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This dissertation addresses the problem of rigid-body attitude tracking con-

trol under three scenarios of high relevance to many aerospace guidance and

control applications: adaptive attitude-tracking control law development for

a spacecraft with time-varying inertia parameters, velocity-free attitude sta-

bilization using only vector measurements for feedback, and smooth angular

velocity observer design for attitude tracking in the absence of angular velocity

measurements.

Inertia matrix changes in spacecraft applications often occur due to fuel

depletion or mass displacement in a flexible or deployable spacecraft. As such,

an adaptive attitude control algorithm that delivers consistent performance
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when faced with uncertain time-varying inertia parameters is of significant

interest. This dissertation presents a novel adaptive control algorithm that

directly compensates for inertia variations that occur as either pure functions

of the control input, or as functions of time and/or the state.

Another important problem considered in this dissertation pertains to

rigid-body attitude stabilization of a spacecraft when only a set of inertial sen-

sor measurements are available for feedback. A novel gyro-free attitude stabi-

lization solution is presented that directly utilizes unit vector measurements

obtained from inertial sensors without relying on observers to reconstruct the

spacecraft’s attitude or angular velocity.

As the third major contribution of this dissertation, the problem of

attitude tracking control in the absence of angular velocity measurements is

investigated through angular velocity observer (estimator) design. A new an-

gular velocity observer is presented which is smoothed and ensures asymp-

totic convergence of the estimation errors irrespective of the initial true states

of the spacecraft. The combined implementation of a separately designed

proportional-derivative type controller using estimates generated by the ob-

server results in global asymptotic stability of the overall closed-loop tracking

error dynamics. Accordingly, a separation-type property is established for

the rigid-body attitude dynamics, the first such result to the author’s best

knowledge, using a smooth (switching-free) observer formulation.
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Chapter 1

Introduction

1.1 Motivation

Attitude control is one of the most widely studied topics in nonlinear controls

literature, with many technically rich results addressing a wide array of con-

straints and physical limitations dictated by the underlying application. In the

field of aerospace engineering, the attitude control system is a critical compo-

nent of spacecraft mission design, with the success of a mission often directly

relying on the spacecraft’s ability to accurately track a desired orientation.

Recent advances in sensor and actuator hardware technology have enabled

the design of spacecraft missions of far greater complexity than in previous

decades. To meet the demands of newer and more challenging control objec-

tives and increased precision requirements, attitude control synthesis continues

to be investigated under various practical considerations. While new problems

continue to be posed, theoretical advances in the controls literature have per-
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mitted opportunities for revisiting certain analytically challenging classical

problems and elegant results to be put forth.

Among existing attitude control solutions, a significant amount of work

is geared towards addressing the problem of unknown or uncertain system pa-

rameters using adaptive control techniques [1, 7, 16, 26, 55, 77]. In the context

of spacecraft attitude tracking, adaptive control theory has been applied exten-

sively to account for mass properties that cannot be exactly determined during

pre-flight testing. The majority of available adaptive attitude-tracking control

literature is focused, however, on rigid spacecraft with uncertain parameters

that are constant and don’t display any time-variation. While this assump-

tion may be adequate for some spacecraft with very slowly varying system

parameters, a growing number of missions anticipate having to incorporate

spacecraft with rapidly deployable appendages coupled with fast propulsive

maneuvers which may result in appreciable variations in the inertia param-

eters. For example, in a deployable spacecraft, an expanding solar array or

sensor boom causes mass displacement. Similarly, a spacecraft undergoing

demanding rotational or translational maneuvers rapidly loses a significant

amount of mass due to fuel depletion. In both cases, the result is a system

with a time-varying inertia profile, which must be taken into consideration for

precise attitude tracking requirements. This dissertation addresses the prob-

lem of rapidly varying inertia matrix parameters through the design of a novel

adaptive attitude tracking control law that directly compensates for inertia

variations occurring as a result of fuel mass-loss or mass-displacement due to

2



deploying spacecraft appendages.

Attitude control laws are typically configured using the quaternion vec-

tor or an equivalent attitude representation such as Modified Rodriguez Pa-

rameters or Gibb’s vectors [58]. In practice though, no physical sensor is able

to directly measure the attitude of a vehicle. Rather, the attitude is recon-

structed with an observer (estimation) scheme that relies on inertial sensor

measurements and rate gyro information. However, in several practical im-

plementations, reliable angular velocity information may not always be avail-

able, and gyro failures or noise effects could lead to a severely compromised

attitude control system. Thus, in the setting of complete absence of rate mea-

surements, a stabilizing attitude controller that utilizes vector measurements

directly for feedback, without relying on intermediate estimates of some atti-

tude parameterization or angular velocity feedback, is crucial for the success

of the spacecraft’s mission.

In this dissertation, a novel attitude stabilization control law is pre-

sented which relies on the direct feedback of vector measurements obtained

from inertial sensors. The control law neither requires angular velocity mea-

surements, nor does it rely on any observer or estimation schemes to recon-

struct either the angular velocity or the attitude of the spacecraft. Further,

since the proposed controller is configured directly using vector measurements,

it does not suffer from the undesirable unwinding phenomenon typically ob-

served with quaternion-based feedback controllers, where the spacecraft may

start at rest arbitrarily close to the desired attitude and unnecessarily rotate

3



through large angles before stabilizing to the desired attitude [10].

Along parallel lines of inquiry, this dissertation examines the imple-

mentation of proportional-derivative (PD) feedback controllers using a com-

bined observer-controller architecture. The majority of the PD control designs

require angular velocity measurements to be directly available for feedback.

However, as noted earlier, this requirement may not always be accurately

satisfied, and gyro failures may result in a detrimental loss of pointing and

tracking accuracy. Designing an observer for the nonlinear and time-varying

rigid body dynamics is complicated by the fact that, in general, no separation

property exists for nonlinear systems. Therefore, the closed-loop stable imple-

mentation of a full-state feedback attitude control law using angular velocity

estimates is a problem of great theoretical and practical importance.

A very recent result [15] proposed a switched angular velocity observer

that established for the first time a separation property for rigid body atti-

tude tracking control. However, the observer design relies on a switching logic

that can introduce hardware fatigue. The lack of a smooth angular velocity

observer in current literature motivates the third area of research in this disser-

tation, which focuses on the construction of a novel smooth angular velocity

observer that, when combined with a standard PD-type controller, renders

the resulting closed-loop system (almost) globally asymptotically stable. An

important separation property is established for the rigid-body attitude track-

ing problem using the proposed smooth angular velocity formulation, the first

such result to the best of the author’s knowledge. The separation property

4



is realized through the use of a novel Lyapunov “strictification” [33, 34, 37]

strategy, a process by which a non-strict Lyapunov function is transformed

into a partially strict Lyapunov function whose derivative contains additional

desirable non-positive terms. Within the context of the smooth observer, the

introduction of additional non-positive terms of the estimation error signals

in the Lyapunov function derivative helps dominate undesirable terms arising

due to the observer implementation, and is critical in proving the separation

property result.

1.2 Literature Review

In this section, a detailed survey of existing literature is provided for the

three main problems treated in this dissertation. The first review addresses

relevant results within the context of adaptive control for time-varying param-

eters, while the second and third examine existing work related respectively to

gyro-free control using vector measurements only and smooth angular velocity

observer construction for rigid body attitude tracking applications.

1.2.1 Adaptive Attitude Control for Time-Varying Pa-

rameters

Classical literature in the area of adaptive control has addressed the prob-

lem of time-varying plant parameters but for linear dynamic systems. The

methodology in [5] considers linear systems with time-varying parameters in

5



a compact set, while [41, 83] address linear systems with unknown but slowly

time-varying parametric uncertainties. More recent results provide extensions

to limited classes of nonlinear time-varying plants that are not readily extend-

able to the rigid body problem; the formulation of [81] accounts for unknown

periodic time-varying uncertainties that may be rapidly time-varying but with

known periodicity, whereas algorithms for uncertain time-varying parameters

with known bounds are reported in [20]. The result presented in this disser-

tation extends the problem of adaptive control for the highly nonlinear rigid

body dynamics to account for time-varying system (inertia matrix) parameters

with both multiplicative and additive uncertainty.

The problem formulation and corresponding solution approach pre-

sented here are both motivated by the underlying assumption that inertia

matrix variations often occur as a result of a known and well-modeled dynamic

phenomena. While this assumption may appear restrictive, in fact, it readily

serves many practical applications. For example, in the case of mass-loss due

to fuel consumption, the rate of change of the spacecraft mass is a function

of the applied control and is easily characterized for the onboard actuator

components. Inertia parameter variations arising due to mass displacement

caused by deploying appendages, as well as any other time or state dependent

inertia parameters could also be treated within the framework of the proposed

control strategy. Reference [76] addresses a similar problem wherein the iner-

tia matrix description is provided as an unknown constant component as well

as a time-varying component of known variation profile but unknown bound.

6



However, the formulation in [76] only considers variations in the inertia ma-

trix of a purely time-dependent nature. In this dissertation, the salient and

distinguishing feature of the novel control method is its ability to handle not

only time-dependent, but also a combination of time and state or purely input

dependent variations of the inertia matrix.

1.2.2 Gyro-Free Attitude Stabilization

The orientation of a rigid body is described using a rotation matrix, a 3 × 3

orthogonal matrix with determinant equal to 1. Rotation matrices, also known

as direction cosine matrices, constitute the special orthogonal group of rigid

rotations in R3, which is denoted by SO(3). While attitude stabilization con-

trol laws that use rotation matrices directly have been recently investigated

[11, 19, 46, 50], the majority of previous results use either a three-parameter

(modified Rodrigues parameters) or quaternion representation of the attitude

[31, 47, 74, 77, 79]. Stabilization control laws are typically formulated us-

ing attitude and angular velocity measurements. It is a well-established fact

that stabilization can be achieved even in the absence of angular velocity

feedback owing to the fact that the rigid body dynamics satisfy a passivity

property: the map from torque as input and angular velocity as output is

passive [31, 47, 61, 74]. However, regardless of the specific attitude parameter-

ization utilized, most control methods assume that the attitude measurement

is readily available for feedback. In practice, though, no sensor is able to

directly measure the attitude of a vehicle. Rather, the spacecraft’s attitude
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is obtained through an observer or estimation algorithm typically driven by

measurements from rate gyros, sun sensors, star sensors, and/or a wide array

of other such sensors.

Batch-type attitude estimators such as QUEST, ESOQ, ESOQ-2, and

their variants are based on the classical Wahba problem [35, 36, 42, 59, 75].

These numerical algorithms treat attitude determination as a static optimiza-

tion problem by solving for the quaternion using unit vector measurements

obtained from inertial sensors at a single point in time. However, due to this

memoryless approach, these algorithms are known to suffer from robustness

issues and are sensitive to measurement noise. Extensions to these algorithms

have been formulated using a filter approach to handle sequential measure-

ments over a range of time [9, 17, 57]. However, where efficiency and robust-

ness are concerned, sequential estimation techniques based on the extended

Kalman filter (EKF) are the real workhorse for aerospace applications [30].

Linear filtering algorithms are able to handle measurement noise and provide

more efficiency by employing rate gyro information along with vector measure-

ments in a complementary manner [17]. Several rich results that address the

development of nonlinear attitude observers with rigorous convergence proofs

are also available in this regard [2, 32, 73]. However, like their linear filter

counterparts, nonlinear observer algorithms also typically either rely on per-

fect knowledge of the angular velocity or, more recently, with the availability

of the angular velocity subject to unknown constant bias [40]. Hence, when an-

gular velocity is unavailable, the use of estimation/observer algorithms which

8



are driven by angular velocity measurements is obviously infeasible.

In the setting of complete absence of rate measurements, the develop-

ment of a stabilizing controller that utilizes vector measurements directly for

feedback, without relying on the estimated attitude vector or angular velocity

feedback, remains a significant open problem. A recent result in [62] addresses

the same problem of velocity-free attitude stabilization control scheme relying

solely on body vector measurements. The underlying solution approach in

Reference [62] uses a quaternion-based attitude observer-like signal, referred

to as the ‘dynamic auxiliary system’, for control synthesis. While the auxiliary

system does not exhibit the classical separation property (rather it is depen-

dent on a specific control law), its dynamical construction is similar to that of

an attitude observer scheme. The asymptotic stabilization of the rigid body’s

attitude and angular velocity depends on the asymptotic convergence of the

quaternion observer-like signal.

In contrast to the results in [62], the control design in this dissertation

is rooted in the classical passive systems framework. In essence, the inher-

ent passivity properties of the rigid body dynamics are exploited to develop

a control scheme that does not rely on angular velocity and uses unit vector

measurements directly for stabilization. The work herein draws from the clas-

sical results of References [31, 47, 74] where the authors derive passivity-based

velocity-free attitude controllers using either quaternions, Rodrigues, or Mod-

ified Rodrigues parameters for kinematic representation. The distinguishing

feature of this work is that no attitude parameterization is used and instead

9



the proposed control directly employs vector measurements of unit length.

Further, unlike [62], the control law does not rely on an attitude observer-like

signal. Instead, the attitude and angular velocity convergence is obtained di-

rectly from feedback of vector measurements. To the best knowledge of the

author, the problem of stabilizing a spacecraft in the passivity framework,

wherein vector measurements are used directly for feedback and no observers

are implemented, has not been previously solved.

The work presented in this dissertation shares slight similarities with

a rather recent result in [19] where a stabilizing attitude controller is formu-

lated that uses all unit vector measurements directly, rather than determining

or parameterizing the rigid body’s rotation matrix first. However, the most

significant distinction is that unlike the formulation herein, the results in Ref-

erence [19] require the availability of perfect angular velocity measurements.

Thus, the development of a set point regulation control law using passivity

approach with only unit vector measurements as feedback is one of the novel

contributions of this dissertation.

1.2.3 Smooth Angular Velocity Observer

Several proportional-derivative (PD) type attitude tracking control laws are

available in existing literature for rigid spacecraft implementations [25, 29,

77, 79, 80]. Due to the well known fact that the configuration space of the

attitude motion SO(3) is not a contractible space, it is impossible for any

continuous state-feedback control law to render global asymptotic stability

10



[10, 77]. Therefore, the standard notion of “almost” global asymptotic stability

is adopted for this problem to imply stability over an open and dense set in

SO(3). The majority of the PD control designs expect perfectly measured

angular velocity information for controller feedback, an assumption that is

not always satisfied in practical applications.

As noted earlier, the passivity property of the rigid body dynamics can

be exploited to satisfy attitude tracking through a proportional-only feedback

controller even in the complete absence of angular velocity measurements,

using only attitude feedback. For the implementation of full PD-type control

laws, the unavailability of angular velocity measurements has been dealt with

through a combined observer-controller architecture.

The observer approach was first considered by Salcudean [49] who pro-

posed a nonlinear observer based on extensions of the classic Luenberger ob-

server for a second-order system. While closed-loop system stability was not

proven in this case, Reference [49] conjectured the existence of a separation

property in which the observer and controller can be designed separately with

the desired stability properties and thereafter combined to retain closed-loop

system properties. In Nicosia and Tomei [44], an angular velocity observer is

presented, which, when combined with any state feedback controller, is sta-

ble within an estimated region of attraction under mild assumptions on the

controller. In Caccavale and Villani [12], two alternative strategies are pro-

posed, the first of which employs a second-order model-based observer, which

when tuned with the proposed control law, achieves a locally stable closed-loop
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system. The second strategy is based on a lead filter for estimating angular

velocity error. Schlanbusch et. al [54] use a quaternion-based hybrid out-

put feedback controller for attitude tracking control in the absence of angular

velocity. A switching observer is used to reconstruct the angular velocity.

Closed-loop system stability is guaranteed for all initial conditions inside a

compact set which may be made arbitrarily large by increasing the control

gains.

More recently, the work by Chunodkar and Akella [15] established for

the first time an almost globally stable result on a separation property with

an angular velocity observer when combined with a proportional-derivative

type control structure. The observer in [15] employs a switching logic, similar

in spirit to the hybrid-logic of [54], by instantaneously resetting the attitude

estimation to zero. However, the observer in [15] is formulated in a different

framework that employs a novel definition for angular velocity estimation error

to satisfy C0 continuity, and, in contrast to [54], ensures global asymptotic

stability of estimation error states independently of the control torque. Thus,

while the result in [15] is a significant advancement in the area of designing

angular-velocity estimators, the observer’s reliance on a switching scheme may

potentially expose the control system to undesirable high-frequency switching,

especially when attitude measurements are known to be noisy. Although the

total number of switches is guaranteed to be finite and a finite dwell time exists

between successive switches in [15], high-rate chatter due to rapid switching

could still potentially lead to hardware fatigue. To this end, the design of a
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smooth (non-switching) angular velocity observer is of significant interest for

attitude tracking applications.

In this dissertation, a novel smooth angular velocity observer is pre-

sented that, when combined with an independently designed PD-type con-

troller, renders the closed-loop rigid body dynamics (almost) globally asymp-

totically stable. The problem framework and proposed solution bear some

superficial similarities to Reference [15]. However, the fundamental contri-

bution of the proposed observer construction is that, unlike Reference [15],

the design here does not rely on any switching logic to guarantee asymptotic

convergence of the angular velocity state estimation error. Thus, the observer

ensures C∞ continuity of estimation states. The main feature of this extremely

important technical result stems from the use of a partial Lyapunov “stricti-

fication” process [34] that enables the closed-loop stability and convergence

analysis to proceed along novel lines in a spiral logic fashion.

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows:

In Chapter 2, a discussion of mathematical concepts relevant to this dis-

sertation has been provided. A detailed derivation of the rigid body attitude

dynamics is provided along with a discussion on different attitude parameter-

izations. In addition, a brief review of certainty-equivalence based adaptive

control is presented along with pertinent definitions to allow the reader to

better follow the theoretical development in the dissertation.
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In Chapter 3, an adaptive control law for attitude tracking applications

is developed for the case when the spacecraft inertia matrix experiences fast

variations either due to fuel depletion (mass loss) or deploying parts (mass

displacement). A detailed derivation of the adaptive control law is provided

along with a rigorous stability analysis. The fuel loss case is modeled assuming

uniform mass loss from a single propellant tank whose principal axes are col-

located with the body-fixed axes of the main spacecraft. A smooth projection

scheme is utilized to bound the inertia parameter estimates to within a convex

set. This helps in guaranteeing that the control remains bounded for all time

for the particular case when the inertia matrix is dependent on the control

input. In particular, the coupling that occurs in the dynamical equations as

a result of this input dependency leads to a control law with regions of sin-

gularity. These regions are easily avoided if the inertia parameter estimates

are bounded away from zero, which is accomplished through the projection

mechanism [27, 82]. In the numerical simulations studies, the adaptive con-

trol law is applied to two cases: a spacecraft undergoing fuel depletion, and a

spacecraft experiencing mass displacement due to expanding and contracting

appendages. In both cases, it is shown that the overall closed-loop perfor-

mance is greatly increased when the adaptive control takes explicit account of

inertia variations as opposed to an existing adaptive control law in literature

that does not account for inertia variations.

In Chapter 4, an attitude stabilization control law is developed without

angular velocity and using vector measurements directly for feedback. With a
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total of N ≥ 2 independent unit vector measurements available, the orienta-

tion error is expressed as the difference between the body vector measurement

and the desired vector measurement. The control is formulated with feedback

of a cross product term between the body and desired unit vector measure-

ments as well as feedback of an auxiliary signal, which is the output of a

linear time-invariant system. Through Lyapunov-based stability analysis, it is

shown that the attitude stabilization control objective is satisfied with asymp-

totic convergence as long as the initial conditions satisfy a mild constraint.

Some additional discussion and analysis are provided to highlight the primary

obstacles that prevent the extension of this stabilization control law to the full

attitude tracking problem. Following the control law development, numeri-

cal simulations are shown to corroborate the theoretical findings. Simulation

studies also indicate that the control law is robust to measurement noise.

Chapter 5 presents the development of a smooth nonlinear angular ve-

locity observer for attitude tracking control applications. Unlike existing ap-

proaches, the proposed observer does not rely on a switching strategy to ensure

convergence to the true states. The smooth observer design ensures asymptotic

convergence of estimation errors irrespective of the control design or the initial

true state of the spacecraft. A Lyapunov function “strictification” process is

carried out in order to obtain a partially strict Lyapunov function comprised

of negative terms in all estimation states. This step is crucial in enabling a

separation property to be established, whereby an independently designed PD

control law driven by angular velocity estimates generated by the smooth ob-
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server results in global asymptotic stability of the overall closed-loop tracking

error dynamics. All pertinent details related to the observer development as

well as the separation property result are shown along with rigorous proofs.

The theoretical findings are validated in simulations, which also show that a

PD control law integrated with the proposed observer are robust to noisy mea-

surements. The convergence performance of the observer is also investigated

through numerical simulations when inertia matrix parameters are unknown

or uncertain.

Finally, Chapter 6 concludes with a summary of the theoretical devel-

opment in preceding chapters. The original theoretical contributions resulting

from this research are highlighted along with their practical applications. In

addition, important avenues for future research directions are discussed.
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Chapter 2

Background

In this chapter, the dynamical model for the spacecraft attitude tracking prob-

lem is developed. Rigid body kinematics are derived using quaternions to

express the orientation of the spacecraft, while rigid body dynamics are ex-

pressed in terms of Euler’s rotational equations of motion. A brief introduction

to adaptive control is provided along with an overview of a C1 parameter pro-

jection mechanism. In addition, an overview of relevant mathematical concepts

is provided in order to allow the reader to follow the development of controller

and observer designs in subsequent chapters.

2.1 Rigid Body Kinematics and Dynamics

The configuration space of rigid body attitude motion is the set of all rotation

matrices SO(3) which comprise the special orthogonal group of rigid rota-

tions in R3. The nine parameter rotation matrix, also known as the direction
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cosine matrix, represents all attitudes uniquely. While a few recent control

designs have been performed directly on SO(3) [19, 46, 50], attitude control

is typically studied using various minimal three or non-minimal four attitude

parameterizations [58]. Every minimal parameter representation such as Eu-

ler angles or Modified Rodrigues parameters suffers from either kinematic or

geometric singularities that prevent global definitions for continuous control

laws. Therefore, these representations are limited to local attitude maneuvers

[14]. On the other hand, non-minimal parameters such as unit quaternions

and axis-angle representations are globally defined but cannot represent all

attitudes uniquely. For a given attitude, the unit quaternions +q and −q

both represent the same physical origination of the body. Thus, the notion of

almost global stability is used in the context of attitude control because the

unit quaternion does not allow for globally continuous stabilizing control laws

[10, 77].

A quick review of attitude kinematics derived using both direction co-

sine matrices and quaternions is provided here. In addition, a thorough review

of spacecraft rotation dynamics is provided in the proceeding sections.

2.1.1 Direction Cosine Matrix

A complete kinematic and dynamic description for rigid body rotational mo-

tion is provided using direction cosine matrix and Euler’s rotational equations.

