In the case of rect-

angles, notice that the arrays RE and NE (see (2.56), (2.57)) become

RE =


hy,j(xi+1/2 − xi) 0

0 hx,i(yj+1/2 − yj)
hy,j(xi−1/2 − xi) 0

0 hx,i(yj−1/2 − yj)

 , (3.18)

NE =


1 0
0 1
−1 0
0 −1

 . (3.19)

Recall that, in order to satisfy condition (S̃2), we must construct a matrix ME

such that

MERE = NE. (3.20)
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We can construct a diagonal matrix to satisfy this condition, as follows:

ME =


hy,j(xi+1/2 − xi) 0 0 0

0 hx,i(yj+1/2 − yj) 0 0
0 0 hy,j(xi−1/2 − xi) 0
0 0 0 hx,i(yj−1/2 − yj)

 .

(3.21)

This is the expression for the local matrix. In order to assemble the global

matrix, we must add the local contributions. For cell faces on the interior of

the domain we have the following diagonal entries for M :

Mei+1/2,j
= hy,j(xi+1 − xi),

Mei−1/2,j
= hy,j(xi − xi−1),

Mei,j+1/2
= hx,i(yi+1 − yi),

Mei,j−1/2
= hx,i(yi − yi−1). (3.22)

With the inverse of M being given by the reciprocal of the diagonal entries,

taking M−1(DIV∗ ),

M−1
ei+1/2,j

DIV∗ ei+1/2,j
= (0, ...,

hy,j
hy,j(xi+1 − xi)

, ...,
−hy,j

hx,j(xi+1 − xi)
, ...0),

M−1
ei−1/2,j

DIV∗ ei−1/2,j
= (0, ...,

hy,j
hy,j(xi − xi−1)

, ...,
−hy,j

hy,j(xi − xi−1)
, ...0),

M−1
ei,j+1/2

DIV∗ ei,j+1/2
= (0, ...,

hx,i
hx,i(yi+1 − yi)

, ...,
−hx,i

hx,j(yi+1 − yi)
, ...0),

M−1
ei,j−1/2

DIV∗ ei,j−1/2
= (0, ...,

hx,i
hx,i(yi − yi−1)

, ...,
−hx,i

hx,j(yi − yi−1)
, ...0), (3.23)
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leaving

M−1
ei+1/2,j

DIV∗ ei+1/2,j
= (0, ...,

1

(xi+1 − xi)
, ...,

−1

(xi+1 − xi)
, ..., 0),

M−1
ei−1/2,j

DIV∗ ei−1/2,j
= (0, ...,

1

(xi − xi−1)
, ...,

−1

(xi − xi−1)
, ..., 0),

M−1
ei,j+1/2

DIV∗ ei,j+1/2
= (0, ...,

1

(yi+1 − yi)
, ...,

−1

(yi+1 − yi)
, ..., 0),

M−1
ei,j−1/2

DIV∗ ei,j−1/2
= (0, ...,

1

(yi − yi−1)
, ...,

−1

(yi − yi−1)
, ..., 0). (3.24)

The result is a two-point expression for the flux function. Given pressures ph,

we determine that

vh = M−1DIV∗ ph. (3.25)

We reconstruct our full pressure stencil by taking DIVM−1DIV∗ . The coef-

ficients for pij (the diagonal entries) are

− hx,i
(xi+1 − xi)

− hx,i
(xi+1 − xi)

− hy,j
(yi+1 − yi)

− hy,j
(yi+1 − yi)

, (3.26)

or

− hx,i
h1,i+1/2

− hx,i
hx,i−1/2

− hy,j
h2,j+1/2

− hy,j
hy,i−1/2

. (3.27)

Note that by factoring out the cell volume (hx,ihy,j) we are left with[
− 1

hx,i+1/2

− 1

hx,i−1/2

]
1

hy,j
+

[
− 1

hy,j+1/2

− 1

hy,i−1/2

]
1

hx,i
.

For the off-diagonal entries, DIV DIV∗ are only non-zero at shared faces. The

resulting values are as follows:

pi+1,j →
1

hx,i+1/2hy,j
,
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pi−1,j →
1

hx,i−1/2hy,j
,

pi,j+1 →
1

hy,j+1/2hx,i
,

pi,j−1 →
1

hy,j−1/2hx,i
.

These are the same coefficients produced by the cell-centered method. Notice

that the formulation did not require invoking the generalization of MFD. The

original method introduced in [15] naturally results in the cell-centered scheme

over rectangular grids. This is consistent with the notion that the mixed

method with RT0 basis functions is a special case of MFD.

3.3 Point-Centered Schemes

In the cell-centered scheme, we noticed that the cells are chosen first,

and then a selected interior point is used as the “center.” The selected point

is the centroid of the cell. In point-centered schemes the opposite is done.

First points in the domain are selected, and then, from these points, cell

boundaries are placed half the distance between adjacent points. We again

use the notation of [17] and denote the points in x as ( x1, x2, ..., xi) and the
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points in y as ( y1, y2, ..., yi). We have,

xi−1/2 =
1

2
(xi−1 + xi), (3.28)

yi−1/2 =
1

2
(yi−1 + yi), (3.29)

hx,i =
1

2
(xi+1 − xi−1), (3.30)

hy,i =
1

2
(yi+1 − yi−1). (3.31)

This gives us the same stencil as before, only with new values for h:

−
(
pi+1,j − pi,j
hx,i+1/2

+
pi−1,j − pi,j
hx,i−1/2

)
1

hx,i
−
(
pi,j+1 − pi,j
hy,i+1/2

+
pi,j−1 − pi,j
hy,i−1/2

)
1

hy,j
= fij.

(3.32)

We cannot recreate this stencil using the original MFD formulation

because MFD automatically orients the matrices around the centroids of the

cells and the cell faces. The proposed generalization allows us to shift these

points, thus establishing the connection between MFD and the point-centered

method.

We define a point xE on the interior:

xE = (xi, yj).

For points on the faces we set

xei+1/2,j+1/2
= (xi+1/2, yj+1/2),

xei−1/2,j+1/2
= (xi−1/2, yj+1/2),

xei+1/2,j−1/2
= (xi+1/2, yj−1/2),

xei−1/2,j−1/2
= (xi−1/2, yj−1/2).
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This choice retrieves the expression for matrix RE (3.18), and all the sub-

sequent calculations for constructing the final stencil follow suit. Therefore,

the resulting matrix corresponds to the one produced in the point-centered

schemes.
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Chapter 4

Fracture Modeling

Fractures are thin cracks in the subsurface that can exist both natu-

rally in rock formations and as the result of human activity (e.g., hydraulic

fracturing). The presence of fractures can have a large impact on subsurface

flows, as fractures exhibit higher conductivity rates than rock matrix. Such

contrasts present challenges when numerically simulating fractures in reservoir

problems. Higher fluid velocities inside fractures, when compared to the reser-

voir, result in an substantial difference in time scales. In addition, linear Darcy

flow may not be sufficient to properly capture flow in the fracture. Though

fractures are often modeled as simple planar surfaces, they are in fact far more

complex. Fractures may curve, branch and even intersect with each other.

In this chapter we present a general methodology based on MFD for

coupling fracture and reservoir flow that is capable of handling multiple phys-

ical models. This is accomplished separately representing fracture and reser-

voir models. The two problems are then coupled using appropriate boundary

conditions and forcing functions. We present results for fractures with non-

planar geometries and show how fracture curvature can impact leakage. We

also present results connecting the MFD implementation with existing reser-
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voir simulation code (IPARS) using the multi-point flux Mixed Finite Element

method (MFMFE).

