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Development of an Extremely Flexible,

Variable-Diameter Rotor for a Micro-Helicopter

Jérôme Sicard, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Jayant Sirohi

This dissertation describes the design, analysis and testing of an un-

conventional rotor featuring extremely flexible, retractable blades. These rotor

blades are composed of a flexible matrix composite material; they are so flex-

ible that they can be rolled up and stowed in the rotor hub. The motivation

for this study is to equip the next generation of unmanned rotary-wing vehi-

cles with morphing rotors that can change their diameter in flight, based on

mission requirements. Due to their negligible structural stiffness, the static

and dynamic behavior of these blades is dominated by centrifugal effects. Pas-

sive stabilization of the flexible blades is achieved by centrifugal stiffening in

conjunction with an appropriate spanwise and chordwise mass distribution.

In particular, such blades are susceptible to large deformations. For exam-

ple, a combination of the trapeze effect and the tennis racquet effect induces a

large negative twist that results in decreased efficiency. Additionally, the rotor

blades are prone to aeroelastic instabilities due to their low rotating torsional

frequency, and it is seen that without careful design the blades experience

coupled pitch-flap limit cycle oscillations.
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The primary focus of this research is to develop analytical and experi-

mental tools to predict and measure the deformations of an extremely flexible

rotor blade with non-uniform mass distribution. A novel aeroelastic analy-

sis tailored towards unconventional blades with negligible structural stiffness

is developed. In contrast to conventional analyses developed for rigid rotor

blades, the present analysis assumes very large elastic twist. The nonlinear

coupled equations of motion for the flap bending, lead-lag bending and torsion

of an elastic rotating blade are derived using Hamilton’s principle. The virtual

work associated with unsteady aerodynamic forces in hover is included in the

analysis. An ordering scheme consistent with the relevant physical quantities

is defined and terms up to second order are retained in the Hamiltonian. The

equations of motion are solved using a nonlinear finite element analysis. The

steady-state deformation of the rotor blade is obtained from the time invariant

part of the solution. The rotating flap, lag and torsional frequencies are found

by solving the eigenvalue problem associated with the homogeneous system

of equations. Finally, stability boundaries are computed for various operat-

ing conditions and the influence of parameters such as rotational velocity and

collective pitch angle is discussed.

The analytical predictions are validated by experimental measurements

of the blade deformation in hover. These measurements are obtained by a

novel, non-contact optical technique called three-dimensional Digital Image

Correlation (3D DIC). The use of this technique is demonstrated for the first

time to obtain full-field deformation measurements of a rotating blade. In
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addition, stability boundaries are extracted from experimental observations

and correlated with predictions.
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Chapter 1

Introduction

1.1 Problem Statement

Micro aerial vehicles (MAVs) have become increasingly popular over

the past decade as they are capable of performing missions that conventional

manned vehicles or larger unmanned aerial vehicles cannot [1]. MAVs, as origi-

nally defined by DARPA [2], include any Unmanned Air Vehicle (UAV) whose

length dimensions are less than 6 inches (15.2 cm) and whose gross takeoff

weight is approximately 7 ounces (200 gm) or less. Their small size allows

them to be undetected, and to penetrate confined areas, which makes them

well suited to operate in caves or other indoor locations. Among the types

of MAVs in development, rotary-wing MAVs offer unique strengths related to

their ability to take off and land vertically, hover, and fly at very low advance

ratios [3, 4]. These capabilities make micro-helicopters very well suited for

military intelligence, surveillance and reconnaissance (ISR) missions. How-

ever, several challenges inherent to the complexity of these missions must be

addressed, before fully taking advantage of the benefits offered by a versatile

micro-helicopter. Flying in congested terrain increases the likelihood of blade

impact with obstacles. Additionally, the size of the rotor limits its ability to

access confined spaces.
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(a) Blades extended (b) Blades retracted

Figure 1.1: Stowable flexible rotor concept

An extremely flexible, variable-diameter rotor is proposed as a solution

to some of these issues. This rotor features blades that are so flexible that

they can be rolled up in a compact cylinder, and stowed in the rotor hub, as

shown in Fig. 1.1. In this way, the rotor diameter can be changed in flight;

a large rotor diameter increases the hover endurance while a smaller rotor

diameter is beneficial to access confined spaces. Similarly, reducing the rotor

diameter during outdoor flight decreases the sensitivity of a micro-helicopter

to gusts by increasing its disk loading. The full retraction of the blades is also

advantageous for storage and ground transportation of the MAV. Finally, the

probability of survival of the vehicle upon collision with an object is increased

by the high compliance of the rotor blades. In such an event, the rotor blade

can deform elastically before recovering its original shape.

The flexible rotor concept has been explored in several patents [5, 6, 7, 8]

and studies [9, 10, 11, 12, 13] in the past. Previous studies have typically in-

volved a rotor blade consisting of a thin sheet passively stabilized by centrifugal

forces acting on a tip mass. Flexible structural members such as cables or rods

2



Figure 1.2: Micro-helicopter with 18 inch diameter flexible rotors

were incorporated in the spanwise direction to react the centrifugal loads. This

type of rotor blade has negligible structural stiffness in the bending or torsion

degrees of freedom, and relies solely on centrifugal forces for stability.

The flexible rotor blade design explored in this dissertation consists of

a thin carbon-fiber composite sheet in conjunction with a tip body. They

are incorporated in two coaxial counter-rotating two-bladed rotor systems, as

shown in Fig. 1.2. To minimize the total weight of the system, the tip mass

is of the same order of magnitude as the blade mass. The composite sheet is

designed to sustain the centrifugal loads on the blade, eliminating the need for

cables at the leading and trailing edges. The blades are untwisted and have

a constant chord. Their airfoil is a circular arc, which is very efficient at the

low Reynolds number regime in which micro-helicopters operate [14].

This dissertation documents the design, analysis, fabrication and test-
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ing of an extremely flexible, variable-diameter rotor. An aeroelastic analysis

tailored to rotor blades with negligible structural stiffness is developed. The

fabrication of prototype blades is described and their testing is reported. The

predictions obtained by the aeroelastic analysis are validated by experimental

measurements of the rotor blade deformation in hover. In addition, the anal-

ysis is used to explore the effect of design parameters on the performance and

stability boundary of extremely flexible rotor blades.

1.2 State of the Art

The literature on aeroelastic analyses of rotor blades is reviewed in

§ 1.2.1. Particular attention is given to analyses of blades with negligible

structural stiffness. In addition, the state of the art of experimental measure-

ment of blade deformation is presented in § 1.2.2.

1.2.1 Aeroelastic analysis of rotor blades

The analytical study of rotating blades sparked a lot of interest through-

out the second half of the 20th century, particularly to support the develop-

ment of rotorcraft aeromechanics analyses. A detailed review of these com-

prehensive analyses, which embrace the evaluation of the performance, loads,

vibration, stability, flight dynamics and noise of a helicopter, was presented by

Johnson in his AHS Nikolsky Honorary Lecture [15]. The analysis described

in this dissertation focuses on the prediction of blade deformation, stability

boundaries and performance of an isolated rotor, operating in hover. Such an
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analysis requires the accurate modeling of the structural dynamics as well as

the aerodynamics of the rotor. The publications that served as a basis for the

analysis developed in this dissertation are presented below.

1.2.1.1 Rotor blade structural model

Rotor blades are typically slender structures with their spanwise di-

mension being much larger than the flatwise and chordwise dimensions. They

are subjected to the combined effects of inertial loads, aerodynamic forces and

moments, and, to a lesser extent, gravitational loads. Their boundary con-

ditions vary from a cantilever to hinged-free configuration, depending on the

hub design. Consequently, rotor blades have been classically modeled as beam

structures. In the 1950s, beam theories were first applied to the problem of

rotor blade structural dynamics. Then, the theories were refined, motivated

by the need for general purpose analyses capable of predicting the behavior

of a wide variety of rotors. The engineering beam theories developed over the

years for rotorcraft application can be classified in three categories [16]:

1. Linear theories

2. Nonlinear theories based on truncation schemes

3. Nonlinear theories based on a small-strain approximation

Linear theories Rotating beam analyses were first derived in a linear form

for the uncoupled cases of pure bending by Yntema [17], and pure torsion by
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Wood and Perring [18]. The case of combined bending in two directions was

treated by Mendelson [19]. A few factors were neglected in those studies, such

as the variable stiffness and mass distribution along the blade, the coupling

due to centrifugal loads, or the non-coincidence of the elastic axis and tensile

axis. The elastic axis is classically defined as the spanwise locus of points

where a transverse load produces only bending (no torsion) of the rotor blade.

The tensile axis is defined as the spanwise locus of the centroids of the cross-

sectional areas effective in carrying tension. Houbolt and Brooks [20] extended

the previous studies to derive the partial differential equations of motion for

the coupled bending and torsion of twisted, nonuniform beams. No assumption

regarding the coincidence of elastic axis and tensile axis was made. In addition,

only linear terms were retained. This work formed the initial basis of helicopter

rotor blade analysis.

Nonlinear theories based on truncation schemes As the significance of

nonlinear effects in the aeroelasticity of rotary-wings was discovered, nonlinear

equations of motion for combined flap bending, lead-lag bending, torsion, and

extension of twisted, nonuniform rotor blades were derived independently by

several researchers. Some well-known examples are the work by Hodges and

Dowell [21], Kaza and Kvaternik [22], and Rosen and Friedmann [23]. These

theories relied on the restriction that bending deflections normalized by the

rotor radius and angles of twist were small with respect to unity. The equations

of motion were derived assuming a displacement field and the rotor blades
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were discretized into beam elements for which the cross-sectional constants

were calculated at the elastic axis. Ordering schemes were defined in which

each dimensionless quantity was related to powers of a small parameter ϵ,

representative of the normalized flap bending deflection. Subsequently, the

equations were truncated to retain terms up to second or third order. Due to

the choice of ordering scheme, these analyses were only valid for rotor blades

experiencing moderate bending displacements, on the order of 15% of the rotor

radius, and small angles of twist up to 10 degrees.

Nonlinear theories based on a small-strain approximation In the

mid 1980s, studies addressing the arbitrarily large displacements and rota-

tions of rotor blades were derived. These theories relied on a geometrically

exact beam theory, initially developed by Hodges [24]. They invoked a small

strain assumption but had no limitation regarding the rotations caused by de-

formation. They were also generally more compact than the analyses relying

on truncation schemes, because it was not necessary to expand the transcen-

dental functions inherent to nonlinear beam analyses [16].

After 1985, research efforts were focused on modeling rotor blades with

anisotropic material properties [25], as well as deriving analyses that did not

rely on an assumed displacement field or warping functions [26, 27]. An exten-

sive review of modern beam analyses for rotorcraft applications was presented

by Hodges [16].
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1.2.1.2 Rotor aerodynamic model

The role of the rotor aerodynamic model is to compute the airloads.

The airloads (aerodynamic forces and moments) are caused by the relative mo-

tion of the blades with respect to air, and depend upon the blade airfoil shape

and angle of attack, the incident air velocities, and the rate of blade elastic

deformation. In addition, the magnitude of the airloads depends strongly on

the location along the blade span, typically increasing parabolically from the

blade root to the tip. As a result, airloads are classically computed for a given

blade section, following a two-dimensional aerodynamics approach, and then

integrated over the blade span. In addition, correction factors are included to

take into account three-dimensional effects. This method is referred to as 2-D

section theory or strip theory.

When computing the angle of attack at a particular blade station, the

air velocity induced by the generation of lift must be known. Several theories

aimed at estimating this induced velocity, called inflow, have been proposed.

The simplest approach, attributed to Rankine [28], and further developed by

Froude [29] and Glauert [30], is known as the Rankine-Froude momentum the-

ory. This method assumes that the rotor can be idealized as an infinitesimally

thin actuator disk, imparting a uniform velocity to the mass of air passing

through a control volume surrounding the rotor. While this method is use-

ful for a global analysis of the rotor, it does not distinguish between rotor

configurations. In particular, the total number of blades or the blade geom-

etry are not taken into account. In addition, this method does not predict
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a variation of inflow along the blade spanwise direction. Another approach,

known as the blade element theory (BET) and suggested by Drzewiecki [31],

treats each blade section as a 2-D airfoil producing aerodynamic forces and

moments. However, the interaction between two adjacent blade sections is

ignored. Rotor performance can be obtained by integrating the airloads over

the rotor blade length. The principles of the momentum theory and the blade

element theory were combined by Gustafson and Gessow [32], to form the hy-

brid blade element momentum theory (BEMT). Such an approach invokes the

equivalence between circulation and momentum theories of lift, and results

in a nonlinear spanwise variation of inflow. The BEMT was later refined to

include the influence of the vortical wake, the presence of multiple blades, and

three-dimensional effects such as root and tip losses [33].

Additionally, techniques for modeling the unsteady airloads acting on

an airfoil were investigated by several researchers. The classical unsteady aero-

dynamic theories of Wagner [34] in the time domain, and of Theodorsen [35]

in the frequency domain, form the roots of unsteady rotor analyses. In these

theories, airfoils experiencing pitching and plunging harmonic oscillations in

a flow of steady velocity are considered. Due to the oscillations, vorticity is

shed to the wake, which changes the downwash velocity over the airfoil, and

therefore affects the airloads. Theodorsen’s approach involves the use of a

complex valued transfer function between the forcing (angle of attack) and

the aerodynamic response. This theory, initially derived for fixed-wing analy-

sis, was extended by Loewy [36] to rotating blades, by including the effect of
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the returning wake shed by blades in previous revolutions.

The blade element momentum theory along with Loewy’s unsteady

aerodynamic theory form the basis of most modern analyses of helicopter rotor

aerodynamics. Efforts to improve these theories involved the refinement of

rotor wake modeling, for more accurate predictions of the rotor inflow. In

particular, theories based on a prescribed wake geometry [37], or on a free

wake geometry [38, 39] have been developed. Nowadays, lifting-line theory

based methods are replaced by computation fluid dynamics (CFD) methods

for calculating rotorcraft flows. A review of the most modern theories can be

found in Datta et al. [40] and Leishman [41].

All the analyses described above were developed with the purpose of

providing a comprehensive set of tools to support the design of helicopter

rotors. In particular, the derivations were gradually extended to cover a wide

variety of rotor blade designs, operating in various conditions. The case of an

extremely flexible rotor with negligible structural stiffness, operating in hover,

is one subset which should be accurately modeled by the most modern theories.

However, it has received limited attention in the past. The objective of this

dissertation is to fill this gap. In order to develop a fundamental understanding

of the physical effects governing the dynamics of an extremely flexible rotor

blade, an analysis is systematically derived, starting from first principles.

In the next section, the few analyses tailored to rotor blades with negligible

structural stiffness are reviewed.
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1.2.1.3 Aeroelastic analyses for rotor blades with negligible struc-
tural stiffness

The aeroelastic behavior of a rotor blade with extremely low structural

stiffness is dominated by centrifugal forces. In particular, centrifugal forces

stiffen the blade in the torsional degree of freedom in two ways: the tennis

racquet effect and the trapeze effect. The tennis racquet effect, also known as

the propeller moment, arises due to the tendency of the centrifugal forces to

rotate the rotor blade to flat pitch. The trapeze effect, or bifilar effect, arises

from the tendency of the centrifugal forces to untwist the blade. As a result of

the trapeze effect, the torsional rigidity of the rotor blade is increased, varying

nonlinearly with the twist angle. In conventional rotor blades, the propeller

moment is dominant. But in the case of a blade with high torsional flexibility,

the elastic twist angles can be large and the trapeze effect becomes important.

The modeling of the trapeze effect is essential to obtain accurate predictions

of blade deformation and stability boundaries. However, it has always been

neglected in analyses focused on extremely flexible rotor blades.

Winston [11, 12] developed one of the first analyses of an extremely flex-

ible rotor blade. He studied a blade consisting of a thin non-porous fabric sheet

attached to two steel rods that formed the leading and trailing edges. A mass

with an aerodynamic stabilizer was attached to the blade tip. This research

was focused primarily on the planform and tip mass distribution required to

prevent luffing instability. Using a method derived by Nielsen [42] for the

design of non-luffing rotor blade, Winston showed that stable operation was
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achievable by appropriate choice of the mass and chordwise position of the tip

body. The study also included an aeroelastic analysis of the factors involved

in the static divergence and flutter of extremely flexible rotors. The model

considered the coupled first flapwise bending mode and first torsional mode of

an extremely flexible blade, both assumed to be linear functions of the radial

location. In addition, the analysis assumed that for a large, slowly turning

rotor, frequencies of oscillations were so low that a quasi-steady aerodynamic

model was valid. The key result was that aeroelastic stability was found to be

independent of the rotational speed. Furthermore, it was shown that the rotor

was free from flutter and divergence under the condition that the elastic axis

and center of gravity were located forward of the aerodynamic center. Simi-

lar conclusions were obtained in other analytical studies by Goldman [9] and

Roeseler [43]. However, these conclusions contrast with the classical criterion

for aeroelastic stability of a conventional rigid rotor blade [44], which only re-

quires the blade to be mass balanced in such a way that the center of gravity

is ahead of the aerodynamic center, and where the location of the elastic axis

is of no importance. These results also contradict the experiments performed

by Sicard and Sirohi [45]. Specifically, these experiments indicated that an

extremely flexible rotor blade with coincident shear center and aerodynamic

center is unstable even with the center of gravity located forward of the aero-

dynamic center. In addition, the rotor stability was observed to depend on

the rotational speed as well as the collective pitch angle. These discrepancies

between analyses available in the literature and recent experimental findings
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confirm that a linear analysis cannot capture the aeroelastic behavior of an ex-

tremely flexible rotor. The nonlinear extension-torsion coupling terms, arising

in the equations of motion from the centrifugal effects, must be included.

Finally, to cover the full range of operation of a variable-diameter rotor

blade, the effect of a change in rotor diameter on the performance, loads and

dynamic stability must be systematically investigated. The effect of changing

rotor diameter has only been reported in the literature with respect to perfor-

mance metrics [46, 47, 48, 49] and not stability. Particularly, Bowen-Davies

and Chopra [49] evaluated the performance gain resulting from a change in

rotor radius for a UH-60A Black Hawk helicopter. Using the aeromechan-

ics code UMARC [50], they showed that, for a representative gross weight,

no more than 10% radius change yielded continued performance benefits and

thereafter performance degraded. However the effect of rotor diameter change

on rotor stability has not been explored to date.

1.2.2 Measurement of blade deformation

The experimental measurement of rotor blade deformation is a very

challenging task. The conventional method using strain gages bonded to the

blade surface at discrete spanwise locations is unsuitable for multiple reasons.

First, this technique requires extensive on-blade instrumentation and wiring,

as well as an electric slip ring, which are not feasible at the scale of the rotor

analyzed in this dissertation. In addition, because of limited spatial resolution,

this technique is incapable of showing strain gradients and can miss strain hot
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spots. In the case where the shear moduli of the blade material and the strain

gage are on the same order of magnitude, the presence of the installed gage

may significantly alter the specimen strain distribution. Finally, measurement

of extension, flap and lead-lag bending and torsion requires four separate sets

of strain gage installations, one for each of the measured quantities.

Due to these limitations, optical techniques have been considered to

measure the deformation of the flexible rotor blade. These techniques are ad-

vantageous, as they are able to generate full-field deformations [51], without

instrumenting the structure and in a non-contact fashion. Interest in optical

deformation measurement techniques has been rising since the beginning of the

1990s. However, a limited number of studies exist on their application to the

measurement of rotating blade and deformation. Fleming et al. [52, 53] demon-

strated the capability of Projection Moiré Interferometry (PMI) to measure

azimuthal variations of rotor blade deflections at different advance ratios, in or

out of fuselage influence. This study was extended to the test of a model-scale

rotor in the NASA Langley 14×22 feet subsonic wind tunnel hover facility [54].

Olson et al. [55] and Abrego et al. [56] used stereo photogrammetry to mea-

sure the deformation of full-scale UH-60A helicopter blades at various advance

ratios, thrust coefficients and drive shaft angles. The experiment used reflec-

tive circular targets attached at specific locations on the blade and produced

results that closely matched the design parameters. Sirohi and Lawson [57]

investigated the application of stereoscopic digital image correlation (DIC)

to the measurement of flap bending and torsion of rotating micro-helicopter
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blades (diameters of 61 and 99 cm). While the DIC technique was success-

fully validated in the nonrotating frame by measuring the deformation of a

vibrating cantilever beam, no validation was performed in the rotating frame.

However, the DIC technique was found to be very attractive as it allows for

three-dimensional contours as well as nonplanar displacements and strains. In

the DIC technique, a high contrast random speckle pattern is painted on the

rotor blades. Cross-correlation of the images at different loading conditions,

in conjunction with photogrammetry, is used to calculate three-dimensional

displacements of points on the surface [58].

1.3 Present Approach

The objective of this dissertation is to design, analyze, fabricate and

test an extremely flexible, variable-diameter rotor.

An aeroelastic analysis specifically tailored to rotor blades with negli-

gible structural stiffness is developed. The derivation relies on the extended

Hamilton’s principle and is adapted from the analysis by Hodges and Dow-

ell [21], which includes the trapeze effect. In particular, the ordering scheme

is modified to reflect the large magnitude of twist angles observed during ex-

periments [45]. The blades are discretized into second-order isotropic Euler-

Bernoulli beam elements, with extension, flap, lag and torsion degrees of free-

dom. In addition, energies due to the tip mass are included in the model.

The work done by airloads is calculated using a 2-D section approach and

added to the Hamiltonian. Unsteady aerodynamic terms are included based on
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Theodorsen’s theory [35]. The inflow ratio at each blade station is calculated

using BEMT. Lift, drag and moment coefficients are extracted from tables of

experimental data collected at a low Reynolds number (Re∼16,160) [59, 60].

The nonlinear equations of motion are solved using the finite element method.

Additionally, rotor blade deformations are measured using three-dimen-

sional DIC. This technique is first validated in the rotating frame by correlating

DIC measurements on a stiff rotor blade of known geometry with measure-

ments made by two other laser sensors. Then, DIC is used to measure the

deformation of extremely flexible rotors spinning at 1200 RPM.

The measured deformations are compared to analytical predictions.

Upon validation, the model is used to explore the aeroelastic stability of the

extremely flexible rotor blades. The stability analysis is conducted in the fre-

quency domain by conducting an eigenanalysis of the state matrix associated

with the perturbed equations of motion. The effect of control inputs and de-

sign parameters on the stability boundaries is explored. In particular, the

influence of the rotational speed, the collective pitch and the chordwise posi-

tion of the tip mass on the blade stability is studied. Finally, the effect of a

change in rotor diameter on the stability margin is also investigated.

1.4 Contribution of the Present Research

This research involves parallel experimental and analytical studies of

the aeroelastic behavior of a hovering rotor with extremely flexible blades. The

analysis was systematically developed from first principles. New experimental
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techniques were developed and used to validate the analysis at every stage. The

validated analysis can be used to design variable diameter rotors with flexible

blades and to predict their stability boundaries. The key contributions of this

research can be grouped under two categories:

• Analytical: A detailed understanding of the aeroelastic behavior of a

hovering rotor with extremely flexible blades.

• Experimental: A novel technique to measure the three-dimensional,

whole-field deformation of rotating blades.

Specific contributions are listed below:

Analytical:

1. An aeroelastic analysis tailored towards rotor blades with negligible

structural stiffness. The structural part of the analysis includes cou-

pled axial elongation, lead-lag bending, flap bending and torsion degrees

of freedom. Terms that are important for blades experiencing large twist

angles are retained; these terms have typically been neglected in simi-

lar analyses of conventional rotor blades. The aerodynamic part of the

analysis includes unsteady terms based on two-dimensional strip theory.

2. A systematic analytical investigation of the axial displacement, restoring

moment, centrifugal stiffening and torsional frequency associated with

the trapeze (or bifilar) effect. Unlike the linear centrifugal stiffening due

to the propeller moment, which adds up to the blade structural stiffness,
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the centrifugal stiffening due to the trapeze effect is nonlinear, because

it depends on the deformed state of the blade.

3. A finite element based numerical model to solve the aeroelastic equations

of motion. The model predicts the blade trim condition and uses the p-k

method to calculate blade stability boundaries.

4. Identification of the stability boundaries of a hovering rotor with ex-

tremely flexible blades. The coupled modes responsible for the instability

are identified. The flutter boundaries are shown to depend on collective

pitch, rotor speed, chordwise mass distribution and rotor diameter.

Experimental:

1. Design of a flexible rotor blade featuring a tip body attached at an index

angle relative to the blade chord. A rotor with these blades has the same

hovering efficiency and maximum thrust as a rotor with rigid blades of

the same planform and solidity.

2. A non-contact technique to measure three-dimensional, whole-field de-

formation of a rotating blade. This technique is based on Digital Image

Correlation and does not require any on-blade instrumentation. Blade

deformation measurements with a spatial resolution of 1.04% rotor ra-

dius and a theoretical accuracy of 15 µm are demonstrated.
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1.5 Organization of the Dissertation

Chapter 1 presents the extremely flexible, variable-diameter rotor con-

cept and motivates its development for micro-helicopter applications. In ad-

dition, Chapter 1 surveys the evolution and state of the art in rotor blade

analyses, as well as rotor blade deformation measurements. The approach of

the present research is discussed and the key contributions are formulated.

Chapter 2 shows the derivation of the equations of motion for a rotor

blade with negligible structural stiffness. In particular, the kinematics and the

mechanics of the trapeze effect are systematically explored. In addition, the

expressions for the rotor blade kinetic and potential energies, as well as the

work done by the aerodynamic loads are derived.

Chapter 3 presents the numerical model implemented to solve the flexi-

ble blade equations of motion. This model is used to compute the trim solution

as well as the blade stability boundaries. A flow chart of the computer program

is shown.

Chapter 4 describes the experimental procedures. The design and fab-

rication of the rotor blades are presented. In addition, the experimental setup,

including the hover test stand and the equipment needed for the measurement

of blade deformation by DIC are described. The procedure for the measure-

ment using DIC is documented in detail.

Chapter 5 discusses the results of the experimental testing of flexible

rotor blades. It also presents a validation of the DIC technique for the mea-
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surement of rotor blade deformation, as well as a validation of the analytical

model derived in this dissertation. In addition, the analytical model is used

to investigate the aeroelastic behavior of a flexible rotor, including the trim

state, the stability boundaries and the effect of a change in rotor diameter.

Finally, Chapter 6 states the key conclusions of the present research

along with recommendations for future work.
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Chapter 2

Analytical Study

This chapter presents the derivation of the nonlinear coupled equations

of motion of a rotor blade with negligible structural stiffness. The general

procedure, based on the extended Hamilton’s principle, is introduced in § 2.1.

Coordinate systems are defined in § 2.2, with respect to the undeformed and

deformed positions of the blade. Blade displacement variables are introduced

in § 2.3. An ordering scheme is defined in § 2.4 to eliminate higher-order

terms in the Hamiltonian. A structural model, based on engineering beam

theory, is derived in § 2.5 to determine the kinetic energy and strain energy

of the rotor blade as well as the tip mass. The rotor blades are assumed to

be hingeless, slender, with no structural twist and uniform. No assumption

is made regarding the symmetry of the cross-section relative to any axis, and

pre-cone angles are not included. The equations are derived for arbitrarily

non-coincident elastic center, mass centroid, and area centroid. The blade de-

formation is assumed to consist of extensional, flap bending, lead-lag bending

and twist degrees of freedom. An aerodynamic model including unsteady and

quasi-steady forcing terms is presented in § 2.6. The unsteady aerodynamic

model is based on strip theory in conjunction with Theodorsen’s theory.
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2.1 General Procedure

The derivation of the equations of motion follows an energy approach

and relies on the extended Hamilton’s principle (EHP), written for N degrees

of freedom as

if δqi |t1= δqi |t2= 0, (i = 1, . . . , N) then∫ t2

t1

(δT − δV + δWnc) dt = 0 (2.1)

where δqi are generalized coordinates, δT and δV are the variations of kinetic

and potential energies respectively, and δWnc is the virtual work done by non-

conservative forces. Including the kinetic and potential energies associated

with the tip mass, and expanding the potential energy of the blade into the

sum of the strain energy δU , the gravitational potential energy δVg and the

energy contained in torsional springs at the root of the blade δVsp, Eq. (2.1)

becomes∫ t2

t1

[
(δT − δU − δVg − δVsp + δWa)b + (δT − δVg)m

]
dt = 0 (2.2)

The subscripts ( )b and ( )m indicate energies of the blade airfoil and the tip

mass respectively, and δWa accounts for the virtual work done by aerodynamic

loads. From this equation, the steady-state deformation and the stability

boundaries of the rotor blade are obtained, as described hereafter.

2.1.1 Trim solution

The trim state of the rotor, also called steady-state, is defined by the

blade deformation variables qi’s and the inflow ratios λi’s required to produce
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a nominal thrust in hover. It is the solution of the steady-state equilibrium

equations, which are obtained by retaining the time-invariant terms in Eq. (2.2)

and considering the work done by quasi-steady aerodynamic forces only. The

equation of motion governing the trim solution is

(δT0 − δU − δVg − δVsp + δWaQS)b + (δT0 − δVg)m = 0 (2.3)

Note that in the absence of aerodynamic forces, Eq. (2.3) reduces to

(δT0 − δU − δVg − δVsp)b + (δT0 − δVg)m = 0

⇔ δH = 0 (2.4)

where H is the Hamiltonian. Equation. (2.4) indicates that the Hamiltonian

is conserved, which is a typical property of conservative gyroscopic (or non-

natural) systems.

2.1.2 Perturbed equations of motion

Once the trim condition is known, small perturbations are applied to

the state variables, as follows

q = q0 +∆q

λ = λ0 +∆λ (2.5)

where the subscript ( )0 denotes the trimmed values. In addition, the variations

of the perturbed state variables are

δq = δq0 + δ∆q

δλ = δλ0 + δ∆λ (2.6)
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Note that δ( ) refers to the variations, whereas ∆( ) refers to the perturbation

values. Since q0 and λ0 are known, we must have

δq0 = 0

δλ0 = 0 (2.7)

Substitution of Eq. (2.5) and (2.6) into Eq. (2.1) leads to∫ t2

t1

(δT − δV + δWa)0 dt+

∫ t2

t1

(δ∆T − δ∆V + δ∆Wa) dt = 0 (2.8)

where for instance, δT = δT (q0, δ∆q) and δ∆T = δ∆T (∆q, δ∆q). The first

integral in Eq. (2.8) satisfies the trim equation (Eq. (2.2)), hence it equals

zero. Therefore, the equation describing the perturbed motion of the rotor

blade about the trim position is∫ t2

t1

(δ∆T − δ∆V + δ∆Wa) dt = 0 (2.9)

Since the perturbations are small, it is appropriate to linearize nonlinear terms

in Eq. (2.9) about the trim position using a first-order Taylor series approxi-

mation. In this process, the trimmed velocities and accelerations are assumed

to be equal to zero.

Upon linearization, Eq. (2.9) can be written in matrix form as

δ∆qT (M∆q̈+G∆q̇+K∆q) = δ∆qT∆F (2.10)

The matrices M, G and K denote respectively the mass, gyroscopic and stiff-

ness matrices, and are obtained from the kinetic and potential energies of the
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rotor blade with tip mass. Consequently, M and K are symmetric, positive

definite matrices and G is skew-symmetric. ∆F is the perturbed force vector

obtained from the non-conservative work done by the aerodynamic forces and

moments, and is a function of the perturbed generalized displacements, veloc-

ities and accelerations, as well as the perturbed inflow ratio. Assuming the

effect on the aerodynamic loads of a small perturbation of the inflow negligible,

∆F can be decomposed as

∆F =
∂∆F

∂q
∆q+

∂∆F

∂q̇
∆q̇+

∂∆F

∂q̈
∆q̈

= Ka∆q+Ca∆q̇+Ma∆q̇ (2.11)

Moving the terms in Eq. (2.11) to the left hand side of Eq. (2.10) and invoking

the arbitrariness of δ∆qT , we obtain

(M−Ma)∆q̈+ (G−Ca)∆q̇+ (K−Ka)∆q = 0 (2.12)

which is the homogeneous system of equations for small perturbations about

the rotor blade trim state. Note that due to the non-conservative aerodynamic

forces and moments, the resulting mass and stiffness matrices are no longer

symmetric.

2.1.3 Stability analysis

The stability analysis is conducted in the frequency domain. First,

Eq.(2.12) is rewritten in state-space form, as follows{
∆q̇
∆q̈

}
= A

{
∆q
∆q̇

}
(2.13)
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where A is the state matrix, defined as

A =

[
0 I

− (M−Ma)−1 (K−Ka) − (M−Ma)−1 (G−Ca)

]
(2.14)

Then, the rotor blade stability boundaries are obtained by an eigenanalysis of

the state matrix.

The next section presents the coordinate systems and displacement

variables used in the present analysis.

2.2 Blade Coordinate Systems

Four coordinate systems (shown in Fig. 2.1) are used to derive the blade

equations of motion.

1. {XI , YI , ZI} is a Newtonian coordinate system, with the positive ZI-

axis directed upward. Unit vectors (iXI
, jYI

,kZI
) are associated to this

system.

2. {X, Y, Z} is fixed to the rotor hub, with its origin at the center of the

hub, and unit vectors (iX, jY,kZ). It rotates about the positive ZI-axis

at the constant angular velocity Ω. The X -axis is coincident with the

elastic axis of the undeformed blade. This particular axis will be defined

in § 2.5.4 of this dissertation.

3. {x0, y0, z0}, with unit vectors (i0, j0,k0), is centered on the deformed

elastic axis and results from the translations u, v and w of the coordi-

nate system {X, Y, Z} along the X -, Y - and Z - axes respectively. The

26



Figure 2.1: Coordinate systems

translation u is called the axial displacement ; the translations v and w

are respectively the flap bending and lead-lag bending displacements.

4. {ζ, η, ξ} is attached to the deformed blade and is centered on the de-

formed elastic axis. The η- and ξ-axes are coplanar with the deformed

blade cross-section, and ζ is tangent to the deformed elastic axis. The

unit vectors defining this coordinate system are (iζ, jη,kξ). Bending dis-

placements along the η and ξ axis are called chordwise bending (v∗) and

flatwise bending (w∗) respectively.

One way to relate the {ζ, η, ξ} coordinate system to the {x0, y0, z0} coordinate

system is to use Rodriguez parameters [61]. Another way, employed for the

present derivation, is to use successive rotations of the {x0, y0, z0} coordinate

system about Euler angles (see Fig. 2.2). In this case, {ζ, η, ξ} can be related
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(a) Lead-lag (b) Flap (c) Pitch

Figure 2.2: Euler angles for a lag-flap-pitch sequence

to {x0, y0, z0} by means of a transformation matrix T, defined such that
iζ
jη
kξ

 = T


i0
j0
k0

 (2.15)

The matrix T can be written as the product of three matrices corresponding

to each Euler rotation, as follows

T =

1 0 0
0 cos θ̄ sin θ̄
0 − sin θ̄ cos θ̄

×

 cos β̄ 0 sin β̄
0 1 0

− sin β̄ 0 cos β̄

×

 cos ζ̄ sin ζ̄ 0
− sin ζ̄ cos ζ̄ 0

0 0 1



=

 cos β̄ cos ζ̄ sin ζ̄ cos β̄ sin β̄
− sin ζ̄ cos θ̄ − cos ζ̄ sin β̄ sin θ̄ cos ζ̄ cos θ̄ − sin ζ̄ sin β̄ sin θ̄ cos β̄ sin θ̄
− cos ζ̄ sin β̄ cos θ̄ + sin ζ̄ sin θ̄ − cos ζ̄ sin θ̄ − sin ζ̄ sin β̄ cos θ̄ cos β̄ cos θ̄


(2.16)

where ζ̄, β̄ and θ̄ are the Euler angles.

Singularities can arise when two of the axes about which rotations occur are

coincident [62]. Therefore, instead of Euler angles, modified Euler angles are

used where the axes do not approach one another for rotations in the neigh-

borhood of zero.
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Additionally, the order of the rotations shown in Fig. 2.2 corresponds to a “lag-

flap-pitch” blade motion sequence. This combination was chosen arbitrarily

among a total of six possible sequences. In the case of an articulated rotor

blade, the order of the successive rotations is dictated by the kinematics of the

blade hinges. But for a hingeless blade, as in the present study, no physical

justification supports the choice of rotation sequence. In fact, it can be shown

that the entire formulation of the equations of motion is independent of the

sequence of the three rotations [63]. Differences in the equations from one

sequence to another are in form only. They vanish after adequate changes of

variable.

2.3 Blade Displacement Variables

Effectively, the deformed position of the blade can be fully described

using six variables:

• three elastic displacements u, v and w, representing the extensional, lead-

lag bending and flap bending deflections of points located on the elastic

axis. These deflections are defined to be positive along the X -, Y - and

Z - axes respectively.

• three rotations defined by the Euler angles.

However, in the context of an Euler-Bernoulli beam, the beam cross-sections

are assumed to remain planar and normal to the beam elastic axis at all times.
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Thus, two of the three angles can be eliminated by expressing them in terms

of derivatives of the deflection variables, as shown hereafter.

First, consider the position vector of a particle on the deformed elastic axis

r = (x+ u) i0 + v j0 + w k0 (2.17)

By taking the partial derivative of the position vector r with respect to the

curvilinear coordinate along the deformed elastic axis r, we obtain the unit

vector tangent to the elastic axis of the deformed blade

∂r

∂r
= (x+ u)+ i0 + v+ j0 + w+ k0 (2.18)

where ( )+ = ∂/∂r. Note that the unit vectors (i0, j0,k0) are independent of

the blade deformation, hence their partial derivative with respect to r is zero.

In terms of the elements of the transformation matrix, we then have

∂r

∂r
= iζ = T11 i0 + T12 j0 + T13 k0 (2.19)

Thus, combining Eq. (2.18) and (2.19), we get
T11 = (x+ u)+

T12 = v+

T13 = w+

(2.20)

Additionally, since T is orthonormal, we must have

T 2
11 + T 2

12 + T 2
13 = 1 (2.21)

and therefore

(x+ u)+ =
√
1− v+2 − w+2 (2.22)
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From Eq. (2.16), (2.20) and (2.22), it can be deduced that

sin β̄ = w+ (2.23a)

cos β̄ =
√
1− w+2 (2.23b)

sin ζ̄ = v+√
1− w+2

(2.23c)

cos ζ̄ =

√
1− v+2 − w+2√

1− w+2
(2.23d)

These formulas agree with those derived in [64]. The transformation matrix

can now be re-written as a function of the bending deflections and the modified

Euler angle θ̄ as follows

T =


√
1− v+2 − w+2

− v+√
1− w+2

cos θ̄ − w+
√
1− v+2 − w+2√
1− w+2

sin θ̄

−w
+
√
1− v+2 − w+2√
1− w+2

cos θ̄ + v+√
1− w+2

sin θ̄

v+√
1− v+2 − w+2√

1− w+2
cos θ̄ − v+w+√

1− w+2
sin θ̄

−
√
1− v+2 − w+2√

1− w+2
sin θ̄ − v+w+√

1− w+2
cos θ̄

w+
√
1− w+2 sin θ̄√
1− w+2 cos θ̄

 (2.24)

Note that the transformation matrix at this stage of the derivation is exact.

The remaining Euler angle θ̄ must now be replaced by some measurable quan-

tities, independent of the sequence of rotations. Consequently, the angle of

twist ϕ is introduced and defined, in the absence of built-in pre-twist, as

ϕ+ = κ1 (2.25)
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where κ1 is the torsion, or angle of twist per unit length, about the x1-axis (see

Fig. 2.2 for a definition of x1). κ2 and κ3 are the bending curvatures about

the x2- and x3-axes. These three curvatures may be deduced with the use of

Kirchhoff’s kinetic analogue, which states that [65]

“The equations of equilibrium of a thin rod, straight and prismatic when

unstressed, and held bent and twisted by forces and couples applied at its ends

alone, can be identified with the equations of motion of a heavy rigid body

turning about a fixed point.”

In this context, the two bending curvatures and the torsion are analogous to

the three components of the angular velocity of a body, whose rotations are

prescribed by the three Euler angles shown in Fig. 2.2. The components of

the angular velocity vector are

ω = ˙̄ζ k1 − ˙̄β j2 +
˙̄θ iζ (2.26)

Upon projection in the {ζ, η, ξ} coordinate system, the angular velocity vector

becomes

ω =
(
˙̄ζ sin β̄ + ˙̄θ

)
iζ +

(
˙̄ζ cos β̄ sin θ̄ − ˙̄β cos θ̄

)
jη +

(
˙̄ζ cos β̄ cos θ̄ + ˙̄β sin θ̄

)
kξ

(2.27)

Therefore, using Kirchhoff’s analogue and replacing the time derivatives in

Eq. (2.27) by spatial derivatives, the torsion and bending curvatures are

32




κ1 = ζ̄+ sin β̄ + θ̄+ (2.28a)

κ2 = ζ̄+ cos β̄ sin θ̄ − β̄+ cos θ̄ (2.28b)

κ3 = ζ̄+ cos β̄ cos θ̄ + β̄+ sin θ̄ (2.28c)

Furthermore, κ1 can be re-written as a function of the blade deflections by

deriving an expression for ζ̄+ in terms of v, w and their derivatives. This

expression is obtained by differentiating Eq. (2.23c) with respect to r. The

result of this operation is

ζ̄+ =
v++

√
1− v+2 − w+2

+
v+w+w++

(1− w+2)
√
1− v+2 − w+2

(2.29)

Finally, combining Eq. (2.23a), (2.25) and (2.29) into (2.28a), the partial

derivative of the third Euler angle with respect to the curvilinear coordinate

r is

θ̄+ = ϕ+ − w+

√
1− v+2 − w+2

(
v++ +

v+w+w++

1− w+2

)
(2.30)

Upon integration in r , we get

θ̄ = θ0 + ϕ−
∫ r

0

w+

√
1− v+2 − w+2

(
v++ +

v+w+w++

1− w+2

)
dr (2.31)

where θ0 = ϕ|r=0 is defined as the root pitch angle. Note that Eq. (2.31) is also

exact.

