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With increasing complexity and software content, modern embedded

platforms employ a heterogeneous mix of multi-core processors along with

hardware accelerators in order to provide high performance in limited power

budgets. Due to complex interactions and highly dynamic behavior, static

analysis of real-time performance and other constraints is challenging. As an

alternative, full-system simulations have been widely accepted by designers.

With traditional approaches being either slow or inaccurate, so-called host-

compiled simulators have recently emerged as a solution for rapid evaluation

of complete systems at early design stages. In such approaches, a faster sim-

ulation is achieved by natively executing application code at the source level,

abstracting execution behavior of target platforms, and thus increasing simula-

tion granularity. However, most existing host-compiled simulators often focus

on application behavior only while neglecting effects of hardware/software in-

teractions and associated speed and accuracy tradeoffs in platform modeling.
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In this dissertation, we focus on host-compiled operating system (OS)

and processor modeling techniques, and we introduce novel dynamic timing

model management approaches that efficiently improve both accuracy and

speed of such models via automatically calibrating the simulation granularity.

The contributions of this dissertation are twofold: We first establish an

infrastructure for efficient host-compiled multi-core platform simulation by de-

veloping (a) abstract models of both real-time OSs and processors that repli-

cate timing-accurate hardware/software interactions and enable full-system

co-simulation, and (b) quantitative and analytical studies of host-compiled

simulation principles to analyze error bounds and investigate possible improve-

ments. Building on this infrastructure, we further propose specific techniques

for improving accuracy and speed tradeoffs in host-compiled simulation by de-

veloping (c) an automatic timing granularity adjustment technique based on

dynamically observing system state to control the simulation, (d) an out-of-

order cache hierarchy modeling approach to efficiently reorder memory access

behavior in the presence of temporal decoupling, and (e) a synchronized timing

model to align platform threads to run efficiently in parallel simulation.

Results as applied to industrial-strength platforms confirm that by pro-

viding careful abstractions and dynamic timing management, our models can

achieve full-system simulations at equivalent speeds of more than a thousand

MIPS with less than 3% timing error. Coupled with the capability to easily ad-

just simulation parameters and configurations, this demonstrates the benefits

of our platform models for early application development and exploration.
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Chapter 1

Introduction

In todays embedded systems, software content is growing continuously

to deal with increased complexities and tight development cycles. During early

design space exploration, system developers are interested in evaluating an ap-

plication behavior on a particular architecture. However, system-wide interac-

tions and dynamic behavior in complex parallel systems make static analysis

challenging. Efficient full-system simulations therefore play an important role

in the design process.

Multi-core processors have become popular both in general-purpose as

well as in embedded computing in order to achieve continued high performance

while managing power budgets [8]. In practice, such multi-core processors

are integrated into a multi-processor platform in order to provide a heteroge-

neous multi-processor and multi-core systems-on-chip (MPCSoCs) that meets

all real-time and design constrains. The complexities of the MPCSoC design

space have made traditional cycle- or instruction-accurate simulators ineffi-

cient. Cycle-based simulators are highly accurate, but very slow, especially

in a multi-core or multi-processor context. Instead, high-level simulators can

establish a fast simulation with an acceptable level of degraded accuracy.

1



Communication
CyclesWordsPacketsMessages

Accuracy
Speed

Tasks

Basic Blocks

Instructions

Micro-

Architecture

Computation

A
cc

u
ra

cy
S
p
e
e
d

NS - Network Simulator

MoC - Model of Computation

TLM

IS
S

TLM - Transaction Level Modeling

RTL - Register Transfer Level

ISS - Instruction Set Simulator

MoC

Virtual Platform

Cycle-Accurate RTL

NS

Host-Compiled

Figure 1.1: Modeling space [28].

1.1 Modeling Space

Figure 1.1 classifies existing simulation approaches based on the mod-

eling abstraction level [28]. In this figure, system models are organized along

communication and computation parts executing at different levels of granu-

larity.

Models of computation (MoCs) [44, 48] provide the fastest possible sim-

ulation platform by functional execution of tasks, which exchange messages

over high-level communication channels. At the other end of the spectrum

are models described at the register transfer level (RTL), which contain micro-

architectural details to provide cycle-accurate simulation results. Due to a

high degree of detail and fine granularity required for modeling interactions

2



among system components, however, their simulation performance is very low.

In order to provide fast simulation while maintaining an acceptable

level of accuracy, a range of intermediate simulation approaches have been

developed. From a communication perspective, transaction-level modeling

(TLM) [11] has been introduced to abstract on-chip communication from pins

and cycles to the level of word or packet transactions in order to increase the

simulation speed while still providing accurate timing estimates. Traditional

micro-architectural instruction set simulators (ISS) [3, 6, 76, 54] execute the

binary code of applications on a cycle accurate model of a target processor.

Such approaches coupled with TLM can provide accurate full system simu-

lation but still tend to be slow, especially in a multi-core or multi-processor

context.

By contrast, virtual platform (VP) [82, 4] prototypes that employ bi-

nary translation coupled with abstract modeling of system peripherals can

establish fast functional simulation, but provide little to no timing informa-

tion. Similarly, network simulators (NS) [37, 93] provide fast simulation of the

entire network by abstracting both communication and computation units.

More recently, source-level and host-compiled (HC) [27] simulators have

emerged as an alternative that aims to address the need for fast and accurate

simulation. In pure source-level approaches, application code is natively com-

piled and executed on a host machine to achieve the fastest possible functional

simulation. For accuracy, the source code is further back-annotated with

target-specific timing information obtained through estimation or measure-

3



ment. To achieve full host-compiled simulation, back-annotated source code is

then wrapped into abstract models of operating systems and processors, which

integrate into existing TLM backplanes on top of standard system-level design

languages (SLDLs), such as SpecC [25] or SystemC [30].

Host-compiled simulators are generally used for system-level design

space exploration of MPCSoC platforms. In a typical system-level design flow,

system-level synthesis tools explore mapping of MoCs onto a target platform

using host-compiled platform models for overall performance evaluation of the

mapped systems at early stages of design process. As such, host-compiled

models are meant to complement existing low-level ISS/RTL models, which

are still needed for detailed micro-architectural exploration or final sign-off.

1.2 Host-Compiled Simulation

Figure 1.2 shows the structure of a typical host-compiled simulator with

a layered organization as introduced for single-core models in [81], which we

have expanded to a multi-core version as the basis of our research.

The application running on each processor is given in a multi-threaded

C code form. Typically, mounting the application on the simulator should

not be more complicated than porting it to a different OS. In doing so, the

source code needs to be converted into an application model by translating

tasks/threads into SLDL processes and OS and inter-processor communica-

tion (IPC) primitives into equivalent canonical, high-level application pro-

gramming interfaces (APIs) provided by the simulator. This can be done

4
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Figure 1.2: High-level, host-compiled simulation platform.

automatically [22] or by providing a thin wrapper for standard OS APIs, such

as POSIX. In addition, for timing accuracy, the application code is further

back-annotated with execution delays estimated or measured based on a se-

lected target platform, which can also be performed automatically [15]. In the

end, mounting an application on a host-compiled simulator is fully transpar-

ent to the user. The same application code running on top of the simulator

will later be synthesized and compiled to run on a real target platform by au-

tomatically removing back-annotated delays and transforming high-level OS

calls into an execution on top of a real OS [80].

At the core of the simulation engine, an OS model implements the simu-

lator’s high-level canonical OS interface for multi-tasking and IPC. Internally,

the OS model replicates an abstract OS kernel, which emulates the execu-

tion of application tasks on top of underlying SLDL kernel. The OS model

5



thereby schedules, queues, dispatches and executes the application tasks ac-

cording to a chosen scheduling policy, which is configurable to emulate different

scheduling strategies. Underneath, a hardware abstraction layer (HAL) in con-

junction with a hardware layer constitute the high-level processor model. The

HAL integrates the software into the processor hardware models and includes

necessary description of I/O drivers and interrupt handlers. Combined with

interrupt processing in the OS layer, this replicates and emulates an accurate

interrupt handling mechanism. The hardware layer also provides interrupt

and bus interfaces to the external communication infrastructure. Generally,

the bus interface can be developed at an arbitrary level of abstraction, de-

pending on a desired level of accuracy; here, a transaction level model (TLM)

of communication is used to establish a fast simulation environment. A high-

level, generic interrupt controller (GIC) model collects interrupts from the

hardware side and manages their distribution to the processor model.

Finally, at the base, the complete simulator is implemented over a stan-

dard system level design language (SLDL) that provides the required concur-

rency, timing and event handling infrastructure on a host machine.

1.3 Thesis Scope

Most of the existing approaches in the host-compiled domain have fo-

cused on source-level simulation of the application level only, including accu-

rate back-annotation processes. However, such source-level models only repli-

cate execution of sequential codes without considering any interference from

6



other tasks or HW/SW interactions. Yet, management of intra- and inter-

processor interactions in the OS kernels, device drivers and interrupt handling

chains of complex multi-processor and multi-core platforms can carry a large

overhead. As such, OS- and system-level interactions can contribute signifi-

cantly to overall system performance. At the same time, execution of associ-

ated detailed code in traditional instruction set simulations can lead to a large

simulation overhead. In reality, designers may only care about the effect on

application performance, and they are not concerned with the OS internals,

for example. This provides an opportunity and need to abstract such details

and develop fast and accurate host-compiled OS and processor models that

faithfully replicate such effects without including any of the associated simu-

lation overhead. To achieve this goal, the main focus of this dissertation is on

multi-core platform modeling with a specific emphasis on host-compiled OS

and processor models.

In this dissertation, we target embedded and mobile SoC platforms.

We assume that back-annotated source-level application models are given. In-

stead, we specifically focus on modeling the effects of interactions among multi-

ple tasks on top of shared resources, which includes models for the OS sched-

uler, inter-process communication, communication with the external world

through high-level bus transactions, interrupt handling chains, and multi-core

cache hierarchies. Modeling of other OS effects, such as virtual memory sys-

tems that are not typically found in embedded and mobile platforms are sub-

ject to future work.
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1.4 Thesis Statement

Thus far, existing host-compiled OS and processor modeling approaches

have only focused on single-core platforms and suffer from inherent speed and

accuracy tradeoffs. In this dissertation, we demonstrate that both accuracy

and speed of host-compiled platform (OS and processor) models can be sig-

nificantly improved by dynamically managing simulation granularities in the

platform model itself. This is achieved by (i) an automatic timing granularity

adjustment, which monitors the system state and automatically controls the

timing model of the simulation platform to provide both fast and accurate

results, and (ii) a multi-core, out-of-order cache hierarchy modeling approach

that incorporates a delayed reordering of aggregated requests to provide accu-

rate memory behavior in coarse-grained platform simulations. In conjunction

with the above approaches, (iii) a synchronized timing model fully exploits

potential of modern multi-core host workstations for parallel host-compiled

simulations.

1.5 Contributions

In the following, we briefly summarize the contributions presented in

the subsequent chapters.

1.5.1 Host-Compiled Multi-Core Platform Simulation

Host-compiled simulation approaches are based on a modeling abstrac-

tion concept. Hence, careful abstraction of low-level details is crucial for fast
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and accurate results. In this dissertation, we first develop multi-core OS and

processor models inspired from well-established single-core host-compiled mod-

els in order to provide a comprehensive and flexible multi-core platform infras-

tructure. We further examine conventional host-compiled platform models to

assess the accuracy of abstract models compared to detailed and fully accu-

rate simulators. We finally present an analytical model of error bounds, which

shows that, generally, errors are a direct function of simulation granularities.

However, contrary to common intuition, it is further shown that under certain

circumstances, errors in discrete preemption models can potentially exceed the

bounds set by the timing granularity by a large amount. Related contributions

are as follows:

• A host-compiled multi-core platform simulator, which incorporates a

parametrizable SMP OS model supporting a wide range of scheduling

schemes and policies, and a high-level multi-core processor model with in-

tegrated models of configurable host-compiled interrupt handling chains.

• A quantitative study of accuracy and speed tradeoffs in host-compiled

simulations, including an investigation of error sources in host-compiled

platform models.

• An analytical model of error bounds in preemptive discrete-event sim-

ulations, demonstrating that timing errors can potentially exceed the

bounds set by the predetermined simulation granularity.
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1.5.2 Automatic Timing Granularity Adjustment

In host-compiled simulation, higher speed is achieved by coarse-grained

simulation of discrete events, which degrades timing accuracy of preemptive

simulations. The central contribution of this dissertation is an approach for

largely eliminating the accuracy and speed tradeoff of preemptive discrete-

event simulation of host-compiled platforms. We proposes an automatic tim-

ing granularity adjustment (ATGA) approach in which the platform models

internally monitor the state of the system and automatically control the tim-

ing granularity of the simulation. When applied to an OS model, simulation

speed and accuracy is independent of the granularity of back-annotated delays,

which frees designers from having to settle on a particular, difficult to evalu-

ate and predict tradeoff. Instead, the OS kernel itself accumulates or breaks

delays into a number of smaller steps as needed, automatically providing the

best timing granularity for accurate and fast results. Specific contributions

are:

• A predictive timing model management algorithm, which introduces a

method for adjusting the granularity of simulation to eliminate preemp-

tion errors in fully predictable applications, such as periodic task sets.

• A comprehensive timing model management method for automatic tim-

ing granularity adjustment in sporadic applications with hardware inter-

actions, which is achieved by integration of a fallback algorithm into our

basic predictive timing model approach.
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• An enhanced algorithm that applies finer control over when to switch to

a fine-grain fallback mode in order to deal with unpredictable external

events.

• A multi-core ATGA method, which further considers inter-core interac-

tions between regular application or special interrupt tasks running on

different cores.

1.5.3 Multi-Core, Out-of-Order Cache Simulation

In the ATGA approach, the OS model internally accumulates task de-

lays and only synchronizes global time when a task switch is required. In a

multi-core configuration, this temporally decouples cores and allows them to

go ahead of the simulation time. As such, accurate multi-core cache hierarchy

modeling becomes challenging, since memory references from different cores

can be globally committed out-of-order. To combat this problem, we propose

a multi-core, out-of-order cache (MOOC) modeling approach, which incorpo-

rates a delayed reordering of aggregated requests to provide an accurate cache

hierarchy simulation in the presence of temporal decoupling. The proposed

reordering approach can be integrated into any general, high-level multi-core

cache model, which enables accurate yet fast cache simulation of multi-core

processors. The main contributions are as follows:

• A multi-core cache management approach, which, when integrated into

a temporally decoupled multi-core simulation, incorporates a reordering
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technique for fast yet accurate cache commitment of globally out-of-order

memory accesses.

• An extended reordering approach, which, when coupled with the OS

model, further considers task preemption effects for accurate reordering

of memory requests.

1.5.4 Synchronized Timing Model for Parallel Simulation

With the advent of multi-core processors in common workstations and

PCs, parallel discrete-event simulators have received increased attention as

a solution for providing faster simulation of virtual platforms. However, the

simulation performance is still limited by the amount of parallelism available

in the platform model itself. In this dissertation, we propose a novel modeling

technique that manages and synchronizes the execution of discrete concurrency

in multi-core models to boost parallel simulation performance. We introduce a

synchronized timing model which is coupled with our host-compiled models in

order to efficiently control the available parallelism between the platform mod-

els and the underlying parallel simulator. In doing so, we make the following

contributions:

• A synchronized timing model, which uses static alignment of temporal

quanta to issue platform threads to the underlying simulator kernel in

the same simulation cycle for fully utilized parallel simulation.

• A dynamic quantum selection method, which, when integrated into the
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ATGA approach, efficiently aligns platform threads to achieve the fastest

possible parallel simulation.

1.6 Methodology

As mentioned before, for the purposes of OS and processor modeling,

we assume that previously back-annotated source-level code is given. In this

dissertation, we manually back-annotate and mount application models onto

our simulator. In order to evaluate the accuracy of our host-compiled OS

and processor models, we thereby assume ideal back-annotation, where we

measure and back-annotate average execution times at the function level from

a complete run of the application on a reference platform model or a real

board. This allows us to isolate errors in our platform models from other

error sources, such as back-annotation errors, which would otherwise further

decrease accuracy of the overall host-compiled simulation.

In order to evaluate the accuracy of our host-compiled OS and proces-

sor models, we use a reference ISS that simulates one instruction per cycle.

Note that accuracy numbers reported in this dissertation are largely indepen-

dent from the reference execution used for back-annotation. The reference

provides a baseline for fully accurate simulation and back-annotation of se-

quential pieces of code. By contrast, our focus is on errors in the models of

multi-tasking and HW/SW interactions and interferences, which are to large

extend orthogonal to the timing model assumed for sequential code. This is

further evidenced by the fact that consistent accuracy results are observed
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when we use a real board as a reference for back-annotation and comparison.

Timing errors are measured as response times (denoted as Ri,j) of single

iterations (j) of individual tasks (i) in an application as per the following

equation:

errori,j [%] =
|Ri,j(HC Simulator)−Ri.j(ISSref )|

Ri,j(ISSref )
× 100 (1.1)

The average error is then calculated over all iterations of all tasks running on

the system:

avgerror[%] =

∑I
i=1

∑Ji
j=1 errori,j∑I
i=1 Ji

(1.2)

To evaluate the simulation speed of our models, we measure the number

of simulated instructions on the reference ISS. Based on the total simulation

time of our complete host-compiled models, we present speed numbers as sim-

ulation throughput measured in millions of simulated instructions per real

second (MIPS) using the following equation:

Speed [MIPS] =
Simulated Instructions (ISSref )/10+6

Simulation T ime
(1.3)

1.7 Thesis Outline

The remainder of this dissertation is organized as follows. Chapter 2

reviews relevant prior work on a few distinct areas. We mainly focus on existing

system-level simulators and prior research on improving associated accuracy

and speed tradeoffs. We then focus on the related work on high-level cache

simulations. Finally, we discuss the prior work on parallel simulation of multi-

core virtual platforms.
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Chapter 3 presents an analysis of error bounds in task preemption mod-

els of a conventional host-compiled simulation. Traditionally, the assumption

is that timing errors are bounded by annotated discrete timing granularities.

However, the presented analysis shows that errors can exceed such limits sig-

nificantly depending on the system utilization. Such a large error bound can

consequently limit the usefulness of host-compiled simulations for evaluating

real-time performance.

Chapter 4 presents the design and implementation of our abstract SMP

OS model. This chapter further proposes a novel automatic timing granularity

adjustment (ATGA) approach, which avoids the task preemption errors pre-

sented in Chapter 3. In such an approach, an extended OS model is capable of

continuously monitoring system state to automatically and dynamically adjust

simulated timing granularity.

Chapter 5 presents our work on a multi-core processor model, which

incorporates a high-level interrupt handling method and a multi-core cache

hierarchy channel in order to accurately replicate external interactions and

evaluate overall real-time performance, respectively. We introduce a multi-core

out-of-order cache modeling approach, which incorporates a delayed reordering

of aggregated requests to provide an accurate cache hierarchy simulation along

with our ATGA approach.

Chapter 6 extends the infrastructure from Chapter 4 and utilizes a

novel synchronized timing model for efficient parallel simulation of multi-core

virtual platforms. In the proposed approach, a supplementary timing model
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is coupled with conventional virtual platform models in order to efficiently

execute such models on multi-core hosts.

Chapter 7 concludes this dissertation, raises open questions, and pro-

poses directions of future research.

Finally, Appendix 1 elaborates on the design and integration of more

complex multi-core scheduling algorithms such as Pfair and G-EDF into our

host-compiled OS model.
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Chapter 2

Related Work

In this chapter, we briefly review existing host-compiled simulators and

prior approaches for improving simulation accuracy and speed, high-level cache

modeling approaches, and recent research on parallel virtual platform simula-

tion.

2.1 Host-Compiled Simulation

Conventional ISS-based software simulators using micro-architectural

or interpreted simulation [3, 6, 76, 54] can reach cycle accuracy at a speed of

several kHz. At the other end of the spectrum, virtual platform simulators

using dynamic binary translation can provide significant speedups (reaching

simulation throughput of several MIPS), but only focus on functional simu-

lation with no or very limited timing accuracy [82, 4, 7, 64, 31, 85]. Instead,

hybrid approaches [18, 86, 49] employ functional model/timing model decou-

pling techniques to parallelize the simulation of various aspects for fast func-

tional simulation while still providing cycle-accurate results. Although the

aforementioned types of simulators offer multi-core support, including CPU

modeling at different levels of abstraction ranging from instruction-accurate
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models to fully cycle-accurate and micro-architectural ones, the need to simu-

late cross-compiled applications running on top of the complete binary code of

an operating system kernel makes these simulator inefficient for fast and early

integration and evaluation of complete systems.

