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Chapter 1

Introduction

The analysis of soil-structure systems due to earthquake motion is a

significant part of structural design in earthquake-prone regions. Design cri-

teria for critical and high-occupancy structures are determined based on the

expected structural response during earthquake events. Numerous factors af-

fect the response of a soil-structure system and must be accounted for in the

design process. The effects of these factors on the overall response of the sys-

tem can be studied by comparing the system responses for different soil and

structural configurations.

It is of great interest to develop an accurate and efficient method to pre-

dict the dynamic response of soil-structure systems under earthquake loading.

Determination of the soil-structure system response can be achieved through

different approaches. An ideal analysis would accurately model every detail of

the soil-structure system, but a comprehensive analysis can be computation-

ally demanding, even impractical. Conventional site-response analyses use

efficient procedures based on simplifying assumptions but the results obtained

can be overly conservative.
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This dissertation seeks to introduce improvements to the conventional

analysis of soil-structure systems that provide more accurate results with min-

imal addition to the computational effort. Soil-structure system response in

relevant case studies will be computed using both conventional and improved

methods. Results obtained will be compared to determine the extent of re-

sponse calculation improvement using the modified procedure. Different con-

figurations of the soil-structure system will be analyzed to determine conditions

where the improvements are most significant.

1.1 Problem Description

The behavior of an actual structure on deformable soil can be analyzed

by an idealized soil-structure system representation. The system is composed

of a layered soil medium, a representation of the structural mass and stiffness,

and a representation of the interface between the soil and structure which is

the foundation. An illustration of the soil-structure system is shown in Figure

1.1.

The layered soil medium is divided into two parts. Regions far away

from the embedded foundation and structure are identified as the far field.

Regions close to the foundation and structure are referred to as the near-field

regions. Calculation of the far-field response can be achieved by assuming

absence of the foundation and structure.

Analysis of a layered soil medium without inclusion constitutes a free-

field analysis. The response obtained from the free-field analysis is equivalent

2
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Earthquake motion
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Soil medium

Figure 1.1: Soil-Structure System

to the response of the far-field region. Analysis of the soil domain with con-

siderations of the foundation and structure constitutes a near-field analysis.

Free-field analysis of a soil domain consists of one-dimensional linear

elastic propagation of horizontal shear waves through the layered soil medium.

Discretization of the domain in the vertical direction does not account for lo-

calized deviations in the horizontal direction due to the presence of foundation

and structure. Near-field analysis allows for greater detail in the region near

the structure, and accounts for the loading the structure and foundation ex-

ert on the soil. Illustration of the free-field and near-field discretizations are

shown in Figure 1.2.

Several previous works provide the basis of the formulation for these

analyses. Formulations of the regular layered media have been presented by

Ikeda (2008) based on the works of Kausel (1981). Derivation of the effects

3



(a) Free Field

(b) Near Field

Figure 1.2: Discretization of the Soil Medium

of inclusions extend from the concepts used to derive the solutions of the

regular layered media. Analysis of the near-field region can be done using a

finite element approach. The transmitting boundary of the near-field region

is represented by hyperelements which are derived on the basis of the work by

Waas (1972).

Analysis of the soil media incorporates soil properties appropriate for

the level of deformation experienced by the soil layers. Nonlinear behavior of

the soil is primarily characterized by modulus and damping adjustments as

functions of shear strain. Nonlinear analysis of the free-field and near-field

regions can be done using these adjustments. Representative modulus reduc-

tion and damping curves based on empirical studies have been constructed in

4



the works of Seed and Idriss (1970) and Vucetic and Dobry (1991). Several

models were developed to describe the reduction curves including the hyper-

bolic model (Hardin and Drnevich, 1972) and the Darendeli model (Darendeli,

2001).

1.2 Analysis Methods

A complete analysis of a soil-structure system ideally consists of a fully

nonlinear analysis using a hysteretic soil model. Nonlinear analysis considers

the soil layers as lumped masses connected by nonlinear shear springs, which

are analyzed in the time domain. Nonlinear methods differ in terms of the

complexity of the stress-strain relationships and the soil behavior under cyclic

loading. Comprehensive discussion on available methods of nonlinear analysis

has been reported by Stewart et al. (2008). A fully nonlinear analysis allows

the use of any soil constitutive model but is computationally expensive for

most practical purposes.

Simplification of the solution process can be achieved through the use

of equivalent linear analysis. Such analysis assumes a linear soil behavior, and

calculates the system response in the frequency domain for a given set of initial

soil properties. An updated set of soil properties is determined based on the

calculated level of deformation. The site-response analysis is repeated using

the strain dependent properties, and further iterations are performed until the

soil properties converge. Kramer (1996) provides a more detailed review of the

theory and applications of the equivalent linear method. A sample equivalent

5



linear process is illustrated in the flowchart of Figure 1.3 below.

Figure 1.3: Process of Equivalent Linear Analysis

Several analysis tools have been developed and are readily available

to analyze soil-structure systems. Application of equivalent linear analysis

first appeared in the SHAKE computer program (Schnabel et al., 1972) and

(Idriss and Sun, 1992), which was later developed into the commercial tool

PROSHAKE. A more recent site-response analysis program STRATA devel-

oped at The University of Texas incorporates stochastic variation of site prop-

erties into the equivalent linear approach (Kottke and Rathje, 2008). The

analyses performed by SHAKE and STRATA are based on one-dimensional

vertical wave propagation to find the free-field response and strain dependent

properties. More computationally intensive programs QUAD4M and SASSI al-

low for two and three-dimensional soil-structure analysis (Hudson et al., 1994;

Lysmer et al., 1981).

The iteration process described in Figure 1.3 and used in the com-

monly available analysis tools determines the strain consistent properties in

6



the free-field region only. Many conventional analyses assume that the con-

verged free-field soil properties represent the soil properties in the near-field

region. Analysis of the soil-structure response is carried out by applying the

converged free-field properties to the near-field, and without further iteration

of the soil properties near the structure.

Calculation of soil-structure response using the free-field soil proper-

ties avoids the additional computational effort needed in iterating with ad-

justed near-field properties. However, soil properties in the near-field region

are affected by the motion and loading of the structure and the foundation.

Converged free-field properties do not accurately represent the nonlinear ad-

justments of soil properties in the near-field region.

Iterating with adjusted near-field properties requires extensive compu-

tational effort due to the significantly greater number of degrees of freedom

involved in near-field analysis. Response calculation in the near-field region

consists of a significantly larger system of equations which cannot be solved

quickly by a conventional approach. Iteration of the near-field soil properties

requires solving the equation of motion numerous times and quickly becomes

impractical.

Adjustments to the conventional method are needed to reduce the com-

putational effort and make near-field analysis feasible. A perturbation method

can be applied to calculate incremental addition to the system response due to

incremental adjustment of near-field properties. Instead of solving the near-

field equations numerous times, the system of equations can be solved only

7



once for the initial set of properties. Subsequent iterations of the near-field

analysis can be solved based on the solution of the initial system of equations

using a perturbation method.

Determining the effects of adjusting near-field properties during analy-

sis of soil-structure systems is the goal of this research. Calculations of addi-

tional response due to near-field adjustments will be achieved through the use

of a perturbation method in conjunction with the equivalent linear approach.

System response obtained by including near-field adjustments will be com-

pared with results obtained by conventional approaches. The extent to which

near-field adjustments affect the overall response of soil-structure systems will

be studied. It is believed that such examination will demonstrate the benefits

of applying a perturbation method to incorporate near-field adjustments in

soil-structure response calculation.

1.3 Organization of Dissertation

This dissertation explores the application of equivalent linear analysis

in conjuction with a perturbation method to determine the effects of near-

field adjustments on the response of soil-structure systems. Formulations of

response calculation for regular layered soil media will be adjusted to account

for inclusions due to the presence of the foundation and structure. Numerical

models will be developed to adequately represent the free-field and near-field

cases to be analyzed using equivalent linear analysis. Procedures used to

calculate strain-consistent soil properties in free-field analysis will be extended

8



to near-field analysis.

The analysis of a soil-structure system begins with the construction of

numerical models that appropriately represent the system. Formulations and

discussions of the numerical models for the different parts of the system will be

described in Chapter 2. The soil medium is first modeled by assuming that it is

composed of horizontal layers of homogeneous soil. Vertical wave propagation

analysis through the regular layered medium provides the free-field response.

The presence of an inclusion is then examined and the effects inclusions have

on the system response are considered. Finite element models are developed

to facilitate efficient calculation in the near-field region, including models for

the foundation and the structure.

The nonlinear soil behavior that will be incorporated into the analysis

will be discussed in Chapter 3. Soil properties of a theoretical and an actual site

characterization will be defined, along with corresponding input ground mo-

tions. The site characterization which represents an actual earthquake event

will be based on the 1985 Mexico City earthquake. Models describing the soil

property adjustments for both site characterizations will be explored. Theo-

retical and empirical modulus reduction and damping curves will be presented.

Reduction curves to be used in the analysis will then be defined based on the

available curves.

Procedures of calculating soil-structure response based on the equiva-

lent linear approach will be detailed in Chapter 4. The process will first be

applied to the free field and then extended to the near field. Improvements

9



to the analysis procedure will be introduced to reduce the computational ef-

fort in accounting for near-field adjustments. The system of equations will

be rewritten in terms of sparse matrices, which will be solved using LU de-

composition and the implementation of the SuperLU routine. Improvement

of the solution process will be developed using the perturbation method to

efficiently calculate changes of equation solutions without reprocessing the en-

tire system of equations. Incremental addition to the system response due to

updating properties in the near-field can then be determined in terms of the

incremental change in soil properties.

Equivalent linear analysis in conjunction with the perturbation method

will be applied to the finite element models to perform case studies of theo-

retical and actual earthquake events. Case studies of interest are the theoret-

ical case study using the El Centro earthquake motion, and the Mexico City

1985 earthquake motion. Response of the soil-structure systems in both case

studies will be presented in Chapter 5 along with commentary and analytical

discussion of the results. Site-response analysis will be carried out for varying

properties and site configurations. Examination of results will provide insight

into the effects different configurations have on the site-response analysis as

well as the overall significance of updating soil properties in the near-field

region.

Summary of the work carried out in this dissertation, along with con-

cluding remarks and possible future research will be discussed in Chapter 6.

10



Chapter 2

Problem Formulation and Modeling

The analysis of soil-structure interaction requires an accurate way of

modeling both the soil and the structure. Additional consideration must also

be extended to the foundation, which represents the interface between the soil

and the structure. Formulations and discussions of the numerical models for

the different aspects of the analysis will be discussed in this chapter.

Two types of analysis of the soil are of interest. First, an analysis of

the overall medium is needed to determine the level of deformation that occurs

throughout the entire soil domain. This constitutes a free-field analysis with

an underlying assumption that the entire domain is a regular layered medium.

Such analysis can be carried out one-dimensionally as the soil response will be

constant in the horizontal direction, assuming seismic waves are propagating

vertically.

The second type of analysis deals with treatment of the near-field re-

gion. This region consists of parts of the soil medium where geometric or

material properties deviate from properties of the regular layered medium.

A near-field analysis provides a more accurate treatment of the region in the

vicinity of the foundation. Results of near-field analyses provide more accurate

11



estimations to the soil-structure system response.

Appropriate models needed to carry out both the free-field and near-

field analyses are described in the following sections.

2.1 Analysis of Regular Layered Media

The analysis of the soil medium starts with determination of the regular

layered medium response. Free-field analysis will provide a first approxima-

tion of the soil response which is accurate for regions far away from localized

inclusions.

A regular layered medium consists of soil layers that extend without

bounds to infinity, with no variation in the x direction with regards to both

geometric and material characteristics of the layers. Heights of the layers are

constant everywhere, and material properties are constant throughout each

layer.

Formulation of the free-field analysis begins with the differential equa-

tions of equillibrium. Plane-strain conditions are assumed. For a layered

medium without variation in the x direction, the equilibrium equations are

expressed as:

∂σx
∂x

+
∂τzx
∂z

= ρ
∂2u

∂t2
(2.1)

∂τzx
∂x

+
∂σz
∂z

= ρ
∂2w

∂t2
(2.2)
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In Equations 2.1 and 2.2, u and w represent the soil displacements in the

horizontal and vertical directions, respectively. The mass density is ρ, and σx,

τzx, σz represent the (in-plane) stress components for the plane-strain case.

In free-field analysis of regular layered media, all material properties

and loads are constant in the x direction. Therefore stress components do not

vary in the x direction, which leads to the following expressions:

∂τzx
∂z

= ρi
∂2u

∂t2
(2.3)

∂σz
∂z

= ρi
∂2w

∂t2
(2.4)

The Principle of Virtual Work can be developed as in Ikeda (2008).

Both sides of the differential equations are multiplied by an arbitrary function

of z and integrated with respect to z. The Principle of Virtual Work is only

applied to the z-direction.∫ zi

zi+1

δu
∂(τzx)

∂z
=

∫ zi

zi+1

δu
∂2u

∂t2
ρi dz (2.5)

∫ zi

zi+1

δw
∂σz
∂z

dz =

∫ zi

zi+1

δw
∂2w

∂t2
ρi dz (2.6)

This can be expanded to:

δu τzx|z=ziz=zi+1
−
∫ zi

zi+1

∂(δu)

∂z
τzx dz =

∫ zi

zi+1

δu
∂2u

∂t2
ρi dz (2.7)

δw σz|z=ziz=zi+1
−
∫ zi

zi+1

∂(δw)

∂z
σz dz =

∫ zi

zi+1

δw
∂2w

∂t2
ρi dz (2.8)
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The shear stress τzx along layer interface i is constant, and because the

layer interfaces are flat, τzx is the only contributor to the x-traction at that

interface, Tx|z=zi . Likewise, σz is the only contributor to Tz|z=zi .

For perfectly horizontal interfaces, as is the case with a regular layered

medium, the following relationships between stresses and tractions of the layer

interfaces apply.

τzx|z=zi = Tx

∣∣∣
z=zi

(2.9)

σz|z=zi = Tz

∣∣∣
z=zi

(2.10)

τzx|z=zi+1
= − Tx

∣∣∣
z=zi+1

(2.11)

σz|z=zi+1
= − Tz

∣∣∣
z=zi+1

(2.12)

Substituting the equivalence for the stresses and rearranging, we find:

∫ zi

zi+1

∂(δu)

∂z
τzx dz +

∫ zi

zi+1

δu
∂2u

∂t2
ρi dz = δu

[
Tx

∣∣∣
z=zi

+ Tx

∣∣∣
z=zi+1

]
(2.13)

∫ zi

zi+1

∂(δw)

∂z
σz dz +

∫ zi

zi+1

δw
∂2w

∂t2
ρi dz = δw

[
Tz

∣∣∣
z=zi

+ Tz

∣∣∣
z=zi+1

]
(2.14)

We can add Equations 2.13 and 2.14 and express the sum as:

∫ zi

zi+1

∂

∂z

[
δu δw

]τzx
σz

+

∫ zi

zi+1

[
δu δw

] ∂2u
∂t2

∂2w
∂t2

 ρi dz =
[
δu δw

]Tx|z=zi + Tx|z=zi+1

Tz|z=zi + Tz|z=zi+1


(2.15)
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The semidiscretization scheme discussed by Ikeda (2008) is used to

transform the above relationship into a matrix equation of motion that de-

scribes the regular layered medium. In order to do so, it is assumed that the

displacement field within a soil layer can be described by means of a linear

interpolation of the displacements of the layer boundaries. All linear interpo-

lation in the z direction can be represented by the following functions:

Ni(z) =
z − zi+1

zi − zi+1

(2.16)

Ni+1(z) =
zi − z
zi − zi+1

(2.17)

For a regular layered medium, both zi and zi+1 are constant, and

zi−zi+1 represents the thickness of the layer, hi. It is noted that the thickness

of all layers must be sufficiently small to achieve adequate accuracy with the

linear interpolation. Therefore, if necessary, physical layers should be subdi-

vided for computational purposes.