Finally, we can relate the spatial derivative in r denoted by ( )+ to the

one in x denoted by ( )′, according to the following chain rule

( )′ =
∂( )

∂x
=
∂( )

∂r

∂r

∂x
=
∂( )

∂r
r′ (2.32)
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in which r′ is obtained by differentiating Eq. (2.17) with respect to x. This

operation yields

r′ =
√

(1 + u′)2 + v′2 + w′2 (2.33)

Recall also the expression for the extensional strain, in the Green-Lagrangian

sense

ϵxx = u′ +
1

2

(
u′2 + v′2 + w′2) (2.34)

Comparing Eq. (2.33) and (2.34), we can write

r′2 = 1 + 2ϵxx (2.35)

Plugging this last result into Eq (2.32), we obtain

( )′ =
√
1 + 2ϵxx ( )

+ (2.36)

Finally, for small strain assumptions, Eq. (2.36) implies that ( )+=( )′, and

θ̄ = θ0 + ϕ−
∫ x

0

w′
√
1− v′2 − w′2

(
v′′ +

v′w′w′′

1− w′2

)
dχ (2.37)

For conciseness, we define the elastic pitch angle θ as

θ = ϕ−
∫ x

0

w′
√
1− v′2 − w′2

(
v′′ +

v′w′w′′

1− w′2

)
dχ (2.38)

This angle includes both a contribution from the elastic twist deformation ϕ

and a kinematic integral component that depends on the derivatives of the

bending deflections. Note that an accurate expression for the angle θ is im-

portant, as it affects the blade sectional angle of incidence, which drives the

aerodynamics loads.
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The elastic pitch angle θ defined above, along with the three elastic

displacements u, v and w constitute the set of unknown variables in terms of

which the equations of motion are derived. The following section introduces

the ordering scheme and the truncation rules adopted in the present analysis.

2.4 Ordering Scheme

The exact derivation of the EHP, using the displacements u, v and w,

and the elastic pitch angle θ as variables, leads to an extremely large amount of

algebra if all the terms in the equations are to be retained. To circumvent this

difficulty, the equations in the present analysis are truncated to second-order

accuracy. A set of rules must be followed to obtain a consistent truncation

scheme. Specifically, the truncation of terms should not destroy the self-adjoint

property of the structural and inertial operators. In practice, the mass and

stiffness matrices must remain symmetric and the gyroscopic matrix must re-

main anti-symmetric after the truncation. In addition, when combining kinetic

and potential energies in the Hamiltonian, the relative order of magnitude of

inertial terms with respect to structural terms must be studied and an ap-

propriate ordering scheme must be chosen such that all physically significant

terms are retained.

Along the lines of previous studies [21, 22, 50], an ordering scheme is

defined where each physical quantity is compared to a small parameter ϵ, on

the order of the normalized flap bending deflection w/R. The ordering scheme

is summarized in Table 2.1. Note that this scheme differs from the scheme em-
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Table 2.1: Ordering scheme

θ0, θ,
x
R , ∂

∂x
, ∂
∂t

= O(1)

v
R , wR ,

η
R ,

ξ
R , cR = O(ϵ)

u
R = O(ϵ2)

ployed in previous studies [21, 22, 50] by considering arbitrarily large elastic

pitch angles θ, of order O(1). In addition, the normalized extensional defor-

mation is considered to be one order smaller than the magnitude of bending

deflection.

In addition, a truncation method is defined. Two different strategies

can be found in the literature. In some analyses [21, 50], the orders of the

largest terms in the kinetic and potential energies are first identified. Denot-

ing these two orders of magnitude as ϵk and ϵp , all the terms in the kinetic

and potential energies of magnitude smaller than or equal to ϵk+2 and ϵp+2

respectively are truncated. This truncation method results in structural terms

in the strain energy of order O(ϵ4) and O(ϵ5), and inertial terms in the kinetic

energy of order O(ϵ2) and O(ϵ3). But some exceptions are made under which

three structural terms of order O(ϵ6) and one inertial term of order O(ϵ4) are

retained. These terms contribute to the torsion equation of motion in the form

of coupling between extension and twist. Physically, they are associated with

blade warping and the trapeze effect, thus to retain them is justified. However,
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Table 2.2: Order of terms retained for each equation of motion in Kaza and
Kvaternik, 1977

Strain energy terms Kinetic energy terms
Extension equation O(ϵ3) O(ϵ3)
Bending equation O(ϵ4) O(ϵ2)
Torsion equation O(ϵ5) O(ϵ3)

from a mathematical stand point, it does not seem rigorous to arbitrarily retain

terms while discarding others of equal magnitude. Another strategy [22] con-

sists of truncating the extensional, bending and torsional equations of motion

to different orders, as shown in Table 2.2. In particular, terms of higher order

are retained in the torsional equation, so as to systematically retain terms of

the same order of magnitude as the trapeze effect. However, truncating each

equation of motion to a different order can lead to a loss of the self-adjoint

property of the operators, hence some care must be taken in this process.

The truncation strategy employed in the present analysis consists of

a mathematically rigorous generalization of the two methods described pre-

viously. In particular, higher order terms are discarded in the energies, with

no distinction of their belonging to the extension, bending or torsion equa-

tions of motion. As a result, all the strain energy terms of order O(ϵ5) or

less are retained, as well as all the kinetic energy terms of order O(ϵ3) or less,

as summarized in Table. 2.3. It can be seen that such truncation strategy

automatically retains all the terms associated with the trapeze effect and the

propeller moment.
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Table 2.3: Truncation strategy

Terms retained Terms associated to Terms associated to
in energies the trapeze effect the propeller moment

Strain energy O(ϵ5) O(ϵ4) -
Kinetic energy O(ϵ3) O(ϵ3) O(ϵ2)

2.5 Structural Model

The structural model gives rise to the rotor blade strain energy, ki-

netic energy and gravitational energy. It can be derived following several ap-

proaches, all yielding equivalent formulations. In addition, the trapeze effect

can be represented in various ways. The analytical treatment of the trapeze

effect is described in § 2.5.1. Other extension-torsion coupling effects are dis-

cussed in § 2.5.2, and the kinematic foreshortening due to bending is derived

in § 2.5.3. Since the rotor blades are modeled as one-dimensional beams, a

reference axis about which cross-sectional quantities are reduced must be de-

fined. The choice of the elastic axis as the reference axis is explained in § 2.5.4.

In addition, an overview of the various approaches to derive the equations of

motion is given in § 2.5.5 and the choice for the formulation employed in the

present dissertation is motivated. Finally, the derivation of the strain, kinetic

and gravitational energies is presented.
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2.5.1 Modeling of the trapeze effect

The trapeze effect, also called bifilar effect, was first observed by Camp-

bell [66] and Pealing [67], who studied the torsional rigidity of phosphor bronze

strips in vibration galvanometers. In particular, Campbell [66] found that “in

a phosphor-bronze strip under tension, the torsional rigidity is considerably

increased as the tension is raised.” The mechanics of the trapeze effect can

be physically described in various analogous ways. It is the tendency of a

pre-twisted beam to untwist under the action of an axial load, or similarly

the tendency of a beam under an axial load to resist torsion. The theoretical

explanation for this effect was first given by Buckley [68]. He showed that the

geometric change of direction of the twisted fibers of a member induces a fore-

shortening responsible for the increase in torsional rigidity. The trapeze effect

applies particularly to the case of rotor blades subjected to large centrifugal

loads. Conventional rotor blades typically exhibit a high structural torsional

stiffness, preventing large angles of twist, therefore limiting the action of the

trapeze effect. But for the case of torsionally soft blades with negligible struc-

tural stiffness, the trapeze effect plays a significant role on the deformation

and the aeroelastic stability. The objective of the following analytical study is

to describe the modeling of the trapeze effect. In addition, a parametric study

showing the impact of the trapeze effect on the torsional frequency of a rotor

blade is conducted. A systematic approach to the problem is proposed, first

looking at the kinematics of a trapeze, and adding complexity to the problem

to finally model a rotor blade with tip mass.
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Figure 2.3: Undeformed and deformed shape of a trapeze in torsion

2.5.1.1 Kinematics relationships

Case 1: Classical trapeze It is natural to consider first the extension-

torsion behavior of a simple trapeze, consisting of a rigid bar of length c

suspended from its ends by inextensible cables of length R (see Fig. 2.3).

When twisted, the tip of the trapeze makes an angle relative to the root equal

to θ. Because the cables are inextensible, the twisting results in a shortening

of the trapeze by an amount uF ; this is called axial foreshortening. Points P

and Q, at a distance equal to x and R respectively from the root, displace to

P ′ and Q′ after deformation. The objective is to derive an expression for the

axial displacement uF as a function of the spanwise coordinate x.

The position of P ′ relative to A, projected in the fixed coordinate sys-

tem {x, y, z}, is given by

AP′ =
(
x− uF (x)

)
i+
(
yP ′ − c

2

)
j+ zP ′ k (2.39)
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where (i, j, k) are unit vectors directed along the x-, y- and z- direction respec-

tively. In addition, because the cables forming the trapeze are inextensible,

we can deduce that

∥AP′∥ = ∥AP∥ = x (2.40)

Combining Eq. (2.39) and (2.40), we obtain a quadratic equation in uF . Only

one of the two roots of this polynomial is physically meaningful. This root is

given by

uF (x) = x−
√
x2 − y2P ′ − z2P ′ −

c2

4
+ c yP ′ (2.41)

In order to relate yP ′ and zP ′ to the variable x and θ, we must express the

vector AQ′ and then enforce the condition that AP′ and AQ′ are always

collinear. The components of AQ′ projected in {x, y, z} are

AQ′ =
(
R− uF (R)

)
i+

c

2
(cos θ − 1) j+

c

2
sin θ k (2.42)

From the inextensible cables assumption, we deduce that ∥AQ′∥ = R, hence

uF (R) = R−
√
R2 − c2

2
(1− cos θ) (2.43)

Since AP′ and AQ′ are collinear, we must have

AP′ ×AQ′ = 0 (2.44)

which results in a system of three equations. Two of these three equations are

independent and give expressions for yP ′ and zP ′ , as
yP ′ =

c (R− x+ x cos θ)
2R

zP ′ = c x sin θ
2R

(2.45)

41



0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ [deg]

u F/R

 

 

c/R = 5
c/R = 2
c/R = 1
c/R = 0.5
c/R = 0.2

Figure 2.4: Kinematic foreshortening induced in a twisted trapeze, for various
chord over length ratios

Finally, substituting Eq. (2.45) into Eq. (2.41), we obtain the foreshortening

at any location x, given by

uF (x) = x− x

R

√
R2 − c2

2
(1− cos θ) for θ ∈ [0; π] (2.46)

This formula is exact and valid for any arbitrarily large angle θ. However, when

θ = π, the two cables have come in contact and the kinematics of the trapeze

changes. If one assumes that the diameter of the cables is infinitesimally small,

then the motion of the trapeze outboard of the contact point is a pure rotation

about a fixed point, which induces no additional foreshortening.

The tip displacement uF (R) normalized by the trapeze length R is plot-

ted in Fig. 2.4 as a function of the tip twist θ, for various trapeze geometries. It
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can be seen that the axial foreshortening, and consequently the trapeze effect,

increases as c/R increases. In addition, for c/R > 1, the maximum twist angle

at the end of the trapeze is kinematically limited to a value less than 180◦.

Note also that for c = R, the total foreshortening when θ = 180◦ is equal to

the trapeze length.

In the case treated above, the two cables are not constrained in the

chordwise direction, i.e. they are free to penetrate a virtual cylinder of diam-

eter equal to the root chord c. However, in the case of a rotor blade, each

longitudinal fiber is prevented from translating in the chordwise direction be-

cause of the presence of the neighboring fibers. In the following paragraph,

the kinematics of a thin flexible ribbon in torsion is investigated.

Case 2: Thin ribbon A rotor blade can be modeled as a thin ribbon

composed of an infinite number of fibers, aligned parallel to the spanwise

direction. When a torsional moment is applied to the blade at a given section,

that section rotates about a point called the torsional center. The loci of

torsional centers at every section constitute the torsional axis [69]. In the case

of a ribbon of rectangular cross-section, the torsional axis is coincident with

the mid-chord. Hence, when the blade is twisted, the central fiber remains

straight while the outer fibers take an helicoidal shape, as shown in Fig. 2.5.

The radius of the helix made by a deformed fiber is equal to the chordwise

distance from the fiber to the torsional axis, denoted as η in Fig. 2.5. If the end

of the ribbon is prevented from warping, as it is for the rotor blade of interest
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Figure 2.5: Undeformed and deformed shape of a thin ribbon in torsion

in this dissertation, then tensile stresses are created in the outer fibers, and

compressive stresses occur in the inner fibers. One fiber on both sides of the

torsional axis is strain-free. Enforcing the free-end condition at the tip of the

ribbon, it can be shown that the resultant normal stress must be zero. From

this condition, the foreshortening of the elastic axis can be deduced. The

objective of the following derivation is to relate the axial displacement of each

cross-section of the ribbon uF (x) to the twist angle θ(x).

As a preliminary, the formula for the length of an helix must be derived.

A circular helix of radius η and pitch 2πb (see Fig. 2.6) is described by the

following parametrization 
x(θ) = b θ

y(θ) = η sin θ

z(θ) = η cos θ

(2.47)
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Figure 2.6: Parametrization of a helix

Hence, the arclength (AB) is equal to

(AB) =

∫ B

A

ds

=

∫ B

A

√
dx2 + dy2 + dz2

=

∫ θ

0

√
(η dθ)2 + (dx)2

=

∫ θ

0

√
η2 +

(
dx

dθ

)2

dθ

=
√
η2 + b2

∫ θ

0

dθ

=
√
η2 + b2 θ (2.48)

Next, we can derive the axial strain in the central fiber and a fiber

located at a distance η from the torsional axis (see Fig. 2.5). The compressive
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strain in the middle fiber is

ϵ0 =
∥M′N′∥ − ∥MN∥

∥MN∥

=
[(x+ dx+ uF (x+ dx))− (x+ uF (x))]− dx

dx

= u′F (x) (2.49)

And the strain in the fiber located at a distance η from the torsional axis is

ϵ(η) =
ds− dx

dx
(2.50)

Using Eq. (2.48), we have

ds = [θ(x+ dx)− θ(x)]
√
η2 + b2 (2.51)

Thus,

ϵ(η) = θ′(x)
√
η2 + b2 − 1 (2.52)

In addition, by expressing the strain in the middle fiber as a function of the

parameter of the helix b, we find that

b =
ϵ0 + 1

θ′
(2.53)

Therefore, we can write the strain in a fiber located at a distance η from the

torsional axis as a function of ϵ0 and θ′

ϵ(η) =

√
(θ′ η)2 + (ϵ0 + 1)2 − 1

=
√

1 + 2ϵ0 + ϵ20 + θ′2 η2 − 1

≃ ϵ0 +
1

2
ϵ20 +

1

2
θ′2 η2

≃ ϵ0 +
1

2
θ′2 η2 (2.54)
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Since the ribbon is under pure torsion, the net axial force integrated over the

blade cross-section should be zero. Hence,∫ c/2

−c/2

ϵ(η) dη = 0 (2.55)

⇔ ϵ0 = − c2

12

θ′2

2
(2.56)

Finally, using Eq. (2.49), we conclude that

uF (x) = −
∫ x

0

c2

12

θ′2

2
dx (2.57)

It is interesting to note that the neutral fiber (or strain free fiber) is located

at a distance equal to
√
c2/12 on each side of the torsional axis. This value

corresponds to the radius of gyration of a rectangular blade section of unit

thickness and chord length c about its middle axis.

Generalizing the above derivation to the case of a rotor blade of thick-

ness t, it is straightforward to show that the longitudinal strain in a fiber

located at distances η and ξ from the torsional axis, in the chordwise and

flatwise direction respectively, is

ϵ(η, ξ) = ϵ0 +
1

2
θ′2
(
η2 + ξ2

)
(2.58)

In addition, in the absence of net axial force, the previous equation becomes

ϵ(η, ξ) =
θ′2

2

(
η2 + ξ2 − k2A

)
(2.59)

where kA is the polar radius of gyration of the rotor blade cross-section about

the torsional axis. For a blade with rectangular cross-section,

k2A =
c2 + t2

12
(2.60)
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Finally, the expression for the foreshortening due to the trapeze effect is

uF (x) = −
∫ x

0

k2A
θ′2

2
dx (2.61)

Next, the restoring torque induced by the longitudinal stresses in the blade

fibers is derived.

2.5.1.2 Restoring moment relationships

It can be seen from Eq. (2.59) that the longitudinal tensile stress in a

fiber of a twisted rotor blade with zero net axial force is

σ(η, ξ) = E
θ′2

2

(
η2 + ξ2 − k2A

)
(2.62)

If the blade cross-section is rectangular, the maximum tensile stress occurs in

the fiber most distant from the torsional axis (η=c/2, ξ=t/2). Thus

σmax =
Eθ′2 (c2 + t2)

12
(2.63)

The minimum stress (compressive stress) occurs at the center of the blade

(η=0, ξ=0) is

σmin = −Eθ
′2 (c2 + t2)

24
(2.64)

The magnitude of these longitudinal stresses can be compared to the maximum

shear stress which also arises in the twisted blade, predicted by Saint-Venant

theory. For a narrow rectangular cross-section, it can be shown that [70]

τmax = tGθ′ (2.65)
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Substituting θ′ into Eq. (2.63) and (2.64), we obtain
σmax =

Eτ 2max

12G2

(
c2

t2
+ 1
)

σmin = −Eτ
2
max

24G2

(
c2

t2
+ 1
) (2.66)

As noted in Ref. [70], the above longitudinal stresses, which arise due to the

trapeze effect, are proportional to τ 2max; hence, the importance of these stresses

increases with increasing τmax, i.e. with increasing angle of twist. For most

metallic materials, such as aluminum or steel, τmax is always very small in

comparison with G, and the magnitude of σmax is therefore small in compari-

son with τmax. However, for a composite material with low shear modulus on

the order of a few megapascals, τmax may be of the same order of magnitude

as G. Hence, σ must be taken into consideration. Note also that the ratio E/G

is approximately equal to 2.6 for isotropic and homogeneous materials with a

Poisson’s ratio of 0.3. But it can be significantly larger for anisotropic ma-

terials, around 21 for a carbon/epoxy (AS4/3501-6) unidirectional composite.

Finally, Eq. (2.66) shows that the magnitude of σmax, or in other words the

importance of the trapeze effect, increases when c≫ t.

The longitudinal stresses in the deformed fibers create a restoring torque

about the blade torsional axis, as shown in Fig. 2.7. The projection of σ in a

plane perpendicular to the torsional axis is

σt = σ sin γ (2.67)

where γ is the angle the displaced fiber makes with the vertical. From Fig. 2.7,
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Figure 2.7: Restoring torque induced by longitudinal stresses in the fibers

it can be seen that

sin γ =
√
η2 + ξ2 θ′ (2.68)

Hence, the restoring torque produced by the stretched fiber, about the tor-

sional axis is

dMt = E
θ′3

2

(
η2 + ξ2 − k2A

) (
η2 + ξ2

)
dη dξ (2.69)

Integrating over the blade cross-section, the torque due to the trapeze effect is

Mt = E
θ′3

2

(
B1 − Ak4A

)
(2.70)

where B1 =
∫∫

A
(η2 + ξ2)

2
dA. Combining this torque with the torque due to

the shear stress TSV (predicted according to Saint-Venant’s theory), the total

restoring torque acting on the rotor blade is

Mt = TSV + E
θ′3

2

(
B1 − Ak4A

)
(2.71)
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This last result was specialized by Timoshenko [70] and Biot [71, 72] to the

case of a narrow rectangular cross-section and it was shown that in this case,

Mt =
ct3

3
Gθ′ +

1

360
E tc5 θ′3

=
ct3

3
Gθ′

(
1 +

1

120

E

G

c4

t2
θ′2
)

(2.72)

It can be seen that when c ≫ t and the angles of twist are large, the restor-

ing moment associated with the trapeze effect may contribute an important

portion of the total torque.

Finally, we need to consider the influence of a uniform axial load, such

as the centrifugal forces acting on rotor blades on the total restoring torque.

With this new boundary condition, the equilibrium equation for calculating

the strain along the torsional axis (Eq. (2.55)) becomes∫∫
A

E ϵ(η, ξ) dA = σ0A (2.73)

⇔ ϵ0 =
σ0
E

− k2A
θ′2

2
(2.74)

The expression for the longitudinal stress becomes

σ(η, ξ) = E
θ′2

2

(
η2 + ξ2 − k2A

)
+ σ0 (2.75)

And the total restoring torque acting on a blade cross-section, including the

Saint-Venant’s torque TSV , is

Mt = TSV + E
θ′3

2

(
B1 − Ak4A

)
+ σ0Ak

2
A θ

′ (2.76)

Consequently, it can be seen in Eq. (2.76) that the action of the tensile stress

σ0 is to reduce the rate of twist per unit length θ′. In addition, we note that
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the untwisting effect due to the axial load is purely linear in the twist per

unit length θ′, unlike the restoring moment due to the change in fibers shape

and geometry, which is proportional to θ′3. Finally, the Saint-Venant restoring

moment is also a linear term in θ′, which for instance is equal to GJθ′ for the

case of a circular cross-section.

To summarize, we have shown that for a rotor blade with low shear

modulus and small thickness-to-chord ratio, non-negligible longitudinal stresses

arise in the deformed fibers as a result of the trapeze effect. In addition, the

restoring torque produced by these stresses is nonlinear, and is of the same

order of magnitude as the torque due to the shear stress, classically predicted

by Saint-Venant’s theory. Finally, a net axial force giving rise to a uniform

tensile stress tends to decrease the twist of the blade in a linear fashion.

In the next section, the impact of the trapeze effect on the rotor blade torsional

frequency is investigated.

2.5.1.3 Torsional frequency

Conventional helicopter rotor blades are relatively stiff in torsion, due

to the skin of the blade acting as a closed torque box. The torsional stiffness is

due predominantly to the control system stiffness and the restoring propeller

moment. Therefore, typical values for the first torsional frequency are on

the order of 5 per revolution (5/rev). In contrast, the torsional frequency

of a rotor blade with negligible structural stiffness is essentially dictated by

centrifugal effects, namely the propeller moment and the trapeze effect. The
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Figure 2.8: Schematic of propeller moment acting on a rotating blade

torsional frequencies associated with each of these effects individually, and to

the combination of both, are derived below.

Uncoupled propeller moment We consider first the torsional dynamics

of a rigid, untwisted rotating blade, with feathering hinge at the root, as

shown in Fig. 2.8. Because the blade is rigid and untwisted, the restoring

moment due to the trapeze effect equals zero. If the blade cross-section is not

axisymmetric about the feathering axis, then the propeller moment stiffens

the torsional degree of freedom. The expression for the propeller moment is

derived hereafter.

The centrifugal force acting on an infinitesimal blade element of mass

dm is

dFCF = dmΩ2 [x iX + (η cos θ − ξ sin θ) jY] (2.77)

Projected in the blade-fixed reference frame {ζ, η, ξ}, the components of this
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vector are

dFCF = dFCF
ζ eζ + dFCF

η eη + dFCF
ξ eξ (2.78)

= dmΩ2
[
x eζ +

(
η cos2 θ − ξ sin θ cos θ

)
eη

−
(
η sin θ cos θ − ξ sin2 θ

)
eξ
]

(2.79)

Thus, a pitching moment about the X -axis (which is coincident with the ζ-

axis) is created, of magnitude

dMθ = dFCF
ξ η − dFCF

η ξ (2.80)

= dmΩ2
[(
ξ2 − η2

)
sin θ cos θ + ηξ

(
sin2 θ − cos2 θ

)]
(2.81)

Integrating over the blade cross-section, we obtain an expression for the pro-

peller moment, defined positive nose-up, as

Mθ = m0Ω
2
[(
k2mη

− k2mξ

)
sin θ cos θ + k2mηξ

(
sin2 θ − cos2 θ

)]
(2.82)

where m0 is the mass of the blade per unit length, and kmη , kmξ
, kmηξ

are radii

of gyration about the feathering axis. Finally, we can write the equation of

motion as

m0k
2
mθ̈ +m0Ω

2
[(
k2mξ

− k2mη

)
sin θ cos θ + k2mηξ

(
cos2 θ − sin2 θ

)]
= 0 (2.83)

For a rotor blade with a narrow rectangular cross-section, experiencing small

pitch angles, it can be shown that the previous equation reduces to

θ̈ + Ω2θ = 0 (2.84)
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(a) Plan view (b) Side view

Figure 2.9: Cable rotor with disk at the tip

In non-dimensionalized form, this equation rewrites

∗∗
θ + θ = 0 (2.85)

where
∗∗
( ) = 1

Ω2
∂2

∂2t
. Therefore, it can be seen that the dimensionless torsional

frequency due to the propeller moment is equal to 1/rev.

Next, the torsional frequency associated with the uncoupled trapeze effect is

derived.

Uncoupled trapeze effect The kinematic relationship derived in § 2.5.1.1

(see Eq. (2.46)) can be used to find the torsional frequency of a trapeze rotat-

ing at a constant angular velocity Ω (see Fig. 2.9). This system is typically

described in the literature as a cable rotor. To isolate the action of the trapeze

effect from the action of the propeller moment, the tip body must be axisym-

metric (i.e. kmη = kmξ
and kmηξ

= 0 in Eq. (2.82)). In the present example, a

disk of mass M and radius c/2 is chosen.

The total kinetic energy of this system, including the rotational part due to
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twist and the translational part due to foreshortening, is

T =
1

2
Mu̇2F +

1

2
M (R + uF )

2Ω2 +
1

2
Iθ̇2 (2.86)

where uF = uF (R) is the foreshortening defined by Eq. (2.46). Additionally,

the cables at the leading-edge and trailing-edge are assumed to be inextensi-

ble. Therefore, the potential energy of the system is zero. Equation (2.46)

evaluated at x = R can be differentiated with respect to time and inserted in

Eq. (2.86) to get the kinetic energy as a function of the generalized coordinate

θ and its time derivative. Finally, using Lagrange’s equation, we obtain the

equation of motion of the cable blade as follows[
I +Mc4

sin2 θ

4R2 − 2c2 (1− cos θ)

]
θ̈

+

[
Mc2

4

sin θ [c2 cos2 θ + 2 cos θ (2R2 − c2) + c2]

(c2 cos θ + 2R2 − c2)2

]
θ̇2

+
Mc2

4
Ω2 sin θ = 0 (2.87)

The steady-state solution of this equation is trivial (θe = 0). A small pertur-

bation of the steady-state solution allows to linearize the equation of motion.

Note in particular that the term proportional to θ̇2 does not contribute to

the linearized stability analysis and was included in Eq. (2.87) only for com-

pleteness. The perturbed equation of motion, upon non-dimensionalization,

becomes
∗∗
∆θ +

Mc2

4I
∆θ = 0 (2.88)

and the torsional natural frequency is given as

νθ =

√
Mc2

4I
(2.89)
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(a) Plan view (b) Side view

Figure 2.10: Cable rotor with solid rod at the tip

Therefore, it can be seen that the torsional frequency associated with the

trapeze effect depends on the geometry of the tip body. If the tip body is a

solid disk, then I =Mc2/8 and the torsional frequency is νθ =
√
2 ∼ 1.41/rev.

Moreover, if the tip body is comprised of two bars attached perpendicularly

to each other at their center, then I = Mc2/12 and νθ =
√
3 ∼ 1.73/rev (see

an alternative derivation of this frequency in Appendix A).

Coupled propeller moment and trapeze effect The axisymmetric tip

body considered in the previous case is now replaced by a solid rod, oriented

perpendicularly to the spanwise direction (see Fig. 2.10). The length of the rod

is arbitrarily taken equal to the blade chord c, and its center of mass offset from

the torsional axis is denoted by yM . Its mass is equal to M and its moment

of inertia about the torsional axis is I. Note also in Fig. 2.10b the presence

of a root pitch angle θ0. In this situation, both the propeller moment and

the trapeze effect produce a torque on the rotor blade. The propeller moment

tends to rotate the blade to flat pitch (i.e. tip body axis perpendicular to axis

of rotation) whereas the trapeze effect tends to untwist the two cables (i.e.
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Figure 2.11: Variation of the steady-state twist angle with the root pitch

both cables lie in the same plane). As a result, the equation of motion is[
I +Mc4

sin2 θ

4R2 − 2c2 (1− cos θ)

]
θ̈

+

[
IΩ2 cos θ̄ sin θ̄ +

Mc2

4
Ω2 sin θ

]
= 0 (2.90)

where θ̄ = θ0 + θ. The steady-state twist angle θe, solution of the nonlinear

Eq. (2.91) below, is plotted as a function of the root pitch in Fig. 2.11.

I cos (θ0 + θe) sin (θ0 + θe) +
1

4
Mc2 sin θe = 0 (2.91)

It can be observed that θe is equal to zero when the root pitch equals 0 or

90 degrees, cases where the propeller moment and the restoring torque due to

the trapeze effect are zero. It is negative for any other root pitch angle.
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Figure 2.12: Variation of the torsional frequency with the root pitch (ym/c =
0.25)

Additionally, the linearized perturbed equation of motion is[
I +Mc4

sin2 θe
4R2 − 2c2 (1− cos θe)

]
∆θ̈

+

[
IΩ2 cos 2θe +

Mc2

4
Ω2 cos θe

]
∆θ = 0 (2.92)

From this equation, the torsional frequency can be extracted, as

ν2θ =
I cos 2θe +

Mc2
4 cos θe

I +Mc4 sin2 θe
4R2 − 2c2 (1− cos θe)

(2.93)

Equation (2.93) is illustrated by Fig. 2.12, showing the variation of torsional

frequency as a function of root pitch angle. First, it can be seen that the

torsional frequency resulting from the combined action of the propeller moment
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and the trapeze effect is approximately 1.6 times greater than the frequency

induced by the propeller moment alone, equal to 1 per rev. Secondly, as the

root pitch departs from 0 or 90 degrees, the torsional frequency decreases. This

is due to the fact that when the blade is twisted, the trapeze effect opposes

the action of the propeller moment. Hence the overall stiffening is less than

for the cases θ0 = 0◦ or θ0 = 90◦, in which the actions of the trapeze effect

and the propeller moment add up.

The chordwise position of the tip mass also affects the torsional fre-

quency of the blade, by changing its moment of inertia I. In particular, it can

be seen in Fig. 2.13a that the highest torsional frequency is obtained when

the tip mass is centered at the mid-chord. In addition, as the tip mass moves

toward the leading-edge, the propeller moment increases, which results in an

increase in twist (see Fig. 2.13b). Although an increase in twist also implies

an increase in the trapeze effect, it can be seen in Fig. 2.13a that the torsional

frequency tends towards 1 per rev as yM/c becomes larger, which means that

the propeller moment dominates.

In summary, it was shown that the torsional frequency associated with

the uncoupled trapeze effect acting on a cable rotor is equal to
√
2/rev when

the tip body is a solid disk, and
√
3/rev when the tip body is comprised of

two perpendicular cross-bars. These frequencies are of the same order of mag-

nitude as the classical frequency due to propeller moment, equal to 1/rev. In

addition, this study has shown that in the case of a rotor blade with concen-

trated tip mass, the torsional frequency varies with the collective pitch as well
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Figure 2.13: Variation of the torsional frequency and twist of a cable rotor, as
a function of the tip mass chordwise position (θ0 = 20◦)
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as the chordwise position of the tip mass. It was found that the maximum tor-

sional stiffness is obtained when the center of gravity of the tip mass is located

at the mid-chord. These conclusions motivate the accurate modeling of both

the propeller moment and the trapeze effect, to obtain accurate predictions of

torsional deformations and natural frequencies of a rotor blade with negligi-

ble torsional stiffness. Finally, note that the extension-torsion couplings due

to warping functions, as well as anisotropic composite laminates, have been

ignored in the previous derivations. These couplings are addressed in the next

section.

2.5.2 Modeling of other extension-torsion coupling effects

2.5.2.1 Vlasov effect

In the previous derivations, warping of the blade cross-sections was

not mentioned, although thin rectangular cross-sections, which typically warp,

were considered. This is because the rotor blades studied in this dissertation

are prevented from warping at both of their ends. The question arises how this

restrained warping affects the angle of twist and the distribution of stresses.

In fact, it can be shown that when warping of a twisted member is restrained,

longitudinal stresses arise that induce resistance to torsion. This phenomenon

is called the Vlasov effect [73], and is analytically described next.

Two approaches to analytically model the restrained warping effect can

be found in the literature. The first approach was presented by Wagner [74]

who studied the torsion and buckling of a thin-walled, open section beam of
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length L, with torsional moments of magnitude M acting on its ends, and a

distributed external torque of magnitude m acting along its length. In addi-

tion, warping was prevented at both ends of the beam. Due to the longitudinal

stresses arising from the restrained warping, the internal work of deformation

(or strain energy) was found to be

Wi =
1

2
GJ

∫ L

0

θ′2 dx+
1

2E

∫ L

0

∫∫
A

σ2 dAdx (2.94)

The longitudinal stress was expressed in terms of the warping function λ as

σ = Eθ′′λ (2.95)

where λ is a function of the cross-sectional coordinates and is obtained by

solving the Laplace’s equation [75].

According to the principle of virtual work, equating the internal virtual work

to the external virtual work results in

GJ

∫ L

0

θ′δθ′ dx + E

(∫∫
A

λ2dA

)∫ L

0

θ′′δθ′′ dx−
∫ L

0

mδθ dx = 0 (2.96)

Integrating by parts, and for arbitrary virtual displacement δθ ,we obtain

EC1θ
′′′′ −GJθ′′ = m (2.97)

where C1 =
∫∫

A
λ2dA is defined as the warping rigidity. From Eq. (2.97),

Wagner showed that the longitudinal stresses resulting from the restrained

warping created a torsional moment of magnitude

Tλ = −EC1θ
′′′ (2.98)
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Comparing the magnitude of Tλ with that of the restoring moment predicted

by Saint-Venant’s theory (TSV = GJθ′) gives information on the relevance

of the Vlasov effect in the modeling of the torsional degree of freedom of a

rotor blade. For rotor blades with closed cross-sections, as in the case of this

dissertation, this effect is negligible [26]. However, in the case of open cross-

sections, such as I-beams for instance, the Vlasov effect must be considered.

Another analytical model of the Vlasov effect was presented by Timo-

shenko and Goodier [75]. To enforce the no-warping condition, they assumed

the presence of a normal stress distributed over the beam cross-section, pro-

portional to the warping displacement

σ(x) = mEe−mx uλ (2.99)

The other components of stress were deduced from the equilibrium equations

and boundary conditions of a bar, with a torque M applied to its ends. Then,

the total twist angle due to the combined Saint-Venant shear stress and pre-

scribed normal stress was derived. In the case of a thin rectangular cross-

section, it was found that

θ =
3Mt

ct3G

[
R−

√
5 (1 + ν)

6
c

]
(2.100)

where ν is the Poisson’s ratio of the bar. Comparing this result with the angle

of twist of a thin rectangular bar free to warp (θ = 3MtR
ct3G

), it can be seen that

by preventing the cross-sections from warping, the torsional rigidity of the bar

is increased. The effect on the twist angle is however small if c ≪ R. In the
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case of the rotor blade analyzed in this dissertation, c/R ∼ 0.11 therefore to

ignore the Vlasov effect is justified.

To summarize, the restrained warping in effect for the rotor blades

studied in this dissertation induces an increase in the blade torsional stiffness.

However, this effect is negligible for blades with closed cross-sections and large

aspect ratio, as in this dissertation. Therefore, it is neglected.

2.5.2.2 Composite material coupling

Extension-torsion coupling can also result from elastic tailoring of a

composite lay-up. The force resultant/strain and moment resultant/curvature

relationships of a general composite laminate are recalled below. In addition,

the equations are specialized to the case of a two-ply, symmetric [+45◦/-45◦]S

laminate, representative of the composite blade analyzed in this dissertation.

It is shown that the structural coupling induced by the composite lay-up is

negligible, hence the blade material can be modeled as isotropic.

For a general composite laminate, the forces and moments shown on

Fig. 2.14 are related to reference plane strains and curvatures as follows [76]

Nx

Ny

Nss

Mx

My

Mss


=


Axx Axy Axs Bxx Bxy Bxs

Ayx Ayy Ays Byx Byy Bys

Asx Asy Ass Bsx Bsy Bss

Bxx Bxy Bxs Dxx Dxy Dxs

Byx Byy Bys Dyx Dyy Dys

Bsx Bsy Bss Dsx Dsy Dss





ϵox
ϵoy
γos
κx
κy
κss


(2.101)

where A, B and D, are respectively the extensional, extensional-bending, and

flexural stiffness matrices of the composite. In the particular case where the
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Figure 2.14: Laminated element with force and moment resultants

laminate is symmetric, the extensional-bending matrix becomes null. In ad-

dition, a [+45◦/-45◦]S composite is a cross-ply regular laminate, for which it

can be shown that Ais = 0 and Dis = 0 (where i = x, y) [76]. Therefore, the

force resultant/strain and moment resultant/curvature equations become

Nx

Ny

Nss

Mx

My

Mss


=


Axx Axy 0 0 0 0
Ayx Ayy 0 0 0 0
0 0 Ass 0 0 0
0 0 0 Dxx Dxy 0
0 0 0 Dyx Dyy 0
0 0 0 0 0 Dss





ϵox
ϵoy
γos
κx
κy
κss


(2.102)

and it can be seen that no extension-torsion or extension-shear coupling is

induced. In addition, by modeling the blade as an Euler-Bernoulli beam, we

assume the stress state to be uniaxial, i.e. σyy = 0. Hence, Ny and My are
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Figure 2.15: Foreshortening associated with out-of-plane bending

ignored and we have
Nx

Nss

Mx

Mss

 =


Axx 0 0 0
0 Ass 0 0
0 0 Dxx 0
0 0 0 Dss




ϵox
γos
κx
κss

 (2.103)

This final form of the force resultant/strain and moment resultant/curvature

equations motivate the modeling of the rotor blade in this dissertation as an

isotropic structure.

2.5.3 Modeling of the kinematic foreshortening due to bending

Bending deformations are also responsible for an axial displacement

of the blade cross-sections along the hub-fixed X -axis. This displacement is

proportional to the square of the bending slope, as shown next.

Consider the out-of-plane bending of the rotor blade shown in Fig. 2.15. In

particular, we consider the axial displacement of an infinitely small blade ele-

ment of length dx. From Pythagorean theorem, we have

dx2 = [dx+ u(x+ dx)− u(x)]2 + [w(x+ dx)− w(x)]2 (2.104)
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Introducing the axial foreshortening uF (x)

u′F (x) =
u(x+ dx)− u(x)

dx
(2.105)

Eq. (2.104) rewrites as

1 = (1 + u′F )
2
+ w′2

⇔ u′F =
(√

1− w′2 − 1
)

(2.106)

For arbitrarily small w′

u′F = −w
′2

2
+O(w′4) (2.107)

Integrating from 0 to x, the axial foreshortening displacement associated with

bending is

uF (x) = −
∫ x

0

w′2

2
dχ (2.108)

From the superposition principle, it can be shown that the foreshortening due

to the combined action of lead-lag and flap bending is

uF (x) = −
∫ x

0

(
v′2

2
+
w′2

2

)
dχ (2.109)

2.5.4 Definition of the reference axis

In this dissertation, the rotor blade deformations are modeled by three

displacements and one rotation with respect to a reference axis. In addition,

two-dimensional cross-sectional properties are integrated and reduced to that

same reference axis, consistent with a one-dimensional beam representation

of the blade. In terms of the system of axes defined in § 2.2, the reference
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axis is coincident with the X -axis when the rotor blade is undeformed. After

deformation, it is defined by the curvilinear coordinate ζ. There are several

ways to define this axis with respect to the blade geometry.

Some studies [21, 22, 77, 78] have suggested the use of the elastic axis

as the reference axis. In Ref. [21], the elastic axis was defined as the spanwise

locus of the blade cross-sectional shear centers. In Ref. [22], the reference axis

was arbitrarily defined to be coincident with the blade feathering axis placed

at quarter-chord. In both studies, the motivation was to simplify the beam

analysis by decoupling the bending due to transverse loads from the twisting

due to torques. However, the effect of an axial load (i.e centrifugal forces) on

the bending/torsion relationship was ignored. This dissertation investigates

how twist deformation can be decoupled from the application of a shear force,

when it is combined with an axial force. In addition, the investigation is fo-

cused on beams with negligible structural stiffness. Accordingly, the following

experiment is conducted.

