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Intelligent organisms do not simply perform one task, but exhibit multiple distinct

modes of behavior. For instance, humans can swim, climb, write, solve problems, and play

sports. To be fully autonomous and robust, it would be advantageous for artificial agents,

both in physical and virtual worlds, to exhibit a similar diversity of behaviors. This disser-

tation develops methods for discovering such behavior automatically using multiobjective

neuroevolution. First, sensors are designed to allow multiple different interpretations of

objects in the environment (such as predator or prey). Second, evolving networks are given

ways of representing multiple policies explicitly via modular architectures. Third, the set of

objectives is dynamically adjusted in order to lead the population towards the most promis-

ing areas of the search space.

These methods are evaluated in five domains that provide examples of three differ-

ent types of task divisions. Isolated tasks are separate from each other, but a single agent

must solve each of them. Interleaved tasks are distinct, but switch back and forth within

a single evaluation. Blended tasks do not have clear barriers, because an agent may have

vii



to perform multiple behaviors at the same time, or learn when to switch between opposing

behaviors. The most challenging of the domains is Ms. Pac-Man, a popular classic ar-

cade game with blended tasks. Methods for developing multimodal behavior are shown to

achieve scores superior to other Ms. Pac-Man results previously published in the literature.

These results demonstrate that complex multimodal behavior can be evolved automatically,

resulting in robust and intelligent agents.
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Chapter 1

Introduction

An impressive quality of the human brain is the way it is applied to solving a wide variety

of tasks, from the physical (running, swimming, climbing, sports) to the mental (solving

puzzles, reading, communicating, planning). Though there is occasional overlap between

some of these activities, the fact that our capacity to do any one of them generally does not

interfere with our ability to do the others is impressive.

Such abilities do not begin with humans. All but the most simplistic of organisms

share our capacity for a diverse array of behaviors: Birds must fly, forage, and build nests in

order to propagate their species, and leopards stalk their prey, chase it down, and then hide

leftovers in trees in order to survive. Multimodal behavior — the ability to exhibit multiple

different, even dissimilar behavioral modes — is a fundamental feature of intelligence.

Therefore, it is natural to desire artificial agents to exhibit multimodal behavior,

be they physical robots or software agents. Many complex, highly engineered systems

already exhibit multimodal behavior that depends on human-specified divisions of tasks

into subtasks. However, the performance of such agents always depends on the accuracy

of the assumptions made by the human designers: Did the designers pick the right number

of subtasks? Is the division between tasks the best possible division for the problem? Are

the sub-behaviors used in each task optimal? Are both the sub-behaviors and aggregate
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behavior robust? The answers to such questions are often uncertain, which is why the

prospect of learning multimodal behavior, rather than designing it, is appealing.

This dissertation develops an approach to such learning, using evolution of neural

networks. This chapter motivates multimodal learning, discusses some of the challenges,

introduces the approach developed in this dissertation, and provides an outline for the rest

of the dissertation.

1.1 Motivation

A primary goal of Artificial Intelligence is to construct intelligent artificial agents. Such

agents are needed in many contexts. RoboCup Soccer requires agents that strategically

maneuver, pass the ball to teammates, and try to block kicks from opponents (Chen et al.,

2013). Agents in First-Person Shooter video games must explore levels, take cover, and

coordinate attacks with teammates (Hingston, 2012). Autonomous vehicles must handle a

variety of driving circumstances: driving on highways, driving in traffic within cities, park-

ing, and responding to unexpected obstacles such as debris or careless pedestrians (Buehler

et al., 2009). Search-and-rescue robots are needed to find people in need of help at disaster

sites, to remove or shore up rubble, and deliver supplies (Murphy et al., 2008).

Although it would be useful for search-and-rescue robots to be completely au-

tonomous, they are currently teleoperated. However, over 50% of the failures of such robots

in the field are due to human error (Murphy, 2014). Another example of human error as

the primary cause is traffic accidents. In the United States from 2005 to 2007, the critical

reason for over 90% of car crashes was the driver (National Highway Traffic Safety Admin-

istration, 2008). It would therefore be extremely beneficial to have intelligent agents that

perform better than humans in such situations.

Although there are many challenges to overcome in these domains, one feature they

all have in common is the need for multimodal behavior: An artificial agent must exhibit

multiple behavioral modes depending on the circumstances in order to succeed.
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1.2 Challenge

The intelligent agents in the above domains need to exhibit multimodal behavior. Devel-

oping such behavior is not easy. Sometimes the border between behaviors is clear (e.g. a

driving agent knows when it is getting onto a highway via an on-ramp), and at other times

it is unclear (a car may be maneuvering around traffic while also trying to dodge debris).

Sometimes humans have a good idea of what a good policy should do, but at other times we

either do not know what is best, or our preconceptions of what constitutes good behavior

prevent us from discovering even better behaviors.

These domains can all be modeled as Reinforcement Learning (RL) problems in

which an agent interacts with its environment and learns from numeric reward signals (Michie

and Chambers, 1968; Sutton and Barto, 1998; Deisenroth et al., 2012; Szita and Lőrincz,

2006; Moriarty et al., 1999; Kohl and Miikkulainen, 2009). Specifically, a control policy is

learned. This policy maps an agent’s observations of the state space to actions.

Most RL algorithms explicitly rely on the formalism of Markov Decision Processes

(MDPs), which is discussed in Section 4.1. However, in a domain requiring multimodal

behavior, it is difficult for a single policy to handle the different modes of behavior. For

this reason, there has been much research in Hierarchical RL, in which agents have ac-

cess to high-level, temporally-extended actions. Access to such actions can make tasks

easier to solve, if they effectively solve subtasks within the domain. There are several

approaches to defining such temporally-extended actions: options (Sutton et al., 1999),

skills (Konidaris and Barto, 2009; Konidaris et al., 2010), activities (Barto and Mahadevan,

2003), modes (Alur et al., 2000), and behaviors (Huber and Grupen, 1997; Brooks, 1986).

These approaches offer different perspectives on the same Hierarchical RL problem. This

dissertation presents a different perspective; these temporally-extended actions are behav-

ioral modes encapsulated within modules, and an agent exhibiting such behavior is said

to exhibit multimodal behavior. This perspective does not depend on the Hierarchical RL

formalism, so a comparison with these other methods is postponed until Chapter 11.
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How best to learn multiple modes of behavior is an interesting open challenge, the

impact of which is magnified by other challenges common in domains requiring intelli-

gent behavior: partial observability (Sutton and Barto, 1998), continuous state and action

spaces (Gaskett et al., 1999), and noisy evaluations. Taking on these challenges, this disser-

tation develops methods specifically aimed at discovering multimodal behavior.

1.3 Approach

A variety of methods exist for learning agent behavior in RL and Hierarchical RL problems.

Two major paradigms are Value-Function Learning and Policy Search. Value-Function

Learning attempts to define a function that estimates the long-term expected return (accu-

mulation of rewards) of either reaching specific states or taking particular actions in each

state (Bellman, 1957). The resulting value-function is then used to define a policy that

favors the actions leading to the highest expected returns. In contrast, Policy Search meth-

ods (de Boer et al., 2005; Stanley and Miikkulainen, 2002) search the space of policies di-

rectly. These methods aggregate reinforcement signals, and can often achieve better results,

particularly when function approximation is necessary, or when the domain is partially ob-

servable (Kalyanakrishnan and Stone, 2009). A prominent example of the Policy Search

approach is Evolutionary Computation, specifically Neuroevolution.

Neuroevolution simulates the process of evolution by natural selection to construct

neural networks that serve as control policies for agents (Stanley and Miikkulainen, 2002;

Gomez et al., 2006). Neural networks are powerful function approximators that can learn

robust behavior (Haykin, 1999). Additionally, recurrent neural networks can also be evolved,

which makes it possible to discover policies that retain a memory of past states.

This dissertation builds on pre-existing Neuroevolution algorithms in order to pro-

duce multimodal behavior reliably. First, techniques for evolving neural networks are com-

bined with evolutionary multiobjective optimization, so that behavioral modes that corre-

spond to different objectives each receive individual focus during the search process. Sec-
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ond, networks are allowed to evolve modular architectures that associate particular modules

with distinct behavioral modes. Third, the multiobjective search process is enhanced by Tar-

geting Unachieved Goals, an approach that dynamically manages which objectives are used

during selection so that objectives that need it most receive more focus.

1.4 Outline

This dissertation is organized as follows:

Chapter 2 presents the methodological foundations upon which multimodal evolu-

tion is built. These pre-existing methods are Pareto-based Evolutionary Multiobjective Op-

timization and Constructive Neuroevolution. Specifically, the Non-Dominated Sorting Ge-

netic Algorithm II (NSGA-II; Deb et al., 2002) is used to perform multiobjective optimiza-

tion, and Neuro-Evolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen,

2002) is the basis for the constructive neuroevolution method used in this dissertation.

Chapter 3 builds upon these foundational methods to discover multimodal behavior.

The main technical contributions are presented in this chapter. They are (1) a set of general

design principles for sensors/features (Conflict sensors vs. Split sensors) that make learning

particular task divisions easier, (2) a collection of methods for designing modular network

architectures (Multitask Learning, Preference Neurons, Module Mutation) that can learn

unexpected and advantageous task divisions, and (3) a means of manipulating multiobjec-

tive evolutionary search (Targeting Unachieved Goals) so that discovering multiple modes

of behavior is more reliable.

Chapter 4 gives a high-level overview of the types of domains that require multi-

modal behavior. Specifically, three types of task divisions are identified: (1) isolated tasks

that are completely independent from each other, (2) interleaved tasks that alternate along

a shared time line, and (3) blended tasks where the division between one task and another

is unclear.

Chapter 5 describes the BREVE simulation environment used to create several do-
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mains for the experiments in later chapters. Two of these domains consist of isolated tasks:

Front/Back Ramming involves two tasks where evolved agents must exhibit two different

types of aggressive behavior, and Predator/Prey consists of one task requiring aggressive

behavior and another requiring defensive behavior. The third domain is the Battle Domain,

which consists of blended offensive and defensive tasks.

Chapter 6 describes experiments in Front/Back Ramming and Predator/Prey. These

experiments demonstrate the ability of modular networks to succeed in domains with iso-

lated tasks. Specifically, a human-specified task division (Multitask Learning and Multi-

network) does well in Front/Back Ramming because the two isolated tasks are of approx-

imately equal difficulty, and a task division discovered by evolution via Module Mutation

does best in Predator/Prey because the isolated tasks are asymmetrical in difficulty.

Chapter 7 describes experiments in the Battle Domain. These experiments demon-

strate the power of Targeting Unachieved Goals (TUG) in a domain with blended tasks.

TUG intelligently manages the fitness objectives of the Battle Domain in a way that leads

to several intelligent behaviors not discovered without TUG.

Chapter 8 describes the classic arcade video game of Ms. Pac-Man, which is the

second simulation environment in which experiments are conducted, to demonstrate that

the methods scale up to real-world games. Ms. Pac-Man is well-suited for demonstrating

multimodal behavior because the enemies in the game can be in either a threat state or

vulnerable state, each of which requires a different response from the player. This chapter

explains why Ms. Pac-Man is challenging, reviews previous research in the domain, and

then describes both a variant with interleaved tasks and variants with blended tasks, in

which experiments are conducted in the following chapters.

Chapter 9 describes experiments in the Imprison variant of Ms. Pac-Man, which has

interleaved tasks. Several types of modular network architectures are evaluated, showing

that while there is little difference between modular and non-modular approaches when

using split sensors, all modular methods are superior to a non-modular approach when the
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more general conflict sensors are used. Additionally, the best modular networks succeed

by discovering a novel, unexpected task division that dedicates a module to a clever luring

behavior.

Chapter 10 presents experiments in the full Ms. Pac-Man game. In experiments

where Ms. Pac-Man has only a single life, the best modular networks triumph once again

by discovering a luring module. Then experiments with multiple lives, as in the complete

game, demonstrate how modular networks and TUG can be combined to consistently reach

a high level of performance. These results are also compared to previous results in the

literature, and shown to be superior in nearly all cases.

Chapter 11 puts the methods developed in the dissertation into the context of the

research literature. In particular, previous approaches to developing multimodal behavior

are sorted into three categories: (1) hand-designed hierarchical approaches, (2) methods that

learn or learn parts of an explicit hierarchy, and (3) methods that create modular structures

that split the domain in a hierarchical way. The modular network architectures developed

in this dissertation fall into the third category.

Chapter 12 uses the related work of the previous chapter and the results from earlier

in the dissertation as a jump-off point for a deeper discussion of the results. This discus-

sion leads to directions for future work, such as methods for automatically adapting the

sensors used in a domain, ways of combining various types of modular architectures from

this dissertation, ideas for improving TUG, and similar but different ways of generating

multimodal behavior via Generative and Developmental Systems.
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Chapter 2

Foundations

The two main tools on which this dissertation builds in order to discover multimodal be-

havior are Pareto-based multiobjective optimization and constructive neuroevolution. Each

of these tools is discussed within this chapter.

2.1 Multiobjective Optimization

Domains are likely to require multimodal behavior when they have multiple, conflicting

objectives. For example, in a scenario where both offensive and defensive behaviors are

needed at different times, there are likely to be separate objectives favoring each of these

behaviors. In the specific case of Ms. Pac-Man, which is discussed in depth in Chapter 8, re-

wards are given both for eating pills and eating ghosts, which means that different behaviors

are required to satisfy each of these objectives.

Therefore a principled way of dealing with multiple objectives is needed. Such an

approach is offered by the framework of Pareto optimality.
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2.1.1 Pareto Optimality

The concept of Pareto optimality is an approach to dealing with multiple objectives that al-

lows one to avoid the design pitfalls inherent in aggregating objectives (e.g. how to weight

objectives). It also has theoretical benefits with respect to the types of solutions that are

attainable. Specifically, the alternative weighted-sum approach cannot capture Pareto opti-

mal points on non-convex surfaces (Coello, 1999; Fonseca and Fleming, 1995). In practice,

a multiobjective approach can often find better overall performance than simply optimiz-

ing a single combined objective (Schrum and Miikkulainen, 2008; Lochtefeld and Ciarallo,

2012). The concepts of Pareto dominance and optimality provide the framework for multi-

objective optimization1 (Figure 2.1):

Definition 1 (Pareto Dominance) Vector ~v = (v1, . . . , vn) dominates ~u = (u1, . . . , un) if

and only if the following conditions hold:

1. ∀i ∈ {1, . . . , n} : vi ≥ ui, and

2. ∃i ∈ {1, . . . , n} : vi > ui.

The expression ~v � ~u denotes that ~v dominates ~u.

Definition 2 (Pareto Optimal) A set of points S ⊆ F is Pareto optimal if and only if it

contains all points such that ∀~x ∈ S: ¬∃~y ∈ F such that ~y � ~x. The points in S are

non-dominated, and make up the non-dominated Pareto front of F .

The above definitions indicate that one solution is better than (i.e. dominates) an-

other solution if it is strictly better in at least one objective and no worse in the others. The

best solutions are not dominated by any other solutions, and make up the Pareto front of

the search space. The next best individuals are those that would be in a recalculated Pareto

front if the actual Pareto front were removed first. Layers of Pareto fronts can be defined by
1These definitions assume a maximization problem. Objectives to be minimized can simply be multiplied

by −1.
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Figure 2.1: Pareto Optimality. The concept of Pareto optimality is demonstrated in an
example domain consisting of two objectives. Each point in the space represents an indi-
vidual solution that has earned the corresponding scores in objectives 1 and 2. (a) Point
x dominates solutions in the area contained within the shaded box that extends down and
to the left of x. Similarly, point y dominates points within the shaded box associated with
it. The area where the shaded boxes overlap is dominated by both solutions. (b) The same
points are shown with a line connecting the Pareto front. The region below and to the left
of this line is dominated by the Pareto front. These points are non-dominated, which makes
them all Pareto optimal. These points are the best in terms of the two objectives shown.
None are strictly better than the others, but collectively they are better than all other points
in the space.

successively removing the front and recalculating it for the remaining individuals. Solving

a multiobjective optimization problem involves approximating the first Pareto front as well

as possible.

There are usually several points in the search space that are optimal in this sense,

which makes it sensible to to search for these points using a population-based approach,

namely evolutionary computation. Several evolutionary approaches to multiobjective opti-

mization have been developed (Corne et al., 2000, 2001; Zitzler and Thiele, 1999), but the
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most popular is the Non-Dominated Sorting Genetic Algorithm II (NSGA-II; Deb et al.,

2002).

2.1.2 Non-Dominated Sorting Genetic Algorithm II

NSGA-II uses (µ + λ) elitist selection favoring individuals in higher Pareto fronts (i.e.

closer to the true Pareto front) over those in lower fronts. In the (µ+ λ) paradigm, a parent

population of size µ is evaluated, and then used to produce a child population of size λ.

Selection is performed on the combined parent and child population to give rise to a new

parent population of size µ. NSGA-II typically uses µ = λ.

When performing selection based on which Pareto layer an individual occupies, a

cutoff is often reached such that the layer under consideration holds more individuals than

there are remaining slots in the next parent population. These slots are filled by selecting

individuals from the current layer based on a metric called “crowding distance,” which en-

courages the selection of individuals in less-explored areas of the trade-off surface between

objectives.

The crowding distance for a point p in objective space is the average distance be-

tween all pairs of points on either side of p along each objective. Points having an objective

score that is the maximum or minimum for the particular objective are considered to have a

crowding distance of infinity, though if there is a tie then only one such point is (randomly)

chosen. For other points, the crowding distance tends to be bigger the more isolated the

point is. NSGA-II favors solutions with high crowding distance during selection, because

the more isolated points in objective space are filling a niche in the trade-off surface with

less competition.

By combining the notions of non-dominance and crowding distance, a total ordering

of the population is obtained: Individuals in different layers are sorted based on the dom-

inance criteria, and individuals in the same layer are sorted based on crowding distance.

The resulting comparison operator for this total ordering is also used by NSGA-II: Each
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new child population is derived from the parent population via binary tournament selection

based on this comparison operator.

A run of NSGA-II creates an approximation to the true Pareto front, i.e. an approx-

imation set. This approximation set potentially contains multiple solutions, which must

be analyzed in order to determine which solutions fulfill the needs of the user. However,

in order to assess the overall performance of a method for generating approximation sets,

special multiobjective performance metrics have been developed.

2.1.3 Assessing Multiobjective Performance

Individual objective scores and statistics based on them are misleading because high scores

in one objective can be combined with low scores in other objectives. Comparing approxi-

mation sets directly reveals whether one dominates another, but this approach does not scale

to a large number of comparisons. Furthermore, if different approximation sets cover non-

intersecting regions of objective space, it is still unclear which one is better. Multiobjective

performance metrics help by reducing an approximation set to a single number that gives

some indication of its quality.

All of these measures involve first normalizing the scores achieved within the Pareto

fronts to the range [0, 1] with respect to minimum and maximum objective scores. The

specific minimums and maximums used depend on the domain. The role of normalization

in interpreting the results of each metric is very important, and is explained below. The

normalized objective scores are used to calculate two types of metrics: hypervolume (Zitzler

et al., 2007) and unary epsilon indicator values (Knowles et al., 2006).

Hypervolume

Hypervolume (HV) is the primary performance measure used in Chapters 6 and 7. It mea-

sures the region dominated by all points in an approximation set with reference to some

point that is dominated by all points in the set. For example, if an approximation set con-
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sisted of a single solution, and the reference point were the zero vector, its hypervolume

would be the product of all normalized objective scores, i.e. the volume of the hypercube

between the solution and the reference point. When more points are in the approximation

set, hypervolume measures the size of the union of the hypercubes between each solution

and the reference point.

Because each objective is scaled to the range [0, 1], hypervolume is also restricted

to this range. A hypervolume close to 0 thus has nearly minimum performance in all objec-

tives, while a hypervolume close to 1 has nearly maximum performance in all objectives.

For a domain with strongly conflicting objectives, hypervolumes close to 1 are unlikely,

since high performance in some objectives is traded for low performance in others. Solu-

tions that have high scores in multiple objectives will contribute more to hypervolume than

solutions with high scores in some objectives but low scores in the others.

Hypervolume is particularly useful because it is Pareto-compliant (Zitzler et al.,

2007), meaning that an approximation set that completely dominates another approxima-

tion set will have a higher hypervolume. The opposite is not true: An approximation set

with higher hypervolume does not necessarily dominate one with lower hypervolume, since

each set could dominate non-intersecting regions of objective space. In fact, it is provably

impossible to construct a unary indicator that tells when one approximation set dominates

another (Zitzler et al., 2002). Therefore, it is important to compare results using other met-

rics as well, to assure that these results corroborate rather than contradict the hypervolume

results. The additional metrics used are two variants of the unary epsilon indicator.

Epsilon Indicators

Like hypervolume, both epsilon indicators are Pareto-compliant (Knowles et al., 2006). For

epsilon indicators an approximation set that dominates another approximation set will have

a lower, rather than a higher, epsilon indicator score.

The two flavors of unary epsilon indicator are multiplicative and additive. The
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multiplicative indicator I1
ε measures by how much each objective for each solution in a

set would have to be multiplied such that each solution in a reference set R would be

dominated by or equal to a point in the resulting set. The set R should be chosen such that

it dominates all fronts under consideration. Therefore, an I1
ε value of 1 corresponds to R

itself, which is in turn the best/lowest value possible. The additive indicator I1
ε+ measures

how much would have to be added to each objective in each solution such that each point

in R would be dominated by or equal to a point in the modified set. In this case, the

best/lowest I1
ε+ value is 0, the value for R again. For both indicators, smaller values are

better because they indicate that a smaller adjustment is needed to dominate the reference

set R. As suggested by Knowles et al. (2006), when using epsilon indicators to measure

performance in a domain, the reference set R used is the super Pareto front (Pareto front

of several Pareto fronts) of all fronts for which epsilon values are being calculated and

compared.

As with hypervolume, epsilon indicator values are calculated for normalized objec-

tive scores. For the epsilon indicators, the purpose of normalization is to make the different

objective score ranges comparable. For example, imagine a two-objective problem where

the objective ranges are [0, 1] and [100, 200]. Consider two approximation sets consisting

of one point each: A = {(0.1, 200)} and B = {(1.0, 110)}. With respect to the scales

for each objective, these points are trade-offs at exact opposite ends of objective space, and

therefore of equal quality (assuming no objective preferences). However, if the epsilon in-

dicator values are calculated without normalizing first, the following results are obtained:

I1
ε (A) = 10, I1

ε+(A) = 0.9, I1
ε (B) = 1.8181, and I1

ε+(B) = 90. Not only are differences

between like metrics inappropriately large, but results across indicators are inconsistent:

Front A has a better I1
ε+ value, but B has a better I1

ε value. Had normalization been used,

each Pareto front would have equal scores in like metrics.

Combined with hypervolume, the epsilon indicators provide a thorough analysis of

how the approximation sets discovered in a given domain cover the space of all objectives.

14



For each of these metrics, a better score does not guarantee a superior approximation set,

but superior scores in all metrics gives confidence that a given approximation set actually

is better.

Up to this point, solutions to a multiobjective problem have been discussed only in

terms of the objective scores they achieve. How these scores are achieved does not matter

for NSGA-II, and neither does how solutions are represented. The next section describes

an effective method for automatically generating complex control policies.

2.2 Neuroevolution

In order to learn multimodal behavior, a means of representing complex control policies is

required. Artificial neural networks are in theory capable of approximating any behavior

with arbitrary accuracy if the weights and topology are correctly set (Haykin, 1999). Also,

evolutionary computation has proven to be a useful method for learning how to configure

the weights and topologies of neural networks in order to solve many problems (Floreano

and Urzelai, 2000; Yao and Liu, 1997; Stanley, 2003; Miikkulainen et al., 2012). When

evolutionary computation is used to evolve artificial neural networks, it is called neuroevo-

lution.

2.2.1 Constructive Neuroevolution

A particularly successful approach to evolving neural networks is to start with simple geno-

types that gradually complexify throughout the course of evolution. This approach is called

constructive neuroevolution, and was popularized by the Neuro-Evolution of Augmenting

Topologies (NEAT) algorithm (Stanley and Miikkulainen, 2002; Stanley, 2003).

In this approach, networks start with minimum structure and become more complex

from mutations across several generations. The initial population consists of networks with

no hidden layers, i.e. only input and output neurons. Inputs to read sensor values and

outputs to determine the actions of an agent are the minimal structure necessary to define
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a control policy. It is common to begin with every input connected to every output, but a

feature-selective approach, in which each output starts out connected to only a single input,

is also possible (Whiteson et al., 2005).

Three mutation operators were used to change network behavior. Weight mutation

perturbs the weights of existing network connections, link mutation adds new (potentially

recurrent) connections between existing nodes, and node mutation splices new nodes along

existing connections. Recurrent connections are particularly useful in partially observable

domains. An environment is partially observable if the current observed state cannot be

distinguished from other observed states without memory of past states (Sutton and Barto,

1998). Recurrent connections help in these situations because they encode and transmit

memory of past states; this property could help a network determine which mode of behav-

ior is most appropriate for the current situation.

The algorithm described so far is very similar to NEAT (Stanley and Miikkulainen,

2002). However, since NEAT was designed to use only a single fitness function, in this

dissertation it made more sense to reimplement these features of NEAT in NSGA-II than

to modify NEAT to use a Pareto-based multiobjective approach. Another key innovation

of NEAT that is used in this dissertation is topological crossover based on historical mark-

ers. Every new link and neuron that is introduced by mutation is given a unique innovation

number that identifies it. The genotype that encodes each neural network stores these in-

novations linearly in an order that is consistent across all members of the population. This

representation makes it easy to align components with a shared origin within different geno-

types, thus making crossover between networks computationally inexpensive.

Although components with a shared origin can be aligned, not all components in

two different networks will share common origins. Crossover is only happening between

synaptic weights that can be aligned, but components that do not align are left alone. To

maintain topological diversity, both children of each crossover are kept (provided there is

room in the new population). Each child will have the topology of a different parent, but
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the crossover of aligned weights will make the children different from the parents, even if

no further mutations occur. Parents are chosen via binary tournament selection.

Although topological crossover via historical markers was an impressive innova-

tion in NEAT, it is not used in all experiments in this dissertation. In particular, experiments

using feature-selective networks do not use crossover (Chapters 6 and 7). Preliminary ex-

periments indicated that crossover was not helpful in these situations. A potential reason is

that feature-selective networks will tend to have fewer links that actually align, thus making

crossover superfluous at best, and potentially detrimental if it disrupts the fragile weight

structure of the few weights that align.

The next section gives an example of how constructive neuroevolution, modelled

after NEAT, can sometimes give rise to multimodal behavior by taking advantage of simple

tricks.

2.2.2 Multimodal Behavior via Neuroevolution

The form of neuroevolution described so far has been used to solve many challenging prob-

lems (Stanley and Miikkulainen, 2002; Kohl and Miikkulainen, 2009; Schrum and Miikku-

lainen, 2010). Although this approach does not explicitly encourage the development of

multimodal behavior, it has produced agents that can be claimed to exhibit multiple modes

of behavior. One particularly interesting example comes from Stanley, Bryant, and Miikku-

lainen’s work in what they called the Dangerous Foraging Domain (2003).

This domain models the situation faced by a foraging animal entering a new geo-

graphical region. The foraging animal cannot know in advance whether the food in this

region is safe to eat or not, therefore it must taste one food item first before it has a chance

of making appropriate decisions. In the domain, all food in a given trial is either safe or

unsafe, so the optimal behavior is to try one piece of food, and then take different actions

according to whether the food was safe or not. If it was safe, then all food should be eaten.

Otherwise, all food should be avoided. This task is made challenging by the fact that the
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network only receives brief pain and pleasure signals upon eating unsafe and safe food re-

spectively. The fact that this signal is brief rather than persistent makes the domain partially

observable.

Networks using recurrent connections did surprisingly well in this domain by taking

advantage of a simple trick: A recurrent connection activated by the pain sensor caused the

robot to spin until it was facing away from food. This example demonstrates how useful

recurrent connections are in helping a network change its output behavior. It also shows

how multimodal behavior may sometimes evolve without the aide of methods specifically

aimed at doing so, by using simple tricks.

The Dangerous Foraging Domain thus underlines how important it is to evaluate the

methods developed in this dissertation in domains that require true multimodal behavior and

are not solvable by simple trick solutions. Other previous attempts to learn true multimodal

behavior, both with and without neuroevolution, are discussed in the related work chapter

at the end of this dissertation (Chapter 11).

2.3 Conclusion

Pareto-based multiobjective optimization and neuroevolution, particularly constructive neu-

roevolution, have been demonstrated previously to be useful tools for solving challenging

problems. However, in order to reliably learn multimodal behavior in challenging domains,

these methods need to be extended in ways described in the next chapter. In particular,

neural networks need architectures that support multiple policies via multiple modules, and

multiobjective evolutionary search needs a way to focus search on the most relevant areas

of objective space on any given generation of evolution.
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Chapter 3

Evolving Multimodal Behavior

In order to evolve multimodal behavior reliably, the tools described in the previous chapter

need to be extended. This chapter describes several such extensions. They constitute the

main technical contributions of this dissertation, and will be thoroughly evaluated in later

chapters.

Three such contributions are described in this chapter. The first is a set of general

design principles for sensors/features that make learning particular task divisions easier.

The second is a collection of methods for designing modular network architectures that can

learn unexpected and advantageous task divisions even when the sensors are not configured

in such a beneficial way. The third is a means of manipulating multiobjective evolutionary

search so that discovering multiple modes of behavior is more reliable.

3.1 Role of Sensors

The hardest of problems can be made trivially easy with the right choice of sensors. In

the extreme case, imagine a complex sensor that simply provides the optimal output. Any

learning method would simply need to develop an easy-to-learn identity function in order

to have perfect behavior. In this case, no matter how complex or multimodal the observed
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behavior was, the policy itself would actually be simple.

Such a scenario is not common, and even in the rare cases where a perfect oracle is

available, such problems are not of interest to researchers of Artificial Intelligence. How-

ever, the lesson to be learned from this example is that the choice of sensors can obscure

any contributions made by learning algorithms. Algorithms of widely varying complexity

would likely reach perfect performance quickly in any task with such a sensor configuration.

Although it makes sense to construct complex sensors to solve challenging prob-

lems, this dissertation provides methods for developing multimodal behavior even when

intelligent sensor configurations are not available. Additionally, this dissertation points out

some general properties of sensors that can make learning multimodal behavior more chal-

lenging. Such knowledge can help in the design of more learning-friendly sensors in those

cases where some degree of sensor manipulation is possible.

3.1.1 Conflict Sensors

A nasty property of some sensors that has an important impact on results in Ms. Pac-Man

(Chapters 9 and 10) is that they can sometimes have different, conflicting interpretations.

At the lowest level, sensor values are simply numbers. As these values are propa-

gated through a neural network, their influence may be magnified or reduced. These values

may also be swapped from positive to negative or negative to positive as a result of neg-

ative network weights. Sometimes there are clear correlations between sensor values and

advantageous actions: Agents in nearly any domain should generally move towards nearby

entities that will increase fitness and away from nearby entities that will decrease fitness.

If there are obstacles or other extenuating circumstances, then sensors that detect these cir-

cumstances should temper the general attraction or repulsion that the agent’s policy exerts.

For example, an agent moving forward to a goal may need to turn slightly to the left

or reduce its speed to get around an obstacle. Learning such adjustments is not trivial, but

it is certainly not outside the reach of most modern learning algorithms. In this case, the
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sensors that result in the most obvious attraction toward fitness-increasing entities will have

a strong influence on behavior, and other sensors whose importance is more circumstantial

will simply refine that general behavior.

However, a problem arises when certain entities can alternate between being fitness-

enhancing and fitness-decreasing. A sensor that, for example, detects the distance to such

entities, will be difficult to learn how to use properly, because it needs to influence the

agent’s behavior in conflicting ways: encouraging both approach and retreat in different

circumstances. Even if both of these opposing impulses travel through different neural

pathways, when they eventually reach the output layer of the network, one will need to be

completely canceled out in order for the agent to behave optimally.

If the right network topology and synaptic weights are learned, in which hidden

neurons properly produce useful aggregate features, then it is possible to completely cancel

out competing influence in this manner, but such structures are sufficiently complicated

that they are not learned easily. Fortunately, the learning task can be made much easier

by using networks with a modular structure that allows these opposing influences to be

handled in different ways. Such modular networks are a major topic of this dissertation that

will be discussed momentarily (Section 3.2), but first another type of sensor configuration

is discussed that contributes towards the same goal.

3.1.2 Split Sensors

If a sensor has multiple different interpretations, then one way to make it easier to learn

with it is to replace it with one sensor for each possible interpretation.

Definition 3 (Split Sensors) Suppose φ : S → R is a conflict sensor mapping states from

the state space S to numeric sensor values. This sensor has n different interpretations that

are identified by β : S → {1, . . . , n}, a function that indicates how φ should be interpreted

in each state. Then n split sensors, θ1, . . . , θn : S → R, can be defined using n constants,

C1, . . . , Cn, as follows.

21



For i ∈ {1, . . . , n}, and s ∈ S:

θi(s) =


φ(s), if β(s) = i

Ci, otherwise
It is up to the sensor designer to provide a β and values for C1, . . . , Cn that are appropriate

to the domain.

For example, a single sensor returning the distance to an entity that is sometimes

fitness-enhancing and sometimes fitness-decreasing can be replaced with two sensors: one

for the fitness-enhancing case and the other for the fitness-decreasing case.

Such sensors are split sensors, because the potentially conflicting ways of inter-

preting one sensor’s values have been split across two sensors. However, several issues

must be considered: Is it clear whether each entity is currently fitness-enhancing vs. fitness-

decreasing? Are these the only opposing interpretations of the sensor’s values? What values

will the resulting split sensors return when the entity they sense is not in the right state?

The answers to the first two questions depend on the specific domain and sensor.

The third question can be answered more generally: If, for example, there are no fitness-

enhancing entities, then a sensor pertaining to such entities should return a constant value.

Assuming all sensor values are scaled to the range [0, 1], then a value of 0 or 1 will usually

be most appropriate. For example, a distance sensor should return a value of 1 for entities

that are not present, because they are effectively an infinite distance away. Other sensors

may more appropriately return a 0 in such circumstances. So, some knowledge about how

the sensor works still needs to be incorporated, but the need for the sensor to return a

constant value when entities of interest are absent is universally important. It enables the

learning system to ignore the sensor when necessary. Sometimes it is obvious how to define

such useful sensors, and at other times extra effort may be required to design such sensors;

such issues are domain-dependent.

For each interpretation of sensor values encoded by the split, split sensors can make

it easier to learn a separate mode of behavior. However, such sensors also bias evolution
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towards that particular task division. If a better set of behavioral modes exists that depends

on splitting up the domain in a different way, then the introduction of such sensors will not

help, and may even hurt learning.

In order to learn novel, unexpected modes of behavior, networks need to have the

freedom to interpret sensors as the domain dictates. Such freedom is easily attained if

networks have multiple output modules.

3.2 Network Modules

A network module is a set of output neurons that are capable of defining the behavior of an

agent. These neurons are called policy neurons because one set defines one policy. A single

network can consist of multiple modules, and therefore multiple policies. The overall policy

of the agent is defined according to an arbitration mechanism that chooses which module to

use on each time step.

This section introduces several ways to design such network modules, along with

a means of arbitration between modules. The Multitask Learning approach uses a human-

specified number of modules and task division, preference neurons allow the division to be

learned, and Module Mutation allows the number of modules to be learned as well.

3.2.1 Multitask Learning

Multitask networks were first proposed by Caruana (1993, 1997) in the context of super-

vised learning using neural networks and backpropogation. One network has multiple mod-

ules, where each module corresponds to a different, yet related, task (Figure 3.1b). Each

module is trained on the data for the task to which it corresponds, but because hidden-layer

neurons are shared by all outputs, knowledge common to all tasks can be stored in the

weights of the hidden layer. This approach speeds up supervised learning of multiple tasks,

or even just a single task of interest, because knowledge shared across tasks is only learned

once and shared, rather than learned independently multiple times. Multitask Learning has
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been expanded on in many ways (Bakker and Heskes, 2003; Liu et al., 2009; Collobert

and Weston, 2008), but using this general architecture to evolve agent behavior is a new

approach.

Although Multitask Learning is a powerful technique, there are known problems

with it. The first restriction is the need to identify the individual tasks to learn. The appro-

priate decision is not always obvious, and divisions that seem obvious may not actually be

so. In fact, inappropriate task choices can hurt learning. In the supervised learning contexts

where Multitask Learning is commonly applied, even when there is certainty regarding how

to divide the tasks, there can be uncertainty regarding which tasks are related enough to ben-

efit from sharing information. For this reason, methods have been developed to learn how

tasks should share information (Thrun and O’Sullivan, 1998; Kang et al., 2011).

In the context of constructive neuroevolution, Multitask Learning imposes a strict

task division and assumes that evolving agents are always aware of the task they currently

face, but imposes no bias in the degree of information sharing between tasks. Each network

has a module for each task, but these modules are initially connected only to input neurons;

the modules can only share information if they evolve to share hidden neurons.

As an example of the multitask architecture, consider a domain where two policy

neurons are required to define the behavior of an agent, and the agent must solve two tasks.

The networks have two policy neurons for each task, for a total of four outputs. When

performing a given task, the agent bases its behavior on the outputs corresponding to the

current task, and ignores the other outputs.

Multitask Learning can supply a learning system with a helpful bias, but this bias

will only be useful if it is appropriate for the domain at hand. The task split imposed by

Multitask Learning is very similar to the bias imposed by split sensors (Section 3.1.2).

In both cases, even when the human-specified division is helpful, it may not be the best

division. In order to discover potentially better task divisions, a means of learning how to

arbitrate between tasks is needed.

24



IN IN IN ININ

(a) Single-module Network

2 2

IN IN IN ININ

1 1

(b) Multitask Network

IN IN IN ININ
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Figure 3.1: Network Architectures With a Fixed Number of Modules. The neural net-
works in this figure are intended for a task with five input sensors (bottom) and behavior
defined by two policy neurons. Each complete module of output neurons is contained within
its own red box. (a) A neural network with only one module has only two output neurons
at the top. (b) Multitask network with two modules, each consisting of two policy neurons.
The numbers indicate which module is used with each task. (c) Network with two modules
that use preference neurons (grey). Each module has its own preference neuron, and the
module with the highest preference neuron output defines the network’s behavior on each
time step. These network architectures demonstrate different ways that a single network
can have multiple modules, but the number of modules in each case is fixed (cf. Figure 3.2).

3.2.2 Preference Neurons

Preference neurons allow a task division to be learned. This approach requires that each

network module possess an additional neuron called a preference neuron (Figure 3.1c). The

preference neurons in a network indicate the relative preference for using the corresponding

module. On each time step, the network module whose preference neuron output is highest

is used to define the behavior of the agent (Algorithm 1).

For example, assume a domain requires two outputs to designate the behavior of

an agent, and a network has two modules. Then the network has six outputs: two policy

neurons and one preference neuron for Module 1, and two policy neurons and one prefer-

ence neuron for Module 2. Whenever the output of Preference Neuron 1 is higher than the

output of Preference Neuron 2, the two policy neurons of Module 1 define the behavior of

the agent. Otherwise, the policy neurons of Module 2 are used.

The use of preference neurons assumes that there is enough information in the state
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Algorithm 1: Execution of a Network With Preference Neurons
Data: n = number of policy neurons per module, m = number of modules,

networkOutputs = array of values from all network output neurons
from all modules; for each module, the outputs of the policy neurons
come first, followed by the preference neuron output.

Result: behaviorOutputs = array containing only the outputs of policy
neurons for the module chosen by the preference neurons.

for i← 1 to m do
modulePreferences [i]← networkOutputs [i(n+ 1)];

chosenModule← arg maxi modulePreferences [i];
for i← 1 to n do

policyIndex← (chosenModule −1)(n+ 1) + i;
behaviorOutputs [i]← networkOutputs [ policyIndex ];

space of the problem to determine which module should be used. Technically, Multitask

Learning does not require this information to be available in the sensors. However, it does

assume that a human designer knows how to determine the current task, which is actually a

more complicated requirement. Still, the use of modules dictated by the preference neurons

will depend on the available sensors.

The architecture described so far still assumes that a human designer specifies the

number of modules to use. If a good guess at the number of modules cannot be made, one

option is to simply give a network lots of modules, and hope that it learns to ignore those

it does not need. However, adding many extra modules needlessly increases the size of the

search space, which also removes some of the benefits of constructive neuroevolution (Sec-

tion 2.2.1). Therefore, this dissertation proposes a new way to introduce network modules

gradually, called Module Mutation.

3.2.3 Module Mutation

Module Mutation (known as Mode Mutation in previous work; Schrum and Miikkulainen,

2009, 2011, 2012) refers to any structural mutation operator that adds a new module to a

neural network. Because an unknown number of modules may be added in this way, such
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networks depend on preference neurons for module arbitration. New populations start with

a single module and a preference neuron that only becomes relevant after more modules are

added. Each new module from Module Mutation adds a new set of policy neurons and a

new preference neuron.

