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Alternating minimization (AltMin) is a generic term for a widely pop-

ular approach in non-convex learning: often, it is possible to partition the

variables into two (or more) sets, so that the problem is convex/tractable in

one set if the other is held fixed (and vice versa). This allows for alternating

between optimally updating one set of variables, and then the other. AltMin

methods typically do not have associated global consistency guarantees; even

though they are empirically observed to perform better than methods (e.g.

based on convex optimization) that do have guarantees.

In this thesis, we obtain rigorous performance guarantees for AltMin in

three statistical learning settings: low rank matrix completion, phase retrieval

and learning sparsely-used dictionaries. The overarching theme behind our

results consists of two parts: (i) devising new initialization procedures (as

opposed to doing so randomly, as is typical), and (ii) establishing exponential

local convergence from this initialization. Our work shows that the pursuit

of statistical guarantees can yield algorithmic improvements (initialization in

our case) that perform better in practice.
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Chapter 1

Introduction

A general description of a learning problem is as follows: There is an

underlying model with unknown parameters. We obtain independent samples

distributed according to this model. The goal is to estimate the model from

those samples. The tremendous amount of increase in both amount and variety

of data available over the last decade has resulted in a huge amount of interest

in learning problems in the high dimensional regime. The high dimensional

regime refers to the scenario where the number of unknown parameters is much

larger than the number of samples available. However, in such cases, a variety

of assumptions on the unknown parameters such as sparsity, low-rank etc. arise

naturally. When posed as optimization problems, most of these assumptions

result in non-convex constraints. A major theme in machine learning over the

last decade has been the use of convex relaxations to provably solve such non-

convex learning problems. Lasso [19, 16] for compressed sensing, trace norm

minimization for matrix completion [15, 20, 76] and robust PCA [22, 14] are

some of the prototypical examples of this approach.

Any algorithm for such a high dimensional learning problem is evalu-

ated on two counts: statistical complexity (or sample complexity) and compu-

tational complexity. Statistical complexity refers to the number of examples

(or samples) required by an algorithm for consistent recovery of the model.

Computational complexity, on the other hand, refers to the time taken by

the algorithm. Though convex relaxation methods such as lasso, trace norm

minimization etc. are known to have good (in many cases optimal) statis-

tical complexity, their computational complexity is high and hence, they do

not scale well to large scale problems. Moreover, there are no known ways of

implementing most of these algorithms in a distributed fashion.

To overcome this problem, researchers have come up with efficient

heuristics that scale well to large problem sizes and have good performance

1



Algorithm 1 AltMinGeneral

input Function f(·, ·)
1: Choose U0

2: for t← 1, · · · , T do
3: V t ← argminV f(U t−1, V )
4: U t ← argminU f(U, V t)
5: end for

output (UT , V T )

(i.e., statistical complexity) in practice. In spite of the success of such heuris-

tics on real world data, there have been very few theoretical guarantees for

such heuristics. The only exception is compressed sensing, for which a variety

of non-convex methods have been shown to work [83, 94, 34]. To summarize,

for many problems such as matrix sensing, matrix completion, robust PCA,

though there are heuristics that work quite well in practice, till date the only

methods with theoretical guarantees are the ones based on convex relaxation.

1.1 Alternating Minimization

In many non-convex inference problems, it turns out that it is possible

to partition the variables into two (or more) sets such that the problem is

convex in one set if we fix the other set. Alternating minimization is a heuristic

for such problems where we optimize one set of variables while holding the

other fixed and vice versa. Algorithm 1 gives the pseudocode of the algorithm.

AltMin is widely used and forms the basis of many popular algorithms:

k-means for learning mixtures of Gaussians [91], Netflix prize winning BellKor

algorithm [53] and so on. In spite of its empirical success, till date there are

very few results on its performance in any setting [4, 48].

1.2 Our Contributions

In this dissertation, we make progress in addressing the above issue:

i.e., we prove guarantees on the performance of alternating minimization for

2



three machine learning problems. Our results are as follows:

• Matrix completion using alternating minimization: In Chapter 2,

we obtain statistical guarantees for alternating minimization as applied

to the matrix completion problem. The matrix completion problem is,

given partial entries of a matrix, to fill in the remaining ones under the

assumption that the matrix is low-rank. We show that if the underlying

matrix is incoherent and the samples are drawn uniformly at random

from among all the entries, then the statistical complexity of alternating

minimization is O (k7n log n) where k is the rank of the underlying n×n

matrix. Further more, we show linear convergence of the estimate matrix

to the underlying matrix.

• Phase retrieval using alternating minimization: The phase re-

trieval problem is to recover a complex n-dimensional signal using lin-

ear magnitude measurements. In Chapter 3, we show that O
(
n log2 n

)

Gaussian magnitude measurements are sufficient to recover the underly-

ing signal using alternating minimization with high probability. Further

more, we show linear convergence of the estimate vector to the underly-

ing vector.

• Learning Sparsely Used Dictionaries: In Chapter 4, we consider

the problem of learning sparsely used dictionaries, where, given exam-

ples (which are vectors in R
d), we wish to find a set of dictionary el-

ements such that each example has a sparse representation as a linear

combination of very few dictionary elements. For the case of incoherent

dictionaries and sufficiently sparse representations, we present an ap-

proximate recovery algorithm and show that alternating minimization

followed by this approximate recovery step succeeds in recovering the

underlying dictionary if the number of examples is larger than O (r2).

The rest of the document is organized as follows: In Chapter 2 we

present our results on matrix completion using alternating minimization and

in Chapter 3, we present our results on phase retreival using alternating min-

imization. In Chapter 4, we present our results on the problem of learning

sparsely used dictionaries. We conclude in Chapter 5. Most of the technical

results are deferred to the appendices.

3



Chapter 2

Matrix Completion using Alternating

Minimization

2.1 Introduction

Finding 1 a low-rank matrix to fit / approximate observations is a fun-

damental task in data analysis. In a slew of applications, a popular empirical

approach has been to represent the target rank k matrix X ∈ R
m×n in a bi-

linear form X = UV †, where U ∈ R
m×k and V ∈ R

n×k. Typically, this is done

for two reasons:

(a) Size and computation: If the rank k of the target matrix (to be estimated)

is much smaller than m,n, then U, V are significantly smaller than X and

hence are more efficient to optimize for. This is crucial for several practical

applications, e.g., recommender systems where one routinely encounters ma-

trices with billions of entries.

(b) Modeling: In several applications, one would like to impose extra con-

straints on the target matrix, besides just low rank. Oftentimes, these con-

straints might be easier and more natural to impose on factors U , V . For

example, in Sparse PCA [96], one looks for a low-rank X that is the product

of sparse U and V .

Due to the above two reasons, in several applications, the target matrix

X is parameterized by X = UV †. For example, clustering [52], sparse PCA

[96] etc.

Using the bi-linear parametrization of the target matrix X, the task

of estimating X now reduces to finding U and V that, for example, minimize

1An extended abstract of the results in this chapter appeared as [45]. The coauthors on
the paper had equal contributions in obtaining these results.

4



an error metric. The resulting problem is typically non-convex due to bi-

linearity. Correspondingly, a popular approach has been to use alternating

minimization: iteratively keep one of U, V fixed and optimize over the other,

then switch and repeat, see e.g. [54]. While the overall problem is non-convex,

each sub-problem is typically convex and can be solved efficiently.

Despite wide usage of bi-linear representation and alternating mini-

mization, there has been to date almost no theoretical understanding of when

such a formulation works. Motivated by this disconnect between theory and

practice in the estimation of low-rank matrices, in this chapter, we provide

one of the first guarantees for performance of alternating minimization, for

two low-rank matrix recovery problems: matrix completion, and matrix sens-

ing.

Matrix completion involves completing a low-rank matrix, by observing

only a few of its elements. Its recent popularity, and primary motivation,

comes from recommendation systems [54], where the task is to complete a

user-item ratings matrix using only a small number of ratings. As elaborated

in Section 2.3, alternating minimization becomes particularly appealing for

this problem as it provides a fast, distributed algorithm that can exploit both

sparsity of ratings as well as the low-rank bi-linear parametrization of X.

Matrix sensing refers to the problem of recovering a low-rank matrix

M ∈ R
m×n from affine equations. That is, given d linear measurements bi =

tr(A†
iM) and measurement matrices Ai’s, the goal is to recover back M . This

problem is particularly interesting in the case of d≪ mn and was first studied

in [77] and subsequently in [44, 56]. In fact, matrix completion is a special case

of this problem, where each observed entry in the matrix completion problem

represents one single-element measurement matrix Ai.

Without any extra conditions, both matrix sensing and matrix comple-

tion are ill-posed problems, with potentially multiple low-rank solutions, and

are in general NP hard [66]. Current work on these problems thus impose some

extra conditions, which makes the problems both well defined, and amenable

to solution via the respective proposed algorithms [77, 15]. In this chapter, we

show that under similar conditions to the ones used by the existing methods,

alternating minimization also guarantees recovery of the true matrix; we also

show that it requires only a small number of computationally cheap iterations

5



and hence, as observed empirically, is computationally much more efficient

than the existing methods.

Notations: We represent a matrix by capital letter (e.g. M) and a vector

by small letter (u). ui represents i-th element of u and Uij denotes (i, j)-th

entry of U . Ui represents i-th column of U and U (i) represents i-th row of U .

A† denotes matrix transpose of A. u = vec(U) represents vectorized U , i.e.,

u = [U †
1 U †

2 . . . U †
k ]

†. ‖u‖p denotes Lp norm of u, i.e., ‖u‖p = (
∑

i |ui|p)1/p.
By default, ‖u‖ denotes L2 norm of u. ‖A‖F denotes Frobenius norm of A,

i.e., ‖vec(A)‖2. ‖A‖2 = maxx,‖x‖2=1 ‖Ax‖2 denotes spectral norm of A. tr(A)

denotes the trace (sum of diagonal elements) of square matrix A. Typically,

Û , V̂ represent factor matrices (i.e., Û ∈ R
m×k and V̂ ∈ R

n×k) and U , V

represent their orthonormal basis.

2.2 Related Work

Alternating Minimization: Alternating minimization and its vari-

ants have been applied to several low-rank matrix estimation problems. For

example, clustering [52], sparse PCA [96], non-negative matrix factorization

[51], signed network prediction [41] etc. There are three main reasons for such

wide applicability of this approach: a) low-memory footprint and fast itera-

tions, b) flexible modeling, c) amenable to parallelization. However, despite

such empirical success, this approach has largely been used as a heuristic and

has had no theoretical analysis other than the guarantees of convergence to

the local minima [93].

After this work was completed, we became aware of [49] which provides

an analysis of alternating minimization for matrix completion. Along with [49],

ours is the first analysis of this approach for the problem of matrix completion.

Moreover, ours is the first analysis of this approach for the problem of matrix

sensing. .

Matrix Completion: This is the problem of completing a low-rank matrix

from a few sampled entries. Candes and Recht [15] provided the first results

on this problem, showing that under the random sampling and incoherence

conditions (detailed above), O(kn1.2 log n) samples allow for recovery via con-

vex trace-norm minimization; this was improved to O(kn log n) in [20]. For

6



large matrices, this approach is not very attractive due to the need to store

and update the entire matrix, and because iterative methods for trace norm

minimization require O( 1√
ǫ
) steps to achieve additive error of ǫ. Moreover,

each such step needs to compute an SVD.

Another approach, in [50], involved taking a single SVD, followed by

gradient descent on a Grassmanian manifold. However, (a) this is more ex-

pensive than alternating minimization as it needs to compute gradient over

Grassmanian manifold which in general is a computationally intensive step,

and (b) the analysis of the algorithm only guarantees asymptotic convergence,

and in the worst case might take exponential time in the problem size.

The most closely related work to ours is [49], which provides guarantees

for alternating minimization for the case of matrix completion. [49] shows

that consistent recovery is possible if the sampling probability p scales as

Ω

(
k
(

σ∗
1

σ∗
k

)8
logn
m

)
. Our result is worse than theirs in the dependence on k

while being better in the dependence on the condition number.

Recently, several other matrix completion type of problems have been

studied in the literature. For example, robust PCA [22, 14], spectral clustering

[46] etc. Here again, under additional assumptions, convex relaxation based

methods have rigorous analysis but alternating minimization based algorithms

continue to be algorithms of choice in practice.

Matrix Sensing: The general problem of matrix sensing was first proposed

by [77]. They established recovery via trace norm minimization, assuming

the sensing operator satisfies “restricted isometry” conditions. Subsequently,

several other methods [44, 56] were proposed for this problem that also recovers

the underlying matrix with optimal number of measurements and can give an ǫ-

additive approximation in time O(log(1/ǫ). But, similar to matrix completion,

most of these methods require computing SVD of a large matrix at each step

and hence have poor scalability to large problems.

We show that AltMinSense and AltMin-Completion provide more scal-

able algorithms for their respective problems. We demonstrate that these

algorithms have geometric convergence to the optima, while each iteration is

relatively cheap. For this, we assume conditions similar to those required by

existing algorithms; albeit, with one drawback: number of samples required by

7



our analysis depend on the condition number of the underlying matrix M . For

the matrix sensing problem, we remove this requirement by using a stagewise

algorithm; we leave similar analysis for matrix completion as an open problem.

2.3 Our Results

In this section, we will first define the matrix sensing problem, and

present our results for it. Subsequently, we will do the same for matrix com-

pletion. The matrix sensing setting – i.e. recovery of any low-rank matrix from

linear measurements that satisfy matrix RIP – represents an easier analytical

setting than matrix completion, but still captures several key properties of the

problem that helps us in developing an analysis for matrix completion. We

note that for either problem, ours represent one of the first global optimal-

ity guarantees for alternating minimization based algorithms. Due to lack of

space, we do not present the proofs of these results in this document. Please

refer [45] for complete proofs of all the results in this chapter.

Matrix Sensing via Alternating Minimization

Given d linear measurements bi = 〈M,Ai〉 = tr(A†
iM), 1 ≤ i ≤ d of an

unknown rank-k matrix M ∈ R
m×n and the sensing matrices Ai, 1 ≤ i ≤ d, the

goal in matrix sensing is to recover back M . In the following we collate these

coefficients, so that b ∈ R
d is the vector of bi’s, and A(·) : Rm×n → d is the

corresponding linear map, with b = A(M). With this notation, the Low-Rank

Matrix Sensing problem is:

Find X ∈ R
m×n, s.t A(X) = b, rank(X) ≤ k. (LRMS)

As in the existing work [77] on this problem, we are interested in the under-

determined case, where d < mn. Note that this problem is a strict gener-

alization of the popular compressed sensing problem [18]; compressed sensing

represents the case when M is restricted to be a diagonal matrix.

For matrix sensing, alternating minimization approach involves rep-

resenting X as a product of two matrices U ∈ R
m×k and V ∈ R

n×k, i.e.,

X = UV †. If k is (much) smaller than m,n, these matrices will be (much)

8



smaller than X. With this bi-linear representation, alternating minimization

can be viewed as an approximate way to solve the following non-convex opti-

mization problem:

min
U∈Rm×k,V ∈Rn×k

‖A(UV †)− b‖22

As mentioned earlier, alternating minimization algorithm for matrix sensing

now alternately solves for U and V while fixing the other factor. See Algo-

rithm 2 for a pseudo-code of AltMinSense algorithm that we analyze.

We note two key properties of AltMinSense : a) Each minimization –

over U with V fixed, and vice versa – is a simple least-squares problem, which

can be solved in time O(dn2k2 + n3k3)2, b) We initialize U0 to be the top-k

left singular vectors of
∑

i Aibi (step 2 of Algorithm 2). This provides a good

initialization point for the sensing problem which is crucial; if the first iterate

Û0 is orthogonal, or almost orthogonal, to the true U∗ subspace, AltMinSense

may never converge to the true space (this is easy to see in the simplest case,

when the map is identity, i.e. A(X) = X – in which case AltMinSense just

becomes the power method).

Algorithm 2 AltMinSense : Alternating minimization for matrix sensing

1: Input b,A
2: Initialize Û0 to be the top-k left singular vectors of

∑
i Aibi

3: for t = 0, · · · , T − 1 do
4: V̂ t+1 ← argminV ∈Rn×k ‖A(Û t V †)− b‖22
5: Û t+1 ← argminU∈Rm×k ‖A(U (V̂ t+1)†)− b‖22
6: end for
7: Return X = ÛT (V̂ T )†

In general, since d < mn, problem (LRMS) is not well posed as there

can be multiple rank-k solutions that satisfy A(X) = b. However, inspired by

a similar condition in compressed sensing [18], Recht et al. [77] showed that if

the linear map A satisfies a (matrix) restricted isometry property (RIP), then

a trace-norm based convex relaxation of (LRMS) leads to exact recovery. This

property is defined below.

2Throughout this chapter, we assume m ≤ n.
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Definition 2.3.1. [77] A linear operator A(·) : Rm×n → R
d is said to satisfy

k-RIP, with δk RIP constant, if for all X ∈ R
m×n s.t. rank(X) ≤ k, the

following holds:

(1− δk) ‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δk) ‖X‖2F . (1)

Several random matrix ensembles with sufficiently many measurements

(d) satisfy matrix RIP [77]. For example, if d = Ω( 1
δ2k
kn log n) and each entry

of Ai is sampled i.i.d. from a 0-mean sub-Gaussian distribution then k-RIP is

satisfied with RIP constant δk.

We now present our main result for AltMinSense.

Theorem 2.3.1. Let M = U∗Σ∗V ∗† be a rank-k matrix with non zero singular

values σ∗
1 ≥ σ∗

2 · · · ≥ σ∗
k. Also, let the linear measurement operator A(·) :

R
m×n → R

d satisfy 2k-RIP with RIP constant δ2k <
(σ∗

k)
2

(σ∗
1)

2
1

100k
. Then, in the

AltMinSense algorithm (Algorithm 2), for all T > 2 log(‖M‖F/ǫ), the iterates

ÛT and V̂ T satisfy:

‖M − ÛT (V̂ T )†‖F ≤ ǫ.

The above theorem establishes geometric convergence (in O(log(1/ǫ))

steps) of AltMinSense to the optimal solution of (LRMS) under standard RIP

assumptions. This is in contrast to existing iterative methods for trace-norm

minimization all of which require at least O( 1√
ǫ
) steps; interior point methods

for trace-norm minimization converge to the optimum in O(log(1/ǫ)) steps but

require storage of the full m×n matrix and require O(n5) time per step, which

makes it infeasible for even moderate sized problems.

Recently, several projected gradient based methods have been devel-

oped for matrix sensing [44, 56] that also guarantee convergence to the op-

timum in O(log(1/ǫ)) steps. But each iteration in these algorithms requires

computation of the top k singular components of an m × n matrix, which is

typically significantly slower than solving a least squares problem (as required

by each iteration of AltMinSense).

Stagewise AltMinSense Algorithm: A drawback of our analysis for Alt-

MinSense is the dependence of δ2k on the condition number (κ =
σ∗
1

σ∗
k
) of M ,

which implies that the number of measurements d required by AltMinSense

10



Algorithm 3 Stage-AltMin: Stagewise Alternating Minimization for Ma-
trix Sensing

1: Input: b,A
2: ÛT ← [], V̂ T ← []
3: for i = 1, · · · , k do
4: [Û0

1:i V̂ 0
1:i] = top i-singular vectors of(

ÛT
1:i−1(V̂

T
1:i−1)

† − 3
4
A

T (A(ÛT
1:i−1(V̂

T
1:i−1)

†)− b)
)

i.e., one step of SVP

[44]
5: for t = 0, · · · , T − 1 do
6: V̂ t+1

1:i ← argminV ∈Rn×i ‖A(Û t
1:iV

†)− b‖22
7: Û t+1

1:i ← argminU∈Rm×i ‖A(U1:i(V̂
t+1
1:i )†)− b‖22

8: end for
9: end for

10: Output: X = ÛT
1:i(V̂

T
1:i)

†

grows quadratically with κ. We address this issue by using a stagewise version

of AltMinSense (Algorithm 3) for which we are able to obtain near optimal

measurement requirement.

The key idea behind our stagewise algorithm is that if one of the singu-

lar vectors of M is very dominant, then we can treat the underlying matrix as

a rank-1 matrix plus noise and approximately recover the top singular vector.

Once we remove this singular vector from the measurements, we will have a

relatively well-conditioned problem. Hence, at each stage of Algorithm 3, we

seek to remove the remaining most dominant singular vector of M . The main

result regarding the performance of Stage-AltMin is stated in the following

theorem.

Theorem 2.3.2. Let M = U∗Σ∗V ∗† be a rank-k incoherent matrix with non

zero singular values σ∗
1 ≥ σ∗

2 · · · ≥ σ∗
k. Also, let A(·) : Rm×n → R

d be a linear

measurement operator that satisfies 2k-RIP with RIP constant δ2k < 1
3200k2

.

Suppose, Stage-AltMin (Algorithm 3) is supplied inputs A, b = A(M). Then,

the i-th stage iterates ÛT
1:i, V

T
1:i satisfy:

‖M − ÛT
1:i

(
V T
1:i

)† ‖2F ≤ max(ǫ, 16k(σ∗
i+1)

2),
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where T = Ω(log(‖M‖2F/ǫ)). That is, the T -th step iterates of the k-th stage,

satisfy: ‖M − ÛT
1:k

(
V T
1:k

)† ‖2F ≤ ǫ.

The above theorem guarantees exact recovery using O(k4n log n) mea-

surements which is only O(k3) worse than the information theoretic lower

bound. We also note that for simplicity of analysis, we did not optimize the

constant factors in δ2k.

Matrix Completion via Alternating Minimization

The matrix completion problem is the following: there is an unknown

rank-k matrix M ∈ R
m×n, of which we know a set Ω ⊂ [m]× [n] of elements;

that is, we know the values of elements Mij, for (i, j) ∈ Ω. The task is to

recover M . Formally, the Low-Rank Matrix Completion problem is:

Find rank-k matrix X s.t. PΩ(X) = PΩ(M), (LRMC)

where for any matrix S and a set of elements Ω ⊂ [m] × [n] the matrix

PΩ(S) ∈ R
m×n is as defined below:

PΩ(S)ij =

{
Sij if (i, j) ∈ Ω,

0 otherwise.
(2)

We are again interested in the under-determined case; in fact, for a fixed rank

k, as few as O(n log n) elements may be observed. This problem is a special

case of matrix sensing, with the measurement matrices Ai = eje
†
ℓ being non-

zero only in single elements; however, such matrices do not satisfy matrix RIP

conditions like (1). For example, consider a low-rank M = e1e
†
1 for which a

uniformly random Ω of size O(n log n) will most likely miss the non-zero entry

of M .

Nevertheless, like matrix sensing, matrix completion has been shown

to be possible once additional conditions are applied to the low-rank matrix

M and the observation set Ω. Starting with the first work [15], the typical

assumption has been to have Ω generated uniformly at random, and M to

satisfy a particular incoherence property that, loosely speaking, makes it very
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far from a sparse matrix. In this chapter, we show that once such assump-

tions are made, alternating minimization also succeeds. We now restate, and

subsequently use, this incoherence definition.

Definition 2.3.2. [15] A matrix M ∈ R
m×n is incoherent with parameter µ

if:

∥∥u(i)
∥∥
2
≤ µ
√
k√
m
∀ i ∈ [m],

∥∥v(j)
∥∥
2
≤ µ
√
k√
n
∀ j ∈ [n], (3)

where M = UΣV T is the SVD of M and u(i), v(j) denote the ith row of U and

the jth row of V respectively.

The alternating minimization algorithm can be viewed as an approxi-

mate way to solve the following non-convex problem:

min
U,V ∈Rn×k

‖PΩ(UV †)− PΩ(M)‖2F

Similar to AltMinSense, the altmin procedure proceeds by alternatively solving

for U and V . As noted earlier, this approach has been popular in practice and

has seen several variants and extensions being used in practice [95, 54, 53, 23].

However, for ease of analysis, our algorithm further modifies the standard

alternating minimization method. In particular, we introduce partitioning of

the observed set Ω, so that we use different partitions of Ω in each iteration. See

Algorithm 4 for a pseudo-code of our variant of the alternating minimization

approach.

Our use of some technical lemmas from [50] renders all the constants

dependent on n
m
. In what follows, a constant by default is assumed to depend

on n
m
. We believe that our results hold even with out this assumption but

proving this seems to take a little more work. We now present our main result

for (LRMC):

Theorem 2.3.3. Let M = U∗Σ∗V ∗† ∈ R
m×n (n ≥ m) be a rank-k incoherent

matrix, i.e., both U∗ and V ∗ are µ-incoherent (see Definition 2.3.2). Also, let

each entry of M be observed uniformly and independently with probability,

p > C

(
σ∗
1

σ∗
k

)4
µ4k7 log n log k‖M‖F

ǫ

mδ22k
,
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Algorithm 4 AltMinComplete: Alternating minimization for matrix com-
pletion

1: Input: observed set Ω, values PΩ(M)
2: Partition Ω into 2T+1 subsets Ω0, · · · ,Ω2T with each element of Ω belong-

ing to one of the Ωt with equal probability (sampling with replacement)

3: Û0 = SV D(1
p
PΩ0(M), k) i.e., top-k left singular vectors of 1

p
PΩ0(M)

4: Clipping step : Set all elements of Û0 that have magnitude greater than
2µ

√
k√

n
to zero and orthonormalize the columns of Û0

5: for t = 0, · · · , T − 1 do
6: V̂ t+1 ← argminV ∈Rn×k ‖PΩt+1(Û

tV † −M)‖2F
7: Û t+1 ← argminU∈Rm×k ‖PΩT+t+1

(U
(
V̂ t+1

)†
−M)‖2F

8: end for
9: Return X = ÛT (V̂ T )†

where δ2k ≤ σ∗
k

Cσ∗
1
and C > 0 is a global constant. Then w.h.p. for T =

C ′ log
‖M‖

F

ǫ
, the outputs ÛT and V T of Algorithm 4, with input (Ω, PΩ(M))

(see Equation (2)) satisfy:
∥∥∥M − ÛT

(
V T
)†∥∥∥

F
≤ ǫ.

The above theorem implies that by observing

|Ω| = O
(
(
σ∗
1

σ∗
k
)6k7n log n log(k‖M‖F/ǫ)

)
random entries of an incoherent M ,

AltMinComplete can recover M in O(log(1/ǫ)) steps. In terms of sample com-

plexity (|Ω|), our results show alternating minimization may require a bigger Ω

than convex optimization, as our result has |Ω| depend on the condition num-

ber, required accuracy (ǫ) and worse dependence on k than known bounds. In

contrast, trace-norm minimization based methods require O(kn log n) samples

only.

Empirically however, this is not seen to be the case – see Section 2.7.

In terms of time complexity, we show that AltMinComplete needs time

O(|Ω|k2 log(1/ǫ)). This is in contrast to popular trace-norm minimization

based methods that need O(1/
√
ǫ) steps [10] and total time complexity of

O(|Ω|n/√ǫ); note that the latter can be potentially quadratic in n. Further-

more, each step of such methods requires computation of the SVD of an m×n
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matrix. As mentioned earlier, interior point methods for trace-norm minimiza-

tion also converge in O(log(1/ǫ)) steps but each iteration requires O(n5) steps

and need storage of the entire m× n matrix X.

2.4 Matrix Sensing

In this section, we study the matrix sensing problem (LRMS) and prove

that if the measurement operator, A, satisfies RIP then AltMinSense (Algo-

rithm 2) recovers the underlying low-rank matrix exactly (see Theorem 2.3.1).

At a high level, we prove Theorem 2.3.1 by showing that the “distance”

between subspaces spanned by V̂ t (iterate at time t) and V ∗ decreases expo-

nentially with t. This done based on the observation that once the (standard)

matrix RIP condition (Definition 2.3.1) holds, alternating minimization can

be viewed, and analyzed, as a perturbed version of the power method.

This is easiest to see for the rank-1 case below; we detail this proof, and then

the more general rank-k case.

In this paper, we use the following definition of distance between sub-

spaces:

Definition 2.4.1. [38] Given two matrices Û , Ŵ ∈ R
m×k, the (principal angle)

distance between the subspaces spanned by the columns of Û and Ŵ is given

by:

dist
(
Û , Ŵ

)
def
=
∥∥∥U †

⊥W
∥∥∥
2
=
∥∥∥W †

⊥U
∥∥∥
2

where U andW are orthonormal bases of the spaces Span
(
Û
)
and Span

(
Ŵ
)
,

respectively. Similarly, U⊥ and W⊥ are any orthonormal bases of the perpen-

dicular spaces Span (U)⊥ and Span (W )⊥, respectively.

Note: (a) The distance depends only on the spaces spanned by the

columns of Û , Ŵ , (b) if the ranks of Û and Ŵ (i.e. the dimensions of their

spans) are not equal, then dist
(
Û , Ŵ

)
= 1, and (c) dist

(
Û , Ŵ

)
= 0 if and

only if they span the same subspace of Rm.
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We now present a theorem that bounds the distance between the sub-

spaces spanned by V̂ t and V ∗ and show that it decreases exponentially with

t.

Theorem 2.4.1. Let b = A(M) where M and A satisfy assumptions given

in Theorem 2.3.1. Then, the (t + 1)-th iterates Û t+1, V̂ t+1 of AltMinSense

satisfy:

dist
(
V̂ t+1, V ∗

)
≤ 1

4
· dist

(
Û t, U∗

)
,

dist
(
Û t+1, U∗

)
≤ 1

4
· dist

(
V̂ t+1, V ∗

)

where dist (U,W ) denotes the principal angle based distance (see Definition 2.4.1).

Using Theorem 2.4.1, we are now ready to prove Theorem 2.3.1.

Proof Of Theorem 2.3.1. Assuming correctness of Theorem 2.4.1, Theorem 2.3.1

follows by using the following set of inequalities:

‖M − ÛT (V̂ T )†‖2F
ζ1
≤ 1

1− δ2k
‖A(M − ÛT (V̂ T )†)‖22,

ζ2
≤ 1

1− δ2k
‖A(M(I − V T (V T )†))‖22,

ζ3
≤ 1 + δ2k

1− δ2k
‖U∗Σ∗(V ∗)†(I − V T (V T )†))‖2F ,

ζ4
≤ 1 + δ2k

1− δ2k
‖M‖2Fdist2

(
V T , V ∗) ζ5

≤ ǫ,

where V T is an orthonormal basis of V̂ T , ζ1 and ζ3 follow by RIP, ζ2 holds as

ÛT is the least squares solution, ζ4 follows from the definition of dist(·, ·) and
finally ζ5 follows from Theorem 2.4.1 and by setting T appropriately.

To complete the proof of Theorem 2.3.1, we now need to prove The-

orem 2.4.1. In the next section, we illustrate the main ideas of the proof of

Theorem 2.4.1 by applying it to a rank-1 matrix i.e., when k = 1. We then

provide a proof of Theorem 2.4.1 for arbitrary k in Section 2.4.2.
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2.4.1 Rank-1 Case

In this section, we provide a proof of Theorem 2.4.1 for the special

case of k = 1. That is, let M = u∗σ∗(v∗)† s.t. u∗ ∈ R
m, ‖u∗‖2 = 1 and

v∗ ∈ R
n, ‖v∗‖2 = 1. Also note that when û and ŵ are vectors, dist(û, ŵ) =

1− (u†w)2, where u = û/‖û‖2 and w = ŵ/‖ŵ‖2.
Consider the t-th update step in the AltMinSense procedure. As v̂t+1 =

argminv̂

∑d
i=1

(
ût†A†

i v̂ − σ∗u∗†A†
iv

∗
)2
, setting the gradient of the above objec-

tive function to 0, we obtain:

(
d∑

i=1

Aiu
t(ut)†A†

i

)
‖ût‖2v̂t+1 = σ∗

(
d∑

i=1

Aiu
tu∗†A†

i

)
v∗,

where ut = ût/‖ût‖2. Now, letB =
∑d

i=1 Aiu
t(ut)†A†

i and C =
∑d

i=1 Aiu
t(u∗)†A†

i .

Then,

‖ût‖2v̂t+1 = σ∗B−1Cv∗,

= 〈u∗, ut〉σ∗v∗︸ ︷︷ ︸
Power Method

−B−1
(
〈u∗, ut〉B − C

)
σ∗v∗︸ ︷︷ ︸

Error Term

. (4)

Note that the first term in the above expression is the power method iterate

(i.e., M †ut). The second term is an error term and the goal is to show that

it becomes smaller as ut gets closer to u∗. Note that when ut = u∗, the error

term is 0 irrespective of the measurement operator A.

Below, we provide a precise bound on the error term:

Lemma 2.4.2. Consider the error term defined in (4) and let A satisfy 2-RIP

with constant δ2. Then,

‖B−1
(
〈u∗, ut〉B − C

)
v∗‖ ≤ 3δ2

1− 3δ2

√
1− 〈ut, u∗〉2

See Appendix A.2.1 for a detailed proof of the above lemma.

Using the above lemma, we now finish the proof of Theorem 2.4.1:
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Proof of Rank-1 case of Theorem 2.4.1. Let vt+1 = v̂t+1/‖v̂t+1‖2. Now, using

(4) and Lemma 2.4.2:,

〈vt+1, v∗〉 = 〈v̂
t+1, v∗〉
‖v̂t+1‖ =

〈v̂t+1/σ∗, v∗〉
‖v̂t+1/σ∗‖

≤ 〈u∗, ut〉 − δ̂2
√
1− 〈u∗, ut〉2√(

〈u∗, ut〉 − δ̂2
√
1− 〈u∗, ut〉2

)2
+ δ̂22 (1− 〈u∗, ut〉2)

,

where δ̂2 =
3δ2

1−3δ2
. That is,

dist2(vt+1, v∗) ≤ δ̂22(1− 〈u∗, ut〉2)
(〈u∗, ut〉 − δ̂2

√
1− 〈u∗, ut〉2)2 + δ̂22(1− 〈u∗, ut〉2)

,

Hence, assuming 〈u∗, ut〉 ≥ 5δ̂2, dist(v
t+1, v∗) ≤ 1

4
dist(ut, u∗). As dist(ut+1, u∗)

and dist(vt+1, v∗) are decreasing with t (from the above bound), we only need

to show that 〈u0, ut〉 ≥ 5δ̂2. Recall that û0 is obtained by using one step of

SVP algorithm [44]. Hence, using Lemma 2.1 of [44] (see Lemma A.1.1):

‖σ∗
1(I − u0(u0)†)u∗)‖22 ≤ ‖M − û0(v̂0)†‖2F ≤ 2δ2‖M‖2F .

Therefore, 〈u0, u∗〉 ≥
√
1− 2δ2 ≥ 5δ̂2 assuming δ2 ≤ 1

100
.

2.4.2 Rank-k Case

In this section, we present the proof of Theorem 2.4.1 for arbitrary k,

i.e., when M is a rank-k matrix (with SVD U∗Σ∗ (V ∗)†).

Similar to the analysis for the rank-1 case (Section 2.4.1), we show that

even for arbitrary k, the updates of AltMinSense are essentially power-method

type updates but with a bounded error term whose magnitude decreases with

each iteration.