A 250 mm long, extremely soft beam is fabricated out of a 0.15 mm

thick and 125 mm wide sheet of paper, shown in Fig. 2.16 (note that the sheet

of paper is assumed to behave like a beam, although the length is of the same

order of magnitude as the width). Before any external loading is applied,

the beam, clamped at one end and free at the other end, is hanging under

the action of gravity. In addition, both ends of the beam are prevented from

warping. An axial gravity load of magnitude P can be applied at a distance e

from the middle axis. In addition, a transverse shear force V can be applied
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(a) Plan view (b) Bottom view

Figure 2.16: Infinitely soft beam under combined axial loading (P) and shear
loading (V )
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(a) Shear force acting at y = 0 (b) Shear force acting at y = e

Figure 2.17: Bending/twist deformation due to a shear force (P = 0)

at any location along the chord of the beam (i.e. along the Y -axis).

First, the deformation of the beam under the action of a shear force

is observed for the case where P = 0. When the shear force V is applied at

the middle of the beam end (i.e. at y = 0) as shown in Fig. 2.17a, the beam

experiences pure bending and no twist. In contrast, when the shear force acts

at a distance y = e from the middle of the beam (Fig. 2.17b), a combination

of bending and twist deformation can be observed. These experimental results

confirm that twist deformation is decoupled from the action of a shear force

when the shear force is acting at the shear center. As a matter of fact, the

shear center, in the case of a beam of rectangular cross-section, is coincident

with the middle of the cross-section.

Secondly, these experiments are repeated for the case where an axial

load is applied (i.e. P ̸= 0) at a distance y = e from the middle axis. It can

be seen in Fig. 2.18a that under this condition, a shear force applied at the

middle of the beam induces both bending and twist deformations. However,

when the shear force acts at the point of application of the axial load, as shown
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(a) Shear force acting at y = 0 (b) Shear force acting at y = e

Figure 2.18: Bending/twist deformation due to a shear force (P ̸= 0)

in Fig. 2.18b, then only bending deformation is observed.

Therefore, the experiments described above indicate that in the pres-

ence of an axial load, a shear force acting on an extremely soft beam will

produce no twist only if it is applied at the point of application of the axial

load, or more generally at the centroid of the axial stress field.

To theoretically explain this experimental conclusion, a more general

definition of the elastic axis than the ones cited above and employed in Ref. [21,

22] must be used. Indeed, the elastic axis can be defined as the spanwise locus

of the beam cross-sectional elastic centers [77, 79]. In addition, recall the

following definitions, extracted from Ref. [69, 79]:

• The elastic center of a given cross-section of a beam is the point in the

plane of the section lying between the shear center and the torsional

center.

• The shear center of a given cross-section of a beam is the point in the

plane of the section through which a transverse load, applied at that
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section, must act to produce bending deflections only and no twist of

the section.

• The torsional center of a given cross-section of a beam is the point about

which the section rotates when a twisting couple is applied at that sec-

tion.

Therefore, to find the location of the elastic center, the locations of the shear

center and the torsional center must be known. The location of the shear

center is always dictated by the sectional shear flow. However, the position of

the torsional center does not necessarily depend on the shear flow, as explained

below.

In the case of conventional rigid rotor blades experiencing negligible

twist, it was shown in § 2.5.1 (see Eq. (2.76) with θ′ chosen arbitrarily small)

that the twist due to an applied torque is well predicted by Saint-Venant’s

theory and is predominantly due to the sectional shear flow. Therefore, the

locations of the shear center and the torsional center are dictated by the same

stress field and are coincident. However, in the case of a torsionally soft rotor

loaded by centrifugal forces, the twist distribution also depends on the axial

stress distribution (due to the trapeze effect). Therefore, the shear center and

the torsional center are prescribed by distinct stress fields and it can no longer

be assumed that they are coincident. To derive the position of the torsional

center, the following case is considered.

The objective is to compute the spanwise locus of torsional centers for
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Figure 2.19: Free-body-diagram of the forces and moments applied to a rotor
blade with tip mass

the rotor blade with tip mass, shown in Fig. 2.19, assumed to experience large

twist angles. In addition, the torsional center of every blade cross-section is

assumed to be located at a distance yc(x) from the blade neutral axis (X -axis).

For simplicity, the locus of torsional centers are shown by a straight dashed-

line in Fig. 2.19. However, the following analysis is derived for a given blade

station, and does not assume that the torsional axis is straight.

From equilibrium, the internal normal force and bending moment acting at a

spanwise location x are

N(x) = m0Ω
2R

2 − x2

2
+MmΩ

2R (2.110)

M(x) = −MmΩ
2ymx (2.111)

where m0 is the mass of the blade per unit length, Mm is the tip mass, and

ym is the distance from the mid-chord (passing through the lead-lag hinge) to

the center of gravity of the tip mass.

Using the superposition principle, the axial stress at any spanwise location x

and distance y from the neutral axis is

σ(x, y) =
N(x)

A
− M(x)y

IZ
(2.112)
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In addition, it was shown in Eq. (2.67) that the tangential component of the

stress in a deformed blade fiber, responsible for a restoring torque about the

torsional axis is

σt(x, y) = σ(x, y) sin γ (2.113)

= σ(x, y) (y − yc) θ
′ (2.114)

where γ is the angle made by the deformed fiber relative to the torsional axis.

Multiplying Eq. (2.114) by the width of a fiber, the force responsible for the

restoring torque due to the trapeze effect, directed perpendicularly to the blade

chord, is obtained as

dFt(x, y) = σ(x, y) (y − yc) θ
′ dy (2.115)

But it can be seen from Fig. 2.19 that the resultant shear force along the

direction perpendicular to the blade chord equals zero. Therefore,∫ c/2

−c/2

dFt(x, y) dy = 0 (2.116)

Substituting Eq. (2.112) and (2.115) into Eq. (2.116), we obtain

yc(x) = −M(x)

N(x)

A

I

c2

12
(2.117)

Thus, Eq. (2.117) shows that the torsional center is coincident with the cen-
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Figure 2.20: Spanwise locus of centroid of the axial stress field

troid of the axial stress distribution, which can alternatively be defined as

yc(x) =

c/2∫
−c/2

y σ(x, y) dy

c/2∫
−c/2

σ(x, y) dy

(2.118)

= −M(x)

N(x)

A

I

c2

12
(2.119)

For a given set of design parameters, we can plot the centroid of the

axial stress field along the blade span (see Fig. 2.20). First, it can be seen from

Eq. (2.117) that the result is independent of the rotational speed. Secondly,

Fig. 2.20 shows that the shear centers, located along the mid-chord for a rotor

blade with rectangular cross-section, are not coincident with the centroids of

the axial stress field. Finally, note that flapwise and lead-lag bending deforma-

tions of the rotor blade induce a modification of the mass distribution, leading

to a change of the radial stress field and therefore of its centroid. However,

following a similar analysis as the one leading to Eq. (2.117), it can be shown

that for small bending deformations, the result given in Eq. (2.117) remains

unchanged.

To summarize, we have shown that in the case of torsionally soft rotors,
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subjected to the combination of axial loads, shear loads and twisting moments,

the torsional centers are generally not coincident with the shear centers. The

locus of torsional centers are dictated by the axial stress field distribution,

while the locus of shear centers are governed by the sectional shear flow. Con-

sequently, the elastic axis passes between the loci of torsional centers and shear

centers. However, the position of this axis cannot be exactly determined. We

will assume that the elastic axis is a curve parallel to the deformed blade

leading-edge, passing through the quarter-chord point at every blade section.

2.5.5 Choice of coordinates

The coordinates chosen as degrees of freedom for this dissertation are

the displacements of the elastic axis along the X -, Y - and Z -directions (u, v

and w respectively), and the elastic pitch angle θ. This angle corresponds to

the elastic part of the rotation of the blade cross-section about the deformed

elastic axis (ζ-axis). It depends on both twist and bending deformations.

However, other sets of coordinates could be used to describe the same

rotor blade motion. For example, instead of deriving the equations of motion

as a function of the elastic pitch angle θ, defined by Eq. (2.38), one could use

the elastic twist angle ϕ, defined by Eq. (2.25). The relationship between these

two angles is given, approximated to second-order, in § 2.5.5.1.

In addition, the axial displacement variable u could be replaced by

the sum of the elongation of the elastic axis, denoted ue, and the kinematic

foreshortening due to bending and twist. The two alternative approaches,
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making use of the variables u or ue, correspond respectively to an implicit

or explicit consideration of the kinematic foreshortening due to bending and

torsion. These two approaches are described in § 2.5.5.2.

In § 2.5.5.3, it is shown that the variables u and θ are true coordinates,

whereas ue and ϕ are quasi-coordinates. The validity of Lagrange’s equations

for quasi-coordinates is demonstrated.

Finally in § 2.5.5.4, the equivalence of two formulations derived using

true or quasi-coordinates is shown by means of a simple example. Specifically,

the flap dynamics of an elastic rotor blade is derived.

2.5.5.1 Elastic pitch angle θ vs. twist angle ϕ

The exact relationship between θ and ϕ, given by Eq. (2.38), can be

approximated to second-order using the ordering scheme defined by Table. 2.1.

A Taylor-Lagrange expansion of the integrand in Eq. (2.38) gives

θ = ϕ−
∫ x

0

w′
[
1 +

v′2 + w′2

2
+O(ϵ4)

] [
v′′ + v′w′w′′ (1 + w′2 +O(ϵ4)

) ]
dχ

(2.120)

Retaining terms up to second-order, we obtain

θ = ϕ−
∫ x

0

v′′w′ dχ+O(ϵ4)

∼ ϕ−
∫ x

0

v′′w′ dχ (2.121)

Hence, it can be seen that the elastic pitch angle θ can be expressed as a

function of the twist angle ϕ and an integral of the bending deflection deriva-

tives. To simplify the formulation, this dissertation uses the angle θ as the
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independent variable, avoiding the need for the integral term in Eq. (2.121).

However, other studies such as [21, 22] have instead used the angle of twist ϕ

as the independent variable. Although the final equations of motion in the two

approaches differ in form, they can be reduced to the same expression once

the change of variable defined by Eq. (2.121) is introduced.

2.5.5.2 Implicit vs. explicit kinematic foreshortening

The total axial displacement of a point on the blade elastic axis is rep-

resented in this dissertation by the variable u. It can be decomposed into the

sum of the elongation due to radial forces ue, and the kinematic foreshortening

due to bending and torsion uF . Hence, we have

u = ue + uF (2.122)

The foreshortening displacement due to torsion (trapeze effect) is given by

Eq. (2.61), and the foreshortening due to bending is expressed by Eq. (2.109).

Superposing the two results, we obtain

u = ue −
1

2

∫ x

0

(
v′2 + w′2 + k2Aθ

′) dχ (2.123)

An alternative approach to the one followed in this dissertation is to consider

ue to be the independent variable, and to include explicitly the expression for

the foreshortening uF in the position vector.

When ue is chosen as the independent variable and the foreshortening of

the elastic axis is explicitly included, centrifugal stiffening terms appear in the
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kinetic energy. These terms are integral functions of the blade deformations,

which can, only in some cases, be computed analytically.

In contrast, when the variable u is used, the foreshortening of the elastic

axis is implicitly present in the expression for the longitudinal strains. In that

case, the stiffening due to the centrifugal forces appears as additional terms in

the strain energy.

The two formulations described above, although different in form, are

fundamentally equivalent. However, the numerical implementation is simpli-

fied in the case where the foreshortening is considered implicitly. This is why

u is used as the independent variable in this dissertation.

2.5.5.3 True vs. quasi coordinates

The coordinates chosen in this dissertation qk = (u, v, w, θ) are qualified

as true coordinates, in a sense that if the velocities q̇k are known functions of

time, an integration with respect to time yields the corresponding coordinates

qk [62]. But we have seen that other coordinates, such as ue or ϕ could equiv-

alently be employed. The coordinates ue and ϕ are called quasi-coordinates

because they are related to physical angles and displacements through integrals

that cannot be evaluated in closed form (see Eq. (2.121) and (2.123)). In gen-

eral, the formulation of the Lagrange’s equations (and therefore the EHP) for

quasi-coordinates differs from the classical formulation given by equation (2.1)

which is valid for true coordinates [62]. It is natural to verify that for the spe-

cial case of the quasi-coordinates ue and ϕ, the classical formulation holds true.
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Figure 2.21: Elastic string undergoing pure flap

The elements of this derivation was presented in Ref. [63]. It is detailed for

the specific case of the quasi-coordinates ue and ϕ in Appendix B.

2.5.5.4 Example: Elastic rotor blade undergoing coupled extension-
flap motion

An example will illustrate the equivalence between the implicit and

explicit foreshortening formulations. The objective is to derive the equation of

motion of a rotor blade undergoing pure flap, and to show that the equations

obtained by including the kinematic foreshortening of the elastic axis implicitly

or explicitly are equivalent. For simplicity, we assume that the blade cross-

section is infinitely small, therefore we simply consider the dynamics of the

rotating string shown in Fig. 2.21.

Implicit formulation of the kinematic foreshortening In this approach,

the independent variables are the axial displacement u, directed along the hub-

fixed X -axis, and the vertical deflection w.
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The position of a particle on the deformed string is given by

r = (x+ u) iX + w kZ (2.124)

And the velocity of the same point is

ṙ = u̇ iX + (x+ u)Ω iY + ẇ kZ (2.125)

In addition, it can be shown that the longitudinal strain, defined in the La-

grangian sense, inside the string, is

ϵxx = u′ +
w′2

2
+O(ϵ4) (2.126)

Consequently, the strain energy can be derived as

U =
1

2

∫
R

∫∫
A

Eϵ2xx dAdx

=
1

2

∫
R

(
EAu′2 + EA

w′4

4
+ EAu′w′2

)
dx+O(ϵ6) (2.127)

Taking the variation, we obtain

δU =

∫
R

[(
EAu′ + EA

w′2

2

)
δu′ +

(
EA

w′3

2
+ EAu′w′

)
δw′
]
dx+O(ϵ6)

(2.128)

Note that the underlined terms are the terms which differ from one formulation

to one another, as shown later. Additionally, the kinetic energy is

T =
1

2

∫
R

∫∫
A

ρ(ṙ · ṙ) dAdx

=
1

2

∫
R

m0

(
x2Ω2 + 2xuΩ2 + ẇ2

)
dx+O(ϵ4) (2.129)
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And the variation of kinetic energy is

δT =

∫
R

(
m0xΩ

2 δu+m0ẇ δẇ
)
dx+O(ϵ4) (2.130)

Using the results above, we can write the EHP, as follows∫ t2

t1

∫
R

[
m0xΩ

2 δu−
(
EAu′ + EA

w′2

2

)
δu′ +m0ẇδẇ

−
(
EA

w′3

2
+ EAu′w′

)
δw′
]
dx dt = 0 (2.131)

where higher-order terms have been truncated. Finally, we make the following

change of variable

u = ue −
∫ x

0

w′2

2
dχ (2.132)

u′ = u′e −
w′2

2
(2.133)

δu = δue −
∫ x

0

w′δw′ dχ (2.134)

δu′ = δu′e − w′δw′ (2.135)

and after simplification, we obtain∫ t2

t1

∫
R

[
m0xΩ

2 δue − EAu′eδu
′
e

+m0ẇδẇ −m0xΩ
2

∫ x

0

w′δw′dχ

]
dx dt = 0 (2.136)

Explicit formulation of the kinematic foreshortening An alternative

approach is to choose ue and w as the independent variables. In this case, the

position vector of a particle on the deformed string is

r =

(
x+ ue −

∫ x

0

w′2

2
dχ

)
iX + w kZ (2.137)
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And the corresponding velocity vector is

ṙ =

(
u̇e −

∫ x

0

w′ẇ′ dχ

)
iX +

(
x+ ue −

∫ x

0

w′2

2
dχ

)
Ω iY + ẇ kZ (2.138)

It can also be shown that the longitudinal strain is

ϵxx = u′e +O(ϵ4) (2.139)

Consequently, the variations of strain energy and kinetic energy, in this for-

mulation, are

δU =

∫
R

EAu′eδu
′
e dx+O(ϵ6) (2.140)

δT =

∫
R

m0xΩ
2 δue −m0Ω

2

∫ x

0

w′δw′ dχ+m0ẇ δẇ

 dx+O(ϵ4) (2.141)

We can compare Eq. (2.128) and (2.130) to Eq. (2.140) and (2.141) respec-

tively, and notice the additional terms in each formulation. Specifically, the

centrifugal stiffening terms contained inside the strain energy in the implicit

formulation, are present in the kinetic energy in the explicit formulation. Ad-

ditionally, when the kinematic foreshortening is formulated explicitly, the final

EHP is∫ t2

t1

∫
R

[
m0xΩ

2 δue − EAu′eδu
′
e

+m0ẇδẇ −m0xΩ
2

∫ x

0

w′δw′dχ

]
dx dt = 0 (2.142)

which is identical to the expression shown in Eq. (2.136). Therefore, we have

shown, by means of a simple example, the equivalence between two different

formulations to describe the dynamics of a rotor blade. In the next section,

the inextensible beam assumption is discussed.
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2.5.6 Inextensible blade assumption

In many situations, the equations of motion of a rotor blade, modeled as

beam elements, can be simplified by assuming the beams to be inextensible.

This assumption implies that the extension of the elastic axis, ue, and all

its derivatives are equal to zero. However, the procedure allowing to make

this simplification differs depending on the approach followed to derive the

equations of motion.

If the axial displacement variable u is used to derive the equations,

then the simplification can only be made a posteriori, in the final form of

the equations of motion. Specifically, the derivatives and variation of u are

replaced by the derivatives and the variation of the kinematic foreshortening

uF . However, if the kinematic foreshortening of the elastic axis is considered

explicitly in the derivation, then the simplification can be made a priori, by

setting ue and its derivatives equal to zero.

From this description, it appears that if the inextensible blade assump-

tion is applicable, then it is favorable to include the kinematic foreshortening

of the elastic axis explicitly, and to use ue as the independent variable, in place

of u, to simplify the equations as early as possible. Nonetheless, the use of uF

yields integral terms in the equations of motion, whose integrand are functions

of the deformations. The numerical modeling of such terms is computation-

ally very inefficient, as it destroys the sparseness of the mass, damping and

stiffness operators. For this reason, the inextensible blade assumption is made

a posteriori in this dissertation.
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In § 2.5.1 to 2.5.6, the choice of procedure adopted to derive the equa-

tions of motion in this dissertation was justified. In addition, a series of as-

sumptions was made. From these preliminaries, the strain and kinetic energies

can be derived.

2.5.7 Blade strain energy

The general formulation for the strain energy of a long, slender, isotropic

beam is

U =
1

2

∫ R

0

∫∫
A

(σxxϵxx + τxηγxη + τxξγxξ) dη dξ dx (2.143)

where ϵxx is the axial strain, γxη and γxξ are the Cauchy or engineering shear

strains. Using Hooke’s law and introducing the true strains, the strain energy

becomes

U =
1

2

∫ R

0

∫∫
A

(
Eϵ2xx + 4Gϵ2xη + 4Gϵ2xξ

)
dη dξ dx (2.144)

To compute this integral, the strain tensor associated with the combined ex-

tension, bending and torsion of an elastic blade must be derived.

2.5.7.1 Strain tensor

The strain tensor ϵ can be defined in the Lagrangian sense by the following

equation

dr1 · dr1 − dr0 · dr0 = 2 {dx dη dξ} [ϵ]


dx
dη
dξ

 (2.145)

where dx, dη and dξ are increments along the X-, η- and ξ-axes in their

configuration before deformation. dr0 and dr1 are the total differentials of
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the position vectors r0 and r1. The subscripts ( )0 and ( )1 refer respectively

to the blade position before and after deformation.

In the {X, Y, Z} coordinate system, the position of a particle on the

undeformed blade is

r0 =


x0
y0
z0

 =


x

η cos θ0 − ξ sin θ0
η sin θ0 + ξ cos θ0

 (2.146)

Likewise, the position of a particle on the deformed blade is

r1 =


x1
y1
z1

 =


x+ u
v
w

+TT


0
η
ξ

 (2.147)

where T is the transformation matrix relating the coordinate system {X, Y, Z}

to the coordinate system {ζ, η, ξ}, introduced previously (see the exact expres-

sion in Eq. (2.24)). Using the ordering scheme defined in § 2.4, the transfor-

mation matrix can be approximated to second-order as

T =



1− v′2
2 − w′2

2 v′ w′

−v′ cos θ̄ − w′ sin θ̄
(
1− v′2

2

)
cos θ̄ − v′w′ sin θ̄

(
1− w′2

2

)
sin θ̄

v′ sin θ̄ − w′ cos θ̄ −
(
1− v′2

2

)
sin θ̄ − v′w′ cos θ̄

(
1− w′2

2

)
cos θ̄


(2.148)

Consequently, the position vector r1 becomes

r1 =


x1

y1

z1

 =



x+ u− w′ (η sin θ̄ + ξ cos θ̄
)
− v′

(
η cos θ̄ − ξ sin θ̄

)
v +

(
1− v′2

2

) (
η cos θ̄ − ξ sin θ̄

)
− v′w′ (η sin θ̄ + ξ cos θ̄

)
w +

(
1− w′2

2

) (
η sin θ̄ + ξ cos θ̄

)


(2.149)
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In addition, the total differentials of the position vectors are

dr0 =


dx0
dy0
dz0

 =


1 dx

cos θ0 dη − sin θ0 dξ
sin θ0 dη + cos θ0 dξ

 (2.150)

and

dr1 =


dx1
dy1
dz1

 (2.151)

where

dx1 =

[
1 + u′ − w′′ (η sin θ̄ + ξ cos θ̄

)
− w′θ′

(
η cos θ̄ − ξ sin θ̄

)
−v′′

(
η cos θ̄ − ξ sin θ̄

)
+ v′θ′

(
η sin θ̄ + ξ cos θ̄

) ]
dx

+
[
−w′ sin θ̄ − v′ cos θ̄

]
dη +

[
−w′ cos θ̄ + v′ sin θ̄

]
dξ

dy1 =

[
v′ − v′v′′(η cos θ̄ − ξ sin θ̄)−

(
1− v′2

2

)
θ′(η sin θ̄ + ξ cos θ̄)

−(v′′w′ + v′w′′)(η sin θ̄ + ξ cos θ̄)− v′w′θ′(η cos θ̄ − ξ sin θ̄)

]
dx

+
[(

1− v′2

2

)
cos θ̄ − v′w′ sin θ̄

]
dη +

[
−
(
1− v′2

2

)
sin θ̄ − v′w′ cos θ̄

]
dξ

dz1 =
[
w′ − w′w′′ (η sin θ̄ + ξ cos θ̄

)
+
(
1− w′2

2

)
θ′
(
η cos θ̄ − ξ sin θ̄

)]
dx

+
[(

1− w′2

2

)
sin θ̄

]
dη +

[(
1− w′2

2

)
cos θ̄

]
dξ

(2.152)

Therefore, the left-hand side of Eq. (2.145) can be rewritten (see expansion in
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Eq. (C.1) of Appendix C), from which we obtain the following strains

ϵxx = u′ +
v′2

2
+
w′2

2
− v′′

(
η cos θ̄ − ξ sin θ̄

)
− w′′ (η sin θ̄ + ξ cos θ̄

)
+
θ′2

2

(
η2 + ξ2

)
+O(ϵ4) (2.153)

ϵxη = −θ′ ξ
2
− v′′w′ ξ

2
+

{
−u

′

2
(v′ cos θ̄ + w′ sin θ̄)− v′3

4
cos θ̄ − w′3

4
sin θ̄

−v
′2w′

2
sin θ̄

}
+O(ϵ4) (2.154)

ϵxξ = θ′
η

2
+ v′′w′η

2
+

{
u′

2
(v′ sin θ̄ − w′ cos θ̄) +

v′3

4
sin θ̄ − w′3

4
cos θ̄

−v
′2w′

2
cos θ̄

}
+O(ϵ4) (2.155)

Terms up to order O(ϵ3) were retained, as required to obtain a second-order

accurate expression for the strain energy [80].

Each component of the longitudinal strain is plotted in Fig. 2.22. The

first three terms are the typical components of the Green-Lagrangian longi-

tudinal strain. The fourth and fifth terms, proportional to v′′ and w′′, are

the bending strains. On the neutral axis, these terms vanish. The last term

accounts for the longitudinal strain which arises due to the trapeze effect.

Additionally, note that definitions of strains other than the Green-

Lagrangian strains are found in the literature, such as the Eulerian strains for

instance. However, for small deformations, all these definitions coalesce. In

particular, it can be seen that the Lagrangian strain field shown by Eq. (2.153)-

(2.155) is similar, up to second-order, to the Eulerian strain field derived by

Hodges and Dowell [21].
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(a) u′ + v′2
2 + w′2

2
(b) −v′′

(
η cos θ̄ − ξ sin θ̄

)

(c) −w′′ (η sin θ̄ + ξ cos θ̄
)

(d) θ′2
2

(
η2 + ξ2

)
Figure 2.22: Components of the longitudinal strain
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Next, the square of the strains can be computed (see expansion in Eq. (C.2)-

(C.4) of Appendix C), substituted into Eq. (2.144), and then integrated over

the blade cross-sectional area.

2.5.7.2 Structural cross-sectional constants

For simplicity, we define the following set of cross-section constants:

∫∫
A
dηdξ = A

∫∫
A
η2 dηdξ = Iξ

∫∫
A
(η2 + ξ2)

2
dηdξ = B1∫∫

A
η dηdξ = Aeη

∫∫
A
ξ2 dηdξ = Iη

∫∫
A
η (η2 + ξ2) dηdξ = B2∫∫

A
ξ dηdξ = Aeξ

∫∫
A
ηξ dηdξ = Iηξ

∫∫
A
ξ (η2 + ξ2) dηdξ = B3∫∫

A
(η2 + ξ2) dηdξ = J = Ak2A

It can be seen that eη and eξ are the coordinates of the tensile axis (loci of the

area centroids) relative to the elastic axis, positive in the direction of the η-

and ξ- axes respectively.

Using the constants defined above, the expression for the blade strain energy

is

(U)b =
1

2

∫
R

EA

(
u′ +

v′2

2
+
w′2

2

)2

+ EAk2A

(
u′ +

v′2

2
+
w′2

2

)
θ′2

+EIξ
(
v′′2 cos2 θ̄ + w′′2 sin2 θ̄ + v′′w′′ sin 2θ̄

)
+EIη

(
v′′2 sin2 θ̄ + w′′2 cos2 θ̄ − v′′w′′ sin 2θ̄

)
+EIηξ

(
(w′′2 − v′′2) sin 2θ̄ + 2v′′w′′ cos 2θ̄

)
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+EB1
θ′4

4
+ EB2θ

′2 (−v′′ cos θ̄ − w′′ sin θ̄
)

+EB3θ
′2 (v′′ sin θ̄ − w′′ cos θ̄

)
+EAeη

(
(−2u′ − v′2 − w′2)(v′′ cos θ̄ + w′′ sin θ̄)

)
+EAeξ

(
(2u′ + v′2 + w′2)(v′′ sin θ̄ − w′′ cos θ̄)

)
+GJ(θ′2 + 2v′′w′θ′)

+GAeη
(
−2u′θ′(w′ cos θ̄ − v′ sin θ̄)− 2v′2w′θ′ cos θ̄

+v′3θ′ sin θ̄ − w′3θ′ cos θ̄
)

+GAeξ
(
2u′θ′(w′ sin θ̄ + v′ cos θ̄) + 2v′2w′θ′ sin θ̄

+v′3θ′ cos θ̄ + w′3θ′ sin θ̄
)

+O(ϵ6) (2.156)

Note that although the order of the truncated terms in Eq. (2.156)

is O(ϵ6), this equation does not contain any term of order O(ϵ5), while the

strain energy derived in other studies [21, 22, 50] does. The absence of terms

of order O(ϵ5) is the present derivation is due to the order scheme, particularly

the twist angles considered of order O(1).

2.5.7.3 Variation in the strain energy

The variation in the strain energy are given by

δU =

∫
R

∫∫
A

(Eϵxxδϵxx + 4Gϵxηδϵxη + 4Gϵxξδϵxξ) dη dξ dx (2.157)
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The variations in the strains (δϵxx, δϵxη and δϵxξ) can be computed from the

strain field formulated previously (see derivation in Eq. (C.5)-(C.7)). Subse-

quently, the variation in the strain energy becomes

(δU)b =

∫
R

(
su′δu′ + sv′δv

′ + sv′′δv
′′ + sw′δw′

+ sw′′δw′′ + sθδθ + sθ′δθ
′) dx + O(ϵ6) (2.158)

where

su′ = EA

(
u′ +

v′2

2
+
w′2

2

)
+ EA

k2A
2
θ′2 − (EAv′′ +GAθ′w′

:::::::
)(eη cos θ̄ − eξ sin θ̄)

− (EAw′′ −GAθ′v′
:::::::

)(eη sin θ̄ + eξ cos θ̄) (2.159)

sv′ = EA

(
u′ +

v′2

2
+
w′2

2

)
v′ + EA

k2A
2
v′θ′2

− (EAv′v′′ + 2GAv′w′θ′
::::::::::

)(eη cos θ̄ − eξ sin θ̄)

−

(
EAv′w′′ −GAu′θ′

:::::::
− 3

2
GAv′2θ′

:::::::::

)
(eη sin θ̄ + eξ cos θ̄) (2.160)

sv′′ =

[
EIξ cos

2 θ̄ + EIη sin
2 θ̄ − EIηξ sin 2θ̄

]
v′′

+
1

2

[
(EIξ − EIη) sin 2θ̄ + 2EIηξ cos 2θ̄

]
w′′

− EB2

2
θ′2 cos θ̄ +

EB3

2
θ′2 sin θ̄ − EA(u′ +

v′2

2
+
w′2

2
)(eη cos θ̄ − eξ sin θ̄)

+GJθ′w′ (2.161)

sw′ = EA

(
u′ +

v′2

2
+
w′2

2

)
w′ + EA

k2A
2
w′θ′2
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− (EAw′v′′ +GAu′θ′
:::::::

+GAv′2θ′
:::::::

+
3

2
GAw′2θ′

::::::::::

)(eη cos θ̄ − eξ sin θ̄)

− EAw′w′′(eη sin θ̄ + eξ cos θ̄) +GJv′′θ′ (2.162)

sw′′ =

[
EIξ sin

2 θ̄ + EIη cos
2 θ̄ + EIηξ sin 2θ̄

]
w′′

+
1

2

[
(EIξ − EIη) sin 2θ̄ + 2EIηξ cos 2θ̄

]
v′′

− EB2

2
θ′2 sin θ̄ − EB3

2
θ′2 cos θ̄

− EA

(
u′ +

v′2

2
+
w′2

2

)
(eη sin θ̄ + eξ cos θ̄) (2.163)

sθ =
1

2

[
(EIξ − EIη) sin 2θ̄ + 2EIηξ cos 2θ̄

]
w′′2

− 1

2

[
(EIξ − EIη) sin 2θ̄ + 2EIηξ cos 2θ̄

]
v′′2

+

[
(EIξ − EIη) cos 2θ̄ − 2EIηξ sin 2θ̄

]
v′′w′′

−
(
EB2

2
cos θ̄ − EB3

2
sin θ̄

)
w′′θ′2 +

(
EB2

2
sin θ̄ +

EB3

2
cos θ̄

)
v′′θ′2

+

[
EA

(
u′ +

v′2

2
+
w′2

2

)
v′′ +GAu′w′θ′

:::::::::
+GAv′2w′θ′

::::::::::

+GA
w′3θ′

2
::::::::

]
(eη sin θ̄ + eξ cos θ̄)

+

[
−EA

(
u′ +

v′2

2
+
w′2

2

)
w′′ +GAu′v′θ′

:::::::::

+GA
v′3θ′

2
::::::::

]
(eη cos θ̄ − eξ sin θ̄) (2.164)
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sθ′ = EAk2A

(
u′ +

v′2

2
+
w′2

2

)
θ′ +

(
EB1

2

)
θ′3 −

(
EB2 sin θ̄ + EB3 cos θ̄

)
w′′θ′

−
(
EB2 cos θ̄ − EB3 sin θ̄

)
v′′θ′ +GJθ′ +GJv′′w′

−

(
GAu′w′
:::::::

+GAv′2w′
::::::::

+
GAw′3

2
:::::::

)
(eη cos θ̄ − eξ sin θ̄)

+

(
GAu′v′
:::::::

+
GAv′3

2
::::::

)
(eη sin θ̄ + eξ cos θ̄) (2.165)

Underline Meaning

Extension-torsion terms associated with trapeze effect
Bending-torsion terms significant for large twist angles
Non-vanishing terms for arbitrary asymmetric cross-sections

::::
Higher-order terms retained consistently with truncation scheme

The terms indicated by a double underline correspond to the extension-

torsion coupling due to the trapeze effect. In addition, the terms with a

single underline are related to bending-torsion coupling. They vanish for rotor

blades with small angles of twist. Hence, they do not appear in conventional

rotor blade studies, such as [21, 22, 50]. However, they are important for this

dissertation. The terms with a dashed underline must be kept for arbitrary

non-symmetric cross-sections. Finally, the wavy underlined terms are retained

consistent with the mathematically rigorous ordering scheme presented in § 2.4.

These terms were arbitrarily neglected in other rotor blade analyses [21, 50].

It will be shown in Chapter 3 of this dissertation that the equations
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of motion are solved in their linear form, according to the Newton-Raphson

method. Consequently, the linearized expression for the strain energy is de-

rived next.

2.5.7.4 Linearized strain energy

The nonlinear expression for the strain energy can be linearized by first-

order Taylor expansion about the equilibrium (or trim) position, as follows

(δU)bLin = (δU)b 0 +
N∑
i=1

(
∂δU

∂qi

)
0

∆qi (2.166)

where the magnitude of the truncated terms is on the order of (∆qi)
2 or less.

This equation can be written in matrix form, as

(δU)b Lin = (δU)b 0 + δqT K∆q (2.167)

The matrix of gradients K shown in the above equation corresponds to the

structural part of the Jacobian matrix. It is given in Appendix D.1.

2.5.8 Blade kinetic energy

The general formulation for the blade kinetic energy is

T =
1

2

∫
R

∫∫
A

ρ

(
dr1
dt

· dr1
dt

)
dη dξ dx (2.168)

where

dr1
dt

= ṙ1 + Ω× r1

=


ẋ1 − Ωy1
ẏ1 + Ωx1

ż1

 (2.169)
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In addition, the time derivative of the position vector, relative to the rotor

blade fixed coordinate system, is

ṙ1 =


ẋ1
ẏ1
ż1

 (2.170)

where

ẋ1 = u̇− ẇ′
(
η sin θ̄ + ξ cos θ̄

)
− w′θ̇

(
η cos θ̄ − ξ sin θ̄

)
−v̇′

(
η cos θ̄ − ξ sin θ̄

)
+ v′θ̇

(
η sin θ̄ + ξ cos θ̄

)
ẏ1 = v̇ −

(
1− v′2

2

)
θ̇
(
η sin θ̄ + ξ cos θ̄

)
− v′v̇′

(
η cos θ̄ − ξ sin θ̄

)
−v̇′w′ (η sin θ̄ + ξ cos θ̄

)
− v′ẇ′

(
η sin θ̄ + ξ cos θ̄

)
−v′w′θ̇

(
η cos θ̄ − ξ sin θ̄

)
ż1 = ẇ +

(
1− w′2

2

)
θ̇
(
η cos θ̄ − ξ sin θ̄

)
− w′ẇ′

(
η sin θ̄ + ξ cos θ̄

)
(2.171)

Expanding the dot product in Eq. (2.168) (see expansion in Eq. (C.8)) and

integrated over the blade cross-sectional area, we obtain the expression for the

blade kinetic energy.

2.5.8.1 Inertial cross-sectional constants

For simplicity, we define the following set of inertial cross-sectional

constants:

∫
A
ρ dηdξ = m0

∫
A
ρ η2 dηdξ = m0k

2
mξ

∫
A
ρ (η2 + ξ2) dηdξ = m0k

2
m∫

A
ρ η dηdξ = m0dη

∫
A
ρ ξ2 dηdξ = m0k

2
mη∫

A
ρ ξ dηdξ = m0dξ

∫
A
ρ ηξ dηdξ = m0k

2
mηξ
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where m0 represents the mass per unit length of the rotor blade. dη and dξ

are the mass centroid offsets from the elastic axis, respectively in the η and ξ

directions. m0k
2
mξ

and m0k
2
mη

are the chordwise and flatwise mass moment of

inertia of the blade section about the elastic axis.

Consequently, the kinetic energy can be rewritten as

(T )b =
1

2

∫
R

m0

(
v̇2 + ẇ2 + Ω2v2 + Ω2x2 + 2Ω2xu− 2Ωvu̇+ 2Ωxv̇ + 2Ωv̇u

)
+m0dη

[
−2v̇θ̇ sin θ̄ + 2ẇθ̇ cos θ̄ − 2xΩ2(w′ sin θ̄ + v′ cos θ̄)

+2Ω2v cos θ̄ + 2Ωvẇ′ sin θ̄ + 2Ωvw′θ̇ cos θ̄ + 2Ωvv̇′ cos θ̄

−2Ωvv′θ̇ sin θ̄ − 2Ωu̇ cos θ̄ − 2Ωx

(
1− v′2

2

)
θ̇ sin θ̄

−2xΩ(v′v̇′ cos θ̄ + v̇′w′ sin θ̄ + v′ẇ′ sin θ̄)− 2Ωxv′w′θ̇ cos θ̄

−2Ωuθ̇ sin θ̄ − 2Ωw′v̇ sin θ̄ − 2Ωv′v̇ cos θ̄
]

+m0dξ

[
−2v̇θ̇ cos θ̄ − 2ẇθ̇ sin θ̄ − 2xΩ2(w′ cos θ̄ − v′ sin θ̄)− 2Ω2v sin θ̄

+2Ωvẇ′ cos θ̄ − 2Ωvw′θ̇ sin θ̄ − 2Ωvv̇′ sin θ̄ − 2Ωvv′θ̇ cos θ̄

+2Ωu̇ sin θ̄ − 2Ωx

(
1− v′2

2

)
θ̇ cos θ̄

+2xΩ(v′v̇′ sin θ̄ − v̇′w′ cos θ̄ − v′ẇ′ cos θ̄)

+2Ωxv′w′θ̇ sin θ̄ − 2Ωuθ̇ cos θ̄ − 2Ωw′v̇ cos θ̄ + 2Ωv′v̇ sin θ̄
]

+m0k
2
m

[
θ̇2 + 2Ωw′θ̇

]
+m0k

2
mξ

[
Ω2 cos2 θ̄ + 2Ωẇ′ sin θ̄ cos θ̄ + 2Ωv̇′ cos2 θ̄

]
+m0k

2
mη

[
Ω2 sin2 θ̄ − 2Ωẇ′ sin θ̄ cos θ̄ + 2Ωv̇′ sin2 θ̄

]
+m0k

2
mηξ

[
− 2Ω2 cos θ̄ sin θ̄ + 2Ωẇ′(cos2 θ̄ − sin2 θ̄)− 4Ωv̇′ cos θ̄ sin θ̄

]
+O

(
ϵ4
)

(2.172)
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2.5.8.2 Variation in the kinetic energy

Taking the variation of Eq. (2.168), we obtain

δT =

∫
R

∫∫
A

ρ
dr1
dt

· δ
(
dr1
dt

)
dη dξ dx (2.173)

where

δ

(
dr1
dt

)
=


δẋ1 − Ωδy1
δẏ1 + Ωδx1

δż1

 (2.174)

The product in Eq. (2.173) can be expanded, as

dr1
dt

· δ
(
dr1
dt

)
= ẋ1δẋ1 + ẏ1δẏ1 + ż1δż1 − ẋ1Ωδy1 + ẏ1Ωδx1

− y1Ωδẋ1 + x1Ωδẏ1 + y1Ω
2δy1 + x1Ω

2δx1 (2.175)

Note that upon writing the EHP, the time derivatives of the variations in the

generalized coordinates (δẋ1, δẏ1 and δż1) are integrated by parts. For sim-

plicity, we can operate the integration by parts at this stage of the derivation.