Instead, source-level simulators aim to provide a fast yet accurate sim-

ulation platform by integrating instrumented source code of applications with

a coarse-grain timing model that is obtained from the target architecture [56,

83, 14, 51]. For accurate performance evaluation, several approaches back-

annotate the code with timing estimates that are obtained by compiling to an

intermediate representation [39, 10, 91, 15].

Source-level approaches can provide accurate simulation of single-task

application behavior, but lack support for modeling of parallel applications and

architectures. Host-compiled simulators further extend source-level simulation

to include abstract models of the software execution environment [27]. Origi-

nally, host-compiled simulators only focused on modeling of OS effects [29, 69,

36, 57, 47]. Later, those approaches were expanded into complete processor

models that include timing accurate interrupt chains and TLM-based bus in-

terface [26, 5, 9, 81]. Such host-compiled simulators have been shown to run

at speeds beyond 500 MIPS with more than 95% timing accuracy. However,

host-compiled simulation of complete multi-core platforms is still missing.

Improving the accuracy of high-level simulation while maintaining high

performance has been the focus of many researchers. Krause et al. [45] present

a hybrid ISS and RTOS modeling approach to combine cycle-accurate appli-
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cation simulation with fast OS scheduling and context switching. Khaligh et

al. [77] present an adaptive TLM simulation kernel, which changes the level of

accuracy during simulation to the level expected by designers. Stattlemann et

al. [88] propose an approach that precisely models the execution time of access

conflicts in shared resources by using a proactive quantum allocator in a tem-

porally decoupled simulation. Schirner et al. [78] introduce a result-oriented

method for accurate simulation of interrupts on host-compiled processor mod-

els by applying optimistic prediction and correction. In all cases, however,

fundamental, statically determined speed and accuracy tradeoffs remain.

2.2 Cache Simulation

Existing cache simulation techniques can be categorized into two com-

mon approaches: trace-driven or execution-driven simulations. Trace-driven

cache simulators use a collected stream of memory accesses of applications to

replicate the cache behavior [34]. This approach can be fast, but the simula-

tor needs to deal with large trace files and data. In contrast, execution-driven

simulators combine an executable cache model and simulated application in-

structions to capture memory accesses on-the-fly [17]. With the advent of

MPCSoCs, cache simulators have also focused on simulating cache coherency

and cache hierarchies [43, 33].

There have been several attempts for cache modeling in host-compiled

or source-level simulation. Pedram et al. [66] present a high-level, search-based

cache model integrated into a TLM processor simulation platform. Posadas
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et al. [70] propose a faster approach by introducing a lookup table-based data

cache model. Both include approaches for instrumenting application source

code to update the cache state and adjust the back-annotated delays. Stat-

telmann et al. [89] introduce a hybrid source-level cache simulator, which uses

application binary codes to annotate memory accesses. However, all these

approaches suffer from a lack of multi-core cache hierarchy modeling with as-

sociated speed and accuracy challenges.

2.3 Parallel Virtual Platform Simulation

With the advent of multi-core PCs, parallel discrete-event simulation

(PDES) has received widespread attention [24, 62]. Existing PDES approaches

can be categorized by their inter-thread synchronization mechanisms and are

divided into two common approaches: conservative or optimistic parallel simu-

lations. A conservative PDES maintains sequential consistency by only issuing

threads that are ready in the same simulation cycle, i.e. the same simulation

time and delta cycle. Conservative PDES strictly follows causality constraints,

and all threads are synchronized on simulation cycle advances. By contrast,

in an optimistic simulation, no specific synchronization is required between

threads, and threads are allowed to run ahead of other threads in simulated

time. Instead, a roll-back mechanism is required to restore accurate simulation

of any messages violating causality at synchronization points.

Accordingly, parallel discrete-event simulation of standard system-level

design languages (SLDLs) has been proposed as a solution for improving full-
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system simulation performance [21]. Chopard et al [19] propose a conservative

SystemC simulator which partitions SystemC threads into clusters simulated

by instances of SystemC schedulers running on distributed processing nodes.

A master node then synchronizes SystemC threads at each update phase.

Ezudheen et al. [23] instead present a single parallel SystemC scheduler that

executes all SystemC threads in parallel on an SMP host. In this approach,

SystemC processes are partitioned and mapped to a single host thread, and

threads are issued if the runnable processes are in the same simulation cycle.

In both approaches, however, designers need to manually partition SystemC

modules. In similar approaches [84, 20], the evaluation phase of the SystemC

or SpecC scheduler is parallelized, which synchronizes threads using a bar-

rier at the end of evaluation phase. In these approaches, instead of a fixed

mapping, the simulator or underlying OS will profile the execution of threads

and balance work queues. All the approaches replicate a conservative parallel

simulation. By contrast, Chen et al. [16] present a mixed conservative and out-

of-order parallel simulation, in which inter-thread dependencies are statically

determined and threads can be issued and move to different simulation cycles

as long as such a dependency does not exist. In all such approaches, how-

ever, the speedup is limited by the amount of parallelism exposed by platform

threads itself.

In addition to parallelized SLDL simulation kernels, several approaches

utilize general features of virtual platforms to develop a specialized parallel

simulator. Mello et al. [55] introduce a new programming style to utilize
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temporally decoupled simulation of platform threads in a parallel simulator.

The platform threads are synchronized when they receive special sync messages

at simulation quantum boundaries. Pessoa et al. [67] then evaluate effects of

communication locality on overall performance of such a parallel simulation

approach. Similarly, Khaligh et al. [77] propose an approach in which each

platform thread is mapped to a dedicated simulator. Platform threads are

then temporally decoupled to provide fast simulation by locally incrementing

the simulation time without actually synchronizing the global time. Again,

a shared barrier is used to synchronize all simulators at simulation quantum

boundaries. However, such methods only provide a basic infrastructure where

choosing the right synchronization points and quantum boundaries is left to

the user, which requires designers to be aware of the structure of the underlying

simulation kernel.
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Chapter 3

Tradeoff Analysis in Host-Compiled

Simulations

In host-compiled simulation approaches, a faster simulation is achieved

through source-level execution of application models. For performance evalua-

tion, the source-code is then instrumented with target-specific execution delays

and controlled by an abstract model of target platform. Hence, precise delay

annotation and careful abstraction of platform models play an important role

in an accurate and fast host-compiled simulation.

In this chapter∗, we present a quantitative study and an analysis of

accuracy and speed in convention host-compiled simulations. After present-

ing an example of the execution sequence for a host-compiled simulation in

Section 3.1, we first examine the behavior of conventional host-compiled sim-

ulators under different timing granularities to study the challenges involved in

fast and accurate platform modeling (Section 3.2). We further classify differ-

ent sources of errors in such approaches. In Section 3.3, we present an analysis

∗Contents of this chapter previously appeared in the following papers:

P. Razaghi and A. Gerstlauer. Host-compiled multicore RTOS simulator for embedded real-time software

development. DATE, March 2011.

P. Razaghi and A. Gerstlauer. Predictive OS modeling for host-compiled simulation of periodic real-time

task sets. ESL, March 2012.
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of error bounds in preemptive models that shows that errors can exceed limits

set by timing granularities. At the end, we propose an approach to avoid such

errors and provide an accurate simulation.

3.1 Host-Compiled Platform Simulation Example

In this section, we demonstrate how a platform model manages the

execution of a source-level application. Figure 3.1 (a) shows a simple applica-

tion running two concurrent tasks, in which tasks’ execution delays are back-

annotated into the source code at basic-block granularities. Execution delays

are modeled as “wait for time” calls to the underlying SLDL kernel. As such,

Processor

OS

Task

1

for (int i = 0; i < N; i++) {

sum += A[i];

SLDL::wait(5 ns);

}

Task 

0

(a) Source-level application model.
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(b) Source-level simulation trace. (c) Host-compiled simulation trace.

Figure 3.1: Example of host-compiled simulation.
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the overall timing behavior is emulated by the SLDL simulator. Figure 3.1 (b)

shows the simulation trace of the application. At the beginning of the simula-

tion, the SLDL kernel selects to execute task T0. At the point where wait (5

ns) is called, the simulator switches to task T1 until wait(5 ns) is reached there

again. At this point, the simulator internally advances the simulated time to

the next point (5 ns) and resumes the execution of T0. As such, the SLDL

simulator emulates the parallel execution of the application tasks.

So far, a target platform architecture is not considered during the sim-

ulation. To replicate sequential task execution on a single-core target pro-

cessor, an abstract OS model is used to directly manage the timing model.

Figure 3.1 (c) shows the simulation trace of the same application paired with

an OS model. At the start of the simulation, the OS model suspends task T1

and lets T0 run. Task T0 calls wait(5 ns) from the OS interface to notify the

OS about its execution delay. The OS then internally advances the simulated

time using the underlying SLDL kernel, suspends task T0 and unblocks task

T1 to resume its execution. As such, tasks are interleaved at boundaries of

“wait for time” primitives to replicate a sequential execution. In the following

sections, we present how this behavior can limit the accuracy and speed of

preemptive simulation of host-compiled models.

3.2 Quantitative Study of Accuracy/Speed Tradeoffs

In this section, we compare the execution behavior of randomly gen-

erated artificial task sets running on a conventional host-compiled simulator
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and on a virtual reference platform to study the speed and accuracy of host-

compiled models.

Target Platform. We simulate our target application on a dual-core

MIPS34Kc Malta target platform running a 2.6.24 Linux SMP kernel, which

realizes a partitioned queue scheduling scheme and is configured with pre-

emption and high resolution timers. We compare our host-compiled model of

this platform against an instruction-accurate reference ISS running the actual

Linux binary [64].

Application Model. We use the setup presented in [12] to generate

our artificial, periodic task sets. Task periods are uniformly distributed over

[10, 100] ms, while task utilizations are distributed over [0.001, 0.1], [0.1, 0.4],

and [0.001, 0.4], i.e. in the small (S), large (L) or mixed/medium (M) range

of execution delays. For each task set, we generate tasks until a maximum

is reached or the core utilization falls into the range [0.3, 0.6), [0.6, 0.8) or

[0.8, 1) for light, medium, or heavy task loads, respectively. Tasks priorities

are assigned inversely to their periods following a rate-monotonic scheduling

strategy. Actual task delays are measured on the reference simulator and back

annotated into our model at different levels of timing granularity.

Sources of Errors. Model error is measured as the average absolute

difference in individual task response times over all tasks and task iterations.

Generated task sets and resulting modeling accuracies are summarized in Ta-

ble 3.1 and Table 3.2. Results show that with a timing granularity of 10 µs

and 100 µs the average timing error across all task sets is less than 0.4% and
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Table 3.1: Average error of small task sets under different timing granularities.

Task Set S1 S2 S3 S4 S5

Core ID C0 C1 C0 C1 C0 C1 C0 C1 C0 C1
# of Tasks 7 6 11 10 9 9 12 15 13 16
Total Util. .33 .3 .47 .45 .56 .5 .7 .69 .84 .87
Avg Task Util. .047 .05 .043 .045 .062 .056 .058 .046 .064 .054

Avg Err (1µs) .58% .30% .39% .73% .64% .38% 1.02% .88% 1.10% 1.12%
Avg Err (10µs) .54% .29% .33% .68% .57% .35% .88% .81% .98% .98%
Avg Err (100µs) .94% .59% 1.51% 1.78% 1.17% 0.58% 2.74% 1.77% 2.04% 3.57%
Avg Err (1000µs) 8.56% 3.55% 10.0% 10.1% 8.58% 4.09% 16.8% 12.6% 13.2% 15.6%

Table 3.2: Average error of medium and large task sets under different timing
granularities.

Task Set M1 M2 M3 M4 L1 L2 L3

Core ID C0 C1 C0 C1 C0 C1 C0 C1 C0 C1 C0 C1 C0 C1
# of Tasks 4 4 4 4 4 3 3 3 3 4 3 2 3 3
Total Util. .54 .56 .69 .64 .71 .7 .86 .69 .63 .44 .64 .63 .88 .92
Avg Task Util. .137 .139 .173 .16 .176 .235 .286 .23 .209 .109 .212 .315 .294 .306

Avg Err (1µs) .24% .06% .25% .55% .35% .16% .12% .09% .14% .09% .08% .14% .07% .11%
Avg Err (10µs) .21% .04% .25% .53% .23% .15% .11% .09% .16% .08% .08% .13% .04% .13%
Avg Err (100µs) .32% .42% .26% 1.97% 1.05% .44% .31% .12% .26% .23% .50% .14% .43% 1.02%
Avg Err (1000µs) 3.1% 5.1% 1.4% 19.3% 11.4% 3.2% 2.8% .81% 2.4% 2.9% 4.7% .63% 4.3% 9.1%
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Figure 3.2: Average error in average response time of 1µs task sets.
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1%, respectively. In general, timing error grows with increasing timing gran-

ularity. Figure 3.2 depicts the average error for all task sets under the timing

granularity of 1 µs. The graph shows that for sets with smaller tasks and

higher CPU loads a higher error is measured.

Context-switch overhead: The measurement of context switch overhead

(Figure 3.3) shows that the timing error is a function of the number of task

switches, and it is higher for task sets with a large number of small tasks. This
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Table 3.3: Simulation time (speed) per task set.

Task Set 1µs 10µs 100µs 1000µs

S1 4.1s (240 MIPS) 0.36s (2800 MIPS) 0.07s (14.3 GIPS) 0.03s (33 GIPS)
S2 5.0s (200 MIPS) 0.59s (1700 MIPS) 0.08s (12.5 GIPS) 0.05s ( 20 GIPS)
S3 6.1s (160 MIPS) 0.60s (1700 MIPS) 0.08s (12.5 GIPS) 0.04s (25 GIPS)
S4 12.0s (80 MIPS) 0.85s (1200 MIPS) 0.14s (7.1 GIPS) 0.04s (25 GIPS)
S5 10.5s (90 MIPS) 0.95s (1000 MIPS) 0.16s (6.2 GIPS) 0.08s (12 GIPS)
M1 7.6s (130 MIPS) 0.61s (1600 MIPS) 0.10s (10 GIPS) 0.03s (33 GIPS)
M2 7.5s (130 MIPS) 0.78s (1300 MIPS) 0.12s (8.3 GIPS) 0.03s (33 GIPS)
M3 7.6s (130 MIPS) 0.86s (1200 MIPS) 0.12s (8.3 GIPS) 0.04s (25 GIPS)
M4 9.3s (110 MIPS) 0.89s (1100 MIPS) 0.16s (6.2 GIPS) 0.03s ( 33 GIPS)
L1 5.9s (170 MIPS) 0.74s (1300 MIPS) 0.12s (8.3 GIPS) 0.03s (33 GIPS)
L2 7.4s (130 MIPS) 0.72s (1300 MIPS) 0.10s (10 GIPS) 0.02s (50 GIPS)
L3 10s (100 MIPS) 1.08s ( 920 MIPS) 0.13s (7.7 GIPS) 0.04s (25 GIPS)

is due to context switch delays, which are not included in the models.

Back-ground tasks: Another source of error is the non-ideal behavior of

the real Linux kernel. Figure 3.4 plots the response times of the two highest-

priority tasks in the M1 task set on the Linux kernel and the host-compiled

simulator. As can be seen, on the Linux kernel, the highest priority task is

interrupted at regular intervals by additional, unknown background activities.

Speed Evaluation. Table 3.3 shows the simulation runtimes of the

models for each task set. We run each task set for 10 s of simulated time. At a

nominal rate of 100 MIPS simulated by the reference ISS, this corresponds to

1000 million NOP instructions on each core for artificial delay loops and any

idling. Simulations each runs for about 30 s of wall time on the reference ISS.

By contrast, our model simulates such a non-functional, delay-only setup in

faster than real time with a throughput of more than 1000 MIPS per core (or

2000 MIPS for the whole dual-core system) at timing granularities of 10 µs.

To summarize, we plot average accuracy and speed over all task sets
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Figure 3.5: Accuracy and speed comparison for the artificial task sets.

for different timing granularities in a single graph shown in Figure 3.5. As can

be seen, there is a fundamental tradeoff between accuracy and speed. A faster

simulation is achieved by a coarser-grained simulation, but it comes with a

loss in accuracy. This means that designers require to carefully select a proper

granularity to meet the desired accuracy while still maintaining the benefits

of a fast simulation.

3.3 Analytical Error Model for Preemptive Simulations

As we saw in Section 3.1, the OS model simulates task execution delays

using underlying SLDL primitives whenever the running task calls a “wait for

time” method from the OS API. In this way, a scheduler can be called after

advancing the simulation time to allow for preemption of the current task by

any higher priority task that became available in the meantime. Figure 3.6

shows modeling errors in such approaches. In this example, two tasks are run-

ning on the system and their execution delays are divided into equal intervals.
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Response Time Error

Figure 3.6: Preemption error model.

Task Thigh is running periodically, therefore task Tlow is scheduled after the

finish time of τhigh jobs. At time t1, the OS scheduler executes Tlow, since it is

the only ready task in the system. At time rh,2, Thigh becomes ready but the

scheduler is not called until time t2. Consequently, the start time of Thigh is

delayed and the lower priority task is preempted at a wrong time. As such,

errors in the preemption model are a direct function of the back-annotated

application-level timing model. Large granularities result in fast simulation,

but may lead to preemption points being shifted by a large delay.

In the following, we focus on analyzing preemptive scheduling behavior.

Without loss of generality, we consider an ideal model that abstracts away

other effects, where an application is composed out of a set of periodic real-

time tasks Γ = {τ1, τ2 . . . τn}, ordered by decreasing priorities Pi. Each task

τi is described by its period Ti and execution time Ci. The jth instance (job)

of task τi is denoted by τi,j, and its response time Ri,j is measured as the

time elapsed between its release time ri,j and the time fi,j when it finishes

execution of one iteration. For host-compiled simulation, task execution delays

are assumed to be modeled by timing values back-annotated at a granularity
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Figure 3.7: Preemption error models in host-compiled simulation.

of δi (Ci = δi ∗ n). To model preemptions, the OS scheduler is called at the

end of each δi interval (or when a task makes an explicit OS kernel call).

We can analyze the accuracy of host-compiled simulation by evaluating

the response time of each task and measuring the percentage of error using

the following equation:

erri =
|Ri(model)−Ri(ideal)|

Ri(ideal)
(3.1)

Figure 3.7(a) shows the theoretical execution of three periodic tasks in

which the first job τ3,1 of task τ3 is preempted by the higher-priority job τ1,1

at times r1,1 and r1,2. While τ1 is in its first iteration τ1,1, a medium-priority

task τ2 is released (at time r2,1) and gets executed once τ1,1 finishes (at time

f1,1). Subsequently, τ3,1 resumes its execution only after both higher priority

jobs finish (at time f2,1).

In Figure 3.7(b), the host-compiled simulation of the same task set

is shown. In this model, execution delays of tasks are divided into discrete

intervals. Since the OS scheduler is only called at the end of each advance in
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time, the start of τ1,1 is delayed until the end of the current time interval of

τ3,1. Consequently, the start of τ2,1 is also shifted by an equal amount to the

delayed time f ′1,1 at which τ1,1 finishes. As a result, the next job of τ1 now

starts in the last time interval of τ2,1, and τ2,1 gets preempted by τ1,2 as soon

as its last time interval expires. Therefore, τ2,1 can not finish executing its

last block of code, complete its job and return control to the OS kernel until

it is resumed at time f ′1,2 = f ′2,1 when τ1,2 finishes†. In other words, f ′2,1 is now

determined by f ′1,2.