However, directly analyzing iterates of AltMinSense is a bit tedious

due to non-orthonormality of intermediate iterates Û . Instead, for analysis

only we consider the iterates of a modified version of AltMinSense, where
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we explicitly orthonormalize each iterate using the QR-decomposition3. In

particular, suppose we replace steps 4 and 5 of AltMinSensewith the following

Û t = U tRt
U (QR decomposition),

V̂ t+1 ← argmin
V

‖A(U tV †)− b‖22,

V̂ t+1 = V t+1Rt+1
V (QR decomposition)

Û t+1 ← argmin
U

‖A(U(V t+1)†)− b‖22 (5)

In our algorithm, in each iterate both Û t, V̂ t remain full-rank because dist (U t, U∗) <

1; with this, the following lemma implies that the spaces spanned by the it-

erates in our AltMinSense algorithm are exactly the same as the respective

ones by the iterates of the above modified version (and hence the distances

dist(Û t, U∗) and dist(V̂ t, V ∗) are also the same for the two algorithms).

Lemma 2.4.3. Let Û t be the tth iterate of our AltMinSense algorithm, and

Ũ t of the modified version stated above. Suppose also that both Û t, Ũ t are

full-rank, and span the same subspace. Then the same will be true for the

subsequent iterates for the two algorithms, i.e. Span(V̂ t+1) = Span(Ṽ t+1),

Span(Û t+1) = Span(Ũ t+1), and all matrices at iterate t+ 1 will be full-rank.

The proof of the above lemma can be found in Appendix A.2.2. In light

of this, we will now prove Theorem 2.4.1 with the new QR-based iterates (5).

Lemma 2.4.4. Let Û t be the t-th step iterate of AltMinSense and let U t, V̂ t+1

and V t+1 be obtained by Update (5). Then,

V̂ t+1 = V ∗Σ∗U∗†U t

︸ ︷︷ ︸
Power-method

Update

− F︸︷︷︸
Error
Term

, V t+1 = V̂ t+1(R(t+1))−1, (6)

where F is an error matrix defined in (8) and R(t+1) is a triangular matrix

obtained using QR-decomposition of V̂ t+1.

3The QR decomposition factorizes a matrix into an orthonormal matrix (a basis of its

column space) and an upper triangular matrix; that is given Ŝ it computes Ŝ = SR where

S has orthonormal columns and R is upper triangular. If Ŝ is full-rank, so are S and R.
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See Appendix A.2 for a detailed proof of the above lemma.

Before we give an expression for the error matrix F , we define the
following notation. Let v∗ ∈ R

nk be given by: v∗ = vec(V ∗), i.e., v∗ =[
v∗†1 v∗†2 . . . v∗†k

]†
. Define B, C, D, S as follows:

B
def
=




B11 · · · B1k
...

. . .
...

Bk1 · · · Bkk


 , C

def
=




C11 · · · C1k
...

. . .
...

Ck1 · · · Ckk


 ,

D
def
=




D11 · · · D1k
...

. . .
...

Dk1 · · · Dkk


 , S

def
=



σ∗
1In . . . 0n
...

. . .
...

0n . . . σ∗
kIn


 . (7)

where , for 1 ≤ p, q ≤ k: Bpq
def
=
∑d

i=1 Aiu
t
pu

t
q
†
A†

i ,

Cpq
def
=
∑d

i=1 Aiu
t
pu

∗
q
†A†

i , and, Dpq
def
= 〈ut

p, u
∗
q〉In×n. Recall that, u

t
p is the p-th

column of U t and u∗
q is the q-th left singular vector of the underlying matrix

M = U∗Σ∗(V ∗)†. Finally F is obtained by “de-stacking” the vector
B−1 (BD − C)Sv∗ i.e., the ith column of F is given by:

Fi
def
=




(
B−1 (BD − C)Sv∗

)
ni+1(

B−1 (BD − C)Sv∗
)
ni+2

...(
B−1 (BD − C)Sv∗

)
ni+n


 , F

def
= [F1 F2 · · · Fk] . (8)

Note that the notation above should have been Bt, Ct and so on. We suppress

the dependence on t for notational simplicity. Now, from Update (6), we have

V t+1 = V̂ t+1R(t+1)−1
=
(
V ∗Σ∗U∗†U t − F

)
R(t+1)−1

⇒V ∗
⊥
†V t+1 = −V ∗

⊥
†FR(t+1)−1

. (9)

where V ∗
⊥ is an orthonormal basis of Span (v∗1, v

∗
2, · · · , v∗k)⊥. Therefore,

dist(V ∗, V t+1) = ‖V ∗
⊥
†V t+1‖2 = ‖V ∗

⊥
†FR(t+1)−1‖2 ≤ ‖F (Σ∗)−1‖2‖Σ∗R(t+1)−1‖2.

Now, we break down the proof of Theorem 2.4.1 into the following two steps:

• show that ‖F (Σ∗)−1‖2 is small (Lemma 2.4.5) and
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• show that ‖Σ∗R(t+1)−1‖2 is small(Lemma 2.4.6).

We will now state the two corresponding lemmas. Complete proofs

can be found in Appendix A.2.2 The first lemma bounds the spectral norm of

F (Σ∗)−1.

Lemma 2.4.5. Let linear measurement A satisfy RIP for all 2k-rank matrices

and let b = A(M) with M ∈ R
m×n being a rank-k matrix. Then, spectral norm

of error matrix F (Σ∗)−1 (see Equation 6) after t-th iteration update satisfy:

∥∥F (Σ∗)−1
∥∥
2
≤ δ2kk

1− δ2k
dist(U t, U∗). (10)

The following lemma bounds the spectral norm of Σ∗R(t+1)−1
.

Lemma 2.4.6. Let linear measurement A satisfy RIP for all 2k-rank matrices

and let b = A(M) with M ∈ R
m×n being a rank-k matrix. Then,

‖Σ∗(R(t+1))−1‖2 ≤
σ∗
1/σ

∗
k√

1− dist2 (U t, U∗)− (σ∗
1/σ

∗
k)δ2kkdist(U

t,U∗)
1−δ2k

. (11)

With the above two lemmas, we now prove Theorem 2.4.1.

Proof Of Theorem 2.4.1. Using (9), (10) and (11), we obtain the following:

dist
(
V t+1, V ∗) =

∥∥∥V ∗
⊥
†V t+1

∥∥∥
2
,

≤
∥∥∥V ∗

⊥
†F (Σ∗)−1Σ∗R(t+1)−1

∥∥∥
2
,

≤ ‖V ∗
⊥‖2

∥∥F (Σ∗)−1
∥∥
2

∥∥∥Σ∗R(t+1)−1
∥∥∥
2

≤ (σ∗
1/σ

∗
k)δ2kk · dist (U t, U∗)

(1− δ2k)L
, (12)

where L =
√
1− dist (U t, U∗)2 − (σ∗

1/σ
∗
k)δ2kkdist(U t,U∗)

1−δ2k
. Also, note that U0 is
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obtained using SVD of
∑

i Aibi. Hence, using Lemma A.1.1, we have:

‖A(U0Σ0V 0 − U∗Σ∗(V ∗)†‖22 ≤ 4δ2k‖A(U∗Σ∗(V ∗)†)‖22,
⇒‖U0Σ0V 0 − U∗Σ∗(V ∗)†‖2F ≤ 4δ2k(1 + 3δ2k)‖Σ∗‖2F ,
⇒‖U0(U0)†U∗Σ∗(V ∗)† − U∗Σ∗(V ∗)†‖2F ≤ 6δ2k‖Σ∗‖2F ,
⇒(σ∗

k)
2‖(U0(U0)† − I)U∗‖2F ≤ 6δ2kk(σ

∗
1)

2,

⇒dist(U0, U∗) ≤
√

6δ2kk

(
σ∗
1

σ∗
k

)
<

1

2
. (13)

Using (12) with dist (U0, U∗) < 1
2
and δ2k <

1
24(σ∗

1/σ
∗
k)

2k
, we obtain: dist (V t, V ∗)

< 1
4
dist (U t, U∗). Similarly we can show that dist (U t+1, U∗) < 1

4
dist (V t, V ∗).

2.5 Matrix Completion

In this section, we study the Matrix Completion problem (LRMC) and

show that, assuming k and
σ∗
1

σ∗
k
are constant, AltMinComplete (Algorithm 4)

recovers the underlying matrix M using only O(n log n) measurements (i.e.,

we prove Theorem 2.3.3).

As mentioned, while observing elements in Ω constitutes a linear map,

matrix completion is different from matrix sensing because the map does not

satisfy RIP. The (now standard) approach is to assume incoherence of the true

matrix M , as done in Definition 2.3.2. With this, and the random sampling

of Ω, matrix completion exhibits similarities to matrix sensing. For our anal-

ysis, we can again use the fact that incoherence allows us to view alternating

minimization as a perturbed power method, whose error we can control.

However, there are important differences between the two problems,

which make the analysis of completion more complicated. Chief among them

is the fact that we need to establish the incoherence of each iterate. For the first

initialization Û0, this necessitates the “clipping” procedure (described in step

4 of the algorithm). For the subsequent steps, this requires the partitioning of

the observed Ω into 2T + 1 sets (as described in step 2 of the algorithm).

As in the case of matrix sensing, we prove our main result for ma-

trix completion (Theorem 2.3.3) by first establishing a geometric decay of the
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distance between the subspaces spanned by Û t, V̂ t and U∗, V ∗ respectively.

Theorem 2.5.1. Under the assumptions of Theorem 2.3.3, the (t+1)th iterates

Û t+1 and V̂ t+1 satisfy the following property w.h.p.:

dist
(
V̂ t+1, V ∗

)
≤ 1

4
dist

(
Û t, U∗

)
and

dist
(
Û t+1, U∗

)
≤ 1

4
dist

(
V̂ t+1, V ∗

)
, ∀ 1 ≤ t ≤ T.

We use the above result along with incoherence of M to prove Theo-

rem 2.3.3. See Appendix A.3 for a detailed proof.

Now, similar to the matrix sensing case, alternating minimization needs

an initial iterate that is close enough to U∗ and V ∗, from where it will then

converge. To this end, Steps 3− 4 of Algorithm 4 use SVD of PΩ(M) followed

by clipping to initialize Û0. While the SVD step guarantees that Û0 is close

enough to U∗, it might not remain incoherent. To maintain incoherence, we

introduce an extra clipping step which guarantees incoherence of Û0 while also

ensuring that Û0 is close enough to U∗ (see Lemma 2.5.2)

Lemma 2.5.2. Let M,Ω, p be as defined in Theorem 2.3.3. Also, let U0 be

the initial iterate obtained by step 4 of Algorithm 4. Then, w.h.p. we have

• dist (U0, U∗) ≤ 1
2
and

• U0 is incoherent with parameter 4µ
√
k.

The above lemma guarantees a “good” starting point for alternating

minimization. Using this, we now present a proof of Theorem 2.5.1. Similar

to the sensing section, we first explain key ideas of our proof using rank-1

example. Then in Section 2.5.2 we extend our proof to general rank-k matrices.

2.5.1 Rank-1 Case

Consider the rank-1 matrix completion problem where M = σ∗u∗(v∗)†.

Now, the t-th step iterates v̂t+1 of Algorithm 4 are given by:

v̂t+1 = argmin
v̂

∑

(i,j)∈Ω
(Mij − ût

iv̂j)
2.
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Let ut = ût/‖ût‖2. Then, ∀j:

‖ût‖2
∑

i:(i,j)∈Ω
(uti)

2v̂t+1
j = σ∗ ∑

i:(i,j)∈Ω
utiu

∗
i v

∗
j

⇒ ‖ût‖2v̂t+1
j =

σ∗
∑

i:(i,j)∈Ω(u
t
i)
2

∑

i:(i,j)∈Ω
utiu

∗
i v

∗
j

= σ∗〈ut, u∗〉v∗j −
σ∗(〈ut, u∗〉∑i:(i,j)∈Ω(u

t
i)
2v∗j −

∑
i:(i,j)∈Ω utiu

∗
i v

∗
j )∑

i:(i,j)∈Ω(u
t
i)
2

. (14)

Hence,

‖ût‖2v̂t+1 = 〈u∗, ut〉σ∗v∗︸ ︷︷ ︸
Power Method

− σ∗B−1
(
〈ut, u∗〉B − C

)
v∗︸ ︷︷ ︸

Error Term

, (15)

where B,C ∈ R
n×n are diagonal matrices, such that,

Bjj =

∑
i:(i,j)∈Ω(u

t
i)

2

p
, Cjj =

∑
i:(i,j)∈Ω ut

iu
∗
i

p
. (16)

Note the similarities between the update (15) and the rank-1 update (4) for

the sensing case. Here again, it is essentially a power-method update (first

term) along with a bounded error term (see Lemma 2.5.3). Using this insight,

we now prove Theorem 2.5.1 for the special case of rank-1 matrices. Our proof

can be divided in three major steps:

• Base Case: Show that u0 = û0/‖û0‖2 is incoherent and have small dis-

tance to u∗ (see Lemma 2.5.2).

• Induction Step (distance): Assuming ut = ût/‖ût‖2 to be incoherent and

that ut has a small distance to u∗, vt+1 decreases distances to v∗ by at

least a constant factor.

• Induction Step (incoherence): Show incoherence of vt+1, while assuming

incoherence of ut (see Lemma 2.5.4)

We first prove the second step of our proof. To this end, we provide the

following lemma that bounds the error term. See Appendix A.3.2 for a proof

of the below given lemma.
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Lemma 2.5.3. Let M , p, Ω, ut be as defined in Theorem 2.3.3. Also, let ut

be a unit vector with incoherence parameter µ1 = 6(1+δ2)µ
1−δ2

.Then, w.p. at least

1− 1
n3 :

‖B−1
(
〈u∗, ut〉B − C

)
v∗‖2 ≤

δ2
1− δ2

√
1− 〈ut, u∗〉2.

Multiplying (15) with v∗ and using Lemma 2.5.3, we get:

‖ût‖2〈v̂t+1, v∗〉 ≥ σ∗〈ut, u∗〉 − 2σ∗δ2
√

1− 〈ut, u∗〉2, (17)

where δ2 < 1
12

is a constant defined in the Theorem statement and is similar

to the RIP constant in Section 2.4.

Similarly, by multiplying (15) with v⊥ (where 〈v∗⊥, v∗〉 = 0 and ‖v∗⊥‖2 =
1) and using Lemma 2.5.3:

‖ût‖2〈v̂t+1, v∗⊥〉 ≤ 2σ∗δ2
√

1− 〈ut, u∗〉2.

Using the above two equations:

1− 〈vt+1, v∗〉2 ≤ 4δ22(1− 〈ut, u∗〉2)
(〈ut, u∗〉 − 2δ2

√
1− 〈ut, u∗〉2)2 + (2δ2

√
1− 〈ut, u∗〉2)2

.

Assuming, 〈vt+1, v∗〉 ≥ 6δ2,

dist(vt+1, v∗) =
√

1− 〈vt+1, v∗〉2 ≤ 1

4

√
1− 〈ut, u∗〉2.

Using same arguments, we can show that, dist(ut+1, u∗) ≤ dist(vt+1, v∗)/4.

Hence, after O(log(1/ǫ)) iterations, dist(ut, u∗) ≤ ǫ and dist(vt+1, v∗) ≤ ǫ.

This proves our second step.

We now provide the following lemma to prove the third step. We stress

that vt+1 does not increase the incoherence parameter (µ1) when compared to

that of ut.

Lemma 2.5.4. Let M , p, Ω be as defined in Theorem 2.3.3. Also, let ut be

a unit vector with incoherence parameter µ1 = 6(1+δ2)µ
1−δ2

. Then, w.p. at least

1− 1
n3 , v

t+1 is also µ1 incoherent.
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See Appendix A.3.2 for a detailed proof of the lemma.

Finally, for the base case we need that u0 is µ1 incoherent and also

〈u0, u∗〉 ≥ 6δ2. This follows directly by using Lemma 2.5.2 and the fact that

δ2 ≤ 1/12.

Note that, to obtain an error of ǫ, AltMinComplete needs to run for

O
(
log ‖M‖F

ǫ

)
iterations. Also, we need to sample a fresh Ω at each iteration

of AltMinComplete. Hence, the total number of samples needed by AltMin-

Complete is O
(
log ‖M‖F

ǫ

)
larger than the number of samples required per

step.

2.5.2 Rank-k case

We now extend our proof of Theorem 2.5.1 to matrices with arbitrary

rank. Here again, we show that the AltMinComplete algorithm reduces to

power method with bounded perturbation at each step.

Similar to the matrix sensing case, we analyze the following QR decom-

position based update instead of directly analyzing the updates of Algorithm 4:

Û t = U tRt
U (QR decomposition),

V̂ t+1 = argmin
V̂

‖PΩ(U
tV̂ †)− PΩ(M)‖2F ,

V̂ t+1 = V t+1Rt+1
V . (QR decomposition) ,

Û t+1 = argmin
Û

‖PΩ(Û(V t+1)†)− PΩ(M)‖2F . (18)

Here again, we would stress that the updates output exactly the same matrices

at the end of each iteration and we prefer QR-based updates due to notational

ease.

Now, as matrix completion is a special case of matrix sensing, Lemma 2.4.4

characterizes the updates of the AltMinComplete algorithm (see Algorithm 4).

That is,

V̂ t+1 = V ∗Σ∗U∗†U t

︸ ︷︷ ︸
Power-method Update

− F︸︷︷︸
Error Term

,

V t+1 = V̂ t+1(R(t+1))−1, (19)
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where F is the error matrix defined in (8) and R(t+1) is a upper-triangular

matrix obtained using QR-decomposition of V̂ t+1. See (7) for the definition of

B,C, D, and S.

Also, note that for the special case of matrix completion, Bpq, Cpq, 1 ≤
p, q ≤ k are diagonal matrices with

(Bpq)jj =
1

p

∑

i:(i,j)∈Ω
U t
ipU

t
iq, (Cpq)jj =

1

p

∑

i:(i,j)∈Ω
U t
ipU

∗
iq.

We use this structure to further simplify the update equation. We first define
matrices Bj, Cj, Dj ∈ R

k×k, 1 ≤ i ≤ n:

Bj =
1

p

∑

i:(i,j)∈Ω
(U t)(i)(U t)(i)

†
, Cj =

1

p

∑

i:(i,j)∈Ω
(U t)(i)(U∗)(i)

†
,

and Dj = (U t)†U∗. Using the above notation, (19) decouples into n equations

of the form (1 ≤ j ≤ n):

(V t+1)(j) = (V ∗)(j)(Dj − (Bj)−1(BjDj − Cj))(R(t+1))−1, (20)

where (V t+1)(j) and (V ∗)(j) denote the jth rows of V t+1 and V ∗ respectively.

Using the above notation, we now provide a proof of Theorem 2.5.1 for

the general rank-k case.

Proof of Theorem 2.5.1. Multiplying the update equation (19) on the left by

(V ∗
⊥)

†, we get:

(V ∗
⊥)

†V̂ t+1 = −(V ∗
⊥)

†F (R(t+1))−1. That is,

dist(V ∗, V t+1) = ‖V ∗
⊥
†V (t+1)‖2 = ‖V ∗

⊥
†FR(t+1)−1‖2

≤ ‖F (Σ∗)−1‖2‖Σ∗R(t+1)−1‖2.

Now, similar to the sensing case (see Section 2.4.2) we break down our proof

into the following two steps:

• Bound ‖F (Σ∗)−1‖2 (Lemma 2.5.6) and

• Bound ‖Σ∗R(t+1)−1‖2, i.e., the minimum singular value of (Σ∗)−1 R(t+1)

(Lemma 2.5.7).
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Using Lemma 2.5.6 and Lemma 2.5.7, w.p. at least 1− 1/n3,

dist(V ∗, V t+1) ≤ ‖F (Σ∗)−1‖2‖Σ∗R(t+1)−1‖2

≤ (σ∗
1/σ

∗
k)k(δ2k/(1− δ2k)) · dist

(
U (t), U∗)

√
1− dist (U (t), U∗)

2 − (σ∗
1/σ

∗
k)kδ2kdist(U(t),U∗)

1−δ2k

.

Now, using Lemma 2.5.2 we get: dist(U t, U∗) ≤ dist(U0, U∗) ≤ 1
2
. By selecting

δ2k <
σ∗
k

12kσ∗
1
, i.e., p ≥ C(σ∗

1)
2k4 logn

m(σ∗
k)

2 and using above two inequalities:

dist(V t+1, V ∗) ≤ 1

4
dist(U t, U∗).

Furthermore, using Lemma 2.5.5 we get that V t+1 is µ1 incoherent. Hence, us-

ing similar arguments as above, we also get: dist(U t+1, U∗) ≤
(
1
4

)
dist(V t+1, V ∗).

We now provide lemmas required by our above given proof. See Ap-

pendix A.3.3 for a detailed proof of each of the lemmas.

We first provide a lemma to bound incoherence of V t+1, assuming in-

coherence of U t.

Lemma 2.5.5. Let M,Ω, p be as defined in Theorem 2.3.3. Also, let U t be the

t-th step iterate obtained by (18). Let U t be µ1 =
16σ∗

1µ
√
k

σ∗
k

incoherent. Then,

w.p. at least 1− 1/n3, iterate V (t+1) is also µ1 incoherent.

We now bound the error term (F ) in AltMin update (19).

Lemma 2.5.6. Let F be the error matrix defined by (8) (also see (19)) and

let U t be a µ1-incoherent orthonormal matrix obtained after (t − 1)th update.

Also, let M , Ω, and p satisfy assumptions of Theorem 2.3.3. Then, w.p. at

least 1− 1/n3:
∥∥F (Σ∗)−1

∥∥
2
≤ δ2kk

1− δ2k
dist(U t, U∗).

Next, we present a lemma to bound ‖(R(t+1))−1‖2.
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Lemma 2.5.7. Let R(t+1) be the lower-triangular matrix obtained by QR de-

composition of V̂ t+1 ( see (19)) and let U t be a µ1-incoherent orthonormal

matrix obtained after (t− 1)th update. Also, let M and Ω satisfy assumptions

of Theorem 2.3.3. Then,

‖Σ∗(R(t+1))−1‖2 ≤
σ∗
1/σ

∗
k√

1− dist2 (U (t), U∗)− (σ∗
1/σ

∗
k)δ2kkdist(U

(t),U∗)
1−δ2k

(21)

Proof. Lemma follows by exactly the same proof as that of Lemma 2.4.6 for

the matrix sensing case.

2.6 Stagewise AltMin Algorithm

In Section 2.4, we showed that if δ2k ≤ (σ∗
k)

2

(σ∗
1)

2k
then AltMinSense (Algo-

rithm 2) recovers the underlying matrix. This means that, d =
(σ∗

1)
4

(σ∗
k)

4k
2n log n

random Gaussian measurements (assume m ≤ n) are required to recover M .

For matrices with large condition number (σ∗
1/σ

∗
k), this would be significantly

larger than the information theoretic bound of O(kn log n/k) measurements.

To alleviate this problem, we present a modified version of AltMinSense

called Stage-AltMin. Stage-AltMin proceeds in k stages where in the i-th

stage, a rank-i problem is solved. The goal of the i-th stage is to recover top

i-singular vectors of M , up to O(σ∗
i+1) error.

Specifically, we initialize the i-th stage of our algorithm using one step

of the SVP algorithm [44] (see Step 3 of Algorithm 3). We then show that, if

δ2k ≤ 1
10k

, then Stage-AltMin (Steps 3, 3 of Algorithm 3) decreases the error

‖M − ÛT
1:i(V̂

T
1:i)

†‖F to O(σ∗
i+1). Hence, after k steps, the error decreases to

O(σ∗
k+1) = 0. Note that, Û t

1:i ∈ R
m×i represents the t-th step iterate (U) in

the i-th stage; V̂ t
1:i ∈ R

n×i is also defined similarly.

Recall that, the main problem with our analysis of AltMinSense is

that if σi ≫ σi+1 (for some i) then δ2k ≤ (σ∗
i+1)

2

(σ∗
i )

2k
would need to be small.

However, in such a scenario, the i-th stage of Algorithm 3 can be thought of as

solving a noisy sensing problem where the goal is to recoverMi
def
= U∗

1:iΣ
∗
1:i(V

∗
1:i)

†

using noisy measurements b = A(U∗
1:iΣ

∗
1:i(V

∗
1:i)

† +N) where noise matrix N
def
=
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U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†. Here Mi and N represent the top i singular components

and last k − i singular components of M respectively. Hence, using noisy-

case type analysis (see Section A.2.3) we show that the error ‖M − Û t(V̂ t)†‖F
decreases to O(σ∗

i+1).

We now formally present the proof of our main result (see Theorem 2.3.2).

Proof Of Theorem 2.3.2. We prove the theorem using mathematical induc-

tion.

Base Case: After the 0-th step, error is: ‖M‖2F ≤
∑k

j=1 σ
2
j ≤ kσ2

1. Hence,

base case holds.

Induction Step: Here, assuming that the error bound holds for (i − 1)-th

stage, we prove the error bound for the i-th stage.

Our proof proceeds in two steps. First, we show that the initial point

Û0
1:i, V̂

0
1:i of the i-th stage, obtained using Step 3, has c(σ∗

i )
2 + O

(
k(σ∗

i+1)
2
)

error, with c < 1. In the second step, we show that using the initial points

Û0
1:i, V̂

0
1:i, the AltMin algorithm iterations in the i-th stage (Steps 3, 3) reduces

the error to max(ǫ, 16kσ2
i+1).

We formalize the above mentioned first step in Lemma 2.6.1 and then

prove the second step in Lemma 2.6.2.

We now present two lemmas used by the above given proof. See Ap-

pendix A.2.4 for a proof of each of the lemmas.

Lemma 2.6.1. Let assumptions of Theorem 2.3.2 be satisfied. Also, let Û0
1:i,

V̂ 0
1:i be the output of Step 3 of Algorithm 3. Then, assuming that ‖M −

ÛT
1:i−1V̂

T
1:i−1‖2F ≤ 16k(σ∗

i )
2, we obtain:

∥∥∥M − Û0
1:i(V̂

0
1:i)

†
∥∥∥
2

F
≤

k∑

j=i+1

(σ∗
j )

2 +
1

100
(σ∗

i )
2.

Lemma 2.6.2. Let assumptions of Theorem 2.3.2 be satisfied. Also, let ÛT
1:i,

V̂ T
1:i be the T -th step iterates of the i-th stage of Algorithm 3. Then, assuming

that ‖M − Û0
1:iV

0
1:i‖2F ≤

∑k
j=i+1(σ

∗
j )

2 + 1
100

(σ∗
i )

2, we obtain:

∥∥∥M − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
2

F
≤ max(ǫ, 16k(σ∗

i+1)
2),
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where T = Ω(log(‖M‖F/ǫ)).

2.7 Numerical Experiments
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Figure 2.1: (a) Sample complexity and (b) computational complexity of Alt-
Min as compared to trace norm minimization [15] on random low rank 225×225
matrices. Sample complexity denotes the number of observations needed for
exact recovery of the matrix and computational complexity denotes the time
taken by the algorithm. The plots were obtained after averaging over 10 trials.
Clearly, AltMin has lower sample and computational complexity as compared
to trace norm minimization. (c) denotes the error (on the observations) af-
ter each iteration of AltMin with random initialization and with our SVD
based initialization. We see that with random initialization, the error decays
very slowly initially but later on decays at a good rate, where as with SVD
initialization, the error decays at a good rate from the beginning.

We now present some numerical experiments to verify if our theoretical

results are tight. In particular, our results are weaker than those for convex

optimization and one concrete question is if alternating minimization does
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perform poorly in practice as compared to trace norm minimization algorithm.

Fig. 2.1(a) suggests that this is not the case and we believe further tightening

our bounds is possible.

We finally note that steps 3−4 of AltMinComplete initialize the AltMin

procedure in a principled manner. In contrast, empirically random initializa-

tion is quite popular. Even though random initialization works well in practice,

proving rigorous guarantees is hard since the initial decay in error does not

seem to have a good rate (see Fig. 2.1(c)).

2.8 Summary and Discussion

Alternating minimization provides an empirically appealing and pop-

ular approach to solving several different low-rank matrix recovery problems.

The main motivation, and result, of this work was to provide the first the-

oretical guarantees on the global optimality of alternating minimization, for

matrix completion and the related problem of matrix sensing. We would like

to note the following aspects of our results and proofs:

• For both the problems, we show that alternating minimization recov-

ers the true matrix under similar problem conditions (RIP, incoherence)

to those used by existing algorithms (based on convex optimization or

iterated SVDs); computationally, our results show faster convergence

to the global optima, but with possibly higher statistical (i.e. sample)

complexity.

• We develop a new framework for analyzing alternating minimization for

low-rank problems. Key observation of our framework is that for some

problems (under standard problem conditions) alternating minimization

can be viewed as a perturbed version of the power method. In our

case, we can control the perturbation error based on the extent of RIP

/ incoherence demonstrated by the problem. This idea is likely to have

applications to other similar problems where trace-norm based convex

relaxation techniques have rigorous theoretical results but alternating

minimization has enjoyed more empirical success. For example, robust

PCA [22, 14], spectral clustering [46] etc.
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• Our analysis also sheds light on two key aspects of the alternating min-

imization approach:

Initialization: Due to its connection to power method, it is now easy

to see that for alternating minimization to succeed, the initial iterate

should not be orthogonal to the target vector. Our results indeed show

that alternating minimization succeeds if the initial iterate is not “al-

most orthogonal” to the target subspace. This suggests that, selecting

initial iterate smartly is preferable to random initialization.

Dependence on the condition number: Our results for the alternat-

ing minimization algorithm depend on the condition number. However,

using a stagewise adaptation of alternating minimization, we can remove

this dependence for the matrix sensing problem. This suggests that mod-

ifications of the basic alternating minimization algorithm may in fact

perform better than the original one, while retaining the computational

/ implementational simplicity of the underlying method.
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Chapter 3

Phase Retrieval using Alternating

Minimization

3.1 Introduction

In this chapter 1, we are interested in recovering a complex2 vector

x∗ ∈ C
n from magnitudes of its linear measurements. That is, for ai ∈ C

n, if

yi = |〈ai, x∗〉|, for i = 1, . . . ,m (1)

then the task is to recover x∗ using y and the measurement matrix A =

[a1 a2 . . . am].

The above problem arises in many settings where it is harder / infea-

sible to record the phase of measurements, while recording the magnitudes is

significantly easier. This problem, known as phase retrieval, is encountered

in several applications in crystallography, optics, spectroscopy and tomogra-

phy [69, 42]. Moreover, the problem is broadly studied in the following two

settings:

(i) The measurements in (1) correspond to the Fourier transform (the num-

ber of measurements here is equal to n) and there is some apriori infor-

mation about the signal.

(ii) The set of measurements y are overcomplete (i.e., m > n), while some

apriori information about the signal may or may not be available.

1An extended abstract of the results in this chapter appeared as [71]. The coauthors on
the paper had equal contributions in obtaining these results.

2Our results also cover the real case, i.e. where all quantities are real.
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In the first case, various types of apriori information about the underlying

signal such as positivity, magnitude information on the signal [31], sparsity

[80] and so on have been studied. In the second case, algorithms for vari-

ous measurement schemes such as Fourier oversampling [70], multiple random

illuminations [12, 90] and wavelet transform [24] have been suggested.

By and large, the most well known methods for solving this problem are

the error reduction algorithms due to Gerchberg and Saxton [37] and Fienup

[31], and variants thereof. These algorithms are alternating projection algo-

rithms that iterate between the unknown phases of the measurements and

the unknown underlying vector. Though the empirical performance of these

algorithms has been well studied [31, 61, 62]. and they are used in many ap-

plications [67, 68], there are not many theoretical guarantees regarding their

performance.

More recently, a line of work [21, 17, 90] has approached this problem

from a different angle, based on the realization that recovering x∗ is equivalent

to recovering the rank-one matrix x∗x∗T , i.e., its outer product. Inspired by

the recent literature on trace norm relaxation of the rank constraint, they

design SDPs to solve this problem. Refer Section 3.2 for more details.

In this work, we go back to the empirically more popular ideology of al-

ternating minimization; we develop a new alternating minimization algorithm,

for which we show that (a) empirically, it noticeably outperforms convex meth-

ods, and (b) analytically, a natural resampled version of this algorithm requires

O(n log3 n) i.i.d. random Gaussian measurements to geometrically converge

to the true vector.

Our contribution:

• The iterative part of our algorithm is implicit in previous work [37, 31,

90, 12]; the novelty in our algorithmic contribution is the initialization

step which makes it more likely for the iterative procedure to succeed.

• Our analytical contribution is the first theoretical guarantee regarding

the global convergence, and subsequent exact recovery of the signal, via

alternating minimization for phase retrieval.
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Besides being an empirically better algorithm for this problem, our

work is also interesting in a broader sense: there are many problems in ma-

chine learning, signal procesing and numerical linear algebra, where the natu-

ral formulation of a problem is non-convex; examples include rank constrained

problems, applications of EM algorithms etc., and alternating minimization

has good empirical performance. However, the methods with the best (or

only) analytical guarantees involve convex relaxations (e.g., by relaxing the

rank constraint and penalizing the trace norm). In most of these settings,

correctness of alternating minimization is an open question. We believe that

our results in this chapter are of interest, and may have implications, in this

larger context.

Due to lack of space, we only present the algorithm and main results in

this chapter. Refer [71] for complete proofs of all the results in this chapter.

3.2 Related Work

Phase Retrieval via Non-Convex Procedures: Inspite of the huge

amount of work it has attracted, phase retrieval has been a long standing open

problem. Early work in this area focused on using holography to capture the

phase information along with magnitude measurements [33, 57]. However,

computational methods for reconstruction of the signal using only magnitude

measurements received a lot of attention due to their applicability in resolving

spurious noise, fringes, optical system aberrations and so on and difficulties in

the implementation of interferometer setups [26]. Though such methods have

been developed to solve this problem in various practical settings [25, 32, 67,

68], our theoretical understanding of this problem is still far from complete.

Many papers [9, 39, 78] have focused on determining conditions under which

(1) has a unique solution. However, the uniqueness results of these papers do

not resolve the algorithmic question of how to find the solution to (1).

Since the seminal work of Gerchberg and Saxton [37] and Fienup [31],

many iterated projection algorithms have been developed targeted towards

various applications [1, 29, 6]. [70] first suggested the use of multiple mag-

nitude measurements to resolve the phase problem. This approach has been

successfully used in many practical applications - see [26] and references there
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in. Following the empirical success of these algorithms, researchers were able

to explain its success in some of the instances [92, 86] using Bregman’s theory

of iterated projections onto convex sets [8]. However, many instances, such as

the one we consider in this chapter, are out of reach of this theory since they

involve magnitude constraints which are non-convex. To the best of our knowl-

edge, there are no theoretical results on the convergence of these approaches

in a non-convex setting.

Phase Retrieval via Convex Relaxation: An interesting recent

approach for solving this problem formulates it as one of finding the rank-one

solution to a system of linear matrix equations. The papers [21, 17] then take

the approach of relaxing the rank constraint by a trace norm penalty, making

the overall algorithm a convex program (called PhaseLift) over n×n matrices.