A matrix that relates the nodal displacement of the layer boundaries

to the displacement field within the soil layer represented by Ni for layer i,

can be expressed in terms of the nodal interpolation functions above as:

Ni =

[
Ni(z) 0 Ni+1(z) 0

0 Ni(z) 0 Ni+1(z)

]
(2.18)

The semidiscretization approximates the displacement field as the prod-

uct of the matrix above and the nodal displacement vectors Ui. The displace-
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ment field is written out as: [
u
w

]
= NiUi (2.19)

where Ui consists of the nodal displacement of the interfaces of layer i:

Ui =


Ui
Wi

Ui+1

Wi+1

 (2.20)

Using the semidiscretization above along with a Galerkin finite element

approach, we obtain:

∫ zi

zi+1

∂NT
i

δz

[
τzx

σz

]
dz +

∫ zi

zi+1

NT
i

∂2Ni

δt2
ρi dz =


Tx|z=zi
Tz|z=zi
Tx|z=zi+1

Tz|z=zi+1

 (2.21)

For linear elastic homogeneous soil layers, we have a relationship be-

tween stress and strain as follows (in a horizontally layered medium, we have

∂u
∂x

= ∂w
∂x

= 0):

σx = λi
∂w

∂z
(2.22)

σz = (λi + 2Gi)
∂w

∂z
(2.23)

τzx = Gi
∂u

∂z
(2.24)

where Gi is the shear modulus and λi is the Lamé modulus of layer i:

τzx
σz

 =

 Gi
∂u
∂z

(λi + 2Gi)
∂w
∂z

 =

Gi 0

0 λi + 2Gi

 ∂u
∂z

∂w
∂z

 (2.25)
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Substituting Equation 2.25 into Equation 2.21, we get

∫ zi

zi+1

∂NT
i

δz

[
Gi 0

0 λi + 2Gi

]
∂Ni

δz
dz Ui +

∫ zi

zi+1

NT
i Ni ρi

∂2Ui

∂t2
=


Tx|z=zi
Tz|z=zi
Tx|z=zi+1

Tz|z=zi+1


(2.26)

Considering time-harmonic waves in the layered medium, we have

∂2Ui

∂t2
= −ω2Ui (2.27)

Using the simplification above, the system of equations of motion can be writ-

ten as

KiUi = Pi (2.28)

where the dynamics stiffness matrix K for layer i is expressed as:

Ki =

∫ zi

zi+1

∂NT
i

δz

[
Gi 0
0 λi + 2Gi

]
∂Ni

δz
dz − ω2

∫ zi

zi+1

NT
i Niρi dz (2.29)

and, when evaluated, the above integral gives us:

Ki =
1

(h)


Gi 0 −Gi 0
0 (λi + 2Gi) 0 −(λi + 2Gi)
−Gi 0 Gi 0

0 −(λi + 2Gi) 0 (λi + 2Gi)



− ω2ρi
6

(h)


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 (2.30)
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Assuming that there are no externally applied loads at any of the layer

interfaces, all components of P other than for the end interfaces become zero

due to internal tractions cancelling out, and, therefore, the loading vector P

is expressed as:

Pi =


Tx|z=zi
Tz|z=zi
Tx|z=zi+1

Tz|z=zi+1

 (2.31)

and the final system of equations is obtained:

KU = P (2.32)

The global matrix K is a block tridiagonal matrix assembled from the layer

matrices Ki and the global load vector P is given by:

P =



Tx|z=z1
Tz|z=z1

0
·
0

Tx|z=zm+1

Tz|z=zm+1


(2.33)

where m denotes the total number of layers.

2.2 Inclusions in Layered Media

In the one-dimensional analysis of regular layered media, soil properties

are assumed to be constant throughout each layer. Analysis provided in the
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previous section does not account for possible inclusions within one or more

layers in the domain. Inclusions can represent localized variations of the soil

properties within a layer in the domain. Analysis of heterogeneous soil layers

is therefore of interest, and will be discussed as follows.

In general, variations of soil properties occur continuously throughout

each soil layer. An effective way to model these variations is to divide each soil

layer into intervals in the x direction, and assign representative soil properties

for each interval. Analysis of such model would yield a coarse approximation

of the site response, but more accurate results can be obtained using smaller

intervals.

Such an analysis requires the ability to analyze the effects a single inclu-

sion imposes on the response of the soil. It is therefore of interest to analyze a

layered medium with homogeneous soil properties except for one inclusion, as

seen in Figure 2.1. The response of a layered medium with multiple inclusions

can be obtained as a linear combination of the solutions corresponding to the

individual inclusions.

L
x

z

h

Inclusion

Regular Media

Figure 2.1: Inclusion in Layered Medium
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A closed-form approach that can be used to account for variations in

the horizontal direction will now be described. The approach is based on

the work of Kausel (1981). For a vertically propagating shear wave through

a regular layered medium, the modes of wave propagation are found as the

eigenvectors, φ, of the following problem:(
k2A + kB + C

)
φ = 0 (2.34)

where k is the wavenumber (eigenvalue), and A, B and C are matrices assem-

bled from layer counterparts given by:

Ai =
h

6


2(λ+ 2G) 0 λ+ 2G 0

0 2G 0 G

λ+ 2G 0 2(λ+ 2G) 0

0 G 0 2G)

 (2.35)

Bi =
1

2


0 λ−G 0 −(λ+G)

λ−G 0 λ+G 0

0 λ+G 0 −(λ−G)

−(λ+G) 0 −(λ−G) 0

 (2.36)

C is defined as C = G− ω2M, where G and M for layer i are:

Gi =
1

h


G 0 −G 0

0 λ+ 2G 0 −(λ+ 2G)

−G 0 G 0

0 −(λ+ 2G) 0 λ+ 2G

 (2.37)

Mi =
ρh

6


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 (2.38)
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The formulation above assumes thin-layer discretization, where the

layer thickness is much smaller than the length of traveling waves. Linear

interpolation is applied for the displacement between layer interfaces.

Solving for the eigenvectors φ of Equation 2.34 is achieved by rearrang-

ing the rows and columns by the degrees of freedom of the problem. Equation

2.34 can then be expressed as;

ĀZK2 + C̄Z = 0 (2.39)

where

Ā =

[
Ax 0
BT
xz Az

]
(2.40)

C̄ =

[
Cx Bxz

0 Cz

]
(2.41)

k = diag [kj] (2.42)

Z =

[
Φx 0
Φz k

]
(2.43)

Another way of expressing the eigenvalue problem is as:

Ā
T
YK2 + C̄

T
Y = 0 (2.44)

where

Y =

[
Φx k
Φz 0

]
(2.45)

Φx and Φz are the x- and z-components of the eigenvectors, respec-

tively. An appropriate normalization of Y and Z is

YT ĀZ = k (2.46)
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which is substituted into Equation 2.39 to give:

YT C̄Z = −k3 (2.47)

The wave-number domain equation for equilibrium is:

(
Āk2 + C̄

) [ Ūx

kŪz

]
=

[
P̄x

kP̄z

]
(2.48)

If this equation is premultiplied by YT and an identity matrix is intro-

duced in the form of ZZ−1, we find:

(
YT ĀZZ−1k2 + YT C̄ZZ−1

) [ Ūx

kŪz

]
= YT

[
P̄x

kP̄z

]
(2.49)

Rearranging to separate the displacement vector gives:

[
Ūx

kŪz

]
= Z K−1

(
I k2 − k2

)
YT

[
P̄x

kP̄z

]
(2.50)

If a matrix D is defined as:

D = diag (k2 − k2j )
−1

(2.51)

then substituting Equations 2.43, 2.45 and 2.51 into Equation 2.50, the rela-

tionship between the load and displacement of the system can be expressed

as:
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Ūx

Ūz

 =

 ΦxDΦT
x kΦxK

−1DΦT
z

kΦzDK−1ΦT
x ΦzDΦT

z


P̄x

P̄z

 (2.52)

The matrix appearing in the above expression will be referred to as the flexi-

bility matrix F:

F =

 ΦxDΦT
x kΦxK

−1DΦT
z

kΦzDK−1ΦT
x ΦzDΦT

z

 (2.53)

The discussion by Kausel (1981) provides a Fourier transformation of

F in the process of finding Green’s function. The Green’s function is found

for a unit line load applied in the vertical plane at x0 = 0, described by

τ = δ(x− x0) (2.54)

Kausel (1981) developed the integrations below:

1

2π

∫ ∞
−∞

De−ikxdk =
1

2i
E|x|K

−1 (2.55)

1

2π

∫ ∞
−∞

kDe−ikxdk =


1
2i

Ex x > 0

0 x = 0

− 1
2i

E−x x < 0

 (2.56)

where

Ex = diag
{
e−ikjx

}
(2.57)
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Equations 2.55, 2.56 can be used in conjunction with Equation 2.53 to

produce Green’s function:

Ūx

Ūz

 =
1

2i

 ΦxE|x|K
−1ΦT

x ±iΦxE|x|K
−1ΦT

z

∓iΦzE|x|K
−1ΦT

x ΦzE|x|K
−1ΦT

z

 (2.58)

The expression above already accounts for the implicit imaginary factor

i carried by the vertical displacement and load vectors. ± and ∓ represent a

positive sign for x ≥ 0 and a negative for x < 0, and vice versa. If the line

load is applied at x0 = ξ instead, then a simple linear translation will provide

the displacement solution.

For a layered medium with load applied over a finite interval a < x < b,

Green’s function can be integrated to provide the response of the layer:

U =

∫ b

a

F(x− ξ)P(ξ)dξ (2.59)

which can be integrated explicitly.

Calculation of the additional response of layered media due to inclusions

can be done using Green’s function. The response can be found by representing

the difference in soil properties as an equivalent load acting on the regular

layered medium. Representation of soil-property variations as equivalent loads

can be done by using the perturbation approach discussed in Chapter 4.
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The additional response will be equal to the response of the regular layered

medium due to the equivalent load.

Green’s function along with the perturbation method provides the means

to verify solutions obtained from numerical procedures. It provides an exact

closed-form solution for site-response analysis. However, the process of calcu-

lating the integrations above for each inclusion can become computationally

intensive. An extensive study of site-response analysis with numerous soil

property variations requires a more efficient numerical procedure. A finite-

element based numerical procedure is introduced in the next section to allow

for efficient computation.

2.3 Finite Element Analysis and Formulation

A finite element approach to the analysis of soil-structure system re-

sponse is applied to the near-field region, in the vicinity of the structural

foundation. A special treatment of this region is needed to account for the

irregularities introduced by the foundation embedment.

Several types of finite elements are needed to fully represent the near-

field region. Models that will be used to assist the near-field analysis include a

finite-element representation of the soil in the region near the foundation. The

soil next to the foundation is discretized using quadrilateral finite elements,

whereas soil far away is modeled using hyperelements. The foundation is mod-

eled through the use of rigid elements. A simple mass-spring representation

will be used to model the structure.
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2.3.1 Quadrilateral Elements

The near-field domain is discretized into a number of four-node ele-

ments as shown in Figure 2.2. In general, quadrilateral but non-rectangular

elements may be required for some geometries. Each node has two degrees of

freedom, the total degrees of freedom for a linear rectangular element would

be eight.

Figure 2.2: Near-Field Discretization with Quadrilateral Elements

For the quadrilateral element we use in our field analysis, we will need

to determine both the stiffness and the strain values. The latter are needed to

adjust the soil properties with regards to the level of deformation. These are

derived below.

The element can be analyzed in either global coordinates or local co-

ordinates where the relationship between the two coordinates systems is as

follows:

ξ =
1

a

(
x− x1 + x2

2

)
, η =

1

a

(
z − z1 + z2

2

)
(2.60)
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The shape function matrix for the quadrilateral element is

N(ξ, η) =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
(2.61)

with the bilinear shape functions expressed as:

N1(ξ, η) =
1

4
(1− ξ)(1− η) (2.62)

N2(ξ, η) =
1

4
(1 + ξ)(1− η) (2.63)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η) (2.64)

N4(ξ, η) =
1

4
(1− ξ)(1 + η) (2.65)

The relationship between strain and displacement of the element can

be expressed as:

ε = Bd (2.66)

where B is known as the strain matrix. The strain can be found by:

B(ξ, η) =


∂
∂x

0

0 ∂
∂z

∂
∂z

∂
∂x

N(ξ, η) (2.67)

which for the four-node quadrilateral elements can be written as:

B(ξ, η) =
1

4ab



−b(1− η) 0 −a(1− ξ)
0 −a(1− ξ) −b(1− η)

b(1− η) 0 −a(1 + ξ)

0 −a(1 + ξ) b(1− η)

b(1 + η) 0 a(1 + ξ)

0 a(1 + ξ) b(1 + η)

−b(1 + η) 0 a(1− ξ)
0 a(1− ξ) −b(1 + η)



T

(2.68)
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The constitutive matrix D that applies for plane strain is

D =

λ+ 2G λ 0
λ λ+ 2G 0
0 0 G

 (2.69)

in which G is the shear modulus and λ is the Lamé modulus of the soil.

For a quadrilateral element in plane strain assuming unit thickness in

the out-of-plane direction, the general expression for the finite element stiffness

matrix is

K =

∫ 1

−1

∫ 1

−1
ab BT D B dξ dη (2.70)

where B and D are as previously formulated.

The stiffness matrix above can be integrated as a closed form solution,

but is more efficiently evaluated using the Gauss numerical integration scheme.

Gauss integration scheme consists of taking the weighted sum of the integrand

which is evaluated at four representative Gauss points in the element.

Second-order Gauss integration points are located at local coordinates(
−1√
3
, −1√

3

)
,
(

1√
3
, −1√

3

)
,
(

1√
3
, 1√

3

)
, and

(
−1√
3
, 1√

3

)
, and the weight coofficient of

1 is assigned to all of the points. The stiffness matrix is then equivalent to the

sum of the weighted evaluations, and can be expressed as:

K = ab

n∑
j=1

n∑
i=1

wi wj BT (ξi, ηj) DB (ξi, ηj) (2.71)

A second-order Gauss integration scheme will yield exact results for at most

degree-3 polynomial integrands. For the stiffness matrix above, the strain

matrix B is a linear polynomial in ξ and η. Thus, the integrand is a product
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of two linear polynomials which is a quadratic one. Therefore the formulation

above provides the exact evaluation of the stiffness matrix.

Mass matrix for a quadrilateral element is evaluated as

M =

∫ +1

−1

∫ +1

−1
ab ρNT N dξdη (2.72)

which when evaluated explicitly, results in the element mass matrix below

M =
ρhab

9



4 0 2 0 1 0 2 0
0 4 0 2 0 1 0 2
2 0 4 0 2 0 1 0
0 2 0 4 0 2 0 1
1 0 2 0 4 0 2 0
0 1 0 2 0 4 0 2
2 0 1 0 2 0 4 0
0 2 0 1 0 2 0 4


(2.73)

The equation of motion for the element is described as

M
∂2U

∂t2
+ KU = P (2.74)

where U is the element nodal displacement and P is the nodal load. Con-

sidering that the analysis will be conducted in the frequency domain where

∂2U
∂t2

= −ω2U , we can simplify the above as

(
K− ω2M

)
U = P (2.75)

Therefore, the dynamic stiffness of the quadrilateral element can be

represented by (K− ω2M) where K and M are as previously defined. Ele-

ment matrices discussed above can be assembled into the global matrix. The

procedure will be discussed in Chapter 4.
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2.3.2 Rigid-Foundation Elements

In the work presented herein, the interface between the soil and the

structure is assumed to be a rigid foundation. The foundation is composed of

a horizontal mat and vertical side walls, embedded into the soil layers. The

rigid foundation is as shown in Figure 2.3 below:

Figure 2.3: Rigid Foundation

The foundation in Figure 2.3 can be represented with rigid elements,

which do not deform axially or flexurally. A rigid element ensures a fixed

distance between any two nodes of the foundation. As a result, each node

is rigidly connected to all of the other nodes. This represents a convenient

simplification for the purposes of this study. Flexible connection elements

may be used for other cases as needed.