4.1 Previous Work

There currently exists an enormous body of literature devoted to solv-

ing reservoir flow problems with fractures. Some commonly used approaches to

model naturally fractured reservoirs are the dual-porosity and dual-porosity/dual-

permeability methods. In these approaches, fractures are modeled as a con-

tinua that occupy the same space as the reservoir. Matrix-fracture and fracture-

fracture interactions are quantified through transfer terms [58], [34].

A number of methods have been suggested to model fractures explicitly

at the interfaces of adjacent cells. The main advantage of such methods is to

preserve the orientation of fractures in the domain. One such technique is

described in [3], where they rely on non-overlapping domain decomposition

to couple the fracture and reservoir problems. Another approach for explicit

modeling of fractures at interfaces is described in [29]. The authors are able to

handle cases with heterogeneous capillary pressures across fracture boundaries.

A hybridized, mixed finite element method is used with lowest-order Raviart-

Thomas elements for flow and a higher-order discontinuous Galerkin method

for the saturation equation.
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4.2 Problem Formulation

We start with an overview of the basic framework that will be used

throughout this paper. We outline the main characteristics of the reservoir

and fracture models and the information exchanged between them.

4.2.1 Basic Framework

The reservoir and the fracture are modeled in two separate domains.

The reservoir model is set in Ωr ⊂ Rd (d = 2 or 3) . In addition to the regular

external boundaries Γr, we impose internal boundaries Γf , representing the

surface of the fracture. We denote the “top” and “bottom” sides of the fracture

boundary by Γf+ and Γf− [Fig. 4.1a].

We set the fracture model in the domain Ωf ⊂ Rd, as shown in [Fig. 4.1b].

Although the fracture domain is a (d-1)-dimensional surface in the reservoir,

the fracture model itself is in a (d)-dimensional domain. The alternative would

be to solve the fracture problem over a nonplanar (d-1)-dimensional manifold,

which would require the use of specialized differential operators defined over

such domains. While there are some benefits to such an approach, a (d)-

dimensional problem is simpler to conceptualize and implement. In addition,

it allows for refinement in the direction normal to the fracture surface.

We denote the flow model in the reservoir domain as Fres, and the flow

model in the fracture domain as Ffrac. The fracture model Ffrac specifies the

appropriate boundary condition on Γf{+,−} to Fres. In turn, Fres calculates the

jump in flux over the fracture surface, which serves as a leakage term for Ffrac.
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We identify three key components which must be chosen to define a particular

system:

1. The flow models Fres and Ffrac;

2. The methods used to discretize Fres and Ffrac;

3. The solution approach to the resulting system.

Regarding the flow models Fres and Ffrac, there are many possible

choices. In this work we focus on two. The first model considers single-phase

slightly compressible flow with Darcy law for fracture flow. Using Darcy law

for flow in the fracture incorporates the commonly used cubic law flow model.

The second one considers a two-phase slightly compressible flow model in both

the fracture and the reservoir. We will more fully define the flow models in

the following subsections.

Finally, we must choose a solution method. The two basic approaches

are the fully coupled and the iteratively coupled methods. In the fully coupled

approach, a single system of equations that satisfies both models, Fres and Ffrac,

is formed. Alternatively, the iteratively coupled approach solves for one model

first, then passes an updated solution to the second, and so on. While the

fully coupled approach can greatly simplify the problem, there are advantages

to using iterative coupling. First, it allows for interfacing with existing legacy

codes without modifying the internal Jacobian construction, and second, the

overall time-step size is not dictated by the fracture time step size.
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Figure 4.1: Define two separate domains with two separate models, one for
the flow in the reservoir and one for flow in the fracture.

4.2.2 Single-Phase Slightly Compressible Flow

We first consider a single-phase slightly compressible flow problem wherein

flow in the reservoir (Fres) is governed by the equations

φr
∂ρ

∂t
−∇ ·

(
ρ

µ
Kr∇pr

)
= Qr in Ωr,

pr = pf on Γf{+,−},

Kr∇pr · n = 0 on Γr.

(4.1)

Here, φr represents the porosity of the reservoir, ρ is the density of the fluid,

Kr is the permeability, µ is the viscosity of the fluid, pr represents pressure,

and Qr denotes the source term. We specify the initial conditions for the

problem at t = 0 by pr(x, 0) = pr,0. A no-flow boundary condition is imposed

for simplicity. For slightly compressible fluids, we can assume that density is
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an exponential function of pressure:

ρ(p) = ρref exp(1 + c(p− pref)), (4.2)

where ρref is the reference density at the reference pressure pref and c is the

fluid compressibility.

The fracture flow Ffrac is governed by

φf
∂ρ

∂t
−∇ ·

(
ρ

µ
Kf∇pf

)
= Qf −Q` in Ωf ,

Kf∇pf · n = 0 on Γf{+,−}. (4.3)

The source and fracture leakage terms are represented by Qf and Q`, respec-

tively. The fracture boundaries are of Neumann type and are set to a no-flow

condition. Since the fracture mesh is always a single cell in thickness, the the

choice of representing the leakage as a forcing term is mathematically equiv-

alent to using a Neumann boundary. However, from a computational point

of view, the use of a forcing term for leakage allows the reservoir model to

avoid adding extra degrees of freedom at the internal boundary. That is, the

reservoir model only needs to solve for the difference in fluxes rather than in-

dividual fluxes over the fracture. The fracture permeability is denoted by Kf .

The fracture porosity φf = 1. At t = 0 the initial condition is pf (x, 0) = pf,0.

For a cubic law fluid, permeability is computed as a function of the fracture

width w:

Kf =
w2

12
. (4.4)
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As previously discussed, the two models (4.1) and (4.3) are coupled using

boundary conditions and the leakage term. The leakage to the fracture and

from the fracture is then calculated using

Q` = [Kr∇pr · n]Γf := Kr∇pr · n+ + Kr∇pr · n−, (4.5)

where n+ and n− are opposite unit vectors normal to the fracture surface.

The pressure boundary condition for the reservoir model is set to the pressure

of the fracture, averaged in the normal direction. Combining equations (4.1),

(4.3), and (4.5) completes the description of the single-phase reservoir-fracture

flow model.

4.2.3 Two-Phase Slightly Compressible Flow

Following the same procedure, we formulate the immiscible two-phase

reservoir-fracture flow model. The equations for the reservoir model are

vrα = −ρα
µα
krαK

r∇prα, in Ωr,

∂φραS
r
α

∂t
= −∇ · vrα +Qr

α, in Ωr,

prc = pro − prw = 0,

srw + sro = 1,

prα = pfα, on Γf{+,−},

srα = sfα, on Γf{+,−}.

Kr∇urα · n = 0, on Γr

(4.6)
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Here, α denotes the phase (w or o), Sα is the saturation of the phase, krα is

the relative permeability, and pc is the capillary pressure. The problem starts

with initial conditions prα(x, 0) = pr,0α and srα(x, 0) = sr,0α . The pressure and

saturation at the fracture boundary are set to values averaged over the fracture

width.

The fracture model Ffrac is

vfα = −ρα
µα
krαK

f∇pfα, in Ωf ,

∂φραs
f
α

∂t
= −∇ · vfα +Qf

α −Q`
α, in Ωf ,

Kf∇ufα · n = 0, on Γf{+,−},

pfc = pfo − pfw = 0,

sfw + sfo = 1.