Another recent line of work [90] takes a similar but different approach : it uses

an SDP relaxation (called PhaseCut) that is inspired by the classical SDP

relaxation for the max-cut problem. To date, these convex methods are the

only ones with analytical guarantees on statistical performance [13, 90] (i.e. the

number m of measurements required to recover x∗) – under an i.i.d. random

Gaussian model on the measurement vectors ai. However, by “lifting” a vector

problem to a matrix one, these methods lead to a much larger representation

of the state space, and higher computational cost as a result.

Sparse Phase Retrieval: A special case of the phase retrieval prob-

lem which has received a lot of attention recently is when the underlying

signal x∗ is known to be sparse. Though this problem is closely related to

the compressed sensing problem, lack of phase information makes this harder.

However, the ℓ1 regularization approach of compressed sensing has been suc-

cessfully used in this setting as well. In particular, if x∗ is sparse, then the

corresponding lifted matrix x∗x∗T is also sparse. [80, 72, 60] use this obser-

vation to design ℓ1 regularized SDP algorithms for phase retrieval of sparse

vectors. For random Gaussian measurements, [60] shows that ℓ1 regularized

PhaseLift recovers x∗ correctly if the number of measurements is Ω(k2 log n).

By the results of [74], this result is tight up to logarithmic factors for ℓ1 and

trace norm regularized SDP relaxations. [43, 79] develop algorithms for phase

retrieval from Fourier magnitude measurements. However, achieving the opti-

mal sample complexity of O
(
k log n

k

)
is still open [28].
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Alternating Minimization (a.k.a. ALS): Alternating minimization

has been successfully applied to many applications in the low-rank matrix

setting. For example, clustering [52], sparse PCA [96], non-negative matrix

factorization [51], signed network prediction [41] etc. However, despite em-

pirical success, for most of the problems, there are no theoretical guarantees

regarding its convergence except to a local minimum. The only exceptions are

the results in [49, 45] which give provable guarantees for alternating minimiza-

tion for the problems of matrix sensing and matrix completion.

3.3 Notation
For every complex vector w ∈ C

n, |w| ∈ R
n denotes its element-wise

magnitude vector. wT and AT denote the Hermitian transpose of the vector w

and the matrix A respectively. e1, e2, etc. denote the canonical basis vectors

in C
n. z denotes the complex conjugate of the complex number z. In this

chapter, we use the standard Gaussian (or normal) distribution over C
n. a

is said to be distributed according to this distribution if a = a1 + ia2, where

a1 and a2 are independent and are distributed according to N (0, I). We also

define Ph (z)
def
= z

|z| for every z ∈ C, and dist (w1, w2)
def
=

√
1−

∣∣∣ 〈w1,w2〉
‖w1‖2‖w2‖2

∣∣∣
2

for every w1, w2 ∈ C
n. inally, we use the shorthand wlog for without loss of

generality and whp for with high probability.

3.4 Algorithm
In this section, we present our alternating minimization based algorithm

for solving the phase retrieval problem. Let A ∈ C
n×m be the measurement

matrix, with ai as its ith column; similarly let y be the vector of recorded

magnitudes. Then,

y = |ATx∗ |.
Recall that, given y and A, the goal is to recover x∗. If we had access to the

true phase c∗ of ATx∗ (i.e., c∗i = Ph (〈ai, x∗〉)) and m ≥ n, then our problem

reduces to one of solving a system of linear equations:

C∗y = ATx∗,
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Algorithm 5 AltMinPhase

input A, y, t0
1: Initialize x0 ← top singular vector of

∑
i y

2
i aiai

T

2: for t = 0, · · · , t0 − 1 do
3: Ct+1 ← Diag

(
Ph
(
ATxt

))

4: xt+1 ← argminx∈Rn

∥∥ATx− Ct+1y
∥∥
2

5: end for
output xt0

where C∗ def
= Diag(c∗) is the diagonal matrix of phases. Of course we do not

know C∗, hence one approach to recovering x∗ is to solve:

argmin
C,x

‖ATx− Cy‖2, (2)

where x ∈ C
n and C ∈ C

m×m is a diagonal matrix with each diagonal entry of

magnitude 1. Note that the above problem is not convex since C is restricted

to be a diagonal phase matrix and hence, one cannot use standard convex

optimization methods to solve it.

Instead, our algorithm uses the well-known alternating minimization:

alternatingly update x and C so as to minimize (2). Note that given C,

the vector x can be obtained by solving the following least squares prob-

lem: minx ‖ATx− Cy‖2. Since the number of measurements m is larger than

the dimensionality n and since each entry of A is sampled from independent

Gaussians, A is invertible with probability 1. Hence, the above least squares

problem has a unique solution. On the other hand, given x, the optimal C is

given by C = Diag(ATx).

While the above algorithm is simple and intuitive, it is known that with

bad initial points, the solution might not converge to x∗. In fact, this algo-

rithm with a uniformly random initial point has been empirically evaluated for

example in [90], where it performs worse than SDP based methods. Moreover,

since the underlying problem is non-convex, standard analysis techniques fail

to guarantee convergence to the global optimum, x∗. Hence, the key chal-

lenges here are: a) a good initialization step for this method, b) establishing

this method’s convergence to x∗.
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We address the first key challenge in our AltMinPhase algorithm (Al-

gorithm 5) by initializing x as the largest singular vector of the matrix S =
1
m

∑
i yiaiai

T . Theorem 3.5.1 shows that when A is sampled from standard

complex normal distribution, this initialization is accurate. In particular, if

m ≥ C1n log3 n for large enough C1 > 0, then whp we have ‖x0−x∗‖2 ≤ 1/100

(or any other constant).

Theorem 3.5.2 addresses the second key challenge and shows that a

variant of AltMinPhase (see Algorithm 6) actually converges to the global op-

timum x∗ at linear rate. See section 3.5 for a detailed analysis of our algorithm.

We would like to stress that not only does a natural variant of our

proposed algorithm have rigorous theoretical guarantees, it also is effective

practically as each of its iterations is fast, has a closed form solution and does

not require SVD computation. AltMinPhase has similar statistical complexity

to that of PhaseLift and PhaseCut while being much more efficient computa-

tionally. In particular, for accuracy ǫ, we only need to solve each least squares

problem only up to accuracy O (ǫ). Now, since the measurement matrix A is

sampled from Gaussian with m > Cn, it is well conditioned. Hence, using

conjugate gradient method, each such step takes O
(
mn log 1

ǫ

)
time. When

m = O (n) and we have geometric convergence, the total time taken by the

algorithm is O
(
n2 log2 1

ǫ

)
. SDP based methods on the other hand require

Ω(n3/
√
ǫ) time. Moreover, our initialization step increases the likelihood of

successful recovery as opposed to a random initialization (which has been con-

sidered so far in prior work). Refer Figure 3.1 for an empirical validation of

these claims.

3.5 Our Results

In this section we describe the main contribution of this work: provable

statistical guarantees for the success of alternating minimization in solving

the phase recovery problem. To this end, we consider the setting where each

measurement vector ai is iid and is sampled from the standard complex normal

distribution. We would like to stress that all the existing guarantees for phase

recovery also use exactly the same setting [17, 13, 90]. Table 3.1 presents
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Figure 3.1: Sample and Time complexity of various methods for Gaussian
measurement matrices A. Figure 3.1(a) compares the number of measure-
ments required for successful recovery by various methods. We note that our
initialization improves sample complexity over that of random initialization
(AltMin (random init)) by a factor of 2. AltMinPhase requires similar num-
ber of measurements as PhaseLift and PhaseCut. Figure 3.1(b) compares the
running time of various algorithms on log-scale. Note that AltMinPhase is
almost two orders of magnitude faster than PhaseLift and PhaseCut.

a comparison of the theoretical guarantees of Algorithm 6 as compared to

PhaseLift and PhaseCut.

Sample complexity Comp. complexity
PhaseLift [13] O (n) O (n3/ǫ2)
PhaseCut [90] O (n) O (n3/

√
ǫ)

Table 3.1: Comparison of Algorithm 6 with PhaseLift and PhaseCut: Though
the theoretical sample complexity of Algorithm 6 is off by log factors from
that of PhaseLift and PhaseCut, it is O (n) better than them in computational
complexity. Note that, we can solve the least squares problem in each iteration
approximately by using conjugate gradient method which requires only O (mn)
time.

Our proof for convergence of alternating minimization can be broken

into two key results. We first show that if m ≥ Cn log3 n, then whp the

initialization step used by AltMinPhase returns x0 which is at most a constant

distance away from x∗. Furthermore, that constant can be controlled by using

more samples (see Theorem 3.5.1).
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We then show that if xt is a fixed vector such that dist (xt, x∗) < c (small

enough) and A is sampled independently of xt with m > Cn (C large enough)

then whp xt+1 satisfies: dist (xt+1, x∗) < 3
4
dist (xt, x∗) (see Theorem 3.5.2).

Note that our analysis critically requires xt to be “fixed” and be independent

of the sample matrix A. Hence, we cannot re-use the same A in each iteration;

instead, we need to resample A in every iteration. Using these results, we

prove the correctness of Algorithm 6, which is a natural resampled version of

AltMinPhase.

Algorithm 6 AltMinPhase with Resampling

input A, y, ǫ
1: t0 ← c log 1

ǫ

2: Partition y and (the corresponding columns of) A into t0+1 equal disjoint
sets: (y0, A0), (y1, A1), · · · , (yt0 , At0)

3: x0 ← top singular vector of
∑

l (y
0
l )

2
a0ℓ (a

0
ℓ)

T

4: for t = 0, · · · , t0 − 1 do

5: Ct+1 ← Diag
(
Ph
(
(At+1)

T
xt
))

6: xt+1 ← argminx∈Rn

∥∥∥(At+1)
T
x− Ct+1yt+1

∥∥∥
2

7: end for
output xt0

We now present the two results mentioned above. In the following

theorems, wlog, we assume that ‖x∗‖2 = 1. Our first result guarantees a good

initial vector.

Theorem 3.5.1. There exists a constant C1 such that if m > C1

c2
n log3 n, then

in Algorithm 6, with probability greater than 1− 4/n2 we have:

∥∥x0 − x∗∥∥
2
< c.

The second result proves geometric decay of error assuming a good

initialization.

Theorem 3.5.2. There exist constants c, ĉ and c̃ such that in iteration t of

Algorithm 6, if dist (xt, x∗) < c and the number of columns of At is greater
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than ĉ
(
log 1

η

)
n then, with probability more than 1− η, we have:

dist
(
xt+1, x∗) < 3

4
dist

(
xt, x∗) , and

∥∥xt+1 − x∗∥∥
2
< c̃ dist

(
xt, x∗) .

Proof. For simplicity of notation in the proof of the theorem, we will use A

for At+1, C for Ct+1, x for xt, x+ for xt+1, and y for yt+1. Now consider the

update in the (t+ 1)th iteration:

x+ = argmin
x̃∈Rn

∥∥AT x̃− Cy
∥∥
2
=
(
AAT

)−1
ACy =

(
AAT

)−1
ADATx∗, (3)

where D is a diagonal matrix with Dll
def
= Ph

(
aℓ

Tx · aℓTx∗
)
. Now (3) can be

rewritten as:

x+ =
(
AAT

)−1
ADATx∗ = x∗ +

(
AAT

)−1
A (D − I)ATx∗, (4)

that is, x+ can be viewed as a perturbation of x∗ and the goal is to bound the

error term (the second term above). We break the proof into two main steps:

1. ∃ a constant c1 such that |〈x∗, x+〉| ≥ 1− c1dist (x, x
∗), and

2. |〈z, x+〉| ≤ 5
9
dist (x, x∗), for all z s.t. zTx∗ = 0.

Assuming the above two bounds and choosing c < 1
100c1

, we can prove the

theorem:

dist
(
x+, x∗)2 < (25/81) · dist (x, x∗)

(1− c1dist (x, x∗))2
≤ 9

16
dist (x, x∗)2 ,

proving the first part of the theorem. The second part follows from (4) and

by controlling
∥∥∥
(
AAT

)−1
A (D − I)ATx∗

∥∥∥
2
.

Combining Theorems 3.5.1 and 3.5.2, we have the following theorem

establishing the correctness of Algorithm 6.

Theorem 3.5.3. Suppose the measurement vectors in (1) are independent

standard complex normal vectors. For every η > 0, there exists a constant c

such that if m > cn
(
log3 n+ log 1

ǫ
log log 1

ǫ

)
then, with probability greater than

1− η, Algorithm 6 outputs xt0 such that ‖xt0 − x∗‖2 < ǫ.
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Algorithm 7 SparseAltMinPhase

input A, y, k
1: S ← top-k argmaxj∈[n]

∑m
i=1 |aijyi| {Pick indices of k largest absolute

value inner product}
2: Apply Algorithm 6 on AS, yS and output the resulting vector with elements

in Sc set to zero.

Sample complexity Comp. complexity

Algorithm 7 Õ
(
k
(
k log n+ log 1

ǫ

))
Õ
(
k2
(
kn log n+ log2 1

ǫ

))

ℓ1-PhaseLift [60] O (k2 log n) O (n3/ǫ2)

Table 3.2: Comparison of Algorithm 7 with ℓ1-PhaseLift when x∗
min =

Ω
(
1/
√
k
)
. Note that the complexity of Algorithm 7 is dominated by the

support finding step. If k = O (1), Algorithm 7 runs in quasi-linear time.

3.6 Sparse Phase Retrieval

In this section, we consider the case where x∗ is known to be sparse,

with sparsity k. A natural and practical question to ask here is: can the

sample and computational complexity of the recovery algorithm be improved

when k ≪ n.

Recently, [60] studied this problem for Gaussian A and showed that for

ℓ1 regularized PhaseLift, m = O(k2 log n) samples suffice for exact recovery of

x∗. However, the computational complexity of this algorithm is still O(n3/ǫ2).

In this section, we provide a simple extension of our AltMinPhase al-

gorithm that we call SparseAltMinPhase, for the case of sparse x∗. The main

idea behind our algorithm is to first recover the support of x∗. Then, the prob-

lem reduces to phase retrieval of a k-dimensional signal. We then solve the

reduced problem using Algorithm 6. The pseudocode for SparseAltMinPhase

is presented in Algorithm 7. Table 3.2 provides a comparison of Algorithm 7

with ℓ1-regularized PhaseLift in terms of sample complexity as well as com-

putational complexity. The following lemma shows that if the number

of measurements is large enough, step 1 of SparseAltMinPhase recovers the

support of x∗ correctly.

Lemma 3.6.1. Suppose x∗ is k-sparse with support S and ‖x∗‖2 = 1. If ai
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are standard complex Gaussian random vectors and m > c

(x∗
min)

4 log
n
δ
, then

Algorithm 7 recovers S with probability greater than 1 − δ, where x∗
min is the

minimum non-zero entry of x∗.

The key step of our proof is to show that if j ∈ supp(x∗), then random

variable Zij =
∑

i |aijyi| has significantly higher mean than for the case when

j /∈ supp(x∗). Now, by applying appropriate concentration bounds, we can en-

sure that minj∈supp(x∗) |Zij| > maxj /∈supp(x∗) |Zij| and hence our algorithm never

picks up an element outside the true support set supp(x∗). See Appendix B.2

for a detailed proof of the above lemma.

The correctness of Algorithm 7 now is a direct consequence of Lemma

3.6.1 and Theorem 3.5.3. For the special case where each non-zero value in x∗

is from {− 1√
k
, 1√

k
}, we have the following corollary:

Corollary 3.6.2. Suppose x∗ is k-sparse with non-zero elements ± 1√
k
. If the

number of measurements m > c
(
k2 log n

δ
+ k log2 k + k log 1

ǫ

)
, then Algorithm

7 will recover x∗ up to accuracy ǫ with probability greater than 1− δ.

3.7 Experiments

In this section, we present experimental evaluation of AltMinPhase

(Algorithm 5) and compare its performance with the SDP based methods

PhaseLift [17] and PhaseCut [90]. We also empirically demonstrate the ad-

vantage of our initialization procedure over random initialization (denoted by

AltMin (random init)), which has thus far been considered in the literature

[37, 31, 90, 12]. AltMin (random init) is the same as AltMinPhase except

that step 1 of Algorithm 5 is replaced with:x0 ← Uniformly random vector

from the unit sphere.

In the noiseless setting, a trial is said to succeed if the output x satisfies

‖x− x∗‖2 < 10−2. For a given dimension, we do a linear search for smallest m

(number of samples) such that empirical success ratio over 20 runs is at least

0.8. We implemented our methods in Matlab, while we obtained the code for

PhaseLift and PhaseCut from the authors of [72] and [90] respectively.

We now present results from our experiments in three different settings.
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Independent Random Gaussian Measurements: Each measure-

ment vector ai is generated from the standard complex Gaussian distribution.

This measurement scheme was first suggested by [17] and till date, this is the

only scheme with theoretical guarantees.

Multiple Random Illumination Filters: We now present our re-

sults for the setting where the measurements are obtained using multiple il-

lumination filters; this setting was suggested by [12]. In particular, choose J

vectors z(1), · · · , z(J) and compute the following discrete Fourier transforms:

x̂(u) = DFT
(
x∗ · ∗ z(u)

)
,

where ·∗ denotes component-wise multiplication. Our measurements will then

be the magnitudes of components of the vectors x̂(1), · · · , x̂(J). The above

measurement scheme can be implemented by modulating the light beam or by

the use of masks; see [12] for more details.

For this setting, we conduct a similar set of experiments as the previous

setting. That is, we vary dimensionality of the true signal z(u) (generated

from the Gaussian distribution)and then empirically determine measurement

and computational cost of each algorithm. Figures 3.2 (a) and (b) present

our experimental results for this measurement scheme. Here again, we make

similar observations as the last setting. That is, the measurement complexity

of AltMinPhase is similar to PhaseCut and PhaseLift, but AltMinPhase is

orders of magnitude faster than PhaseLift and PhaseCut. Note that Figure 3.2

is on a log-scale.

Noisy Phase Retrieval: Finally, we study our method in the follow-

ing noisy measurement scheme:

yi = |〈ai, x∗ + wi〉| for i = 1, . . . ,m, (5)

where wi is the noise in the i-th measurement and is sampled from N(0, σ2).

We fix n = 64 and m = 6n. We then vary the amount of noise added σ and

measure the ℓ2 error in recovery, i.e., ‖x− x∗‖2, where x is the recovered vec-

tor. Figure 3.3(a) compares the performance of various methods with varying

amount of noise. We observe that our method outperforms PhaseLift and has

similar recovery error as PhaseCut.

46



0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Dimension

N
o

. 
o

f 
F

ilt
e

rs

 

 

AltMinPhase

AltMin (random init)

PhaseLift

PhaseCut

0 50 100 150 200 250 300
10

−2

10
−1

10
0

10
1

10
2

10
3

Dimension

T
im

e
 (

in
 s

e
c
)

 

 

AltMinPhase

AltMin (random init)

PhaseLift

PhaseCut

(a) (b)

Figure 3.2: Sample and time complexity for successful recovery using random
Gaussian illumination filters. Similar to Figure 3.1, we observe that AltMin-
Phase has similar number of filters (J) as PhaseLift and PhaseCut, but is
computationally much more efficient. We also see that AltMinPhase performs
better than AltMin (randominit).

Geometric Decay: Finally, we provide empirical results verifying that

AltMinPhase reduces the error at a geometric rate as guaranteed by Theo-

rem 3.5.2 but no faster. The measurement vectors were chosen to be standard

complex Gaussian with n = 64 and m = 6n. Figure 3.3(b) shows the plot of

empirical error vs the number of iterations.

3.8 Summary

In this chapter, we presented an improved version of the alternating

minimization procedure for the phase retrieval problem. We observe that

empirically, it has simiar sample complexity as SDP based methods but is

much more efficient than them. Analytically, we show that a natural resampled

version of this algorithm has close to optimal sample complexity. We also

extend our algorithm and results for the sparse phase retrieval problem.
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Figure 3.3: (a): Recovery error ‖x − x∗‖2 incurred by various methods with
increasing amount of noise (σ). AltMinPhase and PhaseCut perform compa-
rably while PhaseLift incurs significantly larger error. (b): Plot of empirical
error

∥∥y − |ATx|
∥∥
2
vs number of iterations for AltMinPhase. Each entry of

A is chosen to be standard complex Gaussian with n = 64 and m = 6n. We
can see that the error decreases geometrically suggesting that Theorem 3.5.2
is tight in some sense.
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Chapter 4

Learning Sparsely Used Dictionaries using

Alternating Minimization

4.1 Introduction
The 1 problem of dictionary learning can be stated as follows: given

observations Y ∈ R
d×n, the task is to decompose it as

Y = A∗X∗, A∗ ∈ R
d×r, X∗ ∈ R

r×n. (1)

A∗ is referred to as the dictionary matrix and X∗ is the coefficient matrix. r

denotes the number of basis elements in this dictionary, and we consider the

overcomplete setting where r ≥ d. Without further constraints, the solution

to (1) is not unique. A popular framework is to assume that the coefficient

matrix X∗ is sparse, and that each observation Yi ∈ R
d is a sparse combina-

tion of the dictionary elements (i.e. columns of the dictionary matrix). This

problem is known as sparse coding and it has been argued that sparse coding

can provide a succinct representation of the observed data, given only unla-

beled samples [73, 55]. Through this lens of unsupervised learning, dictionary

learning has recently received increased attention from the learning commu-

nity [65, 5, 64].

Although several methods exist for sparse coding, most of them lack

guarantees. [81] recently provided a method for guaranteed recovery when the

dictionary matrix A∗ ∈ R
d×r is a basis. This implies that the number of dic-

tionary elements r ≤ d, where d is the observed dimension. However, in most

settings, the dictionary is overcomplete (r ≫ d) as overcomplete representa-

tions can provide greater flexibility in modeling as well as better robustness

1An extended abstract of the results in this chapter appeared as [2]. The coauthors on
the paper had equal contributions in obtaining these results.
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to noise [58, 7, 27]. In this paper, we establish exact recovery of sparsely used

overcomplete dictionaries.

Summary of Results: We present a method for dictionary learning that

consists of two phases. The initialization phase is a clustering-based pro-

cedure for recovering the dictionary to a rough accuracy. In particular, we

establish that the recovery error of the initialization procedure, in ℓ2 distance

between true and recovered dictionary elements, is bounded by a small con-

stant (dependent only on s) as long as the sparsity satisfies s = O
(
d1/4, r1/4

)
.

The number of samples needed for this initialization procedure scales as n =

O (r(log r + log d)).

Our second result concerns the convergence to the global optimum of

an alternating minimization scheme which outputs successively improved es-

timates of the coefficients and the dictionary through lasso and least-squares

respectively. Our result requires the procedure to be initialized with a dic-

tionary with an error of at most O (1/s2). Further when s = O
(
d1/6

)
and

number of samples satisfies n = O (r2), we establish linear rate of convergence

for the alternating minimization procedure to the true dictionary.

Combining the above two results, where we initialize the alternating

method using our proposed dictionary estimation procedure with the required

accuracy of O (1/s2), which entails s = O
(
d1/9, r1/8

)
, and sufficient number of

samples n = O (r2), we guarantee exact recovery of the true dictionary. We

believe that this is the first exact recovery result for dictionary learning in

the overcomplete setting. Note that our alternating minimization guarantees

are independent of the initialization procedure and it is entirely possible to

use other initialization procedures for the alternating minimization algorithm.

Indeed, the very recent and concurrent work of [3] can be seen as presenting

alternative initialization procedures for our alternating minimization step.

Finally, we present some numerical simulations confirming the linear

convergence of the alternating minimization procedure, and demonstrating

the extent of gains beyond the initialization step. We also empirically test

the recovery performance of the procedure, and find that it succeeds with

n = O (r) samples, hence suggesting room for tightening our analysis in future

work.
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Related Work: There have been many works on dictionary learning both

from a theoretical and empirical viewpoint. Hillar and Sommer [40] consider

conditions for identifiability of sparse coding. However, the number of samples

required to establish identifiability is exponential in r for the general case.

Most closely related to our work, [81] provide exact recovery results for an ℓ1
based method, but they focus on the undercomplete setting, where r ≤ d. We

consider the overcomplete setting where r > d.

There exist many heuristics for dictionary learning, which work well in

practice in many contexts, but lack theoretical guarantees. For instance, Lee

et. al. propose an iterative ℓ1 and ℓ2 optimization procedure [55] similar to the

the method of optimal directions [30]. Another popular method is the so-called

K-SVD, which iterates between estimation of X and given an estimate of X,

updates the dictionary estimate using a spectral procedure on the residual.

Other works establish local optimality of the true solution (A∗, X∗) for certain

non-convex programs [47, 36], but do not prescribe algorithms which can reach

the true solution (A∗, X∗). Recent works [87, 65, 63, 82] provide generalization

bounds for predictive sparse coding, without computational considerations.

Finally, our results are closely related to the very recent work of [3],

carried out independently and concurrently with our work. Their approximate

recovery work can be seen as providing a different initialization strategy for

alternating minimization procedure. However, the key distinction between

our alternating minimization procedure as compared to theirs is that we use

the same samples in each iteration while they require fresh samples for each

iteration of alternating minimization. This enables us to obtain exact recovery

of the dictionary once n = Ω(r2), whereas the error in their method can not

be guaranteed to be below exp (−O (n/r2)). Our algorithm is also robust in

the sense that we do not expect to recover the complete support in the first

iteration – we gradually recover more and more elements of the support as our

dictionary estimate gets better.

The remainder of the paper is organized as follows. We present our

algorithms next, followed by our assumptions and the recovery results. We

provide proof sketches in Section 3 with details deferred to the supplement.

Simulation results are described in Section 4.
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4.2 Algorithm

Notation: Let [n] := {1, 2, . . . , n}. For a vector v or a matrix W , we will

use the shorthand Supp(v) and Supp(W ) to denote the set of non-zero entries

of v and W respectively. Let ‖w‖ denote the ℓ2 norm of vector w, and similarly

for a matrix W , ‖W‖ denotes its spectral norm. For a matrix X, X i, Xi and

X i
j denote the ith row, ith column and (i, j)th element of X respectively. For a

graph G = (V,E), let NG(i) denote set of neighbors for node i in G.

4.2.1 Initial Estimate of Dictionary Matrix

The first step is to obtain an initial estimate Â of the dictionary el-

ements, and is given in Algorithm 8. The estimate Â is then employed in

alternating steps to estimate the coefficient matrix and re-estimate the dictio-

nary matrix respectively.

Given samples Y , we first construct the correlation graphGcorr(ρ), where

the nodes are samples {Y1, Y2, . . . Yn} and an edge (Yi, Yj) ∈ Gcorr(ρ) implies

that |〈Yi, Yj〉| > ρ, for some threshold ρ > 0 (Figure 4.1 shows an example

of a typical correlation graph under our assumptions). We then determine

a good subset of samples via a clustering procedure on the graph as follows:

we first randomly sample an edge (Yi∗ , Yj∗) ∈ Gcorr(ρ) and then consider the

intersection of the neighborhoods of Yi∗ and Yj∗ , denoted by Ŝ. We then

employ UniqueIntersection routine in Procedure 1 to determine if Ŝ is a “good

set” for estimating a dictionary element. This is done by ensuring that the set

Ŝ has a sufficient number of edges2 in the correlation graph. For instance, the

procedure will return true when evaluated on the green edges labeled Good,

but false on the red edges labeled Bad. Once Ŝ is determined to be a good set,

we then proceed by estimating the matrix Q̂ using samples in Ŝ and output

its top singular vector as the estimate of a dictionary element. The method is

repeated over all edges in the correlation graph to ensure that all the dictionary

elements get estimated with high probability.

2For convenience to avoid dependency issues, in Procedure 1, we partition Ŝ into sets
consisting of disjoint node pairs and determine if there are sufficient number of node pairs
which are neighbors.
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Ŝ1 Ŝ2Bad

Good
Good

Figure 4.1: Sample correlation graph Gcorr with nodes {Yk} and edge (Yi, Yj)

s.t. |〈Yi, Yj〉| > ρ. Ŝ1, Ŝ2 are the sets returned as true from UniqueIntersection
procedure. The edges labeled “good” above refers to good anchor pairs which
satisfy unique intersection in Algorithm 8,while the bad anchor pair does not
satisfy the unique intersection. Good anchor pairs lead to formation of sets Ŝ1

and Ŝ2.

At a high level, the above procedure aims to find large cliques in the

correlation graph. For instance, in Figure 4.1, the sets Ŝ1, Ŝ2 are the sets which

are returned as true by the UniqueIntersection Procedure and the algorithm 8

computes SVD over the samples in such sets. Intuitively, when the correlation

graph has cliques with small amount of overlap, our method succeeds in finding

them, and then computes SVD over the samples in such sets. At a high level,

the above procedure aims to find large cliques in the correlation graph. For

instance, in Figure 4.1, the sets Ŝ1, Ŝ2 are the sets which are returned as true

by the UniqueIntersection Procedure, when the node pairs labeled as “good”

in the figure are used as anchor samples Yi∗ and Yj∗ . On the other hand, note

that a bad anchor pair which sits at the overlap of multiple cliques is not

returned as true by the UniqueIntersection Procedure. Thus, this procedure

yields subsets of samples which correspond to large cliques in the correlation

graph. Once, such a subset is found, the algorithm 8 computes SVD over

the samples in such sets. As our proofs will demonstrate, any such clique

Ŝi involves samples that all contain a unique dictionary element in common,

which can then be recovered approximately by the subsequent SVD step.

4.2.2 Alternating Minimization

Once an initial estimate of the dictionary is obtained, we alternate

between two procedures, viz., a sparse recovery step for estimating the coef-

ficients given a dictionary, and a least squares step for a dictionary given the
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Algorithm 8 InitDictionaryLearn(Y, ǫdict, ρ): Initial step for estimating dic-
tionary elements.

Input: Samples Y = [Y1| . . . |Yn]. Correlation threshold ρ. Desired separa-
tion parameter ǫdict between recovered dictionary elements.

Output: Initial Dictionary Estimate Ā.
Construct correlation graph Gcorr(ρ) s.t. (Yi, Yj) ∈ Gcorr(ρ) when |〈Yi, Yj〉| >
ρ.
Set Ā← ∅.
for each edge (Yi∗ , Yj∗) ∈ Gcorr(ρ) do

Ŝ ← NGcorr(ρ)
(Yi∗) ∩NGcorr(ρ)

(Yj∗).

if UniqueIntersection(Ŝ, Gcorr(ρ)) then

Q̂←∑
Yi∈Ŝ YiY

⊤
i and ā← u1, where u1 is top singular vector of Q̂.

if minb∈Ā ‖ā− b‖ > 2ǫdict then
Ā← Ā ∪ ā

end if
end if

end for
Return Ā

estimates of the coefficients (details are presented in Algorithm 2).

The sparse recovery step of Algorithm 2 is based on ℓ1-regularization,

followed by thresholding. The thresholding is required for us to guarantee that

the support set of our coefficient estimate X(t) is a subset of the true support

with high probability. Once we have an estimate of the coefficients, the dictio-

nary is re-estimated through least squares. The overall algorithmic scheme is

popular for dictionary learning, and there are a number of variants of the basic

method. For instance, the ℓ1-regularized problem in step 3 can also be replaced

by other robust sparse recovery procedures such as OMP [84] or GraDeS [35].

More generally the exact lasso and least-squares steps may be replaced with

other optimization methods for computational efficiency, e.g. [47].
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Procedure 1 UniqueIntersection(S,G): Determine if samples in S have a
unique intersection.

Input: Set S with 2m vectors Y1, . . . Y2m and graph G with Y1, . . . , Y2m as
nodes.

Output: Indicator variable UNIQUE INT
Partition S into sets S1, . . . , Sm such that each |Si| = 2.
if Number of Si which are edges in G is greater than 61m

64
then

UNIQUE INT ← 1
else
UNIQUE INT ← 0

end if
Return UNIQUE INT

4.3 Guarantees

In this section, we provide our exact recovery result and also clearly

specify all the required assumptions on A∗ and X∗. We then provide guaran-

tees for each of the individual steps (initialization step and alternating mini-

mization steps) in Section 4.3.2 and Section 4.3.3, respectively. We provide a

brief sketch of our proof for each of the steps in Section 4.3.4.

4.3.1 Assumptions and exact recovery result

We start by formally describing the assumptions needed for the main

recovery result of this paper.

Assumptions on the dictionary:

(A1) Mutual Incoherence: Wlog, assume that all the elements are normal-

ized: ‖A∗
i ‖ = 1, for i ∈ [r]. We assume pairwise incoherence condition

on the dictionary elements, for some constant µ0 > 0, |〈A∗
i , A

∗
j〉| < µ0√

d
.

(A2) Bound on the Spectral Norm: The dictionary matrix has bounded

spectral norm, i.e., for some µ1 > 0, we have ‖A∗‖ < µ1

√
r
d
.
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Algorithm 2 AltMinDict(Y,A(0), ǫ0): Alternating minimization for dictio-
nary learning

Input: Samples Y , initial dictionary estimate A(0), accuracy sequence ǫt
and sparsity level s. Thresholding function Tρ(a) = a if |a| > ρ and 0 o.w.

1: for iterations t = 0, 1, 2, . . . , T − 1 do
2: for samples i = 1, 2, . . . , n do
3: X(t+ 1)i = argminx∈Rr‖x‖1

such that, ‖Yi − A(t)x‖2 ≤ ǫt.
4: end for
5: Threshold: X(t+ 1) = T9sǫt(X(t+ 1)).
6: Estimate A(t+ 1) = Y X(t+ 1)+

7: Normalize: A(t+ 1)i =
A(t+1)i

‖A(t+1)i‖2
8: end for

Output: A(T )

Assumptions on the coefficients:

(B1) Non-zero Entries in Coefficient Matrix: We assume that the non-

zero entries of X∗ are drawn i.i.d. from a zero-mean unit-variance dis-

tribution, and satisfy the following a.s.: m ≤ |X∗i
j| ≤M, ∀i, j.

(B2) Sparse Coefficient Matrix: The columns of coefficient matrix have s

non-zero entries which are selected uniformly at random from the set of

all s-sized subsets of [r], i.e. | Supp(X∗
i )| = s, ∀ i ∈ [n].We require s to

satisfy

s < min

(
r1/8

c1

(m
M

)1/4
,
d1/9

c2µ
2/9
1

(m
M

)4/9
)
,

for universal constants c1, c2 > 0. Constantsm,M are as specified above.

Assumption (A1) on normalization of dictionary elements is without

loss of generality since we can always rescale the dictionary elements and the

corresponding coefficients and obtain the same observations. However, the

incoherence assumption is crucial in establishing our guarantees. In partic-

ular, incoherence also leads to a bound on the restricted isometry property

(RIP) constant [75]; see Lemma C.3.2 in Appendix C.2. The assumption (A2)
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provides a bound on the spectral norm of A∗. Note that the incoherence

and spectral assumptions are satisfied with high probability (w.h.p.) when

the dictionary elements are randomly drawn from a mean-zero sub-gaussian

distribution.