Therefore, the variation in the kinetic energy becomes∫ t2

t1

δT dt =

∫ t2

t1

∫
R

∫∫
A

ρ
[ (

−ẍ1 + 2Ωẏ1 + Ω2x1
)
δx1

+
(
Ω2y1 − ÿ1 − 2Ωẋ1

)
δy1 + (−z̈1) δz1

]
dηdξ dx dt (2.176)

where boundary terms were voluntarily omitted. The position and velocity

vectors are given by Eq. (2.149) and (2.171) respectively. Additionally, the

components of the acceleration vector and the variation in the position vector

can be computed (see Eq. (C.9) and Eq. (C.12)).
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In terms of the cross-sectional constants defined in § 2.5.8.1, the final form of

the variation in the kinetic energy is∫ t2

t1

(δT )b =

∫ t2

t1

∫
R

(kuδu+ kvδv + kv′δv
′ + kwδw + kw′δw′ + kθδθ) dx dt+O(ϵ4)

(2.177)

where

ku = m0Ω
2x+ 2m0Ωv̇ − 2m0Ωθ̇(dη sin θ̄ + dξ cos θ̄)

−m0ü
::::

+m0ẅ
′ (dη sin θ̄ + dξ cos θ̄

)
:::::::::::::::::::::::::

+m0v̈
′ (dη cos θ̄ − dξ sin θ̄

)
::::::::::::::::::::::::

+m0w
′θ̈
(
dη cos θ̄ − dξ sin θ̄

)
::::::::::::::::::::::::::

−m0v
′θ̈
(
dη sin θ̄ + dξ cos θ̄

)
:::::::::::::::::::::::::

(2.178)

kv = −m0v̈ +m0Ω
2v − 2m0Ωu̇

+
(
m0Ω

2 +m0θ̇
2 + 2m0Ωv̇

′ + 2m0Ωw
′θ̇
)(

dη cos θ̄ − dξ sin θ̄

)
+
(
m0θ̈ + 2m0Ωẇ

′ − 2m0Ωv
′θ̇
)(

dη sin θ̄ + dξ cos θ̄

)
(2.179)

kv′ = −(2m0Ωv̇ +m0Ω
2x)

(
dη cos θ̄ − dξ sin θ̄

)
+m0Ωθ̇

((
k2mξ − k2mη

)
sin 2θ̄ + 2k2mηξ cos 2θ̄

)
+m0ü

(
dη cos θ̄ − dξ sin θ̄

)
::::::::::::::::::::::::

(2.180)

kw = −m0ẅ −m0θ̈

(
dη cos θ̄ − dξ sin θ̄

)
+m0θ̇

2
(
dη sin θ̄ + dξ cos θ̄

)
(2.181)

kw′ = −
(
2m0Ωv̇ +m0Ω

2x
)(

dη sin θ̄ + dξ cos θ̄

)
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+ 2m0Ωθ̇
(
k2mξ sin

2 θ̄ + k2mη cos
2 θ̄ + k2mηξ sin 2θ̄

)
+m0ü

(
dη sin θ̄ + dξ cos θ̄

)
::::::::::::::::::::::::

(2.182)

kθ = −
(
2m0Ωv̇w

′ +m0Ω
2xw′ +m0ẅ

)(
dη cos θ̄ − dξ sin θ̄

)
+

(
2m0Ωv̇v

′ +m0Ω
2xv′ −m0Ω

2v +m0v̈ + 2m0Ωu̇

)(
dη sin θ̄ + dξ cos θ̄

)
− 2m0Ωẇ

′ (k2mξ sin
2 θ̄ + k2mη cos

2 θ̄ + k2mηξ sin 2θ̄
)

−m0Ωv̇
′ [(k2mξ − k2mη

)
sin 2θ̄ + 2k2mηξ cos 2θ̄

]
− 1

2
m0Ω

2

[(
k2mξ − k2mη

)
sin 2θ̄ + 2k2mξη cos 2θ̄

]
−m0k

2
mθ̈

−m0üv
′ (dη sin θ̄ + dξ cos θ̄

)
:::::::::::::::::::::::::

+m0üw
′ (dη cos θ̄ − dξ sin θ̄

)
::::::::::::::::::::::::::

(2.183)

Underline Meaning

Extension-torsion terms associated with trapeze effect
Bending-torsion terms significant for large twist angles
Non-vanishing terms for arbitrary asymmetric cross-sections

::::
Higher-order terms retained to prevent singular eigenvalue problem

The terms with a single or double underline do not appear in other

studies developed for torsionally stiff rotor blades [21, 22, 50]. However, they

are important for the present analysis in which large twist angles are consid-

ered. In addition, the dash-underlined terms must generally be retained when

the area centroids of the blade cross-sections are not coincident with the elastic

axis (as in the case of circular arc airfoils).
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Note also the presence of the wave-underlined terms, which are one order of

magnitude greater than the order of truncation, defined in § 2.4. If these

terms are omitted, then the elements of the mass matrix associated with the

equation for the axial displacement u (i.e. the terms in Eq. (2.178)) are all

zero. In that case, an eigenvalue analysis of the equations of motion is found

to be singular. To circumvent this issue the additional terms, marked by a

wave-underline, are retained.

As indicated in § 2.1, the computation of the trim solution requires

only the time-invariant (or steady-state) kinetic energy of the rotor blade. Its

expression is deduced from Eq. (2.177) and is given in the next section.

2.5.8.3 Time-invariant kinetic energy

Retaining only the time independent terms in Eq. (2.177), we obtain

(δT0)b =

∫
R

{
m0Ω

2x

}
δu

+

{
m0Ω

2v +m0Ω
2
(
dη cos θ̄ − dξ sin θ̄

)}
δv

+

{
−m0Ω

2x
(
dη cos θ̄ − dξ sin θ̄

)}
δv′

+

{
−m0Ω

2x
(
dη sin θ̄ + dξ cos θ̄

)}
δw′

+

{
−m0Ω

2xw′ (dη cos θ̄ − dξ sin θ̄
)
+
(
m0Ω

2xv′

−m0Ω
2v
) (
dη sin θ̄ + dξ cos θ̄

)
− 1

2
m0Ω

2
[(
k2mξ − k2mη

)
sin 2θ̄ + 2k2mξη cos 2θ̄

]}
δθ

+O(ϵ4) (2.184)
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Finally, the nonlinear expression for the blade kinetic energy can be linearized

about the trim state.

2.5.8.4 Linearized kinetic energy

Note that when linearizing the kinetic energy, the generalized coordi-

nates general positions, general velocities and general accelerations (qi’s, q̇i’s

and q̈i’s). Therefore, the expression for the first-order Taylor expansion is

(δT )b Lin = (δT )b 0 +
N∑
i=1

[(
∂δT

∂qi

)
0

∆qi +

(
∂δT

∂q̇i

)
0

∆q̇i +

(
∂δT

∂q̈i

)
0

∆q̈i

]
(2.185)

or in matrix form

(δT )b Lin = (δT )b 0 + δqT K∆q+ δqT G∆q̇+ δqT M∆q̈ (2.186)

The components of the K matrix are added to those obtained from lineariza-

tion of the strain energy to form the stiffness matrix. In addition, G and M

are the gyroscopic matrix and the mass matrix respectively. Note also that

when the gradients are computed, the trim state generalized velocities and

generalized accelerations are assumed equal to zero. This is consistent with

assuming that the rotor blade at trim state has a constant deformation.

Each element of the mass, gyroscopic and stiffness matrices is shown in Ap-

pendix D.2.

Finally, to complete the blade structural model, the gravitational potential

energy must be derived.
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2.5.9 Blade gravitational potential energy

The potential energy associated with the work done by gravitational forces is

defined as

Vg =

∫
R

∫∫
A

ρg r1 · kZI
(2.187)

where r1 is the position vector of a particle on the deformed blade, given by

Eq. (2.149). Hence

Vg =

∫
R

∫∫
A

ρg

[
w +

(
1− w′2

2

)(
η sin θ̄ + ξ cos θ̄

)]
= g

∫
R

[
m0w +m0

(
1− w′2

2

)(
dη sin θ̄ + dξ cos θ̄

)]
(2.188)

Taking the variation, we obtain

(δVg)b = g

∫
R

m0δw

−
{
m0w

′ (dη sin θ̄ + dξ cos θ̄
)}

δw′

+

{
m0

(
1− w′2

2

)(
dη cos θ̄ − dξ sin θ̄

)}
δθ (2.189)

In addition, a linear approximation of the previous equation is given in Ap-

pendix D.3.

2.5.10 Potential energy stored in the root springs

Rotor blades often feature stiffness singularities at the root due to the

compliance of the control mechanism. To model these singularities, torsional

springs can be added to the simulation. If the stiffness of the springs in the
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Figure 2.23: Flap torsional spring

lag, flap and twist directions are kζ , kβ and kθ respectively (see for instance a

torsional spring acting on the flap degree of freedom, in Fig. 2.23), then the

expression for the potential energy stored in the springs is

(Vsp)b =
1

2
kβ w

′2
x0

+
1

2
kζ v

′2
x0

+
1

2
kθ θ

2
x0

(2.190)

And the variation in this energy is

(δVsp)b = kβ w
′
x0
δw′

x0
+ kζ v

′
x0
δv′x0

+ kθ θx0 δθx0 (2.191)

2.5.11 Modeling of the tip mass

The mass secured at the tip of the blade contributes to the total kinetic

energy and potential gravitational energy of the rotor. The work done by the

aerodynamic forces acting on it is ignored.

Two tip mass configurations are studied. In a first configuration, la-

beled configuration BP, the tip mass consists of a solid rod of length Lm,

secured perpendicular to the blade spanwise direction. A variable θind is intro-

duced to account for the presence of an index angle between the blade chord
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(a) Position of the tip mass rela-
tive to the blade airfoil

(b) Coordinate system
{Xm, Ym, Zm} attached to
the tip mass

Figure 2.24: Position and orientation of the tip mass in the blade configuration
BP

and the tip mass longitudinal axis. The motivation for such an index angle

will be given in § 4.1.2 of this dissertation.

The second tip mass configuration, labeled configuration C, features a

solid rod aligned with the blade span and secured at the leading edge. The

energies added to the total energy of the rotor system, due to the presence of

the tip mass, are derived below for both configurations.

2.5.11.1 Configuration BP

The tip mass of the flexible blade BP is a uniform circular tungsten rod,

of mass mm and density ρm. It is secured perpendicular to the blade spanwise

direction (see Fig. 2.24a). The distances between the tip mass attachment
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point and the elastic axis are ηm and ξm along the η-axis and ξ-axis respectively

(see Fig. 2.24b). In addition, an index angle θind is inserted between the

longitudinal axis of the tip mass and the blade chord.

The position vector r1m of a particle along the longitudinal axis of the

tip mass can be deduced from the expression found for r1 (Eq. (2.149)), in

which we substitute 
x = R

η = ηm + λ cos(θind)

ξ = ξm − λ sin(θind)

(2.192)

where λ is a bound variable which takes values in the range [−L1;L2]. The

result of the substitution is

r1m =


x1m

y1m

z1m

 =



R + um − w′
m

[
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]
−v′m

[
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)]
vm +

(
1− v′2m

2

) [
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)]
−v′mw′

m

[
ηm sin θ̄m + ξm cos θ̄m + λ sin(θ̄m − θind)

]
wm +

(
1− w′2

m

2

) [
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]


(2.193)

In addition, we can take the variation in the position vector δr1m (see Eq. (C.16)-

(C.18)) and use the result to derive the kinetic energy and the gravitational

potential energy associated with the tip mass.

Kinetic energy The expression for the kinetic energy can easily be derived

by applying the change of variables defined by Eq. (2.192) to the general
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expression for the kinetic energy of the airfoil (see Eq. (C.15)), and then inte-

grating over the tip mass volume instead of the blade volume.

For simplicity, we define the following integrals

mm =

∫ L2

−L1

∫∫
Am

ρm dAm dλ (2.194)

mmT1 =

∫ L2

−L1

∫∫
Am

ρm (η sin+ξ cos) dAm dλ

= mm

[
ηm sin θ̄m + ξm cos θ̄m +

L2 − L1

2
sin(θ̄m − θind)

]
(2.195)

mmT2 =

∫ L2

−L1

∫∫
Am

ρm (η cos−ξ sin) dAm dλ

= mm

[
ηm cos θ̄m − ξm sin θ̄m +

L2 − L1

2
cos(θ̄m − θind)

]
(2.196)

mmT3 =

∫ L2

−L1

∫∫
Am

ρm (η sin+ξ cos)2 dAm dλ

= mm

[
η2m sin2 θ̄m + ξ2m cos2 θ̄m + ηmξm sin 2θ̄m

+
L2 − L1

2

(
2ηm sin θ̄m sin(θ̄m − θind) + 2ξm cos θ̄m sin(θ̄m − θind)

)
+

L3
1 + L3

2

3(L1 + L2)
sin2(θ̄m − θind)

]
(2.197)

mmT4 =

∫ L2

−L1

∫∫
Am

ρm (η cos−ξ sin)2 dAm dλ

= mm

[
η2m cos2 θ̄m + ξ2m sin2 θ̄m − ηmξm sin 2θ̄m

+
L2 − L1

2

(
2ηm cos θ̄m cos(θ̄m − θind)− 2ξm sin θ̄m cos(θ̄m − θind)

)
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+
L3

1 + L3
2

3(L1 + L2)
cos2(θ̄m − θind)

]
(2.198)

mmT5 =

∫ L2

−L1

∫∫
Am

ρm (η sin+ξ cos) (η cos−ξ sin) dAm dλ

= mm

[
(η2m − ξ2m) sin θ̄m cos θ̄m + ηmξm cos 2θ̄m

+
L2 − L1

2

(
ηm sin(2θ̄m − θind) + ξm cos(2θ̄m − θind)

)
+

L3
1 + L3

2

3(L1 + L2)
sin(θ̄m − θind) cos(θ̄m − θind)

]
(2.199)

Therefore, the variation in the kinetic energy of the tip mass is

(δT )m =

{
mmΩ

2xm + 2mmΩv̇m − 2mmT1Ωθ̇m

}
δum

+

{
mmΩ

2vm −mmv̈m − 2mmΩu̇m +mmT1(θ̈m + 2Ωẇ′
m − 2Ωv′mθ̇m)

+mmT2(Ω
2 + θ̇2m + 2Ωw′

mθ̇m + 2Ωv̇′m)

}
δvm

+

{
2mmT5Ωθ̇m +mmT2(−2Ωv̇m − Ω2xm)

}
δv′m

+

{
−mmẅm +mmT1θ̇

2
m −mmT2θ̈m

}
δwm

+

{
2mmT3Ωθ̇m +mmT1(−2Ωv̇m − Ω2xm)

}
δw′

m

+

{
mmT1(2Ωv̇mv

′
m + Ω2xmv

′
m − Ω2vm + v̈m + 2Ωu̇m)

+mmT2(−2Ωv̇mw
′
m − Ω2xmw

′
m − ẅm) +mmT3(−θ̈m − 2Ωẇ′

m)

+mmT4(−θ̈m) +mmT5(−Ω2 − 2Ωv̇′m)

}
δθm

+O(ϵ4) (2.200)

The Taylor expansion about the trim condition of this expression is given in
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Appendix D.4.

If only the time-invariant terms in the kinetic energy are retained, we obtain

the steady-state kinetic energy of the tip mass as

(δT0)m =

{
mmΩ

2xm

}
δum +

{
mmΩ

2vm +mmΩ
2T2

}
δvm

−
{
mmΩ

2xmT2

}
δv′m −

{
mmΩ

2xmT1

}
δw′

m

+

{(
mmΩ

2xmv
′
m −mmΩ

2vm
)
T1 −mmΩ

2xmw
′
mT2 −mmΩ

2T5

}
δθm

+O(ϵ4) (2.201)

The expansion of the constants T1, T2 and T5 in the previous expression, in

terms of the geometric parameters ηm, ξm, L1 and L2, give some insight into the

kinematic stiffening of the rotor blade generated by the tip mass. Substituting

Eq. (2.194)-(2.199) into Eq. (2.200), we obtain

(δT0)m = mmΩ
2xmδum

+mmΩ
2

{
vm + ηm cos θ̄m − ξm sin θ̄m +

L2 − L1

2
cos(θ̄m − θind)

}
δvm

−mmΩ
2xm

{
ηm cos θ̄m − ξm sin θ̄m +

L2 − L1

2
cos(θ̄m − θind)

}
δv′m

−mmΩ
2xm

{
ηm sin θ̄m + ξm cos θ̄m +

L2 − L1

2
sin(θ̄m − θind)

}
δw′

m

−mmΩ
2

{
xmw

′
m

(
ηm cos θ̄m − ξm sin θ̄m +

L2 − L1

2
cos(θ̄m − θind)

)
− (xmv

′
m − vm)

(
ηm sin θ̄m + ξm cos θ̄m +

L2 − L1

2
sin(θ̄m − θind)

)
+

(
η2m
2

− ξ2m
2

)
sin 2θ̄m + ηmξm cos 2θ̄m +

L3
1 + L3

2

6(L1 + L2)
sin 2(θ̄m − θind)
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+
L2 − L1

2

(
ηm sin(2θ̄m − θind) + ξm cos(2θ̄m − θind)

)}
δθm

+O(ϵ4) (2.202)

We can further simplify this equation for the case where the tip mass is at-

tached at its center (i.e. L1 = L2), and that the attachment point is coincident

with the elastic axis (i.e. ηm = ξm = 0). The variation in the tip mass kinetic

energy then reduces to a single term given by

(δT0)m = −mmΩ
2L

2

12
sin
[
2
(
θ̄m − θind

)]
δθm (2.203)

which can be recognized as the restoring propeller moment due to the centrifu-

gal forces acting on the tip mass. It can be seen that this restoring moment

will vanish if the index angle θind is equal to the pitch angle at the tip of the

blade θ̄m.

Gravitational potential energy The variation in the gravitational poten-

tial energy of the tip mass is given by

(δVg)m = mmgδzm (2.204)

Using Eq. (C.16)-(C.18), we obtain

(δVg)m = mmg δwm −mmg w
′
m T1 δw

′
m +mmg

(
1− w

′2
m

2

)
T2 δθm (2.205)

The linearization of this expression about the trim state is shown in Ap-

pendix D.5.
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(a) Planform view (b) Cross-section

Figure 2.25: Position and orientation of the tip mass for the blade configuration
C

2.5.11.2 Configuration C

The derivation of the energies associated with the tip mass in config-

uration C is similar to that corresponding to the tip mass BP. The planform

view and cross-section of the flexible rotor blade C are shown in Fig. 2.25. In

this case, the tip body is a solid rod of length Lm and mass mm. The distance

from the axis of rotation Z to the inboard end of the tip mass is xm. In ad-

dition, ηm and ξm are the rod longitudinal axis offsets from the elastic axis of

the blade, along the η- and ξ- direction respectively (see Fig. 2.25b, note that

ηm > 0 and ξm < 0).

The position vector of a particle along the longitudinal axis of the tip mass is

obtained from Eq. (2.149), in which we substitute
x = xm + λ

η = ηm

ξ = ξm

(2.206)

Thus, the components of the position vector in the {X, Y, Z} reference frame
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are

r1m =


x1m
y1m
z1m

 (2.207)

where

x1m = (xm + λ) + um − w′
m

[
ηm sin θ̄m + ξm cos θ̄m

]
− v′m

[
ηm cos θ̄m − ξm sin θ̄m

]
y1m = vm +

(
1− v′2m

2

) [
ηm cos θ̄m − ξm sin θ̄m

]
− v′mw

′
m

[
ηm sin θ̄m + ξm cos θ̄m

]
z1m = wm +

(
1− w′2

m

2

) [
ηm sin θ̄m + ξm cos θ̄m

]
(2.208)

Note that as the rigid mass does not deform, twist and bending deformations

of the blade airfoil for x ∈ [xm ; xm + Lm] are prevented. Also noting that

Lm ≪ R, we can assume that

vm = v(xm + λ) ≃ v(xm) (2.209)

wm ≃ w(xm) (2.210)

θm ≃ θ(xm) (2.211)

Subsequently, the expressions for the kinetic energy and the gravitational

potential energy associated with the tip mass C are given by Eq. (2.200)

and (2.205), in which xm is replaced by xm + Lm/2, and in which the fol-

lowing integral constants are substituted

mm =

∫ L

0

∫∫
Am

ρm dAm dλ (2.212)

mmT1 =

∫ L

0

∫∫
Am

ρm
(
ηm sin θ̄m + ξm cos θ̄m

)
dAm dλ
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= mm

(
ηm sin θ̄m + ξm cos θ̄m

)
(2.213)

mmT2 =

∫ L

0

∫∫
Am

ρm
(
ηm cos θ̄m − ξm sin θ̄m

)
dAm dλ

= mm

(
ηm cos θ̄m − ξm sin θ̄m

)
(2.214)

mmT3 =

∫ L

0

∫∫
Am

ρm
(
ηm sin θ̄m + ξm cos θ̄m

)2
dAm dλ

= mm

[
η2m sin2 θ̄m + ξ2m cos2 θ̄m + ηmξm sin 2θ̄m

]
(2.215)

mmT4 =

∫ L

0

∫∫
Am

ρm
(
ηm cos θ̄m − ξm sin θ̄m

)2
dAm dλ

= mm

[
η2m cos2 θ̄m + ξ2m sin2 θ̄m − ηmξm sin 2θ̄m

]
(2.216)

mmT5 =

∫ L

0

∫∫
Am

ρm
(
ηm sin θ̄m + ξm cos θ̄m

) (
ηm cos θ̄m − ξm sin θ̄m

)
= mm

[
1

2

(
η2m − ξ2m

)
sin 2θ̄m + ηmξm cos 2θ̄m

]
(2.217)

The calculation of the energies related to the presence of the tip mass

completes the derivation of the structural model. In the next section, the

aerodynamic model is derived.

2.6 Aerodynamic Model

The virtual work done by aerodynamic forces and moments is calculated

from 2-D strip theory assuming incompressible flow. In addition, we assume
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that the aerodynamic loading is only influenced by the apparent velocity in

the plane of the deformed blade cross-section. A general aerodynamic model

is developed for unsteady flow, in which the airfoil is assumed to experience

harmonic pitching and heaving motion. The resulting expressions are then

specialized to the case of quasi-steady flow. In both cases, 2-D aerodynamic

coefficients are extracted from lookup tables developed from experimental mea-

surements. In addition, the steady induced inflow is calculated from classical

blade element-momentum theory (BEMT).

2.6.1 Unsteady aerodynamic model

To accurately predict unsteady aeroelastic phenomena, such as dynamic

instabilities (flutter or limit cycle oscillations), unsteady aerodynamic effects

must be considered, and their impact on the aerodynamic loads must be as-

sessed. In particular, blade motion (pitching or flapping), blade deformations

(elastic twist or bending) and perturbation of the downwash produced by dis-

crete tip vortices are various sources that may affect the blade aerodynamic

loads [41].

One important parameter used to quantify the degree of unsteadiness

of the aerodynamics of an airfoil is the reduced frequency. This dimensionless

parameter is defined as

k =
ωc

2V∞
(2.218)

where ω is the frequency of oscillations of the airfoil and V∞ is the free-stream

velocity. Using a dimensional analysis, it can be shown that the resultant
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aerodynamic forces acting on an oscillating airfoil can be written as a func-

tion of the reduced frequency, in addition to the Reynolds number and the

Mach number. According to the value of the reduced frequency, assumptions

regarding the flow can be made, as follows
k = 0 steady flow

0 ≤ k ≤ 0.05 quasi-steady flow

0.05 ≤ k ≤ 0.2 unsteady flow

k > 0.2 highly unsteady flow

(2.219)

Note that for a helicopter rotor blade, the reduced frequency (like the Reynolds

number or the Mach number) is an ambiguous parameter as it depends upon

the local air velocity, which varies radially. One convention is to calculate

this parameter at the 75% radius location. This approach is employed in this

dissertation, and the corresponding reduced frequency is denoted k75.

In the next two sections, the equations for the unsteady lift and pitching

moment acting on an airfoil are derived. First, Theodorsen’s theory, focused

on the unsteady aerodynamics of a flat plate, is recalled. Then, the theory is

adapted to the case of a rotor blade operating in hover.

2.6.1.1 Theodorsen’s theory for a flat plate

The following derivation is based on Theodorsen’s theory [35, 81] for a

thin flat plate experiencing oscillatory pitching and heaving motion in a steady

flow. The flow surrounding the plate is assumed to be inviscid, incompressible,

and to always remain attached to the airfoil. In addition, it is assumed that

the thin airfoil has a chord of length 2b, and is pitching at a rate α̇ about
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Figure 2.26: Thin airfoil section undergoing pitching and heaving motion

a point located a distance x = a · b from the mid-chord. x is the chordwise

coordinate, directed from the leading-edge towards the trailing-edge, as shown

in Fig. 2.26. Finally, the vertical heaving velocity is ḣ, defined to be positive

downward.

The lift and moment acting on the section shown in Fig. 2.26 can be

expressed in terms of circulatory components (LC , MC) and noncirculatory

components (LNC , MNC) as

L = LC + LNC (2.220)

M =MC +MNC (2.221)

The circulatory lift is obtained from potential flow theory. In this theory, the

presence of the airfoil in a flow field is represented by a vortex sheet placed

along the chordline, resulting in a net vorticity called the bound circulation.

When the bound circulation of the airfoil is suddenly changed, under the action

of pitching or heaving motion for instance, an equal and opposite amount of

vorticity is shed into the wake, as required by Kelvin’s circulation theorem.

The shed vorticity in the wake induces velocity at the airfoil (which can be
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calculated using the Biot-Savart Law) that opposes the change in lift associated

with the unsteady pitching or heaving. This “lift deficiency” effect decays

as the shed vortex travels downstream, hence it depends on the free-stream

velocity and on the frequency of oscillation of the airfoil. The wake-induced

lift deficiency is commonly represented by a complex function of the reduced

frequency k, called the Theodorsen lift deficiency function [35], and is equal to

C(k) = F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(2.222)

The Hankel function is defined as H
(2)
ν = Jν− iYν , with Jν and Yν being Bessel

functions of the first and second kind, respectively.

As a result, the circulatory lift can be rewritten [77, 78] as

LC = LQSC(k) (2.223)

= 2πρ∞Ub

[
Uα+ ḣ+

(
1

2
− a

)
bα̇

]
C(k) (2.224)

where LQS is the quasi-steady lift and ρ∞ is the density of air. The magnitude

and phase of the Theodorsen function C(k) are shown in Fig. 2.27.

Note that the third term inside the square bracket of Eq. (2.224) vanishes when

the pitching axis is located at the three-quarter chord point (i.e. a = 1/2).

Hence, it can be seen that the square bracket quantity represents the downwash

at three-quarter chord. Moreover, note that one cannot define a unique angle

of attack for unsteady flow, since the flow direction varies along the chordline

as a result of the varying downwash. However, it is possible to introduce a
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Figure 2.27: Theodorsen lift deficiency function

so-called effective angle of attack, as

αeff =

[
α +

ḣ

U
+

(
1

2
− a

)
b

U
α̇

]
C(k) (2.225)

Additionally, the noncirculatory lift is a result of the mass of air being

accelerated by motion of the airfoil, perpendicular to its chord. Unlike its

circulatory counterpart, the non-circulatory lift does not depend upon vorticity

and it can exist even when the free-stream velocity is zero. It is composed of

the following two terms [77]:

1. A lift force with center of pressure at the mid-chord, of magnitude equal

to the apparent mass of a cylinder of air, of radius equal to the semi-chord

b, multiplied by the vertical acceleration at the mid-chord point:

L
(1)
NC = ρ∞πb

2
(
ḧ− abα̈

)
2. A lift force with center of pressure at the 3/4-chord point, of the nature

of a centrifugal force, of amount equal to the apparent mass ρ∞πb
2 times
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Uα̇:

L
(2)
NC = ρ∞πb

2Uα̇

Finally, the noncirculatory moment is a nose-down couple equal to the

apparent moment of inertia ρ∞πb
2(b2/8) multiplied by the angular acceleration

α̈:

Ma = −ρ∞πb
4

8
α̈

Combining the results above, the total lift per unit span is

L = LC + L
(1)
NC + L

(2)
NC (2.226)

= 2πρ∞Ub

[
Uα + ḣ+

(
1

2
− a

)
bα̇

]
C(k) + ρ∞πb

2
[
Uα̇+ ḧ− abα̈

]
(2.227)

And the total moment per unit span about the pitching axis is

M = b

(
1

2
+ a

)
LC + a bL

(1)
NC −

(
1

2
− a

)
b L

(2)
NC +Ma (2.228)

= 2πρ∞Ub
2

(
1

2
+ a

)[
Uα + ḣ+

(
1

2
− a

)
b α̇

]
C(k)

+ ρ∞πb
3

[
a ḧ−

(
1

2
− a

)
Uα̇−

(
1

8
+ a2

)
b α̈

]
(2.229)

These equations were derived for the case of a flat plate undergoing

pitching and heaving oscillations in a two-dimensional flow. They can now be

adapted to the case of a rotor blade in hover.

2.6.1.2 Unsteady aerodynamics theory for a rotor blade in hover

In the case of a rotor blade, it is assumed that the pitching axis coincides

with the elastic axis. In addition, the chord c is used instead of the semi-
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chord b. We also introduce the variable xA representing the distance of the

aerodynamic center aft of the pitch axis (xA = −b (1/2 + a)).

The 2-D lift coefficient slope of the thin plate (equal to 2π from thin

airfoil theory) is replaced by the lift coefficient slope of the airfoil Clα. Note

that substituting 2π for Clα affects both the circulatory and noncirculatory

lifts and moments, as shown in Ref. [82]. In addition, for a nonsymmetric

circular arc airfoil, a lift coefficient and a moment coefficient at zero angle of

attack, Cl0 and Cm0, must be included.

Additionally, Theodorsen’s theory has represented an isolated 2-D air-

foil with the wake convected downstream to infinity. However, when rotor

blades are modeled, the effect of the returning wake shed by blades in pre-

vious revolutions, on the blade in question, must be considered. The two-

dimensional model for unsteady aerodynamics of rotor blades, developed by

Loewy [36], includes this effect. In Loewy’s model, the Theodorsen lift defi-

ciency function C(k) is replaced by Loewy function C ′(k) to model the influ-

ence of the returning shed wake on the unsteady airloads. Loewy function is

defined as

C ′(k,m, h) =
H

(2)
1 (k) + 2 J1(k)W (k,m, h)

H
(2)
1 (k) + iH

(2)
0 (k) + 2 [J1(k) + iJ0(k)]W (k,m, h)

(2.230)

where m = ω/Ω, and h is the vertical separation between vortex sheets below

the airfoil. This distance depends on the mean induced velocity λ̄i and the

rotor solidity σ (h = 2cλ̄i/σ). In addition, the complex valued function W is
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given by

W (k,m, h) = 1

e
2kh
c ei2πm − 1

(2.231)

Plots of the magnitude and phase of Loewy function as a function of the

reduced frequency and wake spacing, and for various values of m can be found

in Ref. [82].

Consequently, the total lift and pitching moment about the elastic axis

become

L =C ′(k)

{
1

2
ρ∞U

2cCl0 +
1

2
ρ∞UcClα

[(
ḣ+ Uα

)
+
(
xA +

c

2

)
α̇
]}

+
1

2
ρ∞Clα

c2

4

[(
ḧ+ Uα̇

)
+
(
xA +

c

4

)
α̈
]

(2.232)

M =C ′(k)

{
1

2
ρ∞U

2c2Cm0 −
1

2
ρ∞U

2cCl0 xA

−1

2
ρ∞UcClα xA

[(
ḣ+ Uα

)
+
(
xA +

c

2

)
α̇
]}

+
1

2
ρ∞Clα

c2

4

[
−
(
xA +

c

4

)(
ḧ+ Uα̇

)
− c

4
Uα̇

−c
2

4

(
3

8
+

2xA
c

(
1 +

2xA
c

))
α̈

]
(2.233)

The quantity (ḣ+Uα) in the previous equations represents the airfoil upwash

velocity at the elastic axis. It is the opposite of the airfoil downwash velocity,

classically used in the rotorcraft community, and denoted by UP (see Fig. 2.28).

UP = −
(
ḣ+ Uα

)
(2.234)
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Figure 2.28: Aerodynamic forces on a blade cross-section

In addition, the airfoil velocity parallel to the chord is denoted by UT , and U

is the vector resultant of the sum of UT and UP. Since UP is typically much

smaller than UT , we have

U =
√
U2
T + U2

P ∼ UT (2.235)

Note also the instantaneous angle of attack α in Fig. 2.28, defined as the

angle between the airfoil chord and the resultant velocity U. Substituting

Eq. (2.234) and (2.235) into Eq. (2.232), we can re-write the unsteady lift as

L = C ′(k)

{
1

2
ρ∞U

2
T cCl0 +

1

2
ρ∞UT cClα

[
−UP +

(
xA +

c

2

)
α̇
]}

+
1

2
ρ∞Clα

c2

4

[
−U̇P +

(
xA +

c

4

)
α̈
]

(2.236)

Finally, the aerodynamic profile drag, acting parallel to U is included

based on a constant profile drag coefficient Cd0,

D =
1

2
ρ∞U

2cCd0 (2.237)

The components of the aerodynamic forces can be projected in the {ζ, η, ξ}
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coordinate system, giving{
Fη = −LC sinα−D cosα (2.238a)

Fξ = LC cosα + LNC −D sinα (2.238b)

where cosα = UT/U and sinα = UP/U . The aerodynamic force along the ζ-

axis Fζ , due to the radial velocity UR, is a profile drag force which is neglected

in the present model. Substitution of Eq. (2.232)-(2.237) into Eq. (2.238a)

and (2.238b) yields

Fη =

{
−1

2
ρ∞cCl0UTUP +

1

2
ρ∞cClα

[
U2
P − UP

(
xA +

c

2

)
α̇
]}

C ′(k)

− 1

2
ρ∞U

2
T cCd0 (2.239)

Fξ =

{
1

2
ρ∞cCl0U

2
T +

1

2
ρ∞cClα

[
−UPUT + UT

(
xA +

c

2

)
α̇
]}

C ′(k)

+
1

2
ρ∞Clα

c2

4

[
−U̇P +

(
xA +

c

4

)
α̈
]

(2.240)

Mζ =

{
1

2
ρ∞c

2Cm0U
2
T − 1

2
ρ∞U

2
T cCl0xA

−1

2
ρ∞UT cClαxA

[
−UP +

(
xA +

c

2

)
α̇
]}

C ′(k)

+
1

2
ρ∞Clα

c2

4

[(
xA +

c

4

)
U̇P − c

4
UT α̇− c2

4

(
3

8
+

2xA
c

(
1 +

2xA
c

))
α̈

]
(2.241)

where UP/UT and Cd0/Clα are neglected compared to unity.

Next, UP , UT and α must be obtained in terms of the rotor blade

degrees of freedom u, v, w and θ. The velocity vector of a point located on the

elastic axis of the deformed blade rotating in vacuum was obtained in § 2.5
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(see Eq. (2.171), for which η = ξ = 0). Adding to this expression the induced

velocity Vi, directed along the vertical Z -axis, we obtain the components of

the blade velocity projected in the {X,Y, Z} coordinate system, as

U = (u̇− Ωv) iX + (v̇ + Ω(x+ u)) jY + (ẇ + Vi) kZ (2.242)

Using the transformation matrix T (defined in Eq. (2.148)), we obtain the air

velocity components in the deformed {ζ, η, ξ} coordinate system, as follows
UR

UT

UP

 = [T]


u̇− Ωv

v̇ + Ω(x+ u)
ẇ + Vi



=



−Ωv + Ωxv′ + w′ẇ + v′v̇ + w′Vi + u̇

(Ωx+ v̇) cos θ̄ + (ẇ + Vi) sin θ̄ + Ωvv′ cos θ̄ + Ωvw′ sin θ̄

+Ωu cos θ̄ − Ωxv
′2

2 cos θ̄

(ẇ + Vi) cos θ̄ − (Ωx+ v̇) sin θ̄ − Ωvv′ sin θ̄ + Ωvw′ cos θ̄

−Ωu sin θ̄ + Ωxv
′2

2 sin θ̄


+O(ϵ3)

(2.243)

Note that UT and UP must be second-order accurate for the virtual work done

by the aerodynamic forces to also have second-order accuracy [83]. Hence, the

truncated terms in Eq. (2.243) are of order O(ϵ3).

Moreover, recall that α̇ is the angular velocity of the blade section

about the deformed elastic axis (ζ-axis). It can be regarded as composed of

two parts:

- One part that arises from rigid-body angular velocity of the rotor hub,
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- Another part that arises from the angular velocities associated with the

blade deformations.

The first contribution is obtained from
α̇ζ

α̇η

α̇ξ


Ω

= [T]


0
0
Ω

 =


w′Ω +O(ϵ3)(

1− w′2

2

)
Ω sin θ̄ +O(ϵ3)(

1− w′2

2

)
Ωcos θ̄ +O(ϵ3)

 (2.244)

The second contribution was derived previously (see Eq. (2.27)), as
α̇ζ

α̇η

α̇ξ


deform

=


˙̄ζ sin β̄ + ˙̄θ

˙̄ζ cos β̄ sin θ̄ − ˙̄β cos θ̄
˙̄ζ cos β̄ cos θ̄ + ˙̄β sin θ̄

 =

 v̇′w′ + ˙̄θ +O(ϵ3)
v̇′ sin θ̄ − ẇ′ cos θ̄ +O(ϵ3)
v̇′ cos θ̄ + ẇ′ sin θ̄ +O(ϵ3)


(2.245)

Therefore, to second order, the local angular velocity is

α̇ = α̇ζ = θ̇ + v̇′w′ + Ωw′ (2.246)

Finally, the aerodynamic loads are responsible for a virtual work which can be

written as

(δWa)b =

∫
R

(avδv + awδw + aθδθ) dx + O(ϵ5) (2.247)

The generalized forces av and aw, and the generalized moment aθ are computed

by coordinate system transformation of the expressions given by Eq. (2.239)-

(2.241) 
au
av
aw

 = [T]T


0
Fη

Fξ

 (2.248)
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which gives

av = Fη

[(
1− v′2

2

)
cos θ̄ − v′w′ sin θ̄

]
− Fξ

[(
1− v′2

2

)
sin θ̄ − v′w′ cos θ̄

]
(2.249)

aw = Fη

(
1− w′2

2

)
sin θ̄ + Fξ

(
1− w′2

2

)
cos θ̄ (2.250)

aθ =Mζ (2.251)

The final equations are simplified by retaining the first and second-order terms

in the non-dimensionalized virtual works. In particular, note that we make

the following assumptions

Cl0

Clα

,
Cm0

Clα

= O(ϵ) (2.252)

Cd0

Clα

= O(ϵ2) (2.253)

in addition to the ordering scheme defined in § 2.4.

Upon simplification, and introducing the dimensionless constants λi = Vi/(ΩR)

and r = x/R, the generalized forces and moments associated with the aerody-

namic loads are

av =− 1

2
ρ∞(Ωx)2cClα

[(
1 +

v̇

Ωx

)(
λi
r
+

ẇ

Ωx

)
sin θ̄ −

(
λi
r
+

ẇ

Ωx

)2

cos θ̄

]
C ′(k)

− 1

2
ρ∞(Ωx)cClα

[(
λi
r
+

ẇ

Ωx

)( c
2
+ xA

)
θ̇ + (Ωvw′ + Ωxv′w′) sin θ̄

]
C ′(k)

− 1

2
ρ∞(Ωx)2cCl0

(
λi
r
+

ẇ

Ωx

)
cos θ̄ C ′(k)

− c2

16
ρ∞(Ωx)Clα

[(
λi
r
+

ẇ

Ωx

)
(1− cos 2θ̄) +

(
1 +

v̇

Ωx

)
sin 2θ̄

]
θ̇

127



− c2

16
ρ∞Clα

[
v̈(1− cos 2θ̄)− ẅ sin 2θ̄ +

(
2xA +

c

2

)
θ̈ sin θ̄

]
− 1

2
ρ∞(Ωx)2

c

4
Cd0(3 cos θ̄ + cos 3θ̄) (2.254)

aw =− 1

2
ρ∞(Ωx)2cClα

[(
1 +

v̇

Ωx

)(
λi
r
+

ẇ

Ωx

)
cos θ̄ −

(
1 +

v̇

Ωx

)2

sin θ̄

+

(
v′2 +

w′2

2

)
sin θ̄

]
C ′(k)

+
1

2
ρ∞(Ωx)cClα

[( c
2
+ xA

)(
1 +

v̇

Ωx

)
θ̇ + Ωw′

( c
2
+ xA

)
− Ωvw′ cos θ̄

+(2Ωu+ 2Ωvv′) sin θ̄
]
C ′(k)

+
1

2
ρ∞(Ωx)2cCl0

(1 + 2v̇

Ωx

)
cos θ̄ +

(
λi
r
+

ẇ

Ωx

)
sin θ̄

C ′(k)

+
c2

16
ρ∞(Ωx)Clα

[(
1 +

v̇

Ωx

)
(1 + cos 2θ̄) +

(
λi
r
+

ẇ

Ωx

)
sin 2θ̄

]
θ̇

− c2

16
ρ∞Clα

[
ẅ(1 + cos 2θ̄)− v̈ sin 2θ̄ −

(
2xA +

c

2

)
θ̈ cos θ̄

]
− 1

2
ρ∞(Ωx)2

c

2
Cd0 sin θ̄(1 + cos 2θ̄) (2.255)

aθ =
1

2
ρ∞(Ωx)2

c2

2
Cm0(1 + cos 2θ̄)C ′(k)

+
1

2
ρ∞(Ωx)2

c

2
xAClα

[
2

(
λi
r
+

ẇ

Ωx

)
cos 2θ̄ −

(
1 +

2v̇

Ωx

)
sin 2θ̄

]
C ′(k)

− 1

2
ρ∞(Ωx)cxAClα

[( c
2
+ xA

)
θ̇ cos θ̄

]
C ′(k)

− c2

16
ρ∞(Ωx)Clα(c+ 2xA)θ̇ cos θ̄
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− 1

2
ρ∞(Ωx)2

c

2
xACl0(1 + cos 2θ̄)C ′(k) (2.256)

Underline Meaning

Significant terms for large twist angles
Non-vanishing terms for asymmetric airfoil sections about the η-axis

The non-underlined terms in the previous equations are similar to those

reported in analyses found in the literature (see Eq. (23) in Ref. [84] for in-

stance). The double-underlined terms arise due to the differences between

the ordering schemes in this dissertation and in other studies. In particu-

lar, these terms must be retained for arbitrarily large angles of twist. The

dash-underlined terms are present due to the non-symmetry of the circular

arc airfoil about the η-axis. Finally, note that the nonlinear terms quadratic

in v̇θ̇, ẇθ̇, ẇ2 and v̇ẇ are included in the previous equations because they are

of same order as the other retained terms, but they do not contribute to a

linearized stability analysis.

The virtual work done by the aerodynamic forces can also be linearized

about the trim condition, giving rise to mass, damping and stiffness matrix

terms. The results of the linearization is given in Appendix D.6.