For the sake of notational simplicity, the time argument t is left out except for

emphasis in certain places. The orientation of a rigid body can be expressed in
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terms of the direction cosine matrix, also known as a rotation matrix, C evolv-

ing on the special orthogonal group SO(3) =
{
C ∈ R3×3|CTC = I, det [C] = 1

}
,

where I is the 3 × 3 identity matrix. The rotational kinematics of the rigid

body expressed in terms of C takes the form

Ċ = −S (ω) C, (2.1)

where C denotes the orientation of the body-fixed frame B with respect to the

inertial frame I, and the angular velocity ω ∈ R3 is expressed in the body-fixed

frame. In Eq. (2.1), S (·) : R3 → so(3) where so(3) =
{
S ∈ R3×3|ST = −S

}
is

the set of skew-symmetric matrices such that

S (v) =


0 −v3 v2

v3 0 −v1
−v2 v1 0

 ,

with v = [v1, v2, v3]
T ∈ R3. The vector cross-product operation between two

vectors v,w ∈ R3 can be expressed as S(v)w = v ×w.

The dynamics of the rigid body are governed by Euler’s rotational equa-

tions of motion and are given by

Jω̇ = −S (ω) Jω + u, (2.2)

where J ∈ R3×3, JT = J > 0 is the constant inertia matrix and u ∈ R3 is the

external control torque applied to the system.
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2.1.2 Unit Quaternion Representation

In order to globally represent the attitude coordinates of the spacecraft with-

out singularities, the minimal four parameter unit quaternion (or the Euler

parameter) representation is sought. The four-dimensional unit quaternion

represents the orientation of the body frame B with respect to the inertial

frame N , and is comprised of scalar and vector components denoted as q0 ∈ R

and qv ∈ R3, respectively. Thus, q =
[
q0, qv

T
]T

and satisfies the unit-norm

constraint q0
2 +qv

Tqv = 1. The kinematic differential equation of the attitude

motion of a rigid spacecraft is expressed in terms of q as [53]

q̇ =
1

2
E(q)ω, (2.3)

where the 4× 3 matrix E(q) is defined as

E(q) =

 −qT
v

q0I3×3 + S (qv)

 , (2.4)

where I3×3 is the 3 × 3 identity matrix. Note that Eq. (2.3) is the analogous

kinematic differential equation to that governing the direction cosine matrix

in Eq. (2.1). The matrix E(q) satisfies the following important properties:

ET(q)E(q) = I3×3; ET(q)q = 0. (2.5)
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Consequently, from Eqs. (2.3) and (2.5), the angular velocity ω may be ex-

pressed in terms of q̇ as follows:

ω = 2ET(q)q̇. (2.6)

2.1.3 Tracking Error Dynamics

A development of the quaternion and angular velocity tracking error dynamics

is shown next. The reference attitude trajectory is denoted by qr and evolves

according to the following dynamical equation

q̇r =
1

2
E(qr)ωr, (2.7)

where ωr is the bounded and smooth reference angular velocity defined in

frame R. Let b̂, r̂, and n̂ represent the unit vector triads in the body frame B,

reference frame R, and inertial frame N , respectively. The mapping from unit

quaternion space to the proper orthogonal matrix space SO(3) is given in terms

of the direction cosine matrix. In particular, the following transformations are

sought

N q−→ B ⇒ {b̂} = C(q){n̂},

N qr−→ R⇒ {r̂} = C(qr){n̂},

R qe−→ B ⇒ {b̂} = C(qe){r̂}.

where C(q) is parametrized in terms of the quaternion q as follows [53, 58]

C(q) = (q0
2 − qv

Tqv)I + 2qvqv
T − 2q0S (qv) . (2.8)
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The direction cosine matrix, C(qr) rotates the inertial frame N to R and can

be defined similarly in terms of qr by replacing the argument q in Eq. (2.8)

with qr. The composite rotation from R to B frame can be represented in

terms of C(qe) defined as

C(qe) = C(q)CT(qr) (2.9)

which leads to the definition of the multiplicative quaternion attitude tracking

error qe. The angular velocity tracking error ωe is defined as

ωe = ω −C(qe)ωr

= ω − ωBr , (2.10)

where ωBr = C(qe)ωr.

To derive the governing dynamics for the attitude error C(qe), the time-

derivative of Eq. (2.9) is taken along with the following steps:

Ċ(qe) = −S(ω)C(q)CT(qr)−C(q) (S(ωr)C(qr))
T

= −S(ω)C(q)CT(qr) + C(q)CT(qr)S(ωr)

= −S(ω)C(qe) + C(qe)S(ωr)

= −S(ω)C(qe) + S (C(qe)ωr) C(qe)

= −S(ωe)C(qe), (2.11)

where the following identity has been used:

C(qe)S(ωr) = S (C(qe)ωr) C(qe),
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which is a direct result of the fact that C(qe)S(ωr) consists of a cross product

operation under a three dimensional rigid body rotation. As such, for any

vector a ∈ R3, we may express the vector cross product as follows:

C(qe)S(ωr)a = C(qe) (ωr × a) = C(qe)ωr ×C(qe)a

= S (C(qe)ωr) C(qe)a

Differentiating Eq. (2.10) and using Eq. (2.2) along with Eq. (2.11) leads to

the angular velocity error dynamics. The corresponding attitude kinematics in

terms of qe are obtained from Eq. (2.11). Thus, the overall attitude tracking

error dynamics and kinematics are as follows [53]

q̇e =
1

2
E(qe)ωe (2.12)

Jω̇e = −S(ω)Jω + u + J
[
S(ωe)ω

B
r − C(qe)ω̇r

]
. (2.13)

2.2 Smooth Projection Mechanism in Adap-

tive Control

This section briefly reviews certainty-equivalence based adaptive control and

smooth projection mechanism. Adaptive control adjusts to unknown system

parameters by updating its controller parameters online using measured sig-

nals, and does so while maintaining stability and consistent performance of

the system. A vast majority of existing adaptive attitude-control formula-

tions for stabilizing spacecraft attitude tracking dynamics are constructed in
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the certainty-equivalence (CE) framework [23, 24]. Essentially, the structure

of the control when parameters are known is used to construct an equivalent

adaptive controller when parameters are unknown by using their estimated

values. This is known as the certainty equivalence principle.

In aerospace applications, it is often the case that some a priori knowl-

edge exists pertaining to the structure of uncertain plant parameters. A par-

ticular and frequently occurring example of this is when the upper and lower

bounds of a spacecraft’s inertia matrix parameters are known during pre-flight

testing. In such a case, designing a parameter update law that takes account

of this information is highly advantageous as it restricts the search space (pa-

rameter estimate values) to within a feasible region of values that are taken on

by the true parameters. An immediate consequence of confining parameters

to a compact set is that the closed-loop system demonstrates better conver-

gence performance and overall robustness [43]. A few parameter projection

schemes are available in this regard. The technique of [8] and [21] incorporates

a priori knowledge of bounds on the parameters. However, these projection

mechanisms lead to a discontinuous control law which may potentially cause

undesirable system performance related to high-frequency control chattering

leading to excitation of unmodeled dynamics. To avoid control discontinuities,

a convenient alternative is the smooth projection scheme originally suggested

by Pomet et al. [45] and used in [13, 27, 82] which results in C1 continu-

ous adaptive control laws. The more recent work by Akella and Subbarao [3]

proposes a smooth projection scheme that results in a C∞ smooth adaptive
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controller.

A brief review of the projection scheme proposed in [27] (based on [45])

is summarized below. This projection scheme is implemented in the adaptive

control result presented in Chapter 3. Consider the nth-order nonlinear single

input system with the following structure

ẋi = xi+1, i = 1, 2, . . . , n− 1

ẋn =

p∑
i=1

θifi(x) + u,
(2.14)

with the state x = [x1, . . . , xn]T ∈ Rn and input u ∈ R. The constant param-

eters θ1 to θp are unknown, but the vector θ = [θ1, . . . , θp]
T belongs to Ω, a

known compact convex subset of Rp. The functions fi are known smooth and

regular nonlinear functions. The control objective is to design a smooth adap-

tive controller that uses prior knowledge of the set Ω and guarantees global

asymptotic stability and tracking for x(t) along any bounded reference signal

xr(t) with bounded derivatives up to nth order. To facilitate the adaptive con-

trol law formulation, define the tracking error e(t) = x− xr. From Eq. (2.14),

the following dynamics are obtained

ė1 = e2

ė2 = e3

...

ėn =

p∑
i=1

θifi(x) + u− ẋ(n)r

(2.15)
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where (n) denote the nth derivative. The equation above can be rewritten as

ė = Ae + b
(
θTf + u− x(n)r

)
, (2.16)

where e = [e1, e2, . . . , en]T, f = [f1, f2, . . . , fn]T, and (A,b) are controllable

canonical pairs

A =



0 1 0 . . . 0

0 0 1 . . . 0

...

0 0 . . . 1 0

0 0 . . . 0 1

0 0 . . . 0 0


, b =



0

0

...

0

0

1


.

Using the standard certainty equivalence approach, the adaptive control law

is prescribed as

u = −θ̂Tf + x(n)r −Ke, (2.17)

where K is such that Am = A−bK is a Hurwitz matrix and θ̂ is an estimate

of θ that is to be determined by the parameter update laws. The closed-loop

equation is

ė = Ame− bθ̃
T
f . (2.18)

Now consider the standard Lyapunov function candidate [27]

V = eTPe +
1

γ
θ̃
T
θ̃, (2.19)
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where P = PT > 0 is the solution of the Lyapunov equation PAm + AT
mP =

−Q with Q = QT > 0, γ is any positive scalar constant, and θ̃ = θ̂− θ is the

parameter estimation error. The time-derivative of V along the trajectories of

the system is given by

V̇ = −eTQe +
1

γ
θ̃
T
(

˙̂
θ − 2feTPb

)
. (2.20)

Let φ be defined such that

φ = 2feTPb. (2.21)

The parameter adaptation rule is to be chosen in such a manner that yields

θ̃
T
[

˙̂
θ − 1

γ
φ

]
≤ 0

while ensuring θ̂(t) ∈ Ω for all t ≥ 0. Suppose Ω is the convex set Ω ={
θ | θTθ ≤ β

}
and let Ω̂ =

{
θ̂ | θ̂Tθ̂ ≤ β + δ

}
, where β > 0 and δ > 0 are

known. Let the adaptation rule be given by

˙̂
θ = Proj(θ̂,φ) (2.22)

where Proj(θ̂,φ) is defined as

Proj(θ̂,φ) =


1
γ
φ, if (i) ‖θ̂‖2 < β,

or (ii) ‖θ̂‖2 ≥ β and φTθ̂ < 0,

1
γ
φ̃, otherwise,

(2.23)
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with φ given by Eq. (4.3) and

φ̃ = φ−

(
θ̂
T
θ̂ − β

)
θ̂
T
φ

δθ̂
T
θ̂

θ̂. (2.24)

Observe that Proj(θ̂,φ) is locally Lipschitz in (θ̂,φ) and satisfies

θ̂(0) ∈ Ω =⇒ θ̂(t) ∈ θ̂, ∀t ≥ 0. (2.25)

To verify this, observe that Eq. (2.25) is trivially satisfied for case (i) in

Eq. (2.23). For case (ii), θ̃
T

[
˙̂
θ − (1/γ)φ] = 0 and θ̂

T ˙̂
θ = (1/γ)θ̂

T
φ ≤ 0

so θ̂ is decreasing towards the origin. Finally, for case (iii), Eq. (2.23) leads to

θ̂
T ˙̂
θ =


= 0 if ‖θ̂‖2 = β + δ,

< 0 if ‖θ̂‖2 > β + δ,

> 0 if ‖θ̂‖2 < β + δ.

Thus, if the initial parameter estimates are contained in the convex set Ω then

θ̂(t) ∈ Ω̂ for all time thereafter. Further, since Proj(θ̂,φ) is locally Lipschitz

in the state variables, for any initial condition, the closed-loop system has

a unique solution defined on some time interval [0, T0), T0 > 0. Let [0, T )

be the maximum interval of existence of the solution. Since V̇ ≤ 0, V , e,

and θ̃ are uniformly bounded on [0, T ). Further, since xr is bounded, x is

bounded on [0, T ) which implies that T = ∞. Boundedness of θ̂ follows

directly from θ̂ ∈ Ω̂. Finally, since all closed-loop signals are bounded, using

V̇ ≤ −eTQe together with the invariance principle theorem leads to e(t)→ 0

as t → ∞. Thus, by using the smooth projection scheme Eq. (2.23), the
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parameter estimates are always guaranteed to be bounded in the convex set

Ω̂ while ensuring C1 continuity for the adaptive control law.

2.2.1 Persistence of Excitation

The features of a reference signal play an important role in parameter conver-

gence. For the system described by Eq. (2.18), the estimated signals θ̂ will

converge to their true values provided that the underlying reference signal u(t)

is complex enough to produce rich excitation in the system for high quality

estimation data. The reference signal that is able to uniquely identify the

parameters of a system is said to be persistently exciting. Specifically, u(t) is

said to be persistently exciting if there exist positive constants α, and T such

that ∫ t+T

t

u2(τ) dτ ≥ α, ∀ t ≥ 0. (2.26)

The definition of persistence of excitation given in Equation (2.26) can be

generalized for a vector signal u as [60]∫ t+T

t

u(τ)uT (τ) dτ ≥ αI, ∀ t ≥ 0, (2.27)

where I is the 3× 3 identity matrix.
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2.3 Mathematical Concepts

The following definitions and important mathematical results are used in the

dissertation.

2.3.1 Passive Systems Theory

A function u ∈ L2 if [28]

‖u‖2 =

√∫ ∞
0

u(t)Tu(t) dt <∞ (2.28)

and u ∈ L2e if

‖u‖2T =

√∫ T

0

u(t)Tu(t) dt <∞, ∀ T ∈ R+ (2.29)

Definition 2.3.1. Passivity [18]: A system H : L2e → L2e with inputs u ∈

L2e and outputs y ∈ L2e is passive if there exists some constant β such that∫ T

0

yTu dt ≥ β, ∀ u ∈ L2e, ∀ T ∈ R+. (2.30)

2.3.2 Barbalat’s Lemma

The following lemma is used frequently throughout the dissertation for stabil-

ity analysis:

Lemma 2.3.1. (Barbalat’s Lemma)[51, 60] Let f(t) be a uniformly continu-

ous function, such that limt→∞
∫ t
0
f(τ) dτ exists and is finite. Then, limt→∞ f(t) =

0.
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An immediate and practical corollary to Barbalat’s lemma stated above

is given as follows:

Corollary 2.3.2. [51] If f ∈ L∞∩Lp for some integer p ∈ [1,∞), and ḟ ∈ L∞
(bounded), then limt→∞ f(t) = 0.

2.3.3 Strict Lyapunov Functions

The definition of strict Lyapunov function is formally stated here [37].

Definition 2.3.2. A real valued function k(·) is said to belong to class K∞ if

it is continuous, zero at zero, strictly increasing and k(r)→ +∞ as r → +∞.

Definition 2.3.3. A function V (t,x) is a Lyapunov function if it is continu-

ously differentiable and there exist two functions α1(·) and α2(·) of class K∞
such that

α1 (‖x‖) ≤ V (t,x) ≤ α2 (‖x‖) .

Definition 2.3.4. Consider a non-autonomous system

ẋ = f (t,x) . (2.31)

A continuously differentiable function V (t,x) is a strict Lyapunov function

for system Eq. (2.31) if it is a Lyapunov function and there exists a positive

definite function α3(·) such that

∂V

∂t
(t,x) +

∂V

∂x
(t,x)f(t,x) ≤ −α3 (‖x‖) .
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2.3.4 Linear Filters

The result stated below for a stable linear filter-type construction is used to

ascertain stability properties in Chapter 5:

Lemma 2.3.3. Consider the linear system

ẋf = Amxf + ω (2.32)

with any Hurwitz Am and a uniformly bounded input ω. Then xf (t) → 0 as

t→∞⇔ ω(t)→ 0 as t→∞.
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Chapter 3

Adaptive Attitude-Tracking

Control of Spacecraft with

Uncertain Time-Varying Inertia

Parameters

While adaptive control schemes for spacecraft attitude tracking are abundant

in controls literature, very few are designed to guarantee consistent perfor-

mance for a spacecraft with both rigid and non-rigid (time-varying) inertia

components. Since inertia matrix changes are a common occurrence due to

phenomena like fuel depletion or mass displacement in a deployable spacecraft,

an adaptive control algorithm that takes explicit account of such information is

of significant interest. In this chapter, a novel adaptive attitude control scheme
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is presented for the case when the spacecraft inertia matrix parameters have

unknown rigid components and partially known variable components. The

proposed controller directly compensates for inertia variations that are either

pure functions of the control input, or functions of time and/or the state.

The adaptive attitude-tracking control strategy proposed in this study

is based on the classical certainty-equivalence (CE) principle [24, 52]. The

attitude measurements, given in terms of the unit quaternion, and the corre-

sponding body angular rates are assumed to be perfectly measured and avail-

able for feedback. Thus, assuming an uncertain time-varying inertia matrix,

the proposed control method delivers (almost) globally stabilizing closed-loop

performance with asymptotic tracking of any bounded and smooth reference

trajectory for most initial conditions. When dealing with an input-dependent

inertia matrix, mild restrictions on the initial conditions are necessary to guar-

antee a bounded control input. In addition, a smooth projection scheme is

implemented to bound the parameter estimates within a well-defined convex

set, so as to avoid any singularity issues in the proposed controller.

In the development that follows, the attitude and angular velocity

tracking-error dynamics for a spacecraft with time-varying inertia matrix are

derived in Sec. 3.1. The main results of the chapter along with stability analy-

sis are presented in Secs. 3.2-3.3: in Sec. 3.2, an adaptive attitude control law

is presented for time and state dependent inertia matrices, while in Sec. 3.3,

the control method is extended to handle an input-dependent inertia matrix.

In Sec. 3.4, numerical simulations are provided for spacecraft appendage de-
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ployment and fuel-loss scenarios. Finally, in Sec. 3.5, concluding remarks

summarize presented results.

3.1 Problem Statement

A non-rigid body is characterized by a time-varying inertia matrix. As a result,

the angular velocity error dynamics of Eq. (2.13) are not valid, and must be

re-derived for a non-constant inertia matrix. The attitude dynamics of the

non-rigid body are governed by the following rotational equations of motion:

Jω̇ = −J̇ω − S (ω) Jω + u, (3.1)

where J = J(t) ∈ R3×3 is now a time-varying, symmetric positive-definite

mass-moment of inertia matrix of the spacecraft. Using Eq. (3.1) and following

through with same procedure used to obtain Eq. (2.13) for a rigid-body, the

non-rigid angular velocity error dynamics are derived as

ω̇e = J−1
(
−J̇ω − S (ω)Jω + u

)
+ S (ωe)C(qe)ωr −C(qe)ω̇r. (3.2)

The attitude error kinematics given in Eq. (2.12) remain unchanged, and are

restated below for the reader’s convenience:

q̇e =
1

2
E(qe)ωe. (2.12)
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3.1.1 Characterization of Time-Varying Inertia Matrix

The particular time-varying inertia matrix model treated in the upcoming

adaptive control law development is expressed according to

J(t) = J0 − J1Ψ(t), (3.3)

where J0 ∈ R3×3, J0 = JT
0 > 0 is an unknown, constant matrix which repre-

sents the rigid portion of the spacecraft, while J1Ψ is the non-rigid component

of the spacecraft that satisfies

J1Ψ ∈ R3×3, J1Ψ = ΨTJT
1 . (3.4)

In particular, J1 ∈ R3×n is unknown and constant, while Ψ(t) ∈ Rn×3 is known

and time-dependent for any n > 0. In Eq. (3.3), observe that J is the differ-

ence of two symmetric matrices, which ensures J = JT for all t ≥ 0. Moreover,

while J1Ψ itself may be sign-indefinite, it must ensure that J = J0−J1Ψ > 0

for all time. In addition, to guarantee a physically possible distribution of

mass, careful consideration should be given during the mathematical model-

ing process to ensure that the inertia matrix satisfies the following triangle

inequalities for all time [78]

J̃1 + J̃2 ≥ J̃3, J̃2 + J̃3 ≥ J̃1, J̃3 + J̃1 ≥ J̃2, (3.5)

where J̃1, J̃2, J̃3 are the principal moments of inertia of the spacecraft.

We now examine specific details regarding the structure of J1 and Ψ.

In particular, mathematical characterizations are provided for a time and/or
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state dependent inertia matrix for mass displacement due to phenomena such

as deploying appendages, as well as an input, u, dependent inertia matrix

that models mass-loss due to fuel expenditure. Pertinent details related to the

structure of J1Ψ are provided along with illustrative examples.

Time and/or State Dependent Inertia Matrix

When variations in J have explicit dependence on time or the spacecraft state

x = [qT
ev ,ω

T]T, the time-derivative of Eq. (3.3) is given by

J̇(t) = −J1Ψ̇(t,x(t)) (3.6)

where Ψ̇(t,x(t)) is known and well characterized. If the inertia matrix in

Eq. (3.6) is purely dependent on time, as is the case for a deploying appendage,

the argument x would be dropped so that Ψ̇ = Ψ̇(t).

To illustrate the efficacy of Eq. (3.3) and Eq. (3.6) for moving mass

problems, consider the example of a spacecraft shown in Fig. 3.1 with deploying

parts. Let J̃0 represent the spacecraft’s main body’s inertia matrix relative to

O, the spacecraft’s center of mass, determined in the body-fixed frame B with

basis b =
{
b̂1, b̂2, b̂3

}
. The center of mass of a moving object with unknown

constant mass m1 is located at a position ρ1(t) = ρ11(t)b̂1 +ρ12(t)b̂2 +ρ13(t)b̂3

relative to O. This object has an unknown moment of inertia J′m1
relative to a

set of parallel axes located at ρ1. Another moving object with unknown mass

m2 is located at a different position ρ2(t) (relative to O), and is characterized

by an unknown inertia matrix J′m2
relative to a parallel set of axes at its own
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center of mass. Observe that both position vectors ρ1(t) and ρ2(t) are known

functions of time that are each bounded and smooth.

Figure 3.1: A spacecraft with mass displacement due to deploying appendages.

Through an application of the parallel-axis theorem, and assuming that

the spacecraft center of mass is unaffected by mass movement, the overall

inertia matrix of the spacecraft is given by

J = J̃0 + J′m1
+m1

[
ρT
1 ρ1I− ρ1ρ

T
1

]
+ J′m2

+m2

[
ρT
2 ρ2I− ρ2ρ

T
2

]
(3.7)

which is easily written in the form of Eq. (3.3) with J0 given by

J0 = J̃0 + J′m1
+ J′m2

(3.8)
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and J1Ψ expressed as

J1Ψ = −
[
m1I m2I

] ρT
1 (t)ρ1(t)I− ρ1(t)ρ

T
1 (t)

ρT
2 (t)ρ2(t)I− ρ2(t)ρ

T
2 (t)

 (3.9)

where I is the 3×3 identity matrix, J1 ∈ R3×6 is unknown and constant, while

Ψ ∈ R6×3 is known and time-dependent and can be easily differentiated to

obtain Ψ̇(t).