Assumption (B1) imposes some natural constraints on lower and upper

bounds on the non-zero entries of X∗. We use lower bound assumption on

X∗(i, j) for simplicity of exposition, as explained in Section 4.3.4, we can

remove this assumption as the thresholding coefficient in Algorithm 2 decreases

with each iteration. Assumption(B2) on sparsity in the coefficient matrix is

crucial for identifiability of the dictionary learning problem.

We now give the main result of this paper.

Theorem 4.3.1 (Exact recovery). Suppose assumptions (A1) − (A2) and

(B1)− (B2) are satisfied. Then there exists a universal constant c3 such that,

if

1. Sample Complexity: n ≥ c3 max
(
r2 log 1

δ
, rM2s log 2r

δ

)
,

2. Choice of Parameters for Initial Dictionary Estimation: inputs

ρ and ǫdict to Algorithm 8 are chosen such that

ρ =
1

2
−s2µ0√

d
> 0, and

32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
< ǫ2dict <

1

4
.

3. Choice of Parameters for Alternating Minimization: Algorithm 2

uses a sequence of accuracy parameters ǫ0 = 1/2592s2 and

ǫt+1 =
25050µ1s

3

√
d

ǫt. (2)

then, the alternating minimization procedure (Algorithm 2) when seeded with

Algorithm 8, outputs A(t) at the t-th step (t ≥ 1) that satisfies the following

with probability at least 1− 2δ − 2n2δ:

min
z∈{−1,1}

‖zAi(t)− A∗
i ‖2 ≤

√
2ǫt, ∀1 ≤ i ≤ r,

where ǫt is as given in Assumption (A7). In particular, after T = O(log( ǫ0
ǫ
))

steps of Algorithm 2, we obtain:

min
z∈{−1,1}

‖zAi(t)− A∗
i ‖2 ≤ ǫ, ∀1 ≤ i ≤ r, ∀ǫ > 0.
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Remarks: Note that we have a sign ambiguity in recovery of the dictionary

elements, since we can exchange the signs of the dictionary elements and the

coefficients to obtain the same observations.

Note that Theorem 4.3.1 guarantees that we can recover the dictionary

A∗ to an arbitrary precision ǫ (based on the number of iterations T of Algo-

rithm 2 ), given n = O (r2) samples. We contrast this with the results of [3],

who also provide recovery guarantees to an arbitrary accuracy ǫ, but only if

the number of samples is allowed to increase as O
(
r2 log 1

ǫ

)
.

Establishing the above result requires two main ingredients, viz., guar-

anteeing an error bound for the initial dictionary estimation step, and proving

a local convergence result for the alternating minimization step, and obtain-

ing a bound on the basin of attraction for the solution consisting of the true

dictionary and coefficient matrices. Below, we provide these individual results

explicitly.

4.3.2 Guarantees for the Initialization Step

We now give the result for approximate recovery of the dictionary in

the initialization step.

Theorem 4.3.2 (Approximate recovery of dictionary). Suppose the output of

Algorithm 8 is A(0). Under assumptions (A1)− (A2) and (B1)− (B2), and if

1. Sample Complexity: n ≥ c3 max
(
r2 log 1

δ
, rM2s log 2r

δ

)
,

2. Choice of Parameters for Initial Dictionary Estimation: inputs

ρ and ǫdict to Algorithm 8 are chosen such that

ρ =
1

2
−s2µ0√

d
> 0, and

32sM2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
< ǫ2dict <

1

4
.

then, with probability greater than 1− 2n2δ, there exists a permutation matrix

P such that:

ǫ2A := max
i∈[r]

min
z∈{−1,+1}

‖zA∗
i − (PA(0))i‖22 < 32s

M2

m2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+

1

s3

)
.
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Remarks: We note that the error in Theorem 4.3.2 does not go down

with the number of samples n, since it depends on geometric properties of the

dictionary, that are determined by the dimension dependent factors such as

s, r and d. However, the error probability does go down with the number of

samples, since the sample correlation graph becomes an increasingly accurate

representative of the population version.

For the approximate recovery of dictionary elements, it turns out that a

less stringent requirement on the sparsity level and the sample complexity suf-

fices. Specifically, we can replace assumption (B2) with the weaker condition

s < min

(
m
M

√ √
d

2µ0
, 3
√

r
1536

)
, which suffices for the error in Theorem 4.3.2 to be

o(1). The more stringent requirement on sparsity arises in Theorem 4.3.1 since

we need the error from Theorem 4.3.2 to be at most O (1/s2) for the subsequent

alternating minimization steps to succeed. The initialization step also has a

milder requirement on the number of samples, and does not need the condition

n = O (r2 log(1/δ)). Thus, we obtain a near linear sample complexity for our

initialization method.

4.3.3 Guarantees for Alternating Minimization

We now prove a local convergence result for alternating minimization.

We assume that we have access to a good initial estimate of the dictionary:

(C1) Initial dictionary with guaranteed error bound: We assume that

we have access to an initial dictionary estimate A(0) such that

ǫ0 := max
i∈[r]

min
z∈{−1,+1}

‖zA∗
i − A(0)i‖2 <

1

2592s2
.

Theorem 4.3.3 (Local linear convergence). Under assumptions (A1)-(A2),

(B1)-(B2) and (C1), if

1. Sample Complexity: n ≥ c3 max
(
r2 log 1

δ
, rM2s log 2r

δ

)
,

2. Choice of Parameters for Alternating Minimization: Algorithm 2

uses a sequence of accuracy parameters ǫ0 = 1/2592s2 and

ǫt+1 =
25050µ1s

3

√
d

ǫt. (3)
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then, with probability at least 1− 2δ the iterate A(t) of Algorithm 2 satisfies

the following for all t ≥ 1:

min
z∈{−1,1}

‖zAi(t)− A∗
i ‖2 ≤ ǫt, 1 ≤ i ≤ r.

Remarks: The consequences of Theorem 4.3.3 are powerful combined with

our Assumption (B2) and the recurrence 3 (since (B2) ensures that ǫt forms

a decreasing sequence). In particular, it is implied that with high probability

we obtain,

min
z∈{−1,1}

‖zA(t)i − A∗
i‖2 ≤ ‖A(0)− A∗‖22−t.

Given the above bound, we need at mostO
(
log2

ǫ0
ǫ

)
in order to ensure ‖zA(T )i−

A∗
i‖2 ≤ ǫ for all the dictionary elements i = 1, 2, . . . , r. In the convex opti-

mization parlance, the result demonstrates a local linear convergence of Al-

gorithm 2 to the globally optimal solution under an initialization condition.

Another way of interpreting our result is that the global optimum has a basin

of attraction of size O (1/s2) for our alternating minimization procedure under

these assumptions (since we require ǫ0 ≤ O (1/s2)).

We note that Theorem 4.3.3 does not crucially rely on initialization

specifically by the output of Algorithm 8, and admits any other initialization

satisfying Assumption (C1). In particular, some of the assumptions in (B1)−
(B2) are not essential for Theorem 4.3.3, but are only made for the overall

result of Theorem 4.3.1. Indeed, it suffices to have a sparsity level satisfying

s < d1/6

c2µ
1/3
1

for a universal constant c2 > 0 (without any dependence on r).

The theorem also does not rely on lower bounded entries, and only needs

‖X∗‖∞ ≤M . We also recall that the lasso step in Algorithm 2 can be replaced

with a different robust sparse recovery procedure, with qualitatively similar

results.

As remarked earlier, the recent work of [3] provides an alternative ini-

tialization strategy for our alternating minimization procedure. Indeed, un-

der our sample complexity assumption, theirOverlappingAverage method

provides a solution with ǫ0 = O (s/
√
r) assuming s = O

(
max(r2/5,

√
d)
)
.
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4.3.4 Overview of Proof

In this section we outline the key steps in proving Theorems 4.3.2

and 4.3.3. Given these theorems, Theorem 4.3.1 follows as an immediate

consequence.

Analysis of initial dictionary estimation: The core intuitions for this

step can be described in terms of the relationships between the two graphs,

viz., the coefficient bipartite graph Bcoeff and the sample correlation graph

Gcorr, shown in Figures 4.2 and 4.1 respectively. Bcoeff consists of dictionary

elements {A∗
i } on one side and the samples {Yi} on the other. There is an

edge between Yi and A∗
j iff X∗i

j 6= 0, and NB(Yi) denotes the neighborhood of

Yi in the graph Bcoeff .

Now given this bipartite graph Bcoeff , for each dictionary element A∗
i ,

consider a set of samples3 which (pairwise) have only one dictionary element

A∗
i in common, and denote such a set by Ci i.e. Ci := {Yk, k ∈ S : NB(Yk) ∩

NB(Yl) = A∗
i , ∀ k, l ∈ S}. Intuitively, the sets Ŝ constructed in Algorithm 8

are our proxies for Ci. Indeed, the first part of the proof is to demonstrate

that for a random coefficient matrix X∗, adequately large cliques Ci exist in

the graph Bcoeff .

r

n

A∗
1 A∗

2 A∗
r

Y1 Y2 Yn

X∗

C1 Cr

Figure 4.2: Bipartite graph B mapping dictionary elements A∗
1, . . . A

∗
r to sam-

ples Y1, . . . Yn. See text for definition of Ci.
Our subsequent analysis is broadly divided into two parts, viz., estab-

lishing that (large) sets {Ci} can be found efficiently, and that the dictionary

elements can be estimated accurately once such sets {Ci} are found. We start

3Note that such a set need not be unique.
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with a proposition that demonstrates the correctness of Procedure 1 at identi-

fying these cliques. We use the notation Uniq-intersect(Yi, Yj) to denote that

Yi and Yj have exactly one dictionary element in common.

Proposition 4.3.4 (Correctness of Procedure 1). Suppose (Yi∗ , Yj∗) ∈ Gcorr(ρ).

Suppose that s3 ≤ r/1536 and γ ≤ 1/64. Then Algorithm 8 returns the value

of Uniq-intersect(Yi∗ , Yj∗) correctly with probability at least 1− 2 exp(−γ2m).

Given a large sample of elements with a unique dictionary element (say

A∗
1) in common (Ŝ in Algorithm 8), we next show that the subsequent SVD

step recovers this dictionary element approximately. Intuitively this happens

since each sample Yi ∈ Ŝ contains A∗
1 with a coefficient at least m (in absolute

value). Hence the covariance matrix Q̂ has a larger component along A∗
1 than

other dictionary elements, which leads to approximate recovery via the top

singular vector.

Proposition 4.3.5 (Accuracy of SVD). Consider anchor samples Yi∗ and
Yj∗ such that Uniq-intersect(Yi∗ , Yj∗) in Algorithm 8 is satisfied, and wlog, let

NB(Yi∗) ∩ NB(Yj∗) = {A∗
1}. Recall the definition of Ŝ in Algorithm 8, and

further define Q̂ :=
∑

i∈Ŝ YiY
⊤
i and |Ŝ| = k. If â is the top singular vector of

Q̂, then there exists a universal constant c such that for any 0 < α < 1/20 we
have:

min
z∈{−1,1}

‖zâ−A∗
1‖22 < 32s

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
,

with probability at least 1− d exp (−cα2k).

Note the ambiguity in signs above, since SVD cannot recover the sign

of the top singular vector. With the above auxiliary results in place, the proof

of Theorem 4.3.2 follows with simple arguments.

Analysis of alternating minimization: Given an approximate estimate

of the dictionary, we then establish a local convergence result for alternating

minimization.

For ease of notation, let us consider just one iteration of Algorithm 2

and denote X(t + 1) as X, A(t + 1) as A and A(t) as Ã. Then we have the

least-squares update
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A− A∗ = Y X+ − A∗ = A∗X∗X+ − A∗XX+ = A∗△XX+,

where △X = X∗ − X. This means that we can understand the error in

dictionary recovery by the error in the least squares operator △XX+. In

particular, we can further expand the error in a column p as: Ap − A∗
p =

A∗
p(△XX+)

p
p + A∗

\p(△XX+)
\p
p , where the notation \p represents the col-

lection of all indices apart from p. Hence we see two sources of error in our

dictionary estimate. The element (△XX+)
p
p causes the rescaling of Ap relative

to A∗
p. However, this is a minor issue since the renormalization would correct

it.

More serious is the contribution from the off-diagonal terms (△XX+)
p
\p,

which corrupt our estimate Ap with other dictionary elements beyond A∗
p. In-

deed, a crucial argument in our proof is controlling the contribution of these

terms at an appropriately small level. In order to do that, we start by con-

trolling the magnitude of △X.

Lemma 4.3.6 (Error in sparse recovery). Let △X
def
= X(t) − X∗. Assume

that 2µ0s/
√
d ≤ 0.1 and

√
sǫt ≤ 0.1 Then, we have Supp(△X) ⊆ Supp(X∗)

and the error bound ‖△X‖∞ ≤ 9sǫt.

This lemma is very uesful in our error analysis, since we establish that

any matrix W satisfying Supp(W ) ⊆ Supp(X∗) has a good bound on its

spectral norm (even if the entries depend on A∗, X∗).

Lemma 4.3.7. With probability at least 1−r exp
(
−Cn

rs

)
, for every r×n matrix

W s.t. Supp(W ) ⊆ Supp(X∗), we have ‖W‖2 ≤ 2‖W‖∞
√

s2n
r
.

A particular consequence of this lemma is that it guarantees the in-

vertibility of the matrix XX⊤, so that the pseudo-inverse X+ is well-defined

for subsequent least squares updates. Next, we present the most crucial step

which is controlling the off-diagonal terms (△XX+)
p
\p.

Lemma 4.3.8 (Off-diagonal error bound). With probability at least 1−r exp
(
−Cn

r

)
−

r exp
(
− Cn

rM2s

)
−exp (−n/(3r2)), we have uniformly for every p ∈ [r] and every

△X such that ‖△X‖∞ < 1
288s

.

∥∥∥
(
△XX+

)\p
p

∥∥∥
2
=
∥∥∥
(
X∗X+

)\p
p

∥∥∥
2
≤ 1968s2 ‖△X‖∞√

r
.
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The lemma uses the earlier two lemmas along with some other auxilliary

results. Given these lemmas, the proof of the main theorem follows with some

algebra. Specifically, for any unit vector w such that w ⊥ A∗
p, we can bound

the normalized inner product 〈w,Ap〉/‖Ap‖2 which suffices to obtain the result

of the theorem.

4.4 Experiments
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Figure 4.3: (a): Average error after each step alternating minimization step of
Algorithm 2 on log-scale. (b): Average error after the initialization procedure
(Algorithm 8) and after 5 alternating minimization steps of Algorithm 2. (c):
Sample complexity requirement of the alternating minimization algorithm. For
ease of experiments, we initialize the dictionary using a random perturbation
of the true dictionary rather than using Algorithm 8 which should in fact give
better initial point with smaller error.

Alternating minimization/descent approaches have been widely used

for dictionary learning and several existing works show effectiveness of these

methods on real-world/synthetic datasets [5, 82]. Hence, instead of replicat-

ing those results, in this section we focus on illustrating the following three

key properties of our algorithms via experiments in a controlled setting: a)

Advantage of alternating minimization over one-shot initialization, b) linear

convergence of alternating minimization, c) sample complexity of alternating

minimization.

Data generation model: Each entry of the dictionary matrix A is

chosen i.i.d. from N(0, 1). Note that, random Gaussian matrices are known to

satisfy incoherence and the spectral norm bound [88]. The support of each col-

umn of X was chosen independently and uniformly from the set of all s-subsets

of [r]. Similarly, each non-zero element of X was chosen independently from

the uniform distribution on [−2,−1]∪ [1, 2]. We use the GraDeS algorithm of
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[35] to solve the sparse recovery step, as it is faster than lasso. We measure

error in the recovery of dictionary by error(A) = maxi

√
1− 〈Ai,A∗

i 〉2
‖Ai‖22‖A∗

i ‖22
. The

first two plots are for a typical run and the third plot averages over 10 runs.

The implementation is in Matlab.

Linear convergence: In the first set of experiments, we fixed d = 100,

r = 200 and measured error after each step of our algorithm for increasing val-

ues of n. Figure 4.3 (a) plots error observed after each iteration of alternating

minimization; the first data point refers to the error incurred by the initial-

ization method. As expected due to Theorem 4.3.3, we observe a geometric

decay in the error.

One-shot vs iterative algorithm: It is conceivable that the initialization

procedure of Algorithm 8 itself is sufficient to obtain an estimate of the dictio-

nary upto reasonable accuracy. Figure 4.3(b) shows that this is not the case.

The figure plots the error in recovery vs the number of samples used for both

Algorithm 8 and Algorithm 2. It is clear that the recovery error of the alternat-

ing minimization procedure is significantly smaller than that of the initializa-

tion procedure. For example, for n = 2.5sr log r with s = 3, r = 200, d = 100,

initialization incurs error of .56 while alternating minimization incurs error of

10−6. Note however that the recovery accuracy of the initialization procedure

is non-trivial and also crucial to the success of alternating minimization- a

random vector in R
d would give an error of 1 − 1

d
= 0.99, where as the error

after initialization procedure is ≈ 0.55.

Sample complexity: Finally, we study sample complexity requirement of

the alternating minimization algorithm which is n = O (r2 log r) according to

Theorem 4.3.3, assuming good enough initialization. Figure 4.3(c) suggests

that in fact only O (r) samples are sufficient for success of alternating min-

imization. The figure plots the probability of success with respect to n
r
for

various values of r. A trial is said to succeed if at the end of 25 iterations, the

error is smaller than 10−6. Since we focus only on the sample complexity of

alternating minimization, we use a faster initialization procedure: we initialize

the dictionary by randomly perturbing the true dictionary as A(0) = A∗ + Z,

where each element of Z is an N(0, 0.5) random variable. Figure 4.3 (c) shows

that the success probability transitions at nearly the same value for various

values of r, suggesting that the sample complexity of the alternating mini-

mization procedure in this regime of r = O (d) is just O(r).
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4.5 Discussion

In this paper we present an exact recovery result for learning incoher-

ent and overcomplete dictionaries with sparse coefficients. The first part of

our result uses a novel initialization procedure, which uses a clustering-style

algorithm to approximately recover the dictionary elements. The second step

of our approach is an alternating minimization procedure which is quite widely

used by practitioners for this problem already. We believe that our results are

an important and timely advance in the understanding of this problem. There

is an increasing interest on supervised and unsupervised feature learning meth-

ods in machine learning. However, we have an extremely rudimentary theoret-

ical understanding of these problems as compared to standard classification of

regression problems. A systematic understanding of dictionary learning and

related models (both supervised and unsupervised) can help bridge this gap.

Moreover, the applications of dictionary learning in other areas such as signal

processing and coding make these results of broader interest beyond machine

learning.

We believe that our work suggests several avenues for future research.

We focus on the unsupervised setting in this paper, but extensions to super-

vised setting would be interesting for future work. Our theory also suggests

room for strengthening the lasso step with further constraints on the global

structure of the iterates X(t), which might lead to better recovery properties

with milder assumptions. Our simulations hint at the possibility of a better

sample complexity, at least in certain regimes of parameters. Understand-

ing these issues, as well as others such as noise robustness remain important

questions for further research in this area.
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Chapter 5

Conclusion

Alternating minimization algorithms are widely used for solving many

non-convex learning problems. Despite their good empirical performance,

there have been very few theoretical guarantees on their performance. In this

thesis, we present rigorous performance guarantees for alternating minimiza-

tion for three machine learning problems: matrix completion, phase retrieval

and learning sparsely used dictionaries.

Understanding why alternating minimization and other such heuristics

work so well in practice seems crucial to improving upon these methods as well

as in designing new methods with better performance. A crucial component

of our results for all the three problems is the designing of new initialization

algorithms from where alternating minimization is guaranteed to converge at a

good rate. For the phase retrieval problem, we indeed observe that principled

initialization improves sample complexity over random initialization (see Fig-

ures 3.1 and 3.2). It will be interesting to see if our initialization algorithms

improve the performance of alternating minimization in practice.

Alternating minimization is also closely related to Expectation Maxi-

mization (EM), which is the predominant method used in practice for many

statistical problems. Similar to alternating minimization, despite its huge em-

pirical success, there are very few results regarding its performance in any

setting. It will be interesting to see if our methods help shed light on the

performance of EM in any setting.

We believe that the ultimate goal of this line of research is to lever-

age our understanding of the performance of these methods to design faster

algorithms with good performance. For instance, the success of alternating

minimization methods naturally motivates the designing of gradient and prox-

imal gradient methods to solve these problems. We believe that successful

designing of such algorithms will have a big impact on many applications.
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Appendix A

Proofs for Matrix Completion using

Alternating Minimization

A.1 Preliminaries

Lemma A.1.1 (Lemma 2.1 of [44]). Let b = A(M) + e, where e is a bounded

error vector, M is a rank-k matrix and A is a linear measurement operator

that satisfies 2k-RIP with constant δ2k (assume δ2k < 1/3). Let X t+1 be the

t+ 1-th step iterate of SVP, then the following holds:

‖A(X t+1)− b‖22 ≤ ‖A(M)− b‖22 + 2δ2k‖A(X t)− b‖22.

In our analysis, we heavily use the following two results. The first result

is the well-known Bernstein’s inequality.

Lemma A.1.2. [Bernstein’s inequality] Let X1, X2, · · · , Xn be independent
random variables. Also, let |Xi| ≤ L ∈ R ∀ i w.p. 1. Then, we have the
following inequality:

P

[∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

E [Xi]

∣∣∣∣∣ > t

]
≤ 2 exp

( −t2/2∑n
i=1Var (Xi) + Lt/3

)
. (1)

The second result is a restatement of Theorem 3.1 from [50].

Theorem A.1.3. (Restatement of Theorem 3.1 from [50]) Suppose M is an

incoherent rank-k matrix and let p,Ω be as in Theorem 2.3.3. Further, let Mk

be the best rank-k approximation of 1
p
PΩ (M). Then, w.h.p. we have:

‖M −Mk‖2 ≤ C

√
k

p
√
mn
‖M‖F . (2)
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Remark: Note that Theorem 3.1 from [50] holds only for Tr (PΩ(M))

where Tr (PΩ(M)) is a trimmed version of PΩ(M) obtained by setting all rows

and columns of PΩ(M) with too many observed entries to zero. However,

using standard Chernoff bound we can argue that for our choice of p, none of

the rows and columns of PΩ(M) have too many observed entries and hence

Tr (PΩ(M)) = PΩ(M), whp.

A.2 Matrix Sensing

The following is an alternate characterization of RIP that we use heavily

in our proofs. At a conceptual level, it says that if A satisfies RIP, then it also

preserves inner-product between any two rank-k matrices (upto some additive

error).

Lemma A.2.1. Suppose A(·) satisfies 2k-RIP with constant δ2k. Then, for

any U1, U2 ∈ R
m×k and V1, V2 ∈ R

n×k, we have the following:

∣∣∣
〈
A

(
U1V

†
1

)
,A
(
U2V

†
2

)〉
− Tr

(
U †
2U1V

†
1 V2

)∣∣∣ ≤ 3δ2k

∥∥∥U1V
†
1

∥∥∥
F

∥∥∥U2V
†
2

∥∥∥
F

(3)

Proof. Consider the matrices X1
def
= U1V

T
1 , X2

def
= U2V

T
2 and X = X1 + X2.

Since the rank of X is at most 2k, we obtain the following using the RIP of

A:

(1− δ)
∥∥U1V

T
1 + U2V

T
2

∥∥2
F
≤ ‖A(X)‖22 ≤ (1 + δ)

∥∥U1V
T
1 + U2V

T
2

∥∥2
F
.
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Concentrating on the second inequality, we obtain

∑

i

(
Tr
(
AiU1V

T
1

)
+ Tr

(
AiU2V

T
2

))2

≤ (1 + δ)
(∥∥U1V

T
1

∥∥2
F
+
∥∥U2V

T
2

∥∥2
F
+ Tr

(
U1V

T
1 V2U

T
2

))

(ζ1)⇒
∑

i

Tr
(
AiU1V

T
1

)
Tr
(
AiU2V

T
2

)
− Tr

(
U1V

T
1 V2U

T
2

)

≤ δ
(∥∥U1V

T
1

∥∥2
F
+
∥∥U2V

T
2

∥∥2
F
+ Tr

(
U1V

T
1 V2U

T
2

))

(ζ2)⇒
∑

i

Tr
(
AiU1V

T
1

)
Tr
(
AiU2V

T
2

)
− Tr

(
U1V

T
1 V2U

T
2

)

≤ δ
(∥∥U1V

T
1

∥∥2
F
+
∥∥U2V

T
2

∥∥2
F
+
∥∥U1V

T
1

∥∥
F

∥∥U2V
T
2

∥∥
F

)

(4)

where (ζ1) follows from the fact that X1 and X2 are rank-k matrices and

hence A(·) satisfies RIP w.r.t. those matrices and (ζ2) follows from the fact

that Tr
(
U1V

T
1 V2U

T
2

)
≤
∥∥U1V

T
1

∥∥
F

∥∥U2V
T
2

∥∥
F
. Note that if we replace U1V

T
1 by

λU1V
T
1 and U2V

T
2 by 1

λ
U2V

T
2 in (4) for some non-zero λ ∈ R, the LHS of (4)

does not change where as the RHS of (4) changes. Optimizing the RHS w.r.t.

λ, we obtain

∑

i

Tr
(
AiU1V

T
1

)
Tr
(
AiU2V

T
2

)
− Tr

(
UT
2 U1V

T
1 V2

)
≤ 3δ

∥∥U1V
T
1

∥∥
F

∥∥U2V
T
2

∥∥
F
.

A similar argument proves the other side of the inequality. This proves the

lemma.

Proof of Lemma 2.4.4. We first show that the update (6) reduces to:

k∑

q=1

(
s∑

i=1

Aiu
(t)
p u(t)†

q A†
i

)
v̂(t+1)
q =

k∑

q=1

(
s∑

i=1

Aiu
(t)
p u∗†

q A†
i

)
v∗q ∀ p ∈ [k]. (5)

Let Err(V )
def
=
∑

i

(
Tr (AiM)− Tr

(
AiU

(t)V †))2. Since V̂ (t+1) minimizes E(V ),
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we have ∇VE(V̂ (t+1)) = 0.

∇vpErr(V̂ (t+1)) = 0

⇒
s∑

i=1

(
k∑

l=1

v(t)q

†
Aiu

(t)
q −

k∑

l=1

σ∗
qv

∗
q
†Aiu

∗
q

)
Aiup = 0

⇒
k∑

l=1

s∑

i=1

Aiup

(
v(t+1)
q

†
Aiu

(t)
q

)
=

k∑

l=1

s∑

i=1

Aiup

(
σ∗
qv

∗
q
†Aiu

∗
q

)

⇒
k∑

l=1

s∑

i=1

Aiup

(
u(t)
q

†
A†

iv
(t+1)
q

)
=

k∑

l=1

s∑

i=1

Aiup

(
u∗
q
†A†

iσ
∗
qv

∗
q

)

⇒
k∑

l=1

(
s∑

i=1

Aiupu
(t)
q

†
A†

i

)
v(t+1)
q =

k∑

l=1

(
s∑

i=1

Aiupu
∗
q
†A†

i

)
σ∗
qv

∗
q

Define

S =



σ∗
1In . . . 0n
...

...
...

0n . . . σ∗
kIn


 , v∗ =



v∗1
...
v∗k


 , and v̂

(t+1)
1 =



v̂
(t+1)
1
...

v̂
(t+1)
k


 .

Then,

v̂
(t+1)
1 = B−1CSv∗

= DSv∗ − B−1 (BD − C)Sv∗

where inverting B is valid since the minimum singular value of B is strictly

positive (please refer Lemma A.2.2). Considering the pth block of v̂(t), we

obtain

v̂(t+1)
p =

(∑

q

〈u(t)
p , u∗

q〉σ∗
qv

∗
q

)
−
(
B−1 (BD − C)Sv∗

)
p

=

(∑

q

σ∗
qv

∗
qu

∗
q
†

)
u(t)
p −

(
B−1 (BD − C)Sv∗

)
p
.

This gives us the following equation for V̂ (t):

V̂ (t+1) = V ∗Σ∗U∗†U (t) − F, where
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F :=[
(B−1 (BD − C)Sv∗)1 (B−1 (BD − C)Sv∗)2 · · · (B−1 (BD − C)Sv∗)k

]
.

Hence Proved.

A.2.1 Rank-1 Matrix Sensing

Proof of Lemma 2.4.2. Using definition of the spectral norm:

‖B−1
(
〈u∗, ut〉B − C

)
v∗‖ ≤ ‖B−1‖2 · ‖〈u∗, ut〉B − C‖2 · ‖v∗‖2. (6)

Consider B =
∑

i Aiu
t(ut)†A†

i . Now, smallest eigenvalue of B, i.e., λmin(B) is

given by:

λmin(B) = min
‖z‖=1

z†Bz = min
‖z‖=1

∑

i

z†Aiu
t(ut)†A†

iz

= min
‖z‖=1

∑

i

Tr(Aiu
tz†) Tr(Aiu

tz†),

= min
‖z‖=1
〈A(utz†),A(utz†)〉

≥ 1− 3δ2, (7)

where the last inequality follows using Lemma A.2.1. Using (7),

‖B−1‖2 ≤
1

1− 3δ2
. (8)

Now, consider G = 〈u∗, ut〉B − C =
∑

i Ai

(
〈u∗, ut〉ut(ut)† − ut(u∗)†

)
A†

i =∑
i Aiu

t (〈u∗, ut〉ut − u∗)
†
A†

i . Using definition of the spectral norm:

‖G‖2 = max
‖z‖=1,‖y‖=1

z†Gy,

= max
‖z‖=1,‖y‖=1

∑

i

z†Aiu
t
(
〈u∗, ut〉ut − u∗)† A†

iy,

= max
‖z‖=1,‖y‖=1

〈A(utz†),A
((
〈u∗, ut〉ut − u∗) y†

)
〉,

≤ 3δ2
√
1− 〈ut, u∗〉2, (9)

where the last inequality follows by using Lemma A.2.1 and the fact that

〈ut, (〈u∗, ut〉ut − u∗)〉 = 0.

Lemma now follows using (6), (8), (9).
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A.2.2 Rank-k Matrix Sensing

Proof of Lemma 2.4.3. Since Û t and Ũ t have full rank and span the same

subspace, there exists a k × k, full rank matrix R such that Û t = Ũ tR =

U tRt
UR. We have:

∥∥∥A
(
Û tV †

)
− b
∥∥∥
2
=

∥∥∥∥A
(
U t
(
V
(
Rt

UR
)†)†

)
− b

∥∥∥∥
2

≥
∥∥∥∥A
(
U t
(
Ṽ t+1

)†)
− b

∥∥∥∥
2

with equality holding in the last step for V = Ṽ t+1
(
(Rt

UR)
†
)−1

. The proof of

Theorem 2.4.1 shows that Ṽ t+1 is unique and has full rank (since dist
(
Ṽ t+1, V ∗

)

< 1). This means that V̂ t+1 is also unique and is equal to Ṽ t+1
(
(Rt

UR)
†
)−1

.

This shows that Span
(
V̂ t+1

)
= Span

(
Ṽ t+1

)
and that both V̂ t+1 and Ṽ t+1

have full rank.

Lemma A.2.2. Let linear measurement A satisfy RIP for all 2k-rank matrices

and let b = A(M) with M ∈ R
m×n being a rank-k matrix. Let δ2k be the RIP

constant for rank 2k-matrices. Then, we have the following bound on the

minimum singular value of B:

σmin(B) ≥ 1− δ2k. (10)

Proof. Select any w ∈ R
nk such that ‖w‖2 = 1. Let

w =




w1

w2
...
wk




where each wp ∈ R
n. Also denote W

def
= [w1w2 · · ·wk] ∈ R

n×k, i.e., w =

vec(W ).
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We have,

w†Bw =
k∑

p,q=1

w†
pBpqwq =

k∑

p,q=1

w†
p

(
d∑

i=1

Aiu
t
p(u

t
q)

†A†
i

)
wq

=
d∑

i=1

k∑

p,q=1

w†
pAiu

t
p(u

t
q)

†A†
iwq

=
d∑

i=1

(
k∑

p=1

w†
pAiu

t
p

)(
k∑

q=1

w†
qAiu

t
q

)
=

d∑

i=1

Tr
(
AiU

tW †)2 .

Now, using RIP (see Definition 2.3.1) along with the above equation, we get:

w†Bw =
d∑

i=1

Tr
(
AiU

tW †)2 ≥ (1− δ)
∥∥U tW †∥∥2

F
= (1− δ2k) ‖W‖2F

= (1− δ2k)‖w‖2 = (1− δ2k).

Since w was arbitrary, this proves the lemma.

Proof of Lemma 2.4.5. Note that,

∥∥F (Σ∗)−1
∥∥
2
≤
∥∥F (Σ∗)−1

∥∥
F
=
∥∥B−1 (BD − C) v∗

∥∥
2

≤
∥∥B−1

∥∥
2
‖(BD − C)‖2 ‖v∗‖2

≤
√
k

1− δ2k
‖(BD − C)‖2 (11)

where the last step follows from Lemma A.2.2. Now we need to bound

‖(BD − C)‖2. Choose any w, z ∈ R
nk such that ‖w‖2 = ‖z‖2 = 1. As in

Lemma A.2.2, define the following components of w and z:

w =




w1

w2
...
wk


 and z =




z1
z2
...
zk
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where each wp, zp ∈ R
n and W

def
= [w1w2 · · ·wk] and Z

def
= [z1z2 · · · zk] ∈ R

n×k.

We have,

w† (BD − C) z =
k∑

p,q=1

w†
p (BD − C)pq zq

We calculate (BD − C)pq as follows:

(BD − C)pq =
k∑

l=1

BplDlq − Cpq

=

(
k∑

l=1

Bpl〈ut
l , u

∗
q〉In×n

)
− Cpq

=

(
k∑

l=1

u∗
q
†ut

l

d∑

i=1

Aiu
t
p(u

t
l)

†A†
i

)
− Cpq

=
d∑

i=1

Aiu
t
pu

∗
q
†

k∑

l=1

ut
l(u

t
l)

†A†
i −

d∑

i=1

Aiu
t
p(u

∗
q)

†A†
i

=
d∑

i=1

Aiu
t
pu

∗
q
† (U t(U t)† − In×n

)
A†

i .
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So we have,

w† (BD − C) z

=
k∑

p,q=1

w†
p

d∑

i=1

Aiu
t
pu

∗
q
† (U t(U t)† − In×n

)
A†

izq

=
d∑

i=1

k∑

p,q=1

w†
pAiu

t
pu

∗
q
† (U t(U t)† − In×n

)
A†

izq

=
d∑

i=1

Tr
(
AiU

tW †)Tr
(
Ai

(
U t(U t)† − In×n

)
U∗Z†)

(ζ1)

≤ Tr
(
U∗† (U t(U t)† − In×n

)
U tW †Z

)
+ δ2k

∥∥U tW †∥∥
F

∥∥(U t(U t)† − In×n

)
U∗Z†∥∥

F

(ζ2)

≤ δ2k‖W‖F
√∥∥∥(U∗)† (U t(U t)† − In×n)

2 U∗
∥∥∥
F
‖Z†Z‖F

(ζ3)

≤ δ2k
√
k · dist(U t, U∗),

where (ζ1) follows from the fact that A satisfies 2k-RIP and Lemma A.2.1,

(ζ2) follows from the fact that
(
U t(U t)† − In×n

)
U t = 0, (ζ3) follows from

the following: ‖W‖F = ‖w‖2 = 1, ‖Z†Z‖F ≤ ‖Z‖2F = 1 and and finally :∥∥(U t(U t)† − In×n

)
U∗∥∥

F
≤
√
k
∥∥(U t(U t)† − In×n

)
U∗∥∥

2
.