2.6.2 Quasi-steady aerodynamic model

The analysis can be specialized to the case of quasi-steady aerodynam-

ics. This is particularly useful to obtain the steady rotor blade deformations,
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also called trim state. In this case, the lift, drag and aerodynamic pitching mo-

ment are solely functions of the steady local angle of attack. In addition, the

Theodorsen function, when the reduced frequency k = 0, is equal to unity. The

noncirculatory forces and moments vanish. Consequently, the quasi-steady lift

and drag forces, and the aerodynamic pitching moments are

LQS =
1

2
ρ∞U

2cCl (2.257)

DQS =
1

2
ρ∞U

2cCd (2.258)

MQS =
1

2
ρ∞U

2c2Cm0 −
1

2
ρ∞U

2cxACl (2.259)

where Cl and Cd are computed from table look-up as functions of the angle

of attack. The steady-state angle of attack can be obtained by comparison of

the quasi-steady lift (Eq. (2.257)) to the unsteady lift (Eq. (2.236)). Hence,

αQS = −UT

UP

(2.260)

By retaining the first and second-order terms in the previous expression, we

find

αQS =
1

2
sin 2θ̄ − λi

r
cos 2θ̄ − vw′

x
cos 2θ̄

+

[
vv′

x
− v′2

2
+
u

x
− 1

2

(
λi
r

)2
]
sin 2θ̄ +O(ϵ3) (2.261)

The underlined terms are usually discarded for analyses assuming small twist

angles.

Then, the resultant of the quasi-steady aerodynamic forces along the η-axis
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and the ξ-axis are

F(η QS) = −1

2
ρ∞U

2
T cCd −

1

2
ρ∞UPUT cCl (2.262)

F(ξ QS) =
1

2
ρ∞U

2
T cCl −

1

2
ρ∞UPUT cCd (2.263)

M(ζ QS) =
1

2
ρ∞U

2
T c (cCm0 − xACl) (2.264)

Finally, the virtual work done by the aerodynamic forces and moment acting

on the blade section can be written as

(δWa QS)b =

∫ R

x0

[{
− 1

2
ρ∞ (Ωx)2 cCd cos θ̄

− 1

2
ρ∞ (Ωx)2 (cCl cos θ̄ + cCd sin θ̄)

λi
r

}
δv

+

{
1

2
ρ∞ (Ωx)2 cCl cos θ̄

+
1

2
ρ∞ (Ωx)2 (cCl sin θ̄ − cCd cos θ̄)

λi
r

}
δw

+

{
1

2
ρ∞ (Ωx)2 (c2Cm0 − cxACl) cos

2 θ̄

− 1

2
ρ∞ (Ωx)2 cxACl sin 2θ̄

λi
r

}
δθ

]
dx

+ O(ϵ5) (2.265)

Finally, the linearization of Eq. (2.265) is obtained by Taylor expansion, and

shown in Appendix D.7.
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Chapter 3

Numerical Models

The full nonlinear equations of motion derived in the previous chapter

do not have a closed-form solution. Instead, the solution must be computed

numerically. Two numerical approaches are described in this dissertation.

First, a numerical model based on the assumed-modes method is presented

in § 3.1. The use of this method is focused on the computation of the trim

solution. The strengths and weaknesses of this approach are discussed. Second,

a numerical model relying on the finite element method (FEM) is developed

in § 3.2. The FEM model is used to compute the trim solution as well as the

stability boundaries of the rotor blades.

3.1 Solution by Assumed-Modes Method

One way to solve the steady-state equation of motion given by Eq. (2.3)

is to approximate the deformation functions u(x), v(x), w(x) and θ(x) by the
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finite series 

u(x) =
L∑
l=1

pl ψ
u
l (x)

v(x) =
M∑

m=1

qm ψ
v
m(x)

w(x) =
N∑

n=1

rn ψ
w
n (x)

θ(x) =
P∑

p=1

sp ψ
θ
p(x)

(3.1)

where ψu, ψv, ψw, ψθ are known basis functions (or mode shapes), and pl, qm,

rn, sp are unknown generalized coordinates. Taking the variations of Eq. (3.1),

we obtain 

δu(x) =
L∑
l=1

δpl ψ
u
l (x)

δv(x) =
M∑

m=1

δqm ψ
v
m(x)

δw(x) =
N∑

n=1

δrn ψ
w
n (x)

δθ(x) =
P∑

p=1

δsp ψ
θ
p(x)

(3.2)

We can replace the deformation variables and the virtual deformation vari-

ables in Eq. (2.3) by the finite series shown above. Then, by invoking the

arbitrariness of the virtual generalized coordinates, we obtain a system of

“L +M + N + O” coupled, nonlinear equations of motion. The solution of

these equations are the generalized coordinates pl, qm, rn and sp, which are
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used to re-construct the continuous functions of deformation, according to

Eq. (3.1).

Note that the level of approximation of this approach is dependent

upon the nature of the modes shapes and the number of elements in the finite

series shown above. The mode shapes are typically simple functions, and

must be chosen from the class of admissible functions, which are continuous,

differentiable and satisfy the essential boundary conditions of the problem. In

the case of the clamped-free blade studied in this dissertation, the essential

boundary conditions are

u(x0) = v(x0) = v′(x0) = w(x0) = w′(x0) = θ(x0) = 0 (3.3)

Accordingly, the mode shapes are chosen as follows

u(x) =
L∑
l=1

pl

(
x− x0
R

)l

(3.4)

v(x) =
M∑

m=2

qm

(
x− x0
R

)m

(3.5)

w(x) =
N∑

n=2

rn

(
x− x0
R

)n

(3.6)

θ(x) =
P∑

p=1

sp

(
x− x0
R

)p

(3.7)

The spatial discretization of the equation of motion is coded in the

Matlab
c⃝
environment. In addition, the solution to the system of nonlinear,

coupled equations are obtained iteratively by means of the built-in Matlab
c⃝

function fsolve, part of the Fortran library MINPACK [85]. The orders of
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the polynomial series approximating the deformations are selected such that a

prescribed level of accuracy of the solution is obtained, with a reasonable cost

of computing time.

In conclusion, the strength of the assumed-modes method stems from

its simple and concise numerical implementation. The corresponding source

code developed for this dissertation contains approximately 1, 050 lines of code.

However, the increase in number of degrees of freedom leads to a significant

increase in computational time. Furthermore, the fsolve algorithm fails to

converge for problems including the full set of extensional, lead-lag bending,

flapwise bending, and torsional degrees of freedom. Therefore, it appears

that the assumed-modes method is very well suited, and should be limited,

to the computation of preliminary predictions of blade deformation, where a

moderate level of accuracy is expected. For instance, this approach was used

to solve a simplified version of the equations of motion, including only flap

bending and torsional deformations.

Alternatively, a numerical model based on the finite element method

can be implemented. This model is presented in the next section.

3.2 Solution by Finite Element Method

A finite element method of solution can be derived directly from the

expression of the EHP (see Eq. (2.2)), which can be seen as a weak formulation

of the equation of motion. In this approach, the equation is discretized by

approximating the deformation variables as finite series of piecewise continuous
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finite element basis functions (also called shape functions). Upon discretization

of the rotor blade into N beam elements, the EHP expression can be written

in discretized form as∫ t2

t1

[
N∑
i=1

(δTi − δVi + δWnc i)

]
dt = 0 (3.8)

where i represents the index of the ith beam element. In the following sections,

some attributes of the finite element model developed in this dissertation are

given. The finite beam elements and the spatial discretization of the rotor

blades are defined in § 3.2.1. The choice of shape functions is motivated

in § 3.2.2. Additionally, the procedure to compute the trimmed solution is

described in § 3.2.3. Finally, the computation of the stability boundaries is

presented in § 3.2.4.

3.2.1 Beam finite elements

Each beam element consists of 14 degrees of freedom (DOF), distributed

over three nodes (see Fig. 3.1). The degrees of freedom form an elemental

vector of generalized coordinates

qi =
{
u1 u2 u3 v1 v

′
1 v3 v

′
3 w1 w

′
1 w3 w

′
3 θ1 θ2 θ3

}T
(3.9)

Therefore, the spatial discretization of the rotor blade into N elements yields

Nn = 2N + 1 nodes. Assembly of the elemental vectors of generalized coordi-

nates yields the global displacement vector

u =

{
u1 u2 · · · uNn︸ ︷︷ ︸

2N + 1 DOF

v1 v
′
1 · · · vNn v

′
Nn︸ ︷︷ ︸

2(N+1) DOF

w1 w
′
1 · · · wNn w

′
Nn︸ ︷︷ ︸

2(N+1) DOF

θ1 θ2 · · · θNn︸ ︷︷ ︸
2N + 1 DOF

}T

(3.10)
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Figure 3.1: Beam finite element

where Nn is equal to the total number of nodes, and NDOF = 2 (4N +3) is the

total number of DOF. Between the elements, there is continuity of displace-

ment and slope for the lead-lag and flap bending deflections, and continuity

of the axial displacement and the elastic pitch angle. Using appropriate shape

functions (Hermite cubic polynomials for the bending degrees of freedom, and

Lagrange quadratic polynomials for the extension and twist degrees of free-

dom), we can express the continuous variables of deformation over one element

as a function of the generalized coordinates as follows

u(x, t) =
3∑

i=1

ui(t)Li(x) (3.11a)

v(x, t) =
2∑

i=1

(vi(t)H
0
i (x) + w′

i(t)H
1
i (x)) (3.11b)

w(x, t) =
2∑

i=1

(wi(t)H
0
i (x) + w′

i(t)H
1
i (x)) (3.11c)

θ(x, t) =
3∑

i=1

θi(t)Li(x) (3.11d)

or in a more compact form
u(x, t)
v(x, t)
w(x, t)
θ(x, t)

 =


L(x)
H(x)
H(x)
L(x)


T

qi(t) (3.12)
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Additionally, we can simplify the computation of deformation by performing

the calculations on a master element defined by the interval −1 ≤ ξ ≤ 1, so

that limits of integration are −1 and 1 instead of x1 and x2. Specifically, the

transformation from local to global coordinates follows the relation

x = x1 +
1

2
(x2 − x1)(1 + ξ) (3.13)

or

ξ =
2

x2 − x1
x− x2 + x1

x2 − x1
(3.14)

If he is the length of the global element, then

he = x2 − x1 (3.15)

3.2.2 Shape functions

The order of the shape functions is imposed by the number of degrees

of freedom in each element. With four bending DOF in each element, bending

deformation can be modeled by a third order polynomial. Hence, the shape

functions corresponding to bending deformations are Hermite cubic polynomi-

als. Similarly, the Lagrange shape functions for extension and twist, defined

by three DOF, must be quadratic polynomials. The general expressions for

the Hermite shape functions are derived hereafter. The elements of derivation

to obtain the Lagrange shape functions are similar, thus only the final result

is indicated.

To derive the Hermite cubic shape functions, we start by expanding,

in the elemental coordinate system, the finite series approximating one of the
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two bending variables (Eq. (3.11c) for instance)

w(ξ, t) = w1(t)H
0
1 (ξ) + w2(t)H

0
2 (ξ) + w′

1(t)H
1
1 (ξ) + w′

2(t)H
1
2 (ξ) (3.16)

Since w(ξ, t) must be a third order polynomial, it can be written as

w(ξ, t) = a0(t) + a1(t)ξ + a2(t)ξ
2 + a3(t)ξ

3 (3.17)

Hence, at the nodes of the master element, we must have

w(−1) = w1 = a0 − a1 + a2 − a3 (3.18a)

w′(−1) = w′
1 =

2
he

(a1 − 2a2 + 3a3) (3.18b)

w(1) = w2 = a0 + a1 + a2 + a3 (3.18c)

w′(1) = w′
2 =

2
he

(a1 + 2a2 + 3a3) (3.18d)

While deriving these boundary conditions, note that the change of variable

from x to ξ leads to a Jacobian which must be taken into account when com-

puting derivatives. In particular,

w′(x) =
d

dx
(w) =

d

dξ
(w)

dξ

dx
= w′(ξ)

2

he
(3.19)

Eq. (3.18a) through (3.18d) can be rewritten in matrix form as
w1

w′
1

w2

w′
2

 =


1 −1 1 −1

0 2/he −4/he 6/he

1 1 1 1

0 2/he 4/he 6/he



a0
a1
a2
a3

 (3.20)

After inversion, we obtain
a0
a1
a2
a3

 =


1/2 he/8 1/2 −he/8

−3/4 −he/8 3/4 −he/8
0 −he/8 0 he/8

1/4 he/8 −1/4 he/8



w1

w′
1

w2

w′
2

 (3.21)
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Thus, Eq.(3.16) rewrites

w(ξ) =

(
1

2
− 3

4
ξ +

1

4
ξ3
)
w1 +

h2
2

(
1

4
− 1

4
ξ − 1

4
ξ2 +

1

4
ξ3
)
w′

1

+

(
1

2
+

3

4
ξ − 1

4
ξ3
)
w2 +

h2
2

(
−1

4
− 1

4
ξ +

1

4
ξ2 +

1

4
ξ3
)
w′

2 (3.22)

From which we can identify the Hermite cubic polynomials as

H0
1 (ξ) =

1
4 (2− 3ξ + ξ3)

H0
2 (ξ) =

1
4 (1− ξ − ξ2 + ξ3) he2

H1
1 (ξ) =

1
4 (2 + 3ξ − ξ3)

H1
2 (ξ) =

1
4 (−1− ξ + ξ2 + ξ3) he2

(3.23)

We can similarly derive the Lagrange quadratic shape functions, and find

L1(ξ) = 1
2(ξ

2 − ξ)

L2(ξ) = 1− ξ2

L3(ξ) = 1
2(ξ

2 + ξ)

(3.24)

In the next section, the algorithm developed to compute the trim solution is

presented.

3.2.3 Computation of the trim solution

The discretized form of the EHP (Eq. (3.8)) leads to a system of NDOF

nonlinear, coupled equations, once arbitrariness of the virtual generalized coor-

dinates has been invoked. Keeping the time-invariant terms only, the resulting
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system of equations prescribes the trim solution. In this dissertation, this sys-

tem of equations is solved using the Newton-Raphson method, along with a

line search algorithm, both described below.

3.2.3.1 Newton-Raphson method

The Newton-Raphson method in numerical analysis is a method for

finding increasingly accurate guesses to the roots of a real-valued function, or

vector of functions. It is applied in this dissertation to solve the steady-state

equations of motion of a rotor blade.

In the following paragraphs, we denote values calculated at the ith

iteration by the superscript ( )i. Substituting the global displacement vector

ui (defined by Eq. (3.10)) in the system of nonlinear steady-state equations of

motion leads to a residue vector Ri on the right hand side. Taking the partial

derivatives of the residue vector with respect to the displacement vector ui,

we obtain the Jacobian matrix

Ki =
∂Ri

∂ui
(3.25)

which is the same as the stiffness matrix for the system of equations. In this

dissertation, the components of the Jacobian matrix are calculated analytically

(see Appendix D) and entered in closed form into the numerical model. This

effort leads to improved convergence of the Newton-Raphson algorithm. In

addition, the exactness of the components of the Jacobian matrix is verified

by comparing them to the results obtained from numerical differentiation of
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Figure 3.2: Newton-Raphson algorithm for 1-D case

the residue vector. To maximize the accuracy of the numerical differentiation,

a complex-step derivative formula is used (see details Appendix E).

The Newton-Raphson method determines the displacement vector for the next

iteration as

ui+1 = ui +∆i (3.26)

= ui − λi(K−1R)i (3.27)

where λi is a constant calculated using the line search algorithm (described in

the next section), used to improve the convergence of the algorithm.

For the one-dimensional case, the Newton-Raphson algorithm can be repre-

sented graphically, as shown in Fig. 3.2. First, a guess for the displacement

variable u is made. This guessed value is denoted u0. The residue function
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is computed for the argument u0. If the result R0 is greater than the error

tolerance for the numerical model, then the slope of the residue function at

u0 is calculated, which determines the variable u for the next iteration, as

u1 = u0 − R0

K0 . The iterative process is repeated until an approximated value

for the root of the residue function is obtained.

In addition, the convergence of the Newton-Raphson method can be

improved by coupling it with a line search algorithm.

3.2.3.2 Line search and backtracking algorithm

While progressing towards the trim solution, the Newton-Raphson al-

gorithm may take steps ∆i yielding large displacements. In particular, the

elastic twist angles may take very large values during the iterative process,

leading to large effective angles of attack. These non-physical, large angles

of attack can prevent the aerodynamic model from converging, particularly

because look-up tables for the aerodynamic coefficients are only defined for a

bounded range of angles of attack. Consequently, the whole numerical model

can fail.

To address this issue, the Newton-Raphson method using a line search

with backtracking algorithm [86] is implemented, so that steps never yield

excessive displacements. The elements of this algorithm are described below.

The objective of the line search algorithm is to guarantee some progress

towards the solution at each iteration. Recall that the Newton step for the set

143



of equations

Ri = 0 (3.28)

is

ui+1 = ui +∆ui (3.29)

where

∆ui = −
(
K−1R

)i
(3.30)

A reasonable strategy to decide whether the Newton step ∆ui is acceptable

is to require that the step decreases the function f, defined as

f =
1

2
Ri ·Ri (3.31)

Thus, the strategy is as follows: the full Newton step is always tried first,

because it yields quadratic convergence once the guess is close enough to the

solution. However, if the Newton step does not reduce f , then the guess is

modified by backtracking along the Newton direction until an acceptable step

is obtained. Because the Newton direction is a descent direction for f , it is

guaranteed to find an acceptable step by backtracking, as

ui+1 = ui + λ∆ui (3.32)

The parameter λ is determined based on an optimized strategy described in

Ref. [86].
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3.2.3.3 Gaussian quadrature rule

The numerical evaluation of integrals is accomplished by Gaussian

quadrature of the form

I =

∫ x2

x1

f(x) dx =

Nl∑
l=1

f(xl)wl (3.33)

where xl are integration points in the interval x1 ≤ x ≤ x2, wl are weight-

ing values, and Nl is the order of the formula. The order of the Gaussian

quadrature rule is selected such that the numerical integration formula does

not induce any error by itself. In particular, recall that a Gauss quadrature

of order Nl can exactly integrate polynomials of degree 2Nl − 1. Based on the

type of shape functions selected in § 3.2.2, the highest degree of polynomial

to be integrated in this analysis is equal to six. Consequently, a Gaussian

quadrature of 4th order is used in this analysis.

3.2.3.4 Computation of the cross-sectional constants

We defined in Chapter 2 of this dissertation a set of constants repre-

senting the result of integrals evaluated over the rotor blade cross-section (see

§ 2.5.7.2 and § 2.5.8.1). The bounds of these integrals are defined relative to

the cartesian coordinate system {ζ, η, ξ}. However, it can be seen that for the

case of a circular arc cross-section, a transformation to cylindrical coordinates

is convenient to compute the integrals.

We introduce a set of geometric parameters (shown in Fig. 3.3) to

define the blade cross-section studied in this analysis. The chord, camber and
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Figure 3.3: Polar coordinate system for calculation of cross-sectional constants

thickness of the blade airfoil are denoted c, Ca and t respectively. In addition,

the center of curvature of the circular arc airfoil, denoted C, is placed at

distances ηc and ξc from the blade elastic axis (i.e. from the origin of the

coordinate system {ζ, η, ξ}). Let us also introduce a cylindrical coordinate

system {ζ, r, γ}, centered about C. The transformation between the coordinate

systems {ζ, η, ξ} and {ζ, r, γ} is given by

p : S(ζ, η, ξ) ∋ (ζ, η, ξ) → p(ζ, r, γ) ∈ S(ζ, r, γ)
ζ
η
ξ

→


ζ

ηc + r cos γ
ξc + r sin γ

 (3.34)

In addition, the change of coordinates for an area integral is given by∫∫
S(η,ξ)

f(η, ξ) dη dξ =

∫∫
S(r,γ)

f(r, γ)

∣∣∣∣∂p∂r × ∂p

∂γ

∣∣∣∣ dr dγ (3.35)
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Therefore, combining the results of Eq. (3.34) and (3.35), we obtain∫∫
S(η,ξ)

f(η, ξ) dη dξ =

∫∫
S(r,γ)

f(r, γ)r dr dγ (3.36)

=

∫ π−γmin

γmin

∫ Ro

Ri

f(r, γ)r dr dγ (3.37)

where γmin is as defined in Fig. 3.3, Ri and Ro are the radii of curvature of

the lower and upper surfaces of the blade airfoil respectively. We can relate

the boundaries of the integral to the geometric parameters defined earlier (c,

Ca, t, ηc, ξc) as follows. First, invoking Pythagorean theorem, the radius of

curvature of the upper surface of the airfoil is

R2
o =

( c
2

)2
+ (Ro − Ca)2

⇔ Ro =
Ca

2
+

c2

8Ca
(3.38)

Then, the radius of curvature of the lower surface can be deduced as

Ri = Ro − t

⇔ Ri =
Ca

2
+

c2

8Ca
− t (3.39)

In addition, the angle γmin is given by

γmin =
π

2
− γ0

=
π

2
− arcsin

(
c/2

Ro

)
(3.40)

Finally, a relationship between ηc, ξc and the radii of curvature is(
Ro +Ri

2

)2

= η2c + ξ2c (3.41)
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Figure 3.4: Assembly of the global stiffness matrix for N = 2 elements. The
dashed-line and solid-line boxes correspond to the local matrices of elements
numbered 1 and 2 respectively.

3.2.3.5 Assembly of the global stiffness matrix

The components of the stiffness matrix are computed locally for one

beam element and assembled into a global matrix. Figure. 3.4 shows the

assembly of the global stiffness matrix for two elements, respectively shown by

the dashed-line and solid-line boxes. The size of the local stiffness matrices is

14× 14. Note that overlapping matrix components sum up.
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3.2.3.6 Boundary conditions

This section summarizes the various types of boundary conditions en-

countered in this analysis. Particularly, it presents how discrete stiffness and

mass properties can be prescribed, to model the presence of a discrete spring

or a tip mass.

Prescribed displacement Components of the displacement vector must be

prescribed to model the rotor blade clamped root condition, which corresponds

to homogeneous Dirichlet boundary conditions. The modeling of Dirichlet

boundary condition is classical and a description can be found in Ref. [87].

For instance, a clamp boundary condition can be imposed on the flap degree

of freedom at the blade root by modifying the stiffness matrix and the force

vector as follows
1 0 · · · · · · 0
0 1 0 · · · 0
... 0 K33 · · · K3, 2N+2
...

...
...

. . .
...

0 0 K2N+2, 3 · · · K2N+2, 2N+2





w1

w′
1

w3
...

w′
Nn


=



0
0

F 0
3 −K2N+1, 1w1 −K2N+1, 2w

′
1

...
F 1
Nn

−K2N+2, 1w1 −K2N+2, 2w
′
1


(3.42)

in which we substitute w1 = w′
1 = 0.

Prescribed stiffness The presence of a torsional spring at the root of the

rotor blade implies a modification of the stiffness matrix K. For instance, if

a flapping spring of stiffness kβ is located at the root of the blade, then the

stiffness of this spring should be added to the bending stiffness of the blade at

149



the node where the spring is acting, i.e.
K11 K12 · · · K1N

K21 K22 + kβ · · · K2N
...

...
. . .

...
KN1 KN2 · · · KNN



w1

w′
1
...
w′

M

 =


F 0
1

F 1
1
...
F 1
M

 (3.43)

Prescribed tip mass The presence of the concentrated tip mass introduces

additional kinetic and potential gravitational energies. These energies are

modeled by discrete stiffness terms acting on the degrees of freedom of the

node located at the tip of the blade. A program is written to create a local

stiffness matrix composed of these stiffness terms. This local matrix takes the

following form

Km =



0 · · · · · · · · · · · · 0 0 · · · · · · 0 0 · · · · · · 0

0 0
...

... 0 0
...

... 0 0
...

... 0

K3,3
...

... K3,6 K3,7
...

... K3, 10 K3, 11
...

... K3, 14

0
... 0 0

...
... 0 0

...
... 0

0 0 0
...

... 0 0
...

... 0

K6,6 K6,7
...

... K6, 10 K6, 11
...

... K6, 14

K7,7
...

... K7, 10 K7, 11
...

... K7, 14

0
... 0 0

...
... 0

0 0 0
...

... 0

K10, 10 K10, 11
...

... K10, 14

sym K11, 11
...

... K11, 14

0
... 0
0 0

K14, 14


(3.44)
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Then, the local matrix is assembled to the global stiffness matrix.

Once the boundary conditions are applied, a Gaussian elimination al-

gorithm is used to solve the linear system of equations Ki∆ui = −Ri. Upon

convergence of the Newton-Raphson algorithm, the full set of generalized co-

ordinates describing the steady-state deformations of the flexible rotor blade

in hover is obtained. The next objective is to determine the response of the

rotor blade to small perturbations of the generalized coordinates about the

trim state. The computation of the stability boundaries is presented in the

next section.

3.2.4 Computation of the stability boundaries

The stability boundaries are obtained by a study of the solutions to the

perturbed equations of motion (see derivation in § 2.1)

M∆q̈+G∆q̇+K∆q− (Ma∆q̈+Ca∆q̇+Ka∆q) = 0 (3.45)

The solutions of Eq. (3.45) can typically be oscillatory or non-oscillatory, with

an exponential increase or decay of the amplitude. They take the general form

∆q = ∆q̄ ep τ (3.46)

where p = δ ± ik are NDOF complex conjugate roots, and τ is defined as

the dimensionless time (τ = 2U t/c). It can be seen that the nature of the

solutions depends upon the sign of the real and imaginary parts of p. The

different cases which can be encountered are summarized in Table. 3.1.
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Table 3.1: Nature of the free response for various values of δ and k

δ k Type of motion Stability
< 0 ̸= 0 Decaying oscillations Stable
= 0 ̸= 0 Pure harmonic oscillations Limit cycle
> 0 ̸= 0 Diverging oscillations Unstable
< 0 = 0 Exponentially decaying motion Stable
= 0 = 0 Time invariant Stable
> 0 = 0 Exponentially diverging motion Unstable

In the absence of aerodynamic forces and moments, the solutions to Eq. (3.45)

are purely oscillatory (see proof in Appendix F). In the presence of airloads,

two types of instability can occur. The first type of instability corresponds

to the case where δ > 0 and k = 0, and is typically called divergence. The

second type is characterized by diverging oscillations for δ > 0 and k ̸= 0 and

is referred to as classical flutter. The onset of divergence or flutter is predicted

according to the numerical methods presented in the following sections.

3.2.4.1 Determination of divergence

Divergence is a static aeroelastic instability characterized by a mono-

tonic growth of one of the degrees of freedom after perturbation of the trim

state. In the case of rotary wing, divergence instability typically affects the

pitch degree of freedom. It occurs when an increase in blade pitch produces

a change in aerodynamic pitching moment greater than the change in elastic

restoring pitching moment. From a mathematical point of view, divergence

occurs if the equilibrium position calculated by the trim analysis is statically

152



unstable, i.e. when ∣∣K−Ka
∣∣ < 0 (3.47)

3.2.4.2 Determination of flutter

Flutter is a dynamic instability that must be predicted by the analysis

of the solutions of the perturbed equations of motion.

A non-trivial solution to Eq. (3.45) exists when the flutter determinant D(p,k)

equals zero, i.e

D(p, k) = det

(
p2 M+

c

2U
pG+

( c

2U

)2
K−A(p)

)
= 0 (3.48)

where

A(p) =

[
p2Ma + p

c

2U
Ca +

( c

2U

)2
Ka

]
(3.49)

Note that the chain rule applied to the time derivatives gives

∂

∂t
=

∂

∂τ

∂τ

∂t
=

2U

c

∂

∂τ
(3.50)

The real and imaginary parts of the roots of the determinant D(p, k), which

are equal to the eigenvalues of the state space matrix (see Eq. (2.14)), give

insights on the stability of the rotor blade.

However, a limitation of the aerodynamic model developed in § 2.6 of

this dissertation is that it is only valid for small harmonic motion of the blade

airfoil, with oscillations of constant amplitude. Therefore, it applies only when

p = ik or

∆q = ∆q̄ eikτ (3.51)
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Nonetheless, it is typically assumed that for sinusoidal motion with slowly

increasing or decreasing amplitude, aerodynamics based on constant amplitude

is a good approximation [88]. Such an assumption is made in this dissertation,

thus we can rewrite the flutter determinant given in Eq. (3.48) as∣∣∣∣p2 M+ p
c

2U
G+

( c

2U

)2
K−A(ik)

∣∣∣∣ = 0 (3.52)

The computation of the roots of the flutter determinant follows an iterative

process, called the p-k method of flutter analysis [88], describe hereafter:

1. Guess a value for the reduced frequency k.

2. Calculate A(ik).

3. Solve the characteristic equation (Eq. (3.48)) for NDOF complex roots p.

4. For the root representing the mode of interest, compute

ki = |ℑ(pi)| γi = ℜ(pi)/ki

5. Repeat steps 2-4 until convergence of ki is obtained.

6. Repeat steps 1-5 for all the modes of interest.

An efficient numerical scheme, proposed by Hassig [89], was implemented to

achieve the whole iterative process. This scheme relies on the Regula Falsi

method (see graphical representation of this method in Fig. 3.5) and consists

of the following steps.
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Figure 3.5: Regula Falsi method for p ∈ R

1. Estimate the reduced frequency of the mode of interest k.

2. Set

p1 = −0.01k + ik p2 = 0 + ik

3. Compute the flutter determinants

D1 = D(p1, k) D2 = D(p2, k)

4. Compute p3 according to the recurrence formula

pi+2 = (pi+1Di − piDi+1)/(Di −Di+1)

5. Iterate until a specified degree of convergence is attained.

6. Repeat for al the desired modes.

Finally, onset of flutter instability is detected by a negative damping

coefficient for one of the eigenmodes.
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3.3 Algorithm Flow Chart

The finite element model described in the previous section was coded

in the Matlab
c⃝
environment and named Vinci. The entire numerical model

comprises approximately 2,750 lines of code. A flow chart describing the model

is shown in Fig. 3.6.
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Chapter 4

Experimental Procedures

This chapter documents the experimental test campaigns conducted

to support the development of an extremely flexible rotor. The design and

fabrication of prototype flexible rotor blades, as well as stiff baseline blades

are described in § 4.1. In addition, the matrix of tests is summarized in § 4.4.

The test bench designed and fabricated for hover testing is presented in § 4.5.

The equipment needed to measure rotor blade deformations using the DIC

technique is described in § 4.6. In particular, the full experimental procedure

allowing the measurement of deformation is detailed.

4.1 Rotor Blades Design and Fabrication

Extremely flexible rotor blades and conventional, stiff rotor blades were

designed and fabricated in-house. They were incorporated in two-bladed rotor

systems and tested in hover.

Two different flexible blade designs were tested. The first design is

labeled flexible blade C. It comprises a tip body designed to minimize its drag.

The second design, labeled flexible blade BP, features an alternate orientation

of the tip mass designed to passively control the blade tip pitch angle.
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Figure 4.1: Schematic of flexible rotor blade C

Additionally, two sets of conventionally stiff rotor blades were fabri-

cated. The first set of blades has a constant chord and is untwisted. It is

referred to as stiff blade R. The second set is labeled stiff blade M and fea-

tures blades with a constant chord and a linear twist distribution. The detailed

geometry of each blade design is described in the next sections.

4.1.1 Flexible blade C

A planform schematic of the rotor blade C is shown in Fig. 4.1. This

blade features a constant chord, untwisted, circular arc airfoil, of camber equal

to 7.5% of the blade chord, and thickness to chord ratio of 2.2%. The span of

this blade, from the axis of rotation to the tip, equals 228.6 mm (9 inches).

The lead-lag hinge is coincident with the blade quarter-chord.

In addition, a 25.4 mm (1 inch) long, 2.4 mm (3/32 inch) diameter

tungsten rod is enclosed at the blade tip, near the leading-edge. The longitu-

dinal axis of the tip mass is parallel to the span of the blade, to minimize its

drag.

The blade is fabricated out of carbon fiber and aramid fiber, using a

wet lay-up process. The resin employed is a polyurethane elastomer (Free-
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Figure 4.2: Mold for wet lay-up of blades C

man 1035 [90]). One ply of impregnated aramid fibers holds the tip body

and is enclosed between two plies of impregnated [0◦/90◦] carbon-fiber cloth

(CST CF-131 [91]). The resulting laminate is cured at room temperature in a

compression mold that has the desired airfoil shape and blade planform. The

mold, shown in Fig. 4.2, is made out of ABS and built in a Computer Numer-

ically Controlled (CNC) machine which allows to make shapes with very fine

contours. The resulting blade, shown at rest in Fig. 4.5a, is extremely soft

both in torsion and in bending. It weighs 5.25 g, the tip mass accounting for

41% of the total mass.

4.1.2 Flexible blade BP

The flexible blade BP is designed with the purpose of passively con-

trolling the pitch angle at the tip of the blade. In particular, the goal is to

make use of the propeller moment acting on the tip body to impart pitching
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(a) Isometric view (b) Cross-section

Figure 4.3: Sketch of flexible blade BP

moments. Accordingly, a tip mass consisting of a solid tungsten rod (25.4 mm

long, 2.4 mm diameter) is secured perpendicularly to the blade span, at an in-

dex angle equal to 22 deg with respect to the blade chord (see Fig. 4.3). While

in rotation, the propeller moment acting on the tip body tends to align its

principal axis of inertia (i.e. its longitudinal axis) with the plane of rotation,

effectively imparting a nose-up pitching moment at the tip of the blade.

The airfoil geometry of blade BP is identical to that of blade C. The

fabrication procedure is also similar to that described in the previous sec-

tion. However, the composite laminate consists of two plies of a [+45◦/-45◦]

carbon fiber cloth, impregnated with a polyurethane epoxy (Aircraft Spruce

Alphapoxy [92]). This combination of ply orientation and material shear mod-

ulus is found to be the most favorable to roll the blade into a cylinder with

minimal radius of curvature. While the choice of the matrix results in a blade

soft in torsion, the angle of the fibers lowers the bending stiffness to accom-

modate the roll-up of the blade.

A 51 µm thick rectangular brass plate, having the same camber as the

blade airfoil, a chord length of 7.6 mm and a length of 15.2 mm is inserted
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Figure 4.4: Planform of flexible blade BP

at the leading edge of the mid-ply of the composite laminate (see Fig. 4.4).

A thin-walled brass cylinder is soldered to the plate, such that it makes an

angle of 22 deg with the blade chord. A mold is used to make the assembly

process repeatable with accuracy. Then, the tip body is inserted inside the

brass tube and its chordwise position is adjusted as desired. For the present

prototype, the length L1 and L2 are respectively equal to 33% and 78% of the

blade chord. The entire tip body assembly is securely attached to the flexible

blade by using a high strength epoxy.

The total mass of the flexible blade BP is equal to 4.30 g and the tip

mass is equal to 2.05 g. The flexible blades BP are incorporated into a 2-

bladed, 457.2 mm (18 inch) diameter rotor and shown at rest in Fig. 4.5b. It

can be seen that their bending rigidity is higher than the bending rigidity of

the flexible blades C. However, the torsional rigidities of both rotors are of the

same order of magnitude.

4.1.3 Stiff blade R

The stiff blade R is designed and fabricated to provide a set of baseline

data for comparison with the flexible blade designs. In particular, the geome-
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try and mass of the blade R are comparable to that of the flexible blades, so

that performance and efficiency metrics can be compared. Accordingly, the

stiff blades R are fabricated using two plies of [+45◦/-45◦] carbon-fiber cloth,

impregnated with a conventional room-temperature cure resin [93], and com-

pressed in a mold. The choice of epoxy guarantees a high bending stiffness

while the orientation of the fibers is optimized for maximum torsional rigidity.

The resulting 228.6 mm long rotor blades are shown in Fig. 4.5c.

4.1.4 Stiff blade M

The stiff blade M features a built-in linear twist distribution of -0.7◦/cm,

and is specifically fabricated for the experimental validation of the DIC mea-

surement technique. The blade M has a constant chord of 50 mm and a thin

circular arc airfoil. It is fabricated in-house by curing two plies of carbon-

fiber prepreg (AS4/3501) in a hot compression mold. The rotor blades M are

incorporated into a 418 mm diameter, two-bladed rotor, as shown in Fig. 4.5d.

4.1.5 Blade design matrix

The properties of each rotor presented above are summarized in Ta-

ble. 4.1. In addition, each rotor is shown at rest, mounted on the hover test

stand in Fig. 4.5.
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(a) Design C (b) Design BP

(c) Design R (d) Design M

Figure 4.5: Extremely flexible rotors and stiff rotors at rest
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4.2 Blade Material Properties

The flexible blades BP and C are fabricated out of unique custom made

composites, whose material characteristics cannot be found in the literature.

However the material properties of these composites, specifically the Young’s

and shear moduli, can be estimated as described below.

First, the total mass mc, mass density ρ, and mass per unit length m0 of the

laminate used to fabricate the blade BP can be measured as
mc = 2.3 g (4.1a)

ρ = 1742 kg/m3 (4.1b)

m0 = 0.013 kg/m (4.1c)

In addition, the mass and mass density of the two plies of carbon fiber cloth

constituting the composite are{
mf = 0.855 g (4.2a)

ρf = 1800 kg/m3 (4.2b)

From Eq. (4.1a) and (4.2a), we deduce that the mass of resin used to impreg-

nate the fibers is

mr = 1.445 g (4.3)

The weight fraction of the fibers and the resin can also be calculated as wf =
mf
mc

= 0.37 (4.4a)

wr =
mr
mc

= 0.63 (4.4b)

Finally, the volume fractions occupied by the fibers and the resin in the com-
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Table 4.2: Material properties of carbon fibers and resins

E (GPa) G (GPa)
Carbon fiber 240 27
Freeman 1035 0.025 0.0086
Alphapoxy 3.5 1.4

posite laminate are given by vf =
ρ
ρf wf = 0.36 (4.5a)

vr =
ρ
ρrwr = 0.64 (4.5b)

Note that to obtain the results shown by Eq. (4.5a) and (4.5b), it is assumed

that the volume fraction of the void inside the composite laminate (vv) is

negligible (typically, vv < 1%). In addition, noting that the total mass and

the volume of the laminate constituting the blade C are almost similar to that

of blade BP, we assume that the volume fractions derived above apply to both

the blade C and the blade BP.

Using Eq. (4.5a) and (4.5b) as well as the material properties of the

carbon fibers and the resins, the material properties of the composites can be

calculated.

The Young’s moduli and shear moduli of the carbon fibers, the poly-

urethane elastomer (Freeman 1035) and the Alphapoxy are summarized in

Table. 4.2. From the rule of mixture [76], we can calculate the equivalent

Young’s modulus and shear modulus in the system of principal axes (i.e axes

1 and 2 in Fig. 4.6) of the composite laminate as

E1 = E2 = Efvf + Ervr (4.6)
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Figure 4.6: Coordinate system of a generally orthotropic material

Table 4.3: Material properties of flexible blades

Ex, Ey (GPa) Gxy (GPa)
Flexible blade C 0.0512 33.1
Flexible blade BP 7.7 34.1

G12 =
GfGr

Gfvr +Grvf
(4.7)

Then, the properties of a laminate with fibers oriented [+θ/−θ] are obtained

from coordinate transformations [76].

1

Ex

=
cos2 θ

E1

(cos2 θ − ν12 sin
2 θ) +

sin2 θ

E2

(sin2 θ − ν21 cos
2 θ) +

cos2 θ sin2 θ

G12

(4.8)

1

Gxy

=
4 cos2 θ sin2 θ

E1

(1 + ν12) +
4 cos2 θ sin2 θ

E2

(1 + ν12) +
(cos2 θ − sin2 θ)2

G12

(4.9)

For θ = 45◦, assuming that ν12 = ν21 = 0.25, we obtain the material properties

shown in Table. 4.3. Note that these material properties constitute estimates

of the actual properties of the composites, which will be refined by correlating

the predictions of blade deformation to experimental measurements.
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4.3 Aerodynamic Coefficients

The 2-D aerodynamic coefficients Cl, Cd and Cm0 of a circular arc

airfoil at low Reynolds number are computed for various angles of attack using

the software ANSYS Fluent
c⃝
, and compared to experimental data on similar

airfoils and for low Reynolds number found in the literature [59, 60]. Note that

no experimental data on circular arc airfoils exists at the Reynolds number of

interest in this dissertation.

A circular arc airfoil of identical camber and thickness-to-chord ratio as

the airfoil of the rotor blades presented in § 4.1 is created in ANSYS Fluent
c⃝
.

The flow surrounding the airfoil is meshed using 2-D elements, as shown in

Fig. 4.7. A constant laminar inflow is modeled and its direction is varied

between successive simulations to account for various angles of attack. In

addition, the flow near the airfoil profile is assumed to be turbulent, based on

a k − ϵ turbulence model.

The pressure distribution acting on the upper and lower surfaces of the

airfoil are computed by ANSYS Fluent
c⃝
using a Reynolds-averaged Navier-

Stokes (RANS) equations solver. Integrating the pressure distribution over

the surface of the airfoil yields the lift, drag and pitching moment coefficients

about the aerodynamic center.