Calabretta et al. (2000) proposed similar ideas: Neural networks were evolved to

control robots using a “duplication operator,” which created a copy of one output neuron

with all of its connections and weights. The network then had two output neurons that

corresponded to the same actuator on the robot. Arbitration was accomplished by “selector

units,” which were essentially the same as the preference neurons described above. This

duplication operator differs from Module Mutation in two major ways: (1) The number of

neural modules per output neuron was limited to two, so for any given output, only one

duplication operation was allowed. (2) The duplication operation works at the level of

individual output neurons, whereas Module Mutation works at the level of groups of output

neurons.

There are several ways in which Module Mutation can be implemented. Two of

them, evaluated in the BREVE simulation environment (Chapter 6), are Module Mutation

Previous (MM(P); Figure 3.2b) and Module Mutation Random (MM(R); Figure 3.2c).

The intention behind MM(P) is to create a new output module with minimal addi-

tional structure that is similar in behavior, at least initially, to a pre-existing module (Al-

gorithm 2). Therefore, each neuron within the newly added module starts with one input

synapse that comes from the corresponding neuron of the previous output module. These

connections are lateral, from left to right in the same layer, but are treated as feed-forward

connections (i.e. they transmit on the same time step). The weights of these connections

are set to 1.0, but the new module is not identical to the previous module because the tanh

activation function is used on each neuron, and acts as a squashing function (which is a

common design in neural networks). Therefore, the new module is a similar but slightly

diminished (in terms of activation) version of the previous module. Future mutations can
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(a) Before Module Mutation
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(b) Module Mutation Previous
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(c) Module Mutation Random
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(d) Module Mutation Duplicate

Figure 3.2: Types of Module Mutation. As in Figure 3.1, the neural networks shown here
are intended for a task with five input sensors (bottom) and behavior defined by two policy
neurons. All preference neurons are grey, and new structure that results from Module Mu-
tation is drawn in red. Each complete module of output neurons is contained within its own
red box. (a) Neural network at the start of a run using Module Mutation. The lone pref-
erence neuron becomes relevant after more modules are added. (b) MM(P) creates a new
module whose inputs come directly from the previous module. (c) MM(R) creates a new
module whose inputs come from random sources, and have random weights. (d) MM(D)
creates a new module whose behavior exactly duplicates that of a previous module. Notice
that the inputs to the new policy neurons in MM(D) come from the same sources that lead
to the policy neurons of the pre-existing module. Their weights are the same as well. How-
ever, the new preference neuron has an input from a random source with a random weight.
Each of these mutation operators provides a different way to create new modules in a neural
network, which can then learn specialized behavior corresponding to interesting behavioral
modes.
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further differentiate the new module from its source module such that both modules exhibit

distinct behavior.

Algorithm 2: Module Mutation Previous
Data: n = number of policy neurons per module, m = number of modules,

links = array of all synaptic links in network stored in arbitrary order,
neurons = array of all neurons in the network stored in strict order: all
input neurons come first, followed by all hidden neurons, followed by
all output neurons for each module; for each module, the policy neurons
come first, followed by the preference neuron, outputStart = index of
the first output neuron in neurons.

sourceModule← rand (m);
for i← 1 to (n+ 1) do

o← newOutputNeuron ();
l← newLink ();
l.weight← 1.0;
sourceLocation← outputStart +(sourceModule −1)(n+ 1) + (i− 1);
l.source← neurons [ sourceLocation ];
l.target← o;
neurons.addToEnd (o);
links.addToEnd (l);

m← m+ 1;

However, such differentiation is not guaranteed to occur. Because new modules are

similar to old modules, there may not be enough selection pressure for them to change,

meaning that they may persist indefinitely. Furthermore, despite the capacity for evolved

connections to differentiate each module, older modules will always have some influence

over later modules via the lateral connections created along with each new module, thus

making it hard to evolve lasting modular behavior.

The second method of Module Mutation addresses this problem. In new MM(R)

modules, each neuron receives randomly weighted inputs from random hidden and input

neurons in the network (Algorithm 3). For policy neurons, the number of these inputs

equals the number of inputs each output neuron had in the original network from the start

of evolution. Connecting the new outputs in this way assures that new modules start out as

complex as the module with which the network started evolution. In contrast, preference
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neurons only ever start with a single random input, since this design allows evolution to

more easily experiment with different ways of using the modules. This whole approach

is risky since a new random module could cause fitness scores to plummet, but it has the

advantage of more quickly introducing distinct network modules.

Algorithm 3: Module Mutation Random
Data: n = number of policy neurons per module, m = number of modules,

links = array of all synaptic links in network stored in arbitrary order,
neurons = array of all neurons in the network stored in strict order: all
input neurons come first, followed by all hidden neurons, followed by
all output neurons for each module; for each module, the policy neurons
come first, followed by the preference neuron,
linksPerOutput = number of new random links that each new policy
neuron receives.

newModule← [];
for i← 1 to n do

o← newOutputNeuron ();
for j ← 1 to linksPerOutput do

l← newLink ();
l.weight← rand ();
l.source← neurons [rand (neurons.length)];
l.target← o;
if ¬∃p ∈ links (p.source = l.source ∧p.target = l.target ) then

links.addToEnd (l);

newModule.addToEnd (o);
o← newOutputNeuron ();
l← newLink ();
l.weight← rand ();
l.source← neurons [rand (neurons.length)];
l.target← o;
links.addToEnd (l);
newModule.addToEnd (o);
for i← 1 to (n+ 1) do

neurons.addToEnd (newModule [i]);
m← m+ 1;

MM(R) also makes it feasible to delete network modules. Deleting an MM(P) mod-

ule is often infeasible, because the modules are tightly interconnected and a deletion would
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often disconnect neurons from the network. Specifically, since new modules start out con-

nected only to the previous module, deletion of an MM(P) module can potentially discon-

nect all modules added after that module. Even if links had evolved that would prevent

these newer modules from becoming disconnected, the deletion of the lateral links connect-

ing the deleted module to the next module could drastically change the behavior of all of

these modules, which would usually be undesirable.

However, modules can be safely deleted in MM(R) networks without disconnecting

other modules. The ability to delete old modules after better ones evolve can be advanta-

geous. Therefore, this module-deletion mutation will be evaluated in some of the experi-

ments below.

The third form of Module Mutation is inspired by the work of Calabretta et al.

(2000): Module Mutation Duplicate (MM(D); Figure 3.2d). In MM(D), the sources and

synaptic weights of inputs to the policy neurons in the new module are chosen so that it

exactly duplicates the behavior of a randomly chosen previous module (Algorithm 4). This

approach improves upon MM(P) in two ways: (1) New module behavior exactly copies

a previous module rather than merely approximating it, making it impossible for the new

mutation to decrease fitness, and (2) the new module is not directly linked to the module

it duplicates, which means that future changes to the source module will not damage any

useful behaviors learned by the newer module. As with MM(R), the preference neurons in

MM(D) are initialized with a single random input, to encourage the new module to be used

in different situations than its predecessor.

The different forms of Module Mutation are powerful because they search the space

of policies in ways that are not possible with a single module. MM(P) elaborates on

past modules to refine behavior, MM(R) quickly discovers completely new modules, and

MM(D) makes it easy for different modules to branch off from a common starting point.

This dissertation evaluates the benefits of each approach in the experiments below.

However, the survival of individuals within an evolving population depends on fit-
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Algorithm 4: Module Mutation Duplicate
Data: n = number of policy neurons per module, m = number of modules,

links = array of all synaptic links in network stored in arbitrary order,
neurons = array of all neurons in the network stored in strict order: all
input neurons come first, followed by all hidden neurons, followed by
all output neurons for each module; for each module, the policy neurons
come first, followed by the preference neuron, outputStart = index of
the first output neuron in neurons.

sourceModule← rand (m);
newModule← [];
for i← 1 to n do

sourceLocation← outputStart +(sourceModule −1)(n+ 1) + (i− 1);
o← newOutputNeuron ();
for j ← 1 to links.length do

if links [j].target = neurons [sourceLocation ] then
l← newLink ();
l.weight← links [j].weight;
l.source← links [j].source;
l.target← o;
links.addToEnd (l);

newModule.addToEnd (o);
o← newOutputNeuron ();
l← newLink ();
l.weight← rand ();
l.source← neurons [rand (neurons.length)];
l.target← o;
links.addToEnd (l);
newModule.addToEnd (o);
for i← 1 to (n+ 1) do

neurons.addToEnd (newModule [i]);
m← m+ 1;
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ness values and how evolution deals with them. Straightforward multiobjective evolution

will preserve the best solutions when they are discovered, but may not always take the

most direct route through the search space needed to reach the best solutions. Therefore, a

means of improving the navigation of search spaces in conjunction with multiple objectives

is introduced in the next section.

3.3 Targeting Unachieved Goals

NSGA-II is designed to search for solutions in domains with multiple objectives. The upper

bounds on the scores that can be achieved in each objective are defined by the Pareto front,

i.e. the collection of optimal points in objective space. However, as with single-objective

search, local optima can exist in objective space. These locally optimal fronts can pose a

problem by acting as road blocks on the path to the Pareto front (Figure 3.3).

Intelligent ways of navigating the multiobjective search space can help get around

these local optima. Specifically, focusing on objectives in which the population as a whole is

performing poorly is a way of pushing past sub-optimal regions to find the Pareto front. This

is what Targeting Unachieved Goals (TUG) does: Only objectives in which the population

is having trouble performing should be part of the selection process; objectives in which the

entire population is performing well can be ignored.

To know when to deactivate an objective, a numeric goal is defined for each objec-

tive. These values represent the currently desired levels of performance, and indicate how

well an agent would have to perform to be considered successful. Initial goal values can be

set at minimal starting points, or can be chosen based on domain knowledge. Additionally,

goals increase over time as the population improves across all objectives.

A goal is considered achieved once the average performance of the population in

that objective has persisted long enough at a level above the value of the goal. Persisting

above the goal means both the average performance and a recency-weighted average of

that average have surpassed their objective’s goal value. The persistence requirement is

33



Objective 1

O
b

je
c
ti

v
e
 2

Pareto Front

Local Optima

Figure 3.3: Locally Optimal Fronts. The gray region defines the feasible region of ob-
jective space in this two-objective problem. Any feasible point can potentially be achieved
within the given domain. In addition to the Pareto front, there are also locally optimal fronts
where points may converge. In order to reach the Pareto front, search must either get around
or leap over these local optima. Regular NSGA-II may sometimes have trouble following
such trajectories, so a way of shaping the search process is needed to focus on the best
solutions.

important because the fitness values often fluctuate significantly, particularly in domains

with noisy evaluations.

Formally, a recency-weighted average rt at time t is updated according to

rt+1 ← rt + α(x̄t+1 − rt), (3.1)

where α defines the portion of the distance between rt and the current actual average, de-

noted by x̄t+1, by which rt should be increased. Thus the recency-weighted average moves

slightly closer to the most recent average of every generation.

Note that an objective can be reactivated if performance drops back below its goal.

Goals reactivate as soon as the actual average drops below the goal, since the recency-

weighted average catches up too slowly in comparison. As a result, any level of perfor-

mance should be maintained once it is achieved.

34



To push the level of performance higher and higher, the goal values increase once

they are all achieved. This step can be accomplished in a variety of ways. Obviously,

the amount by which each objective increases could be set based on domain knowledge.

A more general approach can be used if each objective has a maximum value: Choose a

number of steps n and divide the maximum achievable score in each objective by n to get

the step size for that objective. This approach is evaluated in Ms. Pac-Man (Chapter 10).

An alternate approach that can be used without knowledge of maximum values or

deciding on a number of steps is the following: When increasing goals for each objective,

move the current goal closer to the current maximum score in that objective. Formally, the

update rule is

go ← go + η(omax − go), (3.2)

where go is the goal for objective o, omax is the current maximum score within the popula-

tion for objective o, and η defines the portion of the distance between the current goal and

the current maximum by which the goal should be increased. This approach increases the

goal values without overshooting the capabilities of agents within the domain. The maxi-

mum score in an objective will always be above the average, which will always be above the

goal at the moment it is achieved, so this update rule will always increase goals. Because

goals are moved towards the current maximum score, no goal will ever be set at a level that

is unattainable. This approach is evaluated in Chapter 7.

Regardless of how goals are increased, each increase only occurs when all goals

are achieved. Whenever all goals are achieved, all recency-weighted averages are also

reset, so that the population must prove it can perform well given the new goals. In this

manner, all initial goals can be set at low values easily attainable by the population. TUG

then automatically increases the goal values based on the capabilities of the population,

eventually leading to maximum performance.

Pseudo-code for TUG is presented in Algorithm 5. TUG is not a complete algo-

rithm, but an enhancement that can be applied to any evolutionary multiobjective optimiza-
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Algorithm 5: TUG in a Multiobjective Evolutionary Algorithm
Data: α = step-size parameter for recency-weighted averages, n = number of

objectives, η = optional step-size parameter for goal values,
∆1, . . . ,∆n = alternative fixed goal increments for each objective,
min1, . . . ,minn = minimum possible score in each objective (or
reasonable estimates), g1, . . . , gn = initial goal values for each objective.

population← initialPopulation();
rwas← (min1, . . . ,minn);
goals← (g1, . . . , gn);
while evolving do

evaluate(population);
for i← 1 to n do

maxes [i]← population’s maximum score in objective i;
avgs [i]← population’s average score in objective i;
rwas [i]← rwas [i] + α(avgs [i] - rwas [i]);
achieved [i]← (rwas [i] > goals [i]) ∧ (avgs [i] > goals [i]);

if all entries in achieved are True then
for i← 1 to n do

if using fixed goal increments then
goals [i]← goals [i] + ∆i;

else
goals [i]← goals [i] + η(maxes [i] - goals [i]);

useObjective [i]← True;
rwas [i]← mini;

else
for i← 1 to n do

useObjective [i]← ¬achieved [i];

for each individual’s scores s = (s1, . . . , sn) in population do
for i← 1 to n do

if ¬useObjective [i] then
s[i]← −∞;

population← selectNextGeneration(population);
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tion algorithm. In this dissertation, TUG is combined with NSGA-II, but this it not strictly

necessary. Therefore, the code presented only assumes that multiple objectives exist, and

are used to generate the next population for each generation.

TUG leads to multimodal behavior by encouraging improvements in objectives as-

sociated with particular modes of behavior. If TUG is combined with modular neural net-

works, then it will favor improvements in modules associated with one mode of behavior

while leaving other modules alone, until there are successful modules for each needed mode

of behavior.

3.4 Conclusion

This chapter presented the three main technical contributions of this dissertation. They are

(1) a better understanding of how the choice of sensors affects the ability of evolution to

discover multimodal behavior, (2) approaches to evolving modular networks that can learn

multimodal behavior even with simple sensors, and (3) a way of enhancing multiobjective

evolutionary search to make the discovery of such multimodal behavior more likely. All of

these methods will be evaluated in several experiments throughout this dissertation. How-

ever, before conducting any experiments, the next chapter discusses the types of domains

that require multimodal behavior.
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Chapter 4

Domains Requiring Multimodal

Behavior

Multimodal behavior is required in many domains, some more complicated than others.

This chapter first describes the Markov Decision Process (MDP) formalism that is the basis

of Reinforcement Learning (RL) problems (Sutton and Barto, 1998). The neuroevolution

approach to RL domains functions independently from this formalism — it is not a com-

ponent of the algorithms developed in Chapter 3 — but including it provides a basis of

comparison to the work from the non-evolutionary RL community. This formalism is then

used to define three ways in which a domain may divide into tasks. They may be isolated,

interleaved, or blended, depending on how clear the border between tasks is. The resulting

order of increasing difficulty provides a logical sequence in which methods for learning

multimodal behavior will be evaluated in this dissertation.

4.1 Markov Decision Process

An MDP is defined as a tuple (S,A,P,R), where S is the state space of the environment,

A is the set of actions that the agent is able to perform, P is the transition function, andR is
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the reward function. The transition function is defined as P : (S × A× S)→ [0, 1] where

P(s, a, s′) returns the probability of reaching state s′ on the next time step after performing

action a in state s. The reward function provides the agent with feedback on how well it is

performing in the environment. Typical RL formulations use a scalar reward function, but

the domains in this dissertation explicitly use multiple objectives. Thus,R : (S×A)→ RN

is defined such that R(s, a) returns a tuple of the expected immediate rewards in each

objective for performing action a in state s. This tuple has length N , which is the number

of objectives. In fact, thisN will be included in the definition of the resulting multiobjective

MDP to make the discussion below easier to follow: (S,A,P,R, N)

All domains in this dissertation are episodic, meaning that they all terminate in

finite time. Because evolutionary computation is being used, the rewards from R must be

translated into fitness. Therefore, the fitness for a given objective is the sum of the reward

accrued in the course of an episode1. Because every episode has a start and end point,

specific start and end states can be identified in S. Strictly speaking, there can be multiple

start and end states, but these can be abstracted away by using a single master start state

that randomly transitions to one of the actual start states, and a master end state to which

all actual end states involuntarily transition. These master start and end states will simplify

the discussion of how tasks are divided.

It is worth pointing out that many interesting domains (such as those in this disserta-

tion) are actually Partially Observable MDPs (POMDPs; Sutton and Barto, 1998), meaning

that states cannot be distinguished without a perfect memory of all past states visited. The

extra challenges of POMDPs slightly complicate the formalism provided so far, but these

complications can be safely ignored in the discussion below, because the observability of

states does not directly impact whether or not the domain consists of separate tasks. All

POMDPs have underlying MDPs, even though agents in such domains may not be aware of

them. Therefore, when a domain is actually a POMDP, it can still be categorized according
1Rewards are also often discounted such that early rewards are higher than later rewards. Such discounting

is not necessary in episodic domains, and is not used in this dissertation.
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Figure 4.1: Isolated Tasks. An abstract representation of a domain with two isolated tasks.
In such a domain, nothing that occurs in any task can affect any other task. Each task has its
own time line of events. Evaluation order could be changed, or evaluations could be done in
parallel (assuming multiple copies of a software agent) without the outcome of evaluation
being any different (ignoring any noise in evaluation). In fact, if a learning agent is aware
of the task split, one could even learn completely separate policies for each task.

to the following definitions if they apply to the domain’s underlying MDP.

The first type of domain consists of multiple, isolated tasks, as discussed next.

4.2 Isolated Tasks

In the simplest multimodal domains, each task is completely isolated from the others (Fig-

ure 4.1): Nothing that an agent does in one task affects the other tasks.

Domains with isolated tasks can be constructed by taking any set of T distinct

domains (S1,A1,P1,R1, N1), . . . , (ST ,AT ,PT ,RT , NT ) and combining them into one

MDP (S,A,P,R, N). In this combined MDP,

S =
T⋃
i=1

Si. (4.1)

Note that {S1, . . . ,ST } is a partition of S. This requirement is imposed even if states from

different MDPs are seemingly identical, since the source MDP of a given state is part of

what defines that state: Two states from different MDPs are different by virtue of being

from different MDPs. Of course, an agent may not know which MDP a state came from.

This issue relates to POMDPs: States from different tasks may look identical to an agent,

but are distinct because the tasks are distinct. The action space is defined similarly as

A =
T⋃
i=1

Ai, (4.2)
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but in this case there is no strict partition requirement. In fact, in a situation where one would

actually want to have one agent learn multiple isolated tasks, it makes sense for the action

spaces of each task to be the same. Such is the case for all domains in this dissertation,

but is not a requirement of the definition. The transition function for the combined MDP is

defined as

P(s, a, s′) = Pi(s, a, s′) if s, s′ ∈ Si and a ∈ Ai. (4.3)

However, if s ∈ Si and s′ ∈ Sj for i 6= j, then P(s, a, s′) = 0 regardless of a, except in a

few special cases. According to the formalism defined above, each of the constituent task

MDPs has exactly one start state and one end state. So, if sistart is the start state for Task i,

and siend is the end state for Task i, then

P(siend, a, s
i+1
start) = 1 for all a ∈ A and 1 ≤ i < T. (4.4)

Therefore, a single episode in the combined MDP consists of one episode in each task, in

sequence. The last components that needs to be defined are R and N . The objectives from

each task remain separate in the combined MDP, so

N =
T∑
i=1

Ni. (4.5)

In order to define the reward function, a vector concatenation operator needs to be defined:

(v1, . . . , vn)⊕ (u1, . . . , um) = (v1, . . . , vn, u1, . . . , um), and (4.6)

n⊕
i=1

−→v i = −→v 1 ⊕ · · · ⊕ −→v n. (4.7)

Given this operator, the reward function is defined as

R(s, a) = (
k−1⊕
i=1

−→
0 Ni)⊕Rk(s, a)⊕ (

T⊕
i=k+1

−→
0 Ni) when s ∈ Sk. (4.8)

In this definition,
−→
0 x represents the zero vector of length x. R is simply getting the rewards

for Task k according to Rk : (Sk × Ak) → RNk , and then padding the vector with zeroes
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in the places for objectives from the other tasks. An interesting property resulting from

this definition is that the sets of objectives used by all isolated tasks partition the set of all

objectives used in the combined MDP.

The above example shows how to construct a domain with isolated tasks by com-

bining several MDPs, but there exist MDPs with similar properties that are not constructed.

In order to identify an MDP as consisting of isolated tasks, it must have the following

properties identified in the example above:

1. The state space can be partitioned into separate state spaces for each task.

2. The transition function is guaranteed to take the agent from one task to the next in

fixed sequence, visiting each task once with no returning to earlier tasks.

3. Events in one task do not affect which states are reachable in other tasks. Specif-

ically, each task has only one start and end state. If a task had multiple exit states

that transitioned to multiple start states in another task, but with different transition

probabilities, then the agent’s choices in one task could influence its starting position

in the next task. Such is not the case with isolated tasks.

4. The set of objectives is partitioned according to each task.

For example, the sport of baseball is a domain that has these properties. A baseball

inning is partitioned into offensive and defensive tasks. When one team is at bat (offense),

the other team is on the defense. When the batting team receives three outs, they trade

places with the defensive team. The actions available to players at bat does not depend on

actions performed while on defense, and vice versa2. The game pauses and resets as teams

switch roles. In the offensive task, the team’s goal is to maximize its own score by earning
2Strictly speaking, substituting players in the defensive task affects batting order in the offensive task.

However, the actions available to each player are in no way affected. If the policy of the team is being learned,
then the notion of substituting players becomes meaningless, because the learning agent could chose to have
any player behave as it wants, thus removing distinctness from individual players.
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runs, and in the defensive task the team tries to minimize the score of the opposing team,

thus the objectives are partitioned.

One approach to isolated tasks is to simply learn separate controllers for each task.

Such an approach makes sense if the different tasks are easily identified and can be learned

in isolation. Professional baseball teams use this approach to a limited extent, because (in

certain leagues) the pitcher is not required to bat. Therefore, the pitcher can focus on the

pitching aspect of the defensive task, and ignore the offensive (batting) task. However, such

information is not always available, and no learning system will ever be fully general if it

cannot deal with separate isolated tasks. After all, the batters are still required to fill a role

while the team is on the defensive, so even a player that focuses on batting will have to deal

with isolated tasks to some degree.

Intelligent agents perform many different tasks, and many tasks are unrelated. There-

fore, intelligent agents should be able to learn how to handle isolated tasks using the meth-

ods for learning multimodal behavior developed in this dissertation. These methods will be

evaluated in two domains with isolated tasks in Chapter 6. However, multiple tasks within

a domain are not always completely isolated, which makes the relationships between tasks

more complicated.

4.3 Interleaved Tasks

If an agent must perform multiple tasks to succeed in a single domain, but performance in

certain tasks has an impact on what happens in the other tasks, then the tasks are no longer

isolated. When one task directly leads into the next task, then the tasks are interleaved

(Figure 4.2).

Isolated tasks can be thought of as an extreme example of interleaving: Each task is

visited once before shifting to the next. However, the definition of a domain with interleaved

tasks is more permissive; some of the requirements of isolated tasks must be relaxed to

arrive at the definition of interleaved tasks.
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Figure 4.2: Interleaved Tasks. A domain consisting of two interleaved tasks. The tasks of
this domain share a common time line. Tasks switch between time steps, meaning that the
current state before the switch directly affects the state and available actions at the beginning
of the new task. Good behavior in a domain with interleaved tasks involves acting in a way
that leaves the agent prepared for these switches.

First, the requirement that the state spaces for the individual tasks create a partition

of the combined state space will be retained. Every state is a member of exactly one task.

However, more ways of transitioning between different tasks are now allowed. The state

space Si for any given task can have transitions to any other task Sj where i 6= j. How-

ever, each Task i will contain a subset of states Score
i , called the core, that are only able to

transition back to that task. Formally,

∀a ∈ A∀s ∈ Score
i ∀s′ ∈ Sj where i 6= j,P(s, a, s′) = 0 (4.9)

Because each task now potentially has multiple exit and entry points, potentially

with different transition probabilities, an agent’s actions in one task now have consequences

in other tasks. Different entry points to a task can lead to different areas of its core, which

can influence the rewards generated byR.

The reward function in a domain with interleaved tasks is still made up of separate

reward functions Ri for each Task i, but the sets of objectives used by each task need no

longer be disjoint. In fact, each function Ri : (Si × Ai) → RN is defined on all N

objectives of the combined domain with interleaved tasks. Certain objectives may always

have a 0 reward in certain tasks, but this is not required of the definition. R is now simply

defined asR(s, a) = Ri(s, a) if s ∈ Si.

The definition provided so far is very general; nearly any domain can be contorted

to fit the definition of interleaved tasks. Any state space can be partitioned into arbitrarily
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many tasks with very small cores. For any arbitrary subset of the state space, the portion of

it that happens to transition back to the same subset can be labelled the core, and the rest of

the states are simply those that go to other tasks.

Therefore, an additional restriction is needed to make the definition of interleaved

tasks useful. Specifically, a task needs to be a stable entity, and different tasks need to be

distinguishable from each other. Note that for distinct behavioral modes to be useful, the

proportion of task switches to total time spent in the domain should be small. In this case,

a large majority of state transitions must be confined to one task, which in turn means that

the cores of each task are relatively large. Therefore, having a low rate of thrashing back

and forth between tasks is an indication that a domain consists of a few important tasks

that partition the state space. Formally, a domain with interleaved tasks should have a low

thrashing rate, where the thrashing rate is the average number of task transitions per episode

divided by the average number of time steps per episode.

Calculating the thrashing rate with precision may not always be possible, but a

rough estimate can be enough to establish suitable bounds. There is no precise boundary

where a domain suddenly goes from being interleaved to not being interleaved, but the

lower the thrashing rate is, the more likely a domain can be usefully labelled as having

interleaved tasks. At the extreme end, a domain with isolated tasks has the lowest thrashing

rate possible for a given number of tasks and a given number of time steps per episode.

In this dissertation, Imprison Ms. Pac-Man (Chapter 9) serves as the prime example of a

domain with interleaved tasks, and a conservative estimate indicates that it has a thrashing

rate less than 0.01 (as will be explained in Section 8.3).

In summary, a domain with interleaved tasks has the following properties:

1. The state space can be partitioned into separate state spaces for each task, as with

isolated tasks.

2. The transition function can go between tasks, but the majority of states are in the

cores of each task.
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3. Actions in one task can affect other tasks because there may be multiple ways of

transitioning between tasks. The agent’s actions in one task determine its entry state

in other tasks.

4. The domain has a low thrashing rate.

Interleaved tasks can also be understood by looking at an example from the world

of real-life sports: American football interleaves the tasks of offensive and defensive play.

The offensive team tries to advance the ball toward the defensive team’s end zone in order

to score touchdowns. The roles of each team are well defined, but on any play there are

turnover events (fumble, interception) that can result in the ball changing hands, which

switches the roles of the teams. Turnovers and touchdowns do not happen on every play;

the thrashing rate is low3.

When a defensive player does intercept the ball, his team suddenly becomes the

offensive team. Furthermore, the options available to all players after an interception de-

pend directly on where the players were at the time of the interception. If the offensive

team is widely dispersed when their quarterback throws a ball that gets intercepted, then

there are many gaps available through which the interceptor of the ball can run. The actions

of agents in one task have a direct impact on the state of the environment after the task

switches, which in turn affects the actions available to all agents.

Notice that in this example, not only can the task switch in the middle of play, but

the agents themselves determine when the task switches. The task switch could be caused

by a bad pass from the offensive quarterback, or a skilled maneuver by a defensive player

that intercepts the ball. Even if the ball is not intercepted during play, if the offensive team

has nearly run out of downs, it will often choose to punt the ball to the opposition, thus

putting the opponent at a disadvantage when the task switches. The ability to control when

tasks switch can be very important to success in a domain, and is yet another important
3A degenerate case in which the ball fumbles back and forth every few seconds without end is in theory

possible, but is too unlikely to consider.
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behavior that policies must learn in order to generate successful multimodal behavior. In

fact, learning to control precisely when the task switches will prove to be very important in

Imprison Ms. Pac-Man (Chapter 9).

Note also that when the task switches, say from defensive to offensive, there is no

strict property of the domain’s state space demanding that a previous offensive possession

be included in the same task as the current offensive possession. Each time the ball changes

hands, the agents could be said to be in yet another new task. Since American football

games are timed, the current time is part of the state, meaning that there are no transitions

from the core of one possession to the core of another possession across large gaps of

time; in terms of how the state space is structured, each possession is like a separate task.

Modelling the domain this way does not change the fact that each task affects the next,

so the domain is still interleaved rather than isolated, but in terms of the semantics of the

game, it seems strange for separate possessions to be separate tasks. One possession is

semantically similar to another: The offensive team always has the ball.

Grouping all offensive actions into one task and all defensive actions into another

task is a sensible division. Such a division could be used to tell a Multitask Learning agent

(Section 3.2.1) how to split up a domain, or could be used to define the β function for split

sensors (Section 3.1.2) that indicates when conflict sensors can be interpreted in different

ways. Alternatively, preference neurons (Section 3.2.2), can learn their own task division,

and could potentially favor a division between different offensive plays, or at least different

types of offensive plays (kicking, running, passing).

The concept of interleaved tasks is defined in terms of the structure of the state

space, which is in turn defined by the transition function. However, the football example

above shows how high-level semantic properties of a domain can be useful in grouping

separate task cores into a single semantic task, e.g. an offensive task or a defensive task.

It is sometimes hard to partition the state space of a domain with respect to such semantic

properties. In fact, sets of states in which different semantic properties hold may not be
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disjoint. The region where such properties overlap blends the properties of different tasks.

The challenging case of blended tasks is described next.

4.4 Blended Tasks

In the American football example above, the task switches at the point where the ball is

intercepted, or otherwise changes possession. Possession of the ball is the semantic property

that unifies all offensive activity in opposition to all defensive activity. However, in some

domains it is not always clear what the current task is (Figure 4.3).

Figure 4.3: Blended Tasks. A domain with two tasks that are blended. The tasks share a
common time line; at certain times it is clear what the current task is, but near the border
where one task becomes another it is unclear. Is there actually a border that is simply not
obvious to a human observer? Or is there a region in time during which both tasks are
occurring simultaneously? Or does the area where tasks seem to overlap actually represent
a third, totally different task? Domains with blended tasks are challenging because the
answers to these questions are unclear.

A domain with blended tasks is a special case of a domain with interleaved tasks.

To identify a domain with blended tasks, one must be able to identify important semantic

properties of that task, specifically those that are most likely to result in significantly differ-

ent goals. If structurally breaking up the state space into separate cores results in tasks that

have multiple semantic properties associated with other tasks, then the core with multiple

semantic properties represents a blended region between tasks. For example, imagine a

version of football in which both teams could sometimes have a ball at the same time. This

task would be different from the regular tasks of offense and defense. Each team’s efforts

would need to be divided between advancing their own ball down the field and preventing

the opponents from advancing their ball in the other direction. The semantics of defense
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and offense are blended in this new task.

Formally, assume a domain has T interleaved tasks, whose state spaces S1, . . . ,ST

partition the global state space S . Then let ψ1, . . . , ψm : S → {>,⊥} be predicates

that indicate whether a state has one of m important semantic properties. Some expert

knowledge is needed to identify these predicates, but useful semantic properties should be

linked to the structure of the domain. Therefore, it should be true that m ≤ T . In fact, in

any domain with interleaved tasks (not just blended tasks), each task should have a semantic

predicate that is true in all states of that task:

∀i ∈ {1, . . . , T}∃j ∈ {1, . . . ,m}∀s ∈ Si[ψj(s)]. (4.10)

To improve readability, the predicates Ψ1, . . . ,Ψm : {1, . . . , T} → {>,⊥} are used to

indicate if a given semantic predicate is true for all states in a task, i.e.

∀i ∈ {1, . . . , T}∀j ∈ {1, . . . ,m}(Ψj(i)↔ ∀s ∈ Si[ψj(s)]). (4.11)

This notation makes it easy to define a domain with blended tasks: It is a special type of

domain with interleaved tasks in which there are tasks where two semantic predicates apply,

that are also true individually in other tasks. Formally, there exist distinct values of i, j, and

k in {1, . . . , T}, and distinct values of p and q in {1, . . . ,m}, such that

Ψp(i) ∧Ψq(j) ∧Ψp(k) ∧Ψq(k). (4.12)

Domains with blended tasks have the above property, and Task k in particular is a specific

blended task that blends the semantics of Task i and Task j. In contrast, tasks for which

only one of the m semantic predicates applies are pure tasks.

The formal details above indicate that a domain with blended tasks has the following

properties:

1. The domain has all the properties of domains with interleaved tasks.

49



2. The domain contains at least one blended task, i.e. a task in which multiple semantic

predicates are true, meaning that multiple, potentially conflicting goals are available

to be pursued at the same time.

This definition establishes the set of blended tasks as a strict subset of the set of

interleaved tasks. However, for simplicity, whenever interleaved tasks are mentioned in

this dissertation, they are assumed to be pure interleaved tasks (not blended). Whenever a

domain is blended, this will be stated explicitly.

Real-world examples of domains with blended tasks include one-on-one combat,

such as boxing, fencing, or martial arts. In any kind of combat, the participants must focus

on attack and defense. Punches, kicks, and sword thrusts are all offensive actions, and one

can defensively block punches and kicks, or parry a sword thrust. A skilled fighter is always

prepared to follow up a block with a counter-attack, and is ready to defend after launching a

failed attack; this back-and-forth indicates that the roles of attacker and defender can swap

very rapidly. However, sometimes these roles are not only swapping, but become blended.

For example, many actions are both offensive and defensive. A boxer may move

slightly to the side to dodge an opponent’s punch while simultaneously punching back.

A proper fencing parry both deflects an opponent’s sword (defensive), and points the de-

fender’s blade at the opponent (offensive). One may also defend against a kick by grabbing

it, which is an offensive action. Many techniques have a dual role. As such, it does not

make sense to say that the fighters are exclusively attacking or defending at all times.

In these domains with blended tasks, it becomes more important for the agent to

decide what role to take on at any given time, and as a result, the distinction between tasks

becomes even less clear. For example, if two fighters throw punches at the same time, but

one is slightly faster, then that punch will land first, and perhaps disrupt the opponent’s

punch so that it does not land. Both fighters took on an offensive role at the same time, but

one punch was canceled out because that fighter made a bad judgment. In this case, the

slower fighter should have taken a more defensive role, but this conclusion is only clear in
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hindsight. The importance of timing the execution of offensive vs. defensive actions will

be explored in the Battle Domain (described in Section 5.4).

In terms of the formal definition given earlier, the ideal goal of an agent becomes

unclear when in a blended task, because multiple semantic predicates are active; multiple

goals are within reach simultaneously, or at least seem to be, so whether the agent decides

to pursue all goals, no goals, or any one specific goal, the consequences of actions taken in

the blended task are magnified.

In summary, there are many reasons why domains with blended tasks are challeng-

ing: (1) Agents have more responsibility in determining what the current task is, (2) some-

times there are situations when multiple tasks overlap, and (3) it is not clear whether the

blended situations are just a combination of tasks or new tasks in their own right. The chal-

lenges of these domains will be explored in both the Battle Domain (Chapter 7) and Ms.

Pac-Man (Chapter 10).

4.5 Conclusion

This chapter formally described several types of domains in which multimodal behavior is

required in order to succeed. Examples of each type of domain will appear later in this dis-

sertation. Domains with isolated tasks are discussed in Chapter 6. A domain with blended

tasks is discussed in Chapter 7. These domains are all implemented in BREVE, a simulation

environment described in Chapter 5 next. Intelligent behavior is evolved in a domain with

interleaved tasks in Chapter 9. Then in Chapter 10, experiments in another domain with

blended tasks are conducted. These domains are both variants of the challenging classic

video game Ms. Pac-Man (Chapter 8). The experiments in these challenging domains will

show the benefits of the methods developed in Chapter 3 for learning multimodal behavior.
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Chapter 5

Domain Description: BREVE

The BREVE simulation environment1 by Klein (2003) is an open-source tool that supports

the development of multi-agent simulations, particularly for the study of decentralized be-

havior and Artificial Life. Since BREVE was used to develop several of the domains in

which multimodal behavior is evolved and evaluated, this chapter gives an overview of

BREVE, and describes the specific domains that were created using this tool.

5.1 BREVE Basics

BREVE is a 3D simulation environment that allows the user to make complex simulations

by programming the behavior of the agents in a simple interpreted scripting language called

steve. The steve language is object-oriented, and each steve entity has a method that

is called on every time step of the simulation. Therefore, the programmer can define each

agent’s behavior in isolation, and let the system determine the consequences of how the

agents interact.

BREVE is available for Mac OS X, Linux, and Windows. Though control scripts

are written in steve (or optionally Python), the code for BREVE itself is written in C++.
1http://www.spiderland.org/
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OpenGL is used for visualization, but it is also possible to run BREVE in non-visual mode

in order to speed up execution. BREVE supports the simulation of realistic physics, but this

feature is not needed for the domains studied in this dissertation.

All of the domains developed in BREVE for this dissertation have a similar setup.

They are adversarial multi-agent scenarios that start with a cooperating team of four evolved

agents surrounding an opponent that uses scripted behavior to oppose them. To distinguish

between the two types of agents, the evolved agents are called “monsters,” and the scripted

opponent is called a “bot.”

Each evolved monster gets its own copy of the same evolved neural network policy

to control its behavior. Therefore, the evolved team can be said to be homogeneous. Work

by Waibel et al. (2009) and preliminary work done for this dissertation indicate that ho-

mogeneous teams of agents are easier to evolve than heterogeneous teams, i.e. those where

each agent has a different policy. Proper credit assignment is difficult with heterogeneous

teams, because it is not always clear to what extent the actions of a teammate led to a partic-

ular agent’s success or failure. In contrast, the behavior of homogeneous agents can always

be credited unambiguously to the one policy shared by all agents. Therefore, homogeneous

teams can more easily evolve teamwork, which will be vital in the domains described below.

The environment used in all domains is an infinite plane in continuous space. Eval-

uations have a limited duration of 600 time steps per task, and are independent from each

other. All agents are shaped as pentagonal-base pyramids that point in the direction they are

currently facing (Figure 5.1), which matters for sensor definition. Agents can move forward

and backward and can turn left and right with respect to their current heading.

Monsters start facing the bot, but the initial heading of the bot is always random,

which requires the monsters to learn situational behavior and makes it detrimental to mem-

orize bot trajectories. As a result, evaluation is noisy, and multiple evaluations are needed

to get reasonable estimates of monster performance.

Monsters and the bot interact in different ways in each task, but the monsters never
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physically interact with each other (i.e. they can occupy the same space). Each domain is

adversarial in that agents have various ways of dealing damage to each other. However,

regardless of how damage is dealt, the domains have many common properties. Whenever

any agent takes damage it is knocked backwards, and is temporarily invulnerable for a brief

period of time. Such protection gives agents a chance to recover from a mistake. All agents

start with 50 hit points, and any damage removes 10 hit points. If the bot dies, it respawns,

and all agents are reset to their starting locations, thus giving the evolving bots a chance to

accrue additional fitness in whatever evaluation time remains. In contrast, when monsters

die, they are dead for the rest of the evaluation.

Each domain described below requires the evolved monsters to exhibit multimodal

behavior in order to succeed. Each domain has multiple, conflicting objectives: Simple

behaviors that naı̈vely maximize one objective will decrease at least one other objective.

Therefore, successful multimodal behavior is required to intelligently take all objectives

into account. The domains are Front/Back Ramming (FBR), Predator/Prey (PP), and the

Battle Domain (BD), which are described below.

5.2 Front/Back Ramming

This domain consists of two isolated tasks. The same team of evolved monsters is evaluated

in one task, and then in the other, with neither evaluation affecting the other. Both offensive

and defensive behavior is required in each task, but under different circumstances.

Each monster has a sphere-shaped battering ram affixed to its body, (Figure 5.1). If

a ram hits the bot, then the bot is damaged, but if the bot hits any part of a monster other

than its ram, then the monster takes damage.

