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Information technology and social media have been a driving force in the 

economy and have transformed all aspects of business in recent decades. Understanding 

social networks is necessary to evaluate their impacts and examine key business issues 

involving information and technological innovations. 

The dissertation contains three chapters exploring those issues. In the first 

chapter, I propose an optimal procurement mechanism for mobile data offloading, 

covering both technological and business aspects. The unprecedented growth of cellular 

traffic driven by web surfing, video streaming, and cloud-based services is creating 

challenges for cellular service providers to fulfill the unmet demand. My present work 

contributes to the existing literature by developing an analytical model, which considers 

the unique challenge of integrating the longer range cellular resource and shorter range 

WiFi hotspots. 

In the second chapter, I examine the effect of a social network on prediction 

markets using a controlled laboratory experiment. In prediction markets, people place 

bets on events that they think are most likely to happen, thus revealing in a sense the 

nature of their private information. Through a randomized experiment, I show that when 

the cost of information acquisition is low, a social-network-embedded prediction market 

outperforms a non-networked prediction market. 



 vii

The third chapter studies different forms of social learning in the context of 

location-based networks: observational learning and the saliency effect. In recent years, 

the location-sensing mobile devices offer geographic location capabilities to share users’ 

information about their locations with their friends. In our context, observational learning 

corresponds to the fact that “check-ins” made by friends help users learn the quality 

information of a venue; the saliency effect refers to that check-ins lead some of the 

uninformed consumers to discover a new venue.  
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Chapter 1:  Procurement of Third-Party WiFi Capacity for Smart 
Mobile Data Offloading 

1.1  Introduction  

We are witnessing an explosion of mobile data traffic driven by web surfing, 

video streaming, and online gaming. Global mobile data traffic grew 70 percent in 2012 

and will increase thirteen-fold between 2012 and 2017.1 The increasing popularity of 

smartphones has caused the surge in data usage. In 2012, the typical smartphone 

generated 50 times more mobile data traffic than the typical non-smartphone (Cisco 

2013). Cloud applications and services such as Netflix, YouTube, Pandora, and Spotify 

contribute to the unprecedented growth of cellular traffic. 

The huge amount of data traffic poses a challenge to the network infrastructure: 

Cellular networks are overloaded and congested during peak hours because of 

insufficient capacity. Network congestion can lead to a bad user experience and churn. In 

this study, we propose an optimal procurement mechanism to solve the challenge of 

effectively fulfilling the unmet demand from consumers for network providers, such as 

AT&T and Verizon. 

In previous literature, researchers proposed several solutions from both technical 

and economic aspects: (1) increasing the number of cellular towers or deploying the cell-

splitting technology2; (2) upgrading the network to fourth-generation (4G) networks such 

as Long Term Evaluation (LTE), High Speed Packet Access (HSPA) and WiMax; (3) 

expanding capacity by acquiring of the spectrum of other networks, such as the attempted 

                                                 
1 Global mobile data traffic reached 885 petabytes per month at the end of 2012, up from 520 petabytes per 
month at the end of 2011 (Cisco 2013). 
2 See Balachandran et al. (2008). ("While cell-splitting provides capacity benefits, it could be quite 
expensive and economically infeasible since in addition to the base station hardware/deployment cost, each 
of the new bases needs to be provided with backhaul connectivity either via wireline access or microwave 
links.") 
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purchase of T-Mobile USA by AT&T; (4) adopting smart data pricing mechanisms (e.g. 

usage-based and app-based pricing plans) to constrain the heaviest mobile data users, 

instead of using flat-rate pricing plans with unlimited data (Sen et al. 2012)3; and (5) 

offloading data traffic to WiFi networks (Bulut and Szymanski 2012). 

Although all these solutions help solve the problem, each of them has its 

advantages and disadvantages. The first and second solutions require heavy investments, 

and getting government approval for building new cell towers can take two years.4 It is 

extremely expensive to increase the number of cellular base stations just for peak traffic 

demands. As a result, all cellular networks augment the first and second solutions with 

other approaches to expanding capacity. The third solution suffers from regulatory 

constraints. Cramton, Skrzypacz, and Wilson (2007) showed that an important market 

failure arises in spectrum auctions with dominant incumbents. They suggest that the 

Federal Communications Commission (FCC) should place limits on how much spectrum 

AT&T and Verizon are allowed to buy. This concern is also reflected in the action taken 

by the FCC to block the recent merger between AT&T and T-Mobile.5 

Because of these technical, economic and regulatory constraints, the fifth 

solution, using WiFi hotspots for mobile data traffic offloading, seems to be one of the 

most promising approaches in augmenting solutions (1) and (2). WiFi hotspots refer to 

third-party hotspot owners, such as local restaurants, bookstores, and hotels, which offer 

WiFi service to their customers. WiFi offloading could potentially be a win-win solution: 

The cellular service provider achieves significant savings by not building more cellular 

                                                 
3 Gupta et al. (2011) shows that the average net benefits realized under congestion-based pricing tend to be 
higher than the average net benefits realized under flat-rate pricing. However, pure usage based plans might 
backfire by singling out the smartphone users who have the highest potential for future revenue. 
4 See http://www.businessweek.com/technology/content/aug2009/tc20090823_412749.htm. 
5 Another example of regulation is the Net Neutrality Rules that have become a subject under fierce debate 
(Cheng, Bandyopadhyay, and Guo 2011). 
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base stations just for the peak traffic demands. The WiFi Hotspots gain additional 

revenue from their otherwise wasted spare capacity. Mobile data offloading will become 

a key industry segment in the near future, and cellular service providers show great 

interests in this approach: KDDI Corporation, a principal telecommunication provider in 

Japan, has cooperated with about 100,000 commercial WiFi hotspots by March 2012 

(Aijaz et al. 2013). However, offloading data traffic to third-party WiFi hotspots is not 

purely a technology augmenting the existing cellular network. It is also a practical 

mechanism design problem, considering the economic incentives of third-party WiFi 

hotspots. Instead of focusing only on technical aspects, smart data offloading requires us 

to combine both the technology of computing and auction theory to solve the challenge of 

effectively using WiFi hotspots (Bichler, Gupta, and Ketter 2010). 

There were several challenges in the design of this procurement auction system. 

First, the longer range cellular resource introduces coupling between the shorter range 

WiFi hotspots. In reality, WiFi networks usually have a more limited range than cellular 

resources. In the model, we partition the range of a cellular tower into several WiFi 

regions. The cellular capacity can serve data traffic in any region, whereas the WiFi 

resource can only serve local traffic. Second, the data traffic is uncertain and changes 

frequently over time. It is critical to provide real-time support for computing the optimal 

contract. Third, Dong et al. (2012) proposed a Vickrey-Clarke-Groves (VCG) type 

auction for mobile data offloading. A VCG auction is socially efficient, but it is not 

optimal for the cellular network (the buyer). A typical VCG mechanism leads to an 

overpayment to suppliers (Chen et al. 2005). The simulation results in our study show 

that, as compared with the standard VCG auction, a procurement auction with contingent 

contracts can significantly improve the cellular network’s expected payoff. In general, 

our study is a combination of analytical modeling and simulations with real data. The 
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main contribution is to introduce and analyze a new procurement mechanism with 

contingent contracts to meet these challenges in a realistic environment. 

Our insights also apply more generally to optimal mechanism design in a class of 

supply chain problems. Conceptually, the key problem in the purchase of WiFi capacity 

is to determine the optimal procurement strategy in the presence of product flexibility and 

information asymmetry between suppliers (WiFi hotspots) and the downstream firm 

(cellular service provider). This procurement problem in the wireless industry can be 

extended to a more general setting where (1) the downstream firm owns in-house 

capacity (cellular capacity) that can be used for multiple products (the wireless service in 

different WiFi regions); (2) The product-flexible capacity is limited, and the firm needs to 

procure products from multiple upstream suppliers; and (3) Each supplier is specialized 

and can only produce one product (each WiFi hotspot can only serve local traffic). Given 

the presence of limited product-flexible capacity (in-house capacity) and upstream 

suppliers, the downstream firm needs to design an optimal procurement auction when the 

customer demand is volatile and unpredictable. This procurement auction design 

becomes complicated when the downstream firm faces product flexibility and 

information asymmetry. In the procurement of WiFi capacity, the cellular resource can 

serve traffic in any WiFi region, whereas the WiFi capacity can only serve local traffic. 