Contours of pressure distribution at angles of attack α = 0◦ and 15◦

are shown in Fig. 4.8. In addition, the variations of lift and drag coefficients

as functions of the angle of attack are shown in Fig. 4.9. The good correlation
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Figure 4.7: 2-D mesh of the flow surrounding a circular arc airfoil

(a) α = 0◦

(b) α = 15◦

Figure 4.8: Contours of static pressure for various angles of attack (Re =
16, 160)
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Figure 4.9: Simulated lift and drag coefficients compared to experimental mea-
surements
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between the simulated aerodynamic coefficients and similar measurements re-

ported in the literature gives some confidence in the Ansys Fluent
c⃝
model.

For the analysis presented in this dissertation, the simulated values of Cl and

Cd are used because they are tabulated for a larger range of angles of attack

than the experimental measurements.

Additionally, the pitching moment coefficient at zero angle of attack

Cm0 of the blade airfoils studied in this analysis is interpolated from the data

published in the literature [59, 60], and is chosen equal to -0.15.

4.4 Test Matrix

The performance of the flexible rotor blades C and BP in hover is

measured on a test stand designed and built in-house, and compared to the

performance of the baseline stiff rotor blades R. The variations of thrust co-

efficient and figure of merit are computed for each rotor, as a function of the

collective pitch angle. The thrust coefficient is a dimensionless representation

of the rotor thrust, defined as

CT =
T

ρ∞AV 2
tip

(4.10)

where A is the rotor disk area. The figure of merit is a nondimensional measure

of hovering thrust efficiency and is defined as the ratio of the ideal power

required to hover to the actual power required. Using results from momentum

172



theory, it can be written as [41]

FM =

C
3/2
T√
2

κC
3/2
T√
2

+ σCd0
8

(4.11)

where κ is called an induced power correction factor, which accounts for power

losses due to nonuniform inflow, tip losses, wake swirl and finite number of

blades. Based on the results from the hover tests, the flexible rotor showing

the best figure of merit is chosen for the DIC tests.

The DIC test campaign is conducted in two phases. First, the valida-

tion of the DIC measurements in the rotating frame is achieved through the

following procedure. The stiff rotor blade M of known geometry is tested and

its shape as measured by DIC is compared to the shape of the mold from

which it is made. At a constant radial station, DIC measurements of the

surface height of the rotor blade are compared to measurements from a laser

distance sensor (LDS) mounted in close proximity to the spinning rotor. Note

that such an arrangement is not practical for performance measurements be-

cause of transient loads introduced by the aerodynamic interference between

the LDS and the rotor blade. In addition, the pitch angle at the root of the

blade is measured by a laser inclinometer and compared to the pitch angle

calculated from DIC measurements.

Once the DIC technique is validated on the stiff rotor blade M, it is

used to measure the surface heights of the flexible blades on the 457.2 mm

diameter rotor. From these measurements, the spanwise distribution of the
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three components of displacement (u, v and w) as well as twist of the rotor

blade (θ) is computed. The experiment is repeated at several blade pitch

angles to generate a detailed set of experimental data for correlation with the

aeroelastic analysis.

4.5 Test Bench

The rotor blades are tested on a vertical hover test stand with a rotor

plane approximately 120 cm (4 ft) from the ground. The stiff blades M are

spun on a different rotor hub than the flexible blades and stiff blades R to

accommodate their specific root geometry.

4.5.1 Hover test stands

For the tests involving the stiff blades M, a 418 mm diameter, one-

bladed rotor with counterweight is mounted on a rigid hub (Fig. 4.10), and

spun by a brushless in-runner DC motor (Feigao 130) at rotational speeds

varying from 300 to 900 RPM. Blade root pitch angles are manually set at

values ranging from 0◦ to 15◦. The rotational speed of the rotor is measured

using a once-per-revolution (1/rev) optical switch, which consists of a laser

beam passing through the rotor disk and aimed at a phototransistor (NTE

3037 [94]). Every time the laser beam is blocked by the rotor blade passage,

a voltage pulse is generated. This 1/rev signal is used to trigger other instru-

ments and for phase averaging of the data collected over multiple revolutions.

For the tests involving the flexible rotor blades and the stiff blades
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Figure 4.10: Stiff rotor blade M mounted on hover test stand

R, the 457.2 mm diameter rotors are mounted on a two-bladed rigid hub

(Fig. 4.11), driven by a brushless out-runner DC motor (Hacker A50 16S). The

motor is chosen to have a high torque and low speed constant so that it can

directly drive a rotor of diameter up to 600 mm at a tip speed of up to 150 m/s

without the need for a gearbox. A swashplate assembly operated by three high-

speed digital servos (JR DS285 [95]) allows for precise adjustment of the rotor

collective and cyclic pitch angles. The motor and rotor assembly is mounted

directly on a six-component strain gage load cell (ATI Mini40E [96]), with a

full-scale rating of 60 N (15 lbf) in the thrust direction and 1 N.m (10 lbf-in) in

the torque direction. A magnetic pickup provides a 1/rev pulse, which is used

to measure the rotational speed as well as to perform synchronous averaging

of all the signals. This is also used to trigger a strobe light to illuminate the
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Figure 4.11: Extremely flexible rotor blades C mounted on hover test stand
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rotor and enable photography of the blades in-flight. Data are acquired by

a National Instruments multifunction data acquisition card (NI-PCI-6052E)

with a custom virtual instrument programmed in NI LabView
c⃝
(see images of

the front panel in Appendix G). The measured quantities are the rotor forces

and moments in the fixed frame, the rotational speed, the motor voltage, and

the motor current. A circuit diagram of the data acquisition equipment is

shown in Appendix H.

4.5.2 Laser distance sensor

A high-frequency, laser triangulation sensor (LMI LDS 80/10 M) is

mounted on a fixture above the rotor plane to measure the blade surface height

during rotation. Note that this sensor has a stand-off distance of 80 mm,

therefore the sensor is mounted approximately at this distance above the rotor

plane (see Fig. 4.10). The laser beam projected by the sensor is reflected

from the top surface of the blade to a CCD array through a collection lens.

This measurement device is able to sense distances from 0 to 10 mm with a

resolution of 0.001 mm, a standard deviation of 0.01 mm and a bandwidth of

10 kHz. The output voltages are recorded by a 50 MHz digital oscilloscope,

before being converted into distances based on the calibration constant. Note

that this sensor gives a measurement only during the time when the rotor blade

passes through the laser beam; during the remainder of the rotor revolution,

there is no object in the sensing range of the LDS and the output of the sensor

is zero.
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4.5.3 Laser inclinometer

A laser inclinometer is constructed by attaching a mirror to the blade

grips and reflecting a laser beam from it to a calibrated screen (shown in

Fig. 4.11). This method is able to give a direct measurement of the rotor

blade root pitch during rotation, in the range of 0◦ to 23◦ with an accuracy of

0.2◦.

4.6 Digital Image Correlation Technique

The three-dimensional DIC technique involves preparation of the rotor

blade surface, calibration of the camera setup and capturing images of the

rotor blades during rotation. In the first step, the DIC setup is calibrated

using a target of known geometry so that a mapping function is established

between physical dimensions and the camera images. Secondly, images of the

spinning rotor blade are captured at different loading conditions and at a spe-

cific azimuthal location. After the images are captured, the DIC software

uses photogrammetry to create three-dimensional maps of the blade surface.

Image correlation algorithms are then used to generate three-dimensional dis-

placement vectors between the image of the deformed blade and a reference

image. The DIC software used in this study is LaVision DaVis 7.2 - Strain-

Master 3-D. [97]. Finally, post-processing algorithms developed in-house are

used to extract the extensional, flap and lead-lag bending as well as torsional

deformation from the displacement vectors.
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Figure 4.12: High-contrast random pattern on the bottom surface of rotor
blades

4.6.1 Blade preparation

The lower surface of the rotor blades is prepared with a high-contrast

random dot or speckle pattern (Fig. 4.12) such that points on the surface

are easily distinguished. First, the surface is painted with a uniform matte

white background. Then, a stiff-bristled brush dipped in matte black paint is

used to spray a random pattern of fine black spots on this background. This

technique results in the generation of speckles varying in size from 0.15 mm to

1.95 mm, which is appropriate for the resolution of the raw images taken by

the cameras (6.75 pixels per millimeter at the distance and magnification of

the test setup). In particular, the speckle size is chosen such that it is greater

than the dimensions of one pixel, but less than the size of the interrogation

window of the cross-correlation algorithm (32- by 32-pixel).
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4.6.2 Digital cameras

The cameras (Imager ProX 2M) used for these experiments have a

1600x1200 pixel resolution, 29.5Hz operation speed (15 Hz continuous), CCD

image sensors, and 16384 (14-bit) gray levels. The exposure time is adjustable

within the range of 500ns to 1000ms and the cameras are capable of accepting

an auxiliary TTL triggering signal. The cameras are equipped with Nikon

50mm AF NIKKOR f/1.8D lenses; these lenses do not have any zoom, have a

minimum focal distance of 450 mm (1.5 ft), and a variable aperture from f1.8

to f22. The cameras are mounted below the rotor disk a fixed distance apart

and are oriented such that the image of the rotor blade is aligned with the

longer dimension of the CCD sensor, so that the maximum spatial resolution

can be achieved. The arrangement of the two cameras with respect to the

rotor stand can be seen in Fig. 4.11.

4.6.3 Calibration

A calibration procedure is performed to establish a mapping function

between real world dimensions and the camera image dimensions. This cali-

bration procedure is crucial, as it defines the position and orientation of the

cameras with respect to the test sample as well as a reference coordinate system

in which all the output quantities are expressed. In addition, the calibration

procedure produces a dewarping function correcting the image distortions due

to perspective projections and inherent camera lens distortions. In the present

study, a calibration plate is carefully aligned coplanar with the rotor hub plane,
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Figure 4.13: Reference system of axes defined during calibration

the x- and y- axes being aligned with the radial and tangential directions of

the blade respectively (Fig. 4.13). The z-axis is defined as normal to the cali-

bration plate, parallel to the rotor shaft. The calibration plate has an array of

targets imprinted on its surface and in a groove, to give a three-dimensional

collection of targets with a precisely known spacing. The dimensions of the

plate (310 mm by 310 mm) are such that the target locations encompass the

x- and y- range of values occupied by the rotor blades during the experiments.

Several images of the calibration plate are captured by both cameras. For

each set of images, the target locations on the calibration plate are identified

and their positions are used to calculate, using a pinhole model, the dewarping

function and the mapping function between real world coordinates and camera

image coordinates. The resulting calibration is effectively valid everywhere in

the volume that is in focus to the camera, i.e. the depth of field.
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(a) Bottom surface of stiff blade M ro-
tating at 900 RPM

(b) Bottom surface of flexible blade BP
rotating at 1200 RPM

Figure 4.14: Raw images acquired with DIC system

4.6.4 Image acquisition

After the DIC system is calibrated, images of the rotating blades are

captured (Fig. 4.14). A 10 Watt Xenon stroboscope, triggered once per rev-

olution by a Hall effect sensor mounted on the rotor shaft, illuminates the

blade at a fixed azimuthal position. The duration of the flash (10 µs) is short

enough for the resulting camera images to appear motionless. To increase the

intensity and contrast of the pictures, and therefore produce more accurate

correlation computations, the aperture of the cameras is kept open for one

second, effectively adding up multiple passes of the blade for each image. This

process is repeated at different settings of rotor blade pitch, resulting in a pair

of images (one from each camera) at each blade pitch. As the blade pitch

increases, the aerodynamic load on the rotor blade increases. The increased

lift causes upward bending of the blade, increased drag causes lead-lag bend-

ing of the blade (against the direction of rotation) and aerodynamic pitching
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moments affect the twist distribution along the blade.

4.6.5 Computation of deformation

Using the raw images, the DIC software calculates a surface height

map of the rotor blade and displacement fields. While the surface heights are

computed relative to the absolute reference frame defined during calibration,

the displacements are obtained with respect to the position of the blade in the

undeformed state, as defined by the first image of each data set.

To ensure that the azimuthal position of the blade in the undeformed

and deformed states is the same, the undeformed state corresponds to the blade

spinning at very low RPM. In addition, the blade root pitch at the undeformed

state is set to zero. These two conditions are chosen such that deformations

due to centrifugal and aerodynamic forces are negligible. It should be noted

that this zero reference also eliminates the contribution of gravitational forces

to the computation of blade deformations.

The surface height map generated by the DIC software is directly used

to plot the blade shape at a given radial station. In addition, the displacement

vectors of points located along the blade elastic axis are extracted from the

global displacement fields to plot the blade extension and bending deflections.

This way, displacements normal to the rotor disk plane due to the flap bending,

and in-plane displacements due to lead-lag bending deflection are decoupled

from the displacements produced by the twist of the blade.

Finally, an algorithm is written to compute the spanwise variation of
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Figure 4.15: Computation of local pitch angle θD using surface heights of
leading-edge and trailing-edge (zLE and zTE) measured by DIC

Figure 4.16: Blade cross-section in the deformed configuration, projected in
the vertical plane (note: η and ξ are not in the same plane as Y and Z)

pitch angle. Using the surface heights of the leading-edge (zLE) and trailing-

edge (zTE) of the blade, shown in Fig. 4.15, the local pitch is calculated as

follows

θD(x) = arcsin

(
zLE − zTE

c

)
(4.12)

where the subscript ( )D is added to indicate the pitch angle measured by DIC.

θD is the angle between the chord of the airfoil and the horizontal, projected

in the vertical plane (YZ -plane), as shown in Fig. 4.16. It can be related to

the pitch angle θ̄ defined in Chapter 2 (see Eq. (2.37)). By inspection, we can
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write

tan θD =
T23
T22

(4.13)

where T is the transformation matrix defined in Eq. (2.148). Expanding

Eq. (4.13) in terms of the deformation variables and neglecting higher-order

terms, we find that

tan θD =

(
1− w′2

2
+O(ϵ4)

)
sin θ̄(

1− v′2

2
+O(ϵ4)

)
cos θ̄ + v′w′

(
1 + w′2

2
+O(ϵ4)

) (4.14)

Finally,

θD = θ̄ +O(ϵ4) (4.15)

4.6.6 Spatial resolution

The surface heights are calculated by the DIC software for each pixel

of the raw images. For the present study, this leads to a spatial resolution

equal to 0.15 mm, or 0.06% of the rotor radius. Local pitch angles, which

are computed using the surface heights of leading-edge and trailing-edge, are

obtained at the same resolution.

The displacement vectors are calculated for each interrogation window

of the DIC algorithm which, in the present study, consists of a square of 32-

by 32-pixel with a 50% overlap between two adjacent windows. Consequently,

the spatial resolution of the displacement vector field is of 16 pixels (2.37 mm),

or 1.04% of the rotor radius.
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Chapter 5

Results and Discussion

This chapter discusses the results of the experimental testing of rotor

blades in hover. In addition, it presents a validation of the numerical model and

the experimental technique developed in this dissertation. Finally, it discusses

analytical results on blade deformation and stability boundaries obtained by

the analysis.

The hover performance of the flexible rotor blades C and BP is mea-

sured, and compared to the hover performance of the stiff rotor blades R in

§ 5.1. The most efficient flexible blade design is selected for the subsequent

tests. In addition, the new experimental technique and numerical model are

validated. A comprehensive validation of the DIC technique to measure three-

dimensional rotor blade displacements is presented in § 5.2. A series of test

cases focused on validating the numerical analysis are presented in § 5.3. Then,

the full aeroelastic behavior of the selected flexible rotor is investigated in § 5.4.

The trim state in hover is predicted using the numerical model and correlated

with the measurement of deformation by DIC (§ 5.4.1). Finally, the stability

boundaries are predicted using the analysis (§ 5.4.2).
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5.1 Flexible Rotor Blade Performance in Hover

The hover performance of the flexible rotor blades is assessed relative to

the performance of conventional stiff blades of identical geometry by comparing

thrust coefficients and figures of merit.

Figure. 5.1 shows the thrust coefficients of the rotor blades C, BP and

R spinning at 1500 RPM, as a function of the collective pitch angles. First,

it can be seen that both flexible rotors are able to produce the same amount

of thrust as the stiff rotor. However, the collective pitch required to obtain a

thrust coefficient of 0.01 is equal to 17◦ in the case of the stiff rotor R, whereas

it equals 22◦ and 40◦ for the flexible rotor blades BP and C respectively. Due

to the low torsional stiffness of the flexible blades C, pitch angles input at

the root are not transferred to the tip of the blade. In addition, the propeller

moment acting on the tip mass rotates the tip of the blades C to flat pitch.

The combination of these two effects results in highly twisted rotor blades, as

shown in Fig. 5.2. Because the outboard sections of the blades develop the

greatest percentage of thrust, very large collective pitch angles are necessary

to generate magnitudes of thrust similar to the untwisted stiff blades R.

In contrast, it can be seen in Fig. 5.3 that a refined design of the tip

body, as in blade BP, eliminates the twist induced along the span of the blade.

Thus, the slope of the thrust coefficient curve for the flexible blade BP is

approximately equal to that of the stiff blade R.

Note also that the forces and moments produced by the flexible rotor
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blades C are not measured and the thrust coefficients are not computed for

collective pitch angles below 10◦, because the rotors are not stable at these

angles and angular velocity. However, the slope of the thrust coefficient curve

indicates that, if the blades C were stable at low collective pitch, they would

generate a negative thrust. This result is attributed to the nose-down torsional

moment caused by the weight of the tip mass, resulting in a net negative twist

of the rotor blade and a negative angle of attack at the outboard locations.

The figures of merit of each of the rotors tested in hover are shown in

Fig. 5.4, as a function of the blade loading. We can observe that the induced

twist along the span of the flexible blades C is responsible for a significant loss

in hover efficiency, relative to the untwisted flexible rotor BP and stiff rotor

R. In addition, it is seen that the flexible blades BP have a maximum figure of

merit of 0.5 equal to the maximum figure of merit of the stiff blades R, both

at a blade loading of 0.15.

The stability boundaries of the flexible rotor blades are also experimen-

tally investigated. The sharp transition between stable and unstable regimes

can be seen by comparing Fig. 5.2 to Fig. 5.6. The photographs are taken

using a stroboscopic light synchronized with the rotational speed of the rotor,

and using a long exposure, resulting in the blade position being recorded over

multiple rotor revolutions. The blurred image indicates that the correspond-

ing regions of the blade are undergoing motion at a frequency non-integer

multiple of 1/rev. The stiff blades R are found to be unconditionally stable,

whereas both flexible rotors experience unstable regimes characterized by cou-
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pled pitch-flap oscillations of bounded magnitude (limit cycle oscillations), as

well as oscillations of increasing magnitude (classical pitch-flap flutter). In

particular, it appears that flutter instability of the flexible rotors is not only

dependent upon the rotational speed of the rotor, but also the collective pitch

angle. The flexible blades C spinning at 1500 RPM are found to be unstable

for collective pitch angles from 0 to 10 degrees, and then stable up to very

large collective pitch angles, approximately 45 degrees. In addition, the flex-

ible blades BP are unstable at any collective and any rotational speed below

1000 RPM, and stable for larger rotational speeds and collective pitch between

0 and 25 degrees.

In conclusion, the hover testing of the flexible and stiff rotors has shown

that the performance and efficiency of the blades BP are comparable to that

of the stiff blades R. In contrast, the figure of merit of the flexible blades C is

poor, due to a large twist induced by the centrifugal forces acting on the tip

body. Therefore, the flexible blade design BP appears more favorable in terms

of hover efficiency and is selected for the subsequent tests. In addition, it is

found that the stability boundaries of both flexible rotors appear to depend

on the rotation speed and the collective pitch angle.

5.2 Validation of the DIC Technique

The surface heights of the stiff rotor blade M at a fixed spanwise po-

sition (three-quarter span) are measured using the DIC technique and LDS.

A comparison between the results of both techniques at three different rota-
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tional speeds (500 RPM, 700 RPM and 900 RPM) is shown in Fig. 5.7. These

measurements give not only the shape of the blade section but also its mean

vertical position.

As the rotational speed increases, the increased lift on the rotor blade

causes it to bend upward. Because the blade is relatively stiff, negligible

torsional deformation is expected. Based on the measured data, the first ob-

servation is that the DIC data is significantly smoother than the LDS data.

Nevertheless, it can be seen that the measurements by DIC, plotted as dashed

lines, are contained within the dispersion of the LDS data. Consequently, we

conclude that both the DIC and LDS experimental techniques give an identical

three-dimensional position in space and identical shape of the rotating blade.

This good correlation proves that DIC is a reliable technique to measure the

components of displacement of a rotating blade.

To confirm the computation of blade pitch angles using DIC measure-

ments, the experimental data are compared to the geometry of the mold used

to fabricate the blade M. Fig. 5.8 shows the spanwise variation of pitch for

the stiff blade M rotating at 300 RPM, at various root pitch angles. A linear

fit is applied to the experimental data and it is found that the slope of the

straight lines is equal to -0.7 deg/cm, which corresponds to the actual struc-

tural twist of the blade imparted by the mold (as given in Table 4.1). It can

also be seen from this graph that the blade experiences negligible elastic twist

deformations, since the pitch at each radial station is approximately equal to

the sum of the root pitch and the built-in twist.
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Table 5.1: Theoretical precision of displacement vectors computed by DIC

Size of the interrogation window Precision of 2D vectors
128× 128 0.005 pixel
64× 64 0.01 pixel
32× 32 0.025 pixel
16× 16 0.05 pixel

Size of the interrogation window Precision of 3D vectors
128× 128 0.01 pixel
64× 64 0.025 pixel
32× 32 0.05 pixel
16× 16 0.1 pixel

Furthermore, the pitch angle at the root computed from DIC measure-

ments is compared to the angle given by the laser inclinometer in Fig. 5.9.

This test is conducted on the flexible rotor blade BP, spinning at 1200 RPM.

It is seen that both measurement techniques are in excellent agreement.

Finally, it is important to determine the accuracy of the measurements

obtained using DIC to compare the method with alternative experimental

techniques. An estimation of the uncertainties in the DIC measurement based

on a literature survey is presented in the next paragraph. Then, the calculation

of the error from the recorded experimental data is given.

The manual delivered with the La Vision DaVis 7.2 software pack-

age [97] gives an estimate of the accuracy of the displacement vectors com-

puted by the DIC algorithm (see Table. 5.1). This estimate is only a function

of the size of the interrogation window used by the algorithm and holds for

an ideal experimental setup with high quality images, high contrast speckle
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pattern and perfect calibration procedure. In the present study, the size of

the interrogation window is 32- by 32-pixel and the resolution of the images is

6.75 pixel/mm. The corresponding accuracy of the 3D vectors as indicated by

the manual is 0.05 pixel, which translates to an absolute accuracy of 7 µm.

However, there are other sources of error in the computation of dis-

placement vectors than those produced by the DIC algorithm. Several stud-

ies have focused on quantifying overall measurement accuracy in a 3-D DIC

setup [98, 99]. Classically, the sources of error are divided into two categories.

The first one relates to the correlation process, which is linked to the quality of

the speckle pattern, the interrogation window size and correlation algorithms

such as interpolation of grey scale intensities [100]. The second type of error

affects the 3-D reconstruction of the test specimen and is due to uncertain-

ties in the relative position and orientation of the cameras with respect to the

calibration plate. Based on this literature survey, for the present setup, the

combined error due to all sources of uncertainty is on the order of 0.01 pixels

(1.5 µm) for in-plane displacements, and 0.1 pixels (15 µm) for out-of-plane

displacements.

In addition, the accuracy of the DIC technique can be estimated from

the comparison of displacement measurement carried out with the laser dis-

tance sensor and the DIC system. It is found that the standard deviation

between the LDS data and DIC data (shown in Fig 5.7) is equal to 120 µm.

However, the uncertainty in LDS measurements is dominated by electrical

noise, which is absent in the DIC measurements. Therefore, we conclude that
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the DIC measurements are at least as accurate as the laser distance sensor.

Finally, the repeatability of the DIC experimental procedure is investi-

gated. The DIC technique uses raw images composed of a number of exposures

of the rotor blade at a specific azimuthal location. Hence, the uncertainty in

the measurements is dominated by the random variations in the rotor blade

displacement from one revolution to another due to turbulence. However, it

was noticed that these variations are small and do not cause a noticeable blur

when the images are superimposed. Another issue with repeatability is when

the camera setup is changed and the experiment is repeated. Guidelines for

alignment and spacing of the cameras result in very small variations in the

setup of cameras between experimental runs and it is noticed that there is

no observable difference in the measured results. Therefore we conclude that

the error associated with repeatability is below the uncertainty of the DIC

technique.

From the above discussion, we conclude that the DIC technique is a

reliable approach to measure rotor blade deformation under rotation. Conse-

quently, the DIC technique can be extensively used to generate the full-field

displacements of various blade designs.

5.3 Validation of the Numerical Analysis

A series of validation cases are used to perform checks at various stages

of the development of the analysis. A reference study by Hopkins and Ormis-

ton [101] has selected typical problems to verify different features of a rotor
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blade aeroelastic model. These problems include the verification of the pre-

diction of static deformations, the modeling of boundary conditions, and the

computation of the natural frequencies of both static and rotating beams.

5.3.1 Static elasticity test cases

The following problems verify the correctness of the uncoupled terms

present in the strain energy of a static beam, as well as the modeling of bound-

ary conditions and the procedure to obtain a numerical solution.

5.3.1.1 Euler-Bernoulli cantilever beam under its own weight

This is the simplest case to verify bending of a cantilever beam. A

schematic is shown in Fig. 5.10a. The governing equation with boundary

conditions is ∫ R

0

(−EIw′′′′ − ρAg)δw dx = 0 (5.1)

At x = 0: {
w = 0

w′ = 0
(5.2)

At x = R: {
EIw′′ = 0

EIw′′′ = 0
(5.3)

The analytical solution of this equation is

w(x) = −ρAgx
2

24EI

(
6R2 − 4Rx+ x2

)
(5.4)

w(R) = −ρAgR
4

8EI
(5.5)
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Fig. 5.10b shows the analytical vertical deflection of the deformed beam and

the deflection predicted by the numerical model using 20 finite elements. An

excellent correlation is observed.

5.3.1.2 Euler-Bernoulli cantilever beam under distributed torsion

This validation case verifies how the twist of a cantilever beam loaded

uniformly by a distributed torsion (see Fig. 5.11a) is predicted. The governing

equation, with boundary conditions is∫ R

0

(GJθ′′ + t)δθ dx = 0 (5.6)

At x = 0:

θ = 0 (5.7)

At x = R:

GJθ′ = 0 (5.8)

The analytical solution can be found by integrating the governing equation

twice and imposing the boundary conditions. The result is

θ(x) =
tx

2GJ
(2R− x) (5.9)

θ(R) =
tR2

2GJ
(5.10)

The correlation between the analytical solution and the prediction is shown in

Fig. 5.11b.

This test case also exhibits the axial foreshortening associated with the

trapeze effect. Figure 5.12 shows the predicted negative axial displacement
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resulting from the twist of the beam, compared to the analytical displacements

derived for the cases of a trapeze and a thin ribbon (defined by Eq. (2.46) and

Eq. (2.61) respectively). An excellent correlation can be observed between the

displacement predicted by the numerical model and the analytical solution for

the foreshortening of a ribbon. In addition, it can be seen that the additional

torsional stiffening due to the interaction between neighboring fibers, forcing

them to deform as helices, as opposed to the case of a trapeze where the fibers

remain straight, results in a 50% decrease of the tip twist.

5.3.1.3 Euler-Bernoulli cantilever beam under its own weight with
a torsional spring at the root

This test case allows to verify that the boundary condition associated

with a torsional spring is correctly imposed in the numerical model. A can-

tilever Euler-Bernoulli beam, loaded by its own weight and constrained by

a torsional spring at the root, as shown in Fig. 5.13a, is considered. The

potential energy of the beam is

V =
1

2

∫ R

0

EIw′′2dx+
1

2
kβw

′2
0 (5.11)

Leading to the following governing equation∫ R

0

(−EIw′′′′ − ρAg)δw dx = 0 (5.12)

At x = 0: {
w = 0

EIw′′ − kβw
′ = 0

(5.13)
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At x = R: {
EIw′′ = 0

EIw′′′ = 0
(5.14)

The analytical solution is derived by integrating the governing equation four

times, and imposing the appropriate boundary conditions. The result is

w(x) =
−ρAg
EI

(
x4

24
− Rx3

6
+
R2x2

4
+
R2xEI

2kβ

)
(5.15)

The correlation between the analytical bending deflection and the bending

predicted by the numerical model is shown in Fig. 5.13b.

5.3.1.4 Euler-Bernoulli cantilever beam subjected to a concentrated
shear force

The action of a concentrated load on a cantilever beam is also simulated

and compared to the analytical solution. A cantilever beam with a load acting

at a distance a from the root (see Fig. 5.14a) is considered.

The analytical solution for the bending deflection is given by
w(x) = Fzx

2

6EI (3a− x) 0 ≤ x ≤ a

w(x) = Fza
2

6EI (3x− a) a ≤ x ≤ R

(5.16)

The agreement between the analytical and numerical solutions is shown in

Fig. 5.14b. Notice the refined meshing of the beam in the neighborhood of the

point of application of the concentrated force. The beam is discretized such

that the point of application of the force coincides with the end node of an

element.
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5.3.1.5 Euler-Bernoulli cantilever beam subjected to a concentrated
torque

Finally, the simple case of a cantilever beam subjected to a concentrated

torque, as shown in Fig. 5.15a, is also verified.

It can be shown analytically that the angle of twist as a function of the spanwise

coordinate is

θ(x) = Mxx
GJ (5.17)

Figure 5.15b shows very good agreement between the numerical twist and the

analytical solution.

The series of cases simulated and presented above validates the predic-

tion of uncoupled bending and twist deformations. The predictions of nonlin-

ear coupled deformations are validated in the next section. However, closed-

form, analytical solutions do not exist for such cases. Therefore, the results

obtained by the numerical model are correlated to experimental measurements

collected during the Princeton beam experiment [102, 103].

5.3.2 Princeton beam test case

An experimental study referred to as the Princeton beam experiment [102,

103] has been widely used in the past as a standard of comparison for non-

linear elastic beam deformations and dynamic response. The recorded data

presented in this study includes the combined flatwise bending (w∗), chordwise

bending (v∗) and twist (θ) of a homogeneous cantilever beam with tip load, as

well as the flatwise and chordwise natural frequencies of the same beam with
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a tip mass.

The experimental setup used to measure static deflections is shown in

Fig. 5.16. The cantilever beam was fabricated from 7075 type aluminum and

had a rectangular cross-section (see beam parameters in Table 5.2). It was

inserted into a precision, milling-machine type, indexing chuck which allowed

the root pitch to be varied from 0◦ to 90◦ with 15◦ increments. Gravity loads

ranging from 1 to 4 pounds (0.454 to 1.814 kg) were applied at the tip of the

beam.

Table 5.2: Princeton beam parameters

Material Aluminum 7075
Young’s modulus, ksi (GPa) 10,428 (71.9)
Shear modulus, ksi (GPa) 3,902 (26.9)
Mass per unit length, lb/ft (kg/m) 0.076 (0.113)
Length, in (m) 20 (0.508)
Width, in (m) 0.5 (0.0127)
Thickness, in (m) 0.125 (0.0032)

5.3.2.1 Static deflections

The beam deflections along the vertical and horizontal axes were recor-

ded by projecting reference points of the beam in the deformed position into

vertical and horizontal planes. From these measurements, the flatwise and

chordwise bending deflections were calculated and plotted. Additionally, twist

measurements were made by attaching lightweight rods at selected spanwise
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stations, perpendicularly to the beam span, then measuring the tip deflec-

tion of these rods and finally using inverse trigonometric functions (arctan or

arccos) to compute the angles of twist.

The experimental static measurements are shown in Fig. 5.17 and

Fig. 5.18, and compared to the analytical predictions obtained using the anal-

ysis developed in this dissertation. Note that only the experimental data cor-

responding to a tip load of 1 lb is presented. Cases with larger tip loads result

in normalized tip bending deflections on the order of 30%, which is beyond the

scope of a beam analysis developed for moderate bending deflections. In addi-

tion, due to the symmetry of the Princeton beam and the experimental setup,

each bending deflection could be measured identically twice by considering

the root angle to be +θ or −θ degrees. Both measurements are reported in

Fig. 5.17. In addition, the same angle of twist could be computed in two ways,

using the inverse tangent or inverse cosine function. Thus, four experimental

measurements of twist are plotted for every root pitch angle.

For the root pitch angle θ0 = 0◦, the beam only bends in the chordwise

direction, which corresponds to the direction of maximum bending rigidity. At

this angle, we can observe in Fig. 5.17b a small offset between the measured

and predicted chordwise bending deflections. This difference is attributed to an

imperfect clamp condition in the experiment, which has already been reported

in another study by Hopkins and Ormiston [101].

As the root pitch increases, the beam experiences a combination of

flatwise bending, chordwise bending, and twist deformations. A very good
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correlation can be seen in Fig. 5.17a between the flatwise bending deflections

predicted by the analysis and measured during the experiment. In addition,

the predicted slope of the chordwise bending deflections also matches the ex-

periment.

The predictions of twist are shown in Fig. 5.18 and it can be seen that

they fall within the range of uncertainty of the measured data. In addition,

it can be noticed that the maximum twist angle measured during the experi-

ment seems to correspond to the case θ0 = 45◦, whereas the maximum twist

predicted using the analysis corresponds to θ0 = 60◦. It is intuitive to affirm

that the root pitch angle associated with the largest tip twist will not corre-

spond to θ0 = 45◦ since the beam cross-section is not a square. In fact, no

trend can be observed from the experimental data because of the measurement

uncertainties.

5.3.2.2 Natural frequencies

The flatwise and chordwise natural frequencies of the Princeton beam

were measured as a function of the beam root pitch angle, tip mass and direc-

tion of excitation. Weights were rigidly attached to the beam tip and the beam

was excited (by hand) along the flatwise and the chordwise directions. Strain

gages used as frequency transducers permitted fairly accurate measurement

of both the flatwise and chordwise frequencies. Note that since the geometry

of the tip mass was not reported, it is modeled in the present analysis as a

concentrated mass attached to the centroid of the beam tip cross-section, and

201



its rotational inertia is neglected.

Figure 5.19 shows the natural frequencies of the Princeton beam, as

reported in Ref. [102], as well as the frequencies predicted using the numer-

ical model developed for this dissertation. A good agreement between the

experimental data and the analytical predictions is observed.

Additionally, the torsional frequencies in vacuum and with no tip load

of the Princeton beam are predicted using the numerical model. However,

they cannot be correlated to experimental data, because they were not mea-

sured, nor reported in Ref. [102]. Instead, the frequencies obtained using the

numerical model are compared to the analytical frequencies calculated using

the design parameters of Table 5.2 and the following formula for the torsional

frequencies of a beam [44]

ωθk =

(
k − 1

2

)
π

√
GJ

m0k2mR
2

(5.18)

The first five natural frequencies are given in Table 5.3. A very good correlation

between the analytical solution and the numerical prediction can be observed.

5.3.3 Dynamics test cases

The following problems verify the exactness as well as the numerical

implementation of the kinetic energy terms arising from the rotation of a beam

in vacuum, derived in Chapter 2 of this dissertation.
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Table 5.3: Torsional frequencies of Princeton beam (θ0 = 0 and P = 0 lb)

Mode
Analytical solution Numerical prediction

[rad.s−1] [rad.s−1]
1 9567 9567
2 28701 28701
3 47836 47836
4 66970 66974
5 86104 86119

5.3.3.1 Bending frequencies of a rotating beam

Several analytical solutions to the eigenvalue problem of a rotating

blade, clamped or hinged at the root, and experiencing a pure flapping motion

can be found in the literature.

For instance, Bisplinghoff et al. [78] made use of the Galerkin’s method

along with Duncan polynomials [104] to compute the first three bending fre-

quencies of a hinged-free uniform rotating beam. Bisplinghoff et al. [78] defined

a dimensionless reference frequency parameter, as

Kref =
m0Ω

2R4

EI
(5.19)

and the natural frequencies are computed for the case Kref = 250.

In addition, Wright et al. [105] have also calculated and tabulated the

frequencies of rotating beams for a variety of situations including root offset

and tip mass, and for both hinged and fixed root boundary conditions. The

case Kref = 100 was a subset of their tabulated results.

Finally, Harris [106] proposed an analytical test case for finite element
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programs, based on a zero offset, hinged, flap only, rotating beam approxima-

tion of a UH-60 helicopter rotor blade.

The blade parameters employed by Harris [106] are used for the present

verification. Specifically, the blade radius is equal to 28 feet (8.53 m) and the

rotational speed is Ωnom = 222 RPM. The corresponding reference frequency

parameter is Kref = 600. Additional parameters are summarized in Table 5.4.

Table 5.4: Simplified UH-60 blade parameters

Young’s modulus [GPa] 212.1
Shear modulus [GPa] 81.575
Poisson’s ratio 0.3
Mass per unit length [kg.m−1] 9.5194
Radius [m] 8.5344
Chord [m] 0.6159
Thickness [m] 0.0161

A comparison of the frequencies obtained using the analysis developed

in this dissertation with the analytical results (from Ref. [78, 105, 106]) is

presented in Table 5.5. To match the reference frequency parameters (Kref =

250 for Ref. [78], andKref = 100 for Ref. [105]) using the model blade described

in Table 5.4, the analysis is run with reduced rotor angular velocities Ω =

0.6455 Ωnom, and Ω = 0.4082 Ωnom respectively. The comparison of the results

shows a maximum error of 0.5% between the analytical solutions and the

numerical predictions.

Secondly, the hinged boundary condition is replaced by a clamped
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Table 5.5: Bending frequencies of hinged rotating model blade

Kref Mode
Analytical solution Numerical prediction

[per rev] [per rev]
Comparison with Wright et al. [105]

100 1 1·00000 1
100 2 2·94432 2·94439
100 3 6·52526 6·52554
100 4 12·01429 12·0146
100 5 19·44698 19·4462

Comparison with Bisplinghoff et al. [78]
250 1 1·00000 1
250 2 2·67730 2·6798
250 3 5·22268 5·1957

Comparison with Harris [106]
600 1 1·00000 1
600 2 2·55711 2·55711
600 3 4·57999 4·57997
600 4 7·24448 7·24431
600 5 10·57407 10·5733
600 6 14·60953 14·6067
600 7 19·38809 19·3798
600 8 24·93683 24·9164
600 9 31·27599 31·2299
600 10 38·42277 38·3444

boundary condition. The predicted natural frequencies of the rotating model

blade are compared to the analytical values tabulated in Ref. [106]. The re-

sults are shown in Table 5.6. The maximum error associated with the predicted

values is equal to 0.02%.

Thirdly, the accuracy in modeling the blade root cut-out (or root offset)

is verified by comparing the natural frequencies predicted for a blade with a

root offset (x0 = R/11) to the analytical frequencies derived in Ref. [106] for
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Table 5.6: Bending frequencies of clamped rotating model blade

Kref Mode
Analytical solution Numerical prediction

[per rev] [per rev]
100 1 1·12022 1·12013
100 2 3·36392 3·36375
100 3 7·46459 7·46429
100 4 13·48818 13·48724
100 5 21·44768 21·44426

the same blade design. These frequencies are shown in Table 5.7 for the cases

of an hinged and a clamped root boundary condition.

Table 5.7: Bending frequencies of rotating blade with root offset

Kref Mode
Analytical solution Numerical prediction

[per rev] [per rev]
Hinged condition at the root

100 1 1·07215 1·07206
100 2 3·08852 3·08824

Clamped condition at the root
100 1 1·18578 1·18579
100 2 3·48786 3·48786

Finally, the effect of a tip mass on the rotating bending frequencies is

also verified. The frequencies reported in Ref. [106] for the case of a tip mass

to blade mass ratio equal to 1 (i.e. Mtip/(m0R) = 1) are correlated to the

frequencies obtained using the present analysis. The comparison is shown in

Table 5.8.

To complete the validation of the numerical model presented in this dis-

sertation, we verify the torsional frequencies predicted for a rotating beam. In
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Table 5.8: Bending frequencies of rotating blade with tip mass

Kref Mode
Analytical solution Numerical prediction

[per rev] [per rev]
Hinged condition at the root

100 1 1·00000 1·00000
100 2 4·02070 3·91507

Clamped condition at the root
100 1 1·04864 1·04855
100 2 4·34515 4·34480

particular, we compare the frequencies associated with the propeller moment

and the trapeze effect, to the analytical frequencies derived in Chapter 2.

5.3.3.2 Torsional frequencies of a rotating beam

Frequency associated with the propeller moment We consider the case

of a uniform beam of length R, rectangular cross-section, clamped at the root,

free at the tip, and rotating at the angular speed Ω. In addition, we assume

that the structural stiffness of the beam is large such that the trapeze effect

can be neglected. Hence, the kinetic energy of the beam is

T =
1

2

∫
R

[
m0Ω

2
(
k2mη

cos2 θ + k2mξ
sin2 θ + x2

)
+m0k

2
mθ̈
]
dx (5.20)

and the strain energy is

U =
1

2

∫
R

GJθ′2 dx (5.21)

Using the EHP, we obtain the following boundary value problem
m0k

2
mθ̈ +m0Ω

2
(
k2mξ

− k2mη

)
θ −GJθ′′ = 0 0 < x < R

θ = 0 x = 0

θ′ = 0 x = R

(5.22)
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It can be shown that the analytical (exact) natural frequencies corresponding

to this problem are

ω2
k =

(
k − 1

2

)2

π2 GJ

m0k2mR
2
+ Ω2

(
k2mξ

− k2mη

)
k2m

(5.23)

where k ∈ N∗. The first term on the right hand side of Eq. (5.23) is the

square of the structural torsional frequency of the beam, denoted ω2
k0. The

second term is the frequency associated with the propeller moment. Upon non-

dimensionalization, the analytical torsion frequencies of the beam are given by

νk =

√√√√(k2mξ
− k2mη

)
k2m

+
ω2
k0

Ω2
(5.24)

The analytical frequencies are computed for the first 5 torsional modes of the

beam (k = 1, . . . , 5) and compared to the numerical predictions, shown in

Table 5.9. A very good correlation can be observed, the maximum error being

on the order of 0.02%.