As shown in this example, we can consider three sources of errors in

response times. In a first scenario, the start time of a job of a higher priority

task τi is delayed by a lower priority task τj running at its release time. The

largest delay is achieved when the higher priority job is released simultaneously

with the start of a new time interval of the lower priority job. As such, the

maximum error can be bounded from above by:

erri ≤
n

max
j=i+1

(δj)/Ci (3.2)

In a second scenario, the start time of a job of a lower priority task

τj,l, which is released when a job of a higher priority task τi,k is running, is

determined by the finish time of the higher priority job. Hence, if the start

time of τi,k is shifted due to scenario one or two, the start time of τj,l is shifted

equally. As such, the maximum error in this scenario is equal to the maximum

†Note that if the last code block is instead moved to before the last time advance, a job
can conversely finish too early by an equal amount.
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error derived for scenario one or two of all higher priority tasks:

errj ≤
j−1

max
i=1

(erri) =
n

max
i=1

(δi)/Cj (3.3)

Finally, the third scenario happens when the start time of τj,l is delayed

due to scenario one or two such that a job of a higher priority task τi,k becomes

active while τj,l is executing its last time interval, as is the case for τ2,1 in

Figure 3.7(b). In this scenario, the finish time of τj,l is determined by the

finish time of all higher priority tasks released while any higher priority task is

running, i.e. until τj,l can get resumed. As such, the amount of error depends

on the system load and, assuming a well-behaved system, is only limited by

the task’s next deadline:

errj ≤ (Tj − Cj)/Cj (3.4)

As demonstrated by this analysis, the error in simulated task response

times in scenarios one and two is a function of the modeled timing granularity.

However, the possibility of large errors in the third scenario severely limits

host-compiled simulators for evaluating real-time performance.

3.4 Summary

In this chapter, we studied the accuracy and speed of conventional host-

compiled simulators on a suite of artificial task sets. We observed simulation

speeds of more than 1000 MIPS with less than 1% timing error for 10 µs timing

granularity. Overall, this shows the efficiency of host-compiled simulators for
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supporting rapid and early embedded software development and exploration.

However, the inherent speed and accuracy tradeoff and large preemption error

bounds of special cases make this approach inefficient for real-time performance

evaluation.

In the next chapter, we present an OS model that internally keeps the

state of tasks running on the system and employs a novel timing model to

automatically adjust the granularity and call its scheduler at right preemption

points. In such a way, accuracy is improved while performance is maintained.

35



Chapter 4

OS Modeling

Multi-core processor architectures have opened new software develop-

ment challenges, such as ensuring correct communication and synchronization

between tasks running concurrently on different cores. In traditional multi-

processor setups, tasks are assigned to different processors in an asymmetric

multi-processing (AMP) fashion. Each processor has an independent address

space and is managed by a dedicated OS. With each processor acting like a

conventional single-core machine, this approach allows for easy adaptation of

legacy applications. By contrast, in a multi-core setup, each processor can in

turn contain multiple cores that share a common set of resources and are man-

aged by a single OS. Tasks execute on different cores under a shared memory

model in a symmetric multi-processing (SMP) context. With ever growing

complexities and software content, a crucial component for the performance

of real-time systems is the operating system (OS) kernel.

In this chapter∗, we introduce a high-level, highly flexible and config-

urable host-compiled OS model to enable early, fast and accurate software

∗Contents of this chapter previously appeared in the following paper:

P. Razaghi and A. Gerstlauer. Automatic timing granularity adjustment for host-compiled software simu-

lation. ASPDAC, January 2012.
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exploration in an SMP context. Our proposed model enables designers to

easily and rapidly explore different scheduling parameters through straightfor-

ward adjustment of application and OS parameters. We further propose an

automatic timing granularity adjustment (ATGA) approach, in which the OS

model continuously monitors system state to automatically adjust simulated

timing granularities and eliminate task scheduling errors while maintaining fast

simulation speed. In such an approach, designers need not be concerned with

manually selecting a proper granularity for optimizing the speed and accuracy

tradeoff. Instead, the ATGA model automatically, continuously and dynami-

cally adjusts to changing system conditions in order to achieve an optimized

simulation.

This chapter is organized as follows: In Section 4.1, we first demonstrate

that how a host-compiled application is integrated into the OS and complete

simulator. Next, in Section 4.2, we elaborate the internal structure of our OS

model. Thereafter, we focus on the proposed timing management model in

Section 4.3. Finally, we present a preliminary evaluation of our approach and

models in Section 4.4.

4.1 Application Setup and Integration

In host-compiled simulators, application code is captured at the source

level in order to achieve a fast simulation and eliminate low-level implemen-

tation details. In the following, we present the simple and canonical parallel

programming model used to develop applications and integrate them into our
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void receive(int data, int tID) {

OSI.PreWait(tID);

SLDL::wait (read_event);

OSI.PostWait(tID);

data = internal_buffer;

}

T1

T2 T3

Task T3 {

int data, addr, tID;

tID = OSI.TaskCreate(taskParam);

While(1) {

OSI.TaskActivate(tID);

CHI.receive(data, tID);

ProcessT3Func();

OSI.TimeWait(tDelay);

BUSI.WriteWord(addr, data);

OSI.TaskEndCycle(tID);

}

OSI.TaskTerminate(tID);

}

CH

Figure 4.1: Application model for host-compiled simulation.

host-compiled simulator. In this approach, a designer only need to describe

the functionality of application tasks. To describe inter-task communication,

the simulator provides a comprehensive library of standard communication

primitives and channels. In Figure 4.1, a model of a typical application task

and an internal implementation of a communication channel are shown, which

are further detailed in the rest of this section.

4.1.1 Task Modeling

As discussed in Section 1.2, a host-compiled simulator is developed over

a standard SLDL. Accordingly, application tasks are modeled as high-level, hi-

erarchical SLDL processes, which are connected to the simulator via the under-

lying OS application program interface (API), shown in Figure 4.2. Task be-

havior is described by conventional C functions and their target-specific execu-

tion delays are back-annotated into the code once at compile time. The source

code is instrumented with the required timing information using TimeWait()
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1 /* OS initialization and startup */

2 void Init(OSPARAM param);

3 void Start(void);

4 /* Task management */

5 int TaskCreate(TASKPARAM param);

6 void ParStart(int taskID); /* fork */

7 void ParEnd(int taskID); /* join */

8 void TaskActivate(int taskID);

9 void TaskSleep(int taskID);

10 void TaskResume(int taskID);

11 void TaskEndCycle(int taskID);

12 void TaskTerminate(int taskID);

13 /* Delay modeling and event handling */

14 void TimeWait(long long nSec, int taskID);

15 void PreWait(int taskID);

16 void PostWait(int taskID);

17 void PostNotify(int taskID, int blockedTaskID);

18 /* Interrupt handling */

19 void IntrTrigger(int intrID);

20 int CreateIntrHandler(int coreID);

21 void IEnter(int coreID, int handlerID);

22 void IReturn(int coreID);

Figure 4.2: High-level OS interface.

methods of the OS API.

During the system startup phase, the Init() method initializes the OS
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model data structures and defines the OS parameters, including the number

of supported cores and the default simulation quantum. The Start() method

is then used to enter multi-core scheduling after all tasks have been attached

to the model.

During the task creation phase, tasks are added to the OS by calling

TaskCreate(), which allocates an internal representation inside the OS model.

Furthermore, this method allows application designers to explore a wide range

of tasks properties and behavior. The currently supported parameters are

listed as follows:

- Type: each task can be defined exclusively as an aperiodic, a periodic, or a

kernel special task model;

- Period: valid only for periodic tasks;

- Priority: the static priority level of tasks;

- Time Slice: time interval that a task is allowed to execute without preemption

by other tasks with the same priority;

- Affinity: a bitmap representing the set of cores allowed to execute the task;

- Initial Core: the initial core that is allowed to run the task at start time.

The TaskCreate() method returns a unique ID, which is passed to the

OS kernel in all following task-related API calls.

At the start of simulation, task threads are spawned via the SLDL.

They then register themselves with the OS via a call to the TaskActivate()

method at the beginning of their execution. This allows the OS model to collect

all threads and enter them into the scheduler. At the end of their execution,
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tasks remove themselves from the OS kernel by calling TaskTerminate(). If

supported by the underlying SLDL, tasks can fork children and temporarily

remove themselves from OS scheduling (ParStart()) until all children are

collected on the SLDL level (ParEnd()).

Finally during the execution, a task can remove itself from the active

core temporarily by either calling TaskEndCycle() or TaskSleep(). The for-

mer moves the calling periodic task into idle mode until its next release time.

The latter puts the task in sleep mode until another task calls a corresponding

TaskResume() method.

4.1.2 Channel Library

Inter-task communication is implemented by one-way or two-way mes-

sage passing channels. Channels are described using the underlying SLDL

event/notify primitives, which are wrapped into OS APIs that will allow the

OS to accurately control the execution order of tasks connected to the channel.

Designers will typically not have to deal with event handling directly. Instead,

the simulator provides a reimplementation of a rich library of communication

channels and primitives that are properly hooked into the OS model.

As shown in Figure 4.1, each “wait for event” statement is encapsulated

by PreWait() and PostWait() methods. PreWait() simply removes the run-

ning task from the OS kernel and lets the scheduler start the next ready task

on the current core. As soon as the event is captured, PostWait() returns the

blocked task into the ready state and waits until the task is scheduled by the
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OS kernel.

In point-to-point communication channels, where sender and receiver

of messages are fixed during the simulation, “notifying an event” is followed

by a call to an OS PostNotify() method. If the just unblocked task has a

priority higher than the current one, PostNotify() will immediately perform

a task switch and call the OS scheduler. In this way, a more accurate task

scheduling is modeled, since high priority unblocked tasks are not required to

wait until the next point that the scheduler is called.

4.2 Abstract OS Modeling

We extend existing approaches to develop a multi-core SMP OS model

that manages the scheduling and dispatching of application tasks across avail-

able queues and cores. In doing so, the OS model wraps around the basic

SLDL event handling mechanism, replacing SLDL primitives with calls to the

OS interface instead and ensuring that at any time only as many SLDL threads

as there are cores are active. Figure 4.3 depicts an overview of our abstract

multi-core OS model, which is designed to perform three main functionalities:

task management, multi-core scheduling emulation, and coordination of the

simulated timing model.

During its execution, each simulated task can be in five states, and

tasks move to different states by calling a corresponding OS API method. In

order to emulate the state of the system, the OS model maintains tasks in

five internal queues: a Ready queue holds tasks that are ready to execute
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Figure 4.3: Abstract OS model internals.

and is sorted based on a user-defined scheduling policy. An Idle queue holds

periodic tasks that have called the kernel’s TaskEndCycle() method. The Idle

queue is ordered based on the release time of each task’s next iteration. Idle

tasks are retrieved from the head of queue and placed in the Ready queue by

the OS kernel at the start time of their next period. A Sleep queue holds

tasks that have been suspended until they are resumed again. Tasks waiting

for an event are suspended and transferred to a Wait queue. As part of

modeling the top half of the OS interrupt handling chain, an IntrWait queue

holds special interrupt tasks until a core-specific interrupt handler calls the

IntrTrigger() method to move them into the Ready queue. Since the core-

specific interrupt handlers are treated as special high-priority tasks by the

OS scheduler, a separate IntrHandlerReady queue is dedicated to each core.

Interrupt handlers are activated and moved into a corresponding queue when

the IEnter() method is called by the processor interrupt interface. After
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Figure 4.4: Host-compiled SMP OS models.

triggering interrupt tasks, interrupt handlers deactivate and remove themselves

from the IntrHandlerReady queue by calling the IReturn() method.

In the context of SMP scheduling, there are two major task scheduling

schemes distinguished by the number of Ready queues associated with each

core: partitioned and global scheduling schemes. In a partitioned scheme, each

core has a separate Ready queue and tasks are initially assigned to a fixed

queue. The scheduler picks tasks for a core only from the associated queue. In

a global scheme, the scheduler maintains only a single Ready queue and tasks

can be freely assigned to the next available core. A global queue can lead to a

better utilization but is less scalable and may result in degraded performance

due to cache pollution when tasks move between cores too frequently [46]. Our

OS model supports both scheduling schemes, such that designers can explore

the right structure for a particular application. Depending on the scheduling
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Function Scheduler (int coreID):

1 queueID := GLOBAL SCHEDULING ? ø : coreID

2 oldTask := runningTask[coreID]

3 runningTask[coreID].RemainingTimeSlice − = (CurrentTime() - runningTask[coreID].StartTime)

4 runningTask[coreID].State := Ready

5 if runningTask[coreID].RemainingTimeSlice ≤ ø then

6 runningTask[coreID].RemainingTimeSlice := runningTask[coreID].TimeSlice

7 FIFO(ReadyQueue[queueID], runningTask[coreID])

8 else

9 LIFO(ReadyQueue[queueID], runningTask[coreID])

10 endif

11 Dispatch(coreID)

12 Wait4Sched(oldTask)

Figure 4.5: Multi-core OS scheduler.

scheme, a single Ready, Idle, Sleep, Wait and IntrWait queue is either shared

among all cores as depicted in Figure 4.3 and Figure 4.4 (a), or multiple such

queues are replicated one per core as shown in Figure 4.4 (b). In the following,

we present further details on the internals of the OS’ scheduler implementing

fixed-priority, FIFO, and round-robin scheduling policies. We have further

implemented more sophisticated scheduling policies such as Pfair [87] and G-

EDF [1], details of which are discussed in Appendix 1.

The core component of the OS model is a replicated, generic multi-

core scheduler, the body of which is shown in Figure 4.5. The scheduler is
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an internal function of the OS model and is called by the OS API methods

whenever a task switching is possible or required. The main functionality of

the scheduler is to retire the currently active task on a core, if any, and place

it in a proper place in the right Ready queue. We utilize a time slice notion to

model FIFO or round-robin (RR) scheduling among tasks that have the same

priority. When the OS runs the scheduler for a specific core, it calculates the

remaining time slice of the current active task on the desired core. This is

done by subtracting the time consumed by the task, which is computed as the

difference between the current simulated time and the time the task was last

put onto the core (line 3 in Figure 4.5). Then, the current task is moved to

the corresponding Ready queue based on the new value of the time slice. If the

time slice reaches zero, the task is added at the end of its priority list where

it will be scheduled after all current ready tasks with the same priority. In

addition, the task’s remaining time slice value is reset back to its configured

value. Otherwise, the task will be placed back at the beginning of the priority

list from where it will be scheduled immediately again, right before any other

ready tasks with the same priority. Consequently, in RR scheduling the value

of the time slice defines the portion of time that every task is allowed to be

executed without any preemption by tasks of the same priority, while setting

an infinite time slice value will result in a FIFO scheduler.

At the end of the scheduler, a Dispatch() function will be called to

assign a new task to the current core. Figure 4.6 shows the implementation

of Dispatch(). As a first step, if there is an active interrupt on the core, a
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Function Dispatch (int coreID):

1 if !Empty(IntrHandlerReadyQueue[coreID]) then

2 IntrHandlerID := PeekFirst(IntrHandlerReadyQueue[coreID])

3 runningTask[coreID] := IntrHandlerID

4 IntrHandlerList[IntrHandlerID].State := RUN

5 SendSched(IntrHandlerID)

6 else

7 OSDispatch(coreID)

8 endif

Figure 4.6: Multi-core task dispatcher.

corresponding interrupt handler (see Section 5.2) will be assigned to that core

(lines 2-5) instead of a regular task. The aforementioned core-specific interrupt

handler queues (IntrHandlerReady) thereby manage the priorities and selection

among pending interrupts if multiple interrupt vectors are supported by the

modeled processor.

If there are no pending interrupts, an OS-specific dispatcher will be

called to assign normal tasks to the core. We present the implementation

details of the OSDispatch() function for both global and partitioned queue

models (Figure 4.7). In both cases, the function selects the highest priority

task in the Ready queue and assigns it to run on the current core. Ready

queues are sorted by task priorities, and tasks with the same priority are

arranged based on time slices, as described above. In case of partitioned

queues (Figure 4.7 (a)), a load balancing to optionally, e.g. at regular intervals,
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Function OSDispatch (int coreID):

1 queueID := coreID

2 LoadBalance(coreID)

3 if !Empty(ReadyQueue[queueID]) then

4 runningTask[coreID] :=

5 getFirst(ReadyQueue[queueID])

6 runningTask[coreID].State := RUN

7 runningTask[coreID].StartTime :=

8 CurrentTime()

9 SendSched(runningTask[coreID])

10 else

11 runningTask[coreID] := Null

12 endif

Function OSDispatch (int coreID):

1 ReadyQueue Lock.Acquire()

2 runningTask[coreID] := Null

3 if !Empty(ReadyQueue[ø]) then

4 activeTask := getFirst(ReadyQueue[ø], coreID)

5 if activeTask ! = Null then

6 runningTask[coreID] := activeTask

7 runningTask[coreID].State := RUN

8 runningTask[coreID].StartTime := CurrentTime()

9 SendSched(runningTask[coreID])

10 endif

11 endif

12 ReadyQueue Lock.Release()

(a) Partitioned-queue scheme. (b) Global-queue scheme.

Figure 4.7: OS dispatcher.

migrate tasks between queues is performed before dispatching. In case of a

global queue structure (Figure 4.7 (b)), a semaphore controls all accesses to

the shared queue. Note that in both schemes, the tasks to be migrated or

the first task allowed to run on a particular core are selected (in the queue’s

getFirst() method, line 4) based on the task affinity. In other words, the

current core can be idle even if the Ready queue is not empty.

After selecting a new task, the dispatcher releases it by calling SendSched()

to notify an SLDL event associated with the chosen task. After returning from
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the Dispatch() call at the end of the scheduler, the current task on the given

core in turn suspends itself on its own event. Leveraging SLDL events assigned

to each task, this emulates actual context switches. Note that if no higher pri-

ority or other sibling task is available, the current task may simply dispatch

itself and be immediately triggered again.

4.3 Timing Model Management

In addition to basic OS services, the OS model simulates task execu-

tion delays using underlying SLDL primitives whenever the running task calls

a TimeWait() method. In conventional models, the granularity of delays is

defined by the application code. The scheduler is only called after advancing

the simulation time to allow for preemption of the current task by any higher

priority task that became available in the meantime. As described in Sec-

tion 3.3, this limits the possibility of accurately modeling preemptions. In the

following section, we introduce a novel timing model, which predicts possible

preemption points and automatically adjusts the granularity of user-defined

delays in order to call the scheduler at right preemption points. This approach

is only applicable to fully predictable applications, such as periodic systems.

Thereupon, we extend such a timing management approach to support com-

pete SoCs running sporadic tasks with hardware interactions.
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Function PredictNextPreemptionTime (task runningTask):

1 predictedDelay := SIMULATION QUANTUM

2 scheduledCoreID := GetSchedCoreID(runningTask)

3 queueID := GLOBAL SCHEDULING ? ø : scheduledCoreID

4 for all idleTask in IdleQueue[queueID] do

5 if idleTask.Priority ≥ runningTask.Priority and AllowedRun(idleTask, scheduledCoreID) then

6 predictedDelay := idleTask.NextPeriodTime - CurrentTime()

7 return predictedDelay

8 endif

9 endfor

Figure 4.8: OS predictive mode.

4.3.1 Predictive Timing Model

The key idea for removing the preemption error is to predict the next

possible preemption point and invoke the scheduler at the proper time. Fig-

ure 4.8 shows the algorithm for predicting the next preemption time among

periodic tasks. Since the Idle queue is sorted based on the tasks’ next release

times, the preemption point is defined by the first task with a priority higher

than the currently running one. Note that for a global scheduling scheme, the

AllowedRun() method checks if a core is allowed to run a task based on the

task’s user-defined affinity.

Figure 4.9 shows the pseudo code of the TimeWait() method in the

predictive timing model. It first computes the adjusted time delay by calling

the method to predict the next preemption point (line 4). Since the exact
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Function TimeWait (long long nsec, task runningTask):

1 remainedDelay := nsec

2 scheduledCoreID := GetSchedCoreID(runningTask)

3 while remainedDelay > ø do

4 adjustedDelay := PredictNextPreemptionTime(runningTask)

5 if ( !Empty(WaitQueue(scheduledCoreID)) ) then

6 adjustedDelay := defaultDelayGranularity

7 endif

8 adjustedDelay := Min( adjustedDelay, remainedDelay)

9 remainedDelay − = adjustedDelay

10 SLDL::wait(adjustedDelay)

11 Scheduler()

12 endwhile

Figure 4.9: Predictive timing model.

preemption point is unknown whenever a task is waiting for an external event,

the OS kernel in this case falls back to a user-defined default timing granularity

(lines 5 to 7). After advancing the simulation time by the adjusted delay (line

10), the OS scheduler is called to perform a context switch and block the

current task until it is scheduled again (line 11). This loop continues until the

user-defined delay is consumed. As can be seen, the designer does not need to

settle on a granularity for back-annotated delays. The OS kernel itself breaks

delays into a number of smaller steps as needed, in order to automatically

provide the best timing granularity for accurate results.
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4.3.2 Automated Timing Granularity Adjustment (ATGA)

In this section, we describe our automatic timing granularity adjust-

ment (ATGA) approach, which is an expansion of the predictive timing model.

