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The timescale of chemical reactions in solid-state systems greatly

exceeds what may be modeled by direct integration of Newton’s equation of

motion. This limitation spawned the development of many different methods

such as (adaptive) kinetic Monte Carlo (A)KMC, (harmonic) transition state

theory (H)TST, parallel replica dynamics (PRD), hyperdynamics (HD), and

temperature accelerated dynamics. The focus of this thesis was to (1) implement

many of these methods in a single open-source software package (2) develop

standard benchmarks to compare their accuracy and computational cost and

(3) develop new long timescale methods.

The lack of a open-source package that implements long timescale

methods makes it difficult to directly evaluate the quality of different approaches.

It also impedes the development of new techniques. Due to these concerns we

developed Eon, a program that implements several long timescale methods

including PRD, HD, and AKMC as well as global optimization algorithms

basin hopping, and minima hopping.

Standard benchmarks to evaluate the performance of local geometry

optimization; global optimization; and single-ended and double-ended saddle
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point searches were created. Using Eon and several other well known programs,

the accuracy and performance of different algorithms were compared. Important

to this work is a website where anyone ma download the code to repeat any of

the numerical experiments.

A new method for long timescale simulations is also introduced: molec-

ular dynamics saddle search adaptive kinetic Monte Carlo (AKMC-MDSS).

AKMC-MDSS improves upon AKMC by using short high-temperature MD

trajectories to locate the important low-temperature reaction mechanisms of

interest. Most importantly, the use of MD enables the development of a proper

stopping criterion for the AKMC simulation that ensures that the relevant

reaction mechanisms at the low-temperature have been found.

Important to the simulation of any material is knowledge of the ex-

perimental structure. Extended x-ray absorption fine structure (EXAFS) is

a technique often used to determine local atomic structure. We propose a

technique to quantitatively measure the accuracy of the commonly used fitting

models. This technique reveals that the fitting models interpreted nanoparticles

as being significantly more ordered and of much shorter bond length than they

really are.
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Chapter 1

Introduction

This thesis is composed of work that I completed with my advisor,

Graeme Henkelman during my graduate studies at the University of Texas at

Austin. The primary focus is on the development of computational methods

for the atomistic simulation of long timescale dynamics in solid-state systems.

Each chapter of the dissertation is composed of a paper written with Graeme.

Chapter 2 was written with the the help of my lab mates Matthew Welborn

and Rye Terrell as well as our collaborators Jean-Claude Berthet, Andreas

Pedersen and Hannes Jónsson from the University of Iceland. Chapter 4 was

written in collaboration with Jacob Stevenson, Victor Ruehle, Cheng Shang and

David Wales of the University of Cambridge as well as my lab mate Penghao

Xiao. Chapter 5 was written with our experimental collaborators David Yancey,

Rachel Anderson and Richard Crooks from the University of Texas as well as

Anatoly Frenkel of Yeshiva University. The introduction will provide a brief

background in order to motivate the following chapters.

1.1 Rare Event Dynamics

Chemical reactions in the solid state are considered rare events. This is

because the shortest natural timescale of atomic motion – a vibrational period –

is on the order of a tens to hundreds of femtoseconds, while interesting chemical

reactions can can take anywhere from nanoseconds (vacancy diffusion), to
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Figure 1.1: An artistic rendering of the separation of timescales between atomic
vibrations and reactive events. The orange line represents a trajectory that
starts in the “initial” energy basin and remains there for many vibrational
periods before it escapes to the “final” energy basin.

milliseconds (surface catalysis), to years (material failure) to occur. A cartoon

of rare event dynamics is shown in Figure 1.1.

The most straightforward method to simulate reactions is molecular

dynamics (MD), where the classical equations of motion are integrated forward

in time. In order for the simulation to be numerically stable, an integration

time step of at most several femtoseconds must be used. Due to the enormous

gap in the timescale of atomic vibrations and chemical reactions this means

that an inordinate number of steps are typically required to witness a single

reaction.

To give an example of just how long this calculation may take, a single

time step (i.e. simulating 1× 10−15 s) might take around 1 millisecond of CPU

time using an empirical force-field with hundreds of atoms. This means that

simulating 1 millisecond of time would take roughly 32 years!
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Figure 1.2: Three different methods for calculating the long timescale behavior
in atomic systems are shown schematically.

1.2 Long Timescale Dynamics Methods

Many methods have been developed to reduce the computational work

needed to model rare event dynamics. There exists a unifying theme amongst

these techniques. Instead of modeling the intricate details of a single long

atomic trajectory, the dynamics are simplified into model that depicts only

the state-to-state time evolution. In this context, states are usually defined as

meta-stable (long lived) regions of configuration space. A high-level overview

of a few notable algorithms will be given in this section. Each of these methods

are implemented in the Eon software presented in Chapter 2.

Parallel replica dynamics (PRD) is a method for parallelizing state-to-

state molecular dynamics trajectories.[1] It does not reduce the amount of

computation effort required, however, by running a set of independent replicas

of the simulation on separate processors the total amount of time can be

reduced linearly with the number of processors used. In order to make each

3



replica independent, a short MD trajectory is run on each processes to initialize

it from a unique region of phase space. Figure 1.2(a) visualizes three separate

trajectories run in parallel, one of which escapes. The total escape time can

then be obtained by summing together the time each replica simulated.

Hyperdynamics (HD) reduces the computational effort to calculate the

escape times in the state-to-state simulation by applying a bias potential that

raises the energy of the energy basin, while leaving the energy of the transition

state unaffected.[2] By raising the energy of the basin relative to the transition

state, the effective energy barrier is lowered and the mean escape time is

decreased. The true escape time on the unbiased potential energy surface can

be recovered by multiplying the integration time step times an exponential

correction factor at each step. The main challenge is the construction of a

functional form for a bias potential that sufficiently increases the energy inside

the energy basin but does not modify the transition state surface. An example

of a HD trajectory is shown in Figure 1.2(b).

Transition state theory (TST) attempts to directly calculate a rate

constant by identifying bottlenecks on the potential energy surface that the

system must progress through for the reaction to occur.[3] These bottlenecks

are referred to as transition states. In solids the bottleneck regions are small

and are localized around saddle points on the potential energy surface (PES).

The simplest form of TST is harmonic TST (HTST), where the PES around

the saddle point is treated as a harmonic function. In HTST, the reaction rate

can be expressed in terms that only involve the minimum and the saddle point;

no MD trajectories are needed to calculate the rate. These scheme is shown

graphically in Figure 1.2(c).

In Chapter 3, we present a new long timescale dynamics scheme

4



named molecular dynamics saddle search adaptive kinetic Monte Carlo (MDSS-

AKMC), which is based upon HTST. MDSS-AKMC uses high temperature

MD trajectories to locate saddle points. These saddle points are used with

HTST to calculate reaction rates. The primary advancement of this technique

is a novel stopping criteria to define when a sufficient number of saddle searches

have been performed in our to guarantee that the important low energy (high

rate) reaction mechanisms have been discovered.

In Chapter 4, a set of benchmarks is defined that measure the accuracy

and computational cost of these algorithms. The Eon software package as well

as other commonly used programs are compared and the relative merits of

different algorithms are explored.

1.3 Local Structure Determination Using EXAFS

Key to the long timescale simulation of any material is an initial three

dimensional atomic structure. One popular experimental technique that reveals

local average structural information is extended x-ray absorption fine structure

(EXAFS) spectroscopy. EXAFS spectra are collected by shining high energy

x-rays upon a sample. These x-rays are high enough energy to excite core

electrons into photo-electrons. The wave-like photo-electron then backscatters

off the neighboring atoms. The interface pattern from the neighboring atoms

causes the EXAFS signal to contain oscillations. These oscillations encode

local structural information such as average coordination number, bond length,

and disorder.

A non-linear fitting proceedure is used in order to extract structural

information from EXAFS spectra. Key to this fitting process is the choice

of a proper functional form to represent both the x-ray scattering and the

5



bond length distribution in the sample. The functional form of the EXAFS

equation contains many terms, but can be roughly described as the sum of

exponentially decaying sinusoids, whose amplitudes, frequencies, and decay

rates are correlated with the atomic coordination numbers, bond lengths, and

structural disorder respectively.

In Chapter 5, we introduce a new method to measure the accuracy of

EXAFS fitting models and apply it to the study of Au147 nanoparticles. In the

study, we show that the commonly used fitting models interpret nanoparticle

structures as being smaller and more ordered than they really are. This is an

important result when comparing theoretical calculations to the experimental

EXAFS fits. We show the origin of these error in the fitting model and make

suggestions on how use density functional theory calculations to improve the

understanding of EXAFS spectra in highly disordered systems.

6



Chapter 2

Eon: Software for Long Time Simulations of

Atomic Scale Systems 1

2.1 Abstract

The Eon software is designed for simulations of the state-to-state evo-

lution of atomic scale systems over time scales greatly exceeding that of direct

classical dynamics. States are defined as collections of atomic configurations

from which a minimization of the potential energy gives the same inherent

structure. The time evolution is assumed to be governed by rare events, where

transitions between states are uncorrelated and infrequent compared with the

time scale of atomic vibrations. Several methods for calculating the state-

to-state evolution have been implemented in Eon including parallel replica

dynamics, hyperdynamics, and adaptive kinetic Monte Carlo. Global opti-

mization methods, including simulated annealing, basin hopping, and minima

hopping are also implemented. The software has a client/server architecture

where the computationally intensive evaluations of the interatomic interactions

are calculated on the client-side and the state-to-state evolution is managed by

the server. The client supports optimization for different computer architec-

1S. T. Chill, M. Welborn, R. Terrell, L. Zhang, J.-C. Berthet, A. Pedersen, H. Jónsson,
G. Henkelman, Model. Simul. Mater. Sci. Eng. 22, 055002 (2014). M. Welborn, R. Terrell,
L. Zhang, A. Pedersen, and J.-C. Berthet contributed to the software used in this chapter.
A. Pedersen also ran the CuZr glass simulation. H. Jónsson and G. Henkelman supervised
the work in this chapter.
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tures to maximize computational efficiency. The server is written in Python

so that developers have access to the high-level functionality without delving

into the computationally intensive components. Communication between the

server and clients is abstracted so that calculations can be deployed on a single

machine, clusters using a queuing system, large parallel computers using a

message passing interface, or within a distributed computing environment. A

generic interface to the evaluation of the interatomic interactions is defined so

that empirical potentials, such as in lammps, and density functional theory

as implemented in vasp and gpaw can be used interchangeably. Examples

are given to demonstrate the range of systems that can be modeled, including

surface diffusion and island ripening of adsorbed atoms on metal surfaces,

molecular diffusion on the surface of ice, and global structural optimization of

nanoparticles.

2.2 Introduction

Long time scale simulations of atomic systems pose a particular challenge

in computational chemistry. A straightforward integration of the equations of

motion typically requires too many integration steps to reach the time scale

of interesting events. Since atomic vibrations occur on the femtosecond time

scale, roughly 1015 time steps are required to directly model one second of

molecular dynamics.

Eon is a software package for performing accelerated dynamics simula-

tions of diffusion in solids and reactions at surfaces. There are a number of

established methods for calculating the long time scale properties of chemical

and material systems and a primary goal of Eon is to provide these methods

in a single program so that they can be directly compared, the strengths of

8
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Figure 2.1: Computational framework of Eon calculations.

different methods exploited, and where advantageous, combined into hybrid

methods.

The methods implemented in Eon share an underlying concept. They

each assume that the system has stable states that correspond to minima on

the potential energy surface (PES). The term ‘stable’ means that the average

escape time from a state is significantly greater than the correlation time of a

trajectory within the state. The transitions between states are then rare events

in comparison to the vibrational relaxation time scale within any state.

The computational framework for the methods implemented in Eon is

illustrated in Figure 2.1. Eon has a client-server architecture in which the server

determines the state-to-state evolution of the system. Clients communicate

with the server to receive tasks that involve exploring the configuration space

around the current state. Results are reported back to the server so that the

state-to-state evolution can proceed. For both receiving work and reporting

results, communication is initiated by the client and the simulation data is

transmitted in human readable text files.

The implementation of Eon is illustrated in Figure 2.2. The client,

9
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Figure 2.2: The Eon server interacts with Eon clients through communicators,
providing them with independent tasks (e.g. saddle searches). The results are
communicated back to the server where they are processed by higher-level
algorithms (e.g. adaptive kinetic Monte Carlo). The various acronyms are
defined in the text.

written in C++, performs computationally intensive tasks, while the server,

written in Python, handles the bookkeeping associated with the higher-level

algorithms. The client is used for any method that requires evaluation of

the potential energy and force. Client-side methods include local geometry

optimization, saddle point searches, molecular dynamics trajectories, Monte

Carlo sampling, and normal mode analysis. The server implements the high-

level methods using the tools provided by the client including parallel replica

dynamics (PRD) [1], hyperdynamics [2] using the bond-boost form of the bias

potential [4], adaptive kinetic Monte Carlo (AKMC) [5], basin hopping (BH)

[6], and minima hopping [7].

The Eon architecture has several strengths. First and foremost, the

client-server architecture allows for asynchronous cluster and distributed com-

puting. Second, a single server can communicate with many different clients

through a common interface, meaning that only part of the code has to be

tailored to different platforms, either through compilation or linking to platform-

10



specific libraries. Finally, the server communicates with the client via text files

so that a user can directly access the client’s functionality without having to

use the server.

2.3 Code Structure

2.3.1 Server

The Eon server has several roles: managing the execution of client

jobs, processing the results of client calculations, and transitioning between

states of the system. Typically the server is run many times over the course

of a calculation. Upon each invocation, the server processes the results of

completed jobs, performs actions depending on the results that were received,

and creates new jobs, in that order. Eon will typically exit at this point. The

one exception is when Eon is run with the message passing interface (MPI)

communicator, in which case the server will continue to run in a loop waiting

for new results to process.