Input Dependent Inertia Matrix

For the specific case of spacecraft undergoing fuel loss, the matrix Ψ̇ depends

explicitly on the control vector components u, such that

J̇(t) = −J1Ψ̇(u(t)). (3.10)

Observe that Ψ =
∫ t
0

Ψ̇(u(τ)) dτ can be numerically computed for feedback. It

is important to note that no general mass depletion model exists in this regard,

and that the structure of Ψ̇ is a factor of the propulsion system, and more

specifically, the propellant reservoir/tank configuration within the spacecraft.

One particular model for fuel-loss is discussed next, wherein a single

propellant tank is assumed to undergo uniform mass-loss as a result of control

torque action. The center of mass, P , of the tank is located at at ρ = ρ1b̂1 +

ρ2b̂2 +ρ3b̂3 relative to the known spacecraft mass center O. It is reasonable to

assume that the fuel tank’s principal axes are parallel with the body-fixed axes.

The configuration, as illustrated in Fig. 3.2, is applicable to many existing
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spacecraft, especially for spacecraft of smaller scale such as micro-satellites.

Figure 3.2: Spacecraft with a single propellant tank undergoing fuel mass-loss
proportionate to the commanded control torque.

The inertia matrix of the spacecraft’s main body, relative to its center

of mass O, is denoted by J0. The principal moment of inertia matrix of the

fuel tank relative to P is denoted as Jf (t) and derived as follows. Using the

mass relation

ṁf (t) = −c‖u‖; mf (0) = mf0 (3.11)

where mf (t) is the time-varying mass of the propellant tank, mf0 > 0 is its fuel

mass at time t = 0 and the constant c > 0, which relates the control torque

u to mass loss, is imprecisely determined, and ignoring slosh effects, it can be
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shown that Jf evolves according to the dynamical equation

J̇f = −diag {α1, α2, α3} ‖u‖, (3.12)

where αi = dic > 0 for all i = 1, 2, 3 is an unknown constant given as the

product of the torque-to-mass relational constant c and the constant di > 0

which depends on the dimension and shape of the fuel tank. For example, if

the fuel tank is a sphere of radius r, then di = (2/5)r2. The expression in

Eq. (3.12) can be readily integrated to obtain Jf relative to P . Next, applying

the parallel-axis theorem to determine Jf relative to O leads to the expression

−J1Ψ = Jf +mf (t)
[
ρTρI− ρρT

]
, where J1Ψ represents the variable compo-

nent of the overall spacecraft inertia matrix J. Differentiating this expression

and using the mass change relation in Eq. (3.11) together with Eq. (3.12),

yields the following dynamical equation governing the evolution of the matrix

J1Ψ

− J1Ψ̇(u) = −
(
diag {α1, α2, α3}+ c

[
ρTρI− ρρT

])︸ ︷︷ ︸
J1

‖u‖I︸︷︷︸
Ψ̇(u)

, (3.13)

where J1 is symmetric, positive definite, and unknown, while Ψ̇(u) = ‖u‖I.

Finally, with the dynamical model and inertia matrix characterizations

in place, the control objective is now stated. The adaptive control objective

is to track any prescribed reference trajectory, [qr(t),ωr(t)], with bounded

and smooth ωr(t), for all initial conditions, [q(0),ω(0)], assuming full-state

feedback and arbitrarily large uncertainty in the J0 and J1 matrix components.

That is, a control torque, u, needs to be designed such that the tracking error
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signals converge, limt→∞
[
qev(t), ωe(t)

]
= 0, while ensuring that all closed-

loop signals remain bounded at all times. Subsequent control development

will specifically treat inertia matrices described by Eqs. (3.6) and (3.13).

3.2 Adaptive Attitude Tracking for Unknown

Inertia with Time and State Dependencies

In this section, a novel adaptive control law is presented for the attitude and

angular-velocity tracking problem described by Eqs. (2.12) and (3.2) for an

unknown time-varying inertia matrix comprised of only state and time depen-

dent terms and that evolves according to Eq. (3.6). First, in order to facilitate

the adaptive controller development, some pertinent definitions and algebraic

manipulations are introduced. To begin with, the dynamics of Eq. (3.2) are

rearranged into a parameter-affine form through the judicious addition and

subtraction of the terms

−1

2

[
qe0I + S

(
qev
)]
ωe − J−1βqev − J−1kvωe −

1

2
J−1J̇

[
ωe + qev

]
where β, kv > 0. Thus,

ω̇e = −1

2

[
qe0I + S

(
qev
)]
ωe − J−1βqev − J−1kvωe −

1

2
J−1J̇

[
ωe + qev

]
+ J−1

(
u +

1

2
J
[
qe0I + S

(
qev
)]
ωe + βqev + kvωe

+
1

2
J̇
[
ωe + qev

]
− S (ω)Jω − J̇ω + Jφ

)
(3.14)
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where φ = S (ωe)C(qe)ωr − C(qe)ω̇r. Recalling that J = J0 − J1Ψ and

J̇ = −J1Ψ̇ and following through with some minor algebraic manipulations,

it is straightforward to obtain

ω̇e = −1

2

[
qe0I + S

(
qev
)]
ωe − J−1βqev − J−1kvωe +

1

2
J−1J1Ψ̇

[
ωe + qev

]
+ J−1

(
u + βqev + kvωe + J0

(
1

2

[
qe0I + S

(
qev
)]
ωe + φ

)

− S (ω)J0ω − J1Ψ

(
1

2

[
qe0I + S

(
qev
)]
ωe + φ

)

+ S (ω)J1Ψω + J1Ψ̇

{
ω − 1

2

[
ωe + qev

]})
(3.15)

In Eq. (3.15), notice that J0 multiplies terms in a linear fashion, thus allowing

the regressor matrix W1 to be constructed in the following manner

W1θ
∗ = J0

(
1

2

[
qe0I + S

(
qev
)]
ωe + φ

)
− S (ω)J0ω, (3.16)

where θ∗ = [J011 , J012 , J013 , J022 , J023 , J033 ]
T contains the six unique parameters

of J0. Similarly, J1 also multiplies terms linearly in Eq. (3.15), which allows

the regressor matrix definitions for W2 and W3 to be given by

W2σ
∗ = −J1Ψ

(
1

2

[
qe0I + S

(
qev
)]
ωe + φ

)
+ S (ω)J1Ψω, (3.17)

W3σ
∗ = J1Ψ̇

{
ω − 1

2

[
ωe + qev

]}
(3.18)

where σ∗ ∈ R3n comprises the 3n parameters of the J1 matrix. Note that

the regressor matrix W2 does not contain any Ψ̇ terms. By substituting

Eqs. (3.16)-(3.18) into Eq. (3.15), the angular velocity error dynamics are

43



reduced to

ω̇e = −1

2

[
qe0I + S

(
qev
)]
ωe − J−1βqev − J−1kvωe +

1

2
J−1J1Ψ̇

[
ωe + qev

]
+ J−1

(
u + βqev + kvωe + W1θ

∗ + (W2 + W3)σ
∗) . (3.19)

Since terms involving θ∗ and σ∗ are unknown, and cannot be directly canceled

by u, the control is designed using parameter estimates, θ̂ and σ̂. That is,

u = −βqev − kvωe −W1θ̂ − [W2 + W3] σ̂ (3.20)

with parameter estimation update laws

˙̂
θ = γ1W

T
1

[
ωe + qev

]
, (3.21)

˙̂σ = γ2 [W2 + W3]
T [ωe + qev

]
, (3.22)

where kv, β, γ1, γ2 > 0 are any scalar constants. Finally, by substituting

Eq. (3.20) into Eq. (3.19), the following closed-loop tracking-error dynamics

are obtained:

ω̇e = −1

2

[
qe0I + S

(
qev
)]
ωe − J−1βqev − J−1kvωe

+
1

2
J−1J1Ψ̇

[
ωe + qev

]
+ J−1

(
−W1θ̃ − (W2 + W3) σ̃

)
, (3.23)

where θ̃ = θ̂ − θ∗ and σ̃ = σ̂ − σ∗ are the estimation error quantities. The

main result is now stated in the theorem that follows.

Theorem 3.2.1. Consider the attitude tracking error system of Eqs. (2.12)

and (3.2) with a time and/or state dependent inertia matrix J given by Eq. (3.3)
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with derivative Eq. (3.6). Suppose further that J1 and J0 are unknown. Then

the adaptive control law Eq. (3.20), along with the parameter estimation update

laws Eqs. (3.21)-(3.22) guarantee asymptotic convergence of the tracking error

signals limt→∞
[
qev(t), ωe(t)

]
= 0 for any initial condition [q(0),ω(0)] and

all reference trajectories [qr(t),ωr(t)], with smooth and bounded ωr(t), while

ensuring boundedness for all closed-loop signals.

Proof. Consider the following positive semi-definite Lyapunov-like function

V =
1

2

(
ωe + qev

)T
J
(
ωe + qev

)
+ (β + kv)

(
qT
evqev + (qe0 − 1)2

)
+

1

2γ1
θ̃
T
θ̃ +

1

2γ2
σ̃Tσ̃. (3.24)

Taking the derivative of V and using the closed-loop system dynamics in

Eqs. (2.12) and (3.23) along with the identity
(
ωe + qev

)T (
qev × ωe

)
= 0

and making appropriate cancellations leads to

V̇ =
(
ωe + qev

)T(−1

2
J1Ψ̇

[
ωe + qev

]
+ J

(
ω̇e + q̇ev

))
− 2 (β + kv) q̇e0

+
1

γ1
θ̃
T ˙̂
θ +

1

γ2
σ̃T ˙̂σ

=
(
ωe + qev

)T (−βqev − kvωe −W1θ̃ − (W2 + W3) σ̃
)

+ (β + kv) qT
evωe

+
1

γ1
θ̃
T ˙̂
θ +

1

γ2
σ̃T ˙̂σ

= −kv‖ωe‖2 − β‖qev‖2 + θ̃
T
(

1

γ1

˙̂
θ −WT

1

(
ωe + qev

))
+ σ̃T

(
1

γ2
˙̂σ − (W2 + W3)

T (ωe + qev
))
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By selecting
˙̂
θ and ˙̂σ according to Eqs. (3.21) and (3.22), one obtains

V̇ = −kv‖ωe‖2 − β‖qev‖2

which is negative semi-definite. Since V ≥ 0 and V̇ ≤ 0, V is a monotonic

function indicating that V (t) ≤ V (0). Consequently, all closed loop signals

are bounded. Furthermore,
∫ t
0
V̇ (t) dt exists and is finite which implies that

qev ,ωe,∈ L2∩L∞ and, consequently, from Eqs. (2.12) and (3.23) it follows that

q̇ev , ω̇e,∈ L∞. Invoking Barbalat’s Lemma leads to limt→∞
[
qev(t),ωe(t)

]
=

0.

3.2.1 Smooth Parameter Projection

The parameter update laws in Eqs. (3.21) and (3.22) suffer from the drawback

that the parameters θ̂ and σ̂ can drift arbitrarily away from their respec-

tive true values. However, if the true parameters are bounded by a known

scalar constant, then the estimates can also be constrained to evolve within a

bounded convex set with known bound. This can be accomplished by modify-

ing the parameter update laws by using a smooth projection algorithm [13, 82].

A suitable modification for the update law for θ̂ is discussed next. To

this end, define two convex sets

Ωθ∗ ,
{
θ∗ ∈ R6 | ‖θ∗‖2 < ε1

}
, Ωθ̂ ,

{
θ̂ ∈ R6 | ‖θ̂‖2 < ε1 + δ1

}
(3.25)

for known ε1 > 0 and δ1 > 0. Consider the following smooth projection scheme
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for θ̂

˙̂
θ = Proj

(
θ̂,Φ

)
; Φ , WT

1

[
ωe + qev

]
, (3.26)

where

Proj
(
θ̂,Φ

)
,


γ1Φ if (1) ‖θ̂‖2 < ε1 or

if (2) ‖θ̂‖2 ≥ ε1 and ΦTθ̂ ≤ 0

γ1

(
Φ− (‖θ̂‖2−ε1)ΦTθ̂

δ1‖θ̂‖2
θ̂

)
if (3) ‖θ̂‖2 ≥ ε1 and ΦTθ̂ > 0

(3.27)

The projection operator Proj
(
θ̂,Φ

)
is locally Lipschitz [82] in

(
θ̂,Φ

)
and

switches smoothly between cases (1), (2), and (3). Note that this update

law is exactly equal to Eq. (3.21) in cases (1) and (2). Furthermore, it is

straightforward to show that Proj
(
θ̂,Φ

)
satisfies

θ̂(0) ∈ Ωθ̂ ⇒ θ̂(t) ∈ Ωθ̂ (3.28)

for all t ≥ 0. In case (1), Eq. (3.28) readily holds since θ̂ ∈ Ωθ∗ and Ωθ∗ ⊂ Ωθ̂.

In case (2), ‖θ̂‖2 evolves according to

d

dt
‖θ̂‖2 = 2θ̂

T ˙̂
θ = 2γ1θ̂

T
Φ,

which is trivially negative semi-definite by the conditions stated in case (2).

Consequently, the estimates approach the origin. Finally, for case (3),

d

dt
‖θ̂‖2 = 2θ̂

T ˙̂
θ = 2

γ1
δ
θ̂
T
Φ
(
δ1 + ε1 − ‖θ̂‖2

)
,

which decreases when ‖θ̂‖2 > ε1 +δ1, increases if ‖θ̂‖2 < ε1 +δ1, and is exactly
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zero when ‖θ̂‖2 = ε1 + δ1. Thus, the adaptation law in Eq. (3.26) ensures that

θ̂(t) remains in the set Ωσ̂.

A smooth projection parameter update law for σ̂ is synthesized in a

fashion identical to θ̂. Assuming that ‖σ∗(t)‖ is bounded by an a priori

available constant value, define two convex sets

Ωσ∗ ,
{
σ∗ ∈ R3m | ‖σ∗‖2 < ε2

}
, Ωσ̂ ,

{
σ̂ ∈ R3m | ‖σ̂‖2 < ε2 + δ2

}
(3.29)

for known ε2 > 0 and δ2 > 0. The smooth projection scheme for σ̂ is then

given by

˙̂σ = Proj (σ̂,Γ) ; Γ , [W2 + W3]
T [ωe + qev

]
, (3.30)

where

Proj (σ̂,Γ) ,


γ2Γ if (1) ‖σ̂‖2 < ε2 or

if (2) ‖σ̂‖2 ≥ ε2 and ΓTσ̂ ≤ 0

γ2

(
Γ− (‖σ̂‖2−ε2)ΓTσ̂

δ2‖σ̂‖2 σ̂

)
if (3) ‖σ̂‖2 ≥ ε2 and ΓTσ̂ > 0

(3.31)

which is similarly locally Lipschitz and satisfies σ̂(0) ∈ Ωσ̂ ⇒ σ̂(t) ∈ Ωσ̂.

Theorem 3.2.2. Suppose that θ∗ ∈ Ωθ∗, σ∗ ∈ Ωσ∗, and inertia matrix J

in Eq. (3.3) is time and/or state dependent with dynamics given by Eq. (3.6)

and unknown J0 and J1. Then, the adaptive control law Eq. (3.20) together

with smooth-projection update laws Eqs. (3.26) and (3.30) and initial condi-

tions θ̂(0) ∈ Ωθ̂ and σ̂(0) ∈ Ωσ̂, stabilizes the system of Eqs. (2.12) and (3.2)
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while ensuring boundedness for all closed-loop signals and asymptotic conver-

gence of the tracking error limt→∞
[
qev(t), ωe(t)

]
= 0 for all initial condi-

tions [q(0),ω(0)] and any reference trajectory [qr(t),ωr(t)] with ωr smooth

and bounded.

Proof. Consider again the Lyapunov-function V defined previously in Eq. (4.28).

Evaluating V̇ along the closed-loop system trajectories yields

V̇ = −kv‖ωe‖2 − β‖qev‖2 +
1

γ1
θ̃
T
(

˙̂
θ − γ1Φ

)
+

1

γ2
σ̃T
(

˙̂σ − γ2Γ
)

= −kv‖ωe‖2 − β‖qev‖2 + V̇2 + V̇3

which is negative-semi definite if

V̇2 = θ̃
T
(

˙̂
θ − γ1Φ

)
≤ 0, V̇3 = σ̃T

(
˙̂σ − γ2Γ

)
≤ 0.

If
˙̂
θ is prescribed according to the adaptation law Eq. (3.26), V̇2 ≤ 0 is trivially

satisfied for cases (1) and (2). For case (3),

θ̃
T
(

˙̂
θ − γ1Φ

)
= θ̃

T

γ1
Φ−

(
‖θ̂‖2 − ε1

)
ΦTθ̂

δ1‖θ̂‖2
θ̂

− γ1Φ


= −γ1


(
‖θ̂‖2 − ε1

)
ΦTθ̂

δ1‖θ̂‖2
θ̃
T
θ̂

 ≤ 0

which is true because θ̃
T
θ̂ = ‖θ̂‖2 − θ∗Tθ̂ ≥ 0 when ‖θ̂‖2 ≥ ε1. Therefore,

V̇2 =


0 in case (1) and case (2)

−γ1
(

(‖θ̂‖2−ε1)ΦTθ̂

δ1‖θ̂‖2
θ̃
T
θ̂

)
≤ 0 in case (3)

(3.32)
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from which it follows that V̇2 ≤ 0. Similarly, it can be shown that V̇3 ≤ 0,

from which it follows that V̇ ≤ 0. As shown previously in the proof for

Theorem 3.2.1, qev ,ωe,∈ L2 ∩ L∞ and q̇ev , ω̇e,∈ L∞ can be readily as-

serted. Furthermore, V̇ is uniformly continuous since V̇2 and V̇3 are Lips-

chitz continuous at the boundaries between their respective cases (1), (2),

and (3). Thus, from an application of Barbalat’s lemma, it follows then that

limt→∞
[
qev(t),ωe(t)

]
= 0.

3.3 Adaptive Attitude Tracking Control for

Unknown Inertia with Input Dependency

In this section, the adaptive controller is extended to handle fuel loss com-

pensation, wherein the spacecraft inertia matrix has an explicit control input

dependency. After careful examination and judicious rearrangement of terms,

the control law given by Eq. (3.20) can be expressed in terms of the control-

dependent inertia matrix in Eq. (3.13) in the following manner

u = τ − ‖u‖Ĵ1Ω (3.33)

where Ĵ1 is the estimate of matrix J1 and,

τ = −βqev − kvωe −W1θ̂ −W2σ̂, (3.34)

Ω = ω − 1

2

[
ωe + qev

]
. (3.35)
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The second term in Eq. (3.33) is obtained by recognizing that W3σ
∗ = J1Ψ̇Ω

and using Eq. (3.13) to express W3σ̂ = ‖u‖Ĵ1Ω. Note that, Ω can be equiv-

alently stated as

Ω =
1

2
ωe + ωrB −

1

2
qev , (3.36)

where ωrB = C(qr)ωr. In order to obtain an implementable expression for u,

Eq. (3.33) is examined further. From Eq. (3.33), the following expression is

readily obtained for ‖u‖2

‖u‖2 = ‖τ‖2 − 2‖u‖τTĴ1Ω + ‖u‖2‖Ĵ1Ω‖2, (3.37)

which can be rearranged to obtain

‖u‖2
(

1− ‖Ĵ1Ω‖2
)

+ 2‖u‖τTĴ1Ω− ‖τ‖2 = 0. (3.38)

Observe that Eq. (3.38) is a simple quadratic equation in ‖u‖. Suppose it is

ensured that

‖Ĵ1Ω‖ < 1, (3.39)

then
(

1− ‖Ĵ1Ω‖2
)
> 0 for all t ≥ 0 and Eq. (3.38) has only the following

non-negative solution for ‖u‖:

‖u‖ =
−2τTĴ1Ω +

√
4
(
τTĴ1Ω

)2
+ 4

(
1− ‖Ĵ1Ω‖2

)
‖τ‖2

2
(

1− ‖Ĵ1Ω‖2
) (3.40)
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which is non-negative and bounded if Eq. (3.39) holds for all t ≥ 0. Hence,

the control input expression in Eq. (3.33) together with Eq. (3.40) is bounded

and implementable for t ≥ 0 as long as the inequality in Eq. (3.39) is satisfied.

Next, in order to ensure that Eq. (3.39) is satisfied for all time, observe that

‖Ĵ1Ω‖ ≤ ‖Ĵ1‖‖Ω‖

≤ ‖Ĵ1‖
∥∥∥ωe

2
+ ωrB −

qev
2

∥∥∥
≤ ‖Ĵ1‖

(‖ωe‖
2

+ ωB +
1

2

)
(3.41)

where the bounds ωB = supt≥0 ‖ωrB‖ and ‖qev‖ ≤ 1 have been employed to

obtain Eq. (3.41). Using the 2-norm bound ‖Ĵ1‖ ≤ 3 supt≥0

(
maxi,j |Ĵ1ij(t)|

)
,

where Ĵ1ij is the i, jth entry of matrix Ĵ1, and invoking the constraint ‖σ̂i‖ ≤

‖σ̂‖ ≤
√
ε2 + δ2 ∀ i = 1, 2, 3 as long as σ̂ is updated according to the smooth

projection algorithm of Eq. (3.30), Eq. (3.41) can be expressed as

‖Ĵ1Ω‖ ≤ 3
√
ε2 + δ2

(‖ωe‖
2

+ ωB +
1

2

)
. (3.42)

Upper bounding the right-hand side of Eq. (3.42) by unity leads to the follow-

ing conservative upper bound on the norm of ωe:

‖ωe(t)‖ < ζ∗; ζ∗ = 2

(
1

3
√
ε2 + δ2

− ωB −
1

2

)
, (3.43)

where ε2 and δ2 are such that ζ∗ > 0 for all t ≥ 0. Thus, if ωe is upper bounded

according to Eq. (3.43), then ‖Ĵ1Ω‖ < 1 and the control input in Eq. (3.33)

along with Eq. (3.40) is non-negative and bounded for all t ≥ 0.