In this approach, the OS kernel switches between predictive and fallback modes

to call the scheduler at the right preemption points. In the following, we

demonstrate the details of each mode and the mechanism that the OS model

uses to automatically control the underlying timing model.

Generally, timing errors happen when a task is running and, while

advancing simulation time, a higher priority tasks becomes ready without the

scheduler getting a chance to immediately preempt the current one. This

situation can occur in the following cases: (a) a periodic task reaches its next

iteration time, (b) the interrupt handler triggers an interrupt task, or (c) a

blocked or sleeping task returns to the Ready state when the running task

notifies an event or resumes it. In such cases, the start of the newly released

task is delayed until the expiration of the current time granule.

In predictive mode, the OS model monitors the state of periodic tasks

running on the system and uses this information to predict the next possible

preemption point specifically for situations in case (a). If the back-annotated

granularity is larger than the predicted interval, the OS kernel adjusts the delay

to invoke the scheduler at the predicted time (as discussed in Section 4.3.1).

Conversely, the exact next preemption point is unknown for cases (b)

and (c), i.e. whenever a task is waiting for an internal or external event. In
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these cases, the OS kernel falls back to a user-defined default timing granular-

ity. In this fallback mode, the OS divides back-annotated delays into very fine

granules until all events are captured and no task remains in the Wait queues.

The adjustive OS model lets designers select coarse-grain back-annotated

delays while achieving fast and still accurate results. However, when the OS

switches to fallback mode, the performance of the simulation decreases dra-

matically. As such, we develop techniques that exercise finer control over when

to invoke fallbacks. Figure 4.10 illustrates two inter-task communication ex-

amples in which the OS kernel does not need to switch to fallback mode even

though some tasks are waiting for an event. In Figure 4.10 (a), a inter-task

communication chain is shown in which a set of tasks are blocked waiting for

other tasks in the chain. The task at the end of the chain has a higher priority

than the running task, but is blocked by a lower priority Ready task. Since the

Ready task cannot be scheduled while the current task is running, remaining

in predictive mode will not change the execution order of tasks. Similarly, in

Figure 4.10 (b) the same chain is shown where the task at the end of the chain

is a low priority task that is blocked on an external event, i.e. an interrupt.

TMedium THigh

TLow

RUN

THigh TLow

WAIT READY

(a) Blocked by a Ready task.

TMedium THigh

THigh

RUN

TLow THigh

WAIT IntrWAIT

(b) Blocked by an interrupt task.

Figure 4.10: Inter-task communication examples.
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Figure 4.11: Fallback mode conditions.

Even when the interrupt occurs and assuming small interrupt task delays, un-

blocking the lower-priority task can never preempt the running task, i.e. the

fallback mode can also be ignored in this situation.

As illustrated by these examples, only the task at the end of the Wait

chain needs to be examined to determine the fallback condition. Figure 4.11

lists all possible situations and required fallback conditions. Generally, the OS

switches to the fallback mode due to unpredicted events. Therefore, the OS

moves to fallback when a task with a higher priority is in the Wait queue and

is blocked by an unknown task or a task in the IntrWait queue. In all other sit-

uations, granularity of the simulation will not affect the execution order of the

application tasks. Lower-priority tasks in the Wait queue or tasks waiting for
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another task in the Wait queue can never affect execution of the current task.

Likewise, the case of a lower-priority ready task has already been discussed,

and a higher-priority task in the Ready queue should never exist. Situations in

which a high-priority task is blocked on a periodic task in the Idle queue can

be handled by switching to predictive mode and simulating the system at the

predicted granule level. Similarly, if a higher-priority task is waiting for the

currently running or a sleeping task, the preemption and context switch can be

performed directly in the event notification or TaskResume() kernel method,

right at the point when it is called by the running task. Lastly, assuming a

low execution delay of interrupt tasks, we can postpone any such task if it will

only trigger a low priority task in the Wait queue. With a minor interrupt

timing error, we can ignore fallback condition. All the aforementioned condi-

tions are checked in the enhanced FallbackMode() function, which is shown

in Figure 4.12. In order to determine inter-task dependencies, we annotate all

IPC primitives in the provided channel library to record the ID of the sending

task that a receiving task is blocked on. The OS only turns to fallback mode

if a higher priority task is blocked by an Unknown task (line 6) or is waiting

for an external event (line 7).

In a multi-core context, the OS model further monitors the state of

application tasks that are driven by an interrupt that is handled by a different

core, such that the OS can adjust the predicted time or switch to fallback mode

accordingly. In such cases, if the core handling the interrupt is responsible for

releasing a high-priority interrupt-driven application task on the other core,
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Function FallbackMode (task runningTask):

1 currentCoreID := GetSchedCoreID(runningTask)

2 queueID := GLOBAL SCHEDULING ? ø : currentCoreID

3 for all waitingTask in WaitQueue[queueID] do

4 if waitingTask.Priority ≥ runningTask.Priority and AllowedRun(waitingTask, currentCoreID) then

5 blockingTask := waitingTask.blockingTaskID

6 if (blockingTask == Unknown) or

7 (blockingTask.Priority ≥ runningTask.Priority

and blockingTask.State == IntrWait) then

8 return true

9 endif

10 endif

11 endfor

12 return false

Figure 4.12: OS fallback mode.

it may have to adjust its predicted time or go to fallback mode even if it

otherwise would not. In a situation in which the the other core’s interrupt-

driven application task is in Idle state, the interrupt handling can be delayed

until the next release time of this periodic task without actually changing the

execution sequence. Similarly, if the priority of the interrupt-driven task on

the other core is lower than the priority of the task currently running there,

the OS model can simply adjust the predicted time to become the next wake-

up time on that other core. The scheduler wake-up time is determined by

the OS model internally whenever the simulation time is advanced, i.e. it is
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Function IntrDependencyCheck (task runningTask):

1 currentCoreID := GetSchedCoreID(runningTask)

2 for all otherCoreID with otherCoreID ! = currentCoreID do

3 for all intrTask in IntrWaitQueue[otherCoreID] do

4 if intrTask.HandledCore == currentCoreID or intrTask.HandledCore == Unknown then

5 (adjDelay, fallback) := (∞, true)

6 blockedTask := intrTask.blockedTaskID

7 if blockedTask.State == IDLE then

8 adjDelay := min(adjDelay, (blockedTask.NextPeriodTime - CurrentTime()))

9 fallback := false

10 elsif blockedTask.Priority < runningTask[otherCoreID].Priorirty then

11 adjDelay := min(adjDelay, (runningTask[otherCoreID].NextWakeupTime - CurrentTime()))

12 fallback := false

13 endif

14 endif

15 endfor

16 endfor

17 return (adjDelay, fallback)

Figure 4.13: Inter-core interrupt dependency check.

guaranteed that no context switch can happen in the meanwhile. Note that

the predicted time on the interrupt-handling core can not be advanced further

than that. Even if there is no higher-priority task waiting on the other core

right now, the task running there can choose to enter a wait state and thus

change the scheduling mix at any time.
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Figure 4.13 demonstrates the method that checks inter-core interrupt-

dependencies and calculates a new predicted delay if needed. In order to keep

track of interrupt dependencies, interrupt handler models send their core ID to

interrupt tasks they trigger. The IntrDependencyCheck() method explores

IntrWait queues on other cores to see if some interrupt tasks can be triggered

by the current core’s interrupt handler (line 4). If such a condition exists, the

application task waiting for that interrupt is determined via the receiving task

ID recorded using similar channel library annotations as described earlier (line

6). Finally, a new adjusted delay is calculated and fallback mode conditions

are determined as described above (lines 7-13). At the end, the adjusted delay

and the fallback mode check are reported back to the OS model.

Using the new timing model, user-defined timing granularities are in-

ternally divided to provide accurate task preemption. However, simulation

speed is still limited by back-annotated granularities, which usually depend

on various other factors, such as application code modularity. We further in-

troduce an accumulative timing approach to achieve highest possible speed

even with fine-grained back-annotated delays, while maintaining overall accu-

racy. In this approach, temporal accumulation and decoupling is integrated

into and controlled by the OS kernel itself.

In accumulative mode, the OS kernel lets the running task execute its

code and accumulate back-annotated delays without calling the scheduler and

advancing simulation time. Each task has a local counter to keep track of the

amount of the delay that needs to be simulated. As long as this delay is less
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than the next predicted preemption point, the task continues to accumulate

back-annotated delays. It only consumes delays whenever a task preemption

point needs to be reached.

Timing accumulation and adjustment is only effective in predictive

mode. Designers still need to decide on a timing granularity for fallback mode,

which can affect speed and accuracy tradeoffs. Similarly to accumulation dur-

ing predictive execution, we integrate an event-driven timing method into the

fallback mode. In this setup, accumulated delays are executed even under

fallback conditions, but an OS-internal event is introduced to be able to asyn-

chronously interrupt long time consumption periods.

The pseudo code of the final TimeWait() method is shown in Fig-

ure 4.14. In order to achieve highest possible speed even with fine-grained

back-annotated delays, the OS accumulates back-annotated delays of the cur-

rent task until the next predicted preemption point is reached or the OS needs

to switch into fallback mode (lines 1-4). The OS then advances the simulation

time using the predicted delay, optionally utilizing an event-driven fallback

check, and calls the scheduler to perform a context switch, if necessary (lines

7-15). This loop continues as long as the accumulated delay is greater than

the predicted delay or the OS is still in fallback mode.

To realize fallback mode, an OS-internal event (schedulerEvent) is in-

troduced that enables asynchronously interrupting long time consumption pe-

riods (line 9 in Figure 4.14). Since the fallback mode is only entered when a

high-priority task is waiting for an interrupt, the schedulerEvent is triggered by
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Function TimeWait (long long nsec, task runningTask):

1 runningTask.AccDelay + = nsec

2 FB := FallbackMode(runningTask)

3 (adjustedDelay, ID FB) := IntrDependencyCheck(runningTask)

4 predictedDelay := min(PredictNextPreemptionTime(runningTask), adjustedDelay)

5 while runningTask.AccDelay > predictedDelay or FB or ID FB do

6 runningTask.NextWakeupTime := CurrentTime() + predictedDelay

7 if FB or ID FB then

8 startTime := CurrentTime()

9 SLDL::wait(predictedDelay, OS::scheduleEvent)

10 predictedDelay := CurrentTime() - startTime

11 else

12 SLDL::wait(predictedDelay)

13 endif

14 runningTask.AccDelay − = predictedDelay

15 Scheduler()

16 FB := FallbackMode(runningTask)

17 (adjustedDelay, ID FB) := IntrDependencyCheck(runningTask)

18 predictedDelay := min(PredictNextPreemptionTime(runningTask), adjustedDelay)

19 endwhile

Figure 4.14: ATGA timing model.

interrupt handlers in the HAL whenever an interrupt occurs (see Section 5.2).

This in turn will abort the wait() statement in the SLDL kernel, at which

point control is returned to the OS model to perform a corresponding schedul-
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ing check.

All in all, this timing model provides error-free task scheduling at the

highest possible speed by accumulating and dividing user-defined timing gran-

ularities to internally maintain an independently controlled, improved strategy

to advance simulation time.

4.4 Experiments and Results

In this section, we evaluate our OS model and demonstrate how our

novel timing management approach improves the speed and accuracy tradeoff.

4.4.1 Predictive OS Evaluation

In order to evaluate simulation speed and accuracy of our predictive

timing model, we simulate a set of periodic tasks and compared the simulation

performance of our OS model to a conventional one under different timing

granularities. Accuracy is then analyzed by comparing results to the execution

of tasks on a reference ISS [64] modeling a single-core MIPS Malta platform

running a Linux 2.6 kernel configured with preemption and high resolution

timers.

The application consists of randomly generated periodic task sets as

introduced in Section 3.2. We run each task set for 10 s of simulated time. At

a nominal rate of 100 MIPS simulated by the reference ISS, this corresponds

to 1000 million no-operation (NOP) instructions.
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Table 4.1: Artificial periodic task set characteristics and simulation results.

Task Set S1 S2 S3 S4 S5 M1 M2 M3 M4 L1 L2 L3

Number of Tasks 7 11 9 12 13 4 4 4 3 3 3 3
Avg. Task Weight .047 .043 .062 .058 .064 .136 .173 .176 .286 .21 .212 .294
CPU Utilization .33 .47 .56 .70 .84 .54 .70 .71 .86 .63 .64 .89

Avg. Err. (1µs) .53% .48% .48% .79% .88% .41% .08% .45% .08% .17% .18% .14%
Avg. Err. (10µs) .54% .53% .49% .82% .89% .42% .08% .44% .08% .18% .18% .13%
Avg. Err. (100µs) .95% 1.63% .96% 3.47% 2.98% .83% .11% .95% .13% .21% .28% .34%
Avg. Err. (1000µs) 5.8% 7.3% 5.6% 15.9% 12.8% 5.02% .32% .99% 1.2% 1.8% .90% 2.4%
Avg. Err. P-OS .53% .48% .48% .79% .88% .41% .08% .45% .08% .17% .18% .14%

Speed [GIPS] (1µs) 0.55 0.36 0.31 0.25 0.20 0.33 0.25 0.25 0.21 0.28 0.27 0.19
Speed [GIPS] (10µs) 4.5 3.6 2.8 2.3 2.1 2.8 2.3 2.4 1.9 2.4 2.4 2.0
Speed [GIPS] (100µs) 20 20 25 17 6 14 14 14 12 12 17 10
Speed [GIPS] (1000µs) 100 50 50 50 25 100 100 100 500 100 50 50
Speed [GIPS] P-OS 107 32 33 19 18 62 107 54 85 99 103 87

We analyze the accuracy of the predictive timing management approach

by comparing the response times of periodic tasks in the reference ISS with

our host-compiled simulator. Delays were back-annotated into host-compiled

models directly from measurements taken when running on the ISS. Model

error was measured as the average absolute difference in individual task re-

sponse times over all tasks and task iterations. Table 4.1 summarizes the

task set properties and compares the accuracy and performance of our pre-

dictive OS (P-OS) model with that of a conventional one at four different

back-annotation granularities. We can observe that the highest possible accu-

racy is achieved using our P-OS model. This is equivalent to a conventional

model at 1µs granularity, which loses a large amount of accuracy at coarser

granularities. Note that although we would expect to see zero errors on the

predictive model, remaining errors are caused by OS context-switch overheads

and non-ideal behavior of a real Linux system not included in our OS model
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(as studied in Section 3.2). In terms of simulation performance, an average

simulation speed of 67 GIPS is achieved on the P-OS model. This is 233 time

faster than the original OS model at a granularity of 1µs and similar to the

original model at 1ms granularity.

In the conventional OS model, designers are responsible for choosing

the timing granularity to achieve acceptable accuracy and performance. How-

ever, selecting the proper granularity is not straightforward. For example,

using the granularities of 1µs and 10µs, the same accuracy is provided while

the former simulates 10 times faster than the latter. In addition, the lack

of a reference platform for many applications makes it impossible to find a

reliable granularity. Figure 4.15 plots the tradeoff between average accuracy

and simulation speed over all task sets. As can be seen, decreasing the timing

granularity results in a higher accuracy but comes at a loss in simulation per-

formance. By contrast, our predictive model provides both fast and accurate

results regardless of the timing granularity.
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Figure 4.15: Accuracy and speed tradeoffs in the artificial task sets example.
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Table 4.2: Simulation results for automotive task set.

Task Exec. Delay Period Weight

susan(edge) 1.36s 4.7s 0.29
susan(smooth) 3.50s 38s 0.09
qsort 1.15s 45s 0.03
basicmath 37.26s 85s 0.44

Simulation Avg. Err. Max. Err. Speed

OS (1µs) 0.20% 26.7% 115 MIPS
OS (1ms) 1.44% 26.8% 820 MIPS
OS (10ms) 1.64% 27.0% 825 MIPS
OS (100ms) 3.45% 28.5% 830 MIPS
P-OS 0.006% 0.022% 840 MIPS

In order to evaluate our approach under more realistic conditions with

HW/SW interactions, we also simulate a task set composed out of a subset of

applications from the automotive category of the MiBench suite [32]. Bench-

marks are converted to execute periodically and concurrently based on rate-

monotonic scheduling policy, where task Susan(edge) was modified to interact

with an FPGA by streaming its outputs over the system bus. The resulting

tasks set is simulated for 500s both on the reference ISS and in host-compiled

form (with back-annotated ISS delays).

Table 4.2 summarizes benchmark features and compares the accuracy

and the simulation performance for the predictive and the conventional OS

models. Assuming a nominal CPI of 1 and not counting idle cycles, the P-

OS model simulates at 840 MIPS. This is 7 times faster than the conventional

model at 1µs, where a granularity of 100ms is required to achieve the same

speed. However, the third error scenario is triggered in this setup, leading to

high average and maximum errors in conventional models at any granularity.
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Table 4.3: Accuracy and speed measurements for cellphone example.

Conv. Conv. Conv. Conv. ATGA ATGA/Acc ATGA ATGA/Acc ISS

1µs 10µs 100µs 1000µs FB 1µs FB 1µs ED ED

Avg. Err. (MP3) 0.73% 0.79% 1.40% 9.65% 0.73% 0.74% 0.73% 0.74% 0%

Avg. Err. (JPEG) 7.33% 7.33% 7.33% 7.35% 7.33% 7.32% 7.33% 7.32% 0%

Avg. Err. (MP3+JPEG) 4.18% 4.20% 4.49% 8.45% 4.18% 4.18% 4.18% 4.18% 0%

Simulation Speed [MIPS] 340 790 930 1080 554 684 621 892 0.13

Simulation Time [s] 0.61s 0.26s 0.22s 0.19s 0.37s 0.30s 0.33s 0.23s 1580s

By comparison, P-OS model accuracy remains above 99%.

4.4.2 ATGA Evaluation

To further demonstrate the benefits of the ATGA approach, we apply

our OS models to an industrial-strength, ARM7-based cellphone example run-

ning concurrent MP3 decoding, JPEG encoding and control tasks. The MP3

decoder runs as a periodic task with the highest priority in the system. It uses

a hardware accelerator to perform real-time audio decoding. The JPEG en-

coder runs as an interrupt-driven task with medium priority. The control task

performs user-interface actions and runs at the lowest priority. Tasks com-

municate with external hardware and the rest of the system via an AHB bus

and 14 interrupts. In this setup, the ATGA OS model can utilize predictive

mode whenever the JPEG or control task are running and the MP3 is idle.

On the other hand, fallback mode is triggered whenever MP3 or JPEG tasks

are waiting for an external hardware interrupt while a lower-priority task is

running.

For accuracy analysis, we compare the execution of our host-compiled
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simulator using the proposed OS models to a cycle-accurate ISS [53]. Task de-

lays were back-annotated from measurements obtained from the ISS. Our test-

bench performs encoding of 55 MP3 frames and JPEG decoding of a 680×480

picture divided into 60 stripes. This translates into a total of 200 million

simulated instructions. Model error was measured as the average absolute

difference in individual frame and stripe delays over all iterations.

Table 4.3 compares the accuracy and performance of our proposed OS

models with that of a conventional one at four different back-annotated granu-

larities. ATGA and ATGA plus accumulation models are simulated with both

1µs and event-driven (ED) fallback mode. We can observe that, regardless of

the granularity of the back-annotated delays, the highest possible accuracy is

achieved using our ATGA approach. This accuracy is equivalent to a conven-

tional model at 1µs, which looses accuracy at coarser granularities. Although

one would expect close to 100% accuracy in ATGA models, remaining errors

are due to back-annotation inaccuracies and missing of model of OS effects

like timer interrupts and task context-switch overhead. As a long-running

low-priority task, the JPEG encoder is adversely affected by such basic errors.

On the other hand, unlike high-priority tasks such as the MP3, it is not sub-

ject to preemption errors. As such, its errors are independent of the timing

granularity.