Since w and z were arbitrary unit vectors, we can conclude that ‖BD − C‖2
≤ δ2k

√
k · dist(U t, U∗). Plugging this bound in (11) proves the lemma.
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Proof of Lemma 2.4.6. Note that ‖Σ∗(R(t+1))−1‖2 ≤ σ∗
1

σmin(R(t+1))
. Now,

σmin(R
(t+1)) = min

z,‖z‖2=1
‖R(t+1)z‖2 = min

z,‖z‖2=1
‖V (t+1)R(t+1)z‖2,

= min
z,‖z‖2=1

‖V ∗Σ∗U∗†U (t)z − Fz‖2,

≥ min
z,‖z‖2=1

‖V ∗Σ∗U∗†U (t)z‖2 − ‖Fz‖2,

≥ min
z,‖z‖2=1

‖V ∗Σ∗U∗†U (t)z‖2 − ‖F‖2,

≥ σ∗
kσmin(U

∗†U (t))− ‖F‖2,

≥ σ∗
k

√
1−

∥∥U∗
⊥
†U (t)

∥∥2
2
− σ∗

1‖F (Σ∗)−1‖2,

= σ∗
k

√
1− dist(U∗, U (t))2 − σ∗

1‖F (Σ∗)−1‖2. (12)

Lemma now follows using above inequality with Lemma 2.4.5.

A.2.3 Noisy Matrix Sensing

We now consider an extension of the matrix sensing problem where

measurements can be corrupted arbitrarily using a bounded noise. That is, we

observe b = A (M +N), where N is the noise matrix. For this noisy case as

well, we show that a.s.recovers M upto an additive approximation depending

on the Frobenius norm of N .

Theorem A.2.3. Let M and A(·) be as defined in Theorem 2.3.1. Suppose,

a.s.algorithm (Algorithm 2) is supplied inputs A, b = A(M +N), where N is

the noise matrix s.t. ‖N‖F < 1
100

σ∗
k. Then, after T = 4 log(2/ǫ) steps, iterates

ÛT , V̂ T of a.s.satisfy:

dist
(
V̂ T , V ∗

)
≤ 10‖N‖F

σ∗
k

+ ǫ, dist
(
ÛT , U∗

)
≤ 10‖N‖F

σ∗
k

+ ǫ.

See Definition 2.4.1 for definition of dist (U,W ).

Proof. At a high level, our proof for noisy case follows closely, the exact case

proof given in Section 2.4. That is, we show that the update of a.s.algorithm
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is similar to power-method type update but with two errors terms: one due to

incomplete measurements and another due to the noise matrix.

Similar to our proof for sensing problem (Section 2.4), we analyze QR-

decomposition based updates. That is,

Û t = U tRt
U (QR decomposition),

V̂ t+1 = argmin
V

‖A(U tV †)− b‖22,

V̂ t+1 = V t+1Rt+1
V . (QR decomposition)

Similar to Lemma 2.4.4, we can re-write the above given update equation as:

V̂ t+1 = V ∗Σ∗(U∗)†U t − F + V NΣN(UN)†U (t) −G,

V t+1 = V̂ t+1(R(t+1))−1, (13)

where, F is the error matrix and is as defined in (8) and G is the error matrix

due to noise and is given by:

G
def
=
[(
B−1

(
BDN − CN

)
SNvN

)
1
· · ·

(
B−1

(
BDN − CN

)
SNvN

)
k

]
, (14)

where B, C and D defined in the previous section (See (7)) and CN and DN

are defined below:

CN def
=




CN
11 · · · CN

1m
...

. . .
...

CN
k1 · · · CN

km


 , DN def

=




DN
11 · · · DN

1m
...

. . .
...

DN
k1 · · · DN

km


 ,

with CN
pq

def
=
∑d

i=1 Aiu
(t)
p (uN

q )
†
A†

i and DN
pq

def
= 〈u(t)

p , uN
q 〉In×n. Also,

SN =



σN
1 In . . . 0n
...

...
...

0n . . . σN
N In


 , vN =



vN1
...
vNk


 .

Now, multiplying (13) with V ∗
⊥, we get:

V ∗
⊥
†V t+1 = (V ∗

⊥
†V NΣNUN†U (t) − V ∗

⊥
†F − V ∗

⊥
†G)R(t+1)−1

.
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That is,

dist(V ∗, V t+1) = ‖V ∗
⊥
†V t+1‖2

≤ (‖V NΣN(UN)†U (t)‖2 + ‖F |2 + ‖G‖2)‖(R(t+1))
−1‖2,

≤
(
σN
1 + ‖F (Σ∗)−1‖2‖Σ∗‖2 + ‖G‖2

)
‖(R(t+1))−1‖2,

≤
(
σN
1 +

σ∗
1δ2kk

1− δ2k
dist(U t, U∗) + ‖G‖2

)
‖(R(t+1))−1‖2, (15)

where the last inequality follows using Lemma 2.4.5.

Now, we break down the proof in the following two steps:

• Bound ‖G‖2 (Lemma A.2.4, analogous to Lemma 2.4.5)

• Bound ‖(R(t+1))−1‖2 (Lemma A.2.5, similar to Lemma 2.4.6)

Later in this section, we provide the above mentioned lemmas and their de-

tailed proof.

Now, by assumption, σN
1 ≤ ‖N‖F ≤ σ∗

k. Also, as δ2k ≤ 1/2, 1
1−δ2k

≤ 2.

Finally, assume dist(V ∗, V t+1) ≥ max(10 · σN
1

σ∗
k
, 10‖N‖F

σ∗
1

). Using these observa-

tions and lemmas A.2.4, A.2.5 along with (15), we get:

dist(V ∗, V t+1) ≤ 0.5dist(U∗, U t)√
1− dist(U t, U∗)2 − 0.5dist(U∗, U t)

. (16)

As, U0 is obtained using SVD of
∑

i Aibi. Hence, using Lemma A.1.1, we have:

‖A(U0Σ0V 0 − U∗Σ∗(V ∗)†)‖22 ≤ 0.5‖A(N)‖22 + 4δ2k‖A(U∗Σ∗(V ∗)†)‖22,
⇒ ‖U0Σ0V 0 − U∗Σ∗(V ∗)†‖2F ≤ ‖N‖2F + 4δ2k(1 + δ2k)‖Σ∗‖2F ,
⇒ (σ∗

k)
2‖(U0(U0)† − I)U∗‖2F ≤ ‖N‖2F + 4δ2k(1 + δ2k)k(σ

∗
1)

2,

⇒ dist(U0, U∗) ≤ ‖(U0(U0)† − I)U∗‖2F ≤
‖N‖2F
(σ∗

k)
2
+ 6δ2kk

(
σ∗
1

σ∗
k

)2

<
1

2
,

where last inequality follows using ‖N‖F
σ∗
k

< 1/100.

Theorem now follows using above equation with (16).
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Lemma A.2.4. Let linear measurement A satisfy RIP for all 2k-rank matrices

and let b = A(M + N) with M ∈ R
m×n being a rank-k matrix and let N =

UNΣN(V N)†. Let δ2k be the RIP constant for rank 2k-matrices. Then, we

have the following bound on ‖G‖2:

‖G‖2 ≤
δ2k ‖N‖F
1− δ2k

. (17)

Proof. Note that,

‖G‖2 ≤ ‖G‖F = ‖B−1(BDN − CN)SNvN‖2
≤ ‖B−1‖2‖(BDN − CN)SN‖2‖SNvN‖2

≤
√
k

1− δ2k
‖(BDN − CN)SN‖2, (18)

where the last inequality follows using Lemma A.2.2 and the fact that ‖V N‖F =√
k. Now let w = [w†

1 w†
2 . . . w†

k]
† ∈ R

nk and z = [z†1 z†2 . . . z†n]
† ∈ R

n2
be any

two arbitrary vectors such that ‖w‖2 = ‖z‖2 = 1. Then,

w† (BDN − CN
)
SNz

=
k∑

p=1

n∑

q=1

w†
p

d∑

i=1

Aiu
t
pu

N
q

† (
U t(U t)† − In×n

)
A†

iσ
N
q zq

=
d∑

i=1

k∑

p=1

n∑

q=1

w†
pAiu

t
pu

N
q

† (
U t(U t)† − In×n

)
A†

iσ
N
q zq

=
d∑

i=1

(
k∑

p=1

w†
pAiu

t
p

)(
n∑

q=1

σN
q z†qAi

(
U t(U t)† − In×n

)
uN
q

)

=
n∑

q=1

(
d∑

i=1

Tr
(
AiUW †)Tr

(
Ai

(
U t(U t)† − In×n

)
uN
q σ

N
q z†q
)
)
.
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Now, using RIP, we get:

w† (BDN − CN
)
z

≤
n∑

q=1

uN
q

†
(
U tU t† − In×n

)
U tW †σN

q zq

+ δ2k
∥∥U tW †∥∥

F

∥∥∥
(
U tU t† − In×n

)
uN
q σ

N
q zq

†
∥∥∥
F

≤
n∑

q=1

δ2k‖W †‖F‖(U t(U t)† − In×n)u
N
q ‖2‖σN

q zq‖2,

≤ δ2k

n∑

q=1

∥∥uN
q

∥∥
2

∥∥σN
q zq
∥∥
2
= δ2k

n∑

q=1

σN
q ‖zq‖2 ,

≤ δ2k

√√√√
n∑

q=1

‖zq‖22

√√√√
n∑

q=1

(σN
q )2 ≤ δ2k ‖N‖F .

This finishes the proof.

Lemma A.2.5. Assuming conditions of Lemma A.2.4, we have the following

bound on the minimum singular value of R(t):

σmin

(
R(t+1)

)
≥ σ∗

k

√
1− dist(U t, U∗)2 − σN

1 − ‖F‖2 − ‖G‖2 .

Proof. Similar to the proof of Lemma 2.4.6, we have the following set of in-
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equalities:

σmin

(
R(t+1)

)

= min
‖z‖2=1

∥∥R(t+1)z
∥∥
2

= min
‖z‖2=1

∥∥V (t)R(t+1)z
∥∥
2

= min
‖z‖2=1

∥∥∥V ∗Σ∗U∗†U tz + V NΣN(UN)†U (t)z − Fz −Gz
∥∥∥
2

≥ min
‖z‖2=1

∥∥∥V ∗Σ∗U∗†U tz
∥∥∥
2
−
∥∥V NΣN(UN)†

∥∥
2
− ‖F‖2 − ‖G‖2

≥ σ∗
k min
‖z‖2=1

∥∥∥U∗†U tz
∥∥∥
2
− σN

1 − ‖F‖2 − ‖G‖2

≥ σ∗
k

√
1−

∥∥U∗
⊥
†U
∥∥2
2
− σN

1 − ‖F‖2 − ‖G‖2
= σ∗

k

√
1− dist(U t, U∗)2 − σN

1 − ‖F‖2 − ‖G‖2 .

This proves the lemma.

A.2.4 Stagewise Alternating Minimization for Matrix Sensing

Proof of Lemma 2.6.1. As the initial point of the i-th stage is obtained by one

step of SVP [44], using Lemma A.1.1, we obtain:

∥∥∥M − Û0
1:i(V̂

0
1:i)

†
∥∥∥
2

F
≤

k∑

j=i+1

(σ∗
j )

2 + 2δ2k‖M − ÛT
1:i−1V

T
1:i−1‖2F .

Now, by assumption over the (i − 1)-th stage error (this assumption follows

from the inductive hypothesis in proof of Theorem 2.3.2),

∥∥∥M − Û0
1:i(V̂

0
1:i)

†
∥∥∥
2

F
≤

k∑

j=i+1

(σ∗
j )

2 + 2δ2k16k(σ
∗
i )

2.

Lemma now follows by setting δ2k ≤ 1
3200k

.

Proof of Lemma 2.6.2. For our proof, we consider two cases: a)
σ∗
i

σ∗
i+1

< 5
√
k,

b)
σ∗
i

σ∗
i+1
≥ 5
√
k.
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Case (a): In this case, using monotonicity of the AltMin algorithm directly

gives error bound. That is,

‖M − ÛT
1:i(V̂

T
1:i)

†‖2F ≤ ‖M − Û0
1:iV

0
1:i‖2F

≤ k(σ∗
i+1)

2 +
25k

100
(σ∗

i+1)
2.

Case (b): At a high level, if
σ∗
i

σ∗
i+1
≥ 5
√
k then U0

1:i is “close” to U∗
1:i and hence

the error bound follows by using an analysis similar to the noisy case. Note

that σ∗
i+1 being small implies that the “noise” is small. See Lemma A.2.6 for

a formal proof of this case.

Lemma A.2.6. Assume conditions given in Theorem 2.3.2 are satisfied and

let
σ∗
i

σ∗
i+1
≥ 5
√
k. Also, let

∥∥∥M − Û0
1:i(V̂

0
1:i)

†
∥∥∥
2

F
≤

k∑

j=i+1

(σ∗
j )

2 +
1

100
(σ∗

i )
2.

Then, UT
1:i, V

T
1:i satisfy:

‖M − ÛT
1:iV

T
1:i‖2F ≤ max(ǫ, 16k(σ∗

i+1)
2),

Proof. We first show that if σi and σi+1 have large gap then ∀ t, the tth iterate

of the i-th stage, Û t
1:i is close to U∗

1:i. Let U t
⊥ be a basis of the subspace

orthogonal to Û t
1:i.

‖
(
U t
⊥
)†
(M − Û t

1:i(V̂
t
1:i)

†)‖2
= ‖

(
U t
⊥
)†
M‖2

≥ ‖
(
U t
⊥
)†
U∗
1:iΣ

∗
1:i(V

∗
1:i)

†‖2 − ‖
(
U t
⊥
)†
U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†‖2,

≥ σ∗
i ‖
(
U t
⊥
)†
U∗
1:i‖2 − σ∗

i+1 ≥ σ∗
i (‖
(
U t
⊥
)†
U∗
1:i‖2 −

1

5
√
k
). (19)
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We also have:

‖
(
U t
⊥
)†
(M − Û t

1:i(V̂
t
1:i)

†)‖22 ≤ ‖M − Û t
1:i(V̂

t
1:i)

†‖2F
≤ 1

1− δ2k

∥∥∥A
(
M − Û t

1:i(V̂
t
1:i)

†
)∥∥∥

2

2

(ζ1)

≤ 1

1− δ2k

∥∥∥A
(
M − Û0

1:i(V̂
0
1:i)

†
)∥∥∥

2

2

≤ 1 + δ2k
1− δ2k

‖M − Û0
1:i(V̂

0
1:i)

†‖2F

≤ 1 + δ2k
1− δ2k

(
k∑

j=i+1

(σ∗
j )

2 +
1

100
(σ∗

i )
2

)

≤ 1 + δ2k
1− δ2k

(
k(σ∗

i+1)
2 +

1

100
(σ∗

i )
2

)
, (20)

where (ζ1) follows from the fact that lines 5−8 of Algorithm 3 never increases∥∥∥A
(
M − Û t

1:i(V̂
t
1:i)

†
)∥∥∥

2
. Using (19), (20), and

σ∗
i

σ∗
i+1
≥ 5
√
k, we obtain the

following bound:

‖
(
U t
⊥
)†
U∗
1:i‖2 ≤

1

2
∀ t. (21)

Now, we consider the update equation for V̂ t+1:

V̂ t+1 = argmin
V̂

‖A(Û t
1:iV̂ − U∗

1:iΣ
∗
1:i(V

∗
1:i)

† − U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†)‖22.

Note that, the update is same as noisy case with noise matrix

N = U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

† from (13):

V̂ t+1 = V ∗
1:iΣ

∗
1:i(U

∗
1:i)

†U t
1:i − F + V ∗

i+1:kΣ
∗
i+1:k(U

∗
i+1:k)

†U t
1:i −G, (22)

where F and G are given by (8), (14). Multiplying (22) from the left by

85



V †
⊥ = I − V t+1(V t+1)†, we obtain:

0 = V †
⊥V̂

t+1
1:i = V †

⊥
(
V ∗
1:iΣ

∗
1:i(U

∗
1:i)

†U t
1:i − F + V ∗

i+1:kΣ
∗
i+1:k(U

∗
i+1:k)

†U t
1:i −G

)

⇒V †
⊥V

∗
1:iΣ

∗
1:i(U

∗
1:i)

†U t
1:i = V †

⊥
(
F − V ∗

i+1:kΣ
∗
i+1:k(U

∗
i+1:k)

†U t
1:i +G

)

⇒
∥∥∥V †

⊥V
∗
1:iΣ

∗
1:i(U

∗
1:i)

†U t
1:i

∥∥∥
F
≤ ‖F‖F +

∥∥∥V †
⊥V

∗
i+1:kΣ

∗
i+1:k(U

∗
i+1:k)

†U t
1:i

∥∥∥
F
+ ‖G‖F

⇒
∥∥∥V †

⊥V
∗
1:iΣ

∗
1:i

∥∥∥
F

≤ 1

σmin ((U∗
1:i)

†U t
1:i)

(
‖F‖F +

∥∥∥V †
⊥V

∗
i+1:kΣ

∗
i+1:k(U

∗
i+1:k)

†U t
1:i

∥∥∥
F
+ ‖G‖F

)
,

(23)

where the last inequality follows using the fact that σmin(A)‖B‖F ≤ ‖AB‖F .
Using Lemma A.2.4, and a modification of Lemma 2.4.5, we get:

‖F‖F ≤ δ2k

∥∥∥U †
⊥U

∗
1:iΣ

∗
1:i

∥∥∥
F
, ‖G‖F ≤ δ2k

∥∥∥U †
⊥U

∗
i+1:kΣ

∗
i+1:k

∥∥∥
F
≤ δ2k

√
kσi+1.

(24)

Using (23), (24), and the fact that σmin(U
†
⊥U

∗
1:i) =

√
1− ‖U †

⊥U
∗
1:i‖22,

∥∥∥V †
⊥V

∗
1:iΣ

∗
1:i

∥∥∥
F
≤ 2√

3


δ2k

∥∥∥U †
⊥U

∗
1:iΣ

∗
1:i

∥∥∥
F
+

√√√√
k∑

j=i+1

(σ∗
j )

2 + δ2k
√
kσi+1


 .

Assuming
∥∥∥U †

⊥U
∗
1:iΣ

∗
1:i

∥∥∥
F
> 2
√∑k

j=i+1 σ
2
j , we obtain:

∥∥∥V †
⊥V

∗
1:iΣ

∗
1:i

∥∥∥
F
≤ 2

3

∥∥∥U †
⊥U

∗
1:iΣ

∗
1:i

∥∥∥
F
. (25)

Using similar analysis, we can show that,

∥∥∥U †
⊥U

∗
1:iΣ

∗
1:i

∥∥∥
F
≤ 2

3

∥∥∥V †
⊥V

∗
1:iΣ

∗
1:i

∥∥∥
F
.

So after T ≥ 8 log(kσ∗
i ) iterations, we have:

∥∥∥U †
⊥U

∗
1:iΣ

∗
1:i

∥∥∥
2

F
≤ 4

k∑

j=i+1

(σ∗
j )

2.
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Using the above inequality, we now bound the error after T ≥ 8 log(kσ∗
i )

iterations of the i-th stage:∥∥∥M − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
F
≤
∥∥∥U∗

1:iΣ
∗
1:i (V

∗
1:i)

† − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
F
+
∥∥∥U∗

i+1:kΣ
∗
i+1:k

(
V ∗
i+1:k

)†∥∥∥
F
.

(26)

For the first term, we have:
∥∥∥U∗

1:iΣ
∗
1:i (V

∗
1:i)

† − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
2

F

=
∥∥∥U∗

1:iΣ
∗
1:i (V

∗
1:i)

† − UT
1:i

(
UT
1:i

)†
U∗
1:iΣ

∗
1:i (V

∗
1:i)

†

+UT
1:i

(
UT
1:i

)†
U∗
1:iΣ

∗
1:i (V

∗
1:i)

† − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
2

F

=
∥∥∥
(
I − UT

1:i

(
UT
1:i

)†)
U∗
1:iΣ

∗
1:i (V

∗
1:i)

†
∥∥∥
2

F

+
∥∥∥UT

1:i

(
UT
1:i

)†
U∗
1:iΣ

∗
1:i (V

∗
1:i)

† − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
2

F

(ζ1)

≤
∥∥∥U †

⊥U
∗
1:iΣ

∗
1:i

∥∥∥
2

F
+
∥∥∥UT

1:i

(
F +G−

(
U t
1:i

)†
U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†
)∥∥∥

2

F

=
∥∥∥U †

⊥U
∗
1:iΣ

∗
1:i

∥∥∥
2

F
+
∥∥∥F +G−

(
U t
1:i

)†
U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†
∥∥∥
2

F

=
∥∥∥U †

⊥U
∗
1:iΣ

∗
1:i

∥∥∥
2

F
+ 3 ‖F‖2F + 3 ‖G‖2F + 3

∥∥U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†∥∥2
F

(ζ2)

≤ (1 + 3δ22k)
∥∥∥U †

⊥U
∗
1:iΣ

∗
1:i

∥∥∥
2

F
+ 3(1 + δ22k)

∥∥U∗
i+1:kΣ

∗
i+1:k(V

∗
i+1:k)

†∥∥2
F

≤ 8k(σ∗
i+1)

2, (27)

where (ζ1) follows from (22) and (ζ2) follows from (24). Using (26) and (27),

we obtain the following bound:∥∥∥M − ÛT
1:i(V̂

T
1:i)

†
∥∥∥
F
≤ 4
√
kσ∗

i+1. (28)

Hence Proved.

A.3 Matrix Completion

Proof Of Theorem 2.3.3. Using Theorem 2.5.1, after O(log(1/ǫ)) iterations,

we get:

dist(U t, U∗) ≤ ǫ, dist(V t+1, V ∗) ≤ ǫ.

87



Now, using (19), the residual after t-th step is given by:

M − U t(V̂ t+1)† = (I − U t(U t)†)M − U tF †.

That is,

‖M − U t(V̂ t+1)†‖F ≤ ‖(I − U t(U t)†)M‖F + ‖F‖F
≤
√
k‖(I − U t(U t)†)U∗Σ∗‖2 + ‖F‖F

≤
√
kσ∗

1dist(Û
t, U∗).

Now, using the fact that dist(U t, U∗) ≤ ǫ and the above equation, we get:

‖M − U t(V̂ t+1)†‖F ≤
√
kσ∗

1ǫ+ ‖F‖F
ζ1
≤
√
kσ∗

1ǫ+ σ∗
1

√
kǫ ≤ 2σ∗

1

√
kǫ,

where ζ1 follows by Lemma 2.5.6 and setting δ2k appropriately. Theorem 2.3.3

now follows by setting ǫ′ = 2
√
k‖M‖F ǫ.

A.3.1 Initialization

Proof Of Lemma 2.5.2. From Lemma A.3.1, we see that U0 obtained after

step 3 of Algorithm 4 satisfies: dist (U0, U∗) ≤ 1
64k

. Lemma now follows by

using the above mentioned observation with Lemma A.3.2.

We now provide the two results used in the above lemma.

Lemma A.3.1. After step 3 in Algorithm 4, whp we have:

dist
(
U0, U∗) ≤ 1

64k

Proof. From Theorem 3.1 in [50], we have the following result:

‖M −Mk‖2 ≤ C

(
k

p
√
mn

) 1
2

‖M‖F .
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Let U (0)ΣV † be the top k singular components of Mk. We also have:

‖M −Mk‖22 =
∥∥U∗Σ∗(V ∗)† − U (0)ΣV †∥∥2

2

=
∥∥∥U∗Σ∗(V ∗)† − U (0)

(
U (0)

)†
U∗Σ∗(V ∗)†

+U (0)
(
U (0)

)†
U∗Σ∗(V ∗)† − U (0)ΣV †

∥∥∥
2

2

=
∥∥∥
(
I − U (0)

(
U (0)

)†)
U∗Σ∗(V ∗)†

+U (0)
((

U (0)
)†
U∗Σ∗(V ∗)† − ΣV †

)∥∥∥
2

2

(ζ1)

≥
∥∥∥
(
I − U (0)

(
U (0)

)†)
U∗Σ∗(V ∗)†

∥∥∥
2

2

=

∥∥∥∥
(
U

(0)
⊥

)†
U∗Σ∗

∥∥∥∥
2

2

≥ (σ∗
k)

2

∥∥∥∥
(
U

(0)
⊥

)†
U∗
∥∥∥∥
2

2

,

where (ζ1) follows from the fact that the column space of the first two terms

in the equation is U
(0)
⊥ where as the column space of the last two terms is U (0).

Using the above two inequalities, we get:
∥∥∥∥
(
U

(0)
⊥

)†
U∗
∥∥∥∥
2

≤ C · σ
∗
1

σ∗
k

· k√
mp
≤ 1

104k
,

if p > C′k4 logn
m

· (σ∗
1)

2

(σ∗
k)

2 for a large enough constant C ′.

Lemma A.3.2. (Analysis of step 4 of Algorithm 4) Suppose U∗ is inco-

herent with parameter µ and U is an orthonormal column matrix such that

dist (U,U∗) ≤ 1
64k

. Let U c be obtained from U by setting all entries greater

than 2µ
√
k√

n
to zero. Let Ũ be an orthonormal basis of U c. Then,

• dist
(
Ũ , U∗

)
≤ 1/2 and

• Ũ is incoherent with parameter 4µ
√
k.

Proof. Since dist (U,U∗) ≤ d, we have that for every i, ∃ŭi ∈ Span(U∗), ‖ŭi‖2 =
1 such that 〈ui, ŭi〉 ≥

√
1− d2. Also, since ŭi ∈ Span(U∗), we have that ŭi is

incoherent with parameter µ
√
k:

‖ŭi‖2 = 1 and ‖ŭi‖∞ ≤
µ
√
k√
m

.

89



Let uc
i be the vector obtained by setting all the elements of ui with magnitude

greater than 2µ
√
k√

m
to zero and let uc

i
def
= ui−uc

i . Now, note that if for element j

of ui we have
∣∣uj

i

∣∣ > 2µ
√
k√

m
, then, |(uc

i)
j − ŭj

i | =
∣∣ŭj

i

∣∣ ≤ µ
√
k√
m
≤
∣∣uj

i − ŭj
i

∣∣. Hence,

‖uc
i − ŭi‖2

(ζ1)

≤ ‖ui − ŭi‖2 =
(
‖ui‖22 + ‖ŭi‖22 − 2〈ui, ŭi〉

) 1
2 ≤
√
2d,

This also implies the following:

‖uc
i‖2 ≥ ‖ŭi‖2 −

√
2d = 1−

√
2d , and

∥∥uc
i

∥∥
2
≤
√
1− ‖uc

i‖22 ≤
√
2d(
√
2− d) ≤ 2

√
d, for d <

1√
2
.

Let U c = ŨΛ−1 (QR decomposition). Then, for any u∗
⊥ ∈ Span(U∗

⊥) we

have:
∥∥∥(u∗

⊥)
† Ũ
∥∥∥
2
=
∥∥∥(u∗

⊥)
† U cΛ

∥∥∥
2
≤
∥∥∥(u∗

⊥)
† U c

∥∥∥
2
‖Λ‖2

≤
(∥∥∥(u∗

⊥)
† U
∥∥∥
2
+
∥∥∥(u∗

⊥)
† U c

∥∥∥
2

)
‖Λ‖2

≤
(
d+

∥∥U c
∥∥
2

)
‖Λ‖2 ≤

(
d+

∥∥U c
∥∥
F

)
‖Λ‖2 ≤

(
d+ 2

√
kd
)
‖Λ‖2

≤ 3
√
kd ‖Λ‖2 .

We now bound ‖Λ‖2 as follows:

‖Λ‖22 =
1

σmin (Λ−1)2
=

1

σmin

(
ŨΛ−1

)2 =
1

σmin (U c)2
≤ 1

1− ‖U c‖22
≤ 1

1− 4kd

≤ 4/3,

where we used the fact that d < 1
16k

. So we have:
∥∥∥(u∗

⊥)
† Ũ
∥∥∥
2
≤ 3
√
kd · 4/3 = 4

√
kd.

This proves the first part of the lemma.

Incoherence of Ũ follows using the following set of inequalities:

µ(Ũ) =

√
m√
k
max

i
‖e†i Ũ‖2 ≤

√
m√
k
max

i
‖e†iU cΛ‖ ≤

√
m√
k
max

i
‖e†iU c‖2‖Λ‖2 ≤ 4µ

√
k.
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A.3.2 Rank-1 Matrix Completion

Proof Of Lemma 2.5.3. Using the definition of spectral norm,

‖B−1
(
〈u∗, ut〉B − C

)
v∗‖2 ≤ ‖B−1‖2‖(〈u∗, ut〉B − C)v∗‖2.

As B is a diagonal matrix, ‖B−1‖2 = 1
mini Bii

≤ 1
1−δ2

, where the last inequality

follows using Lemma A.3.3. The lemma now follows using the above observa-

tion and Lemma A.3.4.

Lemma A.3.3. Let M = σ∗u∗(v∗)†, p, Ω, ut be as defined in Lemma 2.5.3.

Then, w.p. at least 1− 1
n3 ,

∣∣∣∣∣

∑
i:(i,j)∈Ω(u

t
i)

2

p
− 1

∣∣∣∣∣ ≤ δ2,

∣∣∣∣∣

∑
i:(i,j)∈Ω ut

iu
∗
i

p
− 〈ut, u∗〉

∣∣∣∣∣ ≤ δ2.

Proof. Since the first part of the lemma is a direct consequence of the second

part, we will prove only the second part. Let δij be a Bernoulli random variable

that indicates membership of index (i, j) ∈ Ω. That is, δij = 1 w.p. p and 0

otherwise. Define Zj =
1
p

∑
i δiju

t
iu

∗
i . Note that E[Zj] = 〈ut, u∗〉. Furthermore,

E[Z2
j ] =

(
1
p
− 1
)∑

i(u
t
iu

∗
i )

2 ≤ µ2
1

mp
and maxi |ut

iu
∗
i | ≤ µ2

1

m
. Using Bernstein’s

inequality, we get:

Pr(
∣∣Zj − 〈ut, u∗〉

∣∣ > δ2) ≤ exp

(
− δ22mp/2

µ2
1 + µ2

1δ2/3

)
. (29)

Using union bound (for all j) and for p ≥ 9µ2
1 logn

mδ22
, w.p. 1− 1

n3 : ∀j, 〈ut, u∗〉−δ2 ≤
Zj ≤ 〈ut, u∗〉+ δ2.

Lemma A.3.4. Let M = σ∗u∗(v∗)†, p, Ω, ut be as defined in Lemma 2.5.3.

Then, w.p. at least 1− 1
n3 ,

‖(〈u∗, ut〉B − C)v∗‖2 ≤ δ2
√

1− 〈u∗, ut〉2.
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Proof. Let x ∈ R
n be a unit vector. Then, ∀x:

x†(〈u∗, ut〉B − C)v∗ =
1

p

∑

ij∈Ω
xjv

∗
j (〈u∗, ut〉(ut

i)
2 − ut

iu
∗
i )

(ζ1)

≤ 1

p
C
√
mp

√∑

j

x2
j(v

∗
j )

2

√∑

i

(〈u∗, ut〉(ut
i)

2 − ut
iu

∗
i )

2,

(ζ2)

≤ 1

p
C

√
mpµ2

1

n

√
1− 〈u∗, ut〉2, (30)

where C > 0 is a global constant and (ζ1) follows by using a modified version

of Lemma 6.1 by [50] (see Lemma A.3.5) and (ζ2) follows by using incoherence

of v∗ and ut. Lemma now follows by observing that maxx,‖x‖2=1 x
†(〈u∗, ut〉B−

C)v∗ = ‖(〈u∗, ut〉B − C)v∗‖2 and p >
Cµ2

1 logn

mδ22
.

Proof of Lemma 2.5.4. Using (15) and using the fact that B,C are diagonal

matrices:

v̂t+1
j = σ∗〈ut, u∗〉v∗j −

σ∗

Bjj

(
〈ut, u∗〉Bjj − Cjj

)
v∗j .

We bound the largest magnitude of elements in v̂t+1 as follows. For every

j ∈ [n], we have:

∣∣v̂t+1
j

∣∣ ≤
∣∣σ∗〈ut, u∗〉v∗j

∣∣+
∣∣∣∣
σ∗

Bjj

(
〈ut, u∗〉Bjj − Cjj

)
v∗j

∣∣∣∣
(ζ1)

≤ σ∗〈ut, u∗〉 µ√
n
+

σ∗

1− δ2

(
〈ut, u∗〉 (1 + δ2) +

(
〈ut, u∗〉+ δ2

)) µ√
n

≤
3σ∗(1+δ2)µ

1−δ2√
n

≤ σ∗µ1

2
√
n
,

where (ζ1) follows from the fact that 1 − δ2 ≤ Bjj ≤ 1 + δ2 and |Cjj| ≤
(|〈ut, u∗〉|+ δ2) (please refer Lemma A.3.3).

Also, from (17) we see that:
∥∥v̂t+1

∥∥
2
≥ 〈v̂t+1, v∗〉 ≥ σ∗〈ut, u∗〉 − 2σ∗δ2

√
1− 〈ut, u∗〉2

≥ σ∗〈u0, u∗〉 − 2σ∗δ2
√
1− 〈u0, u∗〉2

(ζ1)

≥ σ∗

2
,
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where (ζ1) follows from the fact that dist (u0, u∗) ≤ 3
50

(please refer Lemma

2.5.2). Using the above two inequalities, we obtain:

∥∥vt+1
∥∥
∞ =

‖v̂t+1‖∞
‖v̂t+1‖2

≤

(
σ∗µ1

2
√
n

)

(
σ∗
2

) =
µ1√
n
.

This finishes the proof.

Lemma A.3.5 (Modified version of Lemma 6.1 of [50]). Let Ω be a set of in-

dices sampled uniformly at random from [m]×[n] with each element of [m]×[n]
sampled independently with probability p ≥ C logn

m
. Then, w.p. at least 1− 1

n3 ,

∀x ∈ R
m, y ∈ R

n s.t.
∑

i xi = 0, we have:
∑

ij∈Ω xiyj ≤ C
√√

mnp‖x‖2‖y‖2,
where C > 0 is a global constant.

A.3.3 General Rank-k Matrix Completion

Proof of Lemma 2.5.5. From the decoupled update equation, (20), we obtain:

(V t+1)(j) = (R(t+1))−1(Dj − (Bj)−1(BjDj − Cj))Σ∗(V ∗)(j), 1 ≤ j ≤ n.

