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A Bayesian framework for quantification of uncertainties has been used

to quantify the uncertainty introduced by chemistry models. This framework

adopts a probabilistic view to describe the state of knowledge of the chem-

istry model parameters and simulation results. Given experimental data, this

method updates the model parameters’ values and uncertainties and prop-

agates that parametric uncertainty into simulations. This study focuses on

syngas, a combination in various ratios of H2 and CO, which is the product of

coal gasification. Coal gasification promises to reduce emissions by replacing

the burning of coal with the less polluting burning of syngas. Despite the sim-

plicity of syngas chemistry models, they nonetheless fail to accurately predict

burning rates at high pressure. Three syngas models have been calibrated us-

ing laminar flame speed measurements. After calibration the resulting uncer-

tainty in the parameters is propagated forward into the simulation of laminar

flame speeds. The model evidence is then used to compare candidate models.
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Sensitivity studies, in addition to Bayesian methods, can be used to

assess chemistry models. Sensitivity studies provide a measure of how re-

sponsive target quantities of interest (QoIs) are to changes in the parameters.

The adjoint equations have been derived for laminar, incompressible, variable

density reacting flow and applied to hydrogen flame simulations. From the

adjoint solution, the sensitivity of the QoI to the chemistry model parameters

has been calculated. The results indicate the most sensitive parameters for

flame tip temperature and NOx emission. Such information can be used in

the development of new experiments by pointing out which are the critical

chemistry model parameters.

Finally, a broader goal for chemistry model development is set through

the adjoint methodology. A new quantity, termed field sensitivity, is intro-

duced to guide chemistry model development. Field sensitivity describes how

information of perturbations in flowfields propagates to specified QoIs. The

field sensitivity, mathematically shown as equivalent to finding the adjoint of

the primal governing equations, is obtained for laminar hydrogen flame simu-

lations using three different chemistry models. Results show that even when

the primal solution is sufficiently close for the three mechanisms, the field

sensitivity can vary.
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Chapter 1

Introduction

Combustion simulations of practical, large-scale geometries require vast

computational resources. Those simulations must combine the capability to

solve the relevant flow features with the ability to solve the relevant chem-

istry, as well as any other important physical phenomena. In order to reduce

the computational expense, modeling choices must be made to simplify these

simulations. In particular, the chemistry associated with combustion must be

modeled.

In combustion flows fuel and oxidizer combine and react to form prod-

ucts, primarily water and carbon dioxide. In the process of forming those

products, the reactants, through various chemical pathways, will form inter-

mediate species, which will ultimately react to form the combustion products.

This series of intermediate reactions cannot tractably be solved directly from

first principles. Therefore, this series of reactions is modeled to approximate

reality, with each reaction approximated by simple relations like the Arrhenius

equation:

k = AT η exp

(
−EA

RuT

)
, (1.1)

where k is the reaction rate coefficient, T is the temperature, and Ru is the uni-
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versal gas constant. The three Arrhenius parameters are the pre-exponential

factor Ar, the temperature exponent η, and the activation energy EA. With

the introduction of the Arrhenius equation, chemistry modeling requires the

introduction of a large number of model parameters. For example, considering

hydrogen as a fuel, the reacting flow will commonly contain nine species and

approximately twenty reactions [1–3]. Including the three Arrhenius param-

eters, the pre-exponential coefficient, temperature exponent, and activation

energy, and any additional parameters such as third-body reaction efficiencies,

the total number of parameters can reach 100. Considering methane as a fuel,

the reacting flow can contain 37 or more species and more than 300 reactions

[4, 5]. Assuming five parameters per reaction as with hydrogen, the number

of parameters for methane chemistry reaches over 1,500. For more complex

fuels such as diesel, chemistry models can include more than 2,800 species and

over 10,000 reactions [6], leading to 50,000 or more parameters. Determining

how the chemistry model parameters affect the results of simulations is an

important step towards improving the accuracy and predictive capabilities of

combustion simulations.

In this chapter an introduction will be given to the chemistry of reacting

flow with a focus on finite rate chemistry. Then, the parametric uncertainty

inherent in chemistry models will be described, including how this uncertainty

affects simulations. Next, the sensitivity of simulation results to model choices

will be covered. Finally, the objectives for this work will be outlined.
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1.1 Reacting flow simulations

Chemical reactions can occur throughtout the flowfield of a simulation

depending upon local thermodynamic state and species concentrations. In the

reacting flow equations, this chemistry manifests as reaction source terms. An

example of such a source is shown in the reacting scalar equation:

∂ρYk

∂t
+

∂ρujYk

∂xj
− ∂

∂xj

(
ρDk

∂Yk

∂xj

)
= ωk, (1.2)

for which Yk is a reacting scalar, ρ is the density, uj is the velocity vector

corrected to maintain continuity, Dk is the mixture-averaged diffusion coeffi-

cient, and ωk is the reaction source term. This source term is calculated based

upon the local reaction rates which are typically determined from the Arrhe-

nius equation. In that way the chemistry model parameters directly affect the

source in the governing equations. In the case of turbulent reacting flow, the

source term appears as an averaged source term which must be closed. This

closure serves to model the effects of turbulence on the chemistry occuring in

the flow. For laminar reacting flow, no such closure is required. This work

will focus on laminar flows, which provide a vital first step in the development

of chemistry models. Laminar flame simulations provide an important means

to test the effect of chemistry models on results, while eliminating the need

to account for the effects of turbulence model uncertainty in the reacting flow

simulation.

For the case of laminar reacting flow, two common methods available

to provide the chemistry source term include single-step chemistry and multi-

3



step/finite rate chemistry. With the single-step chemistry model, the set of

chemical reactions which occur in the combustion of the fuel are distilled down

to a single global reaction. This global reaction aims to approximate the many

chemical pathways which lead from reactants to products. With finite rate

chemistry, the set of chemical reactions that occur are modeled by a set of

elementary reactions which are intended to cover most or all of the relevant

pathways for the combustion of the fuel. In this work the focus will be on

laminar reacting flow and finite rate chemistry models.

Finite rate chemistry models for even the simplest fuel, H2, involve at

least nine species and approximately twenty to thirty elementary reactions

[1–3]. When modeled by the Arrhenius relation, each elementary reaction

involves at least three parameters, but more commonly averages to approx-

imately five per reaction when third body efficiencies and other parameters

are included [1–3]. Thus for H2, chemistry models involve approximately 100

model parameters. When the fuel becomes more complex such as by adding

CO to form synthesis gas (syngas), the number of species and elementary reac-

tions increases. For even more complex fuels, this list of species and reactions

increases drastically leading to thousands (as with methane [4, 5]) or tens of

thousands (as with diesel [6]) of chemistry model parameters.

The value of each chemistry model parameter must be determined in

some fashion prior to application in simulations. These values often are de-

termined via targeted experimental studies which aim to isolate the effects

of specific elementary reactions [7, 8], or via fundamental calculations like ab

4



initio chemistry calculations [9, 10]. After these studies are completed, typ-

ically the set of Arrhenius parameters are calibrated to the results to give

nominal values plus some measure of uncertainty, often a variance for the pre-

exponential parameter. For larger chemistry models, some of the parameters

are not easily characterized by such experiments or have not been character-

ized by such experiments. As a result, the Arrhenius parameters for those

elementary reactions take assumed values based upon similar reactions and/or

researcher intuition [11, 12].

The full set of elementary reactions which form a chemistry model re-

quires a series of the aforementioned investigations in order to provide initial

values for the set of chemistry model parameters. Further complications arise

in the determination of those parameters when the sets of elementary reactions

are combined together to form a chemistry model. Each elementary reaction’s

behavior during a targeted experiment may not exactly match that reaction’s

behavior in practical combustion experiments [13]. Additionally, since the

Arrhenius form only approximates the behavior of reactions, the Arrhenius

parameters which have a specific nominal value calculated from a targeted

experiment may require a different value in concert with the other elementary

reactions. As a result the chemistry parameters require additional calibration

with the entire reaction set as a whole. These calibrations apply simulations to

simple canonical configurations which have associated experimental data and

perform some type of inversion process to infer information about the model

parameters [13, 14]. Given the multiple layers of modeling choices that must be

5



made in order to simulate combustion chemistry, including the selection of the

elementary reactions and the application of the Arrhenius form, the specifica-

tion of the parameter values leads to a process in which the ‘best’ parameter

values are selected for the model. These ‘best’ values lead to a model which

matches closely to a set of known experimental targets. A ‘true’ or ‘correct’

set of parameter values does not exist in such a modeling framework, only the

‘best’ set of values determined from the most up to date set of experimental

targets.

1.2 Chemistry model uncertainty and simulation uncer-
tainty quantification

Every chemistry model lists nominal values for each parameter of each

elementary reaction. Since chemistry models typically adopt the Arrhenius

description of reaction rates, each elementary reaction will require three pa-

rameters. For example take the reaction H + O2 ! O + OH. For the syngas

chemistry model of Davis [13] listed in Appendix A, the three parameters take

the following values:

A = 2.65× 1016 cm3/mol-s, η = −0.671, and EA = 17, 041 cal/mol. (1.3)

Simulations typically proceed using the nominal parameter values. However, a

single nominal value for each parameter does not fully characterize the level of

knowledge of the reaction parameters. While the temperature exponents and

activation energies are typically described by just a nominal value, as stated

previously each Arrhenius pre-exponential parameter is typically described
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by a nominal value and variance. For the H + O2 ! O + OH reaction,

the variance is given as 1.855 × 1015 cm3/mol-s. This variance indicates the

uncertainty present in the determination of the target reaction’s reaction rate.

The uncertainty exists since the Arrhenius form cannot perfectly fit all of the

data from the targeted experiment over a range of temperatures. This inability

to fit occurs for two reasons: because the Arrhenius form is merely a model,

and because the experimental data has a spread.

This uncertainty can be considered in a different fashion than just a

variance on fitting the reaction rates. Any pre-exponential parameter value

has a probability of reproducing the experimentally observed reaction rate

within its experimental uncertainty. Therefore, each pre-exponential parame-

ter can be considered a random variable with a distribution. This distribution

represents the state of knowledge of the parameter’s value. The temperature

exponent and activation energy, although described typically only by nominal

values, are not known exactly either for the same reasons stated previously.

Nonetheless, for the purpose of most parameter calibrations, only the pre-

exponential parameters are considered uncertain in this way [13, 14].

When all reaction parameters are conglomerated together into a single

chemistry model, a high-dimensional set of parameters is formed. Adopting

the probabilistic description of the parameters, the chemistry model can then

be described with a high-dimensional parametric distribution. This distribu-

tion naturally can be assigned a multivariate Gaussian distribution with no

covariance given the characterization of each parameter’s independent distri-
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bution (nominal or mean plus variance). When calibrated as a whole, the

chemistry model will have new nominal values shifted from the original. Ar-

guably more importantly, the multi-variate distribution, depending upon the

method of calibration, will form a covariance and may take a new form of

distribution other than Gaussian.

This inherent uncertainty in the model parameters should lead to uncer-

tainty in the simulation results. This uncertainty is ignored when simulating

only with the nominal values of the parameters. Thus, uncertainty quantifi-

cation (UQ) methods have been developed to address how the uncertainty in

parameters affects the outcome of simulations [14–22]. These methods focus

on providing a probable range on simulation results given what is known about

the range of the chemistry model parameters. However, each of these meth-

ods involves its own limitations and assumptions which can include the use of

surrogate models for the target simulations and the assumption of the form of

the parametric and resultant distributions.

1.3 Sensitivities

For the purpose of estimating uncertainty in simulation predictions,

the desired relevant prediction must be specified. More broadly, reacting flow

simulations are performed typically to obtain a specific set of results or target

quantities, referred to as quantities of interest (QoIs). For a full-scale com-

bustor simulation, the QoIs might include peak outflow temperature which

can be critical in designing resilient turbine vanes, or the integrated output
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of a specified pollutant like NOx. Often, the QoIs are intended for a model

validation. For that scenario the results commonly take the form of a single

or a small set of quantities which may be available from an experiment, such

as a small series of temperature measurements. These quantities are affected

by many of the modeling choices made in the simulation, including chemistry

model Arrhenius parameters. Since chemistry models form an integral part of

the simulation method, the chemistry modeling choices must be made to serve

the ultimate aim of the simulations.

Each QoI for a reacting flow simulation may be sensitive to any number

of chemistry model parameters. Sensitivity can be described by the change in

some QoI J due to the change in some parameter A as follows

S =
dJ

dA
. (1.4)

Sensitivity methods aim to quantify how parameters affect the results of sim-

ulations by determining how small changes to the parameter values shift the

results. Such sensitivity results are important in developing and improving

chemistry models. For example, parameters that have significant uncertainty

as well as significant effect upon the simulation results require further im-

provement. Thus the results of a sensitivity study can serve to illuminate

which parameters in a model must be the focus of future studies to narrow

their uncertainty.

The sensitivity S can be determined through one of a few methods

including brute force, forward (direct) sensitivity, and adjoint (reverse) sen-
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sitivity. Brute force methods involve repeated simulation. Each simulation

proceeds with a perturbed parameter, and the difference in the resultant QoI

divided by the perturbation gives the sensitivity. Forward sensitivity methods

involve the simulation of an added set of sensitivity equations. In this method

every primal variable has a sensitivity variable for each investigated parame-

ter. Thus a new set of equations must be solved for every model parameter

for which the sensitivity is desired. Both brute force and forward sensitivity

methods provide the sensitivity of an arbitrary number of QoIs for the speci-

fied parameter. Finally, adjoint sensitivity methods involve the simulation of

an added set of adjoint equations. In this method every primal equation has a

corresponding adjoint equation which needs to be solved for each investigated

QoI. Although each QoI requires the solution of an additional set of adjoint

equations, each adjoint solution provides sensitivity to an arbitrary number of

parameters.

Many studies have examined the sensitivity of various quantities to

reaction parameters in homogeneous reactors and one-dimensional flows. Sev-

eral of these studies have focused on the sensitivity of single-value outputs

like flame speeds [3, 13, 23, 24], ignition delay times [3, 13, 25], or other as-

sorted single-value outputs [13, 26, 27], while a smaller number have focused

on the sensitivity of spatially varying quantities like temperature and species

concentrations [28, 29]. Despite this proliferation of chemistry model sensitiv-

ity studies, few have focused on determining sensitivity in multi-dimensional

flows.
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1.4 Objective

The design specifications of reacting flow simulations require chemistry

models to give accurate predictions with limited uncertainty. This aim re-

quires that chemistry models be well-calibrated to give accurate results over

the range of operating conditions required. By narrowing down the uncer-

tainty of specific chemistry model parameters, the uncertainty in the QoIs can

be reduced. This leads to an improved characterizaton of what is necessary in

designing a combustor or engine in order to meet the required specifications,

like reduced pollutant emission.

The objective of this work is to develop a means for investigating the

uncertainty in simulations caused by chemistry modeling, as well as a means

for efficiently determining the sensitivity of integrated combustion quantities to

chemistry model choices. The first involves the use of Bayesian inverse meth-

ods. This work introduces the use of Bayesian inversion methods for syngas

combustion chemistry models. The objective is to update the chemistry model

parameters with experimental data, and subsequently to estimate the uncer-

tainty in flame speed calculations due to parametric uncertainty. Unlike other

UQ methods, this method updates parametric uncertainty without assuming

a posterior distribution form and without using surrogate models. The second

topic involves the development of adjoint sensitivity methods to determine ef-

ficiently how sensitive simulation results are to chemistry model parameters in

the flow. This work derives the adjoint equations for laminar, incompressible,

variable density reacting flow and applies those equations to simulations of
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laminar hydrogen flames. The results of those simulations provide the sensi-

tivity of two selected QoIs to the Arrhenius pre-exponential parameters of a

hydrogen chemistry model including NOx production. Finally, an additional

topic involves the application of adjoint results to determining sensitivity of

QoIs to perturbations in the flow field variables. This work introduces field

sensitivity as a method of investigating and comparing chemistry models and

applies that method to a set of hydrogen chemistry models. Together, these

methods provide a means of characterizing the effects of chemistry modeling

choices upon simulation results.

1.5 Outline

Building upon the above introduction and objectives, this dissertation

is layed out as follows. Chapter 2 presents the calibration and uncertainty

quantification of syngas models. Next, Chapter 3 describes the derivation and

application of adjoints for sensitivity studies of laminar hydrogen flames. In

Chapter 4, the adjoint description is extended to sensitivity of quantities to

field variables. Finally, Chapter 5 presents the conclusions and future direc-

tions.
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Chapter 2

Bayesian Analysis1

2.1 Introduction

As numerical modeling becomes critical for computational design of

practical combustion devices, there is an increasing focus on the reliability of

models. Specifically, an estimate of the error incurred by the different models

is sought. Given that models are necessarily imperfect, a quantitative estimate

of the uncertainty associated with the representation of the underlying physics

needs to be obtained. This process is termed uncertainty quantification (UQ).

Many different techniques for assessing uncertainty exist [14–17, 19–22, 30–33].

In this work, the Bayesian description is used to assess uncertainty. Here, the

lack of knowledge or the imprecision of the model is expressed probabilistically.

Learning, through experimentation or improved modeling, then manifests as

a change in the probabilities. In this work, the Bayesian approach is used to

analyze a syngas combustion model.

The purpose of the chemistry model is to provide reaction rates that

will then be used in the spatial transport equation for species mass fractions

1Portions of the introductory material authored by Venkat Raman, and portions of the
Bayesian methodology authored by Todd Oliver
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to predict measurable quantities (e.g., mass fraction profile, burning velocity,

etc.). The model itself is built for a certain range of operating conditions (e.g.,

high pressure or fuel-lean conditions). For the purpose of this discussion, it is

assumed that the chemistry model contains all necessary pathways to describe

the combustion process. In this sense, the model error arises from the inability

to precisely determine the Arrhenius rate coefficients. Experiments or quan-

tum chemistry simulations could then be used to increase the accuracy of the

rate coefficients. However, both these approaches are themselves imperfect.

Experiments contain measurement errors and may also be subject to inherent

variability from one run to the next. Quantum chemistry calculations utilize

a variety of simplifying assumptions (e.g., Born-Oppenheimer approximation,

transition-state based rate computation) that will lead to errors in the po-

tential energy surface as well as chemical rate coefficients. Consequently, the

reaction rate coefficients in a chemistry model cannot be known to arbitrary

precision.

Consider a chemistry model consisting of N parameters, where this

number consists of pre-exponential factors, activation energies, and all model

parameters used to define the entire set of reactions. None of these N param-

eters is known exactly, but often are given a range or a distribution. These

ranges for the individual parameters combine to form a hypervolume of pos-

sible parameter settings in N -dimensional space. It is important to note that

the different parameters are correlated, and that varying one without adjust-

ing the rest is not meaningful. Using data, it is then possible to reduce this
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volume and understand parameter correlations. This process is termed learn-

ing. While different UQ approaches all have this basic philosophy regarding

the parameters, they vary in the methodology used to represent the relative

plausibility of points inside the hypervolume as well as in the approach to using

data for reducing the volume of the plausible region in this high-dimensional

space.

In the area of combustion chemistry, three different approaches have

been formulated. Najm and coworkers [15–17] use a polynomial chaos expan-

sion approach, where the parameters are assumed to be random variables.

Such application allows the simulation results to be treated probabilistically

with the uncertainty in the model parameters propagating to those results.

Frenklach and coworkers [19, 20, 30–33] propose an approach called “Data Col-

laboration”, where estimates of the bounds of the parameters are obtained

using semi-linear programming. This approach focuses on obtaining a feasible

set, which is defined as the hypervolume that reproduces the experimental

observations within the associated experimental uncertainty. In this sense,

estimates of the lower and upper bounds of the parameter values are obtained

without using a probabilistic description. Further, a response-surface approxi-

mation is used which deserves further explanation. The experimental data used

to develop the uncertainty estimates typically contain laminar burning veloc-

ity or autoiginition time. In the response-surface method, the experimental

measurement is represented as a quadratic function of the parameters. Since

the true relation between the outputs and the parameters is highly nonlinear
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and may involve spatial transport as well, this reduced-order representation

itself will introduce some error. Nevertheless, Frenklach and coworkers have

demonstrated in numerous studies [19, 20, 30–33] that this approach is very

robust, and well-suited for the problem of chemistry modeling.