The Eon server coordinates a set of independent tasks, which are

executed in parallel by the clients. The primary mechanism of communication

between client and server is via text files. The server creates the input files

for each client calculation and processes the output files that the clients write.

The results of the individual client calculations influence subsequent jobs; it is

only through the server that the clients interact.

In a distributed computing environment, clients cannot be trusted to

complete all of the work that they are given. In a heterogeneous computing

environment, clients will typically leave and return to the network over the

course of an Eon simulation. Due to this constraint, server-client communica-

tion is stateless; no one client is relied upon to complete any given job. Instead,

11



enough work is created to keep all clients busy and the results are processed

upon their completion. The server never waits for a particular client to finish

a calculation.

The independence of the client jobs allows for flexibility in how the clients

are executed. Eon supports parallel calculations in a variety of contexts: on a

single computer, on clusters using a queuing system, large parallel computers

using MPI, and in a distributed computing environment. These contexts are

explained more fully in Sec. 2.3.4.

The server also manages the state-to-state evolution in the system. For

example, in the AKMC method the server uses the kinetic Monte Carlo (KMC)

algorithm to move between states until an unexplored state is reached. At this

point, client calculations are required to determine the mechanisms and rates

of escape. In PRD the server waits for clients to run dynamics within a state

and report transitions a new state. The server then updates the current state

of the system and repeats the process.

2.3.2 Client

While the server is written in Python, the client is written in C++. An

advantage of using a complied language for the client is that a self-contained

executable is most easily used within a distributed computing platform [8]. A

Python client would require the distribution of the Python runtime environment

along with our code. Another reason for using C++ is that the client does most

of the computational work, and it is not uncommon for Python to be 100 times

slower than lower level languages.[9]

Eon provides a number of reusable software components. For example,

the numerical optimization routines operate on general objective functions.

12



This allows the same optimization code to be applied to a variety of problems,

including local minimization, saddles searches, and nudged elastic band cal-

culations. Eon implements a number of first and second order optimization

algorithms including quick-min (QM) [10], fast inertial relaxation engine (FIRE)

[11], conjugate gradients (CG) [12], and limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) [13].

2.3.3 Potentials

Eon makes use of a variety of different atomic interaction potentials,

some of which are implemented within our code while others are accessed either

by linking to a library or calling an external program. Specifically, Eon works

with the Large-scale Atomic/Molecular Massively Parallel Simulator (lammps)

[14], the Vienna Ab-initio Simulation Package (vasp) [15], and the Grid-based

Projector-Augmented Wave (gpaw) [16] code.

The potentials that are included with Eon are an embedded atom

method (EAM) potential [17] with parameters for Al [18], quantum Sutton-

Chen with parameters for FCC metals, effective medium theory from the ASAP

package [19], pair potentials of the Lennard-Jones and Morse forms, Lenosky

[20] and Tersoff [21] potentials for Si, the environment dependent interactive

potential (EDIP) for carbon [22], and the TIP4P water model [23].

Eon can use potentials from lammps by linking Eon to the lammps

library. The lammps interface in Eon issues commands to initialize the

simulation by specifying the periodic boundary conditions and atom types. For

each force call, Eon updates the positions of the atoms in lammps and calls

the application programing interface (API) to update the energy and forces.

Using the API, as opposed to calling the lammps executable for each force

13



call, keeps the neighbor list in memory between force calls, and significantly

improves the computational efficiency.

Finally, there is a MPI-based potential interface that communicates with

an external MPI program to calculate the energy and forces. This potential

type is implemented as a multiple program multiple data (MPMD) MPI job

where the Eon client is launched along with the external MPI program(s).

Having a single executable for the server and clients is especially useful for

running on supercomputers with ab-initio codes that do not have a library

interface to be linked with Eon. An example of such a program is vasp. We

provide a small modification to vasp to work with Eon so that vasp stays in

memory between energy evaluations.[24] In our tests this approach is 60% faster

than executing vasp for each force call, reusing the previous wavefunctions

and charge density from disk.

2.3.4 Communicators

The client-server architecture gives Eon flexibility in how the client

program is executed. The details of how the client runs and communicates

its results are abstracted. Decoupling the communication from the rest of

the code allows for different parallelization schemes to be implemented with

minimal effort. The different communicators are implemented as classes that

handle how and where the client is executed. The interface to the class is

simple, requiring only the data in the input files for the client. The specific

communicator then ensures that the job is executed and returns the result,

when completed, to the server. The class also provides methods to cancel jobs

and retrieve the number of running jobs.

Our generic approach to running the computationally expensive part of
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our program allows Eon to run in the following modes.

Local: The simplest way to run Eon is to run in serial or in parallel on a

single computer. The server launches a user specified number of jobs in parallel

and waits for them to complete before exiting.

Cluster: Eon can directly submit jobs to a job queuing system such as Grid

Engine, Torque, or the Portable Batch System (PBS). User supplied scripts

enable the Eon server to submit jobs, monitor running jobs, and delete jobs.

MPI: With the MPI communicator, the server and clients are bundled

together as a single MPMD MPI executable. The server, instead of exiting

after creating client jobs, polls the clients to determine when new jobs need to

be created. When combined with the MPI potential interface, Eon can run

many independent density functional theory (DFT) calculations simultaneously.

BOINC: Eon supports distributed computing using the Berkeley Open

Infrastructure for Network Computing (boinc) [8]. Running a distributed

calculation requires a boinc project server and an Eon client that is linked

with the boinc library. Eon is currently run as a boinc project with over a

thousand computers connected that has achieved a peak performance of four

teraFLOPS.[25] It is possible to run many independent calculations using the

same boinc project with Eon. The communicator uses a unique identifier to

track which boinc work units belong to which simulation. In this way, multiple

users are able to run their own simulations within the same boinc project.
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A consideration when using boinc for calculations is that the commu-

nication time between client and server should be shorter than the time to

complete a client job. For calculations involving empirical potentials, a single

client calculation can be faster than the time to process a work-unit through

the distributed computing system. This condition causes the client computer

to be idle while it waits for additional work. To solve this problem, we have

implemented a mechanism for bundling a set of tasks together to be run as a

single client job. Tuning the number of tasks in the bundle controls the boinc

work unit duration. Bundling a set of small jobs into work units also reduces

the number of files which have to be processed by the server, an issue that

becomes very important when thousands of machines are rapidly reporting

their result to a single server.

ARC: An interface for the Advanced Resource Connector (arc) middleware

enables execution on resources connected to nordugrid [26]. The purpose

of the interface is to enable to use of idle nodes on authorized resources. As

only idle resources are to be requested, one initially registers how many idle

nodes each cluster has, which is followed by a submission of the corresponding

number of work units to the nordugrid queue on each of the clusters. The arc

middleware must be installed with the Eon server to use this communicator.

2.4 Methods

2.4.1 Parallel replica dynamics and hyperdynamics

Parallel replica dynamics (PRD) is a method for parallelizing state-

to-state molecular dynamics (MD) trajectories.[1] A set of M replicas of the

simulation are initialized to run MD trajectories on separate processors from
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Figure 2.3: Snapshots from PRD and hyperdynamics simulations of seven Pt
atoms randomly deposited on a (111) surface at 250 K. The final state, which
is found using hyperdynamics on a time scale of minutes, shows the formation
of a compact heptamer island. The atoms on the surface are shaded red.

the same initial state. Each replica is given its own unique initial random

momenta and run with MD for a short dephasing time to ensure that it is

uncorrelated from the other replicas in configuration space. After dephasing,

the simulation clock is started and MD is performed until any replica has

escaped from the initial state. All replicas then report the amount of time

that has been simulated and the transition time is taken to be the cumulative

simulation time from the replicas. Critical to this method is an algorithm to

detect transitions between states. In Eon we detect a transition by periodically

minimizing the geometry and comparing to the initial minimized geometry.

The algorithm, as described, is not suitable for distributed computing
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because it is not always possible to promptly report when a replica sees a

transition, nor is it possible to query all the other replicas to determine how

much simulation time had been accumulated when the transition occurred. To

work with Eon, all communication between replicas must be removed. This

is accomplished in the distributed replica dynamics (DRD) implemented in

Eon by having each client run for a fixed length trajectory. The clients do not

report back when they detect a reaction; instead, each replica does the same

amount of work as all other clients, on average. Accordingly, when a client

detects a transition it records the transition time and configuration and then

continues to run dynamics for the full time length as if a transition had not

occurred. It then returns the time of the transition and the new product state

to the server. The server adds the transition time to the total simulation clock.

Details of the validity and efficiency of the DRD algorithm will be presented

elsewhere.[27] Since DRD is so similar in philosophy to PRD, we will refer to

it hereafter simply as PRD.

As an example of a long time scale simulation modeled with PRD, we

have chosen the formation of a compact Pt heptamer island on Pt(111) at

250 K using a Morse interatomic potential. Each PRD client was run for a

20 ps MD trajectory with a time step of 2 fs and a dephasing time of 1 ps. PRD

was also combined with hyperdynamics to increase the accessible simulation

time. We used the bond-boost form of bias potential [4] setting the magnitude

of the total boost ∆V max to 0.5 eV, the stretch threshold q to 0.2, and the

curvature parameter P1 to 0.95. All other parameters were kept the same as

the PRD calculation. The evolution of the system is shown in Figure 2.3. The

initial coalescence of the adatoms occurs on a time scale of nanoseconds and

the formation of the compact island occurs on a time scale of minutes, which

18



 1

 3

 6

 12

 24

 48

 96

 192

 384

 768

 1536

 1  3  6  12  24  48  96  192  384  768 1536

S
p

e
e

d
 U

p

Number of Replicas

400K (1.4 us)
500K (6.3 ns)

Figure 2.4: Timing data showing good linear speedup for PRD of a Pt heptamer
island on Pt(111). Deviations from the linear scaling trend start when the
number of replicas times the simulation time for each replica approaches the
time scale of the transition.

can only be seen in the hyperdynamics simulation.

In the ideal case, PRD is able to reduce the wall clock time of a

MD calculation linearly with respect to the number of processors used. To

demonstrate that our code achieves this scaling, we measured the speedup of

escaping from the compact Pt heptamer island state. Each PRD trajectory

was run for 100 ps; reactive events were detected by minimizing every 10 ps.

Figure 2.4 shows that the speed-up, in terms of wall clock time, required to find

an escape time for the compact Pt heptamer island on Pt(111) increases linearly

with the number of replicas. The slope of the speedup plot only deviates from

unity when the total time simulated by the replicas in a reporting interval

approaches the transition time. When there are M clients running 100 ps

trajectories in parallel, this limit is reached for M≈100 at 500 K and M≈1000

at 400 K. In principle, the MD time simulated by each replica can be reduced,

although here, 100 ps was chosen so that each calculation would take several
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minutes, which is a suitable job length for distributed computing, as discussed

in Sec. 2.3.4.

2.4.2 Adaptive kinetic Monte Carlo

KMC is a method used to model the state-to-state dynamics of chemical

and material systems. An in-depth introduction and discussion of the history

of KMC has been written by Voter.[28] KMC simulations are fundamentally

different from MD in that they do not need to evaluate the potential energy or

forces of the system, although in many cases, rates of reaction are derived from

a PES. In KMC, a Markov chain of states is formed with transition probabilities

proportional to the rates of reaction. The set of rates, known as a rate table,

must be known a priori for all states that the system will encounter.

AKMC is a method to dynamically build a rate table during a KMC

simulation.[5] For each new unique state that the system visits, searches are

preformed to find low energy first-order saddle points on the PES. Typically

these searches are carried out by minimum mode following algorithms where

the minimum mode is estimated using the dimer method [29], Raleigh-Ritz

minimization [30] as in the hybrid eigenvector following method [31], or the

Lanczos method as in the activation relaxation technique nouveau [32]. Mini-

mizations are carried out from the saddle point geometry to the two adjacent

minimum energy configurations. Rates can be efficiently calculated for the

forward and backward reactions using the harmonic approximation to transition

state theory (HTST)

kHTST =

∏3N
i νmin

i∏3N−1
i ν‡i

exp
[
−
(
E‡ − Emin

)
/kBT

]
, (2.1)

where N is the number of atoms, νmin
i and ν‡i are the positive (stable) normal
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mode frequencies at the minimum and saddle, Emin and E‡ are the energies

at the minimum and saddle point, kB is Boltzmann’s constant and T is the

temperature.

Once the saddles of relevant energy have been located, the rate table

for that state is considered complete. Details on how the confidence that the

relevant saddles have been found is given in Ref. [33]. A KMC step is then taken

to advance the simulation to the next state and to increment the simulation

clock. If the next state is a previously visited state, then there already exists a

rate table and no searches will need to be performed; otherwise saddle searches

are needed to determine the new rate table.

An important feature of the AKMC implementation is systematic coarse

graining of states to eliminate fast transitions. In Eon, simulations are

coarse grained on-the-fly using the Monte Carlo with absorbing Markov chains

(MCAMC) algorithm [34]. In this formalism, the mean first passage times and

probabilities from one set of states to another are calculated exactly. The basic

equations used in MCAMC will be reproduced here; a more detailed review

can be found in Ref. [35]. An absorbing Markov chain may be written in the

canonical form

M(r+s)×(r+s) =

(
Ts×s Rs×r
0r×s Ir×r

)
, (2.2)

where T is the matrix of probabilities to transition within the s transient states,

and R is the matrix of probabilities to transition from the s transient states to

the r absorbing states, and I is the identity matrix. The fundamental matrix

is defined as

N =
∞∑
k=0

Tk = (I−T)−1 , (2.3)

where the Nij is the average number of times state j is visited before absorption,

if the chain starts in state i. Using the fundamental matrix, it is possible
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to calculate both the expected time until absorption, and the absorption

probabilities

t = Nτ (2.4)

B = NR, (2.5)

where τ is a vector of the average escape times from each transient state, t is a

vector where element i is the average time until absorption if the chain starts

in state i, and B is a matrix whose ij entry corresponds to the probability that

if the chain starts in state i it will be absorbed into state j.