Theorem 3.3.1. Consider the attitude tracking error system of Eqs. (2.12)
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and (2.13) with an input dependent inertia matrix J that evolves according

to Eq. (3.13) and components J1 and J0 being unknown. Suppose the true

parameter values θ∗ and σ∗ are such that

θ∗ ∈ Ωθ∗ ; σ∗ ∈ Ωσ∗ , (3.44)

and the inertia matrix J is described by known values λmin and λmax, such that

λmin = inf
i=1,2,3
t≥0

λi(t); λmax = sup
i=1,2,3
t≥0

λi(t) (3.45)

where λi(t) denotes the ith (potentially) time-varying eigenvalue of J point wise

with time. Furthermore, suppose the initial conditions satisfy

(‖ωe(0)‖+ 1)2 <
2

λmax

[
λmin

2
(ζ∗ − 1)2 − λmin

2
− 4 (β + kv)−

θ̃max

2γ1
− σ̃max

2γ2

]
(3.46)

where ζ∗ is given by Eq. (3.43) and selected such that ζ∗ > 1 and

θ̃max =
(√

ε1 + δ1 +
√
ε1

)2
, σ̃max =

(√
ε2 + δ2 +

√
ε2

)2
.

In addition, the right-hand side of the inequality above satisfies:[
λmin

2
(ζ∗ − 1)2 − λmin

2
− 4 (β + kv)−

θ̃max

2γ1
− σ̃max

2γ2

]
> 0. (3.47)

Then, the adaptive control law in the form of Eq. (3.33) with Eq. (3.40) is

non-singular for all t ≥ 0 and, along with smooth-projection based param-

eter update laws Eqs. (3.26)- (3.30) and initial conditions θ̂(0) ∈ Ωθ̂ and
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σ̂(0) ∈ Ωσ̂, guarantees asymptotic convergence of the tracking error signals

limt→∞
[
qev(t), ωe(t)

]
= 0 for all bounded and smooth reference trajecto-

ries [qr(t),ωr(t)] while ensuring boundedness for all closed-loop signals for

all t ≥ 0.

Proof. First and foremost, it is shown that the adaptive control input given by

Eq. (3.33) and Eq. (3.40) is non-singular for all t ≥ 0. Consider again the pos-

itive semi-definite function V in Eq. (4.28). As outlined in the proof for The-

orem 3.2.1, evaluating V̇ along the closed-loop system trajectories Eqs. (2.12)

and (3.23) with parameter update laws Eqs. (3.26) and (3.30) yields V̇ ≤ 0.

Thus, V is a monotonic function and satisfies V (t) ≤ V (0). For notational

convenience in the analysis that follows, V in Eq. (4.28) is written as

V =
1

2

(
ωe + qev

)T
J
(
ωe + qev

)
+ Ṽ ,

where the positive semi-definite function Ṽ is simply

Ṽ = (β + kv)
(
qT
evqev + (qe0 − 1)2

)
+

1

2γ1
‖θ̃‖2 +

1

2γ2
‖σ̃‖2.

Then, using the Rayleigh-Ritz inequality coupled with the monotonicity of V ,

one can write

λmin

2
‖ωe + qev‖2 + Ṽ ≤ V (t) ≤ V (0). (3.48)

Following through with some minor algebra and rearrangement of terms in
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Eq. (3.48) leads to

λmin

2
‖ωe‖2 +

λmin

2
‖qev‖2 + Ṽ ≤ V (0)− λminω

T
e qe

≤ V (0) + λmin‖ωe‖. (3.49)

Adding the terms −λmin‖ωe‖ + λmin/2 on both sides of the inequality in

Eq. (3.49) and following through with completion of squares yields

λmin

2
(‖ωe‖ − 1)2 +

λmin

2
‖qev‖2 + Ṽ ≤ V (0) +

λmin

2
(3.50)

Next, using again the Rayleigh-Ritz inequality and implementing the upper

bound on ‖ωe(0)‖ stated in Eq. (3.46), V (0) can be upper-bounded as follows:

V (0) ≤ λmax

2
‖ωe(0) + qev(0)‖2 + 2 (β + kv) (1− qe0) +

1

2γ1
‖θ̃‖2 +

1

2γ2

‖σ̃‖2

≤ λmax

2

(
‖ωe(0)‖+ ‖qev(0)‖

)2
+ 4 (β + kv) +

1

2γ1

(
‖θ̂‖+ ‖θ∗‖

)2
+

1

2γ2

(
‖σ̂‖+ ‖σ∗‖

)2
≤ λmax

2
(‖ωe(0)‖+ 1)2 + 4 (β + kv) +

θ̃max

2γ1
+
σ̃max

2γ2

<
λmin

2
(ζ∗ − 1)2 − λmin

2
. (3.51)

Using Eq. (3.51) as the upper bound for V (0) in Eq. (3.50) gives

λmin

2
(‖ωe‖ − 1)2 +

λmin

2
‖qev‖2 + Ṽ <

λmin

2
(ζ∗ − 1)2 (3.52)

from which it readily follows that (‖ωe‖ − 1)2 < (ζ∗ − 1)2 and, since ζ∗ > 1,

‖ωe(t)‖ < ζ∗ for all t ≥ 0, ensuring non-singularity of the control in Eq. (3.33)
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with ‖u‖ prescribed according to Eq. (3.40). The remainder of the proof

showing asymptotic convergence of error signals, and boundedness of closed-

loop signals follows exactly according to the proof for Theorem 2.

A few pertinent remarks and observations are now made about Theorem

3:

Remark 3.3.1. It is important to remark that the smooth projection algo-

rithm of Eq. (3.30) is crucial for ensuring that the adaptive control solution

in Eq. (3.33) with ‖u‖ given by Eq. (3.40) is uniformly bounded when dealing

with inertia variations due to control-torque induced fuel expenditure. With-

out this assumption, no assurance can be provided that Eq. (3.38) will yield a

non-singular solution for ‖u‖.

Remark 3.3.2. For the specific case of inertia variations due to fuel loss,

since ‖J(t)‖ ≤ ‖J0‖, knowing λmax is equivalent to to having knowledge of the

maximum eigenvalue of J0.

Remark 3.3.3. From a practical standpoint, the minimum eigenvalue of J(t)

at any time t is larger than the minimum eigenvalue at the completion of the

mission, or when the fuel mass has been entirely expended. Thus, having

knowledge of λmin is equivalent to knowing the minimum eigenvalue of the

inertia matrix associated with the dry mass of the spacecraft.

Remark 3.3.4. The practical implication of requiring ζ∗ > 1 to ensure control

implementability needs further examination. For convenience, the expression
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for ζ∗ from Eq. (3.43) is restated below

ζ∗ = 2

(
1

3
√
ε2 + δ2

− ωB −
1

2

)
.

Recall that
√
ε2 + δ2 is the upper bound on estimates of J1, whereas ωB is the

upper bound of the reference velocity. Thus, if ε2 and δ2 are small and if ωB

is not impractically large, then ζ∗ > 1 can be readily satisfied. Note, that this

condition is a sufficient condition and may be potentially overly conservative.

It is, of course, possible for the control law to be implementable even when

this condition is not satisfied.

Remark 3.3.5. Finally, a few observations are in order regarding the initial

condition requirement of Eq. (3.46) to ensure control implementability. As

will be shown in the numerical simulations that follow, the initial condition

requirement is practically quite lenient and permits a vast range of reference

trajectories and initial conditions. Re-stated below for convenience, it is ob-

served that the right-hand side of the inequality Eq. (3.46) is essentially a

function of the spacecraft inertia matrix properties, the reference trajectory,

as well as the gains β, kv, γ1, γ2.

(‖ωe(0)‖+ 1)2 <
2

λmax

[
λmin

2
(ζ∗ − 1)2 − λmin

2
− 4 (β + kv)−

θ̃max

2γ1
− σ̃max

2γ2

]
.

The last three negative-definite terms on the right-hand side of this inequality

can be driven close to zero through appropriate selection of gain terms. Then,

if λmin [(ζ∗ − 1)2 − 1] /2 is large enough to overcome the offending negative

terms, a large range of ωe(0) is easily accommodated in Eq. (3.46). Again, it
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is noted that the restriction on the initial condition is a sufficient condition

only, and that the control may be implementable even if Eq. (3.46) is not

satisfied.

3.4 Numerical Simulations

In order to show the performance characteristics of the proposed adaptive

control, numerical simulations are conducted. The error tracking capabilities

are compared to a high-performance non-certainty equivalence based adaptive

control [55] that does not account for inertia-variations. The control protocol

in [55] is referred to as “comparison” in the subsequent simulations, and is

listed as

uc = −Wc

(
θ̂ + βc

)
− γWfW

T
f

[
kp
(
ωf − qev

)
− ωe

]
(3.53)

˙̂
θc = γWT

f

[
(α + kw)ωf + kpqev

]
− γWT

c ωf (3.54)

βc = γWT
fωf , (3.55)

where kp, kw, γ > 0, α = kp + kw, and the matrix Wc is given by

Wcθ
∗ = −S (ω)Jω + Jφ+ J

(
kwωe + kpq̇ev + αkpqev

)
, (3.56)

where J = J0 is constant. Finally, the signals Wf and ωf are updated using

ω̇f = −αωf + ωe

Ẇf = −αWf + Wc
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with arbitrary initial conditions ωf (0) ∈ R3 and Wf (0) ∈ R3×6. The choice for

this comparison controller is motivated by the fact that the non-CE adaptive

control in [55] has been shown to demonstrate significantly superior tracking

error convergence performance to classical CE adaptive control methods ow-

ing to its attractive manifold design in the parameter adaptation dynamics.

However, as shown in subsequent simulations, despite its provable performance

gains for a constant inertia matrix, the non-CE adaptive controller suffers from

pointing accuracy when faced with a time-varying inertia matrix.

Two types of time-varying inertia matrices are considered. In the first

example, a spacecraft undergoing sensor boom deployment is modeled. In

this case, a sinusoidal mass-displacement profile is used to represent persistent

mass movement of an articulated appendage. In the second example, a control

input dependent inertia-matrix is simulated to highlight the benefits of the

novel control methodology for fuel loss compensation. In both simulations,

the true value of the inertia component J0 is taken as

J0 =


20 1.2 0.9

1.2 17 1.4

0.9 1.4 15

 kg-m2, (3.57)

For the most fair comparison, the initial value of both θ̂ and θ̂c is taken as

θ̂c(0) = θ̂(0) = [21.1, 1.9, 1.4, 17.8, 2.9, 15.5]T while σ̂(0) = 0 for the pro-

posed adaptive control law. The true values for J1 parameters are presented

separately in the sections that follow. The initial angular velocity of the

spacecraft is ω(0) = [0.001, 0.001, 0.002]T, while the vector component of
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the initial body quaternion is given by qv(0) = [0.1826, 0.1826, 0.1826]T with

q0 =
√

1− 3(0.1826)2. The initial reference quaternion is qr(0) = [1, 0, 0, 0]T

which indicates that the reference and inertial frames are initially aligned.

Simulations are conducted for a non-persistently exciting (non-PE) reference

trajectory. Obtained from the example provided in [55], the non-PE angular

velocity profile is generated according to ωr(t) = r(t)[ 1, 1, 1 ]T rad/s with

r(t) given by

r(t) =
(

0.3 cos(0.3t)(1− e0.01t2) + (0.08π + 0.006 sin(0.3t))te−0.01t
2
)
. (3.58)

In order to obtain a fair comparison between u and uc, the parameters

kv, β, kp, and kw are first tuned to yield similar controller performance for the

ideal case, where J is constant and known. By selecting β = 20, kv = 24.5 for

u, and kw = 0.5, kp = 0.5 for uc, and setting γ = γ1 = γ2 = 0, the baseline

plots shown in Fig. 3.3 show a similar controller performance.
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Figure 3.3: Baseline performance of proposed and comparison controllers, gen-
erated using constant and known J0 in Eq. (3.57).
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In subsequent simulations, only the parameter estimation tuning param-

eters γ, γ1, γ2 are modified to obtain the best performance for both controllers,

while keeping the control gains unchanged. For both the fuel loss and simula-

tion deployment cases, plots are provided along with a discussion to highlight

important features of the controller.

3.4.1 Deployable Appendage

This section presents a simulation of the adaptive control in Eq. (3.20) along

with parameter estimation update laws Eqs. (3.21)-(3.22) (without projection)

for a purely time-varying inertia matrix. A spacecraft with articulating parts

is modeled using Eqs. (3.7)-(3.9) with known quantities

ρ1(t) = 0.5
[
1 + sin2 (0.1t)

]
b̂1 (3.59)

ρ2(t) = 0.8
[
1 + sin2 (0.1t)

]
b̂2, (3.60)

along with unknown mass m1 = 1 kg and m2 = 1.3 kg. Thus, J1 is given by

J1 = −[ 1.0 · I, 1.3 · I ] where I is the 3 × 3 identity matrix. The matrix J0

is given by Eq. (3.57), with the assumption that the inertia contributions of

the moving objects are already included in the calculation of J0 in accordance

with Eq. (3.7), or that the moving parts are treated as point masses. Fig. 3.4

illustrates the evolution of the principal moments of inertia of this inertia

matrix over a period of 400 seconds. The inertia matrix quantities remain

positive definite and satisfy Eq. (3.5) throughout the simulation period.
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Figure 3.4: Principal moments of inertia of time-dependent J(t) for a space-
craft with moving/articulating parts.

The tuning parameters are selected to be γ = 100, γ1 = 60, and

γ2 = 200 and are chosen in such a manner so as to yield a result closest to the

baseline performance for each controller. Every effort was made by the authors

to select the best possible tuning parameters for each control method. The

results are illustrated in Figs. 3.5-3.7. While the proposed controller main-

tains consistent closed-loop tracking-performance, the comparison controller

suffers greatly due to the persistent variations in the input dependent inertia

matrix. In fact, as is evident in Figs. 3.5a-3.5b, the comparison controller

shows significantly diminished asymptotic convergence compared to the pro-

posed controller. For smaller times the comparison controller shows reduction

in error norms, however the error norms saturate around 0.5 deg/s for angular

velocity and near 0.001 for the quaternion error. In contrast, the proposed

controller drives the angular velocity tracking error norm to below 0.001 deg/s

and the quaternion error vector norm to below 1× 10−4 within 400 seconds.
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Figure 3.5: Adaptive attitude-tracking control simulation for spacecraft with
time-dependent inertia matrix variations due to mass displacement.
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Figure 3.6: Commanded control effort for adaptive control simulation of space-
craft with time-dependent inertia variations.
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Figure 3.7: Parameter estimates of the unknown J0 and J1 matrices for mass
displacement example.

The degradation of performance in the comparison control is consid-
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ered to be a direct result of significant inertia matrix changes, which are not

explicitly taken into account as they are in the proposed control law. Thus,

at best, the comparison controller is only able to drive the tracking errors to

within a bounded set.

In Fig. 3.6b, observe that the proposed controller has a slightly higher

overshoot in the initial transient regime. However, the steady state regime in

Fig. 3.6a seems to indicate that the comparison controller actually commands

a higher overall control torque norm than the proposed controller. The higher

control demand stems from the fact that because the comparison controller

does not directly take into account the time-varying inertia components, it

expends a significant amount of effort adapting to parameters that are rapidly

varying. Note that the steady-state control is time-varying since a time-varying

trajectory is being tracked. Finally, it is noted that since the underlying

reference trajectory does not satisfy PE conditions, the parameter estimates

are not expected to converge to their true values. This is clearly the case for

θ̂ in Fig. 3.7a. However, as illustrated in Fig. 3.7b, the added excitation due

to the sinusoidal variation in Ψ allows J1 estimates, σ̂, to converge to their

true values.

3.4.2 Fuel Loss Compensation

Next, numerical simulations are conducted for a spacecraft undergoing inertia

matrix changes due to fuel-mass loss. In particular, the inertia matrix varia-

tions are described by Eq. (3.13), the adaptive control is given by Eq. (3.33)
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and Eq. (3.40), and the parameter estimation update laws with smooth pro-

jection in Eqs. (3.26) and (3.30) are simulated. The unknown matrix J1 is

taken as

J1 =


4× 10−3 0 0

0 4× 10−3 0

0 0 5× 10−3


which essentially models a fuel tank in the shape of a cylinder. Consistent

with the remarks made following Theorem 3.3.1, the constant λmax is taken

to be the maximum eigenvalue of J0, that is, λmax = 20.7352, while the min-

imum eigenvalue is taken as λmin = 0.5, and is assumed to be the eigenvalue

associated with the dry mass inertia matrix of the spacecraft.

The constants for convex sets Ωθ∗ and Ωθ̂ are ε1 = (40)2 and δ1 = (10)2,

while those for Ωσ∗ and Ωσ̂ are given by ε2 = (0.008)2 and δ2 = (0.008)2.

Note that ‖θ∗‖2 ∈ Ωθ∗ , ‖σ∗‖2 ∈ Ωσ∗ while the initial conditions θ̂(0) =

[21.1, 1.9, 1.4, 17.8, 2.9, 15.5]T and σ̂(0) = 0 belong respectively to sets Ωθ̂ and

Ωσ̂. Furthermore, ωB = supt≥0 ‖ωr‖ = 1.1832 and ζ∗ = 55.56. The tuning

parameters are selected to be

γ = 100, γ1 = 8, γ2 = 20.5

and are chosen in such a manner so as to yield a result closest to the baseline

performance for each controller. Moreover, using the selected parameters, the
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following inequality is obtained in accordance with Eq. (3.46)

(‖ωe(0)‖+ 1)2 <
2

λmax

[
λmin

2
(ζ∗ − 1)2 − λmin

2
− 4 (β + kv)

−
(√

ε1 + δ1 +
√
ε1
)2

2γ1
−
(√

ε2 + δ2 +
√
ε2
)2

2γ2

]

≈ 14.81

which is readily satisfied for ‖ωe(0)‖ = 0.0024, thereby ensuring a non-singular

control for the entire duration of the simulation. Note that every effort was

made by the author to select the best possible tuning parameters for each

control method. The results are illustrated in Figs. 3.8-3.10.

As with the appendage deployment case, it is found that whereas the

proposed controller is able to drive the attitude and angular velocity errors to

the origin in a consistent manner, the comparison controller suffers from an

appreciable loss of accuracy both for attitude and angular-velocity tracking.

The norms of the control torques commanded by the proposed and comparison

controllers are shown in Figs. 3.9a-3.9b. The proposed control law remains

well-defined throughout the simulation period. As illustrated in Fig. 3.9b, the

torque demands of both controllers are comparable during the initial transient

period. In Fig. 3.9a, the monotonic steady-state decay of the control norm for

both controllers is consistent with the decrease in the overall rotational inertia

of the spacecraft as a consequence of losing mass.
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Figure 3.8: Adaptive attitude-tracking control response for a spacecraft with
fuel mass-loss induced inertia variations.
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Figure 3.9: Commanded control effort for adaptive control simulation of a
spacecraft with fuel loss tracking a non-PE signal.
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Figure 3.10: Parameter estimates of unknown J0 and J1 matrices (fuel-loss
example).
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The time evolution of the parameter estimates is shown in Fig. 3.10.

In Fig. 3.10b, a similar trend to the deployment scenario is found, where

the update law for σ̂ in the proposed control strategy is able to drive the

estimated values to their true values. As mentioned in the previous example,

the added persistence of excitation introduced in W2 and W3 due to the

input dependent Ψ and Ψ̇ matrices, contributes to this unique feature despite

a non-PE reference trajectory. Furthermore as expected, ‖σ̂‖ is bounded by
√
ε2 + δ2 = 0.0113 due to the smooth projection mechanism. Finally, the

evolution of the principal moments of inertia of the fuel-mass dependent inertia

matrix is illustrated in Fig. 3.11a for the proposed controller, and in Fig. 3.11b

for the comparison controller. The simulated inertia matrix remains positive

definite and satisfies the triangle inequalities in Eq. 3.5 for all time.
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Figure 3.11: Principal moments of inertia of the control norm dependent in-
ertia matrix simulating variations due to fuel mass-loss.
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3.5 Concluding Remarks

In this chapter, an adaptive attitude control problem is addressed for a space-

craft with a time-varying inertia matrix. The inertia matrix consists of an

unknown rigid (constant) matrix component, as well as a variable component

with multiplicative uncertainty. The variable inertia term may be purely input

dependent, or may display a combination of time and/or state dependencies.

The proposed adaptive control delivers consistent tracking performance in the

face of arbitrarily large uncertainties in the inertia matrix. When variations

occur due to fuel mass-loss, a smooth projection scheme prevents drifting of

the parameter estimates and ensures a singularity-free control solution for the

coupled dynamics resulting from a control torque-dependent inertia matrix.

A complete analysis of the proposed control law depicting asymptotic conver-

gence of the tracking error signals is provided. Numerical simulation examples

are provided to highlight the performance gains of the proposed controller

when compared to existing adaptive controllers that do not account for inertia

variations. The proposed control scheme has many practical advantages, espe-

cially in the field of aerospace engineering, where spacecraft often experience

mass displacement or variations during flight. Future work for this problem

could consider extending the present certainty-equivalence adaptive control

solution to a non-certainty equivalence framework for increased performance

efficiency, and possibly addressing more complicated inertia matrix models.
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Chapter 4

Gyro-Free Rigid Body Attitude

Stabilization using only Vector

Measurements on SO(3)

In this chapter, the attitude stabilization of a rigid body is considered for

the case when only a set of unit vector measurements is available for control

feedback. In particular, angular velocity information is assumed to be either

unavailable or unreliable due to faulty gyroscopes. This chapter provides a

detailed development of a novel control scheme for stabilizing the rigid body’s

orientation to the desired configuration by using unit vector measurements

for feedback. That is, rather than relying on an estimated attitude vector

or rate gyro measurements, the novel control law is designed such that the

unit vector measurements are employed directly for attitude regulation. The
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control law is formulated on the special orthogonal group SO(3) and satisfies

the so-called self-reduction property, wherein the resulting control law does

not require information about the rigid-body inertia parameters. A technically

important feature of this control design is that unlike other approaches, this

control law is rooted in the passive systems framework and observers are not

needed to reconstruct either the attitude or the angular velocity of the rigid

body.

The chapter is organized as follows. Sec. 4.1 describes the rigid-body

dynamics and kinematics as well as the measurement model. The main results

of this chapter are presented along with thorough stability analysis in Sec. 4.2.

In Sec. 4.3, numerical simulation studies are presented to help illustrate the

technical aspects of this work, as well as to show the performance of the con-

troller under realistic situations like measurement noise. Finally, the chapter

in concluded in Sec. 4.4 with remarks that summarize the presented results.

4.1 Problem Formulation

The rigid body dynamics and kinematics are stated in terms of the direction

cosine matrix and Euler’s rotational equations. For notational convenience in

this particular chapter, the subscript ‘B’ is added to C such that Cb denotes

the orthogonal matrix transformation from inertial reference frame I to body-

fixed reference B. Thus, the rigid body kinematics are stated as

Ċb = −S (ω) Cb. (4.1)
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The attitude dynamics stated in Eq. (2.2) are repeated here for the reader’s

convenience:

Jω̇ = −S (ω) Jω + u. (2.2)

The measurement model is discussed in the next section.