The two tasks differ in where the ram is affixed on the body of the monsters. The two

tasks are Front Ramming and Back Ramming. In Front Ramming, the rams are attached to

the fronts of monsters’ bodies, and an evaluation starts with rams pointed at the surrounded

bot. In Back Ramming, the rams are attached to the rear ends of the monsters, so the rams
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(a) Front Ramming Task (b) Back Ramming Task

Figure 5.1: Front/Back Ramming Domain. In both (a) Front Ramming and (b) Back
Ramming, the monsters start pointed at the bot in the center. The rams are depicted by white
orbs attached to the monsters. In the Front Ramming task, monsters can start attacking the
bot immediately, but in the Back Ramming task they must turn around first. Learning
which behavior to exhibit is difficult because different behavior is needed in the different
tasks, even though the sensor readings are the same (monsters cannot sense where on their
bodies the rams are affixed). However, by remembering the history of the bot’s movements
and the consequences of interacting with it, monsters can learn to exhibit the appropriate
behavior in each situation.

start facing away from the bot. In this task, monsters must execute a 180 degree turn before

being in a good position for ramming. However, in order to know which task they are

facing, the monsters must be able to track how the bot behaves across time using some

form of memory, such as recurrent network links.

Bot behavior is essentially the same in both tasks: It will try to circle around the

rams to hit the monsters from the unprotected side if possible, but if threatened by the rams,

it will prefer to run away and avoid damage.

This domain has six objectives. Each task has its own instance of the same three

objectives: deal damage to the bot, avoid damage from the bot, and stay alive as long as
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possible. Damage dealt to the bot is shared by all monsters on the team. The damage-

avoidance and staying-alive objectives are assessed individually, and the average across

team members is assigned to the team. Although damage received and time alive are both

affected by taking damage, each one provides valuable feedback when the other does not: If

all monsters die, then time alive indicates how long each avoided death, but if no monsters

die, then damage received indicates which team is better.

Even though the monsters cannot sense where their rams are attached, they need

to be alternately offensive and defensive in each task, which makes this domain very chal-

lenging. Dealing with six objectives is also a significant challenge. However, because the

monsters start off surrounding the bot, optimal behavior should allow the monsters to fo-

cus mainly on offensive strategies, which is an important way in which the Front and Back

Ramming tasks each individually contrast with the Battle Domain (Section 5.4). Defensive

behavior is only an issue when the vulnerable sides of the agent are exposed. Ultimately

the monsters are doing the same thing in Front Ramming and Back Ramming, but have to

accomplish it in different ways because of how the ram is affixed.

In contrast, the next domain discussed is challenging because monsters are required

to exhibit opposite behaviors in different tasks in order to succeed.

5.3 Predator/Prey

Predator/Prey is another domain with isolated tasks, but in contrast to FBR, offensive and

defensive behaviors are needed in separate tasks within this domain. Monsters are either

predators or prey depending on the task, and the bot takes on the opposite role (Figure 5.2).

In other words, the dynamics of the environment and the behavior of the bot change de-

pending on the task.

Predator/prey scenarios have long been of interest in Reinforcement Learning, multi-

agent systems, and evolutionary computation (Tan, 1993; Stone and Veloso, 2000b; Ra-

jagopalan et al., 2011; Yong and Miikkulainen, 2010). What distinguishes this Preda-
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(a) Predator Task (b) Prey Task

Figure 5.2: Predator/Prey Domain. (a) The movement path of the bot in the Predator task:
It tries to escape through the nearest gap between two monsters. (b) The bot path in the Prey
task: It pursues the nearest monster prey in front of it. Both situations look the same to the
monsters, but because the environmental dynamics and bot behavior are different, different
behavior is needed to succeed.

tor/Prey domain from others is that agents are expected to succeed as both predators and

prey, rather than just one or the other (much like in Ms. Pac-Man: Chapter 8).

In the Predator task, monsters are predators and the bot is prey (Figure 5.2a). The

bot tries to escape by moving through a gap between two monsters. When a predator mon-

ster hits the bot, the bot takes damage. All agents move at the same speed, which means

the monsters must avoid crowding the bot, since hitting it can knock it so far away that

it is impossible to catch. Therefore, evaluation ends prematurely if the bot is no longer

surrounded.

The Prey task reverses the dynamics of the Predator task. The bot now deals damage

to monsters, who are the prey (Figure 5.2b). This task is fairly simple since monsters

can avoid the bot by just running away. The bot’s behavior consists of moving forward

towards the closest monster. Thus, PP is challenging because a single evolved controller
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must execute essentially opposite behaviors depending on the task.

PP has three objectives. In the Predator task, the only objective is to maximize

damage dealt, which is shared across monsters as in FBR. The Prey task has two objectives:

minimize damage received, and maximize time alive. As in FBR, each amount is averaged

across team members to get the team score.

Both FBR and PP are examples of domains with strictly isolated tasks. Additionally,

although the individual tasks in FBR leave room for offensive and defensive behaviors, the

initial setup of FBR makes committing to offensive behavior in both tasks optimal. In the

next domain, the Battle Domain, evolved monsters have to switch between offensive and

defensive behaviors to succeed, because they do not have rams behind which they can hide.

Therefore, the Battle Domain provides an example of blended tasks.

5.4 Battle Domain

In the Battle Domain (BD), monsters have to switch between offensive and defensive be-

havior depending on what the bot is currently doing. The bot repeatedly swings a bat that

damages monsters on impact, but the monsters damage the bot when they run into it (Fig-

ure 5.3).

The behavior of the bot is simple yet challenging. The bot moves constantly for-

ward, always swinging its bat and turning to pursue the nearest monster that it sees. The

bot can only see monsters in front of it, so it ignores near monsters that are behind it. If no

monsters are in front of the bot, it turns left until it finds one. Because the bot constantly

swings its bat, a frontal attack by a monster is difficult but possible, with precise timing.

The uncertainty in timing such an attack is why BD blends offensive and defensive tasks.

However, teamwork can also help the monsters overcome this challenge, which means that

different members of the team are taking on different roles at the same time.

The tension between attack and defense is caused by multiple contradictory objec-

tives. These objectives are similar to those in FBR and PP. The first is to maximize damage
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Figure 5.3: Battle Domain. The bot starts an evaluation surrounded by four monster agents.
It approaches the nearest monster while swinging its bat. If the bat hits a monster, the
monster is damaged; if it receives enough damage, it dies. If a monster hits the bot, the bot
is damaged, and any in-progress bat swing is cancelled (the bat disappears). Monsters must
avoid the bat while looking for opportunities to strike the bot, but it is unclear where the
boundary between these two tasks is. Therefore, the task is blended.

dealt to the bot, which is shared across monsters as in FBR and PP. The other two objectives

are to minimize damage received from the bat, and maximize time alive. As in FBR and

PP, each of these amounts is averaged across team members to get the team score.

Because the tasks are blended, success in BD depends on knowing how offensive

and how defensive to be at each point in time. Remaining exclusively defensive leads to a

stalemate: The monsters run away forever, and neither the bot nor the monsters ever damage

each other (since they move at the same speed). However, any defensive maneuvering short

of pure retreat makes it inevitable that the monster is eventually hit by the bat, unless it acts

in a defensively offensive manner. In other words, going on the attack is sometimes the

only way to avoid being hit, but it is hard to figure out where this switchover occurs.

Because there is a team of monsters, the switchover point for one monster can some-

times be determined by how distracted the bot is by another monster. One monster may find
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that it is ideal to go on the offensive once the bot starts approaching a different monster. As

with counterattacking, the timing on this behavior is hard to define with precision, and de-

pends on the relative positions and orientations of agents, but if done correctly it can be

very effective against the bot.

The uncertainty in switching between defensive and offensive behavior is why this

domain has blended tasks. As a result, it is also challenging, but agents can succeed in this

domain if they learn multimodal behavior.

5.5 Conclusion

This chapter described the simulation environment BREVE, and several domains that have

been implemented in it to study the evolution of multimodal behavior. The specific do-

mains are: (1) Front/Back Ramming, which involves two isolated tasks requiring offensive

behavior, (2) Predator/Prey, which also has two isolated tasks, although one requires offen-

sive behavior and the other requires defensive behavior, and (3) Battle Domain, in which

offensive and defensive tasks are blended together in a way that requires the agent to make

intelligent decisions about when to switch from one to the other. Experiments in each of

these domains are conducted over the next two chapters.
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Chapter 6

Evaluation: Network Modules in

Isolated Tasks

This chapter describes experiments carried out in the Front/Back Ramming (FBR) and

Predator/Prey (PP) domains. These domains are both made of two isolated tasks. The

purpose of these experiments is to demonstrate the benefits of evolving neural networks

with multiple modules. This chapter starts by explaining the experimental setup used in

both domains, then continues with the results.

6.1 Experimental Setup

In order to discover multimodal behavior, constructive neuroevolution is applied, as de-

scribed in Section 2.2.1. These experiments use a feature selective approach, so networks

are initialized with only one synapse per output neuron (Whiteson et al., 2005). As also

explained in Section 2.2.1, crossover is not used in conjunction with feature selective net-

works. Whenever new child networks are produced, there is a 40% chance a single weight

will be perturbed, a 20% chance a single link will be added, and a 10% chance a new neuron

will be spliced along an existing link.
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In order to show the benefits of modular networks, several network architectures

are evaluated. Control represents networks with one module used in both tasks of each

domain. Multitask represents networks with one module for each task in a domain.

These networks always know which task they are facing, and use the appropriate mod-

ule accordingly. Two Module Mutation methods, MM(P) and MM(R), are evaluated as

well. These methods have initial populations containing networks with only one module.

New modules can be added by the appropriate Module Mutation, which occurs with a 10%

chance for each child network produced. Additionally, MM(R) uses a mutation to delete

the least used output module 10% of the time. In the fifth method, Multinetwork, net-

works are evolved for each task individually. Then the resulting controllers are combined

so that the appropriate network is used in the task for which it was evolved. Each run of

a Multinetwork population actually consists of a pair of runs, one in each of the two

isolated tasks in the domain. The scores from each individual in the Pareto front of a given

single-task run are combined with scores from each individual in the Pareto front of the

other task from the corresponding paired run. The result is a population of scores for the

full domain, representing the result of a single Multinetwork run.

Neural network controllers for the monsters were evolved 20 times for 500 genera-

tions for each method in each domain, using NSGA-II with a population size of µ = λ =

52. Each controller earned scores by being evaluated in either FBR or PP. For each task

within these domains, a network was copied into each of the four members of a team of

monsters, as described in Section 5.1.

To deal with noisy evaluations, averaging fitness scores across multiple evaluations

is a common approach (van Hoorn et al., 2009; Bryant and Miikkulainen, 2006; Cardamone

et al., 2009). Therefore, every network was evaluated three times in each task, and the final

score in each objective was obtained by averaging the individual scores.

On each time step of the simulation, the bot acts according to scripted behavior

for the task, and the evolving agents act according to their neural networks. The monsters’
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sensors provide inputs to the network, which then processes them to produce outputs, which

then define the behavior of the monster for the given time step.

The inputs to the monsters’ neural networks are described in several tables: binary

sensors in Table 6.1, orientation sensors in Table 6.2, and ray-trace sensors in Table 6.3.

Though each team member is controlled by a copy of the same network, each member

senses the environment differently, and can therefore take action in accordance with its

particular circumstances. Additionally, each monster’s network has its own recurrent state

dependent on how the evolved network’s recurrent links are structured, and what informa-

tion they have transmitted from the monster’s history of senses and actions. The recurrent

states of all monsters are reset whenever the bot respawns. Even though there are many

network inputs, recall that a feature-selective approach (Whiteson et al., 2005) allows for

some of these inputs to be ignored or incorporated later if necessary.

In contrast to the long list of inputs, the list of outputs (per module for multimodal

approaches) is short: one output for the degree of backward vs. forward thrust (negative

for backward, positive for forward), and another for left vs. right turn (negative for left,

positive for right). However, complex behaviors can be produced from these outputs, as the

results show. Interpreting these results requires knowledge of how to assess performance in

multiobjective domains, which will be discussed next.

6.2 Assessing Multiobjective Performance

The hypervolume and epsilon indicator metrics defined in Section 2.1.3 are used to assess

performance in these domains with isolated tasks.

When analyzing how hypervolume changes across generations, the reference points

used for each domain were their corresponding zero vectors, containing the minimum scores

for each objective: (0, 0,−50,−50, 0, 0) for FBR and (0,−50, 0) for PP, where the zeroes

are for the various damage-dealt and time-alive objectives, and each −50 is for one of the

damage-received objectives. The normalization used for calculating hypervolumes was on a
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Name Description

Bias Constant of 1
Monster Dealt Damage 1 if monster dealt damage to bot on previous time step, 0 other-

wise.
Monster Received Damage 1 if monster received damage from bot on previous time step, 0

otherwise.
Any Monster Dealt Damage 1 if any monster dealt damage to bot on previous time step, 0

otherwise.
Any Monster Received Damage 1 if any monster received damage from bot on previous time step,

0 otherwise.
Bot Knock-back 1 if bot is temporarily invulnerable because it is being knocked

back, 0 otherwise.
In Front of Bot 1 if magnitude of shortest turn the bot would need to make to face

the monster is less than or equal to π/2 radians, 0 otherwise.
Monster 0 Dealt Damage 1 if monster that starts evaluation north of the bot dealt damage

to bot on previous time step, 0 otherwise.
Monster 1 Dealt Damage 1 if monster that starts evaluation east of the bot dealt damage to

bot on previous time step, 0 otherwise.
Monster 2 Dealt Damage 1 if monster that starts evaluation south of the bot dealt damage

to bot on previous time step, 0 otherwise.
Monster 3 Dealt Damage 1 if monster that starts evaluation west of the bot dealt damage to

bot on previous time step, 0 otherwise.

Table 6.1: Description of Binary Input Sensors for Monsters. Each row is a monster
sensor that reads 0 or 1 based on whether or not some aspect of the environment is in one
state or another.

scale between the minimum points above, and maximum points based on maximum scores

achieved in each objective across all experiments in a given domain. The maximum points

turned out to be (310, 210, 0, 0, 600, 600) for FBR and (250, 0, 600) for PP. The maximum

point for FBR indicates that the best damage scores in Front and Back Ramming were 310

and 210, respectively. Monster teams in each of these tasks also managed to survive the en-

tire 600 time steps sustaining no damage. The maximum point for PP indicates that the best

damage score in the Predator task was 250, and monster teams survived the full 600 time

steps of the Prey task sustaining no damage. The normalization scheme ranges all the way

from minimum to maximum because hypervolume scores are presented from generation 0,
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Name # Description

Monster/Bot Heading Diff. 1 Shortest amount in radians that the monster would
have to turn to have the same heading as the bot.

Monster Heading/Bot Loc. Diff. 1 Shortest amount in radians that the monster would
have to turn to be directly facing the bot.

Monster/Teammate Heading Diff. 4 For each slot x within the team of monsters, this
sensor returns the shortest amount the sensing
monster would have to turn to have the same head-
ing as teammate x. The difference in heading
from a monster to itself is always 0.

Monster Heading/Teammate Loc. Diff. 4 For each slot x within the team of monsters, this
sensor returns the shortest amount in radians that
the sensing monster would have to turn to be di-
rectly facing teammate x. The value 0 is returned
by the sensor corresponding to the sensing mon-
ster.

Table 6.2: Description of Orientation Input Sensors for Monsters. Each row stands for
a different sensor or group of sensors, with number indicated by the “#” column. These
sensors all deal with the orientation of certain domain entities relative to other entities.
Therefore, all of these sensors measure radians in the range (−π, π]. A negative turn value
corresponds to a left turn and a positive turn value corresponds to a right turn. Some groups
of sensors refer to team member slots. These groups consist of four sensors each, where
each sensor corresponds to a given monster, determined by its starting position with respect
to the bot (north, south, east or west). Given monster x, its sensors that correspond to team
slot x will refer to itself. Those same sensors in a different monster y will refer to monster
x as well. Note that the values for the “Monster/Teammate Heading Diff.” and “Monster
Heading/Teammate Loc. Diff.” sensors will be different for monsters x and y (x 6= y),
because the values depend on relative monster positions and headings.
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Name Description

Bot Ray Traces Each sensor returns a 1 if it is currently intersecting space occupied
by the bot, and 0 otherwise.

Teammate Ray Traces Each sensor returns a 1 if it is currently intersecting space occupied
by any teammate, and 0 otherwise.

Table 6.3: Description of Ray Trace Input Sensors for Monsters. Each row stands for
a group of five sensors based on ray traces. Each group consists of an array of five rays
that are 3.5 times the length of an agent, and positioned around the monster relative to its
heading at the angles of −π/4, −π/8, 0, π/8 and π/4 radians. The value reported by each
ray depends on whether it is intersecting an agent in the environment. When combined
with the sensors in Tables 6.1 and 6.2, these inputs are sufficient for the evolving monsters
to develop complex and interesting behavior in the domains of this paper.

when scores are very small, all the way to generation 500, where the maximums occur.

Although hypervolumes are calculated for each generation, epsilon indicator values

are only calculated for the final generation of each run because of the added complication

of computing a reference set (Section 2.1.3). However, since final performance is all that

matters, it is appropriate to focus on the final generation, especially since hypervolume

values are calculated at every generation and already give insight into how multiobjective

performance changes over time.

Objective scores also need to be normalized in order for epsilon indicator scores to

be calculated, but since these values are only calculated for the final generation, a different

normalization scheme is used. By the final generation, most objective scores are confined

to smaller ranges, thus allowing normalization to focus on more relevant areas of objective

space. The maximum scores used for normalization are the same, but the minimum scores,

specifically the minimums in each objective across all final populations of each method, are

sometimes higher. In particular, (10, 10,−50,−50, 503.25, 264.5) is the minimum point

for FBR, indicating that the minimum damage dealt in both ramming tasks was 10, but the

tasks are different in that even the individual that died the quickest had a time-alive score

of 503.25 in Front Ramming, whereas the shortest-lived individual in Back Ramming had a
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low time-alive score of 264.5. For PP, the minimum point is (0,−50, 315.333333), and the

lowest time alive score is now 315.333333. However, damage dealt and received are still

minimal.

The details above indicate how multiobjective performance metrics will be applied

in FBR and PP. However, there are other useful ways in which to assess performance in

domains with multiple, isolated tasks, as will be described next.

6.3 Measuring Performance Across Isolated Tasks

Extra care must be taken to characterize performance properly in domains with multiple

isolated tasks. In these domains, monsters that do each task well are desired. However,

a Pareto-based approach allows extreme trade-offs where performance is excellent in one

task, but terrible in another. Because tasks are isolated, there are no inherent trade-offs be-

tween objectives from separate tasks. When such trade-offs are observed in the evolved

agents, they are entirely based on differences in the policy representation and learning

method.

One way to detect whether a population performs well in both tasks is to calculate

performance metrics with respect to approximation sets for each individual task, and com-

pare these results to those for the full domain. If one method is superior to another in the

combined domain, but equal in the component tasks, then its individuals score well in both

tasks instead of just one.

The emphasis on good performance across all tasks can be extended into an empha-

sis on good performance across all objectives. This focus does not mean abandoning the

ability of multiobjective optimization to capture diverse trade-offs, but because this chapter

is concerned with intelligent monster behavior, it is at least possible to say that a monster

is only successful if it surpasses certain minimum expectations, i.e. obtains adequate goal

scores in each objective. Once goals are chosen, the number of individuals in a population

that surpass all goals can be counted, thus giving an idea of whether the population tends
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to contain individuals that do well across many objectives as opposed to just a few, i.e. just

the objectives for one task.

Of course, picking specific goal values requires expert domain knowledge, but since

the purpose here is to assess performance, a range of goal values is used. Since all scores

are normalized, any value x in the range [0, 1] can be picked to define goals by translating

the chosen x back into the appropriate range for each objective. For example, for x = 0.5

in FBR, the goals would be (155, 105,−25,−25, 300, 300), since these values are halfway

between the minimum and maximum scores in FBR (Section 6.2). As x increases, the

number of successful individuals will drop, but the decline will be slower in populations

that do well in all objectives across multiple tasks. A plot of the number of successful indi-

viduals in a population vs. x is a “Success Plot.” This method of analyzing multiobjective

performance is an original contribution of this dissertation.

Note that this performance metric cannot be calculated for the Multinetwork

approach because each Multinetwork run consists of two runs with different sets of

objectives. Because of how runs are combined, Multinetwork populations effectively

have a size of 52 × 52 = 2704, and the relative significance of the number of successful

individuals in such a population would be difficult to interpret when compared to the other

methods. Therefore, no Multinetwork results are shown on the success plots.

Armed with these means of performance assessment, the results for each domain

can now be discussed.

6.4 Results

The results for FBR and PP are presented in this section in terms of the metrics described

above. FBR is described first because its results are more straightforward, followed by PP,

for which the results are more surprising.
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6.4.1 Front/Back Ramming Results

The results for FBR conform to expectations of how the different methods should perform:

Control performed the worst, both MM(P) and MM(R) are better, Multitask is better

still, with Multinetwork emerging as the best. The hypervolume learning curves (Fig-

ure 6.1) indicate that this ordering is established early and maintained throughout evolution.

Figure 6.1: Average Hypervolumes in the Front/Back Ramming Domain. For each
method, average normalized hypervolumes across 20 runs are shown by generation with
95% confidence intervals. The figure indicates that multimodal approaches are superior
to the single-module approach, represented by Control. Both MM(P) and MM(R),
which have no knowledge which task they are currently facing, significantly outperform
Control. In turn, Multitask has significantly higher hypervolumes than either Module
Mutation method. As expected, the best performance is achieved by the Multinetwork
approach, which is significantly better than even Multitask. This progression indicates
that increased ability to tackle this domain as a pair of independent tasks leads to better
performance.
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(a) I1
ε Values.

(b) I1
ε+ Values.

Figure 6.2: Epsilon Indicator Values in the Final Generation of Front/Back Ramming.
Given the final Pareto fronts for each of the 20 runs with each method, the (a) I1

ε values and
(b) I1

ε+ values are calculated and shown as box-and-whisker plots (depicting the minimum,
lower quartile, median, upper quartile and maximum scores with scores more than 1.5IQR,
or inter-quartile range, from the nearest quartile shown as outliers). Additionally, the dashed
line intersecting each box is the average score in the metric. The decreasing epsilon values
indicate that Control results in the worst Pareto fronts, both types of Module Mutation are
better than Control and roughly equivalent to each other, Multitask is the next best,
and Multinetwork is the best of all, confirming the hypervolume results from Figure 6.1
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When considering the final generation only, epsilon indicator values corroborate

these results (Figure 6.2). Furthermore, Mann-Whitney U tests confirm that there are sig-

nificant differences in the final generation between adjacent methods in order of increasing

performance: Control, MM(P)/MM(R), Multitask, and then Multinetwork. The

two Module Mutation methods are lumped together because there is no significant differ-

ence between them (Table 6.4).

Comparison HV I1
ε I1

ε+

Control vs. MM(P) 88 87.5 127.5
Control vs. MM(R) 36 81.5 76
MM(P) vs. MM(R) 148 183.5 150.5
MM(P) vs. Multitask 2 4.5 3
MM(R) vs. Multitask 4 7 6
Multitask vs. Multinetwork 59 111 93

Table 6.4: Two-tailed Mann-Whitney U Test Values for the Final Generation of
Front/Back Ramming. A difference between two methods is significant with p < 0.05
if U < 127 (italic), and with p < 0.01 if U < 105 (bold). All but the comparisons be-
tween MM(P) and MM(R), and the I1

ε+ comparison between Control and MM(P) are
significantly different, and of these all but the I1

ε comparison between Multitask and
Multinetwork are different at the p < 0.01 level.

If Pareto fronts are recalculated for the constituent tasks, the hypervolumes are sim-

ilar for Control, MM(P) and MM(R), but significantly different for Multitask and

Multinetwork (Figure 6.3, Table 6.5). Therefore, the better overall performance in FBR

of Multitask and Multinetwork is due to their exceptionally good performance in

both tasks. In general, individuals in the final populations of each method can do at least

one task well, but the better methods have individuals that do both tasks well.

This point is seen in the average success counts as well (Figure 6.4), in which the

multimodal methods, especially Multitask, are better than Control because they per-

form well across all objectives rather than focusing on extreme regions of the trade-off

surface.
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Comparison Front Back
Control vs. MM(P) 171 184
Control vs. MM(R) 176 190
Control vs. Multitask 42 134
Control vs. Multinetwork 18 65
MM(P) vs. Multitask 63 146.5
MM(R) vs. Multitask 46 130
MM(P) vs. Multinetwork 35 88
MM(R) vs. Multinetwork 24 71
Multitask vs. Multinetwork 132 71

Table 6.5: Two-tailed Mann-Whitney U Test Values Comparing Hypervolumes for
the Isolated Front and Back Ramming Tasks, i.e. Ignoring Objectives From the Other
Task. Multitask and Multinetwork are significantly different from the other meth-
ods in Front Ramming, but not different from each other. However, in Back Ramming,
Multinetwork is significantly better than all other methods, including Multitask.
There are no other significant differences between methods in either task.

The results so far describe how the different methods perform compared to each

other, but the metrics used to measure performance are somewhat removed from the actual

scores achieved by agents in the domain. Presenting such data is difficult because FBR

has six objectives, and the trade-offs between objectives make it impossible to identify any

one best agent for any run. However, most individuals in any Pareto front for FBR earn

the maximum score of 600 in both time-alive objectives, so this objective can be mostly

ignored. The remaining four objectives can be split up by task, resulting in the two 2D plots

of Figure 6.5, which shows the best trade-offs achieved across all runs of each method.

However, this figure does not indicate when one evolved network did well in both tasks or

just one.

Success plots, introduced in Section 6.3, can be used to assess what kind of scores

are produced by individuals that do well in many objectives. The most successful indi-

vidual of each method is defined as the one that passes the highest success thresholds in

each objective, and therefore in both tasks. The scores of these individuals are shown in

Table 6.6.
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(a) Hypervolumes for Front Ramming.

(b) Hypervolumes for Back Ramming.

Figure 6.3: Hypervolumes for the Individual Tasks of Front/Back Ramming. Scores
corresponding to each domain of FBR are isolated from the final Pareto fronts, and used
to calculate new Pareto fronts and their corresponding hypervolumes with respect to the
individual tasks that make up FBR. (a) In Front Ramming, there is little difference between
Control, MM(P), and MM(R); (b) In Back Ramming, these methods are also similar to
each other, and to Multitask. However, both Multitask and Multinetwork have
better hypervolumes in Front Ramming, and Multinetwork performs better in Back
Ramming as well. The fact that both Module Mutation methods have hypervolumes similar
to Control in the individual tasks, but better hypervolumes when tasks are combined in
FBR, indicates that their good performance comes from individuals performing well in both
tasks.
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Figure 6.4: Average Success Counts in Front/Back Ramming. This plot shows the av-
erage number of individuals across the final size 52 populations of each single-network
method that are considered successful, in that their objective scores pass a threshold for all
objectives, indicating the ability to perform well across them all. The x-axis corresponds to
different thresholds, i.e. the value of all normalized objective scores that must be surpassed.
More Multitask individuals remain successful for larger success thresholds, because
they perform well in multiple objectives. Similarly, the MM(P) and MM(R) curves dom-
inate the Control curve. Furthermore, the two Module Mutation curves intersect each
other, emphasizing that they are not very different in FBR.
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Figure 6.5: Slices of Super Pareto Fronts From Front/Back Ramming. (a) Damage
received vs. damage dealt in Front Ramming, and (b) damage received vs. damage dealt
in Back Ramming are shown for all members of each super Pareto front across 20 runs
of each method. These plots illustrate the non-normalized domain performance of each
method. Notice that a two-dimensional slice of a six-dimensional Pareto front will not
necessarily be a Pareto front in terms of the two objectives under consideration. There
are points that are dominated within the limited context of the objectives being plotted. In
particular, methods that are unaware of which task they are performing (Control, MM(P),
and MM(R)) often have more points with low scores in one of the tasks. It is only possible
for these low scoring points to be in the Pareto front for the full task if the points with
low scores in one task correspond to points with high scores in the other task. In contrast,
Multitask and especially Multinetwork approaches only have high scoring points in
each task. These methods know which task they are facing, and can tailor their behavior to
that task more easily.
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Because feature-selective evolution was used, it is interesting to analyze which in-

puts were used most often. The selections turned out to vary widely across runs, but the

“Monster/Bot Heading Diff.” and the “Monster Heading/Bot Loc. Diff.” sensors were

commonly included. Monster teams also tended to have sensors for the “Monster Head-

ing/Teammate Loc. Diff.” and “Teammate Dealt Damage” of at least one teammate, though

the exact teammates varied across runs. Use of “Bot Ray Traces” and “Teammate Ray

Traces” near the front of the rammers was also common, with one exception: Component

networks evolved for Multinetwork in the Back Ramming task mostly ignored all ray

trace sensors, which makes sense because these sensors are worthless when moving rear-

first. However, Multinetwork teams did use ray traces in the Front Ramming task.

Perhaps the ray trace sensors are actually distracting in the Back Ramming task, which may

explain why Multitask, which had to use the same set of inputs in both tasks, performed

worse than Multinetwork in Back Ramming, but was just as good at Front Ramming.

The behaviors of monsters with each method are in line with these results (an-

imations can be seen at http://nn.cs.utexas.edu/?multitask). In general,

Control networks easily learned to perform one of the two tasks well, but rarely both.

These networks often perform the same behavior in both tasks, even when the behavior is

only successful in one of the two tasks, and detrimental in the other.

In contrast, Multitask networks are almost always capable of performing both

tasks well, as exhibited by the behavior depicted in Figure 6.6. The specific scores achieved

by the team in this figure are (220, 120,−17.5, 0, 600, 600). Such behaviors are easy for

Multitask to learn since the networks have different policies for each task. In the Front

Ramming task monsters rush forward to ram the bot, and in Back Ramming the same mon-

sters immediately turn around at the start of the trial so that they can attack the bot with the

rams on their rears. Multinetwork teams behave similarly, but are even more efficient

at Back Ramming, presumably because their behavior for that task is optimized in isolation

from Front Ramming.
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1 2 3 4 5 6

(a) Front Ramming

1 2 3 4 5 6

(b) Back Ramming

Figure 6.6: Illustration of Intelligent Behavior Learned by Multitask Networks in
Front/Back Ramming. Animations of these and other behaviors can be seen at http:
//nn.cs.utexas.edu/?multitask. Each row shows snapshots from the evaluation
of an agent over time from left to right. (a) Behavior in the Front Ramming task is shown
first, and in (b) behavior of the same agent in the Back Ramming task is shown. The
monster behavior is distinctive in each task, since different output modules are dedicated
to each one. Multitask networks immediately take advantage of their knowledge of the
current task: In Front Ramming they attack immediately (Frame 2), and in Back Ramming
they turn around immediately (Frame 2) and then start attacking. No time is wasted figuring
out what task is being faced, as Module Mutation networks must do (Figure 6.7).
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1 2 3 4 5 6

(a) Front Ramming

1 2 3 4 5 6

(b) Back Ramming

Figure 6.7: Illustration of Intelligent Behavior Learned by Module Mutation (MM(R))
in Front/Back Ramming. Notice that in the first two frames of both (a) Front Ramming
and (b) Back Ramming, the evolved monsters perform the same maneuver, since they do
not know yet which task they are in. They start by turning their backs towards the bot. In the
Back Ramming task, this strategy is immediately effective, as illustrated by the monsters
confining the bot while knocking it around with their rams (Frames 3–6). In the Front
Ramming task, this behavior causes the monsters to be hit (Frame 3), but this hit does two
things: (1) the attacking monster is flung backwards with its front ram facing the bot (Frame
4), and (2) monsters sense being hit, and as a result switch network modules so they now
attack with their front rams (Frames 5–6). Preference for the new attack module is then
maintained by internal recurrent state. This multimodal behavior is a good example of how
Module Mutation networks can learn to overcome the challenges of a domain with multiple
isolated tasks with a combination of recurrent connections and structural modularity.
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Method Threshold Objective Scores
Control 0.38 0 (116.67, 133.33,−15,−7.5, 600, 600)
MM(P) 0.47 0 (146.67, 113.33,−2.5,−10, 600, 600)
MM(R) 0.51 0 (156.67, 123.33,−10,−11.67, 600, 600)
Multitask 0.62 0 (193.33, 140,−15.83,−5.83, 600, 600)
Multinetwork 0.81 1 (280, 170,−5, 0, 600, 600)

Table 6.6: The Most Successful Individual of Each Method in Front/Back Ram-
ming. The scores for the most successful individual of each method pass the highest
success threshold, which directly maps to goal values for each objective based on the
minimum and maximum scores in FBR. Even though success plots cannot be generated
for Multinetwork runs, its most successful individual can be determined by assessing
each Multinetwork individual in terms of the goal thresholds it surpasses. The thresh-
old reached by each set of scores is shown, as well as the objective that determines what
this threshold is; an individual’s threshold is its lowest threshold across scores in all objec-
tives. The damage dealt in Front Ramming determines the success threshold for all methods
except Multinetwork, whose least-successful objective score is damage dealt in Back
Ramming. The damage dealt objectives are the most challenging because they have no hard
ceilings like the damage-received and time-alive objectives. Notice that the ordering of the
success thresholds for the most successful individuals of each method corresponds to the
same performance ordering established by all previous metrics.

Module Mutation networks, though lacking information available to Multitask

and Multinetwork, are significantly different from Control networks in an important

way: They are capable of solving both tasks instead of just one. However, since Module

Mutation networks need to overcome the challenge of not knowing which task they are

facing, their scores tend to be lower than those of Multitask networks.

For example, an MM(R) network with scores of (140, 170,−12.5,−7.5, 600, 600)

exhibited the interesting behavior depicted in Figure 6.7, which uses recurrency to remem-

ber the current task and manage module usage. The network had nine modules. Their

usage profile in the Front Ramming task was 30.26%, 34.82%, 34.51%, 0%, 0.40%, 0%,

0%, 0%, 0%; and their usage in the Back Ramming task was 59.33%, 34.12%, 6.25%,

0.04%, 0.21%, 0%, 0.04%, 0%, 0%. Each percentage represents how much a particular

module was used by the monster team during evaluation in a particular task. Therefore,
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three of the nine modules were not used at all, two were not used in Front Ramming and

only used sparingly in Back Ramming, and another module was only used sparingly in

both tasks. The remaining three modules were primarily in charge of controlling the team.

In particular, monsters made use of Module 1 more often in Back Ramming than in Front

Ramming, and less use of Module 3 in Back Ramming than in Front Ramming. Module 2

is used equally often in both tasks.

For a single monster in the team generated from this network, Figure 6.8 shows

how the activation of each preference neuron fluctuates during a single Front Ramming

evaluation. Some modules mostly maintain constant activation while others exhibit wild

thrashing behavior, in essence merging two modules. Others behave like digital signal

waves, and some gradually rise and fall like sine waves. The modules that are most often

chosen by this network tend to control the monster for prolonged periods, making it easy for

a human observer to associate particular modules with particular behaviors. Other networks

(not shown) sometimes utilize the other types of modules instead. MM(R) thus uses its

modules in a variety of ways to help establish complex behavior.

Behaviors similar to those exhibited by MM(R) were also learned by MM(P), but

MM(P) networks often had many unused modules, because they could not delete modules.

For example, an MM(P) network with scores of (117.78, 152.22,−7.22,−8.61, 600, 600)

had 22 modules, but only five were used. The usage profile of these five modules in the Front

Ramming task was 54.60%, 3.22%, 0%, 0%, 42.19%; and their usage in Back Ramming

was 40.19%, 1.66%, 0.47%, 0.34%, 57.34%. So out of 22 modules, only five were used,

and in Front Ramming only three of those modules were used. Even in Back Ramming,

these two extra modules are used sparingly. In each task, monster teams are controlled a

majority of the time by the same two modules. However, these two modules combined with

minor contributions from the remaining three to define an effective multimodal strategy for

the monsters.

Though in terms of performance there is no significant difference between MM(P)
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Figure 6.8: Preference Neuron Activations of MM(R) Network in Front Ramming.
These activations correspond to a single member of the team whose behavior is illustrated
in Figure 6.7. At any given time step, the module whose preference neuron has the highest
activation is chosen. Neuron activations are restricted to the range [−1, 1] from using the
tanh activation function, but in order to better tell which module has the highest activation
on each time step, the range from 0.9999 and up is magnified in the figure. Module 1 was
used the most because it almost always maintains high activation. This module was used
when the monster was attacking the bot, after it realized which task it faced. Module 2 has
activations even higher than Module 1 for three prolonged periods. Each of these periods
begins immediately after the bot spawns. This module is the 2nd most used because when-
ever the bot respawns, the recurrent states of monsters are flushed, so that the monsters lose
the knowledge they had previously gained from interacting with the bot; Module 2 gets
used after each bot respawn until the monster is reminded that it is in the Front Ramming
task. Module 3 is used the 3rd most because it controls the monster for a prolonged period
near the end of the evaluation. This unusual usage occurs because the monster team’s plan
goes awry after the last respawn, which is why the monsters come up short of killing the bot
a third time. Module 3 gets used because the monster is trying to escape taking damage; a
situation it does not have to deal with during the first two successful bot spawns. The other
modules were either not used at all, or used only for single isolated time steps at points when
their activation spiked. For example, see how Module 7 spikes around generations 340, 490
and 600. This figure shows how MM(R) can evolve a network that makes use of multiple
modules to exhibit separate modes of behavior in a domain with isolated tasks.
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and MM(R), MM(R) networks tend to associate particular modules more clearly with partic-

ular behaviors. That is, MM(R) behaviors are more transparent, whereas MM(P) networks

frequently thrash between modules, or exhibit multiple behaviors in a single module. Most

likely the reason is that MM(P) modules are more interconnected. Since each module leads

into the next, a given module might actually behave much like the module that precedes

it. Most hidden-layer connections in MM(P) networks lead into the oldest output modules,

even when there are several newer output modules in the network as well.

Though results in FBR make sense given the resources and information available to

each method, less balanced domains can lead to different results, as is demonstrated next

with PP.

6.4.2 Predator/Prey Results

In contrast to FBR, the results in PP are unexpected in that neither Multitask nor MM(P)

performs better than Control, and MM(R) and Multinetwork greatly outperform all

of these methods, achieving roughly equal performance. The hypervolume learning curves

(Figure 6.9) show MM(R) and Multinetwork quickly improving and remaining better

than all the other methods. The epsilon indicator values in the final generation confirm these

results (Figure 6.10), and the Mann-Whitney U tests (Table 6.7) confirm that the relevant

differences are significant.

When the Pareto fronts from the final generation of each method are split up by

task, it turns out that every run of each method results in at least one individual with perfect

scores in the Prey task. This is not surprising since monsters simply need to run away from

the bot to avoid all damage and stay alive the whole time, thus having perfect scores in

these objectives. Consequently, the Pareto fronts for the Prey task are not different across

methods.

In contrast, the Pareto fronts for the Predator task are different. Of course, a front for

the single-objective Predator task is simply the highest damage dealt in that run. Since dif-
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Figure 6.9: Average Hypervolumes in the Predator/Prey Domain. For each method, av-
erage hypervolumes across 20 runs are shown by generation with 95% confidence intervals.
In contrast to results in FBR, MM(R) outperforms Control, MM(P), and Multitask
significantly. None of these three methods with lower performance are significantly differ-
ent from each other, though MM(P) is slightly below Control and Multitask, which
are on roughly the same level. Multinetwork also significantly outperforms these three
low-performing methods, and by the end of evolution has an average hypervolume that is
slightly lower, but not significantly different from, that of MM(R). This domain demon-
strates a surprising failure of the Multitask approach, which should easily develop dis-
tinct behaviors for each task, and the impressive success of MM(R), which performs as
well as if it could completely isolate both tasks, as Multinetwork does. This result thus
demonstrates the potential power of discovering modules automatically.
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Comparison HV I1
ε I1

ε+

Control vs. Multitask 189 195 195
Control vs. MM(P) 163.5 159 159
Control vs. MM(R) 78.5 76 76
Control vs. Multinetwork 87 89 89
MM(P) vs. Multitask 135 138.5 138.5
MM(P) vs. MM(R) 37.5 37.5 37.5
MM(P) vs. Multinetwork 52 52 52
Multitask vs. MM(R) 43 40.5 40.5
Multitask vs. Multinetwork 66 66 66
MM(R) vs. Multinetwork 180.5 176 176

Table 6.7: Two-tailed Mann-Whitney U Test Values for the Final Generation of Preda-
tor/Prey. MM(R) and Multinetwork are significantly better than all other methods in all
metrics, but not significantly different from each other. Neither MM(P) nor Multitask
are significantly different from Control. The two epsilon indicators have identical U
values for all comparisons because the damage-dealt score in the Predator task always de-
termines the epsilon value needed to dominate the reference set. Hypervolume is different,
though still consistent, because varying scores in the Prey task result in a slightly different
ranking of hypervolume scores than of epsilon scores.

ferent objectives are not being compared, there is no need to normalize. To compare meth-

ods, it is sufficient to look at the distribution of best damage-dealt scores (Figure 6.11): The

Mann-Whitney U test values for comparing these scores are identical to those for I1
ε and

I1
ε+ in the full PP game (Table 6.7). These results show that MM(R) and Multinetwork

are significantly better than all other methods, none of which are significantly different from

each other.

Therefore, the main determinant of overall performance in PP is performance in

the Predator task. It also primarily determines the form of average success count curves in

PP (Figure 6.12). However, pressure to do well in both the Predator and Prey tasks is what

ultimately makes this domain challenging, since achieving high performance in the Predator

task is easier without the additional pressure to avoid damage in the Prey task. This fact is

demonstrated by the high performance of Multinetwork in the Predator task.