While MCAMC gives exact times and probabilities between any set

of states, it does not say which states should be grouped together in the

transient subspace. Two heuristic algorithms have been developed for this

classification. The first scheme is to count the number of times a transition has

occurred between two states and when this number is greater than a specified

threshold (typically tens of transitions) the two states are grouped together. A

second scheme that is based on the energies of the saddles and minima is also

implemented.[36] These different definitions of the transient space effect the

resolution of the state-to-state description, but not the accuracy of the course

grained simulation, since the MCAMC is exact for any choice of transient

states.

Using AKMC as implemented in Eon, atomistic and molecular systems

have been simulated using forces and energies both from empirical potentials

when available and DFT when higher accuracy is desired.
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Figure 2.5: A diffusion event in a Cu0.7Zr0.3 glass crosses an energy barrier of
0.40 eV and lowers the structural energy by 0.79 eV. The atoms colored blue
and red undergo displacements larger than 0.5 and 0.15 Å, respectively, during
the event. The small atoms are Cu and the large atoms are Zr.

2.4.2.1 CuZr glass.

In a study of CuZr bulk metallic glasses the dynamical behavior at the

µs time scale was simulated for a Cu0.7Zr0.3 alloy at 500 K. As this system

is highly disordered, it is considered an intractable task either to propose a

sufficiently complete table of events a priori or construct a standard on-lattice

KMC simulation of the system. In this simulation, the super cell contained

∼1400 atoms and the number of accessible mechanisms found from each state

ranged from 10 to 150. The atomic interactions were modeled applying an

EAM potential as implemented in the lammps code [37]. An example of

the complexity of the reaction mechanisms is shown in Figure 2.5, where an

annealing event, which lowered the structural energy by 0.79 eV, involved

the displacement of 40 atoms more than 0.15 Å, of these, seven atoms were

displaced more than 0.5 Å.
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Figure 2.6: A set of reactions involving a water molecule on an ice surface. Seven
events, overcoming an effective barrier of 0.14 eV results in a rearrangement of
the proton order and the surface energy lowers by 0.28 eV and stabilize due to
a more favorable morphology of the dangling hydrogen atoms.

2.4.2.2 H2O on the surface of hexagonal ice.

A simulation of a molecular system modeled the diffusion of a water

add-molecule on the basal (0001) surface of hexagonal ice. As such systems

are of interest to the astronomy community, the simulations were conducted at

low temperatures (<200 K) where reaction mechanisms with barriers of 0.3 eV

become rare events. The average time for such an event at 100 K is on the

order of minutes. In the present study the empirical TIP4P-flex potential [38]

was applied. Figure 2.6 shows the structural rearrangements resulting from

a series of six event, which lowered the system energy by 0.28 eV. For this

sequence of events to occur, an effective barrier of 0.14 eV was overcome.

2.4.2.3 Breakup of a boron cluster in bulk silicon.

The break-up of a boron cluster in a bulk silicon lattice was modeled

at 500 K using energies and forces from DFT. Boron is commonly used as a

dopant for p-type silicon. The high B concentration required for nanoscale

devices can lead to dopant clustering and deactivation. Thus, the kinetics
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of dopant cluster formation and break-up is of interest to the semiconductor

industry. The details of the DFT calculation and how the initial configuration

was created have been reported previously.[39]

Here we show how on-the-fly coarse graining (MCAMC) [34] and the

kinetic database (KDB) [39] can reduce the computational effort needed to

model long time scales. We report a reaction pathway for the breakup of B2I

clusters, the discovery of which was enabled by using the geometry comparison

routines in Eon to exploit the symmetry of the system to greatly reduce the

number of identical states that needed to be explored. The KDB reduces the

computational cost of finding new saddles in each state, by reusing information

learned in previous states or simulations. Processes are added to the KDB using

a minimal representation that includes only moving atoms and their immediate

environment. The KDB is queried to provide suggestions of available saddle

point geometries. These suggestions accelerate AKMC simulations by reducing

the number of random searches needed to reach confidence that a sufficient

rate table has been determined.

To show the effects of the KDB and MCAMC, three AKMC simulations

were run: the first using both the KDB and MCAMC, the second using only the

KDB, and a third using neither acceleration method. For each simulation, the

AKMC confidence was set to 0.95, which corresponds to a stopping criterion in

each state where no new event was added to the rate table within 20 consecutive

searches. Each saddle search was initialized by displacing each degree of freedom

of a B atom and all atoms within 2.6 Å by a random number drawn from a

Gaussian distribution with a standard deviation of 0.2 Å.

The results are shown in Figure 2.7. The unit of computational time,

a cluster-day, is defined as one day of CPU time provided by a local cluster
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Figure 2.7: A comparison of how the kinetic database (KDB) and Monte
Carlo with adsorbing Markov chains (MCAMC) reduce the computation time
required to model the dynamics of a B2I cluster in bulk Si with AKMC.

containing 39 nodes, each with eight Intel Xeon X5355 cores running at a clock

rate of 2.66 GHz. The use of the KDB reduces the work needed to explore

each state and here it saves more than a day of cluster time. However, without

the use of MCAMC the KMC simulation becomes trapped in a set of states

separated by low barriers. The mean number of steps required to escape this

superbasin is 5×109. The number of KMC steps that could be performed per

second was 3000, which means that it would have taken 20 cluster-days (on

average) to escape from the superbasin each time the simulation entered it.

The use of KDB and MCAMC allowed us to find the full B2I dissociation

pathway shown in Figure 2.8.

2.4.3 Basin Hopping

BH is an algorithm for determining global minimum energy structures.[40]

In BH, a Monte Carlo (MC) simulation is performed on a transformed PES,
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Ẽ(X), obtained from an energy minimization of the atomic configuration X.

The standard Metropolis acceptance probability,

Pacc = min[1, exp(−(Ẽ(Xnew)− Ẽ(Xold))/kBT )], (2.6)

is used where Xold and Xnew are the configurations before and after each trial

move. MC moves are made by displacing each coordinate by either a random

uniform or Gaussian distribution. Our implementation also allows for swapping

moves, where a pair of atoms of differing elements have their coordinates

exchanged. The size of the displacement can also be dynamically updated

during the simulation to reach a target acceptance ratio.[41]

There are several enhancements to BH that have been implemented

including significant structure basin hopping (SSBH) [42] and basin hopping

with occasional jumping (BHOJ) [43]. In SSBH all displacements are made

from the local minimum of the previous displacement. In BHOJ, when a

predetermined number of MC moves are rejected in a row, a fixed number
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of MC moves are performed at infinite temperature. This gives the method

a chance to escape from an energy funnel that doesn’t contain the global

minimum.

As an example, we show results from the global optimization of a A42B58

binary Lennard-Jones (LJ) cluster with energy given by:

E = 4
∑
i<j

εαβ

[
σαβ
rij

12

− σαβ
rij

6
]

(2.7)

where α and β are the atom type of atoms i and j, respectively. We chose

εAA=εAB=εBB=1, σAA=1, σBB=1.3, and σAB=(σAA+σBB)/2. Previous studies

using more sophisticated global optimization methods have reported a putative

global minimum energy of -604.796307. [44]

To highlight the parallelization options available in Eon we ran many

BH calculations of LJ clusters, starting from a single random initial geometry,

across different numbers of CPU cores: serially (1 core), on a local cluster of
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Table 2.1: Comparison of the rate of escape from the compact Pt heptamer
island state at 400 K using different long time scale methods. The PRD rates
are based upon the mean-first-escape times from four trajectories.
Method Escape Rate (1/s) Force Calls
PRD (7.7 ± 3.8)×105 1×109

PRD/hyperdynamics (6.1 ± 2.3)×105 1×106

AKMC/HTST 8.7×105 2×104

computers (8-512 cores), and on a distributed network of machines (boinc)

with about 4000 cores.[25] Figure 2.9 shows the difference between the average

lowest energy (EA) and the energy of the global minimum (E0) versus wall

time for the different parallelization options. The lowest energy structure found

in any of the runs was -604.136658.

2.5 Discussion

The motivation for developing the Eon software is to make different

approaches to long time scale simulations of atomic systems available in an

integrated package that can make use of diverse computational resources.

The common toolkit of optimizers, dynamics algorithms, saddle point finding

methods, and interatomic potentials allows for a direct comparison of methods

and makes it easier for the user to select the method which best fits the

problem at hand. Eon allows for the development of hybrid methods which

can take advantage of the strengths and mitigate the weaknesses of the different

algorithms.

An example comparison between methods is given in Table 2.1, in which

the rate of escape from the compact heptamer island configuration (shown in

Figure 2.4) is calculated at 400 K using three different long time scale methods:
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PRD, PRD combined with hyperdynamics, and HTST as implemented in the

AKMC method. Each of these methods exhibit linear speed-up with respect

to the number of CPU cores used so that the wall-clock time to run each

simulation is proportional to the number of force calls divided by the number

of cores. On the previously mentioned 2.66 GHz Xeon X5355 processors, one

force call takes about 8 ms on a single core, so that the HTST calculation takes

2.6 minutes on 1 core, the PRD/hyperdynamics calculation takes 16 minutes

on 16 cores, and the PRD calculation takes 1.4 days on 64 cores. These wall

clock times closely reflect the conditions under which the simulations were run.

The escape rate for the compact Pt heptamer island can be estimated

with the fewest force calls using AKMC, where the transition mechanisms are

found using saddle point searches and the rate of each mechanism is calculated

using HTST as in Eq. 2.1. HTST is computationally efficient, but it relies on

several assumptions that can contribute systematic errors to the escape rate.

First, some relevant saddle points may not be identified by the search algorithm,

resulting in an incomplete rate table; second, the harmonic approximation

to the TST rate may not be accurate enough at the simulation temperature;

and third, the TST approximation itself may contain errors due to dynamical

recrossing events.

To test these approximations, a more accurate estimate of the rate was

calculated using PRD, which relies on fewer assumptions. The equations of

motion were integrated with a 2 fs time step and a dephasing time of 2 ps. The

Andersen thermostat was used to sample from the NVT ensemble with soft

collisions, rescaling 20% of the velocity of atoms on a time scale 20 fs.

Table 2.1 shows that the HTST rate is within the uncertainty of the rate

calculated with PRD. At high enough temperature, the harmonic approximation
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will break down and the HTST rate will become less accurate. However,

when HTST holds, AKMC is an efficient method, being orders of magnitude

less computationally demanding than PRD. The AKMC approach can also,

in principle, be extended beyond HTST to variationally optimized hyper

planar TST, and could, furthermore, be implemented to include dynamical

corrections.[45] Understanding the tradeoff between computational cost and

accuracy of TST calculations beyond the harmonic approximation are the

subject of ongoing studies.

Hyperdynamics is a good compromise between PRD and HTST because

it is substantially faster than PRD when a good bias potential is known, and the

systematic errors which can be introduced with a poor choice of bias potential

can be quantified. The PRD/hyperdynamics rate in Table 2.1 was calculated

using the bond-boost bias potential with the parameters described in Sec. 2.4.1.

The parameters were tuned so that the bias potential smoothly reached zero

at the lowest energy saddle point (0.6 eV) with a maximum fractional bond

stretch of 22%. The data in Table 2.1 shows a hyperdynamics rate in agreement

with that of PRD and a thousand-fold gain in computational efficiency. It

should be noted, however, that without the PRD calculation for reference, the

hyperdynamics calculation would have to be repeated with more conservative

settings to check for systematic errors introduced by the bias potential.

While much progress has been made in the development of algorithms

for long time scale simulations, this is still an important challenge to further de-

velopment and new methods are being proposed frequently. An essential aspect

of this work should be systematic and careful benchmarking and comparison

of the performance of the various approaches, both in terms of accuracy and

computational effort. To further this endeavor, we are developing a community-
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based website where authors can publish and compare their methods and

codes on benchmark problems. The benchmark website can be accessed at

http://optbench.org/.

The Eon code is freely available under the GNU Public License version

3. Eon can be obtained at http://theory.cm.utexas.edu/eon/.
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Chapter 3

Molecular Dynamics Saddle Search Adaptive

Kinetic Monte Carlo 2

3.1 Abstract

A method for accelerating molecular dynamics simulations in rare event

systems is described. From each new state visited, high temperature molecular

dynamics trajectories are used to discover the set of escape mechanisms and

rates. This event table is provided to the adaptive kinetic Monte Carlo algorithm

to model the evolution of the system from state to state. Importantly, an

estimator for the completeness of the calculated rate table in each state is

derived. The method is applied to three model systems: adatom diffusion on

Al(100); island diffusion on Pt(111); and vacancy cluster ripening in bulk Fe.

Connections to the closely-related temperature accelerated dynamics method

of Voter and coworkers is discussed.

3.2 Introduction

Adaptive kinetic Monte Carlo (AKMC) is a method which applies

dynamically-constructed rate tables to kinetic Monte Carlo (KMC) simulations.[5]

For each unique state that the system visits, searches are performed on the po-

2S. T. Chill and G. Henkelman, J. Chem. Phys. 140, 214110 (2014). G. Henkelman
supervised the work in this chapter.
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tential energy surface (PES) to find low-energy first-order saddle points leading

to adjacent states. Saddle searches have been carried out with minimum mode

(min-mode) following algorithms such as the dimer method [29], Raleigh-Ritz

minimization [30] as in the hybrid eigenvector following method [31], or the

Lanczos method as in the activation relaxation technique (ART) nouveau [32].

Given the geometry of the saddle point, rates can be efficiently calculated

for the forward and backward reactions using the harmonic approximation to

transition state theory (HTST). In this paper, we compare the efficiency of

min-mode following saddle searches to high temperature molecular dynamics

(MD) saddle searches.

When using a min-mode following method, initial configurations are

generated by displacing away from a minimum energy configuration. The choice

of which degrees of freedom to displace (e.g. under-coordinated atoms) and

the distribution of the displacement (e.g. a Gaussian distribution with a prede-

termined variance) need to be determined for each system under investigation.