The third approach is that of Sheen and Wang [14, 21, 22], (SW), which

is billed as an uncertainty minimization rather than a quantification technique.

This method combines a simplified form of the Bayesian approach with the

response-surface approximation. In this approach, the parameters are ad-

justed such that the uncertainty predicted by the chemistry model for the

experimental data used in calibration is reduced. Note that the goal of un-

certainty minimization is different from that of determining the hypervolume

of possible parameter values. Further, while the authors themselves do not

relate their technique to Bayesian technique, we show in this work that this

approach is a reduced form of the Bayesian technique that invokes several sim-

plifying assumptions. First, the PDF of the parameters is indirectly assumed

to be a Gaussian distribution. Second, the response-surface approach is used

to approximate the relation between the parameters and the model output.

Third, in order to maintain the Gaussian nature of the PDF after the learning

process, the response surface is further approximated using a linear function.

Consequently, this approach has the potential to introduce large errors in the

estimation of uncertainty. For instance Russi and Frenklach [34] explore the

effects of assuming specific shapes for the parameter hypervolume. In partic-

ular they note the substantial error introduced by assuming high-dimensional

16



ellipsoids.

With this background, the purpose of this chapter is to explore the use

of the Bayesian UQ approach for the modeling of syngas combustion chemistry.

Syngas, which is a mixture of carbon monoxide and hydrogen, has become cen-

tral to the use of integrated gasification combined cycle (IGCC) systems for

carbon capture and sequestration [35, 36]. Due to the presence of hydrogen,

syngas mixtures exhibit wider flammability limits and higher reactivity. Inter-

estingly, chemistry models for syngas combustion have considerable difficulty

predicting combustion characteristics (e.g., laminar flame speed) at high pres-

sures for a range of syngas compositions [37]. Application of UQ to this system

is of immediate interest, not only in characterizing the uncertainties but in de-

termining the root cause of this prediction problem. This study evaluates the

Bayesian approach, with particular focus on kinetics parameter calibration

and evidence-based chemistry model comparison.

2.2 Methodology: Bayesian Analysis

The starting point for the Bayesian approach is a chemistry model

with a specific set of reactions and associated rate parameters. It is assumed

that some information about these rate parameters is available and is termed

as prior information. The purpose of the Bayesian approach is to improve

the estimates of these rate parameters based on hitherto unused experimental

data. Since changing the rate parameters for a single reaction will affect the
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overall performance, all the rate parameters are linked to one another and are

simultaneously updated. This process is termed a global calibration approach.

In this work, a global calibration approach based on Bayesian statistics

is used. Bayesian probability analysis is a well-developed field that is increas-

ingly used to pose and solve inverse problems in many areas of science and

engineering [38–42]. While some examples have appeared involving chemistry

and combustion [43–45], the approach is not widely used. Thus, Sec. 2.2.1

and Sec. 2.2.2 describe the Bayesian formulations of the calibration and model

comparison problems, respectively. Finally, Sec. 2.2.3 briefly describes the

statistical algorithms used to compute results in this work.

2.2.1 Calibration

In the Bayesian interpretation of probability, model parameters such as

kinetic rate coefficients are treated as random variables. Since the “true” value

of the parameter is unknown, one represents what is known about the “true”

value using probability. Then, the state of knowledge about a parameter value

is represented by the PDF of the corresponding random variable. For instance,

if the parameter were known with complete certainty, the corresponding PDF

would be a delta function. Given these PDFs, one updates one’s knowledge

to account for new data by updating the parameter PDFs according to Bayes’

theorem [38, 40]. Specifically, given two quantities, x and y, Bayes’ theorem
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states that

p(x|y) = p(x)p(y|x)
p(y)

, (2.1)

where p(x|y) is the probability distribution of x, conditioned on a specific value

of y, and similarly for p(y|x).

In order to apply this theorem to chemistry modeling, let θ denote the

vector of uncertain kinetics parameters being calibrated. This vector will be

the combination of activation energies, pre-exponential factors, and any other

parameters that appear in the chemistry model. Let d denote the experimental

data used for calibration (e.g., flame speed). Bayes’ theorem implies that

ppost(θ|d) =
pprior(θ) π(θ;d)∫
pprior(θ) π(θ;d) dθ

. (2.2)

In (2.2), pprior denotes the prior PDF, which quantifies available information

about the parameters that is independent of the data, and ppost denotes the

posterior PDF, which quantifies the state of knowledge about the parame-

ter values after incorporating the information in the data. These PDFs are

connected through the likelihood function, π(θ;d). The likelihood function

quantifies the level of agreement between the model and the data for specific

values of the parameters. It is the function mapping the parameters θ to the

PDF associated with the observed data. That is,

π(θ;d) = plike(d̂|θ)|d̂=d, (2.3)

where d̂ is the variable representing the observed quantity. Given only the

model parameter values, the value that will be observed in an experiment
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differs from the model prediction due to inadequacies in the chemistry model

(model error) as well as the observation process (experimental error). The

PDF plike represents the state of knowledge regarding these errors. When plike

is evaluated at the actual observed values d and considered as a function of θ,

it becomes the likelihood function, π.

Thus, Bayes’ theorem provides a probabilistic approach for extracting

information about parameters from experimental data. Furthermore, the pos-

terior obtained from one calibration can be used as the prior for a subsequent

calibration problem if more experimental data becomes available. In this sense,

the Bayesian approach provides a naturally self-consistent process for learning

based on all available information.

The prior and likelihood must be constructed to represent the state of

knowledge before the data are obtained. Rigorous approaches for specifying

these forms are the subject of ongoing research. Here, simple common forms

are used to illustrate the process.

Specifically, two forms of prior PDF are used: uniform and Gaussian. A

uniform prior assigns an equal prior probability density to any parameter value

within its bounds, which are selected to span the expected possible range of

the parameter. Alternatively, a Gaussian assigns higher prior density near the

mean. Here, each Gaussian prior is assigned a mean equal to the parameter’s

nominal value. The standard deviation for each parameter is estimated from

the uncertainty factor listed in the literature. Furthermore, the parameters

are assumed to be independent in the prior.
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The likelihood function is defined based on the description of the error

resulting from the application of the chemistry model and the experimental

error. For instance, if di refers to an experimental measurement at certain

conditions, and xi denotes the simulated value of this measurement (using the

chemistry model), the two could be related by the following additive error

model:

di = xi + εi, (2.4)

where εi refers to the total error due to both experimental and modeling errors.

The reasoning for the choice of combined model and experimental error is

elucidated in Sec. 2.3.3. When di and xi are both known, (2.4) defines εi.

However, to use such a model in a calibration, one must construct a model

for εi that does not depend on di. In this situation, the state of knowledge

is expressed probabilistically. A simple model that is often used is to assume

that εi are independent, identically distributed (i.i.d.) zero-mean Gaussian

random variables. In this case, the likelihood function is written as

π(θ;d) =
1

(2πσ2)Nd/2
exp

[
− 1

2σ2

Nd∑

i=1

(di − xi)
2

]
, (2.5)

where Nd is the number of data points and the hyperparameter σ denotes the

standard deviation of εi. The i.i.d. assumption for εi implies that errors are in-

dependent even for data points that are close together in scenario space—i.e.,

that the errors in the laminar flame speeds are independent even at nearly the

same pressure and equivalence ratio. While this assumption is not realistic, it

allows calibration of the model parameters in a simple setting. The develop-

ment of more realistic covariance structures is left for future work. Even in
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this simple setting, σ is generally not known a priori, which is the case here.

In this situation, σ is treated as a hyperparameter to be calibrated along with

the kinetic model parameters.

A multiplicative error model is also investigated here. A multiplicative

error model applies to cases in which the error is proportional to the output

of the model, as can be the case for a range of conditions for which the model

result varies widely in magnitude, or for cases in which the output must retain

the same sign [46]. For the multiplicative error form used here, the model and

experimental values are related by

di = xi exp(εi). (2.6)

Again assuming εi are Gaussian and i.i.d. leads to the following likelihood:

π(θ;d′) =
1

(2πσ2)Nd/2
exp

[
− 1

2σ2

Nd∑

i=1

(d′i − x′
i)

2

]
, (2.7)

where d′i = log di and x′
i = log xi.

It should be noted that similar modeling choices are inherent to any

UQ process, not just the Bayesian methodology. All results are contingent on

these choices. While the descriptions used here represent convenient choices,

it should be recognized that a more in-depth analysis of the details of the

chemistry models and experimental data would likely lead to more complex

models. Such UQ model development is beyond the scope of the current work.
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2.2.2 Model Comparison

Bayes’ theorem can also be used as a basis for model comparison. This

comparison methodology is used here to evaluate the relative merits of com-

peting chemistry models. Just as PDFs are used to characterize the state

of knowledge of kinetics parameters, probability can be used to characterize

knowledge about which model in a given set is best.

To define the procedure, let M = {M1, . . . ,MK} denote a set of K

candidate models Mi that one wishes to compare. The parameters of each

model are calibrated using a Bayesian update based on the data d, as described

in Sec. 2.2.1. Rewriting (2.2) with explicit dependence on the model gives

ppost(θi|d,Mi) =
pprior(θi|Mi) π(θi,Mi;d)∫
pprior(θi|Mi) π(θi,Mi;d) dθi

, (2.8)

where θi indicates the parameters for the ith model.

In the model comparison problem, the task is to rank the models ac-

cording to which is best, given the data. In the Bayesian framework, this

ranking is determined by the posterior probability of the models. As in the

calibration problem, the posterior distribution is determined from Bayes’ the-

orem:

Ppost(Mi|d,M) =
Pprior(Mi|M) πevid(Mi;d)∑K

k=1 Pprior(Mk|M) πevid(Mk;d)
. (2.9)

In (2.9), Pprior(Mi|M) is the prior probability of the model Mi. That is, it

is the probability assigned to Mi based on information that is independent

of the data. Often, there is very little such information. In this case, a

uniform prior, i.e., Pprior(Mi|M) = 1/K, is appropriate. Then, the relative
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posterior probability is determined entirely by πevid(Mi;d), which is known as

the evidence function. The evidence function measures the consistency of the

model and the data considering the entire parameter space. It is given by the

following integral over parameter space:

πevid(Mi;d) =

∫
pprior(θi|Mi)π(θi,Mi;d) dθi. (2.10)

Thus, the evidence for the model Mi is just the normalization constant (the

denominator) in the calibration expression (2.8).

To gain insight into the Bayesian model comparison, note that this

process can be thought of as a natural formalization of Ockham’s razor. To

see this interpretation, it is helpful to write the evidence in a different form.

Following Muto and Beck [47], the log-evidence can be decomposed into two

terms:

log (πevid(Mi;d)) =
∫

log (πlike(θi,Mi;d)) ppost(θi|d,Mi) dθi

−
∫

log

(
ppost(θi|d,Mi)

pprior(θi|Mi)

)
ppost(θi|d,Mi) dθi.

(2.11)

The first term is the posterior expectation of the log-likelihood which measures

how well the model is able to fit the data, averaged over the posterior PDF

for the parameters. The second term is the relative information entropy (or

Kullback-Leibler divergence [48]) between the posterior and the prior PDFs. It

measures the information about the parameters that is gained from the data.

For two models that fit the data equally well, as measured by the first term

in (2.11), the model that requires the least tuning, as measured by information
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gain, is preferred. For more details and discussion, see Jaynes [40] (Chapter

20) and Muto and Beck [47] (Section 4).

2.2.3 Statistical Algorithms

While the posterior PDF in (2.8) and posterior probability in (2.9) are

simple to write down, evaluating and using these expressions is computation-

ally challenging. For example, computing statistics using the posterior PDF

(2.9) and computing the evidence (2.10) both require the evaluation of high-

dimensional integrals. To evaluate such integrals, stochastic simulation meth-

ods have been developed in which the posterior PDF is represented by samples

and integrals are approximated by Monte Carlo methods using those samples.

In work presented here, an advanced stochastic simulation method, referred

to as the Adaptive Multi-Level Algorithm [49, 50] is used. This algorithm in-

volves the use of a staged Bayesian update in which the posterior is gradually

approached across a sequence of intermediate updates. The main idea is to

construct and then sample a sequence of intermediate distributions between

the prior and the posterior. Specifically, at the )th intermediate “level”, one

uses Markov chain Monte Carlo to sample

π(")
int(θ;d) ∝ pprior(θ)π(θ;d)

τ! , (2.12)

where 0 ≤ τ" ≤ 1. Clearly, when τ" = 0, π(")
int is the prior, and when τ" = 1 it is

the posterior. After sampling at level ), a selection of the samples generated is

used to begin Markov chains for the ) + 1th intermediate distribution, where
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τ"+1 > τ". Complete details of the algorithm can be found in [50]. This algo-

rithm is implemented in the QUESO library [51], which was used to generate

all of the results shown in Sec. 2.4 and Sec. 2.5.

2.3 Application of Bayesian approach to high-pressure
syngas combustion modeling

For application in hydrogen-rich gas turbines for power generation, the

chemistry models have to be calibrated at high pressure and low equivalence

ratio conditions. Here, three different chemistry models are used to demon-

strate the Bayesian approach to model calibration, model selection, and error

propagation.

2.3.1 Synthesis gas chemical kinetics models

Three kinetics models from Davis et al. [13], Li et al. [52], and Sun et

al. [53] are considered here. For simplicity, these models will be referred to as

DM, LM, and SM, respectively, from here forward.

The DM involves 14 species and 30 reactions. The Arrhenius reaction

rate parameters were compiled from recent kinetics experiments as well as the

GRI 3.0 model. The Arrhenius reaction rate pre-exponential coefficient was

optimized for 19 of those reactions based upon experimental results of laminar

flame speeds, peak mole fractions of low-pressure burner-stabilized flames, fuel

consumption rates in a turbulent flow reactor, and ignition delay times behind

reflected shock waves. The LM involves 14 species and 31 reactions. Reaction
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rate parameters for this model were compiled by calibration to data from

formaldehyde oxidation in a flow reactor, from a hydrogen-oxygen model [2],

and by calibration to other recent experimental data. The SM involves 15

species and 33 reactions. The reaction rate parameters were compiled from

recent literature, including ab initio calculations for specific reactions. The

three models have an identical list of species involved, except for the SM,

which also involves CH2O.

2.3.2 Kinetic parameters used in Bayesian calibration

The Bayesian methodology can incorporate the calibration of an arbi-

trary selection of model parameters. In combustion, the pertinent parameters

include those from the kinetics model such as the Arrhenius pre-exponential co-

efficient, temperature exponent, activation energy, and third body efficiencies,

as well as those from transport and thermodynamic models. For the context

of this study, only Arrhenius pre-exponential coefficients in each syngas ki-

netics model have been incorporated in the Bayesian update. Of course, in

general, the set of parameters need not be limited only to the pre-exponential

coefficients.

Additionally, the method of Sheen and Wang has been incorporated

in this study for comparison to the Bayesian method. The Sheen and Wang

method commonly restricts itself to pre-exponential parameters. That method,

in order to minimize computational cost, incorporates a list of pre-exponential

parameters selected by a sensitivity study for each experimental target rather
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than all pre-exponential parameters. In the cases shown in Sec. 2.5, after the

sensitivities of the flame speed to the kinetics parameters, ∂η
∂ ln kj

, were calcu-

lated, the sensitivity-uncertainty index (SUI) [54], Cj(η) = | ∂η
∂ lnkj

fj|, was cal-

culated for each parameter. In this expression, η is the simulated flame speed,

kj is the parameter and fi = log10(k
0
j/k

min
j ) = log10(k

max
j /k0

j ) is the multiplica-

tive uncertainty factor, which relates the literature-listed uncertainty in each

rate parameter. In the expression for the uncertainty factor, the superscript

0 refers to the nominal value of the parameter and min and max refer to

two standard deviations away from the nominal. These indices give a relative

ranking of the sensitivity of the flame speed calculations to each parameter

weighted by the uncertainty in that parameter. The sensitivity threshold was

set as 10% of the maximum SUI for each experimental target.

2.3.3 Premixed laminar flame experiments and simulations

The Bayesian update of the model parameters incorporates informa-

tion from experimental data with results from corresponding simulations. For

this update process, laminar premixed flame experiments were chosen. The

high pressure flame speed data of Sun et al. [53] serves as the experimental

data set. These data were selected because the conditions approximate those

expected in ground-based combustors. Specifically, experiments conducted at

equivalence ratios of 1.2 or lower and at pressures of 5 and 10 atm are used for

calibration. Flame speed data for a pressure of 20 atm are used for predictive

comparison. The CO:H2 ratios of 1, 3, and 19 were tested. These conditions
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and the observed flame speed values are listed in Table 2.1. Note that the

experimental error in the flame speed is not reported by [53] and, thus, for

simplicity, the experimental error is lumped with the model error in εi during

calibration, as discussed in Sec. 2.2.1. Simulations of premixed laminar flames

were completed with the CHEMKIN PREMIX routines [55]. The standard

CHEMKIN routines for thermodynamic and transport properties [56] were

also used.

The Bayesian process need not be restricted to a single type of exper-

iment. Other experimental results such as autoignition times may be used in

the process. For this procedure, laminar flame speeds were selected since they

provide a fundamental basis for many turbulent combustion models.

2.4 Bayesian Calibration Results

This section details the results of the use of the Bayesian methodology

for UQ of syngas kinetics models. The three kinetics models are calibrated,

uncertainty is propagated, and the model results are compared in Sec. 2.4.1.

Next, the Bayesian evidence is used to compare the relative plausibility of

each kinetics model in Sec. 2.4.2. Then, the form of the prior distributions is

discussed in the context of the DM in Sec. 2.4.3, and the form of the error

model is discussed in the context of the LM in Sec. 2.4.4.
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Table 2.1: Experimental data [53] used in calibration and comparisons
p (atm.) CO:H2 φ η (cms)

5.0 1.0 0.8 79.4
5.0 1.0 1.0 113.6
5.0 1.0 1.2 136.1
5.0 3.0 0.8 52.6
5.0 3.0 1.0 64.3
5.0 3.0 1.2 81.3
5.0 19.0 1.2 40.6
10.0 1.0 0.6 27.8
10.0 1.0 0.8 68.7
10.0 1.0 1.0 101.2
10.0 1.0 1.2 128.0
10.0 3.0 0.6 25.9
10.0 3.0 0.8 43.9
10.0 3.0 1.0 64.1
10.0 3.0 1.2 79.3
10.0 19.0 0.8 21.2
10.0 19.0 1.0 27.7
10.0 19.0 1.2 39.1
20.0 3.0 0.8 36.3
20.0 3.0 1.0 56.3
20.0 3.0 1.2 68.7
20.0 19.0 1.0 29.2
20.0 19.0 1.2 36.7
40.0 19.0 1.0 30.1
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2.4.1 Bayesian calibration and uncertainty propagation

The Bayesian uncertainty analysis first updates the model parameters

according to Eqn. 2.2 with the algorithm described in Sec. 2.2.3. This calibra-

tion leads to an updated level of knowledge regarding the uncertain parameters

in the kinetics model as provided by the joint posterior distribution. All Ar-

rhenius pre-exponential coefficients from the three kinetics models, 37 for the

DM, 36 for the LM, and 44 for the SM, are updated in this fashion using the

additive error model and Gaussian priors. The use of the additive error model

also introduces an additional parameter, the error model variance hyperpa-

rameter, leading to 38, 37, and 45 updated uncertain parameters for the DM,

LM, and SM models, respectively. The data set used for the calibration is the

laminar flame speed data described in Sec. 2.3.3.

The final joint and marginal parameter distributions are constructed

from the full dimensional sampling results. Figure 2.1 shows a section of the

raw chain, as well as the autocorrelation, for the parameter with the slowest

decaying autocorrelation. The chain itself shows reasonable mixing, and the

autocorrelation, although long lasting, dies out at approximately 500 samples.