Table 5.9: Torsional frequencies of clamped-free rotating blade

Ω
Mode

Analytical solution Numerical prediction
[RPM] [per rev] [per rev]
222 1 73·0758 73·0758
222 2 219·2092 219·2097
222 3 365·3462 365·3522
222 4 511·4838 511·5157
222 5 657·6215 657·7326

It is also interesting to simulate the case of a rotating hinged-free beam
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in torsion. The corresponding analytical frequencies are

ω2
k = k2π2 GJ

m0k2mR
2
+ Ω2

(
k2mξ

− k2mη

)
k2m

(5.25)

where k ∈ N. The comparison with the predicted frequencies is reported in

Table 5.10. Note that the first rotating torsional frequency corresponds to the

case k = 0 in Eq. (5.25) which is

ω1 = Ω

√√√√(k2mξ
− k2mη

)
k2m

(5.26)

or in dimensionless form

ν1 =

√√√√(k2mξ
− k2mη

)
k2m

(5.27)

Typically k2mη
≪ k2mξ

, therefore the first torsional frequency is slightly less

than 1/rev.

Table 5.10: Torsional frequencies of hinged-free rotating blade

Ω
Mode

Analytical solution Numerical prediction
[RPM] [per rev] [per rev]
222 1 0·9993 0·9993
222 2 146·1414 146·1414
222 3 292·2776 292·2796
222 4 438·4150 438·4298
222 5 584·5526 584·6146

Frequency associated with the trapeze effect To verify the numerical

prediction of the torsional frequency associated with the trapeze effect, a circu-

lar cantilever pipe with extensional and torsional degrees of freedom, rotating
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in vacuum at constant angular velocity Ω is modeled. Since the pipe is ax-

isymmetric, the propeller moment vanishes. In addition, the elastic center at

every cross-section is coincident with the area centroid and the mass centroid.

Therefore, the kinetic energy and potential energy of the pipe are

T =
1

2

∫
R

[
m0

(
Ω2x2 + 2Ω2xu

)
+m0k

2
mθ̇

2
]
dx (5.28)

V =
1

2

∫
R

[
EAu′2 + EAk2Au

′θ′2 + EB1
θ′4

4

]
dx (5.29)

Additionally, to focus on the trapeze effect, we assume that the pipe is inex-

tensible. Therefore, ue = 0 and
u = −

∫ x

0

k2A
2 θ

′2 dχ

u′ = −k
2
A
2 θ

′2

(5.30)

Substituting Eq. (5.30) into Eq. (5.28) and (5.29), we obtain

T =
1

2

∫
R

[
m0Ω

2x2 − 2m0Ω
2x

∫ x

0

k2A
2
θ′2dχ+m0k

2
mθ̇

2

]
dx (5.31)

V =
1

2

∫
R

[
E

4

(
B1 − Ak4A

)
θ′4
]
dx (5.32)

The integral term in Eq (5.31) can be simplified using Fubini’s theorem, as

1

2

∫
R

[
−2m0Ω

2x

∫ x

0

k2A
2
θ′2dχ

]
dx =

1

2

∫
R

[
−m0Ω

2k
2
A

2
θ′2(R2 − x2)

]
dx (5.33)

Then, the variations in the kinetic and potential energies are

δT =

∫
R

[
−m0Ω

2k
2
A

2
(R2 − x2)θ′δθ′ +m0k

2
mθ̇δθ̇

]
dx (5.34)
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δV =

∫
R

[
E

2

(
B1 − Ak4A

)
θ′3δθ′

]
dx (5.35)

It can be seen that the nonlinear term in the variation in the strain energy

(Eq. (5.35)) does not contribute to the dynamic analysis of small perturbations

about the steady equilibrium position (θe = θ′e = 0). Ignoring this term, the

variation in the Hamiltonian is

δH =

∫
R

[
−m0Ω

2k
2
A

2
(R2 − x2)θ′δθ′ +m0k

2
mθ̇δθ̇

]
dx (5.36)

From which the perturbed equation of motion is∫
t

∫
R

[
−m0Ω

2k
2
A

2
(R2 − x2)∆θ′δθ′ +m0k

2
m∆θ̇δθ̇

]
dx dt = 0 (5.37)

An approximate expression for the natural frequencies associated with this

equation of motion can be obtained using the assumed-modes approach. In

particular, assuming

θ(x, t) = ψT (x)q(t) =
N∑
i=1

ψi(x)qi(t) (5.38)

It can be shown that the terms in the mass and stiffness matrices are

Mij =

∫
R

m0 k
2
m ψi ψj dx (5.39)

Kij =

∫
R

m0 k
2
AΩ2 R

2 − x2

2
ψ′
i ψ

′
j dx (5.40)

Table. 5.11 shows the first five frequencies obtained by the assumed-modes

method, with ψi(x) = (x/R)i, compared to the first five torsional frequencies

predicted by the numerical model. An excellent correlation between the results
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Table 5.11: Torsional frequencies of cantilever rotating pipe

Mode
Approximated solution Numerical prediction

[per rev] [per rev]
1 0·9999 1·0000
2 2·4491 2·4495
3 3·8720 3·8731
4 5·2897 5·2922
5 6·7052 6·7121

can be observed. In addition, it can be seen in Table. 5.11 that for the case of

a rotor blade with no tip mass, the uncoupled torsional frequency associated

with the trapeze effect is equal to 1/rev. For comparison, it was shown in

§ 2.5.1 that the frequency of a cable rotor with axisymmetric tip body is on

the order of
√
2/rev for circular tip body, or

√
3/rev for a cruciform tip body.

Finally, this example demonstrates the accuracy of the numerical solu-

tion to the equations derived in Chapter 2.

5.4 Aeroelastic Behavior of the Flexible Rotor BP

5.4.1 Trim state in hover

The DIC technique and the numerical analysis are used to compute the

trim state in hover of the flexible rotor BP, spinning at 1200 RPM and for a

range of collective pitch angles. The trim results include:

• The spanwise variations of blade deformation predicted by the analysis

and correlated with experimental measurements.

• The variation of rotor thrust as a function of the collective pitch predicted

212



by the analysis and correlated with measurements.

The spanwise variations of flap bending and torsional deformations

measured by DIC are shown in Fig. 5.20 for a range of collective pitch angles

from 10◦ to 25◦. Also shown on the same plots are the deformation predicted

by the analysis. Recall that the measurements of flap bending deflection are

absolute (i.e. relative to the absolute coordinate system defined during cali-

bration) because they are computed by extracting the surface heights of points

located on the blade elastic axis. The measured twist distribution is also ab-

solute because it relies on the measurement of surface heights (see Eq. (4.15)).

Note that in contrast, the axial and lead-lag bending deflections are based on

a reference “undeformed” state of the rotor blade, which corresponds to the

blade spinning at very low rotational speed and low collective (as described in

§ 4.6).

First, by looking at the experimental measurements of flap bending

deformation, it appears that the bending deflections contain not only quadratic

and cubic content (which are linked to beam elastic deformation), but also a

non-negligible linear component. As a matter of fact, cubic polynomials can

be fitted to the experimental data and are found to be equal to

w10(x) = 403x3 − 115x2 + 21x− 1 (5.41)

w14(x) = 115x3 + 1x2 + 19x− 1 (5.42)

w18(x) = −112x3 + 70x2 + 20x− 1 (5.43)

w25(x) = −499x3 + 231x2 + 11x− 1 (5.44)
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where the subscripts refer to the collective pitch angles. Therefore, the exper-

imental measurement of bending deformation suggests the presence of a local

discontinuity in flap bending stiffness at the root of the rotor blade. In fact, a

visual inspection of the deformation of the blade airfoil at the root reveals that

as the bending deflection increases, the camber of the circular arc cross-section

diminishes, up to becoming almost flat for the larger collective pitch angles.

To model this discontinuity in flap stiffness, a flapping spring at the root of the

blade is added to the analysis. The magnitude of the flapping spring (kβ) is

determined by matching the linear components in the predicted and measured

bending deflections and it is found that

kβ ≃ 1.5 N.m/rad (5.45)

By comparing the experimental measurements of flap bending to the

analytical predictions, some discrepancy can be observed near the blade tip

where the tip mass is located. The drag force and the destabilizing aerody-

namic pitching moment acting on the tip mass induce both bending and twist

deformation, which are not modeled by the present analysis. This refinement

is the object of future work.

Furthermore, a very good correlation can be observed in Fig. 5.20b

between the experimental measurements of pitch and the analytical predic-

tions. Note that for any tip pitch angle less than the tip mass index angle

(θind = 22◦), the propeller moment acting on the tip mass is nose-up. How-

ever, the slope of the twist distribution in Fig 5.20b is negative, due to the
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action of the nose-down aerodynamic pitching moment and the nose-down

propeller moment acting on the blade airfoil.

Additionally, the axial and lead-lag bending deformations measured

by DIC are shown in Fig. 5.21. Note that these deformations are calculated

relative to the undeformed reference condition, which is why they are labeled

∆u and ∆v in Fig. 5.21a and 5.21b. Because the absolute axial and lead-lag

deformations cannot be calculated by DIC, a correlation with the numerical

predictions is not possible. However, the following qualitative remarks can be

made.

It can be seen in Fig. 5.21a that as the blade collective pitch increases,

the blade appears to decrease in length, i.e the axial extension is negative and

decreases. This effect is due to the kinematic foreshortening associated with

bending and twist, described in Chapter 2.

In addition, the increase in lag bending deflection (Fig. 5.21b) is the

result of an increase in drag with increasing blade pitch. Due to the choice

of orientation of the Y -axis in § 2.2, the lead-lag bending due to the drag is

negative.

The errors associated with the DIC measurements are on the order

of 1.5 µm for the axial and lag bending deflections, and 15 µm for the flap

bending deflections. The corresponding error bars in Fig. 5.20 and 5.21 are

contained within the thickness of the plotted lines.
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Finally, the analytical prediction of thrust produced in hover by the

rotor blade BP is shown as a function of the collective pitch in Fig. 5.22. A very

good correlation between the predictions and the experiment measurements of

thrust obtained using a load cell can be observed.

5.4.2 Stability Analysis

In this section, the stability of the response of the rotor blade BP to

small perturbations about the trim condition is investigated using the numer-

ical model.

First, a flutter analysis of the blades BP at various collective pitch an-

gles is conducted and the results are compared to the experimental conclusions

reported in § 5.1. Then, the effect of a change in chordwise position of the tip

mass, or in the rotor diameter, on the stability boundary is investigated.

5.4.2.1 Flutter boundaries of the flexible blades BP

Figure. 5.23 shows the natural frequencies of the first 5 modes of vi-

bration of the blade BP at 5◦ and 15◦ collective. The mode shapes are labeled

”F” for flap, ”L” for lead-lag and ”T” for torsion. Due to the non-coincidence

of the area centroid, the center of gravity and the elastic center at every sec-

tion of the blade BP, all the modes of vibration are coupled. However, one

degree of freedom may contribute more significantly than others. This can be

identified visually by plotting the mode shapes. Figure. 5.25 shows the shape

of the first 5 eigenmodes, and it can be seen that:
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- the first eigenmode (F/L/T) fully couples the flap, lag and pitch deforma-

tions,

- the second eigenmode (T1) and third eigenmode (T2) are predominantly

torsional modes,

- the fourth mode (L/T) involves lag-torsion coupling,

- the fifth mode (T3) (not shown in Fig. 5.25) is also predominantly a torsional

mode.

For comparison with the frequencies of the flexible blade BP, the fre-

quencies of a Sikorsky UH-60A Black Hawk helicopter blade [107] are shown

in Fig. 5.24. It can be seen in Fig. 5.23 that three of the first five eigenmodes

of the blade BP are torsional modes. The first torsional frequency (T1) is on

the order of 3/rev at the nominal hover RPM, and the second torsional fre-

quency (T2) is approximately equal to 7/rev. Note that since the pitch control

mechanism in this analysis is modeled as infinitely stiff, the whole torsional

flexibility comes from the blade itself. In contrast, only one of the first seven

eigenmodes of the Black Hawk blade is a torsional mode, which vibrates at

approximately 4/rev. In addition, note that some of the torsional flexibility is

due to the control pitch link, which is responsible for an equivalent torsional

stiffness at the root of the blade of 1090 ft-lb/deg [107]. From these observa-

tions, it can be seen that the rotating torsional frequencies of the flexible rotor

BP are much lower than that of conventional rotor blades.
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In addition, an indication of coalescence between the eigenmodes T2

and L/T can be seen in Fig 5.23, for blade rotational speeds greater than

1100 RPM and for a collective pitch of 5◦. Typically, the coalescence of two

eigenmodes is the sign of a flutter instability. A confirmation of the stable

or unstable nature of a particular mode is given by the study of damping

coefficients.

The damping coefficients associated to each eigenmode are plotted as

functions of the rotational speed in Fig 5.26-5.28. Recall that the damping

coefficient γ was defined in § 3.2.4 as

γ =
ℜ(p)
k

(5.46)

Therefore, a change in the sign of γ, from negative to positive, indicates the

onset of flutter.

From Fig. 5.26 and 5.27b, it can be seen that the F/L/T mode and

the T2 mode are unconditionally stable over the range of rotational speeds

simulated (0 - 1400 RPM). However, the L/T mode is found to become un-

stable at Ω = 1100 RPM (see Fig. 5.28a). In this case, the onset of flutter

is due to a coalescence between the L/T mode and the T2 mode. An impor-

tant observation is that the stability boundary is a function of the rotational

speed. This result correlates with experimental observations of the blade BP

in hover. It can also be seen in Fig. 5.28a that at Ω = 1250 RPM, the blade

BP is predicted to be stable when θ0 = 15◦ and unstable when θ0 = 5◦. This

result agrees with experimental investigations which concluded that the blades
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BP were unstable for collective below 10◦ when spinning at 1200 RPM.

Note also in Fig. 5.27a that the first torsional mode (T1) becomes

unstable at 1350 RPM and 5◦ collective. The cause of this instability is not

explained yet, and a refined numerical simulation of the damping coefficients

for higher rotation speeds is needed.

The aeroelastic model is then used to investigate ways of improving the

aeroelastic stability of the flexible blades BP.

5.4.2.2 Influence of the chordwise position of the tip mass on the
flutter boundaries

One of the design parameters is the chordwise position of the tip mass

(defined by ηm in Fig. 2.24). The analytical study presented in Chapter 2

has shown that the torsional frequency of a ribbon stiffened by a tip mass is

maximum when the center of gravity of the tip mass is located on the elastic

axis (see Fig. 2.13a). In the configuration fabricated and tested in hover, the

flexible blade BP has its tip body mass balanced a distance equal to 34% of

the chord forward of the elastic axis. Therefore, a case where the tip mass is

moved aft is simulated, and the natural frequencies of the new configuration

are compared to that of the original blade. Note that this approach is uncon-

ventional since a decrease in the stability margins is classically expected when

the blade center of mass is moved aft.

It can be seen in Fig. 5.29 that the change in position of the tip mass

predominantly affects the first two torsional modes of the rotor blade (modes
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T1 and T2). However, a decrease of the frequencies is observed, whereas a

stiffening was expected considering uncoupled torsion. Nevertheless, by de-

creasing the frequencies associated with the third mode (T2) while keeping

those of the fourth mode (L/T ) relatively constant, coalescence of these two

modes is avoided, as can be inferred by looking at the sign of the damping

coefficients (Fig. 5.31). Consequently, the center of mass shift of the tip body

allows an increase in the range of rotational speeds ensuring stable operation.

Note also that at Ω =1600 RPM, the analysis indicates a change in the sign

of the determinant of the stiffness matrix. This can imply the onset of non-

oscillatory diverging blade motion in the case of eigenmodes having positive

damping. The stability analysis at rotational speeds higher than the operating

hover RPM is out of the scope of this dissertation and is the object of future

work.

Finally, note that another way to shift the coupled lag-torsion frequency

relative to the second torsional frequency is to modify the lead-lag stiffness

discretely at the root of the blade. This can be done by replacing the clamped

condition by a lag hinge. The influence of this design modification will be

investigated in the future.

5.4.2.3 Effect of a change in rotor diameter on the flutter bound-
aries

The effect of a change in rotor diameter on the stability boundaries

is also studied. To simulate an expansion of the rotor, its radius is doubled
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while all the other geometric parameters are kept constant. In addition, the

rotational speed is adjusted such that the blade loading and the rotor thrust

remain constant. Therefore, it can be shown that the product Ω2R3 must

remain constant. According to these assumptions, a rotor initially spinning at

1200 RPM before full blade deployment must be spinning at 425 RPM once

the rotor diameter is doubled. Figure 5.32a shows the natural frequencies of

the extended rotor at 15◦ collective and for rotational speeds up to 300 RPM.

Note that due to the slower rotational speeds, the magnitudes of the natural

frequencies of the deployed rotor are well under those corresponding to the

original rotor. For clarity, only the frequencies of the deployed rotor are shown.

It can be seen that the change in rotor diameter affects predominantly the first

torsional mode (T1) whose natural frequency increases and becomes closer to

that of the second torsional mode (T2). While coalescence of the modes T2 and

L/T is avoided, as shown by the sign of the damping coefficients in Fig. 5.32b,

a flutter instability is observed at 220 RPM, due to coalescence of the two

torsional modes. As a result, it can be seen that the change in rotor diameter

has led to shifts of the natural frequencies and new stability boundaries. This

indicates that when designing a variable-diameter extremely flexible rotor, the

stability boundaries must be investigated for every operating rotor diameter.

221



0 5 10 15 20 25 30 35 40 45 50
0

0.002

0.004

0.006

0.008

0.01

0.012

θ
0
 [deg]

C
T

 

 

Flexible rotor C
Flexible rotor BP
Rigid rotor R

Figure 5.1: Thrust coefficients (Ω = 1500 RPM)
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Figure 5.2: High twist induced over the inboard section of flexible blades C
(Ω = 1500 RPM , θ0 = 16◦)

Figure 5.3: Tip pitch angle controlled by use of the propeller moment acting
on the tip mass (Ω = 1500 RPM , θ0 = 22◦)
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Figure 5.4: Figures of merit (Ω = 1500 RPM)
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Figure 5.5: Power coefficient vs. thrust coefficient (Ω = 1500 RPM)

224



Figure 5.6: Pitch-flap flutter observed on flexible rotor blades C (Ω = 1500
RPM, θ0 = 0◦)
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Figure 5.7: Blade section position and shape measured by DIC and LDS at
3/4 span of rigid blade M (θ0 = 11◦, Ω=500, 700, 900 RPM)

226



0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

25

 

 DIC measurement
Linear fit

Increasing root pitch angle
θ

0
 = 0, 5, 11, 18 deg

Slope = − 0.7 deg/cm

θ [deg]

x/R
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Figure 5.9: Root pitch angle of flexible blade BP measured by DIC, and
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(b) Bending deflection

Figure 5.10: Euler-Bernoulli cantilever beam of rectangular cross-section, loa-
ded by its own weight (ρ = 2700 kg/m3, EIη = 0.0073 N.m2)
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(a) Schematic
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(b) Twist angle

Figure 5.11: Euler-Bernoulli cantilever beam of rectangular cross-section, loa-
ded by uniformly distributed torsion (t = 1 N.m/m, GJ = 0.4489 N.m2)
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Figure 5.12: Axial foreshortening in beam under distributed torsion (t =
1 N.m/m, GJ = 0.4489 N.m2)
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(b) Bending deflection

Figure 5.13: Euler-Bernoulli beam of rectangular cross-section, with spring at
the root, loaded by its own weight (ρ = 2700 kg/m3, EIη = 0.0073 N.m2,
kβ = 1 N.m/rad)
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(a) Schematic
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Numerical prediction (21 elements)
Analytical solution

(b) Bending deflection

Figure 5.14: Euler-Bernoulli cantilever beam of rectangular cross-section, sub-
jected to a concentrated load (a = 2R/3, Fz = 1 mN, EIη = 0.0073 N.m2)
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(b) Elastic twist

Figure 5.15: Cantilever beam of rectangular cross-section, subjected to a con-
centrated torque (Mx = 1 N.m, GJ = 1.0860 N.m2)
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(a) Photograph of apparatus

(b) Schematic of experiment

Figure 5.16: Apparatus and experimental set-up for the Princeton beam static
deflection experiments, from Dowell & Traybar, 1975
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(b) Chordwise bending

Figure 5.17: Bending deflections of Princeton beam for tip load P = 1 lb

236



0 15 30 45 60 75 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ
0
 [deg]

 

 

θ
tip

[deg]

Princeton beam experiment
Numerical prediction

Figure 5.18: Twist of Princeton beam for tip load P = 1 lb
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(a) Flatwise frequencies
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Figure 5.19: Natural frequencies of Princeton beam for tip load P = 1 lb
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Figure 5.20: Measured deformation of rotor blade BP compared to numerical
predictions (Ω = 1200 RPM)
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Figure 5.21: Measured axial displacement and lead-lag bending of rotor blade
BP (Ω = 1200 RPM)
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Figure 5.22: Variation of thrust of rotor blade BP as a function of the collective
pitch
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Figure 5.23: Natural frequencies of rotor blade BP

242



Figure 5.24: Natural frequencies in vacuum of UH-60A rotor blade; F: Flap,
C:Lag, T:Torsion; pitch link stiffness 1090 ft-lb/deg, from Datta & Chopra,
2004
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Figure 5.25: Mode shapes (θ0 = 0◦, Ω = 1000 RPM)
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Figure 5.26: Damping coefficient of flap-lag-torsion mode
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Figure 5.27: Damping coefficient of torsional modes
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Figure 5.28: Damping coefficient of coupled lag-torsion and third torsional
mode
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Figure 5.29: Influence of the tip mass chordwise position on the natural fre-
quencies
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Figure 5.30: Influence of the tip mass chordwise position on the damping of
the coupled flap-lag-torsion mode and the first torsional mode
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Figure 5.31: Influence of the tip mass chordwise position on the damping of
the second torsional mode and the coupled lag-torsion mode
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Figure 5.32: Influence of the rotor diameter on the stability boundaries
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Chapter 6

Summary and Future Work

Rotors with extremely flexible composite blades were designed, ana-

lyzed, fabricated and tested in hover. The goal was to develop blades so

flexible that they could be rolled up and stowed in the rotor hub. The de-

sign of the rotor blades was focused toward application on a micro-helicopter.

Accordingly, the blades had a circular arc airfoil section with 7.5% camber,

untwisted, constant chord planform, and a span consistent with a rotor diam-

eter of 18 inches. A tip mass was used to stiffen and stabilize the flexible rotor

in flight.

An aeroelastic analysis tailored to rotor blades with negligible struc-

tural stiffness and experiencing large torsional deformation was developed. In

particular, the analysis showed that large twist deformation combined with

an axial load give rise to an increase in the blade torsional stiffness due to

the trapeze effect. The axial displacement, restoring moment and natural fre-

quencies associated with this effect were analytically derived for the case of a

cable rotor with tip mass, and a ribbon rotor with tip mass. It was shown that

the torsional frequency of a cable rotor with axisymmetric tip mass, spinning

in vacuum, is on the order of
√
2/rev or

√
3/rev, depending on the tip mass
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geometry.

Using an Hamiltonian dynamics approach, the equations of motion of a

rotating blade with axial, flap bending, lead-lag bending and torsional degrees

of freedom were derived. The blades were modeled as second-order isotropic

Euler-Bernoulli beams. The kinetic energy, potential energy and virtual work

done by non-conservative forces were approximated to second-order, based on

an ordering scheme consistent with rotor blades having negligible torsional

stiffness. In particular, the blade elastic twist was considered to be of the

same order of magnitude as the collective pitch angles. Compared to typical

analyses based on ordering schemes and derived for conventional stiff rotors,

the analysis presented in this dissertation included additional terms related

to the presence of large elastic twist angles. The significance of these terms

was identified and discussed in detail. Additionally, an aerodynamic model

was developed based on strip theory and including unsteady effects according

to Theodorsen’s theory. The unsteady effect of the returning wake shed by

blades in previous revolutions was also modeled, based on Loewy’s theory.

Two-dimensional aerodynamic coefficients were extracted from lookup tables

obtained for circular airfoils operating at low Reynolds number.

The trim state of the rotor blades in hover was obtained by solving the

time-invariant equations of motion. The nonlinear, coupled equations were

solved using a finite element approach. Nonlinear terms were linearized and

incorporated to the stiffness matrix using a Newton-Raphson scheme. The

convergence of the Newton-Raphson scheme yielded the spanwise variations
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of axial, lead-lag bending, flap bending and torsional deformation of a flexible

rotor blade in hover.

The predictions of deformation were correlated to experimental mea-

surements obtained by a non-contacting, optical technique called three-dimen-

sional digital image correlation (3-D DIC). This technique, which combines

photogrammetry, stereoscopic principles and image correlation, was used to

generate a three-dimensional deformation map of a rotor blade in hover. In

particular, it was demonstrated that this technique is applicable to the mea-

surement of deformation of a 46 cm diameter rotor rotating at 1200 RPM, with

a spatial resolution of 1.04% of the rotor radius and an accuracy of 15 µm.

Both the analysis and the DIC technique were used to compute the

deformation in hover of the extremely flexible blade BP. This blade design

features a tip body comprised of a 1-inch long tungsten rod oriented per-

pendicular to the spanwise direction, inclined at an index angle relative to the

blade chord. Experimental hover tests conducted on the blade BP showed that

it has a figure of merit equal to that of a stiff rotor of similar planform and

airfoil section. Experimental investigations also showed unstable regimes of

operation, characterized by limit-cycle, coupled pitch-flap oscillations. These

regimes of instability were found to be dependent on the rotational speed and

the collective pitch angle.

The predictions of flap bending and twist deformations of the flexible

blade BP rotating at 1200 RPM showed good agreement with experimental

measurements obtained by stereoscopic DIC. Small discrepancies between the
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analytical predictions and the measurements were observed at the blade tip,

and attributed to the absence of the modeling of the aerodynamic forces and

pitching moment acting on the tip mass.

In addition, the rotor blade stability was investigated analytically by

studying the response of the blade to small perturbations, linearized about the

trim condition. In particular, onset of flutter instability was determined by

the p-k method of flutter analysis. The flutter analysis was conducted on the

rotor blade BP for various collective pitch angles and over a range of rotational

speeds. Flutter instability was observed to occur as a result of the coalescence

between the second torsional mode and the first coupled lag/torsion mode of

oscillation of the rotor blade. It was found that changing the collective pitch

or the rotational speed affected the stability boundary. This result agrees

with experimental observations. In addition, it was shown that by moving the

chordwise position of the tip mass aft, the torsional frequencies of the new

blade were uncoupled from the lag/torsion mode and flutter instability was

avoided.

Finally, the effect of a change in rotor diameter on the stability bound-

aries was investigated. Analytical predictions of frequencies and damping co-

efficients showed that a change in rotor diameter leads to shifts of the natu-

ral frequencies and therefore new stability boundaries. This result indicates

that when designing a variable-diameter extremely flexible rotor, the stability

boundaries must be investigated for every operating rotor diameter.

The future work will address shortcomings which were identified in this
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dissertation, as well as additional objectives. A list of the shortcomings is

given below:

- The prediction of flap bending deflection at the blade tip showed discrepan-

cies with experimental measurements.

- Limit cycle oscillations observed during hover testing could not be predicted

by the numerical model derived in the frequency domain.

- The frequencies and the mode shapes of blade oscillation during unstable

regimes were not experimentally measured.

- The transient aeroelastic behavior of the flexible blades during deployment

and retraction was not addressed.

- The aeroelastic behavior of the flexible rotor blades in forward flight was not

investigated.

Consequently, future plans involve the refined modeling of the aero-

dynamic forces and moments acting on the tip body, to better match the

predicted flap bending deflections with the experimental measurements.

In addition, the stability analysis will be extended to an analysis in

the time domain, to investigate the presence of limit cycle oscillations. A

formulation based on Wagner’s theory to obtain the indicial lift on an airfoil

undergoing a transient step change in angle of attack will be derived. The

perturbed equations of motion will then be solved by time marching, according

to the generalized-α theory.
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Future effort will also involve extending the use of the DIC technique

to the measurement of unsteady rotor blade deformation and to the compu-

tation of rotating natural frequencies and mode shapes. High-speed cameras

in conjunction with a laser strobe will be used to capture successive images of

the rotor blades in hover.

Finally, the aeroelastic behavior of an extremely flexible rotor in for-

ward flight, as well as during deployment and retraction of the rotor blades

will be developed.
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Appendix A

An alternative derivation of the torsional

frequency associated with the trapeze effect

Consider the cable rotor shown in Fig. A.1 composed of four massless

inextensible cables stiffened by a cruciform tip body (2 bars of length c and

massM/2). Due to the symmetry of the problem about the X -axis, the tensile

forces in the four cables are identical, and are equal to

Fc =
1

4
MΩ2L (A.1)

In the plane of the tip body, the component of Fc responsible for a restoring

torque is

FR = Fc sin ζ (A.2)

(a) Plan view (b) Side view

Figure A.1: Cable rotor with cross bars at the tip
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where ζ is the angle made by the deformed cable relative to the X -axis. For

small twist θ, Eq. (A.2) rewrites

FR = Fc
cθ

2L
(A.3)

In addition, the total restoring torque acting on the tip body is given by

Mt = 4FR
c

2
cos θ (A.4)

Therefore, substituting Eq. (A.1) and (A.3) into Eq. (A.4) and assuming small

angles of twist θ, we obtain

Mt =
M Ω2 c2

4
θ (A.5)

Then, using Newton’s 2nd law, the equation describing the motion of the tip

body, of inertia I0 =Mc2/12 is

Mc2

12
θ̈ +

M Ω2 c2

4
θ = 0 (A.6)

And the corresponding dimensionless torsional frequency is νθ =
√
3/rev.
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Appendix B

Use of quasi-coordinates in Hamilton’s

Principle

The classical form of Hamilton’s principle given by equation (2.1) is

valid when the generalized coordinates are true coordinates. When quasi-

coordinates are used, the formulation of Hamilton’s principle is generally dif-

ferent, given by [62]

d

dt

{
∂T̄

∂ω

}
+ [β]T [γ]

{
∂T̄

∂ω

}
− [β]T

{
∂T̄

∂q

}
= {N} (B.1)

where T̄ = T̄ (q,ω) is the kinetic energy as a function of the generalized

coordinates qk, and n independent linear combinations ωk (k = 1 . . . n) of the

velocities q̇k. In addition,

{ω} = [α]T {q̇} (B.2)

[γ] =

[
{ω}T [β]T

{
∂α

∂q

}]
−
[
{ω}T [β]T

[
∂α

∂q

]]
(B.3)

{N} = [β]T {Q} (B.4)

But in the specific case where the quasi-coordinates are the variables ϕ and ue,

as defined by Eq. (2.121) and (2.123), it can be shown that the classical form

of Hamilton’s principle can be applied. The proof shown below is adapted

from [63] and the methodology is as follows. First, we will start from the
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standard extended form of Hamilton’s principle using the true coordinates.

For simplicity, we will consider only the time invariant part of the equation

and ignore the virtual work done by non-conservative forces, but the extension

of the derivation to time dependent terms is trivial. We will take the variation

in the equations, as functions of the true coordinates, and then make the

change of variables to the quasi-coordinates. The resulting expression should

correspond to the expression obtained by starting the formulation in terms of

the quasi-coordinates and then taking the variation.

The classical form of Hamilton’s principle, in terms of the true-coordinates

u, v, w and θ and their derivatives, retaining time-invariant terms only, is∫ L

0

δH(u, u′, v, v′, v′′, w, w′, w′′, θ, θ′) dx = 0 (B.5)

Expanding the variation of H yields∫ L

0

(
∂H

∂u
δu+

∂H

∂u′
δu′ +

∂H

∂v
δv +

∂H

∂v′
δv′ +

∂H

∂v′′
δv′′ +

∂H

∂w
δw

+
∂H

∂w′ δw
′ +

∂H

∂w′′ δw
′′ +

∂H

∂θ
δθ +

∂H

∂θ′
δθ′
)
dx = 0 (B.6)

Next, the following change of variable is made

u = ue −
∫ x

0

(
v′2

2
+
w′2

2
+
k2A
2
θ′2
)
dχ (B.7)

θ = ϕ−
∫ x

0

v′′w′ dχ (B.8)

The derivative of the previous expressions are

u′ = u′e −
(
v′2

2
+
w′2

2
+
k2A
2
θ′2
)

(B.9)
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θ′ = ϕ′ − v′′w′ (B.10)

And the variations are

δu = δue −
∫ x

0

(
v′δv′ + w′δw′ + k2Aθ

′δθ′
)
dχ (B.11)

δu′ = δu′e −
(
v′δv′ + w′δw′ + k2Aθ

′δθ′
)

(B.12)

δθ = δϕ−
∫ x

0

(w′δv′′ + v′′δw′) dχ (B.13)

δθ′ = δϕ′ − (w′δv′′ + v′′δw′) (B.14)

We define H̄ = H̄(ue, u
′
e, v, v

′, v′′, w, w′, w′′, ϕ, ϕ′). From the chain rule, we

have

∂H

∂u
δu =

∂H̄

∂ue

∂ue
∂u

δu+
∂H̄

∂u′e

∂u′e
∂u

δu+
∂H̄

∂v

∂v

∂u
δu+

∂H̄

∂v′
∂v′

∂u
δu+

∂H̄

∂v′′
∂v′′

∂u
δu

+
∂H̄

∂w

∂w

∂u
δu+

∂H̄

∂w′
∂w′

∂u
δu+

∂H̄

∂w′′
∂w′′

∂u
δu+

∂H̄

∂ϕ

∂ϕ

∂u
δu+

∂H̄

∂ϕ′
∂ϕ′

∂u
δu (B.15)

Using Eq. (B.7)-(B.10), this equation becomes

∂H

∂u
δu =

∂H̄

∂ue
δu (B.16)

Likewise,

∂H

∂u′
δu′ =

∂H̄

∂u′e

∂u′e
∂u′

δu′

=
∂H̄

∂u′e
δu′ (B.17)

∂H

∂v′
δv′ =

∂H̄

∂ue

∂ue
∂v′

δv′ +
∂H̄

∂u′e

∂u′e
∂v′

δv′ +
∂H̄

∂v′
δv′

=
∂H̄

∂ue

∫ x

0

v′δv′dχ+
∂H̄

∂u′e
v′δv′ +

∂H̄

∂v′
δv′ (B.18)
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∂H

∂v′′
δv′′ =

∂H̄

∂v′′
δv′′ +

∂H̄

∂ϕ

∂ϕ

∂v′′
δv′′ +

∂H̄

∂ϕ′
∂ϕ′

∂v′′
δv′′

=
∂H̄

∂v′′
δv′′ +

∂H̄

∂ϕ

∫ x

0

w′δv′′dχ+
∂H̄

∂ϕ′w
′δv′′ (B.19)

∂H

∂w′ δw
′ =

∂H̄

∂ue

∂ue
∂w′ δw

′ +
∂H̄

∂u′e

∂u′e
∂w′ δw

′ +
∂H̄

∂w′ δw
′ +

∂H̄

∂ϕ

∂ϕ

∂w′ δw
′ +

∂H̄

∂ϕ′
∂ϕ′

∂w′ δw
′

=
∂H̄

∂ue

∫ x

0

w′δw′dχ+
∂H̄

∂u′e
w′δw′ +

∂H̄

∂w′ δw
′ +

∂H̄

∂ϕ

∫ x

0

v′′δw′dχ

+
∂H̄

∂ϕ′ v
′′δw′ (B.20)

∂H

∂θ
δθ =

∂H̄

∂ϕ

∂ϕ

∂θ
δθ

=
∂H̄

∂ϕ
δθ (B.21)

∂H

∂θ′
δθ′ =

∂H̄

∂ue

∂ue
∂θ′

δθ′ +
∂H̄

∂u′e

∂u′e
∂θ′

δθ′ +
∂H̄

∂ϕ′
∂ϕ′

∂θ′
δθ′

=
∂H̄

∂ue

∫ x

0

k2Aθ
′δθ′ dχ+

∂H̄

∂u′e
k2Aθ

′δθ′ +
∂H̄

∂ϕ′ δθ
′ (B.22)

Inserting Eq. (B.11)-(B.14) and Eq. (B.16)-(B.22) into Eq. (B.6), we obtain∫ L

0

[
∂H̄

∂ue

(
δue −

∫ x

0

(
v′δv′ + w′δw′ + k2Aθ

′δθ′
)
dχ

)
+
∂H̄

∂u′e

(
δu′e −

(
v′δv′ + w′δw′ + k2Aθ

′δθ′
))

+
∂H̄

∂v
δv +

∂H̄

∂ue

∫ x

0

v′δv′dχ

+
∂H̄

∂u′e
v′δv′ +

∂H̄

∂v′
δv′ +

∂H̄

∂v′′
δv′′ +

∂H̄

∂ϕ

∫ x

0

w′δv′′dχ+
∂H̄

∂ϕ′w
′δv′′ +

∂H̄

∂w
δw

+
∂H̄

∂ue

∫ x

0

w′δw′dχ+
∂H̄

∂u′e
w′δw′ +

∂H̄

∂w′ δw
′ +

∂H̄

∂ϕ

∫ x

0

v′′δw′dχ+
∂H̄

∂ϕ′ v
′′δw′
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+
∂H̄

∂w′′ δw
′′ +

∂H̄

∂ϕ

(
δϕ−

∫ x

0

(w′δv′′ + v′′δw′) dχ

)
+
∂H̄

∂ue

∫ x

0

k2Aθ
′δθ′dχ

+
∂H̄

∂u′e
k2Aθ

′δθ′ +
∂H̄

∂ϕ′ (δϕ
′ − (w′δv′′ + v′′δw′))

]
dx = 0 (B.23)

All the underlined terms cancel out, leaving∫ L

0

[
∂H̄

∂ue
δue +

∂H̄

∂u′e
δu′e +

∂H̄

∂v
δv +

∂H̄

∂v′
δv′ +

∂H̄

∂v′′
δv′′ +

∂H̄

∂w
δw +

∂H̄

∂w′ δw
′

+
∂H̄

∂w′′ δw
′′ +

∂H̄

∂ϕ
δϕ+

∂H̄

∂ϕ′ δϕ
′
]
dx = 0 (B.24)

It can be seen that this equation is identically similar to the equation obtained

by taking directly the variation of∫ L

0

δH̄(ue, u
′
e, v, v

′, v′′, w, w′, w′′, ϕ, ϕ′) dx = 0 (B.25)

Therefore, the applicability of Lagrange’s equations for true coordinates to the

set of variables
(
ue, v, w, ϕ

)
is proven.
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Appendix C

Additional analytical results

This appendix contains intermediate results needed for the derivation

of the equations of motion shown in Chapter 2.