These parameters not only effect the computational efficiency of the algorithm,

but also the accuracy of the resulting KMC simulation, as the distribution of

initial configurations and the shape of the potential energy surface determine

the probability that a particular saddle will be found. This makes it difficult

to calculate the confidence that all of the important reactive events that are

relevant at the simulation temperature have been found.

In a MD saddle search, the trajectory is confined to the initial potential

energy basin by detecting when it escapes the basin and restarting it within

the basin. The escape events can be detected by periodically performing a

geometry optimization to determine if the trajectory is still in the initial energy

basin. If it has exited, the trajectory is terminated and a nudged elastic band

34



(NEB) [46, 47] and/or min-mode following calculation is performed to locate

the saddle point between the initial and final state basins.

An important advantage of using MD over min-mode following methods

to find saddle points is that the probability of finding escape mechanisms with

MD is directly proportional to their rates and their relative importance in the

AKMC event table. At elevated MD temperatures, high entropy processes are

overrepresented as compared to the temperature of interest, but this bias can

be corrected within the HTST approximation. This is the strategy used by

Voter and coworkers in their temperature accelerated dynamics (TAD) method

[48], where escape events are found with high temperature MD trajectories and

the escape times at the low temperature are determined from an Arrhenius

extrapolation.

This work closely follows the TAD procedure for sampling possible

escape pathways with high temperature MD. The difference is that we are

not aiming to find just the first escape event at low temperature, instead, we

want to find the entire set of escape pathways and rates that are accessible at

the low temperature for use in AKMC. Key to the effective use of MD saddle

search with AKMC (MDSS-AKMC) is an estimator for the completeness of the

rate table. In past work, a confidence in the rate table found with min-mode

following methods was based upon an assumed distribution for discovering

saddle points, such as a uniform distribution.[33] This assumption can be a poor

one. Even in well understood systems where the chosen initial displacement size

and direction are close to optimal, it can be hundreds of times more likely to

find one saddle than another, even when the two events have a similar rate.[29]

With MD saddle searches, however, an unbiased error in the KMC rate catalog

can be determined. Recently, Bhute and Chatterjee have shown how this can
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be done using a maximum likelihood estimation of the total escape rate.[49, 50]

Here, we use the HTST expression as in TAD to derive an estimator for the

error in the total rate, and use this as a criterion for sufficient discovery of

the rate catalogue to escape a state. In this way, we show how MDSS based

AKMC can be done with higher accuracy and sometimes even more efficiently

than when based upon min-mode following saddle searches. All numerical

calculation were performed with the EON software.[51]

3.3 Error in the Escape Rate Due to an Incomplete
Rate Catalog

The complete rate catalog C is the set of escape rate constants of all N

possible escape processes from a potential energy basin. Technically this is a

multiset as different processes may have the same rate constant. Initially, when

dynamically building the rate catalog, none of the processes are known. As they

are identified, they are added to the set of found events F and removed from the

complementary set of missing events M. The total escape rate, K, is defined

as the sum of the escape rates, ki, of each process at the low temperature of

interest

K =
N∑
i=1

ki,Tlow . (3.1)

In a KMC simulation, the probability of picking an event is proportional

to its rate. Thus an appropriate error measure E for the rate catalogue F is

the probability of picking one of the missing processes (in M) in a KMC step

based upon the complete catalogue C,

E(F) = 1− 1

K

∑
ki∈F

ki,Tlow =
1

K

∑
ki∈M

ki,Tlow . (3.2)
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Under our assumption of first-order kinetics, the mean-first-escape-time for each

process, τi, is exponentially distributed according to the rate ki. Integrating the

distribution up to time t yields the probability that the process has occurred

by time t

p(t; ki) =

∫ t

0

ki exp(−kiτi) dτi = 1− exp(−kit). (3.3)

The probability of having found a particular set F of processes by time t in

the high temperature MD simulation is

P (F) =
∏
ki∈F

p(t; ki,Thigh)
∏
ki∈M

1− p(t; ki,Thigh). (3.4)

Here, ki,Thigh are the rate constants at the high temperature. P (F) represents

the joint probability of having independently found the events in F and having

not yet found the events in M. Now we may express the average error at time

t by averaging over all possible sets of processes that may be found

E(C) =
∑

F∈P(C)

P (F)E(F) (3.5)

= 1− 1

K

N∑
i=1

p(t; ki,Thigh)ki,Tlow , (3.6)

where the P(C) represents the power set (the set of all subsets) of C. A

derivation of Eq. 3.6 is given in Appendix A. In the case that k1,Thigh =k2,Thigh =

. . .=kN,Thigh = kThigh , Eq. 3.6 reduces to the simple form

E(C) = 1− p(t; kThigh) = exp(−kThight). (3.7)

Note that there is no dependence upon N in this last expression. This means

that if all of high temperature rate constants are equal then the uncertainty in

the rate table can be expressed exactly using only that rate.
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Figure 3.1: Distribution of rate constants ki,Tlow in a model system. As the
temperature is raised, the rate constants ki,Thigh become closer.

3.4 Estimator of the Escape Rate Error

In an AKMC simulation, only the set of found processes F are known.

The total rate K is unknown and therefore Eqs. 3.2 and 3.5 cannot be evaluated

directly. Instead, we can construct an estimator for the average error using

information from the set F and the MD time used to discover F,

X(F) = 1−
∑
ki∈F

p(t; ki,Thigh)ki,Tlow/
∑
ki∈F

ki,Tlow . (3.8)

The assumption made in Eq. 3.8 is that the average error at time t from the

known set of events F is a good estimator for the error from the complete

set C. Another way of stating this approximation is that the events in F are

characteristic of those in C.

The estimator X(F) asymptotically approaches the average error, E(C),

in two cases. The first is as t approaches infinity (i.e. when all processes

have been found), where it reduces to Eq. 3.6. The second is as the MD

temperatures approaches infinity for systems where each process has the same
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Figure 3.2: Comparison of the average error in the rate catalog E(C) (solid
line) and the proposed estimator of the error X(F) (dashed line) for the three
distributions of high temperature rates shown in Fig. 3.1.

entropic prefactor (i.e. when k1,Thigh =k2,Thigh = . . .=kN,Thigh), where it reduces

to Eq. 3.7.

In order to demonstrate the behavior of the estimator, we have chosen

a simple model system with three processes: k1,Tlow =0.009, k2,Tlow =0.09, and

k3,Tlow =0.9 s−1. Three cases will be examined for the high temperature MD

rates: ki,Thigh =ki,Tlow , ki,Thigh =k
3/4
i,Tlow

, ki,Thigh =k
1/2
i,Tlow

. These cases correspond to

performing the MD sampling directly at the temperature of interest, at a 33%

increase, and at a 100% increase in temperature. In this model, the prefactor

of each process is considered to be the same. The rate constants for each case

are shown in Fig. 3.1.

The quality of the estimator X(F) is determined by comparing its

average, X(C), to the exact average error E(C). X(C) is obtained in a similar

manner to Eq. 3.5,

X(C) =
∑

F∈P(C)

P (F)X(F). (3.9)

Results from analytic evaluation of Eqs. 3.5 and 3.9 for the model system are
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shown in Fig. 3.2. In the case that ki,Thigh =ki,Tlow , the MD rates are separated

by an order of magnitude, which is far from the equal-rate case where the

estimator is exact. At short time this leads to significant underestimation of

the error because the fast process, which is found first, is not characteristic of

the entire set, violating the assumption of the estimator. As the temperature

is raised, the rate of finding the processes increases. Importantly, the spread

between the high-temperature rates also decreases so that the error is accurately

modeled by the estimator at all times.

3.5 Vacancy Cluster Formation in Iron

Systems that have been modeled using long time scale dynamics include

materials which have been damaged by radiation. One such model system that

has been used to compare long time scale methods is vacancy cluster formation

in body centered cubic (bcc) Fe. The system was introduced by Fan et. al to

demonstrate their autonomous basin climbing (ABC) algorithm.[52] In their

calculation, the coalescence of vacancies into nano-voids was determined to

occur on the time scale of hours at an initial temperature of 50◦C and a heating

rate of 0.01 K/s. Interestingly, a similar calculation was done by Brommer et.

al using the kinetic activation relaxation technique (k-ART) [53] who calculated

a time scale of milliseconds for the coalescence – a difference of eight orders

of magnitude. This remarkable disagreement provides a strong motivation for

developing benchmarks that can be used to compare the accuracy of different

long timescale dynamics methods. As such, we define such a benchmark which

is close to these previous calculations, which we then also use to test our error

estimator in MDSS-AKMC.

The initial configuration for the benchmark has 50 randomly placed
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Figure 3.3: The effect of temperature on the HTST rate constants in a bcc Fe
lattice with vacancies.

vacancies in a 10×10×10 a0 supercell of bcc Fe, where a0 = 2.87 Å is taken as

the experimental lattice constant. Initially, the average vacancy cluster size,

Vn is unity (or very close to unity). The state-to-state evolution of the system

is followed in time based upon rate constants calculated using HTST with

a fixed entropic prefactor of 5×1012 s−1 at a temperature of 423 K. A fixed

prefactor was chosen to focus the benchmark to the efficiency of saddle point

determination. States are defined as the set of points that minimize to the

same geometry. The potential energy is evaluated with an embedded atom

method (EAM) model, as parameterized by Ackland et. al.[54] The requirement

of the benchmark is to determine the average time for the potential energy to

decrease below -7763.5 eV. This final energy corresponds to an average vacancy

cluster size Vn > 9.

The choice of Thigh is important for the efficiency of MDSS-AKMC.

Increasing Thigh increases the rate at which processes are found. Too high,

however, and a systematic error is introduced in X(F) due to anharmonic

corrections to the HTST rates in Eq. 3.8 and the loss of first-order kinetics. The

second issue can be addressed by reaching local equilibrium before running high
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temperature dynamics as in modified TAD.[55] Fig. 3.3 shows the spectrum of

rate constants for an initial configuration (Vn ∼ 1) and a final configuration

(Vn ∼ 10) at 423 K (Tlow), 800 K, and 1200 K. In both states, MD at Tlow

cannot be used to sample transitions on the picosecond time scale of our saddle

searches. At 800 K the temperature is sufficient to overcome the relatively low

barriers of vacancy diffusion in the initial state. In the final state, however,

when the vacancies have clustered, a higher temperature of 1200 K is necessary.

The accuracy of the estimator is shown in Fig. 3.4 as a function of Thigh.

In the initial state, X(F) is a good (and safe) estimator of the error in the rate

catalogue at 800 K. At 1200 K the harmonic approximation starts to break

down, and the estimator loses accuracy. In the final state 1200 K is appropriate

and the estimator is accurate. In order to overcome the high barriers at the

end of the simulation, we choose Thigh to be 1200 K. Tuning Thigh appropriately

for different states would be a natural improvement to the method.

Four independent MDSS-AKMC simulations were run with MD saddle
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Figure 3.5: Four AKMC trajectories of 50 randomly distributed vacancies in a
10×10×10 supercell of bcc Fe. (a) Average vacancy cluster size; (b) fraction
of monovacancies (MV); and (c) potential energy of the minima along the
trajectories.

searches performed in each state at 1200 K, until X(F) < 0.01, which corre-

sponds to a 99% confidence in the total escape rate. The average time taken to

reach a potential energy of less than -7763.5 eV was calculated as 12± 5 ms.

Figure 3.5 shows the average vacancy cluster size, fraction of defects that are

monovacancies, and the potential energy as functions of time for each trajectory.

While it is not possible to directly compare this time to previously reported

ABC and k-ART simulations because of differences in the temperature profile,

our calculated time scale for vacancy cluster formation are in much better

agreement with k-ART than ABC.
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3.6 Comparing the Efficiency of MD and Dimer Saddle
Searches

Saddle searches based on MD have the advantage of allowing an error

estimator of the escape rate from a state. This does not nessecarily mean,

however, that MD is a computationally efficient way of finding saddle points.

A numerical comparison of MD and dimer saddle searches is done for three

systems: Al adatom diffusion on an Al(100) surface modeled with an an

embedded atom model developed by Voter and Chen [18]; the motion of a

compact Pt heptamer island on a Pt(111) surface modeled with a a Morse

potential [56]; and vacancy cluster formation in bcc Fe, as described in Sec. 3.5.

Our metric for comparing the saddle search methods is the average

relative error in the total escape rate. Here the escape rate is defined as the

rate to exit from the initial potential energy basin and is obtained by averaging

Eq. 3.2 over 50 runs vs. the number of potential energy (force) evaluations.

All rates are calculated using HTST, with a constant vibrational prefactor of

5×1012 s−1, at 300 K for the Al and Fe systems and at 700 K for the Pt system.

The total escape rate K in Eq. 3.2 was evaluated by first running 20,000 high

temperature MD saddle searches to obtain a rate catalog that was considered

complete.

The initial distribution of configurations for the dimer saddle searches

was tuned for each system based upon chemical intuition. In this way, a

priori knowledge of likely reaction mechanisms can be used to reduce the

computational effort. In each case, searches were initiated with displacements

from the reactant minimum drawn from a Gaussian distribution in a subset

of the Cartesian degrees of freedom. In the Al system, the adatom and its

first coordination shell (15 degrees of freedom) were displaced with a standard
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Figure 3.6: An efficiency comparison of dimer and MD saddle searches for three
different systems: Pt heptamer diffusion; Al adatom diffusion; and vacancy
cluster ripening in bcc Fe. The inset for the Fe system shows the initial
distribution of vacancies.

deviation of σ = 0.2 Å. In the Pt system, all seven island atoms (21 degrees of

freedom) were displaced by σ = 0.1 Å. In the Fe system a random Fe atom

with coordination number less than eight was displaced, as well as all neighbors

within 6 Å, by σ = 0.2 Å. For the MD saddle searches only the Thigh parameter

is required; temperatures of 1000, 1200, and 2000 K were chosen for the Al, Fe,

and Pt systems respectively.