For each test case, the full computation took approximately 15,000 proces-

sor hours, using 3.33 GHz compute cores with two GB memory per core.

The majority of the computational time is spent computing the flame speed.

Each sample flame speed calculation takes approximately one to three seconds

depending on the number of iterations required to reach convergence. The

multi-level algorithm computes approximately 300,000 accepted samples on

31



0 1 2 3
x 104

15.3

15.4

15.5

15.6

15.7

15.8

Sample

Lo
g 10

(A
)

0 500 1000
0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oc
or

re
la

tio
n

Figure 2.1: (left) Subsection of sampling results and (right) autocorrelation
for the O + H2 ! H + OH pre-exponential coefficient in the LM

the final level.

The left side of Fig. 2.2 shows a selection of the marginal posterior PDFs

obtained by the stochastic multilevel algorithm for select pre-exponential pa-

rameters plotted with the Gaussian prior distributions (the right side of this

figure will be discussed in Sec. 2.4.3). The prior distributions are shown as

dashed lines and the marginal distributions as solid lines. Note that the poste-

rior PDF for a multi-parameter calibration is a joint PDF of all the parameters.

Here, only the marginal PDFs are shown. The shift from the prior distribu-

tion to the posterior shows some of the information gained by calibrating the

kinetics model parameters to the data set. For some parameters, the distri-

bution remains nearly the same. For example the posterior distributions of

reactions O + H2 ! H + OH and H2O2 + OH ! HO2 + H2O shift little

from the priors. For other parameters, such as OH + H2 ! H + H2O and

CO + OH ! CO2 + H, the most likely value shifts or the shape of the dis-
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tribution changes. In particular the distribution for the parameter of CO +

OH ! CO2 + H shifts significantly lower and becomes slightly tail heavy and

more peaked. Thus certain parameters are informed more by the Bayesian

update. Such results imply either that the chosen experiments contain more

information regarding those shifted parameters or that the information in the

experiments has already been encapsulated in the prior distribution for the

uninformed parameters.

To further investigate the information provided regarding the param-

eters by the calibration data, Figure 2.3 shows the Kullback-Leibler (KL)

divergence between the marginal posterior and prior PDFs for all parame-

ters in each model. Most parameters have a small divergence, indicating that

those parameters have gained little from the calibration. This result is not

surprising given that the number of parameters is greater than the number of

data points, and thus not every parameter is identifiable using only this data.

Further, only parameters that significantly affect the computed laminar flame

speed will be constrained by the Bayesian update. Thus, low KL divergence

indicates that, over the range of the prior, the parameter does not greatly

influence the laminar flame speed for the calibration cases. However, some of

the parameters, in particular the pre-exponential coefficients for CO + OH "

CO2 + H and its duplicate reactions in all three models, have relatively large

divergence. These parameters have gained the most from the Bayesian update,

indicating that the chosen experiments provide information for the calibration

of those parameters.
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(a) Pre-exponential coefficient for O + H2 ! H + OH
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(b) Pre-exponential coefficient for OH + H2 ! H + H2O
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(c) Pre-exponential coefficient for H2O2 + OH ! HO2 + H2O
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(d) Pre-exponential coefficient for CO + OH ! CO2 + H

Figure 2.2: Prior (dashed) and final (solid) marginal PDFs of Arrhenius pre-
exponential parameters for the DM with Gaussian priors (left) and uniform
priors (right)
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Figure 2.3: Kullback-Leibler divergence for every parameter of each model,
with the parameters within the top 10% of divergence for each model labeled
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While the marginal posterior PDFs are informative, one of the impor-

tant aspects of UQ methods like the Bayesian approach is the joint calibration

of the parameters. In essence, kinetic parameters cannot be tuned individually

without degrading performance. The best representation of the experimental

data is achieved when all parameters are calibrated simultaneously. The si-

multaneous calibration of the entire parameter set updates not only individual

parameter distributions as described above, but also the correlation between

parameters. The posterior joint-PDF of the parameters provides insight as to

how a change in a single parameter value changes the other parameters. For

instance, Fig. 2.4 shows the two-dimensional joint-PDF of the pre-exponential

factor for reactions HO2 + O ! OH + O2 and CO + OH ! CO2 + H. This

joint-PDF itself is a marginal PDF obtained from the full multi-dimensional

PDF of all calibration parameters. Moreover, the domain of likely values has

a complex shape, and is not limited by the presumed-shapes for the prior

PDFs. Fig. 2.5 shows slices of a three-dimensional PDF for three parameters

from the DM with high KL divergence, parameters 1, 3, and 28 in Fig. 2.3(a).

This plot indicates that only a narrow range of parameter values is optimal in

reproducing the experimental data.

ADD A PLOT FOR THE PARAMETER WHICH LEARNS THE

MOST (HIGHEST KL DIV)!!!

Once the parameters have been calibrated and the samples of the poste-

rior joint PDF obtained, this information can be propagated to determine the

uncertainties in predictions of the laminar flame speed. Here, this is illustrated
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Figure 2.4: Posterior two-dimensional marginal joint PDF for the pre-
exponential parameters of reactions H + OH + M ! H2O + M (1) and HO2

+ H ! OH + OH (2) for the DM with Gaussian prior shown as dashed lines

Figure 2.5: Posterior three-dimensional marginal joint PDF for the pre-
exponential parameters of reactions H + O2 ! O + OH (1), OH + H2 !
H2O + H (2), and CO + OH ! CO2 + H (3) for the DM with Gaussian prior
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using the Pushed Forward Posterior method. Specifically, for the jth posterior

sample of the kinetics model parameters θj, the corresponding laminar flame

speed ηj = η(θj) is computed using the chemistry model. In total, 18,432 lam-

inar flame speeds were computed for each condition, leading to an ensemble of

flame speed values that can be used to estimate the flame speed distribution.

Note that this procedure is equivalent to marginalizing the posterior over the

hyperparameter σ and propagating the resulting distribution for the kinetics

parameters alone. This allows one to see the uncertainty in the predictions

given by just the posterior uncertainty in the calibrated kinetics parameters.

The left side of Fig. 2.6 shows the laminar flame speed computations

for two different syngas mixtures at 10 atm pressure. The experimental data

for these conditions listed in the top section of Table 2.1 formed a portion of

the data set used to calibrate the kinetics models. For comparison, the flame

speed computed with the original (nominal) model parameter values and the

experimentally observed values are also shown. Since the calibration process

produces a PDF for the uncertain parameters, the propagation step produces

a PDF for the flame speed results. The plot shows the 95% confidence interval

bounding a grey-scale plot of probability density. It is seen that the original

models predict higher flame speed compared to the calibrated models for the

same conditions. Overall the uncertainty in the predictions is roughly 10%

over the range of equivalence ratios considered.

The right side of Fig. 2.6 shows the flame speed computations for an

operating pressure of 20 atm, also computed using the Pushed Forward Pos-
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Figure 2.6: Flame speed results for (left) 10 atm. and (right) 20 atm.,
where grey intensity indicates probability between the 95% confidence interval
bounds, dotted lines represent results using pre-calibrated parameters, and
symbols (x) represent experimental results [53]
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terior method. Note that the experimental data for this case is not part of

the calibration data set. Thus, this calculation examines the effect of the ki-

netics parameter uncertainty in extrapolation. The uncertainty in the results

increases compared to the 10 atm case, with the 95% confidence interval bands

producing a slightly wider spread of flame speeds. Overall, the SM seems to

have gained the most in terms of accuracy, with the flame speeds computed

from the original model being highly inaccurate for all equivalence ratios con-

sidered. The LM produces the least spread in the simulations, indicating lower

uncertainty in the parameters considered.

For both the 10 atm and 20 atm computations, the maximum a pos-

teriori (MAP) estimates of the flame speed in many cases differ from the ex-

perimental measurements. In particular, the 10 atm results with 5:95 H2:CO

ratio show a significant disparity from measurement. Even with the kinetic

parameter uncertainty propagated through the simulations, the uncertainty

spread of the flame speeds does not capture the experimental results. To fur-

ther explore the simulation uncertainty, the posterior predictive propagation

method has also been employed. In this method, the samples of the hyper-

parameter σ are used in addition to the kinetics parameters. Specifically, for

the jth sample (θj, σj), the predicted flame speed ηj is implied by the chosen

likelihood function. For example, using the additive model from (2.4) leads to

ηj = η(θj) +N(0, σ2
j ), (2.13)

where η(θj) is the flame speed given by the chemical model with kinetics
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parameters θj and N(0, σ2
j ) is the zero-mean Gaussian with standard devia-

tion σj . Thus, in this method, both the parameter uncertainty and the com-

bined model/experimental error term explicitly contribute to the uncertainty

of the simulations. With this propagation method, the 95% confidence interval

spread encompasses the data. This result can be seen in Fig. 2.7 which shows

the posterior predictive flame speed results for 10 atm and 20 atm for all three

models. The use of the hyperparameter in the propagation of the predictive 20

atm cases is included to show the effect that the error model could potentially

have on those results. However, since the 20 atm data was not used to train

the models, σ does not account for the true combined model and experimental

error for the 20 atm cases.

Given a properly chosen prior, these results indicate one of two conclu-

sions: either model form error or experimental error must explain the discrep-

ancy. This can also be seen by examining the marginal posterior for σ directly,

as shown in Fig. 2.8.

Note that the MAP estimate of σ is a significant fraction of the pre-

dicted laminar flame speeds, particularly for lower equivalence ratios. For

instance at 20 atm. with equivalence ratio 0.8 and H2:CO ratio 5:95, the ra-

tio of MAP sigma to the experimental flame speed is approximately 25% for

all three models. Even in the best case, the ratio is nearly 4%. This result

indicates that the chemical models used here may not be rich enough to re-

produce the calibration data. While this could be due to experimental error,

given the large magnitude of σ, it seems likely that it is due to model form
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Figure 2.7: Posterior predictive flame speed results for (left) 10 atm. and
(right) 20 atm., where the solid lines indicate 95% confidence interval bounds,
dotted lines represent results using pre-calibrated parameters, and symbols (x)
represent experimental results [53]
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Figure 2.8: Marginal PDF of the error variance hyperparameter σ for the DM
with prior shown as a dashed line

error. One way to enrich the current models would be to calibrate additional

parameters, such as activation energies, third body efficiencies, and thermo-

dynamic parameters, that have been assumed to be perfectly known in the

current calibration.

2.4.2 Bayesian evidence model comparison

The three different syngas chemistry models form a model set. Thus,

these models can be compared using the Bayesian framework described in

Sec. 2.2.2. Different choices made in setting up the Bayesian calibration will

affect the evidence results, including the choice of prior. This dependence is

natural given that the evidence depends not only on how well the data is fit

but also on how much information is extracted from the data, as measured

by the change from prior to posterior. Here, the comparison is made with

Gaussian priors used for every parameter in each model. For brevity, we show

results only for the additive error likelihood. However, a similar process could

be used to compare the chemistry models using different prior and likelihoods

43



Table 2.2: Log evidence and posterior probability for all three models with
additive error form and Gaussian prior

Model Log evid. Post. prob.
DM -61.6433 0.0127
LM -57.3094 0.9696
SM -61.3102 0.0177

and/or to compare the different prior and likelihood forms.

Table 2.2 shows the logarithm of the evidence and the posterior prob-

ability for each chemistry model. Using this measure, the LM is strongly

preferred, with a posterior probability of 0.9696. Recalling the decomposition

of the evidence shown in (2.11), this result implies that the LM is able to fit

the data well without extracting so much information from the data that the

information gain term overwhelms the data fit term. Thus, the LM provides

the best combination of data fit and minimal tuning of the parameters from

their initial priors for this set of laminar flame speed data. This result does

not imply that this kinetics model is the best model, but only that it is the

best model of this set at reproducing the data used with minimal fitting.

2.4.3 Prior selection

Common choices for priors when little prior information exists include

the uniform prior and Gaussian prior [57]. The uniform prior assigns an equal

probability to the parameter over a range of values bounded by a minimum

and maximum value. However, care must be taken since the posterior in

the case of a uniform prior will not be able to span beyond the minimum or
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maximum of the prior. If a region of parameter space is given zero probability

by the prior, the posterior will have zero probability in that region as well. The

Gaussian prior is a common choice when given information about a parameter’s

mean and variance. This choice can be motivated by considering Shannon’s

information entropy, which can be interpreted as a measure of uncertainty

of a random variable. One can show that, given only mean and variance,

the Gaussian distribution maximizes this entropy [58] relative to a uniform

distribution. Similarly, the uniform prior provides the highest information

entropy given only a minimum and maximum. Here, the results using uniform

priors and Gaussian priors for the DM are compared and discussed.

Figure 2.2 shows sample parameter distributions for the DM given

Gaussian priors in the left column and uniform priors in the right column.

For the case of reactions O + H2 ! H + OH and H2O2 + OH ! HO2 +

H2O, some information is learned regarding the parameters when the uni-

form prior is applied. The posteriors have obtained peaks, but are not highly

peaked. For reactions OH +H2 ! H + H2O and CO + OH ! CO2 + H when

applying the uniform prior, the posterior distributions become more highly

peaked; however, the distributions also abut against the bounds of the prior

distribution. This effect shows that the bounds on the prior can limit the

posterior distribution. As mentioned earlier, where the prior distribution has

zero probability, the posterior must have zero probability. As a result the

posteriors for the parameters in those two reactions are limited and do not

reach the parameter values attainable if not bounded. When the Gaussian
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prior is applied, the posterior distributions shift for those two pre-exponential

coefficients, with the distribution for CO + OH ! CO2 + H becoming slightly

more peaked. Most importantly the support of the Gaussian priors allows the

posterior distributions to attain the distributions as informed by the data.

2.4.4 Error model comparison

The Bayesian methodology provides for the utilization of different error

models, which are incorporated in the likelihood function. Prior knowledge

regarding how the error will develop for a particular problem can be integrated

into the form of the likelihood. In the results above in Sec. 2.4.1, the additive

error model has been used. In the following, the additive and multiplicative

error models, detailed in Sec. 2.2.1, are compared for the LM.

The different error models result in different posterior parameter dis-

tributions. Samples of the one-dimensional marginal distributions are plotted

in Fig. 2.9. For some of the parameters, in particular the coefficient for

HO2 + H ! H2 + O2, the multiplicative error model leads to a more peaked

distribution with a different MAP estimate.

Furthermore, the propagated results for the multiplicative error form

display a broadening of the flame speed uncertainty in comparison with the

additive model as seen in Fig. 2.10. The multiplicative treatment of the error

model, although resulting in less certainty in the results, is not necessarily a

poor choice of error model. A reduced uncertainty does not imply that the

additive error model is the correct model for a particular application.
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(a) Pre-exponential coefficient for H + O2 ! O + OH
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(b) Pre-exponential coefficient for HO2 + H ! H2 + O2
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(c) Pre-exponential coefficient for CO + O2 ! CO2 + O
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(d) Pre-exponential coefficient for CO + OH ! CO2 + H

Figure 2.9: Prior and final marginal PDFs of Arrhenius pre-exponential pa-
rameters for the LM with (left) additive error and (right) multiplicative error.
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(b) 10 atm.
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Figure 2.10: Flame speed results for the LM with (left) additive error and
(right) multiplicative error, where grey intensity indicates probability between
the 95% confidence interval bounds, dotted lines represent results using pre-
calibrated parameters, and symbols (x) represent experimental results [53]
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The additive error model weights all model error equally amongst the

separate experimental conditions. Thus, for conditions which result in flame

speeds on the order of 100 cms, a relative error of say 5% will affect the

model error term more drastically than conditions with a flame speed on the

order of 10 cms. With a multiplicative model error term, which scales with

the magnitude of the result, the error at each condition is weighted more

naturally so that the conditions with higher flame speeds do not dominate

the error from conditions with lower flame speeds. Such a treatment is not

unknown in combustion applications, and it has been shown to be beneficial

when modeling chemical kinetics [31].

Table 2.3 shows the logarithm of the evidence and the posterior proba-

bility for the Bayesian update using additive and multiplicative error models.

Much like comparing different kinetics models, the evidence may be used to

compare results from the same kinetics model, but with different applied error

models. The two cases with different applied error models then become two

different model classes within the set of models. Using the evidence measure,

the multiplicative error model is strongly preferred, with a posterior probabil-

ity of essentially 1. Similar to the result for the kinetics model comparison,

this result implies that the multiplicative error model provides the best combi-

nation of data fit and minimal tuning of the parameters for this set of laminar

flame speed data.

Other error models could potentially provide a better match. Param-

eterizing an error model proportional to some experimental parameters such
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Table 2.3: Log evidence and posterior probability for the LM with additive
and multiplicative error forms and Gaussian prior

Error Model Log evid. Post. prob.
Additive -57.31 0.0
Multiplicative 6.236 1.0

as pressure may prove to fit the data better. The downside is that these para-

metric relations may not be known a priori and could require a significant

number of parameters.

2.5 MUM-PCE and Bayesian Approach Comparison Re-
sults

The method of Sheen and Wang [14, 21, 22], referred to as MUM-PCE,

is an interesting technique that combines aspects of the Bayesian formulation

with regression-type error minimization to produce updated parameters. In

this section, the specific assumptions made in this technique are analyzed in

order to better understand the relative importance of model and error forms

on the calibration process. In Appendix B, it is shown that the MUM-PCE

is a simplified Bayesian technique that utilizes the following simplifications:

1) the target model is replaced by a surrogate model, 2) the surrogate model

is assumed to be linear with regard to the parameters, 3) the error in the

predictions appears only from experimental uncertainty. In other words, if

the experimental error were to reduce to zero, the parameters would be tuned

to capture the experimental data with no resultant uncertainty in either the

parameters or simulation results.
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During the parameter update process with MUM-PCE, a surrogate

model, the quadratic response surface model, is assumed for the flame speed.

This assumption varies from the direct use of the target model in the Bayesian

methodology. Furthermore, the surrogate model is linearized with respect to

the model parameters when determining the covariance between parameters.

This represents a further step from the Bayesian method. Next, treating the

error in the parameter update process as strictly from experimental uncer-

tainty neglects any error inherent in the kinetics model itself. This assump-

tion applied to the Bayesian methodology is equivalent to assuming an additive

error in which no additional error variance hyperparameter is employed. Ap-

plying these assumptions to the sampling-based Bayesian method results in

nearly identical results in comparison to MUM-PCE results. Removing those

assumptions one at a time reveals how the assumptions affect the outcome.

Applying the above described assumptions incrementally leads to a set

of tests of the modified Bayesian method. These tests are categorized by

choice of target model, linearized response surface, full response surface, or

true flame speed model, and by choice of model error, either additive error

with fixed σ = σobs = 2.0 or additive error with the inferred error variance hy-

perparameter. The following sections detail the effects of removing the Sheen

and Wang assumptions from the modified sampling-based Bayesian method.

These test cases all were performed using a single kinetics model, the DM, for

brevity. Section 2.5.1 describes the posterior distributions which result from

the incremental testing, and Sec. 2.5.2 describes the resultant flame speed
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distributions from the uncertainty propagation.

2.5.1 Marginal parameter distributions

Figure 2.11 shows two-dimensional plots of the CO + OH ! CO2 + H

and of the duplicate CO + OH ! CO2 + H pre-exponential parameters for

the different options. The first reaction is referenced as R1 with parameter

A1, and the second reaction is referenced as R2 with parameter A2. When the

Bayesian update is performed with the linearized response surface and fixed

additive error, hereafter referred to as the baseline and shown in plots labeled

with (a), the solution closely matches that of the MUM-PCE method. With

the modification to the full response surface shown in the plots labeled (c), the

solution changes from the baseline. While the parameter MAP values remain

essentially the same, the shape, size, and alignment of the probability con-

tours change. These changes can manifest themselves as a modification of the

multivariate Gaussian covariance, as well as a shift away from a multivariate

Gaussian to an arbitrary distribution. Such an outcome shows that the use

of linearized response surfaces affects the shape and size of the probability

surfaces, here two-dimensional marginal distribution contours.