Buying more resources from a local WiFi hotspot frees up more in-house cellular 

capacity to serve unsatisfied demand in other WiFi regions. This procurement scenario is 

common when companies are investing in product-flexible capacity that entails the 

ability to produce multiple products on the same capacity, and the ability to reallocate 

capacity between products (Goyal and Netessine 2011). Many manufacturing and service 
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companies use flexible capacity to hedge against uncertainty in future demand (Fine and 

Freund 1990; Van Mieghem 1998, 2004).6 

 

1.2  Literature Review 

The majority of the extant literature on supply chain management has focused on 

scenarios where adding product-flexible capacity is beneficial (Goyal and Netessine 

2011). Janakiraman, Nagarajan, and Veeraraghavan (2009) considered a firm that 

produces multiple products each period, using a shared resource with limited capacity, in 

a periodically reviewed stochastic inventory model. Simchi-Levi and Wei (2012) studied 

the performance of flexibility designs when a chain of partial flexibility is implemented. 

The literature provides a theoretical foundation for researchers and further 

galvanizes us into seeking a deeper understating of the following general research 

question: Given the presence of limited product-flexible capacity, what is the optimal 

procurement auction mechanism for the downstream firm? Federgruen and Yang (2011) 

analyzed the downstream firm’s optimal procurement strategy with unreliable suppliers. 

Their analytical model is formulated as a single-agent optimization problem. The 

underlying assumption is the symmetric information between suppliers and the 

downstream firm. In our study, we relax this assumption by introducing a game-

theoretical model with asymmetric information in the presence of product-flexible 

capacity. The downstream firm procures products from the suppliers before the actual 

demand is known, and optimally allocates its in-house capacity to produce different 

products when the demand is realized. In this process, the downstream firm makes the 

following decisions: How to allocate its product-flexible capacity to produce different 

                                                 
6 In the automotive industry, the plants for most of the automobile companies are much more flexible than 
before: Ford’s Rouge Plant can manufacture nine different products (Goyal and Netessine 2011). 
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products? How much quantity should be procured from each supplier? What is the 

corresponding payment scheme for each supplier? Our theoretical model provides an 

auction framework to answer these questions in the context of the wireless industry. In 

this study, the theoretical results complement the existing literature on product line 

designs when the product-flexible capacity is limited (Simchi-Levi and Wei 2012; 

Netessine and Taylor 2007). Netessine, Dobson, and Shumsky (2002) analytically 

characterized the critical effects of increasing demand correlation between products on 

the flexible capacity decisions. We also find that the demand correlation as well as the 

level of in-house capacity plays a crucial role in the optimal design of procurement 

mechanisms. When the demand correlation is highly positive or the in-house capacity is 

relatively large, the optimal procurement mechanism is a global auction including all 

upstream suppliers; otherwise, it is optimal to hold separate auctions for each product.7 

The present study is closely related to the literature on auction design. Dasgupta 

and Spulber (1989) extended the standard fixed quantity auction and studied a quantity 

auction that allows the quantity of the goods purchased to be endogenously based on the 

submitted bids. In many procurement situations, the buyer cares about other attributes in 

addition to price when evaluating the submitted bids. In a multi-attribute scoring auction, 

suppliers submit multidimensional bids, and the contract is awarded to the supplier who 

submitted the bid with the highest score according to a scoring rule. Che (1993) 

developed a scoring procurement auction in which suppliers bid on two dimensions of the 

good. This scoring auction allows only sole sourcing. However, offloading data traffic to 

multiple WiFi hotspots is naturally done in our procurement setting. Bapna et al. (2009) 

analyzed multiple overlapping auctions that are conducted to sell identical items by an 

identical seller. In a keyword advertising market, Liu et al. (2010) studied a weighted 
                                                 
7 In our wireless context, a separate auction refers to a local auction within a WiFi region. 
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unit-price rule that is different from previous scoring auctions. Adomavicius et al. (2012) 

examined the impact of feedback on the outcomes and dynamics of the multi-attribute 

auctions using a laboratory experiment. Auctions with contingent contracts have been 

widely studied in economics literature. 8  Hansen (1985) studied an auction with 

contingent payments. DeMarzo et al. (2005) proposed security-bid auctions in which 

bidders compete for an asset by bidding with securities whose payments are contingent 

on the asset’s realized value. Chen et al. (2009) showed that the procurement auctions 

with contingent contracts can manage the project failure risk of suppliers and 

significantly improve both social welfare and the buyer’s payoff. The model in our study 

differs from such auctions in the application setting and auction formats. 

Our research is also related to the computer science literature on mobile data 

offloading (Balasubramanian et al. 2010; Dong et al. 2012; Iosifidis et al. 2013). The 

tight integration of economics and computational technology in our system is seen as 

crucial to address issues surrounding the data traffic support for cloud-based services on 

mobile networks, such as business collaboration tools, which require sufficient download 

and upload speeds. Practical mechanism design requires an explicit consideration of 

computational constraints (Bichler, Gupta, and Ketter 2010). In our real-time auctions, 

computing and finding the corresponding contingent contract fast is critical. The number 

of contingent contracts we can implement is subject to computing speeds. Recent 

advances in parallel computing, such as the open source cluster computing system, 

Spark,9 makes it faster to find contingent contracts in large databases. With extremely 

fast computing speeds, our auction system can compute and implement a huge number of 
                                                 
8 A contingent contract is a type of forward contract that depends on the realizations of some uncertain 
events. For example, a contract can be contingent on the uncertain demand or the future spot market price. 
9 Spark is an open source cluster computing system that aims to make data analytics fast. It provides 
primitives for in-memory cluster computing: Data can be loaded into memory and be queried repeatedly 
much more quickly than with disk-based systems, like Hadoop MapReduce. 
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contingent contracts — a task that was once considered computationally prohibitive and 

significantly improve the cellular network’s expected gain. 

 

1.3  A Benchmark Model: Single WiFi Region 

 A cellular network provides service to its customers who demand bandwidth. 

Congestion results when network capacity cannot satisfy instantaneous user demand. 

When the user demand for mobile data is below a certain threshold ܺ஻, the cellular 

service provider faces no additional cost except the sunk cost of buying the spectrum and 

keeping the system running. However, when the demand ෨ܺ exceeds the threshold, the 

cellular service provider incurs a cost of ܥ଴ሺ ෨ܺ െ ܺ஻ሻ. The threshold XB is the cellular 

capacity 10  owned by the service provider. The standard metrics used in the 

telecommunications industry to measure quality of service (QoS), such as Erlang B 

formula and Kleinrock delay formula, depend on the difference between user demand and 

capacity or their ratio (Pinto and Sibley 2013). In our problem setting, ෨ܺ െ ܺ஻ is the 

difference between user demand and capacity. Note that capacity should not be 

interpreted as a strict output limit, but rather as a factor in maintaining QoS. The cost 

function ܥ଴ሺڄሻ is strictly increasing and strictly convex, which captures the rapidly rising 

cost of congestion (e.g., dissatisfied customers, or churn). A similar convex cost function 

has been widely used in modeling the congestion cost of the Internet (Dong et al. 2012). 

Apparently, we have ܥ଴ሺݔሻ ൌ 0 for any ݔ ൑ 0. Denote ܿ଴ሺݔሻ ൌ  ሻ as the marginalݔ଴ᇱሺܥ

cost of congestion. 

                                                 
10 XB is interpreted as the channel capacity stated by the Shannon–Hartley theorem (Kennington et al. 2011). The theorem shows that 
when the information transmitted rate is less than XB, the probability of error at the receiver can be made arbitrary small. When the 
information transmitted rate is greater than XB, the probability of error increases as the information transmitted rate is increased. 
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 We model the demand for bandwidth as a random variable ෨ܺ with a cumulative 

distribution function ܩሺ ෨ܺሻ in the support ሾ0,1ሿ11. Given the unprecedented growth rate 

of mobile data demand and the high cost associated with congestion, the cellular network 

is interested in procuring spare resources from third-party WiFi hotspots. 

 

 

Figure 1.1: Timeline for a Single Region Auction 

 

In this benchmark model, we assume: (1) A single winning hotspot obtains the 

procurement contract. (2) The range of a cellular base station (a cell sector) is the same as 

the range of a hotspot (a WiFi region), for simplicity. Thus, we only have a single WiFi 

region in a cell sector. We relax these two assumptions in the next section. 

The timeline for this benchmark model is shown in Figure 1.1. If the cellular 

network purchases ଵܻ units of bandwidth from the hotspot, then the expected reduction 

of congestion cost for the cellular network is  

 ܸሺ ଵܻሻ ൌ ׬  ଵ଴ ଴ሺܥ ෨ܺ െ ܺ஻ሻ݀ܩሺ ෨ܺሻ െ ׬  ଵ
௑ಳା௒భ

଴ሺܥ ෨ܺ െ ܺ஻ െ ଵܻሻ݀ܩሺ ෨ܺሻ,   (1.1) 

which is the valuation that the cellular network attaches to the additional bandwidth Yଵ. 