4.1.1 Measurement Model and Orientation Error

The rigid body (spacecraft) is assumed to be equipped with a combination

of inertial sensors such as star trackers, sun sensors, or horizon sensors that

provide at least two non-collinear unit vector measurements in the body-fixed

frame. In addition, the spacecraft angular velocity measurement is assumed

to be unavailable for feedback, either due to faulty or unreliable hardware or

because the spacecraft is not equipped with rate gyros. The N unit-length

vector measurements are defined through the following equations

yj = Cbx
j, for j = 1, 2, ..., N, (4.2)

where yj ∈ R3 is the jth measurement expressed in B and N ≥ 2. The vectors

xj, j = 1, . . . , N are non-collinear constant unit vectors governing the inertial

direction of the jth observation. The desired measurements are expressed in

the desired frame R as follows

yjr = Crx
j, for j = 1, 2, ..., N, (4.3)
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where yjr ∈ R3 is the jth desired constant measurement and Cr ∈ SO(3),

Ċr = 0 denotes the constant orientation of R with respect to the inertial

frame.

Let E = CbCr
T ∈ SO(3) denote the error between the current orien-

tation and the desired orientation. Using Poisson’s equation, the dynamical

evolution of the orientation error is given by

Ė = −S (ω) CbCr
T = −S (ω) E. (4.4)

From the definition of E, it follows that E = I implies Cb = Cr. Since the

true attitude of the vehicle is not directly measured, the attitude stabilization

control law will be developed using the measured and desired unit vectors for

feedback. For the jth vector yj, the measurement error considered is given by

Ej = 1− yj
T

r yj,

= 1− tr
(
Cbx

jxj
T

Cr
T
)
,

= 1− tr
(
Cbx

jxj
T

Cb
TE
)
.

The cost function for all N measurements is expressed as

E =
1

2

N∑
j=1

kjEj =
1

2

N∑
j=1

kj

(
1− yj

T

r yj
)

=
1

2

[
N∑
j=1

kj − tr (ME)

]
, (4.5)

where [19, 32]

M = CbM0Cb
T = MT; M0 =

N∑
j=1

kjx
jxj

T
, (4.6)

77



and the scalar quantities kj > 0 are user-defined weights on the confidence of

the measurements. Observe that if N ≥ 3, then M > 0, and when N = 2, M is

only positive semi-definite with one zero eigenvalue [32]. In Eq. (4.5), observe

that when yj 6= −yjr ∀ j = 1, . . . , N , the total measurement error taken on

values such that E <
∑N

j=1 kj. Subsequent stability analysis will employ this

fact to ascertain convergence properties for the control law developed in the

proceeding sections.

Given the system governed by Eqs. (4.1)-(2.2), the control objective is

to design u such that E(t) → I (E(t) → 0) and ω(t) → 0 as t → ∞ for any

constant reference Cr, while ensuring boundedness of all closed loop signals.

For control implementation, only the desired and measured unit-length vector

measurements are assumed to be perfectly measured (no noise) and available

for feedback.

4.2 Velocity-Free Attitude Control

4.2.1 Preliminary Results

Define a signal Ω in the following manner

Ω =
1

2

N∑
j=1

kjS
(
yj
)
yjr. (4.7)

An important lemma is now stated that will be useful later in the convergence

analysis of the control law that will be developed subsequently.

Lemma 4.2.1. Assume that there are two or more (N ≥ 2) non-collinear
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vector measurements available. Then, Ω = 0 implies that either E = I or

tr(E) = −1.

Proof. Consider the signal S(Ω), which, using the identity S(v×w) = −vwT+

wvT, is expressed as [19]

S(Ω) =
1

2

N∑
j=1

kjS(yj × yjr),

=
1

2

N∑
j=1

kj

[
−yjyjr

T
+ yjry

jT
]
,

=
1

2

N∑
j=1

kj

[
−Cbx

jxj
T
Cr

T + Crx
jxj

T
Cb

T
]

=
1

2

[
−ME + ETMT

]
(4.8)

Observe that when Ω = 0, S(Ω) = 0. Then, from Eq. (4.8) it follows that

ME = ETMT. Following the procedure of [19, 22, 32], we show next that

this implies E = I or tr(E) = −1. Since E is a real-valued matrix, its eigen-

values and eigenvectors satisfy Eek = σkek and eH
k ET = σH

k eH
k , where σH

k for

k = 1, 2, 3 denotes the complex conjugate of the eigenvalue σk, while eH
k de-

notes the complex conjugate transpose of the eigenvector ek associated with

σk. Pre-multiplying and post-multiplying ME = ETMT respectively by eH
k

and ek, recognizing that MT = M, and following through with appropri-

ate substitutions leads to eH
k Mekσk = σH

k eH
k Mek. When N ≥ 3, M > 0

and eH
k Mek > 0 ∀ k = 1, 2, 3. Consequently, σk = σH

k and all eigenvalues

of E are real. When only two vector measurements are available (N = 2),

two of the eigenvalues are real. Since complex eigenvalues must appear in
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complex conjugate pairs, it follows that the third eigenvalue is also real.

Observe that since E is a rotation matrix, its eigenvalues are of the form

eig (E) = (1, cos(φ) + i sin(φ), cos(φ)− i sin(φ)) where φ is the angle associ-

ated with the angle/axis representation of E. Then, since the eigenvalues of

E are all real, φ = 0 or φ = ±180◦. As a result, Ω = 0 implies that E = I or

tr(E) = −1. For further details, the reader is referred to [22, 32].

Using the facts that ẏj = S(yj)ω and ẏjr = 0 along with the identity

S(v)S(w) = wvT − (vTw)I for v,w ∈ R3, the dynamical equation governing

the evolution of Ω is derived as follows:

Ω̇ = −1

2

N∑
j=1

kjS
(
yjr
)

ẏj

= −1

2

N∑
j=1

kjS
(
yjr
)
S
(
yj
)
ω

= −1

2

N∑
j=1

kj

[
yjyjr

T −
(
yjr

T
yj
)

I
]
ω

= −1

2

N∑
j=1

kj

[
Cbx

jxj
T
Cr

T − tr
(
Cbx

jxj
T
Cr

T
)

I
]
ω

= −1

2

N∑
j=1

kj

[
Cbx

jxj
T
Cb

TE− tr
(
Cbx

jxj
T

Cb
TE
)

I
]
ω

= −1

2
[ME− tr (ME) I]ω (4.9)

A second important lemma is stated next that will be utilized in the stability

analysis of the forthcoming attitude control law development.

Lemma 4.2.2. Suppose that there are two or more (N ≥ 2) non-collinear
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vector measurements available. Then, Ω̇(t)→ 0 as t→∞ implies that either

one or both of the following conditions must hold: ω(t)→ 0 and/or tr(E(t))→

−1 as t→∞.

Proof. When Ω̇ = 0, Eq. (4.9) yields

MEω = tr (ME)ω. (4.10)

Pre-multiplying both sides of Eq. (4.10) by ωTET, recognizing that MT = M,

and using Eq. (4.10) to substitute for MEω leads to

tr (ME)ωTEω = tr (ME)ωTETω, (4.11)

which may be satisfied by one or a combination of the following solutions: (i)

E = ET, (ii) tr(ME) = 0, and (iii) ω = 0. We now examine the solutions

(i) and (ii) and show that E = ET leads to ω = 0 or tr(E) = −1, while

tr(ME) = 0 always leads to ω = 0.

Consider solution (i) where E = ET. As discussed in the proof for

Lemma 4.2.1, the eigenvalues of E are of the form

eig (E) = (1, cos(φ) + i sin(φ), cos(φ)− i sin(φ)) .

If E = ET, then the eigenvalues of E are real and φ = 0 or φ = ±180◦.

Therefore, E = I or tr(E) = −1. Substituting for E = I in Eq. (4.10) and

slightly rearranging terms yields

[M− tr (M) I]ω = 0. (4.12)
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Next, denote the eigenvalues of M as λk, k = 1, 2, 3. For ω 6= 0, observe that

Eq. (4.12) is a simple eigenvalue problem. Therefore, without loss of generality,

we can write λ1 = tr (M). Using the definition of the matrix trace as the sum

of the matrix eigenvalues, that is, tr (M) =
∑3

k=1 λk, and substituting this

definition into λ1 = tr (M) and simplifying yields λ2 +λ3 = 0. However, recall

that when N ≥ 3, M > 0 which means λk > 0 ∀ k = 1, 2, 3. Similarly,

when N = 2, M has exactly one zero eigenvalue and two positive eigenvalues.

Consequently, it must be that λ2 + λ3 > 0 is always true which implies that

tr (M) cannot be an eigenvalue of M. Thus, it follows that the only solution

to Eq. (4.12) is ω = 0. Therefore, the solution (i) E = ET leads to either

ω = 0 or tr(E) = −1.

We now consider the solution (ii) tr (ME) = 0. When tr (ME) = 0,

Eq. (4.10) simplifies to

MEω = 0. (4.13)

Since M > 0 for N ≥ 3, it is simple to show that Eq. (4.13) leads to ω = 0

owing to the fact that (ME)−1 = ETM−1 is well defined. Deriving a similar

result for the case when N = 2 requires more involved analysis. When N = 2,

Eq. (4.13) is expressed as

k1y
1(y1T

r ω) = −k2y2(y2T

r ω) (4.14)

which follows directly from substituting the definitions of M and E into

Eq. (4.13) and rearranging terms. Since y1 and y2 are non-collinear, and
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y1
r and y2

r are non-collinear, the potential solutions for Eq. (4.14) are ω = 0 or

ω = αy1
r×y2

r, where α is any nonzero and potentially time-varying scalar. We

now show through a contradiction argument that ω = αy1
r × y2

r is not a feasi-

ble solution of the system and that Eq. (4.14) always leads to ω = 0. To this

end, note that if tr (ME) = 0 for all t ≥ 0, it must be that d/dt (tr (ME)) =

0 ∀ t ≥ 0. Recalling that by definition tr (ME) =
∑N

j=1 kjy
jT

r yj, we have

d

dt

(
N∑
j=1

kjy
jT

r yj

)
=

N∑
j=1

kjy
jT

r ẏj

= −
N∑
j=1

kj
(
S(yj)yjr

)T
ω

= −ΩTω,

from which it follows that ΩTω = 0 since tr (ME) = 0. Next, define a unit

vector eω such that eω = y1
r × y2

r/‖y1
r × y2

r‖. Observe that the unit vectors

{y1
r, y2

r, eω} form a basis in R3, which can be used to express y1 and y2 as

follows

y1 = (y1Ty1
r)y

1
r + (y1Ty2

r)y
2
r + (y1Teω)eω, (4.15)

y2 = (y2Ty1
r)y

1
r + (y2Ty2

r)y
2
r + (y2Teω)eω. (4.16)

Substituting Eqs. (4.15)-(4.16) into the definition of Ω in Eq. (4.7) and sim-

plifying gives

Ω = k1

[
−β(y1Ty2

r)eω + (y1Teω)eω × y1
r

]
+k2

[
β(y2Ty1

r)eω + (y2Teω)eω × y2
r

]
,

(4.17)
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where β = ‖y1
r × y2

r‖. Premultiplying both sides of Eq. (4.17) by eT
ω leads to

eT
ωΩ = −k1β(y1Ty2

r) + k2β(y2Ty1
r). (4.18)

Since ωTΩ = αβeT
ωΩ = 0, from Eq. (4.18) we have

− k1(y1Ty2
r) + k2(y

2Ty1
r) = 0. (4.19)

Next, observe that the orientation error matrix E may be parameterized in

terms of its corresponding quaternion q =
[
q0, qT

v

]T
, where q0 ∈ R, qv ∈ R3,

and q20 + qT
v qv = 1, as follows

E =
(
q20 − qT

v qv
)

I + 2qvq
T
v + 2q0S(qv). (4.20)

Using Eq. (4.20), along with the fact that yj = Cbx
j = CbCr

TCrx
j = Eyjr,

one can express tr(ME) for N = 2 as follows:

tr (ME) = k1y
1T

r y1 + k2y
2T

r y2

= k1y
1T

r Ey1
r + k2y

2T

r Ey2
r

= k1

[
(q20 − qT

v qv) + 2(y1T

r qv)
2
]

+ k2

[
(q20 − qT

v qv) + 2(y2T

r qv)
2
]
.

(4.21)

Observe that q0 and qv can be expressed in terms of the eigenaxis ev and eige-

nangle φ associated with E according to q0 = cos(φ/2) and qv = ev sin(φ/2),

where ‖ev‖ = 1 by definition. Substituting these expressions into the right-

hand side of Eq. (4.21) along with using some trigonometric identities, and

recognizing that the right-hand side of Eq. (4.21) is identically zero since
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tr(ME) = 0, we get the following expression

k1

[
cos(φ)

(
1− (y1T

r ev)
2
)

+ (y1T

r ev)
2
]

+ k2

[
cos(φ)

(
1− (y2T

r ev)
2
)

+ (y2T

r ev)
2
]

= 0. (4.22)

Recall that the rotation matrix E evolves according to Ė = −S(ω)E. Since

ω = αβeω is an inertially fixed vector, E describes the orientation of a rigid

body executing pure-spin about the axis eω. It follows then that eω describes

the eigenaxis associated with E, i.e., ev = eω. Since eω = y1
r×y2

r/‖y1
r×y2

r‖, we

then have y1T

r ev = y2T

r ev = 0. Thus, Eq. (4.22) simplifies to (k1 +k2) cos(φ) =

0, and since k1 + k2 > 0, it follows that cos(φ) = 0 or that φ = ±90◦,±270◦.

Next, using Eq. (4.19) together with yj = Eyjr and Eq. (4.20), substi-

tuting for q0 = cos(φ/2) and qv = ev sin(φ/2), and once again applying some

common trigonometric identities leads to

− k1
[
y1T

r y2
r cos(φ) + (y1T

r ev)(y
2T

r ev) (1− cos(φ)) + sin(φ)y2T

r (ev × y1
r)
]

+ k2

[
y1T

r y2
r cos(φ) + (y1T

r ev)(y
2T

r ev) (1− cos(φ))− sin(φ)y2T

r (ev × y1
r)
]

= 0.

(4.23)

Substituting y1T

r ev = y2T

r ev = 0 and cos(φ) = 0 into Eq. (4.23) yields

(k1 + k2) sin(φ)y2T

r (ev × y1
r) = 0. (4.24)

Since k1, k2 > 0 and cos(φ) = 0, it follows that (k1 + k2) sin(φ) 6= 0, and

from Eq. (4.24) we have y2T

r (ev × y1
r) = 0, which when combined with ev =

y1
r × y2

r/‖y1
r × y2

r‖ leads to (y1T

r y2
r)

2 = 1 after applying the vector triple
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product identity a× (b× c) = b(aTc)− c(aTb) for any a,b, c ∈ R3. Finally,

observe that (y1T

r y2
r)

2 = 1 would only be satisfied if y1
r and y2

r are collinear

vectors, which brings us to a direct contradiction since y1
r and y2

r are assumed

to be non-collinear directions. Consequently, it follows that the only feasible

solution of ΩTω = 0 is ω = 0 and, therefore, the only possible solution of

Eq. (4.14) is ω = 0. Thus, the solution (ii) tr(ME) = 0 ∀ t ≥ 0 results in

ω = 0 when N ≥ 2.

We have shown that when at least two vector measurements are avail-

able, Eq. (4.10) leads to either one or both of the following two conditions

being satisfied: ω = 0 and tr(E) = −1 . Thus, when N ≥ 2, Ω̇(t) → 0 as

t→∞ implies that ω(t)→ 0 and/or tr(E(t))→ −1 as t→∞.

4.2.2 Gyro-Free Attitude Stabilization Control Law

We now state the main result of this chapter in the form of an asymptoti-

cally stabilizing angular-velocity free feedback control input presented below

in Theorem 4.2.3.

Theorem 4.2.3. Consider the system governed by Eqs. (4.1)-(2.2) and let the

control input torque u be determined by

u = −kpΩ− kzM̃
T
ζ (4.25)

with M̃ = −(1/2) [ME− tr(ME)I], any positive scalars kp and kz, and ζ
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determined as the output of the linear time-invariant system

ż = Amz + BΩ, (4.26a)

ζ = BTPż (4.26b)

with any Hurwitz Am ∈ R3×3, any full rank matrix B, and a symmetric and

positive-definite matrix P ∈ R3×3 that solves the equation AT
mP + PAm =

−Q, for any symmetric, positive-definite matrix Q ∈ R3×3. Then, the closed-

loop system is asymptotically stable, i.e., [E(t),ω(t)] → [I,0] as t → ∞ for

any constant reference orientation Cr and all initial conditions [E(0),ω(0)]

satisfying

1

2
ω(0)TJω(0) +

1

2
kp

N∑
j=1

kj

(
1− y(0)j

T

yr(0)j
)

+
1

2
kzż(0)TPż(0) < kp

N∑
j=1

kj.

(4.27)

Proof. Consider the following positive definite Lyapunov function candidate

V =
1

2
ωTJω +

1

2
kp

N∑
j=1

kj

(
1− yj

T

yjr

)
+

1

2
kzż

TPż. (4.28)

Taking the time-derivative of V along Eqs. (2.2), (4.9), (5.27), and (4.26) and
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using the property ST(v) = −S(v) for any v ∈ R3 yields

V̇ = ωTJω̇ − 1

2
kp

N∑
j=1

kjẏ
jTyjr +

1

2
kzż

T
(
PAm + AT

mP
)
ż + kzż

TPBΩ̇

= ωT (−S(ω)Jω + u)− 1

2
kp

N∑
j=1

kj
(
S(yj)ω

)T
yjr −

1

2
kzż

TQż

− 1

2
kzż

TPB [ME− tr(ME)I]ω

= ωT
(
−kpΩ− kzM̃

T
ζ
)

+
1

2
kpω

T

N∑
j=1

kjS
(
yj
)
yjr −

1

2
kzż

TQż + kzż
TPBM̃ω

= ωT
(
−kpΩ− kzM̃

T
ζ
)

+ kpω
TΩ− 1

2
kzż

TQż + kzω
TM̃

T
ζ

= −1

2
kzż

TQż ≤ 0.

Thus, ω, ż, z, and Ω are all uniformly bounded. It follows then from Eq. (5.27)

that u is uniformly bounded. Since V ≥ 0, and V̇ ≤ 0,
∫∞
0
V̇ (t) dt exists and

is finite which implies that ż ∈ L2. From Eq. (4.26), we have z̈ = Amż + BΩ̇

which together with Eq. (4.9) and ż,ω ∈ L∞ implies z̈ ∈ L∞. Using the

corollary to Barbalat’s lemma for ż ∈ L2∩L∞ and z̈ ∈ L∞ yields limt→∞ ż(t) =

0. By taking the third time derivative of the function z(t), one may show that

...
z ∈ L∞ which implies that z̈ is uniformly continuous. Using this result along

with limt→∞ ż(t) = ż(0) + limt→∞
∫ t
0

z̈(τ) dτ = 0 and applying Barbalat’s

lemma, leads to limt→∞ z̈(t) = 0. Since z̈ = Amż + BΩ̇ and B is invertible,

it follows that limt→∞ Ω̇(t) = 0. As shown in Lemma 4.2.2, Ω̇(t) → 0 as

t → ∞ means that ω(t) → 0 and/or tr(E(t)) → −1 as t → ∞. Recall

from Lemma 4.2.2 that tr(E) = −1 implies that φ = ±180◦, where φ is

the rotation angle associated with E, which specifically describes the scenario
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yj = −yjr ∀ j = 1, 2, ..., N . However, this condition is prohibited by the

initial condition constraint in Eq. (4.27), which can be seen by the fact that

V (t) ≤ V (0) < kp
∑N

j=1 kj ∀ t ≥ 0 which means E(t) <
∑N

j=1 kj ∀ t ≥ 0, and

therefore yj 6= −yjr ∀ j = 1, 2, ..., N , for all t ≥ 0. Consequently, Ω̇(t) → 0

as t → ∞ implies that limt→∞ω(t) = 0. Next, by differentiating Eq. (2.2),

one may easily show ω̈ ∈ L∞ which implies that ω̇ is uniformly continuous

and by once again applying Barbalat’s lemma, we have ω̇(t) → 0 as t → ∞.

Finally, the last two results can be used in Eq. (2.2) along with Eq. (5.27) to

demonstrate that Ω(t) → 0 as t → ∞. As shown in Lemma 4.2.1, Ω = 0

implies that E = I or tr(E) = −1. As discussed previously in this proof,

the condition tr(E) = −1 is precluded by the initial condition constraint in

Eq. (4.27).

Thus, one may conclude that

[E(t),ω(t)]→ [I,0] as t→∞

which completes the proof.

Remark 4.2.1. The initial condition constraint in Eq. (4.27) is a mild require-

ment as will be shown next. It is always possible to choose the initial condition

z(0) = −A−1m BΩ such that ż(0) = 0. In this case, Eq. (4.27) simplifies to a

less restrictive condition

1

2
ω(0)TJω(0) +

1

2
kp

N∑
j=1

kj

(
1− y(0)j

T

yr(0)j
)
< kp

N∑
j

kj,
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from which the following upper bound on ω(0) can be obtained

‖ω(0)‖2 < kp
2jmax

N∑
j=1

kj

(
1 + y(0)j

T

yr(0)j
)

(4.29)

where jmax is the maximum eigenvalue of J. If the control gain kp is sufficiently

large, we may easily accommodate the lack or unreliability of ω(0) measure-

ment by scaling up the right hand side of the strict inequality in Eq. (4.29).

Remark 4.2.2. Although an upper bound on the maximum eigenvalue of the

inertia matrix is needed to satisfy Eq. (4.29), the controller does not require

full knowledge of the inertia matrix. Therefore, the control scheme possesses

the so-called self-reduction property ; that is, for the regulation problem, the

control law is independent of the inertia parameters of the spacecraft.

Remark 4.2.3. Since the attitude control law Eq. (5.27) is configured directly

using vector measurements, the closed-loop system does not suffer from the

so-called “unwinding” phenomenon [10] typically observed with quaternions,

where even when the body starts arbitrarily close to the desired orientation,

rotation through large angles may be executed before coming to rest to the

desired attitude.

Remark 4.2.4. Two critical obstacles have been identified within the current

framework that prevent the extension of the control law Eq. (5.27) to the

general tracking problem. Observe that since the mapping ωBr = CbCr
Tωr is

not available, the rigid body dynamics for the general tracking problem will

be expressed in terms of the algebraic angular velocity tracking error signal
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ωe := ω − ωr. Furthermore, for stability analysis, the Lyapunov function

candidate would be expressed as

V =
1

2
ωT
e Jωe +

1

2
kp

N∑
j

kj

(
1− yj

T

yjr

)
+ kzż

TPż. (4.30)

which has the derivative

V̇ = ωT
e (−S (ω) Jω + u− ω̇r) + kpω

T
e Ω− kzżTQż + kzż

TPBΩ̇. (4.31)

The first obstacle comes from the derivative of Ω for a time-varying reference

angular velocity, ωr, given by Ω̇ = M̃ω−M̃
T
ωr. In its current form, Ω̇ is not

a function in the error signal ωe. Using the equation above, that last term of

V̇ can be written as

kzż
TPBΩ̇ = kzż

TPB
[
M̃ω − M̃

T
ωr

]
.