When the error standard deviation hyperparameter is inferred, i.e. up-

dated along with the kinetics parameters in the Bayesian update, the shape,

size, alignment, and location of the probability contours changes. These

changes are shown in plots labeled (b) and (d). The MAP parameter val-

ues show a significant shift and the sizes of the probability contours show a
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significant increase. The MAP parameter value shift is due to the shift in the

region of the error parameter space. In Fig. 2.12 showing kinetics parameters

versus the error term, the corresponding MAP kinetics parameter values for

each error value are plotted in dashes. Following the dashed line towards an

error of σobs = 2.0 shows the shift in the MAP kinetic parameter value, and

thus that the results from error of σ = 2.0 can be extrapolated as a solution for

the parameter space with the inferred error term hyperparameter. Regarding

the expansion of the probability contours, including the error model standard

deviation as a hyperparameter to be inferred reduces the certainty with which

the kinetics parameters are determined. The modeled flame speed results vary

from the corresponding experimental results with a standard deviation greater

than that assumed for the MUM-PCE solution. With the MUM-PCE assumed

experimental error standard deviation, the kinetics parameters are determined

with more certainty than the modeled results themselves indicate. Thus, the

kinetics parameters are determined with more certainty than warranted.

2.5.2 Propagated flame speed distributions

Figure 2.13 displays the flame speed propagation results. The results for

the Bayesian cases vary when switching from fixed to inferred error standard

deviation. With the linearized response surface and inferred error standard

deviation shown in Fig. 2.13(c), the uncertainty is greater as compared with

fixed error standard deviation shown in Fig. 2.13(b). Similar results are dis-

played with the quadratic response surface shown in Figs. 2.13(e) and 2.13(d).
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Figure 2.11: Bayesian posterior (solid) and MUM-PCE posterior (dashed) two-
dimensional marginal PDFs of R1 and R2 pre-exponential coefficient A for the
DM with two parameters varied
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Figure 2.12: Bayesian posterior (solid) two-dimensional marginal PDFs of the
error standard deviation and R1 pre-exponential coefficient A for the DM with
two parameters varied, with a line of MAP value (dashed)

Such results imply one of two conclusions. First, using the error model stan-

dard deviation as a hyperparameter in the inference problem leads to larger

uncertainty in the kinetics parameters and consequently the flame speed solu-

tions. Second, specifying the standard deviation of the error term unnecessar-

ily increases certainty in the kinetics parameters and consequently the flame

speed solutions. This second conclusion should apply generally. Specifying

the standard deviation of the error term, in essence specifying the model and

experimental error spread, will lead to an artificial sense of certainty when

these error spreads are not known a priori.

The flame speed results for the full Bayesian case shown in Fig. 2.13(f)

exhibit a closer match to the experimental data than the response surface

cases with inferred error σ. This result indicates that calibration and propa-

gation with the true rather than surrogate model likely provides more accurate

flame speed results in the parameter space regions farther from the nominal
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Response Surfaces with σ inferred
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(e) R1 and R2 varied, Quadratic Re-
sponse Surfaces with σ inferred
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(f) R1 and R2 varied, full Bayesian

Figure 2.13: Flame speed results at 10 atm. for the Davis et al. [13] model,
where grey intensity indicates probability between the 95% confidence inter-
val bounds, dotted lines represent results using the nominal parameters, and
symbols (x) represent experimental results [53]
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Table 2.4: Mean and RMS error ε between the response surface and Chemkin-
determined flame speeds for the experimental conditions which lead to the
largest and smallest error

Expt Mean ε RMS ε Max ε RS MAP ε Bayesian MAP ε
8 2.2 2.1 10.8 5.1 2.1
9 0.1 0.1 0.2 0.1 0.0

parameter values where the linearization assumptions break down. Table 2.4

lists the mean, RMS, and maximum error between the response surface and

Chemkin-determined flame speeds for the two experimental conditions leading

to the largest and smallest error. The table lists those errors for flame speeds

determined from parameter values chosen on an evenly spaced grid within the

parameter space bounded by two standard deviations from the mean parame-

ter values. Additionally, the table lists the error at the MAP estimate for the

parameters. Although for some experimental conditions the error is low, for

others the error reaches magnitudes of more than 10 cm/s near the boundaries

of the response surface. Looking at the MAP values, the response surface er-

rors reach a magnitude as high as 5.1 cm/s. Such errors potentially can lead

to errors in the determination of the nominal parameter values and parameter

covariances.

2.6 Conclusions

Bayesian methods provide a powerful framework for quantifying uncer-

tainty in syngas combustion applications. Bayesian calibration, given a set of

experimental data to compare against, both improves calibration of the syngas
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chemistry models as well as provides updated distributions for parameters of

those models. Those distributions can then be propagated forward into simula-

tions of laminar flame speed to determine the uncertainty in their predictions.

The same framework can also be used to rank a set of candidate models.

The application of this approach to existing experimental data and

a select group of chemistry models was conducted here. It was found that

the model by Sun [53] undergoes significant changes in order to capture the

experimental data. All three models showed some increase to uncertainty in

the results at higher pressures, even when calibrated using experimental data

at 10 atm, confirming prior analyses that suggest increased sensitivity of results

to model coefficients at higher pressures. The functional form and support of

the prior PDF was found to have an important effect on the calibration results.

Specifically, the bounds on the uniform prior set based on previous uncertainty

estimates can be too narrow to allow a good calibration. Additionally, the

error model affects the Bayesian calibration and forms an integral part of the

calibration process.

MUM-PCE also has been applied to the same syngas flame speed simu-

lations. MUM-PCE has been shown to be a simplified version of the Bayesian

method after the application of several assumptions. Furthermore, in compar-

ison with corresponding Bayesian results, the effects of those assumptions are

shown to significantly affect the update of the parameter hypervolume shape

and parameter distributions, as predicted by Data Collaboration analysis [34].

This indicates that modeling of uncertainty itself will alter the results.
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The Bayesian calibration process provides a rigorous mechanism for in-

corporating new data in order to improve existing models. The availability of

such tools is important for engine design for two different reasons. The use of

uncertainty estimates provides a better characterization of the state of knowl-

edge, and allows for robust decision making. Further, these estimates also

provide information about the most important models and model parameters,

allowing better allocation of limited resources.
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Chapter 3

Adjoint-based sensitivity analysis

3.1 Introduction

Simulation of combustion often involves hundreds of parameters, most

of which arise from the chemistry mechanism used. In order to determine

the predictive value of such simulations, it is useful to know the dependence of

the prediction quantities on the parameters that constitute the various models.

This is obtained by sensitivity, which is the derivative of the quantity of interest

(QoI) to any parameter, with all other parameters held constant. In this

sense, a ranking of the most sensitive parameters informs the user of the most

critical processes that control the prediction. This information could be used

to develop better experiments [20, 59], optimize rate parameters [13, 14], or

for mechanism reduction [59–61] where the least sensitive parameters point to

pathways that do not contribute significantly to the target prediction.

The QoI w.r.t which the sensitivity is obtained could be a measured

value (such as laminar flame speed) or an output that is the main outcome of

conducting the simulation. Typically, a small number of prediction quantities

are output from each simulation but there will be a very large set of parame-

ters. For instance, in 2D laminar flames, there might be available temperature
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measurements (QoIs) at select locations in the domain. Depending on the

fuel used, the number of parameters used to simulate these QoIs might be

very large. The most direct approach to finding sensitivities is to differenti-

ate the governing equations with respect to the parameters, and find the QoI

sensitivity as follows

dJ

dα
=

∂J

∂α
+

N∑

i=1

∂J

∂φi

∂φi

∂α
, (3.1)

where J is the QoI, φi is the i-th variable solved using the governing equations

(i.e., velocity, species compositions, etc.), N is the number of independent

variables that determine the state of the system, and α is the parameter w.r.t

which sensitivity is needed. In the above equation, the term ∂φi

∂α is the most

computationally intensive part, since for a three-dimensional flow configuration

this will involve solving a partial differential equation. It is to be expected that

the cost of solving this equation is commensurate with the original transport

equation for the quantity φi.

In general, the number of independent variables for a three-dimensional

system is equal to Ns + 5, where Ns is the number of species. If we assume

that the number of chemical reactions scale as 5Ns [62], the number of param-

eters associated with chemical reactions alone would be of the order of 15Ns,

leading to 15(Ns +5)Ns additional equations to determine the first order sen-

sitivities for the QoIs. These additional equations will impose considerable

computational expense, especially when the chemistry model is detailed with

many hundreds of species.

Sensitivity analysis has been used predominantly with homogeneous or
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one-dimensional flows, where the cost of solving the sensitivity equations is

relatively low. For instance, the sensitivity of the laminar flame speed or ig-

nition delay time to reaction rate parameters is commonly used to determine

the important reactions [3, 13, 23–25]. Beyond these single resultant quanti-

ties, sensitivity analyses have also been used to study the one-dimensional

spatial dependence of flames [28, 29]. In general, sensitivity analysis is limited

to simple flame configurations due to the computational cost. An alternative

approach is based on the response surface method [63], for which the output

QoIs are expressed as polynomial functions of the parameters, or the high-

dimensional model representation method [64, 65], for which the output QoIs

are expressed as combinations of high-order orthogonal functions. The func-

tions themselves are obtained by performing a few full-scale computations and

fitting the results. While this approach is cost effective, it drastically simplifies

the nonlinearity of the problem, and removes the spatial dependance of sen-

sitivity. Nevertheless, this method has been used to develop local and global

sensitivity analysis tools [31, 66].

An alternate approach that is proposed here is based on the adjoint

technique for obtaining sensitivities. This method is particularly powerful

when the number of QoIs is limited and the number of relevant model pa-

rameters is large. The adjoint method introduces an additional number of

equations proportional to (Ns + 5)NQoI for a three dimensional simulation

regardless of the number of parameters in the models. The application of ad-

joint methods, although common in the realm of aerospace systems, has not
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been common for combustion. Previous aerospace applications include aero-

dynamic shape optimization [67–72], flow control over bodies and in channels

[73, 74], reduction of acoustic noise production [75, 76], and flow instability

[77]. Adjoint methods have also been used in the realm of chemical kinetics as

it relates to atmospheric pollution. Sensitivity of output variables to kinetics

parameters has been derived, implemented, and subsequently applied to air

pollution models [78–80].

In this chapter, the adjoint equations for laminar reacting flow are

derived. The implementation of these equations and verification using one-

dimensional test cases are shown. Finally, a two-dimensional laminar flame is

simulated, and the sensitivities of two test QoIs to chemistry model parameters

are computed.

3.2 Methodology

Desired quantities to measure or calculate from combustion experi-

ments and simulations, here referred to as Quantities of Interest (QoIs), can

include various values such as flame speed, flame length, peak temperature,

pollutant concentration, as well as many others. The QoIs can be sensitive to

many properties of the flow including temperature, pressure, or species con-

centrations. Due to the dependence of the flow properties on modeling choices,

the QoIs are generally sensitive to the model parameters. In the case of react-

ing flows, models and parameters associated with chemical reactions critically

affect the QoIs.
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The adjoint equations are defined based on two inputs. It is necessary

to define the QoIs, which are taken to be quantities that are spatially aver-

aged over a section of the flow domain. This could represent, for instance,

a measurement location or a critical part of the flow (such as the flame tip).

Additionally, the governing equations for the flow, termed primal equations,

are needed. The adjoint equations are derived using a variational approach.

Below, the primal problem, the dual or adjoint problem, and the evaluation

of the sensitivities based on the dual solution are discussed.

3.2.1 Primal Problem

The primal problem involves the simulation of the laminar flame itself.

Since this study focuses on a low-speed laminar flame, the primal problem

consists of laminar low-Mach number variable density reacting flow. As a

result, the reacting flow is governed by the variable density Navier-Stokes

(NS), scalar mass fraction, and enthalpy equations. The governing equations

are written in the following form:

∂ρ

∂t
+

∂ρui

∂xi
= 0 (3.2)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
+

∂p

∂xj
δji −

∂τji
∂xj

= 0 (3.3)

ρ
∂hs

∂t
+ ρuj

∂hs

∂xj
− ∂

∂xj

(
ρα

∂hs

∂xj

)
= ωhs (3.4)

ρ
∂Yk

∂t
+ ρuj

∂Yk

∂xj
− ∂

∂xj

(
ρDk

∂Yk

∂xj

)
= ωYk

(3.5)

where ui is the velocity, p is the pressure, hs is the sensible enthalpy, α is the

thermal diffusivity, ωhs is the chemical source term for enthalpy, Yk is the mass

64



fraction for species k, Dk is the mixture-averaged diffusivity for species k, and

ωYk
is the source term for species k. The viscous stress tensor τij is given

by µ
(

∂ui
∂xj

+ ∂uj

∂xi
− 2

3
∂uk
∂xk

δij
)
. Only steady state problems are considered here,

which would remove the time derivative in the governing equations. They are

retained here since the solution procedure involves evolving these unsteady

equations in time until steady state is reached. For simplicity, the Lewis

number is assumed to be one and the transport properties are assumed to be

constant. Note that these assumptions are not limitations of the method, but

are made here only to reduce the complexity of the equations and facilitate

discussion. In the low-Mach number formulation, pressure is split into two

terms, the fluctuating mechanical pressure p and the thermodynamic pressure

P 0. The thermodynamic pressure is assumed constant, while the mechanical

pressure is allowed to vary and enforces the continuity equation [81]. The

density and temperature T are determined from the following relations,

P 0 = ρRT, and h = CpT. (3.6)

The gas constant R and specific heat Cp are also assumed to be constant. Note

that these assumptions are stringent and are not expected to hold for practical

flames. In the application presented in Section 3.4, the gas constant varies

between approximately 15 and 29 between the fuel jet and the coflow. For the

stated objective of demonstrating the adjoint approach, these approximations

are taken to be reasonable.
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3.2.2 Dual Problem

To determine the sensitivity of the QoIs to model parameters, the ad-

joint solution is required. Commonly referred to as the dual problem, the

adjoint equations are solved for a specific QoI. In this work, the QoI, J, is

assumed to be the domain-wide integration of the scalar function, g, which is

a function of the primal variables U = [p′, ui, hs, Yk]:

J(U) ≡
∫

Ω

g(U)dx. (3.7)

Starting with the defined QoI, the adjoint equations can be derived through

the use of Lagrange multipliers as shown in Appendix C. The result of this

derivation is the following set of adjoint equations corresponding to the incom-

pressible steady state reacting flow detailed in Section 3.2.1:

∂ϕui

∂xi
= 0, (3.8)

ρ
∂ϕui

∂t
− ρuj

∂ϕui

∂xj
−

∂ϕuj

∂xi
ρuj −

∂

∂xj

(
µ

(
∂ϕuj

∂xi
+

∂ϕui

∂xj

))

+ ρϕh
∂h

∂xi
+ ρ

N∑

k=1

ϕYk

∂Yk

∂xi
− ρ

∂ϕp

∂xi
= 0, (3.9)

ρ
∂ϕh

∂t
− ρuj

∂ϕh

∂xj
− ∂

∂xj

(
ρα

∂ϕh

∂xj

)
− 1

h
ρα

∂h

∂xj

∂ϕh

∂xj

− 1

h
ρuj

∂h

∂xj
ϕh −

1

h
ρ

N∑

i=1

Di
∂Yi

∂xj

∂ϕYi

∂xj
+

1

h
ρuj

∂ϕp

∂xj

+
1

h
ρuj

∂ϕui

∂xj
ui −

1

h

N∑

i=1

ρuj
∂Yi

∂xj
ϕYi =

∂g

∂h
+

∂ωh

∂h
ϕh +

N∑

i=1

∂ωYi

∂h
ϕYi,

(3.10)
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ρ
∂ϕYk

∂t
− ρuj

∂ϕYk

∂xj
− ∂

∂xj

(
ρDk

∂ϕYk

∂xj

)
=

∂g

∂Yk
+

∂ωh

∂Yk
ϕh +

N∑

i=1

∂ωYi

∂Yk
ϕYi , (3.11)

where ϕi, i = {p, uj, h, Yk} refers to the adjoint variables. The number of

adjoint variables equals the number of primal equations.

The adjoint equations exhibit certain peculiar properties that merit

further discussion. The adjoint continuity equation (Eq. 3.8) does not contain

density and looks identical to the primal continuity equation for a constant

density flow. Although the adjoint variables corresponding to the velocity

equations are not similar in nature to the velocity vector, the presence of

the continuity-type constraint is important in the numerical implementation

(Sec. 3.2.4). The adjoint momentum, enthalpy, and species equations contain

a convective term that has a negative sign which is different than the primal

counterpart. This negative convection term leads to information propagation

that is backwards with regard to the primal solution. For instance, this could

be treated as information flowing from the outflow to the inflow. If the flow

were unsteady, the information has to be propagated back in time in order

to maintain numerical stability. In this particular case, the primal solutions

are time invariant and as such pose no numerical issues. Finally, the different

adjoint equations are coupled in a unique way. The species adjoint equations

do not contain the velocity or pressure adjoint variable. Note that in the

absence of chemical source terms (inert species), the species adjoint equations

will be independent of the enthalpy adjoint as well. On the other hand, the

species adjoint is present in all the other adjoint equations. This is different
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from the primal problem, where the species influence on the velocity equations

is more indirect through the density changes.

3.2.3 Sensitivity

The adjoint solution is the intermediate step in the computation of the

sensitivity of the QoI to the model parameters. The primal solution U is a

function of the model parameters θ, which leads to the following relation for

the sensitivity of the QoI w.r.t θ:

dJ(U(θ); θ)

dθ
=

∂J

∂θ
+

∂J

∂U

∂U

∂θ
. (3.12)

In the cases in which J has no explicit dependence on θ, ∂J/∂θ is zero, and

therefore
dJ(U(θ))

dθ
=

∂J

∂U

∂U

∂θ
. (3.13)

Next, define the residual form of the governing equations (3.2-3.5) asR(U ; θ) =

0, as in the derivation of the adjoint equations in Appendix C. Starting from

this definition, the Jacobian of R is written R′[U ]. From the adjoint deriva-

tion,
∂J

∂U
=

∫

Ω

ϕTR′[U ]dx, (3.14)

where ϕ = [ϕp,ϕui,ϕhs,ϕYk
] is the column vector of adjoint variables. Then,

taking the total derivative of R with respect to the parameter θ and rearrang-

ing gives the following:
∂U

∂θ
= −R′[U ]−1∂R

∂θ
, (3.15)
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for which ∂R
∂θ is the set of partial derivatives of the residual form of the equa-

tions to the parameters θ. Finally, substituting the above relations into (3.13)

leads to the following expression for the sensitivity to an arbitrary parameter

dJ

dθ
= −

∫

Ω

ϕT ∂R

∂θ
dx, (3.16)

where the adjoint variable vector ϕ is substituted from the adjoint PDE solu-

tion. Note that the derivative w.r.t. θ that appears in the integrand requires

differentiation of the partial differential equations that govern the primal solu-

tion. If the parameters are part of the chemical source term, this derivative will

simply be the derivative of the chemical source term w.r.t the model param-

eter. In the test cases below, specific parameters will be chosen to illustrate

the computation of the sensitivity as defined above.

3.2.4 Numerical implementation

In terms of numerical implementation, the steady-state primal equa-

tions (3.2-3.5) are first solved. With an eye towards future unsteady flow

studies, a low-Mach number pressure projection algorithm with time-stepping

is used [81]. This algorithm is similar to that used for large eddy simulation

(LES) computations of reacting flows [81, 82]. The mechanical pressure is ob-

tained by solving an elliptic equation used to enforce continuity. In the cases

presented, grid convergence studies were performed to ensure that the primal

solution is sufficiently converged. Using the species and velocity fields obtained

from the primal problem as well as the Jacobian of the chemical source terms

evaluated at these conditions, the adjoint equations given above (3.8-3.11) are
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solved. Similar to the primal algorithm, a pressure projection method is used,

where the adjoint continuity equation is enforced through the adjoint pres-

sure variable ϕp. The specification of boundary conditions is non-trivial but

systematically derived from the primal boundary conditions. The boundary

conditions corresponding to two-dimensional flow are provided in Appendix

C.