Differences in efficiency are shown for the three systems in Fig. 3.6. In

the Pt system, the dimer searches significantly outperform the MD searches.

This is due to the localized displacement scheme that effectively targets the
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most important mechanism of island sliding.

In the Al system, diffusion mechanisms involve both the adatom and

surface atoms. This makes it more difficult to construct an effective distribution

for dimer search displacements. The performance of the two methods here

is similar unless a highly accurate rate catalog is required. In this low-error

regime, high-energy long range events involving many atoms must be found

and these are hard to find with the dimer initiated with displacements localized

around the adatom.

In the initial state of the Fe system, there are 337 atoms that neighbor

the 50 vacancies. These under-coordinated atoms are targeted by the dimer

searches. While each of the vacancies can diffuse, the escape rate is dominated

by a single fast process involving two nearby vacancies. This outlier can

be seen in the initial state spectrum of rates at 423 K in Fig. 3.3. Since a

random selection of the correct under-coordinated atom to displace has a small

probability, the MD search strategy is more efficient because it automatically

finds the fast event with a high probability.

Each MD saddle search takes on average several times more force calls

to find a saddle. In the Al, Fe, and Pt systems the MD saddle searches were

six, two, and four times more expensive, respectively. Despite the increased

cost per search, the MD method can still outperform dimer searches. There

are a few reasons for this. First, dimer searches can wander to configurations

of high energy where they are terminated, or to saddles which do not connect

back to the initial state minimum (by steepest descent). Second, while dimer

searches can be localized to active regions of configuration space, intuition may

not be good enough to target the part of the system with the highest rates (as

in the bcc Fe case). While MD has a higher overhead, per search, it is more
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Table 3.1: The three fastest events at 300 K for Al adatom diffusion on a
Al(100) surface.

Event Prefactor Barrier HTST Rate (s−1) MD Rate (s−1)

(s−1) (eV) 300 K 800 K 800 K

2-Atom Exchange 1.4×1013 0.206 5.0×109 7.3×1011 (4.2 ± 0.3)×1011

Hop 5.8×1012 0.377 2.7×106 2.4×1010 (7.7 ± 0.8)×1010

4-Atom Exchange 2.0×1014 0.396 4.6×107 6.6×1011 (2.9 ± 0.5)×1010
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Figure 3.7: The average relative error in the rate for Al adatom diffusion on
Al(100) at 300 K with MDSS performed at 800 K, E(C), (solid lines) compared
with the average estimated error, X(C), (dashed lines) with a fixed harmonic
prefactor of 5×1012 s−1 (top) and the Vineyard prefactor (bottom).

likely to find relevant saddles of high rate which are connected to the initial

state. Combined with a good error estimation, MD searches can be preferable,

particularly in cases where high accuracy is desired.

3.7 Discussion

In order to evaluate the estimator X(F) the high temperature rates

ki,Thigh must be known. In the Fe vacancy cluster formation simulation, the

estimator, when evaluated with these HTST rates, was found to be accurate

47



enough to be useful as a stopping criterion. However, it is not always the case

that the HTST rate is a good estimate of the high temperature escape rate.

For example, the three fastest diffusion events in the Al adatom on

Al(100) system at 300 K are a 2-atom exchange mechanism, where the adatom

pushes a substrate atom up onto the surface; a hop mechanism, where the

adatom moves directly to a neighboring site; and a 4-atom exchange mechanism

where the adatom pushes three substrate atoms so that one surfaces three sites

away. The rates of these events as calculated by HTST and MD are shown

in Table 3.1. The HTST rate of the 4-atom exchange mechanism is 22 times

greater than what is observed in a direct MD simulation. The high HTST

rate means that the estimator underestimates the error on the characteristic

timescale of this event. Figure 3.7 shows the average value of the error estimator

compared to the true average error. Two cases are considered: a constant

prefactor for all events of 5×1012 s−1 and a Vineyard harmonic prefactor

calculated by diagonalizing the dynamical matrix, which in turn is calculated

by finite difference. [57] In the case of the constant prefactor the predicted

high temperature rates significantly underestimate the true rate, which results

in an overly conservative estimator. With the harmonic prefactor, the error

estimator is accurate until the relative error reaches the contribution of the

4-atom exchange, at about 1% of the total rate. At this point the estimator

diverges from the true error. A promising future direction is to obtain a more

accurate true rate from the statistics of the high temperature MD trajectory.

MDSS-AKMC is similar to Voter’s TAD method, but there are significant

differences. In TAD, high temperature MD is used to find escape events from

a state and the time at which that event would have occurred at a lower

temperature of interest is extrapolated from HTST. Once confidence has been
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reached that the first event at low temperature has been found, the transition

is taken and the processes is repeated in the new state. One might then ask

why one should do the additional work in MDSS-AKMC to reach confidence

for the rate catalogue. First, an advantage of doing AKMC with the rate

catalogue is that it is based upon rates calculated at the low temperature, and

does not rely on an extrapolation based upon the HTST approximation at the

high temperature, as in TAD. In principle the AKMC rates can be made as

accurate as desired, for example using dynamical corrections to TST. Second,

MDSS-AKMC can be augmented with computational strategies that efficiently

recover known reaction mechanisms, including saddle recycling [33] and the

kinetic database [39]. Third, AKMC allows for efficient coarse-graining of fast

rates through the Monte Carlo with absorbing Markov chains approach [58].

The relative strengths of TAD and MDSS-AKMC, as well as the possibility of

a hybrid approach, will be the subject of future studies.

3.8 Conclusion

We have described a method to determine the events that go into an

AKMC rate catalog using high temperature MD saddle searches. In simulations

of surface and bulk diffusion, this MDSS-AKMC method is shown to be efficient

for the calculation of long time scale dynamics in comparison to AKMC based

upon dimer saddle searches.
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3.10 Appendix

Here we give the details of how Eq. 3.6 is derived from the definition

given in Eq. 3.5.

Proof.

E(C) =
∑

F∈P(C)

P (F)E(F) (3.5)

=
1

K

∑
F∈P(C)

∑
ki∈M

ki,Tlow
∏
kj∈F

p(t; kj,Thigh)
∏
kj∈M

1− p(t; kj,Thigh) (3.10)

=
1

K

1∑
n1=0

· · ·
1∑

nN=0

N∑
i=1

(1− ni)ki,Tlow
N∏
j=1

p(t; kj,Thigh)nj(1− p(t; kj,Thigh))1−nj

(3.11)

=
1

K

kN,Tlow(1− p(t; kN,Thigh))
1∑

n1=0

· · ·
1∑

nN−1=0

N−1∏
j=1

p(t; ki,Thigh)nj(1− p(t; ki,Thigh))1−nj

+
1∑

n1=0

· · ·
1∑

nN−1=0

N−1∑
i=1

kini

N−1∏
j=1

p(t; ki,Thigh)nj(1− p(t; ki,Thigh))1−nj


(3.12)

=
1

K
kN,Tlow(1− p(t; kN,Thigh)) + E({k1, . . . , kN−1}) (3.13)

=
1

K

N∑
i=1

(1− p(t; ki,Thigh))ki,Tlow (3.14)

=1− 1

K

N∑
i=1

p(t; ki,Thigh)ki,Tlow (3.6)
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Eq. 3.10 follows from the definitions of E(F) and P (F). In Eq. 3.11,

the sum over the power set of C has been re-written as N sums over indicator

variables (ni) in order to enumerate all subsets of C. In Eq. 3.12, the N th

sum has been explicitly evaluated for nN = 0 and nN = 1. The factor∑1
n1=0 · · ·

∑1
nN−1=0

∏N−1
j=1 p(t; ki,Thigh)nj(1− p(t; ki,Thigh))1−nj is equal to one as

it represents the sum of probabilities of all the ways to find any subset of

{k1, . . . , kN−1}. Eq. 3.13 is a recursion relation for E(C) used to give Eq. 3.14,

which is equivalent to Eq. 3.6.
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Chapter 4

Benchmarks for characterization of minima,

transition states and pathways in atomic

systems

4.1 Abstract

A set of benchmark systems is defined to compare different compu-

tational approaches for characterizing local minima, transition states, and

pathways in atomic and molecular systems. Comparisons between several

commonly used methods are presented. The strengths and weaknesses are dis-

cussed, as well as some implementation details that are important for achieving

the best performance. All of the benchmarks and methodology are provided

in an online database to make the implementation details available and the

results reproducible. While this paper provides a snapshot of the benchmark

results, the online framework is structured to be dynamic and incorporate new

methods and codes as they are developed.

4.2 Introduction

Computational tools for geometry optimization of potential energy

surfaces (PESs) are ubiquitous in the field of computational chemistry and

molecular and materials science. The most appropriate and efficient tools are

generally determined by a few limited comparisons between available methods
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and codes, rather than a systematic consensus of the strengths and weaknesses of

different methods. There are several reasons for this. One is that the efficiency

of different methods can vary with the system in question, so it is may be

difficult to draw general conclusions in terms of the performance. Another

issue is that different research groups have their own codes, often involving

methods that they have developed, and are naturally biased towards using

them. Furthermore, the barriers associated with distributing and supporting

codes for others to use, as well as understanding and implementing different

methods, makes systematic comparisons difficult. Finally, the community has

not emphasized the importance of standard benchmarks. Such a benchmark

database, containing codes and results, will facilitate comparisons between

methods and implementations, as well as making it easier to draw general

conclusions regarding performance. The benefit will be both for the community

of developers as well as for users who want to understand the similarities and

differences of available methods.

The performance of geometry optimization algorithms can be sensitive

to the form of the underlying objective function. In this regard, our focus in

the present contribution is specifically on systems in chemistry and materials

science, where we want to find atomic structures that are stationary points

on the PES. Local minima are usually the first structures to be considered,

because they provide information about the thermodynamically stable states of

the system. We are also interested in the kinetics that determine the pathways

between the stable states. Within the context of transition state theory (TST)

the first-order saddle points that connect states via intrinsic reaction coordinate,

minimum energy paths (MEPs), are also important.[59] Accordingly, we also

investigate methods for finding these transition states and the approximate
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steepest-descent paths that connect them, from which energy barriers and

reaction rates can be determined.

This manuscript is structured as follows: First, we define our choice of

benchmark systems and codes to test, and perform a comparison of minimization

methods to find local minima. Second, we compare global optimization methods,

involving a long sequence of displacements from local minima and minimizations,

designed to find globally low-energy structures. Third, we investigate single-

ended saddle point finding methods to find a nearby saddle from a given initial

position. Fourth, we compare double-ended saddle point finding methods,

which attempt to locate a saddle between a specified initial and final position.

Finally, we look at methods to find all the low energy saddles that lead from

an initial minimum in order to calculate the rate of escape from harmonic TST.

The paper concludes with a discussion of the results and information about

the online benchmark database.

4.3 Benchmark systems

Four different atomic clusters and condensed phase systems are compared

in these benchmarks: (a) a cluster of 38 particles interacting through a pairwise

Lennard-Jones potential (LJ38); (b) a two-component LJ cluster with 100

particles (BLJ100); (c) a seven-atom heptamer island supported on a low energy

(111) surface of a face-centered cubic (FCC) material interacting via a pairwise

Morse potential; and (d) a bulk FCC system for the same Morse potential.

Figure 4.1 illustrates these four systems.

The LJ potential employs the standard 6-12 form,[60] appropriate for
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Figure 4.1: The four benchmark systems: (a) Lennard-Jones 38-particle cluster,
LJ38; (b) two-component LJ100 cluster; (c) heptamer island on a (111) surface;
and (d) bulk Pt as described by a Morse potential.

describing the interaction between noble gas atoms,

VLJ = 4ε
∑
i<j

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (4.1)

where rij = ‖rj − ri‖ and ri is the position vector for atom i. The Morse

potential also takes a pairwise additive form,[61]

VMorse =

[∑
i<j

Ae−2a(rij−r0) − 2Ae−a(rij−r0)

]
, (4.2)

where A=0.7102 eV, a=1.6047 Å−1, and r0=2.8970 Å were chosen to fit bulk

Pt[56].

There are a couple of differences between these systems that can affect

the performance of the methods. The LJ38 and LJ100 systems are clusters in

the gas phase, where rotations and translations need to be explicitly accounted

55



for. The LJ potential is also quite ‘stiff’ in terms of producing relatively large

forces and curvatures when atoms approach each other. The Morse potential in

the present parameterisation is ‘softer’ and somewhat easier for quasi-Newton

optimizers (those that build up a local approximation to the curvature) to

handle. The surface system has frozen atoms, which automatically prevent

translation and rotation. These differences affect the performance of the

different optimizers, especially the searches for transition states.

4.4 Method implementations

Four in-house codes, pele[62], optim[63], gmin[64], and Eon[65] were

compared, as well as ase[66], and scipy[67]. These programs implement a

variety of optimizers, including limited-memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS),[13] conjugate gradients (CG), [12, 68] fast inertial relaxation

engine (FIRE), [11] the damped dynamics ‘quick-min’ (QM) method,[10] and

steepest-descent (SD). Double-ended transition state algorithms include the

climbing-image nudged elastic band (CI-NEB) [46, 47] and doubly nudged

elastic band (D-NEB) [69] methods; single-ended min-mode following methods

include the hybrid eigenvector-following (EF), [31, 70] dimer, [29, 71, 72] and

Lanczos algorithms, as in the activation-relaxation technique (ARTn). [32]

Global optimization was performed using basin-hopping (BH) [40].