Our measurements show that the highest speed of 890 MIPS is achieved

using the accumulative ATGA/Acc with an event-driven fallback mode. This

model is 2.6x faster than but as accurate as the conventional one at 1µs gran-
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ularity. A conventional model achieves this speed with significantly reduced

accuracy at a granularity of 100µs. Results clearly show the benefits of our

ATGA approach. Furthermore, both timing accumulation and event-driven

fallback help to increase simulation speed without adversely affecting accu-

racy.

Figure 4.16 plots the average error and accuracy for different OS con-

figurations. As can be seen, there is a fundamental tradeoff using conventional

OS models. By contrast, our ATGA OS models provide both accurate and

fast simulation regardless of the granularity of back-annotated delays.

4.5 Summary

In this chapter, we presented a configurable and high-level host-compiled

multi-core OS model, which enables rapid and early embedded software devel-

opment and design space exploration. We evaluated our models by replicating
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Figure 4.16: Accuracy and speed tradeoffs for cellphone example.
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a fixed-priority scheduling policy on a partitioned scheme to follow a simulated

Linux reference kernel. In Appendix 1, we further evaluate our OS model with

integrated Pfair and G-EDF scheduling policies, and we compare our models

to a real execution of an extended Linux kernel [12] replicating such scheduling

policies on top of a multi-core Atom reference board.

We have further presented the integration a set of dynamic schedul-

ing policies We further presented an automatic timing granularity adjustment

(ATGA) approach for accurate and fast host-compiled simulation. In this ap-

proach, the OS model continuously monitors system states and automatically

and dynamically accumulates and adjusts back-annotated granularities in or-

der to provide error-free task scheduling. Results show that high accuracy

is achieved while maintaining fastest possible simulation speed regardless of

user-defined delay granularities. In addition, by eliminating preemption errors

and consequently unpredicted error bounds, this makes host-compiled simu-

lators suitable for rapid and early evaluation of the real-time performance of

embedded systems.
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Chapter 5

Processor Modeling

In the preceding chapter, we focused on the OS model internals and ex-

amined the timing management model proposed for adjusting the simulation

granularity to achieve both fast and accurate results. Beyond the OS model,

to provide feedback about timing-accurate HW/SW interactions, we develop a

host-compiled processor model, which emulates both TLM bus accesses and a

high-level multi-core interrupt handling chain. In addition, for more accurate

real-time performance evaluation, dynamic cache effects are considered in the

processor model as well. However, in the context of coarse-grained simula-

tion, fast yet accurate modeling of multi-core cache hierarchies poses several

challenges. We therefore propose a novel generic multi-core cache modeling

approach that incorporates a delayed reordering technique to replicate an ac-

curate multi-core cache behavior even under a coarse-grained simulation.

This chapter∗ is organized as follows: In Section 5.1 and Section 5.2,

we present the overall structure of our complete host-compiled platform sim-

∗Contents of this chapter previously appeared in the following papers:

P. Razaghi and A. Gerstlauer. Multi-core cache hierarchy modeling for host-compiled performance simula-

tion. ESLsyn, May 2013.

P. Razaghi and A. Gerstlauer. Host-compiled multi-core system simulation for early real-time performance

evaluation. ACM TECS, accepted for publication, March 2014.
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Figure 5.1: High-level multi-core processor model.

ulation backplane. In Section 5.2.3, we then show an example of a general

execution sequence. In Section 5.3, we further propose a novel muti-core,

out-of-order cache hierarchy modeling approach. Finally, in Section 5.4, we

examine different aspects of our complete simulator using a set of experiments.

5.1 Processor Model Overview

Figure 5.1 depicts the connections across different layers of our plat-

form models. At the innermost layer, a user application is directly connected

to the OS layer and accesses the scheduling services via the provided OS API.

In addition to the OS services detailed in Section 4.2, the OS layer provides
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high-level communication primitives for sending and receiving inter-processor

application-level messages via the HAL. Together, the OS and HAL thereby

realize models of drivers that transform application-level messages all the way

down to corresponding transaction-level bus accesses plus interrupt-driven or

polling-based synchronizations, if required. Finally, the HW layer models ex-

ternal bus communication via a TLM bus channel. The HW layer also emulates

monitoring of processor interrupt signals and associated processor exceptions.

The HAL combined with the HW layer constitute the processor model. In

this way, the simulator can be integrated into any standard TLM backplane

for co-simulation in an overall multi-processor system environment.

5.2 High-Level Interrupt Handling Mechanism

In addition to the overall structure of the processor model, Figure 5.1

depicts extra hardware components, inter-layer interfaces, and specialized OS-

level tasks to replicate a general multi-core interrupt handling chain in our

host-compiled model. From the hardware side, core-specific interrupt requests

(IRQx) are generated by a generic multi-core interrupt controller (GIC) model,

which manages the distribution of interrupt signals across processor cores.

The internal structure of the interrupt controller will be discussed next in

Section 5.2.2.
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5.2.1 Processor and OS Interrupt Model Integration

Inside the processor model, the HW layer contains core-specific SLDL

processes (IntrInterface) that are sensitive to changes on the external interrupt

inputs (IRQx). Whenever an interrupt request is asserted, the corresponding

IntrInterface notifies the OS kernel by calling the IEnter() method of the OS

API, exported to the HW layer via the HAL. IEnter() then moves the de-

sired interrupt handler into the corresponding core’s IntrHandlerReady queue

(as shown in Figure 4.3) and triggers the OS-internal schedulerEvent to inform

the OS of the recently activated interrupt. Depending on fallback versus pre-

dictive mode, the OS will terminate the current time-wait primitive and call

the scheduler to perform a context-switch (as illustrated in Section 4.3). As dis-

cussed previously, the OS scheduler always first checks the IntrHandlerReady

queue for active interrupt handlers in order to model processor suspension in

response to external interrupt events.

In this approach, interrupt handlers are modeled as special, high prior-

ity tasks associated with each core. Interrupt handlers are created and added

to the OS kernel by the HAL via the CreateIntrHandler() methods of the

OS API. When an interrupt handler is scheduled by the OS kernel, it com-

municates with the GIC via a TLM bus channel to determine and acknowl-

edge the interrupt source. It next triggers a special interrupt task associated

with the interrupt source via a call to the IntrTrigger() method of the OS

API. Before the interrupt handler returns to the OS kernel, it removes it-

self from IntrHandlerReady queue by calling the IReturn() method. Finally,
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user-supplied code in the interrupt tasks can communicate with external hard-

ware, with application tasks or with the OS model, e.g. to spawn additional

processing tasks.

5.2.2 Multi-Core Interrupt Controller

We develop a generic multi-core interrupt controller (GIC) model that

manages interrupt distribution among the processor cores and generates in-

terrupt request (IRQ) signals associated with each core. The high-level GIC

model is a configurable, generic multi-core interrupt controller that is modeled

after typical real-world components, such as the ARM Generic Interrupt Con-

troller Architecture [2]. Our model supports up to 32 edge-triggered hardware

interrupts and is able to manage the interrupts for an arbitrary number of pro-

cessors/cores. A user can program the interrupt controller to define interrupt

priority and target core for each interrupt source. The GIC model replicates

a 1-N model for handling interrupts, i.e. it ensures that only one processor

handles a captured interrupt.

Internally, our high-level GIC model is composed out of one central-

ized interrupt distributor and per-processor CPU interfaces (as shown in Fig-

ure 5.1). The distributor monitors incoming interrupts and dispatches the

highest priority asserted interrupt to the associated CPU interface, which is

determined by the programmed target core list. The CPU interface thereby as-

serts the IRQ signal to its connected core and takes care of the communication

between the processor and GIC.
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To manage interrupt detection and distribution, the GIC model iden-

tifies each interrupt by an ID and maintains the interrupts’ state transitions.

When an interrupt is asserted by a connected hardware, the GIC moves that

interrupt to the Pending state. The distributor can then detect all pending

interrupts and send the highest priority one to the corresponding CPU inter-

face. A pending interrupt moves to the Active state whenever it is handled by

the corresponding core, i.e. the associated interrupt handler reads the “Ac-

knowledge” register. An active interrupt can move to Inactive (initial state)

or Active & Pending states when the interrupt handler writes to the “End of

Interrupt” register or another interrupt signal with the same ID is captured,

respectively.

In such a detailed GIC model, three context switches are required in

the simulator for an external interrupt to propagate until the actual interrupt

handler is executed. Such a detailed model therefore carries a large simula-

tion overhead. We develop an alternative, lightweight GIC model that reduces

the overhead by a factor of two. This model only contains core-specific pro-

cesses, which identify the highest priority pending interrupt for the connected

processor and communicate with the processors and the associated interrupt

handlers directly. To achieve a faster interrupt routing and consequently a

faster simulation, the priority of an interrupt is only defined by its ID and is

not programmable. Furthermore, this model does not replicate a 1-N imple-

mentation. Hence, designers need to be careful when programming the GIC

to ensure that each input interrupt is only mapped to a single core.
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Figure 5.2: Host-compiled simulation trace.

On the whole, the presented processor and interrupt controller models

and inter-connections provide an infrastructure that enables accurate modeling

of interactions between hardware components and multi-core processors.

5.2.3 Host-Compiled Simulation Trace Example

To illustrate the execution sequence of the integrated host-compiled

model, we show a simulation trace of two task sets running on a dual-core

platform under a partitioned scheduling strategy (see Figure 5.2). Each set

contains three tasks with high, medium and low priorities (named Th, Tm,

and Tl respectively). Sets are mapped to run on separate cores. The highest

priority task is modeled as a periodic task. Tasks may communicate with each

other or external hardware via interrupt signals.

At the beginning of the simulation, Th is in Idle state and Tm is therefore
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scheduled on both cores. At time t1, Tm running on core0 is blocked on an

external event, and Tl is scheduled on that core. From this point forward, the

OS switches to fallback mode on core0, since a higher priority task is waiting

for an interrupt. At the same time, Tm on core1 waits for a response from Th,

and Tl is scheduled accordingly. Both cores can be in predictive and fallback

modes independently, and the OS remains in predictive mode for core1, since

it is aware that neither Tm nor Th can be scheduled before the next release

time of the periodic task Th (time t2).

At time t3, the hardware sends an INTA interrupt to the GIC, which

is programmed to route that interrupt to core0. Accordingly, core0’s interrupt

interface activates the corresponding interrupt handler. However, we can delay

the execution of the interrupt handler until the finish time of Th. Such a

situation allows the OS to stay in predictive mode, where it will not call

the scheduler until time t4, the finish time of Th. The interrupt handler then

communicates with the GIC and activates the corresponding interrupt task for

further interactions with the hardware. Although such an interrupt modeling

approach introduces a small timing error in the execution of Th, the interrupt

task and the interrupt handler, the simulation is kept fast while these errors

are typically negligible. Finally, the interrupt task IntrA releases Tm, such

that Tm and subsequently Tl execute in predictive mode until the start of the

next period of Th.

Now consider the simulation trace on core1: after releasing Tm again

once Th has run, Tm blocks on an external interrupt at time t5 while Th is
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Idle. Task Tl is therefore scheduled and the OS switches to fallback mode

in order to continuously monitor for possible interrupts. As such, when the

interrupt request is captured by core1 at time t6, the OS schedules the activated

interrupt handler immediately and provides a fully accurate interrupt handling

sequence.

5.3 Multi-Core, Out-of-Order Cache Modeling

In this section, we propose a novel high-level, multi-core cache hierar-

chy modeling approach, which accurately models cache behavior of multi-core

processors, simulated by a host-compiled simulator. In the following, we first

present an overview of our generic cache model and its integration process into

the host-compiled simulator. Next, we demonstrate a novel memory access

reordering technique, which is designed for fast yet accurate cache behavior

simulation in a temporally decoupled execution context.

5.3.1 Base Approach

For accurate performance evaluation, we need to consider performance

penalties due to cache misses and update static back-annotated delays during

simulation. For this purpose, we develop a high-level model of a cache channel

that emulates the system memory behavior by updating its internal states on

every memory access. Note that we only need to model hit/miss behavior of

the cache, i.e. we are not concerned about the data that is stored in the cache.

Instead, the simulation host takes care of maintaining coherent data values.
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In our cache model, each cache line is composed out of an address tag, an age

counter to implement a replacement policy, and a coherency flag to store the

current state of each line compared to other cores’ caches (Figure 5.3). Asso-

ciated with each core, an access list stores locally ordered memory references

reported by the application running on that core. Each location in this list

contains a memory address, access mode (i.e Read or Write), and an access

time. Using this information, a cache controller is able to manage the cache

state updating process and to report back total miss cycles. Accordingly, the

simulator can internally adjust back-annotated task delays by adding delay for

extra memory cycles.

As mentioned before, a user application is integrated into the simulator

at the source level. As such, low-level information including task execution
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int A[SIZE];

int sum = 0;

for (int i = 0; i < SIZE; i++) {

sum += A[i];

OS->TimeWait(DELAY,  taskID);

}

int A[SIZE];

int sum = 0;

for (int i = 0; i < SIZE; i++) {

sum += A[i];

}

int A[SIZE];

int sum = 0;

ACCESS_TYPE ac;

for (int i = 0; i < SIZE; i++) {

ac.Mode =  READ;

ac.Addr = array_base + i  * sizeof(int);

ac.TS = OS->get_local_time(coreID)

+ HCSim::get_global_time();

penalty = Cache::Update(ac, coreID);

sum += A[i];

OS->TimeWait(DELAY+penalty,  taskID);

}

Delay 

back-annotation

process

Address

back-annotation 

process

Figure 5.4: Source code back-annotation example for cache simulation.

delays and memory references need to be back-annotated into the source code.

In this dissertation, we assume that designers use existing techniques to obtain

task execution delays and accessed memory addresses based on a selected

target platform [70, 91, 10]. Figure 5.4 shows source code instrumentation

steps to consider cache effects during host-compiled simulation. The original

application is a simple loop over an integer array. The execution delay is given

to the simulator by calling the TimeWait() method of the OS API. In this

way, the OS kernel internally advances simulated time to model task and core

execution times.

In the address back-annotation step, every memory access is reported

to the simulator by simply committing the access information including a 3-

tuple of (address, mode, time stamp) into the cache. The time stamp is an

absolute time, which is determined as the sum of the global simulated time

and the core’s local time. Note that absolute time stamps are required for

temporal decoupling simulation and are used in our reordering technique (see

Section 5.3.2). At the end, the cache returns any miss penalties incurred

during the access, which are in turn added to the task’s execution delay.
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Table 5.1: Cache configurable parameters.

Parameters Description

Levels of hierarchy Core-private L1
Core-private L2,
or shared L2 within a package
Shared L3 within a package

Cache structure Cache size, Line size
Associativity
Write back,
Write through (write allocation)

Replacement policy LRU: default policy

Miss latency Number of cycles for
miss penalty of each level

We design our cache model such that a designer can easily explore a

wide variety of cache architectures and evaluate their effects on system per-

formance. Table 5.1 lists all configurable options that our cache model offers.

Primarily, the number of packages and cores per package need to be defined

to generate the overall structure of the cache hierarchy. In addition, the num-

ber of levels of the cache hierarchy and interconnections across these levels

are configurable. For example, the L2 can be defined a shared cache between

all cores on a package or as a core-private cache. Furthermore, the structure

of each cache including total and set size, replacement and write policies are

parametrizable. By configuring the miss latency of all levels, the cache channel

can provide the total miss penalty on every cache update. Finally, to keep the

cache hierarchy coherent, a standard MSI-based cache coherency protocol is

implemented.
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5.3.2 Decoupling and Cache Simulation

The ATGA approach presented in Section 4.3 accumulated tasks execu-

tion delays locally and only advances the global simulated time whenever a lo-

cal task switches or a global synchronization is required. In such an approach,

cores are temporally decoupled until a synchronization point is reached. In

general, temporal decoupling is a well-known mechanism to improve the simu-

lation speed by increasing the granularity of simulation. In such an approach,

a thread can go ahead of the simulation kernel time without advancing global

time. However, decoupling techniques may decrease the accuracy of cache be-

havior due to the coarse-grained synchronization of parallel threads. In multi-

core cache simulation, different cores may commit their memory accesses to

the cache globally out-of-order. In the following, we propose a delayed reorder-

ing technique that provides an accurate temporally decoupled cache hierarchy

simulation.

To illustrate the general concept behind the reordering technique, we

show the execution sequence of a dual-core platform in Figure 5.5. At the

beginning of the simulation, core1 starts the execution of its application code

and reports three memory accesses at local times 1(ts1), 2(ts2), and 12(ts3). At

local time 12, core1 notified the simulator to consume the accumulated delay.

Accordingly, the host-compiled simulator internally advances the simulated

time by calling the underlying SLDL wait(12) method. As such, core1 is

suspended and core2 gets a chance to run its application code, which reports

its two memory accesses at local times 10(ts4) and 20(ts5). As can be seen, ts4
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Figure 5.5: Cache reordering example.

is reported after ts3, while to be committed before ts3. When core2 request

to consume the accumulated delay in a similar way, the simulator internally

advances the global simulated time by 12 units and returns to core1. By this

time, all cores have already collected their memory accesses. Hence, core1 calls

a Sync(12) method to commit the out-of-ordered accesses with their correct

sequence into the cache channel.

To enable delayed reordering, instead of directly committing accesses

to the cache as they occur, each core keeps all referred memory addresses in an

ordered list. Although each access has a time stamp, which allows the cache

to detect the global sequence of all accesses, the simulator needs to invoke the

cache synchronization and reordering method when all cores’ accesses have

been collected and it can be determined that they are safe to commit.
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Function: TimeWait(time t nsec)

1 cur core.local time += nsec

2 sync time = simulation quantum

3 while cur core.local time ≥ sync time do

4 SLDL::wait(sync time)

5 cur core.local time -= sync time

6 cache time = Cache::Sync(sync time, cur core)

7 cur core.local time += cache time

8 endwhile

Figure 5.6: Timing model for out-of-order cache modeling.

An efficient safe point for committing collected memory accesses is after

advancing the simulation time. In this way, the underlying SLDL simulation

kernel lets other cores run their tasks and collect all memory accesses up to

that point in simulation time. Figure 5.6 shows the function that manages

the simulated time. Task delays are back-annotated into the code via a call

to this TimeWait() method. The current core first updates its local time.

If the accumulated delay is greater than the simulation quantum, the global

simulated time is advanced by the underlying SLDL wait primitive (line 4).

After advancing the simulation time, the Sync() function in the cache is called

(line 6). Finally, the local time is updated by possible extra delays caused by

cache miss penalties of committed accesses (line 7).
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Function: Sync(time t sync time, int cur core)

1 while true

2 for all cores do

3 min core = ArgMini(access list[i].first.ts)

4 if (access list[min core].first.ts > sync time) break

5 a = access list[min core].pop()

6 min core.local delay += Cache::Update(a, min core)

7 endfor

8 endwhile

9 return cur core.local delay

Figure 5.7: Cache synchronization and reordering algorithm.

5.3.3 Reordering mechanism

The pseudo code of our cache synchronization and reordering technique

is shown in Figure 5.7. The reordering algorithm is divided into three steps: In

the first step, the core containing the access with the smallest time to commit

is determined by exploring all core access lists (line 3). In the second step, any

corresponding memory access with a time stamp smaller than or equal to the

safe to commit time (synchronization point) is used to update the cache state

(line 4 and 5). Finally, based on the cache behavior, the core’s local delay is

updated to record extra delays related to miss penalties (line 6). This loop

continues until all accesses from all cores with a time stamp smaller than the

end time are committed to the cache model.
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Figure 5.8: Cache preemptive reordering example.

5.3.4 Preemptive Reordering mechanism

The presented reordering method works based on the assumption that

only one task is running on each core. Figure 5.8 (a) shows the situation in

which memory accesses are still committed out-of-order due to a task preemp-

tion. As the execution trace shows, Task1 issues three memory accesses, but

only two accesses are committed to the cache by the sync() function. The

third one is then left in the list and when Task2 preempts the current task,

the sync() function commits a memory access from previously executed task.

Figure 5.8 (b) shows a preemptive reordering model, which associates an ac-

cess list per application task instead of per core. However, the time stamp

of remaining items still need to be updated by the amount of time that the

associated task was preempted.
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To efficiently managing time stamps, each access list locally stores de-

lays related to cache penalties and preempted times. In this order, the sync()

function calculates the absolute time stamp using the following formula:

absolute time stamp =


Accumulated Cache Penalties

+
Preempted Time

+
Task Executed Delays

Where accumulated cache penalties is the count of all cache delays cor-

related to miss penalties, preempted time is sum of all time task waiting for

scheduling, and task executed delays is sum of task’s all execution times, i.e

“wait for time” times plus the accumulated delay.