(4.7)

Similar to the single-phase problem, the two-phase system also includes a

leakage term Q`
α. The leakage for each phase is computed in the reservoir

problem as the jump in fluxes across Γf{+,−},

Q`
α = [vrα · n]Γf := vrα · n+ + vrα · n−. (4.8)

4.3 Discretization

We now turn to the problem of discretizing the equations stated in the

previous section. In this section, we describe the final forms of the discrete

problems. Further details can be found in Appendix B, and in [62]. We will

also discuss methods for solving the resulting systems of equations.
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4.3.1 Single-Phase Slightly Compressible Flow

Using the MFMFE method defined in [62], the discrete form of the

reservoir problem can be stated for given initial conditions pr,0h and vr,0h as

follows:

Find pr,n+1
h ∈ Wh, v

r,n+1
h ∈ Vh, such that(

µ

ρn+1
(Kr)−1vr,n+1

h , uh

)
−(pr,n+1

h ,∇ · uh) =

−
∫

Γf
{+,−}

pf,n+1
h uh · n, ∀uh ∈ Vh,(

φr
ρ(pr,n+1

h )− ρ(pr,nh )

∆t
, wh

)
+(∇ · vr,n+1

h , wh) =

(Qr,n+1, wh), ∀wh ∈ Wh.

(4.9)

The fracture model is discretized using the MFD method. The problem

statement in this case is as follows:

For given initial conditions, vf,0h and pf,0h , find vf,n+1
h ∈ Xh and pf,n+1

h ∈

Qh, such that

[vf,n+1
h , uh]Xh

−[pf,n+1
h ,DIV uh]Qh

= 0, ∀uh ∈ Xh,[
φf
ρ(pf,n+1

h )− ρ(pf,nh )

∆t
, qh

]
Qh

+[DIV vf,n+1
h , qh]Qh

=

[Qf,n+1 −Q`,n+1, qh]Qh
, ∀qh ∈ Qh.

(4.10)

There are two different ways to solve the equations in (4.9) and (4.10).

One approach is to construct a single linear system for reservoir and fracture

flow. This can be interpreted as applying the block Gauss-Seidel method to

the coupled system. The other method is to form two separate linear systems
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for fracture and reservoir flow, and then solve them by iterative coupling. The

code coupling was performed with Gurpreet Singh, Gergina Pencheva and

Tameem Al-Mani, and our results were published in [2].

4.3.2 Two-Phase Slightly Compressible Flow

For the two-phase flow problem, we use MFD for both the reservoir and

the fracture discretizations. A more elaborate description of discretizing two-

phase flow using MFD can be found in Appendix B. Applying the construction

shown in Appendix B to both the fracture and the reservoir problems gives us

two saddle-point systems for the pressure equations:(
M r −DIV∗ r
DIV r Cr

)
, (4.11)(

M f −DIV∗ f
DIV f Cf

)
. (4.12)

Formulation of the problem as a saddle-point system keeps the derivation in

a general form. Similar to MFMFE, we can perform a procedure to reduce

the system to a cell-centered method with only pressure unknowns, as shown

in [38]. We combine the equations (4.11) and (4.12), giving
M r −DIV∗ r 0 L
DIV r Cr 0 0

0 0 M f −DIV∗ f
−LT 0 DIV f Cf

 . (4.13)

Solving the above system results in a set of pressures and velocities for both

the reservoir and the fracture problems, (vrt , p
r
o) and (vft , p

f
o). We impose no-

flow boundary conditions in the fracture model, as a result, fractional flow
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calculations in the fracture depend solely upon phase saturations and pressures

in the fracture. For the reservoir problem, care must be taken when computing

the fractional flow at the fracture boundaries.

After solving the pressure equation, the water velocities for the fracture

and reservoir, vfw and vrw, respectively, are computed, followed by separate

saturation updates for each model:[
φr

∆t

(
ρw(pr,n+1

w )sr,n+1
w − ρw(pr,nw )sr,nw

)
, qrh

]
Qr

h

=

[−DIV vrw, qrh]Qr
h

+ [Qr
w, q

r
h]Qr

h
, ∀qrh ∈ Qr

h,[
φf

∆t

(
ρw(pf,n+1

w )sf,n+1
w − ρw(pf,nw )sf,nw

)
, qfh

]
Qf

h

=

[−DIV vfw, q
f
h ]Qf

h
+ [Qf

w −Q`
w, q

f
h ]Qf

h
, ∀qfh ∈ Q

f
h.

(4.14)

There is the option of following the standard IMPES technique for solving the

system, or the iteratively coupled IMPES [40] may be used. In the iteratively

coupled approach, after updating the saturation, another pressure solve is

invoked with the latest saturation values. This is continued until the overall

system converges.
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Chapter 5

MFD Code in Python

In this chapter, we discuss details about the code developed to test the

modification of MFD and the fracture flow method. The code is written in

Python with some portions extended by C. The working name of the program

is “mimpy”, which is short for Mimetic Python. The code relies heavily on the

NumPy and SciPy libraries [33, 47]. Mimpy has an object-oriented structure

with two main classes: the mesh class and the mfd class. It remains relatively

short—less than 10,000 lines—due to the general nature of MFD and the

brevity of Python code. All the examples presented in this work are run using

this code.

The mesh class provides a representation of the computational mesh.

The class maintains the geometry of the mesh composed of points, faces and

cells. Individual points in R2 or R3 are combined to form faces. These faces

are then combined to form individual cells in the mesh. Along with the overall

geometry, the mesh class also stores other properties of the mesh. For the

faces, it maintains the following:

• normals;

• areas;
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• centroids;

• xe.

The point xe refers to the point used in condition (S̃2). For cells, the following

information is maintained:

• face orientation;

• volume;

• centroid;

• xE.

The normal orientation indicates whether the face normal is pointing in or out

of the cell. The cells also allow for the definition of a shifted point, xE, which

comes from condition (S̃2). In addition, the class stores cell properties, such as

the permeability tensor. The mesh class also contains functions for performing

integrals over faces and elements. These integrals are used in incorporating

forcing functions and boundary conditions.

The mfd class constructs the saddle-point system based on the informa-

tion from mesh. The matrix construction is based on satisfying the conditions

(S1) and (S̃2) defined in Chapter 2. The class can construct standard MFD

matrices as well diagonal matrices in the case of Voronoi diagrams.

The final part to the code are the model classes, which solve subsurface

problems using the mfd and mesh classes. Two examples are the singlephase
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and twophase classes. They use the mfd linear system to solve the flow

problem, and in the case of two-phase, use a simple single-point up-winding

method for transport. The details of the geometry and discretization of the

problem are abstracted by mesh and mfd, making the model files relatively

simple to code. The result is that a two-phase code written in this framework

will function automatically with hexahedra, tetrahedra and Voronoi meshes.

In addition to saving time in development, this kind of code reusability is

critical for proper code validation.

5.1 Boundaries

One of the main features of mimpy is its ability to handle boundary

conditions in a simple and unique fashion. In addition to representing stan-

dard Neumann and Dirichlet boundary conditions from explicit functions, the

code is able to define boundaries by referencing other elements or faces in the

mesh. This feature, allows the code to easily include fractures, as well domain

decomposition methods.

Boundary information is stored in the mesh class. The two basic

boundary conditions are Dirichlet and Neumann boundaries. These are stored

as collections of faces, with groups of faces indicated with a boundary marker.

It is also possible to represent boundaries that are defined implicitly through

other variables in the system. For these cases, the mesh class allows what are

called “pointer” boundaries, where the boundary value is taken implicitly from

another degree of freedom in the system. In the case of fractures, the internal

58



Dirichlet boundary in the reservoir points to the pressure of the appropriate

fracture cell. In turn, the forcing function for the fracture is a function of

the flux computed at the reservoir faces. This feature can also be used to

test domain-decomposition methods using MFD. There have been some early

results in this area with Tameem Al-Mani.