The first part ׬  ଵ଴ ଴ሺܥ ෨ܺ െ ܺ஻ሻ݀ܩሺ ෨ܺሻ is the expected congestion cost without procuring 

                                                 
11 Note that the assumption of the support is essentially saying that demand is bounded, which is without 
loss of generality for any realistic situation. Of course, the interpretation of 1 will be different for different 
scenarios. For example, 1 could be interpreted as 1 terabyte per second or 10 terabytes per second. 
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from WiFi hotspots, and the second part, ׬  ଵ
௑ಳା௒భ

଴ሺܥ ෨ܺ െ ܺ஻ െ ଵܻሻ݀ܩሺ ෨ܺሻ is the expected 

congestion cost when the purchase quantity is Yଵ. 

Because  

 ܸԢሺ ଵܻሻ ൌ ׬  ଵ
௑ಳା௒భ

଴ᇱሺܥ ෨ܺ െ ܺ஻ െ ଵܻሻ݀ܩሺ ෨ܺሻ ൐ 0            (1.2) 

and  

 ܸԢԢሺ ଵܻሻ ൌ െ׬  ଵ
௑ಳା௒భ

଴ᇱᇱሺܥ ෨ܺ െ ܺ஻ െ ଵܻሻ݀ܩሺ ෨ܺሻ െ ଴ᇱሺ0ሻ݃ሺܺ஻ܥ ൅ ଵܻሻ ൏ 0, 

where ݃ሺڄሻ  is the density function of ෨ܺ . ܸሺ ଵܻሻ  is strictly increasing and strictly 

concave, which is not surprising given that the cost of congestion is convex. 

We assume that the cost function for hotspot i to provide capacity Q to the 

cellular network is  

,ሺܳܥ ௜ሻߠ ؠ න  
ொ

଴
ܿሺݍ, ,ݍ௜ሻ݀ߠ ݅ ൌ 1,2, . . . , ݊. 

where ܿሺݍ, ௜ሻߠ ൒ 0 is the marginal cost function for hotspot ݅, and where ߠ௜ represents 

each hotspot’s private information about the cost of capacity provision. The cost of 

providing bandwidth for a hotspot is based on its instantaneous user demand and many 

other considerations that may not be revealed to the cellular network. For example, 

congestion encourages customers of hotspots to balk and cause a negative impact on 

hotspots’ profits. This impact might differ among different hotspots, and only hotspots 

know the actual impact. We assume ܿ௤ሺݍ, ௜ሻߠ ൒ 0 to capture the fact that the marginal 

cost of providing capacity for each hotspot increases as more capacity is provided to the 

cellular network. Marginal costs are increasing and convex in the cost parameter, ܿఏ ൒

0, ܿఏఏ ൒ 0. Also, we assume ܿ௤ఏ ൒ 0. Hotspots’ cost parameters are independently and 

identically distributed with a continuously differentiable cumulative distribution function 

,ߠሻ defined on ሾڄሺܨ ሻߠሺܪ ҧሿ which is common knowledge. Defineߠ ؠ  ሻ, andߠᇱሺܨ/ሻߠሺܨ
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let ܪሺߠሻ be an increasing function of ߠ. This assumption of monotone hazard rate is 

satisfied by commonly used distribution functions such as the uniform distribution. 

It follows from Dasgupta and Spulber (1989) that the optimal allocation can be 

implemented via a quantity auction (sealed bid) where 

    • The cellular service provider announces a payment-bandwidth schedule 

ܤ ൌ  ;ሺܳሻܤ

    • Each hotspot chooses the bandwidth they want to sell given ܤሺܳሻ; and 

    • The hotspot choosing to provide the highest capacity, ܳ, wins the auction 

and sells the chosen capacity to the cellular service provider.  

This quantity auction is optimal for the cellular service provider if we assume that 

a single winner emerges. Given the payment-bandwidth schedule ܤሺܳሻ, the hotspots’ 

biding strategy is denoted by ܳሺߠሻ: A hotspot with private cost parameter, ߠ א ሾߠ,  ,ҧሿߠ

bids ܳሺߠሻ. Let כߠ be a threshold cost parameter: Hotspots for which the cost parameter 

exceeds θכ  do not bid, while those with ߠ ൏ כߠ   bid according to ܳሺߠሻ . This 

represents the individual rationality constraint. 

 

Proposition 1.1 (Single Region) In the optimal quantity auction, the payment-

bandwidth schedule כܤሺܳሻ and the optimal bidding strategy ܳכሺߠሻ are given by the 

following equations:  

ሺܳሻכܤ  ൌ ,ሺܳܥ ܳିଵሺܳሻሻ ൅
׬  ഇכ
ೂషభሺೂሻ ൫ଵିிሺ௫ሻ൯

೙షభ஼ഇሺொכሺ௫ሻ,௫ሻௗ௫

൫ଵିிሺொషభሺொሻሻ൯೙షభ
,         (1.3) 

 ܸ′ሺܳכሺߠሻሻ ൌ ,ሻߠሺכொሺܳܥ ሻߠ ൅ ,ሻߠሺכொఏሺܳܥ  ሻ,            (1.4)ߠሺܪሻߠ

where ܳିଵሺڄሻ denotes the inverse function of ܳכሺڄሻ. The cellular service provider’s 

expected gain is  
 ݊ ׬  ఏכ

ఏ ൫1 െ ሻሾܸሺܳሻߠሺ′ܨሻ൯௡ିଵߠሺܨ െ ,ሺܳܥ ሻߠ െ ,ఏሺܳܥ  (5)    .ߠሻሿ݀ߠሺܪሻߠ
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Under asymmetric information, this is the highest expected profit for the cellular 

service provider when it must procure from a single winning hotspot.  

 Proof. See Appendix A.   

  

Note that the hotspot with the lowest ߠ always wins the auction, because it has 

the lowest marginal cost of providing bandwidth and provides the highest Q under the 

payment-bandwidth schedule ܤሺܳሻ . In equation 1.5, ݊൫1 െ ሻߠᇱሺܨሻ൯௡ିଵߠሺܨ  is the 

density of the lowest ߠ. The cellular service provider’s benefit is the expected reduction 

of the congestion cost, which is given by equation 1.1. ܥሺܳ, ሻߠ ൅ ,ఏሺܳܥ  ሻ is theߠሺܪሻߠ

"virtual cost" the cellular service provider pays to the winning hotspot. Under complete 

information, the payment to the winning hotspot is the cost ܥሺܳ,  ሻ. The informationߠ

asymmetry is reflected in the term ܥఏሺܳ,  ሻ, which is the information rent of theߠሺܪሻߠ

winning hotspot. 

 

1.4  Multiple WiFi Regions  

1.4.1  A Non-Contingent Procurement Auction 

In the benchmark model, we assume that only a single hotspot wins the auction. 

However, the WiFi capacity for one hotspot is limited, and relying on multiple hotspots is 

optimal because of the convexity of the congestion cost functions. The benchmark model 

also assumes that the range of a cellular base station is the same as the range of a hotspot. 

However, cellular resources and WiFi resources actually have different spatial coverages. 

In suburban areas, a typical cellular base station covers 1-2 miles (2-3 km) and in dense 

urban areas, it may cover one-fourth to one-half mile (400-800 m). A typical WiFi 

network has a range of 120 feet (32 m) indoors and 300 feet (95 m) outdoors.12 
                                                 
12 See http://en.wikipedia.org/wiki/Wifi, and http://en.wikipedia.org/wiki/Cell_site. 
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Therefore, we need to partition a cell sector into several regions. In Figure 1.2, a red 

circle is a WiFi region. Usually, a WiFi region has several WiFi hotspots that are close 

together. 

 

 

Figure 1.2: Multiple WiFi Regions 

 

Now suppose there are ܯ WiFi regions in a cell sector, 1,2,ڮ  and the ,ܯ,

demand for region m  is ෨ܺ௠ . The demand vector ሺX෩ଵ, X෩ଶ,ڮ , X෩Mሻ  has a joint 

distribution function ܩሺ ෨ܺଵ, ෨ܺଶ, ڮ , ෨ܺெሻ. We assume the same congestion cost function of 

the cellular service provider for all regions. Cellular resources can serve traffic in any 

region m, whereas WiFi hotspots in region m can only serve local traffic.13 In Figure 

1.2, a hotspot located in a WiFi region cannot serve the demand in another region. A 

                                                 
13 A WiFi hotspot might be on the boundary of two regions. In Section 6, we generate regions by clustering 
the WiFi hotspots using k-means method. Note that for simplicity, we assume that cellular capacity can be 
reallocated seamlessly from one WiFi region to another. In practice, some cellular capacity can be 
redirected (e.g., core processing for the base station), and some capacity cannot be redirected (e.g., radio 
capacity for directional antennas – these cover only a certain direction and angular range). 
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unique challenge in the procurement auction is that the longer range cellular resource 

introduces coupling between the shorter range WiFi hotspots. The procurement problem 

in one WiFi region is not independent of the procurement problem in another region, 

because purchasing more WiFi capacity from a local WiFi hotspot in one region frees up 

more cellular capacity that can be used to serve the demand in another region. In this 

section, we derive the optimal auction rule under different spatial coverages. 