Clearly, this term could not be cancelled by u. Instead, an additional input

signal must be introduced in the linear system Eq. (4.26) so as to be able to

neatly cancel the term in the Lyapunov analysis. One possible way to do this

would be to introduce a new dynamic auxiliary signal Γ:

Γ̇ = M̃
T
ωr − M̃ωr, (4.32)

with any initial condition Γ(0) and to redefine ż as

ż = Amz + B (Ω + Γ) . (4.33)

Observing that Ω̇+ Γ̇ = M̃ωe, and letting u = −kpΩ+ ω̇r−M̃
T
y+S(ωr)Jωr
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and doing a few tedious but straightforward algebraic manipulations V̇ now

becomes

V̇ = ωT
e (−S (ω) Jω + u− ω̇r) + kpω

T
e Ω− kzżTQż + kzż

TPB
(
Ω̇ + Γ̇

)
= −ωT

e (S (ωr) Jωe)− kzżTQż.

The second obstacle and the true bottleneck to extending the proposed

control law to the general tracking case comes from the following term in V̇ :

− ωT
e (S (ωr) Jωe) (4.34)

which could not be canceled in any way through the control torque input u

since ωe (or rather ω) is not an available quantity for feedback. Therefore, it

is not possible to obtain a negative semi-definite V̇ .

Of the two obstacles outlined above, the former may be overcome through

the solution provided above or one similar to it. However, the true hinderance

comes from the cross term −ωT
e (S (ωr) Jωe) that appears in the derivative of

the Lyapunov function candidate, and cannot be canceled in order to obtain

a negative semi-definite V̇ in the current framework. A solution to overcome

this limitation may be found through a clever manipulation or augmentation

of the Lyapunov function construction provided here. Note that the approach

by [62] also suffers from similar obstacles which prevent the extension of their

stabilization control law to the general attitude tracking case.
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4.3 Numerical Simulations

Two sets of numerical simulation studies are presented to validate the the-

oretical development of the novel unit vector measurement-only control law

presented in this chapter. First, a set point regulation scenario is tested as-

suming perfect measurements without noise. Next, noise is introduced into

the given unit vector measurements and numerical simulations are carried out

for the same attitude regulation scenario. For comparison, the performance

of the proposed gyro-free controller is contrasted with a full-state feedback

proportional-derivative type control law given by [19]

uf = −kpΩ− kωω.

The spacecraft inertia matrix is selected as J = diag {0.29, 0.29, 0.5} kg ·m2.

The initial angular velocity of the rigid body is set to

ω(0) = [−0.02, − 0.02, − 0.02]T rad/s,

while the initial and desired orientations are given respectively as follows

Cb(0) =


0 1 0

0 0 1

1 0 0

 , Cr =


0.3601 0.8968 −0.2569

−0.2569 0.3601 0.8968

0.8968 −0.2569 0.3601

 .
The desired orientation, Cr, corresponds with a rotation of 87.7◦ about the

eigenaxis e = [1/
√

3, 1/
√

3, 1/
√

3]T. For both controllers, we assume that
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three vector measurements are available

x1 = [0, 0, 1]T ; x2 = [1, 0, 0]T ; x2 =
[
1/
√

2, 1/
√

2, 0
]T
,

with weights k1 = k2 = k3 = 1. After some trial and error, through numerical

simulations, we select A = diag {−3, − 10, − 5}, B = I, and Q = 10.5I,

from which we can solve for P to obtain P = diag {1.75, 0.525, 1.05}. The

control gains are selected as kp = 0.03, kz = 0.6, and kω = 0.06, while the

initial condition z(0) is taken to be z(0) = −A−1m r(0) such that ż(0) = 0.

The convergence of the orientation error quantity E = CbCr
T is illustrated by

plotting the time evolution of the rotation angle, φ, associated with E, which

is obtained through the relation [58]

cos (φ) = 0.5 (tr(E)− 1) .

Recall that when E = I, the rotation angle takes on the value φ = 0.

4.3.1 Vector Measurement Only Feedback Control with

Perfect Measurements

The first set of simulations is conducted assuming that there is no noise in the

observed vector measurements. The plots in Figs. 4.1-4.2 show the closed-loop

system performance for the chosen tuning parameters. As shown in Fig. 4.2a,

for both controllers, the maximum control torque commanded during the ma-

neuver is less than 1.5 × 10−2 N-m, which is highly realistic for a low-thrust

spacecraft implementation.
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Figure 4.1: Comparison of the novel gyro-free controller with a full state feed-
back controller without measurement noise.

95



0 0.5 1 1.5 2 2.5

0

0.5

1

·10−2

time (minutes)

‖u
‖
(N

-m
)

Proposed

Comparison

(a) Norm of commanded control

0 0.5 1 1.5 2 2.5

0

0.02

0.04

0.06

0.08

0.1

0.12

time (minutes)

‖z
‖

Proposed

(b) Norm of linear auxiliary signal, z

Figure 4.2: Commanded control effort and time evolution of the auxiliary state
z(t) when no measurement noise is present.

For both controller schemes, the angular velocity and orientation errors
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are observed to be driven to the origin within two minutes of the attitude con-

trol maneuver. The proposed gyro-free control law commands a slightly higher

initial torque norm by approximately 0.002 N-m, but overall both the gyro-

free and full-state feedback controllers have comparable torque requirements.

The results verify that the proposed velocity-free attitude control law asymp-

totically stabilizes the spacecraft to its desired orientation using only vector

measurements. Moreover, the novel control law performs with a large degree

of comparability to a full-state feedback control law, and does so without the

need for an attitude vector or angular velocity feedback.

4.3.2 Vector Measurement Only Feedback Control with

Noisy Measurements

The next set of simulations is carried out with noise added to the unit vec-

tor measurements available for control feedback. The measurement noise is

parameterized as a normal distribution contained in a cone of prescribed half-

cone angle about yj. All of the gain values and initial conditions remain the

same. A half-cone angle of 0.05 deg is selected, and the resulting performance

of the closed-loop system is illustrated in Figs. 4.3-4.4 over a longer simula-

tion period. The angular velocity norm and the absolute value of the rotation

angle are plotted on a semilogarithmic scale to highlight the differences in the

steady-state behaviors of the two control systems.
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Figure 4.3: Comparison of the novel gyro-free controller with a full state feed-
back controller in the presence of measurement noise.
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Figure 4.4: Control magnitude for closed-loop system when measurements are
noisy.

While the transient behavior of the system states is relatively unaf-

fected by the added measurement noise, the angular velocity and attitude

norm clearly converge to a nonzero steady-state value for the both the pro-

posed and comparison methods as shown in Figs. 4.3a-4.3b. Thus, empirical

evidence suggests that the addition of measurement of noise to the proposed

method causes the attitude and angular velocity states to converge to a resid-

ual set which may grow or shrink depending on the size of cone used for noise

parameterization. Further, it is clear that noise in the unit vector measure-

ment does not affect the performance of the proposed method any worse than

a full-state feedback controller.

The plots in Figs. 4.3-4.4 illustrate the evolution of the system states
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for a single initial condition. In order to further corroborate the boundedness

characteristics of the closed-loop signals subject to noise in the unit vector

measurements, simulations are conducted with 10 random initial conditions

using the proposed control law with the same noise characteristics discussed

earlier, and all other simulation parameters remaining the same. The results

are shown in Figs. 4.5-4.6. As expected, the angular velocity and attitude

norms for each of the ten simulations with random initial conditions remain

bounded within a residual set. Finally, observe that the proposed control

method is immune to measurement noise in the angular velocity vector since

it does not use angular velocity for feedback, making it a useful strategy in

the event that gyro-rate measurements are too noisy for reliable feedback.

4.4 Conclusion

In this chapter, a novel attitude-stabilization controller is presented that uti-

lizes vector measurements obtained from inertial sensors directly for feedback,

without relying on the estimated attitude vector or angular velocity feedback.

The control law is formulated in the classical passive systems framework, and

does not rely on observers of any kind. Although many classical results for

angular velocity-free control laws are available in existing literature, they are

typically formulated using some kind of attitude parameterization. As such,

these control laws must be integrated with an attitude estimation scheme that

can provide the attitude of the vehicle using a combination of gyro-rate and

vector measurements. Thus, regardless of the approach, most existing control
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laws have either an explicit or implicit requirement for angular velocity mea-

surements. The attitude control law proposed in this chapter truly eliminates

the need for either direct or indirect angular velocity information as it solely

and directly employs vector measurements for control feedback. The proposed

controller requires a minimum of two non-collinear vector measurements to sat-

isfy the attitude stabilization objective. Under this setting, rigorous analysis

proves that the spacecraft converges to the desired attitude and zero angular

velocity as long as some mild constraints on the initial conditions are satisfied.

A simulation study conducted in the presence of measurement error shows that

our control law drives the states to a bounded residual set in this case. Some

technical limitations that prevent the extension of this control law to the full

tracking case have been discussed in the chapter. The work presented here

presents an important step towards dealing with a very realistic scenario for

spacecraft missions in which failed or unreliable gyroscopes prevent traditional

control methods from being implemented for onboard attitude stabilization.

A natural future direction for this research would be to further explore the full

tracking case through a different Lyapunov function construction or a modified

control law.
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Figure 4.5: Attitude and angular velocity stabilization simulation for proposed
controller using 10 random initial conditions subject to measurement noise.
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Figure 4.6: Control history for proposed controller simulation using 10 random
initial conditions and noisy measurements.

103



Chapter 5

Partial Lyapunov Strictification:

Smooth Angular Velocity

Observers for Attitude Tracking

Control

This chapter considers the classical problem of angular velocity observer de-

sign for attitude tracking control when angular velocity is unavailable. The

attitude is parameterized in terms of a quaternion and is available through

measurements. While several angular velocity observers are available in lit-

erature, the existence of a separation-type property for the combined stable

implementation of a separately designed observer with an attitude tracking

controller was, until recently, unproven. The result by Chunodkar and Akella
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[15] established for the first time a separation property for a switching ob-

server when combined with a PD attitude tracking control law. While this

result presents an important advancement in this area, the switching-based

observer construction has its drawbacks, primarily due to the fact that the

underlying physical system could experience undesirable chattering behavior.

Thus, when consistent performance and robustness are of concern, the design

of a smooth angular velocity observer that ensures C∞ continuity of estimated

states is highly desirable and is the subject of this chapter.

A novel angular velocity observer is proposed here for global asymptotic

convergence of angular velocity state estimation errors through a switching-

free structure that ensures C∞ continuity of estimated states. We prove global

asymptotic convergence of estimation errors irrespective of the prescribed con-

trol torque and initial state of the spacecraft. The fundamental contribution

of the proposed observer formulation is that, unlike Reference [15], the design

here has a smooth construction. Furthermore, the observer satisfies an impor-

tant “separation” property when combined with an independently designed

PD attitude tracking control law. More specifically, a PD attitude tracking

control law using angular velocity estimates generated from the proposed ob-

server for feedback in place of actual angular velocity measurements leads to

(almost) global asymptotic stability for the overall closed-loop tracking error

dynamics. To the best knowledge of the author, this is the first time a “sep-

aration” property has been established for the rigid-body dynamics through

the use of a smooth angular velocity observer.
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The separation-property result is realized through the use of a partial

Lyapunov “strictification” [34, 38, 39] strategy, a process by which a non-

strict Lyapunov function is transformed into a strict Lyapunov function whose

derivative contains additional non-positive terms in the system states. Within

the context of the smooth observer, the introduction of additional non-positive

terms of the estimation error states in the Lyapunov function derivative helps

dominate undesirable mixed/cross terms arising due to the observer imple-

mentation, and is critical for establishing the “separation” property result.

Moreover, the strictification process directly relies on our novel use of a spi-

ral logic procedure, wherein certain intermediate signal boundedness results

must be established prior to proving overall closed-loop system stability. In

particular, first, we prove boundedness of spacecraft angular velocity when the

PD control law employs estimates generated from the proposed observer for

feedback. Subsequently, we use this result to carry out Lyapunov strictifica-

tion to obtain a partially strict Lyapunov function for the observer through

the judicious introduction of a mixed term in the estimation error states. We

use the word partial to emphasize that only non-positive terms in the angular

velocity estimation error state and the vector component of the quaternion

estimation error state are contained in the “strictified” Lyapunov function

derivative. Finally, by using a composite Lyapunov function consisting of the

controller Lyapunov function and the new partially strict observer Lyapunov

function, the combined observer-controller scheme is shown to result in asymp-

totic convergence of all estimation and tracking-error states, and accordingly
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the “separation” property.

The chapter is organized as follows. In Sec. 5.1, a brief review of a stan-

dard full-state proportional-derivative controller for attitude tracking is pro-

vided. In Sec. 5.2, the main contributions of this research are presented. The

estimation framework is developed and thorough details are provided regard-

ing the construction of the novel smooth angular velocity observer along with

a rigorous convergence analysis. In Sec. 5.3, a separation property is formally

stated and proved for a PD control employing angular velocity estimates gen-

erated from the novel observer. Numerical simulation studies are conducted in

Sec. 5.4 in order to illustrate the observer-based controller performance as well

as to highlight certain features of the observer. Finally, concluding remarks

are made in Sec. 5.5.

5.1 Preliminaries

This section provides important mathematical background that will be use-

ful in the upcoming developments. The rigid body dynamics are restated for

the reader’s convenience and a brief overview is provided of a proportional-

derivative attitude tracking control law using both angular velocity and quater-

nion for feedback.
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5.1.1 Rigid Body Dynamics

The attitude tracking error dynamics Eqs. (2.12)-(2.13) are restated below for

the reader’s convenience:

q̇e =
1

2
E(qe)ωe (2.12)

Jω̇e = −S(ω)Jω + u + J
[
S(ωe)ω

B
r − C(qe)ω̇r

]
. (2.13)

5.1.2 Full-State PD Attitude Control

A brief overview of a proportional derivative (PD) attitude tracking control law

is provided here, which is based on feedback of true attitude and angular ve-

locity values [77]. Let the desired angular velocity ωBr = C(qe)ωr be bounded

and at least twice differentiable with bounded derivatives. The full-state PD

controller is summarized below in Proposition 5.1.1.

Proposition 5.1.1. Let the control law u(t) be prescribed according to

u = −kpqev − kvωe + JC(qe)ω̇r + S(ωBr )JωBr (5.1)

for any kp, kv > 0. Then the system described by Eqs. (2.12)-(2.13) is (almost)

globally asymptotically stabilized to the origin.

Proof. Consider the following positive-definite Lyapunov function candidate

Vc = kp
[
(1− qe0)2 + qTevqev

]
+

1

2
ωT
e Jωe. (5.2)

Differentiating Vc with respect to time along with Eqs. (2.12),(2.13), and (5.1)
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yields

V̇c = kpq
T
evωe + ωT

e

(
−S(ω)Jω + u + J

[
S(ωe)ω

B
r − C(qe)ω̇r

])
= ωT

e

(
−S(ω)Jω − kvωe + S(ωBr )JωBr + JS(ωe)ω

B
r

)
= −kv‖ωe‖2, (5.3)

where we have used the identity

ωT
e

(
−S(ω)Jω + S(ωBr )JωBr + JS(ωe)ω

B
r

)
= 0 (5.4)

which can be shown through tedious but straightforward algebra. Since V̇c ≤

0, it follows that ωe, ω̇e ∈ L∞. Recall that qv is always bounded due to

the unit norm constraint on the unit quaternion. Further, since Vc is lower

bounded,
∫∞
0
V̇c(t) dt exists and is finite which together with Eq. (5.3) implies

ωe ∈ L2 ∩ L∞. Invoking Barbalat’s lemma for ωe ∈ L2 ∩ L∞ and ω̇e ∈ L∞
leads to

lim
t→∞

ωe(t) = 0.

Using the fact that ωBr is bounded and twice differentiable, it follows that

ω̈e ∈ L∞. Applying Barbalat’s lemma for a second time ensures that ω̇e(t)→

0 as t→∞. Finally, it follows from Eqs. (2.13) and (5.1) that

lim
t→∞

qev(t) = 0,

which completes the proof.
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5.2 Angular Velocity Observer Development

The development of the smooth observer proceeds with the derivation of the

estimation error quantities, followed by the construction details of the observer

dynamics and associated convergence analysis.

5.2.1 Estimation Framework

A detailed development of the estimation framework is provided here. The

estimates for the angular velocity are generated in a separate frame defined

as E . Let q̂ = [q̂0, q̂
T
v ]T and ω̂ define the estimates of q and ω, respectively.

Denote ê as the unit-vector triad in the reference frame E and define the

following rotation matrices:

N q̂−→ E ⇒ {ê} = C(q̂){n̂},

E q̃−→ B ⇒ {b̂} = C(q̃){ê}.

Since the direction cosine matrix C(q̂) gives the rotation sequence from the

inertial frame N to the estimation frame E , the combined rotation from E to

B is given by

C(q̃) = C(q)CT(q̂). (5.5)

which gives rise to the definition of the quaternion attitude estimation error

q̃ = [q̃0, q̃
T
v ]T. Using the composite rotation property of Euler-parameters we
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can write [53, 58]

q = q̃⊗ q̂ (5.6)

which can be expressed using the rules of quaternion multiplication as [58]

q =

 q̂0 −q̂T
v

q̂v S(q̂v) + q̂0I3×3

 q̃. (5.7)

Recalling that the matrix in Eq. (5.7) is orthogonal [58], the following explicit

expression for q̃ can be obtained

q̃ =

 q̂0q0 + q̂T
v qv

−q0q̂v − S(q̂v)qv + q̂0qv

 . (5.8)

Finally, the angular velocity estimation error, ω̃, is defined as

ω̃ = ω −C(q̃)ω̂ (5.9)

= ω − ω̂B, (5.10)

where ω̂B ≡ C(q̃)ω̂ is defined for ease of notation.

5.2.2 Smooth Observer

The following theorem summarizes a primary contribution of this chapter: a

smooth angular velocity observer that ensures convergence of estimation errors

irrespective of the control input.

Theorem 5.2.1. Consider a smooth angular velocity observer that evolves
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according to the following dynamics:

˙̂q =
1

2
E(q̂)

(
ω̂ + λCT(q̃)q̃v

)
(5.11)

˙̂ω = CT(q̃)J−1

[
γq̃v − S(ω̂B)Jω̂B + u− λJS(q̃v)ω̂

B

]
, (5.12)

with any λ, γ > 0. Then the estimation errors q̃, ω̃ asymptotically converge

to the origin, that is,

lim
t→∞

[q̃v(t), ω̃(t)] = 0

for any ω̂(0) and q̂(0).

Proof. To begin with, the dynamics of the quaternion and angular velocity

estimation error quantities are derived using Eqs. (5.11)-(5.12). The dynamics

of q̃ are derived by following similar steps described in Eq. (2.11). Taking the

time derivative of Eq. (5.5) and using Eqs. (2.1) and Eq. (5.11) leads to

Ċ(q̃) = −S(ω)C(q̃) + C(q̃)S
(
ω̂ + λCT(q̃)q̃v

)
= −S(ω)C(q̃) + S

(
C(q̃)

(
ω̂ + λCT(q̃)q̃v

))
C(q̃)

= −S(ω −C(q̃)ω̂ − λq̃v)C(q̃)

= −S(ω̃ − λq̃v)C(q̃). (5.13)

The corresponding quaternion dynamics of Eq. (5.13) are given by

˙̃q =
1

2
E(q̃) [ω̃ − λq̃v] . (5.14)
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Recognizing that S(q̃v)q̃v = 0, Eq. (5.14) simplifies to

˙̃q0 = −1

2
q̃T
v (ω̃ − λq̃v) (5.15)

˙̃qv = −λ
2
q̃0q̃v +

1

2

(
q̃0I3×3 + S(q̃v)

)
ω̃. (5.16)

Next, using Eq. (2.2) along with Eq. (5.13), the time-derivative of ω̃ is found

to be

J ˙̃ω = Jω̇ − JĊ(q̃)ω̂ − JC(q̃) ˙̂ω

= −S(ω)Jω + u + JS(ω̃ − λq̃v)ω̂
B − JC(q̃) ˙̂ω. (5.17)

Substituting the update law Eq. (5.12) for ˙̂ω into Eq. (5.17) yields the angular

velocity estimation error dynamics

J ˙̃ω = −S(ω)Jω + JS(ω̃)ω̂B − γq̃v + S(ω̂B)Jω̂B. (5.18)

Define a Lyapunov function candidate Vo as follows

Vo = γ
[
q̃T
v q̃v + (q̃0 − 1)2

]
+

1

2
ω̃TJω̃. (5.19)

Differentiating Vo with respect to time and substituting Eqs. (5.15) and (5.18)

results in

V̇o = −2γ ˙̃q0 + ω̃TJ ˙̃ω

= γq̃T
v (ω̃ − λq̃v) + ω̃T

(
−S(ω)Jω + JS(ω̃)ω̂B − γq̃v + S(ω̂B)Jω̂B

)
= −γλ‖q̃v‖2 + ω̃T

(
−S(ω)Jω + JS(ω̃)ω̂B + S(ω̂B)Jω̂B

)
. (5.20)
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Observe that the gyroscopic term −S(ω)Jω can be expressed as

−S(ω)Jω = −
(
ω̃ + ω̂B

)
× J

(
ω̃ + ω̂B

)
= −S(ω̃)Jω̃ − S(ω̃)Jω̂B − S(ω̂B)Jω̃ − S(ω̂B)Jω̂B,

which can be substituted into the right-hand side of Eq. (5.20) to obtain

V̇o = −γλ‖q̃v‖2 + ω̃T
(
−S(ω̃)Jω̃ − S(ω̃)Jω̂B −

[
S(ω̂B)J + JS(ω̂B)

]
ω̃
)
.

(5.21)

After recognizing that
[
S(ω̂B)J + JS(ω̂B)

]
is also a skew-symmetric matrix,

it is easily seen that the second term on the right-hand side of Eq. (5.21) is

identically zero, which leads to

V̇o = −γλ‖q̃v‖2 ≤ 0. (5.22)

Thus, q̃v and ω̃ are uniformly bounded. From Eq. (5.14) it follows that ˙̃qv is

also uniformly bounded. Since Vo ≥ 0 and V̇o ≤ 0, we have that limt→∞ Vo(t) =

Vo∞ exists for some finite Vo∞ ∈ R+. Hence,
∫∞
0
V̇o(t) dt = Vo∞ − Vo(0) which

implies that q̃v ∈ L2. Invoking Barbalat’s lemma for q̃v ∈ L2 ∩ L∞, ˙̃qv ∈ L∞
leads to limt→∞ q̃v(t) = 0.