In this fashion, adding fractures and performing domain decomposition

with code can be represented directly in the mesh class. This modification

greatly reduces the number of lines of code and simplifies the overall structure

of the program. This kind of programming structure allows the code to easily

test various combinations of meshes, discretizations and models.

5.2 Associated Codes

Mimpy relies on the NumPy and SciPy libraries. The code uses sparse

direct solvers and GMRES found in spsolve library of SciPy. For larger models,

the code has been coupled with PETSc [10] using the petsc4py interface [23].

Plots are produced in the VTK format and can be viewed using the Paraview

scientific visualizer. In addition, the program has functions to produce output

in Gnuplot in the case of two-dimensional problems.

For cell volume and centroid computations, the code uses the algorithm

defined in [43]. The implementation is a ported version of the C code published

by the author in Python. The derived classes of mesh include a class that

can read tetgen meshes for tetrahedral meshes. For Voronoi diagrams, the

program reads output from the Voro++ package [51].
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Chapter 6

Numerical Results

In this section we present numerical results for MFD and our proposed

generalization. For the purposes of the experiments, we will use the following

conventions:

1. The permeability tensor KE is computed at the centroid of each cell E.

2. The pressure error is computed using,

‖p− ph‖2
L2 ≈ (L2error(x))2 =

∑
E

|E|(p(x)− pE)2 (6.1)

The exact solution is calculated at a point x on the interior of E. That

point is either C (the centroid of E) or V (the generating point for the

Voronoi diagram).

3. The velocity error is computed using,

‖v − vh‖2
(L2)d ≈

∑
E

|E|
∑
e∈∂E

(v(C) · n− ve)2 (6.2)

We approximate the exact velocity at the centroid C of each face e.
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6.1 Two-Dimensional Convergence

We present results confirming first-order convergence of the modified

MFD formulation for (2.1) over two-dimensional meshes. We consider the

following manufactured solution from [16] over the unit square domain Ω =

[0, 1]2,

p(x, y, z) = x3y2 + x sin(2πxy) sin(2πy) + 1,

and a full permeability tensor

K =

(
(x+ 1)2 + y2 −xy
−xy (x+ 1)2

)
.

We solve the problem first over a rectangular mesh, and then over Voronoi

meshes. For each kind of mesh, four different cases are presented.

Case 1 xE is the centroid of cell E and xe is the centroid of face e.

Case 2 xE is shifted to the point-centered location (VE) and xe is the centroid

of face e.

case 3 xE is the centroid of E and xe is shifted to the point-centered location

(be).

Case 4 Both xE and xe are shifted to the point-centered locations.

These four cases are illustrated in [Fig. 6.1].

The matrix UE is chosen to be

UE =
|E|

trace(KE)
I.
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Figure 6.1: The four cases

6.1.1 Rectangular Grids

We carry out the results on the meshes in [Fig. 6.2]. These meshes

are generated by first placing points evenly spaced by h. The points are then

perturbed as

ξl = lh+
3

50
| sin(4πlh)|, ξ = x, y. (6.3)

The mesh is then constructed using these points in a point-centered fashion.

That is, the faces are placed midway between two adjacent points. These

points serve as the shifted location VE for point xE.

The results of these experiments can be seen in Table 6.1. Notice that

in all cases we have established at least first-order convergence, and often the

method exhibits clear second-order rates. Note that in cases 2 and 4, the
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Figure 6.2: The rectangular meshes used in the convergence study.

solution seems to be better at the shifted point rather than at the centroid

of the problem. This is consistent with the notion that the solution is most

accurate at point xE.

6.1.2 Voronoi Grids

We test the method using randomly generated Voronoi diagrams. The

diagram is constructed by selecting uniformly distributed random points in

the domain as generating points for the Voronoi diagram. The mesh is refined

by selecting a larger number of randomly generated points unrelated to the

previous mesh. Examples of the meshes used can be seen in [Fig. 6.4]. An

example of two of the pressure solutions along with the analytical solution can

be seen in [Fig. 6.5].

We tested the four different cases, and the results can been seen in

Table 6.2. Notice how second-order convergence occurs at the location of
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(Case 1—centroid/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 1.129e-02 2.728e-02 6.270e-01
32 3.217e-03 8.850e-03 2.068e-01
64 8.617e-04 2.766e-03 6.191e-02
128 2.224e-04 8.906e-04 1.753e-02

Conv. 1.89 1.65 1.72

(Case 2—point/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 2.439e-02 1.384e-02 9.220e-01
32 7.948e-03 3.638e-03 2.728e-01
64 2.558e-03 9.381e-04 7.654e-02
128 8.491e-04 2.409e-04 2.110e-02

Conv. 1.62 1.95 1.82

(Case 3—centroid/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 1.358e-02 2.899e-02 9.206e-01
32 4.154e-03 9.510e-03 3.177e-01
64 1.134e-03 2.931e-03 9.395e-02
128 2.938e-04 9.256e-04 2.719e-02

Conv. 1.85 1.66 1.70

(Case 4—point/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 2.352e-02 1.272e-02 8.712e-01
32 7.501e-03 3.184e-03 2.844e-01
64 2.438e-03 7.908e-04 8.754e-02
128 8.241e-04 2.008e-04 2.716e-02

Conv. 1.61 1.99 1.67

Table 6.1: Convergence errors and rates for the four test cases with rectangular
grids over two-dimensional domains.
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Figure 6.3: The MFD pressure solution (left) and the analytic pressure solution
(right) for using rectangular meshes.

point xE. Shifting of the point on the interior changes where the solution is

most accurate. As predicted by the theory, we consistently maintain at least

first-order convergence at the centroid of the cell regardless of shifting xE and

xe. Since we have full-tensor, anisotropic permeability tensor K, we cannot

reduce this system to a two-point flux approximation.

6.2 Three-Dimensional Convergence

We now shift our attention to problem in three-dimensions We will

consider the following manufactured solution over the unit cube domain Ω =

[0, 1]3,

p(x, y, z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz) + 1,
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Figure 6.4: The random Voronoi meshes used in the convergence study.

Figure 6.5: The MFD pressure solution (left) and the analytic pressure solution
computed at the cell centroids (right) using two-dimensional Voronoi diagrams.
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(Case 1—centroid/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 1.827e-02 5.002e-02 2.076e+00
32 4.873e-03 1.729e-02 9.892e-01
64 1.202e-03 8.616e-03 5.072e-01
128 2.858e-04 4.286e-03 2.489e-01

Conv. 2.00 1.16 1.01

(Case 2—point/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 4.435e-02 2.824e-02 2.515e+00
32 1.762e-02 8.682e-03 1.126e+00
64 8.767e-03 1.863e-03 5.060e-01
128 4.307e-03 4.633e-04 2.410e-01

Conv. 1.11 2.00 1.13

(Case 3—centroid/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 2.964e-02 5.885e-02 2.985e+00
32 5.643e-03 1.775e-02 1.244e+00
64 1.567e-03 8.739e-03 6.038e-01
128 3.480e-04 4.293e-03 2.968e-01

Conv. 2.11 1.23 1.10

(Case 4—point/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

16 4.139e-02 2.757e-02 2.771e+00
32 1.701e-02 7.423e-03 1.201e+00
64 8.677e-03 1.682e-03 5.776e-01
128 4.296e-03 3.708e-04 2.831e-01

Conv. 1.08 2.08 1.09

Table 6.2: Convergence errors and rates for the four test cases with random
Voronoi grids. Notice how second-order convergence of pressure always occurs
at the shifted point xE.
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and a full permeability tensor

K =

 1 + y2 + z2 −xy −xz
−xy 1 + x2 + z2 −yz
−xz −yz 1 + x2 + y2

 .