Another indicator of how easy the Prey task is to solve is the selection of inputs in
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(a) I1
ε Values.

(b) I1
ε+ Values.

Figure 6.10: Epsilon Indicator Values in the Final Generation of Predator/Prey. Given
the final Pareto fronts for each of the 20 runs with each method, the (a) I1

ε values, and
(b) I1

ε+ values are calculated, and presented in the same manner as in Figure 6.2. MM(R)
and Multinetwork are superior to all other methods. It is surprising that Multitask
performs so poorly since, like Multinetwork, it always has knowledge of the current
task, and has a specific policy for each task. It is also impressive that MM(R) achieves such
high performance, since it does not have this knowledge. There is little difference between
Control, Multitask, and MM(P). In terms of I1

ε values, Control and Multitask
seem better than MM(P), but Table 6.7 indicates that these differences are not significant.
The slight difference between MM(R) and Multinetwork is not significant either.
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Figure 6.11: Best Damage-Dealt Scores in the Predator Task of Predator/Prey. Isolat-
ing the Pareto fronts for the Predator task reduces it to a single-objective task. Because most
individuals in the Pareto fronts for the full task had perfect damage-received and time-alive
scores, these damage-dealt scores are primarily responsible for the differences in hypervol-
umes in the full task. The main reason that MM(R) is better than the other methods is that
it always succeeds; it has no low scores at all. Most of the other methods have scores vary-
ing over a wider range, and thus much lower averages and medians. The only exception
is Multinetwork, which, despite some low outliers, has very high median and average
performance. It is particularly surprising that the lowest scores in the other methods can
be so low. The pressure to perform well in the Prey task is a big distraction to these other
methods, and sometimes leads the evolving populations in a one-way direction away from
good performance in the Predator task.
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Prey task networks of the Multinetwork approach. None of the inputs go to saturation,

even though the population is solving the task. In other words, there are no particular inputs

that are vital to solving the Prey task. Any input that gives a signal of fairly consistent sign

can be hooked up to the forward/backward output to make monsters run from the bot. The

“Bias” input seems like a natural candidate for this job, but Multinetwork solutions in

the Prey task often use other inputs instead.

In contrast, Multinetwork populations in the Predator task and populations from

the other methods tend to favor certain inputs strongly, indicating that individuals that

started using those inputs gained a large advantage over members that did not. As in FBR,

the “Monster/Bot Heading Diff.” and “Monster Heading/Bot Loc. Diff.” sensors are often

used. Each individual population also favors some set of ray-trace and team-slot sensors,

but the specifics vary greatly across runs.

The insights gleaned from the empirical data are further supported by observing

the evolved behaviors of the monsters (animations at http://nn.cs.utexas.edu/

?multitask). Control networks tend to be good in only one of the two tasks, but

because the Prey task is so easy, there are also Control networks that succeed in both

tasks. The Predator task is more challenging. Sometimes monsters that take damage and

die in the Prey task make it into the Pareto front because they deal a large amount of damage

in the Predator task.

What is surprising is that Multitask networks do not do better in the Predator

task. These networks always master the Prey task because they start running from the

Predator as soon as evaluation starts; all individuals in all 20 Pareto fronts for Multitask

networks in PP get perfect scores in the Prey task. It is easy for Multitask networks to

have one policy that makes the monsters run away. However, it is unclear why Multitask

networks do not always do well in the Predator task as well. In fact, the best Multitask

scores in the Predator task are slightly lower than the best Control scores (Figure 6.11).

A possible explanation is that giving equal attention to each task, as the Multitask
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Figure 6.12: Average Success Counts in Predator/Prey. The single-network method that
has the most high-performing individuals for the highest success thresholds is MM(R),
whose curve dominates all others. At low success thresholds, the next best method
is Multitask, but at higher success thresholds it is overcome by Control because
Multitask networks have relatively low damage scores in the Predator task.
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architecture requires, is unnecessary and even detrimental in this domain, because the rel-

ative challenge of the two tasks is so different. Good Prey behavior thus becomes over-

optimized at the expense of good Predator behavior. This problem does not arise with

Multinetwork because the networks learning each individual task do not face the extra

challenge of learning the other task as well. The task division works well if the tasks are

completely separated so that they are not competing with each other.

This trade-off in evolutionary search might also explain why MM(R) does so well:

With Module Mutation, evolution is free to choose how many modules to make, and how

often to use each of them. While the “obvious” task division may hinder evolution, MM(R)

can overcome this problem by finding its own task division. However, this “division” often

favors a single module that is extensively used in both the Predator and Prey tasks. For

example, an MM(R) network scoring (146.67, 0, 600) had 19 modules, but only four were

used. Their usage in the Prey task was 87.17%, 0%, 3.33%, 9.50%; and their usage in

the Predator task was 83.40%, 0.04%, 0.83%, 15.72%. The first module is thus primarily

responsible for controlling the team in both tasks. Furthermore, the fourth module, which

is the 2nd most used in both tasks, is used erratically, meaning that it controls the agent

for one or two time steps in a row every once in a while before control switches back to

the primary module. Even though the function of this seldom used module is unclear, the

overall behavior of the agents is multimodal, and very successful.

But why is MM(R) behavior so good, while MM(P) behavior is so erratic? MM(P)

networks can be mediocre in both tasks, or spectacular in both tasks. When MM(P) suc-

ceeds, it also tends to use few of its modules. For example, an MM(P) network scoring

(155.67, 0, 600) had 10 modules, but only used three of them. In fact, only one module was

used in the Prey task, which makes sense because this task is comparatively easy. However,

this same module was the most used module in the Predator task as well, where the usage

profile of these three modules was 88.73%, 6.99%, 4.28%. It seems that because MM(P)’s

output modules are so interconnected and similar, it is difficult for networks to specialize

89



modules in any way. The chain of interconnected modules is fragile, because improvements

to earlier modules can harm later modules, and thus decrease overall fitness. Using fewer

modules to control behavior makes MM(P) networks less fragile, but means that individ-

ual modules may have to develop multiple modes of behavior, which is also challenging.

There are many chances for failure with both of these approaches, which is why MM(P)

success depends on luck more so than MM(R). However, the fact that the seldom used mod-

ules of this successful MM(P) network are only used in one of the two tasks is evidence of

intelligent module usage based on the current task.

The superiority of MM(R) in the PP task is surprising, because it provides an exam-

ple where evolution uses modules in a way that trumps human knowledge, as represented

by the Multitask approach. This result is in stark contrast with the result in FBR, where

Multitask is superior to both Module Mutation methods. The next section addresses the

differences in PP and FBR that led to these different results.

6.5 Discussion

Interestingly, although Multitask Learning and Module Mutation each work well in at least

one of the domains of this chapter, the Multinetwork approach worked well in both. How-

ever, these domains are stepping stones towards more difficult domains where tasks are not

isolated (such as Ms. Pac-Man: Chapters 9 and 10), and the Multinetwork approach may

not be as easy to apply. In order to best exploit these methods in more complex domains,

some idea of which methods are most likely to be successful is needed.

First, Multinetwork and Multitask are restricted by needing to know the cur-

rent task, whereas MM(R) is not. Since MM(R) does well in PP and better than Control

in FBR, it is a good choice for domains in which the task division is not known. However,

when task divisions are clear, programmers can simply tell agents what the current task is.

Even when the division is not clear, programmers can sometimes use domain knowledge

to guess how to split the domain into tasks. Multitask performed well using the task
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division for FBR, but even in this case it was outperformed by Multinetwork, which

also did well in PP.

In fact, the results demonstrate a surprising example of how Multitask Learning can

fail (as discussed in Section 3.2.1); the ability to share knowledge about tasks in the hidden

neurons of the network was unhelpful in PP, and not helpful enough in FBR to overcome

the performance of Multinetwork. Although Multitask can provide a helpful bias

for learning, the strength of the human-specified task division has a strong influence on its

chances of success.

The limited success of Multitask Learning only applied in FBR, where the task

division properly split the challenges of the domain. As was shown by PP, where tasks were

not equally difficult, Multitask’s separate dedicated modules were actually detrimental

to evolution, even though Multinetwork performed very well. However, it is surprising

that MM(R) performed just as well as Multinetwork, and even more surprising that

it achieved success by mostly using only one output module. Thus the main advantage

of MM(R) is that it can discover a task division that is effective, albeit counterintuitive to

human designers. By extension, Module Mutation may also work well in domains where

the tasks are interleaved or blended.

Because the Module Mutation methods never knew which task they were facing,

their multimodal behavior was likely established with the help of recurrent connections.

For instance, the behavior demonstrated by MM(R) in Figure 6.7 involves a module switch

after being hit by the bot, but the hit itself is sensed for only a single time step. Therefore,

this knowledge must have been maintained by recurrent connections. This behavior demon-

strates how recurrent connections in a modular network can produce multimodal behavior.

This example network used recurrency to maintain memory of brief environmental

cues that revealed what the task was. This ability is promising for domains where there is no

clear task division; recurrent links could accumulate evidence indicating what the current

task is.

91



Also, the PP domain produced agents via Module Mutation that favored one mod-

ule, but exhibited multimodal behavior that was successful in two tasks. This behavior

seems to have been informed by awareness of the direction in which the bot was moving,

which could only be tracked using recurrent connections. This behavior within PP shows

how multimodal behavior can be achieved with the help of recurrent connections even when

evolution eschews structural modularity by primarily using only one module.

Another way to make a network aware of the current task is to simply give it sen-

sors that directly indicate what the task is. Such sensors are easy to define if the tasks are

isolated or interleaved, but when a domain has blended tasks, some uncertainty about the

current task is likely to remain. When combined with preference neuron networks, this ap-

proach also has the potential to discover its own novel task divisions. The Multitask and

Multinetwork approaches are required to use a particular human-specified task division,

but if this human-specified information is moved into the sensors, then knowledge of the

human-specified task division would still be available, but its use would not be mandatory.

The ability to learn the task division would prevent the kind of failure that Multitask

experienced in the PP domain. The impact of such sensors on the evolution of multimodal

behavior will be studied later in Ms. Pac-Man (Chapters 9 and 10).

These experiments also reveal some ways in which Module Mutation can be im-

proved. Although MM(P) is better than Control in FBR, it performed poorly in PP. New

MM(P) modules are only imperfect copies of their source modules, and it is impossible to

modify the source module without also modifying the new module. These shortcomings of

MM(P) may have contributed to its failure in PP. These are the reasons that Module Muta-

tion Duplicate was developed (MM(D); Section 3.2.3), and will be used in place of MM(P)

in Chapters 9 and 10.

Although different methods excelled in each of the two domains of this chapter,

methods that have multiple modules were always the best. Thus, multimodal approaches

provide a clear benefit in domains consisting of multiple isolated tasks.
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6.6 Conclusion

Two domains with isolated tasks, Front/Back Ramming (FBR) and Predator/Prey (PP), were

used to evaluate two methods of evolving modular networks: Multitask Learning and Mod-

ule Mutation. These approaches were compared against a control involving networks with

a single module, and a method of combining separately evolved networks called Multinet-

work.

In FBR, where the task division is both obvious and balanced, Multitask Learning

is effective, although not as good as the Multinetwork approach. Module Mutation methods

come in third, but still ahead of networks with just one module. In PP a form of Module Mu-

tation, named MM(R), tied with the Multinetwork approach as the most effective method.

MM(R) succeeded by efficiently searching the space of policies to find one module that

worked well with other modules, that were used far less.

Multinetwork, Multitask Learning, and Module Mutation thus allow evolved agents

to have multiple policies to fit different situations. Such an ability is useful in develop-

ing multimodal behaviors for domains with isolated tasks, and should be useful for more

challenging domains as well. In subsequent chapters, these techniques will be developed

further, and evaluated in challenging variants of Ms. Pac-Man featuring both interleaved

and blended tasks (Chapters 9 and 10). However, the next chapter deals with a different

approach to discovering multimodal behavior: Fitness-based shaping using TUG.
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Chapter 7

Evaluation: Fitness Shaping in

Blended Tasks

Multiobjective evolution helps discover multimodal behavior because different objectives

are often associated with different modes of behavior. NSGA-II discovers trade-offs be-

tween all objectives, and the best solutions will have competence in multiple objectives

because they have different modes of behavior associated with each objective.

However, the link between objectives and behavioral modes may not always be

completely clear, especially in a domain with blended tasks. The extra challenge posed by

learning how to respond in each particular situation may cause evolutionary search to get

stuck in local optima. This chapter presents experiments using Targeting Unachieved Goals

(TUG; Section 3.3), which is designed to focus search in such a way that it escapes the local

optima and increases scores in the objectives that need the most attention. This chapter first

describes the experimental setup used to evaluate TUG in the Battle Domain (BD), which

has blended tasks of attack and defense, and then covers the results.
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7.1 Experimental Setup

This section describes the experiments conducted in BD to evaluate the performance of

TUG. First the manner in which evolved networks interact with the environment of BD is

described, then the different approaches that are evaluated, and finally, the parameters that

influence neuroevolution.

7.1.1 Agent Control

Because the evolved monsters in these experiments are simulated in BREVE environments

similar to FBR and PP, these monsters interact with the environment in very similar ways.

Monster behavior is defined by two policy outputs, just as in FBR and PP: One controls the

forward/backward impulse, and the second controls the left/right turning. Input sensors are

also very similar. Monsters in BD have access to all of the sensors used by FBR and PP

monsters defined in Tables 6.1, 6.2, and 6.3.

However, there is one extra feature of BD that is important enough to justify the use

of additional sensors: the bot’s bat. The bat is a dangerous object controlled by the bot, so

the monsters need to sense it in order to learn intelligent multimodal behavior. Therefore,

monsters in BD have seven additional sensors. There are two new binary sensors: “Close to

Bat” and “Very Close to Bat.” A monster is close if it is within 9.5 distance units, and very

close if it is within half this distance (4.75 distance units). These values were determined

through trial and error in preliminary experiments. For reference, the length of the monster

and bot agents is 2 units, and the length of the bat itself is 5 units.

The remaining five new sensors are ray traces similar to those described in Table 6.3

for FBR and PP. The ray traces are affixed to the monsters in the same way as the other ray

traces, but they sense the bot’s bat. These ray traces are particularly useful because the

signals they give will change as the bat swings through them, allowing the monsters to

learn precise maneuvers for avoiding the bat and launching counter-attacks.

With these additional sensors, neural networks can be evolved to control the mon-

95



sters in BD. The details of how this is done are described next.

7.1.2 Selection Methods

The experiments in this chapter are designed to show the benefits of TUG (Section 3.3) in a

domain with blended tasks (Section 4.4). TUG is an alternative approach to selecting which

members of a population are considered best in each generation. Regular NSGA-II always

uses all objectives to determine which individuals are best in terms of Pareto dominance.

TUG also uses the Pareto dominance criteria, but does not always use all objectives. The

objectives in use at any given time depend on the current goal values and the performance

of the population from generation to generation. The current goal values depend on the

initial goal values and how they change over time.

Three methods are tested in these experiments: NSGA-II by itself (Control), and

NSGA-II combined with TUG using two different sets of initial goal values. Of these, TUG

Low uses starting goal values that are the absolute minimum possible in each of the three

objectives of BD (Section 5.4), and TUG High uses higher goal values that are set at levels

that represent a reasonable level of performance in this domain. The specific goal values

for each objective are:

1. Maximize Damage Dealt = 50: The bot has 50 health points, so this goal requires the

monsters to kill the bot at least once per trial. The bot respawns after death, giving

the monsters a chance to inflict more damage.

2. Minimize Damage Received = −20: Bat strikes deal 10 damage points each, so each

monster should take no more than two hits on average. However, because this value

is averaged across team members, it is possible to achieve this goal even if one team

member dies (50 damage), since the average across the four team members could still

be above −20.

3. Maximize Time Alive = 540: On average across team members, monsters must sur-
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vive throughout 90% of the trial. It is still possible to achieve this goal even if some

monsters die in fewer than 540 iterations (recall the total number of iterations per trial

is 600).

Each method was evaluated in 30 runs. The parent and child population sizes were

µ = λ = 52, and individual runs lasted 500 generations. Every network was evaluated

three times, and its objective scores were averaged across evaluations in order to get more

reliable scores with noisy evaluations.

Recall that TUG has a parameter that influences how long performance above each

current goal must persist to be considered achieved (Section 3.3). Specifically, this param-

eter determines how quickly the recency-weighted average for each objective catches up to

the current performance level. The value of this step-size parameter was α = 0.15. Both

TUG methods also made use of variable goal increases: Whenever all three objectives were

achieved, each recency-weighted average was reset, and the goal value for each objective

was moved closer to the current maximum score in that objective. The step-size parameter

by which goal values increased was η = 0.15.

The remaining parameters affecting these experiments relate to how neuroevolution

is used.

7.1.3 Neuroevolution Parameters

All neural networks in these experiments consisted of a single module. TUG will be com-

bined with modular network architectures in Chapter 10.

The parameters affecting neuroevolution were the same as in the experiments in

FBR and PP (Chapter 6): Constructive neuroevolution was used with feature selection (White-

son et al., 2005). Crossover was not used, but mutations were applied when a child pop-

ulation was produced: There was a 40% chance that a single weight would be perturbed,

a 20% chance that a single (potentially recurrent) link would be added, and a 10% chance

that a new neuron would be spliced along an existing link.
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In each trial, the network being evaluated was copied into each monster to create a

homogeneous team as described in Section 5.1. On every time step, each monster acted in

accordance with its neural network brain, as in the FBR and PP experiments. The evolution

of these agents in BD lead to the results described next.

7.2 Results

First the manner in which results are evaluated is discussed, followed by the actual quanti-

tative results, and analysis of the evolved behaviors.

7.2.1 Assessing Multiobjective Performance

Although the Battle Domain is challenging, performance assessment in this domain is easier

than in FBR and PP. First, there are only three objectives in comparison with FBR’s six.

Second, although the different objectives correspond to different blended tasks, they are not

explicitly split across isolated tasks.

As a result, looking at the raw scores and Pareto fronts is more informative. How-

ever, this information is still supplemented by calculating the hypervolume metric (Sec-

tion 2.1.3) for the final population of each run. Hypervolume calculations are based on

normalized objective scores scaled between the minimum and maximum scores in the final

generation for each objective across all runs.

The minimum point for BD was (0,−49.166667, 331.916667). The 0 indicates that

no damage was dealt to the bot. The −49.166667 indicates that across three evaluations,

all four monsters died, except in one evaluation where one monster barely escaped death

with 10 health points remaining. The 331.916667 is the lowest average survival time of the

four monsters in a team across three evaluations. The maximum point was (250, 0, 600),

indicating that the best team of monsters killed the bot five times, and the best surviving

teams managed to go through all evaluations without receiving any damage.

This information is used to analyze the results in BD in the next section.

98



7.2.2 Performance

Both forms of TUG achieve higher performance than NSGA-II alone. When two-tailed

Mann-Whitney U tests are used to compare TUG to the Control, both TUG High

(U = 113, p < 0.001) and TUG Low (U = 98, p < 0.001) have significantly higher

final hypervolumes (Figure 7.1). The difference between TUG Low and TUG High is not

significant, indicating that TUG can succeed even without expert knowledge in the form of

initial goal values.

The methods can also be compared in terms of the final Pareto fronts. In this case

it is most informative to combine all 30 Pareto fronts from each method into a single set

per method (Figure 7.2). For these experiments, it is better to look at the combined Pareto

fronts of all runs instead of their super Pareto front because it is then clear how poorly the

worst runs of each condition performed. However, even the worst TUG runs are very good:

Both TUG Low and TUG High often produce results that dominate many individuals in

the Pareto fronts of plain NSGA-II runs.

Although TUG’s Pareto fronts are generally strong, TUG runs do sometimes have

low-scoring individuals in their populations, due to the deactivating and reactivating of

objectives. Observation of learning curves from individual TUG runs (Figure 7.3) indicates

that TUG runs go through cycles in which the number of high-performing individuals is

maximized at the point where all goals are achieved, and then lowered soon afterwards

when all goals are increased and reactivated. Therefore, it is best to terminate TUG at a

point where all goals have just been achieved rather than after a fixed number of generations.

To gain further insight into these results, representative behaviors generated by each

method will be analyzed next.

7.2.3 Behavior

As expected from the results above, the behaviors evolved with TUG tend to be better than

those evolved with plain NSGA-II. Movies of characteristic behaviors can be viewed at
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Figure 7.1: Hypervolumes in Final Generation of Battle Domain. Given the final Pareto
fronts for each of the 30 runs with each method, the hypervolumes are calculated and shown
as box-and-whisker plots (depicting the minimum, lower quartile, median, upper quartile
and maximum scores, with scores more than 1.5IQR, or inter-quartile range, from the
nearest quartile shown as outliers). Additionally, the dashed line intersecting each box
is the average hypervolume. The hypervolumes for TUG High and TUG Low are much
higher than those for Control. The best TUG Low run actually has a hypervolume of 1.0,
because all of the maximum scores used for the hypervolume scaling came from this run.

100



-50

-40

-30

-20

-10

 0

 0  50  100  150  200  250

D
a

m
a

g
e

 R
e

c
e

iv
e

d

Damage Dealt

 350

 400

 450

 500

 550

 600

 0  50  100  150  200  250

T
im

e
 A

liv
e

Damage Dealt

-50

-40

-30

-20

-10

 0

 350  400  450  500  550  600
D

a
m

a
g

e
 R

e
c
e

iv
e

d

Time Alive

Time Alive

Control
TUG (High Goals)
TUG (Low Goals)

Damage Dealt
Damage Received

Time Alive

Figure 7.2: Unions of Pareto Fronts in Battle Domain. In each of the trials of each
method, a Pareto front is produced. Though TUG can turn objectives off, these fronts are
calculated with respect to all three objectives of the Battle Domain. The unions of such
Pareto fronts for each method are shown in the figures above. Each possible pairing of two
objectives is shown in one of the 2D plots, and a full 3D plot is shown at bottom right. Many
of the points in the Pareto fronts of Control runs are dominated by TUG High and TUG
Low points. The absolute best points occur in TUG Low runs, though both TUG-based
approaches successfully create fronts dominating Control fronts.
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Figure 7.3: Example Objective Behavior of a TUG High Run. The best, average, and
worst scores in each objective by generation for an individual run using TUG High is
shown. Objective scores are normalized to a common range and measured as percentages
of the maximum attained values. Vertical lines on the plot signify generations at which TUG
achieved all goals, and thus had its goal values increased. Remember that all objectives are
reactivated after goals are increased. The plot for Time Alive is always on top, since it is
the easiest objective. Damage Received is just beneath Time Alive, and its plot fluctuates
in a similar manner because Time Alive is also affected by receiving damage. Damage
Dealt is clearly the hardest objective, since its plot is always beneath the plots of the other
objectives. Damage Dealt drops after each vertical line because the reactivation of the
other two objectives makes it hard to deal damage, yet as the goals for Damage Received
and Time Alive are achieved, selection focuses more on Damage Dealt until all goals are
achieved. Therefore, the population scores are always at their best on generations when all
goals are achieved.
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The most effective behavior occurred in a TUG Low run (Figure 7.4). Across the

three trials that the team faced, it avoided all damage and thus stayed alive the whole time.

However, this team is exceptional in that it also dealt an average of 250 damage, which

amounts to killing the bot five times in each evaluation. Monsters in this team approach

the bot from an unusual angle in order to confuse it into focusing on the wrong monster.

Then the monsters turn towards the bot and are able to consistently strike it on its left side,

which is safe because the bat starts swinging from the right. Each successful hit cancels the

current bat swing, enabling monsters to quickly defeat the bot.

1 2 3 4

Figure 7.4: Illustrations of Best TUG Low Behavior in Battle Domain. Behavior pro-
gresses in time from left to right. First the bot moves towards the upper left, turning toward
the monster on top (Frame 1). The monster on the left turns away (Frame 2) and then to-
wards (Frame 3) the bot while approaching, so that it is able to strike (Frame 4), which
cancels the bat swing. This skillful behavior results in high damage dealt with no damage
received.

Another successful TUG Low behavior demonstrates the blended nature of the

tasks in this domain directly (Figure 7.5). This team’s trick is to rush at the bot, pause

for just the right amount of time as its bat swings past, then rush in to attack the bot repeat-

edly until it dies. The monsters learn precise timing for switching from offensive (initial

rush) to defensive (pause while bat swings by) and then back to offensive behavior (final

attack). Similar behaviors emerge in some Control runs, but the timing is less precise,

which leads to more damage received by these inferior networks.

Another behavior that is good at both avoiding and dealing damage is based on a
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1 2 3 4

Figure 7.5: Illustrations of TUG Low’s Rush-Pause-Rush Behavior in Battle Domain.
The monster on the bottom approaches the bot (Frame 1), backs up to wait for the bat to
swing past (Frame 2), then rushes in just at the end of a bat swing (Frame 3) to be able to
attack the bot repeatedly (Frame 4). This behavior requires expert timing, and demonstrates
how the agents must learn where the threshold between the blended tasks of offense and
defense are.

clever turning maneuver at the start of each trial (Figure 7.6). The monster moves towards

the bot while turning left, and after it barely dodges a bat swing the monster starts backing

into the bot. The monster then continues to strike while turning, and thereby manages to

avoid the bat. This behavior is slightly less efficient than the ones above due to the turning

motion. Since the maneuver takes more time to execute, monsters cannot deal as much

damage within the same amount of time. This behavior occurred in both TUG Low and

TUG High runs, but not in the Control runs.

1 2 3 4

Figure 7.6: Illustrations of TUG High’s Turn-Reverse Behavior in Battle Domain. As
the bot approaches the monster on the right (Frame 1), the monster moves toward the bot
while turning to its left (Frame 2). As a result, the bot’s bat narrowly misses the monster
(Frame 3), allowing it to then go on the attack by reversing into the bot (Frame 4). This
behavior blends an offensive advance with a defensive turn so that the monster can sneak
past the bat.
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Another set of behaviors popular in TUG runs, but not in Control runs, employed

baiting motions by one of the monsters (Figure 7.7). A monster backs away from the bot

while turning such that it has a greater risk of being hit by the bat. Yet it also slows down

the progress of the bot so that teammates can sneak up from behind to attack. Though

this behavior requires teamwork and is visually compelling, it is not as efficient as other

behaviors because extra time is required to move the bot into a vulnerable position via

baiting. There is also a greater risk that one of the monsters will be hit. Still, this strategy

is another interesting way to deal with blended tasks: The defensive baiting action of one

monster actually helps other monsters launch offensive strikes from behind.

1 2 3 4

Figure 7.7: Illustrations of TUG High’s Baiting Behavior in Battle Domain. The mon-
ster in the upper-right is retreating while the monster in the upper-left sneaks up from the
side (Frame 1). The bot is focusing on the monster in the upper-right, and manages to land
a hit with its bat (Frame 2), but this focus allows the other monster to get close (Frame 3)
and start attacking the bot (Frame 4). This behavior is an example of tasks being split up
across teammates, since one monster is on the defensive while another sneaks in to attack.

The TUG runs also evolved an effective coordinated counter-clockwise attack be-

havior (Figure 7.8). Because the bot swings its bat from right to left, it is safer to attack it

on its left side. Starting from the monster on which the bot currently focuses, and moving

counter-clockwise around the bot, the next monster will always be in a position to attack

the bot on its left side. Therefore, the monsters will be able to repeatedly blindside the bot.

Once again, the team of monsters trades off defensive and offensive roles between team-

mates. This behavior is generally effective, but tends to result in large damage received

because it is hard to get it coordinated precisely.
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1 2 3 4

Figure 7.8: Illustrations of TUG Low’s Counter-Clockwise Striking Behavior in Battle
Domain. The monsters surround the bot and rush in between bat swings (Frame 1). First
the monster on top attacks (Frame 2), which leaves the bot vulnerable to a follow-up attack
from the left (Frame 3), which sets up another attack from below (Frame 4). Each monster
passes on the responsibility of filling an offensive role to a neighboring monster in rapid
succession.

Control runs were characterized primarily by reckless behaviors that would sac-

rifice life in order to deal damage, and cowardly behaviors that would run away to avoid

damage. Often different members of the same population exhibit these opposing behaviors,

which makes sense given that they represent different trade-offs between objectives. How-

ever, some Control trials did achieve decent performance, usually by approximating the

coordinated attack behavior described above.

The variety of ways that TUG learns to deal with blended tasks is interesting. Some

runs learn teamwork, in which different monsters trade off offensive and defensive roles, so

that each task is occurring at the same time for different agents. Other runs depend on the

skill of a single monster that must precisely time its attack, which it usually accomplishes

by merging offensive and defensive actions, e.g. by rushing in then pausing, or approaching

the bot from an unusual angle that looks defensive.

In contrast, Control runs often learn bad behavior, or at best learn poor approxi-

mations of good TUG behavior. Evolutionary search pushed these runs in the right general

direction, but the networks were unable to refine their behaviors and become truly skilled.

It seems they were stuck in the kinds of local optima that TUG is designed to bypass. Thus

TUG’s high performance in BD demonstrates its potential in domains with blended tasks.
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7.3 Conclusion

This chapter applied TUG to a domain with blended tasks: the Battle Domain. BD blurs the

line between when monsters should be offensive and when they should be defensive, and

this distinction proves hard to learn using vanilla neuroevolution plus NSGA-II. However,

using TUG results in great success. Because it is easy to optimize the Damage Received

and Time Alive objectives by being overly defensive, the Damage Dealt objective does

not always receive enough attention. TUG fixes this imbalance by turning off the easier

objectives when they are not needed.

The neural networks in this chapter all consisted of a single module. TUG will

be combined with modular neural networks in a more challenging real-world domain in

Chapter 10, but first this domain needs to be described. The domain in question is the

classic arcade game of Ms. Pac-Man.
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Chapter 8

Domain Description: Ms. Pac-Man

Pac-Man and its sequel Ms. Pac-Man are among the most popular video games of all time.

This popularity extends into the computational intelligence research community, as evi-

denced by numerous papers and two different annual competitions. Pac-Man is interesting

because a simple set of rules gives rise to a game in which complex strategies are needed to

succeed.

At its core, Pac-Man can be thought of as a predator-prey scenario — with a twist.

For the most part, the player-controlled Pac-Man is the prey of computer-controlled ghosts,

but if Pac-Man consumes a power pill, this state of affairs is reversed: The ghosts temporar-

ily become the prey of Pac-Man. The sudden switch in game dynamics requires a sudden

switch in play strategy on the part of the player. In other words, multimodal behavior is

required to succeed in Pac-Man.

Despite the inherent multimodal nature of Pac-Man, most learning approaches to

Pac-Man have focused on learning monolithic policies that control the Pac-Man agent re-

gardless of whether or not predator or prey ghosts are present. This chapter details that

previous work, describes the particular Pac-Man simulator used in this work, and elabo-

rates on the need for multimodal behavior in Pac-Man.
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8.1 Previous Pac-Man Research

Pac-Man-style games have been studied for a long time, but until recently, individual re-

searchers tended to create their own simulators for their studies (Koza, 1992; Rosca and

Ballard, 1996; Gallagher and Ledwich, 2007; Wirth and Gallagher, 2008; Martı́n et al.,

2010). This diversity of simulators was problematic both because they made fair compar-

isons impossible, and because in some cases the custom simulators were much simpler or

less challenging than the original game.

For example, Koza (1992) used Genetic Programming (GP) to learn Pac-Man be-

havior in a custom simulator, but his variant of the game was easy in comparison with the

arcade version (Lucas, 2005; Svensson and Johansson, 2012; Recio et al., 2012). Other

researchers used Koza’s simulator rules since his results provided the first basis for compar-

ison. For example, Rosca and Ballard (1996) improved upon Koza’s GP approach using a

Hierarchical GP approach that encapsulated portions of genomes for use in other genotypes.

Hierarchical behavior is essentially synonymous with multimodal behavior, so this partic-

ular approach will be discussed later in Chapter 11. In each follow-up study using Koza’s

rules, new simulators were built from scratch, as late as 2007 when Szita and Lőrincz used

a cross-entropy method to learn rule-based policies for Pac-Man. In contrast, Gallagher and

Ledwich (2007) focused on an even simpler version of the game featuring only one ghost,

but they were attempting to solve the harder task of evolving a neural network controller

whose inputs were the raw input grid immediately surrounding the agent.

Even the original game of Pac-Man has a shortcoming that makes it a poor choice

for computational intelligence research: All ghost behaviors are deterministic. Therefore, it

is possible to maximize one’s score by following memorized paths, without having any sort

of situational or strategic intelligence regarding how to respond to the actions of the ghosts.

The determinism of the original Pac-Man is the reason why nearly all current research in

Pac-Man focuses on Ms. Pac-Man instead.

Ms. Pac-Man is the non-deterministic sequel to Pac-Man. Microsoft’s Revenge of
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Arcade port of this game was used in the annual Ms. Pac-Man screen-capture competition1

at both the Computational Intelligence in Games and the Congress on Evolutionary Com-

putation conferences from 2007 to 2011. The non-determinism makes evaluations noisy,

which in turn makes learning in this domain hard. Other than the non-determinism, the

most obvious difference in game-play is that Ms. Pac-Man has four different mazes in com-

parison to Pac-Man’s one (Figure 8.1). Because of these two differences, success in Ms.

Pac-Man depends more on generalization than memorization.

In the Ms. Pac-Man screen-capture competition, Thawonmas and others constructed

a rule-based system by hand (Thawonmas and Matsumoto, 2009), and later used Evolution

Strategies to optimize parameters in this system (Thawonmas and Ashida, 2010). Further,

Handa and Isozaki (2008) made use of evolved fuzzy logic systems, while Wirth and Gal-

lagher (2008) created an influence map model to play the game. In 2009, Robles and Lucas

(2009) adapted traditional game-tree search to work in Ms. Pac-Man, and in the most recent

competition, Ikehata and Ito (2011) used Monte-Carlo Tree Search in their winning entry.

Though they did not win, Tong et al. (2011) also made use of Monte-Carlo Tree Search that

year. The competition has not been run since 2011, but research continues in the screen-

capture version of the game: Foderaro et al. (2012) painstakingly modeled the idiosyncratic

details of the ghosts’ behaviors2 and decomposed the corridors and junctions of the mazes

into cells in order to learn a decision-tree-based policy that outperformed Monte-Carlo Tree

Search. However, it should be noted that the detailed, human-supplied ghost model is likely

what led to this success.

A common conclusion throughout these papers is that the quality of any learning

method is greatly affected by the quality of the screen-capture procedure used to assess the

current game state. In order to separate issues of computer vision from issues of machine

learning, Lucas (2005) developed a Ms. Pac-Man simulator that has gradually become stan-

dard for research on Ms. Pac-Man.
1http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html
2Based on http://home.comcast.net/˜jpittman2/pacman/pacmandossier.html

110

http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html
http://home.comcast.net/~jpittman2/pacman/pacmandossier.html


(a) Maze 0 (b) Maze 1

(c) Maze 2 (d) Maze 3

Figure 8.1: Ms. Pac-Man Mazes. The game of Ms. Pac-Man consists of four mazes. The
starting state of each maze is shown in this figure. Ms. Pac-Man starts in the lower center
of each maze, and the ghosts start in the lair, which is slightly above the center. At the start
of each maze, all pills are present and available to be eaten by Ms. Pac-Man. Power pills
are located near the four corners of each maze. A maze is beaten once all pills and power
pills in a maze have been eaten. Though the general goals in each maze are the same, the
unique structure of each maze presents a unique challenge. Despite the different structures
in each maze, Ms. Pac-Man must learn behavior that generalizes across all four in order to
succeed.
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This simulator has changed a great deal since it was first introduced. Initially, it was

designed to evolve after-state evaluating neural networks (Lucas, 2005), but it gradually

improved as Lucas and others used it for other research projects, such as showing how

evolved multi-layer perceptrons (MLPs) outperformed temporal difference learning using

both interpolated tables and MLPs (Burrow and Lucas, 2009), and showing how game-tree

search could be applied to Ms. Pac-Man (Robles and Lucas, 2009).

The current version of the simulator is stable, and was used as part of the Ms. Pac-

Man vs. Ghosts competitions3 in 2011 and 2012. The primary appeal of this simulator is

that it allows controllers for both Ms. Pac-Man and the ghosts to be programmed. How-

ever, it also comes with a standard Legacy team that is an approximation of the ghost

team in the commercial game. Several studies have used the Legacy team as a basis for

comparison. Alhejali and Lucas (2010, 2011) used two different Genetic Programming ap-

proaches to evolve Ms. Pac-Man policies, and also used Genetic Programming to improve

the random simulations conducted by Monte-Carlo Tree Search (2013). Brandstetter and

Ahmadi (2012) also used Genetic Programming, but emphasized use of primitive actions

(up, down, left, right) with simple direction-oriented sensors, which is also the approach

taken in this dissertation (Section 9.2). Other work using Monte-Carlo Tree Search in-

cludes that of Samothrakis et al. (2011) and Pepels and Winands (2012). The results by

Samothrakis et al. are particularly impressive, though they made the unusual choice to only

evaluate their agent in the first maze. Pepels and Winands’s results are also good, but are

obtained against a different team than the standard Legacy team used by most other re-

searchers. Ant Colony Optimization is yet another technique that has been applied to this

simulator (Recio et al., 2012). The results in this dissertation are compared against these

previous studies in Section 10.7.

Although these common platforms are useful, other platforms are used as well.

Bom et al. (2013) used a custom simulator to train Ms. Pac-Man using Q-Learning on
3http://www.pacman-vs-ghosts.net/
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neural networks. Subramanian et al. (2011) used a Reinforcement Learning approach that

automatically learned temporally extended actions called options (Sutton et al., 1999) based

on game recordings of human subjects. This particular work made use of a Pac-Man simula-

tor developed primarily for teaching undergraduate AI (DeNero and Klein, 2010). Though

these studies are interesting, it is difficult to compare these results with those obtained using

the Ms. Pac-Man vs. Ghosts simulator.

Since the Ms. Pac-Man vs. Ghosts simulator is the most commonly used, it will be

used as a platform to learn multimodal behavior in this dissertation. Details of how it works,

and how it differs from the commercial Ms. Pac-Man game, are given in the next section.

8.2 Ms. Pac-Man Simulator

In Ms. Pac-Man, a human player controls the Ms. Pac-Man agent. In each of the four

different mazes there are several pills and exactly four power pills. To progress from one

level to the next, all pills and power pills in a level must be eaten by Ms. Pac-Man. Each pill

eaten earns the player 10 points, and each power pill earns 50 points. In the original game,

players are required to replay mazes several times and revisit old mazes, but the simulator

simplifies level progression by simply going through each maze in sequence and looping

back to the beginning after the last maze is completed. However, for the sake of reducing

learning time, all experiments in this dissertation end evaluations when the fourth maze is

cleared. Each maze has a different number of regular pills, but the total across all four

mazes is 932.

In each maze there are four hostile ghosts that start the level inside a lair near the

center of the maze. They come out one by one, and each one pursues Ms. Pac-Man accord-

ing to its own algorithm. If a ghost comes in contact with Ms. Pac-Man, the player loses a

life and all agent positions are reset to how they were at the start of the level, though previ-

ously eaten pills are not reset. Therefore, it is up to Ms. Pac-Man to avoid four aggressive

predators to survive. However, if Ms. Pac-Man eats one of the aforementioned power pills,
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then for a limited duration the game dynamics are reversed. All ghosts are colored dark

blue to indicate that they are vulnerable to being eaten by Ms. Pac-Man. The first ghost

eaten is worth 200 points, the second 400 points, the third 800 points, and the fourth is

worth 1600 points. However, if another power pill is eaten while the ghosts are vulnerable,

the score multiplier is reset so that the next ghost eaten is worth just 200 points. Therefore,

the maximum score is achieved by eating all four ghosts after eating each power pill of

each level. This goal is hard to accomplish, and it becomes more difficult to accomplish

with each subsequent level, because the time that ghosts stay vulnerable decreases as the

level increases.

Counting all pills, power pills, and edible ghosts, the highest score that can be

achieved across four levels is 58,120. Ms. Pac-Man normally starts the game with three

lives, and gains a fourth when 10,000 points are reached. However, some of the experiments

in this dissertation only allow Ms. Pac-Man to have a single life, both to reduce evaluation

time and to see how the increased risk affects the evolution of multimodal behavior.

There are many ways in which the simulator differs from the original Ms. Pac-Man.

In the original game, the speed with which the ghosts move is affected by various factors,

such as the number of pills remaining in the level, and whether or not the ghost is currently

traversing one of the tunnels on the edge of the maze that wraps around to the other side.

Ms. Pac-Man’s speed is also variable in the original game, slowing down when pills are

being eaten, and speeding up when turning corners. The simulator simplifies movement by

having all agents move at the same speed under nearly all circumstances. The one exception

is that edible ghosts move at half speed, which is both in line with the original game, and

necessary for Ms. Pac-Man to have a chance at catching them.

Another significant change is the behavior of the aforementioned Legacy team

of ghosts. This team approximates the behavior of ghosts in the original game, but does so

only very roughly. The original ghosts were thoroughly analyzed and modelled by Foderaro

et al. (2012). With every movement a ghost makes, it heads along the shortest path towards
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a specific point defined relative to Ms. Pac-Man and/or other features of the environment.