3.3 One-dimensional Burner Stabilized Flame Case

To illustrate the application of the adjoint approach, a one-dimensional

burner stabilized flame case is studied. For this flow, direct sensitivity obtained

by solving partial differential equations for the sensitivities is also evaluated.

In this configuration, a mixture of premixed fuel and oxidizer enters at the

inlet of the domain with a specified mass flow rate. Within the domain, a

flame burns the fuel mixture into combustion products. The mixture of hot

combustion products then exits the domain at the same flow rate.

The forward sensitivity calculation, used for comparison purposes here,

could be conducted many different ways. The most straightforward approach

is to derive sensitivity equations, which will lead to transport equations for

the variables ∂U/∂θ. As noted in the introduction, this will require many

additional equations to be solved. The second approach is based on Eq. 3.15,

where the Jacobian of the residual and the sensitivity of the residual w.r.t the

parameters are obtained using finite difference methods. Here, the parameters

are independently perturbed by a small number, and the the residuals recom-
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puted. The difference in residuals divided by the perturbation magnitude will

provide the necessary derivatives. Note that the first method is numerically

well-posed, where grid convergence will lead to a convergence in sensitivity.

The second method, however, is not accurate in this sense. It is well known

that the computation of Jacobians using finite differences leads to errors espe-

cially when the perturbations are small. Nevertheless, this second approach is

used here in order to show comparisons with the CHEMKIN [55] software.

Two different sensitivities are examined here. In the first study, sen-

sitivity of the integration of H2O mass fraction w.r.t species diffusivity is ob-

tained using the first method for forward sensitivity and the adjoint approach.

Grid convergence of the adjoint solutions is discussed. In the second study, a

comparison of the sensitivity of the results to Arrhenius pre-exponential pa-

rameters is conducted. For this purpose, CHEMKIN [55] based sensitivity is

obtained using the second method described above and the adjoint approach.

The following sections discuss the test cases and the results.

3.3.1 Governing equations

Applying the same assumptions as listed in Section 3.2.1, the governing

equations for this 1D test case simplify to the following:

Ṁ
dT

dx
− d

dx

(
α
dT

dx

)
− ωT = 0, (3.17)

Ṁ
dYk

dx
− d

dx

(
D
dYk

dx

)
− ωYk

= 0, (3.18)
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in which Ṁ = ρu is constant using the continuity equation. The second order

ODEs require two boundary conditions each. At the inlet, the temperature is

specified, and the species mass fractions take a mixed condition. At the out-

let, the temperature and the species mass fractions are set with zero-gradient

conditions.

Following a similar derivation as the 2D adjoint equations, the corre-

sponding 1D adjoint equations are the following:

−Ṁ
dϕT

dx
− d

dx

(
α
dϕT

dx

)
− ∂ωT

∂T
ϕT −

∑

j

∂ωYj

∂T
ϕYj =

∂g

∂T
, (3.19)

−Ṁ
dϕYk

dx
− d

dx

(
D
dϕYk

dx

)
− ∂ωT

∂Yk
ϕT −

∑

j

∂ωYj

∂Yk
ϕYj =

∂g

∂Yk
. (3.20)

The boundary conditions are derived based on the primal boundary conditions

as described in Appendix C. At the inlet, the boundary condition for the

adjoint temperature is ϕT = 0 and for species mass fraction is dϕYk
/dx = 0.

At the outlet, the boundary conditions take the folowing mixed condition:

ṀϕT + α
dϕT

dx
= 0 and ṀϕYk

+D
dϕYk

dx
= 0. (3.21)

Irrespective of the parameter for which the sensitivity is desired, the adjoint

equations remain the same.

Additionally, unlike the adjoint equations, the forward sensitivity equa-

tions must be derived for each selected parameter. These derived equations

will be listed separately for the two different test cases.
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3.3.2 Sensitivity to diffusivity

For the test case chosen here, the fuel is hydrogen and the oxidizer is

standard air. The inlet temperature is set at 300K and the fuel equivalence

ratio is 1. The kinetics model of Marinov [1], which includes 9 species and

20 reactions, has been used. The domain of the solution Ω spans from x = 0

to x = 4cm, and the computational grid uses evenly spaced grid points. The

number of grid points is varied from 5× 103 to 1.6× 105 in order to determine

convergence of the computed sensitivities. The temperature and water mass

fraction fields are shown in Fig. 3.1. The QoI for the sensitivity and adjoint

calculations is defined over the region spanning the whole domain ΩQ from

x = 0 to x = 4 cm as

J =

∫

ΩQ

YH2Odx. (3.22)

Taking the thermal diffusivity α as the parameter, and consequently the mass

diffusivity D since Lek = 1, the forward sensitivity equations are the following:

Ṁ
dσT

dx
− d

dx

(
dT

dx

)
− d

dx

(
α
dσT

dx

)
− ∂ωT

∂T
σT −

∑

j

∂ωT

∂Yj
σYj = 0, (3.23)

Ṁ
dσYk

dx
− d

dx

(
dYk

dx

)
− d

dx

(
D
dσYk

dx

)
− ∂ωYk

∂T
σT −

∑

j

∂ωYk

∂Yj
σYj = 0 (3.24)

In the above equations, σT is the sensitivity of T to the diffusivity parameter

and σYk
is the sensitivity of Yk to the diffusivity parameter. At the inlet, the

boundary conditions for the sensitivity equations are σT = 0 and

σYk
− 1

Ṁ

dYk

dx
− D

Ṁ

dσYk

dx
= 0. (3.25)
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At the outlet, the boundary conditions are dσT/dx = 0 and dσYk
/dx = 0. The

forward sensitivity solution is displayed in Fig. 3.2.

The normalized sensitivity S = d ln(J)/d ln(α) from the forward sensi-

tivity solution is calculated as

Sfwd =
α

J

∫

ΩQ

σH2Odx, (3.26)

and the sensitivity from the adjoint solution, derived from (3.16), is calculated

as

Sadj =
α

J

∫

Ω

(
Ns∑

k

ϕk
d2Yk

dx2
+ ϕT

d2T

dx2

)
dx. (3.27)
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Figure 3.1: 1D primal simulation results for temperature (K) and YH2O

Figure 3.3 displays the relative error, defined as ε = |Sfwd − Sadj|/Sadj,

between the sensitivities as a function of grid points. With 5000 grid points the

relative error is on the order of 1%. However, the flame front itself is not well

resolved for that grid spacing. As the grid is refined, the relative error decreases

resulting in errors of the same order as the residual errors in the solution of
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Figure 3.2: 1D forward sensitivity simulation results for σH2O

the primal equations. This test demonstrates that the forward sensitivity and

adjoint sensitivity models produce near identical results accounting for the

differences in the solution methodology.
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Figure 3.3: Relative error |Sfwd − Sadj |/Sadj between the sensitivity as deter-
mined by the forward sensitivity solution and the adjoint solution
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3.3.3 Sensitivity to Arrhenius pre-exponential parameters

To compare sensitivities to Arrhenius rate parameter, the finite-difference

based forward sensitivity scheme is used. For this comparison, the QoI and the

RoI are the same as that used in Sec. 3.3.2. To calculate the forward sensitiv-

ities, the CHEMKIN PREMIX code [55] is used along with a finite difference

technique. The computational grid is adaptively refined by the CHEMKIN

code, and the same grid is used for the dual problem as well. During the

CHEMKIN solution, the Jacobian and the change of the residual w.r.t. per-

turbation of the parameters are calculated using finite differences and substi-

tuted into (3.15). Thus, the forward sensitivity from the CHEMKIN solution

is calculated as the following

Sfwd,r =
Ar

J

∫

ΩQ

∂YH2O

∂Ar
dx. (3.28)

The adjoint solution is obtained by solving Eq. 3.19 with the g function spec-

ified as in Eq. 3.22. From the adjoint solution, derived from (3.16), the sensi-

tivity is calculated as

Sadj,r =
Ar

J

∫

Ω

(
Ns∑

k

ϕk
∂ωYk

∂Ar
+ ϕT

∂ωT

∂Ar

)

dx. (3.29)

Figure 3.4 shows the adjoint solution and the forward sensitivity solution for

two sample reaction pre-exponential parameters.

Figure 3.5 shows the ten most sensitive parameters as calculated by

both the CHEMKIN forward sensitivity method and the adjoint sensitivity

method. For both sensitivity methods, the majority of the top ten sensi-

tive parameters are the same and close in magnitude. The fifth and sixth
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Figure 3.4: 1D adjoint solution (top) and sensitivity solution to reaction pre-
exponential parameter A1 of reaction OH+H2 ! H+H2O and A2 of reaction
O+H2 ! OH+H (bottom)

parameters are switched between the two methods, and as the parameter sen-

sitivies become smaller and comparable at the bottom of the sensitivity list,

the ninth parameters are different. Note that the finite difference method

used to compute forward sensitivities has its limitations, and a convergence of

values cannot be obtained as the perturbations becomes small.
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Figure 3.5: The top ten most sensitive parameters as determined by the
CHEMKIN forward sensitivity solution (left) and the adjoint solution (right)

3.4 Two-dimensional laminar diffusion flame

To illustrate the application of the adjoint approach to multi-dimensional

flow configurations, a laminar hydrogen diffusion flame is studied. The sim-

ulation approximates an experimental study of nitrogen-diluted flames [83].

The flame includes a jet of nitrogen-diluted hydrogen with a coflow of air at

standard atmospheric pressure. Figure 3.6 shows a schematic of the domain
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of the axisymmetric simulation with the inlet sections labeled. The fuel jet

inner diameter is 9mm, and the fuel pipe extends 8mm into the domain. The

coflow extends to the lateral boundary of the domain. Table 4.1 lists the inlet

flow properties, as well as the rest of the boundary conditions for the primal.

In the table ‘zg’ refers to a zero gradient boundary condition, ∂/∂xn = 0. The

adjoint boundary conditions are listed in Table 4.2. Again, ‘zg’ refers to a zero

gradient condition, while ‘mg’ refers to the following mixed gradient condition

unϕ+ Γ
∂ϕ

∂xn
= 0, (3.30)

and ‘mg-ϕh’ refers to

unϕh + Γ
∂ϕh

∂xn
=

un

h
(ϕC + utϕMt) , (3.31)

where the subscripts n and t refer to the normal and tangential components,

respectively.

For this particular study, two different QoIs are considered: spatially

averaged temperature and NOx. The latter quantity is the key result of many

combustion simulations, and an analysis of its sensitivities is critical in the

development of robust chemistry models. For this purpose, a detailed kinetics

model for hydrogen with NOx formation [84] is used. This model includes

32 species and 172 reactions. The next two sections will include first a brief

description of the flame simulation results and second a description of the

parametric sensitivity results calculated using the adjoint solution.
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Figure 3.6: Schematic of the simulation domain showing the fuel inflow, fuel
pipe, coflow, and RoIs

Table 3.1: Primal boundary conditions
Prop. Fuel Coflow Pipe wall Outlet
T, K 293.0 293.0 293.0 zg
YH2 0.0671 0.0 zg zg
YO2 0.0 0.232 zg zg
YN2 0.9329 0.768 zg zg
Yother 0.0 0.0 zg zg
uz, m/s 0.18 0.18 0.0 zg
uR, m/s 0.0 0.0 0.0 zg
p′ zg zg zg zg

3.4.1 Primal solution of the laminar flame configuration

In the primal simulation, a flame forms beginning just downstream of

the inlet pipe. This flame can be visualized by the temperature field shown in

Figure 3.7. The flame forms around the fuel jet and reaches a peak temperature

of approximately 1940K 4.4 jet diameters downstream. The central region of

the flow remains greater than 825K for the entire length of the domain, which

is approximately 16 jet widths.

The NOx mass fraction fields are plotted in Fig. 3.8. Nitric oxide peaks
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Table 3.2: Adjoint boundary conditions
Prop. Fuel Coflow Pipe wall Outlet
Φh 0.0 0.0 0.0 mg-ϕh

ΦY 0.0 0.0 mg mg
ΦMn 0.0 0.0 0.0 0.0
ΦMt 0.0 0.0 0.0 mg
ΦC zg zg zg zg

in the region just downstream of peak temperature, as expected since the

Zeldovich/thermal mechanism for NOx production is dominant for this flame.

Although its peak value decreases as the flow cools downstream, NO remains

in the flow. Nitrogen dioxide peaks in the downstream area of the flow beyond

the flame. Here, the NO formed in the higher temperature regions combines

with the cool coflow and reacts to form NO2. In this flow configuration, NOx

concentration is predominantly due to the NO component. The NO2 mass

fraction serves to extend and spread the total mass fraction of NOx due to its

location downstream of and on the periphery of the high temperature region.

Figure 3.7: Contour plot of temperature (K) from the primal solution
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(a) YNO

(b) YNO2

(c) YNOx

Figure 3.8: Contour plots of NOx mass fractions from the primal solution
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3.4.2 Laminar flame adjoint simulation results

Two different QoIs are considered here. The first QoI, QoI-I, is the

average temperature in a region near the tip of the flame:

J =
1

VQ

∫

ΩQ

Tdx, (3.32)

where ΩQ refers to the RoI, the region over which the temperature has been

averaged, and VQ is the volume of that region. Figure 3.6 shows ΩQ, which is a

rectangular region (a disk when the axisymmetric region is revolved) near the

tip of the flame. The region spans radially from the axis to 1.0 cm and extends

axially from 4.5 cm to 5 cm. QoI-I and the region ΩQ have been defined to

serve as a measure of the flame temperature in some hypothetical combustion

device. A selection of the adjoint solution fields for the temperature QoI sim-

ulation are displayed in Fig. 3.9. It is seen that the different species equations,

the enthalpy equation, and the momentum equation exert differing influence

over the QoI, and the region of influence depends not only on the chemical

source terms of the associated equations but also the transport and diffusion

characteristics. In this sense, the adjoint exhibits the propagation of informa-

tion. More specifically, it could be argued that the adjoint itself describes the

propagation of a small disturbance at each point in the computational domain.

In other words, the magnitude of the adjoint indicates the change in the QoI

for a small perturbation in the field variable at a given location. The spatial

variations in the adjoint field emphasize the fact that not all regions equally

impact the QoI or the RoI. For instance, the OH and O2 adjoints indicate that
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the near-exit region that forms the interface between the fuel and coflow has

significant impact on the flame temperature, but the enthalpy adjoint has a

more uniformly spread field.

Due to the importance of determining pollutant levels in many simu-

lations, the mass of the pollutant NOx downstream of the laminar flame has

been chosen as the second QoI, QoI-II, for this study. QoI-II is defined in the

following manner:

J =

∫

ΩQ

ρ(YNO + YNO2)dx, (3.33)

where ΩQ refers to the RoI, the region over which the NOx has been calcu-

lated. Figure 3.6 shows ΩQ, which is a rectangular region (a disk when the

axisymmetric region is revolved) downstream of the flame. The region spans

radially from the axis to 2.5 cm and extends axially from 9.5 cm to 10 cm. QoI-

II and the region ΩQ have been defined to serve as a measure of the amount

of NOx leaving some hypothetical combustion device. A few of the adjoint

solution fields are shown in Fig. 3.10. Again, the different species equations

exert differing influence over the QoI, showing that the adjoint itself describes

the propagation of a small disturbance at each point in the computational

domain.

Figure 3.10 also shows that the adjoints for QoI-II differ from the ad-

joints for the temperature QoI. The QoI function J essentially acts as a forcing

term in the adjoint equations. Its effect is seen as a clear demarcation in the

adjoint solutions. Since this flow contains no recirculation, there is very lit-

tle influence of the downstream fluid on the QoI. Hence, most of the adjoint
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(a) ϕOH

(b) ϕO2

(c) ϕh

(d) ϕui

Figure 3.9: Adjoint variable fields for YOH, YO2, enthalpy, and axial velocity
for QoI-I
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features are seen upstream of the flow. The OH adjoint shows significant val-

ues in regions where the flame front is not present. This indicates that any

disturbance on the lean-side of the flame will lead to large changes in the

QoI. Although some adjoints are predominantly negative, there is no direct

inference from this to the sensitivity, since that depends on the partial of the

chemical source term with respect to the parameters as well (Eq. 3.29).

3.4.3 Sensitivity to kinetics parameters

The sensitivity of each QoI to the reaction pre-exponential parameters

can be readily calculated from the adjoint solution using (3.29), for which Ω

refers to the entire 2D domain. The sensitivity is shown in normalized form,

∂lnJ/∂lnAr . Figure 3.11 shows the ten most sensitive parameters for QoI-I.

The average temperature in RoI-I is most sensitive to the parameter for H +

OH! H2O. This chain terminating reaction provides significant heat release in

the high temperature region of the flame. Not unexpectedly, none of the NOx

formation reaction parameters significantly affect the average temperature in

the flame tip region.

The sensitivity of QoI-II to the reaction pre-exponential parameters was

also calculated for the same primal flame simulation. Figure 3.12 shows the

ten most sensitive parameters for QoI-II, again with the sensitivity in normal-

ized form. The most sensitive parameter for the amount of NOx downstream

is one of the elementary reactions in the hydrogen chemistry model without

NOx production. The next five, however, come from the NOx extension of
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Figure 3.10: Adjoint variable fields for YOH, YO, YN, and YNNH for QoI-II
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Figure 3.11: Top ten Arrhenius pre-exponential sensitivities for QoI-I, the
average temperature in RoI-I

the mechanism. The most sensitive parameter of these five corresponds to

the reaction N + NO ! O + N2, which is the rate-limiting reaction for the

thermal production of NOx. For this high-temperature diffusion flame, the

thermal mechanism for production of NOx is expected to be the most impor-

tant pathway. The next three parameters correspond to reactions important

for the N2O pathway for production of NOx. The last of those five, as well as

the ninth most sensitive parameter, correspond to reactions important in the

NNH pathway of the production of NOx.

3.5 Conclusions

The adjoint equations for low-Mach number reacting flow with multiple

species have been derived and implemented in a finite-volume solver. The ad-

joint approach allows fast and efficient computation of sensitivity information

for multi-dimensional flames. The number of additional equations that need to
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Figure 3.12: Top ten Arrhenius pre-exponential sensitivities for QoI-II, the
integrated mass of NOx in RoI-II

be solved scales as the number of primal equations times the number of QoIs,

as opposed to the forward sensitivity approach that scales as the number of

primal equations times the number of parameters. The adjoint equations are

linear as opposed to the nonlinear primal equations, and have a mathematical

structure that is comparable to the primal equations. For instance, pressure

projection approaches used to solve the primal equations could be directly used

for the dual system. The adjoint equations also exhibit significant differences

in the details of the different terms. For instance, all the adjoint equations in-

clude a negative convective term that transports adjoint information from the

primal outflow to the primal inflow. In addition, the scalar adjoint equations

do not contain momentum adjoint information but are linked through the en-

thalpy adjoint equation. In this sense, if the scalars are passive (nonreactive),

their adjoint equations will be completely decoupled from the momentum ad-

joints. This is different from the primal equations where passive scalars are

still transported by the velocity field.
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Two different flow configurations were studied. The 1-D system was

used to compare adjoint solutions with forward sensitivity based results. It

was shown that the adjoint method converges to the forward sensitivity solu-

tion with increasing number of grid points, which is consistent with numerical

implementation of partial differential equations. Comparison of the 1-D flame

solution with finite-difference based sensitivity showed that both methods re-

produced the most sensitive reactions, but there were discrepancies as the

sensitivities of the parameters decreased. This is mainly due to the lack of

numerical convergence of the finite-difference based formulations. The 2-D

laminar flame problem showed that the adjoint solution exhibits different spa-

tial distribution for the different adjoint variables. The two different QoIs

provided vastly different adjoint solutions due to the differences in the loca-

tion and strength of QoI based forcing functions. It is seen that the solutions

are non-trivial and exhibit complex features. Hence, it is expected that the

sensitivity to parameters that affect the different species will also be inherently

complex.