The timeline for a multiple region auction is shown in Figure 1.3. The cellular 

service provider follows a two-step decision procedure: In the first stage, it purchases 

WiFi capacity from hotspots in different regions. In the second stage, the cellular service 

provider adjusts the allocation of cellular resources across regions. 

 

 

Figure 1.3: Timeline for a Multiple Region Auction 

 

We first focus on the optimization problem in the second stage. If the cellular 

service provider purchases Y୫ units of bandwidth from hotspots in region m, then the 

expected congestion cost is  

 Min୷భ,୷మ,ڮ,୷M ׬  ଵ଴ ׬  ଵ଴ ׬ڮ  ଵ଴ ∑  ெ
௠ୀଵ ଴ሺܥ ෨ܺ௠ െ ௠ܻ െ ሺܩ௠ሻ݀ݕ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ 

.ݏ    .ݐ ∑  ெ
௠ୀଵ ௠ݕ ൌ ܺ஻, ௠ݕ ൒ 0, for ݉ ൌ 1,2, . . .  (1.6)               ,ܯ
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where y୫ is the amount of cellular capacity allocated to region m. The cellular service 

provider can adjust the allocation of cellular resources across regions through varying 

y୫. Purchasing more capacity from a local WiFi hotspot frees up more cellular resources, 

which can be allocated to other regions. Note that the value of this minimization problem 

is the expected congestion cost when the service provider can integrate both cellular 

resources and WiFi resources. 

Similarly, without hotspots, the expected congestion cost is  

 Min୷భ,୷మ,ڮ,୷M ׬  ଵ଴ ׬  ଵ଴ ׬ڮ  ଵ଴ ∑  ெ
௠ୀଵ ଴ሺܥ ෨ܺ௠ െ ሺܩ௠ሻ݀ݕ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ 

.ݏ    .ݐ ∑  ெ
௠ୀଵ ௠ݕ ൌ ܺ஻, ௠ݕ ൒ 0, for ݉ ൌ 1,2, . . .  .ܯ

The value of this minimization problem is the expected congestion cost when the 

service provider relies solely on cellular resources. 

Because C଴ሺڄሻ is convex, using Jensen’s inequality, we have  

 ∑  ெ
௠ୀଵ ଴ሺܥ ෨ܺ௠ െ ௠ሻݕ ൒ ܯ ڄ ଴ܥ ቀ

ଵ
ெ
∑  ெ
௠ୀଵ ሺ ෨ܺ௠ െ ௠ሻቁݕ ൌ ܯ ڄ ଴ሺܥ തܺሻ  

 ∑  ெ
௠ୀଵ ଴ሺܥ ෨ܺ௠ െ ௠ܻ െ ௠ሻݕ ൒ ܯ ڄ ଴ܥ ቀ

ଵ
ெ
∑  ெ
௠ୀଵ ሺ ෨ܺ௠ െ ௠ܻ െ ௠ሻቁݕ ൌ ܯ ڄ

଴ሺܥ തܺ െ തܻሻ                                                           (1.7) 

where  

 തܺ ൌ ௑෨భା௑෨మାڮା௑෨ಾି௑ಳ
ெ

, ܽ݊݀  തܻ ൌ ௒భା௒మାڮା௒ಾ
ெ

. 

If we define X ൌ X෩ଵ ൅ X෩ଶ ൅ ൅ڮ X෩M െ XB as the total excess demand of the 

sector, Xഥ ൌ X/M can be interpreted as the average excess demand across regions. The 

optimal allocation of cellular resources should be y୫כ ൌ ሺX෩୫ െ Xഥሻ െ ሺY୫ െ Yഥሻ  with 

using WiFi hotspots and y୫כ ൌ X෩୫ െ Xഥ without using hotspots. 

For such allocations of cellular resources across regions to be feasible, we need 

y୫כ ൒ 0, or equivalently, 

 

 ௑ಳ
ெ
൒ ቀ ௠ܻ െ ଵ

ெ
∑  ெ
௠ୀଵ ௠ܻቁ െ ቀ ෨ܺ௠ െ ଵ

ெ
∑  ெ
௠ୀଵ ෨ܺ௠ቁ,              (1.8) 
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for m ൌ 1,2, . . . , M, and for all possible realizations of private cost parameters ሺθ୧, θି୧ሻ. 

The condition is more likely to be satisfied if bandwidth demand and hotspots supply are 

relatively homogeneous across regions or if XB is relatively large. Alternatively, the 

condition is more likely to be satisfied if more hotspot bandwidth supply is available in 

regions with more bandwidth demand (i.e., X෩୫  and Y୫  are positively correlated). 

Apparently, the second condition is a reasonable assumption because the economic 

incentive to supply bandwidth is larger in regions with high demand. In this section, we 

assume inequality 1.8 is always satisfied.  

The expected reduction of congestion cost for the cellular service provider after 

the procurement of hotspot bandwidth is  

 ܸሺ ଵܻ, ଶܻ, ڮ , ெܻሻ 

 ൌ ׬ܯ  ଵ଴ ׬  ଵ଴ ׬ڮ  ଵ଴ ଴ሺܥ തܺሻ݀ܩሺ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ െ ׬ܯ  ଵ଴ ׬  ଵ଴ ׬ڮ  ଵ଴ ଴ሺܥ തܺ െ

തܻሻ݀ܩሺ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ. 

Because the valuation function is only a function of X෩ଵ,ڮ , X෩M through Xഥ, we 

denote the distribution of Xഥ as Gഥ and rewrite the valuation as  

ܸሺ ଵܻ, ଶܻ, ڮ , ெܻሻ ൌ ܸሺ തܻሻ ൌ ׬ܯ  ଵ଴ ଴ሺܥ തܺሻ݀ܩҧሺ തܺሻ െ ׬ܯ  ଵ௒ത ଴ሺܥ തܺ െ തܻሻ݀ܩҧሺ തܺሻ   (1.9) 

Note the similarity between the valuation function for the case of a single region 

(equation 1.1) and the valuation function for the case of multiple regions (equation 1.9), 

which immediately implies that VሺYഥሻ is also increasing and concave in Yഥ. Indeed, the 

single region case can be viewed as the same as a multiple-region case in which M ൌ 1. 

Because the valuation function is only a function of Yଵ,ڮ , YM through Yഥ, the 

task of undertaking multiple procurements in multiple regions is essentially the same task 

as undertaking a single procurement in one sector in which the bandwidth capacity is 

procured from several hotspots in different regions. When condition 1.8 is satisfied, the 

WiFi capacity in different regions is a perfect substitute for each other in the cellular 
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service provider’s view. In other words, we are dealing with a variable quantity 

procurement auction with multiple winners. In the first stage, the cellular service 

provider’s optimization problem is characterized as a direct revelation game in which 

hotspots announce their types and truthful revelation is a Bayes-Nash equilibrium. We 

adopt the notational convention of writing θି୧ ൌ ሺθଵ, . . . , θ୧ିଵ, θ୧ାଵ, . . . , θ୬ሻ. The optimal 

allocation for the cellular service provider can be implemented via a direct revelation 

mechanism where 

    • The cellular service provider announces a payment-bandwidth schedule 

P୧ሺθ୧, θି୧ሻ, and a bandwidth allocation schedule ݍ௜ ൌ ܳሺߠ௜,  ;௜ሻିߠ

 

    • Hotspot i reports the private cost parameter ߠ௜  given ௜ܲሺߠ௜,  ௜ሻ andିߠ

Qሺθ୧, θି୧ሻ; 

    • Hotspot i  provides bandwidth q୧ ൌ Qሺθ୧, θି୧ሻ  to the cellular service 

provider and its payment is P୧ ൌ P୧ሺθ୧, θି୧ሻ.  