In order to model the rigid foundation mat and walls, we need to im-

plement some conditions to the foundation nodes in order to ensure rigid-body

behavior. This implies that the distance between any two nodes within the

foundation is constant at all times. Alternatively, one reference node, e.g.,
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central node of the foundation, can be connected by rigid elements to all the

other nodes.

Figure 2.4: Representation of Foundation using Rigid Links

The reference node can be different from the center of mass of the

foundation. It should be chosen on the basis of convenience.

Let us examine the connection between one pair of nodes of the foun-

dation.

Figure 2.5: Rigid Connection

The motion of both nodes is governed by the overall translation of

the foundation as well as the rotation of the foundation with respect to the

reference node.
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A purely translational motion will not change the distance between the

two nodes in either the horizontal x or vertical z directions. Therefore, the

displacements of both nodes in the x and z direction remains the same, i.e

uax = ucx and uay = ucy.

A rotation of the foundation however will cause a change in the dis-

tance between the two nodes in terms of the x and z directions. The changes

are ∆x and ∆z, respectively. Positive counterclockwise rotation convention

is assumed. As seen in Figure 2.5, a rotation of θ will induce a change of

distanceof:

∆x = −R2θ (2.76)

∆z = R1θ (2.77)

Using the above relationships to express the overall change of coordi-

nates between the two nodes, we get:

uax − ucx +R2θ = 0 (2.78)

uay − ucy −R1θ = 0 (2.79)

Additionally, we have equilibrium of external forces that actson the two

nodes. In essence,

Fax = −Fcx (2.80)

Fay = −Fcy (2.81)
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Combining all the relationships defined above together with identity

properties allows for expression of the rigid connection as a 7-by-7 system of

equations expressed in matrix form.



0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
−1 0 0 0 +1 0 −R2

0 −1 0 0 0 +1 R1

0 0 +1 0 0 0 0
0 0 0 +1 0 0 0
0 0 −R2 R1 0 0 0





u1x
u1y
F1x

F1y

u2x
u2y
u2θ


=



−F1x

−F1y

0
0
−F2x

−F2y

M2


(2.82)

This matrix is singular, which is acceptable because the rigid link is not an-

chored down by boundary conditions.

The choice of expressing the rigid connection as an 7-by-7 matrix as

opposed to the minimum required five degress of freedom matrix is for ease

of assembly into the global matrix. Mapping of the stiffness matrix to the

global matrix will be optimized for an 8-by-8 quadrilateral element matrix.

Details of this optimization will be discussed in Chapter 4. Representing

the rigid foundation as an 8-by-8 matrix with an eighth row and an eighth

column of zeros, the efficient mapping and assembly procedures developed for

quadrilateral elements can also be applied to rigid elements.

Mapping procedures used in later analysis assume eight degrees of free-

dom in the rigid element stiffness matrix. The degrees of freedom are contri-

butions from four nodes with two degrees of freedom in each node (for x and
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z directions). The first and second node is associated with the actual node

A. Node 1 represents the displacements of node A, and node 2 represents the

loading on node A. Contributions of node 2 to the system of equations are the

force equillibrium equations of Equations 2.80 and 2.81.

The third and fourth nodes are associated with the reference node,

which in this case is the actual center node of the foundation. The third node

represents displacements of the actual center node. The fourth node represents

rotation of the actual center node and a dummy placeholder.

2.3.3 Hyperelements

Hyperelements provide equivalent representations of the regions bor-

dering the near field. The role of the hyperelement is to provide consistent

transmitting boundaries which accurately represent the far field. It contributes

both an equivalent stiffness to the overall soil structure system, as well as con-

sistent nodal forces which represent the internal forces at the boundary of the

near field.

Consistent nodal forces are given by

F =

∫ zi

zi+1

[
Tx(x, z)

Tz(x, z)

]
dz (2.83)

where Tx(x, z) and Tz(x, z) are the x and z components of the traction acting

on the vertical plane. Based on the constitutive relationship, the tractions are
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defined as:

Tx(x, z) = −(λ+ 2G)∂u
∂x
− λ∂w

∂z
(2.84)

Tz(x, z) = −G
(
∂w
∂x

+ ∂u
∂z

)
(2.85)

Semidiscretization of the layers leads to approximation of soil layer

response as: [
u(x, z)

w(x, z)

]
= Ni(z)Ui(x) (2.86)

where Ui(x) is the vector of nodal displacements. The nodal interpolation

function matrix Ni(z) is defined in Equation 2.18. By combining Equations

2.84, 2.85 and 2.86, the traction can be written as:

[
Tx(x, z)

Tz(x, z)

]
=−

[
(λi + 2Gi) 0

0 Gi

]
Ni(z)

dUi(x)

dx

−
[

0 λi
Gi 0

]
∂Ni(z)

∂z
Ui(x) (2.87)

Consistent nodal forces acting on layer i at the vertical boundary (x =

0), are expressed as:

Fi =

∫ zi

zi+1

(Ni(z))T
[
Tx(x, z)
Tz(x, z)

]
dz (2.88)

= −
∫ zi

zi+1

(Ni(z))T
[
(λi + 2Gi) 0

0 Gi

]
Ni(z) dz (

dUi(x)

dx

) ∣∣∣∣
x=0

−
(∫ zi

zi+1

(Ni(z))T
[

0 λi
Gi 0

]
∂Ni(z)

∂z
dz Ui(x)

) ∣∣∣∣
x=0

(2.89)
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The unbounded medium of the hyperelement is to the right of the vertical

boundary (in the positive x-direction).

Evaluating the above integral, we can rewrite the consistent nodal forces

as

F = −A
dU(x)

dx

∣∣∣∣
x=0

+ DU(0) (2.90)

where

Ai =
h

6


2(λi + 2Gi) 0 (λi + 2Gi) 0

0 2Gi 0 Gi

(λi + 2Gi) 0 2(λi + 2Gi) 0
0 Gi 0 2Gi

 (2.91)

Di =
1

2


0 −λi 0 λi
−Gi 0 Gi 0

0 −λi 0 λi
−Gi 0 Gi 0

 (2.92)

The displacement vector U(x) is represented in terms of a linear combi-

nation of semidiscrete modes as seen in Equation 2.58. Both the displacement

vector and its rate of change with respect to x as evaluated at x = 0 can be

reexpressed as:

U(0) = X Γ (2.93)

dU(x)

dx

∣∣∣∣
x=0

= −i X K Γ (2.94)
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Γ is the vector of the modal participation factors, and K is the diagonal

matrix of the plane-strain wave numbers. The wavenumbers are eigenvalues

of Equation 2.34.

The columns of the modal matrix X contain the mode shapes for the

plane-strain case. For n, the number of modes is 2n. The modal matrix is

expressed as:

X = [∆1 ,∆2 , · · · ,∆2n] (2.95)

The mode shapes ∆i can be obtained as the eigenvectors of Equation 2.34.

Further details and discussions can be found in the works of Kausel (1981)

and Ikeda (2008).

The vector of consistent nodal forces F at the vertical boundary can

then be calculated by substituting Equations 2.93 and 2.94 into Equation 2.90.

The final form is:

F =
(
iA X K X−1 + D

)
U (2.96)

With the above expression of the consistent nodal forces as a matrix

product of a certain stiffness matrix multiplied by displacement vector, we

can conclude that the stiffness matrix associated with the hyperelement can

be expressed as:

S = iA X K X−1 + D (2.97)

The stiffness matrix corresponding to the hyperelement of opposite con-

figuration (extending in the negative x-direction) can be found by changing
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the signs of the coupling terms between the horizontal and vertical degrees of

freedom.

2.4 Soil-Structure System Model

Near-field analysis accounts for the variation of soil properties that

occur near an embedded foundation. A complete site-response analysis must

also account for the effects the structure imposes on the soil. The structural

response during an earthquake event depends on the response of the soil, and

motion of the structure also provides feedback that affects the soil. Soil-

structure interaction represents an important part of the site-response analysis,

and is discussed in this section.

The motion of the structural mass imposes an inertial load on the

soil which affects the response of the soil. The inertial interaction can be

represented by including the effects of the structural mass into the analysis

of the soil layer. The presence of the structure can be combined into the soil

analysis by presenting an equivalent stiffness and mass representation into the

soil system of equations.

A representation of a structure with an embedded foundation is shown

in Figure 2.6. In general, a structure is a complex system with numerous

vibration modes and variability in terms of both the mass distribution and

the stiffness. Modeling the complexity of actual structures is not necessary in

studying the effects of soil-property adjustments on the site response.
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Figure 2.6: Structure Embedded in a Soil Layer

A simple representation of the structure used for the purposes of this

study is shown in Figure 2.7. The representative structure is a single point

mass located at the top of a structural beam, the mass of the structure being

m and the stiffness k. The connection between the structure and the founda-

tion is assumed to be rigid. Translation and rotation that occur at the base

of the structure are only due to the motion of the soil.

Figure 2.7: Simple Structure Representation

A way to incorporate the structure into the soil response calculation is

to introduce an equivalent stiffness to the soil system. A spring-mass system
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is used to model the structure, and analysis of equilibrium of the structure

is carried out for the direction of structural movement. The analysis will

produce the equivalent stiffness of the structure which will be added to the

soil stiffness. Calculating the response of the soil system with the additional

equivalent stiffness from the structure will produce the response of the soil-

structure system.

The equivalent horizontal stiffness of the structure is determined for

the representation in Figure 2.8.

Figure 2.8: Equivalent Horizontal Stiffness of the Structure

Hysteretic damping is assumed for the structure. The dynamic stiffness

can then be expressed as:

k = ko(1 + 2i βstr) (2.98)

where ko is the stiffness of the structure and βstr is its damping ratio. Denoting

the global displacement of the structure by us and the foundation displacement
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by uf , the equation of motion for the structural mass is:

müs + kus = kuf (2.99)

Assuming time-harmonic response, we have:

üs = −ω2us (2.100)

Substituting Equation 2.100 into Equation 2.99 and rearranging gives

an expression for the displacement of the structure in terms of the foundation

displacement:

us =
kuf

−ω2m+ k
(2.101)

The lateral force that occurs on the spring is therefore:

F = k(us − uf ) (2.102)

= k

(
kuf

k − ω2m
− uf

)
(2.103)

= k

(
k

k − ω2m
− 1

)
uf (2.104)

and, if the force acting on the foundation is expressed as

F = kequf (2.105)

then the equivalent horizontal stiffness is

keq = k

(
k

k − ω2m
− 1

)
(2.106)

For a nearly rigid structure, the equivalent stiffness approaches ω2m

which is the equivalent of applying the inertia of the mass directly to the soil

system.
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If foundation rotation is considered, additional modification is needed

to incorporate both the horizontal and rotational effects of the structure on the

soil. Effects of rotation can be analyzed by examining the moment equilibrium

of the structural mass. The mass displacement and rotation are as shown in

Figure 2.9:

Figure 2.9: Displacement of Structural Mass and Foundation

In Figure 2.9, θ is the counterclockwise-positive rotation of the founda-

tion base and h is the height of the structure. Small rotation is assumed. The

displacement of the structure due to rotation is hθ and the displacement due

to bending is:

uflex = us − uf + hθ (2.107)

Considering equilibrium of forces in the horizontal direction leads to:

müs =
(
−ω2m

)
us = −k (us − uf + hθ) (2.108)
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The displacement of the structural mass can be determined by rear-

ranging Equation 2.108. The structural displacement is found to be:

us =
kuf − khθ
−ω2m+ k

(2.109)

The horizontal force exerted on the mass is equal to the force of the

spring undergoing a displacement uflex. Therefore, the lateral force that occurs

on the spring is:

F = k (us − uf + hθ) (2.110)

= k

(
kuf − khθ
−ω2m+ k

− uf + hθ

)
(2.111)

= k

(
k

k − ω2m
− 1

)
uf − k

(
kh

−ω2m+ k
− h
)
θ (2.112)

Equation 2.112 provides the same horizontal equivalent stiffness as previously

derived in Equation 2.106.

Additionally, Equation 2.112 establishes the coupling components be-

tween the rotation and displacement of the soil-structure system. The rela-

tionship between rotation and the horizontal force is observed as the coefficient

of θ in equation 2.112.

The moment acting at the base of the foundation is:

M = −kuflexh (2.113)

= −k
(
kuf − khθ
−ω2m+ k

− uf + hθ

)
h (2.114)

= −k
(

kh

−ω2m+ k
− h
)
huf + kh

(
kh

−ω2m+ k
− h
)
θ (2.115)
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Combining Equation 2.112 and Equation 2.115, the force and moment

acting on the foundation due to the structural displacement can be expressed

in matrix form:

F

M

 =

 k
(

k
k−ω2m

− 1
)
−k
(

kh
−ω2m+k

− h
)

−k
(

kh
−ω2m+k

− h
)

kh
(

kh
−ω2m+k

− h
)

uf
θ

 (2.116)

Therefore, the equivalent stiffness of the structure to be added to the

soil is:

Keq =

 k
(

k
k−ω2m

− 1
)
−k
(

kh
−ω2m+k

− h
)

−k
(

kh
−ω2m+k

− h
)

kh
(

kh
−ω2m+k

− h
)
 (2.117)

The structural mass will not be explicitly represented by a degree of

freedom in the analysis. Instead, the equivalent dynamic stiffness is included

in the system in the process of evaluating the foundation response. Once

the foundation displacement is obtained, the structural acceleration can be

computed as:

üs = − k
m

(us − uf + hθ) (2.118)

where the structural displacement us is computed by substituting the founda-

tion response into Equation 2.109. The relative structural displacement can

be found by subtracting the foundation displacement from us.
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Chapter 3

Soil Properties Consistent with Deformation

The site-response analysis that will be conducted in this research is

based on two alternative sets of soil properties: hypothetical and actual. The

latter are those of a site in Mexico City subjected to the 1985 earthquake. The

soil properties and their adjustments with respect to the site response will be

discussed in this chapter.

The underlying assumption in site-response analysis is that the soil

is made up of stratified layers. A one-dimensional site characterization is

typically considered sufficient as the soil layers are assumed to be homogeneous

in the horizontal direction. In the context of equivalent linear analysis, the

soil is assumed to be a linear viscoelastic solid and can be represented as a

combination of elastic springs and viscous dashpots (Kramer, 1996).

Soil properties initially assigned to each layer correspond to small strain

levels. Soil properties of interest include the shear modulus, damping ratio,

Poisson’s ratio and mass density. Many other soil properties contribute to site

characterization but only the properties listed are considered for the present

analysis.
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Determination of soil properties can be achieved by different means, for

example, lab testing of soil samples taken from the site. Different methods of

determining the shear modulus from samples are available (Kramer, 1996).

For a vertically propagating wave of frequency ω, the soil response can

be expressed as a function of location and time as:

u(z, t) = A ei(ωt+kz) +B ei(ωt−kz) (3.1)

where A is the amplitude of the upward wave, B is the amplitude of the

downward wave and k represents the wavenumber. The wavenumber can be

expressed in terms of shear-wave velocity as:

k =
ω

Cs
(3.2)

where Cs is the measured shear-wave velocity. The shear-wave velocity also

characterizes the fundamental frequency of the soil deposit, given by

ωfund =
2πCs
4H

(3.3)

The measured shear wave velocity provides the shear modulus for the

soil. The small-strain shear modulus is expressed as:

Gmax = ρC2
s (3.4)

where ρ is the density of the soil.

Poisson’s ratio for clayey soil is typically 0.3 to 0.4 and about 0.25 for

sandy oil. Combined with the shear modulus, Poisson’s ratio defines the Lamé
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modulus to be used in constructing the stiffness matrices described in Chapter

2. The Lamé modulus is expressed as:

λ =
2Gν

1− 2ν
(3.5)

Damping of the soil is determined by either a cyclic triaxial test or a

resonant column test. Generally accepted values range from 1-5% for small

strain and up to 20% for high magnitude excitations.