We bound the two norm of the (V t+1)(j) as follows:

∥∥(V t+1)(j)
∥∥
2

≤
σ1

∥∥(V ∗)(j)
∥∥
2

σmin (R(t+1))

(∥∥Dj
∥∥
2
+
∥∥(Bj)−1(BjDj − Cj)

∥∥
2

)

≤
σ1

∥∥(V ∗)(j)
∥∥
2

σmin (R(t+1))

(∥∥Dj
∥∥
2
+
‖BjDj‖2 + ‖Cj‖2

σmin (Bj)

)

(ζ1)

≤
σ1

µ
√
k√
n

σ∗
k

√
1− dist2 (U (t), U∗)− σ∗

1δ2kkdist(U
(t),U∗)

1−δ2k

(
1 +

(1 + δ2k) + (1 + δ2k)

1− δ2k

)

≤
4σ1

µ
√
k√
n

σ∗
k

√
1− dist2 (U (0), U∗)− σ∗

1δ2kkdist(U
(0),U∗)

1−δ2k

≤

(
16σ∗

1µ

σ∗
k

)√
k

√
n

,
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where we used the following inequalities in (ζ1):

∥∥(V ∗)j
∥∥
2
≤ µ
√
k√
n
, (31)

σmin

(
R(t+1)

)
≥ σ∗

k

√
1− dist2 (U (t), U∗)− σ∗

1δ2kkdist(U
(t), U∗), (32)

σmin

(
Bj
)
≥ 1− δ2k and σmax

(
Bj
)
≤ 1 + δ2k, (33)

σmax

(
Cj
)
≤ 1 + δ2k and (34)

σmax

(
Dj
)
≤ 1, (35)

where (31) follows from the incoherence of V ∗, (32) follows from from an

analysis similar to the proof of Lemma 2.4.6, (33) follows from (the proof of)

Lemma A.3.6, (34) follows from Lemma A.3.7 and finally (35) follows from the

fact that Dj = (U t)
†
U∗ with U t and U∗ being orthonormal column matrices.

Proof of Lemma 2.5.6. Note that,

∥∥F (Σ∗)−1
∥∥
2
≤
∥∥F (Σ∗)−1

∥∥
F
=
∥∥B−1 (BD − C) v∗

∥∥
2

≤
∥∥B−1

∥∥
2
‖(BD − C)v∗‖2

≤ δ2k
1− δ2k

dist(U t, U∗), (36)

where the last inequality follows using Lemma A.3.6 and Lemma A.3.8.

We now bound ‖B−1‖2 and ‖Cj‖2, which is required by our bound for

F as well as for our incoherence proof.

Lemma A.3.6. Let M,Ω, p, and U t be as defined in Theorem 2.3.3 and

Lemma 2.5.6. Then, w.p. at least 1− 1
n3 :

‖B−1‖2 ≤
1

1− δ2k
. (37)

Proof of Lemma A.3.6. We have:

‖B−1‖2 =
1

σmin(B)
=

1

minx,‖x‖=1 x†Bx
,
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where x ∈ R
nk. Let x = vec(X), i.e., xp is the p-th column of X and xj is the

j-th row of X. Now, ∀x,

x†Bx =
∑

j

(xj)†Bj(xj) ≥ minjσmin(B
j).

Lemma would follow using the bound on σmin(B
j), ∀j that we show below.

Lower bound on σmin(B
j): Consider any w ∈ R

k such that ‖w‖2 = 1. We

have:

Z = w†Bjw =
1

p

∑

i:(i,j)∈Ω
〈w, (U t)(i)〉2 = 1

p

∑

i

δij〈w, (U t)(i)〉2.

Note that, E[Z] = w†UU †w = w†w = 1 and E[Z2] = 1
p

∑
i〈w, (U t)(i)〉4 ≤

µ2
1k

mp

∑
i〈w, (U t)(i)〉2 = µ2

1k

mp
, where the second last inequality follows using inco-

herence of U t. Similarly, maxi |〈w, (U t)(i)〉2| ≤ µ2
1k

mp
. Hence, using Bernstein’s

inequality:

Pr(|Z − E[Z]| ≥ δ2k) ≤ exp(− δ22k/2

1 + δ2k/3

mp

µ2
1k

).

That is, by using p as in the statement of the lemma with the above equation

and using union bound, we get (w.p. > 1 − 1/n3): ∀w, j w†Bjw ≥ 1 − δ2k.

That is, ∀j, σmin(B
j) ≥ (1− δ2k).

Lemma A.3.7. Let M,Ω, p, and U t be as defined in Theorem 2.3.3 and

Lemma 2.5.6. Also, let Cj ∈ R
k×k be defined as: Cj = 1

p

∑
i:(i,j)∈Ω(U

t)(i)(U∗)(i)
†
.

Then, w.p. at least 1− 1
n3 :

‖Cj‖2 ≤ 1 + δ2k, ∀j (38)

Proof of Lemma A.3.7. Let x ∈ R
k and y ∈ R

k be two arbitrary unit vectors.

Then,

xTCjy =
1

p

∑

i:(i,j)∈Ω
(x†(U t)(i))(y†(U∗)(i)).

That is, Z = xTCjy = 1
p

∑
i δij(x

†(U t)(i))(y†(U∗)(i)). Note that, E[Z] =

x†(U t)†U∗y, E[Z2] = 1
p

∑
i(x

†(U t)(i))2(y†(U∗)(i))2 ≤ µ2

mp
x†(U t)†U tx = µ2k

mp
and

maxi |(x†(U t)(i))(y†(U∗)(i))| ≤ µ2
1k

m
. Lemma now follows using Bernstein’s in-

equality and using bound for p given in the lemma statement.
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Finally, we provide a lemma to bound the second part of the error term

(F ).

Lemma A.3.8. Let M,Ω, p, and U t be as defined in Theorem 2.3.3 and

Lemma 2.5.6. Then, w.p. at least 1− 1
n3 :

‖(BD − C)v∗‖2 ≤ δ2kdist(V
t+1, V ∗), (39)

where v∗ = vec(V ∗), i.e. v∗ =



V ∗
1
...
V ∗
k


.

Proof of Lemma A.3.8. Let X ∈ R
n×k and let x = vec(X) ∈ R

nk s.t. ‖x‖2 =
1. Also, let xp be the p-th column of X and xj be the j-th column of X.

Let ui = (U t)(i) and u∗(i) = (U∗)(i). Also, let Hj = (BjD − Cj), i.e.,

Hj =
1

p

∑

i:(i,j)∈Ω
ui(ui)†(U t)†U∗ − ui(u∗(i))† =

1

p

∑

i:(i,j)∈Ω
Hj

i ,

where Hj
i ∈ R

k×k. Note that,
∑

i

Hj
i = (U t)†U t(U t)†U∗ − (U t)†U∗ = 0. (40)

Now, x†(BD−C)v∗ =
∑

j(x
j)†(BjD−Cj)(V ∗)(j) = 1

p

∑
pq

∑
(i,j)∈Ω xj

pV
∗
jq(H

j
i )pq.

Also, using (40), ∀(p, q): ∑

i

(Hj
i )pq = 0.

Hence, applying Lemma A.3.5, we get w.p. at least 1− 1
n3 :

x†(BD−C)v∗ =
∑

j

(xj)†(BjD−Cj)(V ∗)(j) ≤ 1

p

∑

pq

√∑

j

(xj
p)2(V ∗

jq)
2

√∑

i

(Hj
i )

2
pq.

(41)

Also,
∑

i

(Hj
i )

2
pq =

∑

i

(ui
p)

2((ui)†(U t)†U∗
q − U∗

iq)
2 ≤ max

i
(ui

p)
2
∑

i

((ui)†(U t)†U∗
q − U∗

iq)
2

= max
i

(ui
p)

2(1− ‖U tU∗
q ‖22) ≤

µ2
1k

m
dist(U t, U∗)2. (42)
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Using (41), (42) and incoherence of V ∗, we get (w.p. 1− 1/n3), ∀x:

x†(BD − C)v∗ ≤
∑

pq

µ2
1k

mp
dist(U t, U∗)‖xp‖2 ≤ δ2kdist(U

t, U∗),

where we used the fact that
∑

p ‖xp‖2 ≤
√
k ‖x‖2 =

√
k in the last step.

Lemma now follows by observing maxx,‖x‖=1 x
†(BD−C)v∗ = ‖(BD−C)v∗‖2.
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Appendix B

Proofs for Phase Retrieval using Alternating

Minimization

B.1 Proofs for Section 3.5

B.1.1 Proof of the Initialization Step

Proof of Theorem 3.5.1. Recall that x0 is the top singular vector of S =
1
n

∑
ℓ |aℓTx∗|2aℓaℓT . As aℓ are rotationally invariant random variables, wlog,

we can assume that x∗ = e1 where e1 is the first canonical basis vector.

Also note that E
[
|〈a, e1〉|2aaT

]
= D, where D is a diagonal matrix with

D11 = Ea∼NC(0,1)[|a|4] = 8 and Dii = Ea∼NC(0,1),b∼NC(0,1)[|a|2|b|2] = 1, ∀i > 1.

We break our proof of the theorem into two steps:

(1): Show that, with probability > 1− 4
m2 : ‖S −D‖2 < c/4.

(2): Use (1) to prove the theorem.

Proof of Step (2): We have 〈x0, Sx0〉 ≤ c/4 + 3
(
(x0)

T
e1

)2
+
∑n

i=2(x
0
i)
2 =

c/4+ 〈x0, Sx0〉 > 3− c/4. Hence, 〈x0, e1〉2 > 1− c/2. This yields ‖x0−x∗‖22 =
2− 2〈x0, e1〉2 < c.

Proof of Step (1): We now complete our proof by proving (1). To this end,

we use the following matrix concentration result from [85]:

Theorem B.1.1 (Theorem 1.5 of [85]). Consider a finite sequence Xi of self-

adjoint independent random matrices with dimensions n × n. Assume that

E[Xi] = 0 and ‖Xi‖2 ≤ R, ∀i, almost surely. Let σ2 := ‖∑i E[Xi]‖2. Then the

following holds ∀ν ≥ 0:

P

(
‖ 1
m

m∑

i=1

Xi‖2 ≥ ν

)
≤ 2n exp

( −m2ν2

σ2 +Rmν/3

)
.
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Note that Theorem B.1.1 assumes maxℓ |a1ℓ|2‖aℓ‖2 to be bounded, where
a1ℓ is the first component of aℓ. However, aℓ is a normal random variable and

hence can be unbounded. We address this issue by observing that probability

that Pr(‖aℓ‖2 ≥ 2n OR |a1ℓ|2 ≥ 2 logm) ≤ 2 exp(−n/2)+ 1
m2 . Hence, for large

enough n, ĉ and m > ĉn, w.p. 1− 3
m2 ,

max
ℓ
|a1ℓ|2‖aℓ‖2 ≤ 4n log(m). (1)

Now, consider truncated random variable ãℓ s.t. ãℓ = aℓ if |a1ℓ|2 ≤
2 log(m)&‖aℓ‖2 ≤ 2n and ãℓ = 0 otherwise. Now, note that ãℓ is symmet-

ric around origin and also E[ãiℓãjℓ] = 0, ∀i 6= j. Also, E[|ãiℓ|2] ≤ 1. Hence,

‖E[|ã1ℓ|2‖ãℓ‖2ãℓã†ℓ]‖2 ≤ 4n log(m). Now, applying Theorem B.1.1 given above,

we get (w.p. ≥ 1− 1/m2)

‖ 1
m

∑

ℓ

|ã1ℓ|2ãℓã†ℓ − E[|ã1ℓ|2ãℓã†ℓ]‖2 ≤
4n log3/2(m)√

m
.

Furthermore, aℓ = ãℓ with probability larger than 1− 3
m2 . Hence, w.p. ≥ 1− 4

m2 :

‖S − E[|ã1ℓ |2ãℓã†ℓ]‖2 ≤
4n log3/2(m)√

m
.

Now, the remaining task is to show that ‖E[|ã1ℓ |2ãℓã†ℓ] − E[|a1ℓ |2aℓa†ℓ]‖2 ≤ 1
m
.

This follows easily by observing that E[ãiℓã
j
ℓ] = 0 and by bounding E[|ã1ℓ |2|ãiℓ|2−

|a1ℓ |2|aiℓ|2 ≤ 1/m by using a simple second and fourth moment calculations for

the normal distribution.

B.1.2 Proof of per step reduction in error

In all the lemmas in this section, δ is a small numerical constant (can

be taken to be 0.01).

Lemma B.1.2. Assume the hypothesis of Theorem 3.5.2 and let x+ be as de-

fined in (3). Then, there exists an absolute numerical constant c such that the

following holds (w.p. ≥ 1− η
4
):
∥∥∥
(
AAT

)−1
A (D − I)ATx∗

∥∥∥
2
< cdist (x∗, x) .
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Proof. Using (4) and the fact that ‖x∗‖2 = 1, and

x∗Tx+ = 1 + x∗T (AAT
)−1

A (D − I)ATx∗,

we have, |x∗Tx+| ≥ 1 − ‖
(

1
2m

AAT
)−1 ‖2‖ 1√

2m
A‖2‖ 1√

2m
(D − I)ATx∗‖2. Now,

using standard bounds on the singular values of Gaussian matrices [89] and

assuming m > ĉ log 1
η
n, we have (w.p. ≥ 1 − η

4
): ‖

(
1
2m

AAT
)−1 ‖2 ≤ 1/(1 −

2/
√
ĉ)2 and ‖A‖2 ≤ 1 + 2/

√
ĉ. Note that both the quantities can be bounded

by constants that are close to 1 by selecting a large enough ĉ. Also note that
1
2m

AAT converges to I (the identity matrix), or equivalently 1
m
AAT converges

to 2I since the elements of A are standard normal complex random variables

and not standard normal real random variables.

The key challenge now is to bound
∥∥(D − I)ATx∗∥∥

2
by c
√
mdist (x∗, xt)

for a global constant c > 0. Note that since (4) is invariant with respect to

‖xt‖2, we can assume that ‖xt‖2 = 1. Note further that, since the distribution

of A is rotationally invariant and is independent of x∗ and xt, wlog, we can

assume that x∗ = e1 and xt = αe1 +
√
1− α2e2, where α = 〈xt, x∗〉.

∥∥(D − I)AT e1
∥∥2
2
=

m∑

l=1

|a1l|2
∣∣∣Ph

((
αa1l +

√
1− α2a2l

)
a1l

)
− 1
∣∣∣
2

=
m∑

l=1

Uℓ,

where Ul is given by,

Ul
def
= |a1l|2

∣∣∣Ph
((

αa1l +
√
1− α2a2l

)
a1l

)
− 1
∣∣∣
2

. (2)

Using Lemma B.1.3 finishes the proof.

The following lemma, Lemma B.1.3 shows that if Uℓ are as defined in

Lemma B.1.2 then, the sum of Uℓ, 1 ≤ ℓ ≤ m concentrates well around E [Uℓ]

and also E [Uℓ] ≤ c
√
mdist (x∗, xt). The proof of Lemma B.1.3 requires careful

analysis as it provides tail bound and expectation bound of a random variable

that is a product of correlated sub-exponential complex random variables.

Lemma B.1.3. Assume the hypothesis of Lemma B.1.2. Let Uℓ be as defined

in (2) and let each a1l, a2l, ∀1 ≤ l ≤ m be sampled from standard normal

distribution for complex numbers. Then, with probability greater than 1 − η
4
,

we have:
∑m

l=1 Ul ≤ c2m(1− α2), for a global constant c > 0.
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Proof of Lemma B.1.3. We first estimate P [Ul > t] so as to:

1. Calculate E [Ul] and,

2. Show that Ul is a subexponential random variable and use that fact to

derive concentration bounds.

Now, P [Ul > t] =
∫∞√

t
2
p|a1l|(s)P

[
Wl >

√
t
s

∣∣∣|a1l| = s
]
ds, where,

Wl
def
=
∣∣∣Ph

((
αa1l +

√
1− α2a2l

)
a1l

)
− 1
∣∣∣ .

P

[
Wl >

√
t

s

∣∣∣∣|a1l| = s

]

= P

[∣∣∣Ph
((

αa1l +
√
1− α2a2l

)
a1l

)
− 1
∣∣∣ >
√
t

s

∣∣∣∣|a1l| = s

]

= P

[∣∣∣∣Ph
(
1 +

√
1− α2a2l
αa1l

)
− 1

∣∣∣∣ >
√
t

s

∣∣∣∣|a1l| = s

]

(ζ1)

≤ P

[√
1− α2 |a2l|
α |a2l|

>
c
√
t

s

∣∣∣∣|a1l| = s

]

= P

[
|a2l| >

cα
√
t√

1− α2

]

(ζ2)

≤ exp

(
1− cα2t

1− α2

)
,

where (ζ1) follows from Lemma B.1.8 and (ζ2) follows from the fact that a2l is

a sub-gaussian random variable. So we have:

P [Ul > t] ≤
∫ ∞

√
t

2

exp

(
1− cα2t

1− α2

)
ds = exp

(
1− cα2t

1− α2

)∫ ∞

√
t

2

se−
s2

2 ds

= exp

(
1− ct

1− α2

)
. (3)

Using this, we have the following bound on the expected value of Ul:

E [Ul] =

∫ ∞

0

P [Ul > t] dt ≤
∫ ∞

0

exp

(
1− ct

1− α2

)
dt ≤ c

(
1− α2

)
. (4)
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From (3), we see that Ul is a subexponential random variable with parameter

c (1− α2). Using Proposition 5.16 from [89], we obtain:

P

[∣∣∣∣∣
m∑

l=1

Ul − E [Ul]

∣∣∣∣∣ > δm
(
1− α2

)
]

≤ 2 exp

(
−min

(
cδ2m2 (1− α2)

2

(1− α2)2 m
,
cδm (1− α2)

1− α2

))

≤ 2 exp
(
−cδ2m

)
≤ η

4
.

So, with probability greater than 1− η
4
, we have:

m∑

l=1

Ul ≤ c2m(1− α2).

This proves the lemma.

Lemma B.1.4. Assume the hypothesis of Theorem 3.5.2 and let x+ be as

defined in (3). Then, ∀z s.t. 〈z, x∗〉 = 0, the following holds (w.p. ≥ 1− η
4
e−n):

|〈z, x+〉| ≤ 5
9
dist (x∗, x).

Proof. Fix z such that 〈z, x∗〉 = 0. Since the distribution of A is rotationally

invariant, wlog we can assume that: a) x∗ = e1, b) x = αe1+
√
1− α2e2 where

α ∈ R and α ≥ 0 and c) z = βe2 +
√

1− |β|2e3 for some β ∈ C. Note that we

first prove the lemma for a fixed z and then using union bound, we obtain the

result ∀z ∈ C
n. We have:

∣∣〈z, x+〉
∣∣ ≤ |β| |〈e2, x+〉|+

√
1− |β|2|〈e3, x+〉|. (5)
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Now,

∣∣e2Tx+
∣∣

=
∣∣∣e2T

(
AAT

)−1
A (D − I)AT e1

∣∣∣

≤ 1

2m

∣∣∣∣∣e2
T

((
1

2m
AAT

)−1

− I

)
A (D − I)AT e1

∣∣∣∣∣+
1

2m

∣∣e2TA (D − I)AT e1
∣∣

≤ 1

2m

∥∥∥∥∥

(
1

2m
AAT

)−1

− I

∥∥∥∥∥
2

‖A‖2
∥∥(D − I)AT e1

∥∥
2
+

1

2m

∣∣e2TA (D − I)AT e1
∣∣ ,

≤ 4c√
ĉ
dist

(
xt, x∗)+ 1

2m

∣∣e2TA (D − I)AT e1
∣∣ , (6)

where the last inequality follows from the proof of Lemma B.1.2. Similarly,

∣∣e3Tx+
∣∣

=
∣∣∣e3T

(
AAT

)−1
A (D − I)AT e1

∣∣∣

≤ 1

2m

∣∣∣∣∣e3
T

((
1

2m
AAT

)−1

− I

)
A (D − I)AT e1

∣∣∣∣∣+
1

2m

∣∣e3TA (D − I)AT e1
∣∣

≤ 1

2m

∥∥∥∥∥

(
1

2m
AAT

)−1

− I

∥∥∥∥∥
2

‖A‖2
∥∥(D − I)AT e1

∥∥
2
+

1

2m

∣∣e3TA (D − I)AT e1
∣∣

≤ 4c√
ĉ
dist

(
xt, x∗)+ 1

2m

∣∣e3TA (D − I)AT e1
∣∣ , (7)

Again, the last inequality follows from the proof of Lemma B.1.2. The lemma

now follows by using (5), (6), (7) along with Lemmas B.1.5 and B.1.7.

Lemma B.1.5. Assume the hypothesis of Theorem 3.5.2 and the notation

therein. Then,

∣∣e2TA (D − I)AT e1
∣∣ ≤ 100

99
m
√
1− α2,

with probability greater than 1− η
10
e−n.
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Proof. We have:

e2
TA (D − I)AT e1 =

m∑

l=1

a1la2l

(
Ph
((

αa1l +
√
1− α2a2l

)
a1l

)
− 1
)

=
m∑

l=1

|a1l| a′2l
(
Ph
(
α |a1l|+

√
1− α2a′2l

)
− 1
)
,

where a′2l
def
= a2lPh (a1l) is identically distributed to a2l and is independent of

|a1l|. Define the random variable Ul as:

Ul
def
= |a1l| a′2l

(
Ph

(
1 +

√
1− α2a′2l
α |a1l|

)
− 1

)
.

Similar to Lemma B.1.2, we will calculate P [Ul > t] to show that Ul is subex-

ponential and use it to derive concentration bounds. However, using the above

estimate to bound E [Ul] will result in a weak bound that we will not be able

to use. Lemma B.1.6 bounds E [Ul] using a different technique carefully.

P [|Ul| > t] ≤ P

[
|a1l| |a′2l|

c
√
1− α2 |a′2l|
α |a1l|

> t

]

= P

[
|a′2l|2 >

cαt√
1− α2

]
≤ exp

(
1− cαt√

1− α2

)
,

where the last step follows from the fact that a′2l is a subgaussian random vari-

able and hence |a′2l|2 is a subexponential random variable. Using Proposition

5.16 from [89], we obtain:

P

[∣∣∣∣∣
m∑

l=1

Ul − E [Ul]

∣∣∣∣∣ > δm
√
1− α2

]

≤ 2 exp

(
−min

(
cδ2m2 (1− α2)

(1− α2)m
,
cδm
√
1− α2

√
1− α2

))

≤ 2 exp
(
−cδ2m

)
≤ η

10
exp (−n) .

Using Lemma B.1.6, we obtain:

∣∣e2TA (D − I)AT e1
∣∣ =

∣∣∣∣∣
m∑

l=1

Ul

∣∣∣∣∣ ≤ (1 + δ)m
√
1− α2,

with probability greater than 1− η
10
exp(−n). This proves the lemma.
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Lemma B.1.6. Let w1 and w2 be two independent standard complex Gaus-

sian random variables1. Let U = |w1|w2

(
Ph
(
1 +

√
1−α2w2

α|w1|

)
− 1
)
. Fix δ > 0.

Then, there exists a constant γ > 0 such that if
√
1− α2 < γ, then: E [U ] ≤

(1 + δ)
√
1− α2.

Proof. Let w2 = |w2| eiθ. Then |w1| , |w2| and θ are all independent random

variables. θ is a uniform random variable over [−π, π] and |w1| and |w2| are
identically distributed with probability distribution function:

p(x) = x exp

(
−x2

2

)
1{x≥0}.

We have:

E [U ] = E

[
|w1| |w2| eiθ

(
Ph

(
1 +

√
1− α2 |w2| e−iθ

α |w1|

)
− 1

)]

= E

[
|w1| |w2|E

[
eiθ
(
Ph

(
1 +

√
1− α2 |w2| e−iθ

α |w1|

)
− 1

)]∣∣∣∣|w1| , |w2|
]

Let β
def
=

√
1−α2|w2|
α|w1| . We will first calculate E

[
eiθPh

(
1 + βe−iθ

)∣∣|w1| , |w2|
]
.

Note that the above expectation is taken only over the randomness in θ. For

simplicity of notation, we will drop the conditioning variables, and calculate

the above expectation in terms of β.

eiθPh
(
1 + βe−iθ

)
= (cos θ + i sin θ)

1 + β cos θ − iβ sin θ
[
(1 + β cos θ)2 + β2 sin2 θ

] 1
2

=
cos θ + β + i sin θ

(1 + β2 + 2β cos θ)
1
2

.

We will first calculate the imaginary part of the above expectation:

Im
(
E
[
eiθPh

(
1 + βe−iθ

)])
= E

[
sin θ

(1 + β2 + 2β cos θ)
1
2

]
= 0, (8)

1z is standard complex Gaussian if z = z1+iz2 where z1 and z2 are independent standard
normal random variables.
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where the last step follows because we are taking the expectation of an odd

function. Focusing on the real part, we let:

F (β)
def
= E

[
cos θ + β

(1 + β2 + 2β cos θ)
1
2

]

=
1

2π

∫ π

−π

cos θ + β

(1 + β2 + 2β cos θ)
1
2

dθ.

Note that F (β) : R → R and F (0) = 0. We will show that there is a small

absolute numerical constant γ (depending on δ) such that:

0 < β < γ ⇒ |F (β)| ≤ (
1

2
+ δ)β. (9)

We show this by calculating F ′(0) and using the continuity of F ′(β) at β = 0.

We first calculate F ′(β) as follows:

F ′(β) =
1

2π

∫ π

−π

1

(1 + β2 + 2β cos θ)
1
2

− (cos θ + β) (β + cos θ)

(1 + β2 + 2β cos θ)
3
2

dθ

=
1

2π

∫ π

−π

sin2 θ

(1 + β2 + 2β cos θ)
3
2

dθ

From the above, we see that F ′(0) = 1
2
and (9) then follows from the continuity
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of F ′(β) at β = 0. Getting back to the expected value of U , we have:

|E [U ]| =
∣∣∣∣∣E
[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

<γ

}

]

+E

[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

≥γ

}

]∣∣∣∣∣

=

∣∣∣∣∣E
[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

<γ

}

]∣∣∣∣∣

+

∣∣∣∣∣E
[
|w1| |w2|F

(√
1− α2 |w2|
α |w1|

)
1{√

1−α2|w2|
α|w1|

≥γ

}

]∣∣∣∣∣
(ζ1)

≤
(
1

2
+ δ

)
E

[
|w1| |w2|

√
1− α2 |w2|
α |w1|

]
+ E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
,

=

(
1

2
+ δ

)(√
1− α2

α

)
E
[
|w2|2

]
+ E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
,

(ζ2)
= (1 + 2δ)

(√
1− α2

α

)
+ E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
, (10)

where (ζ1) follows from (9) and the fact that |F (β)| ≤ 1 for every β and (ζ2)

follows from the fact that E
[
|z2|2

]
= 2. We will now bound the second term

in the above inequality. We start with the following integral:

∫ ∞

t

s2e−
s2

2 ds = −
∫ ∞

t

sd
(
e−

s2

2

)

= te−
t2

2 +

∫ ∞

t

e−
s2

2 ds ≤ (t+ e)e−
t2

c , (11)

where c is some constant. The last step follows from standard bounds on the

tail probabilities of gaussian random variables. We now bound the second
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term of (10) as follows:

E

[
|w1| |w2|1{√

1−α2|w2|
α|w1|

≥γ

}

]
=

∫ ∞

0

t2e−
t2

2

∫ ∞

αt√
1−α2

s2e−
s2

2 dsdt

(ζ1)

≤
∫ ∞

0

t2e−
t2

2

(
αt√
1− α2

+ e

)
e
− α2t2

c(1−α2)dt

≤
∫ ∞

0

(
αt3√
1− α2

+ et2
)
e
− t2

c(1−α2)dt

=
α√

1− α2

∫ ∞

0

t3e
− t2

c(1−α2)dt+ e

∫ ∞

0

t2e
− t2

c(1−α2)dt

(ζ2)

≤ c
(
1− α2

) 3
2

(ζ3)

≤ δ
√
1− α2

where (ζ1) follows from (11), (ζ2) follows from the formulae for second and

third absolute moments of gaussian random variables and (ζ3) follows from

the fact that 1− α2 < δ. Plugging the above inequality in (10), we obtain:

|E [U ]| ≤ (1 + 2δ)

(√
1− α2

α

)
+ δ
√
1− α2 ≤ (1 + 4δ)

√
1− α2,

where we used the fact that α ≥ 1− δ
2
. This proves the lemma.

Lemma B.1.7. Assume the hypothesis of Theorem 3.5.2 and the notation

therein. Then,

∣∣e3TA (D − I)AT e1
∣∣ ≤ δm

√
1− α2,

with probability greater than 1− η
10
e−n.

Proof. The proof of this lemma is very similar to that of Lemma B.1.5. We

have:

e3
TA (D − I)AT e1 =

m∑

l=1

a1la3l

(
Ph
((

αa1l + a2l
√
1− α2a3l

)
a1l

)
− 1
)

=
m∑

l=1

|a1l| a′3l
(
Ph
(
α |a1l|+ a′2l

√
1− α2

)
− 1
)
,
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where a′3l
def
= a3lPh (a1l) is identically distributed to a3l and is independent of

|a1l| and a′2l. Define the random variable Ul as:

Ul
def
= |a1l| a′3l

(
Ph

(
1 +

a′2l
√
1− α2

α |a1l|

)
− 1

)
.

Since a′3l has mean zero and is independent of everything else, we have:

E [Ul] = 0.

Similar to Lemma B.1.5, we will calculate P [Ul > t] to show that Ul is subex-

ponential and use it to derive concentration bounds.

P [|Ul| > t] ≤ P

[
|a1l| |a′3l|

c
√
1− α2 |a′2l|
α |a1l|

> t

]

= P

[
|a′2la′3l| >

cαt√
1− α2

]
≤ exp

(
1− cαt√

1− α2

)
,

where the last step follows from the fact that a′2l and a′3l are independent

subgaussian random variables and hence |a′2la′3l| is a subexponential random

variable. Using Proposition 5.16 from [89], we obtain:

P

[∣∣∣∣∣
m∑

l=1

Ul − E [Ul]

∣∣∣∣∣ > δm
√
1− α2

]

≤ 2 exp

(
−min

(
cδ2m2 (1− α2)

(1− α2)m
,
cδm
√
1− α2

√
1− α2

))

≤ 2 exp
(
−cδ2m

)
≤ η

10
exp (−n) .

Hence, we have:

∣∣e3TA (D − I)AT e1
∣∣ =

∣∣∣∣∣
m∑

l=1

Ul

∣∣∣∣∣ ≤ δm
√
1− α2,

with probability greater than 1− η
10
exp(−n). This proves the lemma.

Lemma B.1.8. For every w ∈ C, we have:

|Ph (1 + w)− 1| ≤ 2 |w| .
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Proof. The proof is straight forward:

|Ph (1 + w)− 1| ≤ |Ph (1 + w)− (1 + w)|+ |w| = |1− |1 + w||+ |w| ≤ 2 |w| .

B.2 Proofs for Section 3.6

Proof of Lemma 3.6.1. For every j ∈ [n] and i ∈ [m], consider the random

variable Zij
def
= |aijyi|. We have the following:

• if j ∈ S, then

E [Zij ] =
2

π

(√
1−

(
x∗
j

)2
+ x∗

j arcsin x
∗
j

)

≥ 2

π

(
1− 5

6

(
x∗
j

)2 − 1

6

(
x∗
j

)4
+ x∗

j

(
x∗
j +

1

6

(
x∗
j

)3
))

≥ 2

π
+

1

6
(x∗

min)
2 ,

where the first step follows from Corollary 3.1 in [59] and the second step

follows from the Taylor series expansions of
√
1− x2 and arcsin(x),

• if j /∈ S, then E [Zij ] = E [|aij|]E [|yi|] = 2
π
and finally,

• for every j ∈ [n], Zij is a sub-exponential random variable with param-

eter c = O(1) (since it is a product of two standard normal random

variables).

Using the hypothesis of the theorem about m, we have:

• for any j ∈ S, P
[
1
m

∑m
i=1 Zij −

(
2
π
+ 1

12
(x∗

min)
2) < 0

]
≤ exp

(
−c (x∗

min)
4 m
)
≤

δn−c, and

• for any j /∈ S, P
[
1
m

∑m
i=1 Zij −

(
2
π
+ 1

12
(x∗

min)
2) > 0

]
≤ exp

(
−c (x∗

min)
4 m
)
≤

δn−c.

Applying a union bound to the above, we see that with probability greater

than 1 − δ, there is a separation in the values of 1
m

∑m
i=1 Zij for j ∈ S and

j /∈ S. This proves the theorem.
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Appendix C

Proofs for Learning Sparsely used Dictionaries

using Alternating Minimization

C.1 Proofs of the main theorems

We first present the proof of Theorem 4.3.2. All the required lemmas

for the proof of this theorem can be found in Appendix C.2.

Proof of Theorem 4.3.2:

Consider a particular iteration of Algorithm 8. Procedure 1 returns

Uniq-intersect(Yi∗ , Yj∗) with probability greater than 1 − 2 exp(−γ2
∣∣∣Ŝ
∣∣∣ /2).

If ¬Uniq-intersect(Yi∗ , Yj∗), then Algorithm 8 proceeds to the next itera-

tion. Consider the case of Uniq-intersect(Yi∗ , Yj∗) and suppose NB(Yi∗) ∩
NB(Yj∗) = {A∗

l}. Using Proposition 4.3.5, with probability greater than

1− d exp
(
−cα2

∣∣∣Ŝ
∣∣∣
)
, we have:

‖A∗
l − â‖22 < 32sM2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
.

Using Lemma C.2.5 and Lemma C.2.1, we see that
∣∣∣Ŝ
∣∣∣ ≥ ns

4r
with probability

greater than 1− exp
(−ns

16r

)
. Using a union bound over all the iterations (which

are at most n2), the above claims hold for all iterations with probability greater

than 1− n2d exp
(

−cα2ns
r

)
− 2n2 exp

(
−γ2ns

8r

)
− n2 exp

(−ns
16r

)
.

Using Lemma C.2.5 and Lemma C.2.1, with probability greater than

1 − r exp
(−ns

64r

)
, for every l ∈ [r], there are at least ns

8r
pairs (i∗, j∗) such that

NB(Yi∗) ∩NB(Yj∗) = {A∗
l} and (i∗, j∗) ∈ Gcorr(ρ). Lines 9-11 of the algorithm

then ensure that there is a unique copy of the approximation to A∗
l dictionary

element. Using a union bound now gives the result.
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We now prove our second main result - Theorem 4.3.3. All the auxiliary

lemmas and definitions we make use of in the proof of this theorem can be

found in Appendix C.3.

In order to keep the notation less cumbersome, we will track the progress

made in one iteration of Algorithm 2. For any iteration t, we denote A(t) as

Ã and A(t + 1) as A. Similarly we denote X(t) and X(t + 1) as X̃ and X

respectively. Then the goal will be to show that A is closer to A∗ than Ã.