We solve the problem first over a rectangular mesh, and then over Voronoi

meshes. We follow the same four test cases outlined in the previous section.

The matrix UE is chosen to be

UE =
|E|

trace(KE)
I.

6.2.1 Rectangular Grids

We carry out the results on the meshes in [Fig. 6.6]. These meshes

are generated by first placing nodes evenly spaced by h. The nodes are then

perturbed as

ξl = lh+
3

50
| sin(4πlh)|, ξ = x, y, z. (6.4)

The mesh is then constructed using these points in a point-centered fashion.

That is, the faces are placed midway between two adjacent points. These

points serve as the shifted location VE for point xE. The results of these ex-

periments can be seen in Table 6.3. Examples of the pressure solution can

been seen in [Fig. 6.7]. Much like the two-dimensional problem, all cases we

have established at least first-order convergence, and often the method ex-

hibits clear second-order rates. We also notice again a slightly better pressure

solution at the location of point xE.
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Figure 6.6: The rectangular meshes used in the convergence study. The two
meshes correspond to h = 1

16
, and 1

32
.

Figure 6.7: Comparison between the MFD solution (left) and the exact solu-
tion computed at the cell centroids (right) over a three dimensional domain
with full permeability tensor.
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(Case 1—centroid/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 1.585e-02 3.573e-02 6.218e-01
16 5.778e-03 1.863e-02 2.434e-01
32 1.699e-03 6.323e-03 7.597e-02
64 4.558e-04 2.055e-03 2.146e-02

Conv. 1.71 1.39 1.62

(Case 2—point/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 3.149e-02 2.828e-02 1.088e+00
16 1.961e-02 9.685e-03 5.552e-01
32 6.978e-03 3.526e-03 1.877e-01
64 2.240e-03 1.020e-03 5.653e-02

Conv. 1.29 1.58 1.44

(Case 3—centroid/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 1.714e-02 3.916e-02 1.049e+00
16 9.344e-03 2.227e-02 5.428e-01
32 3.062e-03 7.423e-03 1.899e-01
64 8.494e-04 2.310e-03 5.898e-02

Conv. 1.46 1.38 1.40

(Case 4—point/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 2.694e-02 2.439e-02 1.052e+00
16 1.686e-02 7.186e-03 4.797e-01
32 5.824e-03 2.080e-03 1.554e-01
64 1.943e-03 5.532e-04 4.880e-02

Conv. 1.29 1.81 1.49

Table 6.3: Convergence errors and rates for the four test cases with rectangular
grids in three-dimensions. We consistently find at least first-order convergence
for both pressure and velocity. Also notice that the pressure solution is most
accurate when the method and error is calculated using the xE point.
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Figure 6.8: Unstructured three dimensional Voronoi diagrams. The plot on
the left is the full domain of the convergence test problem in which we can
only see the outer faces of the boundary. The plot on the right is a slice of the
mesh showing the inner structure of the diagram.

6.2.2 Voronoi Grids

We test the method over three-dimensional Voronoi meshes. The meshes

are generated by randomly selecting points uniformly over the domain. The

Voronoi diagrams were generated using the Voro++ software package [51].

An example of the produced meshes can be seen in [Fig. 6.8]. The pressure

solution can been seen in [Fig. 6.9].

The convergence results are shown in Table 6.4. Much like the two-

dimensional case, we find that the pressure solution is most accurate at the

location of the point xE. Since the three-dimensional case is far more compu-

tationally intensive than the two-dimensional case, we were not able to carry

out the convergence study as far.
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(Case 1—centroid/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 5.432e-02 6.791e-02 4.018e+00
16 1.842e-02 2.569e-02 1.943e+00
32 5.501e-03 1.033e-02 8.775e-01

Conv. 1.65 1.36 1.10

(Case 2—point/centroid)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 8.660e-02 7.617e-02 4.500e+00
16 3.116e-02 2.507e-02 2.039e+00
32 1.119e-02 6.815e-03 8.852e-01

Conv. 1.47 1.74 1.17

(Case 3—centroid/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 5.746e-02 7.277e-02 4.482e+00
16 1.982e-02 2.768e-02 2.197e+00
32 5.951e-03 1.070e-02 9.843e-01

Conv. 1.63 1.3825 1.10

(Case 4—point/point)
n L2error(C) L2error(V ) ‖vI − vh‖(L2)d

8 7.714e-02 6.463e-02 4.443e+00
16 2.686e-02 2.059e-02 2.109e+00
32 1.057e-02 5.898e-03 9.307e-01

Conv. 1.43 1.72 1.13

Table 6.4: Convergence errors and rates for the four test cases with random
Voronoi meshes. We consistently find at least first-order convergence for both
pressure and velocity. Also notice that the pressure solution is most accurate
when the error is calculated at the xE point.
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Figure 6.9: Pressure solution for three dimensional Voronoi diagram. The plot
on the left represents the MFD approximation to pressure, and the plot on the
right is the analytical solution computed at the cell centroids.

6.3 Two-phase Problems

In this section, we use MFD and the developed code for solving non-

linear, two-phase flows. For two-phase examples, se refers to the normalized

water saturation,

se =
sw − srw

1− srw − sro

6.3.1 Low Permeability Barrier

We demonstrate the use of Voronoi diagrams for modeling a low perme-

ability barrier problem. We test two-phase flow around three different orienta-

tions of the barrier as seen in [Fig. 6.10]. The barrier has a constant permeabil-

ity of 10−12m2 (103md) while the rest of the reservoir is set to 10−6m2 (109md).

The Voronoi diagram can capture the geometry of the barrier [Fig. 6.11].
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Figure 6.10: In the low permeability barrier example, three different orienta-
tions of the barrier are generated and tested. The blue streak corresponds to
the area in the reservoir with low permeability. The geometry of the barrier
is captured using a Voronoi mesh.

The relative permeabilities are set to linear functions

krw = se, kro = 1− se.

Both water and oil are slightly compressible, with a compressibility of 10−8Pa−1.

The boundary conditions are homogeneous Dirichlet (p = 0 Pa). We have a

rate specified well injecting water at a constant rate of 1 kg/s. The porosity

φ = .3 is constant, as well as the initial saturation of water (s0
w = 0). We

exclude the effects of capillary pressure (pc = 0).

The oil pressure is shown in [Fig. 6.12]. The saturation at different times

can be seen in [Fig. 6.13]. Notice that the method is able to capture complex

behavior around the barrier while keeping most of the mesh rectangular. The

only deviation from a rectangular mesh are localized to the area near the
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Figure 6.11: The Voronoi mesh can capture the shape of the barrier while
maintaining a rectangular mesh in the rest of the domain.75



barrier.

Figure 6.12: Pressure solution to the low-permeability barrier problem with
different barrier orientations.

6.3.2 SPE10

We tested the use of MFD with a more heterogeneous example. We

use the 85th layer of the SPE10 [19] benchmark problem for the permeability

distribution [Fig. 6.14]. We place a rate specified injector in the south-east

corner and a pressure specified well in the north-west corner. Here are the
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t = 35000s

0o 45o 90o

Figure 6.13: The saturation solution at different times for different barrier
orientations.
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overall properties of the system:

porosity = 0.3,

initial water saturation = 0,

water viscosity = 8.9× 10−4Pa s,

oil viscosity = 8.9× 10−4Pa s,

water density = 1000kg/m3,

oil density = 1000kg/m3,

residual water saturation = 0.2,

residual oil saturation = 0,

krw = se2,

kow = (1− se)2,

pc = 0.