However, the way that this point is defined is different for each ghost, so that each ghost

approaches Ms. Pac-Man in a slightly different manner. One ghost heads directly to Ms.

Pac-Man, one heads to a point directly in front of Ms. Pac-Man, one heads to a point on the

opposite side of Ms. Pac-Man relative to the position of another ghost, and one alternates

between heading directly to Ms. Pac-Man and heading to the bottom left corner of the maze.

The simulator’s Legacy team achieves a similar diversity of behaviors by using

different path metrics for each ghost instead of having each head towards a different point.

Specifically, the red ghost (Blinky) pursues Ms. Pac-Man directly along the shortest avail-

able path, the blue ghost (Inky) pursues Ms. Pac-Man along the path with the shortest

Manhattan distance, the pink ghost (Pinky) pursues Ms. Pac-Man along the path with the

shortest Euclidean distance, and the orange ghost (Sue) makes uniformly random move-

ment choices. Sue’s movements are one source of non-determinism in the game. The other

source applies to all ghosts. Normally, ghosts cannot reverse their current direction of mo-

tion; they only make movement choices at junctions. However, on every time step there is

a 0.15% chance that all ghosts will randomly reverse their current direction of movement.

Such reversals also occur whenever a power pill is eaten. However, a random reversal is a

rare and unpredictable event that can either help or harm Ms. Pac-Man.

One final quirk of the simulator is that if a power pill is eaten when ghosts are in the

lair, then those ghosts are not made edible, and can emerge as threats. This small difference

introduces an additional challenge: Ms. Pac-Man must be careful to avoid eating power

pills when ghosts are in the lair, since this action means fewer points are able to be obtained

from eating ghosts.

The simulator’s variation on Ms. Pac-Man is quite challenging, and has already

proven itself worthwhile as a benchmark, as noted in Section 8.1. The simulator also has

an advantage over the actual Ms. Pac-Man game in that the code is completely accessible,

and no screen capture is needed. These are the reasons that this particular Ms. Pac-Man
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simulator was used to carry out the experiments described in Chapters 9 and 10. These

experiments focus on multimodal behavior, as described in the next section.

8.3 Multimodal Behavior in Ms. Pac-Man

The most obvious reason that Ms. Pac-Man requires multimodal behavior to succeed is that

she must respond differently to edible and threat ghosts. Although this distinction alone

would be enough to require multimodal behavior, the game is actually more complicated

than that. Usually, all four ghosts are either threats or edible, but there are a few cases in

which ghosts of both types are present at the same time. Edible ghosts that are eaten return

to the lair for a short time before reemerging as threats, which can potentially happen before

the edible time has expired for the other ghosts. Ghosts that are in the lair when a power

pill is eaten also emerge as threats before the edible time has expired.

Assuming that the appropriate task division for this game distinguishes between

situations when ghosts are edible or threatening means that this game has blended tasks. A

learned policy must therefore not only have behaviors for these distinct situations, but also

establish behavior for the ambiguous situations in between.

In order to understand what aspects of the domain make the evolution of multi-

modal behavior challenging, experiments in a less-complicated version of Ms. Pac-Man are

discussed first (Chapter 9), followed by experiments in the full game (Chapter 10). This

less-complicated version of Ms. Pac-Man is called Imprison Ms. Pac-Man, because ghosts

that end up in the lair are confined there as long as there are any edible ghosts outside of the

lair. This slight modification to the game makes the tasks of dealing with edible and threat

ghosts interleaved rather than blended.

More specifically, this domain is interleaved because it has a low thrashing rate be-

tween tasks: 0.01, as mentioned in Section 4.3. The calculation of this rate can be explained

now that the rules of the game have been presented. Because there are four power pills in

each maze, the maximum number of potential task switches per maze is eight: one switch
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whenever a power pill is eaten, and one when the edible time expires. Fewer switches are

possible if power pills are eaten while ghosts are still edible, or if Ms. Pac-Man dies before

eating all power pills, but the maximum number of switches per maze is eight. Because the

edible time is (in the first maze) 200 time steps, Ms. Pac-Man will have to spend at least 800

time steps in the edible task to maximize the number of task switches. Eight task switches

divided by 800 time steps results in a thrashing rate of 0.01. This estimate is conservative,

however, because clearing each maze in just over 800 time steps is highly unlikely. Even a

skilled agent is likely to spend at least 3,000 time steps in each maze, and could spend even

more, which means the actual thrashing rate is much lower.

Because of the domain’s interleaved nature, learning multimodal behavior should

mostly depend on recognizing this clear task division, and developing modules to corre-

spond to each task. For added pressure to develop effective behavior, Ms. Pac-Man only

has a single life in evaluations in this domain.

The next domain in which multimodal behavior will be evolved is the full Ms. Pac-

Man game. In this version of the game, eaten ghosts leave the lair once their lair time

expires, making it possible for both threat and edible ghosts to be active at the same time.

In the first set of experiments in this domain, Ms. Pac-Man only has a single life, so this

version is called the One Life (OL) variant. Because evaluations are noisy, and a single

mistake can be fatal, it is more difficult to evolve good behavior here than in the original

commercial game.

Experiments are also conducted in a Multiple Lives (ML) variant in which Ms. Pac-

Man starts with three lives and gains a fourth at 10,000 points. Evaluations are still noisy,

but getting an occasional extra chance after a mistake allows evolving controllers to show

off what they are good at without being excessively punished for a bit of bad luck. As a

result, evaluations are more consistent, and good behavior is easier to evolve than in OL

Ms. Pac-Man.

It is worth noting that in all versions of the game, even though a division into edible
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ghost and threat ghost behaviors seems obvious, the game is complicated enough that other

task divisions may also have merit. Dealing with threat ghosts can actually be considered a

collection of blended tasks in its own right, since Ms. Pac-Man must avoid threats, collect

pills, and decide when best to eat power pills so that eating the edible ghosts will be easy.

This last behavior, which is a form of luring, will prove extremely important in the ex-

periments below: The best performing policies actually dedicate a network module almost

completely to luring, which is a surprising and powerful result.

8.4 Conclusion

This chapter described the domain of Ms. Pac-Man, and has made it clear why it is an ideal

domain for the study of multimodal behavior: (1) Ms. Pac-Man must treat the ghosts in

distinct ways depending on whether they are edible or not, (2) even when all ghosts are

threats, potentially distinct behaviors such as pill eating and luring may be needed, (3) there

is a large body of previous work to compare against because Ms. Pac-Man is a real domain

that people care about, and (4) the game can be modified to have different levels of task

division, allowing for a better understanding of how the nature of the task division affects

the ability to learn multimodal behavior. These issues will be studied in the experiments in

the next two chapters.
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Chapter 9

Evaluation: Interleaved Tasks in

Imprison Ms. Pac-Man

The purpose of the experiments in this chapter is to demonstrate how multimodal behavior

evolves in a domain with interleaved tasks. Learning in such an environment should be eas-

ier than learning in a domain with blended tasks (Chapter 10), but harder than learning to

solve a problem with isolated tasks (Chapter 6). Interleaved tasks create an additional chal-

lenge because an agent’s actions in one task have consequences that influence performance

in the next task. This chapter will also demonstrate how the choice of sensors can encourage

learning of a human-specified task division by evolving agents. The chapter proceeds by

describing the policy representation, sensors, and objectives used, and then provides details

on what types of networks are evolved, followed by results.

9.1 Direction-Evaluating Policy

A learned policy can control Ms. Pac-Man in several different ways (see Section 8.1), re-

gardless of what method is used to represent the function approximator that defines the

policy.
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A standard approach to Reinforcement Learning problems is to learn a value func-

tion that evaluates game states. By applying this function to states immediately following

available actions, i.e. afterstates, a learning agent can simply choose the action that leads to

the state that the value function found most appealing for the agent. This approach has been

used in Ms. Pac-Man before (Lucas, 2005; Burrow and Lucas, 2009), but the outcomes of

these experiments have been overshadowed by later research.

Another approach to controlling Ms. Pac-Man is to provide the agent with several

state features and to require it to output either up, down, left, or right as its choice of ac-

tion. Only one study in the literature used this approach (Gallagher and Ledwich, 2007).

It is difficult to learn with such a policy because behaviors that depend simply on the rel-

ative positions of other entities do not easily generalize across different directions. Even

if the sensors are defined in relative terms, this approach still has the problem of having to

duplicate sensors to correspond to multiple available directions.

Most Genetic Programming approaches to Pac-Man (Koza, 1992; Alhejali and Lu-

cas, 2010, 2011) avoid this complication by allowing the evolved policy to select from

high-level actions, such as “Goto Neatest Pill” and “Goto Safety” (a non-trivial scripted

routine that decides on the safest route by which to avoid threat ghosts). Though these

approaches have had some degree of success, they bias the kinds of behaviors that can be

discovered, potentially ruling out better, less-intuitive behaviors.

Brandstetter and Ahmadi (2012) avoided using such high-level actions. Their ap-

proach is similar to evaluating afterstates for movement in each available direction, but is

different in that direction-oriented sensors evaluate each available direction instead of eval-

uating the afterstate. For example, instead of computing the distance between Ms. Pac-Man

and the nearest pill after moving left one step, there is a sensor that computes the distance

from Ms. Pac-Man to the first pill that can be reached by moving left and never reversing

direction. This approach is both surprisingly effective and works at a low enough level to

impose little bias on learning.
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This direction-oriented sensor approach is the general framework adopted in this

dissertation as well. The specific sensors used are chosen to best illustrate interesting points

about how sensor choices affect the learning of multimodal behavior, as will be described

next.

9.2 Sensor Configurations

Of the methods previously used in Ms. Pac-Man (Section 8.1), the approaches that learned

from features of the game state nearly always made a distinction between edible and threat

ghosts. Any sensor defined to specifically provide information about threat ghosts, such as

the distance to the nearest one, was accompanied by a similar sensor that only gave infor-

mation about edible ghosts. This design choice assures that the sensors are not conflicting

in the sense described in Section 3.1.1. The sensors were therefore split between the tasks

of dealing with threatening and edible ghosts.

One of the purposes of this chapter is to show that the methods for developing multi-

modal behavior described in Chapter 3 are general, and work with different types of sensors,

including conflict sensors. Therefore, agents will be evolved using both a Conflict sen-

sors configuration and a Split sensors configuration. However, some sensors are common

to both sensor configurations. These common sensors can be further divided into those that

are not direction oriented, and those that are. Recall that the evolved neural networks are

evaluated for each direction in which Ms. Pac-Man can potentially move. The sensors that

are not direction oriented will provide the same reading for each direction checked on any

given time step. These sensors are listed in Table 9.1. The directed sensors depend on the

specific direction being evaluated, and are listed in Table 9.2.

Of the undirected sensors, those that measure a proportion are obviously useful, and

have been used in several previous works. The “Ghosts Edible?” sensor only makes sense

in the Imprison Ms. Pac-Man task because it reports that either all ghosts outside the lair are

edible or none of them are. The sensor for “All Threat Ghosts Present?” helps maximize
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Sensor Name Description

Bias Constant 1
Proportion Pills Number of regular pills left in maze
Proportion Power Pills Number of power pills left in maze
Proportion Edible Ghosts Number of edible ghosts
Proportion Edible Time Remaining ghost edible time
Ghosts Edible? 1 if ghosts are edible, 0 otherwise
All Threat Ghosts Present? 1 if four threats are outside the lair, 0 otherwise
Close to Power Pill? 1 if Ms. Pac-Man is within 10 steps of a power pill, 0 otherwise

Table 9.1: Common Undirected Sensors in Ms. Pac-Man. These sensors are shared
by both the Conflict and Split sensor configurations. All sensors that measure a
proportion are scaled to the range [0, 1]. These sensors are not direction dependent, so
the same values will be returned for each potential movement direction evaluated on any
given time step. Since these sensors are undirected, they can only meaningfully influence
direction preference when combined with direction-oriented sensors (Table 9.2).

Sensor Name Description

Nearest Pill Distance Distance to nearest regular pill in given direction
Nearest Power Pill Distance Distance to nearest power pill in given direction
Nearest Junction Distance Distance to nearest maze junction in given direction
Max Pills in 30 Steps Number of pills on the path in the given direction that has the

most pills
Max Junctions in 30 Steps Number of junctions on the path in the given direction that has

the most junctions
Options From Next Junction Number of junctions reachable from the next nearest junction that

Ms. Pac-Man is closer to than a threat ghost

Table 9.2: Common Directed Sensors in Ms. Pac-Man. These sensors are shared by
both the Conflict and Split sensor configurations. The maximum distance that can
be sensed is 200. Higher distances, and distances to objects that are no longer present in
the current maze, are simply reduced to 200. All such distance sensor values are divided
by 200 so that they are confined to the range [0, 1]. The remaining sensors are similarly
scaled to the range [0, 1] in accordance with their maximum possible values. These sensors
are all direction oriented, meaning that they will compute different values for each direc-
tion checked. Distance measurements are made along routes that go in the given direction
without reversing, as are object counts. When combined with the undirected sensors in Ta-
ble 9.1, Ms. Pac-Man can sense everything of importance except for the ghosts, which are
handled differently by the Conflict and Split sensor configurations.
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the ghost eating score since Ms. Pac-Man only has a chance at eating all four ghosts if

they are outside the lair when a power pill is eaten. The “Close to Power Pill?” sensor is

taken from Alhejali and Lucas (2010, 2011), and is useful because it warns Ms. Pac-Man

that a power pill is about to be eaten, which helps optimize the timing of this strategically

important event.

The common directed sensors were previously used by Brandstetter and Ahmadi

(2012). The one exception is the “Options From Next Junction” sensor, which is useful

in helping Ms. Pac-Man decide which directions are safe. Brandstetter and Ahmadi had

a weaker version of this sensor that merely detected whether an upcoming junction was

blocked by a threat ghost. The “Options From Next Junction” sensor also checks the junc-

tions that are reachable from the next junction. This sensor takes the movement speeds of

all agents into account, but does not perform any forward simulation. It is also worth noting

that this sensor is technically a split sensor, because it is specifically aware of threat ghosts.

This sensor makes it easier to learn multimodal behavior by having a behavioral mode for

avoiding death. However, for multimodal behavior in this domain to be truly successful,

Ms. Pac-Man must have a behavior that encourages the eating of edible ghosts, which are

not detectable by any of the common sensors.

The sensors specific to the Conflict configuration are listed in Table 9.3. Some

previous learning approaches settle for just having an awareness of the closest ghost (e.g.

Brandstetter and Ahmadi, 2012), but when all ghosts are sensed it generally makes sense

to sort them according to distance (Alhejali and Lucas, 2010, 2011), which is why this

approach is used in this dissertation. An alternate approach is to sense specific ghosts

regardless of distance. This approach should allow the sensors to account for the unique

behaviors of each ghost, but preliminary experiments indicate that this approach is not

very successful. Regardless of how they configured the ghost sensors, all previous studies

used sensors unique to threat and edible ghosts, which is not done with the Conflict

configuration in this dissertation. Ghosts are only separated into threat and edible ghosts in
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Sensor Name Description

1st Closest Ghost Distance Distance to closest ghost in given direction
2nd Closest Ghost Distance Distance to 2nd closest ghost in given direction
3rd Closest Ghost Distance Distance to 3rd closest ghost in given direction
4th Closest Ghost Distance Distance to 4th closest ghost in given direction
1st Closest Ghost Incoming? 1 if closest ghost is moving towards Ms. Pac-Man, 0 otherwise
2nd Closest Ghost Incoming? 1 if 2nd closest ghost is moving towards Ms. Pac-Man, 0 other-

wise
3rd Closest Ghost Incoming? 1 if 3rd closest ghost is moving towards Ms. Pac-Man, 0 otherwise
4th Closest Ghost Incoming? 1 if 4th closest ghost is moving towards Ms. Pac-Man, 0 otherwise
1st Closest Ghost Trapped? 1 if path to closest ghost does not include any junctions, 0 other-

wise
2nd Closest Ghost Trapped? 1 if path to 2nd closest ghost does not include any junctions, 0

otherwise
3rd Closest Ghost Trapped? 1 if path to 3rd closest ghost does not include any junctions, 0

otherwise
4th Closest Ghost Trapped? 1 if path to 4th closest ghost does not include any junctions, 0

otherwise

Table 9.3: Conflict Sensors in Ms. Pac-Man. Again, the distance sensors are limited to
a maximum of 200, and are scaled to [0, 1]. All of these sensors are directed, and none of
them distinguish between edible and threat ghosts. To make informed decisions about how
to act around ghosts, these sensor readings must somehow be combined with readings from
the “Ghosts Edible?” sensor (Table 9.1).
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the Split sensor configuration.

The sensors unique to the Split configuration are derived by taking those unique

to the Conflict configuration and splitting each one into two sensors: For each sen-

sor in the Conflict configuration, there is one sensor in the Split configuration that

works the same way with respect to threat ghosts only, and another sensor that works in the

same way with respect to edible ghosts only. For example, the conflict sensor “3rd Closest

Ghost Distance” is replaced in the Split configuration with “3rd Closest Threat Ghost

Distance” and “3rd Closest Edible Ghost Distance” sensors. Despite having twice as many

ghost sensors, this split approach to defining Ms. Pac-Man sensors is the norm in Ms. Pac-

Man research. The Conflict configuration encodes the same information as the Split

configuration using fewer sensors, but as the results will show, only modular networks are

able to make effective use of the information encoded in the Conflict sensors.

Having thoroughly explained how the evolved Ms. Pac-Man controllers will sense

their environment, it is now time to explain what the agents will try to achieve and how they

will be evaluated.

9.3 Objectives and Performance

As illustrated in Chapters 6 and 7, evolving with multiple objectives encourages the popu-

lation to explore the various behaviors along the tradeoff surface between objectives. How-

ever, in Ms. Pac-Man the research community has always treated the game as a single-

objective problem, where the goal is to maximize the game score.

Even if all that matters in the end is the score, it is important to note that pill eating

and ghost eating contribute to this score in different ways. Therefore, even though results

in this dissertation will be evaluated according to the highest scoring individual in each

evolved population, populations will be evolved using NSGA-II to maximize pill and ghost

eating scores separately.

The Pill Score is simply the number of pills eaten. It is only meant to measure
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Ms. Pac-Man’s ability to clear levels. Even though in terms of game score power pills are

worth more than regular pills, and are particularly important because they enable Ms. Pac-

Man to eat ghosts, this fitness function treats them simply as regular pills. Because there

are 932 pills across the four mazes and four power pills per maze, this fitness function has

a maximum of 948.

The Ghost Score is trickier to define. As mentioned in Section 8.2, for each

power pill eaten, the point value of each subsequently eaten ghost doubles. Therefore, rather

than simply count the number of ghosts eaten, this objective should give higher rewards for

the ghosts that are worth more points. Since the points received for each ghost doubles,

so do the points associated with the Ghost Score objective: The first ghost is worth

one point, the next two, the third four, and the fourth eight. Therefore, for each power pill

eaten, it is possible to earn 15 Ghost Score points, which scales up to 60 points per

maze, and 240 points across all four mazes.

Because evaluation in Ms. Pac-Man is noisy, each evolved neural network is eval-

uated 10 times. The final Pill Score and Ghost Score assigned to each evolved

network are calculated by averaging these objectives across the 10 evaluations. Because 10

evaluations take a long time to carry out, especially as evolved agents get better at the game

and have longer evaluations, a time limit is imposed for each maze: After 8,000 time steps

without switching levels, Ms. Pac-Man is killed. This restriction discourages behaviors that

stay alive a long time without making progress, such as moving in circles while the ghosts

chase from behind. A limit of 8,000 is high enough that at the end of evolution, no champi-

ons are running out of time. For comparison, the Ms. Pac-Man vs. Ghosts competition only

allowed agents 3,000 or 4,000 time steps per level (depending on the year), but also had a

more lenient policy of advancing Ms. Pac-Man to the next level when time ran out rather

than ending the evaluation.

Disregarding the manner in which power pills are treated like regular pills, the game

score is simply a weighted combination of the Pill Score and Ghost Score defined
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above. Learning simply based on game score would throw away valuable information about

how these objectives interact; using both objectives along with NSGA-II will allow the

evolved neural networks to explore different areas of the tradeoff surface in order to find

skilled, multimodal behavior.

9.4 Evolving Networks

The experiments described in this section are designed to show the benefits of neural

network architectures with multiple modules in a domain requiring multimodal behavior.

Therefore, populations with networks of the following types will be evolved: Networks with

One Module (Control), Two Modules, and Three Modules. Networks with more

than one module use preference neurons to decide which module to use on each time step.

If either two or three modules happens to be the ideal number of modules for this domain,

then learning to use these fixed modules should be easier than using Module Mutation to

create new modules before learning how to use them.

Populations of networks that start with one module, but can add more via Module

Mutation, are also evaluated. The Module Mutation variants tested are Module Mutation

Random (MM(R)) and Module Mutation Duplicate (MM(D)). MM(D) is used in place of

Module Mutation Previous (evaluated in Chapter 6) because it improves on MM(P) in ways

described at the end of Section 3.2.3. Also, the version of MM(R) used in this experiment

does not include a module deletion mutation (evaluated in Chapter 6), since it was found

that there is actually potential benefit from modules that are used only a small percentage

of the time (Section 9.5).

Since the interleaved task structure of Imprison Ms. Pac-Man means it is always

clear what the current task is, the following Multitask population will also be evolved:

Each network has two modules, and uses one when the ghosts are edible, and the other at

all other times.

All of the above methods will be evolved first using the Split sensor configura-
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tion, because it is the common way to define Ms. Pac-Man sensors. These experiments

will show how the bias imposed by such a division of sensors results in multimodal be-

havior, even in One Module networks. In addition, populations will be evolved using

Conflict sensors, to show how multiple network modules help learn multimodal behav-

ior, even when sensor information is encoded more compactly.

To assure statistical significance, populations of each type are evolved 20 times

for 200 generations each. The population size is always µ = λ = 50. The following

mutation parameters are common across all runs: Each network link has a 5% chance of

Gaussian perturbation (µ = 0, σ = 1), each network has a 40% chance of having a new

random link added between existing neurons, and each network has a 20% chance of a new

neuron being spliced along a randomly chosen link. For runs that use Module Mutation,

each network has a 10% chance of the particular Module Mutation operation being applied.

These mutation rates are higher than in the earlier experiments in BREVE (Chap-

ters 6 and 7), because unlike the networks in the BREVE experiments, these networks

start with full connectivity, meaning there is a link from each input to each output. An-

other difference from BREVE experiments is the use of topological network crossover

(Section 2.2.1), which is applied 50% of the time when new children are being created.

Preliminary experiments indicated that fully connected starting populations and crossover

both helped prevent populations from getting stuck in bad local optima of the search space.

However, preference neurons do not start fully connected: Each one only starts with a sin-

gle incoming link, as in the feature-selective approach, so that evolution can easily find

different ways of choosing which module to use.

9.5 Results

This section first discusses the results from runs with Split sensors, then those with

Conflict sensors. To distinguish between results of each type, subscripts will be used.

For example, One ModuleSplit refers to One Module runs using Split sensors, and
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MM(D)Con refers to MM(D) results using Conflict sensors. Videos of the behaviors

described below are available online at http://nn.cs.utexas.edu/?imprison.

9.5.1 Split Sensors Results

There is no consistent significant difference between the different methods that make use

of the Split sensor configuration. Figure 9.1 shows the average scores of the champions

from each method across all runs. Figure 9.2 compares each multimodal approach against

One ModuleSplit individually with 95% confidence intervals. The confidence intervals

of one method frequently contain the average of the other method, demonstrating that such

differences are not significant.

All Split sensor runs reach roughly the same level of performance. However,

they differ in how consistently they reach that level. One ModuleSplit is consistently

good, but still lower than the best scores of individual runs using the other approaches.

MM(R)Split and MultitaskSplit also consistently reach the same level of performance

as One ModuleSplit, which is why all of these methods have narrow confidence inter-

vals. They are using a task division that seems appropriate to the game: MultitaskSplit

is forced to split the game into separate threat and edible tasks, One ModuleSplit learns

the same division because it uses Split sensors with a single module, and all but one

MM(R)Split champion actually ends up using only one module, which limits their avail-

able behaviors to those that One ModuleSplit can discover. However, the other methods

occasionally learn a better task division.

The reason that Two ModulesSplit, Three ModulesSplit, and MM(D)Split

have slightly higher average scores and wider confidence intervals is that some runs of these

modular approaches perform much better. The reason is that the champions produced by

these runs learn a novel task division that is not directly encouraged by the Split sensors.

This result can be seen using helpful visualizations while observing the behavior of each

champion from each run, as demonstrated in Figure 9.3.
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Figure 9.1: Average Champion Game Score in Imprison Ms. Pac-Man with Split
Sensors. For each method using split sensors, the average champion game score across 20
runs is shown. All methods reach approximately the same level of performance. In
particular, One ModuleSplit reaches nearly the exact same level of performance as
MM(R)Split, and is only slightly below the other modular approaches. The small dif-
ferences between methods are not statistically significant.
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 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  50  100  150  200

G
a
m

e
 S

c
o
re

Generation

MM(R)
One Module

(c) One ModuleSplit vs. MM(R)Split
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Figure 9.2: (Caption on following page)
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Figure 9.2: Comparing Modular Approaches Against One ModuleSplit via Average
Champion Game Score in Imprison Ms. Pac-Man with Split Sensors. Results from
Figure 9.1 are shown with 95% confidence intervals comparing each modular approach
against One ModuleSplit individually. (a) Two ModulesSplit attains a higher aver-
age score than One ModuleSplit, but also has larger confidence intervals that often over-
lap the narrow confidence intervals of One ModuleSplit. (b) Three ModulesSplit
scores behave similarly to Two ModulesSplit. (c) MM(R)Split performance is the
same as One ModuleSplit in terms of average score and size of confidence inter-
vals. (d) MM(D)Split is similar to Two ModulesSplit and Three ModulesSplit.
(e) MultitaskSplit performance is similar to One ModuleSplit and MM(R)Split.
The higher averages and large confidence intervals of some modular approaches indi-
cate that some of the runs score high, whereas the small confidence intervals of One
ModuleSplit indicate consistent, but lower, performance. Ultimately, these slight vari-
ations do not result in a significant difference between methods.

Observation of the high-scoring champions reveals that most share the following

novel task division: There is one important but rarely used module that is primarily activated

in order to force Ms. Pac-Man to eat a power pill when most of the threat ghosts are close

(Figure 9.4). A second module is used in all other situations. In other words, the first

module is responsible for luring the ghosts near the power pill. Since the second module

handles all other behaviors, it is responsible for avoiding threat ghosts while eating pills,

and for eating ghosts when they are edible. These two behavioral modes can be easily

handled by a single module because the Split sensors divide the game into edible and

threat tasks.

MultitaskSplit networks cannot learn a luring module because they are con-

fined to a specific task division that, although good, is not the best available. The human-

imposed module selection scheme, combined with the learning bias of the Split sensors,

makes it nearly impossible to learn a policy that divides the task in any way other than along

the distinction of whether or not ghosts are edible. One ModuleSplit networks have the

same problem, but for a different reason: The Split sensors encourage a particular task

division, and no additional module is available that can focus on luring.

The bias imposed by the Split sensors is so strong that it also prevents MM(R)Split
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(a) Threat Module (b) Edible Module

Figure 9.3: Module Usage Visualization Example With MultitaskSplit Network.
Visualization capabilities of the simulator were used to track how modules were used by
the evolved agents. These capabilities are best demonstrated using MultitaskSplit net-
works, which have a known task division. (a) The threat module is used at the start of an
evaluation because ghosts start in threat mode. The green trail leading to Ms. Pac-Man
indicates that she was using the threat module in each of those locations on the way to
her current location. As time passes, cells marked in this way slowly fade, indicating that
more time has passed since the threat module was used in locations with only faint col-
oring. (b) Later in the same evaluation, Ms. Pac-Man eats a power pill, which causes the
MultitaskSplit network to switch to its edible module. The cyan path starts where the
power pill was eaten, and leads to Ms. Pac-Man’s current location. As with the threat mod-
ule, the intensity and location of each colored cell indicate when and where Ms. Pac-Man
was using a particular module. This MultitaskSplit example confirms that the visual-
izations can be used to understand module usage patterns. These visualizations are the basis
for claims made in this dissertation about learned module usage patterns in Ms. Pac-Man.
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(a) Being Chased (b) Lures to Power Pill

(c) Eats Lured Ghosts (d) Finishes Remaining Ghost

Figure 9.4: Luring Behavior of a Two ModuleSplit Network. This sequence of screen
shots shows how the luring module is used by the modular networks that develop it. (a) Ms.
Pac-Man is being chased by three ghosts, but is not yet using the luring module. (b) Ms.
Pac-Man starts using the luring module at the junction, and goes directly to the power pill
when the ghosts are close enough. The cells in which the luring module was used are
marked green. (c) Ms. Pac-Man loops around the corner and quickly eats the three ghosts
that were close by, and now pursues the last ghost by using the wrap around tunnel. The
fading green spaces show where the luring module was used; note that it was not used at any
point after the power pill was eaten. (d) Ms. Pac-Man has gone through the wrap-around
tunnel and is on the verge of eating the final ghost. Therefore, Ms. Pac-Man will have
successfully eaten the maximum number of ghosts that can be eaten per power pill. Luring
the ghosts to the power pill before eating it thus makes eating edible ghosts easier, which
helps Ms. Pac-Man maximize the Ghost Score.
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runs from developing multiple modules. Despite sometimes learning a luring module, sev-

eral MM(D)Split, Two ModulesSplit, and Three ModulesSplit champions also use

only a single module. The resulting behavior is not bad — Split sensors allow different

behaviors for threat and edible ghosts to emerge easily — but better behavior is possible

with a luring module.

Pursuing ghosts when they are edible is not good enough to get a high Ghost

Score, because the edible time runs out very quickly. The ghosts cannot be caught in time

if they are far away when the power pill is eaten. The luring module assures more ghosts

are eaten by choosing the right time to eat power pills. This behavior works because the

other module always avoids power pills, meaning that the only way to eat them is when the

luring module allows it.

The luring module also fires occasionally even when there are no power pills nearby.

These occurrences coincide with situations when Ms. Pac-Man is close to several of the

ghosts, and near a junction. These situations are similar to situations where luring can

occur: If Ms. Pac-Man is nearly surrounded by ghosts when near a junction, this module

will activate, and either tell Ms. Pac-Man to move towards a nearby power pill, or tell her

which junction branch to pick so as best to avoid threatening ghosts.

The specifics of how each approach makes use of its available modules are shown

below: For each evolved champion, Figure 9.5 plots the percentage of the time that the

most used module was chosen vs. the average game score, Figure 9.6 plots usage of the 2nd

most used module vs. game score, and Figure 9.7 plots usage of the 3rd most used module

vs. game score. There is a group of high-scoring champions whose most used module is

chosen over 95% of the time. These champions are in the luring cluster, which consists of

networks that dedicate one module entirely to luring.

There are also three Three ModulesSplit champions with scores over 23,000

that only use their primary module about 75% of the time. These champions also lure, but

the module they use for it is also active while the ghosts are edible. Most modular champi-

135



 0

 0.2

 0.4

 0.6

 0.8

 1

 10000  15000  20000  25000

%
 U

s
a
g
e

Game Score

One Module
Two Modules

Three Modules
MM(R)
MM(D)

Multitask

Figure 9.5: Average Champion Game Score vs. Most Used Module Usage in Imprison
Ms. Pac-Man with Split Sensors. The champion of each of the 20 runs per method is
evaluated 1,000 times (to minimize the effects of noise in evaluation), and the resulting aver-
age game scores are plotted against the percentage of time steps where the primary module
was chosen. Recall that evolved networks process inputs for each available direction in
which Ms. Pac-Man can move; the “chosen” module for a time step is the module used
by the network when fed inputs for the direction in which Ms. Pac-Man ultimately chose
to move on that time step. One ModuleSplit champions always use their single mod-
ule 100% of the time, but so do most of the modular methods. The task division imposed by
the Split sensors makes multiple modules unnecessary to learn the obvious threat/edible
split. However, some modular approaches do use multiple modules, and the best of these
reach very high scores by learning luring behavior. In contrast, MultitaskSplit uses
multiple modules because it is forced to, but performs no better than runs using only one
module, because the human-specified task division does not allow for a luring module.
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Figure 9.6: Average Champion Game Score vs. 2nd Most Used Module Usage in Im-
prison Ms. Pac-Man with Split Sensors. The same game scores for champions de-
scribed in Figure 9.5 are shown here, but are plotted against usage of the 2nd most used
module for each champion that has at least two modules. For all champions, the usage
scores here are nearly a perfect mirror of the usage of the most used modules, which indi-
cates that most champions use no more than two modules, and those that use a third barely
use it at all. Champions evolved with Split sensors do not experience much pressure
to develop multiple modules because the sensors already provide a useful task division.
However, it is still possible for the modular approaches to go beyond this obvious task divi-
sion and make use of multiple modules to get even higher scores, as is done by champions
scoring above 22,000.
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Figure 9.7: Average Champion Game Score vs. 3rd Most Used Module Usage in Im-
prison Ms. Pac-Man with Split Sensors. The same game scores for champions de-
scribed in Figure 9.5 are shown here, but are plotted against usage of the 3rd most used
module for each champion that has at least three modules. For all champions, the usage of
the 3rd most used module is either zero, or so close to zero that the difference is not apparent
(the highest percentage is less than 0.16%). Therefore, a third module is either not useful,
or is too hard to learn with Split sensors in the Imprison game.
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ons that lure well use one module specifically for luring and another module for dealing with

both edible and threat ghosts otherwise. However, these particular Three ModulesSplit

champions use one module to deal with threats when luring and edible ghosts at all times,

and another module that deals with threat ghosts, but only when not luring. Because Split

sensors make it easy to behave differently in situations with threat and edible ghosts, it does

not matter whether luring has its own module, or is lumped in with chasing edible ghosts.

In fact, it is somewhat surprising that only these three Three ModulesSplit champions

exhibit this particular module usage pattern, since Two ModulesSplit runs and Module

Mutation runs could conceivably learn the same task division. Perhaps this usage pattern

would appear in these other methods if more than 20 runs were conducted.

There are also many champions with middling scores (15,000–20,000) whose most

used module is chosen between 55% and 85% of the time. Many of these champions

dedicate one module to threat ghosts, and another module to edible ghosts, despite the fact

that Split sensors make this module division unnecessary. This is the threat/edible cluster

(Figure 9.5). All MultitaskSplit runs are confined to this cluster because the human-

specified task division is a threat/edible division. However, many modular champions in

this score range are not in this cluster, because they only use one module 100% of the time.

The pre-existing split at the level of sensors makes extra modules mostly superfluous, so

only one module is used. The One ModuleSplit runs are also in this score range, and are

of course obligated to use one module 100% of the time.

Ultimately, the commonly used split approach to sensor design does not result in a

significant advantage for modular networks, but some modular champions stand out because

they learn a very useful task division, based on luring, that requires an additional module

in order to evolve. The next section explores an uncommon, but more general, approach to

sensor design that uses conflict sensors.
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9.5.2 Conflict Sensors Results

When Conflict sensors are used to learn Imprison Ms. Pac-Man, One ModuleCon net-

works perform the worst (p < 0.05). The modular approaches — Two ModulesCon,

Three ModulesCon, MM(D)Con, MM(R)Con, and MultitaskCon — all perform sig-

nificantly better. Figure 9.8 shows the average scores of the champions from each method

across all runs. Comparisons with 95% confidence intervals between One ModuleCon

and each individual modular method are shown in Figure 9.9.

Although the modular approaches all outperform One ModuleCon, none of them

are significantly different from each other. Both Two ModulesCon and Three ModulesCon

are nearly on top of each other, which makes sense, since it turns out that all but one Three

ModulesCon champions are only using two of the three available modules. By mostly

ignoring one module, the Three ModulesCon approach produces roughly the same dis-

tribution of policies, and therefore scores, as the Two ModulesCon approach.

Most Module Mutation champions are also settling on using just two modules, de-

spite having the capacity to learn more. Some Module Mutation champions only have two

modules, and others have more modules, but only use two. Only three MM(D)Con cham-

pions and two MM(R)Con champions actually use a third module, but observation of their

behaviors and module usage patterns reveals confusing task divisions: Modules do not seem

to be associated with particular behaviors or situations in any meaningful way. However,

despite confusing module usage, the actual behavior of these anomalous networks is gener-

ally good; it is usually similar to that of other modular champions. Even though the overall

pattern of module usage is confusing, there may be one out of the three modules that has

an obvious role, such as dealing with edible ghosts. The confusing modules generally split

behavior handled by a single module across two modules in a way that seems indiscriminate

(Figure 9.10).

One MM(D)Con champion uses only one module, and its performance is on par with

the worst of the One ModuleCon runs. There is also one MM(R)Con champion that uses
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Figure 9.8: Average Champion Game Score in Imprison Ms. Pac-Man with Conflict
Sensors. For each method using Conflict sensors, the average champion game score
across 20 runs is shown. All methods that can use multiple network modules outper-
form One ModuleCon by a large margin. Two ModulesCon, Three ModulesCon,
and MultitaskCon, which start with a fixed number of modules, all quickly earn high
scores. The Module Mutation methods, MM(R)Con and MM(D)Con, take slightly longer to
attain high scores because they must evolve the extra modules, but the level of performance
they reach is comparable to the other modular methods. Multiple network modules thus
help earn higher scores in Imprison Ms. Pac-Man.
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(b) One ModuleCon vs. Three ModulesCon
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(c) One ModuleCon vs. MM(R)Con
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(d) One ModuleCon vs. MM(D)Con
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Figure 9.9: (Caption on following page)
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Figure 9.9: Comparing Modular Approaches Against One ModuleCon via Average
Champion Game Score in Imprison Ms. Pac-Man with Conflict Sensors. Results
from Figure 9.8 are shown with 95% confidence intervals comparing each modular ap-
proach against One ModuleCon individually. (a) Two ModulesCon quickly establishes
significantly better scores than One ModuleCon. (b) Three ModulesCon also quickly
establishes significantly better scores than One ModuleCon at the same level as Two
ModulesCon. (c) MM(R)Con takes slightly longer to break away from One ModuleCon,
but the level of performance reached at the end is significantly better. (d) MM(D)Con is
similar to MM(R)Con in that learning is slower, but still reaches a level significantly better
than One ModuleCon. (e) MultitaskCon performance increases the quickest, but it also
flattens out the soonest. However, the level at which it flattens out is still significantly better
than what One ModuleCon ever reaches. Though there are slight differences between the
modular approaches, all of them are better than One ModuleCon.

only one module, though it has a middling score.

The effort required to experiment with different numbers of modules is likely why

the Module Mutation runs are less consistent. These runs do not always home in on great

task divisions. As a result, Module Mutation game scores tend to rise more slowly across

generations, but they still eventually reach the same general level as the other modular

approaches.

Despite the few exceptions, the general convergence across methods with Conflict

sensors indicates that using two modules is well-suited to the Imprison game, or at least that

policies using two modules are highly attractive local optima. However, despite agreement

across methods on the use of two modules, different champions do not split the game up in

the same way. A good portion of runs from all methods learn the division represented by

MultitaskCon: the threat/edible split.

As in the Split sensor results, the fact that all MultitaskCon networks use

the same task division explains why its confidence intervals are so narrow. However, note

that although the MultitaskCon average rises quickly, it also flattens out quickly. Other

modular methods have higher averages, and wider error margins, because the better runs

are discovering a luring module, as the best Split sensor results did.
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(a) Module 1 (b) Module 2 (c) Module 3

Figure 9.10: Indiscriminate Module Usage by MM(D)Con Network. The behavior of this
network is good (average score of about 20,120), despite having a module usage pattern
that is confusing, and does not clearly associate certain modules with particular behaviors.
Within the brief space of six time steps, the network alternates between the following three
modules: (a) The green cells mark all spaces where Ms. Pac-Man used Module 1 on the
way to her current location. The gaps along the path are positions where other modules
were used. The current time step is 159. (b) On the next time step, Ms. Pac-Man switches
over to Module 2 (red cells), and uses it through time step 163. This module seems to
fill in all of the gaps where Module 1 was not used, but this is not the case. (c) On the
next time step (time 164) Module 3 is being used (magenta cells). Notice that the magenta
cells seem to be the same cells where the previous module was used, but this illusion is
simply a limitation of the visualization: This MM(D)Con network often switches back and
forth between Modules 2 and 3 so quickly that the areas colored for different, but adjacent,
locations overlap. This is an example of thrashing behavior, which was also seen in the
Front/Back Ramming results of Section 6.4.1. For this particular MM(D)Con network, this
module usage pattern probably emerged because the Module Mutation operation made a
perfect duplicate of an already skilled module, thus making it irrelevant which one was
used at any given time. This is an example of one behavioral mode being shared across two
modules. Such a result does not efficiently use the neural resources of the network, but the
final behavior is still good, which is what matters the most.

144



The relation between usage of the most used modules and game score is depicted in

Figure 9.11. Game score vs. usage of the 2nd most used modules is shown in Figure 9.12,

and game score vs. usage of the 3rd most used modules is shown in Figure 9.13. There

are three clusters: One ModuleCon runs with low scores (low single cluster), medium-

scoring modular runs whose most used module is used between 50% and 85% of the time

(threat/edible cluster), and high scoring runs that use their most used module over 95% of

the time (luring cluster).