In summary, with incorporating the delayed reordering of aggregated

requests, we are able to provide the highest possible accuracy, while increased

simulation performance benefits from temporal decoupling introduced by our

ATGA timing model.

5.4 Experiments and Results

We evaluate different aspects of our simulator using a set of succes-

sive experiments. First, we evaluate the accuracy of our high-level interrupt

handling models and the accuracy and the simulation performance of our OS

and processor models on a suite of artificial task sets and compute-intensive

multi-threaded benchmarks. We then also explore different architectures of an

industrial-strength example to show the benefits of our simulation platform
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for early design space exploration. At the end, we examine the accuracy and

speed of our reordering cache modeling approach. All host-compiled simula-

tions are performed on a 2.67 GHz Intel Core i7 workstation using the SpecC

version of our simulator.

5.4.1 Experimental Setup

To evaluate our processor model, we use the Open Virtual Platform

(OVP) [64] as a reference ISS for evaluating the accuracy. OVP consists of an

instruction-accurate simulator (OVPSim), fast processor models, and behav-

ioral peripheral modeling and programming APIs, which enable full-system

modeling and simulation. Furthermore, we use Imperas, Verification, Analysis

and Profiling (M*VAP) tools to measure the execution cycles of applications

in kernel and user space [40]. Since OVP is based on a timing model of one

cycle per instruction (CPI=1), execution delays are determined as the product

of the number of executed instructions and the target processor clock period.

The reference platform consists a quad-core Cortex-A9 ARM processor

running a Linux 2.6.39 SMP kernel at a frequency of 1 GHz. OVP is configured

to run at instruction-level granularity. The OVP peripheral modeling library

is used to implement extra hardware components. Correspondingly, loadable

kernel modules are developed to integrate drivers for the hardware into the

platform and application. Hardware accesses are implemented using interrupts

and memory-mapped I/O.

For timing-accurate interrupt modeling, we measure the number of in-
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Figure 5.9: Modeling of Linux interrupt handling.

structions executed by Linux when handling an interrupt. Figure 5.9 shows the

sequence of interrupt events in Linux and their mapping to the host-compiled

simulation model. Since we modeled the system bus and GIC as untimed,

high-level peripherals, the Linux kernel starts handling interrupts immediately

after an interrupt is signaled. In our setup, the interrupt handler notifies an

application process using Linux real-time signals. The execution trace shows

that the interrupt handler delay varies between 2,100 to 3,100 cycles†, depend-

ing on the system state and the internal implementation of signal queues in

the Linux kernel. The Linux kernel then delivers the notified signal to the

corresponding process by evoking an associated signal handler (do Signal()

in kernel space and sig Handler() in user space). Note that in Linux, these

signal handlers are executed in the context, i.e. at the same priority and time

†Since OVP considers CPI=1, the number of cycles and instructions are interchangeable
for the experiments presented in this section.
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as their associated processes. Finally, the signal handler determines the in-

terrupt source and calls a corresponding application service routine, which in

turn communicates with the main process by releasing a POSIX semaphore to

signal that the interrupt has been received.

To accurately model the Linux interrupt handling chain, we map the

functionality of interrupt and signal handlers to interrupt handlers and inter-

rupt tasks in our host-compiled model. Matching Linux behavior, interrupt

tasks are thereby assigned the same priority as their associated user tasks. Fi-

nally, we back-annotate interrupt handler and task models with corresponding

delays (D2 +D3 and
∑

(D4..D7), respectively).

5.4.2 Interrupt Handling Evaluation

To verify the accuracy of the interrupt handling model, we compare

the response time of interrupt handlers, interrupt tasks, and corresponding

interrupt-driven application tasks to the reference simulation. Response times

are defined as the delay between signaling an interrupt and completion of the

corresponding handler or task (see Figure 5.9). Table 5.2 lists average absolute

errors in response times for two different experiments, in which six interrupt-

driven tasks are running on a single-core ARM processor. In experiment E1, all

interrupts are triggered simultaneously with a fixed period of 10 ms. By con-

trast, in experiment E2, interrupts are generated at different rates in order to

stress the experiment under random conditions. The interrupt controller was

programed to assign different priorities to each interrupt signal. Experiments
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Table 5.2: Interrupt handling response time errors.

Interrupts E1: Identical Interrupt Load E2: Random Interrupt Load

ID/Priority Period Intr. H Intr. T App. T Period Intr. H Intr. T App. T

1/low 10ms 0.86% 0.01% 0.01% 15ms 2.84% 0.27% 0.16%
2 10ms 0.20% 0.03% 0.02% 12ms 2.17% 4.97% 0.68%
3 10ms 0.39% 0.04% 0.03% 11ms 1.32% 5.36% 0.52%
4 10ms 0.84% 0.05% 0.03% 8ms 1.01% 9.12% 0.93%
5 10ms 1.03% 0.02% 0.01% 7ms 0.69% 7.01% 0.62%
6/high 10ms 0.23% 0.50% 0.10% 5ms 0.17% 4.01% 0.29%

Avg. Error 0.60% 0.11% 0.03% 1.37% 5.12% 0.53%

were run for a total simulated time of 5 sec.

Results show that for randomized interrupt behavior, average response

time errors can be as high as 10% with maximum errors reaching 50% in some

instances. Upon closer inspection, these errors stem from interference of the

high-priority timer interrupt not being modeled in our setup. By synchronizing

all interrupts with the fixed 10 ms rate of the Linux timer, such interferences

are eliminated and both average and worst-case errors drop below 1%. Overall,

assuming timer and other interrupt handlers to be generally short, results

prove the accuracy of the interrupt controller and interrupt handling models.

5.4.3 Processor Evaluation

To evaluate overall simulation accuracy and performance, we used ran-

dom periodic task sets as generated in Section 3.2. We run each task set for

5 sec of simulated time. At a nominal rate of 1000 MIPS simulated by the refer-

ence ISS, this corresponds to 5 billion NOP instructions running on each core.

Experiments are executed on a simulated dual-core and a quad-core platform.
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Table 5.3: Artificial task set simulation results.

Set S1 S2 S3 S4 M1 M2 M3 M4 L1 L2 L3 L4

Number of Tasks 13 18 29 58 8 8 8 16 7 5 6 12
Number of Cores 2 2 2 4 2 2 2 4 2 2 2 4
Avg. Task Weight .05 .06 .06 .06 .14 .16 .19 .19 .19 .26 .28 .28
CPU Utilization .65 1.03 1.7 3.4 1.1 1.3 1.5 3.0 1.3 1.3 1.7 3.4

Intr. High
Error (periodic) .33% .26% .31% .33% .11% .05% .02% .04% .02% .02% .04% .13%
Error (intr-driven) .37% .23% .21% .23% 1.02% .49% .34% .74% .76% .60% .50% .91%
Speed [GIPS] 24 40 60 53 46 54 63 53 47 46 70 62
Intr. Medium
Error (periodic) .15% .11% .13% .13% .11% .05% .01% .01% .06% .02% .04% .04%
Error (intr-driven) .13% .06% .16% .19% .12% .12% .10% .10% .13% .19% .10% .11%
Speed [GIPS] 80 128 213 170 140 165 188 251 165 215 211 281
Intr. Low
Error (periodic) .15% .11% .13% .13% .07% .05% .01% .01% .02% .02% .04% .05%
Error (intr-driven) .23% .17% .25% .27% .13% .11% .13% .13% .08% .07% .03% .05%
Speed [GIPS] 161 171 284 284 278 660 377 377 330 322 422 422
No. Intr.
Error (periodic) .15% .11% .13% .13% .07% .05% .01% .01% .03% .02% .04% .04%
Speed [GIPS] 322 513 426 426 696 824 1,884 1,500 1,100 1,287 1,406 1,688

Each task set is executed under four different interrupt conditions: periodic

tasks plus a high, a medium, or a low priority interrupt-driven application

task running on each core, or only periodic tasks running on the cores. Task

weights for interrupt-driven application tasks are fixed at a value of 0.01, and

their generation frequency/load is proportional to their priority, i.e. a higher

load for the interrupt with a higher priority. For accuracy measurement, task

response times are compared to the reference ISS.

Table 5.3 lists the task set features and summarizes accuracy and speed

results. Error is measured as the average percentage of absolute differences in

individual task response times over all tasks and task iterations. To measure

simulation performance, only the number of actually simulated instructions

is considered. The number of simulated instructions is calculated based on
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the total simulated time and the nominal NOP instructions executed on the

reference ISS. The idle time is eliminated by considering the CPU utilization.

In other words,

Speed =
Simulated time ∗ 1000MIPS ∗ CPU utilization

Simulation time
.

Results show an average timing error of 0.16% and an average speed of 400

GIPS over all task sets and experiments. In all cases, error variance remains

below ±1.8%. Although we would expect to see zero errors using our ATGA

approach, remaining errors are caused by non-modeled OS context-switch over-

heads, non-ideal behavior of a real Linux system (as studied in Section 3.2)),

and errors in measured back-annotated delays. We can observe constant av-

erage errors for the periodic task sets in all experiments except when a high

priority interrupt is running in the system. Reduced accuracy in these cases is

caused by the error in estimated delays of interrupt and signal handlers, which

have a larger effect when the interrupt load is high and tasks delays are small.

Further investigation of errors in the interrupt chain are shown in Fig-

ure 5.10 (a). High errors are measured for interrupt handlers in experiments

with low and medium interrupt priorities. This is due to deliberate inaccura-

cies in the interrupt model. Since the OS model does not switch to fallback

mode when the priority of the running task is higher than any interrupt-driven

task, start times of interrupt handlers can be delayed until the next predicted

scheduling point. This results in high response time errors of interrupt han-

dlers. However, the total effect on response time of application-level tasks is
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Figure 5.10: Accuracy and speed analysis for artificial task sets.

negligible. Furthermore, larger errors are observed for high-priority interrupt

and application tasks. Since high priority interrupts are generated at higher

rates, non-modeled Linux back-ground tasks can introduce larger timing errors

in such cases.

Finally, we compare our host-compiled simulator using ATGA approach

against a conventional host-compiled simulation at user-defined simulation

granularity. Figure 5.10 (b) compares the average simulation error and simu-

lation time of ATGA and conventional models under different timing granu-

larities. As can be seen, there is a fundamental accuracy and speed tradeoff

in a conventional simulation, i.e. decreasing the timing granularity results in a

higher accuracy but comes at a loss in simulation performance. Furthermore,

there is a high variation in errors under large granularities. For example, with

10 ms simulation granularity, errors across task iterations vary between 0.1%

and 1,200%. By contrast, our simulator automatically provides fast simula-
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Table 5.4: ParMiBench accuracy and speed results.

Application
Simulated time (Error) Simulation speed [MIPS]

CPU=1 CPU=2 CPU=4 CPU=1 CPU=2 CPU=4

Bitcount (112500 iter.) 582ms (0.58%) 291ms (0.80%) 147ms (1.13%) 3,600 2,600 2,600
Basicmath (500K num.) 287ms (0.16%) 144ms (0.34%) 72ms (1.88%) 2,300 2,600 2,250
Susan-edge (2.8MB pic.) 9.134s (0.36%) 5.016s (0.64%) 2.928s (0.62%) 3,950 3,800 3,800
Susan-corner (2.8MB pic.) 1.80s (0.32%) 0.959s (1.48%) 0.532s (0.18%) 4,800 4,800 4,800
Susan-smooth (2.8MB pic.) 11.60s (0.11%) 5.843s (0.21%) 2.946s (0.73%) 2,700 2,500 2,600
SHA (16 input files) 348ms (0.15%) 218ms (0.19%) 156ms (0.27%) 2,800 3,200 3,200
Dijkstra (160 nodes) 45.58s (0.02%) 22.79s (0.01%) 11.39s (0.06%) 6,500 6,900 6,900
Patricia (5000 IP address) 917ms (0.73%) 459ms (0.43%) 229ms (0.42%) 2,200 2,100 2,100
Stringsearch (16MB in file) 59.11s (0.20%) 29.55s (0.35%) 14.77s (0.79%) 2,900 2,900 2,900

tion with the highest possible accuracy. The ATGA simulation provides the

fastest possible speed when no interrupt is running in the system and the OS

kernel runs only in predictive mode. By contrast, task sets with high-priority

interrupt-driven tasks require the OS model to remain in fallback mode and

thus simulate much slower.

5.4.4 Inter-Task Communication Evaluation

Finally, to evaluate our SMP OS model under multi-core conditions, we

apply our simulator to a set of compute-intensive multi-threaded applications

from the ParMiBench suite [42]. ParMiBench applications are parallelized by

data decomposition across threads that are synchronized via barrier channels.

Task delays are back-annotated at the function level from measurements taken

on the ISS. Pthread calls are mapped into corresponding OS model primitives,

where a high-level inter-task channel is implemented to model POSIX-based

barrier synchronization. Table 5.4 summarizes simulation accuracy and speed

for a single, dual and quad core simulated platform. Results show that sim-
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Figure 5.11: Motion-JPEG example architecture.

ulated application runtimes follow the reference simulation with an average

error of 0.5%. Remaining errors are largely due to non-modeled execution de-

lays in Pthread calls. Overall, when replacing artificial NOP instructions with

real code, average simulation speed is degraded to 3,500 MIPS.

5.4.5 System Evaluation for Design Space Exploration

To demonstrate the benefits of our simulator for fast and accurate de-

sign space exploration, we apply our models to an industrial-strength Motion-

JPEG (M-JPEG) example, running three concurrent MP3, JPEG and user

interface tasks on a dual-core 650 MHz Cortex-A9 platform model. The over-

all architecture of the system is shown in Figure 5.11. The MP3 decoder uses

hardware accelerators to perform audio decoding, and the JPEG encoder is

completely implemented in software. Tasks communicate with external hard-
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ware and the rest of the system via an AHB bus and 12 interrupts. MP3

decodes 13 frames at a bitrate of 384 kbit/s, and JPEG encodes 10 frames of

a 30 frames/s movie with 352×288 resolution.

For accuracy analysis, we compare the execution behavior of MP3 and

JPEG tasks simulated on our host-compiled models to the reference OVP

ISS. Task delays are back-annotated at the function level from measurements

taken on the ISS. Moreover, average Linux context-switch overhead is mea-

sured and back-annotated into the OS model. We explore a wide range of

architectures by applying different OS and processor configurations, including

mapping of M-JPEG tasks and interrupts to different cores. Error is mea-

sured as the average percentage of absolute differences in individual frame

delays over all frames. The simulation speed is calculated based on the num-

ber of application and Linux kernel instructions simulated by the reference

ISS excluding Linux boot-up times. Instruction counts number between 800

and 1,040 million instructions depending on the system configuration. Note

that the application-only instruction count is 160 million instructions, which

means that a significant performance benefit comes from the OS abstraction

approach. Finally, in order to achieve fast simulation, a TLM of the AHB

bus at a granularity of user/application transactions [79] and the lightweight

model of the GIC are used.

Table 5.5 shows the average error and the simulation speed for the

explored architectures simulated by the ATGA model and the conventional

model under three different granularities. In dual-core architectures with a
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Table 5.5: Motion-JPEG example simulation results.

Average Frame Error Simulation Speed [MIPS]

Configuration
ATGA

Conventional
ATGA

Conventional

0.01µs 1µs 100µs 0.01µs 1µs 100µs

Single-Core
1: C0: Prty(MP3>JPG>CTL) 0.53% 0.68% 0.66% 1.95% 1,000 50 1,170 1,500
2: C0: FIFO(MP3, JPG)>CTL 0.75% 0.62% 0.62% 0.62% 1,460 70 1,600 2,130
3: C0: Prty(JPG>MP3>CTL) 0.58% 0.65% 0.65% 0.65% 1,920 70 1,620 2,200

Task-attached interrupt model
4: C0: CTL, C1: Prty(MP3>JPG) 0.48% 0.64% 0.60% 1.85% 1,000 50 1,200 1,400
5: C0: CTL, C1: FIFO(MP3, JPG) 0.67% 0.71% 0.71% 0.71% 1,740 70 1,500 2,200
6: C0: CTL, C1: Prty(JPG>MP3) 0.63% 0.64% 0.72% 0.72% 1,820 70 1,600 2,000
7: C0: Prty(MP3>CTL), C1: JPG 0.59% 0.72% 0.72% 0.72% 1,500 50 1,200 1,500

Core-attached interrupt model
8: C0: Prty(MP3>JPG>CTL), C1: Intr 0.85% 0.93% 0.89% 3.75% 1,050 50 1,100 1,600
9: C0: FIFO(MP3, JPG)>CTL, C1: Intr 1.56% 1.92% 1.92% 33.1% 1,500 50 1,460 1,800

10: C0: Prty(JPG>MP3>CTL), C1: Intr 0.93% 0.35% 0.47% 35.9% 1,570 50 1,400 1,800
11: C0: Prty(MP3>CTL), C1: JPG,Intr 0.28% 0.46% 0.46% 11.9% 840 50 1,250 1,500

Average 0.71% 0.76% 0.77% 8.35% 1,400 57 1,373 1,785

task-attached interrupt model, application tasks are distributed among two

cores and a task and its associated interrupts are mapped to the same core.

By contrast, dual-core architectures with a core-attached interrupt model al-

ways handle and run all interrupts on core1. Results show that with accurate

interrupt modeling, the average error of MP3 and JPEG frame delays over all

configurations is 0.71% at an average simulation speed of 1,400 MIPS. This

translates into an average speed of 244 million application-only instructions

per second. For configurations in which MP3 has a higher priority than JPEG,

increasing the simulation granularity in a conventional approach degrades ac-

curacy but increases simulation performance. By contrast, with the ATGA

approach both fast and accurate results are achieved. This tradeoff is not
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Figure 5.12: Design space exploration results.

observed in some of the other configurations. A further investigation shows

that in these configurations, the OS rarely switches to fallback mode and the

running task is never preempted by the next release time of a higher priority

one. As such, even with the conventional model, accurate results are always

achieved, i.e. the accuracy is independent of the simulation granularity. How-

ever, this is hard to predict. By contrast, the ATGA approach always provides

guaranteed accurate yet fast results. Note that in some cases, the conventional

simulation accuracy is higher, because errors caused by the simulation granu-

larity compensate inaccuracies for in back-annotated delays.
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Figure 5.12 summarizes the average frame delays and average frame

delay errors plus max. error bars of MP3 and JPEG tasks. In order to demon-

strate the importance of accurate interrupt modeling, frame delays and errors

are reported both with and without modeling the interrupt handling chain

(in the latter case, by bypassing the complete interrupt handling model). As

can be seen, the best MP3 performance is achieved when a higher priority is

assigned to MP3, or MP3 and JPEG are running on separate cores. In other

configurations, average MP3 frame delay is close to its deadline boundary (i.e.

26.1 ms). Minimized JPEG delay is obtained from configurations with FIFO

scheduling, when JPEG has higher priority or when it runs on a separate core.

In FIFO scheduling, MP3 behaves like a low-priority task. The reason is that

MP3 is often blocked waiting on hardware, while JPEG completely runs in

software. As such, whenever the MP3 task is blocked, the JPEG gets the

highest priority and MP3 can only resume its execution after JPEG finishes

encoding of the current frame. All combined, our explorations confirm that

shortest-job-first or rate-monotonic scheduling guarantee that MP3 and JPEG

meet their performance requirements.

Overall, optimized MP3 and JPEG performance is achieved when tasks

run on separate cores. The performance degradation of JPEG in the last

configuration compared to the same task-attached execution is caused by extra

time periods that JPEG is preempted by MP3 interrupts. Finally, by mapping

all interrupts to a separate core (core1), we only see slight performance benefits

in MP3 and JPEG delays. Since interrupt handlers are not running in parallel
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with their application tasks, putting them on a separate core does not reduce

interrupt delays within a task but can minimize the influence of one task’s

interrupts on the other. This effect is more pronounced for the JPEG task,

but interrupt handlers have small execution delays and do not provide large

speedup benefit.

In the end, results also confirm that interrupts can have a significant

influence on overall system performance. When bypassing the interrupt han-

dling model, some configurations exhibit a very large error that is caused by a

wrong execution order of MP3 and JPEG tasks. By contrast, when including

the model of the interrupt chain, average errors remain within 2%. Overall,

the high accuracy and fast simulation of our host-compiled simulator including

accurate OS, processor and interrupt models provides an efficient platform for

early design space exploration.