The optimal mechanism ൫P୧כሺθ୧, θି୧ሻ, Qכሺθ୧, θି୧ሻ൯  for the cellular service 

provider is given by the following proposition: 

 

Proposition 1.2 (Multiple Regions) In the optimal direct revelation mechanism, 

all hotspots truthfully announce their cost parameters θ . The optimal bandwidth 

allocation schedule q୧ ൌ Qכሺθ୧, θି୧ሻ, for i ൌ 1,2, . . . n is given by: 

 ෠ܸ ᇱሺ∑  ௡
௜ୀଵ ௜ሻݍ ൌ ܿሺݍ௜, ௜ሻߠ ൅ ܿఏሺݍ௜,  .௜ሻߠሺܪ௜ሻߠ

where 
ܸሺ തܻሻ ൌ ෠ܸሺ∑  ௡

௜ୀଵ ௜ሻݍ ൌ ׬ܯ  ଵ଴ ଴ሺܥ തܺሻ݀ܩҧሺ തܺሻ െ ܯ ׬  ଵ
భ
ಾ∑  ೙

೔సభ௤೔
଴ሺܥ തܺ െ

ଵ
ெ
∑  ௡
௜ୀଵ ҧሺܩ௜ሻ݀ݍ തܺሻ . The 

optimal payment schedule ௜ܲ ൌ ௜ܲ
,௜ߠሺכ ௜ሻ, for iିߠ ൌ 1,2, . . . n is given by: 

 ௜ܲ
,௜ߠሺכ ௜ሻିߠ ൌ ,௜ߠሺכሺܳܥ ,௜ሻିߠ ௜ሻߠ ൅ ׬  ఏכ

ఏ೔
,ߠሺכఏሺܳܥ ,௜ሻିߠ  .ߠሻ݀ߠ



 18

The cellular service provider’s expected gain is 

ܧ ቎ ෠ܸ ቌ෍ 
௡

௜ୀଵ

,௜ߠሺכܳ ௜ሻቍିߠ െ෍ 
௡

௜ୀଵ

,௜ߠሺכሺܳܥ ,௜ሻିߠ ௜ሻߠ െ෍ 
௡

௜ୀଵ

,௜ߠሺכఏሺܳܥ ,௜ሻିߠ  .௜ሻ቏ߠሺܪ௜ሻߠ

Under asymmetric information, this is the highest expected profit for the cellular 

service provider when it can procure capacity from multiple hotspots in different regions 

(second best).  

Proof. See Appendix A. 

    

In the direct revelation game, hotspot i announces its cost parameter θ୧. The 

capacity it needs to provide is q୧ ൌ Qכሺθ୧, θି୧ሻ, and its payment is P୧ ൌ P୧כሺθ୧, θି୧ሻ. This 

optimal mechanism is a global auction including all hotspots from different regions. Note 

that launching separate auctions within each region is not optimal because the cellular 

resource can serve traffic in any region. The intuition is that procuring more WiFi 

resources in one region frees up more cellular resources, and the cellular service provider 

can allocate the cellular resources to other regions. In equilibrium, the virtual marginal 

costs cሺq୧, θ୧ሻ ൅ c஘ሺq୧, θ୧ሻHሺθ୧ሻ are equalized across hotspots in different regions, and 

the marginal benefits of procuring WiFi capacity should be equalized across regions as 

well. In addition, the number of hotspots might be small in some specific regions. The 

global auction effectively creates the inter-region competition among the hotspots when 

the intra-region competition is limited. Under our procurement mechanism, the network 

becomes more resilient because the peak data traffic can be seamlessly offloaded to some 

nearby hotspots with minimal service disruption. The procedure of computing the optimal 

procurement auction is included in Appendix B. 
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1.4.2  A Contingent Procurement Auction  

In the previous section, the procurement mechanism is implemented before the 

demand is realized. In this sense, there is an ex-post inefficiency: The cellular service 

provider might purchase either too much or too little bandwidth. Contingent contracts can 

be useful in mitigating this problem. In this section, the auction rule is contingent on 

demand uncertainty. 

A prerequisite for a contingent contract is that the uncertain demand should be 

contractable, which means the realized demand must be one that both cellular service 

provider and hostpots can observe and measure and that neither side can covertly 

manipulate. An increasingly important response to cost pressure in supply chains is the 

information sharing between retailers and suppliers (Aviv 2001). Emerging technologies, 

such as Electronic Data Interchange (EDI) and Radio Frequency Identification (RFID), 

facilitate sales data-sharing and make the design of contingent contracts more practical 

and reliable. In our problem settings, the cellular service provider can directly observe the 

demand information, but the hotspots cannot observe it. In this section, we show that the 

cellular service provider does not have incentive to misreport the private demand 

information. Therefore, the design of a procurement auction with contingent contracts is 

practical.14 

Now we present a theory on how to design the optimal multi-region procurement 

auction with contingent contracts. Following from equation 9, the expected reduction of 

congestion cost for the cellular service provider after the procurement of hotspot 

bandwidth given the realization of the demand ሺ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ is 

 ܷሺ ଵܻ, ଶܻ, ڮ , ெܻሻ ൌ ܷ൫ܻ൯ ൌ ܯ ڄ ଴ሺܥ തܺሻ െ ܯ ڄ ଴ሺܥ തܺ െ ܻሻ, 
                                                 
14 Sharing demand information with hotspots is a type of open book policy for a cellular service provider. 
The continuing interaction between a cellular service provider and hotspots makes contingent contracts 
more reasonable and attractive. 
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where Xഥ ൌ X෩భାX෩మାڮାX෩MିXB
M

. U൫Y൯ is also increasing and concave in Y. When 

the demand is realized, the cellular service provider can observe a vector of demand, 

ሺX෩ଵ, X෩ଶ,ڮ , X෩Mሻ, and then announces a vector, Xୟ, to the hotspots. 

The optimal allocation for the cellular service provider can be implemented via a 

direct revelation mechanism where 

    • The cellular service provider announces a payment-bandwidth schedule 

P୧ሺθ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩Mሻ , and a bandwidth allocation schedule 

q୧ ൌ Q൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯; 

    • Hotspot i  reports the private cost parameter θ୧  given 

P୧ሺθ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩Mሻ and Q൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯; 

 • After the demand is realized, the cellular service provider announces the 

demand information, Xୟ. 

 • Hotspot i  provides bandwidth q୧ ൌ Qሺθ୧, θି୧, Xୟሻ  to the cellular service 

provider and its payment is P୧ ൌ P୧ሺθ୧, θି୧, Xୟሻ.  

Note that Xୟ can be some value other than ሺX෩ଵ, X෩ଶ,ڮ , X෩Mሻ. However, we show 

that Xୟ ൌ ሺX෩ଵ, X෩ଶ,ڮ , X෩Mሻ in equilibrium in the following proposition. 

 

Proposition 1.3 In the equilibrium of a multi-region procurement auction with 

contingent contracts, the cellular service provider truthfully announces the demand 

information: Xୟ ൌ ሺX෩ଵ, X෩ଶ,ڮ , X෩Mሻ.  

 Proof. See Appendix.    

 

This proposition shows that in equilibrium the cellular service provider will 

truthfully report the demand information. The intuition is that if the cellular service 
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provider misreports the demand information, it distorts the bandwidth provision of WiFi 

hotspots and reduces the expected payoff of the cellular service provider. 

We still assume that inequality 1.8 is always satisfied, and the optimal mechanism 

ቀP୧כሺθ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩Mሻ, Qכ൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯ቁ for the cellular service provider is 

given by the following proposition: 

 

Proposition 1.4 In a multi-region procurement auction with contingent contracts, 

the optimal bandwidth allocation schedule q୧ ൌ Qכ൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯ , for 

i ൌ 1,2, . . . n is given by: 

 ෡ܷᇱሺ∑  ௡
௜ୀଵ ௜ሻݍ ൌ ܿሺݍ௜, ௜ሻߠ ൅ ܿఏሺݍ௜,  ௜ሻ.            (1.10)ߠሺܪ௜ሻߠ

where ܷሺ തܻሻ ൌ ෡ܷሺ∑  ௡
௜ୀଵ ௜ሻݍ ൌ ܯ ڄ ଴ሺܥ തܺሻ െ ܯ ڄ ଴ሺܥ തܺ െ

ଵ
ெ
∑  ௡
௜ୀଵ  ௜ሻ. The optimal paymentݍ

schedule P୧ ൌ P୧כሺθ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩Mሻ, for i ൌ 1,2, . . . n is given by: 

 ௜ܲ
,௜ߠሺכ ,௜ିߠ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ ൌ ,௜ߠ൫כ൫ܳܥ ,௜ିߠ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெ൯,  ௜൯ߠ

 ൅׬  ఏכ

ఏ೔
,ߠ൫כఏ൫ܳܥ ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ڮ , ෨ܺெ൯,  .ߠ൯݀ߠ

The cellular service provider’s expected payment is 

ܧ  ቈ
∑  ௡
௜ୀଵ ,௜ߠ൫כሺܳܥ ,௜ିߠ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெ൯, ௜ሻߠ

൅∑  ௡
௜ୀଵ ,௜ߠ൫כఏሺܳܥ ,௜ିߠ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெ൯, ௜ሻߠሺܪ௜ሻߠ

቉.            (1.11) 

 Proof. See Appendix.    

 

This proposition is similar to Proposition 2.2, but the optimal mechanism depends 

on the contingent demand. Therefore, this contingent procurement mechanism can 

improve the ex-post efficiency. 
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1.5  Extension  

In Section 1.4, we assume that y୫כ ൒ 0 for all m, or equivalently, the cellular 

capacity XB is sufficiently large such that for all m and all possible realizations of cost 

parameters ሺθ୧, θି୧ሻ drawn from the distribution Fሺڄሻ, condition 1.8 is always satisfied: 
ܺ஻
ܯ ൒ ൭ ௠ܻ െ

1
ܯ ෍  

ெ

௠ୀଵ
௠ܻ൱ െ ൭ ෨ܺ௠ െ

1
ܯ ෍  

ெ

௠ୀଵ

෨ܺ௠൱. 