The threat/edible and luring clusters are so named because members of these clus-

ters have modules dedicated to these behaviors, which was also the case with the simi-

larly named clusters in the Split sensor results. All MultitaskCon champions are in

the threat/edible cluster, and the other modular methods in this cluster have learned the

same threat/edible task division as MultitaskCon (resulting in behavior similar to the

MultitaskSplit behavior shown in Figure 9.3). This task division is better than using

only one module (though the three One ModuleCon outliers not in the low single cluster

do perform as well or better).

However, members of the luring cluster are even better. As with the best Split

sensor runs, members of this cluster use a better task division that dedicates one module

to luring, and another module to everything else. Though the Conflict sensors encode

the game state differently, the behavior of these luring Conflict champions is essentially

the same as exhibited by luring Split sensor champions in Figure 9.4. However, having

one module handle “everything else” while using Conflict sensors is more impressive,

since it means that one module must make Ms. Pac-Man avoid threat ghosts while eating

pills, and also lead her to eat ghosts when they are edible, despite using sensors that do not

distinguish between these two types of ghosts. It is difficult for these two behavioral modes

to be handled by a single network module, but the few high-performing One ModuleCon

outliers indicate that it is possible. However, champions in the luring cluster are even better

than these One ModuleCon outliers because of their luring module.
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Figure 9.11: Average Champion Game Score vs. Most Used Module Usage in Imprison
Ms. Pac-Man with Conflict Sensors. The champion of each of 20 runs per method
is evaluated 1,000 times (to minimize the effects of noise in evaluation), and the resulting
average game scores are plotted against the percentage of time steps where the most used
module was chosen (the “chosen” module is defined the same way as in Figure 9.1). One
ModuleCon champions always use their single module 100% of the time, and tend to have
the lowest scores. Many modular champions with middling scores choose their most used
module between 50% and 85% of the time. These individuals are in the threat/edible clus-
ter. However, the best champions choose their most-used module over 95% of the time,
indicating usage of a luring module.
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Figure 9.12: Average Champion Game Score vs. 2nd Most Used Module Usage in Im-
prison Ms. Pac-Man with Conflict Sensors. The same game scores for champions
described in Figure 9.11 are shown here, but are plotted against usage of the 2nd most used
module for each champion that has at least two modules. Except for a few rare exceptions,
most of the usage scores here are a perfect mirror of the usage of the most used modules,
which indicates that only two modules are used by most champions. Such a result is of
course mandatory for all Two ModulesCon and MultitaskCon networks, because they
only have two modules, but it is surprising that champions that could use more modules
learn not to do so. The disuse of more than two modules is confirmed in Figure 9.13.
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Figure 9.13: Average Champion Game Score vs. 3rd Most Used Module Usage in Im-
prison Ms. Pac-Man with Conflict Sensors. The same game scores for champions
described in Figure 9.11 are shown here, but are plotted against usage of the 3rd most used
module for each champion that has at least three modules. Except for a few rare exceptions,
no champions use three modules. Either two modules is the ideal number for this domain,
or is at least good enough that the effort to learn how to correctly use three modules is not
worthwhile.
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Whether Split or Conflict sensors are used, luring behavior results in the

highest scores. Modular methods using the more general Conflict sensors reach the

same level of performance as methods that use Split sensors. However, One ModuleCon

does not perform well because it does not have a way of splitting up the task at the level

of sensors or at the level of output modules. Therefore, modular networks are successful

in a situation where single module networks fail, because they can learn to utilize conflict

sensors at the same level of performance as can be achieved by split sensors. Addition-

ally, members of the luring cluster can only be generated by using modular networks. The

implications of these findings are discussed in the next section.

9.6 Discussion

Having a way of splitting up the domain either at the level of sensors or at the level of out-

put modules is advantageous in Imprison Ms. Pac-Man. Additionally, the best champions

split the domain in a way that is surprising, and far from the obvious division based on

threatening and edible ghosts.

This obvious division is best exemplified by using Multitask networks with ei-

ther sensor configuration. One ModuleSplit networks also exemplify this division. Both

of these approaches quickly and reliably learn behavior that is superior to behavior learned

without any kind of multimodal division (i.e. One ModuleCon). However, the best way of

splitting up the domain can only be learned when evolution is free to discover its own way.

This division dedicates one module to luring, which is only used a very small percentage of

the time, but is extremely important for maximizing game score.

However, this luring module is hard to discover, and is not found in every mod-

ular run with preference neurons. Modular runs that do not discover it learn the obvious

threat/edible split in most cases. This result means that allowing evolution to learn the do-

main division in Imprison Ms. Pac-Man is at least as good as a human-specified division,

and sometimes better.
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It is curious that champions with a luring module can handle both running from and

chasing after ghosts with the other module. In fact, two high-scoring One ModuleCon

outliers manage to exhibit this form of multimodal behavior, despite having only one mod-

ule. The “Options From Next Junction” sensor is likely what makes this result possible.

This sensor is actually not a conflict sensor, because it senses a property about junctions

that specifically depends on threat ghosts. It seems that if the urge to pursue ghosts is

slightly overwhelmed by the pressure to go in directions with lots of safe options, then Ms.

Pac-Man will head towards ghosts when they are edible (the “Options From Next Junction”

sensor will not object), and run away from them when they are threats because the influence

of the “Options From Next Junction” sensor is stronger. However, such fine-tuning is not

accomplished easily, which is why having distinct network modules is a more reliable way

to learn these distinct behaviors.

The advantages of having a luring module, combined with the benefits of splitting

the domain along the obvious threat/edible line, makes it surprising that a champion that

successfully uses three modules does not emerge. With Split sensors, splitting edible

and threat behaviors up across modules is not necessary, since the sensors accomplish this

division, but such a division would conceivably be useful with Conflict sensors. Perhaps

the “Options From Next Junction” sensor simply makes this extra division unnecessary, or

more accurately, this sensor is easier to use than developing the additional modules, since

the stepping stones leading to such modules may not provide as much immediate benefit.

Even Module Mutation did not discover networks that use more modules, which

is surprising because module bloat was common in BREVE (Chapter 6). However, the

experiments in BREVE did not use network crossover. Crossover likely reduced network

bloat because newly introduced modules cannot line up structurally with components in

other networks. Therefore, at most half of the children from crossover could possess such

modules, and the behavior of these modules could be drastically affected by changes from

crossover within the hidden layer. It is unclear whether this outcome is beneficial, detri-
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mental, or neutral. On the one hand, bloat was reduced, which likely made search more

efficient. On the other hand, the discovery of novel modules may have been more challeng-

ing due to crossover. In any case, Module Mutation did discover multimodal behavior that

made use of multiple modules, and in this sense it was successful.

The results section above only considered the modules used by networks when eval-

uated for the direction in which Ms. Pac-Man chose to move. Although this approach led

to insight into how agent behavior was split up across modules, it also hid the fact that

module usage for the directions that are not chosen can have a meaningful impact on be-

havior. For example, a “fear” module could evolve that actively encourages Ms. Pac-Man to

avoid threats. However, instead of learning to favor directions that head away from threats,

the module could learn to assign a low direction preference to directions that head towards

threats. This behavior would result from the module having a high preference neuron out-

put and a low policy neuron output (which determines direction preference) whenever there

is a nearby threat in the evaluated direction. Therefore, a different module would likely

be chosen for directions without threats. In this scenario, the “fear” module assures that

whenever it is the chosen module for a given direction, that direction will never be chosen

by Ms. Pac-Man. This module does a useful job of discouraging Ms. Pac-Man from moving

towards threats, but it would never register as the “chosen” module, as defined for figures

like Figure 9.5.

This hypothetical scenario indicates the types of policies that can in principle be

learned with modular networks. However, even without analyzing these hidden usage pat-

terns, interesting module usage has been uncovered: The threat/edible task division was

detected, and the luring module was identified. However, because even the choices that

Ms. Pac-Man does not make (directions not chosen) could potentially result from usage of

multiple modules, it is possible that the learned behaviors are even more sophisticated than

is readily apparent.
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9.7 Conclusion

This chapter presented the domain of Imprison Ms. Pac-Man, a version of Ms. Pac-Man

with interleaved tasks: Eaten ghosts are restricted to their lair until no edible ghosts remain.

Learning in this domain provides evidence of how multimodal behavior evolves in a domain

where tasks are distinct, but share a common time line.

Modular networks were compared against networks evolved with only one module

using both Split and Conflict sensors. The Split sensors encourage a particular

task division in order to bias learning in the (hopefully) right direction. The Conflict

sensors are general, in that they do not impose a particular task division.

When using Split sensors, there is no distinction between modular and single-

module methods, because the task is already split at the level of sensors. However, the

overall best results come from modular approaches that learn a luring module, which is not

directly encoded into the sensors at all.

When Conflict sensors were used, modular approaches outperformed traditional

networks with a single module. Single-module networks have trouble behaving in different

ways as the task changes. In contrast, modular methods can dedicate separate modules to

each task, and like the best Split sensor champions, some Conflict sensor champions

even learn a better and unexpected task division that dedicates one module to the behavior

of luring ghosts, which in turn leads to high scores.

Given such success in Imprison Ms. Pac-Man, the next chapter focuses on scaling

up to the full game, in which the tasks of dealing with threat and edible ghosts are blended.
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Chapter 10

Evaluation: Blended Tasks in Full

Ms. Pac-Man

Although the multimodal behavior in Imprison Ms. Pac-Man is impressive, it was evolved

in a simplified version of the game. The remaining challenge in the full game is that both

edible and threat ghosts can be present at the same time. The purpose of this chapter is to

extend the methods for learning multimodal behavior to the full game, thus demonstrating

that they work in a complex real-world domain with blended tasks as well.

10.1 Differences from Imprison Ms. Pac-Man

Two variants of the full game will be used for evaluation. The OL (One Life) variant only

allows Ms. Pac-Man to have one life, as in Imprison Ms. Pac-Man, and in the ML (Multiple

Lives) variant Ms. Pac-Man starts with three lives and gains a fourth after earning 10,000

points, just as in the original commercial game. The other difference is the per-level time

limit: OL has the same 8,000 time-step limit as Imprison Ms. Pac-Man, but ML has a time

limit that is so large, 30,000 time steps, that it is unlikely to ever be reached. The original

game has no time limits, so the ML variant is like the original game, with a sanity check
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just in case an extremely unproductive agent evolves. Other than these differences, OL and

ML are the same: They differ from Imprison Ms. Pac-Man in that both threat and edible

ghosts can be present at the same time.

As in the original game, the amount of time that ghosts spend in the lair after being

eaten is 40 time steps. This amount decreases to 90% of its previous value in each sub-

sequent level. The time for which ghosts are edible is 200 time steps, and this time also

decreases to 90% of its previous value with each level. Because the lair time is always less

than the edible time, it is possible for eaten ghosts to exit the lair as threat ghosts before the

remaining ghosts have switched back to being threats. This difference from Imprison Ms.

Pac-Man makes the game tasks blended, which makes the game harder.

As in Imprison Ms. Pac-Man, controllers in the full game use the direction evaluat-

ing policy described in Section 9.1. In the OL variant, controllers using both Conflict

sensors and Split sensors are evaluated. However, in the ML variant only Conflict

sensors are used because these results are more interesting. As was shown in Imprison

and will be shown in OL, Split sensors make the game easier because they are custom-

designed for the domain. However, these results are not as general and interesting as those

obtained with Conflict sensors. The specific sensors are the same as in Imprison Ms.

Pac-Man (Section 9.2), but with the following differences: The “Ghosts Edible?” sensor,

which is used by both the Conflict and Split sensor configurations, is changed to an

“Any Ghosts Edible?” sensor. In the Imprison game, ghosts were either all threats or all ed-

ible, so this sensor provided more information, but the full-game version of this sensor only

indicates if any edible ghosts remain. However, Ms. Pac-Man needs some way of knowing

whether or not each individual ghost is a threat or not. Therefore, the Conflict sensors

in the full game include one additional sensor for each of the ghosts that indicates whether

or not it is edible: “1st Closest Ghost Edible?”, “2nd Closest Ghost Edible?”, “3rd Closest

Ghost Edible?”, and “4th Closest Ghost Edible?”. These extra sensors, combined with the

original Conflict sensors, provide Ms. Pac-Man with enough information to make in-
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telligent decisions in the game. This information is hard for an evolved neural network to

utilize, which is why methods for evolving modular networks are necessary.

The Split sensors do not need these additional sensors, because the manner in

which the sensors are divided already indicates whether or not each ghost sensed is edible

or a threat. Therefore, the Split sensors in the full game are the same as those in the

Imprison variant.

Both the OL and ML variants use the same implementation for their sensors. In

fact, agents evolved in the OL variant could conceivably be evaluated in the ML variant,

which leads to the question of why experiments in both are being conducted. This question

is answered in the next section.

10.2 One Life vs. Multiple Lives

The OL variant is useful because it is more challenging: A single mistake will end the entire

evaluation. There is therefore more pressure to evolve precise policies, and the differences

between methods are more clear. On the other hand, the ML variant is a reimplementa-

tion of the original game, and therefore constitutes the final real-world evaluation of the

methods developed in this dissertation. It is easier than OL, which results in two interesting

opportunities.

First, ML allows for the occasional mistake, and also allows the occasional sacrifice.

For instance, Ms. Pac-Man may allow herself to be eaten if she is first able to eat a ghost

that she would otherwise have to let escape. Such a sacrifice could actually pay off in the

long run if Ms. Pac-Man has some remaining lives with which to continue evaluation. This

extra flexibility could allow for more interesting multimodal behaviors to arise, or might at

least make good multimodal behavior more common.

Second, the forgiving evaluations in ML make it possible to utilize TUG (Sec-

tion 3.3) in evolving complex behaviors. Note that the Pill Score and Ghost Score

are intricately linked in this game: More ghosts cannot be eaten if more pills are not first
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eaten, in order to clear more levels and have more ghost eating chances. Turning the wrong

one off in early generations can lead to being trapped in a low-scoring region of the search

space. However, when TUG turns the objectives on and off correctly, Ms. Pac-Man scores

can rocket upwards very quickly. Because ML allows Ms. Pac-Man to try again when a life

is lost, such high scores are always achieved when modular networks are combined with

TUG in the ML variant, as shall be shown in the results below.

The remaining sections in this chapter first describe experiments and results in the

OL variant, and then continue with experiments and results in the ML variant. The chapter

ends by comparing all of these results to those previously published in the literature.

10.3 Experimental Setup of One Life Experiments

Seven approaches were evaluated in the OL variant: Fixed networks with One Module,

Two Modules, and Three Modules, networks with access to Module Mutation via

MM(R) and MM(D), and Multitask Learning using both two modules (Two-Module Multitask)

and three modules (Three-Module Multitask). Since experiments using both Split

and Conflict sensors are conducted, subscripts will once again be used to identify each

approach. For example, One ModuleSplit refers to One Module runs using Split

sensors, and MM(D)Con refers to MM(D) results using Conflict sensors.

All of these approaches were evaluated in Imprison Ms. Pac-Man, except for the

two Multitask Learning approaches. Because the full game has blended tasks, it is no

longer obvious how to split the tasks across multitask modules. Two approaches are evalu-

ated. Two-Module Multitask uses one module if any ghost is edible, and a different

module at all other times. This approach is similar to the Multitask runs in Imprison

Ms. Pac-Man, except that the module for edible ghosts will sometimes have to deal with

threat ghosts. The Three-Module Multitask approach uses an additional module for

these circumstances: one module for all threats, one module for all edible, and one module

for any combination of threat and edible ghosts.
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These two approaches correspond to two reasonable ways of dealing with the blended

threat and edible tasks. Other divisions are possible, but incorporate increasing amounts of

expert knowledge. For example, the results in Imprison Ms. Pac-Man indicate that defining

a multitask division with a luring module should work well, but programming exactly when

this module should be used, particularly in the more challenging full game, would not be

easy.

The final difference between OL and Imprison runs is that the population size is

doubled to µ = λ = 100. Preliminary experiments indicated that this more challenging

domain required larger populations in order for each method to produce consistent results.

Final champion scores often varied wildly with smaller populations.

Additional experimental parameters are identical to those in the Imprison variant:

Each method is evaluated in 20 runs for 200 generations each. All networks start fully

connected, except for preference neurons, which start with only a single incoming link.

Mutation rates are also the same: Each network link has a 5% chance of Gaussian per-

turbation (µ = 0, σ = 1), each network has a 40% chance of having a new random link

added between existing neurons, and each network has a 20% chance of a new neuron being

spliced along a randomly chosen link. For runs that use Module Mutation, each network

has a 10% chance of the particular Module Mutation operation being applied. Crossover

occurs for 50% of children produced.

Details on how agents are evaluated are also the same as in Imprison Ms. Pac-Man:

Each network is evaluated 10 times, and average values of the Pill Score and Ghost

Score are used by NSGA-II to select which agents reproduce and move on to the next

generation. These experiments give rise to the results described next.

10.4 Results of One Life Experiments

First the results from experiments using Split sensors are presented, then results from

Conflict sensor experiments. Videos of the behaviors are available online at http:
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//nn.cs.utexas.edu/?ol-pm.

10.4.1 Split Sensors Results

Results in OL Ms. Pac-Man using Split sensors are similar to results in the Imprison

variant, in that all approaches achieve close to the same level of performance. How-

ever, unlike in the Imprison game, Two ModulesSplit is significantly better than One

ModuleSplit (p < 0.05) in the final generation. None of the other modular methods are

significantly different from One ModuleSplit, though surprisingly, some do have lower

average performance: MM(R)Split, Two-Module MultitaskSplit, and Three-Module

MultitaskSplit.

Overall, scores are lower than they were in the Imprison game, which is to be ex-

pected since this version of the game is harder. Figure 10.1 shows the learning curves for all

methods, and Figure 10.2 compares each modular method to One ModuleSplit with 95%

confidence intervals shown.

Plots of module usage vs. average game score are shown in Figures 10.3, 10.4,

and 10.5. As in the Imprison game, the highest scoring champions use one module over 95%

of the time. These individuals have discovered the same luring module that was so useful in

the Imprison variant. Networks with preference neurons that do not have a luring module

tend to use one module 100% of the time, because the use of Split sensors makes it pos-

sible to treat threat and edible ghosts differently without having separate modules dedicated

to these behaviors. The only champions that actually use a second module over 5% are

multitask networks (both types), and these divisions result in some of the lowest scores.

It is interesting to see which of the above approaches do poorly. One ModuleSplit

does so because it is at a disadvantage by having only one module, but it makes decent head-

way using Split sensors. Three outlier runs attained scores near the lower range of scores

achieved by members of the luring cluster. MM(R)Split performs at about the same level

because it has trouble discovering new modules. Since these champions are only using one

158

http://nn.cs.utexas.edu/?ol-pm


 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200

G
a
m

e
 S

c
o
re

Generation

Two Modules
MM(D)

Three Modules
One Module

Three-Module Multitask
Two-Module Multitask

MM(R)

Figure 10.1: Average Champion Game Score in One Life Ms. Pac-Man with
Split Sensors. For each method the average champion game score across 20 runs
is shown. The Split sensors help One ModuleSplit deal with different types
of ghosts, so its scores are in the middle of those of the modular methods. The
curves for One ModuleSplit, MM(R)Split, Two-Module MultitaskSplit, and
Three-Module MultitaskSplit are on top of each other for most of evolution,
though One ModuleSplit pulls ahead slightly in the last few generations. However,
the curves for MM(D)Split, Three ModulesSplit, and Two ModulesSplit are all
consistently above One ModuleSplit, and Two ModulesSplit is actually significantly
better up until the end, thus showing the benefit of multiple modules, even when Split
sensors are used.
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Figure 10.2: (Caption on following page)
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Figure 10.2: Comparing Modular Approaches Against One ModuleSplit via Average
Champion Game Score in One Life Ms. Pac-Man with Split Sensors. Results from
Figure 10.1 are shown with 95% confidence intervals comparing each modular approach
against One ModuleSplit individually. (a) Two ModulesSplit reaches significantly
better scores than One ModuleSplit early, and maintains this superiority until the end
of 200 generations. (b) Three ModulesSplit also raises above One ModuleSplit
early, but the confidence intervals of each begin to encompass the average scores of the
other in the last third of evolution. (c) MM(R)Split matches the performance level of
One ModuleSplit until the very end of evolution where One ModuleSplit gains a
slight advantage, but the difference is not significant. (d) In contrast, MM(D)Split is
consistently better than One ModuleSplit, but as with Three ModulesSplit the dif-
ference is not significant. (e) Two-Module MultitaskSplit performance is poor: It
raises slower than One ModuleSplit, then both curves overlap for a while, before One
ModuleSplit pulls slightly ahead. (f) Three-Module MultitaskSplit is no better
than Two-Module MultitaskSplit. An extra module for when ghosts of both types
are present grants neither a benefit nor a penalty. Because the threat and edible ghost tasks
are now blended, strict human-specified task divisions start to break down. The Split
sensors allow One ModuleSplit to recognize this task division without being forced to
adhere to it as strictly as the multitask networks. However, having Split sensors and
multiple modules proves to be better for MM(D)Split and Three ModulesSplit, and
significantly better for Two ModulesSplit.

module, they get similar scores to One ModuleSplit. MM(D)Split more often discovers

a useful luring module, which is why it has higher scores, but its lowest scoring champions

are those that just use one module.

However, the most interesting failures are the Multitask Learning approaches. Both

approaches achieve nearly identical scores consistently, and these scores are slightly un-

der the performance level of One ModuleSplit. This result shows how human-specified

task divisions break down in a domain with blended tasks. Even though Three-Module

MultitaskSplit uses a division specifically designed to handle the blended task (Fig-

ure 10.6), it performs no differently than Two-Module MultitaskSplit.

OL Ms. Pac-Man is more challenging than the Imprison game, but modular net-

works are still the best, because they can dedicate a module to luring, which is useful in

both variants of the game. The next section presents results from similar experiments using
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Figure 10.3: Average Champion Game Score vs. Most Used Module Usage in One
Life Ms. Pac-Man with Split Sensors. The champion of each of 20 runs per method
is evaluated 1,000 times (to minimize the effects of noise in evaluation), and the resulting
average game scores are plotted against the percentage of time steps where the most used
module was chosen (the “chosen” module is defined the same way as in the Imprison game;
Figure 9.1). The highest scoring individuals (17,000–22,000) are modular networks whose
most used module is chosen over 95% of the time. These champions comprise the luring
cluster on the top right. There are also champions whose most used module is chosen
between 65% and 85% of the time, but all of these champions use multitask networks with
either a pure threat/edible division or a division between all threat, all edible, and mixed
ghost types. This group is the threat/edible cluster in the lower middle area, and their scores
are low (10,000–16,000). The rest of the networks use only one module all or almost all
of the time, regardless of how many modules are available. This single module cluster on
the top left and middle has a wide range of scores from 9,700 to 18,000. The higher scores
in this range are attainable thanks to the extra information provided by Split sensors.
However, these scores are still mostly inferior to those of the luring cluster.
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Figure 10.4: Average Champion Game Score vs. 2nd Most Used Module Usage in One
Life Ms. Pac-Man with Split Sensors. The same game scores for champions described
in Figure 10.3 are shown here, but are plotted against usage of the 2nd most used mod-
ule for each champion that has at least two modules. Because most champions do not use
more than one module, most scores are clustered near the bottom. Members of the lur-
ing cluster are barely above the 0% line (bottom right). However, this plot shows how the
two multitask approaches differ. Three-Module MultitaskSplit (cluster with 5%–
20% module usage) deals with edible ghosts in two different ways, so each of these mod-
ules is only used a portion of the time that any ghost is edible. However, Two-Module
MultitaskSplit (cluster with 20%–37% module usage) uses one module whenever any
edible ghosts are present, so its second most used module gets chosen more often than that
of Three-Module MultitaskSplit. The second most used module for this task divi-
sion deals with cases when all ghosts are edible, since this happens slightly more often than
cases where both threat and edible ghosts are present (see Figure 10.5).
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Figure 10.5: Average Champion Game Score vs. 3rd Most Used Module Usage in
One Life Ms. Pac-Man with Split Sensors. The same game scores for cham-
pions described in Figure 10.3 are shown here, but are plotted against usage of the
3rd most used module for each champion that has at least three modules. Sev-
eral Three ModulesSplit and MM(D)Split networks have a third module, but only
Three-Module MultitaskSplit (top cluster in the middle) actually uses a third mod-
ule, and only a small percentage of the time. Three modules are not necessary to get high
scores, and forcing Three-Module MultitaskSplit to use three modules doe not re-
sult in better scores than Two-Module MultitaskSplit.
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(a) All Threats (b) All Edible (c) Threat and Edible

Figure 10.6: Three-Module MultitaskSplit Task Division in One Life Ms. Pac-
Man. This agent uses a human-specified task division intended to deal with blended tasks:
(a) The cyan trail shows where Ms. Pac-Man traveled while only threat ghosts were in the
maze. (b) After eating a power pill, all ghosts become edible, so the network switches to the
edible module (green trails). (b) After a ghost is eaten, it reemerges as a threat while other
ghosts are still edible, which activates the third module (red trails). This network has a dif-
ferent module for each possible situation related to the threat/edible task division, including
a module for when the tasks overlap, but it still achieves low scores. As in the Imprison
variant, higher scores are achieved by networks that discover the unexpected luring module.
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Conflict sensors, which require networks to learn from more general information that

does not bias evolution towards the threat/edible task division.

10.4.2 Conflict Sensors Results

In the Conflict sensor experiments, several modular architectures outperform One ModuleCon

networks. Specifically, Two ModulesCon, Three ModulesCon, and MM(D)Con are

significantly better than One ModuleCon (p < 0.05). However, there are no signifi-

cant differences between One ModuleCon and the remaining methods: Two-Module

MultitaskCon, Three-Module MultitaskCon, and MM(R)Con. Figure 10.7 shows

the average scores of the champions from each method across all runs. Comparisons

with 95% confidence intervals between One ModuleCon and each individual modular

method are shown in Figure 10.8.

Two ModulesCon, Three ModulesCon, and MM(D)Con succeed in OL Ms.

Pac-Man for the same reason they succeed in Imprison Ms. Pac-Man: They associate useful

behavioral modes with separate network modules. There are both networks that discover

a luring module and networks that learn to split the domain according to threat and edible

ghosts among the champions from these runs.

The relation between module usage and game score is depicted in Figures 10.9,

10.10, and 10.11. As in the Imprison variant, there are three clusters: Low single cluster

contains the runs that use one module 100% of the time, and score poorly as a result,

the threat/edible cluster contains medium-scoring individuals whose most used module is

chosen 60% to 90% of the time (which is higher than in the Imprison variant), and the luring

cluster earns the highest scores with agents using one module over 95% of the time.

When using Split sensors, networks that did not discover a luring module only

used one module. The Split sensors make it easy to have different behaviors for threat and

edible ghosts, so these networks had no need to discover a threat/edible module division.

Conflict sensors do sometimes discover such a division. How is this possible when
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Figure 10.7: Average Champion Game Score in One Life Ms. Pac-Man with
Conflict Sensors. For each method the average champion game score across 20
runs is shown. All modular approaches outperform One ModuleCon early in evolu-
tion, but it eventually catches up to MM(R)Con, Two-Module MultitaskCon, and
Three-Module MultitaskCon, which all settle at the same level of performance. In
contrast, MM(D)Con, Three ModulesCon, and Two ModulesCon remain significantly
better than One ModuleCon until the end. It is particularly impressive that fixed networks
that learn their own task division are superior to fixed networks that use a human-specified
task division.
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(b) One ModuleCon vs. Three ModulesCon
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(c) One ModuleCon vs. MM(R)Con
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(d) One ModuleCon vs. MM(D)Con

 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200

G
a
m

e
 S

c
o
re

Generation

Two-Module Multitask

One Module

(e) One ModuleCon vs.
Two-Module MultitaskCon

 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200

G
a
m

e
 S

c
o
re

Generation

Three-Module Multitask

One Module

(f) One ModuleCon vs.
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Figure 10.8: (Caption on following page)
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Figure 10.8: Comparing Modular Approaches Against One ModuleCon via Average
Champion Game Score in One Life Ms. Pac-Man with Conflict Sensors. Results
from Figure 10.7 are shown with 95% confidence intervals comparing each modular ap-
proach against One ModuleCon individually. (a) Two ModulesCon quickly establishes
significantly better scores than One ModuleCon that persist until the end of 200 gener-
ations. (b) Three ModulesCon also quickly establishes significantly better scores at a
level almost as good as Two ModulesCon. (c) MM(R)Con is not as impressive in OL
as it was in Imprison, i.e. not significantly better than One ModuleCon. (d) MM(D)Con
is significantly better than One ModuleCon, though by a narrow margin. It is bet-
ter than MM(R)Con, but not as good as Two ModulesCon and Three ModulesCon.
(e) Two-Module MultitaskCon performance is consistently poor, and only reaches
the same level as One ModuleCon. (f) Three-Module MultitaskCon is also not
any better than One ModuleCon. Both Multitask approaches reach the same level of per-
formance consistently. The weakness of multitask’s hand-designed task divisions become
apparent now that the domain has blended tasks. Surprisingly, MM(R)Con also falters in
this domain. However, MM(D)Con, Three ModulesCon, and Two ModulesCon show
that modular networks still lead to the best scores.

ghosts of both types can be present at the same time? It turns out that in these situations, Ms.

Pac-Man will generally use the edible module until threat ghosts cut off the path from her

to any remaining edible ghosts, which is a sensible strategy for staying alive (Figure 10.12).

As with the Imprison game, networks using the threat/edible split are competent but

not the best. These networks do not always do a great job at eating ghosts. Sometimes these

networks lead Ms. Pac-Man to eat a power pill at an inopportune time. The edible time is

so short that even though she immediately switches over to a module that directly pursues

the ghosts, she has a hard time catching many of them before time runs out. To eat more

ghosts, Ms. Pac-Man needs luring behavior, as has been demonstrated in all Ms. Pac-Man

experiments so far.

As with the Split sensor experiments, neither Multitask Learning approach is

particularly successful, which is not surprising given that Conflict sensors pose an even

greater challenge. The behavior of the multitask networks with Conflict sensors is the

same as with Split sensors, because the rigid human-specified task division makes these

sensor differences irrelevant.
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Figure 10.9: Average Champion Game Score vs. Most Used Module Usage in One Life
Ms. Pac-Man with Conflict Sensors. The champion of each of 20 runs per method
is evaluated 1,000 times (to minimize the effects of noise in evaluation), and the result-
ing average game scores are plotted against the percentage of time steps where the most
used module was chosen (the “chosen” module is defined the same way as in the Imprison
game; Figure 9.1). One ModuleCon champions always use their single module 100% of
the time, and tend to have the lowest scores. As in the Imprison variant, modular networks
with middling scores (9,000–15,000) are in the threat/edible cluster (most-used module
60%–90%; lower middle). The best scores (16,000–21,000) still come from modular net-
works in the luring cluster (most-used module over 95%; top right), though a few One
ModuleCon outliers are on the lower edge of this score range. Two ModulesCon has
the most champions in the luring cluster, which explains its high average performance, but
Three ModulesCon and MM(D)Con have several representatives in this cluster as well.
Even MM(R)Con has some champions that discover a luring module, but its average per-
formance is brought down by the many low-scoring champions that use only one module.
Both multitask approaches achieve consistently middling scores, and are also consistent in
their module usage. Ultimately, being able to learn a task division is more likely to lead to
the high-scoring luring behavior.
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Figure 10.10: Average Champion Game Score vs. 2nd Most Used Module Usage in One
Life Ms. Pac-Man with Conflict Sensors. The same game scores for champions de-
scribed in Figure 10.9 are shown in this figure, but are plotted against usage of the 2nd most
used module for each champion that has at least two modules. As with the Imprison variant,
most of the usage scores here are a perfect mirror of the usage of the most used modules,
which indicates that only two modules are used by most champions. The major exception
to this is Three-Module MultitaskCon (within the center cluster), which is required
to use all three modules. However, it is once again surprising that Three ModulesCon
and both Module Mutation approaches do not take advantage of a third module, since it
could hypothetically be even more useful in this more challenging domain. The disuse of
more than two modules is confirmed in Figure 10.11.

171



 0

 20

 40

 60

 80

 100

 6000  8000  10000  12000  14000  16000  18000  20000  22000

%
 U

s
a
g
e

Game Score

Three Modules
MM(R)
MM(D)

Three-Module Multitask

Figure 10.11: Average Champion Game Score vs. 3rd Most Used Module Usage in
One Life Ms. Pac-Man with Conflict Sensors. The same game scores for cham-
pions described in Figure 10.9 are shown in this figure, but are plotted against usage of
the 3rd most used module for each champion that has at least three modules. Except for
Three-Module MultitaskCon runs and a single MM(R)Con run (but just barely), all
champions with three modules choose to never use the third one. Even in the full game,
sticking to two modules is sufficient to learn good behavior in Ms. Pac-Man.
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(a) Power Pill Eaten (b) Threats Appear (c) Edible Time Expires

(d) Power Pill Eaten (e) Edible Ghosts Eaten (f) Threats Block Path

Figure 10.12: Threat/Edible Module Split in One Life Ms. Pac-Man. This Two
ModulesCon network is a member of the threat/edible cluster. Each row shows a sequence
of events following the eating of a different power pill. Green trails are shown in places
where Ms. Pac-Man uses the module for eating edible ghosts. (a) The green module acti-
vates as soon as a power pill is eaten. Ms. Pac-Man heads towards nearby edible ghosts (the
green trail loops back on itself when Ms. Pac-Man changes direction to better intercept the
ghosts). (b) After some ghosts are eaten, they go to the lair for a short time before reemerg-
ing as threats. However, Ms. Pac-Man continues to use the green module. (c) Ms. Pac-Man
pursues the last edible ghost, and only stops using the green module when the edible time
expires. Throughout, the threat ghosts did not block the path to the last edible ghost. (d) Af-
ter eating another power pill, Ms. Pac-Man pursues nearby ghosts. (e) The green module
stays active as ghosts are eaten. (f) Ms. Pac-Man stops using the green module after threats
reemerge because they block the path to the last edible ghost at the top of the maze. She
backtracks away from the threats rather than pursue the last edible ghost. These examples
show that modular networks can learn multimodal behavior even when tasks are blended.
The details of the situation determine which mode of behavior should be used.
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The method whose performance changes the most as a result of switching to Conflict

sensors is One ModuleCon. Now this method has the lowest average performance, al-

though after 200 generations it is still not significantly different from the multitask methods,

or from MM(R)Con (which mostly uses one module as well). With neither Split sensors,

nor multiple modules, it is hard to learn how to respond to the ghosts in different ways for

each situation. These results demonstrate once again that having a way to split the domain

into separate tasks, either via sensors or output modules, encourages skilled multimodal

behavior.

However, there is still lots of variation in the performance of each method, likely

due to the catastrophic effect of losing a life. Networks that make small mistakes suffer

big consequences, and therefore do not get a chance to produce offspring. The next set of

experiments give Ms. Pac-Man extra lives to see if a more lenient evaluation scheme gives

rise to better behavior. It turns out that it does, and also that it is possible to use TUG to

improve performance further.

10.5 Experimental Setup of Multiple Lives Experiments

The OL experiments confirmed that modular networks can learn intelligent task divisions

even in a domain with blended tasks. However, OL is still short of the original game.

Therefore, the experiments in the remainder of the chapter extend the game to multiple

lives and effectively unlimited time, making it identical to the original game in nearly all

important aspects (though a level cap is still maintained to impose a limit on evaluation

length). In addition, it turns out that Targeting Unachieved Goals (TUG) can be used to

push performance up to even higher levels in the ML variant.

Experiments in ML Ms. Pac-Man are similar to those in the OL variant. All muta-

tion and crossover parameters are the same. Each network is still evaluated 10 times to get

average fitness scores. Networks still start fully connected, and each population size is still

µ = λ = 100. Each run still lasts 200 generations. However, instead of running 20 runs of
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each type, only 10 runs of each type are conducted, due to the increased cost of CPU time

caused by Ms. Pac-Man having multiple lives in each evaluation.

The specific approaches evaluated in the ML variant are also different. Each net-

work design is evaluated both with plain NSGA-II, and with NSGA-II combined with TUG.

The specific methods evaluated are: One Module, TUG One Module, Two Modules,

TUG Two Modules, Three Modules, TUG Three Modules, MM(D), and TUG

MM(D). Module Mutation Random and the Multitask Learning approaches are not included

because of their poor performance in OL. These experiments take the best modular ap-

proaches from the OL experiment, and push them further using multiple lives and TUG to

see what the highest attainable scores are.

The version of TUG used in these experiments is slightly different from the ver-

sion used in the Battle Domain (Chapter 7). Objectives are still switched off when goals

are achieved, and goals still increase when all of them are achieved. However, instead of

moving goals closer to the current maximum score in the objective, goals are increased by

fixed increments. Appropriate increment sizes can be easily chosen because the maximum

attainable scores in each objective are known in advance: Pill Score has a maximum

of 948, and Ghost Score has a maximum of 240. The corresponding goal increments

are chosen so that it will take approximately 50 goal increases to reach these maximum

scores. The specific goal increments are 5 for Ghost Score and 20 for Pill Score.

Preliminary experiments indicated that steadily increasing the goals in this manner leads to

more reliable results in Ms. Pac-Man than the dynamic goal adjustment scheme used in the

Battle Domain.

Unlike the experiments in OL, only Conflict sensors are included in ML. The

Imprison and OL experiments indicated that the Conflict sensor setting is the more

interesting variant because is shows how modular networks solve a problem that single-

module networks cannot. The more general Conflict sensors do not require knowledge

of how to implement a task division, and because they impose no such division, there is
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less bias in such sensors. However, modular approaches can still achieve high performance

when using them. Such is also the case in the ML results, presented next.

10.6 Results of Multiple Lives Experiments

Scores are much higher in ML because having more lives offers multiple chances to get

more points, and also makes it more likely to clear levels, providing access to more pills

and ghosts to eat. However, although all scores are inflated, certain approaches are better

than others. All modular approaches reach a level of performance above One ModuleCon,

and Three ModulesCon is significantly better than One ModuleCon (p < 0.05) until

the end of evolution. When combined with TUG, all modular network approaches are sig-

nificantly better than One ModuleCon (p < 0.05). Figure 10.13 shows the learning curves

for each method during evolution, and Figure 10.14 compares each modular approach with

both its TUG variant and One ModuleCon with 95% confidence intervals.

The one method not mentioned yet is TUG One ModuleCon. This approach did

not perform well: The average performance across 10 runs was lower than that of One

ModuleCon. This result is misleading, however, because the distribution of TUG One

ModuleCon scores was bimodal: There were seven good runs and three bad runs (Fig-

ure 10.15). The bad runs flatline early at a low score. The good runs do much better,

although not better than One ModuleCon (there is no significant difference between the

two). This result can be understood by looking at the TUG goal behavior in both a good

and bad run (Figure 10.16). A good run leaves the Pill Score deactivated most of the

time, and focuses on the Ghost Score, but only after skilled baseline pill eating has been

established. TUG runs with modular networks behave similarly. In contrast, the bad TUG

One ModuleCon runs also focus mainly on the Ghost Score, but do so even when the

Pill Score is low. However, recall that the best way to increase the Ghost Score

early in evolution is to simply visit more levels and get more ghost-eating chances. If the

Pill Score stays deactivated, then Ms. Pac-Man will never beat the first level, and will
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Figure 10.13: Average Champion Game Score in Multiple Lives Ms. Pac-Man with
Conflict Sensors. For each method the average champion game score across 10 runs
is shown. All modular approaches outperform One ModuleCon. Also, the TUG vari-
ant of each modular approach results in scores that are usually better than runs with-
out TUG. Specifically, TUG Two ModulesCon is better than Two ModulesCon, TUG
MM(D)Con is better than MM(D)Con, and TUG Three ModulesCon is equal to Three
ModulesCon in performance. Modular approaches do better than a single module, and for
the most part TUG boosts scores even higher. The only method with averages worse than
One ModuleCon is TUG One ModuleCon. As shall be shown in Figure 10.15, this av-
erage is misleading because the distribution of TUG One ModuleCon scores is extremely
bimodal.
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(c) One ModuleCon vs. MM(D)Con
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Figure 10.14: Comparing Modular Approaches Against One ModuleCon via Average
Champion Game Score in Multiple Lives Ms. Pac-Man with Conflict Sensors. Re-
sults from Figure 10.13 are shown with 95% confidence intervals comparing each modular
approach both with and without TUG against One ModuleCon individually. (a) Both Two
ModulesCon and TUG Two ModulesCon are significantly better than One ModuleCon
early in evolution, but only TUG Two ModulesCon stays significantly better all the way
to the end of evolution. (b) Three ModulesCon and TUG Three ModulesCon are
both significantly better than One ModuleCon, but not different from each other. TUG
neither helps nor hinders evolution in this case. (c) MM(D)Con is like Two ModulesCon
in that it is significantly better than One ModuleCon early in evolution, but its average is
enveloped by the confidence intervals of One ModuleCon as evolution progresses. TUG
MM(D)Con starts out about equal to MM(D)Con, but with wide confidence intervals. How-
ever, TUG MM(D)Con performance steadily improves and the intervals become narrower
until it is significantly better than both One ModuleCon and MM(D)Con. These results
show how TUG gives a significant boost to modular networks so that they can get higher
scores than networks with a single module.
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never get those ghost-eating opportunities. Thus, TUG does not help single-module net-

works in Ms. Pac-Man the way it did in the Battle Domain (Chapter 7).