The adjoint method is a powerful tool that could provide enormous in-

sight into the way validation experiments are designed and used. For instance,

an analysis of the sensitivities of a particular measurement performed at a

given location is directly obtained. Hence, calibration of model parameters

could be carried out in a more sophisticated manner. Further, the adjoint so-

lutions could be obtained not just for laminar flames but also for full turbulent

flow configurations, which are usually the end application for any chemistry
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model. Although there are difficulties applying this technique to unsteady

chaotic problems [85], it is readily applied to steady-state Reynolds-averaged

Navier Stokes (RANS) results, which are commonly used in the engine design

cycle. Apart from providing predictions of key quantities, the adjoint approach

used on these RANS results could provide the most critical parameters that af-

fect simulations. This information could be further used to refine experiments

or other sources of data for better calibration of the important parameters.
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Chapter 4

Adjoint field sensitivity

4.1 Introduction

The description of gas phase chemical pathways is the first step towards

the successful computational modeling of combustion. Naturally, this aspect

has received considerable attention throughout the history of combustion re-

search. Progress in chemistry model development is measured by the ability of

the constructed mechanisms to reproduce certain quantities of interest (QoIs)

for a variety of flow conditions. For instance, ignition time delay or specific

species compositions are often chosen as the QoIs. The flow conditions are

supposed to mimic, in a macroscopic sense, the end applications, which are

full scale CFD calculations of large scale industrial combustion devices. In

order to reproduce a wide range of operating conditions, the chemistry model

is invariably made more complex by introducing a large number of pathways

and associated reactions.

The downside, of course, is that this increase in the number of reac-

tions is accompanied by the need to determine rate models, which is in effect

the specification of Arrhenius rate coefficients. Since the number of exper-

iments available to determine such rate coefficients are not sufficient to un-
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ambiguously specify the values, there is considerable uncertainty introduced

by the chemistry model. Recent works in the area of uncertainty quantifica-

tion [20, 22, 86] have shown that not all experiments are useful in improving

the model, and that there is substantial correlation between the model coeffi-

cients. In addition, it has become clear that the level of certainty required in

estimating certain key quantities such as temperature really depends on the

ultimate prediction QoI. For instance, Mueller and Raman [87] show that a

5% error in temperature predictions upstream could result in 50-75% error in

the prediction of soot volume fraction in a turbulent jet flame. In this sense,

even if chemistry models could reproduce experiments designed for parameter

calibration, their accuracy in full scale calculations cannot be known a priori.

Here, we seek a quantitative measure that goes beyond reproducing ex-

perimental values to compare chemistry models. We introduce a new quantity

termed field sensitivity that measures the sensitivity of a QoI to perturbations

in the flow field. To understand field sensitivity, consider the laminar flame

shown in Fig. 4.1. A region of interest (RoI) defines the QoI J, expressed as the

surface or volume integral over a sub-domain of the flow field. If the flow field

U (including the gas phase species compositions) is perturbed at any point

in the flow, such perturbations can impact J. The field sensitivity is defined

as ∂J
∂U , which is a fundamental quantity that, in theory, is measurable. (In

Sec. 4.2, this quantity will be defined more rigorously from a computational

standpoint).

The motivation for this measure comes from the fact that predictive
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models should not only reproduce target quantities but also their variations

with changes to the flow field. At a more fundamental level, one can view the

governing equations as models that recover the nature of information propa-

gation in a flow. A disturbance at a point in the flow will be convected and

diffused in a particular manner. The goal of the models should be to capture

the same propagation as that would occur in reality, if a similar perturbation

occurs in the laboratory flow conditions.

It is important to distinguish field sensitivity from the conventional

measure of parametric sensitivity. In the latter approach, the change in QoIs

with respect to changes in model parameters are obtained. This quantity

has no fundamental significance, since model parameters are not identical for

the different models. The parameters could have been calibrated to take on

different numerical values, or may not even be present if the pathways they are

associated with are absent in a mechanism (essentially, the parameter is set

to zero value in this case). Hence, this variability between different chemistry

models prevents a meaningful comparison of parametric sensitivity. Because

field sensitivity is related to the species/flow variables themselves, it is a more

fundamental quantity.

With this introduction, the purpose of this chapter is to discuss the

mathematical equations and numerical implementation for determining field

sensitivity. In the next section, the field sensitivity will be defined based on

the adjoint of the flow problem. Following this, a numerical simulation of a

laminar flame configuration using three different chemistry mechanisms will
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be used to illustrate the usefulness of this new quantity.

4.2 Adjoint-based formulation of field sensitivity

As with the previous chapter, the focus of this study is a two-dimensional

steady laminar flow configuration. The formulation is based on a low-Mach

number approach [88]. Again, the pressure field is decomposed into a thermo-

dynamic pressure, P0, and a so-called first-order pressure p′. The fluctuating

pressure is set such that the continuity equation is satisfied by the flow field.

This a common technique used in a variety of computational solvers, includ-

ing state-of-the-art large eddy simulation (LES) methods [81, 89, 90] to avoid

resolving acoustic wave propagation. Here, this approach is used primarily

to be consistent with these LES solvers, so that the results could be directly

interpreted in terms of the end application. In addition, constant physical

properties and calorically perfect gas have been assumed. Since the focus here

is only to demonstrate the concept of field sensitivity, these assumptions are

made to simplify the discussion. It should be noted that there is no loss of

generality, and the field sensitivity could be derived using any of the methods

and property variations used to solve laminar flow equations [91, 92]. The gov-

erning equations for this flow (termed the primal equations) are those listed

in Sec. 3.2.1. As in the previous chapter, to derive field sensitivity, an adjoint-

based sensitivity approach is used.

The adjoint equations are derived in Appendix C. A brief discussion of

that derivation is included here to motivate the use of field sensitivity. First,
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Figure 4.1: Schematic of a laminar flame showing a perturbation and temper-
ature as the QoI

define a set of variables Φ = [φp,φui,φh,φYk
]T . A Lagrangian based on Φ as

the multiplier is formulated as follows:

L(U,Φ) = J(U) +

∫

Ω

ΦTR(U)dx, (4.1)

where Ω refers to the flow domain and

J(U) =

∫

Ωd

g(U)dx (4.2)

is the quantity of interest defined as an integral of a function over the region

of interest (Fig. 4.2). In the context of optimization, the above equation could

be interpreted as computing J subject to the constraint (in a weak sense) that

R = 0. Two optimality conditions could then be written as

L′(Φ)(U,Ξ) =

∫

Ω

ΞTR(U)dx = 0, (4.3)

and

L′(U)(Z,Φ) = J′Z −
∫

Ω

ΦTR′Zdx = 0. (4.4)
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In the above equations, the prime superscript on the variables denote a varia-

tion or a directional change. The first equation implies that the variation of L

in the direction of Φ is zero, with Ξ as the variable that denotes the change in

the Φ direction. This leads to the condition that the residual should be zero

in a weak sense (integrated over the entire domain), which essentially states

that U should satisfy the primal equations. The second equation is more in-

teresting, providing the formulation that will lead to transport equations for

Φ. The transport equations for the adjoints are listed in Eqs. 3.8-3.11.

The boundary conditions for solving the adjoint equations (Eq. 3.8-

3.11) are obtained as part of the derivation, and have to be consistent with

the primal boundary conditions. In fact, this consistency preserves the unique-

ness of the adjoint solution. A list of boundary conditions for the particular

configuration solved in this work is provided in Sec. 4.3.1.

The adjoint solution could then be used to obtain either the parametric

sensitivity, as described in Sec. 3.2.3, or the field sensitivity described as fol-

lows. Consider a parameter α that appears in the primal governing equations.

The sensitivity ∂J/∂α is given by

∂J

∂α
= −

∫

Ω

ΦT ∂R

∂α
dx, (4.5)

where the integrand consists of the product of the adjoint and the derivative

of primal equations w.r.t the parameter. Since the adjoint solution does not

depend on the choice of parameter, the same solution could be used to compute

sensitivities for any number of parameters. To define the field sensitivity,
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consider an additional source term to the primal scalar transport equation

(Eq. 3.5), given by Gn
k . This source term serves as a local perturbation and is

active only over a small region of the flow field.

Gn
k = θnk δ(x− xn), (4.6)

where xn is a local position in the flow field, and δ is the Dirac-delta function.

For a finite sized computational grid, there will be N such parameters located

at each grid point. In this case, based on Eq. 4.5, the sensitivity to the

parameter θnk is simply given by

∂J

∂θnk
= −

∫

Ω

ΦT ∂R

∂θnk
dx = ϕYk

(x). (4.7)

In other words, the sensitivity to perturbation in the flow field is the adjoint

itself. Expressed in this way, the field sensitivity is nothing but the adjoint

field. Note that the perturbation is not added when solving the primal equation

but is used here only to motivate the definition of the field sensitivity.

The field sensitivity thus contains information about the propagation

of a disturbance through the flow field and the impact of a particular loca-

tion in the flow field on the final quantity of interest. It is thus a tangible

quantity that is independent of the models used to describe chemical kinetics

and should reproduce the sensitivity of the true system. However, there exists

no direct method for obtaining these perturbed flames in practice other than

the computationally expensive method of perturbing the solution at each lo-

cation with Gn
k . Alternatively, this field sensitivity measure could be used to
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determine the differences between different chemistry models, even if the QoI

predictions from these models are essentially similar. In addition, the field

sensitivity could be evaluated in practical turbulent flames as well to deter-

mine if the regions of composition space that are critical here are accessed in a

simpler laminar flame configuration. This approach will ensure that reaction

rate mechanisms optimized in simpler flames are reliable in turbulent flames.

4.3 Results and discussion

4.3.1 Laminar flame test case

A series of laminar flame simulations and their corresponding adjoint

simulations have been developed for a laminar hydrogen flame. The conditions

were chosen to approximate those of a nitrogen-diluted flame experiment [83].

The simulations were performed on an axisymmetric grid with 9940 points.

Figure 4.2 displays the domain, which includes a jet of inner diameter 9mm

which extends into the domain by 8mm. For these simulations the Lewis

number has been assumed to be 1 for simplicity of the adjoint derivation,

and the associated viscosities set to 1.8×10−4 kg/m/s2 to counter the lack of

increase in viscosity at the flame. The primal simulations were integrated

forward in time until a steady state was reached. Then, given the steady

state solution of the primal, the steady adjoint equations were solved to give

the adjoint solution. For the simulations, both the primal and the adjoint

governing equations include a continuity equation. The primal simulation

imposes continuity through the use of a pressure projection method. In the
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Figure 4.2: Schematic of the simulation domain, including RoI-I (blue) and
RoI-II (red)

adjoint simulations, the adjoint continuity is analogously imposed through the

use of a projection method.

The boundary conditions for the primal simulations are listed in Table

4.1 and those for the adjoint simulations in Table 4.2. The subscripts ‘n’ and

‘t’ refer to the boundary normal and tangential components, respectively. The

symbol ‘zg’ in the tables refers to a zero gradient condition, ∂/∂xn = 0. The

symbol ‘mg’ in the adjoint boundary condition table refers to a mixed gradient

condition, unΦ+Γ∂Φ/∂xn , for which Γ is the diffusivity. The symbol ‘mgΦh’ is

the mixed gradient condition on adjoint enthalpy, which is unΦh+Γ∂Φh/∂xn =

un/h (ΦC + utΦMt). Regarding the adjoint solution, although no Dirichlet

boundary conditions are set, the QoI term serves as a source for the equations

driving the results.

Three different chemistry models were used to simulate the laminar

flame. The model of Konnov [93], referred to as KM, focused on improvements

to reactions between H and HO2, as well as OH and HO2. The model of Li,

et al [2], referred to as LM, improved on previous mechanisms by introducing
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updates to the enthalpy of formation of OH, as well as updates to several key

reactions. The model of Burke, et al [3], referred to as BM, is an update of

the LM. It incorporates several impovements, such as third-body efficiencies

for the H + O2 (+M) ! HO2 (+M) reaction.

Table 4.1: Primal boundary conditions
Prop. Fuel Coflow Pipe Outlet
T, K 293.0 293.0 293.0 zg
YH2 0.0671 0.0 zg zg
YO2 0.0 0.232 zg zg
YN2 0.9329 0.768 zg zg
Yother 0.0 0.0 zg zg
uz, m/s 0.18 0.18 0.0 zg
uR, m/s 0.0 0.0 0.0 zg
p′ zg zg zg zg

Table 4.2: Adjoint boundary conditions
Prop. Fuel Coflow Pipe Outlet
Φh 0.0 0.0 0.0 mgΦh

ΦY 0.0 0.0 mg mg
ΦMn 0.0 0.0 0.0 0.0
ΦMt 0.0 0.0 0.0 mg
ΦC zg zg zg zg

4.3.2 Primal solutions for the three mechanisms

The forward solution, which involves solving Eq. 3.2-3.5, is presented

in Figs. 4.3, 4.4, and 4.5 for three hydrogen chemistry mechanisms. The three

mechanisms have been calibrated using some overlapping data, but unique ex-

perimental data as well. Consequently, the rate parameters for select reactions
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in each mechanism are different. In spite of these differences, it is seen that

the three models produce very similar data for the laminar flame under consid-

eration. For instance, the H2O mass fractions are within about six percent for

all the calculations. For the OH mass fraction, the discrepancy in the results

manifests as a small shift, change of width, and change in magnitude of the re-

gion of peak values (Fig. 4.5). This similarity in results is typical of chemistry

models for well-characterized fuels. The primal solution also indicates that by

z/d = 2.6, the flame tip is reached. The OH layer is confined to a region of

width d/2 centered at approximately z/d of 2.4.

Figure 4.3: YH2O for the KM

4.3.3 Field sensitivity for the three mechanisms

For this study, two separate QoIs are defined. The adjoint simulations

are performed for each QoI, leading to a field sensitivity for each QoI for every

variable. QoI-I and QoI-II are defined in the following manner:

JQoI-I =

∫

RoI-I

YH2Odx,

JQoI-II =

∫

RoI-II

YOHdx.
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Figure 4.4: Percentage difference for YH2O between the KM and BM (top) and
KM and LM (bottom)

These QoIs represent the completion of combustion and an important inter-

mediate for combustion. The regions of interest are shown in the domain

schematic, Fig. 4.2, as the blue and green regions, respectively. From the pri-

mal simulations, QoI-I varies between the three models by less than 0.1%, and

QoI-II varies by less than 6.5%.

The field sensitivity for QoI-I to OH is plotted in Fig. 4.6. Between

the three models, the region upstream of the flame is very similar. Within the

flame, and just downstream of the flame, there are differences. The position

of the sensitivity peak shifts by approximately d/2 across the three models,

and the magnitude of the peak sensitivity is greatest for the KM. These field

sensitivities show that additional OH downstream of the flame will have a

tendency to form additional H2O in the region where the combustion products

are at approximately 1000K.
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Figure 4.5: YOH for the KM (top), BM (middle), and LM (bottom)

The field sensitivity for QoI-II to HO2 is plotted in Fig. 4.7. Between

the three models, there are variations in magnitude and size of the sensitive

regions. All three models show a pair of regions for which QoI-II correlates

to HO2. In a region near the fuel pipe lip, increases to HO2 will tend to

increase QoI-II. This sensitivity is most pronounced for the LM, for which the

sensitivity even reaches into the fuel pipe. In a small region outside of the

flame, increses to HO2 will tend to decrease QoI-II.

The QoIs additionally can change given perturbations to the velocity

itself. Figure 4.8 displays the field sensitivity of QoI-I to the velocity compo-

nents for the KM. An increase in the streamwise velocity of the fuel as it exits
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Figure 4.6: Field sensitivity of QoI-I to OH for the KM (top), BM (middle),
and LM (bottom)

the fuel pipe and of the coflow near the fuel pipe corresponds to an increase

in QoI-I. Also, reduced radial velocity at the lip of the fuel pipe, as well as in-

creased radial velocity as the fuel leaves the pipe, correspond to an increase in

QoI-I. Therefore, additional entrainment of oxidizer at the lip of the fuel pipe

and additional H2 entering the flame will tend to increase the mass fraction of

H2O in RoI-I, as is expected.

4.3.4 Parameter sensitivity for the three mechanisms

The sensitivity of each QoI to the reaction pre-exponential parameters

can be readily calculated with this method. Here, the sensitivity ∂lnJ/∂lnAr is
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Figure 4.7: Field sensitivity x1e+5 of QoI-II to HO2 for the KM (top), BM
(middle), and LM (bottom)

shown scaled by the volume of the RoI. Figure 4.9 shows the ten most sensitive

parameters for QoI-I and all three chemistry models. All three models share

the most sensitive five parameters, although in a slightly different order. For

instance the KM and BM share the most sensitive parameter, that for HO2

+ H ! OH + OH, which is second most sensitive for the LM. The next five

most sensitive are similar, though each model has some sensitive parameters

not listed in the top ten for the others. For all three models, the sensitivity

of QoI-I, which is the integrated H2O downstream of the flame, appears to be
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Figure 4.8: Field sensitivity of QoI-II to streamwise velocity (top) and radial
velocity (bottom) for the KM

highly sensitive to the generation of and subsequent decomposition into OH

of HO2.

It is important to note the lack of agreement on the most sensitive

parameters. Although the primal solutions for the three mechanisms are quite

close, the models are sensitive to different sets of parameters. This arises from

the fact that the models are calibrated using different sets of experiments,

or the calibrated parameters obtained from different literature sources. Even

if the same set of reactions are found to be most sensitive, the sensitivities

are still evaluated at vastly different values of the underlying reaction rate

parameters. This illustrates the fundamental problem in using parametric

uncertainty to understand the performance of chemistry models.
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4.4 Conclusions

We have defined a new quantity termed field sensitivity to compare

chemistry models. The field sensitivity is shown to be the adjoint of the pri-

mal equations, and defines the sensitivity of a QoI to perturbations in the flow.

The field sensitivity is a fundamental quantity, based on perturbations of mea-

surable variables. Simulations of laminar flames were used to demonstrate that

even if the primal solutions are sufficiently close, the field sensitivities could

be very different. This illustrates that the models propagate perturbations

in variables in different ways. The parametric sensitivities, which could be

easily obtained from the adjoint solution, show that even for relatively simple

fuels (such as H2), there is considerable disagreement on the most sensitive

parameters and their values. Due to issues with parametric sensitivity that

were listed, this measure alone will not be useful in determining the accuracy

and potential pitfalls of particular chemistry models. The following additional

observations could be made about field sensitivity and adjoints

1. Convergence of chemistry mechanisms could be evaluated based on field

sensitivity. For instance, the addition of pathways, reactions, or re-calibration

of parameters could be evaluated by computing field sensitivity w.r.t vari-

ables of interest. If the end use is the prediction of certain QoIs, field

sensitivity could inform us if more detailed mechanisms provide any addi-

tional gain in terms of sensitivities or if there is a marked change in the

nature of the chemistry model. In a broader sense, it should be expected
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that as chemistry models are refined, the field sensitivities, along with the

primal solutions, should converge.

2. While it is relatively straightforward to determine field sensitivity in lam-

inar flames, the adjoint approach itself has issues in chaotic and unsteady

flows. For a general unsteady problem, the adjoints have to be propagated

back in time. This would require that intermediate time primal solutions

are available. While this is feasible in two-dimensional laminar flows, it

is certainly not possible for large scale simulation methods such as direct

numerical simulation (DNS) or large eddy simulation (LES). Both DNS

and LES also model chaotic turbulent flow, which introduce other concep-

tual issues with adjoints [85]. In this regard, the adjoint of time-averaged

DNS/LES solutions is a better starting point, especially if a statistically

stationary state exists in the configurations considered.