Water is injected at a rate of 0.1 kg/s and simulator runs for 2315 days with

0.23 day time steps. The purpose of the test is to verify the feasibility of

MFD for heterogeneous flow problems. The saturation solution is shown in

[Fig. 6.15].
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Figure 6.14: The log permeability of the 85th layer of SPE 10. The bottom
layers of the SPE 10 problem are characterized by channelized permeabilities.
A rate specified injector is placed at the bottom-right corner, and a pressure
specified producer is placed in the top-left corner of the domain.
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Figure 6.15: SPE 10 saturation profile after 579, 1158, 1737 and 2135 days.
Notice the highly channelized nature of the saturation in the reservoir.
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6.4 Fracture Problems

We demonstrate the use of the proposed MFD method for modeling

fractures. The first example is a standard benchmark problem for hydraulic

fractures that relies on a semi-analytic solution to a single-phase time depen-

dent problem. We also show results from coupling the MFD code with the

IPARS simulator. In the third section, we demonstrate the effects of fracture

curvature on leakage around the fracture. That is followed by results showing

the effects of curvature on two-phase flows with fractures.

6.4.1 Cinco-Ley Benchmark

In this section, we verify the method for solving fracture problems

against standard benchmarks adopted by the petroleum industry. In par-

ticular, the well testing community has established semi-analytic solutions to

single-phase time dependent fracture problems. We use the solution by Cino-

Ley and Meng [20]. The authors provide a semi-analytical form of the solution

in the Laplace space. In order to compute the leakages for the fracture, we form

a linear system of equations that solve in the Laplace variable s. The solution

is converted into the time domain using the Gaver-Stehfest algorithm [56].
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The properties of the model are

Kf = 10−8m2,

Xf = 10m,

w = 0.01m,

µ = 10−3Pa · s,

ct = 10−8Pa−1,

Qf = 6.2832kg/s.

We vary the reservoir permeability resulting in three different cases,

Kres = [1×10−13, 5× 10−12, 5× 10−11] m2,

which correspond to the following three dimensionless conductivity factors

Kfw

KrXf

= CfD = [100, 5, 0.2].

The setup of the problem is shown in [Fig. 6.16]. The resulting pressure is

shown in [Fig. 6.17]. Finally, the comparison between the Cinco-Ley calculated

fluxes and the solution produced by MFD are shown in [Fig. 6.18]. The domain

is 65 × 85m, with a fracture of length 10m in the center. The well is located

at the left-most point of the fracture. The MFD method accurately tracks the

predicted solution from the semi-analytic benchmark over time and for all the

fracture conductivity factors tested.
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Figure 6.16: Problem setup for Cinco-Ley benchmark. The entire domain is
65× 85m, with a fracture of length 10m in the center. The well is located at
the left-most point of the fracture.

Figure 6.17: Pressure profiles with different fracture conductivities CfD.
Higher CfD values correspond to a higher conductivity of the fracture. As
the conductivity decreases, the pressure solution approaches a radial profile.
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Figure 6.18: The leakage profile for the fracture problem with conductivity
factors (CfD = [100, 5, .2]) at different times. The blue line is the semi-analytic
solution by Cinco-Ley and Meng, and the red line is the MFD solution. As
the conductivity factor decreases, the leakage increases at the well, which is
located at x = 0. The MFD fracture method is able to accurately capture the
leakage for these different cases.
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6.4.2 Single-Phase Slightly Compressible Flow with IPARS

The choice of iterative coupling scheme and flexibility of MFD and

MFMFE inherently lends us the capability of handling multiple flow models

simultaneously. Here, we discuss an example which considers coupling of hy-

draulic and discrete fracture flow models with a reservoir flow model. We solve

the Darcy flow equation and the lubrication equation inside the discrete and

hydraulic fractures, respectively, to demonstrate the multiphysics capability.

In [Fig. 6.19] we see a reservoir with a hydraulic fracture (shown in green)

connected to an injection well and a discrete fracture (gray).

Figure 6.19: Reservoir description for MFD and IPARS coupling example.

The reservoir size is 10 m × 30 m × 15 m, with an injection rate

of 10m3/sec into the hydraulic fracture. The reservoir porosity is 0.3 and

permeability is 10−10m2. The discrete fracture permeability is 10−6m2 and the

hydraulic fracture width w = 10−3m. Grid-block sizes are roughly 1m × 1m

× 1m, owing to the distorted hexahedral cells. The reservoir has all no flow

boundaries except one pressure specified boundary condition of approximately

1000 psi (shaded red) to expedite the simulation run. The choice of fracture

flow models is not restrictive and more elaborate flow models can be used for

accurate representation. The pressure field is shown in [Fig. 6.20].
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(a) Pressure Field (b) Velocity Field

Figure 6.20: Reservoir cross-section for the MFD and IPARS coupling exam-
ple.

6.4.3 Fracture Curvature

In this section, we examine the effects of curvature on the flow around

fractures. The problem setup is shown in [Fig. 6.21]. Fluid is injected directly

into the fracture, and the amount of leakage from the fracture is measured. The

meshes used are shown in [Fig. 6.22]. The curvature is increased by applying a

quadratic perturbation to the mesh. We have a square domain with a Dirichlet

(pressure) specified boundaries. The fracture is placed in the middle with rate

specified well injecting fluid directly into the fracture. Five degrees of fracture

curvature are tested. The fractures are shaped as quadratic polynomials, and

are described using three points shown in Table 6.5. The problem is set over

a square domain Ω = [0, 10]2.

The results of the simulation can be seen in [Fig. 6.23]. We observe a

higher rate of leakage from the top of the fracture compared with the bottom

of the fracture. The total percentage of leakage from the top for the five cases
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p1 p2 p3

fracture 1 (3, 5) (5, 5) (7, 5)
fracture 2 (2.95, 4.8) (5, 4.9) (7.05, 4.8)
fracture 3 (2.94, 4.77) (5, 4.95) (7.06, 4.77)
fracture 4 (2.94, 4.7) (5, 4.98) (7.06, 4.7)
fracture 5 (2.95, 4.59) (5, 4.94) (7.06, 4.59)

Table 6.5: The five fractures are shaped as quadratic polynomials starting at
p1, ending at p3 and pass through p2.

are [50%, 51.23%, 52.7%, 53.92%, 54.83%]. This means that as we increase the

curvature, a larger percentage of leakage is happening from the outer surface

of the fracture.

This phenomena is entirely the result of the geometry of the fracture.

As the fracture curves inward, a slightly larger pressure develops on the inte-

rior, resulting in less flow in that direction. Consider the extreme case, where

the fracture curves all the way to form a closed circle. In that case, no fluid

would leak into the interior of the circle, and 100% of the leakage would be

toward the outside.
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Figure 6.21: The problem setup for testing the effects of curvature on fracture
flow. We have a square domain with a Dirichlet (pressure) specified bound-
aries. The fracture is placed in the middle with rate specified well injecting
fluid directly into the fracture.

Figure 6.22: Three of the meshes used to test the different degrees of curvature.
In the first mesh we have a planar fracture. The curvature is increased by
applying a quadratic perturbation to the mesh.
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Figure 6.23: Effects of curvature on the leakage around a fracture. The blue
line is the leakage from the top of the fracture, and the red line is the leakage
from the bottom. As the fracture curvature is increased, we notice an increase
in leakage from the top compared to the bottom.