In order to establish Theorem 4.3.3, it suffices to establish a recurrence

relation of the form

dist (A,A∗) < c · dist
(
Ã, A∗

)
,

for some c < 1.

Proof of Theorem 4.3.3: As an induction hypothesis, we have dist
(
Ã, A∗

)

< ǫt. We will show that for every p ∈ [r], we will have:

dist (Ap, A
∗
p) ≤

23616µ1s
3

√
d

ǫt < ǫt+1. (1)

This suffices to prove the theorem by appealing to Lemma C.3.1.

Now fix any w ⊥ A∗
p such that ‖w‖2 = 1. We first provide a bound on

〈w,Ap〉. We have with high probability

〈w,Ap〉 = w⊤A∗X∗X+
p

(ζ1)

≤
∥∥w⊤A∗∥∥

2

∥∥∥
(
X∗X+

)\p
p

∥∥∥
2

(ζ2)

≤ µ1

√
r

d
· 1968s

2 ‖△X‖∞√
r

=
17712µ1s

3

√
d

ǫt, (2)

where (ζ1) follows from the fact that w⊤A∗
p = 0 and (ζ2) follows from As-

sumption (A2) and Lemma 4.3.8.
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In order to bound dist (A,A∗), it remains to show a lower bound on

‖A‖2. This is again just algebraic given our main lemmas.

‖Ap‖2 =
∥∥A∗X∗X+

p

∥∥
2
=
∥∥A∗ (X −△X)X+

p

∥∥
2

(ζ1)
=
∥∥A∗

p − A∗△XX+
p

∥∥
2

≥ ‖A∗
p‖2 −

∥∥∥A∗(△XX+
)
p

∥∥∥
2
,

where (ζ1) follows from the fact that XX+ = I. We decompose the second

term into diagonal and off-diagonal terms of △XX+, followed by triangle

inequality and obtain

‖Ap‖2 ≥ 1−
∥∥∥A∗

p

(
△XX+

)p
p
+ A∗

\p
(
△XX+

)\p
p

∥∥∥
2

≥ 1− ‖A∗
p‖2
∣∣∣
(
△XX+

)p
p

∣∣∣−
∥∥A∗

\p
∥∥
2

∥∥∥
(
△XX+

)\p
p

∥∥∥
2

≥ 1− 1 ·
∥∥∥△XX⊤(XX⊤)−1

∥∥∥
2
−
∥∥A∗

\p
∥∥
2

∥∥∥
(
△XX+

)\p
p

∥∥∥
2

≥ 1− ‖△X‖2
∥∥X⊤∥∥

2

∥∥∥
(
XX⊤)−1

∥∥∥
2︸ ︷︷ ︸

T1

−
∥∥A∗

\p
∥∥
2

∥∥∥
(
△XX+

)\p
p

∥∥∥
2︸ ︷︷ ︸

T2

It remains to control T1 and T2 at an appropriate level. We start from T1. Note

that ‖△X‖2 is bounded by Lemmas 4.3.6 and 4.3.7, while
∥∥X⊤∥∥

2
is controlled

by Lemma C.3.6 (recall ‖△X‖∞ ≤ 1/(64s)). Invoking Lemma C.3.6 to control∥∥∥XX⊤−1
∥∥∥
2
, we obtain the following bound on T1 with probability at least

1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)

T1 ≤ 18ǫts
2

√
n

r
· 3s
√

n

r
· 8r
sn

= 432s2ǫt.

The second term T2 is directly controlled by Lemma 4.3.8, yielding with prob-

ability at least

1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
− exp (−ns2/(3r2))

T2 ≤ µ1

√
r

d

1968s3ǫt√
r
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Putting all the terms together, we obtain that

‖Ap‖2 ≥ 1− 9s2
(
48 +

1968sµ1√
d

)
ǫt ≥

3

4
. (3)

Combining the bounds (2) and (3) yields the desired recursion (1). Appealing

to Lemma C.3.1 along with our setting of ǫt (3) completes the proof of the

claim (1). Finally note that the error probability in the theorem is obtained by

using the fact that M ≥ 1, and that the failure probability is purely incurred

from the structure of the non-zero entries of X∗, so that it is incurred only

once and not at each round. This avoids the need of a union bound over all

the rounds, yielding the result. �

C.2 Proofs for initialization

In this section we will present the proof of Theorem 4.3.2, which is

our main result for Algorithm 8. We will start by presenting a host of useful

lemmas, and sketch out how they fit together to yield the main results before

moving on to the proofs.

C.2.1 Correlation graph properties

In this section we will present some useful properties of the correla-

tion graph Gcorr(ρ) described in Section 4.3.4. Recall that Gcorr(ρ), where the

nodes are samples {Y1, Y2, . . . Yn} and an edge (Yi, Yj) ∈ Gcorr(ρ) implies that

|〈Yi, Yj〉| > ρ, for some ρ > 0. This is employed by Algorithm 8 as a proxy for

identifying samples which have common dictionary elements. We now make

this connection concrete in the next few lemmas. For this we also recall our

notation NB(y) which is the neighborhood of a sample y in the coefficient

bipartite graph (see Figure 4.2), that is, the set of dictionary elements that

combine to yield y.

Lemma C.2.1 (Correlation graph). Under the incoherence assumption (A1)

and the threshold ρ in the hypothesis of Theorem 4.3.2, the following is true

for the edges in the correlation graph Gcorr(ρ):
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|NB(Yk) ∩NB(Yl)| = 1⇒ (Yk, Yl) ∈ Gcorr(ρ), ∀ i ∈ [r], (4)

(Yk, Yl) ∈ Gcorr(ρ) ⇒ |NB(Yk) ∩NB(Yl)| ≥ 1, (5)

for all k, l ∈ {1, 2, , . . . , n}, k 6= l.

Lemma C.2.1 suggests that nodes which intersect in exactly one dictio-

nary element are special, in that they are guaranteed to have an edge between

them in Gcorr(ρ). Our next lemma works towards establishing something even

stronger. We will next establish that there are large cliques in the correla-

tion graph where any two samples in the clique intersect in the same unique

dictionary element. In order to state the lemma, we need some additional

notation.

For each dictionary element A∗
i, consider a set of samples1 {Yk, k ∈ S},

for some S ⊂ {1, 2, . . . , n}, such that they only have A∗
i in common, and

denote such a set by Ci i.e.

Ci := {Yk, k ∈ S : NB(Yk) ∩NB(Yl) = {A∗
i, } ∀ k, l ∈ S}. (6)

Lemma C.2.1 implies that in the correlation graph, the set of nodes in Ci

form a clique (not necessarily maximal), for each i ∈ {1, 2, . . . , r}, as shown in

Figure 4.1. The above implication can be exploited for recovery of dictionary

elements: if we find the set Ci, then we can hope to recover the element A∗
i,

since that is the only element in common to the samples in Ci.

For ease of stating the next lemma, we further define two shorthand

notations.

Uniq-intersect(Yi, Yj) := {(Yi, Yj) ∈ Gcorr(ρ) and |NB(Yi) ∩NB(Yj)| = 1},
(7)

1Note that such a set need not be unique.
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Intuitively, the samples satisfying Uniq-intersect(Yi, Yj) are guaranteed to have

an edge between them by Lemma C.2.1. In order to guarantee large cliques,

we will also need to measure the number of triangles in Gcorr(ρ).

In order to do this, given anchor samples Yi∗ and Yj∗ have a unique

intersection, we now bound the probability that a randomly chosen sample Yi,

among the neighborhood set of Yi∗ and Yj∗ in the correlation graph also has a

unique intersection. Now define unique intersection event for a new sample Yi

with respect to anchor samples Yi∗ and Yj∗ as follows

Uniq-intersect(Yi;Yi∗ , Yj∗) := {NB(Yi) ∩NB(Yi∗) = NB(Yi) ∩NB(Yj∗) = {A∗
k}} ,

(8)

where {A∗
k} = NB(Yi∗) ∩ NB(Yj∗) is the unique intersection of the anchor

samples Yi∗ and Yj∗ . In other words, Uniq-intersect(Yi;Yi∗ , Yj∗) indicates the

event that the pairwise intersections of the new sample Yi with each of the

anchors Yi∗ and Yj∗ is unique and equal to the unique intersection of Yi∗ and

Yj∗ .

Lemma C.2.2 (Formation of clique under good anchor samples).

P
[
Uniq-intersect(Yi;Yi∗ , Yj∗)

∣∣ Uniq-intersect(Yi∗ , Yj∗), and

(Yi, Yi∗), (Yi, Yj∗) ∈ Gcorr(ρ)

]

≥ 1− s3

r
.

Lemma C.2.2 is crucial for our algorithm. It guarantees that given a

pair of good anchor elements—one satisfying unique intersection property—a

large fraction of their neighbors also contain this common dictionary element.

Some further arguments can then be made to establish that a large fraction

of the neighbors of Yi∗ and Yj∗ also have edges amongst themselves and hence

form cliques as defined in Equation 6.
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C.2.2 Correctness of Procedure 1

A key component in our analysis is the correctness of Procedure 1. As

we saw in the previous lemmas, it is crucial for a chosen pair of anchor elements

to have a unique intersection in order to use them for identifying large cliques

Ci in Gcorr(ρ). Procedure 1 plays a crucial role by providing a verifiable test

for whether a pair of anchor elements have a unique intersection or not. Our

next two lemmas help us establish that this test is sound with high probability.

We first show that two neighbors of a bad anchor pair do not have an edge

amongst them with high probability.

Denote the event

∆(Yi, Yj, Yk) := {(Yi, Yj), (Yj, Yk), (Yi, Yk) ∈ Gcorr(ρ)},
i.e., the samples Yi, Yj, Yk form a triangle in the correlation graph.

Lemma C.2.3 (Detection of bad anchor samples). For randomly chosen sam-

ples Yi, Yj

P
[
(Yi, Yj) /∈ Gcorr(ρ) | ∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),¬Uniq-intersect(Yi∗ , Yj∗)

]

>
1

16
.

Intuitively, this means that the number of sets Si which will be edges

in Gcorr(ρ) is rather small for an anchor pair with multiple dictionary elements

in common. In order for correctness of the procedure, we will in fact need this

number to be substantially smaller than that for a good anchor pair. This is

indeed the case as we next establish.

Lemma C.2.4 (Detection of good anchor samples). For randomly chosen

samples Yi, Yj

P
[
(Yi, Yj) /∈ Gcorr(ρ) | ∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),Uniq-intersect(Yi∗ , Yj∗)

]

≤ 24s3

r
.

Combining the above two lemmas, the correctness of Procedure 1 nat-

urally follows. In particular, we note that the above two lemmas prove Propo-

sition 4.3.4.
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Proposition 4.3.4 (Correctness of Procedure 1). Suppose (Yi∗ , Yj∗) ∈ Gcorr(ρ).

Suppose that s3 ≤ r/1536 and γ ≤ 1/64. Then Algorithm 8 returns the

value of Uniq-intersect(Yi∗ , Yj∗) correctly with probability greater than 1 −
2 exp(−γ2m).

C.2.3 Estimation of the Dictionary Elements via SVD

In this section we will put all the pieces together and establish Theo-

rem 4.3.2. We start by establishing that given a pair of good anchor elements,

the SVD step in Algorithm 8 approximately recovers the unique dictionary

element in the intersection of the two anchors. In this context, we recall

Proposition 4.3.5.

Proposition 4.3.5 (Accuracy of SVD). Consider anchor samples Yi∗ and Yj∗

such that Uniq-intersect(Yi∗ , Yj∗) is satisfied, and wlog, letNB(Yi∗)∩NB(Yj∗) =

{A∗
1}. Recall the definition of Ŝ (16), and further define Q̂ :=

∑
i∈Ŝ YiY

⊤
i and

|Ŝ| = m. If â is the top singular vector of Q̂, then there exists a universal

constant c such that we have:

min
z∈{−1,1}

‖â− zA∗
1‖22 < 32sM2

(
µ1√
ds

+
µ2
1

d
+

s3

r
+ α2 +

α√
s

)
,

with probability greater than 1− d exp (−cα2m) for α < 1/20.

The key missing piece from using Proposition 4.3.5 to prove Theo-

rem 4.3.2 is the dependence on the random quantity |Ŝ| in the error probability

in Proposition 4.3.5. The following lemma bounds the size of this set.

Lemma C.2.5. In each iteration of Algorithm 8, the size of the set Ŝ satisfies:

∣∣∣Ŝ
∣∣∣ ≥ ns

4r
,

with probability greater than 1− exp
(−ns

16r

)
.
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C.2.4 Proofs of correlation graph properties

We start by proving Lemmas C.2.1 and C.2.2 in Section C.2.1.

Proof of Lemma C.2.1:

We first prove (5) via contradiction. Suppose NB(Yk)∩NB(Yl) = ∅, we
then have

|〈Yk, Yl〉| = |
∑

i,j

X∗i
kX

∗j
l 〈A∗

i, A
∗
j〉| ≤

∑

i,j

|X∗i
kX

∗j
l 〈A∗

i, A
∗
j〉|

≤ |NB(Yk)| · |NB(Yl)| ·max
i,j,k,l
|X∗i

kX
∗j
l | ·max

i 6=j
|〈A∗

i, A
∗
j〉| ≤

s2µ0√
d
M2

For (4), let {A∗
i∗} = NB(Yk) ∩NB(Yl)

|〈Yk, Yl〉| = |
∑

i,j

X∗i
kX

∗j
l 〈A∗

i, A
∗
j〉|

≥ |X∗i∗
k X

∗i∗
l |〈A∗

i∗ , A
∗
i∗〉 −

∑

i 6=j

|X∗i
kX

∗j
l 〈A∗

i, A
∗
j〉|

≥ 1− s2µ0√
d
M2,

using the above analysis. The claims now follow from the setting of ρ. �

We next establish Lemma C.2.2.

Proof of Lemma C.2.2: Define the event

A := {|NB(Yi) ∩NB(Yi∗)| ≥ 1} ∩ {|NB(Yi) ∩NB(Yj∗)| ≥ 1}.

From Lemma C.2.1, we have that

P
[
Uniq-intersect(Yi;Yi∗ , Yj∗)

∣∣ Uniq-intersect(Yi∗ , Yj∗), and

(Yi, Yi∗), (Yi, Yj∗) ∈ Gcorr(ρ)

]

≥ P
[
Uniq-intersect(Yi;Yi∗ , Yj∗)

∣∣ Uniq-intersect(Yi∗ , Yj∗),A
]

In order to lower bound P
[
Uniq-intersect(Yi;Yi∗ , Yj∗)

∣∣ Uniq-intersect(Yi∗ , Yj∗),A
]
,

we instead upper bound the probability of the complementary event

P
[
¬Uniq-intersect(Yi;Yi∗ , Yj∗)

∣∣ Uniq-intersect(Yi∗ , Yj∗),A
]
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In order to do so, we first bound the following

P
[
A
∣∣ Uniq-intersect(Yi∗ , Yj∗)

]
≥ s

r
, (9)

since A holds when the unique element in NB(Yi∗)∩NB(Yj∗) is chosen and its

probability is s/r. We also have

P
[
¬Uniq-intersect(Yi;Yi∗ , Yj∗) ∩A

∣∣ Uniq-intersect(Yi∗ , Yj∗)
]
≤

(s− 1)2
(
r−3
s−2

)
(
r
s

) ,

since for ¬Uniq-intersect(Yi;Yi∗ , Yj∗) to hold, we need to choose at least one

of the s − 1 elements in NB(Yi∗)/NB(Yj∗), and similarly one from the s − 1

elements of NB(Yj∗)/NB(Yi∗). The rest of the s − 2 elements can be picked

arbitrarily from the r − 3 dictionary atoms that remain after excluding the

two already picked and the unique intersection NB(Yj∗) ∩NB(Yi∗).

It is easy to check that

(s− 1)2
(
r−3
s−2

)
(
r
s

) =
(s− 1)2(r − s)s(s− 1)

r(r − 1)(r − 2)

≤ s4

r2
. (10)

Taking the ratio of the two bounds in (9) and (10) completes the proof. �

C.2.5 Proofs of Lemmas C.2.3 and C.2.4

We now prove the two lemmas that are crucial to establishing the cor-

rectness of Procedure 1.

Proof of Lemma C.2.3: Let A1 and A2 denote the following events:

A1 :={|NB(Yi) ∩NB(Yi∗)| ≥ 1} ∩ {|NB(Yi) ∩NB(Yj∗)| ≥ 1}
∩ {|NB(Yj) ∩NB(Yi∗)| ≥ 1} ∩ {|NB(Yj) ∩NB(Yj∗)| ≥ 1}

A2 :={|NB(Yi) ∩NB(Yi∗)| = 1} ∩ {|NB(Yi) ∩NB(Yj∗)| = 1}
∩ {|NB(Yj) ∩NB(Yi∗)| = 1} ∩ {|NB(Yj) ∩NB(Yj∗)| = 1} (11)
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In words, both Yi and Yj have at least dictionary element in common with

each of Yi∗ and Yj∗ under the event A1, while the number of common elements

is exactly one under the event A2. We have

P
[
(Yi, Yj) /∈ Gcorr(ρ) | ∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),¬Uniq-intersect(Yi∗ , Yj∗)

]

(a)
= P

[
(Yi, Yj) /∈ Gcorr(ρ) | A1,∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),

¬Uniq-intersect(Yi∗ , Yj∗)]

= P
[
(Yi, Yj) /∈ Gcorr(ρ),∆(Yj, Yi∗ , Yj∗) | A1,∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),

¬Uniq-intersect(Yi∗ , Yj∗)]

≥ P
[
(Yi, Yj) /∈ Gcorr(ρ),∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗) | A1,

¬Uniq-intersect(Yi∗ , Yj∗), (Yi∗ , Yj∗) ∈ Gcorr(ρ)

]

(b)

≥ P
[
(Yi, Yj) /∈ Gcorr(ρ),A2 | A1,¬Uniq-intersect(Yi∗ , Yj∗), (Yi∗ , Yj∗) ∈ Gcorr(ρ)

]

(c)

≥ P [{NB(Yi) ∩NB(Yj) = ∅} ∩A2 | A1,¬Uniq-intersect(Yi∗ , Yj∗),

(Yi∗ , Yj∗) ∈ Gcorr(ρ)

]
, (12)

where the inequalities (a), (b) and (c) follow from Lemma C.2.1. We will now

work on lower bounding this resulting probability.

We first lower bound the numerator in writing the above conditional

probability as the ratio of a joint to marginal probability. We begin by noting

that

P [{NB(Yi) ∩NB(Yj) = ∅} ∩A2 ∩A1 | ¬Uniq-intersect(Yi∗ , Yj∗),

(Yi∗ , Yj∗) ∈ Gcorr(ρ))
]

= P [{NB(Yi) ∩NB(Yj) = ∅} ∩A2 | ¬Uniq-intersect(Yi∗ , Yj∗),

(Yi∗ , Yj∗) ∈ Gcorr(ρ)

]

Let us define m = |NB(Yi∗) ∪ NB(Yj∗)| ∈ [s, 2s] and l = |NB(Yi∗) ∩
NB(Yj∗)| ≥ 22. The event in the probability above, that is A2 holds while Yi

2the intersection is at least 1 by Lemma C.2.1
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and Yj do not share a dictionary element, can be arranged by choosing two of

the l elements, and assigning a unique element to each Yi and Yj. Similarly

the remaining elements can be chosen outside NB(Yi∗) ∪ NB(Yj∗) in a non-

overlapping manner: for Yi assign s− 1 elements among r −m elements, and

then for Yj assign from remaining r −m − s + 1 elements. This logic yields

the following lower bound on the probability

P [{NB(Yi) ∩NB(Yj) = ∅} ∩A2 | ¬Uniq-intersect(Yi∗ , Yj∗)]

≥
2
(
l
2

)(
r−m
s−1

)(
r−m−s+1

s−1

)
(
r
s

)2 ≥
2
(
l
2

)(
r−2s
s−1

)(
r−3s+1
s−1

)
(
r
s

)2 ,

where the second inequality uses m ≤ 2s. Now with some straightforward

algebra, we can further lower bound this expression as

P [{NB(Yi) ∩NB(Yj) = ∅} ∩A2 | ¬Uniq-intersect(Yi∗ , Yj∗)]

≥ s2(l − 1)2

r2

(
1− 3s− 3

r − s

)s−1(
1− 2s− 1

r − s

)s−1

≥ s2(l − 1)2

r2

(
1− 3s

r − s

)s(
1− 2s

r − s

)s

.

Now we invoke Lemma C.2.10 to further lower bound the RHS and obtain

P [{NB(Yi) ∩NB(Yj) = ∅} ∩A2 | ¬Uniq-intersect(Yi∗ , Yj∗)]

≥ s2(l − 1)2

r2
exp

(
− 3s2

r − s

)
exp

(
− 2s2

r − s

)
≥ s2(l − 1)2

r2

(
1− 10s2

r − s

)

≥ s2(l − 1)2

2r2
,

where the final inequality holds since s2 ≤ r/40.

In order to lower bound the conditional probability in Equation 12, we

need to further upper bound the marginal probability in the denominator. To

this end, we observe that we have to upper bound P [A1|¬Uniq-intersect(Yi∗ , Yj∗)].
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Now conditioned on ¬Uniq-intersect(Yi∗ , Yj∗), for each Yi and Yj, A1 can

be satisfied in two ways: choose at least one element from l elements in

NB(Yi∗) ∩ NB(Yj∗) or choose at least two elements from m − l elements in

NB(Yi∗) ∪NB(Yj∗). Making this precise, we obtain

P [A1 | ¬Uniq-intersect(Yi∗ , Yj∗)] ≤
(
ls

r
+

(m− l)2
(
r−2
s−2

)
(
r
s

)
)2

≤
(
ls

r
+

s2(m− l)2

(r − 1)2

)2

≤
(
ls

r
+

s2(2s− 2)2

(r − 1)2

)2

≤ 2l2s2

r2
, (since 4s3 < r − 1)

The result follows by using the fact that l ≥ 2. �

The proof of Lemma C.2.4 is similar, but involves controlling slightly

different events.

Proof of Lemma C.2.4:

We will establish the lemma by lower bounding the probability of the

complementary event. We recall the events A1 and A2 defined in Equation 11

in the proof of Lemma C.2.3. We can mimick the initial arguments in the

proof of Lemma C.2.3 to conclude that

P
[
(Yi, Yj) ∈ Gcorr(ρ) | ∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),Uniq-intersect(Yi∗ , Yj∗)

]

≥ P [Uniq-intersect(Yi, Yj) ∩A2 | A1,Uniq-intersect(Yi∗ , Yj∗)] ,

and we provide a lower bound for this. Once again, we express the conditional

probability as the ratio of a joint to a marginal and then lower bound the

numerator and upper bound the denominator. In the numerator, we have the

event

We have
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P [Uniq-intersect(Yi, Yj) ∩A2 ∩A1 | Uniq-intersect(Yi∗ , Yj∗)]

= P [Uniq-intersect(Yi, Yj) ∩A2 | Uniq-intersect(Yi∗ , Yj∗)]

The event Uniq-intersect(Yi, Yj)∩A2 is guaranteed to occur if we choose

Yi and Yj so that they have the only element in NB(Yi∗)∩NB(Yj∗) in common.

This yields the lower bound

P [Uniq-intersect(Yi, Yj) ∩A2 ∩A1 | Uniq-intersect(Yi∗ , Yj∗)]

≥
(
r−2s+1
s−1

)(
r−3s+2
s−1

)
(
r
s

)2 .

It is easy to further conclude that

P [Uniq-intersect(Yi, Yj) ∩A2 ∩A1 | Uniq-intersect(Yi∗ , Yj∗)]

≥ s2

r2

(
1− 3s− 3

r − s+ 1

)(s−1)(
1− 2s− 2

r − s+ 1

)s−1

≥ s2

r2
exp(−5(s− 1)2/(r − s+ 1))

≥ s2

r2

(
1− 10s2

r − s

)
≥ s2

r2

(
1− 20s2

r

)
,

where we again invoked Lemma C.2.10 as well as the fact that s ≤ r/2. As

for the marginal probability in the denominator, we need to upper bound

P [A1 | Uniq-intersect(Yi∗ , Yj∗)] ≤
(
s

r
+

(2s− 1)2
(
r−2
s−2

)
(
r
s

)
)2

≤
(
s

r
+

(2s− 1)2(s− 1)2

(r − 1)2

)2

≤ s2

r2

(
1 +

4s3

r

)2

,
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since for each Yi and Yj, A1 can be satisfied in two ways: choose the unique

element from NB(Yi∗) ∩ NB(Yj∗) or choose at least two elements from 2s − 1

elements in NB(Yi∗) ∪NB(Yj∗).

Using the above two inequalities, we have:

P
[
(Yi, Yj) ∈ Gcorr(ρ) | ∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),Uniq-intersect(Yi∗ , Yj∗)

]

≥ 1− 20s2

r(
1 + 4s3

r

)2 .

It is easy to verify that 1/(1 + x)2 ≤ 1 − x for 0 ≤ x ≤ (
√
2 − 1)/2. Since

s3 ≤ r/5, we obtain

P
[
(Yi, Yj) ∈ Gcorr(ρ) | ∆(Yi, Yi∗ , Yj∗),∆(Yj, Yi∗ , Yj∗),Uniq-intersect(Yi∗ , Yj∗)

]

≥
(
1− 20s2

r

)(
1− 4s3

r

)

≥ 1− 24s3

r
.

�

C.2.6 Proof of Proposition 4.3.4

Let us start with the case when Uniq-intersect(Yi∗ , Yj∗) = 1. For any

pair (Yi, Yj) where Yi and Yj are taken from NGcorr(ρ)
(Yi∗) ∩ NGcorr(ρ)

(Yj∗), let

Eij be the random variable which is 1 if (Yi, Yj) ∈ Gcorr(ρ). Then Lemma C.2.4

guarantees P(Eij = 1) ≥ 1− 24s3/r. Let

S := {(i, j) : (Yi, Yj) ∈ Gcorr(ρ), and Yi, Yj ∈ NB(Yi∗) ∩NB(Yj∗)}.

The size of the set constructed in Algorithm 1 is equal to
∑

(i,j)∈S Eij. Recalling

that |S| = m, Hoeffding’s inequality guarantees that with probability at least

1− 2 exp(−2mγ2)

∣∣∣∣∣∣
1

m

∑

(i,j)∈S
(Eij − P(Eij = 1))

∣∣∣∣∣∣
≤ γ.
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Combining with the lower bound on P(Eij = 1), we obtain that with proba-

bility at least 1− 2 exp(−2mγ2),

∑

(i,j)∈S
Eij ≥ m

(
1− 24

s3

r

)
−mγ. (13)

Using γ ≤ 1/64, we see that this quantity is at least 62m/64 under the condi-

tions of the lemma, which means that Algorithm 1 returns 1.

Now let us consider the case when Uniq-intersect(Yi∗ , Yj∗) = 0. Defining

Eij the same way as above, we see that by Lemma C.2.3, P(Eij = 1) ≤ 15/16.

Then, a similar application of Hoeffding’s inequality yields this time

∑

(i,j)∈S
Eij ≤

m

16
+mγ, (14)

which is at most 61m/64 for γ ≤ 1/64. Hence Algorithm 1 returns 0 in this

case.

C.2.7 Proof of Proposition 4.3.5

We now prove Proposition 4.3.5. We need a couple of auxilliary results

for the proof. We first restate a theorem from [88], which we will heavily use

in the sequel.

Theorem C.2.6 (Restatement of Theorem 5.44 from [88]). Consider a d ×
n matrix W where each column Wi of W is an independent random vector

with covariance matrix Σ. Suppose further that ‖Wi‖2 ≤
√
u a.s. for all i.

Then for any t ≥ 0, the following inequality holds with probability at least

1− d exp (−ct2):
∥∥∥∥
1

n
WW T − Σ

∥∥∥∥
2

≤ max
(
‖Σ‖1/22 δ, δ2

)
where δ = t

√
u

n
.

Here c > 0 is an absolute numerical constant. In particular, this inequality

yields:

‖W‖2 ≤ ‖Σ‖
1
2
2

√
n+ t

√
u.

126



In order to bound the errors made in Algorithm 8, we need some addi-

tional notation and auxilliary results. For now, let us consider a fixed pair of

anchor samples Yi∗ and Yj∗ such that Uniq-intersect(Yi∗ , Yj∗) is satisfied, and

wlog, let NB(Yi∗) ∩NB(Yj∗) = {A∗
1}. We define the following sets of interest

Ŝ = Ncorr(Yi∗) ∩Ncorr(Yj∗),

S = {Yi ∈ Ŝ : NB(Yi) ∩NB(Yi∗) = NB(Yi) ∩NB(Yj∗) = {A∗
1}}, and (15)

S̃ = Ŝ \ S. (16)

For the purposes of understanding the errors in Algorithm 8, it would

be helpful to decompose each vector Yi ∈ S as

Y̆i := Yi −X∗1
iA

∗
1, (17)

and accordingly define Y̆S to be the d × |S| matrix of all such vectors in S.

Intuitively, if all the vectors y̆ were 0, then Algorithm 8 can recover A∗
1 via

SVD in a relatively straightforward manner. We start by controlling the norm

of the vectors Yi and Y̆i.

Lemma C.2.7. Given assumptions (B1) and (B2), we have for all i =

1, 2, . . . , n

‖Yi‖2 ≤M
√
2s and

∥∥∥Y̆i

∥∥∥
2
≤ 2M

√
s.

Proof:

The proof is relatively straightforward consequence of our model and

the assumptions. The model allows us to write

127



‖Yi‖22 = 〈Yi, Yi〉 =
∑

A∗
p,A∗

q∈NB(Yi)

X∗p
iX

∗q
i 〈A∗

p, A
∗
q〉

≤
∑

A∗
p,A∗

q∈NB(Yi)

|X∗p
iX

∗q
i | |〈A∗

p, A
∗
q〉|

=
∑

A∗
p∈NB(Yi)

(X∗p
i )

2 ‖A∗
p‖22 +

∑

A∗
p 6=A∗

q∈NB(Yi)

|X∗p
iX

∗q
i | |〈A∗

p, A
∗
q〉|

≤M2

(
s+ s2

µ0√
d

)

≤M2

(
s+

1

2

)
≤ 3sM2

2
.

Finally, by triangle inequality we further have that
∥∥∥Y̆i

∥∥∥
2
≤ ‖Yi‖2+M .

�

Given this result, we would next like to control the amount of contribu-

tion the Y̆i directions can have in the SVD step of Algorithm 8. Our next result

shows that while these vectors are not zero, their random support along with

the incoherence of our dictionary elements ensures that these vectors are not

strongly aligned with any one direction. We do so by bounding the spectral

norm of the matrix Y̆S.

Lemma C.2.8. With the vectors Y̆i defined in Equation 17, we have the fol-

lowing bound with probability greater than 1− d exp (−cα2 |S|) for any α > 0

∥∥∥Y̆S

∥∥∥
2
≤M

√
s |S|

(
µ1√
d
+ 2α

)
,

where c is a universal constant.

Proof:

In order to prove the lemma, we first calculate the spectral norm of the

covariance matrix of Y̆i and then use Theorem C.2.6. Note that from Lemma

C.2.7, we have
∥∥∥Y̆i

∥∥∥
2
≤ 2M

√
s. We first bound the spectral norm of the
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covariance matrix of Y̆i ∈ S i.e., we bound
∥∥∥E
(
Y̆iY̆

T
i

)∥∥∥
2
. In order to do this,

we first fix w ∈ R
d and calculate:

wT
E

[
Y̆iY̆

T
i

]
w = E

[(
wT Y̆i

)2]
= E

[(
wTA∗X̆i

)2]
= E

[(
zT X̆i

)2]
,

where we use the notation z := A∗⊤w and X̆i is the same as X∗
i but with X∗1

i

set to 0. We further simplify the above as

wT
E

[
Y̆iY̆

T
i

]
w ≤ E



(

r∑

p=1

zpX̆
p
i

)2



= E

[
r∑

p=1

z2p

(
X̆p

i

)2
]
+ E

[
r∑

p 6=q=1

zpzqX̆
p
i X̆

q
i

]

≤
r∑

p=1

z2pE

[(
X̆p

i

)2]
+

r∑

p 6=q=1

|zpzq|
∣∣∣E
[
X̆p

i X̆
q
i

]∣∣∣

≤
r∑

p=1

z2p
M2s

r
+ 0,

where the last inequality uses the fact that the values of E[X∗p
iX

∗q
i ] = 0, since

they are independent and zero mean.

Then we can further simplify the upper bound to obtain

wT
E

[
Y̆iY̆

T
i

]
w ≤ M2s

r
‖z‖22

(ζ)

≤ M2s

r
· µ

2
1r

d
=

µ2
1M

2s

d
,

where (ζ) follows from Assumption (A3), since

‖z‖2 =
∥∥∥A∗⊤w

∥∥∥
2
≤
∥∥∥A∗⊤

∥∥∥
2
‖w‖2 =

∥∥∥A∗A∗⊤
∥∥∥

1
2

2
‖w‖2 ≤

√
µ2
1r

d
.
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Recalling that w was an arbitrary unit vector, this immediately yields

a spectral norm bound on the expected covariance

∥∥∥E
[
Y̆iY̆

T
i

]∥∥∥
2
≤ µ2

1M
2s

d
.

We are now in a position to apply Theorem C.2.6 with the matrix

W = Y̆S of size d × |S|, where u = 2M
√
s and t = α

√
|S| for some α > 0.

Doing so yields the inequality

∥∥∥Y̆S

∥∥∥
2
≤M

(√
µ2
1s

kd
·
√
|S|+ α

√
|S| · 2√s

)

≤M
√

s |S|
(√

µ2
1

d
+ 2α

)
,

with probability greater than 1− d exp (−cα2 |S|). �

Finally we are in a position to establish a bound on the accuracy of the

SVD step in Algorithm 8. Having bounded the contribution from from the

directions apart from A∗
1 in the previous lemma, we will now lower bound the

contribution of the A∗
1 direction, which will ensure that the largest singular

vector is close to A∗
1.

Proof of Proposition 4.3.5: Recall the definitions of the sets S and S̃ (16).

In order for a vector Yi to end up in S̃, the event in Lemma C.2.2 has to fail.

Hence, if we define Ei to be the random variable which is 1 if Yi ∈ S̃, then we

have from Hoeffding’s inequality

∣∣∣∣∣
1

m

m∑

i=1

(Ei − P[Ei = 1])

∣∣∣∣∣ ≤
√

2 log(2/δ)

m
,

with probability at least 1 − δ/2. From Lemma C.2.2 we further know that

P[Ei = 1] ≤ s3/r so that

∣∣∣S̃
∣∣∣ ≤ ms3

r
+ αm, (18)
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with probability at least 1− exp(−2α2m). As a consequence, the size of S is

at least

|S| ≥ m(1− s3/r − α) ≥ 9m/10 (19)

for α < 1/20 by our assumption that s3 < r/384.