3. Such measures of sensitivity are also useful in developing experimental

configurations of maximum utility. To develop predictive models for the

full scale systems, it is important to ensure that the models have the right

sensitivity to perturbations in the flow. If the field sensitivity of a practical

flow is evaluated, it could be used to develop simpler flow configurations

to mimic this measure. Additionally, if certain regions of the flow are

deemed important due to their large impact on the QoI, additional detailed

measurements could be commissioned to ensure that the validation of the

primal solutions is better characterized. In this sense, field sensitivity and
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adjoints have a special role to play in uncertainty quantification and model

validation.
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Figure 4.9: Top ten Arrhenius pre-exponential sensitivities for QoI-I for the
KM (top), BM (middle), and LM (bottom)
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Chapter 5

Conclusions

Bayesian uncertainty quantification and adjoint sensitivity methods

provide a framework for investigating how simulations respond to chemistry

modeling choices. The Bayesian method allows not only the calibration and

improvement of chemistry models with experimental data, but also the quan-

tification of how uncertainty in the model parameters themselves affects the

outcome of simulations. Adjoint methods provide an ideal method for deter-

mining sensitivity of simulation results to model parameters given a limited

number of relevant quantities and an arbitrary number of relevant model pa-

rameters. Together, these methods provide a means of characterizing and

improving chemistry models. In this chapter key conclusions from the appli-

cation of Bayesian UQ to chemistry models, the application of adjoint methods

to efficiently determining sensitivities, and the application of adjoint methods

to determining field sensitivity are stated. Finally, future directions of research

for these topics are discussed.
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5.1 Bayesian methods for chemistry model UQ

The inherent uncertainty in the determination of chemistry model pa-

rameters combined with the additional complications arising from the com-

bination of independently calibrated parameter values necessitates the use of

inversion methods for the calibration of full chemistry models. This inversion

can proceed in a number of ways; however, the Bayesian method provides not

only a set of nominal model parameter values, but also a multi-variate distri-

bution on the parameters which can take an arbitrary form. The uncertainty

in the model parameters also can be propagated forward in the simulations

to provide an estimate of the uncertainty in the simulation results. Thus,

the Bayesian framework provides the capability to update chemistry models

as well as determine how precisely those models can give results given the

inherent uncertainty in their parameter values.

The Bayesian framework was applied to a set of syngas chemistry mod-

els and a set of experimental flame speed results. After calibration to this

data, the models provided a closer match to a set of test data, indicating

an improvement in the model performance for that type of target experiment.

More importantly the results of the Bayesian inversion gave a joint distribution

on all of the calibrated parameters. This characterization of the uncertainty in

the parameters was propagated through the simulations to show the resultant

uncertainty in the flame speed results.

Therefore, the Bayesian framework provides a rigorous method for im-

proving existing models through the incorporation of new experimental data.
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Such a tool aids in practical engine design for two reasons. The uncertainty

estimates obtained from the application allow for better characterization of the

state of knowledge, which in turn leads to more robust decision making. Fur-

thermore, the results indicate which models and model parameters are more

important, thus leading to better allocation of resources.

5.2 Adjoint methods for determining chemistry model
sensitivity

Simulation results depend upon the modeling choices made in develop-

ing those simulations. Each model can have a few to hundreds or thousands of

model parameters, as in the case of chemistry models. With such a large num-

ber of parameters which potentially could alter the results of the simulations,

these models require sensitivity studies to determine which parameters truly

drive the relevant quantities from the simulation. These quantities, termed

quantities of interest (QoIs), comprise the end goal of the simulations, and

typically do not number very many. For such a situation, adjoint sensitivity

methods provide an efficient means of determining parametric sensitivity of

simulation behavior.

The set of adjoint equations for laminar, incompressible, variable den-

sity reacting flow have been developed. These equations have been verified for

a one-dimensional burner stabilized flame configuration. After verification the

adjoint equations were solved for a two-dimensional laminar hydrogen flame

involving NOx production. From the results of that simulation, the sensitivity
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of two QoIs, average flame tip temperature and NOx output, to the chemistry

model parameters have been calculated. Results indicate which Arrhenius pre-

exponential parameters are responsible for the flame tip temperature and NOx

output.

This methodology is a powerful tool that can inform decisions regard-

ing how future validation experiments are designed and used. Adjoint sensi-

tivity studies for specific QoIs which match experimental measurements can

indicate how to carry out experiments to calibrate model parameters. Also,

although developed here for laminar flames, the adjoint methodology easily

can be extended to averaged turbulent simulations such as Reynolds-averaged

Navier Stokes simulations, which are commonly used in the design cycle. Such

methods can help elucidate which are the critical parameters for practical

simulations, leading to refinement of experimental studies for improved model

calibration.

5.3 Adjoint methods for determining field sensitivity

The adjoint solution provides not only parametric sensitivity informa-

tion for the simulation, but also characterizes how the flow field variables

themselves affect the QoIs in the simulation. This sensitivity, here termed

field sensitivity, gives insight into how perturbations to the flow variables af-

fect relevant quantities, which are typically downstream. For example, changes

upstream of the flame can affect the temperature and extent of the flame.

For this work, the adjoint equations were solved for three laminar flame
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simulations which used three separate chemistry models. Although the car-

ried species and most of the included elementary reactions were the same for

all three models, a few of the elementary reactions differed and some of the

chemistry model parameter values varied amongst the different models. For

those simulations, even though the primal results, especially the chosen QoIs,

were very close in value, the field sensitivities showed discrepancies. This fact

illustrates that the chemistry models in conjunction with the flow solution

propagate perturbations to the primal variables in different ways.

Not only can field sensitivity be applied to laminar flames, but field

sensitivity also can be applied to practical applications of averaged turbulent

flows like RANS, averaged direct numerical simulations, or averaged large eddy

simulations. Since the field sensitivity shows how perturbations affect the QoI,

those regions deemed important in practical simulations due to their impact

on the QoI can be useful for pointing out regions which require further char-

acterization through experiment. Also, convergence of chemistry models can

be evaluated based on field sensitivity. The addition of species and reactions,

or in a broader sense chemical pathways, can be tested by examining the field

sensitivity. If the additions introduce a marked change on the nature of how

information is propagated in the simulation to the QoI, then those additions

are important to the chemistry model. Generally, as chemistry models are re-

fined, not only should the primal solutions converge, but the field sensitivities

should converge as well.
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5.4 Future directions

This work has focused on applications to simple chemistry models,

namely those for hydrogen and syngas fuels. However, the adjoint sensitivity

method provides great efficiency for models involving many parameters. Thus,

more complex fuels can be the target of these sensitivity studies. Addition-

ally, such sensitivity studies become more important as the experimental data

becomes sparse. One example is soot formation in flames. This field lacks

well-characterized experiments that provide rich data for use in model calibra-

tion and validation. Typically, only integrated measures of soot characteristics

(volume fraction, for instance) are available. In some cases, only qualitative

information concerning additional quantities such as PAH concentration are

available. However, the models used involve many dozens of parameters in

addition to the large number of chemistry model parameters. In these cases,

it becomes necessary to understand the role of individual models and model

parameters on the final measurable quantities. Adjoint sensitivity methods

can fill this gap of knowledge and lead to improvement of soot modeling and

ultimately soot simulation predictions.

117



Appendices

118



Appendix A

The syngas chemistry model of Davis [13]

Table A.1 lists the chemical reactions and the associated Arrhenius pa-

rameters for the Davis syngas chemistry model [13]. Reactions which include

‘+M’ involve third body collisions for which the third body efficiencies are not

listed here. Reactions which include (+M) are falloff reactions which utilize

the Lindemann falloff function. Reactions labeled with a ‘*’ indicate duplicate

reactions. For those reactions, a single Arrhenius relation does not cover the

behavior of the reaction well over a wide range of temperatures, thus the be-

havior is modified by the use of a duplicate reaction with different parameters.

Together, the two Arrhenius equations better estimate the reaction rate for

that elementary reaction.

119



Table A.1: The Arrhenius parameters for the Davis syngas chemistry model
[13]; * refers to a duplicate reaction; units are in cm, s, mol, and cal

Reaction A η EA

H+O2 ! O+OH 2.65e+16 -0.671 17041
O+H2 ! H+OH 3.87e+4 2.7 6260
OH+H2 ! H+H2O 2.16e+8 1.51 3430
OH+OH ! O+H2O 3.57e+4 2.4 -2110
H+H+M ! H2+M 1.00e+18 -1.0 0
H+OH+M ! H2O+M 2.20e+22 -2.0 0
O+H+M ! OH+M 4.71e+18 -1.0 0
O+O+M ! O2+M 1.20e+17 -1.0 0
H+O2(+M) ! HO2(+M) 4.65e+12 0.44 0

5.75e+19 -1.4 0
H2+O2 ! HO2+H 7.40e+5 2.433 53502
OH+OH(+M) ! H2O2(+M) 7.40e+13 -0.37 0

1.34e+17 -0.584 -2293
HO2+H ! OH+OH 7.08e+13 0.0 295
HO2+O ! OH+O2 2.00e+13 0.0 0
HO2+OH ! O2+H2O 2.90e+13 0.0 -500
HO2+OH ! O2+H2O* 1.00e+16 0.0 17330
HO2+HO2 ! O2+H2O2 1.30e+11 0.0 -1630
HO2+HO2 ! O2+H2O2* 4.20e+14 0.0 12000
H2O2+H ! HO2+H2 1.21e+7 0.0 25200
H2O2+H ! OH+H2O 2.41e+13 0.0 3970
H2O2+O ! OH+HO2 9.63e+6 0.0 23970
H2O2+OH ! HO2+H2O 2.00e+12 0.0 427
H2O2+OH ! HO2+H2O* 2.67e+41 0.0 -737600
CO+O(+M) ! CO2(+M) 1.80e+10 0.0 2384

1.55e+24 -2.79 4191
CO+OH ! CO2+H 9.60e+11 0.14 7352
CO+OH ! CO2+H* 7.32e+10 0.03 -16
CO+O2 ! CO2+O 2.53e+12 0.0 47700
CO+HO2 ! CO2+OH 3.01e+13 0.0 23000
HCO+H ! CO+H2 1.20e+14 0.0 0
HCO+O ! CO+OH 3.00e+13 0.0 0
HCO+O ! CO2+H 3.00e+13 0.0 0
HCO+OH ! CO+H2O 3.02e+13 0.0 0
HCO+M ! CO+H+M 9.35e+16 -1.0 17000
HCO+O2 ! CO+HO2 1.20e+10 0.807 -727
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Appendix B

Bayesian representation of the MUM-PCE
approach of Sheen and Wang

The basic approach of Sheen and Wang [14, 21, 22] solves a limited

form of the Bayesian inverse problem, and thus follows many of the ideas

of Bayesian uncertainty quantification. Given a set of experimental results,

the method solves for a nominal set of parameters and the covariance values

amongst them. Such parameter determination is used to calculate the resultant

uncertainties which are reduced in relation to uncertainties resulting from the

initial values and variances for all parameters. We provide this discussion as a

means of evaluating model parameter calibration processes by their effect on

the posterior distribution.

B.1 The Sheen and Wang method

In the Sheen and Wang method, the kinetics parameters involved are

the pre-exponential coefficients ki. Each parameter is normalized to a range

of -1 to 1 with

xi =
ln ki/ki,0
ln fi

, (B.1)
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where ki,0 is the pre-calibrated value for ki and fi is the multiplicative uncer-

tainty factor. The method proceeds by treating the set of parameters x as a

set of random variables with the following polynomial chaos expansion:

x = x0 +
M∑

i=1

αiξi +
M∑

i=1

M∑

j=1

βijξiξj + ..., (B.2)

where ξi are standard random variables, typically treated by the method as

standard normal random variables, αi and βij are the expansion coefficients,

and M is the number of random variables used in the expansion. This expan-

sion is simplified to the following in order to allow the analytical simplifications

of the method:

x = x0 +
M∑

i=1

αiξi. (B.3)

The parameters x form a multivariate Gaussian distribution with mean x0

and covariance matrix Σ = αTα.

The Sheen and Wang method replaces the target combustion models

with surrogate models, quadratic response surfaces, the use of which has been

deemed Solution Mapping [63]. The response surfaces are generated from

selected simulations of the target combustion model. The selected simulations

are intended to provide response surface support over the range of necessary

simulation conditions. The response surfaces consist of the nominal modeled

value ηr,0 and sets of coefficients ai and bij for each experimental condition.

The modeled value ηr for each experiment r is calculated as

ηr(x) = ηr,0 +
N∑

i=1

aixi +
N∑

i=1

N∑

j≥1

bijxixj , (B.4)
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where N is the number of optimized parameters.

Determination of the parameters in the Sheen and Wang method in-

volves two steps. Step one is the optimization of the parameter nominal val-

ues. This step minimizes the objective function Φ, which is a sum of the least

squares difference between the target experimental results and the simulation

results and a parameter weighting term,

Φ(x) =
n∑

r=1

(
ηr(x)− ηobsr

σobs
r

)2

+
N∑

k=1

4x2
k, (B.5)

where n is the number of experimental targets. Step two is determination of

the parameter covariance matrix. The objective function Φ is employed now

in the construction of the PDF of a multivariate Gaussian of the parameters,

p(x) = Aexp(−0.5Φ(x)), (B.6)

where A is a normalization constant. The distribution has its mean as the

optimal parameter values x∗ and has covariance matrix Σ. Linearizing the

response surface about the optimal parameter values leads to an expression

for the covariance matrix,

Σ =

[
n∑

r=1

1

(σobs
r )2

(bx∗
0x

∗T
0 b+ axTb+ bTxaT + aaT ) + 4I

]−1

. (B.7)

This expression is solved for the polynomial chaos expansion coefficients α∗

from the multivariate Gaussian treatment of x, for which

x∗ = x∗
0 +

M∑

i=1

α∗
i ξi, (B.8)

with mean x∗
0 and covariance matrix Σ = α∗Tα∗.
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B.2 The Bayesian derivation of the Sheen and Wang
method

The Bayesian method aims to minimize the difference between experi-

mental results and simulation results using an objective function, the likelihood

function. Given Gaussian experimental and model form error, the likelihood

function starts from the following form:

π(x;ηobs) =
1

(2π)n/2|Σ|1/2 exp
[
−1

2

(
η(x)− ηobs

)T
Σ−1

(
η(x)− ηobs

)]
,

(B.9)

where the covariance matrix Σ serves as the error model term. The Sheen and

Wang method uses an additive error term which involves only the experimental

error, which can be written as

Σij =

{
σobs
i for i = j

0 for i &= j.
(B.10)

Applying this assumption to the Bayesian likelihood leads to a simplification

of the likelihood to the following

π(x;ηobs) =
1

(2π)n/2(
n∏

r=1
σobs
r )1/2

exp

[
−1

2

n∑

r=1

(
ηr(x)− ηobsr

σobs
r

)2
]
. (B.11)

The Sheen andWang method treats the priors typically as normal distributions

with zero mean and standard deviation of 0.5, thus

pprior(x) =
1

(0.5π)N/2
exp

[

−1

2

N∑

i=1

(2xi)
2

]

. (B.12)
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Substituting the prior and likelihood function into the equation for the poste-

rior parameters (2.2) results in

p(x) = A exp

[
−1

2

n∑

r=1

(
ηr(x)− ηobsr

σobs
r

)2

− 1

2

N∑

i=1

(2xi)
2

]
, (B.13)

where A again is a normalization constant. Therefore, with the additive ex-

perimental error model and normal priors, the Bayesian posterior is equivalent

to the Sheen and Wang assumed parameter probability (B.6) with objective

function (B.5).

Proceeding from the expression for the parameter joint distribution,

the Sheen and Wang method employs additional assumptions which allow an-

alytical calculation of the distributions rather than by Monte Carlo sampling.

These simplifications reduce the complexity of the solution method and allow

the uncertainty results to be calculated rapidly; however, they also lead to

restrictions on the flexibility of results. The following list outlines four of the

primary simplifications of the SW method.

(1) The target combustion models are replaced by surrogate models.

(2) The parameter distributions are expressed as first order polynomial chaos

expansions.

(3) The surrogate models are linearized during calculation of parameter co-

variance and thus for resultant uncertainty.

(4) The error model involves only additive Gaussian experimental error.
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The Sheen and Wang method replaces the target combustion models

with quadratic response surfaces which act as surrogate models. While sim-

plifying the combustion model to a mere algebraic relationship of the kinetics

parameters, the response surface substitution requires that the model response

follow a smooth quadratic response to changes in those parameters. The ran-

dom variable treatment of those parameters is accomplished with first order

polynomial chaos expansions. This simplification requires that the parameters

be distributed in a multivariate Gaussian distribution. However, this assump-

tion combined with the algebraic relationship of the response surfaces allows

the analytical simplification to the final equations for nominal parameter values

and covariances. The calculation of the model parameter covariances involves

the linearization of the response surfaces about the nominal parameter values.

This simplification allows further analytical simplification for the parameter

covariances. Additionally, the error model in this method involves only the

experimental error, which is equivalent to an constant additive error model in

the Bayesian framework, where it manifests itself in the likelihood function.

The error term is distributed as a zero mean Gaussian, which maintains the

simplicity of the parameter covariance calculation. Furthermore, this error

term precludes the possibility of including model form error which may be

present in the modeling of the target combustion experiments in the uncer-

tainty quantification process.

The result of these simplifications is a method that limits model param-

eters and resultant model uncertainties to multivariate Gaussian distributions.
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Input prior information about the model parameters must also be limited to

a collection of univariate Gaussian distributions. Nonetheless, the method

follows the general methodology of the Bayesian framework. A physical phe-

nomenon (say, laminar flame speed for syngas combustion) is approximated

by a mathematical model which involves model (kinetics) parameters. A set

of experimental data (experimental flame speeds) is assembled to update the

model parameters. Based upon the difference between the experimental and

modeled results (flame speeds), the parameter nominal values and covariances

are updated, and the posterior quantity (flame speed) uncertainty is deter-

mined.
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Appendix C

Incompressible, variable density adjoint
equations

C.1 Derivation

This section derives the dual (adjoint) problem corresponding to the

primal problem outlined in §3.2.1. The derivation proceeds starting from the

steady state primal problem governing equations as follows:

∂ρuj

∂xj
= 0 (C.1)

∂

∂xj
(ρujui) +

∂p′

∂xi
=

∂τji
∂xj

, (C.2)

∂

∂xj
(ρujh)−

∂

∂xj

(
ρα

∂h

∂xj

)
= ωh, (C.3)

∂

∂xj
(ρujYk)−

∂

∂xj

(
ρDk

∂Yk

∂xj

)
= ωYk

. (C.4)

for which the viscous stress tensor τji can be written

τji = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
. (C.5)

Additionally, the equation of state P 0 = ρRT and the definition of enthalpy

h = cpT provide constraints on the system. Since ρ and h are related, ρ will

be written as a function of h, thus

ρ =
P 0cp
Rh

. (C.6)
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C.1.1 Introductory Considerations

Let U = [p′, ui, h, Yk]T denote the primal variables and

R(U) = [RC , RMi, RE , RSk
]T denote the residual operator corresponding to the

primal PDEs. Further, let the quantity of interest, or cost function, be written

J(U) =

∫

Ω

g(U) dx, (C.7)

and let Φ = [ϕp,ϕui,ϕh,ϕYk
]T denote the adjoint variables. Then, the La-

grangian of the system can be written as

L(U,Φ) ≡ J(U) +

∫

Ω

ΦTR(U) dx. (C.8)

To derive the adjoint equations, examine the first variation of the Lagrangian

with respect to U . The Lagrangian must be stationary with respect to the

first variation W , thus

L(U,Φ) = L(U +W,Φ)

= L(U,Φ) + L′[U ](W,Φ)
(C.9)

Specifically, the adjoint Φ solves the following problem: find Φ such that

L′[U ](W,Φ) = 0, (C.10)

for all admissible variations W = [q, wi, δh, zk] of U , where L′[U ] denotes the

Frechet derivative of L with respect to U . Clearly,

L′[U ](W,Φ) = J′[U ](W )−
∫

Ω

ΦTR′[U ](W ) dx. (C.11)

Thus, to begin the derivation, R′[U ](W ) must be found.
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C.1.2 Variations of the Primal Residual

The governing equations are written in residual form and then per-

turbed by variations of the independent variables. For the continuity equation,

the residual equation is the following

RC(U +W ) =
∂

∂xi
[(ρ+ δρ) (ui + wi)] , (C.12)

thus,

R′
C [U ](W ) =

∂

∂xi

[
−ρ

h
uiδh+ ρwi

]
. (C.13)

For the momentum equation, the residual equation is the following

RMi(U +W ) =
∂

∂xj
[(ρ+ δρ)(uj + wj)(ui + wi)]

+
∂

∂xj
(p′ + q)δji −

∂

∂xj
τji(U +W ).