Presence of damping in the soil is integrated into the site-response

analysis through the use of complex shear modulus. The latter can repre-

sent hysteretic damping approximately, and is evaluated according to Kramer

(1996) as:

G∗ = G
(

1− 2β2 + i2β
√

1− β2
)

(3.6)

where β is the soil’s damping ratio.

For damping ratio values normally encountered in practice (up to 20%),

the complex shear modulus expression can be simplified as:

G∗ ≈ G(1 + i2β) (3.7)

Determination of related parameters, including the Lamé modulus,

complex wavenumber and complex shear-wave velocity will be based on the

complex shear modulus given in Equation 3.7.
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3.1 Theoretical Site Characterization

The first part of the soil-structure system analysis involves an idealized

soil layer supporting a massive structure. This case study can be representative

of a nuclear power plant with embedded foundation. The soil is assumed to

be homogeneous for the small-strain case. However, the soil properties will

eventually vary due to deformation.

A set of parameters to be used in this case study is chosen based on val-

ues commonly observed in practice for similar situations. The soil parameters

are:

G = 8 · 107N/m2 (3.8)

ρ = 2000 kg/m3 (3.9)

βSOIL = 0.05 (3.10)

ν = 0.4 (3.11)

The corresponding shear-wave velocity of the layer is 200 m/s, and the

height of the soil medium is chosen to be 240 meters. Analysis of the soil

requires division of the domain into layers; the number of layers is chosen to

be 24. The layers will further be divided into a number of sublayers to satisfy

the thin layer requirements previously described. An appropriate number of

sublayers can be determined based on the maximum sublayer thickness allowed

by the analysis, which will be discussed in Chapter 4.

Input ground motion deemed appropriate for the theoretical case study

is the El Centro earthquake motion. Data used in the analysis represents the

48



corrected North-South component of the El Centro ground motion, which is

shown in Figure 3.1. The El Centro input motion has several advantages

as a representative ground motion which leads to its wide use in earthquake

research.

Figure 3.1: El Centro Recorded Ground Motion

3.2 Mexico City Site Characterization

Soil-structure system analysis will also be conducted using soil prop-

erties adjusted for the level of deformation in the near field during actual

earthquake events. Soil-structure system response varies widely depending on

local soil properties and site-specific conditions. The effects of soil-structure

interaction are especially pronounced in locations with soft soils.
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Natural frequencies of the soil layer also determines the dominant fre-

quencies of wave motion that will be propagated from the base of the soil layer

to the foundation and structure. Relationships between the frequencies of mo-

tion and the frequencies of the soil-structure system can significantly affect the

structural response. This is especially important for soil layers with natural

periods comparable to the structural period.

A suitable choice for an actual case study is the Mexico City earthquake

of September 19, 1985. The Mexico City event is especially interesting to

examine because of the level of damage that occurred during the earthquake.

The level of motion was substantially amplified due to the dominant periods

of the soil layer. Excitation frequencies were close to the range of the natural

frequencies of many structures in the region. Amplification that occurred due

to resonance caused significant damage to Mexico City’s high-rise buildings.

3.2.1 General Site Conditions

An important aspect of the Mexico City site is its location on lake de-

posits. Development of Mexico City occurred on the former lakebed of Lake

Texcoco, and the city is situated on top of the lakebed’s soft clay deposits.

The earthquake site encompasses both the Texcoco lakebed composed of softer

clays and the Xochimilco-Chalco lakebed composed of stiffer clays. Locations

of recording stations relative to the lakebeds of the Mexico City site are shown

in a map by Seed et al. (1988) and provided below.
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Figure 3.2: Recording Stations and Lakebeds of Mexico City (from Seed
et al., 1988)

Soft clay deposits of the Texcoco lakebed exhibits shear-wave velocities

ranging from 40-90 m/s, with layer depth ranging from 26-44 meters. Un-

derneath the soft deposits lie stiff rock formations with shear-wave velocities

upwards of 500 m/sec. Mexico City’s earthquake damage is most prominent in

structures of 6 to 18 stories. The level of damage is consistent with the natural

periods that correspond to the the shear-wave velocities of the soft deposit.
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Make up of the soil characteristics in the Texcoco lakebed can be seen

in the soil profile provided by Seed et al. (1988) in Figure 3.3.

Figure 3.3: Basin of Valley of Mexico (from Zeevaert, 1971)

The epicenter of the Michoacan earthquake was located in the Cocos

Plate subduction zone in the Pacific Ocean, more than 350 km away from

Mexico City. Seismic waves propagated east towards Mexico City, initially

being recorded at Caleta de Campos, and also recorded in various stations in

the Mexico City area. A schematic drawing of the locations of the earthquake

epicenter and recording stations by Celebi et al. (1987) is shown in Figure 3.4.
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Figure 3.4: East-West Profile of Mexico City (from Celebi et al., 1987)

3.2.2 Site Conditions at Recording Stations

One of the most critical recordings of the earthquake event were recorded

at the UNAM station seen in Figure 3.4. The site of the UNAM (Universidad

Nacional Autónoma de México) recording station is located on rock and hard

soil deposit in the hills zone of Mexico City. The deposit consists of a layer of

fractured lava with soft rock underneath with an estimated shear wave veloc-

ity between 450 m/s to 600 m/s. The fractured lava layer varies in depth and

outcrops of the soft rock are apparent near the recording site. Discussions by

Seed et al. (1988) conclude that these conditions represent the hard layer of

the Mexico City area.

Three stations (CU01, CUMV, CUIP) recorded the ground motions at

the UNAM site. Recordings from all three stations exhibited similar prop-
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erties, with the spectral peaks of all recordings having periods of about 0.9

seconds and 2 seconds. The recordings of the CUMV station are considered

representative of the rock ground motions of Mexico City, and will be used as

the input motion for the Texcoco site-response analysis.

Another recording site of great interest is the SCT recording station.

Although six recording stations were located in the Mexico City lakebed re-

gions, the SCT station was the only one situated in the heavily damaged

regions (Tena-Colunga et al., 2007). The SCT (Secretariat of Communica-

tions and Transportation) station is positioned in the Texcoco lakebed area as

seen in Figure 3.4. Recordings at the SCT represent ground motion recordings

at the surface of the Texcoco lakebed deposit.

The first 4 meters of the SCT soft deposit consist of mostly sand and

silt. Underneath the sand layer lies a thick layer of clay in addition to silty

sand, volcanic glass and fly ash. The 27 meter clay layer has a very high water

content (up to 450%) with an undrained shear strength up to 0.8 kg/cm2. The

last 7 meters of the soft deposit consists of stiff clay and sandy silt, which is

then followed by hard rock layer.

A suspension logging test performed in 1986 was reported by Ovando-

Shelley et al. (2007). Shear-wave velocities of the SCT site tests are shown

in Figure 3.5. Test results demonstrate that the shear-wave velocities of the

soft deposit range between 50-100 m/s. They also confirm the presence of the

hard layer at a depth of about 38 meters.
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Figure 3.5: SCT Suspension Logging Test (from Ovando-Shelley et al., 2007)

Seed et al. (1988) determined the average shear-wave velocity of the

SCT site to be about 75 m/s, and the soil density was estimated to be around

1200 kg/m3. A representative soil profile was constructed as shown in Figure

3.6a. Seed et al. (1988) also developed a representative shear-wave velocity

profile from the results of CPT procedures and direct borehole measurements,

as shown in Figure 3.6b.

A study of the performance of flexible foundations in Mexico City by

Avilés and Pérez-Rocha (2005) provides additional information regarding the

SCT lakebed soil properties. The study proposed a representative shear mod-
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(a) Representative Soil Profile (b) Representative Shear-Wave
Velocity

Figure 3.6: Representative Soil Profile (from Seed et al., 1988)

ulus of 7.8 · 106 N/m2. It also suggested ratio values between properties of the

soft deposit and the underlying hard rock layer. Ratio of the soil densities of

the soft layer and the hard layer is assumed to be 0.8. Ratio of the shear-wave

velocities of the soft layer and the hard layer is approximately 0.2. Addition-

ally, the initial damping ratio is assumed to be 0.05 for the soft soil and 0.03

for the hard layer. Poisson’s ratio is determined to be 0.45 for the soft soil and

0.33 for the hard layer (Avilés and Pérez-Rocha, 2005).

Recorded input motion data used in this research is provided by the

National Oceanic and Atmospheric Administration. Data available for the
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UNAM and SCT recording stations include the North-South and East-West

directions. The UNAM and SCT recorded ground motions shown in Figures

3.7 are for the East-West direction. It is important to note that the recordings

at the two stations did not start at the same time nor did they have the same

duration lengths. The SCT recording started approximately 14 seconds before

the UNAM recording, and its duration is 180 seconds compared to 60 seconds

for UNAM.

Figure 3.7: UNAM and SCT Recorded Motion

Frequency-domain representations of these two motions are shown in

Figure 3.8. Examination of the UNAM motion shows it has significant but

distributed frequency content up to 2 Hz. Frequency content of the SCT

motion is significantly more localized near the 0.5 Hz range, which can be

attributed to the site amplification by the lakebed deposit.
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Figure 3.8: Frequency Domain Representations

The amplification that occurred at the SCT site is well documented

and a summary is provided by Celebi et al. (1987). Peak ground acceleration

for the UNAM recorded motion is 0.035 g and for the SCT motion is 0.17 g.

Amplification of motion in the 0.4 to 0.5 Hz range is most significant with

amplifications of up to a factor of 10 in the horizontal direction (Celebi et al.,

1987). Other sites in Mexico City experienced significant amplification as well

but to lesser extents compared to the SCT site.

The highest level of amplification is observed in the East-West record-

ing at the SCT site. A comparison of the response spectra for the East-West

motions of UNAM and SCT further highlights the amplification of motion es-

pecially for low frequencies. High amplification levels are observed for periods

between 1 to 3 seconds. These periods correspond to structural heights of 10

to 30 stories, and provide justification to the level of damage seen in Mexico

City structures of these heights.
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The range of period with significant amplification is seen in the spectral

ratio shown in Figure 3.9. The significant amplification periods correspond to

the shear-wave velocity profile in Figure 3.6b. Determination of the natural

periods of soil layers can be done using Equation 3.3. For a soft deposit thick-

ness of about 38 meters, these periods corresponds to a shear-wave velocity

range between 50 to 150 m/s. The representative shear-wave velocity of 75 m/s

produces the highest amplification at a period of 2 seconds which corresponds

to the peak spectral acceleration observed in Figure 3.9.

Figure 3.9: Spectral Ratio for UNAM-SCT

Significant amplification levels at the SCT site indicate high levels of

deformation in the Texcoco lakebed deposits. Site-response analysis will pro-

vide insights into the deformation levels and soil-property adjustments of the

SCT site. The East-West ground motions at the SCT site will be used to

study the effects of soil-property adjustments in the Texcoco lakebed.
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3.3 Adjustments of Soil Properties

The dynamic analysis of dynamic soil-structure system requires accu-

rate representation of soil nonlinearities. The true nonlinear behavior of soil

can be characterized by the soil’s hysteretic stress strain relationship. An

analysis in the time domain would incorporate this relationship into the site-

response analysis. An equivalent linear analysis in the frequency domain oth-

erwise requires a representation of the nonlinear behavior through the determi-

nation of shear modulus and damping consistent with the level of deformation.

3.3.1 Reduction Curves

Theoretical and experimental relationships between levels of strain and

corresponding soil properties are provided by reduction curves. Variation of

the secant modulus in terms of shear strain is characterized by normalized

modulus reduction curves.

Loss of energy due to hysteretic dissipation is represented by material

damping curves. Numerous research and laboratory tests have been conducted

for different types of soil, and empirical curves to be used in site-response

analysis have been documented by Vucetic and Dobry (1991) for clays and

Seed and Idriss (1970) for sands.

A factor that significantly affects the modulus reduction and damping

characteristics of soil is the plasticity index. Site-response analysis of soft clay

deposits with different plasticity index values resulted in significant differences

in peak spectral acceleration and period, as shown in Figure 3.10.
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Figure 3.10: Effect of Plasticity Index on Site Response (from Vucetic and
Dobry, 1991)

Soils with high plasticity index exhibit more linear behavior and less

damping for higher strain levels. The linear behavior of highly plastic soils

contribute to significant ground motion amplifications seen in Figure 3.10.

Modulus reduction and damping curves corresponding to the different plastic-

ity index values in Figure 3.10 are shown in Figure 3.11.

(a) (b)

Figure 3.11: Modulus Reduction and Damping of Clays of Various Plasticity
Index Values (from Vucetic and Dobry, 1991)
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3.3.2 Hyperbolic Model

Reduction curves obtained from experimental results can be categorized

based on various site characteristics, and correlation of the reduction curves to

these site characteristics has been determined. These correlations were initially

used to develop hyperbolic models that predicted the reduction curves (Hardin

and Drnevich, 1972).

The hyperbolic model provided a relationship between shear-stress and

strain as:

τ =
γ

1

Gmax

+
γ

τmax

(3.12)

The reference strain in the hyperbolic model is defined in terms of the small-

strain modulus. It is expressed as:

γr =
τmax
Gmax

(3.13)

The hyperbolic relationship is illustrated in Figure 3.12.

Both sides of Equation 3.12 can be divided by the strain and rearranged

to produce the normalized shear modulus. The formulation for the normalized

shear modulus reduction curve is expressed as:

G

Gmax

=
1

1 + γh
(3.14)
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Figure 3.12: Stress-Strain Curve based on the Hyperbolic Model

The hyperbolic strain γh is found by:

γh =
γ

γr

[
1 + a · exp

(
− b

(
γ

γr

))]
(3.15)

where reference strain γr is as defined above (depends on material soil types),

and a and b are coefficients that corrects the stress-strain curve shape based on

soil types. The normalized material damping curve is also described in terms

of the hyperbolic strain as:

D

Dmax

=
γh

1 + γh
(3.16)

where Dmax is the upper limit for damping determined based on soil types
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and saturation levels. Both the shear modulus reduction and damping curves

are plotted semi-log in terms of strain. The reduction curves predicted by the

hyperbolic model is shown in Figure 3.13.

Figure 3.13: Hyperbolic Model (from Darendeli, 2001)

3.3.3 Darendeli Model

An alternative to the hyperbolic model based on empirical reduction

curves was developed by Darendeli (2001). The Darendeli model for modulus

reduction expands on the hyperbolic form of Equation 3.14 by introducing a

curvature coefficient. The coefficient adjusts the curvature of the predicted

curves closer to the empirical curves. Normalized modulus curves predicted

by the Darendeli model are defined by the following expression (Darendeli,

1997).

G

Gmax

=
1

1 +
(
γ
γr

)a (3.17)
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Reference strain γr can be determined based on previously established

relationships with the plasticity index (PI) and overconsolidation ratio (OCR)

of the soil. It is also affected by the mean effective confining pressure σ′0.

Darendeli expressed the reference strain as:

γr =
(
σ′0

)0.3483
(0.0352 + 0.0010 · PI ·OCR0.3246) (3.18)

where σ′0 is expressed in atmospheric-pressure units. The mean effective stress

in Equation (Dmin) and (γr) can be calculated as:

σ′0 = σ′v

(
1 + 2Ko

3

)
(3.19)

where Ko is the at-rest earth pressure coefficient and σ′v is the vertical effective

stress of the soil layer. Ko is generally assumed to be 0.5 for most clays.