Ascertaining convergence properties of ω̃ requires more involved analy-

sis. Using q̃v(t)→ 0 as t→∞ in Eq. (5.15) leads to limt→∞ ˙̃q0(t) = 0. Using
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the kinematic property ET(q̃)E(q̃) = I3×3, Eq. (5.14) can be expressed as

ω̃ − λq̃v = 2ET(q̃) ˙̃q

= 2
[
− q̃v ˙̃q0 +

(
q̃0I3×3 − S(q̃v)

)
˙̃qv

]
(5.23)

which may be combined with limt→∞ q̃v(t) = 0 to obtain

lim
t→∞

ω̃(t) = 2 lim
t→∞

[
q̃0(t) ˙̃qv(t)

]
. (5.24)

Next, observe that the dynamics of ˙̃qv in Eq. (5.16) may be written as

˙̃qv = −λ
2

q̃v + δ; δ ,
1

2

[(
q̃0I3×3 + S(q̃v)

)
ω̃ + λ(−q̃0 + 1)q̃v

]
, (5.25)

where δ is a bounded signal consisting of the bounded states q̃v, q̃0, and ω̃.

Thus, q̃v has the dynamics of an asymptotically stable first-order linear filter

with bounded input δ. Since q̃v(t) → 0 as t → ∞, it readily follows that

limt→∞ δ(t) = 0. Further, using the definition of δ in Eq. (5.25) together with

limt→∞[δ(t), q̃v(t)] = 0 leads to

lim
t→∞

q̃0(t)ω̃(t) = 0. (5.26)

Finally, from the quaternion unit norm constraint q̃T
v q̃v+q̃

2
0 = 1, limt→∞q̃v(t) =

0 implies that limt→∞q̃0(t) = ±1, which can be applied to Eq. (5.26) to ascer-

tain

lim
t→∞

ω̃(t) = 0,

thereby ensuring ω̂(t)→ ω̂B(t) asymptotically. This completes the proof.
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A few important remarks are now in order.

Remark 5.2.1. Suppose it is known initially that ω̂B(0) = ω(0) (this is a

likely scenario if it is known that the body starts from rest) and q̂v(0) = q(0)

is selected. Then by the definition of the error states, ω̃(0) = q̃v(0) = 0.

Further, from Eqs. (5.14) and (5.18), ˙̃q = 0 and ˙̃ω = 0. Thus, when the

initial value of the body angular velocity is known, the estimation errors never

deviate from zero and ω̂B(t) = ω(t) for all t ≥ 0.

Remark 5.2.2. The observer in Eqs. (5.11)-(5.12) is smooth and involves

no switches to guarantee convergence of the angular velocity and attitude

estimates to their respective true values independent of the control torque.

Remark 5.2.3. Observe that Vo is a non-strict Lyapunov function since its

time derivative only contains negative terms in q̃v. A partially strict Lyapunov

function would additionally have negative terms in ω̃ in its time derivative,

which is not the case here.

Remark 5.2.4. The observer depends on perfect knowledge of the inertia

matrix J. Thus, errors or uncertainties in J have a potential impact on the

overall observer convergence properties. This will be further evaluated in the

numerical simulations section.

5.2.3 Towards a Strict Lyapunov Function

In order to circumvent the non-strictness issue with regards to Vo, a stricti-

fication approach is pursued in order to transform Vo into a partially strict
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Lyapunov function whose derivative contains additional negative terms in ω̃.

In the specific context of rigid-body attitude dynamics using quaternion pa-

rameterization, the term “partial” is used to emphasize the fact that conver-

gence of the estimation error states q̃ and ω̃ corresponds with q̃ = [±1, 0, 0, 0]T

and ω̃ = [0, 0, 0]T. That is, only a partial component of the attitude state q̃,

namely the vector component, q̃v, is driven to the origin. Since a Lyapunov

function containing only negative terms in ω̃ and q̃v does not conform with

the precise definition of strict Lyapunov functions as stated in Definition 2.3.4,

the qualifier “partial” is used for technical consistency.

The crucial advantage gained by constructing a (partially) strict Lya-

punov function will become clear subsequently when a separation property

is established when the observer is used in conjunction with a separately de-

signed PD control law employing estimates generated by the smooth observer.

The construction of the partially strict Lyapunov function proceeds in a novel

fashion that is based upon “spiral” logic. To be more specific, first, by using

the results of Theorem 5.2.1, an intermediate result is presented which shows

that the PD control in Eq. (5.1) employing the output of the observer ensures

closed-loop boundedness of the body angular velocity. This intermediate re-

sult is then directly applied towards the generation of a mixed/cross term in

Vo as a means to partially strictify Vo.

Proposition 5.2.2. Consider the tracking error dynamics described by Eqs. (2.12)-

(2.13). Let the control input u(t) be computed by using angular velocity esti-
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mates and prescribed according to

u = −kpqev − kvω̂e + JC(qe)ω̇r + S(ωBr )JωBr , (5.27)

with kp > 0, kv > 0, and where

ω̂e = ω̂B − ωBr . (5.28)

Suppose that the angular velocity estimate ω̂B = C(ε)ω̂ is determined through

Eqs. (5.11)-(5.12), then ωe and ω are uniformly bounded.

Proof. Consider the following Lyapunov function candidate

Vc = kp
[
(1− qe0)2 + qTevqev

]
+

1

2
ωT
e Jωe (5.29)

Differentiating Vc with respect to time along Eqs. (2.12),(2.13),(5.27), and

(5.28) yields

V̇c = kpq
T
evωe + ωT

e

(
− S(ω)Jω + u + J

[
S(ωe)ω

B
r − C(δq)ω̇r

] )
= ωT

e

(
− S(ω)Jω − kvω̂e + S(ωBr )JωBr + JS(ωe)ω

B
r

)
= −kvωT

e ω̂e, (5.30)

where, the following identity is used to obtain Eq. (5.30):

ωT
e

(
− S(ω)Jω + S(ωBr )JωBr + JS(ωe)ω

B
r

)
= 0,

which can be shown using similar steps used to obtain Eq. (5.22). After
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recognizing that ω̂e = ωe − ω̃ and substituting into Eq. (5.30), one obtains

V̇c = −kvωT
e ωe + kvω

T
e ω̃

≤ −kv‖ωe‖2 + kv‖ωe‖‖ω̃‖. (5.31)

Define a scalar constant c1 according to c1 = supt≥0 ‖ω̃(t)‖, which is positive

and well-defined since ω̃ ∈ L∞ as shown in Theorem 5.2.1. Using c1, the

following upper bound is obtained on Eq. (5.31)

V̇c ≤ −kv‖ωe‖2 + kv‖ωe‖c1

= −kv
2
‖ωe‖2 −

kv
2

(
‖ωe‖2 − 2‖ωe‖c1 + c21

)
+
kv
2
c21

≤ −kv
2
‖ωe‖2 +

kv
2
c21

= −
[
kv
2
‖ωe‖2 +

4kpkv
Jmax

]
+ σ; σ = (kv/2)c21 + (4kpkv/Jmax) (5.32)

where Jmax is the maximum eigenvalue of J, and the constant σ > 0 is well-

defined and finite. Further, since Vc is upper bounded as follows

Vc ≤ 4kp +
1

2
Jmax‖ωe‖2

=
Jmax

kv

[
kv
2
‖ωe‖2 +

4kpkv
Jmax

]
,

we use Eq. (5.32) to express an upper-bound on V̇c as follows

V̇c ≤
−kv
Jmax

Vc + σ, (5.33)

which shows that Vc and ωe are uniformly bounded functions. Further, since

ωr is bounded, it follows that ω is bounded. This completes the proof.
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A few important observations are made regarding Proposition 5.2.2.

Remark 5.2.5. The use of the scalar constant c1 is essential in showing bound-

edness of the closed-loop signal ω. It is important to remark that claiming c1

is well-defined is possible only through the results of Theorem 5.2.1. Hence,

the ordered logic procedure is critical.

Remark 5.2.6. To further motivate the need for a strict Lyapunov function

for the observer dynamics, we examine the current obstacle that prevents us

from obtaining closed-loop stability and convergence for a combined observer-

controller implementation. Consider a composite Lyapunov function Voc de-

fined as the sum of Vo and Vc.

Voc = Vo + Vc. (5.34)

where Vo and Vc are previously defined in Eqs.(5.19) and (5.29). Differentiating

Voc along Eqs. (2.12), (2.13), (5.14), (5.18) results in

V̇oc ≤ −γλ‖q̃v‖2 − kv‖ωe‖2 + kv‖ωe‖‖ω̃‖ (5.35)

Observe that the term kv‖ωe‖‖ω̃‖ in Eq. (5.35) cannot be dominated in any

way since there is no negative term in ω̃. At best, after assuming that the

initial estimation and tracking errors are known, it may be possible to obtain

some local stability result. Hence, the current non-strict nature of Vo poses a

hard obstacle in this regard.

The strictification process proceeds as follows. Define a scalar time-
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varying signal, N , as a cross term in the observer states q̃v and ω̃ given by

N = −2q̃0q̃
T
v ω̃. (5.36)

Next, using the uniform boundedness properties of ω̃ and ωe, it is possible to

derive an upper bounding function for Ṅ . Differentiating N with respect to

time and evaluating along Eqs. (5.14) gives the following:

Ṅ = −2q̃0q̃
T
v

˙̃ω + q̃T
v (ω̃ − λq̃v) q̃T

v ω̃ − q̃0ω̃T (q̃0I + S(q̃v)) (ω̃ − λq̃v)

= −2q̃0q̃
T
v

˙̃ω + (q̃T
v ω̃)2 − λ‖q̃v‖2q̃T

v ω̃ − q̃20‖ω̃‖2 + λq̃20ω̃
Tq̃v. (5.37)

Substituting q̃20 =
(
1− q̃T

v q̃v
)

into Eq. (5.37) and carrying out minor algebra

yields

Ṅ = −2q̃0q̃
T
v

˙̃ω + (q̃T
v ω̃)2 − 2λ‖q̃v‖2q̃T

v ω̃ − ‖ω̃‖2

+ ‖q̃v‖2‖ω̃‖2 + λq̃T
v ω̃.

(5.38)

The following bounds are established by applying the Cauchy-Schwarz inequal-

ity along with the unit norm bounds q̃0 ≤ 1 and ‖q̃v‖ ≤ 1 when appropriate:

−2q̃0q̃
T
v

˙̃ω ≤ 2‖q̃v‖‖ ˙̃ω‖ (5.39)

(q̃T
v ω̃)2 ≤ ‖q̃v‖2‖ω̃‖2 ≤ ‖q̃v‖2c21 (5.40)

−2λ‖q̃v‖2q̃T
v ω̃ ≤ 2λ‖q̃v‖2‖q̃v‖‖ω̃‖ ≤ 2λ‖q̃v‖2c1 (5.41)

λq̃T
v ω̃ ≤ λ‖q̃v‖‖ω̃‖ (5.42)

‖q̃v‖2‖ω̃‖2 ≤ ‖q̃v‖2c21 (5.43)
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Inserting the bounds Eq. (5.39)-(5.43) into Eq. (5.38) yields

N ≤ 2‖q̃v‖‖ ˙̃ω‖+ 2
(
c21 + λc1

)
‖q̃v‖2 − ‖ω̃‖2 + λ‖q̃v‖‖ω̃‖.

An appropriate upper bound for the term ‖ ˙̃ω‖ is yet to be determined. Con-

sider a closer examination of Eq. (5.18) which can be simplified as follows:

J ˙̃ω = −S(ω)Jω + JS(ω̃)ω̂B − γq̃v + S(ω̂B)Jω̂B

= −S(ω)Jω + JS(ω̃)(ω − ω̃)− γq̃v + S(ω − ω̃)J(ω − ω̃)

=

[
JS(ω̃) + S(Jω̃)− S(ω̃)J

]
ω − γq̃v + S(ω̃)Jω̃ (5.44)

Using the triangle inequality, the norm of ˙̃ω may be expressed as

‖ ˙̃ω‖ ≤ ‖S(ω̃)ω‖+ ‖J−1S(Jω̃)ω‖+ ‖J−1S(ω̃)Jω‖

+ ‖γJ−1q̃v‖+ ‖J−1S(ω̃) ˙̃ωJω̃‖.
(5.45)

Using again the Cauchy-Schwarz inequality along with ‖J‖ ≤ Jmax and ‖J−1‖ ≤

1/Jmin, where Jmin is the the minimum eigenvalue of J, the following upper

bounds are established:

‖S(ω̃)ω‖ ≤ ‖ω̃‖‖ω‖ ≤ ‖ω̃‖c2 (5.46)

‖J−1S(Jω̃)ω‖ ≤ Jmax

Jmin

‖ω̃‖‖ω‖ ≤ Jmax

Jmin

‖ω̃‖c2 (5.47)

‖J−1S(ω̃)Jω‖ ≤ Jmax

Jmin

‖ω̃‖‖ω‖ ≤ Jmax

Jmin

‖ω̃‖c2 (5.48)

‖γJ−1q̃v‖ ≤
γ

Jmin

‖q̃v‖ (5.49)

‖J−1S(ω̃)Jω̃‖ ≤ Jmax

Jmin

‖ω̃‖2 ≤ Jmax

Jmin

‖ω̃‖c1 (5.50)
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wherein c2 = supt≥0ω(t) is a well defined, finite positive constant since ω ∈ L∞
as shown in Proposition 5.2.2. Applying the bounds Eqs. (5.46)-(5.50) to

Eq. (5.45) leads to

‖ ˙̃ω‖ ≤
(
c2 +

2Jmax

Jmin

c2 +
Jmax

Jmin

c1

)
‖ω̃‖+

γ

Jmin

‖q̃v‖. (5.51)

Substituting Eq. (5.51) into Eq. (5.38) and following through with rearranging

terms results in the following upper bound for Ṅ :

Ṅ ≤ 2

(
c2 +

2Jmax

Jmin

c2 +
Jmax

Jmin

c1 +
λ

2

)
‖q̃v‖‖ω̃‖ (5.52)

+ 2

(
γ

Jmin

+ c21 + λc1

)
‖q̃v‖2 − ‖ω̃‖2

= α‖q̃v‖‖ω̃‖+ β‖q̃v‖2 − ‖ω̃‖2, (5.53)

where,

α = 2

(
c2 +

2Jmax

Jmin

c2 +
Jmax

Jmin

c1 +
λ

2

)
,

β = 2

(
γ

Jmin

+ c21 + λc1

)
.

Observe that the upper bounding function for Ṅ in Eq. (5.52) contains a

nonpositive term in ω̃. This term plays a critical role in the construction of a

strict Lyapunov function as shown next in Proposition 5.2.3.

Proposition 5.2.3. Consider the observer dynamics described by Eqs. (5.11)

and (5.12). Using the property ω̃,ω ∈ L∞ proved respectively in Theorem 5.2.1

123



and Proposition 5.2.2, it can be shown that the function

Ṽo = µVo +N ; µ = max

(√
8

γJmin

,
2 (β + α2)

γλ

)
(5.54)

with Vo and N given respectively by Eqs. (5.19) and (5.36) is a partially strict

Lyapunov function for the estimation error dynamics.

Proof. Consider the augmented function Ṽo expressed in terms of Vo and N

Ṽo = µVo +N

= µγ
[
q̃Tv q̃v + (q̃0 − 1)2

]
+
µ

2
ω̃TJω̃ − 2q̃0q̃

T
v ω̃,

where µ, given by Eq. (5.54), is an artificially constructed positive scalar con-

stant that, while not affecting the observer design, aids in the Lyapunov func-

tion strictification process. We can obtain a lower-bounding function for Ṽo as

follows

Ṽo ≥ µγ‖q̃v‖2 + µγ(q̃0 − 1)2 +
µ

2
Jmin‖ω̃‖2 − 2q̃0q̃

T
v ω̃ (5.55)

=
µγ

2
‖q̃v‖2 +

(
µγ

2
− 4

µJmin

q̃20

)
‖q̃v‖2 + µγ(q̃0 − 1)2 +

µ

4
Jmin‖ω̃‖2

+

(
4

µJmin

‖q̃v‖2q̃20 − 2q̃0q̃
T
v ω̃ +

µ

4
Jmin‖ω̃‖2

)
.

Selecting µ according to Eq. (5.54) leads to the following lower bound for Ṽo:

Ṽo ≥
µγ

2
‖q̃v‖2 + µγ(q̃0 − 1)2 +

µ

4
Jmin‖ω̃‖2 ≥ 0.

Consequently, Ṽo is a Lyapunov function candidate. Next, differentiating Ṽo
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with respect to time and using Eqs. (5.21) and (5.52) leads to

˙̃Vo = µV̇o + Ṅ

≤ − (µγλ− β) ‖q̃v‖2 + α‖q̃v‖‖ω̃‖ − ‖ω̃‖2. (5.56)

Completing squares in Eq. (5.56) so that

˙̃Vo = −µγλ
2
‖q̃v‖2 −

(
µγλ

2
− β − α2

)
‖q̃v‖2

−
(
α2‖q̃v‖2 − α‖q̃v‖‖ω̃‖+

1

4
‖ω̃‖2

)
− 3

4
‖ω̃‖2

and choosing µ according to Eq. (5.54) results in

˙̃Vo ≤ −
µγλ

2
‖q̃v‖2 −

3

4
‖ω̃‖2. (5.57)

As a result, Ṽo is a partially strict Lyapunov function due to the presence of

non-positive terms of ω̃ in ˙̃Vo. This completes the proof.

The significance of the preceding result is demonstrated in the next sec-

tion, where a separation property is established for the globally asymptotically

stable implementation of the PD control using angular velocity estimates from

the proposed observer.
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5.3 Separation Property of Angular Velocity

Observer Based Attitude Control

The following result represents the second important contribution of this chap-

ter, a separation property for the nonlinear rigid body attitude tracking con-

trol system developed by combining a separately designed PD feedback con-

trol employing angular velocity estimates obtained from the smooth observer

Eqs. (5.11)-(5.12).

Theorem 5.3.1. Consider the control input u(t) prescribed according to Eq. (5.27)

with kp, kv > 0. Further, suppose that the angular velocity estimate ω̂B is de-

termined through Eqs. (5.11)-(5.12), along with λ, γ > 0. Then, the closed-loop

tracking error dynamics described by Eq. (2.12)-(2.13) are (almost) globally

asymptotically stable and estimated states converge to true values, that is,

lim
t→∞

[
q̃v(t), ω̃(t),ωe(t),qev(t)

]
= 0.

Proof. Consider the following Lyapunov function candidate

V = νṼo + Vc = ν
(
µγ
[
q̃Tv q̃v + (q̃0 − 1)2

]
+
µ

2
ω̃TJω̃ − 2q̃0q̃

T
v ω̃
)

︸ ︷︷ ︸
observer part

+ kp
[
(1− qe0)2 + qTevqev

]
+

1

2
ωT
e Jωe︸ ︷︷ ︸

controller part

with some strictly positive scalar ν that is introduced purely for analysis and

is not implemented in either the control or observer design. The precise value

of ν will be determined in the sequel. The time derivative of the Lyapunov
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function V yields the following expression

V̇ = ν ˙̃Vo + V̇c ≤ −
νµγλ

2
‖q̃v‖2 −

3ν

4
‖ω̃‖2 − kv‖ωe‖2 + kvω

T
e ω̃. (5.58)

Completion of squares for the cross term in Eq. (5.58) leads to

V̇ ≤ −νµγλ
2
‖q̃v‖2 −

3ν

8
‖ω̃‖2 −

(
3ν

8
− kv

2

)
‖ω̃‖2 − kv

2
‖ωe‖2

− kv
2

(
‖ω̃‖2 − 2ωT

e ω̃ + ‖ωe‖2
)
.

(5.59)

If ν is selected in a manner such that

ν =
4kv
3

then V̇ in Eq. (5.59) further simplifies to

V̇ ≤ −νµγλ
2
‖q̃v‖2 −

3ν

8
‖ω̃‖2 − kv

2
‖ωe‖2. (5.60)

As a result, q̃v, ω̃, ωe, and qev are all bounded signals. Further, from

Eqs. (2.12),(2.13),(5.14), and (5.18) it follows that ˙̃qv, ˙̃ω, ω̇e, q̇ev ∈ L∞. Since

V ≥ 0,
∫∞
0
V̇ (t) dt exists and is finite which together with Eq. (5.60) implies

that q̃v, ω̃,ωe ∈ L2 ∩ L∞. Invoking Barbalat’s lemma yields

lim
t→∞

[q̃v(t), ω̃(t), ωe(t)] = 0. (5.61)

Through a recursive application of Barbalat’s lemma, it can be shown that

ω̇e(t) → 0 as t → ∞ owing to the fact that ω̈e ∈ L∞ since ωr is bounded

and twice differentiable. Then from Eqs. (2.13) and (5.27), it follows that

qev(t)→ 0 as t→∞ which completes the proof.
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Remark 5.3.1. It is important to emphasize that the additional negative

term in ω̃ obtained as a result from the strictification process outlined in

Proposition 5.2.3, is essential in proving this result. Without this additional

negative term, it would not have been possible to dominate the mixed term

kvω
T
e ω̃ and obtain global asymptotic convergence of all the estimation and

tracking error states.

Remark 5.3.2. The separation property established in Theorem 5.3.1 for the

nonlinear rigid body dynamics is specific to a proportional-derivative control

structure. Thus, the notion of “separation property” is used here with a slight

caveat as it does not precisely follow the classical linear-systems terminology

in which any independently designed state-feedback linear control law may

be combined with a Luenberger observer to guarantee overall stability of the

closed-loop linear system [6, 48].

5.4 Numerical Simulations

In this section, a series of numerical simulation studies are conducted to

demonstrate the performance of the novel smooth angular velocity observer

developed in the preceding sections for attitude control tasks. The inertia

matrix of the rigid spacecraft is selected from literature as [15]

J =


10 1.2 0.5

1.2 19 1.5

0.5 1.5 25

 . (5.62)
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For each set of simulations, the spacecraft is assumed to have the initial at-

titude q(0) = [
√

1− (3(0.12)),−0.1, 0.1,−0.1]T and initial angular velocity

ω(0) = [0.005, 0.006, 0.004]T rad/s. The initial reference quaternion is selected

as qr(0) = [
√

1− 3(0.18262), 0.1826, 0.1826, 0.1826]T, while the reference an-

gular velocity profile is generated at each instant by ωr = r(t) · [1, 1, 1]T rad/s

where

r(t) = 0.1 cos(t)(1− e0.01t2) + (0.08π + 0.006 sin(t))te−0.01t
2

.

The performance of the control law, Eq. (5.27), which uses angular velocity

estimates from the new observer Eqs. (5.11)-(5.12), is compared to the control

law Eq. (5.1), wherein the angular velocity is perfectly measured and available

for feedback. In each of the simulation studies, the control and estimation gain

values are selected as

kp = 1.5, kv = 5; λ = 1, γ = 3.

5.4.1 Quaternion Measurements Without Noise

The first set of simulations is conducted for the case when the attitude quater-

nion q is assumed to be “measured” perfectly without noise. Note that in

reality, no sensor is able to directly measure the attitude vector of a vehicle.