5.4.6 Cache Evaluation

We evaluate our cache modeling approach by simulating parallel ma-

trix multiplication tasks running on a dual-core 1.6 GHz Atom platform with a

core-private 24K, 6-way set associative L1 and a shared last level 512K, 8-way

set associative L2 cache. We execute our experiments under three different

simulation modes: a conventional simulation updates the cache state at the

fine granularity given by back-annotated execution times, while the temporally

decoupled (TD) ATGA approaches with and without multi-core, out-of-order

cache modeling (MOOC) method commit accumulated accesses only at sim-
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ulation quantum boundaries. To analyze the effect of course-grain temporal

decoupling on cache simulation accuracy, we run our experiments under two

different simulation quanta: 1µs and 1ms.

In order to evaluate the cache behavior under different memory accesses

patterns, we simulate two algorithms, a typical näıve matrix multiplication

algorithm and a cache-aware, blocked algorithm with fixed 32x32 blocks. For

each algorithm, we simulate a variety of matrix sizes ranging from small size

matrices that would fit entirely in the L1 cache to large matrices that exceed

the L2 size.

We first verify the accuracy of our cache hierarchy model on a single-

core execution. For this purpose, we compare cache miss rates obtained from

simulation with the actual execution on a single-core Atom board. We use

Valgrind [60] to monitor the Atom cache behavior.

Table 5.6 shows the total number of accesses for the L1 cache and the

L1 and L2 miss rates on the Atom board and compares these with simulation

results. Residual errors are caused by the back-annotation process, which

does not instrument all memory accesses. As summarized in Figure 5.13, the

results depict that our cache simulator follows the reference cache behavior.

Furthermore, low miss rates for large matrices confirm that a cache-aware

implementation achieves a better performance.
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(a) Näıve algorithm. (b) Cache-aware algorithm.

Figure 5.13: Accuracy results for L1 and L2 on the single-core platform.

We further compare the simulated execution times with the reference

execution on the board. In this experiment, we used a cache-memory calibra-

tion tool [13] to measure L1 and L2 miss latency cycles and annotated our

cache model accordingly in order to accurately reflect the cache effects in the

host-compiled simulation. The measured and simulated execution times for

both the single-core and the dual-core platforms are shown in Table 5.7. Re-

sults show a significant improvement of the cache model on the execution time

accuracy for matrices with high L1 or L2 miss rates. The average execution

error in the presence of cache modeling was -3.8%, while neglecting the impact

of cache behavior can generate up to 95% timing error. Note that as shown in

Table 5.7, for a matrix size of 384 cache conflicts in the cache-aware algorithm

lead to a high L2 miss rate which in turn results in a relatively high error,

even with our cache model. This is due to lack of accurate models of system

busses beyond the L2 in our setup.
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Table 5.8: L2 miss rate and errors for conventional, MOOC, TD simulation of
matrix multiplication on the dual-core platform.

Näıve Algorithm Cache-Aware Algorithm

Matrix L2 Miss Miss Rate Error L2 Miss Miss Rate Error

Size Accesses Rate TD MOOC Accesses Rate TD MOOC

Conv. 1µs 1ms 1µs 1ms Conv. 1µs 1ms 1µs 1ms

16 0 - - - - - - - - - - -
32 0 - - - - - - - - - - -
64 1,536 - - - - - 2,870 - - - - -
96 112,896 - - - - - 8,064 - - - - -
128 4,262,398 - - - - - 21,504 - - - - -
192 14,454,982 0.08% 0.00% -3.06% 0.00% 0.00% 76,200 17.3% 0.00% -0.34% 0.00% 0.00%
256 33,830,910 2.46% -73.3% -90.4% 0.00% 0.00% 34,765,822 0.25% 0.00% 1.54% 0.00% 0.00%
384 114,482,686 7.43% -16.0% -12.6% 0.00% 0.00% 663,552 39.8% 0.00% 1.36% 0.00% 0.00%

Finally, to demonstrate the efficiency of our MOOC approach in a tem-

porally decoupled simulation, we compare L2 miss rates using different mod-

eling setups. Table 5.8 shows the miss rates for TD and MOOC simulations.

As expected, for the MOOC approach, miss rates were constant under dif-

ferent simulation quanta and were identical to the conventional simulation

results. By contrast, the TD approach can exhibit large deviations due to

out-of-ordered cache updates. Note that for the cache-aware algorithm, there

is very little L2 interference between cores. As such, the ordering of accesses

does not play a significant role and a näıvely decoupled simulation already

provides good results. However, such behavior is hard to predict. By contrast,

reordering approach provides consistently good results.

To summarize, Figure 5.14 compares L2 miss rates reported by different

host-compiled simulation approaches. As can be seen, temporally decoupled

simulation without reordering the memory accesses can result in large errors
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Figure 5.14: L2 miss rate for Conventional, MOOC, and TD simulations with
quantum (1ms).
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Figure 5.15: Simulation time for Conventional, MOOC, and TD simulations
with quantum (1ms).

for some configurations. Figure 5.15 plots the simulation time for the same

experiments. Altogether, the integrated MOOC model provides a guaranteed

accurate result while maintaining almost the full performance benefits of a

temporally decoupled simulation.

Finally, to evaluate our cache model stressed under more realistic con-
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Figure 5.16: Galois host-compiled simulation w/ and w/o cache modeling
(MOOC, quantum=1ms).

ditions, we apply our models to a multi-thread programming framework (Ga-

lois) [61] running a single source shortest paths (SSSP) algorithm on an input

graph with 1,070,376 nodes. We run the application on a 6-Core 2.0 GHz Xeon

board with core-private 32 KB, 8 Way L1 and 256 KB, 8 Way L2 caches and

a shared 12 MB, 12 Way L3 cache. Task delays are measured using Vtune [41]

on the reference board. Figure 5.16 compares the measured and simulated ex-

ecution times for both FIFO- and Stack-based priority queues in Galois frame-

work. We further run the experiment under different number of cores. Results

show that with cache simulation average timing error of Fifo-based priority

queue is improved to -0.8% from -18.8% without cache modeling. Similarly,

for stack-based priority queue, the average error is decreases to -9.9% from the

original -31.8%.
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5.5 Summary

In this chapter, we presented a host-compiled multi-core system sim-

ulator designed for early real-time performance evaluation. At its core, the

simulator consists of a configurable, abstract OS model, which emulates multi-

core task scheduling. Furthermore, the OS model is embedded in a high-level

multi-core processor model that replicates a generic multi-core interrupt han-

dling chain and supports standard TLM interfaces for integration into co-

simulation backplanes to provide a fast and accurate full-system HW/SW

co-simulation platform. Experimental results demonstrate the efficiency of

our simulator both on a suite of artificial task sets and an industrial-strength

design example. Results show that compared to a reference ISS, simulations

on the order of 1000 MIPS at less than 3% error can be achieved. Overall,

experiments demonstrate the benefits of our configurable models for fast and

accurate early design space exploration and software development.

We further presented a novel cache hierarchy simulation technique,

which provides an accurate multi-core cache simulation for efficient system-

level evaluation and exploration. Our approach introduces a multi-core, out-

of-order cache model, which incorporates a delayed reordering of aggregated

requests to provide an accurate cache simulation in the presence of temporal

decoupling. Our results show that the highest possible accuracy is obtained

by using our reordering technique, while increased simulation performance

benefits from temporal decoupling.
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Chapter 6

Parallel Simulation

In the preceding two chapters, we focused on improving the speed and

accuracy tradeoff in host-compiled simulations through timing model manage-

ment of platform models considering discrete-event behavior of SLDLs. In the

presented approaches, however, single-threaded execution of traditional SLDL

simulators still limits the simulation performance. With recent advances in

parallel discrete-event simulators (PDES), parallel simulation of virtual plat-

forms, such approaches have been widely accepted as a solution to provide fast

simulation of multi-core and multi-processor platforms on parallel multi-core

simulation hosts.

In this chapter, we propose a novel timing model management ap-

proach, which integrates with our previously presented solutions to align log-

ical time advances in platform models along synchronized simulation times in

order to fully utilize parallel resources available in host PCs. The rest of this

chapter is organized as follows: In Section 6.1, we briefly discuss the behav-

ior of parallel host-compiled simulation. In Section 6.2, we then present our

synchronized timing model management solutions. Finally, in Section 6.3, we

evaluate the performance benefits of our parallel timing models.
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Figure 6.1: Parallel simulation of virtual platforms.

6.1 Parallel Host-Compiled Simulation

Abstract multi-core platform models paired with temporal decoupling

approaches can provide faster simulation. However, in spite of the parallel

nature of multi-core virtual platforms, the models are traditionally executed

on top of a sequential simulator. Recently, PDESs have emerged as a solution

for parallel simulation of virtual platforms, as shown in Figure 6.1. Basically,

simulated platform resources are clustered and mapped to a dedicated core on

a host PC by the underlying SLDL simulation kernel. The application threads

are then managed and scheduled on the platform threads by an abstract OS

model. In an ideal parallel simulation, the number of active host cores is equal

or less than the total number of platform and application model threads at

any simulation time.

We explored different parallel discrete-event simulators in Section 2.3.

A fully conservative PDES issues platform threads only if they are ready at

the same simulation cycle [20]. As such, available host cores remain idle if
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there are less active threads in a particular simulation cycle. In other words,

the parallel simulation is strictly controlled by the timing behavior of platform

models. By contrast, a predictive simulator issues multiple platform threads

even if they are in different simulation cycles as long as there is no interaction

between them [16]. However, such simulators require a static analysis of the

dependencies, and as such, are not able to consider complex, dynamic platform

behavior. Such problems can be solved by using a timing management model

to align and synchronize concurrent threads, and when integrated into our OS

model, this approach can further consider dynamic behavior of platforms for

more efficient simulation.

In the following, we present an example of platform simulation using

existing PDSEs with and without an integrated, synchronized timing model

management approach. Figure 6.2 (a) shows a simple dual-core platform model

simulating three application threads, in which Th1 is assigned to core0 and

threads Th2 and Th3 are running on core1. Figure 6.2 (b) shows the conserva-

tive simulation of the example. As can be seen, except for the first simulation

cycle, there is no chance that the platform threads can be issued in parallel.

By contrast, Figure 6.2 (c) shows the same simulation with an integrated tim-

ing model management, where the timing manager splits the first segment of

Th2 in order to run both the second segment of Th1 and Th2 in the same

simulation cycle. Figure 6.2 (d) shows the predictive simulation of the same

example. In this simulation, the last segment of Th1 cannot be issued, since in

the general case, e.g. in the presence of dynamically issued dependencies (such
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Figure 6.2: Parallel simulation of a dual-core virtual platform using different
parallelization approaches.
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as a dynamically executed wait statement), a static analysis will not be able to

determine that Th1 is mapped to a separate platform core, and is independent

of both Th2 and Th3. Figure 6.2 (e) then shows an ideal simulation, in which

the platform timing model can manage run-time dependency checking to align

and synchronize execution of concurrent threads in order to provide the most

efficient parallel simulation.

6.2 Synchronized Timing Model Management

In the ATGA approach, the OS model manages the simulation timing

model internally to only advance the simulation time and call the scheduler

at right task switches points. In this approach, each core keeps a local time

and can go a head of the simulated time until a task switch or a global syn-

chronization such as a hardware interaction needed. We utilize the advantage

of our integrated ATGA model to provide efficient parallel simulation via dy-

namic timing alignment of platform threads. We thereby propose three dif-

ferent schemes to perform such a timing synchronization for aligned parallel

simulation:

6.2.1 Static Quantum Model

An ATGA-based OS model accumulates tasks execution delays inter-

nally, and decides to advance the simulated time when the accumulated delay

exceeds predicted scheduling points. As such, platform cores can go ahead of

the global time as long as there are no task switches. Figure 6.3 (a) shows the
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Figure 6.3: Synchronized timing models coupled with the ATGA approach.

parallel execution trace of a dual-core platform model. At the beginning of

the simulation, both platform threads are issued on host cores, since they are

ready at the same simulation cycle. At local time 12, the task running on core0

requests to advance time and calls the OS scheduler. At this point, the associ-

ated host core becomes idle waiting for the other core to finish the execution of

the assigned platform thread. After advancing the simulated time to 12, only

the core0 thread is ready and can be issued, while the other host core stays

idle until the next simulation cycle. In such a timing model, there are several

gaps in the execution trace, in which a host core is idle due to desynchronized

platform threads. To solve this problem, we extend our ATGA approach by
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simply aligning the predicted delay of different cores to fixed, statically se-

lected quantum boundaries, such that platform threads are synchronized and

can be issued concurrently. This can improve the performance in conservative

parallel simulations, in which only threads in the same simulation cycles can

be issued in parallel. As can be seen in Figure 6.3 (b), both platform threads

are synchronized again at quantum boundaries of simulated times 15 and 20,

and can be issued on host cores in parallel accordingly. However, platform

threads can still be desynchronized at task scheduling points.

6.2.2 Dynamic Quantum Model

To efficiently manage thread alignment points, simulation quanta are

determined dynamically by task-switches points. In the ATGA approach with

static quanta, the simulation cycle advances to the next scheduling points when

a task needs to be scheduled on a core. This can still lead to tasks becoming

desynchronized on the underlying simulation kernel. To combat this prob-

lem, in an ATGA approach with dynamic quanta, only when a core needs to

move to the next simulation cycle (i.e. a task scheduling point) will it inform

other cores to terminate their running task and also move to the next, globally

announced simulation cycle. As such, timing models of different cores are ef-

fectively synchronized with a dynamically selected, global quantum boundary.

Figure 6.3 (c) shows the execution trace of our example using dynamic quan-

tum boundary synchronizations. As can be seen, all threads are dynamically

synchronized at task scheduling points to keep host cores busy.
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Figure 6.4: Fully decoupled ATGA timing model.

6.2.3 ATGA+ Timing Model

In the ATGA approach, the global time is advanced whenever a task

scheduling is required or a quantum boundary has been reached. However,

platform threads may still move to different simulation cycles when a core

switches to idle state, e.g. while waiting for the start of the next period of any

task assigned to the core. This can result in available host cores remaining

idle while waiting for the next synchronization time. Figure 6.4 (a) shows

the execution trace of a dual-core platform, in which the thread running on

core1 moves to and remains in idle state until the simulated time 25. As

such, the host core remains idle until the other thread has reached this next
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synchronization point, i.e. the start time of core1 thread. To improve on this

situation, we further enhance our ATGA approach by advancing the simulated

time only when a hardware interaction is needed or an explicit inter-process

synchronization is requested by platform threads. In such an approach, cores

continue to accumulate task delays and increment their local time even if a

task scheduling happens. This allows cores to remain synchronized longer at

the same simulated time, where cores can only differ in their delta cycles,

which have to be advanced on each scheduling event. In this way, the host

machine is utilized more efficiently. As shown in Figure 6.4 (b) both cores are

fully utilized, since platform cores are completely decoupled and core1 was

able to immediately jump to the next simulation cycle by only incrementing

its local time.

6.3 Experiments and Results

To evaluate the performance benefits of our modeling approaches, we

compare the simulation speed of different timing models to a reference single-

thread simulation of the conventional ATGA model. All experiments are simu-

lated using a conservative parallel SpecC simulator [20] on top of a Quad-Core

2.67 GHz Intel Core i7 workstation. We apply our timing models to randomly

Table 6.1: Periodic task sets characteristics.

Set S1 S2 S3 M1 M2 M3 L1 L2 L3

Number of Tasks 42 31 47 16 16 16 12 11 13
Avg. Task Weight 0.06 0.06 0.06 0.15 0.16 0.15 0.22 0.27 0.23
CPU Utilization 2.35 1.68 2.74 2.43 2.83 2.62 2.61 2.98 3.01
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Table 6.2: Parallel simulation results using ATGA timing model.

Parallel Simulation

Sets CPU = 1 CPU = 2 CPU = 4

Sim. time (Util.) Speedup Sim. time (Util.) Speedup Sim. time (Util.) Speedup

S1 22.46s (99%) 1 22.01s (120%) 1.02 21.31s (105%) 1.05
S2 14.61s (99%) 1 15.5s (122%) 1.15 13.65s (129%) 1.07
S3 27.14s (99%) 1 25.98s (121%) 1.04 24.84s (124%) 1.09
M1 17.28s (99%) 1 15.79s(126%) 1.09 15.1s(133%) 1.14
M2 25.25s (99%) 1 22.03s (123%) 1.25 20.57s (128%) 1.23
M3 20.86s (99%) 1 20.25s (124%) 1.03 18.44s (131%) 1.13
L1 23.74s (99%) 1 20.48s(133%) 1.16 18.26s (149%) 1.30
L2 26.6s (99%) 1 23.75s (130%) 1.12 22.22s (142%) 1.20
L3 26.54s (99%) 1 25.01s(129%) 1.06 22.99s (137%) 1.15

Table 6.3: Parallel simulation results using ATGA timing model w/ the syn-
chronized static quanta (Quantum = 100µs).

Parallel Simulation

Sets CPU = 1 CPU = 2 CPU = 4

Sim. time (Util.) Speedup Sim. time (Util.) Speedup Sim. time (Util.) Speedup

S1 20.41s (99%) 1.10 14.73s (131%) 1.52 14.35s (142%) 1.57
S2 13.65s (99%) 1.07 11.02s (137%) 1.33 10.2s (151%) 1.43
S3 21.68s (99%) 1.25 18.55s (148%) 1.46 15.38s (180%) 1.76
M1 15.29s (99%) 1.13 11.9s (141%) 1.45 10.46s (155%) 1.65
M2 20.31s (99%) 1.25 15.17s (143%) 1.66 12.7s (170%) 1.99
M3 18.5s (99%) 1.13 13.48s (143%) 1.55 11.69s (166%) 1.78
L1 19.8s (99%) 1.20 15.45s (153%) 1.54 11.75s (193%) 2.02
L2 22.8s (99%) 1.17 17.15s (157%) 1.55 11.97s (205%) 2.22
L3 25.47s (99%) 1.04 18.48s (155%) 1.44 13.6s (196%) 1.95

generated periodic task sets (as described in Section 3.2) executed on a simu-

lated quad-core platform. Task priorities are assigned inversely to their periods

following a rate-monotonic scheduling scheme. Execution delays are modeled

by a loop over basic arithmetic operations and are back-annotated at the gran-

ularity of 1µs. We run each task set for 10 sec of simulated time. A summary

of tasks’ characteristics is shown in Table 6.1.
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Table 6.4: Parallel simulation results using ATGA+ model w/ the synchronized
static quanta (Quantum = 100µs).

Parallel Simulation

Sets CPU = 1 CPU = 2 CPU = 4

Sim. time (Util.) Speedup Sim. time (Util.) Speedup Sim. time (Util.) Speedup

S1 21.67s (99%) 1.04 17.37s (164%) 1.29 11.67s (215%) 1.92
S2 17.33s (99%) 0.84 12.93s (160%) 1.13 6.7s (144%) 2,18
S3 29.55s (99%) 0.92 20.12s (165%) 1.35 11.88s (232%) 2.28
M1 17.09s (99%) 1.01 13.98s (164%) 1.24 7.05s (238%) 2.45
M2 23.74s (99%) 1.06 19.03s (163%) 1.33 8.84s (248%) 2.86
M3 20.06s (99%) 1.04 16.44s (161%) 1.27 7.86s (244%) 2.65
L1 19.12s (99%) 1.24 18.75s (172%) 1.27 8.54s (284%) 2.78
L2 26.69s (99%) 1 20.2s (170%) 1.32 9.19s (265%) 2.89
L3 26.92s (99%) 0.99 20.67s (171%) 1.28 9.32s (267%) 2.85

Table 6.2 shows the simulation time and the speedup for our conven-

tional ATGA timing model. As can be expected, no performance gain is

achieved by parallel simulation, since platform threads are rarely synchronized

to execute in the same simulation cycle. By contrast, Table 6.3 shows that

by a simple alignment of platform threads at quantum boundaries, an average

speedup of 1.8 is achieved. However, the simulation performance is still lim-

ited by non-synchronized timing models in the presence of task switches and

context-switch overheads.

Table 6.4 and Table 6.5 list the simulation speedup for the ATGA+

approach with static quantum and dynamic quantum models, respectively.