The relationship between G and Gmax can be inserted in the stress-

strain constitutive relation to express the shearing stress as:

τ =
γ

1 +
(
γ
γr

)a ·Gmax (3.20)

Energy dissipation due to nonlinear soil behavior contributes a sig-

nificant portion of damping. Nonlinearity of the stress-strain relationship is

assumed to follow the Masing behavior (Masing, 1926) with an assumed hys-

teresis loop as shown in Figure 3.14. The cyclic stress-strain path of the

hysteresis loop is assumed to be constructed by scaling the monotonic loading

path by two.
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Figure 3.14: Masing Behavior Hysteresis Loop

The assumption of Masing behavior can be used to estimate the equiv-

alent viscous damping (Darendeli, 2001). Dissipation of energy AL is the area

inside the hysteresis loop which, based on Masing behavior, is equal to 8 times

the area enclosed by the backbone curve. It is calculated to be:

AL = 8

∫
τdγ − AT (3.21)

where the stored strain energy AT is

AT =
τγ

2
(3.22)

Thus, the viscous damping of the hysteretic system can be written as:

D =
AL

4πAT
(3.23)

The Masing damping can be calculated by evaluating the dissipated

energy and the stored energy using Equation 3.21 and 3.22 and substituting
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the results into Equation 3.23. For a curvature coefficient a = 1, the Masing

damping is evaluated as:

DMasing,a=1.0(%) =
400

π

γr

[
γ − γr ln

(
γ + γr
γr

)]
− 1

2

γ2

1 +
γ

γr
γ2

1 +
γ

γr

(3.24)

The integration in Equation 3.21 does not have a closed-form solution

for curvature coefficients other than 1. Equation 3.21 has been evaluated

numerically for curvature coefficients between 0.7 to 1.3. The results were

used to provide a relationship between the Masing damping for coefficient a

in terms of the damping for coefficient of 1.

DMasing = c1 DMasing,a=1.0 + c2 DMasing,a=1.0
2 + c3 DMasing,a=1.0

3

(3.25)

where DMasing,a=1.0 represents the Masing damping for a = 1. Coefficients c1,

c2 and c3 were determined by fitting the damping predicted in Equation 3.25

to the damping calculated numerically. Expressions for the coefficients are

provided below:

c1 = −1.1143a2 + 1.8618a+ 0.2523

c2 = 0.0805a2 − 0.071a− 0.0095

c3 = −0.0005a2 + 0.0002a+ 0.0003 (3.26)

The Masing damping does not account for small strain damping, and

tends to overestimate experimental damping values for higher strains.
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Correction factors in terms of the shear modulus reduction were determined

by Darendeli as:

F = b ·
( G

Gmax

)0.1
(3.27)

The scaling coefficient b is a function of the number of cycles of loading

(N). Darendeli determined the coefficient b to be:

b = 0.6329− 0.0057 ln N (3.28)

The expression for the strain-consistent damping which limits the damp-

ing at higher strains and incorporates minimum damping is provided below:

D = b

(
G

Gmax

)0.1

DMasing +Dmin (3.29)

Determination of the minimum damping is based on experimental data.

Small-strain damping observed in laboratory tests is correlated with the plas-

ticity index, overconsolidation ratio, and excitation frequency of soil samples.

The relationship between these factors and the minimum damping is deter-

mined to be:

Dmin(%) =
(
σ′0

)−0.2889(
0.8005 + 0.0129 · PI ·OCR−0.1069

)(
1 + 0.2919 ln f

)
(3.30)

In Equation 3.30, the mean effective stress σ′0 is expressed in atmospheric-

pressure units, and excitation frequency f is in units of Hertz. Excitation

frequency is included in Equation 3.30 although it is noted that its effects are
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less significant compared to the mean effective stress and soil plasticity. Fur-

ther details concerning the derivation of the equations above and parameter

determination can be found in the discussions by Darendeli (2001).

The Darendeli model is used to determine the reduction curves for the

purposes of the theoretical case study. For most site-response computations

under earthquake loading, the number of cycles is assumed to be 10 and the

excitation frequency is assumed to be 1 Hz (Kottke, 2010). Additionally, the

curvature coefficient a can be taken to be 0.919.

Site conditions assumed for the theoretical case study has a plasticity

index of 0, and the soil is normally consolidated (OCR = 0). The shear

modulus reduction and damping curves generated by the Darendeli model for

the theoretical case study are shown in Figure 3.15.

Figure 3.15: Reduction Curves for Theoretical Case Study based on
Darendeli Model

69



3.3.4 Site-Specific Reduction Curves

Reduction curves applicable for the SCT response analysis are deter-

mined based on the site characteristics of Mexico City. A contributing factor

affecting the dynamic soil properties of the SCT site is the plasticity of the

Mexico City clays. Soft clay deposits at the site have very high plasticity lev-

els with index values ranging between 150 to 250. Reduction curves based on

experimental data on Mexico City clays were constructed as shown in Figure

3.16 (Leon et al., 1974; Romo and Jaime, 1986).

Figure 3.16: Mexico City Empirical Reduction Curves (from Leon et al.,
1974; Romo and Jaime, 1986)

The Mexico City empirical curves closely resemble the reduction curves

shown in Figure 3.11 corresponding to plasticity index of 200. High-plasticity
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lacustrine deposits exhibit a more-nearly linear soil behavior compared to other

clays in Figure 3.11. The linear behavior for lower strains caused high levels

of amplification of the UNAM ground motion at the SCT site. Nevertheless,

nonlinear behavior does significantly affect the SCT site response at higher

strains observed during the Mexico City earthquake.

Another important factor affecting the dynamic soil properties of Mex-

ico City clay is the loading condition of the region. Mexico City was initially

built on an island on the western part of Lake Texcoco. Throughout its history,

the original site of Mexico City has experienced more urbanization compared

to its surrounding area. The development of Mexico City led to intense pump-

ing of water from its aquifers as well as the draining of Lake Texcoco to prevent

flooding of the city.

Development levels of the western part of Lake Texcoco along with its

history of water withdrawal contribute to higher effective stresses. The lakebed

is categorized into two zones based on this distinction: the Preloaded zone and

the Virgin zone. Higher effective stresses of the Preloaded zone generated more

clay consolidation compared to the Virgin zone. Preloaded zone clays are less

compressible and more resistant than Virgin zone clays due to lower water

content in the Preloaded zone (Romo et al., 1988)

Both the Preloaded and Virgin zones are underlain by hard forma-

tions. The thickness of the Preloaded zone clay deposits is less than 50 meters,

whereas the softer clay of the Virgin zone has a thickness of 50 to 75 meters

(Jaime and Romo, 1988). A contour map of the depths to hard formation was
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constructed by Jaime (1987) and is shown in Figure 3.17. The Preloaded zone

is determined to be the region between the 25-meter and the 50-meter contour

lines. The Virgin zone is determined to be the region east of the 50-meter

contour line.

Figure 3.17: Depth to Hard Formation (from Jaime, 1987)

The SCT recording station is located in the Preloaded zone, and soil

properties corresponding to this region will be used for the SCT site-response

analysis. Stratigraphical profile of the Preloaded zone is shown in Figure

3.18 (Romo et al., 1988). Depth of the ground water table is estimated at

4 meters. The soil profile measured in the Preloaded zone matches the soil

profile determined by Seed et al. (1988).
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Figure 3.18: Texcoco Lakebed Stratigraphic Profile (from Romo et al., 1988)

The effective stress at the SCT site can be determined using the same

approach used for the theoretical case study. A Darendeli model for the re-

duction curves of the SCT site can be constructed using characteristics of the

Lake Texcoco deposits as input parameters. The Darendeli reduction curves

can be fitted on the basis of the soil properties of Lake Texcoco.
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Applicability of the Darendeli model can be justified by examining lab-

oratory test results for the Preloaded zone. Triaxial compression tests were

carried out on Preloaded-zone clay samples to produce the stress-strain curves

shown in Figure 3.19 (Romo et al., 1988). Stress-strain curves of the Preloaded

zone exhibit a near-hyperbolic shape. The Darendeli model was derived as an

extension of the hyperbolic model, and thus is promising as the model for the

reduction curves.

Figure 3.19: Stress-Strain Relationship for Preloaded Texcoco Lakebed (from
Romo et al., 1988)

Furthermore, the Darendeli model can be justified by comparing the

Darendeli reduction curves to empirical curves for the Preloaded zone. Results

of the cyclic triaxial and resonant column tests were used to generate a range

of shear modulus reduction curves for the Preloaded zone (Romo et al., 1988).
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The range of empirical reduction curves in Figure 3.20 are compared to the

range of curves predicted by the Darendeli model for the different layers of the

SCT site.

Figure 3.20: Shear Modulus Reduction Curves for SCT Site (from Romo
et al., 1988)

Comparison between the empirical modulus reduction curve and the

curves predicted by the Darendeli model shows good agreement. Reduction

curves on the left correspond to smaller depths and the reference strains in-

crease for higher mean effective stresses. Reference strain for the Preloaded

zone ranges between 0.1% and 0.6% with an average of approximately 0.3%.

The damping level determined from the Preloaded zone samples is

shown in Figure 3.21 (Romo et al., 1988). The Darendeli damping curve

corresponding to the Dmin of the Preloaded zone is plotted for comparison.

The damping curve predicted by Darendeli reasonably matches the

damping curve obtained from empirical results for lower strain levels. The
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Figure 3.21: Damping Curves for SCT Site (from Romo et al., 1988)

Darendeli model does not match the empirical curves for strains higher than

0.1%. It more closely resembles the damping curve expected for normal clays,

whereas the Mexico City clay exhibits aberrant behavior and unusually low

damping. Comparison between Mexico City damping level and damping levels

of other clays measured can be seen in Figure 3.22.

Figure 3.22: Measured Damping Level of Normally Consolidated Clay (from
Dobry and Vucetic, 1987)
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Discrepancy in the damping curves may be attributed to the fact that

the assumption of Masing behavior overestimates the higher-strain damping.

The correction factor applied to the Masing damping is derived empirically

based on normal clay, and does not adequately predict the Lake Texcoco case.

Damping curve obtained from the Preloaded zone test results will be used for

the SCT site-response analysis.
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Chapter 4

Equivalent Linear Analysis with

Perturbation Method

4.1 Process of Equivalent Linear Analysis

In previous chapters, the ingredients of both the free-field and near-

field analyses have been established. Models have been formulated for each of

the components of the analysis. The soil properties and characteristics to be

applied in the analysis have also been previously determined. In this chapter,

we put to use the results of the previous discussions in order to provide an

overall analysis of soil-structure systems.

Numerous methods of conducting site-response analysis are available.

A comprehensive review has been done detailing the different approaches and

possible analysis techniques, including linear analysis, equivalent linear anal-

ysis, and fully nonlinear analysis (Kramer, 1996).

Nonlinear analysis is considered to be the most detailed and accurate

approach, as it accounts for the entire hysteretic behavior of the soil. As

described by Stewart et al. (2008), a fully nonlinear analysis conducted in the

time domain would include the true hysteretic properties for the duration of

the earthquake event. Soil layers are modeled as lumped masses and nonlinear
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springs. In this case, the response of the soil-structure system is calculated for

each time step. The shear springs behave according to the actual shear stress-

strain relationship of the soil. There is no need for ad hoc strain-consistent

adjustment of the soil-properties in a fully nonlinear time-domain analysis.

Although the time-domain analysis described produces accurate results,

many drawbacks of the method prevent it from being a practical approach to

the solution. As discussed by Stewart et al. (2008), a time-domain analysis

can become very computationally intensive. The process of incorporating the

entire shear stress-strain relationship into the site response calculation is not

practical for a detailed analysis consisting of many elements. This leads to the

need for an alternate approach.

Equivalent linear analysis conducted in the frequency domain obviates

the need to repetitively conduct site-response analysis for a given set of soil

properties. Instead, the soil properties are assumed to be linear by approxi-

mating the nonlinear stress-strain curve as a linear secant modulus. An ap-

proximate site response can be generated using the linear set of soil properties.

The initial set of properties correspond to the small strain shear modulus Gmax

and small strain damping Dmin.

Results of the initial analysis are accurate only if the response calcu-

lated in the analysis represents negligible strain levels. Cyclic tests on most

soils show that strain levels under 10−6 exhibits linear behavior. However,

strain levels between 10−6 to 10−2 are expected during earthquake events, and

assumption of small strains is no longer appropriate.
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Further iterations of the site-response analysis are needed to ensure

compatibility between the strain-dependent properties and the level of strain

experienced. Representative strain levels of the initial analysis are estimated

after each analysis, and a new set of soil properties is applied to the domain

consistently with the level of deformation of the previous analysis. Another

linear analysis is conducted using the updated soil properties, and the process

is repeated until convergence of the soil properties. A criterion for acceptable

level of convergence can be defined with respect to the level of accuracy desired.

Once convergence is achieved, the strain-consistent properties are used to out-

put the dynamic response of the system. The process for a one-dimensional

equivalent linear analysis is illustrated in Figure 4.1 below.

Figure 4.1: Process for a One-Dimensional Equivalent Linear Analysis
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In the process above, a regular layered medium is analyzed using an

initial set of properties for each layer. The modulus reduction and damping

curves discussed in the previous chapter are used. Shear strain of a soil layer

with constant height can simply be calculated as the difference of displacement

of the top and bottom of the layers divided by the height. Shear strain for the

ith soil layer can be calculated as follows:

γzx =

[
∂

∂z

∂

∂x

]
NiUi

=

[
∂Ni

∂z
0
∂Ni+1

∂z
0

]
Ui

=

[
1

h
0
−1

h
0

]
Ui (4.1)

Representative strain can be measured as two-thirds of the root-mean-

square. The effective strain is usually about 60-70% of the maximum strain

value. As the analysis is done in the frequency domain, the root mean square is

evaluated using Parseval’s theorem and the effective strain is expressed below:

γeff =
2

3

√
1

n2

∑
n

|X(f)|2 (4.2)

Results obtained from the one-dimensional equivalent linear analysis

adequately characterize the nonlinear nature of the regular soil layer. However,

any inclusion or embedded foundation in the soil layer will change the soil

response near that inclusion. Deviation of the strain level from the regular

layered values indicates the properties of soil elements in the near-field will no
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longer be consistent with the level of deformation. Further adjustments of the

soil properties are needed to ensure consistency with the strain levels.

Analysis for a two-dimensional case can be initiated using the converged

properties of the free-field counterpart. Regions far away from the inclusion

behave the same way as a regular layered medium. Therefore, soil proper-

ties in this region are no longer adjusted in the near field analysis. For the

region near the inclusion, additional iterations are performed to further esti-

mate the compatible values of strain level and soil properties. The process a

two-dimensional analysis is illustrated in Figure 4.2.

Figure 4.2: Process for a Two-Dimensional Equivalent Linear Analysis
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In the process outlined above, a near-field equivalent linear analysis

is conducted once to obtain a first approximation of the near-field response.

In many applications in geotechnical engineering, the first approximation ob-

tained for the near-field is considered adequate, and no further adjustments

are done. However, we sought to analyze the effects of further adjustments to

the soil properties beyond the free-field analysis. Therefore, further iterations

are conducted by adjusting the near-field properties with respect to the up-

dated strain levels, and recalculating the system response using the updated

properties. The same criterion for convergence used in the free-field analysis

can be employed in the near-field analysis.

In the finite element analysis for the near-field region, additional soil

property adjustments are applied to the quadrilateral elements. The shear

strain for a quadrilateral element varies within the element, and a representa-

tive shear strain is calculated as the average of shear strains evaluated at the

integration points.

The effective shear strain for an ith quadrilateral element can be calcu-

lated as follows:

γeff =
1

4

4∑
j=1

[
∂

∂z

∂

∂x

]
Ni(ξj, ηj) Ui(ξj, ηj) (4.3)

where Ni(ξj, ηj) is the shape function defined in Equation 2.61, and ξ and η

are the local coordinates of the element. Substituting the shape functions into

Equation 4.3 and calculating the partial derivatives produces the following
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expression for effective strain:

γeff =
1

16ab

4∑
j=1



−a(1− ξj)

−b(1− ηj)

−a(1 + ξj)

b(1− ηj)

a(1 + ξj)

b(1 + ηj)

a(1− ξj)

−b(1 + ηj)



T

Ui (4.4)

where a and b are the dimensions of the rectangular element.

As previously discussed, the evaluation points for a second order Gauss

integration scheme are at
(
−1√
3
, −1√

3

)
,
(

1√
3
, −1√

3

)
,
(

1√
3
, 1√

3

)
, and

(
−1√
3
, 1√

3

)
.