The details of these methods will not be discussed here; they are

fully documented in the references. Instead, we will mention any important

implementation details, as well as qualitative differences between the methods

which explain their relative performance.
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4.5 Results

4.5.1 Local Optimization

In the first local optimization benchmark, a set of 1000 structures for

the LJ38 cluster are minimized until the magnitude (L2 norm) of the force is

less than 10−2 reduced units. The initial structures were generated using a

cluster-growing algorithm.[73]

The local optimization benchmark demands that the programs load

each of these structures and minimize the energy for the LJ potential until the

magnitude of the force is less than 10−2 reduced units. The average number

of gradient evaluations of the potential (force calls) is reported, as well as the

minimum and maximum number of force calls to find any single minimum.

Note that we are comparing force-based optimizers, so it is assumed that the

force is evaluated at every iteration; the energy is typically evaluated as well, so

each force call also counts these calculations. Table 4.1 summarizes a selected

set of benchmark results; when codes have similar performance, only one

characteristic value is reported. Figure 4.2 shows how the different algorithms

compare in a typical run. A full set of results for these tests and all the other

benchmarks reported here can be found online at http://optbench.org/. A

comparison of the performance for typical starting configuration is shown in

Figure 4.2.

In this local optimization benchmark, LBFGS is the clear winner, with

CG (the other quasi-Newton optimizer) in second place, followed by the other

methods. This result is not surprising;[74] both LBFGS and CG employ

numerical curvature information to accelerate optimization within a harmonic

approximation of the potential. CG can be thought of as having memory of a

single curvature, whereas LBFGS builds up an approximate inverse Hessian
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Table 4.1: Minimization of LJ38 configurations until ‖Force‖ < 10−2.

Code Method Force calls
Avg Min Max

optim LBFGS 176 90 421
pele LBFGS 177 88 408
Eon LBFGS 181 90 405
ase LBFGS 355 166 9317
Eon CG 453 207 1154
Eon FIRE 645 207 2963
Eon QM 3523 667 9929
Eon SD 4901 1355 9982

with a longer memory. In our implementation, the performance of LBFGS

gradually improves with the memory, and a default value of 20 cycles works

well, though additional speed gains can be made with larger values. Perhaps

even more important, however, is that LBFGS provides a step length, whereas

CG gives only a direction. Some implementations of CG use a bracketing

approach to find a minimum along this direction; the implementation in Eon

evaluates the curvature along the direction with a second force evaluation and

does a Newton’s step to approximate the location of the zero in the force along

the line. This formulation requires a second force call at each step compared

to LBFGS, which is evident from the results in Table 4.1, with CG taking

approximately twice as long to converge as LBFGS.

The non-quasi-Newton methods, FIRE, QM, and SD, are all slower.

The potential advantage of these methods is stability,[74] although stability of

the optimizers was not an issue for this benchmark.

The same relative performance for the different optimizers is reflected

in a second benchmark, namely the minimization of 1000 structures randomly
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Figure 4.2: Performance of the different optimizers for LJ38 as implemented in
the Eon code.

displaced from a bulk crystalline FCC structure, modeled with a Morse in-

teratomic potential. Again, LBFGS is the fastest, followed by CG and then

the methods that do not use approximate curvature information. The LBFGS

implementation in ase is a little slower because it uses a fixed initial Hessian

(here 25 eV/Å2) as opposed to the LBFGS implementations in Eon, optim,

and pele, where the initial Hessian is updated at each step based upon the

the curvature between the current and previous configurations.

A few comments should be made about our implementations of these

optimizers. First, all methods employed a ‘max move’ parameter; if the

optimizers ever try to make a step larger than this maximum, the size is

reduced in magnitude to the limit. Our limit is generally set between 0.1–

0.2 Å, or a fraction of a LJ distance unit. Another important issue is that the

two quasi-Newton methods, LBFGS and CG, can reach ill-conditioned states.

When the optimizers operate outside the harmonic region around a minimum,

negative Hessian eigenvalues can be introduced into the memory in LBFGS.
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Table 4.2: Minimization of a bulk FCC solid until ‖Force‖ < 10−3 eV/Å.

Code Method Force calls
Avg Min Max

pele LBFGS 45 23 73
optim LBFGS 46 21 80
Eon LBFGS 52 35 82
ase LBFGS 62 36 117
Eon CG 106 67 183
Eon FIRE 156 107 212
Eon SD 196 95 360

Following the LBFGS algorithm blindly would take the system to a maximum

for such directions. There are different ways to deal with this situation: in

Eon a ‘max move’ step is taken parallel to the gradient and the memory is

reset; in pele, optim, and gmin, the step is inverted so that the algorithm is

forced to move down the potential, and the memory is retained. The LBFGS

implementations listed simply accept the LBFGS step or do a minimalistic

backtracking linesearch, but none of them, by default, use a full linesearch. CG

algorithms can also become frustrated if the search direction becomes linearly

dependent upon search direction at the previous step. It is essential to check

for this condition, which is done implicitly in the Polak-Ribiere update formula

[75] and explicitly as in the Powell reset criterion [76].

4.5.2 Global Optimization

Two benchmarks are defined for global optimization; the first is for the

same LJ38 cluster considered above for the local optimization test, and the

second is a two-component BLJ100 cluster. The BLJ cluster is composed of

42 A particles and 48 B particles with LJ parameters εAA = εAB = εBB = 1,
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Table 4.3: Global optimization of LJ38 clusters.

Code Method Force Calls (thousands)
Avg Min Max

gmin BH-csm 6 0.3 16
gmin BH-sym 23 0.6 141
gmin BH 266 4.5 916
Eon BH 508 4.6 1796
pele BH 522 9.5 2534

Table 4.4: Global optimization of a two-component BLJ100 cluster. This reports
the average minimum energy energy reached after 2,000,000 force calls. Previous
studies[77] have reported a putative global minimum energy of −604.80 reduced
energy units.

Code Method Lowest Energy
Avg Min Max

GMIN BH/KL -594.68 -602.71 -587.35
Eon BH -584.58 -596.13 -584.58

σAA = 1, σBB = 1.3, and σAB = (σAA+σAB)/2. The first example is a relatively

simple test in which the benchmark requires all entries to report the number

of force calls, on average, required to find the global minimum from 100 initial

structures. The initial structures were generated as in the local optimization

benchmark, except that they were initially minimized. The second benchmark

is significantly harder because of the two components and the frustration in

the energy landscape caused by the different sizes of the particles. Since the

algorithms are not expected to locate the global minimum within the number

of allowed steps, the benchmark reports the average lowest energy, along with

the minimum and maximum values, found from 100 initial structures after

2,000,000 force calls.
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Both Eon and pele use standard Cartesian trial moves and LBFGS

to minimize trial structures; their performance is comparable. The gmin

code is better optimized for this system, using angular moves for surface

atoms[78], as well as symmetrized moves (BH-sym and BH-csm)[79]. However,

the best results obtained so far (Table 4.4) correspond to a deterministic search

scheme to locate the optimal chemical ordering.[80] This procedure is based on

Kernighan and Lin’s (KL)[81] heuristic for partitioning graphs.

4.5.3 Single-Ended Saddle Point Searches

Single-ended saddle point finding methods start from a single configu-

ration on the PES and aim to converge to a nearby saddle point. Almost all

such methods rely on the determination of an uphill direction along which the

potential is a local maximum, while minimizing in the space perpendicular to

that direction. A common choice is to use the local lowest curvature mode as

the maximization direction; this class of methods is referred to as ‘min-mode

following’ methods. Overall translation and rotation can be projected out in

this procedure.[82]

The performance of the min-mode following algorithms can be under-

stood by decomposing them into their two components: (a) identifying the

lowest (non-zero) curvature mode and (b) optimizing to the saddle point. We

compare three strategies for estimating the lowest curvature mode: minimsa-

tion of a Rayleigh-Ritz ratio [30] (hybrid EF methods[31]); rotation of a dimer

(dimer method); and the Lanczos, algorithm as employed in ARTn method. In

fact, the Rayleigh-Ritz approach used in hybrid EF methods is based upon the

same finite-difference gradient of the Rayleigh quotient that is used in the dimer

method, as we have recently reviewed.[83] Rayleigh-Ritz minimization and
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Table 4.5: Determination of the lowest curvature modes for points near saddles
in LJ38. The eigenvector corresponding to the smallest non-zero Hessian
eigenvalue is considered converged when the dot product with the exact vector
is greater than 0.99.

Code Method Force calls
Avg Min Max

optim RR 25 13 58
pele RR 25 12 61
tsase Lanczos 25 13 54
tsase dimer (BFGS) 27 13 65
Eon Lanczos 28 13 73
tsase dimer (CG) 29 13 80
Eon dimer (BFGS) 39 21 92
Eon dimer (CG) 51 16 274

dimer rotations both correspond to minimization of the same force equations,

though the details of implementation can be different.

Table 4.5 compares these strategies by choosing points near saddles in

the LJ38 cluster and seeing how many force calls are required to determine the

lowest eigenvector direction. These methods all use only first derivatives. The

lowest (non-zero) curvature mode could be found by diagonalizing the Hessian

matrix, but this approach is often significantly slower, especially for larger

systems. No initial information about the mode with the smallest non-zero

Hessian eigenvalue is provided; the eigenvector corresponding to the unique

negative eigenvalue is randomly initialized. Both optim, pele and Eon use

LBFGS to as the optimizer in the EF and dimer methods.

The second aspect of single-ended transition state methods is conver-

gence to a saddle, which is achieved by maximizing the potential along the

chosen uphill direction and minimization in all other directions. Again, there
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Table 4.6: Determination of a transition state from a starting point near a
saddle in LJ38. Convergence is defined by ‖Force‖ < 10−3.

Code Method Force calls Failed
Avg Min Max

optim EF 173 64 534 0
pele EF 207 58 2294 0
Eon Lanczos 234 65 1635 0
Eon dimer 528 92 3581 0

are different strategies. At each iteration in hybrid EF, the system is moved

uphill along the negative mode according to a Newton’s method type step,

[84, 85] the system is then minimized in the space perpendicular to that mode,

and the eigenvector corresponding to the uphill direction is reconverged. In

the dimer method, the force is inverted along the lowest mode and followed

uphill with a standard (force-based) optimizer. Table 4.6 shows the relative

performance of the methods for finding a saddle starting from a point between

pairs of adjacent minima in LJ38.

A drawback of the Lanczos algorithm is that several force calls are

required to determine that the lowest eigenvector is sufficiently converged.

This is because convergence of the eigenvector is measured by a change in the

estimated lowest eigenvalue. In contrast, the hybrid EF and dimer methods

use the root mean square gradient for the Rayleigh-Ritz ratio or the rotational

force on the eigenvector to determine convergence, and in fact, to determine

if any steps or rotations are required. Particularly near the saddle, when the

lowest mode is found to sufficient accuracy, the hybrid EF and dimer methods

can outperform Lanczos by avoiding any refinement of the uphill direction.

This effect is illustrated in a slightly different benchmark, using the Pt-
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Table 4.7: Determination of a saddle for the Pt-heptamer island. Convergence
is defined by ‖Force‖ < 10−4 eV/Å.

Code Method Force calls Failed
Avg Min Max

optim EF 71 43 143 0
pele EF 84 53 147 0
Eon Lanczos 113 78 468 0
Eon dimer 138 90 260 0

heptamer island system, where we start with an initial point near a saddle, but

this time the reactant minimum structure is also supplied. Information about

a minimum is typically known, for example when single-ended search methods

are used to find saddles connected to an initial minimum. The vector between

the reactant and the initial search point can be a reasonable guess for the

uphill direction if it does not contain any components of Hessian eigenvectors

corresponding to overall translation or rotation. Using this information, the

performance of the different methods is similar, as shown in Table 4.7.

When fewer force calls are required to find the uphill direction, the

advantage of the dimer and hybrid EF methods is apparent.

4.5.4 Double-Ended Saddle Searching

A second class of saddle point methods involves double-ended searches,

in the sense that they find a saddle (or a set of saddles and intermediate

minima) between specified reactant and product endpoints. To benchmark

these methods, we choose pairs of minima known to be separated by a single

transition state and see how quickly the corresponding saddle can be found.

Table 4.8 shows the results for the LJ38 cluster using selected pairs of adjacent
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Table 4.8: Determination of a transition state between adjacent minima in the
LJ38 cluster with a convergence condition of ‖Force‖ < 10−3.

Code Method Force calls Failed
Avg Min Max

optim DNEB+EF 131 66 260 0
Eon Lanczos 250 85 1103 0
Eon dimer 337 89 2079 0
pele DNEB+EF 444 189 1415 2
Eon CI-NEB(5) 827 407 2347 7
Eon CI-DNEB(5) 861 407 2187 5

minima. An issue for this system, and all gas-phase molecules, is that overall

translation and rotation should be removed. This condition can be achieved (to

some extent) by explicitly projecting out these modes in the NEB methods, but

the chain-of-states approaches can still suffer from elongation of the path due

to displacements between the images along the low or zero-frequency normal

modes. In extreme cases, this elongation can lead to slow convergence, low

resolution of images around the saddle, and a failure to converge. In this LJ38

benchmark, we have chosen a maximum number of force calls (500 iterations)

where NEB calculations that start to develop problems, for example, due to

long paths through intermediate minima, are considered failures.

An example of a ‘failed’ NEB calculation is shown in Fig. 4.3. While we

know that the minima in question are indeed connected by a single transition

state, (found using approximate steepest-descent following small displacements

along the eigenvector corresponding to the unique negative Hessian eigenvalue at

the transition state), convergence of the NEB from an initial linear interpolation

leads to intermediate minima and an elongated path. Using a single-ended

search method to find the first transition state, adding more images, or breaking
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Figure 4.3: Potential energy profile for a NEB calculation that failed to converge
in the LJ38 system due to the presence of an intermediate minimum and path
elongation.

up the band into separate NEB calculations between all local minima, are

sensible ways of recovering from this problem.

The single-ended searches are not as sensitive to complex pathways,

since they search only for a nearby saddle instead of a path. It is still possible to

use them with information from two endpoints. In fact, the dimer and Lanczos

methods work very efficiently when initialized half way between two adjacent

minima, using the vector between as an initial guess for the negative mode.