• dr1 · dr1 − dr0 · dr0

dr1 · dr1 − dr0 · dr0

=(dx)2
[
2u′ + v′2 + w′2 − 2v′′(η cos θ̄ − ξ sin θ̄)− 2w′′ (η sin θ̄ + ξ cos θ̄

)
+ θ′2

(
η sin θ̄ + ξ cos θ̄

)2
+ θ′2

(
η cos θ̄ − ξ sin θ̄

)2
+O(ϵ4)

]
+ (dxdη) 2

[
− u′v′ cos θ̄ − u′w′ sin θ̄ − v′3

2
cos θ̄ − w′3

2
sin θ̄

− v′2w′ sin θ̄ − v′′w′ξ − θ′ξ +O(ϵ4)

]
+ (dxdξ) 2

[
u′v′ sin θ̄ − u′w′ cos θ̄ +

v′3

2
sin θ̄ − w′3

2
cos θ̄

− v′2w′ cos θ̄ + v′′w′η + θ′η +O(ϵ4)

]
+ · · · (C.1)
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• ϵ2xx, ϵ
2
xη, ϵ

2
xξ

ϵ2xx =

(
u′ +

v′2

2
+
w′2

2

)2

+

(
u′ +

v′2

2
+
w′2

2

)
θ′2(η2 + ξ2) +

θ′4

4

(
η2 + ξ2

)2
+ (η2 cos2 θ̄ + ξ2 sin2 θ̄ − ηξ sin 2θ̄)v′′2

+ (η2 sin2 θ̄ + ξ2 cos2 θ̄ + ηξ sin 2θ̄)w′′2

+ ((η2 − ξ2) sin 2θ̄ + 2ηξ cos 2θ̄)v′′w′′

− 2u′v′′(η cos θ̄ − ξ sin θ̄)− 2u′w′′(η sin θ̄ + ξ cos θ̄)

− θ′2v′′(η2 + ξ2)(η cos θ̄ − ξ sin θ̄)− θ′2w′′(η2 + ξ2)(η sin θ̄ + ξ cos θ̄)

− v′2w′′(η sin θ̄ + ξ cos θ̄)− w′2v′′(η cos θ̄ − ξ sin θ̄)

− w′2w′′(η sin θ̄ + ξ cos θ̄)− v′2v′′(η cos θ̄ − ξ sin θ̄)

+O(ϵ6) (C.2)

ϵ2xη = θ′2
ξ2

4
+ v′′w′θ′

ξ2

2
+
(
v′3 cos θ̄ + w′3 sin θ̄

)
θ′
ξ

4

+
(
u′v′ cos θ̄ + u′w′ sin θ̄ + v′2w′ sin θ̄

)
θ′
ξ

2

+O(ϵ6) (C.3)

ϵ2xξ = θ′2
η2

4
+ v′′w′θ′

η2

2
+
(
v′3 sin θ̄ − w′3 cos θ̄

)
θ′
η

4

+
(
u′v′ sin θ̄ − u′w′ cos θ̄ − v′2w′ cos θ̄

)
θ′
η

2

+O(ϵ6) (C.4)
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• δϵxx, δϵxη, δϵxξ

δϵxx = δu′ + v′δv′ + w′δw′ − δv′′
(
η cos θ̄ − ξ sin θ̄

)
− δw′′ (η sin θ̄ + ξ cos θ̄

)
+ δθ

(
v′′
(
η sin θ̄ + ξ cos θ̄

)
− w′′ (η cos θ̄ − ξ sin θ̄

))
+ δθ′

(
η2 + ξ2

)
θ′

+O(ϵ4) (C.5)

δϵxη = δu′
(
−1

2
(v′ cos θ̄ + w′ sin θ̄)

)
+ δv′

(
−u

′

2
cos θ̄ − 3

4
v′2 cos θ̄ − v′w′ sin θ̄

)
+ δv′′

(
−w′ ξ

2

)
+ δw′

(
−v′′ ξ

2
− u′

2
sin θ̄ − 3

4
w′2 sin θ̄ − v′2

2
sin θ̄

)
+ δθ

(
u′

2
(v′ sin θ̄ − w′ cos θ̄) +

v′3

4
sin θ̄ − w′3

4
cos θ̄ − v′2w′

2
cos θ̄

)
+ δθ′

(
−ξ
2

)
+O(ϵ4) (C.6)

δϵxξ = δu′
(
1

2
(v′ sin θ̄ − w′ cos θ̄)

)
+ δv′

(
u′

2
sin θ̄ +

3

4
v′2 sin θ̄ − v′w′ cos θ̄

)
+ δv′′

(
w′η

2

)
+ δw′

(
v′′
η

2
− u′

2
cos θ̄ − 3

4
w′2 cos θ̄ − v′2

2
cos θ̄

)
+ δθ

(
u′

2
(v′ cos θ̄ + w′ sin θ̄) +

v′3

4
cos θ̄ +

w′3

4
sin θ̄ +

v′2w′

2
sin θ̄

)
+ δθ′

(
−ξ
2

)
+O(ϵ4) (C.7)

• dr1
dt

· dr1
dt

dr1
dt

· dr1
dt

= ẋ1
2 + ẏ1

2 + ż1
2 + Ω2

(
x21 + y21

)
− 2Ωẋ1y1 + 2Ωx1ẏ1
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= v̇2 + θ̇2(η sin θ̄ + ξ cos θ̄)2 − 2v̇θ̇(η sin θ̄ + ξ cos θ̄) + ẇ2

+ θ̇2(η cos θ̄ − ξ sin θ̄)2 + 2ẇθ̇(η cos θ̄ − ξ sin θ̄)

+ Ω2
[
x2 + 2xu− 2xw′(η sin θ̄ + ξ cos θ̄)− 2xv′(η cos θ̄ − ξ sin θ̄) + v2

+(η cos θ̄ − ξ sin θ̄)2 + 2v(η cos θ̄ − ξ sin θ̄)
]

− 2Ω
[
u̇v − vẇ′(η sin θ̄ + ξ cos θ̄)− vw′θ̇(η cos θ̄ − ξ sin θ̄)

−vv̇′(η cos θ̄ − ξ sin θ̄) + vv′θ̇(η sin θ̄ + ξ cos θ̄) + u̇(η cos θ̄ − ξ sin θ̄)

−ẇ′(η sin θ̄ + ξ cos θ̄)(η cos θ̄ − ξ sin θ̄)− w′θ̇(η cos θ̄ − ξ sin θ̄)2

−v̇′(η cos θ̄ − ξ sin θ̄)2 + v′θ̇(η sin θ̄ + ξ cos θ̄)(η cos θ̄ − ξ sin θ̄)
]

+ 2Ω

[
xv̇ − x

(
1− v′2

2

)
θ̇(η sin θ̄ + ξ cos θ̄)− xv′v̇′(η cos θ̄ − ξ sin θ̄)

−xv̇′w′(η sin θ̄ + ξ cos θ̄)− xv′ẇ′(η sin θ̄ + ξ cos θ̄)

−xv′w′θ̇(η cos θ̄ − ξ sin θ̄) + uv̇ − uθ̇(η sin θ̄ + ξ cos θ̄)

−w′v̇(η sin θ̄ + ξ cos θ̄) + w′θ̇(η sin θ̄ + ξ cos θ̄)2

−v′v̇(η cos θ̄ − ξ sin θ̄) + v′θ̇(η cos θ̄ − ξ sin θ̄)(η sin θ̄ + ξ cos θ̄)
]

+O(ϵ4) (C.8)

• ẍ1, ÿ1, z̈1

ẍ1 = ü− ẅ′ (η sin θ̄ + ξ cos θ̄
)
− 2ẇ′θ̇

(
η cos θ̄ − ξ sin θ̄

)
− w′θ̈

(
η cos θ̄ − ξ sin θ̄

)
+ w′θ̇2

(
η sin θ̄ + ξ cos θ̄

)
− v̈′

(
η cos θ̄ − ξ sin θ̄

)
+ 2v̇′θ̇

(
η sin θ̄ + ξ cos θ̄

)
+ v′θ̈

(
η sin θ̄ + ξ cos θ̄

)
+ v′θ̇2

(
η cos θ̄ − ξ sin θ̄

)
(C.9)
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ÿ1 = v̈ −
(
1− v′2

2

)
θ̈
(
η sin θ̄ + ξ cos θ̄

)
+ v′v̇′θ̇

(
η sin θ̄ + ξ cos θ̄

)
−
(
1− v′2

2

)
θ̇2
(
η cos θ̄ − ξ sin θ̄

)
− v̇′

2 (
η cos θ̄ − ξ sin θ̄

)
− v′v̈′

(
η cos θ̄ − ξ sin θ̄

)
+ v′v̇′θ̇

(
η sin θ̄ + ξ cos θ̄

)
− v̈′w′(η sin θ̄ + ξ cos θ̄)− 2v̇′ẇ′(η sin θ̄ + ξ cos θ̄)

− 2v̇′w′θ̇(η cos θ̄ − ξ sin θ̄)− v′ẅ′(η sin θ̄ + ξ cos θ̄)

− 2v′ẇ′θ̇(η cos θ̄ − ξ sin θ̄)− v′w′θ̈(η cos θ̄ − ξ sin θ̄)

+ v′w′θ̇2(η sin θ̄ + ξ cos θ̄) (C.10)

z̈1 = ẅ +

(
1− w′2

2

)
θ̈
(
η cos θ̄ − ξ sin θ̄

)
− w′ẇ′θ̇

(
η cos θ̄ − ξ sin θ̄

)
− ẇ′2

(
η sin θ̄ + ξ cos θ̄

)
−
(
1− w′2

2

)
θ̇2
(
η sin θ̄ + ξ cos θ̄

)
− w′ẅ′

(
η sin θ̄ + ξ cos θ̄

)
− w′ẇ′θ̇

(
η cos θ̄ − ξ sin θ̄

)
(C.11)

• δx1, δy1, δz1

δx1 = δu−
(
η sin θ̄ + ξ cos θ̄

)
δw′ − w′ (η cos θ̄ − ξ sin θ̄

)
δθ

−
(
η cos θ̄ − ξ sin θ̄

)
δv′ + v′

(
η sin θ̄ + ξ cos θ̄

)
δθ (C.12)

δy1 = δv −
(
1− v′2

2

)(
η sin θ̄ + ξ cos θ̄

)
δθ − v′

(
η cos θ̄ − ξ sin θ̄

)
δv′

− w′ (η sin θ̄ + ξ cos θ̄
)
δv′ − v′

(
η sin θ̄ + ξ cos θ̄

)
δw′

− v′w′ (η cos θ̄ − ξ sin θ̄
)
δθ (C.13)
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δz1 = δw +

(
1− w′2

2

)(
η cos θ̄ − ξ sin θ̄

)
δθ − w′ (η sin θ̄ + ξ cos θ̄

)
δw′

(C.14)

•
∫ t2

t1

(δT )b dt

∫ t2

t1

(δT )b dt =∫ t2

t1

∫
R

∫∫
A

ρ

{[
2Ω
(
v̇ − θ̇(η sin θ̄ + ξ cos θ̄)

)
+ Ω2x

]
[
δu− (η sin θ̄ + ξ cos θ̄)δw′

− w′(η cos θ̄ − ξ sin θ̄)δθ − (η cos θ̄ − ξ sin θ̄)δv′

+ v′(η sin θ̄ + ξ cos θ̄)δθ

]
+

[
Ω2
(
v + (η cos θ̄ − ξ sin θ̄)

)
− v̈ + θ̈(η sin θ̄ + ξ cos θ̄)

+ θ̇2(η cos θ̄ − ξ sin θ̄)

− 2Ω
(
u̇− ẇ′(η sin θ̄ + ξ cos θ̄)− w′θ̇(η cos θ̄ − ξ sin θ̄)

−v̇′(η cos θ̄ − ξ sin θ̄) + v′θ̇(η sin θ̄ + ξ cos θ̄)
)]

[
δv − (η sin θ̄ + ξ cos θ̄)δθ)

]
+

[
− ẅ − θ̈(η cos θ̄ − ξ sin θ̄) + θ̇2(η sin θ̄ + ξ cos θ̄)

]
[
δw + (η cos θ̄ − ξ sin θ̄)δθ

]
+ O(ϵ4)

}
dη dξ dx dt (C.15)
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• δx1m, δy1m, δz1m

δx1m =δum

−
{
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)}
δw′

m

−
{
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)}
δv′m

−
{
w′

m

[
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)]
− v′m

[
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]}
δθm

(C.16)

δy1m =δv

−
{
v′m
[
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)]
+ w′

m

[
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]}
δv′m

−
{
v′m
[
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]}
δw′

m

−
{(

1− v′2m
2

)[
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]
+ v′mw

′
m

[
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)]}
δθm

(C.17)

δz1m =δwm

−
{
w′

m

[
ηm sin θ̄m + ξm cos θ̄m + λ sin

(
θ̄m − θind

)]}
δw′

m
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+

{(
1− w′2

m

2

)[
ηm cos θ̄m − ξm sin θ̄m + λ cos

(
θ̄m − θind

)]}
δθm

(C.18)
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Appendix D

First-order Taylor approximation of energy

expressions

D.1 Linearized strain energy

A first-order Taylor series expansion of the variations of strain energy

(see Eq. (2.158)) is given by

(δU)bLin = (δU)b 0

+

∫
R

{ [
U01∆u

′ + U02∆v
′ + U03∆v

′′ + U04∆w
′ + U05∆w

′′ + U06∆θ + U07∆θ
′
]
δu′

+

[
U08∆u

′ + U09∆v
′ + U10∆v

′′ + U11∆w
′ + U12∆w

′′ + U13∆θ + U14∆θ
′
]
δv′

+

[
U15∆u

′ + U16∆v
′ + U17∆v

′′ + U18∆w
′ + U19∆w

′′ + U20∆θ + U21∆θ
′
]
δv′′

+

[
U22∆u

′ + U23∆v
′ + U24∆v

′′ + U25∆w
′ + U26∆w

′′ + U27∆θ + U28∆θ
′
]
δw′

+

[
U29∆u

′ + U30∆v
′ + U31∆v

′′ + U32∆w
′ + U33∆w

′′ + U34∆θ + U35∆θ
′
]
δw′′

+

[
U36∆u

′ + U37∆v
′ + U38∆v

′′ + U39∆w
′ + U40∆w

′′ + U41∆θ + U42∆θ
′
]
δθ

+

[
U43∆u

′ + U44∆v
′ + U45∆v

′′ + U46∆w
′ + U47∆w

′′ + U48∆θ + U49∆θ
′
]
δθ′
}
dx

(D.1)

Note that due to the positive definiteness of the strain energy operator, the

Jacobian matrix is symmetric. Hence, the lower triangular part of the Jacobian
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matrix is equal to the upper triangular part, i.e.

U02 = U08 U03 = U15 U04 = U22 U05 = U29 U06 = U36 U07 = U43

U10 = U16 U11 = U23 U12 = U30 U13 = U37 U14 = U44

U18 = U24 U19 = U31 U20 = U38 U21 = U45

U26 = U32 U27 = U39 U28 = U46

U34 = U40 U35 = U47

U42 = U48

The coefficients of the upper triangular part and the diagonal of the Jacobian

matrix are given by

U01 = EA

U02 = EAv′0 +GAθ′0(eη sin θ̄0 + eξ cos θ̄0)

U03 = −EA(eη cos θ̄0 − eξ sin θ̄0)

U04 = EAw′
0 −GAθ′0(eη cos θ̄0 − eξ sin θ̄0)

U05 = −EA(eη sin θ̄0 + eξ cos θ̄0)

U06 = (EAv′′0 +GAθ′0w
′
0)(eη sin θ̄0 + eξ cos θ̄0)

− (EAw′′
0 −GAθ′0v

′
0)(eη cos θ̄0 − eξ sin θ̄0)

U07 = EAk2Aθ
′
0 −GAw′

0(eη cos θ̄0 − eξ sin θ̄0) +GAv′0(eη sin θ̄0 + eξ cos θ̄0)

U09 = EAv′20 + EA

(
u′0 +

v′20
2

+
w′2

0

2

)
+ EA

k2A
2
θ′20

− (EAv′′0 + 2GAw′
0θ

′
0)(eη cos θ̄0 − eξ sin θ̄0)

− (EAw′′
0 − 3GAv′0θ

′
0)(eη sin θ̄0 + eξ cos θ̄0)
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U10 = −EAv′0(eη cos θ̄0 − eξ sin θ̄0)

U11 = EAw′
0v

′
0 − 2GAv′0θ

′
0(eη cos θ̄0 − eξ sin θ̄0)

U12 = −EAv′0(eη sin θ̄0 + eξ cos θ̄0)

U13 = (EAv′0v
′′
0 + 2GAv′0w

′
0θ

′
0)(eη sin θ̄0 + eξ cos θ̄0)

− (EAv′0w
′′
0 −GAu′0θ

′
0 −

3

2
GAv′20 θ

′
0)(eη cos θ̄0 − eξ sin θ̄0)

U14 = EAk2Av
′
0θ

′
0 − 2GAv′w′(eη cos θ̄0 − eξ sin θ̄0)

+GA

(
u′0 +

3

2
v′20

)
(eη sin θ̄0 + eξ cos θ̄0)

U17 = EIξ cos
2 θ̄0 + EIη sin

2 θ̄0 − EIηξ sin 2θ̄0

U18 = −EAw′
0(eη cos θ̄0 − eξ sin θ̄0) +GJθ′0

U19 =
1

2

[
(EIξ − EIη) sin 2θ̄0 + 2EIηξ cos 2θ̄0

]
U20 =

[
−EIξ sin 2θ̄0 + EIη sin 2θ̄0 − 2EIηξ cos 2θ̄0

]
v′′0

+
[
(EIξ − EIη) cos 2θ̄0 − 2EIηξ sin 2θ̄0

]
w′′

0

+
EB2

2
θ′20 sin θ̄0 +

EB3

2
θ′20 cos θ̄0

+ EA

(
u′0 +

v′20
2

+
w′2

0

2

)
(eη sin θ̄0 + eξ cos θ̄0)

U21 = −EB2θ
′
0 cos θ̄0 + EB3θ

′
0 sin θ̄0 +GJw′

0

U25 = EAw′2
0 + EA

(
u′0 +

v′20
2

+
w′2

0

2

)
+ EA

k2A
2
θ′20

− (EAv′′0 + 3GAw′
0θ

′
0)(eη cos θ̄0 − eξ sin θ̄0)− EAw′′

0(eη sin θ̄0 + eξ cos θ̄0)

U26 = −EAw′
0(eη sin θ̄0 + eξ cos θ̄0)

U27 = (EAw′
0v

′′
0 +GAu′0θ

′
0 +GAv′20 θ

′
0 +

3

2
GAw′2

0 θ
′
0)(eη sin θ̄0 + eξ cos θ̄0)

− EAw′
0w

′′
0(eη cos θ̄0 − eξ sin θ̄0)
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U28 = EAk2Aw
′
0θ

′
0 − (GAu′0 +GAv′2 +

3

2
GAw′2)(eη cos θ̄0 − eξ sin θ̄0) +GJv′′0

U33 =
[
EIξ sin

2 θ̄0 + EIη cos
2 θ̄0 + EIηξ sin 2θ̄0

]
U34 =

[
EIξ sin 2θ̄0 − EIη sin 2θ̄0 + 2EIηξ cos 2θ̄0

]
w′′

0

+
[
(EIξ − EIη) cos 2θ̄0 − 2EIηξ sin 2θ̄0

]
v′′0

− EB2

2
θ′20 cos θ̄0 +

EB3

2
θ′20 sin θ̄0

− EA

(
u′0 +

v′20
2

+
w′2

0

2

)
(eη cos θ̄0 − eξ sin θ̄0)

U35 = −EB2θ
′
0 sin θ̄0 − EB3θ

′
0 cos θ̄0

U41 =
[
(EIξ − EIη) cos 2θ̄0 − 2EIηξ sin 2θ̄0

]
w′′2

0

−
[
(EIξ − EIη) cos 2θ̄0 − 2EIηξ sin 2θ̄0

]
v′′20

− 2
[
(EIξ − EIη) sin 2θ̄0 + 2EIηξ cos 2θ̄0

]
v′′0w

′′
0

+

(
EB2

2
sin θ̄0 +

EB3

2
cos θ̄0

)
w′′

0θ
′2
0

+

(
EB2

2
cos θ̄0 −

EB3

2
sin θ̄0

)
v′′0θ

′2
0

+

[
EA

(
u′0 +

v′20
2

+
w′2

0

2

)
v′′0 +GAu′0w

′
0θ

′
0

+GAv′20 w
′
0θ

′
0 +GA

w′3
0 θ

′
0

2

]
(eη cos θ̄0 − eξ sin θ̄0)

−
[
−EA

(
u′0 +

v′20
2

+
w′2

0

2

)
w′′

0

+GAu′0v
′
0θ

′
0 +GA

v′30 θ
′
0

2

]
(eη sin θ̄0 + eξ cos θ̄0)

U42 = −
(
EB2 cos θ̄0 − EB3 sin θ̄0

)
w′′

0θ
′
0 +

(
EB2 sin θ̄0 + EB3 cos θ̄0

)
v′′0θ

′
0

+

(
GAu′0w

′
0 +GAv′20 w

′
0 +GA

w′3
0

2

)
(eη sin θ̄0 + eξ cos θ̄0)

+

(
GAu′0v

′
0 +GA

v′30
2

)
(eη cos θ̄0 − eξ sin θ̄0)
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U49 = EAk2A

(
u′0 +

v′20
2

+
w′2

0

2

)
+

(
3

2
EB1

)
θ′20

−
(
EB2 sin θ̄0 + EB3 cos θ̄0

)
w′′

0 −
(
EB2 cos θ̄0 − EB3 sin θ̄0

)
v′′0 +GJ

D.2 Linearized kinetic energy

A first-order Taylor expansion of Eq. (2.177) gives

(δT )bLin =(δT )b 0

+

∫
R

{ [
M01∆ü+M02∆v̈

′ +M03∆ẅ
′ +M04∆θ̈

]
δu

+

[
M05∆v̈ +M06∆θ̈

]
δv

+

[
M07∆ü

]
δv′ +

[
M08∆ẅ +M09∆θ̈

]
δw +

[
M10∆ü

]
δw′

+

[
M11∆ü+M12∆v̈ +M13∆ẅ +M14∆θ̈

]
δθ

}
dx

+

∫
R

{ [
G01∆v̇ +G02∆θ̇

]
δu

+

[
G03∆u̇+G04∆v̇

′ +G05∆ẇ
′ +G06∆θ̇

]
δv

+

[
G07∆v̇ +G08∆θ̇

]
δv′ +

[
G09∆v̇ +G10∆θ̇

]
δw′

+

[
G11∆u̇+G12∆v̇ +G13∆v̇

′ +G14∆ẇ
′
]
δθ

}
dx

+

∫
R

{ [
K01∆v +K02∆θ

]
δv +

[
K03∆θ

]
δv′

+

[
K04∆θ

]
δw′

+

[
K05∆v +K06∆v

′ +K07∆w
′ +K08∆θ

]
δθ

}
dx (D.2)
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where

M01 = −m0

M02 = m0(dη cos θ̄0 − dξ sin θ̄0)

M03 = m0(dη sin θ̄0 + dξ cos θ̄0)

M04 = m0w
′
0(dη cos θ̄0 − dξ sin θ̄0)−m0v

′
0(dη sin θ̄0 + dξ cos θ̄0)

M05 = −m0

M06 = m0(dη sin θ̄0 + dξ cos θ̄0)

M07 = m0(dη cos θ̄0 − dξ sin θ̄0)

M08 = −m0

M09 = −m0(dη cos θ̄0 − dξ sin θ̄0)

M10 = m0(dη sin θ̄0 + dξ cos θ̄0)

M11 = m0w
′
0(dη cos θ̄0 − dξ sin θ̄0)−m0v

′
0(dη sin θ̄0 + dξ cos θ̄0)

M12 = m0(dη sin θ̄0 + dξ cos θ̄0)

M13 = −m0(dη cos θ̄0 − dξ sin θ̄0)

M14 = −m0k
2
m

G01 = 2m0Ω

G02 = −2m0Ω(dη sin θ̄0 + dξ cos θ̄0)

G03 = −2m0Ω

G04 = 2m0Ω(dη cos θ̄0 − dξ sin θ̄0)

G05 = 2m0Ω(dη sin θ̄0 + dξ cos θ̄0)
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G06 = −2m0Ωv
′
0(dη sin θ̄0 + dξ cos θ̄0) + 2m0Ωw

′
0(dη cos θ̄0 − dξ sin θ̄0)

G07 = −2m0Ω(dη cos θ̄0 − dξ sin θ̄0)

G08 = m0Ω(k
2
mξ

− k2mη
) sin 2θ̄0 + 2m0Ωkm

2
ηξ cos 2θ̄0

G09 = −2m0Ω(dη sin θ̄0 + dξ cos θ̄0)

G10 = 2m0Ω(k
2
mξ

sin2 θ̄0 + k2mη
cos2 θ̄0) + 2m0Ωk

2
mηξ

sin 2θ̄0

G11 = 2m0Ω(dη sin θ̄0 + dξ cos θ̄0)

G12 = −2m0Ωw
′
0(dη cos θ̄0 − dξ sin θ̄0) + 2m0Ωv

′
0(dη sin θ̄0 + dξ cos θ̄0)

G13 = −m0Ω(k
2
mξ

− k2mη
) sin 2θ̄0 − 2m0Ωk

2
mηξ

cos 2θ̄0

G14 = −2m0Ω(k
2
mξ

sin2 θ̄0 + k2mη
cos2 θ̄0)− 2m0Ωk

2
mηξ

sin 2θ̄0

K01 = m0Ω
2

K02 = −m0Ω
2(dη sin θ̄0 + dξ cos θ̄0)

K03 = m0Ω
2x(dη sin θ̄0 + dξ cos θ̄0)

K04 = −m0Ω
2x(dη cos θ̄0 − dξ sin θ̄0)

K05 = −m0Ω
2(dη sin θ̄0 + dξ cos θ̄0)

K06 = m0Ω
2x(dη sin θ̄0 + dξ cos θ̄0)

K07 = −m0Ω
2x(dη cos θ̄0 − dξ sin θ̄0)

K08 = m0Ω
2xw′

0(dη sin θ̄0 + dξ cos θ̄0) +m0Ω
2xv′0(dη cos θ̄0 − dξ sin θ̄0)

−m0Ω
2(k2mξ

− k2mη
) cos 2θ̄0 + 2m0Ω

2k2mηξ
sin 2θ̄0

−m0Ω
2v0(dη cos θ̄0 − dξ sin θ̄0)
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D.3 Linearized gravitational potential energy

Upon linearization by first-order Taylor expansion, Eq. (2.189) becomes

(δVg)bLin = (δVg)b 0 +

∫
R

{ [
Vg01∆w

′ + Vg02∆θ

]
δw′ +

[
Vg03∆w

′ + Vg04∆θ

]
δθ

}
dx

(D.3)

where

Vg01 = −m0g(dη sin θ̄0 + dξ cos θ̄0)

Vg02 = −m0gw
′
0(dη cos θ̄0 − dξ sin θ̄0)

Vg03 = −m0gw
′
0(dη cos θ̄0 − dξ sin θ̄0)

Vg04 = −m0g

(
1− w′2

0

2

)
(dη sin θ̄0 + dξ cos θ̄0)

D.4 Linearized tip mass kinetic energy

(δT )m = (δT )m0 +

[
Mm01∆üm +Mm02∆v̈

′
m +Mm03∆ẅ

′
m +Mm04∆θ̈m

]
δum

+

[
Mm05∆v̈m +Mm06∆θ̈m

]
δvm +

[
Mm07∆üm

]
δv′m

+

[
Mm08∆ẅm +Mm09∆θ̈m

]
δwm +

[
Mm10∆üm

]
δw′

m

+

[
Mm11∆üm +Mm12∆v̈m +Mm13∆ẅm +Mm14∆θ̈m

]
δθm

+

[
Cm01∆v̇m + Cm02∆θ̇m

]
δum

+

[
Cm03∆u̇m + Cm04∆v̇

′
m + Cm05∆ẇ

′
m + Cm06∆θ̇m

]
δvm

+

[
Cm07∆v̇m + Cm08∆θ̇m

]
δv′m +

[
Cm09∆v̇m + Cm10∆θ̇m

]
δw′

m
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+

[
Cm11∆u̇m + Cm12∆v̇m + Cm13∆v̇

′
m + Cm14∆ẇ

′
m

]
δθm

+

[
Km01∆vm +Km02∆θm

]
δvm +

[
Km03∆θm

]
δv′m +

[
Km04∆θm

]
δw′

m

+

[
Km05∆vm +Km06∆v

′
m +Km07∆w

′
m +Km08∆θm

]
δθm

(D.4)

where

Mm01 = −mm

Mm02 = mm (T2)0

Mm03 = mm (T1)0

Mm04 = mmw
′
0 (T2)0 −mmv

′
0 (T1)0

Mm05 = −mm

Mm06 = mm (T1)0

Mm07 = mm (T2)0

Mm08 = −mm

Mm09 = −mm (T2)0

Mm10 = mm (T1)0

Mm11 = mmw
′
0 (T2)0 −mmv

′
0 (T1)0

Mm12 = mm (T1)0

Mm13 = −mm (T2)0

Mm14 = −mm (T3 + T4)0
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Cm01 = 2mmΩ

Cm02 = −2mmΩ (T1)0

Cm03 = −2mmΩ

Cm04 = 2mmΩ (T2)0

Cm05 = 2mmΩ (T1)0

Cm06 = −2mmΩv
′
m0 (T1)0 + 2mmΩw

′
m0 (T2)0

Cm07 = −2mmΩ (T2)0

Cm08 = 2mmΩ (T5)0

Cm09 = −2mmΩ (T1)0

Cm10 = 2mmΩ (T3)0

Cm11 = 2mmΩ (T1)0

Cm12 = 2mmΩv
′
m0 (T1)0 − 2mmΩw

′
m0 (T2)0

Cm13 = −2mmΩ (T5)0

Cm14 = −2mmΩ (T3)0

Km01 = mmΩ
2

Km02 = mmΩ
2

(
∂T2
∂θ

)
0

Km03 = −mmΩ
2xm

(
∂T2
∂θ

)
0

Km04 = −mmΩ
2xm

(
∂T1
∂θ

)
0

Km05 = −mmΩ
2 (T1)0
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Km06 = mmΩ
2xm (T1)0

Km07 = −mmΩ
2xm (T2)0

Km08 = mmΩ
2(xmv

′
m0 − vm0)

(
∂T1
∂θ

)
0

−mmΩ
2xmw

′
m0

(
∂T2
∂θ

)
0

−mmΩ
2

(
∂T5
∂θ

)
0

D.5 Linearized tip mass gravitational potential energy

(δVg)mLin = (δVg)m0 + Vgm01∆w
′
mδw

′
m

+ Vgm02∆θmδw
′
m + Vgm03∆w

′
mδθm + Vgm04∆θmδθm (D.5)

where

Vgm01 = −mmg (T1)0

Vgm02 = −mmg w
′
m0

(
∂T1
∂θm

)
0

Vgm03 = −mmg w
′
m0(T2)0

Vgm04 = mmg

(
1− w

′2
m0

2

)(
∂T2
∂θm

)
0

D.6 Linearized virtual work done by unsteady aerody-
namic loads

(δWa)bLin =(δWa)b0

+

∫
R

[
Ma01∆v̈ +Ma02∆ẅ +Ma03∆θ̈

]
δv

+
[
Ma04∆v̈ +Ma05∆ẅ +Ma06∆θ̈

]
δw
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+

∫
R

[
Ca01∆v̇ + Ca02∆ẇ + Ca03∆θ̇

]
δv

+
[
Ca04∆v̇ + Ca05∆ẇ + Ca06∆θ̇

]
δw

+
[
Ca07∆v̇ + Ca08∆ẇ + Ca09∆θ̇

]
δθ

+

∫
R

[Ka01∆v +Ka02∆v
′ +Ka03∆w

′ +Ka04∆θ] δv

+ [Ka05∆u+Ka06∆v +Ka07∆v
′ +Ka08∆w

′ +Ka09∆θ] δw

+Ka10∆θδθ (D.6)

where

Ma01 = − c2

16
ρ∞Clα(1− cos 2θ̄0)

Ma02 =
c2

16
ρ∞Clα sin 2θ̄0

Ma03 = − c2

16
ρ∞Clα

(
2xA +

c

2

)
sin θ̄0

Ma04 =
c2

16
ρ∞Clα sin 2θ̄0

Ma05 = − c2

16
ρ∞Clα(1 + cos 2θ̄0)

Ma06 =
c2

16
ρ∞Clα

(
2xA +

c

2

)
cos θ̄0

Ca01 = −1

2
ρ∞(Ωx)cClα

(
λi
r

)
sin θ̄0C

′(k)

Ca02 = −1

2
ρ∞(Ωx)cClα

[
sin θ̄0 − 2

λi
r
cos θ̄0

]
C ′(k)− 1

2
ρ∞(Ωx)cCl0 cos θ̄0C

′(k)

Ca03 = −1

2
ρ∞(Ωx)cClα

[
λi
r

( c
2
+ xA

)]
C ′(k)

− c2

16
ρ∞(Ωx)Clα

[
λi
r
(1− cos 2θ̄0) + sin 2θ̄0

]
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Ca04 = −1

2
ρ∞(Ωx)cClα

[
λi
r
cos θ̄0 − 2 sin θ̄0

]
C ′(k)

+
1

2
ρ∞(Ωx)cCl0

[
2 cos θ̄0

]
C ′(k)

Ca05 = −1

2
ρ∞(Ωx)cClα cos θ̄0C

′(k) +
1

2
ρ∞(Ωx)cCl0 sin θ̄0C

′(k)

Ca06 =
1

2
ρ∞(Ωx)cClα

( c
2
+ xA

)
C ′(k)

+
c2

16
ρ∞(Ωx)Clα

(
1 + cos 2θ̄0 +

λi
r
sin 2θ̄0

)
Ca07 = −1

2
ρ∞(Ωx)cxAClα sin 2θ̄0C

′(k)

Ca08 =
1

2
ρ∞(Ωx)cxAClα cos 2θ̄0C

′(k)

Ca09 = −1

2
ρ∞(Ωx)cxAClα

( c
2
+ xA

)
cos θ̄0C

′(k)

− c2

16
ρ∞(Ωx)Clα(c+ 2xA) cos θ̄0

Ka01 = −1

2
ρ∞(Ωx)cClαΩw

′
0 sin θ̄0C

′(k)

Ka02 = −1

2
ρ∞(Ωx)2cClαw

′
0 sin θ̄0C

′(k)

Ka03 = −1

2
ρ∞(Ωx)cClα (Ωv0 + Ωxv′0) sin θ̄0C

′(k)

Ka04 = −1

2
ρ∞(Ωx)2cClα

[
λi
r
cos θ̄0 +

(
λi
r

)2

sin θ̄0

]
C ′(k)

− 1

2
ρ∞(Ωx)cClα (Ωv0w

′
0 + Ωxv′0w

′
0) cos θ̄0C

′(k)

+
1

2
ρ∞(Ωx)2cCl0

(
λi
r

)
sin θ̄0C

′(k) +
1

2
ρ∞(Ωx)2

3c

4
Cd0(sin θ̄0 + sin 3θ̄0)

Ka05 =
1

2
ρ∞(Ωx)cClα(2Ω) sin θ̄0C

′(k)

Ka06 =
1

2
ρ∞(Ωx)cClα

[
−Ωw′

0 cos θ̄0 + 2Ωv′0 sin θ̄0
]
C ′(k)
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Ka07 = −1

2
ρ∞(Ωx)2cClα (2v

′
0) sin θ̄0C

′(k) +
1

2
ρ∞(Ωx)cClα(2Ωv0) sin θ̄0C

′(k)

Ka08 = −1

2
ρ∞(Ωx)2cClαw

′
0 sin θ̄0C

′(k)

+
1

2
ρ∞(Ωx)cClα

[
Ω
( c
2
+ xA

)
− Ωv0 cos θ̄0

]
C ′(k)

Ka09 = −1

2
ρ∞(Ωx)2cClα

[
−λi
r
sin θ̄0 − 2 cos θ̄0 +

(
v′20 +

w′2
0

2

)
cos θ̄0

]
C ′(k)

+
1

2
ρ∞(Ωx)cClα

[
Ωv0w

′
0 sin θ̄0 + (2Ωu0 + 2Ωv0v

′
0) cos θ̄0

]
C ′(k)

+
1

2
ρ∞(Ωx)2cCl0

[
− sin θ̄0 +

λi
r
cos θ̄0

]
C ′(k)

− 1

2
ρ∞(Ωx)2

c

4
Cd0(3 cos 3θ̄0 + cos θ̄0)

Ka10 = −1

2
ρ∞(Ωx)2c2Cm0 sin 2θ̄0C

′(k)

− 1

2
ρ∞(Ωx)2cxAClα

[
2
λi
r
sin 2θ̄0 + cos 2θ̄0

]
C ′(k)

+
1

2
ρ∞(Ωx)2cxACl0 sin 2θ̄0C

′(k)

D.7 Linearized virtual work done by steady aerody-
namic loads

(δWa QS)b = (δWa QS)b0

+

∫ R

x0

K(a01 QS) ∆θδv +K(a02 QS)∆θδw +K(a03 QS)∆θδθ (D.7)

where

K(a01 QS) = −1

2
ρ∞ (Ωx)2

[
c

(
∂Cd

∂θ

)
0

cos θ̄0 − c(Cd)0 sin θ̄0

]
− 1

2
ρ∞ (Ωx)2

λi
r

[
c

(
∂Cl

∂θ

)
0

cos θ̄0 − c(Cl)0 sin θ̄0
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+c

(
∂Cd

∂θ

)
0

sin θ̄0 + c(Cd)0 cos θ̄0

]

K(a02 QS) =
1

2
ρ∞ (Ωx)2

[
c

(
∂Cl

∂θ

)
0

cos θ̄0 − c(Cl)0 sin θ̄0

]
+

1

2
ρ∞ (Ωx)2

λi
r

[
c

(
∂Cl

∂θ

)
0

sin θ̄0 + c(Cl)0 cos θ̄0

−c
(
∂Cd

∂θ

)
0

cos θ̄0 + c(Cd)0 sin θ̄0

]

K(a03 QS) = −1

2
ρ∞ (Ωx)2 cxA

(
∂Cl

∂θ

)
0

cos2 θ̄0

− 1

2
ρ∞ (Ωx)2 (c2Cm0 − cxA(Cl)0) sin 2θ̄0

− 1

2
ρ∞ (Ωx)2

λi
r
cxA

(
∂Cl

∂θ

)
0

sin 2θ̄0

− ρ∞ (Ωx)2
λi
r
cxA (Cl)0 cos 2θ̄0

Note that in theory, the aerodynamic coefficients depend upon all the variables

shown in Eq. (2.261). Hence, gradients with respect to each of these quantities

should be computed. However, it is reasonable to neglect the influence on Cl,

Cd and Cm0 of a change in the second-order terms present in Eq. (2.261), rela-

tive to the action due to a change in θ. Likewise, if we assume that the inflow

ratio does not change under small perturbation of the degrees of freedom, then

the partial derivatives shown in the previous equation are(
∂Cl

∂θ

)
0

= (Clα)0 and

(
∂Cd

∂θ

)
0

= (Cdα)0 (D.8)
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Appendix E

Numerical computation of the Jacobian

matrix using the complex-step derivative

approximation

In this dissertation, the components of the Jacobian matrix are derived

analytically and then implemented in closed form into the numerical model.

However, it is possible that errors are introduced, for instance when the com-

ponents of the matrix are typed in the computer program. To verify the

exactitude of the Jacobian matrix, an algorithm is implemented to compute

the components of the matrix numerically.

Recall that the components of the Jacobian matrix are given by

Jij =
∂Ri

∂uj
(E.1)

where Ri = Ri (u1, . . . , uN) is the ith component of the residue vector-valued

function, and uj is the jth component of the vector of generalized coordinates.

One method to numerically approximate the derivative of the residue function

is to use the central difference formula, defined by

∂Ri

∂uj
=
Ri (u1, . . . , uj +∆u, . . . , uN)−Ri (u1, . . . , uj −∆u, . . . , uN)

2∆u
+O(∆u2)

(E.2)
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The order of magnitude of the terms truncated in this approximation is equal

to ∆u2. Therefore, choosing ∆u as small as possible minimizes the truncation

error. However, it can also be seen in Eq. (E.2) that an excessively small ∆u

leads to a subtracting cancellation error in the numerator.

A solution to circumvent the issue described above is to use the complex-

step differentiation method. This approximate method of differentiation was

originally formulated by Lyness and Moler [108] and relies on the following

derivation.

First, let us expand Ri(u) in a Taylor series, as follows

Ri (u1, . . . , uj + i∆u, . . . , uN) = Ri (u1, . . . , uj, . . . , uN)

+ i∆u
∂Ri

∂uj
−∆u2

1

2!

∂2Ri

∂u2j
− i∆u3

1

3!

∂3Ri

∂u3j
+ · · · (E.3)

Taking the imaginary parts of both sides of Eq. (E.3) yields

ℑ[Ri (u1, . . . , uj + i∆u, . . . , uN)] = ∆u
∂Ri

∂uj
−∆u3

1

3!

∂3Ri

∂u3j
+ · · · (E.4)

Dividing both sides by ∆u, we obtain

∂Ri

∂uj
= ℑ[Ri (u1, . . . , uj + i∆u, . . . , uN)] +O(∆u2) (E.5)

It can be noticed that the magnitude of the truncation error in the previous

expression is on the order of ∆u2. In addition, Eq. (E.5) is not subjected

to cancellation errors. Therefore, the most accurate approximation of the

derivative ∂Ri/∂uj is obtained for the smallest ∆u available. In practice, ∆u

is set equal to the machine precision.
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Appendix F

Response of a mass-spring system subject to

gyroscopic effects

The objective of this appendix is to show that the solution to a mass-

spring system subject to gyroscopic forces or moments is purely oscillatory,

with no negative or positive damping of the response.

Assume that the motion of the system can be described by the following equa-

tions [
1 0
0 1

]{
ẍ1
ẍ2

}
+

[
0 α

−α 0

]{
ẋ1
ẋ2

}
+

[
ω2
1 0
0 ω2

2

]{
x1
x2

}
=

{
F1

F2

}
(F.1)

In particular, the mass and stiffness matrices are written in diagonal form, as

they would upon normal modes decomposition. Note also that the gyroscopic

matrix remains skew-symmetric with the use of normal modes.

The state-space matrix associated with this system is

A =


0 0 1 0
0 0 0 1

−ω2
1 0 0 α
0 −ω2

2 −α 0

 (F.2)

The characteristic polynomial of this matrix is

|A− λI| = λ4 + (ω2
1 + ω2

2 + α2)λ2 + ω2
1ω

2
2 (F.3)
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whose discriminant is

∆ = (ω2
1 + ω2

2 + α2)2 − 4ω2
1ω

2
2

=
(
(ω1 − ω2)

2 + α2
) (

(ω1 + ω2)
2 + α2

)
(F.4)

It can be seen that this discriminant is always positive. Therefore, the eigen-

values of the state-space matrix A are purely imaginary complex conjugates,

equal to

λ1, 2, 3, 4 = ±i

√
(ω2

1 + ω2
2 + α2)±

√
(ω2

1 + ω2
2 + α2)2 − 4ω2

1ω
2
2

2
(F.5)
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Appendix G

Front panel of custom NI LabView virtual

instrument

Figure G.1: Control & Time Analysis
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Figure G.2: Frequency Analysis

Figure G.3: Post Processing
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Appendix H

Circuit diagram of DAQ and transducers

Figure H.1: Circuit diagram of DAQ equipment and transducers
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