(C.14)

It is straightforward to show that, under the assumption of constant viscosity,

the viscous shear stress is linear in the state:

τji(U +W ) = τji(U) + τji(W ). (C.15)

Therefore, the variation of the momentum residual becomes the following

R′
Mi
[U ](W ) =

∂

∂xj

(
−ρ

h
ujuiδh

)
+

∂

∂xj
(ρwjui)

+
∂

∂xj
(ρujwi) +

∂q

∂xj
δji −

∂τji(W )

∂xj
.

(C.16)

For the enthalpy equation, since ρ and h are related, the enthalpy

residual equation is the following

RE(U +W ) =
∂

∂xj

(
P0cp
R

(uj + wj)

)

− ∂

∂xj

(
(ρ+ δρ)α

∂(h + δh)

∂xj

)
− ωh(U +W ),

(C.17)
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which implies that

R′
E[U ](W ) =

∂

∂xj

(
P0cp
R

wj

)
+

∂

∂xj

(
1

h
ρα

∂h

∂xj
δh

)

− ∂

∂xj

(
ρα

∂δh

∂xj

)
− ∂ωh

∂U
W.

(C.18)

For the species equations, the residual equations are the following

RSk
(U +W ) =

∂

∂xj
[(ρ+ δρ)(uj + wj)(Yk + zk)]

− ∂

∂xj

(
(ρ+ δρ)Dk

∂(Yk + zk)

∂xj

)
− ωYk

(U +W ),
(C.19)

which implies that

R′
Sk
[U ](W ) =

∂

∂xj

(
−ρ

h
ujYkδh

)
+

∂

∂xj
(ρwjYk) +

∂

∂xj
(ρujzk)

− ∂

∂xj

(
−ρ

h
Dk

∂Yk

∂xj
δh+ ρDk

∂zk
∂xj

)
− ∂ωYk

∂U
W.

(C.20)

After the collection of terms and transformation into the form necessary

131



for (C.11), the above residual equations take the following form:

∫

Ω

ΦTR′[U ](W )dx =

∫

Ω

ϕp

[
∂

∂xi

(
−ρ

h
uiδh+ ρwj

)]
dx

︸ ︷︷ ︸
Continuity

+

∫

Ω

ϕui

[
∂

∂xj

(
−ρ

h
ujuiδh

)
+

∂

∂xj
(ρwjui)

+
∂

∂xj
(ρujwi) +

∂q

∂xj
δji −

∂τji(W )

∂xj

]
dx

︸ ︷︷ ︸
Momentum

+

∫

Ω

ϕh

[
∂

∂xj

(
P0cp
R

wj

)
+

∂

∂xj

(
1

h
ρα

∂h

∂xj
δh

)

− ∂

∂xj

(
ρα

∂δh

∂xj

)
− ∂ωh

∂U
W

]
dx

︸ ︷︷ ︸
Enthalpy

+

∫

Ω

ϕYk

[
∂

∂xj

(
−1

h
ρujYkδh

)
+

∂

∂xj
(ρYkwj)

+
∂

∂xj
(ρujzk) +

∂

∂xj

(
1

h
ρDk

∂Yk

∂xj
δh

)

− ∂

∂xj

(
ρDk

∂zk
∂xj

)
− ∂ωYk

∂U
W

]
dx

︸ ︷︷ ︸
Species

(C.21)

In the above equation, several terms include the variations W within deriva-

tives. Integration by parts can be used to move the variations W outside the

derivatives.

Integration by parts transforms continuity to the following

∫

Ω

ϕpR
′
C [U ](W ) dx =

∫

Ω

ϕp
∂

∂xi

(
−ρ

h
uiδh+ ρwj

)
dx

= BC +

∫

Ω

(
ρ

h
ui
∂ϕp

∂xi
δh

)
dx−

∫

Ω

(
∂ϕp

∂xi
ρwi

)
dx (C.22)
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where BC includes the boundary terms. Specifically,

BC = −
∫

∂Ω

ϕp
ρ

h
uiniδh ds+

∫

∂Ω

ϕpρniwi ds, (C.23)

where ni is the ith component of the outward pointing unit normal vector.

For momentum integration by parts leads to the following

∫

Ω

ϕuiR
′
Mi
[U ](W ) dx =

∫

Ω

ϕui

(
∂

∂xj

(
−ρ

h
ujuiδh

)
+

∂

∂xj
(ρwjui)

+
∂

∂xj
(ρujwi) +

∂q

∂xj
δji −

∂τji(W )

∂xj

)
dx

= BM1 +

∫

Ω

(
∂ϕui

∂xj

ρ

h
ujuiδh− ∂ϕui

∂xj
ρuiwj

− ∂

∂xj
(ρujϕui)wi −

∂ϕui

∂xj
qδji

)
dx

+

∫

Ω

∂ϕui

∂xj
τji(W ) dx

= BM1 + BM2 +

∫

Ω

(
∂ϕui

∂xj

ρ

h
ujuiδh− ∂ϕui

∂xj
ρuiwj

− ∂

∂xj
(ρujϕui)wi −

∂ϕui

∂xj
qδji

)
dx

−
∫

Ω

wj

[
∂

∂xi

(
µ

(
∂ϕui

∂xj
+

∂ϕuj

∂xi

))

− ∂

∂xj

(
2

3
µ
∂ϕuk

∂xk

)]
dx

= BM1 + BM2 +

∫

Ω

(
∂ϕui

∂xj

ρ

h
ujuiδh− ∂ϕui

∂xj
ρuiwj

− ∂

∂xj
(ρujϕui)wi −

∂ϕui

∂xj
qδji

)
dx

−
∫

Ω

wj
∂τij(ϕu)

∂xi
dx, (C.24)
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where BM1 and BM2 are boundary terms. Specifically,

BM1 =

∫

∂Ω

ϕui

(
−ρ

h
ujuiδh+ ρuiwj + ρujwi + qδji − τji(W )

)
nj ds, (C.25)

BM2 =

∫

∂Ω

wj

[
µ

(
∂ϕui

∂xj
+

∂ϕuj

∂xi

)
− 2

3
µ
∂ϕuk

∂xk
nj

]
ds

=

∫

∂Ω

wjτji(ϕu)ni ds, (C.26)

where ni is the ith component of the outward pointing unit normal vector.

Integration by parts modifies the enthalpy contribution in the following

fashion:
∫

Ω

ϕhR
′
E [U ](W ) dx =

∫

Ω

ϕh

[
∂

∂xj

(
P0cp
R

wj

)
+

∂

∂xj

(
ρ

h
α
∂h

∂xj
δh

)

− ∂

∂xj

(
ρα

∂δh

∂xj

)
− ∂ωh

∂U
W

]
dx

= BE1 −
∫

Ω

P0cp
R

∂ϕh

∂xj
wj dx

+

∫

Ω

∂ϕh

∂xj

(
−ρ

h
α
∂h

∂xj
δh+ ρα

∂δh

∂xj

)
dx

−
∫

Ω

ϕh
∂ωh

∂U
W dx

= BE1 +BE2 +−
∫

Ω

P0cp
R

∂ϕh

∂xj
wj dx

−
∫

Ω

ρ

h
α
∂h

∂xj

∂ϕh

∂xj
δh dx−

∫

Ω

∂

∂xj

(
ρα

∂ϕh

∂xj

)
δh dx

−
∫

Ω

ϕh
∂ωh

∂U
W dx (C.27)

where BE1 and BE2 are boundary terms. Specifically,

BE1 =

∫

∂Ω

ϕh

(
P0cp
R

wj +
ρ

h
α
∂h

∂xj
δh− ρα

∂δh

∂xj

)
nj ds, (C.28)

BE2 =

∫

∂Ω

ρα
∂ϕh

∂xj
njδh ds, (C.29)
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where ni is the ith component of the outward pointing unit normal vector.

For the species residual equations, integration by parts leads to the

following

∫

Ω

ϕYk
R′

Sk
[U ](W ) dx =

∫

Ω

ϕYk

[
∂

∂xj

(
−1

h
ρujYkδh

)
+

∂

∂xj
(ρYkwj)

+
∂

∂xj
(ρujzk)

]
dx+

∫

Ω

ϕYk

∂

∂xj

(
1

h
ρDk

∂Yk

∂xj
δh

)
dx

−
∫

Ω

ϕYk

∂

∂xj

(
ρDk

∂zk
∂xj

)
dx−

∫

Ω

ϕYk

∂ωYk

∂U
W dx

= BS1 +

∫

Ω

1

h
ρujYk

∂ϕYk

∂xj
δh dx−

∫

Ω

ρYk
∂ϕYk

∂xj
wj dx

−
∫

Ω

ρuj
∂ϕYk

∂xj
zk dx

+

∫

Ω

∂ϕYk

∂xj

(
−1

h
ρDk

∂Yk

∂xj
δh+ ρDk

∂zk
∂xj

)
dx

−
∫

Ω

ϕYk

∂ωYk

∂U
W dx

= BS1 +BS2 +

∫

Ω

1

h
ρujYk

∂ϕYk

∂xj
δh dx

−
∫

Ω

ρYk
∂ϕYk

∂xj
wj dx−

∫

Ω

ρuj
∂ϕYk

∂xj
zk dx

−
∫

Ω

1

h
ρDk

∂Yk

∂xj

∂ϕYk

∂xj
δh dx−

∫

Ω

∂

∂xj

(
ρDk

∂ϕYk

∂xj

)
zk dx

−
∫

Ω

ϕYk

∂ωYk

∂U
W dx (C.30)
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where BS1 and BS2 are boundary terms. Specifically,

BS1 =

∫

∂Ω

ϕYk

(
− 1

h
ρujYkδh+ ρYkwj + ρujzk

+
1

h
ρDk

∂Yk

∂xj
δh− ρDk

∂zk
∂xj

)
nj ds, (C.31)

BS2 =

∫

∂Ω

ρDk
∂ϕYk

∂xj
njzk ds, (C.32)

where ni is the ith component of the outward pointing unit normal vector.

C.2 Governing equations

Again, consider each component of the variation W independently.

From the pressure variation q, the derivation leads to the adjoint continuity

equation, from the velocity variation wi, to the adjoint momentum equations,

from the density and enthalpy variations δρ and δh, to the adjoint enthalpy

equation, and from the species variations zk to the adjoint species equations.

Therefore, the incompressible variable density steady-state Navier-Stokes ad-

joint equations can be written as the following:

∂ϕui

∂xi
= − ∂g

∂p′
(C.33)

−∂ρujϕui

∂xj
−

∂ϕuj

∂xi
ρuj −

∂

∂xj
τji(ϕu)

− P0cp
R

∂ϕh

∂xi
− ρ

∑

k

Yk
∂ϕYk

∂xi
− ρ

∂ϕp

∂xi
=

∂g

∂ui

(C.34)
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− ∂

∂xj

(
ρα

∂ϕh

∂xj

)
− 1

h
ρα

∂h

∂xj

∂ϕh

∂xj
− 1

h
ρ
∑

k

Dk
∂Yk

∂xj

∂ϕYk

∂xj

+
1

h

∂ρujϕp

∂xj
+

1

h

∂ρujϕui

∂xj
ui

+
1

h

∑

k

∂ρujϕYk

∂xj
Yk =

∂g

∂h
+

∂ωh

∂h
ϕh +

N∑

i=1

∂ωYi

∂h
ϕYi .

(C.35)

−∂ρujϕYk

∂xj
− ∂

∂xj

(
ρDk

∂ϕYk

∂xj

)
=

∂g

∂Yk
+

∂ωh

∂Yk
ϕh +

N∑

i=1

∂ωYi

∂Yk
ϕYi. (C.36)

A substitution can be made in the equations for ∂ϕp

∂xi
. Let ϕ∗

p = ϕp + hϕh +
∑

k YkϕYk
. Then, the adjoint momentum and adjoint enthalpy equations be-

come:

−∂ρujϕui

∂xj
−

∂ϕuj

∂xi
ρuj −

∂

∂xj
τji(ϕu)

+ ρϕh
∂h

∂xi
+ ρ

∑

k

ϕYk

∂Yk

∂xi
− ρ

∂ϕ∗
p

∂xi
=

∂g

∂ui
(C.37)

−∂ρujϕh

∂xj
− ∂

∂xj

(
ρα

∂ϕh

∂xj

)
− 1

h
ρα

∂h

∂xj

∂ϕh

∂xj
− 1

h
ρuj

∂h

∂xj
ϕh

− 1

h
ρ
∑

k

Dk
∂Yk

∂xj

∂ϕYk

∂xj
+

1

h

∂ρujϕ∗
p

∂xj
+

1

h

∂ρujϕui

∂xj
ui

− 1

h

∑

k

ρuj
∂YK

∂xj
ϕYk

=
∂g

∂h
+

∂ωh

∂h
ϕh +

N∑

i=1

∂ωYi

∂h
ϕYi.

(C.38)

C.3 Boundary conditions

The boundary equations are formed from the boundary terms B, which

were obtained from integtation by parts of (C.21). Each boundary equation

corresponds to each variation term from W . The boundary equations are as
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follows: ∫

∂Ω

qϕuinids = 0 (C.39)

∫

∂Ω

[
ρϕpwini + ρujϕujwini + ρϕuiujwinj − ϕuiτji(w)nj

+ τji(ϕu)winj +
P0cp
R

ϕhwini + ρ

(
∑

k

YkϕYk

)
wini

]
ds = 0 (C.40)

∫

∂Ω

[
− 1

h
ρuiniϕpδh− 1

h
ρujnjuiϕuiδh+

1

h
ραϕh

∂h

∂xj
δh

− ραϕh
∂δh

∂xj
nj + ρα

∂ϕh

∂xj
njδh− 1

h
ρujnj

∑

k

YkϕYk
δh

+
1

h
ρ
∑

k

Dk
∂Yk

∂xj
ϕYk

δh

]
ds = 0 (C.41)

∫

∂Ω

[
ρujnjϕYk

zk − ρDkϕYk

∂zk
∂xj

nj + ρDk
∂ϕYk

∂xj
njzk

]
ds = 0 (C.42)

C.3.1 Inlet

At the inlet of the domain, all variables except for pressure are specified.

Pressure takes a zero gradient condition. Therefore, the variation terms take

the following values at the inlet:

wi = 0, δh = 0, zk = 0, and
∂q

∂xj
nj = 0. (C.43)

These specifications lead to the following additional conditions on the variation

terms: ∂wi
∂xj

nj ,
∂δh
∂xj

nj ,
∂zk
∂xj

nj , and q can take any value. The pressure variation

equation (C.39) leads to the following condition on adjoint momentum:

ϕuini = 0. (C.44)
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The velocity variation equation (C.40) with wi = 0 leads to the following

relation on adjoint momentum:

∫

∂Ω

ϕuiµ

[
∂wi

∂xj
+

∂wj

∂xi
− 2

3

∂wk

∂xk
δij

]
njds = 0. (C.45)

If this relation involving the stress variation is apllied as a boundary condition,

then it can be transformed to

∫

∂Ω

ϕuiµ

[
∂wi

∂xj
+

∂wj

∂xi
− 2

3

(
1

ρ

∂ρwk

∂xk
+ ρwk

∂(1/ρ)

∂xk

)
δij

]
njds = 0 (C.46)

Since ∂ρwk
∂xk

= 0 and wi = 0, then

∫

∂Ω

ϕuiµ

[
∂wi

∂xj
+

∂wj

∂xi

]
njds = 0 (C.47)

Applying this as normal and tangential terms leads to the following:

∫

∂Ω

µ

[
ϕMn

(
∂wn

∂xn
+

∂wn

∂xn

)
+ ϕMt

(
∂wt

∂xn
+

∂wn

∂xt

)]
ds = 0 (C.48)

Since ϕMn = 0 from the pressure variation boundary equation, and since the

tangential gradients of wi must be zero since wi = 0 across the entire boundary,

then ∫

∂Ω

µϕMt

[
∂wt

∂xn

]
ds = 0 (C.49)

Since ∂wt
∂xn

can take any value, then ϕMt must be zero as well.

On the other hand, if the equation (C.45) is not applied given that

the variation of stress can be zeroed, then either no condition or a different

condition must be specified on the inlet for ϕMt .
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The above relations on ϕu, along with the trivial simplification of the

enthalpy and species variation boundary equations, leads to the following

boundary conditions:

ϕMn = 0 (C.50)

ϕh = 0 (C.51)

ϕYk
= 0 (C.52)

No BC is explicitly set on ϕp by the boundary equations. Since the equations

are of a similar form as the primal, the BC on modified adjoint pressure will

be set the same as pressure. Therefore

∂ϕ∗
p

∂xj
nj = 0 (C.53)

C.3.2 Outlet

At the outlet of the domain, all variables take a zero-gradient condition.

Therefore, the variation terms at the outlet take the following values:

∂wi

∂xj
nj = 0,

∂δh

∂xj
nj = 0,

∂zk
∂xj

nj = 0, and
∂q

∂xj
nj = 0 (C.54)

These specifications lead to the following additional information about the

variation terms at the outlet: wi, δh, zk, and q can take any value. Addition-

ally, to solve the adjoint pressure equation, the condition
∂ϕ∗

p

∂xj
nj = 0 is set in

analogy to pressure in the primal equation.

The boundary equation at the outlet from the pressure variation derived

with q taking any value leads to the following:

ϕuini = 0. (C.55)
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The velocity variation equation (C.40) with wi taking any value leads

to the following equation:

ρϕpni + ρujϕujni + ρujϕuinj + µ

(
∂ϕui

∂xj
+

∂ϕuj

∂xi
− 2

3

∂ϕuk

∂xk
δji

)
nj

+
P0cp
R

ϕhni +
∑

k

ρYkϕYk
ni = 0

(C.56)

This equation can be broken down into normal and tangential components.

Those equations are as follows:

ρϕp + ρujϕuj + ρunϕMn + µ

(
2
∂ϕMn

∂xn
− 2

3

∂ϕuk

∂xk
δji

)
njni

+
P0cp
R

ϕh + ρ
∑

k

YkϕYk
= 0

(C.57)

ρunϕMt + µ

(
∂ϕMt

∂xn
+

∂ϕMn

∂xt

)
= 0 (C.58)

With ϕujnj = 0 and consequently
∂ϕuj

∂xi
njti = 0, and using the definition of ϕ∗

p,

those equations simplify to

ϕ∗
p + utϕMt +

µ

ρ

(
4

3

∂ϕMn

∂xn
− 2

3

∂ϕMt

∂xt

)
= 0 (C.59)

ρunϕMt + µ
∂ϕMt

∂xn
= 0 (C.60)

The equation formed when taking the enthalpy variation δh is

−uiniϕp − ujnjuiϕui + hα
∂ϕh

∂xj
nj − ujnj

∑

k

YkϕYk
= 0, (C.61)

which can be simplified and rewritten to the following

−unϕp − unutϕMt + hα
∂ϕh

∂xn
− un

∑

k

YkϕYk
= 0. (C.62)
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Next, substituting ϕ∗
p = ϕp + hϕh +

∑
k YkϕYk

, this equation becomes:

unϕh + α
∂ϕh

∂xn
=

un

h
ϕ∗
p +

un

h
utϕMt . (C.63)

Finally, the boundary condition formed from the species mass fraction

variation is:

unϕYk
+Dk

∂ϕYk

∂xn
= 0. (C.64)
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