In pele and optim the double and single-ended approaches are combined.

First a DNEB calculation is performed to find an image in the vicinity of the

saddle. The double-nudging helps to keep the band short and smooth, as well

as helping to prevent elongation of the path. Instead of a fixed number of

images, a constant image density was used. When the force on the highest

energy image drops below a loose force threshold (here ‖Force‖ < 0.1) the

algorithm switches to hybrid EF and the transition state is tightly refined.
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Table 4.9: Determination of a saddle between adjacent minima for the Pt-
heptamer island to a tolerance of ‖Force‖ < 10−4 eV/Å.

Code Method Force calls Failed
Avg Min Max

optim DNEB+EF 103 59 194 0
Eon CI-NEB(1) 110 29 594 0
Eon Lanczos 165 72 308 0
Eon dimer 182 74 322 0
Eon CI-NEB(3) 248 86 761 3
pele DNEB+EF 380 141 2267 3
Eon CI-NEB(5) 391 162 797 0

Switching to hybrid EF avoids having to converge the DNEB images, and

also improves the stability of the single-ended methods, which is particularly

important for gas phase clusters.

For the Pt-heptamer island diffusion test, frozen atoms at the bottom

of the slab hold the surface in place and automatically eliminate rotation and

translational degrees of freedom. Removing these modes that correspond to

zero frequencies improves the relative performance of the NEB method and

reduces the need for double-nudging. Another factor in favor of the NEB is

that the paths chosen to investigate, 60 low energy diffusion mechanisms from

the compact Pt-heptamer, are better approximated by linear interpolation

compared to the LJ38 cluster.

Table 4.9 shows the number of force calls required to find the transition

state along the path, which works efficiently for only a single image CI-NEB

calculation, labeled as CI-NEB(1). The dimer and Lanczos algorithms also

converge, but with some extra work because the eigenvector corresponding to

the negative eigenvalue is optimized instead of being held fixed, as in the single
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image CI-NEB calculation. Realistically, one would not generally use a single

image for an NEB calculation, so we include the three-image NEB, CI-NEB(3),

as a more realistic indication of the cost of the method.

4.6 Discussion and Conclusions

The aim of this work is to establish a set of benchmarks for geometry

optimization, transition state searches, and characterization of pathways in

atomic, molecular and condensed matter systems. The benchmarks can be

accessed at http://optbench.org/. All entries are provided with the corre-

sponding source code and scripts to run the benchmark. Hence the results

should be reproducible and meaningful comparisons are possible. The results

presented here compare a limited number of methods and codes, and include

representative examples from the online database. A longer-term aim is to

have a dynamic site, which is updated as new methods and codes are devel-

oped. Contributions are welcome, either by email or via the subversion (svn)

repository.
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Chapter 5

Using Density Functional Theory and EXAFS

to Determine Nanoparticle Structure

5.1 Abstract

A method for quantifying the accuracy in extended X-ray absorption

fine structure (EXAFS) fitting models is presented. It is used used to study

the structure of bare Au147 nanoparticles as well as particles bound with thiol

ligands, used to systematically vary disorder in the atomic structure. The

accuracy of the fitting models is determined by comparing two distributions of

bond lengths: (1) a direct average over a molecular dynamics (MD) trajectory

using forces and energies from density functional theory and (2) fits to the

theoretical EXAFS spectra generated from that same trajectory. Both Gaussian

and third-cumulant expansion EXAFS fitting models are used to characterize

the first-shell Au-Au bond length distribution. The Gaussian model is found

to significantly underestimate the coordination number, disorder, and bond

length. The third-cumulant expansion model yields accurate predictions for

bond lengths, but incorrectly predicts a decrease in particle size and little

change in the disorder with increasing thiol ligands. A direct analysis of the

MD data shows that the particles become much more disordered with ligand

binding and the high disorder in the nanoparticles is incorrectly interpreted by

the EXAFS models. These theoretical results are realized experimentally for Au

nanoparticles of comparable size, synthesized with a dendrimer encapsulation

70



technique. We finally show that a combination of experimental EXAFS analysis

with candidate models from density functional theory is a promising strategy

for a more accurate determination of nanoparticle structures.

5.2 Introduction

Extended X-ray absorption fine structure (EXAFS) is a powerful tool

for the determination of local atomic structure. The use of in situ EXAFS

analysis is particularly useful for studying catalysts because changes in the

local atomic structure at the surface of a catalyst under reaction conditions

can dramatically change reaction rates. While EXAFS is not surface-sensitive,

catalytic particles on the scale of 1−2nm have a similar number of surface

as bulk atoms, so that surface structure contributes significantly to the total

signal.

The analysis of EXAFS scattering is well-established for bulk materials

in which the local atomic structure is repeated throughout the material. There

is more uncertainty about the appropriate use and accuracy of standard EXAFS

fitting models to determine the structure of nanoparticles. The challenge asso-

ciated with nanoparticles is that they have more disorder in structure which

is correlated to the position in the particle (e.g. a contraction of bonds at

the surface of the particle). The interference pattern in an EXAFS signal

emphasizes the ordered component of the structure so that disorder can be

underestimated, or as we will show here, convoluted with other fitting param-

eters such interatomic distances in the particle or the average coordination

number of the atoms in the particle, which is used to infer the particle size.

Quantification of systematic errors caused by inappropriate EXAFS fitting

models is the focus of this paper.
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Figure 5.1: The scheme for testing the self-consistency of an EXAFS model:
(i) a dynamical trajectory of, in this case, a nanoparticle is simulated and the
distribution of bond lengths (PDF) is collected, and (ii) the EXAFS spectra
is modeled as an average over the trajectory and subsequently fit using the
same EXAFS equations. The resulting parameters, including the average
bond length, R, number of neighbors, N , and the Debye-Waller factor, σ2 are
compared to the direct MD simulation.
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Key to our understanding of systematic errors in EXAFS fitting is a

computational technique designed specifically to test the self-consistency of the

EXAFS analysis, as illustrated in Fig. 5.1. Candidate nanoparticles structures

are generated and modeled using density functional theory (DFT). Molecular

dynamics (MD) trajectories give an ensemble average of structures from which

pair-correlation data between the atoms is collected. Analysis of the pair

distribution function (PDF), generated from the MD trajectory, allows for a

direct calculation of average number of neighbors N , the average bond length R,

and a measure of the disorder in the bond length distribution σ2, quantified by

the Debye-Waller factor. We take this PDF data and the structural parameters

derived directly from it as the target for EXAFS analysis. We then simulate the

EXAFS spectra by averaging the scattering over each structure in the ensemble,

as modeled by the FEFF6 software. Precise simulation of experimental data

is not essential because we then use the same EXAFS equations used in

FEFF6, as provided by FEFFIT, to determine best-fit values of N , R, and

σ2. Comparison with the corresponding values from the structural models used

to generate the EXAFS spectra gives us a measure of how appropriate the

fitting model is, and a quantification of any systematic errors.

Importantly, this approach does not rely on the accurate simulation

of EXAFS spectra as compared to what is observed in an experiment. It

is important, however, to connect with experiment in order to understand

if systematic errors in EXAFS fits are being made in the determination of

nanoparticle structures. Accordingly, we compare our theory to experimental

EXAFS measurements of Au nanoparticles and show that a standard EXAFS

fit using a bulk reference model with a normal distribution of first-neighbor

bonds causes significant errors in the fitted parameters. The systematic error
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is shown to increase with disorder, induced by the binding of thiol groups to

the nanoparticle surface.

A fitting model using the cumulant expansion method is also examined.

Here the Au first-neighbor bond length distribution includes anharmonic cor-

rections to the effective pair potential. This allows the model to account for

the non-Gaussian disorder (both static and dynamic) that arises in nanoparti-

cle systems and offers a significant improvement over the Gaussian model in

predicting mean bond lengths.

We end by suggesting that DFT modeling can be used in concert

with EXAFS to improve the determination the structure of nanoparticle.

Since EXAFS does not provide a unique structure, DFT can help to evaluate

the relative weight of candidate structures from the calculated total energy.

Additionally, explicit theoretical modeling of the EXAFS spectra from many

candidate structures, and a subsequent comparison to experiment, can be used

to determine which theoretical structures are consistent with the experimental

data.

5.2.1 EXAFS Modeling

EXAFS spectra reveal local atomic structure around the X-ray absorbing

atoms. The functional form of the spectrum contains many terms, but can

be roughly described as exponentially decaying sinusoids, whose amplitudes,

frequencies, and decay rates are correlated with coordination numbers, bond

lengths, and structural disorder respectively. The most general model for

EXAFS single scattering describes the positions of the neighboring atoms using
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a probability distribution function

χ(k) =
∑
i

NiS
2
0Fi(k)

kR2
i

×
∫
P (ri)

exp(−2ri/λi(k))

kr2i
sin(2kri + δi(k)) dri. (5.1)

Here P (ri) is the probability of finding a neighbor atom between ri and ri+ dri;

i is a path index which represents different scattering paths (e.g. Au-Au or

Au-S single scattering); k is the photo-electron wavenumber; Ri is the average

bond length; Ni is average coordination number; S2
0 is the amplitude reduction

factor; λi(k) is the mean free path of the photo-electron; Fi(k) is the effective

scattering amplitude; and δi(k) is the effective phase shift.

Theoretical standards[86] can be used to determine the effective scat-

tering amplitude (Fi(k)), the phase shift (δi(k)), and the photo-electron mean

free path (λi(k)). The amplitude reduction factor (S2
0) and the correction to

the energy origin (∆E0) can be determined by fits to experimental standards

(e.g. a metal foil) or recently by the use of theoretical standards. This leaves

P (ri) as the only unknown in Eq. 5.1.

In order to extract structural information from P (ri), a fitting model

must be assumed. A second order Taylor series expansion of Eq. 5.1 about

the mean bond length Ri produces a Gaussian model for the bond length

distribution. This is an appropriate model in systems with a low to moderate

level of disorder. The resulting EXAFS equation is

χ2(k) =
∑
i

NiS
2
0Fi(k)

kR2
i

exp(−2Ri/λi(k))

× exp(−2k2σ2
i ) sin(2kRi + δi(k)). (5.2)

The variance of the Gaussian bond length distribution, σ2
i , is also called the

Debye-Waller factor (DWF).
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In systems with a high level of disorder the Gaussian model is invalid

and a higher order Taylor series expansion must be used. A third order Taylor

series expansion introduces a term, C3 (known as the third cumulant of the

distribution), which is a measure of how skewed the bond length distribution

is from a Gaussian shape. The resulting EXAFS equation is

χ3(k) =
∑
i

NiS
2
0Fi(k)

kR2
i

exp(−2Ri/λi(k))

× exp(−2k2σ2
i ) sin(2kRi −

4k3

3
C3 + δi(k)). (5.3)

For a more detailed derivation of the cumulant expansion method see

References [87, 88]

5.3 Methods

5.3.1 Experimental Details

Au147 dendrimer-encapsulated nanoparticles (DENs) were synthesized

as previous described[89, 90] using sixth-generation amine-terminated (G6-

NH2) poly(amidoamine) dendrimers at a concentration of 2.0 µM. The Au147

DENs were modified with differing amounts of 2-mercaptoethanol (2ME).

The resulting samples are referred to as Au147@Sn, where n is the ratio of

2ME : Au147 DENs. In this study, values of n = 0, 12, 24, 50, and 72 were

investigated.

The Au147@Sn solutions were frozen in liquid N2 and freeze-dried. For

EXAFS analysis, the dried Au147@Sn DENs were mixed with BN and pressed

under 1 metric ton of pressure to form a pellet. EXAFS experiments were

carried out at the National Synchrotron Light Source (Brookhaven National

Laboratory) at beam line X18B. Au L3-edge data were collected at 25 ◦C in

76



transmission mode using gas ionization detector chambers. Au foil data were

collected simultaneously with the sample data in reference mode.

5.3.2 EXAFS Fitting Details

The Gaussian and cumulant expansion fitting models described in

Eqs. 5.2 and 5.3 were used for experimental and theoretical EXAFS data

in order to determine N , R, σ2, and C3 (for the non-Gaussian model) for

the first shell Au-Au pair distribution function for bulk and nanoparticle

gold. Fitting models arising from higher order Taylor series expansions of the

pair distribution function that include a fourth cumulant term (C4) were not

considered as these models gave a worse fit (increase in the reduced chi-squared)

to the experimental dataset. For gold nanoparticles with thiol ligands bound

to the surface, the Au-S pair distribution function was modeled as Gaussian.

The effective scattering amplitudes, Fi(k) and effective phase shifts,

δi(k) were calculated using FEFF6. The amplitude reduction factor (S2
0) and

the correction to the energy origin (∆E0) were determined by a fit to the

experimental Au foil.

All nanoparticle fits were performed simultaneously, with the Au-S bond

length and Au-S DWF constrained to be the same for each particle and the

correction to the energy origin fixed to the experimental bulk foil value. This

fitting procedure was carried out using the IFEFFIT software package. [91, 92]

5.3.3 Computational Details

DFT was used to simulate the equilibrium structures of the bulk Au

and 147-atom Au nanoparticles either bare or with n thiol groups bound to

the surface. For each system, a 10 ps molecular dynamics (MD) simulation
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was performed at 300 K to obtain representative geometries for structural and

EXAFS analysis. We used the Vienna ab initio simulation package (VASP)

code [93] with electron correlation treated within the generalized gradient

approximation using the PBEsol functional, [94] which is a modified form of

Perdew-Burke-Ernzerhof (PBE) [95] with reduced gradient dependence that

improves lattice parameters and surface energies in solids. Core electrons were

described with the projector augmented-wave method. [96, 97] Kohn-Sham

wave functions for the valence electrons were expanded in a plane wave basis

set with an energy cutoff of 200 eV.