6.4.4 Two-Phase Flow with Planar and Curved Fractures

We take a closer look at the effects of fracture curvature on two-phase

flows. We have two different models, one with a flat fracture, and the second

with a curved fracture [Fig. 6.24]. We set the boundaries to zero constant

pressure. The injection rate in the fracture is Qf = 0.01kg/s. The reservoir
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properties are

porosity = 0.3,

initial water saturation = 0,

water viscosity = 8.9× 10−4Pa s,

oil viscosity = 2.67× 10−3Pa s,

water density = 1000kg/m3,

oil density = 1000kg/m3,

residual water saturation = 0.2,

residual oil saturation = 0,

krw = se2,

kow = (1− se)2,

pc = 0.

The initial saturation s0
w = 0 in both the reservoir and the fracture. We took

a time-step size of 10s. A close up of the curved fracture can been seen in

[Fig. 6.26]. The pressure profile of the solution is shown in [Fig. 6.25]. In

[Fig. 6.27] we can see the saturation around the fracture at early time. Notice

the higher water saturation on the top surface of the fracture compared with

the bottom. Note the small difference in saturation for the planar fracture

case too, which is the result of a slight difference in cell volumes. For the

planar case, top cell volume is 0.083 m2 and bottom cell volume is 0.079 m2.

In the case of the curved fracture, top cell volume is .080 m2 and the bottom

cell volume .077 m2.
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Figure 6.24: Outline of the two fractures used in the two-phase comparison.

Figure 6.25: Pressure profile for the two-phase flow without curvature (left)
and with curvature (right).
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Figure 6.26: A close look at the reservoir mesh for the curved fracture case.

Figure 6.27: The saturation profile near the fracture at early time (0.23 days).
Note the higher saturation on the top of the fracture compared to the bottom
in the case of a curved fracture surface.
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Chapter 7

Conclusions and Future Work

The Mimetic Finite Difference method (MFD) defines a family of dis-

cretizations on a very general set of polyhedral meshes. Solving over gen-

eral polyhedra allows for better representation of complex subsurface features.

Special care must be taken when solving for porous media multi-phase flow

equations, as they can be sensitive to the kind of discretization used. Methods

such as the two-point flux approximation (TPFA) have been well established

for such equations. While the original MFD definition encompasses TPFA over

rectangular grids, it does not include TPFA for cases such as Voronoi meshes.

We have demonstrated the connection between MFD and TPFA over Voronoi

grids by defining a generalization of the original MFD. Establishing this con-

nection results in a reduction of the saddle-point system associated with MFD

to a symmetric-positive definite system through a Schur’s complement. In the

case of rectangular grids, we have observed that the generalization connects

MFD with both cell-centered and point-centered schemes.

We have presented a proof of stability and convergence of the general-

ization using tools from the mixed finite element method and standard MFD.

The analysis suggests that alteration made to MFD maintains first-order con-
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vergence for both pressure and velocity unknowns. Numerical results corrobo-

rate these findings. In addition, they show super-convergence of pressure can

still be achieved when the error is measured against a weighted norm.

We have successfully developed a framework for coupling flow in the

reservoir with flow in the fracture using MFD. The approach is flexible and

permits a variety of flow models, discretizations, and solution techniques. The

approach allows for general geometries for both the fracture and the reservoir.

The method and code have been verified against industry standard solutions

from the well-testing literature.

Because MFD uses a similar framework to mixed finite elements and

MPFA methods, we have been able to connect with the simulator IPARS.

The results of the coupling are available in [2]. Further work in [28] have

used this coupling, wherein the poro-elastic effects have been coupled with

reservoir-fracture flow.

The geometry of fractures has an impact on the leakage of fluids from

the fracture. We formulate models that demonstrate the asymmetry of leakage

in cases of curved fractures. The effects of curvature are shown on both single-

phase and two-phase flow problems.

7.1 Future Work

The MFD method is an infinite family of discretizations defined over

a very general set of polyhedral meshes. We took that family and added an
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even broader set of possible discretizations. The generalization proposed has a

simple mechanism for defining different approximations. This gives us a simple

method of traversing a large portion of the space of convergent, low-order,

conservative discretizations. What is the relationship between that space and

other existing techniques available today? What useful methods can we find

in that space?

Our original purpose of generalizing the MFD method is to establish

the relationship between MFD and TPFA over Voronoi grids. It stands to rea-

son that the generalization may have applications beyond saddle-point system

reduction. As we have seen, shifting the points alters the location at which

the solution is most accurate. Perhaps one can optimize for point locations

against overall error, or in light of problem specific quantities of interest. For

example, better monotonicity for two-phase flow, or improved well modeling.

We also believe that the generalization has application to the area of multi-

point flux approximations (MPFA). Much like we did with TPFA, what is the

relationship between MFD and existing, well-established MPFA methods in

the literature?

For fractures, we have tested problems with a single fracture in the

media. Further work is needed to test effects of multiple fractures, espe-

cially in the case of fracture intersections. In addition, the current method

requires a large reduction in time-step size. One approach would be to use

ideas from domain decomposition to separate the fracture problem and the

reservoir problem. MFD is an ideal method for such an approach since it can
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naturally handle non-matching grids.
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Appendix A

Surface and Nodal Approaches

A.1 Cell-Node Discretization

In an early example of the mimetic method, found in [54], the author

defines a cell-centered discretization for an elliptic problem over a logically

rectangular grid in two dimensions. The discrete scalar space is denoted by

HC, and it represents an average pressure per cell. The discrete vector space

is denoted by HN , and it represents a velocity vector at each node. Due

to the logically rectangular nature of the mesh, each of these spaces can be

indexed with an appropriate i, j coordinate. Each cell is associated with a

single pressure uknown uij, and each node is associated with a velocity unkown

(WXij,WYij) [Fig. A.1]. The variables xij and yij correspond to the physical

coordinates of the nodes. The objective is to construct the discrete operators,

DIV : HN → HC, (A.1)

G : HC → HN. (A.2)

We define the inner products

(u, v)HC =
∑
ij

uijvijΩij + Boundary Terms, (A.3)
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Figure A.1: Unknowns Ui,j and Wi,j

and

( ~A, ~B)HN =
∑
ij

(AXijBXij + AYijBYij)V Nij. (A.4)

The quantity V Nij is defined as the area of the diamond outlined by the dotted

line in [Fig. A.1]. Note how the vector inner product centers around the nodes

of the mesh.

Following the steps of MFD, we next define a discrete form of one of

the differential operators. Recall the invariant definition of the continuous ∇·

operator,

∇ · v = lim
V→0

∫
∂V

(v, n)dS

V
. (A.5)

Using the trapezoid rule, the above line integral can be approximated for the
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discrete velocity space, giving the following expression for DIV at each cell:

(DIV ~W )ij = ((WXi+1,j+1 −WXij)(yi,j+1 − yi+1,j)−

(WXi,j+1 −WXi+1,j)(yi+1,j+1 − yi,j))/(2Ωij)−

((WYi+1,j+1 −WYij)(xi,j+1 − xi+1,j)−

(WYi,j+1 −WYi+1,j)(xi+1,j+1 − xi,j))/(2Ωij).