We call it the feasibility condition. Under a contingent procurement mechanism, 

the equilibrium quantity purchased in region m, Y୫ ൌ ∑  ୧אஏౣ Qכ൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯, 

where Ψ୫ is the set of hotspots in region m. Note that condition 8 may hold for some 

realizations of cost parameters ሺθ୧, θି୧ሻ  but not for some others. Our feasibility 

condition requires that condition 8 holds for every realization of cost parameters 

ሺθ୧, θି୧ሻ. 

 

 

Figure 1.4: Illustrating Examples of the Feasibility Condition 

 

In this section, we introduce a modified contingent procurement mechanism to 

discuss the optimal procurement mechanism when the feasibility assumption is relaxed. 

We start with a simple toy model with two WiFi regions, that is, M ൌ 2. 
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To gain some intuitions about the feasibility condition, we depict two illustrating 

examples in Figure 1.4. We assume that there are two WiFi regions (M ൌ 2), and that 

each region has four hotspots (n ൌ 8). The congestion cost functions for the service 

provider and WiFi hotspots are simple: C଴ሺxሻ ൌ 2xଶ, and Cሺx, θ୧ሻ ൌ ቀଵ
ଶ
൅ θ୧ቁ xଶ, where 

the private cost parameters for hotspots, θ୧, is drawn from a uniform distribution Uሾ0,1ሿ 

for 1,000 times. The data traffic for each region, X෩୫ , m ൌ 1,2 , is drawn from 

independent standard uniform distributions Uሾ0,1ሿ for 1,000 times. In the figure, The 

blue "X"s indicate that the feasibility condition is always satisfied when the demand is 

൫X෩ଵ, X෩ଶ൯, the red dots indicate that condition 1.8 is violated for some realizations of cost 

parameters ሺθ୧, θି୧ሻ drawn from the distribution Fሺڄሻ, and the black stars indicate that 

condition 8 is violated for all possible realizations of cost parameters ሺθ୧, θି୧ሻ drawn 

from the distribution Fሺڄሻ. When the feasibility condition is always satisfied (the blue 

"X"s), the optimal procurement mechanism is the global auction we discussed in Section 

1.4.2. When the feasibility condition is always violated (the black stars), the marginal 

benefits of procuring WiFi capacity for the cellular service provider cannot be equalized 

across different regions. In this case, a separate local auction for each region is optimal. 

Our modified mechanism mainly focuses on the third scenario: the condition 1.8 is 

violated for some realizations of cost parameters ሺθ୧, θି୧ሻ (the red dots). The cellular 

capacity, XB, is set to be 0.4 in the left panel and 0.2 in the right panel. Figure 1.4 

shows that the feasibility condition is more likely to be violated when the demands are 

unbalanced or XB is small. 

Under the modified mechanism, the allocation scheme of cellular resource is 

denoted by a vector ൛λ୫൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ൟ, m ൌ 1,2, where λ୫൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ is the 

fraction of cellular resource allocated in region m, and it is a function of the reported 

types of hotspots and the demand contingency. 
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The modified procurement mechanism for two regions is described as follows: 

    • The cellular service provider announces a payment-bandwidth schedule 

P୧ሺθ୧, θି୧, X෩ଵ, X෩ଶሻ, an allocation scheme of cellular resource ൛λ୫൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ൟ, and a 

WiFi bandwidth allocation schedule q୧ ൌ Q ቀθ୧, θି୧, X෩ଵ, X෩ଶ, λ୫൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ቁ , 

m ൌ 1,2; 

    • Hotspot i reports the private cost parameter θ୧; 

    • Hotspot i provides bandwidth q୧ ൌ Q ቀθ୧, θି୧, X෩ଵ, X෩ଶ, λ୫൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ቁ 

to the cellular service provider, and its payment is P୧ ൌ P୧ሺθ୧, θି୧, X෩ଵ, X෩ଶሻ.  

Let’s define y୫ככ as the optimal amount of cellular capacity allocated to region m 

when we don’t consider the constraint y୫ ൒ 0, so y୫ככ is the solution to the following 

congestion cost minimization problem when Y୫ is the optimal procurement quantity in 

region m: 

min
୷భ,୷మ

෍  
ଶ

௠ୀଵ

଴ሺܥ ෨ܺ௠ െ ௠ܻ െ  ௠ሻݕ

.ݏ   .ݐ ෍  
ଶ

௠ୀଵ

௠ݕ ൌ ܺ஻. 

and  

ככ௠ݕ  ൌ ሺ ෨ܺ௠ െ തܺሻ െ ሺ ௠ܻ െ തܻሻ 
 ൌ ሺ ෨ܺ௠ െ തܺሻ െ ቂ∑  ௜אఅ೘ ,௜ߠ൫כܳ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ െ

ଵ
ଶ௜ୀଵ

௡
,௜ߠ൫כܳ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቃ, 

where Qכ൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ is given by equation 1.10 when M ൌ 2. The optimal modified 

mechanism ሺP୧ככ, q୧ככ, λ୫ככሻ for the cellular service provider is given by the following 

proposition: 

 

Proposition 1.5 If M ൌ 2 and the feasibility condition is not satisfied, the 

optimal allocation allocation scheme of cellular resource is given by 
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 λ୫ככ൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ ൌ ൞

0, if y୫ככ ൏ 0,
୷ౣככ

XB
, if 0 ൑ y୫ככ ൑ XB,

1, if y୫ככ ൐ XB,
 

We denote Qכ൫θ୧, θି୧, X෩ଵ, X෩ଶ൯  as the solution given by equation 1.10. If 

λ୫ככ ൌ y୫ככ/XB, the optimal bandwidth allocation schedule q୧ככ is given by  

ככ௜ݍ  ൌ ,௜ߠ൫כܳ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯, i א Ψ୫. 

If λ୫ככ ൌ 0 or 1, q୧ככ is given by 

଴ᇱ൫ܥ ෨ܺ௠ െ ஻ܺככ௠ߣ െ ∑  ௜אఅ೘  ൯                   (1.12)ככ௜ݍ

ൌ ܿሺݍ௜ככ, ௜ሻߠ ൅ ܿఏሺݍ௜ככ, ,௜ሻߠሺܪ௜ሻߠ ݅ א  ,௠ߖ

The optimal payment schedule P୧ככሺθ୧, θି୧, X෩ଵ, X෩ଶሻ, for i ൌ 1,2, . . . n, is given by:  

 ௜ܲ
,௜ߠሺככ ,௜ିߠ ෨ܺଵ, ෨ܺଶሻ ൌ ,ככ௜ݍሺܥ ௜ሻߠ ൅ ׬  ఏכ

ఏ೔
,ככ௜ݍఏሺܥ  (1.13)      .ߠሻ݀ߠ

 Proof. See Appendix A.   

  

We briefly outline the steps of the proof here. First, we need to show that the 

proposed mechanism is incentive compatible: Given the modified mechanism 

ሺP୧ככ, q୧ככ, λ୫ככሻ, each hotspot does not have an incentive to misreport its private cost 

parameter. Then, we need to show that the proposed mechanism is optimal for the 

cellular service provider. The intuition is that when the feasibility condition is satisfied, 

the modified mechanism is equivalent to the optimal mechanism described in Proposition 

1.4. Note that when the feasibility condition is satisfied, it is optimal for the cellular 

service provider to organize a global auction that includes all hotspots from different 

regions. When the feasibility condition is not satisfied, an optimal mechanism is to 

allocate all cellular capacity to one region, and then organize a separate local auction for 

each region. We show that the expected payoff of the cellular service provider in our 
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modified mechanism is the same as the payoff under two separate local auctions when the 

feasibility condition is not satisfied. 

We can extend our modified mechanism to the case that M ൐ 2. The approach is 

that the multiple region case can be converted to the case that M ൌ 2. 

Let’s denote y୫୩, for k ൌ 1,2, . . . M and m ൌ 1,2, . . . , k, as the solution to the 

following congestion cost minimization problem: 
    min

୷ౣౡ
∑  ௞
௠ୀଵ ଴ሺܥ ෨ܺ௠ െ ௠ܻ௞ െ  ௠௞ሻ                  (1.14)ݕ

.ݏ   .ݐ ෍  
௞

௠ୀଵ

௠௞ݕ ൌ ܺ஻, 

where Y୫୩  is the optimal procurement quantity in region m  when the 

participating hotspot i ୨ୀଵ୩׫א Ψ୨ : Y୫୩ ൌ ∑  ୧אஏౣ Q୩כ ൫θ୧, θି୧, X෩ଵ, X෩ଶ, . . . , X෩୩൯ . 