Another interesting result is the improved performance of Three ModulesCon

relative to Two ModulesCon. In the Imprison variant these methods performed at the

same level; in OL, Two ModulesCon was slightly better, but that relationship is reversed

in ML. The good performance of Three ModulesCon is due to a tendency to discover lur-

ing more often. Perhaps having the extra module makes it more likely for one of the three to

discover luring, but only if the evaluation environment forgives bad module behaviors (with

extra lives) that are discovered and discarded along the way. Four champions (one Three

ModulesCon, one MM(D)Con, and two TUG MM(D)Con) actually discover exactly the task

division that surprisingly did not emerge in the Imprison domain (Section 9.6): one module

for luring, a second for eating edible ghosts, and a third for dealing with threat ghosts when

not luring (Figure 10.17). This three-module usage pattern was also missing from OL, but

ML evaluations allowed it to be discovered. Evolving coordination between three distinct

modules is difficult, and having only one life per evaluation likely discourages the evolution

of networks that take such a risk. However, ML evaluations give networks multiple lives, so

in these runs the networks were likely able to maintain high enough fitness scores to survive

until a generation where their offspring accomplished this difficult feat.

The module usage pattern of all champions are shown in Figures 10.18, 10.19,

and 10.20. Despite the presence of champions using three modules, module usage in ML is

mostly the same as in Imprison and OL: The best modular approaches (scoring over 33,000)

use one module a large majority of the time, over 95%, and the other 1%–5% of the time

a luring module is used. Most champions still favor two modules. Most champions with

middling scores (25,000–29,000) display a threat/edible task division resulting in the threat

module being used 75%–90% of the time. The worst scores (below 25,000) still result

primarily from using only one module, with the worst TUG One ModuleCon runs as an

extreme example.
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Figure 10.15: Comparing One ModuleCon to TUG One ModuleCon in Multiple
Lives Ms. Pac-Man with Conflict Sensors. Of the 10 TUG One ModuleCon runs,
three performed poorly and seven performed at the same level as One ModuleCon. The
average champion score of each of these groups is plotted separately with 95% confidence
intervals. Performance is consistent within each group. For comparison, the average cham-
pion score across all 10 runs of One ModuleCon is also plotted with 95% confidence in-
tervals, demonstrating that its performance is not significantly different from the good runs
with TUG. Thus, in ML Ms. Pac-Man, when restricted to a single module with Conflict
sensors, using TUG actually hurts performance. The reason is that it prematurely focuses
too much attention on the Ghost Score (Figure 10.16).
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(a) Good TUG One ModuleCon Ghost Score
Goal Behavior
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(b) Bad TUG One ModuleCon Ghost Score
Goal Behavior
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(c) Good TUG One ModuleCon Pill Score
Goal Behavior
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(d) Bad TUG One ModuleCon Pill Score
Goal Behavior

Figure 10.16: Comparison of Good and Bad TUG One ModuleCon Runs. Each plot
shows the average and maximum population scores for one of the objectives in a run of
TUG One ModuleCon. Scores are normalized, since the maximum possible score in each
objective is known. The current goal used by TUG is shown in each plot, but only for
the generations when the goal is not currently achieved; that is, an objective is active on
generations where a goal value is displayed, and inactive on other generations. (a) In a good
run, Ghost Score steadily increases. Every time the Ghost Score goal is achieved,
the goal is increased without the objective having a chance to deactivate. (b) In a bad run,
the Ghost Score also remains active, but cannot increase. (c) Pill Score for the
good run takes off early, and achieves its goal so quickly that this objective is seldom used
(goal line is dashed). This behavior is good as long as the score stays high. (d) In a bad run,
the Pill Score goal is achieved a few times in the first few generations, but before Ms.
Pac-Man learns how to clear the first level, Pill Score gets stuck just above the goal,
but just below what is needed to clear the first maze. The Pill Score is deactivated
because its goal is achieved, even though more pills are needed to clear the maze and open
up more ghost-eating opportunities. The low Pill Score is therefore the reason why the
bad runs fail. 181



(a) Run From Threats (b) Lure To Power Pill (c) Eat Ghosts

Figure 10.17: Intelligent Use of Three Modules by a Three ModulesCon Network.
This network has separate modules for luring and eating ghosts. (a) Ms. Pac-Man uses
the red module while allowing the ghosts to get close. (b) Once Ms. Pac-Man is close to
a power pill, the luring module (green) activates and leads her down the corridor toward
it. (c) After eating the power pill, the edible module (cyan) activates and Ms. Pac-Man
quickly eats the three nearest ghosts. The results thus far have repeatedly demonstrated that
luring and ghost-eating modules are useful, but only ML was able to produce networks with
separate modules for each of these behaviors, thanks to its lenient evaluation scheme.
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Figure 10.18: Average Champion Game Score vs. Most Used Module Usage in Multi-
ple Lives Ms. Pac-Man with Conflict Sensors. The champion of each of 10 runs per
method is evaluated 100 times (to minimize the effects of noise in evaluation), and the re-
sulting average game scores are plotted against the percentage of time steps where the most
used module was chosen (the “chosen” module is defined the same way as in Figures 9.1
and 10.9). The luring cluster is still in the top right, and contains many champions from
TUG runs. As usual, a few One ModuleCon outliers are mixed in at the lower edge of this
cluster, but the majority have lower scores. However, the lowest scores are achieved by bad
TUG One ModuleCon runs at the upper left. The threat/edible cluster is in the middle
as usual (scores 21,000–28,000, usage 75%–90%). However, there are a few champions
with a different module usage pattern that score slightly better than the threat/edible clus-
ter. These champions choose one module roughly 50% of the time, and score from 28,000
to 30,000, even though the task division they use is strange (Figure 10.21). Four champions
that intelligently use three modules (Figure 10.17) have scores from 31,000 to 37,000 and
usage around 85% (the module for avoiding threats). Thus, the success of modular methods
that learn luring behavior is repeated in ML Ms. Pac-Man, and TUG variants are shown to
be especially good at learning luring in this variant.
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Figure 10.19: Average Champion Game Score vs. 2nd Most Used Module Usage in Mul-
tiple Lives Ms. Pac-Man with Conflict Sensors. The same game scores for champions
described in Figure 10.18 are shown in this figure, but are plotted against usage of the 2nd

most used module for each champion that has at least two modules. As in Imprison and OL,
modular champions mostly favor two modules even when more are available. The luring
cluster is at the lower right (usage below 5%), and the threat/edible cluster is in the center
(scores from 20,000–28,000) with usage of the second module between 10% and 25%. With
scores between 28,000 and 30,000 are the even split networks (usage about 50%) that use
an unusual task division. Runs that use three distinct modules (luring, eating edible ghosts,
and avoiding threats) are directly above the luring cluster: They use the edible module the
second most (usage around 12%), and have scores from 31,000 to 37,000.
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Figure 10.20: Average Champion Game Score vs. 3rd Most Used Module Usage in Mul-
tiple Lives Ms. Pac-Man with Conflict Sensors. The same game scores for champions
described in Figure 10.18 are shown in this figure, but are plotted against usage of the 3rd

most used module for each champion that has at least three modules. Most networks with
a third module do not use it, but some champions use their third module for luring just
under 3% of the time.
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(a) Module 1 (b) Module 2

Figure 10.21: Indiscriminate Even Split by TUG Two ModulesCon Network. Similar
to behavior discovered by MM(D) in the Imprison variant (Figure 9.10), the behavior shown
above involves switching back and forth between modules without a clear reason why.
(a) The green trails show where Ms. Pac-Man was using Module 1, and the gaps are places
where Module 2 was used. (b) The Module 2 locations are shown in cyan. Recall that
the brightness of the trails increases as Ms. Pac-Man spends more time using a particular
module in a location, and fades with time. It is not clear for what aspects of the domain
each module is responsible. However, its performance is better than that of networks using
a threat/edible division, which indicates that TUG did well to discover it.

However, there is another type of task division resulting in an even 50%/50% split

between two modules (Figure 10.21). These networks use their modules rather indis-

criminately, similar to behavior discovered in the Imprison variant (Figure 9.10). This

behavior results in scores around 30,000, between the threat/edible and luring clusters.

However, it is not clear why this particular module division results in this level of per-

formance. The behavior itself is good, but there is no clear difference in how each mod-

ule behaves. Videos of this and other behaviors evolved in ML are available online at

http://nn.cs.utexas.edu/?ml-pm.

This module usage pattern is uncommon. Most module usage patterns in ML are the
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same as in OL. However, there are interesting behavioral differences. Because ML agents

can afford to lose lives, even the successful agents tend to do so. However, agents are only

slightly less cautious than OL agents, since there is a limit on the number of lives they can

lose. If an agent clears all levels, it does not matter how many lives were lost, since its

fitness values are not affected at all. As a result, many successful agents lose a few lives.

Such losses could probably be prevented if an additional objective discouraged the loss of

lives.

Another evaluation difference between OL and ML is level time limits. Final OL

champions never ran afoul of the 8,000 step time limit, and although ML runs had a much

larger time limit, the final champions do not spend more than 8,000 time steps per maze

either. However, ML agents tend to dawdle more than OL agents (Figure 10.22), especially

champions using only one module. Such behavior was discouraged in OL and Imprison by

having a lower time limit. In order to discourage it in ML, an additional objective could

be added to reward completing levels quickly, or there could be an overall time limit on

evaluations, meaning that agents that beat levels quicker will get to visit more of them.

Removing the four level limit from evaluations could also discourage loss of lives, but this

change would result in extremely long evaluation times.

Overall, ML behavior is very skilled. The next section will show how well the

methods of this dissertation perform not just with respect to each other, but with respect to

the best scores put forth in the literature.

10.7 Comparison with Previous Research

In order to compare performance with the literature, slight changes need to be made in

the game setup. Although many researchers have used the same simulator, different pub-

lications have different evaluation rules. The evaluation scheme in this dissertation so far

involves visiting each of the four mazes once and ending evaluation after that. This variant

has been used by others, and will be called Four Maze in the results below.
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(a) Maze 0 (b) Maze 1 (c) Maze 3

Figure 10.22: Stalling Behavior by One ModuleCon Network. ML agents with one
module often resort to stalling. If the ghosts are in positions that make it unsafe to pursue
certain pills, then Ms. Pac-Man can simply go around in circles and wait for the situation
to change. The non-determinism of the game guarantees that ghosts will eventually reverse
direction, and these events sometimes create openings to go for the hard-to-get pills. (a) The
green trail shows locations Ms. Pac-Man has recently visited, with highlighting for older
visits eventually fading to black. This trail in Maze 0 has been going in circles for a long
time, because the trail no longer shows how Ms. Pac-Man initially entered this loop. (b) The
same network stalling for time in Maze 1. (c) The same network stalling for time again in
Maze 3. Although luring depends on eating power pills at the right time, quick action still
needs to be taken in order to eat ghosts. Additionally, although random ghost reversals can
sometimes create useful openings, they can also lead to surprise capture. Stalling behavior
is therefore a double-edged sword, and only marginally successful.
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However, much of the literature describes entrants in the Ms. Pac-Man vs. Ghosts

competitions (MPMvsG variant). These scores were achieved under the following additional

rules: (1) Clearing the fourth maze leads back to the first maze, until each maze is visited

four times (resulting it a total of 16 levels); (2) The per-level time limit is 3,000 time steps,

but running out of time advances Ms. Pac-Man to the next level instead of killing her; and

(3) Ms. Pac-Man is awarded half the score from remaining pills in a level when time runs

out. These were the rules in the 2011 competitions. Although the rules changed slightly for

the 2012 competition, no published results have yet made use of this updated rule set.

The Four Maze and MPMvsG variants are of interest to the larger community:

They have each been used in more than one previous study. Therefore, they will be used

below as well. However, there is one more feature that both methods share. Unlike evalu-

ations during evolution, the evaluations in Four Maze and MPMvsG are timed, meaning

that Ms. Pac-Man only has 40ms to decide on each action. This time limit is seldom a

problem for the evolved networks, but whenever an action is not returned in time, the action

made on the previous time step is repeated.

To compare scores achieved in this dissertation with those in the literature, cham-

pions from each run in OL (Section 10.4) and ML (Section 10.6) were further evaluated

in both Four Maze and MPMvsG. These results were then plotted alongside scores in the

literature. To understand these figures (10.23 through 10.26), a number of terms need to be

defined. A single evaluation in Four Maze or MPMvsG involves executing a champion

neural network until all lives are lost or the final level is cleared. Each champion comes

from one of the experimental runs of evolution. An experimental method is made up of

several decisions: the type of network architecture (number of modules, whether Module

Mutation is used, Multitask Learning), sensor configuration (Split vs. Conflict), and

selection scheme (whether TUG is used). Each run (20 per method for OL and 10 per

method for ML) generates one champion, and each champion is evaluated 100 times per

evaluation method (Four Maze and MPMvsG). For each champion, the maximum and av-
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(a) Average OL Scores with Four Maze Evaluations
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(b) Maximum OL Scores with Four Maze Evaluations

Figure 10.23: (Caption on following page)
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Figure 10.23: Comparison of Scores From One Life Ms. Pac-Man Experiments to
Previous Scores in the Literature Using Four Maze Evaluation Rules. Previous re-
sults include GP (Genetic Programming; Alhejali and Lucas, 2010) and GP plus Training
Camps (Alhejali and Lucas, 2011). Plots showing (a) the average score achieved by each
champion and (b) the maximum score achieved by each champion are shown. For each col-
umn, the left box depicts Conflict sensor performance, and the right box shows Split
sensor performance. For each method, the majority of average champion scores are higher
than those of previous methods. Notice that GP has only one result, i.e. one from the best
run in that study. The trailing away of the whisker represents uncertainty about the distri-
bution of the other scores. Even One ModuleCon outperforms previous work, indicating
that simply using direction-evaluating policies with multiobjective neuroevolution boosts
performance in this game. With Split sensors, even the worst champion of each run
has a higher average score than previous work. However, the best overall champions are
modular networks that discovered a luring module, demonstrating the benefits of modular
approaches. In terms of maximum champion scores, the best results of this dissertation are
better than GP(Training Camps) and comparable to or better than plain GP. Specifically,
the highest maximum score (i.e. the highest overall score) is achieved by an MM(D)Split
champion, 44,920 compared to the best GP score of 44,560. Recall that the best achievable
score in Four Maze is 58,120. These results show the power of multiobjective neuroevo-
lution in general, and modular neuroevolution in particular.

erage scores across the 100 evaluations are recorded. These scores are compared against

the maximum and average scores (per champion) from previous studies.

Figure 10.23 shows the resulting scores from OL experiments and Figure 10.24

those from ML experiments using the Four Maze evaluation rules. Figure 10.25 shows

the resulting scores from OL experiments and Figure 10.26 those from ML experiments us-

ing MPMvsG rules. The average and maximum scores are shown in two separate subfigures.

Thus, each individual champion contributes one score to a maximum score subfigure (best

out of 100 evaluations) and one score to an average score subfigure (average across 100

evaluations). Box-and-whisker plots depict the minimum, lower quartile, median, upper

quartile and maximum score; scores more than 1.5IQR (inter-quartile range) from the

nearest quartile are shown as outliers. Additionally, the green line intersecting each box

depicts the average.

Previous results from the literature are shown at the left of each subfigure. The
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(a) Average ML Scores with Four Maze Evaluations
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(b) Maximum ML Scores with Four Maze Evaluations

Figure 10.24: (Caption on following page)
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Figure 10.24: Comparison of Scores From Multiple Lives Ms. Pac-Man Experiments
to Previous Scores in the Literature Using Four Maze Evaluation Rules. ML results
are even better than OL results (Figure 10.23), because their behavior has been optimized
for Four Maze rules. Average and maximum scores are higher than those generated by
OL, and the maximum scores of methods from this dissertation are higher than even those
of GP.

original publications vary in what results they included, some providing more information

than others. However, each previous study provided at least one, and often only one, set

of statistics produced by a particular “best” agent. Depending on the study, this agent

was evaluated anywhere from 100 to 1,000 times, and the average and maximum scores

of the agent were provided. These scores are plotted in Figures 10.23–10.26. For the

GP plus Training Camps approach of Alhejali and Lucas (2011), data from 10 different

champions produced by 10 different evolutionary runs was available in a bar chart, so a

box-and-whisker plot was created from this data1. For plain GP (Alhejali and Lucas, 2010),

GP with a direction-evaluating policy (Brandstetter and Ahmadi, 2012), and GP used to

learn a default policy for MCTS (Alhejali and Lucas, 2013) results were available only

for the champions of the best evolutionary runs. All of these evolutionary methods treated

threat and edible ghosts differently, and therefore made use of split sensors. Ant Colony

Optimization (Recio et al., 2012) directly produces Ms. Pac-Man behavior, so it does not

make sense to discuss multiple champions in this case. Therefore a single data point is

shown for this method in each plot.

The main conclusion from these figures is that the methods in this dissertation result

in better scores than the other methods in the literature. In Four Maze evaluations, all

average champion scores from this dissertation are higher than those from previous work, as

are many of the maximum scores. In MPMvsG, almost all methods score higher than agents

in previous work. The highest scores are the result of modular networks that discover a

luring module, but even champions that use a single module are mostly better than the
1The raw numerical data was obtained from the paper’s first author.
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(a) Average OL Scores with MPMvsG Evaluations
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(b) Maximum OL Scores with MPMvsG Evaluations

Figure 10.25: (Caption on following page)
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Figure 10.25: Comparison of Scores From One Life Ms. Pac-Man Experiments to
Previous Scores in the Literature Using MPMvsG Evaluation Rules. Previous results
include GP used to learn a direction-evaluating policy (Brandstetter and Ahmadi, 2012),
as was done in this dissertation; GP used to learn a default policy for Monte-Carlo Tree
Search (MCTS; Alhejali and Lucas, 2013); and Ant Colony Optimization (ACO; Recio
et al., 2012). Scores with MPMvsG rules are much higher than with Four Maze rules
(Figure 10.23) because the evaluation scheme is more lenient, and Ms. Pac-Man can visit
more levels. The best scores from this dissertation are again better than all previously
published results. In terms of average champion scores, the best previous approach is
ACO, but all methods from this dissertation, except for Three-Module MultitaskCon
and Three-Module MultitaskSplit, achieve higher average champion scores. In
terms of maximum champion scores, the best previous approach is GP combined with
MCTS, but once again the methods from this dissertation, except for Three-Module
MultitaskCon, perform better. One ModuleCon and One ModuleSplit also per-
form better than previous works, but the best approaches are again modular networks with
preference neurons. In fact, the best Two ModulesSplit, Three ModulesSplit, and
MM(D)Split champions outperform previous work by a wide margin. The multiobjective
neuroevolution approach of this dissertation is thus stronger than previous approaches, and
is enhanced even further by evolving modular architectures.

previous results.

It is especially interesting that networks with a single module do better than the

GP approach by Brandstetter and Ahmadi (2012). Their approach inspired the one used

in this dissertation, but there are several differences. The most obvious difference is the

type of function approximator being evolved, i.e. neural network vs. function tree. Another

important difference is the sensors used. Most sensors were the same, but the GP approach

sensed only the closest threat and the closest edible ghost. Therefore, the Split sensors

were better than these, since they provided the same information in addition to information

about the other ghosts. The Conflict sensors used in this dissertation were both at a

disadvantage because they did not distinguish between threat and edible ghosts, and an

advantage because they sensed all four ghosts instead of just the closest. Another important

sensor used in this dissertation was the “Options From Next Junction” sensor (Section 9.2),

which does a better job of helping Ms. Pac-Man plan safe routes than the GP sensor that
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(a) Average ML Scores with MPMvsG Evaluations
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(b) Maximum ML Scores with MPMvsG Evaluations

Figure 10.26: (Caption on following page)
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Figure 10.26: Comparison of Scores From Multiple Lives Ms. Pac-Man Experiments
to Previous Scores in the Literature Using MPMvsG Evaluation Rules. The cham-
pions from ML experiments score slightly lower than champions from OL experiments
(Figure 10.25). Optimizing performance in Four Maze evaluations has detracted from
MPMvsG performance, because losing lives has worse consequences in MPMvsG. However,
the ML results are still better than previous results in the literature, once again emphasizing
the success of multiobjective neuroevolution in general and modular networks plus TUG in
particular.

only checked the safety of the route up to the next junction. These sensors no doubt account

for some of the difference in performance, but there were other important differences that

likely also had an impact. The GP results were evolved using MPMvsG rules, which allowed

Ms. Pac-Man to skip to the next level even if she had a hard time eating all pills. In fact,

Brandstetter and Ahmadi specifically mentioned that their agents often do not try to eat

difficult-to-reach pills, because such behavior is risky. Instead of a clever adaptation to the

MPMvsG rules, this behavior might simply be a local optimum. These controllers are losing

points that the neural networks of this dissertation were required to earn in order to advance

from one level to the next. This comparison is thus an interesting example of how small

differences in fitness incentives can result in different play styles.

Results from the ML experiments are another such example. These runs do better

than OL in Four Maze evaluations, but worse than OL in MPMvsG evaluations. ML re-

sults were evolved using Four Maze rules, so it makes sense that their performance in

these evaluations is strong. However, it seems that ML behavior is overfit to these rules,

which hinders MPMvsG performance. In particular, ML results were evolved in an environ-

ment where agents can afford to lose up to three lives (once the fourth is earned) across four

levels without any consequence. However, such behavior has consequences in MPMvsG

evaluations, which can last up to 16 levels. The tendency of certain ML results to stall

probably also results in many lost points, since pill and ghost eating chances are lost if each

maze is not cleared within 3,000 time steps under MPMvsG rules. However, the skill of

ML networks in Four Maze evaluations indicates that networks evolved using MPMvsG
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rules would likely learn specialized behaviors for this environment as well. Whether this

would lead to even better scores, or overly cautious behavior as exhibited by Brandstetter

and Ahmadi’s GP results is unclear, but perhaps worth finding out in the future.

10.8 Conclusion

This chapter scaled up the methods developed in this dissertation to the original game of Ms.

Pac-Man. Not only did these methods succeed at generating skilled multimodal behavior,

but they were shown to be superior to previous approaches. Modular networks enable Ms.

Pac-Man to discover a luring module, which leads to the highest scores, and TUG helps

raise performance even higher in the Four Maze rule variant. This is the final chapter

that presents results. The next chapter puts the results from the dissertation into context

with related work in developing multimodal behavior.
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Chapter 11

Related Work

Given the results presented so far in this dissertation, it is now time to put them in proper

perspective by comparing them with related work in multimodal behavior. Such behavior

is often labelled in the literature as strategic, high-level, hierarchical, or simply complex.

The following sections divide these approaches into three categories: (1) Design

principles for hand-coding multimodal behavior, (2) approaches in which sub-behaviors

are learned and then combined into a hand-designed hierarchy, and (3) methods in which

multiple modes of behavior are learned by implicit hierarchies encoded within modular

control policies.

11.1 Design Approaches

The most common approach to designing complex behavior for agents in both robotics

and in simulated worlds (such as video games) is to simply hard-code all behaviors. This

approach allows designers to be aware of how their agents should respond in many different

situations, although obviously not in situations they did not anticipate. Thus hard-coded

agents are reliable in typical situations but do not handle surprises well. Designing such

agents also requires much advanced knowledge about the domain in which the agent will
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function, as well as design time and effort from programmers.

Because hard-coded designs are complex, it is important to employ design prac-

tices that assure that the design is functional and easy to understand. Two popular design

paradigms are hierarchical subsumption architectures and behavior trees.

11.1.1 Hierarchical Subsumption Architecture

The subsumption architecture (Brooks, 1986) has remained a cornerstone of robotics ever

since its inception. A more recent summary of its design is given by Prescott et al. (1999):

1. Distributed, layered control: Control is distributed across several layers operating in

parallel, with no central control within a layer.

2. Behavioral decomposition: Each layer is designed to achieve some particular goal

or task, thus different layers are oriented towards different behaviors of the overall

multimodal system.

3. Increasing “levels of competence”: Each higher layer of the architecture has access

to the lower layers, and is able to arbitrate between them, but the lower layers function

unaware of the higher layers. Thus, higher layers are able to refine collections of

lower-level behaviors into a meaningful, multimodal behavior.

4. Incremental construction: Lower layers are frozen before higher layers are built on

top of them.

5. Subsumption: Higher layers can subsume the roles of lower layers by taking over,

suppressing, or replacing lower-level outputs with higher-level outputs.

Using the subsumption architecture means identifying sub-behaviors that are parts

of larger behaviors and incorporating them into a hierarchy. The lowest level consists of

several simple behaviors. The next layer can therefore perform multimodal behavior by ar-

bitrating between and blending the different behaviors exhibited by each lower layer com-
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ponent. Though effective, this approach has the obvious drawback of requiring both the

individual behaviors and the hierarchy of subsumption layers to be hand designed.

The bottom-up subsumption approach is popular in robotics, and these design prin-

ciples actually guide much work in learning such hierarchical behavior. However, other

methods, such as behavior trees, are favored in commercial video games.

11.1.2 Behavior Trees

Despite the advent of computational learning techniques, AI in commercial games typically

depends on old-fashioned AI techniques such as rule-based systems and finite-state ma-

chines (Diller et al., 2004). However, a slightly more sophisticated, yet still hand-designed,

AI mechanism popularized by the first-person shooter game Halo 2 is behavior trees (Isla,

2005). Behavior trees offer another way of designing agents hierarchically, though the de-

sign process is top-down instead of bottom-up as with the subsumption architecture.

A behavior tree starts at a root, under which there are several prioritized high-level

behaviors. Each behavior has a firing condition that determines whether or not it should be

active. The first behavior in the list whose firing condition is active will then be enacted

by the agent. In the subtree beneath each high-level behavior is another prioritized list of

behaviors, each with their own firing conditions. The behavior selection process is repeated

deeper into the tree until terminal low-level behaviors are chosen and carried out by the

agent.

The behavior tree approach allows multimodal behavior to develop because distinct

lower-level behaviors are chosen at different times based on priority and firing mechanism.

However, like the subsumption architecture method, this approach requires careful human

design of several component sub-behaviors. Such hand-coding can be successful if it is

done according to well-thought-out design principles, and the programmers are able and

willing to put in lots of time and effort. However, there is always a chance that some im-

portant behavior has been neglected. However, the programming burden can be lessened
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if parts of the behavior are learned rather than designed. The next section discusses ap-

proaches that still fit sub-behaviors into an explicit hierarchy, but allow learning to optimize

the behavior.

11.2 Learning With Hierarchies

Designing complex controllers by hand is always challenging and sometimes infeasible be-

cause it is unclear how certain behaviors can be coded and combined. As a result, Machine

Learning has been used to discover multimodal behavior through Hierarchical Reinforce-

ment Learning, and through learned subsumption architectures.

11.2.1 Hierarchical Reinforcement Learning

The MAXQ (Dietterich, 1998) method is an early example of Hierarchical Reinforcement

Learning (HRL). It learns behavior for sub-tasks given a hand-designed hierarchy. Many

extensions to this work have been created since, including a multi-agent variant (Cheng

et al., 2007) and a version that learns the hierarchy in addition to the sub-tasks (Hengst,

2002). However, MAXQ and its descendants have only been applied to domains with finite

state and action spaces, typically large grid worlds.

In fact, MAXQ’s success hinges partly on its reliance on state abstraction: Each

sub-policy throws away what it deems are irrelevant portions of the state representation so

that it can focus on a reduced state space. A state abstraction results in increased perceptual

aliasing, which makes the state space look smaller, and can speed up learning if done prop-

erly. This approach differs from those developed in this dissertation in that each module of

an evolved modular network has access to the full state representation. Allowing evolved

networks to see the full state requires them to learn for themselves which aspects of the

state representation are relevant, and also allows them to make use of the same informa-

tion in multiple different ways. Two distinct modes of behavior may use all of the same

information, but in different ways.
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Another important concept in the realm of HRL is options, which are temporally-

extended actions (Sutton et al., 1999). Options were mentioned briefly earlier as an example

of a technique that had been applied to Ms. Pac-Man (Subramanian et al., 2011). This par-

ticular example learned options from human subjects, which has also been done in domains

with continuous state spaces (Konidaris et al., 2010). Methods for automatically learning

options also exist (Stolle and Precup, 2002; Konidaris and Barto, 2009).

In practice, trajectories through state space are typically segmented into collections

of options. As a result, options are a means of getting from point A to point B in state

space. Formally, options will continue executing until a termination predicate activates,

but it is common to think of an option as leading an agent to a termination state. Options

define sub-policies that execute until told to stop. The network modules of this dissertation

serve a role similar to options: They are sub-policies whose termination condition is either

human-specified (Multitask Learning) or determined by the behavior of preference neurons.

However, the design perspective behind modules differs in that each module vies for control

of the agent on every time step. Also, because options are often used to traverse specific

regions of state space, their behavior only needs to be defined on those regions.

Some examples of learned options from the Ms. Pac-Man experiments (Subrama-

nian et al., 2011) were “Avoid ghost,” and “Go to the nearest power pill.” These high-level

actions are very similar to those used in early Genetic Programming approaches to Ms.

Pac-Man (Alhejali and Lucas, 2010, 2011), but the results in Chapter 10 showed that these

approaches were not as powerful as the modular neural networks developed in this dis-

sertation. Additionally, Subramanian et al.’s agents did not learn particularly impressive

ghost-eating behavior because no option for luring was learned. Creating a system that

could learn such an option automatically is difficult, which is why many researchers prefer

to provide a hierarchy of behaviors to the agent directly, or at least explicitly outline how

such a hierarchy should be learned. Such approaches are described next.
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11.2.2 Learned Subsumption Architectures

A more general-purpose method by Stone and Veloso (2000a) called Layered Learning

takes the general idea of hierarchical, layered control, and adds to it the ability to learn the

sub-controllers for individual layers. The design principles of a subsumption architecture

are still used, but arbitrary ML algorithms can be used to learn behavior at each layer of a

given control architecture. This hybrid approach led to victory in the 1999 RoboCup Soccer

simulator league (Stone, 2000).

A similar approach by Togelius (2004) makes exclusive use of neuroevolution to

learn both sub-behaviors and how to combine them in a hierarchy. This evolved subsump-

tion architecture has been applied to games such as Unreal Tournament (van Hoorn et al.,

2009) and EvoTanks (Thompson et al., 2009), which both require multimodal behavior.

A more recent approach by Lessin et al. (2013) evolves body morphologies for

agents in addition to discovering complex behavior. As with Layered Learning and evolved

subsumption architectures, this complex behavior has to be broken down into several simple

sub-behaviors and learned from the bottom up. Simple behaviors like turning left and right,

and moving forward are combined in a hierarchy to produce agents that chase after and

attack targets.

These approaches are appealing from an engineering standpoint because the con-

trollers are hierarchical, and each individual component has a clear purpose. Each sub-

controller specializes in a particular task, so these approaches should work well in domains

with isolated tasks. They also work in domains with interleaved or blended tasks because

additional learning takes place at higher levels of the hierarchy. This extra learning al-

lows controllers to determine how to switch between or even merge the behaviors of the

sub-controllers.

However, much human expertise is still needed to divide a domain into sub-tasks

properly; not only the hierarchy needs to be specified, but also the different training sce-

narios to develop and integrate all of the learned components. There is also the chance that
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a human-specified hierarchy will not leave room for the best possible behaviors. After all,

the best Ms. Pac-Man behavior dedicated a module to luring, which was not anticipated in

the human-specified task division.

Therefore, instead of manually combining learned components, methods have been

developed in which the learned controllers have a built-in capacity to split up into separate

modules, as will be discussed next.

11.3 Modular Architectures

Modular networks can be designed in a variety of ways, and through an analogy to the

brain, modular structure is assumed to give rise to functional modularity. Such modules can

be explicitly defined, or can arise as a result of a developmental process.

11.3.1 Explicit Modules

The research described in this section is most closely related to the methods developed in

this dissertation. The purpose of preference neurons (Section 3.2.2) is to arbitrate between

modules, whether in a fixed-module network or one evolved using Module Mutation (Sec-

tion 3.2.3). Multitask Learning (Section 3.2.1) also requires neural networks that have a

modular architecture. Work by Calabretta et al. (2000), which uses a duplication opera-

tor to make module-like components, was also already mentioned in Section 3.2.3. These

methods all focus on modules at the level of output neurons, because at this level it is clear

how each module is influencing the behavior.

Other types of modular networks have also been used in combination with super-

vised learning. For example, Khare et al. (2005) co-evolved the connectivity of individual

modules along with their organization within a combining network; the modules themselves

were trained through supervised learning. The Neural-Based Learning Classifier System of

Dam et al. (2008) also combines evolution and supervised learning, but instead of combin-

ing networks into a modular system, each network is associated with a particular region of
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the state space, and is trained only on data from this region. Whenever the system must

make a decision, all networks whose region of expertise contains the current state combine

into an ensemble that determines the system’s decision.

Modular components can also be encapsulated and reused in systems not based on

neural networks. Specifically, Genetic Programming (GP) is a way of generating executable

program trees via evolution, for which the issue of modularity has received much attention.

For example, Koza (1994) explored the benefits of defining modular structures (ADFs, or

Automatically Defined Functions) that had the potential to be reused. Because the posi-

tion of modules within the programming tree was fixed, this approach is similar to Module

Mutation, but for a different type of evolved representation. Rosca and Ballard (1994)

encouraged modularity in GP in a different way. Their Adaptive Representation (AR) ap-

proach identified sub-trees that had the potential to be good modules using block fitness

functions (heuristics identifying useful modules). They later improved their approach with

Adaptive Representation through Learning (ARL; Rosca and Ballard, 1996; Rosca, 1996),

which culled modules from program trees based on differential parent/child fitness. This

approach was applied to a simplified Pac-Man simulator (Section 8.1), and even discovered

a module “used for attracting monsters.” This module might have behaved similarly to the

luring module discovered by networks in this dissertation, but the authors did not elaborate

on what it did. However, despite the promise of this method, it made use of more sophis-

ticated high-level actions (in contrast to the primitive actions of this dissertation), and has

not been applied to the more challenging Ms. Pac-Man simulator used in this dissertation.

The approaches above explicitly encapsulate modules so that they are clearly iden-

tified, but other broader concepts of modularity have also been used in the literature. A

module is less strictly defined in these contexts. Within neural networks, such a module is

simply a cluster of tightly interconnected neurons with few connections to neurons in other

clusters. This concept is particularly important in the study of Generative and Developmen-

tal Systems, discussed next.
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11.3.2 Generative and Developmental Systems

Generative and Developmental Systems (GDS) evolve genotypes that are then used to cre-

ate complex phenotypes, such as neural networks (Gruau, 1994; Stanley et al., 2009; Su-

chorzewski and Clune, 2011). Each evolved genotype is said to indirectly encode the phe-

notype that it generates. A touted (but disputed; Clune et al., 2010) benefit of such methods

is their ability to create modular networks.

A particularly interesting method is HyperNEAT (D’Ambrosio and Stanley, 2007),

which has been used to learn intelligent agent behavior in a few instances: Multi-agent

foraging (D’Ambrosio and Stanley, 2008) and Keep-away in RoboCup soccer (Verbancsics

and Stanley, 2011) are some notable examples. Perhaps the best example of multimodal

behavior so far was done by D’Ambrosio et al. (2011), but the task switching in this paper

was done manually, as with the Multitask Learning approach used in this dissertation. The

question of whether HyperNEAT and similar methods are particularly good at learning

multimodal behavior without a human-specified task division is still unanswered.

Clune et al. (2013) showed that modularity is encouraged in evolved neural net-

works if connections have a fitness cost. This result was demonstrated using directly-

encoded networks, but has consequences for indirectly-encoded networks produced by a

GDS as well. Combining these elements into a single algorithm would likely encourage

the discovery of functionally distinct network modules, but so far these techniques have not

been used to evolve agent behavior.

Though these methods have promise, the results presented earlier in this dissertation

demonstrate how modular networks that exhibit multimodal behavior can be evolved in a

straightforward manner even without a generative process.
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11.4 Conclusion

This chapter reviewed previous approaches to learning multimodal behavior. Despite the

accomplishments of these other methods, the contributions made in this dissertation are

distinct and advance the state of the art. The next chapter takes a high-level view of the

results from the dissertation in the context of this larger body of research, and provides

directions for future research.
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Chapter 12

Discussion and Future Work

This chapter discusses and expands on the results from the dissertation in aggregate. First

recommendations are made indicating which of the methods from this dissertation apply

to each of the domain types defined in Chapter 4 best. Then each of these methods is

discussed individually, first focusing on how it performed, and then on ways in which it

can be improved: (1) the role of sensors in the discovery of multimodal behavior, and ways

of automatically adjusting sensors to accommodate such behavior, (2) the pros and cons of

each of the modular network architectures, and ways of combining them, and (3) the role of

TUG in guiding multiobjective search towards multimodal behavior. Finally, an alternative

approach to discovering multimodal behavior, based on the Generative and Developmental

Systems approach named HyperNEAT, is proposed as future work.

12.1 Solving Domains Requiring Multimodal Behavior

In Chapter 4, three types of domains were identified as requiring multimodal behavior:

domains with isolated, interleaved, or blended tasks. The experiments of this dissertation

evaluated a variety of methods in domains of each type. The performance of these methods

in domains of each type provides a basis for recommendations on what methods to use in

209



other domains in the future.

In domains with isolated tasks, the most obvious approach is to learn a separate

controller for each task, as was done with the Multinetwork approach. This approach takes

advantage of the known division between tasks, and ensures that the way sensors are used

in one task do not interfere with how they are used in other tasks. Such an effect can be

achieved in a single network with split sensors. As a matter of fact, Multitask Learning

and Module Mutation would likely have performed better in the isolated-task domains of

this dissertation had split sensors been used with them. However, because conflict sensors

were used, Multinetwork was the only approach the performed unequivocally well in both

domains with isolated tasks.

However, a Multinetwork approach is hard to apply when tasks are not isolated.

For instance, if tasks are interleaved, then there is not an obvious way to train specific

controllers for each task. A human-specified task division can still be used as part of a

Multitask Learning approach in such domains, as was done in Imprison Ms. Pac-Man. This

approach worked reasonably well, although it ignores how one task influences others. This

blind spot is the reason that networks with preference neurons sometimes discovered a

better task division involving a luring module. Therefore, a sensible recommendation for

domains with interleaved tasks is to evolve networks with preference neurons that arbitrate

between a number of fixed modules equal to the number of interleaved tasks. If the number

of tasks is not clear, then Module Mutation can be used.

The hardest domains have blended tasks. The Battle Domain provides an example

of TUG solving blended tasks with single-module networks. OL Ms. Pac-Man provides an

example of conquering blended tasks without TUG, but with the help of modular networks,

specifically those using preference neurons. The human-specified task divisions of Mul-

titask Learning no longer worked in this difficult domain. ML Ms. Pac-Man showed the

benefits of combining preference-neuron networks with TUG. Because Multitask Learning

failed in Ms. Pac-Man, networks with preference neurons are more emphatically recom-
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mended for domains with blended tasks. If modular networks are already in use, then TUG

is also recommended, since these methods work well in combination.

This section provided recommendations for each type of domain, but there are many

interesting issues to discuss that are related to each specific method. Some of these issues

generalize across domains. For example, split sensors are generally better in each type of

domain, if they are available. This issue is discussed in detail next.

12.2 The Role of Sensors

The type of sensors used (conflict vs. split) was important in Ms. Pac-Man. Conflict sensors

are more general, and impose less of a bias, but it is harder to learn multimodal behavior

with them. Split sensors can provide a helpful bias, but with traditional single-module

networks this bias will prevent evolution from discovering alternative, potentially better

task divisions.

Although alternative sensor configurations were not used in the BREVE experi-

ments, the choice of sensors affected the difficulty of learning intelligent behavior. Both

Front/Back Ramming and Predator/Prey used conflict sensors; the exact same sensors were

used in each isolated task of each domain. In contrast, the separate controllers of the Multi-

network approach could treat the bot sensors differently, as with split sensors, and therefore

did well in both domains.

In contrast, all controllers in the Battle Domain had split sensors because extra

sensors were added specifically to detect the bot’s dangerous bat. However, simply having

split sensors did not make the task easy to learn. Careful tuning of network structures and

weights was still required to learn how to balance the competing influences of each type of

sensor. Caution needed to be learned with respect to the bat so that monsters could avoid

being hit, but boldness needed to be learned as well, so that the monsters would attack

at opportune moments, despite sensing the oncoming swing of the bat. TUG was vital in

helping balance the influence of each type of sensor.
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Even though it is clear that sensor design is important, it is not always clear what the

best sensors are. The sensors used in this dissertation were mostly simple, but there were

exceptions, such as Ms. Pac-Man’s “Options From Next Junction” sensor. Other sensors,

some even more sophisticated, were tried and discarded in preliminary experiments. For

example, several sensors actually performed forward simulation, as in MCTS. Agents using

these sensors were good at escaping ghosts. However, this approach had two problems:

First, these sensors became the primary focus of learning, and as a result, the evolved agents

had trouble learning how to chase edible ghosts, which is the key to maximizing scores.