The Gauss integration points are chosen as the representative strain locations

because the components of the strain matrix at these points were already

computed in the stiffness matrix calculation, thus reducing the computational

effort.
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4.2 Equation of Motion

For the purposes of this study, the equivalent linear analysis done can

be represented in the form of:

KU = P (4.5)

where K is the global stiffness matrix, U is the global displacement vector,

and P is the global force vector. All of these quantities are formed through

assembly of element stiffness matrices and loads. K is the dynamic stiffness

matrix of the system, which already includes the inertial contribution to the

dynamic stiffness. The shear modulus used to construct the global stiffness

matrix is the complex shear modulus, which accounts for material damping of

the system. Hysteretic damping is assumed.

Input ground motion used in the analysis is converted using an FFT al-

gorithm into the frequency domain, and the transform is applied as a boundary

condition on the domain of the system. Once the ground motion is applied, the

system of equations is solved for each frequency to produce both the soil and

structural response in the frequency domain. Time history of the structural

response as well as the surface response of the soil medium can be generated

by calculating the inverse FFT of the analysis results.

A limitation of frequency-domain computations is that the frequency

range must be extended to the maximum usable frequency for the analysis.

Several factors affect the usable frequency. The time step of the time series
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provides a limitation in the form of the Nyquist frequency. A detailed dis-

cussion regarding the usable-frequency limitation was reported by (Kottke,

2010), with the generally accepted result that the frequency of 25 Hz serves as

an acceptable upper boundary. Therefore, for practical site-response analysis,

input motions above 25 Hz can be neglected through the use of a low-pass

filter.

Additionally, it is known that the fundamental frequency of a single

homogeneous soil layer is given by:

ffund =
Cs
4H

(4.6)

where Cs is the shear wave velocity of the soil and H is the thickness of the

layer. The shear wave velocity is defined as:

Cs =

√
Gmax

ρ
(4.7)

A suitable layer height must be smaller than 1
4

of the minimum wavelength of

traveling waves. The minimum wavelength is defined by the following equa-

tion:

λmin =
2π · Cs
ωmax

(4.8)

However, it is often desirable that the layer height represent a finer

discretization, between 1
8

to 1
32

of the minimum wavelength. Therefore, the

maximum soil layer height allowed which ensures adequate discretization is:

hmax =
1

8

2πCs
ωmax

=
π

4

1

ωmax
(4.9)
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Soil layer heights in the site-response analysis must be at most hmax as

defined in Equation 4.9. The height requirement applies for both the free-field

and near-field analyses. It is important to consider that hmax is a function

of Cs, which in turn depends on the shear modulus. As iterations of the

equivalent linear analysis progress, reductions are made to the shear modulus

which translate to smaller maximum layer height requirements. This issue can

be accounted for by either adjusting the layer heights after each iteration to

ensure consistency with the reduced shear modulus, or by defining set layer

heights that meet the requirement in the extreme shear modulus case. The

latter option is used in this research.

Several simplifications can be implemented to improve the analysis pro-

cess and reduce the computational effort. As mentioned above, the highest

frequency that can be correctly analyzed is limited by the thickness of the soil

layer. This reduces the number of frequencies analyzed, as the contribution

of frequencies higher than the determined limit will be set to zero. Addition-

ally, site-response calculations are only carried out for positive frequencies; site

response for negative frequencies can easily be found by taking the complex

conjugate of the positive frequency responses.
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4.3 Boundary Conditions

Response of the soil-structure system due to input ground motion is

found by solving the system of equations above. Before the solution can be

computed, the matrices must be arranged in a certain way to ensure an efficient

process of solution.

The global matrices are formed through assembly of the individual el-

ement matrices. For a free-field analysis, the assembly is simply a series of

connections of the consecutive layer matrices. For a near-field analysis, the

assembly is done based on contributions of the finite element matrices to the

global nodes of the domain. The contributions are pictured in Figure 4.3 .

(a) Hyperelements (b) Quadrilateral Elements

(c) Rigid Connections (d) Structural Representa-
tion

Figure 4.3: Element Contributions to the Global Dynamic Stiffness Matrix
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In addition to assembly of the global stiffness matrix, appropriate bound-

ary conditions must be applied to the system. Input displacement ground

motion applied at the bottom of the soil layer serves as a boundary condition

that represents the source of wave motion propagating through the soil. The

displacement of each of the nodes at the bottom of the layer is fixed to the

frequency-domain value of the specified ground motion.

The recorded ground motion previously described in Chapter 3 will be

used for the site-response analysis. Zero padding of the recorded time history

is done to ensure an efficient FFT process and to allow dissipation of the

transient motion. The resulting frequency-domain motion is divided by −ω2

to produce the displacement input motion, as the recorded input motion was

originally an acceleration recorded motion.

Actual earthquake motions are often recorded at the surface of the soil.

An input ground motion at the bottom of the layer that would produce the

recorded motion at the top must first be determined through a one-dimensional

analysis. The process of determining the base motion that corresponds with

a recorded surface motion for a fixed set of soil properties is shown in Figure

4.4.

A white noise of unit magnitude is applied at the bottom and the cor-

responding surface motion is calculated using the free-field analysis (Figure

4.4a). The site response solution is then normalized by dividing the site re-

sponse by the surface response (Figure 4.4b). The site response corresponding

to a unit motion at the top is then scaled by the actual recorded surface motion
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Figure 4.4: Determination of Base Motion

(Figure 4.4c). The resulting response of the bottom of the soil layer represents

the input ground motion that corresponds to the recorded surface motion.

The bottom input (bedrock) ground motion is then applied as the

boundary condition for subsequent analysis. Removing the last rows and

columns of the matrix equation that corresponds to the degree of freedom of the

boundary enforces a zero-displacement boundary condition. Additional modi-

fication to the matrix equation is needed for non-zero displacement boundary

conditions.

This modification can be achieved by adding an additional degree of

freedom to the system of equations for each prescribed displacement boundary

condition.
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In essence, a matrix system of equations of the form:


K1,1 · · K1,n−1 K1,n

· · · · ·
· · · · ·

Kn−1,1 · · Kn−1,n−1 Kn−1,n
K1,n · · Kn,n−1 Kn,n




U1

·
·

Un−1
Un

 =


P1

·
·

Pn−1
Pn

 (4.10)

is written as



K1,1 · · K1,n−1 K1,n 0 0
· · · · · 0 0
· · · · · 0 0

Kn−1,1 · · Kn−1,n−1 Kn−1,n −1 0
K1,n · · Kn,n−1 Kn,n 0 −1

0 0 0 −1 0 0 0
0 0 0 0 −1 0 0





U1

·
·

Un−1
Un
Pn−1
Pn


=



0
·
·
0
0

−Ûn−1
−Ûn


(4.11)

In Equation 4.11, the loading of layer n is carried to the left-hand side of

the equation, because the actual load acting on the bottom of the domain is

unknown. No other loads are applied on the other interfaces including the

surface. The known displacement motion of the bottom node is represented

by Un−1 for the x direction and Un for the y direction. The choice of using the

negative of the motion is done to keep the stiffness matrix symmetric.

Modification of the matrix equation of motion for a near-field analysis

is similar to the process outlined above. Additional degrees of freedom are
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added to the system of equations for the nodes along the bottom of the near-

field domain. The base motion is prescribed to be the displacement of these

nodes by the same approach as for the free-field domain.

4.4 Consistent Nodal Forces

Imposing a displacement boundary condition is sufficient for a one-

dimensional analysis. In the case of a two-dimensional analysis, additional

boundary conditions must be imposed on the sides of the near-field domain.

As previously discussed in Section 2.3, the near-field domain consists of quadri-

lateral elements surrounding the foundation and the embedded structure.

The effects that the far field imposes on the near-field are represented

by the hyperelement and the nodal forces that it transfers to the near-field

domain. The nodal force consists of an equivalent nodal force due to the

displacement of the hyperelement, and a consistent nodal force which repre-

sents the internal traction between the hyperelement and the near-field. An

illustration of the process is shown in Figure 4.5.

The nodal force represents the ground motion that occurs below the

hyperelement, which is transferred through the hyperelement and manifests

itself as force applied at the side interfaces of the near-field. The equivalent

nodal force is the amount of force that must be applied on the hyperelement

interface, in the absence of ground motion, to produce the same amount of

displacement as produced by the ground motion under the hyperelement.
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Figure 4.5: Equivalent Nodal Forces

Consider a regular layered medium under horizontal base excitation as

shown in Figure 4.6.

x = 0

x
z

Figure 4.6: Cross-Section of Regular Layered Medium

The free-field solution applies to the domain everywhere, including at

the x = 0 cross section. We assume that the free-field motion is
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Uf =



U1x

0
·
·
Unx
0

Ubase
0


(4.12)

The opposite displacement vector Uc is considered such that when superim-

posed to the free-field displacement above, produces zero displacement every-

where except the base. The base displacement is still the prescribed ground

motion.

Uc =



−U1x

0
·
·

−Unx
0
0
0


Uf + Uc =



0
0
0
0

Ubase
0


(4.13)

The force that is required to enforce the zero displacement on the hy-

perelement interface is found by multiplying the stiffness matrix of the hyper-

element with the negating displacement Uc. The equivalent nodal force that

must be applied on the near-field to produce the free-field displacement on the

interface will be the negative of this force, which is expressed as:

Fc = −SUc (4.14)

where S is the hyperelement stiffness matrix as defined in Equation 2.97.
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The layered medium in Figure 4.6 can then be cut at x = 0 to reveal

the tractions acting on both hyperelements. Opposite tractions will be exerted

by the hyperelement on the near-field domain, and these tractions can be rep-

resented by consistent nodal forces, as shown in Figure 4.7.

z

x Tz

TzTx
Tx

x = 0

z

x

Tz

TzTx
TxFz

Fx
Fz

Fx

Figure 4.7: Consistent Nodal Forces

The consistent nodal forces for the hyperelement have been previously

derived in Section 2.3, and the expression for the consistent nodal force is

given in Equation 2.90. For a one-dimensional free-field analysis, the displace-

ment vector does not vary with x. Therefore, the first term in Equation 2.90

vanishes. Consistent nodal forces applied on the near-field are opposite of the

forces acting on the hyperelement. Therefore, for a free-field displacement Uf ,

the consistent nodal force applied is given by:

Fd = −DUf (4.15)
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where

Di =
1

2


0 −λi 0 λi
−Gi 0 Gi 0

0 −λi 0 λ
−Gi 0 Gi 0

 (4.16)

The forces calculated in Equation 4.15 are for the interface of the right

hyperelement. For the left hyperelement interface, the forces would act in the

opposite direction. Therefore, the total nodal force to be applied on the left

interface is:

Fnodal = −SlUc + DUf (4.17)

and on the right interface:

Fnodal = −SrUc −DUf (4.18)

4.5 Solution Process for System of Equations

A regular assembly of the matrix equation of motion consists of simply

mapping the local degrees of freedom to the global degrees of freedom for

each element stiffness matrix. However, a finite element based global stiffness

matrix is mostly a band matrix. Expressing the stiffness matrix as a sparse

matrix is beneficial in reducing memory requirements as well as computational

effort in solving the system of equations.

An efficient way to represent the sparse matrix is through the com-

pressed column storage. The elements of a two-dimensional matrix are stored

by recording the pairing of row indices and the nonzero values of the elements
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Figure 4.8: Banded Stiffness Matrix

of successive columns. Indices of the first nonzero elements of the matrix

columns are also recorded as column pointers. The stiffness matrix in Figure

4.8 is reorganized as below:

Figure 4.9: Reorganized Stiffness Matrix

In order to take advantage of the sparse-matrix format, the element

stiffness matrices are assembled directly into the compressed column storage

of the global stiffness matrix. Contribution matrices that map the location

of the dense matrix elements to its sparse counterpart, shown in Figure 4.10,

facillitate the assembly process. Each column of the first contribution matrix

in Figure 4.10 logs the dependence between a global degree of freedom and all

other global degrees of freedom. The relationship is determined by examining
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the relationship in the element stiffness matrices. By using this approach, the

size of the matrix is reduced to approximately the number of degrees of free-

dom multiplied by the width of the band. The mapping is done for the width

of the band.

Figure 4.10: Row Indices for Global Matrix Elements and Corresponding
Sparse Matrix Indices

The elements of the first contribution matrix are numbered sequentially

in a second contribution matrix as shown in Figure 4.10. The sequential num-

bering represents the indices of the column compressed sparse matrix. For a

given column and row index pair in the first contribution matrix, the corre-

sponding location of the element in the sparse matrix is indicated by the value

of the second contribution matrix. Rearranging the first contribution matrix

as a vector in column major will produce the row index sparse vector. The

first row of the second contribution matrix represents the column pointer of

the sparse vector.

The global stiffness matrix can be assembled in sparse format once the

relationship between the global matrix row indices and the sparse matrix value
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indices are determined. Element stiffness matrices are assembled to the sparse

format one column at a time by following the mapping shown in Figure 4.10.

Assembly is done for the load vector using a similar approach. The procedure

described above is designed for banded matrices, but it is also applicable to

non-banded matrices as well.

4.6 Application of LU Decomposition

A linear system of equations with a triangular matrix can be solved

much more easily through either back substitution or forward substitution. A

proper square non-singular matrix A can be written as an upper triangular

matrix U through Gaussian elimination. Factors of the row operations are

recorded into a lower triangular matrix L with unit diagonal entries. The

matrix A is then written as:

A = LU (4.19)

where

L =


1 0 0 · · · 0

L21 1 0 0

L31 L32 1
...

...
. . . 0

Ln1 Ln2 Ln3 · · · 1

 U =


U11 U12 U13 · · · U1n

0 U22 U23 U2n

0 0 U33 U3n
...

. . .
...

0 0 0 · · · Unn

 (4.20)

In practical applications, pivoting is included in the decomposition pro-

cess to ensure efficiency. Both sides of the linear system of equations are multi-

99



plied by a permutation matrix P prior to matrix decomposition. The pivoted

system of equations becomes:

PAx = d (4.21)

where d = Pb. By decomposing the matrix product PA into a product of L

and U, the equation becomes:

L(Ux) = d (4.22)

which can then be written as two separate equations made up of triangular

matrices:

Ly = d (4.23)

Ux = y (4.24)

The solution of the original system of equations is found by first solv-

ing Equation 4.23 using forward substitution. The result is substituted into

Equation 4.24 which is then solved by back substitution.

Application of the sparse format allows for even further improvements

of the process of solving linear systems. A process of LU decomposition for

sparse matrices is discussed by Li et al. (2011) in the manual for the SuperLU

code. SuperLU is a code developed by Li et al. (2011) to efficiently solve linear

systems with sparse matrices through the use of LU decomposition.

The procedure of the SuperLU code consists of adjustments to the LU

decomposition process previously described. Instead of using one permutation
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matrix, the A matrix is premultiplied by a row permutation matrix Pr and

a column permutation matrix Pc. This process maximizes the sparsity of the

triangular matrices as well as increases the stability of the numerical process.

Additionally, A is premultiplied by two diagonal matrices to reduce sensitivity

of the result to perturbations of the A matrix. Further details are described

by Li et al. (2011).

The matrix A is thus written as:

A =
(
D−1r P−1r LU P−1c D−1c

)
(4.25)

where

Pr : Row permutation matrix

Pc : Column permutation matrix

Dr : Row equilibriation diagonal matrix

Dc : Column equilibriation diagonal matrix

The SuperLU solution process consists of expressing the linear system

as:

x = A−1b

= (D−1r P−1r LU P−1c D−1c )
−1

b

= Dc(Pc(U
−1 (L−1(Pr(Drb))))) (4.26)

where the process of evaluating (L−1(Pr(Drb))) and (U−1 (L−1(Pr(Drb)))) is

done through forward and back substitutions instead of calculating the inverse.