In order to understand the singular vector â, we now write the matrix

Q̂ as the sum of two matrices Q and Q̃ as follows:

Q̂ = Q+ Q̃, where,

Q :=
∑

Yi∈S
YiY

T
i and Q̃ :=

∑

Yi∈S̃

YiY
T
i .

Recalling our earlier notation Y̆i (17), we expand M as follows:

M =
∑

Yi∈S
YiY

T
i

=
∑

Yi∈S̃

(
X∗1

i

)2
A∗

1A
∗
1
T +

∑

i:Yi∈S
X∗1

i

(
A∗

1Y̆
T
i + Y̆iA

∗
1
T
)
+
∑

i:Yi∈S
Y̆iY̆

T
i

We wish to show that A∗
1 is close to the top singular vector of Q̂. In or-

der to show this, we bound the spectral norms of the following matrices:∑
i:Yi∈S X

∗1
i

(
A∗

1Y̆
T
i + Y̆iA

∗
1
T
)
,
∑

i:Yi∈S Y̆iY̆
T
i and Q̃.

Using Lemma C.2.8, we first obtain:
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∥∥∥∥∥
∑

i:Yi∈S
X∗1

iA
∗
1Y̆

T
i

∥∥∥∥∥
2

≤ ‖A∗
1‖2
∥∥∥Y̆S

∥∥∥
2

∥∥X∗S
1

∥∥
2

≤M2
√

s |S|
(√

µ2
1

d
+ 2α

)
·
√
|S|

= M2s |S|
(

µ1√
ds

+
2α√
s

)
and, (20)

∥∥∥∥∥
∑

i:Yi∈S
Y̆iY̆

T
i

∥∥∥∥∥
2

=
∥∥∥Y̆SY̆

T
S

∥∥∥
2
≤ 2M2s |S|

(
µ2
1

d
+ 4α2

)
. (21)

Finally, we have the following bound on the spectral norm of M̃ :

∥∥∥Q̃
∥∥∥
2
=

∥∥∥∥∥∥
∑

Yi∈S̃

YiYi
T

∥∥∥∥∥∥
2

≤
∣∣∣S̃
∣∣∣ ‖Yi‖22 ≤

∣∣∣S̃
∣∣∣ 2M2s. (22)

Using (20), (21) and (22), we now prove the statement of the lemma.

Let |〈A∗
1, â〉| = θ. On one hand, we have:

∥∥∥âT Q̂â
∥∥∥
2

≤ θ2
∑

Yi∈S̃

(
X∗1

i

)2
+M2


2

∥∥∥∥∥
∑

i:Yi∈S
X∗1

iA
∗
1Y̆

T
i

∥∥∥∥∥
2

+

∥∥∥∥∥
∑

i:Yi∈S
Y̆iY̆

T
i

∥∥∥∥∥
2

+
∥∥∥M̃

∥∥∥
2




≤ θ2
∑

Yi∈S̃

(
X∗1

i

)2
+M2

(
2s |S|

(
µ1√
ds

+
2α√
s

)
+ 2s |S|

(
µ2
1

d
+ 4α2

)
+
∣∣∣S̃
∣∣∣ 2s
)

≤ |S|
[
θ2
∑

Yi∈S̃
(
X∗1

i

)2

|S| + 8sM2

(
µ1√
ds

+
µ2
1

d
+ α2 +

α√
s
+

(
s3

r
+ α

))]
,

where the last step uses the bounds (18) and (19). On the other hand,

we have
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∥∥∥âT Q̂â
∥∥∥
2
=
∥∥∥Q̂
∥∥∥
2

≥
∑

Yi∈S̃

(
X∗1

i

)2 · ‖A∗
1‖22

−M2


2

∥∥∥∥∥
∑

i:Yi∈S
X∗1

iA
∗
1Y̆

T
i

∥∥∥∥∥
2

−
∥∥∥∥∥
∑

i:Yi∈S
Y̆iY̆

T
i

∥∥∥∥∥
2

−
∥∥∥Q̃
∥∥∥
2




≥
∑

Yi∈S̃

(
X∗1

i

)2 −M2

(
2s |S|

(
µ1√
ds

+
α√
s

)
− 2s |S|

(
µ2
1

d
+ 4α2

)
−
∣∣∣S̃
∣∣∣ 2s
)

≥ |S|
[∑

Yi∈S̃
(
X∗1

i

)2

|S| − 8sM2

(
µ1√
ds

+
µ2
1

d
+ α2 +

α√
s
+

(
s3

r
+ α

))]
.

Using the above two inequalities, we obtain

θ2 ≥ 1−M2
16s

(
µ1√
ds

+
µ2
1

d
+ s3

r

)
− 16s

(
α2 + α√

s

)

∑
Yi∈S̃(X∗1

i )
2

|S|

≥ 1−M2

(
16s

(
µ1√
ds

+
µ2
1

d
+

s3

r

)
− 16s

(
α2 +

α√
s

))

Now we observe that since ‖A∗
1‖2 = ‖â‖2 = 1, we have

‖â− A∗
1‖22 = 2(1− θ) ≤ 2(1− θ2),

for 0 ≤ θ ≤ 1, which completes the proof.

�

C.2.8 Bounding the size of Ŝ

So far, we have established that the sub-procedure in Algorithm 1 cor-

rectly detects good anchor pairs with high probability. Conditioned on this,
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Proposition 4.3.5 shows that we can recover the dictionary element in this in-

tersection to a bounded error with high probability. In this section, we prove

Lemma C.2.5. Before moving to its proof, we have the following useful lemma.

Lemma C.2.9 (Number of good anchor pairs). Suppose we have n examples.

Then, we have:

P

{
∪l∈[r] |{(i, j) : NB(Yi) ∩NB(Yj) = {A∗

l}}| >
ns

8r

}
≥ 1− r exp

(−ns
64r

)
.

Proof: Fix l ∈ [r]. Define the set S ⊆ [n] as follows:

S := {i : A∗
l ∈ NB(Yi)} .

Since for every i ∈ [n], the probability of i ∈ S is s
r
, using standard Chernoff

bounds, we see that:

P

[
|S| < ns

2r

]
< exp

(−ns
8r

)
. (23)

Consider any two examples Yi, Yj ∈ S. Then,

P [NB(Yi) ∩NB(Yj) = {A∗
l}] ≥ 1− s2

r
.

Dividing the set S into |S|
2

disjoint pairs and using Chernoff bounds, we see

that

P

[
|{(i, j) : NB(Yi) ∩NB(Yj) = {A∗

l}}| <
|S|
4

]
≤ exp



−
(
1− s2

r

)
|S|

16




≤ exp

(− |S|
32

)
. (24)

Using (23) and (24), we have:

P

[
|{(i, j) : NB(Yi) ∩NB(Yj) = {A∗

l}}| >
ns

8r

]
≥ 1− exp

(−ns
64r

)
.
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Using a union bound over different dictionary elements, we have:

P

[
|{(i, j)|NB(Yi) ∩NB(Yj) = {A∗

l}}| >
ns

8r
∀ l ∈ [r]

]
≥ 1− r exp

(−ns
64r

)
.

�

Proof of Lemma C.2.5: Since (Yi∗ , Yj∗) ∈ Gcorr(ρ), from Lemma C.2.1, we

know that NB(Yi∗) ∩ NB(Yj∗) 6= ∅. Wlog let A∗
1 ∈ NB(Yi∗) ∩ NB(Yj∗). Since

each sample Yi has probability of at least

s

r
·
(
r−2s+1
s−1

)
(
r−1
s−1

) ≥ s

r
·
(
r − 3s

r − s

)s

≥ s

r
·
(
1− 2s

r − s

)s

≥ s

r
·
(
1− 2s2

r − s

)
≥ s

2r
,

of satisfying NB(Yi) ∩ NB(Yi∗) = NB(Yi) ∩ NB(Yj∗) = {A∗
1}, using Chernoff

bounds, we have:

P

[
|i : Uniq-intersect (Yi, Yi∗)&Uniq-intersect (Yi, Yj∗)| <

ns

4r

]
≤ exp

(−ns
16r

)
.

Using Lemma C.2.1 now finishes the proof. �

Lemma C.2.10. For r > 2, c > 0, let 0 ≤ x ≤ r/(2c+ 1). Then (1− cx/(r−
x))x ≥ exp(−cx2/(r − x)) ≥ 1− 2x2

r−x
.

Proof:

We start by observing that x/(r − x) is an increasing function of x for

x < r, so that x < r/(2c+ 1) implies that cx/(r − x) < 1/2. Additionally, we

have the following fact for any θ > 0

1− θ ≤ e−θ ≤ 1− θ +
θ2

2
. (25)

The first inequality is a consequence of the convexity of e−θ while the second

one follows since the second derivative of e−θ is at most 1 when θ > 0. Since

we have x/(r − x) ≤ 1/2, it is easy to see that

1− cx

r − x
≥ 1− 2

cx

r − x
+ 2

c2x2

(r − x)2
.
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Now applying the inequalities (25) with θ = 2cx/(r − x), we obtain

(
1− cx

r − x

)x

≥
(
1− 2

cx

r − x
+ 2

cx2

(r − x)2

)x

≥ (exp(−2cx/(r − x)))x = exp(−2cx2/(r − x)

≥ 1− 2cx2

r − x
,

where the second inequality follows from again using (25), this time with

θ = 2cx2/(r − x). �

C.3 Proofs for alternating minimization

In this section, we will present our proof for the results on alternating

minimization. We present the proofs for Theorem 4.3.3 and the other main

lemmas in Section C.3.1. In Section C.3.2, we present the auxiliary lemmas

and their proofs.

C.3.1 Proofs of main lemmas

In this section we will present the proof of the main lemmas used to

prove Theorem 4.3.3. The proofs of some auxilliary lemmas and more technical

arguments will be deferred to the next section.

We recall from Appendix C.1, the following notational simplification:

for any iteration t, we denote A(t) as Ã and A(t+1) as A. Similarly we denote

X(t) and X(t+ 1) as X̃ and X respectively. Then the goal is to show that A

is closer to A∗ than Ã. For the purposes of our analysis, we will find it more

convenient to directly work with dot products instead of ℓ2-distances (and

hence avoid sign ambiguities). With this motivation, we define the following

notion of distance between two vectors.

Definition C.3.1. For any two vectors z, w ∈ R
d, we define the distance

between them as follows:

dist (z, w)
def
= sup

v⊥w

〈v, z〉
‖v‖2 ‖z‖2

= sup
v⊥z

〈v, w〉
‖v‖2 ‖w‖2

.
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This definition of distance suffices for our purposes due to the following

simple lemma

Lemma C.3.1. For any two unit vectors u, v ∈ R
d, we have

min
z∈{−1,1}

‖zu− v‖2 ≤
√
2dist (u, v) .

Proof: The proof is rather straightforward. Suppose that 〈u, v〉 > 0 so that

the minimum happens at z = 1. The other case is identical. We can easily

rewrite

‖u− v‖22 = (2− 2〈u, v〉) ≤ 2(1− 〈u, v〉2),
where the final inequality follows since 0 ≤ 〈u, v〉 ≤ 1. Writing u = 〈u, v〉v+v⊥,

where 〈v⊥, v〉 = 0, we see that

1 = ‖u‖22 = 〈u, v〉2 + ‖v⊥‖
2 = 〈u, v〉2 + dist (u, v)2 .

Substituting this into our earlier bound completes the proof. �

The distance is naturally extended to matrices for our purposes by

applying it columnwise.

Definition C.3.2. For any two d×r matrices Z andW , we define the distance

between them as follows:

dist (Z,W )
def
= sup

p∈[r]
dist (Zp,Wp) .

Note that the normalization in the definition of dist (z, w) ensures that

we can apply the distance directly to the result of the least-squares step with-

out worrying about the effects of normalization. This allows us to work with

the closed-form expression for A

A = Y X+ = A∗X∗X+. (26)

We first recall Lemmas 4.3.6, 4.3.7 and 4.3.8 from Section 4.3.4.

137



Lemma 4.3.6 (Error in sparse recovery). Let △X
def
= X(t) − X∗. Assume

that 2µ0s/
√
d ≤ 0.1 and

√
sǫt ≤ 0.1 Then, we have:

1. Supp(△X) ⊆ Supp(X∗).

2. ‖△X‖∞ ≤ 9s · dist (A(t− 1), A∗) ≤ 9sǫt.

Lemma 4.3.6 shows that if the initial estimate of A∗ is good enough,

then the error in the recovered coefficients from the sparse recovery step are

small and have structured sparsity.

Lemma 4.3.7. For every r×n matrix W s.t. Supp(W ) ⊆ Supp(X∗), we have

(w.p. ≥ 1− r exp
(
−Cn

r

)
):

‖W‖2 ≤ 2‖W‖∞
√

s2n

r
.

Lemma 4.3.7 shows that all matrices with structured sparsity have

bounded spectral norm.

Lemma 4.3.8 (Off-diagonal error bound). Suppose ‖△X‖∞ < 1
288s

. Then

with probability at least 1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
− exp (−ns2/(3r2)),

we have uniformly for every p ∈ [r],

∥∥∥
(
△XX+

)\p
p

∥∥∥
2
=
∥∥∥
(
X∗X+

)\p
p

∥∥∥
2
≤ 1968s2 ‖△X‖∞√

r
.

Lemma 4.3.8 shows that the off-diagonal norm of each column of the

matrix X∗X+ is quite small.

We now prove Lemma 4.3.6, which follows from the robustness prop-

erties of lasso. We first need an auxilliary result on the RIP constant of the

matrix A∗.

Lemma C.3.2. The 2s-RIP constant of A∗, δ2s satisfies δ2s <
2µ0s√

d
.
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Proof: Consider a 2s-sparse unit vector w ∈ R
r with Supp(w) = S. We

have:

‖Aw‖2 =
(∑

j∈S
wjA

∗
j

)2

=
∑

j

w2
j‖A∗

j‖2 +
∑

j,l∈S,j 6=l

wjwl〈A∗
j, A

∗
l〉

≥ 1−
∑

j,l∈S,j 6=l

|wjwl| |〈A∗
j, A

∗
l〉|

≥ 1−
∑

j,l∈S,j 6=l

|wjwl|
µ0√
d

≥ 1− µ0√
d
‖w‖21

≥ 1− µ0√
d
2s · ‖w‖2 = 1− 2µ0s√

d
.

Similarly, we have:

‖A∗w‖2 ≤ 1 +
2µ0s√

d
.

This proves the lemma. �

Proof of Lemma 4.3.6: In order to establish the lemma, we use a result of

Candes regarding the lasso estimator with deterministic noise for the recovery

procedure:

x̂i = arg min
x∈Rr
‖x‖1 such that, ‖Yi − Ax‖2 ≤ ǫ. (27)

Theorem C.3.3 (Theorem 1.2 from [11]). Suppose Yi = Axi + zi, where xi is

s-sparse and ‖zi‖2 ≤ ǫ. Assume further that δ2s ≤
√
2− 1. Then the solution

to Equation (27) obeys the following, for a universal constant C1,

‖x̂i − xi‖2 ≤ C1ǫ

In particular, C1 = 8.5 suffices for δ2s ≤ 0.2.

In order to apply the theorem, we need to demonstrate that the RIP

condition holds on Ã. Consider any 2s-sparse subset S of [r]. We have:
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σmin(ÃS) ≥ σmin(A
∗
S)− ‖A∗

S − ÃS‖2
(ζ1)

≥ 1− 2µ0s√
d
−
∥∥∥A∗

S − ÃS

∥∥∥
F

and,

σmax(ÃS) ≤ σmax(A
∗
S) + ‖A∗

S − ÃS‖2
(ζ2)

≤ 1 +
2µ0s√

d
+
∥∥∥A∗

S − ÃS

∥∥∥
F
,

where ζ1 and ζ2 follow from Lemma C.3.2. Recalling the assumption
√
sǫt <

0.1, we see that the maximum and minimum singular values of ÃS are at least

6/7 and at most 8/7 respectively. Appealing to Theorem C.3.3, we see that

this guarantees ‖△Xi‖2 ≤ 9sǫt. Since this is also an infinity norm error bound,

we obtain the second part of the lemma. The proof of the first part is further

implied by the choice of our threshold at a level of 9sǫt, which ensures that

any non-zero element in X has
∣∣X∗i

p

∣∣ ≥ 0 (since we would have
∣∣X i

p

∣∣ ≤ 9sǫt
by our infinity norm bound otherwise. �

We now move on to the proof of Lemma 4.3.7, which is a surprising but

rather straight forward consequence of random matrix concentration theory.

Proof of Lemma 4.3.7: Since the support of W is a subset of the support

of X∗, W p
i = δpiW

p
i . Now,

‖W‖2 = max
u,v‖u‖2=1,‖v‖2=1

∑

ip

W p
i u

ivp = max
u,v‖u‖2=1,‖v‖2=1

∑

ip

δpiW
p
i u

ivp

≤ ‖W‖∞ · max
u,v‖u‖2=1,‖v‖2=1

·
∑

ip

δpi u
ivp,

where the inequality holds since the maximum inner product over the all pairs

(u, v) from the unit sphere is larger than that over pairs with uivp ≥ 0 for

all i, p. Note that the last expression is equal to ‖W‖∞u⊤S(X∗)v, where we

overload the notation S(X∗) to also be the matrix with the non-zero pattern

of the matrix X∗. It suffices to control the operator norm of this matrix

for proving the lemma. This can indeed be done by applying Lemmas C.3.4

and C.3.5 with µ = M = 1 and σ = 0. Doing so, yields with probability at

least ≥ 1− r exp
(
−Cn

r

)
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‖W‖2 ≤ 2‖W‖∞
√

s2n

r
,

which completes the proof. �

We now finally prove Lemma 4.3.8, which is our main lemma on the

structure of X∗X+. Specifically, the lemma will show how to control the off-

diagonal elements of this matrix carefully.

Proof of Lemma 4.3.8: For simplicity, we will prove the statement for

p = 1. We first relate X∗X+ to △XX+.

(
X∗X+

)\1
1

=
(
(X∗ −X)X+

)\1
1

= −
(
△XX+

)\1
1

= −
(
△XX⊤(XX⊤)−1

)\1
1
,

where the first step follows from the fact that XX+ = I. This proves

the first part of the lemma. We now expand the above as follows:

(
△XX⊤(XX⊤)−1

)\1
1

=
(
△XX⊤)\1

1

((
XX⊤)−1

)1
1
+
(
△XX⊤)\1

\1

((
XX⊤)−1

)\1
1
.

Using triangle inequality, we have:
∥∥∥∥
(
△XX⊤(XX⊤)−1

)\1
1

∥∥∥∥
2

≤
∣∣∣∣
((

XX⊤)−1
)1
1

∣∣∣∣
︸ ︷︷ ︸

T1

∥∥∥
(
△XX⊤)\1

1

∥∥∥
2︸ ︷︷ ︸

T2

+
∥∥∥
(
△XX⊤)\1

\1

∥∥∥
2︸ ︷︷ ︸

T3

∥∥∥∥
((

XX⊤)−1
)\1
1

∥∥∥∥
2︸ ︷︷ ︸

T4

.

(28)

We now bound each of the above four quantities. We can easily bound

T1 via a spectral norm bound on (XX⊤)
−1
. Doing so, we obtain with proba-

bility at least 1− r exp(−Cδ2ns
rM2 )
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T1 =

∣∣∣∣
((

XX⊤)−1
)1
1

∣∣∣∣ ≤
∥∥∥
(
XX⊤)−1

∥∥∥
2

(ζ1)

≤ 8r

ns
, (29)

where (ζ1) follows from Lemma C.3.5. To bound T2, we use Lemma C.3.9

and obtain with probability at least 1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)

− exp (−ns2/(3r2))

T2 =
∥∥∥
(
△XX⊤)\1

1

∥∥∥
2
≤ 6 ‖△X‖∞ s2n

r
3
2

, (30)

where we recall the assumption ‖△X‖∞ ≤ 1/(64s). We now bound T3 as

follows

T3 =
∥∥∥
(
△XX⊤)\1

\1

∥∥∥
2
≤
∥∥∥(△X)

\1
\1

∥∥∥
2

∥∥∥(X)
\1
\1

∥∥∥
2

(ζ1)

≤ 2 ‖△X‖∞ s

√
n

r
· 2(1 + ‖△X‖∞)s

√
n

r

<
6 ‖△X‖∞ s2n

r
, (31)

where (ζ1) follows from Lemmas 4.3.7 and C.3.6 (since Supp(△X) ⊆
Supp(X) ∪ Supp(X∗) = Supp(X∗)). Finally, to bound T4, we start by noting

the following block decomposition of the matrix XX⊤

XX⊤ =

[
X1(X1)

⊤
X1(X\1)

⊤

X\1X1⊤ X\1(X\1)
⊤

]
.

Given this block-structure, we can now invoke Lemma C.3.10 (Schur comple-

ment lemma) to obtain

((
XX⊤)−1

)1
\1

= − 1

X1(X1)⊤
BX\1(X1

)⊤
,

where,
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B
def
=
((

XX⊤)−1
)\1
\1
. (32)

Using Lemma C.3.9 and Equation 38 we have with probability at least

1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
− exp (−ns2/(3r2))

∥∥∥∥
((

XX⊤)−1
)\1
\1

∥∥∥∥
2

≤ 1∣∣∣X1(X1)⊤
∣∣∣
‖B‖2

∥∥∥X\1(X1
)⊤∥∥∥

2
≤ 8r

sn
· ‖B‖2 ·

5s2n

r
3
2

=
40s√
r
‖M‖2 . (33)

Using the expression (32) and the lower bound on σmin(X) from Lemma C.3.6,

we also have the following bound for ‖M‖2 with probability at least

1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
,

‖B‖2 =
∥∥∥∥
((

XX⊤)−1
)\1
\1

∥∥∥∥
2

≤
∥∥∥
(
XX⊤)−1

∥∥∥
2
≤ 8r

ns
.

Plugging the above into (33), gives us:

∥∥∥∥
((

XX⊤)−1
)\1
\1

∥∥∥∥
2

≤ 40s√
r
· 8r
ns
≤ 320

√
r

n
. (34)

Combining (29), (30), (31) and (34), we obtain with probability at least

1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
− exp (−ns2/(3r2)),

∥∥∥
(
XX∗+)\p

p

∥∥∥
2
≤ 48 ‖△X‖∞ s√

r
+

1920 ‖△X‖∞ s2√
r

≤ 1968s2 ‖△X‖∞√
r

.

�
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C.3.2 Main Technical Lemmas

In this section, we state and prove the main technical lemmas used in

our results.

C.3.2.1 Assumptions

We first recall some notation and define additional shorthands before

proving the lemmas. Denote X∗p
i = δpiM

p
i , ∀1 ≤ p ≤ n, ∀1 ≤ i ≤ r where

δpi = 1 if p ∈ Supp(X∗
i ) and 0 otherwise and Mp

i are i.i.d. random variables

with E [Mp
i ] = µ and E [(Mp

i )
2] = σ2 + µ2. Assumptions (C3)− (C4) give us:

1. µ2 + σ2 = 1, and

2. |Mp
i | ≤M a.s.

C.3.2.2 Proofs of Technical Lemmas

We prove all of our technical lemmas under the assumption that X∗ is

sampled as described in Section C.3.2.1.

Lemma C.3.4. We have:

Σ
def
= E

[
X∗

iX
∗
i
⊤
]
=

(
s

r
− s(s− 1)µ2

r(r − 1)

)
I+

s(s− 1)µ2

r(r − 1)
11⊤.

Proof:

Note that, δpi , 1 ≤ p ≤ r all have same distribution. Hence, by sym-

metry and linearity of expectation, E [δpi ] = 1
r
E

[∑r
q=1 δ

q
i

]
= s

r
. Similarly,

E [(δpi )
2] = 1

r
E

[∑r
q=1(δ

q
i )

2
]
= s

r
. Also, E

[
(
∑r

q=1(δ
q
i ))

2
]
= E

[∑
p,q δ

p
i δ

q
i

]
=

rE [(δpi )
2] + (r2 − r)E [δpi δ

q
i ]. Hence, E [δpi δ

q
i ] =

s(s−1)
r(r−1)

.

Now, recall that X∗p
i = δpiM

p
i . Now, we first consider diagonal terms

of Σ:

Σp
p = E

[
(X∗p

i )
2
]
= E

[
(δpi )

2
]
E
[
(Mp

i )
2
]
=

s

r
(µ2 + σ2) =

s

r
. (35)
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Similarly, using independence of X∗p
i and X∗j

p, off-diagonal terms of Σ are

given by:

Σq
p = E [δpi δ

q
i ]E [Mp

i ]E [M q
i ] =

s(s− 1)

r(r − 1)
µ2. (36)

Lemma now follows by using (35) and (36). �

In particular, two consequences of the lemma which will be particularly

useful are about the extreme singular values of Σ. Recalling that 2s ≤ r and

µ2 ≤ 1 by assumption, we obtain

σmin(Σ) ≥
s

2r
, and σmax(Σ) ≤

2s2

r
. (37)

For convenience of the reader, we again recall Theorem C.2.6.

Theorem C.2.6 (Restatement of Theorem 5.44 from [88]). Consider a r ×
n matrix W where each column wi of W is an independent random vector

with covariance matrix Σ. Suppose further that ‖wi‖2 ≤
√
u a.s. for all i.

Then for any t ≥ 0, the following inequality holds with probability at least

1− r exp (−ct2):
∥∥∥∥
1

n
WW T − Σ

∥∥∥∥
2

≤ max
(
‖Σ‖1/22 γ, γ2

)
where γ = t

√
u

n
.

Here c > 0 is an absolute numerical constant. In particular, this inequality

yields:

‖W‖2 ≤ ‖Σ‖
1
2
2

√
n+ t

√
u.

We need the following results on concentration of empirical covariance

matrices.

Lemma C.3.5. There exists a universal constant C such that w.p. ≥ 1 −
r exp(−Cδ2ns

rM2 ), we have:

∥∥∥∥
1

n
X∗X∗⊤ − Σ

∥∥∥∥
2

≤ max
(√

2δ, δ2
) s2

r
.
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In particular, w.p. ≥ 1− r exp(− Cn
rM2 ), we have the bounds

‖X∗‖2 ≤ 2

√
ns2

r
and σmin(X

∗) ≥
√

ns

4r
.

Proof:

Note that, ‖X∗
i ‖2 ≤

√
sM . Also, ‖Σ‖2 ≤ s

r
+ s(s−1)µ2

r−1
≤ 2s2

r
. Using

Theorem C.2.6 with t = δ
√

ns
rM2 , we obtain:

∥∥∥∥
1

n
X∗X∗⊤ − Σ

∥∥∥∥
2

≤ max
(√

2δ, δ2
) s2

r
,

w.p. greater than 1− r exp
(
−Cδ2ns

rM2

)
. In order to obtain the second part, we

apply the first part of the lemma with δ = 1/4
√
2 as well as Lemma C.3.4

to bound the largest and smallest singular values of XX⊤/n. Taking square

roots completes the proof.

�

Using the convergence of the covariance matrix of the sparsity pattern,

we obtain the following uniform convergence bound.

In particular the following consequence of the above lemma would be

particularly useful in our proofs, where we apply the lemma to matrices of the

form △X = X −X∗.

Lemma C.3.6. W.p. ≥ 1 − r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
, for every r × n

matrix X s.t. Supp(X) ⊆ Supp(X∗), we have:

‖X‖2 ≤ 2 · (1 + ‖X −X∗‖∞) · s
√

n

r
.

Proof:

Let X = X∗ + EX∗ where Supp(EX∗) ⊆ Supp(X∗). Hence, ‖X‖2 ≤
‖X∗‖2+‖X −X∗‖2. Lemma follows directly using Lemma C.3.5 and Lemma 4.3.7.

�

A useful version of the above lemma is when applied to matrices of the

form XX⊤. We will need control over the upper and lower singular values of

such matrices for our proofs, which we next provide.
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Lemma C.3.7. W.p. ≥ 1 − r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
), for every r × n

matrix X s.t. Supp(X) ⊆ Supp(X∗), we have:

∥∥∥XX⊤ −X∗X∗⊤
∥∥∥
2
≤ 4

(
‖X −X∗‖∞ + ‖X −X∗‖2∞

)
· s

2n

r
.

Further assuming ‖X −X∗‖∞ ≤ 1/(64s), we have with the same prob-

ability

σmin(XX⊤) ≥ ns

8r
.

Proof:

Let X = X∗ + EX∗ . Note that Supp(EX∗) ⊆ Supp(X∗). Now,

‖XX⊤ −X∗X∗⊤‖2 ≤ ‖EX∗‖2(‖EX∗
⊤‖2 + 2‖X∗‖2).

By Lemma 4.3.7, ‖EX∗‖2 ≤ 2s
√

n
r
‖EX∗‖∞ with probability at least ≥ 1 −

r exp
(
−Cn

r

)
. Combining this with the bound on ‖X∗‖2 from Lemma C.3.5

completes the proof. The second statement now follows by combining the

result with our earlier lower bound on the minimum singular value of X∗ in

Lemma C.3.5. �

A particular consequence of this lemma which will be useful is a lower

bound on the diagonal entries of the matrix XX⊤. Indeed, we see that un-

der the assumption ‖X − X∗‖∞ ≤ 1/(64s), with probability at least 1 −
r exp

(
−Cn

r

)
− r exp

(
− Cn

rM2

)
we have the lower bound uniformly for all p =

1, 2, . . . , r

XpXp⊤ ≥ ns

8r
. (38)

We finally have the following concentration lemma.

Lemma C.3.8. Let δpi be as defined in Section C.3.2.1. Then, w.p. ≥ 1 −
exp

(
− δ2

3
ns2/r2

)
:
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1.
∑n

i=1 δ
p
i δ

q
i ≤ (1 + δ) s

2n
r2
, ∀ p 6= q,

2. (1− δ) sn
r
≤∑n

i=1 δ
p
i ≤ (1 + δ) sn

r
, ∀ p,

3. (1− δ) sn
r
≤∑n

i=1 δ
p
i (M

p
i )

2 ≤ (1 + δ) sn
r
, ∀ p, and

4.
∑n

i=1 δ
p
i |Mp

i | ≤ (1 + δ) sn
r
, ∀ p.

Proof:

Recall from the proof of Lemma C.3.4 that, E [δpi ] =
s
r
and E [δpi δ

q
i ] =

s(s−1)
r(r−1)

, ∀p 6= q. Also, these random variables are independent for each i. Using

Chernoff bound, we get (w.p. ≥ 1− exp(− δ2

3
ns2/r2)):

(1− δ)n
s

r
≤

n∑

i=1

δpi ≤ (1 + δ)n
s

r
,

n∑

i=1

δpi δ
q
i ≤ (1 + δ)n

s2

r2
, ∀p 6= q.

The third part follows similarly using Chernoff bound. The fourth part follows

from Chernoff bound as well after noting that

E [|Mp
i |] ≤

(
E

[
(Mp

i )
2
]) 1

2
= 1,

where the first step follows from Jensen’s inequality. �

Lemma C.3.9. W.p. ≥ 1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
− exp (−ns2/(3r2)),

for every r × n matrix X s.t. Supp(X) ⊆ Supp(X∗), we have the following

bounds uniformly for all p = 1, 2, . . . , r

1.
∥∥∥
(
△XX⊤)\p

p

∥∥∥
2
≤ (1 + ‖△X‖∞)

4
√
2‖△X‖∞s2n

r
3
2

, and

2.
∥∥∥X\p(Xp)⊤

∥∥∥
2
≤ (1 + ‖△X‖∞)2 4s2n

r
3
2
,

where △X
def
= X −X∗.
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Proof: Since X has the same sparsity pattern as X∗, we can rewrite it as

Xp
i = δpiX

p
i . We start by proving the first part of the lemma.

Proof of Part 1: Wlog, we will prove the statement for p = 1. Let D

denote the n× n diagonal matrix with

Di
i =

{
1, if X∗1

i 6= 0,
0, otherwise.

Using this notation, we have
(
△XX⊤)\1

1
=
(
△XDX⊤)\1

1
. So, we have:

∥∥∥
(
△XX⊤)\1

1

∥∥∥
2
=
∥∥∥
(
△XDX⊤)\1

1

∥∥∥
2

≤
∥∥∥(△XD)\1

∥∥∥
2

∥∥(X⊤)
1

∥∥
2

≤
∥∥∥(△XD)\1

∥∥∥
2

∥∥∥
(
X∗⊤

)
1
+
(
△X⊤)

1

∥∥∥
2

(ζ1)

≤
∥∥∥(△XD)\1

∥∥∥
2
·
(√

2sn

r
+ ‖△X‖∞

√
2sn

r

)
,

where (ζ1) follows from Lemma C.3.8. In order to control
∥∥∥(△XD)\1

∥∥∥
2
, we

observe that it is a matrix with a random number of columns selected by the

matrix D. In particular, conditioned on {i : Di
i = 1}, the support of X∗\1

i is

independent over s − 1 sparse vectors (and the support of △X is a subset of

the support of X∗). Hence we can easily see that

P

[∥∥∥(△XD)\1
∥∥∥
2
> t
]
≤ P

[∥∥∥(△XD)\1
∥∥∥
2
> t ∩ sn

2r
<
∣∣{i : Di

i = 1
}∣∣ < 2sn

r

]

+ P

[∣∣{i : Di
i = 1

}∣∣ ≤ sn

2r
∪
∣∣{i : Di

i = 1
}∣∣ ≥ 2sn

r

]
.

The first probability can be controlled by appealing to Lemma 4.3.7, while the

second one is bounded through Lemma C.3.8 above. Doing so, we obtain with

probability at least 1− r exp
(
−Cn

r

)
− exp (−ns2/(3r2))
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∥∥∥(△XD)\1
∥∥∥
2
≤ 2 ‖△X‖∞ s

√(
2sn
r

)

r
.

This proves part 1.

Proof of Part 2: The proof of this is similar to that of part 1. Wlog,

assume p = 1. We have:

∥∥∥X\1(X1
)⊤∥∥∥

2
=
∥∥∥X\1D

(
X1
)⊤∥∥∥

2

≤
∥∥∥(XD)\1

∥∥∥
2

∥∥(X⊤)
1

∥∥
2

≤
∥∥∥(XD)\1

∥∥∥
2
· 2 (1 + ‖△X‖∞)

√
sn

r
.

For the first term above, we have:
∥∥∥(XD)\1

∥∥∥
2
≤
∥∥∥(X∗D)\1

∥∥∥
2
+
∥∥∥(△XD)\1

∥∥∥
2

The second term in this decomposition was controlled above and the

second one can be similarly bounded. Doing so, we obtain with probability at

least 1− r exp
(
−Cn

r

)
− r exp

(
− Cn

rM2

)
− exp (−ns2/(3r2))

∥∥∥(XD)\1
∥∥∥
2
≤ 2s (1 + ‖△X‖∞)

√
2sn

r3
,

This proves the lemma. �

Lemma C.3.10. We have the following formula for matrix inversion:

[
A B
C D

]−1

=

[
A−1 + A−1BMCA−1 −A−1BM

−MCA−1 M

]
,

where M
def
= (D − CA−1B)

−1
is the Schur complement of D in the above

matrix.
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