Q୩כ ൫θ୧, θି୧, X෩ଵ, X෩ଶ, . . . , X෩୩൯  is given by equation 1.10 when the participating hotspot 

i ୨ୀଵ୩׫א Ψ୨. We sort y୫୩ into descending order in an iterated way. Step (1) yଵM ൒

yଶM ൒. . . ൒ yMM ; Step (2) for region m ൌ 1,2, . . . , M െ 1  in Step 1, we solve the 

minimization problem 1.14 when k ൌ Mെ 1, and sort y୫Mିଵ: yଵMିଵ ൒ yଶMିଵ ൒. . . ൒

yMିଵ,Mିଵ , ...; Step (k ൅ 1) for region m ൌ 1,2, . . . , M െ k in step k, we solve the 

minimization problem 1.14 when k ൌ Mെ k, and sort y୫,Mି୩: yଵMି୩ ൒ yଶMି୩ ൒. . . ൒

yMି୩,Mି୩, k ൌ 2,3, . . . , M െ 1. The optimal modified mechanism when M ൐ 2 is given 

by the following proposition: 

 

Proposition 1.6 If M ൐ 2 and the feasibility condition 1.8 is not satisfied, the 

optimal allocation scheme of cellular resource is given by the following iterated process: 

If yMM ൒ 0, then λ୫ככ ൌ y୫M/XB, for m ൌ 1,2, . . . , M. If yMM ൏ 0, then λMככ ൌ 0, and if 

yMିଵ,Mିଵ ൒ 0, then λ୫ככ ൌ y୫Mିଵ/XB, for m ൌ 1,2, . . . , M െ 1. If yMିଵ,Mିଵ ൏ 0, then 
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λMିଵככ ൌ 0, . . ., and if yMି୩,Mି୩ ൒ 0, then λ୫ככ ൌ y୫Mି୩/XB, for m ൌ 1,2, . . . , M െ k. If 

yMି୩,Mି୩ ൏ 0, then λMି୩ככ ൌ 0. 

If λ୫ככ ൌ y୫Mି୩/XB, the optimal bandwidth allocation schedule q୧ככ is given by:  

ככ௜ݍ  ൌ ܳெି௞כ ൫ߠ௜, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, . . . , ෨ܺெି௞൯, for ݅ א Ψ୫. 

If λ୫ככ ൌ 0, q୧ככ is given by: 

଴ᇱ൫ܥ  ෨ܺ௠ െ ∑  ௜אఅ೘  ൯                          (1.15)ככ௜ݍ

ൌ ܿሺݍ௜ככ, ௜ሻߠ ൅ ܿఏሺݍ௜ככ, ,௜ሻߠሺܪ௜ሻߠ for  ݅ א Ψ୫, 

The optimal payment schedule ௜ܲ
for i ,ככ ൌ 1,2, . . . n is given by:  

 ௜ܲ
ככ ൌ ,ככ௜ݍሺܥ ௜ሻߠ ൅ ׬  ఏכ

ఏ೔
,ככ௜ݍఏሺܥ  (1.16)            .ߠሻ݀ߠ

 

1.6  Simulation Studies  

Applying our model to the network data from one of the largest U.S. service 

providers, we address the following question in this section: As compared with the 

standard VCG auction, how much can our optimal procurement auction improve the 

cellular network’s expected payoff? The Monte Carlo simulation results demonstrate that, 

as compared with the standard VCG auction, our contingent procurement auction 

significantly improves the cellular network’s expected payoff. We also evaluate the 

impact of the cellular capacity and the relative cost of deploying cellular resources on the 

performance difference between these two mechanisms. 

Before we do the comparison, we will first review the multi-unit VCG auction for 

procurement in our context. The following list describes the VCG procurement auction: 

    • Invite each hotspot to report its cost parameter θ. Denote the submitted 

cost parameters as ሼθଵ, θଶ,ڮ , θ୬ሽ. 

    • Under the VCG mechanism, the socially efficient allocation minimizes the 

sum of the expected congestion cost of the cellular service provider and the cost of 
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hotspots. According to equation 1.7, we have the sum of the expected congestion cost, 

and the minimization problem is formalized as follows:  

min
୯భ,୯మ,...,୯ౡ

නܯ  
ଵ

଴
න  
ଵ

଴
නڮ  

ଵ

଴
଴ሺܥ തܺ െ തܻሻ݀ܩሺ ෨ܺଵ, ෨ܺଶ,ڮ , ෨ܺெሻ ൅෍ 

௡

௜ୀଵ

,௜ݍሺܥ  ௜ሻߠ

.ݏ .ݐ ௜ݍ ൒ 0, for  ݅ ൌ 1,2, . . . , ݊, 

തܻ ൌ
1
 ෍ܯ

ெ

௜ୀଵ
௜ܻ ൌ

1
 ෍ܯ

ெ

௜ୀଵ

 .௜ݍ

    • Let πሺθଵ, θଶ,ڮ , θ୩ሻ be the optimal value of the objective function, and let 

ሺqଵכ , qଶכ ڮ, , q୬כ ሻ be an optimal solution to the cost minimization problem. Let πି୧ሺθି୧ሻ 

be the optimal value of the objective function with the additional constraint q୧ ൌ 0 (i.e., 

hotspot i does not participate in the auction). 

    • The cellular service provider will pay hotspot i according to the following:  

 ௜ܲ ൌ ௜ሻିߠ௜ሺିߨ െ ,ଵߠሺߨ ڮ,ଶߠ , ௡ሻߠ ൅ ,כ௜ݍሺܥ  ௜ሻ        (1.17)ߠ

where πି୧ሺθି୧ሻ െ πሺθଵ, θଶ,ڮ , θ୬ሻ is the bonus payment to hotspot i, representing the 

positive externality that hotspot i is imposing on the cost minimization problem. The 

cellular service provider pays hotspot i its cost Cሺq୧כ, θ୧ሻ, plus its contribution to the cost 

minimization problem. This payment internalizes the externality. 

    • Hotspot i provides capacity q୧כ and receives payment P୧.  

Note that the VCG auction is both truth-telling and socially efficient by standard 

arguments. All hotspots bid their cost parameters truthfully, irrespective of other 

hotspots’ bids. The VCG mechanism guarantees the minimum total cost. However, it 

leads to an overpayment to hotspots that is shown in the simulation.15 

                                                 
15 Note that this VCG mechanism is not contingent on the realized demand. We also simulate the 
performance of a contingent VCG mechanism. The basic results of performance comparison remain 
unchanged. 
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In our simulations, we consider a typical urban neighborhood in New York City, 

NY, USA, as shown in Figure 1.5. We define a cell sector as the range of the cell tower. 

Our dataset consists of the location information of 14,576 cell towers from a large 

cellular provider in the U.S. In our simulation study, we pick a cell tower in New York 

City from the full list of cell towers and simulate the mobile data demand in this sector. 

In Figure 1.5, T represents the cell tower, and others are 69 WiFi hotspots in the given 

cell sector.16 Following Dong et al. (2012), we set the communication range for a cell 

tower as 250m, and set the communication range for Wi-Fi as 100m. The following steps 

describe the procedure of simulations: 

 

 

Figure 1.5: Area Map of A Typical Cell Sector 

 

                                                 
16 Locations of commercial WiFi hotspots are from http://wigle.net.  
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    • Generating traffic demands in the given cell sector: To gain a sense of the 

population density in the coverage area of the cell tower, we use 2010 census data, which 

contains the land area coverage and population density of each zip code. Combining the 

market share of this service provider for the first quarter 201317, we estimate the number 

of users in the given cell sector. On average, smartphone users consume about 1GB data 

per month, but the usage patterns of mobile data is highly uneven.18 Paul et al. (2011) 

and Jin et al. (2012) found that a small number of heavy users contribute to a majority of 

data usage in the network. To consider the heterogeneity of data usage and the effects of 

peak hours, we simulate individual data usage from the byte distribution in Jin et al. 

(2012).19 

    • Generating WiFi regions in the cell sector: Dong et al. (2012) showed that 

the appropriate number of WiFi regions in a cell sector is six. Following their approach, 

we generate six WiFi regions by clustering the WiFi hotspots using k-means. In Figure 

1.5, Region A, Region B, ... , and Region F indicate which region the WiFi hotspots 

belong to. 

    • Generating traffic demands in each WiFi region: We use two different 

methods to place users in the cell sector and assign them to the corresponding WiFi 

regions according to their locations. (1) All users are randomly placed in the cell sector. 