Second, simulation was costly, and as a result these experiments progressed very slowly.

These problems are part of the reason that simpler sensors whose values could be quickly

computed turned out better.

In complex environments, there may be a seemingly infinite set of candidate sensors

that could be programmed, but choosing a proper subset is a daunting task. Researchers are

aware of this problem, so there is a great deal of work in feature selection (Nguyen et al.,

2013; Kolter and Ng, 2009). Even some of the experiments in this dissertation used a

feature-selective approach (that of Whiteson et al., 2005). However, these approaches do

not fix the problem of bias. If some complex sensors make the discovery of decent behavior

easy, then it might be hard for learning algorithms to explore simpler sensors that nonethe-

less lead to better behavior. Therefore, it is desirable to find ways to use simpler sensors

more intelligently, specifically in ways that make the discovery of multimodal behavior eas-

ier. Such approaches are called feature construction methods (Levine et al., 2010; Choi and

Kim, 2013). The general version of this problem is beyond the scope of this chapter, but

the simpler challenge of automatically generating split sensors from conflict sensors may

be surmountable.

Sensors are split when multiple copies of the same sensor are present, but used under

different circumstances. Having multiple copies of any sensor is easy. Simply starting

evolution with two copies of each sensor would allow evolution to connect the different
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copies in different ways, which could make multimodal behavior easier to discover. Copies

of sensors could also be added via a mutation operator: Each network starts with one copy

of each sensor, but a mutation operator randomly picks a sensor, creates a new input neuron

that generates the same sensor input, and then connects it to the network with randomly

weighted links.

However, this approach is not much different from simply having multiple links

with different weights exiting the same sensor. Such structures are already the default way

that neural networks use sensor values. These sensors are not yet proper split sensors. Split

sensors return a constant value when their value is irrelevant. For example, sensors for the

distance to an edible ghost give a reading of 1 (out of range) if only threat ghosts are present.

To enable this level of sensor behavior to emerge automatically, certain sensors need to be

able to switch others on and off, which is not something that plain neural networks can

easily do.

There are several ways in which such control switch sensors could be implemented.

Every sensor copy that is added via mutation could have another randomly selected sensor

act as a control switch: The value of the copied sensor would be either 0 or 1 if the control

switch sensor is above or below some threshold, and the copied sensor’s normal value would

be returned otherwise. Another possibility would be to multiply the copied sensor value by

the value of its control switch to get its final result.

However, these methods for creating split sensors still assume that the sensors have

information required to determine the task division before any additional processing. For

instance, with the threat/edible split learned in Ms. Pac-Man there were sensors that di-

rectly provided this information. However, the decision of when to use a luring module is

more complicated, and seems to be based on information that is not directly available in

the raw input sensors. Luring behavior was learned because it was associated with a net-

work module dedicated to this behavior. Therefore, although adjusting the sensors in the

ways proposed may make the discovery of multimodal behavior possible, providing extra

213



network modules directly enables additional policies to be represented, each of which can

exhibit a different mode of behavior.

12.3 Modular Networks

The experiments in Ms. Pac-Man showed that only modular networks could discover how

to combine the behaviors of luring, chasing edible ghosts, and escaping threats in a com-

petent manner. Single-module networks with split sensors learned the task division that

was explicitly defined in how the sensors were split. Therefore, modular networks offer an

advantage regardless of what sensors are used.

However, different types of modular networks were successful in different domains.

MM(P) and MM(R) were equal in Front/Back Ramming, but both were outperformed by

Multitask Learning in this domain. MM(R) was superior to both MM(P) and Multitask

Learning in Predator/Prey. Evolving separate networks for each task also worked well in

each of these domains. In Imprison Ms. Pac-Man with conflict sensors, Multitask Learn-

ing, MM(R), and MM(D) all reached roughly the same level of performance, but simply

having two or three fixed modules with preference neurons performed even better (though

the differences between fixed-module and Module Mutation networks were not statistically

significant). The above domains either had isolated or interleaved tasks, and the results in-

dicate that a variety of techniques work in these domains. Because the task division is clear

with both isolated and interleaved tasks, there are many different ways to make successful

use of multiple modules. Human-specified divisions and evolved divisions both work.

However, the hardest domain in which modular networks were evolved was the full

Ms. Pac-Man game, which has blended tasks. In this domain, fixed-module networks using

preference neurons were the best, with MM(D) close behind. However, the performance

of Multitask Learning and MM(R) in this domain reached only the level of single-module

networks. Even the Multitask Learning variant that dedicated a separate module to the

blended task of facing threat and edible ghosts at the same time did not do well. These
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results indicate that when tasks are blended, effective human-specified task divisions are

harder to develop, and therefore less likely to be effective.

Despite variation across specific methods, modular networks in general have a clear

advantage over traditional networks with a single module. Approaches using preference

neurons have the most promise, because they can both learn human-specified divisions

(like the threat/edible split in Imprison Ms. Pac-Man), and discover superior, unexpected

task divisions (the luring module discovered in all Ms. Pac-Man experiments). The ability to

discover new task divisions is particularly important in domains with blended tasks, because

human-specified divisions are unreliable when the border between tasks is not clear.

However, it would be useful to have one method that works consistently well across

multiple domains with isolated, interleaved, and blended tasks. The evolved networks of

this dissertation can be improved by incorporating human knowledge while still allowing

evolution to learn a task division, and with better ways of creating new modules whose

behavior is learned by evolution.

12.3.1 Incorporating Human Knowledge

It is possible to use a human-specified task division from Multitask Learning, but still allow

evolution to customize the task division. The first half of learning could be conducted

using multitask networks, and then preference neurons could be added for each module and

used from that point on to determine module usage. Alternatively, KBANN (Towell and

Shavlik, 1994) could be used to translate the rules defining the multitask division into sub-

networks that connect to preference neurons, so that learning starts with a human-specified

task division programmed directly into the network, but evolution would still be capable of

modifying that division.

Multitask Learning could also be combined with Module Mutation to create a multi-

tiered control hierarchy. For example, the threat/edible division in Ms. Pac-Man is useful,

but luring is a useful sub-task within the threat task. How could this sub-task be learned
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Figure 12.1: Combination Multitask/Preference Neuron Hierarchy. This network has
two multitask modules specified by the output neurons enclosed in dashed rectangles. The
left rectangle contains a single sub-module in a red box, so this one module will always be
used whenever the multitask division chooses to use the left rectangle. The right rectangle
contains two sub-modules, each in its own red box, so after the multitask division decides
to use the right rectangle, it is then up to preference neurons to determine which of these
two sub-modules define the behavior of the agent. More sub-modules could potentially be
added to each top-level module via Module Mutation. This network architecture allows
for a two-tiered hierarchy that leverages human knowledge while still allowing evolution to
discover novel sub-tasks within each high-level task.

while still using knowledge of the threat/edible division? One way is to allow Module Mu-

tation to function within each module defined by Multitask Learning. In this example, a

single application of Module Mutation would add a module that was specifically associated

with either the threat task or the edible task. If two threat-task modules were present, then

when facing threat ghosts the network would first narrow its focus to these two modules ac-

cording to the human-specified division, and then choose between these two modules based

on preference neurons (Figure 12.1). The resulting controller would represent a two-level

hierarchy, in which module arbitration at the higher level is based on a human-specified

division, and arbitration at the lower level is done through preference neurons configured

by evolution.

These approaches would allow evolution to refine a task division specified by a

human, but such expert knowledge still introduces a bias. Such bias is the reason that this

dissertation also focuses on modular networks created solely by evolution. The next section

discusses ways of improving this approach.
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12.3.2 Learned Modules

Preference neurons provide the basis for evolution to discover how to use multiple modules

on its own. Module Mutation allows evolution to discover how many modules to use as

well, but simply having two fixed modules ended up working better than Module Mutation

in all variants of Ms. Pac-Man. This result could simply be a peculiar property of this par-

ticular domain. After all, successful Module Mutation solutions in FBR used three modules

extensively, in addition to occasionally using others. Still, given enough time, Module Mu-

tation should be able to rise to the same level of performance as the fixed module networks.

Each form of Module Mutation connects new modules to the network in a different

way, and each approach has pros and cons. MM(P) elaborates on pre-existing structures to

refine the behavior currently exhibited, but links all modules in a way that makes it difficult

for them to specialize. MM(R) quickly explores new, novel behaviors, but since many such

behaviors may be bad, it can have a hard time creating good modules on which to elaborate.

MM(D) creates new modules that do not actually change the behavior of the agent, which

makes it easy for new modules to survive into the next generation, but potentially slows

down the search process. Other forms of Module Mutation are no doubt possible.

However, there is no reason that these different approaches could not be combined.

If each type of Module Mutation had a chance of occurring, then whichever type best fit

the space of behaviors for the domain would likely win out. Of course, having so many

forms of Module Mutation available could also result in module bloat, or simply slow down

evolution by giving networks too much new structure to optimize at once. Whether such an

approach would be successful is ultimately an empirical question.

Another option for incorporating new modules is to start with plenty of extra mod-

ules, but leave them disconnected. In other words, networks would start with several free-

floating output neurons that could be incorporated into the network via regular link muta-

tions. This approach to adding modules might impose less of an initial bias than any of the

Module Mutation approaches, which could in turn help new behaviors emerge gradually.
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However, one potential problem with this approach is that links to the policy neurons of a

module whose preference neuron remains disconnected will not affect network behavior at

all. This problem exists with all preference-neuron-based networks, but seems more likely

to cause issues when the modules are initially disconnected. A module with essentially ran-

dom behavior could be suddenly connected when a link is added to its preference neuron.

However, such modules would likely be no worse than those created by MM(R).

In fact, MM(R) worked best in PP while using feature selection, meaning that new

MM(R) modules had only a single link per neuron. Perhaps new MM(R) modules are more

likely to succeed when they are less complicated.

Another concept that could be useful in the construction of modular networks is a

freeze operation. The Cascade Correlation supervised learning network architecture uses

this idea (Fahlman and Lebiere, 1990): New components are added to a network incre-

mentally, trained, and then frozen so that they do not change when subsequent components

are trained. This concept could be extended to learning multimodal behavior with modular

networks. If a network module already exhibits a useful mode of behavior, then freezing

the neurons and links that make it up will protect that behavior, while letting other modules

improve. The trick is knowing which components to freeze and when.

The manner in which MM(P) adds new modules is similar to Cascade Correlation:

Old structure leads into new structure, refining what is already there. Perhaps everything

but the new module could be frozen whenever MM(P) is performed. Such an approach

might also make sense with MM(D), since the original behavior would be preserved while

exploring ways to improve it in a different module. A more general approach for modular

networks is to have a mutation operator that freezes all components associated with a par-

ticular module (Figure 12.2). Care would need to be taken to assure that some portion of the

network is always unfrozen. A corresponding thaw operator could be used to unfreeze mod-

ules so that learning can focus alternately on different modules. It might be easier to search

the space of policies if evolution is restricted to altering one module at a time. If certain
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Figure 12.2: Freeze Mutation. Inputs in this network are labelled at the bottom and each
output module is contained in its own red box. A mutation operator picks a random module
(module on the right in this example), and backtracks through the network, freezing every
neuron and link that leads into the frozen module. A frozen link (dashed) cannot have its
weight changed, and a frozen neuron (icy edges) cannot accept new incoming links. These
restrictions assure that the behavior of the frozen module cannot change. However, new
links can still exit frozen neurons, so it is still possible to build on existing components in
order to change the behavior of modules that are not frozen. Such a freeze mutation could
protect good behaviors while evolution continues to refine other behaviors.

modules are linked to particular objectives, then it might even make sense to synchronize

the freezing and thawing of particular modules with the activation and deactivation of par-

ticular objectives. Such objective management could be incorporated into TUG, which is

discussed next.

12.4 Enhancing TUG

TUG is able to direct multiobjective search in a way that pushes it towards the best solutions.

TUG was successful in the Battle Domain, as well as Ms. Pac-Man when combined with

modular networks. However, when combined with single-module networks, the result was

mixed: In some runs the performance shot up quickly, but in other runs it flatlined early

and remained low. This phenomenon was also seen in some preliminary experiments. The

problem resulted from the fact that although different behaviors are required to increase
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the Pill Score and the Ghost Score, they are linked in the sense that more ghosts

cannot be eaten without visiting more levels, which can only be done by eating more pills.

The challenge is to figure out how stagnation can be prevented despite this problem.

First, it should be pointed out that any starting population that is large enough should

have the potential to achieve high scores via skilled multimodal behavior. However, some

runs do worse than others because useful stepping stones on the way to the best solutions

get discarded out of hand in favor of solutions that have higher scores, but are doomed to

lead the search towards local optima. This problem is referred to as deception (Grefenstette,

1992).

Many methods have been designed to deal with deception, including Fitness-sharing

(Sareni and Krähenbühl, 1998), Novelty Search (Lehman and Stanley, 2011), and Behav-

ioral Diversity (Mouret and Doncieux, 2009). Essentially, all of these methods work by

selecting solutions for the next generation that are not strictly favored by the fitness criteria.

TUG does so as well, because it sometimes ignores certain objectives.

It is possible that TUG could be improved by combining it with some of the above

methods. Behavioral Diversity is particularly appealing because it is already designed to

work in a multiobjective setting: This method includes an extra objective in the search pro-

cess that favors behaviorally distinct solutions (for some human-specified behavior charac-

terization). This objective could be managed by TUG’s existing mechanisms. Alternatively,

this objective could be given special privilege, so that it functions regardless of which other

objectives TUG is using, or perhaps extra diversity should only be injected when TUG

performance stagnates.

Preventing stagnation in general would improve TUG, but detecting it is a challenge.

By the time stagnation is obvious, it is likely that the population has already lost candidate

solutions that could lead it out of the local optimum in which it is trapped. Stagnation needs

to be detected preemptively, so that the right objectives are activated in time.

However, the stagnation problem could also be solved by rewinding evolution. If
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previous populations were saved, then at the point when stagnation is detected the search

could go back to a previous generation before the stagnation occurred. To prevent stagna-

tion from occurring again, the search needs to go in a different direction. Simply supplying

different random numbers could be enough in some cases, but changing which objectives

are used for selection addresses the problem more directly. Specifically, although turning

off objectives sometimes helps evolution discover good behavior faster, reactivating all ob-

jectives after rewinding from a stagnation event is more likely to assure a proper diversity

of solutions within the population.

An alternative approach to improving TUG is to change what it means for a goal

to be considered achieved. In the version of TUG presented in this dissertation, goals are

achieved when the average population performance persists above the goal value. However,

other definitions of goal achievement could be superior. Perhaps a different statistic, such

as the median or upper quartile would be better, especially if the distribution of scores in the

population does not follow a normal distribution. Even if average performance is still used

to determine goal achievement, additional restrictions could be used to assure that goals do

not increase unless the population is steadily making progress. For example, in addition

to achieving all goals, the population could be required to dominate a steadily increasing

portion of objective space. That is, the hypervolume metric could be required to increase

as goals increase, which would discourage the easier objectives from being completely

ignored.

The ideas discussed so far have mostly been improvements and variations on the

algorithms used throughout this dissertation. The next section proposes ways of learning

multimodal behavior with a different approach.

12.5 Multimodal Behavior with HyperNEAT

Neural networks were used to define control policies in this dissertation because they are

universal function approximators with a good history of solving challenging control prob-
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lems. The representation used to evolve these networks, the genotype, maps directly to the

space of networks, the phenotype space. Every component of the genotype, on which muta-

tions and crossover operate, directly corresponds to a part of the phenotype. This approach

is obviously successful, but it also has its drawbacks.

Mutation operators for direct encodings generally make only small, local changes

to genotypes. The Module Mutation operations defined in this dissertation are unusual in

that they introduce lots of new structure with a single operation. However, small edits are

still required to fine-tune new modules. Also, there is no operation that makes large edits

to modules that already exist. For example, MM(D) copies an existing module so that a

preexisting behavior can diverge in two different directions, but after that split, adjustments

that would be beneficial to both modules must be performed individually to each module,

which is unlikely to occur via random mutations.

Generative and Developmental Systems (GDS), which use indirect encodings to

produce phenotypes, can potentially overcome this problem. In such systems the genotype

represents a process or a program that is executed to create the final phenotype. Parts

of an indirectly encoded genotype are generally reused several times while creating the

phenotype, which means that a single change to the genotype can affect several parts of

the phenotype easily. In fact, one of the main benefits of indirect encodings is that they

give rise to regularity and modularity (Stanley and Miikkulainen, 2003), which are qualities

well-suited to the generation of multimodal behavior.

A GDS specifically tailored to creating neural network phenotypes is HyperNEAT

(D’Ambrosio and Stanley, 2007). HyperNEAT evolves one type of neural network, called

a Compositional Pattern-Producing Network (CPPN; Stanley, 2006), and uses it to create

another neural network that is then evaluated in a task. Like all neural networks, CPPNs

are function approximators, but they are special in that they can contain activation functions

like sine, cosine, and Gaussian functions, which encourage regularity and symmetry in the

function output. Function trees (evolved by Genetic Programming) can also be used in
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place of CPPNs if these special functions are included as building blocks (Buk et al., 2009).

Regardless of which function approximator is used, these methods generate neural networks

in two steps.

First, a general connectivity pattern, called a substrate, is defined for a particular

problem. The substrate defines the number of inputs and outputs the network has, but

also determines the positions of all potential neurons. Second, the CPPN is queried with

the coordinate positions of each pair of potential neurons in the substrate to get an output

that indicates whether the neurons are linked and what the weight is. If the substrate is

defined in a clever way, a single genotype can be used to create several different but related

neural network controllers. Section 11.3.2 already mentioned work in a multi-agent domain

where each distinct team member was spawned by the same source CPPN (D’Ambrosio and

Stanley, 2008). This result was accomplished by situating the different neural controllers

in different positions within the substrate according to each agent’s starting position in the

environment. By linking the geometry of the environment to the geometry of the substrate,

multiple distinct cooperating controllers are produced by a single genotype.

Later work (D’Ambrosio et al., 2011) extends this idea to allow agents to choose

a particular policy depending on the current state the agent is in. Creating agents that use

different policies in different situations is precisely what the methods developed in this dis-

sertation are designed to do, so D’Ambrosio et al.’s work is a step in the same direction.

However, the multiple policies possessed by these agents were arbitrated according to a

human-specified signal, as in Multitask Learning. The next logical step would be to allow

arbitration between multiple policies based on preference neurons, or some other learned

signal. This extension would presumably allow HyperNEAT to discover novel task divi-

sions, such as the luring behavior discovered in Ms. Pac-Man.

Allowing HyperNEAT to create policies that choose when to be active is similar

to having networks with multiple fixed modules arbitrated by preference neurons. Such

networks did very well in Ms. Pac-Man, but a fully general learning method should also
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be able to decide how many different modules to have, as Module Mutation does. Adding

this extension to HyperNEAT would require an extra level of ingenuity. For instance, a

dedicated CPPN output or an additional evolved parameter could be added. However, even

if this issue is resolved, the harder decision to make is how to situate new policies within

the substrate geometry.

In fact, the geometric focus of HyperNEAT is both a strength and a disadvantage.

Nearly all problems involving agent behavior require some degree of geometric aware-

ness. HyperNEAT has an advantage when dealing with geometrically organized sensors

because it can easily incorporate concepts of symmetry and repetition. However, Hyper-

NEAT requires that all sensors and network outputs are geometrically embedded in the

network substrate. The sensors in the HyperNEAT experiments discussed so far were sim-

ple rangefinders, so sensors in the left of the substrate corresponded to sensors on the left

side of the agent, and vice versa for sensors on the right. If these sensors are sufficient

to learn interesting behavior, then this restriction is not a problem, but many of the sensors

used in the BREVE (e.g. “Any Monster Dealt Damage”) and Ms. Pac-Man (e.g. “Proportion

Edible Time”) experiments of this dissertation do not have an obvious geometric interpre-

tation. A possible solution is to assign each such sensor its own spatial dimension within

the substrate, so that geometry should not matter for them. However, all existing work with

HyperNEAT focuses on problem geometry, so it is unclear whether this approach would

work with a large number of sensors.

Because HyperNEAT is a relatively new algorithm, researchers are still learning

how to apply it. Currently, the question of how to design a substrate to suit a particular

problem is tricky, but there are some general guiding principles. The question of how to

situate multiple policies in a substrate is even trickier. In D’Ambrosio et al.’s multi-policy

example above, the two behaviors were advancing into and evacuating from a maze, and an

extra substrate dimension was defined for each separate policy. The corresponding substrate

inputs for these policies were 1 and −1. This design makes sense because evacuating is
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the opposite of advancing, so the two policies can be thought of as contrasting with each

other. However, in Ms. Pac-Man, what would be the geometric distinction between a policy

for luring and a policy for collecting pills? It is hard to imagine these behaviors existing

along the same dimension, let alone to imagine what dimensions exist to define Ms. Pac-

Man behavior. Perhaps as practitioners gain more experience with HyperNEAT and similar

methods, ideas for how to spatially embed multiple policies for a single agent will become

more common. In the meantime, the methods introduced in this dissertation for learning

directly encoded modules provide an obvious and effective way of learning multimodal

behavior.

12.6 Conclusion

This chapter presented ideas for future research in the field of discovering multimodal be-

havior. Several ideas for improving the methods in this dissertation were described. Specif-

ically, ways of combining and improving the various Module Mutation methods were dis-

cussed, as well as variations on TUG that could encourage it to succeed more consistently

even with non-modular networks.

Several new ideas were also proposed. Ways of automatically adjusting the sen-

sors to make the discovery of multimodal behavior easier were considered. Other ways of

creating new output modules were proposed, including ways for human knowledge of how

to divide a task to be supplemented by what evolution discovers. Finally, ways in which

HyperNEAT could be used to generate multiple policies were considered, with a specific

focus on what has already been tried, and what problems must be solved in order to accom-

plish more. The ideas presented in this chapter should thus lead to interesting projects in

the future.
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Chapter 13

Conclusion

This dissertation focuses on the discovery of multimodal behavior. Such behavior is ex-

hibited by all intelligent animals, but not by many artificial agents that learn their behavior

through interaction with the environment. When multimodal behavior has been learned

in previous research, it has often depended on human-specified task divisions, or other

extensive domain knowledge. This dissertation introduced methods that learn novel task

divisions on their own, even with general conflict sensors. This final chapter reviews these

contributions, and assesses their potential future impact.

13.1 Contributions

The main technical contributions of the dissertation were introduced in Chapter 3. The first

contribution is an understanding of the distinction between split and conflict sensors, and

how they affect the learning of multimodal behavior. The second contribution consists of

several ways of allowing networks to use multiple output modules. In particular, preference

neurons were designed as a way to allow networks to learn their own task division, and

Module Mutation combined with preference neurons is a way to allow evolution to discover

how many modules to use. These new methods that learn their own task division were
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contrasted with Multitask Learning, an established approach that depends on a human-

specified task division. Interestingly, automatically discovered task divisions were found to

be better than human-specified divisions in all but one domain (FBR). The third contribution

is TUG, which enhances multiobjective evolution by focusing on the objectives that need it

most.

Chapter 4 provided an overview of different types of domains requiring multimodal

behavior. In particular, different ways of splitting up tasks in a domain were identified:

isolated tasks, interleaved tasks, and blended tasks. Isolated tasks are completely separate,

but a single agent is expected to accomplish all of them. Interleaved tasks are more strongly

coupled, in that an agent switches between tasks in a single evaluation. As a result, actions

in one task have consequences for other tasks. Blended tasks are intertwined to the point that

the boundary between them is unclear. There may be certain moments during evaluation

when it is possible to clearly identify the task, but there are also periods of time when

the distinction is blurred, such that multiple tasks are occurring at the same time. In such

situations, it is particularly important for intelligent agents to decide what the current task

is so they know how best to behave. Experiments were conducted in several domains that

exemplify these different task divisions.

The first three domains were designed in the BREVE simulator (Chapter 5), which

made it possible to evaluate each method in domains with isolated and blended tasks. The

first two BREVE domains were Front/Back Ramming (FBR) and Predator/Prey (PP). These

domains both consist of isolated tasks, and modular networks were superior to single-

module networks in both domains (Chapter 6). Specifically, Multitask Learning did well in

FBR because the two tasks are equally difficult, and having separate policies for each task

made it easy to have a different behavior for each one. Module Mutation also did well, but

had to overcome the harder challenge of determining what the current task was, because

the sensors did not provide this information. Module Mutation networks determined the

current task by using recurrent connections to remember how they received damage. This
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clever strategy worked, but cost some damage. In PP the relative difficulty of the tasks is

skewed, which confused Multitask Learning and caused it to fail in this domain. However,

Module Mutation Random did well in this domain even though it did not sense in what task

it was directly.

The third BREVE domain was the Battle Domain (BD), which has blended attack

and defense tasks. Networks evolved in this domain had only a single module, but good

behavior could still be achieved by using TUG (Chapter 7). These networks had the capacity

to deal with the separate tasks of this domain because they used split sensors, but TUG was

still required to help the networks discover intelligent behaviors needed to succeed.

Having established the basic characteristics of these methods in BREVE simula-

tions, they were scaled up to the real-world game of Ms. Pac-Man in Chapters 9 and 10.

In Chapter 9, a simplified Imprison version of Ms. Pac-Man was created in order to test

the methods in a domain with interleaved tasks: This slight variant on the original arcade

game creates a clear distinction between threat and edible ghost tasks. Therefore, Multitask

Learning does well in this domain, as do single-module networks using split sensors (the

sensors create the same task division). This same task division is also learned by approaches

with preference neurons. However, a more interesting result is that the best approaches dis-

cover a task division that is distinctly different from human task divisions, and performs

better: It is based on luring. Only modular approaches with preference neurons can dis-

cover a luring module, and it results in the best scores.

Chapter 10 scales up to the full game of Ms. Pac-Man in two steps: First, Ms.

Pac-Man had just one life in order to quickly test a variety of methods in a domain that is

just one step removed from Imprison Ms. Pac-Man. Second, Ms. Pac-Man had multiple

lives, as in the original game, in order to scale up to the domain used by other researchers

in the literature. In these experiments, the best performance is still achieved by modular

networks that use preference neurons to discover a luring module. However, because the

full game has blended tasks (i.e. the threat and edible ghosts can be present at the same
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time), human-specified task divisions break down: Multitask Learning performs poorly in

this domain, and even with split sensors, networks with one module are significantly worse

than networks with two modules using preference neurons. In the evaluations with multiple

lives, which are more forgiving, it turned out that TUG could be effectively used to improve

the behavior. Thus, combining modular network architectures with fitness shaping via TUG

lead to skilled multimodal behavior that surpassed all previous attempts to learn behavior

in Ms. Pac-Man.

13.2 Conclusion

Intelligent agents can exhibit multiple modes of behavior. However, artificial agents are

typically optimized to focus on a single narrowly defined task. When artificial agents do

exhibit multimodal behavior, it is often because a human designer has created or learned

multiple policies and fit them into a hierarchy. This dissertation represents a step away

from such human-specified task divisions, and a step towards allowing learning methods

like neuroevolution to discover for themselves how to learn complex multimodal behavior.

These methods were successful in several artificial worlds, including the popular

classic arcade game of Ms. Pac-Man. Therefore, these methods should prove immediately

useful in other artificial worlds, such as training simulators, video games, and Artificial

Life simulations. However, multimodal behavior is also needed in robotic systems, so these

methods will hopefully be useful in real-world agents as well. Multimodal behavior can

be evolved in simulation and then adapted to a real robot, or in some cases learned on the

robot itself. Applying this research in these ways should lead to a future with intelligent and

versatile artificial agents that can serve as companions and assistants to humans in various

ways.

229



Bibliography

Alhejali, A. M., and Lucas, S. M. (2010). Evolving diverse Ms. Pac-Man playing agents

using genetic programming. In UK Workshop on Computational Intelligence (UKCI

2010), 1–6.

Alhejali, A. M., and Lucas, S. M. (2011). Using a Training Camp with Genetic Program-

ming to evolve Ms Pac-Man agents. In Cho, S.-B., Lucas, S. M., and Hingston, P.,

editors, Proceedings of the IEEE Conference on Computational Intelligence and Games

(CIG 2011), 118–125. IEEE.

Alhejali, A. M., and Lucas, S. M. (2013). Using Genetic Programming to evolve heuristics

for a Monte Carlo Tree Search Ms Pac-Man agent. In Proceedings of the IEEE Confer-

ence on Computational Intelligence and Games (CIG 2013), 1–8. IEEE.

Alur, R., Das, A. K., Esposito, J. M., Fierro, R. B., Grudic, G. Z., Hur, Y., Kumar, V., Lee,

I., Lee, J. P., Ostrowski, J. P., Pappas, G. J., Southall, B., Spletzer, J. R., and Taylor,

C. J. (2000). A framework and architecture for multirobot coordination. In Rus, D., and

Singh, S., editors, ISER, vol. 271 of Lecture Notes in Control and Information Sciences,

303–312. Springer.

Bakker, B., and Heskes, T. (2003). Task Clustering and Gating for Bayesian Multitask

Learning. Journal of Machine Learning Research, 4:83–99.

230



Barto, A. G., and Mahadevan, S. (2003). Recent Advances in Hierarchical Reinforcement

Learning. Discrete Event Dynamic Systems, 13(1–2):41–77.

Bellman, R. (1957). Dynamic Programming. Princeton, NJ, USA: Princeton University

Press. First edition.

Bom, L., Henken, R., and Wiering, M. (2013). Reinforcement Learning to Train Ms. Pac-

Man Using Higher-order Action-relative Inputs. In Proceedings of IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

Brandstetter, M. F., and Ahmadi, S. (2012). Reactive control of Ms. Pac Man using infor-

mation retrieval based on Genetic Programming. In Proceedings of the IEEE Conference

on Computational Intelligence and Games (CIG 2012), 250–256. IEEE.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(10).

Bryant, B. D., and Miikkulainen, R. (2006). Evolving Stochastic Controller Networks for

Intelligent Game Agents. In Congress on Evolutionary Computation. Piscataway, NJ:

IEEE.

Buehler, M., Iagnemma, K., and Singh, S. (2009). The DARPA Urban Challenge: Au-

tonomous Vehicles in City Traffic. Springer Publishing Company, Incorporated. First

edition.

Buk, Z., Koutnı́k, J., and Snorek, M. (2009). NEAT in HyperNEAT substituted with Genetic

Programming. In Proceedings of the International Conference on Adaptive and Natural

Computing Algorithms (ICANNGA), 243–252.

Burrow, P., and Lucas, S. M. (2009). Evolution versus Temporal Difference Learning for

learning to play Ms. Pac-Man. In Lanzi, P. L., editor, Proceedings of the IEEE Conference

on Computational Intelligence and Games (CIG 2009), 53–60. IEEE.

231



Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G. (2000). Duplication of Modules Facili-

tates the Evolution of Functional Specialization. Artificial Life, 6(1):69–84.

Cardamone, L., Loiacono, D., and Lanzi, P. L. (2009). Evolving Competitive Car Con-

trollers for Racing Games with Neuroevolution. In Genetic and Evolutionary Computa-

tion Conference, 1179–1186.

Caruana, R. A. (1993). Multitask Learning: A knowledge-based source of inductive bias.

In International Conference on Machine Learning, 41–48.

Caruana, R. A. (1997). Multitask Learning. PhD thesis, Carnegie Mellon University, Pitts-

burgh, PA 15213.

Chen, X., Stone, P., Sucar, L. E., and van der Zant, T., editors (2013). RoboCup 2012: Robot

Soccer World Cup XVI [papers from the 16th Annual RoboCup International Symposium,

Mexico City, Mexico, June 18-24, 2012], vol. 7500 of Lecture Notes in Computer Science.

Springer.

Cheng, X., Shen, J., Liu, H., and Gu, G. (2007). Multi-robot Cooperation Based on Hi-

erarchical Reinforcement Learning. In ICCS ’07: Proceedings of the 7th international

conference on Computational Science, Part III, 90–97. Berlin, Heidelberg: Springer-

Verlag.

Choi, J., and Kim, K.-E. (2013). Bayesian Nonparametric Feature Construction for In-

verse Reinforcement Learning. In Rossi, F., editor, International Joint Conferences on

Artificial Intelligence. IJCAI/AAAI.

Clune, J., Beckmann, B. E., McKinley, P. K., and Ofria, C. (2010). Investigating whether

HyperNEAT produces modular neural networks. In Genetic and Evolutionary Computa-

tion Conference, 635–642.

232



Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of modular-

ity. Proceedings of the Royal Society B: Biological Sciences, 280(1755):20122863–

20122863.

Coello, C. A. C. (1999). A comprehensive survey of evolutionary-based multiobjective

optimization techniques. Knowledge and Information Systems, 1(3):129–156.

Collobert, R., and Weston, J. (2008). A Unified Architecture for Natural Language Pro-

cessing: Deep Neural Networks with Multitask Learning. In Proceedings of the 25th

International Conference on Machine Learning, ICML ’08, 160–167. New York, NY,

USA: ACM.

Corne, D. W., Jerram, N. R., Knowles, J. D., and Oates, M. J. (2001). PESA-II: Region-

based selection in evolutionary multiobjective optimization. In Genetic and Evolutionary

Computation Conference, 283–290.

Corne, D. W., Knowles, J. D., and Oates, M. J. (2000). The Pareto Envelope-based Selection

Algorithm for Multiobjective Optimization. In Parallel Problem Solving from Nature,

839–848. Springer.

Dam, H. H., Abbass, H. A., and Lokan, C. (2008). Neural-Based Learning Classifier Sys-

tems. IEEE Transactions on Knowledge and Data Engineering, 20(1):26–39.

D’Ambrosio, D. B., Lehman, J., Risi, S., and Stanley, K. O. (2011). Task switching in mul-

tirobot learning through indirect encoding. In 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, IROS 2011, 2802–2809.

D’Ambrosio, D. B., and Stanley, K. O. (2007). A novel generative encoding for exploiting

neural network sensor and output geometry. In Proceedings of the 9th Annual Confer-

ence on Genetic and Evolutionary Computation (GECCO ’07), 974–981. New York, NY,

USA: ACM.

233



D’Ambrosio, D. B., and Stanley, K. O. (2008). Generative encoding for multiagent learning.

In Proceedings of the Genetic and Evolutionary Computation Conference.

de Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. (2005). A tutorial on the

cross-entropy method. Annals of Operations Research, 134(1):19–67.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist Multiobjec-

tive Genetic Algorithm: NSGA-II. Evolutionary Computation, 6:182–197.

Deisenroth, M., Calandra, R., Seyfarth, A., and Peters, J. (2012). Toward Fast Policy Search

for Learning Legged Locomotion. In Proceedings of the International Conference on

Robot Systems (IROS).

DeNero, J., and Klein, D. (2010). Teaching Introductory Artificial Intelligence with Pac-

Man. In Proceedings of the Symposium on Educational Advances in Artificial Intelli-

gence (EAAI).

Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learning. In

Proceedings of the Fifteenth International Conference on Machine Learning (ICML98).

Diller, D. E., Ferguson, W., Leung, A. M., Benyo, B., and Foley, D. (2004). Behavior

modeling in commercial games. In Behavior Representation in Modeling and Simulation

(BRIMS).

Fahlman, S. E., and Lebiere, C. (1990). The cascade-correlation learning architecture. In

Touretzky, D. S., editor, Advances in Neural Information Processing Systems 2, 524–532.

San Francisco: Morgan Kaufmann.

Floreano, D., and Urzelai, J. (2000). Evolutionary robots with on-line self-organization and

behavioral fitness. Neural Networks, 13:431–4434.

Foderaro, G., Swingler, A., and Ferrari, S. (2012). A model-based cell decomposition

approach to on-line pursuit-evasion path planning and the video game Ms. Pac-Man. In

234



Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG

2012), 281–287. IEEE.

Fonseca, C. M., and Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in

Multiobjective Optimization. Evolutionary Computation, 3:1–16.

Gallagher, M., and Ledwich, M. (2007). Evolving Pac-Man Players: Can We Learn from

Raw Input? In Proceedings of the IEEE Conference on Computational Intelligence and

Games (CIG 2007), 282–287. IEEE.

Gaskett, C., Wettergreen, D., and Zelinsky, A. (1999). Q-learning in continuous state and

action spaces. In Proceedings of the 12th Australian Joint Conference on Artificial Intel-

ligence: Advanced Topics in Artificial Intelligence, AI ’99, 417–428. London, UK, UK:

Springer-Verlag.

Gomez, F., Schmidhuber, J., and Miikkulainen, R. (2006). Efficient non-linear control

through neuroevolution. In Proceedings of the European Conference on Machine Learn-

ing, 654–662. Berlin: Springer.

Grefenstette, J. J. (1992). Deception considered harmful. In Foundations of Genetic Algo-

rithms 2, 75–91. Morgan Kaufmann.

Gruau, F. (1994). Automatic definition of modular neural networks. Adaptive Behavior,

3(2):151–183.

Handa, H., and Isozaki, M. (2008). Evolutionary fuzzy systems for generating better

Ms.PacMan players. In FUZZ-IEEE, 2182–2185. IEEE.

Haykin, S. (1999). Neural Networks, A Comprehensive Foundation. Upper Saddle River,

New Jersey: Prentice Hall.

Hengst, B. (2002). Discovering Hierarchy in Reinforcement Learning with HEXQ. In

International Conference on Machine Learning, 243–250. Morgan Kaufmann.

235



Hingston, P. (2012). Believable Bots: Can Computers Play Like People?. Springer Berlin

Heidelberg.

Huber, M., and Grupen, R. A. (1997). A feedback control structure for on-line learning

tasks. Robotics and Autonomous Systems, 22:22–23.

Ikehata, N., and Ito, T. (2011). Monte-Carlo Tree Search in Ms. Pac-Man. In Cho, S.-

B., Lucas, S. M., and Hingston, P., editors, Proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG 2011), 39–46. IEEE.

Isla, D. (2005). Managing Complexity in the Halo 2 AI System. In Proceedings of the

Game Developers Conference. San Francisco, CA.

Kalyanakrishnan, S., and Stone, P. (2009). An Empirical Analysis of Value Function-Based

and Policy Search Reinforcement Learning. In Proceedings of the 8th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS).

Kang, Z., Grauman, K., and Sha, F. (2011). Learning with whom to share in multi-task fea-

ture learning. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), 521–528.

Khare, V., Yao, X., Sendhoff, B., Jin, Y., and Wersing, H. (2005). Co-evolutionary Modular

Neural Networks for Automatic Problem Decomposition. In Congress on Evolutionary

Computation, vol. 3, 2691–2698.

Klein, J. (2003). BREVE: A 3D Environment for the Simulation of Decentralized Systems

and Artificial Life. Artificial Life, 329–334.

Knowles, J., Thiele, L., and Zitzler, E. (2006). A Tutorial on the Performance Assessment

of Stochastic Multiobjective Optimizers. TIK Report 214, TIK, ETH Zurich.

Kohl, N., and Miikkulainen, R. (2009). Evolving Neural Networks for Strategic Decision-

Making Problems. Neural Networks, Special issue on Goal-Directed Neural Systems.

236



Kolter, J. Z., and Ng, A. Y. (2009). Regularization and Feature Selection in Least-squares

Temporal Difference Learning. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning, ICML ’09, 521–528. New York, NY, USA: ACM.

Konidaris, G., and Barto, A. (2009). Skill Discovery in Continuous Reinforcement Learning

Domains using Skill Chaining. In Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C.

K. I., and Culotta, A., editors, Advances in Neural Information Processing Systems 22,

1015–1023.

Konidaris, G., Kuindersma, S., Barto, A., and Grupen, R. (2010). Constructing Skill Trees

For Reinforcement Learning Agents From Demonstration Trajectories. In In Advances

in Neural Information Processing Systems (NIPS).

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge, MA, USA: MIT Press.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs.

Cambridge Massachusetts: MIT Press.

Lehman, J., and Stanley, K. O. (2011). Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary Computation, 19(2):189–223.

Lessin, D., Fussell, D., and Miikkulainen, R. (2013). Open-ended behavioral complexity for

evolved virtual creatures. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO) 2013.

Levine, S., Popovic, Z., and Koltun, V. (2010). Feature Construction For Inverse Reinforce-

ment Learning. Advances in Neural Information Processing Systems, 23.

Liu, Q., Liao, X., Li, H., Stack, J., and Carin, L. (2009). Semisupervised Multitask Learn-

ing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(6):1074–

1086.

237



Lochtefeld, D., and Ciarallo, F. (2012). Multiobjectivization via helper-objectives with

the tunable objectives problem. Evolutionary Computation, IEEE Transactions on,

16(3):373–390.

Lucas, S. M. (2005). Evolving a neural network location evaluator to play Ms. Pac-Man.

In Kendall, G., and Lucas, S., editors, Proceedings of the IEEE Conference on Computa-

tional Intelligence and Games (CIG 2005), 203–210. IEEE.

Martı́n, E., Martı́nez, M., Recio, G., and Sáez, Y. (2010). Pac-mAnt: Optimization based
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