The next step is to define our second operator based on the adjoint

relationship, for all u ∈ HN and ~W ∈ HC,

(G u, ~W )HC = (u,DIV ~W )HN . (A.6)

After some algebraic manipulation, an expression for the G operator is com-

puted from the adjoint relationship with DIV ,

G u =

(
GX
GY

)
. (A.7)

Where GX and GY are given by:

GXij = (
yi,j+1 − yi+1,j

2
uij +

yi−1,j − yi,j+1

2
ui−1,j+

yi,j−1 − yi−1,j

2
ui−1,j−1 +

yi+1,j − yi,j−1

2
uij)/V Nij,

GYij = (
xi,j+1 − xi+1,j

2
uij +

xi−1,j − xi,j+1

2
ui−1,j+

xi,j−1 − xi−1,j

2
ui−1,j−1 +

xi+1,j − xi,j−1

2
uij)/V Nij.

By applying both operators, we can construct the left-hand side of the problem,

DIV G u = f. (A.8)
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The cell-node approach does result in a local stencil with the pressures

as the only unknowns. Constructing a discretization that has this property

is one of the goals of this work. However, the cell-node approach presents a

problem that prevents us from using it for porous media applications. The

problem is easily seen when applying the method to a mesh made of square

elements. The resulting stencil has a checkerboard pattern, separating the

mesh into two non-communicating sets. This produces spurious oscillations in

the final solution [30].

A.2 Cell-Surface Discretization

We now outline what is referred to as the cell-surface method [30]. In

contrast to the cell-node method, the cell-surface discretization defines veloc-

ities as the average magnitude of the normal component over each face in the

mesh. In addition, the cell-surface method includes the permeability tensor in

the velocity inner product,

( ~A, ~B)HC =

∫
Ω

(K−1 ~A, ~B) dV. (A.9)

Instead of solving for ∇· = −∇∗, the permeability operator is combined with

the gradient, resulting in the adjoint relationship

∇· = (−K∇)∗. (A.10)

The scalar inner product is the same as the one defined for the cell-node
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discretization. The definition of the vector inner product becomes

( ~A, ~B)HS =
∑
i

∑
j

(K ~A, ~B)i,jV Cij, (A.11)

with V Cij denoting the volume of the cell. The local inner products are

based on a generalization of the inner product for non-orthogonal axes. For

~A = (AX,AY ) and ~B = (BX,BY ) and θ being the angle between the two

polygon sides, we have

( ~A, ~B) =
AXBX + AY BY + (AXBY + AY BX) cos(θ)

sin2(θ)
. (A.12)

Including the permeability tensor gives

(K ~A, ~B) =
T11AXBX + T22AY BY + T12(AXBY + AY BX) cos(θ)

sin2(θ)
.

(A.13)

With,

T11 = Kxx cos2(θ1) + 2Kxy cos(θ1) sin(θ1) +Kyy sin2(θ1)

T12 = Kxx cos(θ1) cos(θ2)

+ 2Kxy(cos(θ1) sin(θ2) + sin(θ1) cos(θ2))

+Kyy sin(θ1) sin(θ2)

T22 = Kxx cos2(θ2) + 2Kxy cos(θ2) sin(θ2) +Kyy sin2(θ2).
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The inner-product for each cell becomes

(K ~A, ~B)i,j =
1∑
k,l

V N i,j
i+k,j+l

sin2(θi,ji+k,j+l)

[T11i,ji+k,j+lAXi+k,jBXi+k,j

+ T22i,ji+k,j+lAYi,j+lBYi,j+l

+ (−1)k+lT12i,ji+k,j+l(AXi+k,jBYi,j+l + AYi,j+lBXi+k,j).

Finally, the G operator is again defined based on the adjoint relationship with

DIV . Unlike the cell-node method, in general, it is not practical to write

G explicitly. Computing G requires inverting the matrix associated with the

velocity inner-product, giving us a dense representation of the operator. We

get around this by defining G implicitly, and forming a saddle-point problem

with both pressure and velocity as unknowns.

103



Appendix B

Two-Phase Flow using MFD

Here we demonstrate an algorithm used for solving the two-phase flow

problem using MFD. The formulation is similar to solving the two-phase flow

problem with MFMFE [61]. We also note previous work in solving two-phase

flows with MFD in [37]. In this formulation, we neglect the effect of capillary

pressure and gravity, but allow for slightly compressible fluids. Starting with

the two-phase equations,

vα = −ρα
µα
krαK∇pα,

∂φραsα
∂t

= −∇ · vα +Qα,

pc = po − pw = 0,

sw + so = 1,

(B.1)

we define the mobility of phase α as

λα =
krα
µα

. (B.2)

By adding the saturation equations and using the saturation constraint,

φ
∂(ρwsw + ρo(1− sw))

∂t
= −∇ · vt +Qt, (B.3)
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where,

vt = −ρwλwK∇pw − ρoλoK∇po (B.4)

= −ρwλwK∇po − ρoλoK∇po (B.5)

= −(ρwλw + ρoλo)K∇po, (B.6)

is the total velocity, and Qt = Qo +Qw is the total source term. Note that we

are taking po as the primary pressure variable. The key to using the mimetic

method here is to replace the exact gradient and divergence operators with

their discrete approximations, as follows:

Gt ≈ (ρwλw + ρoλo)K∇,

DIV ≈ ∇ · .
(B.7)

The operators DIV and G share the adjoint relation,

[Gt ph, uh]Xh
= −[ph,DIV uh]Qh

(B.8)

The “weak” form of the problem is stated as:

Find sw, po ∈ Qh and vt ∈ Xh, such that

[vn+1
t , uh]Xh

− [pn+1
o ,DIV uh]Qh

= 0, ∀uh ∈ Xh

(B.9)

[φ
∂(ρws

n
w + ρo(1− snw))

∂t
, qh]Qh

+ [DIV vn+1
t , qh]Qh

= [Qn+1
t , qh]Qh

, ∀qh ∈ Qh.

(B.10)

We denote (B.9) as

F1(pn+1
o , vn+1

t ) = 0. (B.11)
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Assuming slight compressibility of the fluid, we have

ρα(p) = ρ0
α(1 + Cfαp), (B.12)

using the backward Euler approximation for the time derivative, we get[
φ

∆t
ρw(pn+1

o )sn+1
w + ρo(p

n+1
o )(1− sn+1

w )), qh

]
Qh

−
[
φ

∆t
(ρw(pnw)snw + ρo(p

n
o )(1− snw)), qh

]
Qh

+
[
DIV vn+1

t , qh
]
Qh
− [Qn+1

t , qh]Qh
= 0,

(B.13)

which we will denote as

F2(pn+1
o , vn+1

t ) = 0. (B.14)

The resulting Jacobian matrix is(
∂F1

∂vn+1
t

∂F1

∂pn+1
o

∂F2

∂vn+1
t

∂F2

∂pn+1
o

)
=

(
M −DIV∗
DIV C

)
, (B.15)

with M , DIV and DIV∗ constructed as usual. The matrix C is diagonal,

and is defined as

C(E) =
φ|E|
∆t

(
ρ0
wCfws

n+1
w + ρ0

oCfo(1− sn+1
w )

)
. (B.16)

Next, we look at the saturation update. The water velocity is computed

using a fractional flow function calculated from the upwinded mobility,

vw = fwvt. (B.17)

Applying the weak form directly to the saturation equation gives us,[
φ
∂ρwsw
∂t

, qh

]
Qh

= −[DIV vn+1
w , qh]Qh

+ [Qn+1
w , qh]Qh

. (B.18)
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Using backward Euler, we have[
φ

∆t

(
ρw(pn+1

w )sn+1
w − ρw(pnw)snw

)
, qh

]
Qh

= [−DIV vn+1
w , qh]Qh

+ [Qn+1
w , qh]Qh

.

(B.19)

We can now apply the standard IMPES method to solve the system or use

iterative coupling for a better solution to the overall system [40].
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