SuperLU stores the matrices in the compressed column format as well.
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SuperLU allows for efficient solution of multiple linear systems with

identical left-hand side. The solution process is divided into three steps: ini-

tialization, LU factorization, and computation of solution. The processes can

be independently executed and the results of each step stored for repeated use.

Once a linear system is solved, all intermediary variables including the trian-

gular matrices can be reapplied. Calculating the solution of a linear system

with different right-hand sides only requires adjustment in the third process.

The above solution process is implemented by SuperLU and is used in

this research to solve the equivalent linear system of equations.

4.7 Soil-Property Adjustments using Perturbation Method

A soil-structure system can be analyzed for a constant set of soil proper-

ties. The nonlinear behavior of soil necessitates repeated iterations to account

for change in soil properties due to deformation. Updating soil properties leads

to a new stiffness matrix in each iteration, and thus the process of factoriza-

tion must be repeated for a changing left-hand side The factorization process

is one of the most computationally consuming part of the process.

The approach proposed herein to avoid repeated factorization is to

form an equivalent linear soil-structure system with a constant left-hand side.

This can be achieved by using the small-strain soil properties to construct the

stiffness matrix, and then keeping the stiffness matrix constant throughout the

entire analysis. Change in soil properties due to deformation will eventually

be reflected in the right-hand side of the linear system instead of the left-hand
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side, which allows for a one-time LU factorization. The SuperLU solution

process is compartmented to allow the results of a previous factorization to

be used in further analysis, which allows it to efficiently solve multiple linear

systems with the same left-hand side.

Changes in the soil properties can be accounted for without changing

the left-hand side by using the perturbation method. A perturbation method

was previously described by Ikeda (2008) and has been extended in this work.

The equation of motion is expressed using perturbation analysis, and the per-

turbation terms are moved to the right-hand side. In this manner, the equation

of motion retains the small-strain stiffness matrix, and only the loading of the

system is changed.

With an equation of motion

KU = P (4.27)

the quantities of the analysis can be written in terms of a constant baseline

and small perturbations of increasing order:

K = K(0) + εK(1) + ε2K(2) + · · · (4.28)

U = U(0) + εU(1) + ε2U(2) + · · · (4.29)

P = P(0) + εP(1) + ε2P(2) + · · · (4.30)

where ε represents the extent of perturbation. These quantities are substituted
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into the equation of motion (Equation 4.27) to obtain:

(K(0) + K(1) + ε2K(2) + ε3K(3) + · · ·) (U(0) + εU(1) + ε2U(2) + ε3U(3) + · · ·)

= P(0) + εP(1) + ε2P(2) + ε3P(3) + · · · (4.31)

when expanded and rewritten the latter equation becomes:

K(0)U(0) + εK(0)U(1) + ε2K(0)U(2) + ε3K(0)U(3)

= P(0) + ε
[
P(1) − K(1) U(0)

]
+ ε2

[
P(2) − K(1) U(1) − K(2) U(0)

]
+ ε3

[
P(3) − K(1) U(2) − K(2) U(1) − K(3) U(0)

]
+ · · ·

(4.32)

The above expression is expected to be true for any value of ε, including

ε equal to zero. It is then possible to continuously take the derivatives of the

above expression with respect to ε, to come up with the equations appropriate

for the orders of the perturbation. The zeroth order of the perturbation is

expressed as:

K(0)U(0) = P(0) (4.33)

which corresponds to the soil-structure system with small-strain soil proper-

ties.

The zeroth order serves as a starting point of the analysis to provide a

first approximation towards the solution of U. Additional orders of the per-

turbation provides refinement to the solution. Further derivation of Equation

4.32 gives the next orders of perturbation as follows:
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First Order:

K(0)U(1) = P(1) − K(1)U(0) (4.34)

Second Order:

K(0)U(2) = P(2) − K(1)U(1) − K(2)U(0) (4.35)

Third Order:

K(0)U(3) = P(3) − K(1)U(2) − K(2)U(1) − K(3)U(0) (4.36)

Analysis of the equivalent linear system can be simplified by limiting the

change of K as a first-order perturbation. Representing the iterative changes

of K as higher order requires keeping track of every sequential change to

the stiffness matrix, which will become memory intensive for many iterations.

First-order representation only requires the storage of one perturbation of the

stiffness matrix.

Additionally, for the soil-structure system of interest, the analysis is

conducted for a given earthquake motion and unchanging consistent nodal

forces. Therefore, perturbations of P do not need to be considered in the

analysis.

The simplification produces a set of equations which represents the it-

erative first-order procedure to be used in the equivalent linear analysis of soil

structure systems. The procedure is illustrated in the flowchart in Figure 4.11
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yielding a system of equations with a constant left-hand side, and a changing

right-hand side. Using the perturbation method is very beneficial in the sense

that when using LU decomposition to solve the system, only one LU factoriza-

tion needs to be carried out. This implementation aligns well with SuperLU’s

ability to reuse the initial factorization to solve multiple linear equations effi-

ciently. Even in the right-hand side, only the U changes, and the matrix that

multiples U stays constant.

Figure 4.11: Iterative Process of First Order Perturbation Method

Limiting K to a first-order perturbation has the advantage of keeping

the right-hand side computationally simple, with an unchanging matrix multi-

plier, and only U changes. The matrix multiplication of the right-hand side is

also efficient because the sparse mapping and all the other BLAS preparations

for matrix-vector multiplications must be done only once.
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The computational effort involved in the evaluation of further iterations

in Figure 4.11 for higher-order solutions is minimal compared to the effort

involved in LU factorization for the initial calculation.

The procedure shown in the flowchart can be extended to continuously

find higher orders of the displacement, making the approximation of U even

more accurate. The final approximation of U is obtained from summing up

all the perturbation orders of U found through the process outlined in Figure

4.11. A convergence criterion can be applied to end the iterative process once

higher-order displacements fall under a certain defined threshold.

The traditional approach to conducting equivalent linear analysis is to

solve the linear system of equations for every iteration of the process. Every

time the soil properties are updated, a new stiffness matrix is developed, the

solution process of solving the equation of motion involves solving the new

stiffness matrix and factorizing it again.

The perturbation approach provides an efficient process for recalculat-

ing the site response for successive updated soil properties due to deformation

level changes. The perturbation analysis efficiently determines the site re-

sponse of the new equivalent linear system without the need to factorize the

new stiffness matrix.

By examining Equation 2.75, for an equivalent linear analysis of the

soil structure system, we have

K = G− ω2M (4.37)
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We expand G out as a perturbation series, in terms of perturbation

G = G(0) + ε G(1) + ε2 G(2) + · · · (4.38)

Site-response analysis due to adjustment of soil properties is done one

frequency at a time, and the change in stiffness matrix is also done one fre-

quency at a time. Therefore, only G changes. For each frequency, ω2M does

not change from one set of soil properties to the next, because the density ρ

is assumed to not be strain-dependent, and also volume change is assumed to

be negligible.

The zeroth order of the perturbation is therefore expressed as:(
G(0) − ω2M

)
U(0) = P(0) (4.39)

Equation 4.39 corresponds to the soil structure system with initial soil

properties, and G(0) − ω2M is the small strain dynamic stiffness matrix.

P(0) is the loading of the soil structure system, which includes enforced

displacement input ground motion boundary condition and consistent nodal

forces.

Equation 4.39 provides the initial site-response analysis for small strain

soil properties for each excitation frequency of the analysis. Calculation of site

property adjustment appropriate with the level of deformation from the site

response produced from Equation 4.39 produces a new stiffness matrix.
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Knowing the new stiffness matrix, the first order of the stiffness matrix

can be expressed as:

K(1) = G(1) (4.40)

where G(1) is the difference between the shear modulus stiffness matrix with

updated soil properties and small strain stiffness matrix. Therefore, the first

order of perturbation which includes the updated soil property in the analysis

is expressed as: (
G(0) − ω2M

)
U(1) = −G(1)U(0) (4.41)

We assume K is only expressed up to the first order. Therefore, the

changes in G are assumed to be expressed up to the first order only as well.

Therefore, G(2), etc. vanish. The second order of perturbation is then:(
G(0) − ω2M

)
U(2) = −G(1)U(1) (4.42)

The expression of higher order follows the same pattern. These equations can

be solved similarly to the zeroth order equation with just a change in the

right-hand side. Therefore, the same iterative process shown in the flowchart

of Figure 4.11 can be used to solve for the site response U due to updating of

soil properties.

Equivalent linear analysis in the frequency domain requires site re-

sponse calculation for each incremental frequency. The analysis above consists

of the evaluation of site response with the perturbation applied for one fre-

quency at a time. The excitation frequency ω, and thus the stiffness matrix of
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the system, is constant throughout the perturbation process for that excitation

frequency.

However, a new stiffness matrix will need to be assembled for each

additional frequency step in the analysis. Factorization of the stiffness ma-

trix will need to be done for all frequencies analyzed. With the number of

frequencies analyzed ranging in the thousands, the process quickly becomes

computationally expensive.

A proposed solution to the issue is to apply the perturbation approach

to also analyze the site response due to different excitation frequencies, in

terms of perturbations from the site-response analysis of a reference excitation

frequency. The equation of motion for different frequencies have the same

loading and similar stiffness matrices. We take the difference between the

stiffness matrix for a certain frequency and a reference frequency, and we apply

the perturbation method to evaluate the site response for that frequency using

the factorization of the original stiffness for the reference frequency.

The perturbation method is first applied to the site-response analysis

for the initial soil properties. The site-response analysis is done for each fre-

quency in the analysis, and the soil properties are the same for all frequencies

for the initial analysis. The change in the stiffness matrix from one frequency

to another will only be reflected in the ω2M term.

A site-response analysis using the initial soil properties is done for a
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reference frequency ωref . The equation of motion that corresponds to ωref is

(
Gγ=0 − ω2

ref M
)

U = P (4.43)

Gγ=0 refers to the part of the stiffness matrix composed of the small-strain

properties. The solution for the reference frequency serves as the zeroth order

solution for the perturbation analysis of other frequencies, that is:

K(0) =
(
Gγ=0 − ω2

ref M
)

(4.44)

Because the analysis is done for the initial set of properties, the difference in

the stiffness matrix between an equivalent linear system with frequency ω and

the reference frequency, is

K(1) = −
(
ω2 − ω2

ref

)
M (4.45)

and the first order perturbation displacement is found by solving(
Gγ=0 − ω2

ref M
)
U(1) =

(
ω2 − ω2

ref

)
MU(0) (4.46)

As previously, we assume K is only expressed up to the first order, and

the changes in ω2M are assumed to be expressed up to the first order only as

well. The second order of perturbation is then:

(
Gγ=0 − ω2

ref M
)

U(2) =
(
ω2 − ω2

ref

)
MU(1) (4.47)

The expression of higher-order follows the same pattern. Therefore, the

same iterative process shown in the flowchart of Figure 4.11 can be used to

solve for the initial site response U for the different frequencies of the analysis.
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The process of using the perturbation method for different frequencies

can be extended to solve for the site response for different frequencies of the

updated soil properties analysis. A reference analysis is needed to serve as the

zeroth order solution for the updated soil properties case. Choosing a reference

case that consists of the updated soil properties requires factorization of a new

stiffness matrix. A more efficient method is to reuse the reference case from

the initial analysis which has already been factorized.

The reference case has the same form as in Equation 4.36. The differ-

ence in the stiffness matrix between the updated soil properties system case

with frequency ω and the reference case is

K(1) = G(1) − (ω2 − ω2
ref M) (4.48)

where G(1) is as previously defined. The first order perturbation displacement

is found by solving(
Gγ=0 − ω2

ref M
)
U(1) = −

[
G(1) − (ω2 − ω2

ref ) M
]
U(0) (4.49)

Similarly to the previous cases, the stiffness matrix perturbation is only

expressed to the first order. The expression for the higher order displacements

follow the same pattern. Therefore, the iterative process in the flowchart of

Figure 4.11 can be applied to solve for the site response accounting for the

updated soil properties at all frequencies.
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Chapter 5

Case Studies

The analysis of soil-structure systems can be carried out using the meth-

ods and models developed in the previous chapters. To calculate the response

of the soil-structure system, the equivalent linear analysis approach is applied

and the soil-structure system is approximated using the finite element mod-

els developed in Chapter 2. Calculation of the soil-structure system response

is carried out to determine the effects of updating soil properties. The ap-

plication of these methods is carried out for both the free-field case and the

near-field case. In both cases, the soil-structure system response is first deter-

mined using an initial set of soil properties. Adjustments of soil properties are

applied according to the level of deformation calculated in the initial analysis.

Further analyses are carried out using the updated soil properties, and itera-

tive calculations of the updated soil-structure system response are carried out

until convergence.

The initial properties used in the free-field analysis correspond to the

small-strain properties of the soil. Iterations of the free-field analysis will yield

a converged value for the soil properties, which are considered to be the soil

properties consistent with the free-field response. The strain-consistent values
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obtained for the free-field case are then used as the initial soil properties for

the near-field analysis. The near-field response is then calculated for both

the free-field converged properties and for the near-field converged properties

obtained through further iterations.

It is of interest to study the effects of updating soil properties on the

overall soil-structure system response, and to determine the cases where these

effects are most significant. The effects of using strain-consistent soil proper-

ties are determined by calculating the additional response of the soil-structure

system attributable to the change in soil properties. The calculation of this ad-

ditional response is done by applying the perturbation approach to the analysis

method.

The significance of updating soil properties is examined for two case

studies. The first case study represents a hypothetical typical massive struc-

ture on top of an embedded foundation. The second case study represents

a real-life scenario of structures vulnerable to resonant motions propagated

through soft soils. Various configurations of the foundation will be examined

in both case studies.

5.1 Theoretical Case Study

The theoretical case study entails the analysis of a massive structure

on an embedded foundation. The foundation is embedded in a deep soil layer

of 240 meters depth. The hypothetical massive structure is formulated on the

basis of parameters typical of nuclear power plants:
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Figure 5.1: Embedded Foundation Supporting Massive Structure

Width of foundation : L = 60 m

Depth of embedment : D = 60 m

Sidewall height : E = 60 m

The soil properties for the theoretical study are chosen to be:

G = 80000000
N

m2
(5.1)

ρ = 2000
kg

m3
(5.2)

ν = 0.4 (5.3)

βsoil = 0.05 (5.4)

The representation of the nuclear reactor structural mass is simplified

by assuming a point mass connected to the foundation as described in the

soil-structure model in Chapter 2.
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The structural parameters are chosen as follows:

Kstr = 1.42 · 1011 kg

s2
(5.5)

Mstr = 1 · 108 kg (5.6)

Hstr = 15 m (5.7)

βstr = 0.8 % (5.8)

The soil-structure model used assumes a rigid foundation, i.e. no rota-

tion of the structural beam in relation to the foundation. The choice of ground

motion is the 1940 El Centro earthquake motion as described in Chapter 3.

The properties defined above for the theoretical case study are used

along with the input ground motion to determine both the free-field and the

near-field response of the soil domain and the structure. Comparison of the

free-field and near-field structural response is shown in Figure 5.2.

Figure 5.2: Structural Response from One-Dimensional and
Two-Dimensional Analyses
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The difference of the soil response can be seen by comparing the differ-

ence of the horizontal displacement for the free-field and the near-field analysis.

One of the contributing factors to the difference of response is the difference

in converged values of soil properties between the two analysis. The converged

soil properties for the free-field and the near-field analysis are illustrated in

Figure 5.3.

Figure 5.3: Converged Soil Properties in the Free Field and Near Field

In the free-field case, the iteration of properties is conducted with re-

spect to one direction: the vertical. This represents a simplification of the

strain-consistent adjustment near the foundation. The near-field analysis fur-

ther adjusts the soil properties as seen in the above figure, with more significant

adjustments closer to the embedded foundation.
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In Figure 5.3, it is also noted that the near-field solution far away

from the inclusion converges to the free-field solution as expected. This ob-

servation serves as a verification of the near-field analysis procedure. The

observation can further be corroborated by conducting a near-field analysis of

a non-embedded foundation. For various clearance distances for the near-field

analysis, the adjustment of soil properties is seen in Figure 5.4 to be identical

to the free-field adjustments.