Bulk Au was modeled with a 4×4×4 face centered cubic (FCC) supercell

(64 atoms) with a lattice constant of 4.078 Å. The Au147 nanoparticle was

modeled as an icosahedron structure with 20 (111) facets, and the 2ME molecule

was modeled as a (-S-H) ligand to reduce the computational cost as compared

to modeling the entire molecule. Nanoparticles were isolated in a cubic box

with side lengths of 28 Å to avoid artificial interactions between periodic images.

Theoretical EXAFS signals were simulated using an approach similar to

that reported previously.[98] The Au L3-edge EXAFS spectra were calculated

from the MD trajectories by averaging the signal arising from each Au atom in

the particle. Each MD simulation was allowed to thermalize for at least 4 ps

and the per-configuration EXAFS spectra were calculated from snapshots of the

trajectory at intervals of 20 fs for at least 4 ps giving at least 200 independent

configurations in the canonical average. All neighboring atoms up to 6 Å away

from each photo-absorbing atom were included in the scattering calculations.

Once the theoretical EXAFS signal was produced, the correction to the energy

origin that was found for the experimental EXAFS (4.11 eV) was applied to

the theoretical data to align the experimental and theoretical data in k-space.
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Figure 5.2: Comparison of bulk Au (a) DFT-PDF and (b) DFT-EXAFS to
the corresponding experimental data.

The Au-Au PDFs were also produced from similarly sampled snapshots

of the DFT-MD trajectories. Theoretical values for Au-Au coordination number,

bond length, and bond disorder were calculated by considering all Au-Au

bonding pairs shorter than 3.3 Å.

5.4 Results and discussion

5.4.1 Au bulk

Synchrotron based techniques, including XRD-PDF and EXAFS, are

adept for determining the structure of bulk materials. We demonstrate this
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Table 5.1: Derived structural properties of bulk Au including the average bond
length R, coordination number N , and Debye-Waller factor σ2.

Method R (Å) σ2 (10−3 Å2)

PDF expt. 2.854 9.8
PDF theory 2.859 7.9
EXAFS expt. 2.875(24) 9.1(3)
EXAFS theory 2.859(6) 8.2(8)

using a bulk Au system. Figure 5.2 shows the excellent agreement between (a)

the simulated pair distribution function (PDF) and as measured with XRD-

PDF and (b) the EXAFS spectra as simulated from a DFT-MD trajectory and

measured.

Table 5.1 shows good agreement between the different methods in the

physical values of bulk Au derived from the data.

5.4.2 Au147@Sn nanoparticles

Au147@Sn nanoparticles were synthesized with a dendrimer template

technique, characterized using both XRD-PDF and EXAFS as described in the

experimental details section. Modeling was done with DFT-MD, from which

the PDF and EXAFS spectra were calculated for comparison with experiment.

Figure 5.3 shows experimental XRD-PDF data of the particles with

that of our MD-DFT calculations of an icosahedral particle. The icosahedral

shape was found to be a low-energy structure of the Au particle in vacuum

according to our DFT calculations. In order to make appropriate comparison

to experiment, we fit an envelope function (grey) to capture the distribution

of particles in the experiment. Interestingly, the first few peaks show good

agreement, but the overall structure over the length-scale of a nanometer
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Figure 5.3: Measured and calculated pair distribution function (PDF) for a
Au147 nanoparticle.

does not agree. Comparison of the XRD-PDF data with the bulk spectra in

Fig. 5.2(a) shows that the nanoparticle structure is more consistent with being

FCC rather than the icosahedral structure favored by DFT.

Ideally, we would be able to consider an FCC particle instead of icosa-

hedral, but unfortunately as described by DFT, Au FCC cuboctahedral and

truncated octahedral structures are unstable and revert to an icosahedral-like

structure on a time scale of picosecond under room temperature MD. Fortu-

nately, it is the first-neighbor peak which is important for EXAFS and this is

adequately reproduced by the icosahedral model.

Two other points can be made about working with a theoretical model

which may not be in agreement with experiment. First, we are interested in

the range of structural models which are consistent with EXAFS data, and

so finding consistency between a reasonable yet possibly incorrect model is

interesting in and of itself. Second, the central result in this paper, which is

that a standard Gaussian EXAFS analysis of a nanoparticle can result in a

parameters which are biased towards the ordered bulk, is based upon our self-

81



R (Å)

Experiment
Theory

0 1 2 3 4 5 6 7

0.5

0.4

0.3

0.2

0.1

0
8

|χ
(R

)|
  (

Å
-3
)

0.5

0.4

0.3

0.2

0.1

0

|χ
(R

)|
  (

Å
-3
)
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measured EXAFS spectra of bare Au147 and Au147@S72 with 72 thiol ligands
bound to the nanoparticle surface.

consistent theoretical approach and not upon a comparison between experiment

and theory.

The simulated EXAFS spectra from the Au147 particle is shown in

Fig. 5.4(a). Within the radial window of the first-neighbor shell, there is

remarkable agreement with the experimental EXAFS data, especially given

that there is no fitting involved. The agreement is consistent with the similar

first-neighbor peak found in the MD-PDF and XRD-PDF data sets.

We can view the Au147 nanoparticle as likely having a somewhat more

disordered structure as compared to bulk Au. To increase this disorder, we have

introduced thiol ligands to the surface. Figure 5.4(b) again shows a consistent
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Table 5.2: Fitted parameters to a Gaussian and 3rd order cumulant expansion
first-neighbor models of both experimental and theoretical (from DFT-MD)
EXAFS spectra of Au147 and Au147@S72.

System N R σ2 C3

(Å) (10−3 Å2) (10−4 Å3)

Au147 expt. 8.7(11) 2.816(5) 11.8(11) –
Au147 theory 8.6(22) 2.829(10) 12.5(24) –
Au147 expt. 9.0(10) 2.838(10) 12.0(10) 5.3(21)
Au147 theory 8.8(9) 2.859(9) 12.5(10) 7.3(21)
Au147 DFT-MD 9.38 2.871 17.3 11.8

Au147@S72 expt. 6.0(11) 2.825(6) 13.2(17) –
Au147@S72 theory 4.3(11) 2.812(9) 12.0(23) –
Au147@S72 expt. 6.0(10) 2.811(14) 13.2(15) −3.5(31)
Au147@S72 theory 5.3(6) 2.878(8) 12.4(8) 13.5(19)
Au147@S72 DFT-MD 7.58 2.901 26.8 20.8

EXAFS spectra from our DFT-MD model (inset) and the experiment. Both

of these spectra can be fit using a standard approach of assuming a Gaussian

distribution of first-neighbor bond lengths. The resulting fits look quite good

and the parameters derived from the experimental EXAFS spectra and the

theoretical EXAFS spectra simulated from the DFT-MD data are reasonably

consistent. The specific values of the coordination number N , the bond length

R, and Debye-Waller factor σ2 are reported in Table 5.2.

While there is reasonable agreement between the experimental EXAFS

spectra and the one based upon our DFT model, this is not enough to say that

the model is correct. In fact there is a wide range of structural models which

are consistent with a nanoparticle EXAFS spectra. Furthermore, we will argue

next that a standard EXAFS fitting model can have inherent and undetectable

bias towards the model that is used for the fit.

The way we can quantify bias in the EXAFS fit is by our self-consistent
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Figure 5.5: DFT-MD and Gaussian EXAFS fit parameters characterizing the
first-neighbor shell of Au in Au147 and Au147@Sn.

analysis presented in Fig. 5.1. First, the DFT-MD trajectories are analyzed

in terms of their first-neighbor distributions to extract average values of N ,

R, and σ2. These values are the reference that a subsequent EXAFS analysis

should reproduce. Second, FEFF is used to generate an EXAFS spectrum from

the DFT-MD trajectory, and this spectrum is fit using a Gaussian model to

give values of N , R, and σ2 which can be compared to the DFT-MD standard.

Figure 5.5 shows the EXAFS Gaussian fit parameters in comparison

to those obtained by direct MD-DFT. What is remarkable, is that DFT-MD

trajectory shows significantly larger values of N , R, and σ2 as compared to those

based upon a fit to the EXAFS spectra generated from the same trajectory data.
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first-neighbor shell of Au in Au147 and Au147@Sn.

The standard EXAFS analysis indicates that the particles are smaller and more

ordered than they really are. Also, remarkably, the fitted parameters from the

DFT-MD simulated EXAFS are much closer to those seen in experiment, as

compared to those taken directly from the DFT-MD data. This indicates that

a standard fit to the experimental EXAFS data of these nanoparticle can give

structural parameters that are unknowingly many standard deviations away

from the actual values.

In order to account for the large static disorder present in the nanopar-

ticle system, a third order cumulant expansion fitting model for the Au-Au

first-shell was also considered. The third cumulant (C3) represents how skewed,

from a Gaussian distribution, the bond length distribution is. Table 5.2

compares N , R, σ2, and C3 for both fitting models for the theoretical and

experimental Au147 and Au147@S72 particles. The reference DFT-MD values

show that there is significant skew towards longer bond lengths (positive C3)

in the bare Au147 particle and even larger skew for Au147@S72. The primary

improvement provided by this additional degree of freedom in the fitting model
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is an enhanced estimate of the bond length. These estimates are plotted for all

thiol concentrations in Figure 5.6. The bond length estimates in the fit to the

theoretical data are quite good and show the correct trend.

It is relevant to point out that the theoretical fit has one “advantage”

over the experimental fit in regards to determining the bond length. In the

theoretical fit, the correction to the energy origin is exact, since it was fixed

to the value used to generate the EXAFS data. This was done because when

∆E0 was allowed to float in the fit, it was determined to be −4 eV below the

known value and thus the mean bond length was significantly underestimated.

To be consistent, the experimental fit also had a fixed energy origin during

the fit, however, the effect of having it float during the fitting process was

insignificant. Since ∆E0 is highly correlated with the bond length in the fit,

using the correct value (as opposed to letting it float in the fit) increases the

accuracy of the predicted bond length for the theoretical data.

While the bond length estimates improve significantly with the use of

the 3rd order cumulant expansion model, the estimates for σ2 and N did not

improve substantially across the dataset. This means that if only EXAFS fitting

data were used to analyze the Au147@Sn series one would reach a qualitatively

incorrect conclusion: that the addition of thiol did not increase the disorder

and decreased the particle size (coordination number). However, the DFT-MD

data shows a 55% increase in disorder from Au147 to Au147@S72 and a small

decrease in coordination number due only to extreme lengthening of the Au-Au

bonds beyond the 3.3 Å “first-neighbor” cutoff distance.

The range of models which are consistent with the same EXAFS data

can be illustrated by comparing the first-neighbor bond length distribution

from DFT-MD and from the parameters fit to the simulated EXAFS spectra
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based upon the same DFT-MD data. Figure 5.7 shows this comparison for

Au147 and Au147@Sn. The contrasting fit parameters from Fig. 5.5 are reflected

in the distributions, with the Gaussian EXAFS analysis missing the fat tails at

both short but especially long bond lengths seen in the DFT-MD simulations,

and instead giving a more ordered, narrow distribution with a shorter average

bond length.

5.5 Conclusion

In conclusion, we have presented a self-consistent method for measuring

the error in EXAFS fitting models and applied it to the study of disordered

Au147@Sn nanoparticles. We show through the use of DFT-MD simulations,

that EXAFS fitting models can significantly underestimate particle size and

disorder. Since the simulated EXAFS compares well with the experimental

Au147@Sn DENs, it is reasonable to believe that physical systems exist with

this level high level of disorder. Thus the Gaussian fitting model should be

used with caution when fitting nanoparticle data and trends in disorder and

coordination number should be carefully compared with other sources of data

such as DFT simulations in order to interpret the results of the fit.
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[55] David Aristoff and Tony Lelièvre. Mathematical analysis of temperature

accelerated dynamics. Multiscale Model. Simul., 12(1):290–317, 2014.

[56] D. W. Bassett and P. R. Webber. Diffusion of single adatoms of platinum,

iridium and gold on platinum surfaces. Surf. Sci., 70:520, 1978.

[57] G. H. Vineyard. Frequency factors and isotope effects in solid state rate

processes. J. Phys. Chem. Solids, 3:121–127, 1957.

[58] M. A. Novotny. Monte Carlo algorithms with absorbing Markov chains:

Fast local algorithms for slow dynamics. Phys. Rev. Lett., 74:1–5, 1995.

[59] J. N. Murrell and K. J. Laidler. Symmetries of activated complexes.

Trans. Faraday. Soc., 64:371–377, 1968.

[60] J. E. Jones and A. E. Ingham. On the calculation of certain crystal

potential constants, and on the cubic crystal of least potential energy.

Proc. R. Soc. A, 107:636–653, 1925.

[61] P. M. Morse. Diatomic molecules according to the wave mechanics. ii.

vibrational levels. Phys. Rev., 34:57, 1929.

[62] https://github.com/pele-python/pele, 2013.

[63] http://www-wales.ch.cam.ac.uk/OPTIM/, 2013.

[64] http://www-wales.ch.cam.ac.uk/GMIN/, 2013.

95



[65] http://theory.cm.utexas.edu/eon/, 2013.

[66] https://wiki.fysik.dtu.dk/ase/, 2013.

[67] http://www.scipy.org, 2013.

[68] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical recipes in C: The art of scientific computation. Cambridge

University Press, Cambridge, 2nd edition, 1992.

[69] S. A. Trygubenko and D. J. Wales. A doubly nudged elastic band method

for finding transition states. J. Chem. Phys., 120:2082–2094, 2004.

[70] Y. Kumeda, D. J. Wales, and L. J. Munro. Transition states and re-

arrangement mechanisms from hybrid eigenvector-following and density

functional theory. application to C10H10 and defect migration in crystalline

silicon. Chem. Phys. Lett., 341:185–194, 2001.

[71] A. Heyden, A. T. Bell, and F. J. Keil. Efficient methods for finding

transition states in chemical reactions: Comparison of improved dimer

method and partitioned rational function optimization method. J. Chem.

Phys., 123:224101–1–14, 2005.
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