Rather, the quaternion is reconstructed from a set of two or more non-collinear

unit vector measurements (such as those obtained from a star or sun sensor)

using an estimation or observer scheme. Thus, from a practical perspective,
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this particular simulation study assumes that the attitude quaternion of the

rigid body has already been exactly reconstructed through an observer for

control feedback. The observer initial conditions are q̂(0) = q(0) and angu-

lar velocity estimate ω̂(0) = [−0.03, 0.01,−0.02]T rad/s. The plots shown in

Figs. 5.1-5.2 illustrate the tracking, observer, and controller performance when

the attitude vector is perfectly measured.

It is clear from the results of Fig. 5.1 that both the PD and observer-

based controllers are able to command convergence of tracking errors within

60 seconds. The observer-based system achieves estimation error convergence

within 50 seconds. Once the estimation errors ω̃ and q̃ have converged, the

steady-state behaviors of both the tracking errors as well as the control his-

tory of the observer-based closed-loop system are identical to the full-state

feedback control system. However, note in Figs. 5.1a-5.1b that the transient

performance of the closed-loop system that assumes availability of the true

angular velocity is slightly faster compared with the observer-based system

that is simultaneously compensating for the difference in the true angular ve-

locity and the estimated angular velocity. Indeed, larger transient oscillations

are observed, especially for angular velocity tracking error, in the case of the

controller based on angular velocity observer. The overall control effort for the

observer-based feedback is also slightly higher during the transient period in

comparison to the full-state feedback control. In fact, it is observed through

additional simulations (omitted here for brevity) that larger initial estimation

errors result in larger and more frequent transient oscillations in error states
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as well as increased control effort for the observer-based control system. This

is expected and reasonable, since an increased control effort is expended in

compensating for larger discrepancies in the true and estimated values of the

angular velocity.
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Figure 5.1: Comparison of observer-based PD control with full-state feedback
control without measurement noise.
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Figure 5.2: Angular velocity estimation error and commanded control effort
for attitude tracking control simulation in the absence of measurement noise.
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5.4.2 Quaternion Measurements With Noise

Next, we examine the robustness of the proposed estimation scheme subject

to measurement noise/error. The simulations in Figs. 5.1-5.2 are repeated

with measurement noise added to q for both observer and control law feed-

back. Noisy measurements are generated by randomly perturbing the true

unit-length eigenaxis, e, associated with q [53],

e =
1

sin θ
2

qv, cos
θ

2
= q0,

where θ is the eigenangle, within a spherical cone of prescribed cone half-angle

and uniform distribution centered around the true eigenaxis at each time t.

The cone half-angle is specified as 0.05 deg for this simulation.

In order to clearly illustrate differences between the observer-based and

full-state feedback controllers, the norms of all error vectors are plotted on

a semilogarithmic scale as shown in Figs. 5.3-5.4. Although each component

of the estimation-error and tracking-error states remain bounded, it is evi-

dent that both the observer and full-state feedback controllers suffer in overall

performance when measurement noise is present. The attitude estimation

and tracking errors are only minimized to a non-zero steady-state value. The

full-stated feedback control performs only slightly better by minimizing the

tracking error to a marginally smaller value.
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Figure 5.3: Attitude tracking control simulation comparing performance of
observer-based and full-state feedback control laws when noise is present in
attitude measurements.

134



0 20 40 60 80 100 120 140
10−5

10−4

10−3

10−2

10−1

time (s)

‖ω̃
‖
(r
ad

/s
)

(a) Angular velocity estimation error norm

0 20 40 60 80 100 120 140

0

5

10

15

time (s)

‖u
‖
(N

-m
)

Observer-based feedback

Full-state feedback

(b) Control torque norm

Figure 5.4: Estimation error evolution and commanded control effort for atti-
tude tracking in the presence of measurement noise.

135



In order to further corroborate the results in Figs. 5.3-5.4 and show

through numerical simulations that measurement noise doesn’t result in un-

bounded tracking and estimation errors, the effects of measurement noise are

now investigated for the proposed observer-controller scheme using 10 random

initial conditions for q(0), ω(0), and ω̂(0). Using the same cone half-angle for

the perturbed eigenaxis, the results are provided in Figs. 5.5-5.6. The plots

clearly indicate that both the tracking and estimation errors converge to a

bounded residual set.

Finally, as would be expected, it was found through additional simula-

tions (not shown) that increasing the measurement noise cone angle worsened

the overall performance of both control schemes by increasing the steady state

values of the attitude tracking and estimation error norms. For example, a

cone half-angle of 0.5 deg results in increasing the steady-state values of the

error norms by almost a full order of magnitude when compared with 0.05 deg

cone angle. The magnitude of the estimation and tracking error norms is

dictated by the magnitude of measurement noise. Thus, empirical evidence

suggests that the observer-based control scheme is not adversely effected any

worse than the PD based control in the presence of noisy measurements.
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Figure 5.5: Attitude tracking control simulation for proposed observer-
controller scheme using 10 random initial conditions with noisy attitude mea-
surements.
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Figure 5.6: Estimation error evolution and commanded control effort for simu-
lation conducted with the combined observer-controller implementation using
10 random initial conditions.
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5.4.3 Estimated Quaternion Using QUEST

In practical spacecraft implementations, since no sensor is directly able to

measure the attitude vector (quaternion, MRPs, Gibb’s vectors, etc.) of a

body, the attitude quaternion is reconstructed using an estimation or observer

scheme. Single-frame estimators such as QUEST, ESOQ, ESOQ-2, and their

variants are based on Wahba’s problem [59, 75]. In this section, a numerical

simulation study is conducted in which unit vector measurements are used to

construct the body quaternion that is to be used for control feedback. Since

rate gyro measurements are unavailable, a point-wise estimation scheme is

implemented. In particular, the QUEST algorithm [36, 59] is utilized under

the assumption that three unit vector measurements are available at each

time, of which at least two are non-collinear. Recalling that the quaternion

parameterization in non-unique and each physical attitude may be equivalently

described by q or −q, it is necessary to ensure that the calculated quaternion

at each time step maintains sign continuity with the quaternion at the previous

time step, that is, no sign jumps occur discontinuously.

All simulation parameters remain the same as in the previous two sim-

ulations and no measurement noise is assumed in the vector measurements.

The resulting plots are shown in Fig. 5.7. The system responses in Fig. 5.7

using the QUEST algorithm to estimate the quaternion are virtually identical

to the system responses in Fig. 5.1. As such, the angular velocity observer

developed here is practically viable for spacecraft implementation where both

the controller and observer would utilize an estimated quaternion.
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Figure 5.7: Attitude tracking control simulation for observer and controller
driven by estimates of q generated by QUEST algorithm (no sensor noise).
System response is identical to that in Figs. 5.1-5.2 where the quaternion is
assumed to be directly available.
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5.4.4 Inertia Matrix Uncertainty

In the final set of simulations, the convergence properties of the observer

are evaluated for an imprecisely determined inertia matrix J. As shown in

Sec. 5.2.2, the observer is constructed using perfect knowledge of the inertia

matrix. Hence, it is important to investigate, through numerical simulations,

how robust the observer is in the face of parameter uncertainty. A zero-torque

(u(t) = 0 ∀ t ≥ 0) setting is prescribed in order to isolate only the behavior

of the observer in the presence of inertia uncertainty. The true inertia matrix

parameters are perturbed in a manner such that the perturbed inertia matrix

Jpert takes on the form Jpert = J + ∆J where ∆J ∈ R3×3 with ∆J = ∆JT.

In particular, the observer performance is investigated when subject to the

following uncertainty:

∆J1 =


1 1 1.5

1 1 1.5

1.5 1.5 −1

 , ∆J2 =


−1 −0.4 0.6

−0.4 −2 −0.7

0.6 −0.7 −5

 , (5.63)

where ‖∆J1‖ ≈ 0.1‖J‖ and ‖∆J2‖ ≈ 0.3‖J‖.

In Fig. 5.8, the convergence behavior of the observer using the perturbed

inertia matrices is compared to the observer performance when the true iner-

tia parameters are exactly determined. Both the transient and steady state

behaviors of the state estimation errors are clearly affected by the quality and

magnitude of the uncertainty in the inertia matrix. While ∆J1 represents a

larger magnitude of uncertainty, it also corresponds with an overall perturbed
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inertia matrix with smaller principal moments of inertia than the true inertia

matrix. While the state estimation errors resulting from the observer employ-

ing J perturbed by ∆J1 may appear to initially converge faster than when

the inertia matrix is exactly known, the estimation errors ultimately only con-

verges to within a bounded residual set. When the inertia uncertainty is given

by ∆J2, the perturbed inertia matrix results in a slightly larger principal mo-

ments of inertia than the true inertia matrix. In this case, while the transient

performance is similar to when there are no perturbations in J, once again,

the state estimation errors only converge to a bounded residual set.
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Figure 5.8: Convergence properties of state estimation errors from the observer
when inertia matrix parameters are uncertain.

5.5 Conclusions

In this chapter, the problem of angular velocity observer design is addressed

for rigid body attitude tracking control in the absence of angular velocity mea-
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surements. A novel smooth angular velocity observer is presented that ensures

asymptotic convergence of estimation error states independently of the control

design. Unlike existing methods that employ a switching scheme, the proposed

observer ensures asymptotic convergence through a smooth structure. When

combined with a separately designed PD attitude tracking control law, the

novel observer scheme ensures global asymptotically stability of the closed-loop

system. Accordingly, a separation property is established for the rigid-body

attitude tracking problem with a smooth angular velocity observer construct,

the first such result to the best of the author’s knowledge. The distinguishing

feature of this rich technical result lies in the use of a partial Lyapunov stric-

tification process by which a non-strict Lyapunov function is converted into a

strict Lyapunov function whose time derivatives contain nonpositive terms in

all estimation error states. Closed-loop stability and convergence are proved

by following a sequential logic approach, and the effectiveness of the combined

observer-controller implementation is illustrated through numerical simulation

studies.
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Chapter 6

Conclusions

6.1 Summary

Attitude control is a technically rich and extensively studied subject in con-

trols literature dating back several decades. A wide range of control solutions

(linear, nonlinear, adaptive, observer-based, etc.) exist for various problem

formulations. In the field of aerospace engineering, precise control of a space-

craft’s orientation is often crucial to mission success, especially for those car-

rying out Earth-based observations, surveillance, or rendezvous applications.

In this dissertation, the investigation of attitude control is undertaken to ad-

dress three important aspects of the problem, mainly, adaptive control for time

varying inertia matrix components, gyro-free attitude control design using unit

vector measurements, and observer control design for attitude control in the

absence of angular velocity measurements.

Adaptive control has been the focus of extensive research efforts over
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the past many years as a powerful method to deliver precise attitude con-

trol for a spacecraft with arbitrarily large inertia matrix uncertainties. While

several elegant solutions exist for controlling systems with constant uncertain

parameters, research in adaptive attitude control of time-varying parameters

is fairly limited. The work presented in Chapter 3, attempts to deal with

these limitations by formulating an adaptive control law that compensates

for time-varying parameters with known variation but unknown additive and

multiplicative uncertainty.

The novel adaptive control solution proposed in Chapter 3 directly ac-

counts for two types of inertia matrix variations: the first is formulated as a

function of the control input itself in order to model fuel mass-loss, while the

second is modeled as a function of time for the case when the variation occurs

due to displacing mass (as in the case of a deploying solar array). In both

cases, the uncertainty in the inertia matrix is directly handled by the adaptive

control approach. When the inertia matrix is a function of the control input,

the input coupling in the rigid body dynamics could lead to the control be-

coming unbounded if the parameter estimates approach zero. To circumvent

this issue, using prior knowledge on the overall bounds of the uncertain pa-

rameters, a projection mechanism scheme is implemented in conjunction with

some mild initial condition restrictions to keep the parameter estimates within

a bounded convex set and away from the singularity regime, thereby ensuring

a smooth and bounded control input for all time. Detailed derivations of the

control law are provided along with a thorough analysis for the associated
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stability and error convergence properties. In addition, numerical simulations

are presented to highlight the performance benefits when compared with an

adaptive control scheme that does not account for inertia variations.

The work in Chapter 4 is motivated by the fact that existing “velocity-

free” attitude stabilization control laws require explicit feedback of the space-

craft attitude. However, since no sensor can directly measure the orientation

of a vehicle, these control laws rely on an observer or estimator that recon-

structs the attitude from unit vector measurements. While numerical algo-

rithms based on Wahba’s problem may be used for attitude determination,

these algorithms treat the problem in the framework of static optimization

and are, as such, not as robust or efficient as Kalman-filter type sequential-

estimation techniques. However, filter algorithms require the use of angular

velocity information in conjunction with unit-vector measurements. Further,

while several nonlinear observers have been proposed that provide explicit

convergence guarantees, these observers once again rely on angular velocity

feedback. Thus, in the absence of angular velocity, the use of these estima-

tion/observer schemes is not feasible.

Motivated by this shortcoming, Chapter 4 presents a novel attitude

stabilization control law that is truly “velocity-free” in that it neither relies on

angular velocity information directly through control feedback or indirectly

through use in an estimation/observer algorithm that provides the attitude

vector. Rather, the control law guarantees asymptotic convergence of the

attitude and angular velocity by directly employing vector measurements for
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feedback. Furthermore, the result presented herein is rooted in the classical

passivity framework and does not utilize any observer-like scheme to satisfy the

control result. Lyapunov-based stability analysis is used to prove asymptotic

stabilization of the spacecraft to the desired orientation with zero angular

velocity and all closed-loop signals remaining bounded. In addition, numerical

simulation studies indicate that the novel gyro-free attitude control is robust

to measurement errors to within a residual set.

In Chapter 5, a novel angular velocity observer is developed for attitude

tracking control applications. The problem is motivated by the fact that gyro-

failures or unreliability may lead to the angular velocity information being

unavailable for use in typical PD like control laws. Unlike existing results

that employ a switching structure for the observer to guarantee convergence

to the true angular velocity, the new result presented herein is smooth and

does not rely on switched or hybrid schemes. This important result stems

from the use of a novel Lyapunov strictification process which plays a crucial

role in formulating a strict Lyapunov function which contains negative terms

in both the attitude and angular velocity estimation states. The proposed

observer ensures asymptotic convergence of the estimated states to the true

angular velocity independently of the control design. The observer is readily

combined with an existing PD control law while still retaining asymptotic

convergence properties of both the attitude tracking error and estimation error

states. Thus, a separation property is established for the attitude tracking

control problem when the smooth angular velocity observer is combined with
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a PD control law. Lyapunov-based stability analysis is provided to prove all

asserted claims in the chapter, while numerical simulation studies show that

the algorithm is robust to noisy measurements and can be implemented using a

QUEST-type attitude determination algorithm to reconstruct the quaternion

from vector measurements.

6.2 Statement of Contributions

The following original contributions have been made in this dissertation to the

field of attitude tracking control for spacecraft applications:

1. A novel adaptive attitude control scheme is proposed to directly compen-

sate for spacecraft inertia changes arising from fuel mass-loss due to fast

propulsive maneuvers and mass displacement commonly associated with

deployable spacecraft components. Existing work in this area has previ-

ously only dealt with unknown constant inertia matrix components. In

the work presented in this dissertation, spacecraft inertia matrix param-

eters are assumed to have known variable components with arbitrarily

large multiplicative and additive uncertainties. The novel control law

tackles inertia variations that occur as either pure functions of the con-

trol input, or functions of time and/or the state. The proposed control

scheme has practical advantages over typical adaptive attitude tracking

control since spacecraft often encounter non-trivial variations in inertia

during flight [71, 72].
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2. In the setting of complete absence of rate measurements either due to

gyro-failure or unavailability, a novel stabilizing controller is proposed

that utilizes vector measurements obtained from inertial sensors directly

for feedback, without relying on the estimated attitude vector or an-

gular velocity feedback. The control law is formulated in the classical

passive systems framework, and does not rely on observers of any kind.

Although many classical results for angular velocity-free control laws are

available in existing literature, they are typically formulated using some

kind of attitude parameterization. As such, these control laws must

be integrated with an attitude estimation scheme that can provide the

attitude of the vehicle using a combination of gyro-rate and vector mea-

surements. Thus, regardless of the approach, most existing control laws

have either an explicit or implicit requirement for angular velocity mea-

surements. From this standpoint, a true “velocity-free” attitude control

law has been developed in this dissertation, since both the direct and

indirect requirement of angular velocity is completely eliminated. The

distinguishing feature of this methodology is that, unlike existing results,

the velocity-free control law is founded on the classical passive systems

theory [63, 65].

3. A novel nonlinear switching-free angular velocity observer has been de-

veloped for attitude tracking control. The salient feature of this observer

is that unlike existing methodologies that implement a switching scheme

to obtain estimation error convergence, the presented observer is smooth
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and ensures C∞ continuity of estimation states. The observer guaran-

tees asymptotic convergence of the estimation errors independently of

the control design.

4. A separation property has been established for the combined implemen-

tation of the novel smooth observer developed in this dissertation with

a separately designed PD attitude tracking control law. This result is

the first of its kind for a smooth (switching-free) observer construction.

[4, 70].

6.3 Recommendations for Future Research

Several avenues of future research have been identified to further the advance-

ment of the research presented in this dissertation. A few important research

directions are outlined below.

1. In Chapter 3, adaptive tracking control is presented for time-varying

inertia matrix. A simplified model is provided to represent the varia-

tions that occur as a result of fuel-loss. An important area for further

work would be to better model these variations based on the hardware

components being used onboard.

2. The adaptive control in Chapter 3 is based on the certainty-equivalence

(CE) principle. A worthwile direction for future research would be to

derive the control law in a noncertainty equivalent framework [55, 56],

which has been shown to be deliver overall performance which is superior
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to CE adaptive control. The performance gains in non-CE adaptive con-

trol is a direct consequence of a stable attractive manifold design on the

parameter adaptation process which leads to two important features: 1)

parameter estimation stops whenever the estimates coincide with their

true values, and 2) the closed-loop adaptive control system recovers the

same performance as a deterministic (ideal) control law without param-

eter uncertainty.

3. The gyro-free attitude control law presented in Chapter 4 only handles

the attitude stabilization question. Some technical limitations that pre-

vent the extension of this control law to the full tracking case have been

discussed in the chapter. A natural direction for this research would be

to further explore the full tracking case through a different Lyapunov

function construction or a modified control law.

4. Another useful line of future research for the gyro-free attitude stabi-

lization problem would be to determine an effective way of selecting the

matrices A, B, and P which is in some sense optimal for this particular

problem. At present, these matrices are determined through a tedious

trial and error process. An effective mechanization of this process would

be very useful in consistently determining matrix quantities that yield

fast convergence performance.

5. The observer presented in Chapter 5 has been developed under the as-

sumption that the attitude vector is already available for use in the ob-
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server and control design. A very important area of future research could

focus on the development of an angular velocity observer that employs

vector measurements directly rather than using the quaternion. Thus,

this problem would run parallel to the problem of attitude tracking using

vector measurement feedback. The main complication that may arise in

this approach is that the mapping from the angular velocity estimation

frame to the body frame would not be readily available, which is cur-

rently a critical piece of information that is used to compensate for the

nonlinear gyroscopic angular velocity term in the rigid body dynamics

and prove global asymptotic convergence. One way to circumvent this

issue may be to estimate the quaternion alongside the angular velocity,

although this brings up the circular issue that quaternion observers also

typically rely on angular velocity information.

6. A final recommendation on the problem of angular velocity estimation

is to investigate an adaptive angular velocity observer that does not re-

quire perfect knowledge of J. Currently, the model-dependent observer

presented in Chapter 5 experiences performance degradation when faced

with inertia matrix uncertainty. Thus, a very useful line of research

would be to explicitly account for inertia matrix uncertainties through

parameter adaptation. Of course, this matter is complicated by the fact

that adaptation typically relies on precise knowledge of the spacecraft

angular velocity, and poses a significant challenge in simultaneously re-

solving these inherently coupled problems.
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Appendix A

List of Publications

A.1 Relevant Journal Publications

1. D. Thakur and M. R. Akella. Gyro Free Rigid Body Attitude Stabi-

lization Using Only Vector Measurements. AIAA Journal of Guidance,

Control, and Dynamics. Article in review.

2. M. R. Akella, D. Thakur, and F. Mazenc. Partial Lyapunov Strictifica-

tion: Smooth Angular Velocity Observers for Attitude Tracking Control.

AIAA Journal of Guidance, Control, and Dynamics. Article in review.

3. D. Thakur, S. Srikant, and M. R. Akella. Adaptive Attitude-Tracking

Control of Spacecraft with Uncertain Time-Varying Inertia Parameters.

AIAA Journal of Guidance, Control, and Dynamics. Article in review.
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A.2 Relevant Conference Publications

1. D. Thakur, F. Mazenc, and M. R. Akella. Partial Lyapunov Strictifica-

tion: Smooth Angular Velocity Observers for Attitude Tracking Control.

In AIAA Space and Astronautics Forum and Exposition, San Diego, CA,

August 2014. Paper No. AIAA-2014-4420.

2. D. Thakur and M. R. Akella. Gyro Free Rigid Body Attitude Stabi-

lization Using Only Vector Measurements on SO(3) . In Proceedings of

the 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, NM,

January 2014. Paper No. AAS 14-300.

3. D. Thakur, S. Srikant, and M. R. Akella. Adaptive Attitude-Tracking

Control of Spacecraft with Uncertain Time-Varying Inertia Parameters.

In Proceedings of the 2013 AAS/AIAA Astrodynamics Specialist Confer-

ence, Hilton Head, SC, August 2013. Paper No. AAS 13-838.

A.3 Other Publications

1. D. Thakur, S. Hernandez, and M. R. Akella. Spacecraft Swarm Finite-

Thrust Cooperative Control Protocol for Common Orbit Convergence.

In 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, NM,

January 2014. Paper No. AAS14-380.

2. D. Thakur, S. Hernandez, and M. R. Akella. Spacecraft Swarm Finite-

Thrust Cooperative Control Protocol for Common Orbit Convergence.
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AIAA Journal of Guidance, Control, and Dynamics. Article in review.

3. D. Thakur and M. R. Akella. Coordinated Control of Autonomous Ve-

hicles in Three-Dimensional Rotating Formations. In Proceedings of the

2013 AAS/AIAA Astrodynamics Specialist Conference, Hilton Head, SC,

August 2013. Paper No. AAS 13-918.

4. D. Thakur and B. G. Marchand. Hybrid Optimal Control for HIV Multi-

Drug Therapies: A Finite Set Control Transcription Approach. Mathe-

matical Biosciences and Engineering, 9:899 – 914, 2012.

5. D. Thakur and B. G. Marchand. Tracking Control of Nanosatellites

with Uncertain Time Varying Parameters. In Proceedings of the 2011

AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, Au-

gust 2011. Paper No. AAS 11-592.
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