Overall, the ATGA+ approach provides faster simulation by decreasing the

overhead of advancing the simulated time. Results show that synchronized

timing models with static and dynamic quantum selection can run 2.6× and

3.5× faster, respectively, compared to the single-threaded simulation of con-

118



Table 6.5: Parallel simulation results using ATGA w/ the synchronized dy-
namic quanta.

Parallel Simulation

Sets CPU = 1 CPU = 2 CPU = 4

Sim. time (Util.) Speedup Sim. time (Util.) Speedup Sim. time (Util.) Speedup

S1 16.99s (99%) 1.32 10.43s (170%) 2.15 8.77s (225%) 2.56
S2 11.76s (99%) 1.24 7.91s (167%) 1.85 5.36s (251%) 2.73
S3 19.75s (99%) 1.37 13.29s (170%) 2.04 9.55s (252%) 2.84
M1 13.32s (99%) 1.30 9.12s (161%) 1.89 5.53s (244%) 3.12
M2 17.08s (99%) 1.48 10.91s (171%) 2.31 5.76s (284%) 4.38
M3 15.73s (99%) 1.33 10.1s (168%) 2.07 6.13s (244%) 3.40
L1 17.29s (99%) 1.37 11s (171%) 2.16 5.23s (309%) 4.54
L2 19.38s (99%) 1.37 12.08s (173%) 2.20 6.57s (283%) 4.05
L3 19.88s (99%) 1.34 12.83s (172%) 2.07 6.32s (293%) 4.20

ventional models.

To summarize, we compare the average speedup of our timing models

simulated on different number of host cores (shown in Figure 6.5). As can be

seen, the ATGA+ approach with dynamically aligned platform threads is able

to fully utilize the host workstation regardless of the timing behavior of the

original platform model itself.
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Figure 6.5: Average simulation speedups.
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6.4 Summary

In this chapter, we examined the execution of conventional host-compiled

platform models on top of typical parallel discrete-event simulators. Accord-

ingly, we presented a synchronized timing model management designed to

address the need for efficient parallel simulation of platform threads. Cou-

pled with the ATGA model, platform threads are automatically aligned to

quantum boundaries, in which the parallel simulator is able to issue them con-

currently. We further enhanced the performance of our ATGA approach by

temporally decoupling platform threads even beyond task scheduling points.

Furthermore, with dynamically selecting the alignment boundaries, unneces-

sary synchronization points are eliminated to provide more efficient parallel

simulations. Experimental results demonstrate the efficiency of our timing

models on a suite of periodic task sets running on a simulated quad-core plat-

form. Results show that compared to a reference single-thread parallel simu-

lation of our conventional models, a speedup of up to 4.5× is achieved on a

quad-core host PC, while the conventional model is only simulated up to 1.3×

faster. Overall, our results show that the ATGA+ approach with dynamically

selected quantum boundaries can provide a fully utilized parallel simulation.
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Chapter 7

Summary, Conclusions and Future Research

In this chapter, we first summarize our contributions and results, then

discuss possible research directions.

7.1 Summary and Conclusions

In this dissertation, we have studied and addressed inefficiencies and

tradeoffs in accuracy and speed of host-compiled simulation approaches. As

the basis of our research, we have first identified and classified different sources

of errors in convention host-compiled platform models. An analytical model

of error behavior has thereby shown that, under certain conditions, errors can

exceed the bounds set by the discrete timing model itself. We have accordingly

proposed dynamic timing model management approaches to avoid such errors

and improve the accuracy and speed tradeoff.

For the infrastructure of our research, we have presented a novel host-

compiled multi-core platform simulator. At its core, the simulator consists

of a configurable, abstract OS model, which emulates SMP task scheduling.

Furthermore, the OS model is embedded in a flexible, high-level multi-core

processor model that replicates a generic multi-core interrupt handling chain
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and supports standard TLM interfaces to provide a full-system HW/SW sim-

ulation platform.

In order to improve the speed and accuracy, we have proposed an au-

tomatic timing granularity adjustment (ATGA) approach in which, when cou-

pled with the OS model, the simulator itself automatically controls the timing

granularity to provide an error-free task preemption model. In this approach,

the OS model continuously monitors the state of the system, and accumu-

lates or breaks statically annotated delays into a number of smaller steps as

needed. Results show that using the ATGA timing model, a fast and accurate

simulation is achieved regardless of discrete timing granularities in the original

code.

In a multi-core configuration of the ATGA model, temporally decou-

pled execution of platform cores can cause memory accesses to be globally

committed out-of-order to a shared cache model. As a solution, we have

further introduced a multi-core, out-of-order cache hierarchy model, which in-

corporates a delayed reordering of aggregated requests to provide a fast and

accurate host-compiled multi-core cache simulation. Our results show that the

highest possible accuracy is obtained by using our reordering technique, while

increased simulation performance benefits from the ATGA approach.

Finally, we have examined parallel simulation of host-compiled platform

models via well-established PDES approaches. As our observations demon-

strated, the parallel simulation benefit is highly limited by the inherent timing

behavior of platform models. As a solution, we have introduced an approach
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for synchronized timing models, which align platform threads to quantum

boundaries in order to expose more parallelism to the underlying parallel sim-

ulator. We have realized a fully utilized parallel simulation where such ap-

proaches are incorporated into the OS and ATGA models.

7.2 Future Directions

In the following, we outline possible research directions in this domain

to further improve accuracy and speed tradeoffs or to tackle simulation per-

formance bottlenecks that still exist in complex multi-core platform modeling.

7.2.1 Platform Manager

In the ATGA approach, the OS model monitors the state of all tasks

running on the system, and based on such information predicts the next pos-

sible scheduling point in order to advance the simulation time in larger gran-

ularities. In situations when the OS model is not able to predict the next

scheduling point due to an external event, it switches to an expensive and

fine-grained fallback mode until all events are captured. However, moving to

fallback mode can degrade the simulation performance dramatically, especially

for systems with high HW/SW interactions.

To tackle such a problem, the key concept of the ATGA approach can

be applied to establish a complete platform manager (PM) model. In this

case, the OS model is extended to monitor all resources and components in

the system, including both application tasks running on top of the processor
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model as well as hardware units connected to the system bus and interacting

with the application software tasks. In this way, the platform manager is able

to monitor the state of hardware units in a larger context, and thus eliminate

unnecessary fallback modes by predicting event release times.

In order to implement a platform manager, all communication channels

including bus and interrupt handling models, as well as inter-task communi-

cation primitives are instrumented to keep the track of all data dependencies

between different components and tasks inside the platform model. Following

the ATGA model, a platform manager can also accumulate hardware delays

and only advance the time when an external interaction needed. In such a way,

we speculate that it is possible to achieve fast full-system simulation while still

providing accurate results.

7.2.2 Parallel Simulation

In this dissertation, we have shown that by careful timing model man-

agement and optimal temporal quantum alignment, available cores on host

PCs can be fully utilized for efficient parallel simulation. However, there are

several directions for improvements in this area:

Synchronized timing model supporting hardware interactions. In the

ATGA+ approach, platform cores are fully decoupled, and the simulator moves

to the next simulation cycle by advancing delta cycles only without actually

advancing the time. In this approach, the total time is defined by a core’s

local time plus the global simulated time. When a task communicates with
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hardware, however, the simulated time is required to be synchronized with

the total time of that core in order to provide timing-accurate hardware in-

teractions. Consequently, platforms threads may move to different simulation

cycles causing parallel simulation benefits to suffer.

Such a problem can be solved by introducing an extra timing syn-

chronization level on top of our dynamic quantum alignment approach. In

this approach, when a core requests a hardware interaction, the timing model

globally distributes such synchronization points over platform threads in order

to efficiently move them to the same simulation cycle. Using this approach, we

expect to see the performance benefit of parallel simulation even in platforms

with a high degree of HW/SW interactions.

Parallel Cache Simulation. High simulation overhead of cache models has

severely limited such models in host-compiled platform simulations. High-

level cache models only emulate miss/hit behavior and do not need to be

implemented as an SLDL process. In other words, a cache model can be ex-

ecuted in a separate thread next to the SLDL simulation kernel itself. In a

host-compiled performance evaluation, cache penalties can be considered at

the end of simulation or when an explicit synchronization is required. As

such, with reduced inter-thread communications via lock-free channels, and

with a balanced computation distribution, we anticipate to see improved cache

simulation performance through such parallelization and separation of cache,

functional and timing models.
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Appendix 1

Dynamic Task Scheduler Modeling

With recent trends in multi-core processor design, multi-core sched-

ulers have become crucial components for the performance of real-time em-

bedded systems. Figure 1.1 shows two common classes of multi-core schedul-

ing schemes. The prevalent scheme has been a partitioned queue, in which

each task is statically assigned to a fixed core and queue. An alternative is a

global scheduling scheme, in which there is a single ready queue, and tasks are

assigned to any available core according to a global priority policy. In Chap-

ter 4, we evaluate the integration of common partitioned and global scheduling

schemes using fixed priorities into the host-compiled OS model. In this ap-

pendix, we focus on two well-studied global scheduling policies with dynamic

priorities (G-EDF and Pfair) to further examine the OS model on adopting new

Core 0

Core 2

Core 1T1T2

T2 T1

T1T3 T2

ReadyQueue0

ReadyQueue1

ReadyQueue2

T1T3 T2

ReadyQueue

Core 0

Core 2

Core 1

(a) Partitioned scheme. (b) Global scheme.

Figure 1.1: Multi-core scheduling schemes.
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schedulers and features. The integration of such dynamic schemes, however,

requires slight changes in the structure of our scheduler and timing model.

For the rest of our discussions, we consider that an application consists

of a set τ = {T1, T2 . . . Tn} of periodic tasks running on a multi-core processor.

A periodic task Ti repeatedly releases jobs at its release times ri. The jth job

of task Ti is denoted as Ji,j. A per-job execution cost and task period are

denoted by ei and Pi, respectively. We refer to the ratio of wti = ei/Pi as

the weight of the task Ti. We further assume that processor time is advanced

by discrete-time quanta, and all tasks’ parameters are integer multiples of the

quantum length.

1.1 G-EDF Scheduling

An earliest-deadline-first (EDF) scheduler, as its name implies, assigns

a higher priority to a task with the earliest deadline. Accordingly, a global

EDF (G-EDF) scheduler dispatches tasks from a global Ready queue in order

of increasing deadline until either all cores are busy or no more task is ready [1].

As such, G-EDF automatically balances the load among the cores. In the

following, we present details of a version of our host-compiled OS model that

incorporates a G-EDF scheduler based on the algorithm implemented in a

Linux extension called LITMUSRT [12].

Timing model management. In a G-EDF scheme, the task sched-

uler is called when a task finishes executing or when a new job of a periodic

task becomes ready (i.e. at the tasks’ next release time). To call the sched-
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Function PredictNextPreemptionTime:

1 idleTask := getFirst(IdleQueue)

2 predictedDelay := idleTask.NextPeriodTime - CurrentTime()

3 for all coreID in active CPU list do

4 predictedDelay := Min(predictedDelay, CPU[coreID].currentTask.NextPeriodTime - CurrentTime())

5 endfor

6 return predictedDelay

Figure 1.2: G-EDF scheduling point prediction.

Function TimeWait (long long nsec, task runningTask):

1 runningTask.AccDelay + = nsec

2 predictedDelay := PredictNextPreemptionTime()

3 while runningTask.AccDelay > predictedDelay do

4 SLDL::wait(predictedDelay)

5 runningTask.AccDelay − = predictedDelay

6 GEDFScheduleTick()

7 Wait4Sched(runningTask)

8 predictedDelay := PredictNextPreemptionTime()

9 endwhile

Figure 1.3: G-EDF timing model.

uler at the right times, the algorithm shown in Figure 1.2 determines the next

possible preemption point as the first release time among the first task in the

Idle queue and all running tasks. Note that the Idle queue is sorted based on

the tasks’ next release times. As such, only the first task needs to be checked
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Function GEDFScheduleTick():

1 GEDF Lock.Acquire()

2 for all releasedTask do

3 insertGEDFPriority(ReadyQueue, releasedTask)

4 endfor

5 if Check4Preemptions() then

6 for all coreID in the preempted cores list do

7 Dispatch(coreID);

8 endfor

9 endif

10 GEDF Lock.Release()

Figure 1.4: G-EDF scheduler.

to determine the next scheduling point. We further overload the TimeWait()

method from the OS API to replicate a G-EDF scheduling model (shown in

Figure 1.3). In this model, when the accumulated delay has reached the pre-

dicted scheduling boundary (line 2-3), the simulated time is advanced and a

G-EDF scheduler is called accordingly (line 6).

G-EDF Scheduler. Figure 1.4 shows the algorithm that implements

the G-EDF scheduler. The shared queue in the scheduler is protected using

a global lock in order to prevent concurrent accesses. When the scheduler

is called, just recently released tasks are first inserted into the global Ready

queue according to an EDF policy (line 3), in which tasks with earliest dead-

lines are located first, and tasks with the same deadline are then listed based
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Function Check4Preemptions():

1 preemptionNeeded := false

2 lastCPU := GEDFLowestPriorityCPU()

3 readyTask := peekFirst(ReadyQueue)

4 while GEDFHigherPriority(readyTask , lastCPU.currentTask) do

5 lastCPU.newTask = getFirst(ReadyQueue)

6 lastCPU.preempted := preemptionNeeded := true

7 GEDFUpdateCPUPriorityList()

8 lastCPU = GEDFLowestPriorityCPU()

9 readyTask := peekFirst(ReadyQueue)

10 endwhile

11 return preemptionNeeded;

Figure 1.5: G-EDF check for task preemptions.

on the increasing order of task IDs. Next, the Check4Preemption() function

is invoked to examine all running tasks for possible preemptions by the re-

leased tasks (line 5). Finally, the actual preemption is implemented when the

Dispatch() function is called for all preempted cores (lines 6-8).

An efficient implementation of the Check4Preemption() function is

shown in Figure 1.5. The OS model internally lists cores in an increasing

order of the priority of associated running tasks. Hence, the core at the top of

the list is running the task with the least EDF priority. As long as the task on

top of the Ready queue has a higher priority compare to the task running on

the least priority core, the OS schedules a new task on the least priority core
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Function Dispatch(int coreID):

1 if CPU[coreID].preempted then

2 insertGEDFPriority(ReadyQueue, CPU[coreID].currentTask)

3 CPU[coreID].currentTask := CPU[coreID].newTask

4 SendSched(CPU[coreID].currentTask)

5 endif

Figure 1.6: G-EDF Dispatch method.

and updates its position in the core list accordingly (lines 4-10).

Finally, the actual preemption is implemented in the Dispatch() func-

tion (Figure 1.6), in which the current task is moved to the Ready queue and

the previously assigned task is notified for scheduling.

1.2 Pfair Scheduling

In a perfectly fair (ideal) schedule of periodic tasks, every task receives

wti quanta over the interval [0, t). This implies that all deadlines are met if

the total utilization is less than the number of available cores [87]. In Pfair

scheduling, each task is divided into a sequence of quantum-size subtasks T =

τ1, τ2 . . . τe. Each subtask τi has an associated release time r(τi) and deadline

d(τi), defined as:

r(τi) = bi− 1

wti
c, d(τi) = d i

wti
e 1 ≤ i ≤ e (1.1)

The Pfair scheduling algorithm thereby schedules subtasks on an earliest-
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subtasks

Figure 1.7: Pfair subtasks for task T(e=3,P=7).

deadline-first basis during their [r(τi), d(τi)) intervals [87]. An example of Pfair

subtasks is given in Figure 1.7. Task T with weight 3
7

is divided into three sub-

tasks, and in each interval only one quantum-size subtask is scheduled even

if the core is idle and no other task is ready. In the following, we present

the integration of Pfair scheduling into our OS model based on the algorithm

developed in LITMUSRT [12].

Timing model management. Figure 1.8 shows the pseudo code of

the TimeWait() method, in which the PFair scheduler is called every time that

Function TimeWait (long long nsec, task runningTask):

1 runningTask.AccDelay + = nsec

2 while runningTask.AccDelay > SCHEDULING QUANTUM do

3 SLDL::wait(SCHEDULING QUANTUM)

4 runningTask.AccDelay − = SCHEDULING QUANTUM

5 currentCoreID := GetSchedCoreID(runningTask)

6 PfairScheduleTick(currentCoreID)

7 Wait4Sched(runningTask)

8 endwhile

Figure 1.8: Pfair timing model.
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Function PfairScheduleTick(int coreID)

1 Pfair Lock.Acquire()

2 AdvanceSubtasks(CurrentTime())

3 PollReleases(CurrentTime())

4 ScheduleSubtasks()

5 for all coreID in the cores list do

6 Dispatch(coreID);

7 endfor

8 Pfair Lock.Release()

Figure 1.9: Pfair scheduler.

the scheduling quantum boundary is reached (line 6). To replicate such behav-

ior, the OS model accumulates task delays and only advances the simulated

time by a fixed, quantum-length value (line 3).

Pfair Scheduler. The internals of Pfair scheduling are shown in Fig-

ure 1.9 and Figure 1.10. Again, since the scheduler is globally accessible by

all cores, it is protected using a global lock. As shown in Figure 1.9, in the

first step, all subtask are updated and moved to the Idle queue (lines 2-3).

Next the released subtasks are scheduled based on an EDF strategy, details of

which are shown in Figure 1.10. Finally, the Dispatch() method physically

assigns the scheduled task to the current core, as shown in Figure 1.11.
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Function ScheduleSubtasks()

1 for all coreID in CPU list do

2 readySuntask := peekFirst(ReadyQueue)

3 if PfairHigherPriority(readySubtask, CPU[coreID].currentTask do

4 CPU[coreID].newTask := getffirst(ReadyQueue)

5 else

6 CPU[coreID].newTask := Null

7 endif

8 endfor

Figure 1.10: Pfair subtasks scheduler.

Function Dispatch(int coreID):

1 CPU[coreID].currentTask := CPU[coreID].newTask

2 if CPU[coreID].currentTask ! = Null then

3 SendSchedule(CPU[coreID].currentTask)

4 endif

Figure 1.11: Pfair Dispatch() method.

1.3 Experiments and Results

To evaluate the accuracy of our models, we use randomly-generated pe-

riodic task sets. Task periods are uniformly distributed over [10, 100] ms, and

task weights are distributed over [0.001, 0.4]. We run each task set for 10 s

of simulated time. Experiments are executed on a simulated host-compiled

dual-core platform. For accuracy measurements, task response times are com-
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Table 1.1: Multi-core scheduling accuracy results.

Periodic Task Sets τ1 τ2 τ3 τ4 τ5

Number of Tasks 5 6 7 7 8

Avg. Task Weight (wti = ei
Pi

) 0.245 0.271 0.184 0.172 0.130

Total Utilization (U =
∑

wti) 1.227 1.628 1.289 1.204 1.043

G-EDF
Avg. Error 0.34% 1.54% 0.59% 0.65% 0.72%

Max. Error 9.28% 59.14% 17.18% 50.38% 81%

Pfair
Avg. Error 0.76% 3.66% 3.20% 0.29% 1.26%

Max. Error 18.75% 24.76% 42.85% 4.10% 14.25%

pared to a reference execution on a dual-core 1.6 GHz Atom platform running

LITMUSRT with a scheduling quantum of 1 ms.

Table 1.1 summarizes task set features and accuracy measurements for

both G-EDF and Pfair scheduling policies. The average timing errors for

G-EDF and Pfair schedulers are measured to be 0.8% and 1.8%, respectively.

However, very large timing errors of up to 81% are observed for some iterations.

Deeper investigations of related task scheduling traces show that the reference

platform schedules the tasks differently across similar situations. This happens

when more than two tasks have the same deadline, and the scheduler therefore

determines the higher priority task based on some unobservable and hence not

easily replicable other parameters, such as Linux process ID. Overall, given

the fact that LITMUSRT is an extension of the Linux kernel, which is not in

itself a fully deterministic and predictable real-time OS, high errors may be

observed in our model when comparing to such a platform.
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1.4 Summary

In this appendix, we presented the integration of two common, more

complex multi-core scheduling algorithms into our host-compiled OS model.

We can observe that the new scheduling policies can be easily integrated into

our OS model by overloading the scheduler and timing model management

functions. Furthermore, when comparing our models to scheduler behavior on

a real platform, results show that our models are able to accurately track and

predict actual system behavior, in as much as it can be predicted from given

parameters.
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