Figure 5.4: Near-Field Adjustments for Various Clearances
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The strain levels achieved as well as the soil-property adjustments for

the free-field case are shown in Figure 5.5. The results match the level of

adjustments observed in the near-field analysis for a surface foundation (with

no structural mass).

Figure 5.5: Converged Strain-Consistent Free-Field Properties

For the near-field analysis, the response for different configurations of

the near-field region is calculated to show the progression of the adjustments

of soil properties due to configurational changes. The near-field adjustments

are first calculated for a case where the soil is excavated without the presence

of an overlying foundation. The next progression is to adjust the properties

taking into account the embedded foundation. Lastly, a complete near-field

analysis is conducted including the structural mass in the analysis.
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The levels of deformation experienced in each of these three cases are

shown in Figure 5.6:

Figure 5.6: Converged Shear Strain Level from Near-Field Analysis

120



The strain consistent adjustment of properties for the three cases are

as follows:

Figure 5.7: Converged Strain-Consistent Near-Field Properties

The results show that the rigid foundation provides an overall effect of

reducing the strain levels in the soil elements near the foundation, especially

underneath the foundation. The reduction of the strain level contributes lower

adjustments of the soil properties underneath the foundation, but the adjust-

ments are still significant when compared to the free-field adjustments.
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The difference between the response of the excavation-only case com-

pared to the case with foundation represents the kinematic interaction due to

the presence of the foundation. The difference between the response without

and with the structure represents the inertial interaction due to the response

of the structure providing feedback to the foundation. These effects can be

seen by comparing the foundation responses for the three cases as shown in

Figure 5.8.

Figure 5.8: Kinematic and Inertial Interaction Effects on Structural Response

The kinematic interaction provides insight to the level of soil-structure

interaction that occurred. The soil-structure system responses are provided

in Figures 5.9 and 5.10 for both the uncoupled and coupled response of the

foundation and the structure. Comparison of the structural acceleration and

the foundation rotation highlights the effects of considering the kinematic in-

teraction in the analysis by coupling the foundation and structure response.
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Figure 5.9: Foundation Rotation

Figure 5.10: Structural Acceleration
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5.2 Mexico City Case Study

In order to expand on the insights obtained from the hypothetical anal-

ysis above, analysis of soil-structure system response is also conducted for

multistory buildings heavily damaged during earthquakes. As discussed in

Chapter 3, the actual conditions are those for the Mexico City earthquake of

1985, specifically due to the amplification of motion at the SCT site. The

structures analyzed have natural periods within the range of periods of the

highly amplified motions of the site, between 0.5 to 3 seconds. An illustration

of the computational domain is shown in the Figure 5.11.

Figure 5.11: Modeling of Mexico City Structure Supported by Embedded
Foundation
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5.2.1 Analysis Parameters

From discussions in Chapter 3, the soil parameters chosen to represent

the SCT conditions have been determined to be:

Ts = 2 s (5.9)

Hs = 37.5 m (5.10)

νs = 0.45 (5.11)

βs = 0.02 (5.12)

Cs = 75
m

s
(5.13)

ρs = 1386.6
kg

m3
(5.14)

G = 7.8 · 106 N

m2
(5.15)

with the properties of the hard layer taken to be:

νo = 0.33 (5.16)

βo = 0.02 (5.17)

Co = 375
m

s
(5.18)

ρo = 1733.3
kg

m3
(5.19)

Go = 243.75
N

m2
(5.20)

ρo = 1733.3
kg

m3
(5.21)

125



The foundation dimensions chosen for the Mexico City case study are

based on empirical relationships by Avilés and Pérez-Rocha (1996). Using the

soil layer height of 37.5 meters, the foundation dimensions are determined as

follows:

Width of foundation : L = 25 m

Depth of embedment : D = 5 m

Sidewall height : E = 5 m

Similarly to the previous case study, the representation of the structural

mass is simplified by assuming point masses connected to the foundation. For

the Mexico City case, the mass of the structure is represented by two point

masses instead of one. Avilés and Pérez-Rocha (1996) mentioned that 20%

of the structural mass can be represented as concentrated at the base of the

foundation. The remaining 80% of the mass is applied at the effective height

of the structure, which is usually about 70% of the actual structural height.

Avilés and Pérez-Rocha (1996) provides the relationship between effec-

tive height and natural period for Mexico City structures. Additionally, the

mass of the structure is a function of the effective height. The relationships

as follows:

He

Te
= 25

m

s
(5.22)

Me = 0.15ρsπr
2He (5.23)
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Therefore for a natural period of 1 second, the corresponding structural

parameters are:

He = 25 m (5.24)

Me = 2.55 · 106 kg (5.25)

Mc = 6.4 · 105 kg (5.26)

Ke = 1.0067 · 108 N

m
(5.27)

The choice of ground motion is the UNAM earthquake motion measured

at the CUMV station. The free-field analysis of the SCT site consists of

applying the adjusted CUMV ground motion at the bottom of the SCT soil

layer profile, and calculating the response at the top of the soil media. The

advantage of studying the Mexico City case is that the motion at the top was

recorded as well by the SCT station.

5.2.2 Analysis of Surface and Embedded Foundations

The response of the soil layer can be better characterized by the re-

sponse spectra obtained from the analysis. The response spectrum provides

illustration of the structural response for a broader range of structural peri-

ods. The Mexico City earthquake inflicted on damage on structures with a

wide range of periods, especially in the SCT region. The response spectra for

the free-field surface response determined by the analysis are shown in Figure
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5.12, together with the recorded response spectra at the SCT station.

Figure 5.12: Acceleration Response Spectra from Free-Field and Near-Field
Iterations

The response spectra determined from the free-field analysis are shown

for each iteration of soil properties adjustment. It can be seen that using

the initial soil properties based on the SCT profile does not yield a response

spectrum close to that recorded at the site. However, further adjustments

consistent with the strain levels produces response spectra that approach the

recorded motion. The converged soil properties yield surface response very

similar to that recorded during the actual earthquake.

With the confidence that the modeled soil profile accurately represents

the SCT site conditions, near-field analyses are conducted to analyze the sig-

nificance of updating soil properties in the near field. The converged soil
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properties from the free-field analysis are used as a starting point for the SCT

near-field analysis.

An initial near-field analysis is conducted using the converged soil prop-

erties from the free-field analysis. The response obtained from this first analy-

sis represents the results that would have been obtained, if further adjustment

of the soil properties is not done for the near-field region. In order to study

the effects of further adjustment, the near-field analysis is iterated until con-

vergence of the near-field properties has been achieved.

The responses of the soil-structure system are obtained for each iter-

ation of the near-field properties. Response spectra are generated for each

iteration and are shown in Figure 5.13.

Figure 5.13: Comparison of Embedded Foundation Response using
Free-Field and Near-Field Iterated Properties
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A progression is evident in the response spectra for the iterations with

a general decrease of peak values with further adjustments. Significant differ-

ences are observed between the unadjusted response spectra and the response

spectra corresponding to the near-field converged properties. Adjusting the

soil properties specifically for the near-field region provides a much more ac-

curate representation of the soil-structure response with minimal additional

computation.

Various configurations of the foundation are also studied to explore the

effects of updating soil properties for the different configurations. For a surface

foundation, the additional near-field iterations affects the response spectra as

shown in Figure 5.14.

Figure 5.14: Comparison of Surface Foundation Response using Free-Field
and Near-Field Iterated Properties
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It can be seen from the results, that although there is no embedment

of the foundation into the soil, an analysis using the free-field converged prop-

erties only yields inaccurate results. Apparently, this is due to the inertial

interaction exerted by the motion of the structure on the surface foundation.

The structural motion affects the level of damping around the foundation,

which affect the foundation response. Conversely, the foundation response

affects the structural response by coupling of the system components.

The near-field analysis is also conducted to compare the response of an

embedded foundation to the surface foundation. The comparison is provided

below for a surface foundation, a mat-only embedded foundation, and an em-

bedded foundation with sidewalls. The response spectra are calculated using

the free-field converged soil properties only as well as the near-field converged

soil properties.

The responses for all three configurations are significantly reduced when

the soil properties are iterated in the near-field region. However, the response

for the mat-only foundation is very close to the response of the fully walled

foundation. This suggests that the mat of the foundation is more significant

in determining the kinematic interaction of the foundation with the soil com-

pared to the effects of the side walls. This will be further explored by varying

the wall height (see Figures 5.27 and 5.28).
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Figure 5.15: Surface vs Embedded Foundation - Free-Field Properties

Figure 5.16: Surface vs Embedded Foundation - Near-Field Properties
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5.2.3 Analysis of Structures of Various Heights

In addition to varying the configurations of the foundation, analysis of

the soil-structure system response is also done for various structural configura-

tions. The height of the structure is varied to represent the range of building

heights damaged in the Mexico City earthquake. The response of the founda-

tion is calculated using free-field converged properties only, and compared to

the response found using near-field iterated properties.
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Figure 5.17: Horizontal Response of Foundation for Structures of Varying Heights
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Figure 5.18: Rotational Response of Foundation for Structures of Varying Heights
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Figure 5.19: Acceleration Response for Structures of Varying Heights
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Figure 5.20: Displacement Response for Structures of Varying Heights
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From the results above, it is evident that the highest level of response

is observed for the 20-story building. This structure has a natural period of

approximately 2 seconds. This natural period matches the dominant period

amplified by the soft soils at the SCT site, and thus near-resonance is expected.

The calculated responses show reduction in every response parameter

when adjustment of soil properties is caaried out for the near-field region. The

reduction is more significant for structural response compared to foundation

response. Also, the reduction is greater for structures with natural period close

to the natural period of the soil deposit.

Foundation translation and rotational response do not vary much for

different structural heights. The fact that the structural response varied

greatly indicates that inertial effects are more significant in determining the

soil-structure response. The motion of the structure exerts loading on the

foundation which affects the deformation level of nearby soil. The level of in-

ertial effects can be inferred by examining the change in modulus and damping

near the foundation.

The strain levels for the analysis of different building heights are given

below. The corresponding reduced modulus and soil damping are also pre-

sented to show the localized effects by the structure, which near-field iterations

account for.
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Figure 5.21: Converged Strain Levels for Structures of Varying Heights
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Figure 5.22: Converged Shear Modulus Levels for Structures of Varying Heights
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Figure 5.23: Converged Damping Levels for Structures of Varying Heights
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5.2.4 System Response for Various Foundation Depths

The effects of foundation depth on the soil-structure response is also

examined. The initial foundation depth of 5 meter is considered shallow, and

deeper embedment of 7 meters and 10 meters are considered. Calculation of

the soil-structure response is done using both free-field converged properties

as well as near-field converged properties. The results are provided below.

Figure 5.24: Acceleration Response Spectra for Various Foundation Depths
obtained using Free-Field and Near-Field Converged Properties
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For all foundation depths it can be concluded that adjusting the soil

properties consistently with the level of deformation results in significant re-

duction of the acceleration response spectra. Additionally, comparison of the

response spectra for the different embedment depths shows that shallower

foundations experience higher levels of acceleration.

(a) Various Foundation Depth - Free-Field
Properties

(b) Various Foundation Depth - Near-Field
Properties

Figure 5.25: Comparison of Acceleration Response Spectra for Various
Foundation Depths
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The reduction in the level of response for deeper foundations is justified

because deeper foundations encounter greater resistance from the surrounding

soil and thus the motions of the foundation and structure are reduced. The

level of deformation experienced in each scenario along with the soil properties

adjustments are shown in the following figures.
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Figure 5.26: Converged Soil Properties for Various Foundation Depths
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5.2.5 System Response for Various Foundation Sidewall Heights

The sidewalls of the foundation were suspected to be a less significant

factor affecting the soil-structure system response. The effects of the sidewalls

are studied by varying the wall height of both side walls for a foundation em-

bedded 7 m deep. The wall heights are set to be 0 m corresponding to a mat

foundation, 3 m, and 7 m which corresponds to a fully walled foundation. The

response is calculated using both the free-field converged properties and the

near-field iterated properties.
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Figure 5.27: Acceleration Response Spectra for Various Foundation Wall
Heights obtained using Free-Field and Near-Field Converged Properties

The general trend of response reduction due to adjustment of the near-

field soil properties is observed. However, the effects on the soil-structure

system response can be seen to be small. Foundation depth seems to be more
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of a significant factor compared to height of sidewalls. This can be seen by

comparing the response spectra for different wall heights in Figures 5.28.

Figure 5.28: Comparison of Acceleration Response Spectra for Various
Foundation Wall Heights

This observation can be explained by looking at the effects the sidewall

height has on the foundation. Higher sidewalls produce an overall stiffer foun-

dation. However, at the same time these higher sidewalls capture more loading

from the soil due to the larger area of contact with the sidewall. These effects

tend to negate each other, and thus the overall effect on the system response is

less pronounced. Although the response spectra are not significantly affected

by the wall height, examination of the strain level demonstrates changes near

the foundation walls. The modulus reduction is also somewhat affected in this

region, although damping does not vary as much.
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Figure 5.29: Converged Soil Properties for Various Foundation Wall Heights
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The analyses of soil-structure system response for various foundation

and structural configurations have demonstrated that it is indeed important

to continue iterations of soil properties in the near-field region. Even in terms

of the time-domain response of the soil, adjustments of the properties provide

an adequate prediction of the actual time-history motion at the surface. A

comparison shown in Figure 5.30 demonstrates the agreement of the predicted

free-field response with respect to the recorded SCT motion.

Figure 5.30: Horizontal Response Equivalent Linear Analysis vs Recorded
SCT Motion

Apart from demonstrating this significance, the various analyses con-

ducted also provide additional insights into the soil domain towards the soil

property adjustments. Figure 5.31 summarizes the level of deformation expe-
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rienced due to an input ground motion at the bottom, for the various analysis

studied in this chapter. The progression of the level of deformation with

changes in the configuration shows that the most significant change occurs

when the structure is accounted for. The interaction of the structure with

the soil provides additional loading to the soil region around the foundation,

which affects the strain levels and consequently the soil property adjustments

in the near-field region.
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Figure 5.31: Converged Deformation Level for Various Configurations
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Chapter 6

Conclusion

This dissertation has explored the methods of analysis and determina-

tion of the response of soil-structure systems using soil properties adjusted for

the level of deformation. Finite-element modes have been implementd for the

soil and the rigid foundation. A simple model for the soil-structure system has

been adopted to represent the effects of structural mass on the soil and vice

versa.

Procedures were developed in this study to efficiently calculate the soil-

structure system response both in the free field and the near field. Additionally,

a procedure involving the use of a perturbation method has been developed

to efficiently account for the numerous incremental changes in soil properties.

The use of sparse matrices and the LU decomposition were incorporated into

the numerical procedures to further optimize the solution process.

The numerical procedures developed in this study were applied to a

theoretical case representing massive structures such as nuclear plants. Fur-

thermore, an analysis was undertaken to apply the procedures on actual events

such as of the 1985 Mexico City earthquake to determine the importance of

updating soil properties in the near-field region. For all the different founda-
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tion and structural configurations analyzed, the response of the soil-structure

system was significantly reduced when the near-field soil properties were ad-

justed.

It is the conclusion of this study that soil-property adjustments in the

analysis of soil-structure systems must be applied in the near-field in addition

to the free-field adjustments. Using free-field only adjustments may be conve-

nient for analysis using traditional methods, but the analysis results are likely

to yield an overly conservative design. Conducting near-field iterations, by the

efficient process demonstrated herein, will permit greater design efficiency.

Further research is possible and desired to extend the findings of present

study. One possibility for improvement in further research is the use of a

continued-fraction absorbing boundary condition as the bottom boundary of

the soil domain. Representing the bottom of the domain with a halfspace

instead of rigid bedrock allows for a more accurate representation of wave

motion in the soil.
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