(2) All users are placed according to the densities of the hotspots.20 After placing all the 
                                                 
17 See http://www.talkandroid.com/159929-t-mobile-loses-market-share-while-verizon-and-att-continue-to-
dominate.  
18 See http://www.fiercewireless.com/special-reports/average-android-ios-smartphone-data-use-across-tier-
1-wireless-carriers-thr-1#ixzz2ZSpDoS5Z.  
19 We obtain the quantiles of the byte distribution from Jin et al. (2012) and generate inidvidual usage using 
the Johnson System. We also adjust the usage by considering the effect of peak hours, see 
http://chitika.com/browsing-activity-by-hour.  
20 To calculate the densities of the hotspots for different locations, we divide the square circumscribing the 
cell sector into a 20 by 20 array of grids. By default, each grid has a weight of 1, except the grids whose 
centers are not in the range of the tower. The grid’s weight is increased by the number of hotspots whose 
locations are inside the grid. Then, a list of grid indices is created according to the weight of each grid. 
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users, a nearest hotspot is calculated for each user location. If the distance between the 

nearest hotspot found and the user location is less than the hotspot range (100m), the user 

is counted as one of the regional population according to the WiFi region; otherwise, the 

user is considered as in the region with no hotspots (region 0). We run 1,000 simulations 

to generate traffic demands in each WiFi region. 

    • Generating cell tower capacity: The cell tower capacity is set to three 

carriers, that is, three times 3.84 MHz (Dong et al. 2012). Data spectral efficiency varies 

across towers from 0.5 to 2 bps/Hz.21 We set spectral efficiency to be 1 by default and 

then vary the spectral efficiency to evaluate its impact. Note that when the user demand 

for mobile data is below 80% of the cell tower capacity, the cellular service provider 

faces no congestion cost.  

 

 

Figure 1.6: The Performance Comparison of the Procurement Mechanisms for the 

Service Provider 

 

                                                                                                                                                 
Finally, for each user, a grid index is first uniformly chosen from the list, and then the location of the user 
is uniformly chosen from the range of the grid with the grid index just picked. 
21 See http://www.rysavy.com/Articles/2011_05_Rysavy_Efficient_Use_Spectrum.pdf 



 32

Using the algorithms in Section 1.4 and Section 1.5, we conduct a variety of 

simulations to compute the corresponding allocation under the VCG mechanism, the non-

contingent procurement auction described in Section 1.4.1, and our contingent 

procurement auction (CPA). The relative cost of deploying cellular resources as 

compared with WiFi resources affects the bandwidth allocation result. Dong et al. (2012) 

assumed that spectrum cost is always higher than WiFi and that WiFi is always preferred 

when the cellular service provider is overloaded. Joseph et al. (2004) assumed that the 

relative cost of deploying cellular resources as compared with WiFi resources is 4:1. We 

follow their assumptions and set the parameter values: C଴ሺxሻ ൌ 0.5 ڄ axଶ , and 

Cሺx, θ୧ሻ ൌ ሺ0.5 ൅ θ୧ሻxଶ , where a ൌ 4, by default. In the simulation, we vary a  to 

evaluate its impact. A hotspot’s private cost parameters θ୧ is drawn from a standard 

uniform distribution Uሾ0,1ሿ for 1,000 times. 

The simulation result of the performance comparison is shown in Figure 1.6. In 

the left panel, the users are randomly placed in the cell sector. In the right panel, the users 

are placed according to the densities of the hotspots. The two panels show similar results: 

our non-contingent procurement auction significantly outperforms the VCG mechanism 

in terms of the expected net gain of the cellular service provider (the expected net gain = 

the reduction of congestion cost - the payment to hotspots). The contingent arrangements 

can further improve the expected gain of the cellular service provider. Note that both of 

the panels suggest that the VCG mechanism leads to an overpayment to hotspots. Our 

contingent mechanism reduces procurement cost by 57.7% in the left panel and by 55.4% 

in the right panel compared to the VCG mechanism. 

Data spectral efficiency varies across cell towers using different wireless 

technologies. An increase in spectral efficiency significantly contributes to tower 

capacity (Dong et al. 2012). Figure 1.7 evaluates the impact of spectral efficiency (cell 
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tower capacity) on the performance difference, which is defined as the difference 

between the service provider’s expected net gain under the proposed CPA system and the 

gain under the VCG mechanism.22 Note that the unit of the performance difference is 

normalized, and we are only interested in the trend. We find that as the cellular capacity 

increases, the advantage of our CPA system, in comparison with the VCG mechanism, 

decreases. This is because the bandwidth purchased from the WiFi hotspots also 

decreases with the cellular capacity (see the dashed line in Figure 1.7). The service 

provider is less willing to purchase WiFi resources when it owns a relatively large 

cellular capacity, and the overpayment problem in the VCG mechanism is thus less 

detrimental to the service provider’s expected gain. This simulation result suggests that 

the proposed CPA system is particularly useful when the cell tower capacity is relatively 

small. 

 

Figure 1.7: Performance Difference and Cell Tower Capacity 

                                                 
22 The simulation results are similar when the users are randomly placed or are placed according to the densities of the hotspots, so 
here we only present the result when the users are randomly placed. 
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Figure 1.8: Performance Difference and Relative Cost of Deploying Cellular Resources 

 

We also vary the relative cost of deploying cellular resources as compared with 

WiFi resources to evaluate its impact. Figure 1.8 shows that as the relative cost parameter 

a increases, the advantage of our CPA system as compared with the VCG mechanism 

increases. When the relative cost of deploying cellular resources is high, the service 

provider is more willing to procure from the WiFi hotspots, which exacerbates the 

overpayment problem in the VCG mechanism. Therefore, the advantage of our CPA 

system increases with the relative cost parameter ܽ. 

 

1.7  Managerial Implications and Discussions  

In the previous sections, our procurement mechanism was a static model. The 

present study could also apply to dynamic real-world settings by using a real-time 

auction. In a dynamic model, we assume that the cost parameter of hotspot i at time t, 
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θ୧୲, is drawn from a distribution with a cumulative distribution function F୲ሺڄሻ. If tᇱ 

denotes peak hours and tᇱᇱ  denotes off-peak hours, we have F୲ᇲሺڄሻ  fist-order 

stochastically dominates F୲ᇲᇲሺڄሻ. 

 

 

Figure 1.9: The Process Flow for the Automated Auction System 

 

The process flow for a dynamic model is shown in Figure 1.9. Step 1 computes 

the optimal mechanism including the optimal payment schedule, 

P୧כሺθ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩Mሻ , and the optimal bandwidth allocation schedule, 

Q൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯, according to Proposition 1.4. We call Step 1 the pre-computing 

stage. After data traffic is generated at time t, an auction system automatically bids for 

hotspots given θ୧୲ , the negative impact parameter based on the instantaneous user 

demand. Note that θ୧୲ is a function of the instantaneous user demand. The functional 

forms are specified by hotspots in advance, but the value of θ୧୲ varies over time. Our 

system finds the corresponding contingent contract: P୧כሺθ୧୲, θି୧୧, X෩ଵ, X෩ଶ,ڮ , X෩Mሻ  and 

Q൫θ୧୲, θି୧୲, X෩ଵ, X෩ଶ,ڮ , X෩M൯ given the data traffic at time t, X୲ ൌ ሺX෩ଵ୲, X෩ଶ୲,ڮ , X෩M୲ሻ, and 

the auction results are shown, all in a fraction of a second. We call Step 2 - Step 4 the 

real-time auction stage. Like the display advertising auctions (McAfee, 2011), speed is of 
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the essence in our real-time procurement auction, because the slow process of showing 

the auction results would sacrifice the cellular service provider’s profit. Bichler, Gupta, 

and Ketter (2010) also addressed the need for real-time intelligence in dynamic markets. 

At time t ൅ 1, we repeat the real time stage and show the corresponding auction results 

when the data traffic is X୲ାଵ ൌ ሺX෩ଵ୲ାଵ, X෩ଶ୲ାଵ,ڮ , X෩M୲ାଵሻ. 

The actual auctions and offloading to WiFi would need to be integrated with the 

policy management infrastructure, which is able to supply some of the key variables in 

the auction valuation: (1) the currently offered data traffic, (2) the capacity of each cell 

tower, and (3) the congestion cost when offered traffic exceeds capacity (e.g., in terms of 

rejected sessions or excessive delay). This procurement auction relies on automation 

technology and becomes a type of information systems: completely integrate all relevant 

information into the supply chain through wireless networks. Our procurement 

mechanism extends beyond the limits of service providers’ cellular resource to 

interconnect multiple hotspots in different regions by allowing for real-time and accurate 

data sensing. This leads to a more precise monitoring and control of mobile data 

offloading. The function of our procurement systems is similar to the algorithmic trading 

in financial markets (Hendershott et al. 2011). Both of them are examples of the 

technological change of computation and use computer algorithms to automatically make 

decisions. 

Our automated auction system is a vivid illustration of the power of Cyber-

Physical Systems (CPS). CPS are integrations of computation with physical processes 

(Lee 2008), and in our context, embedded computers and networks monitor and control 

the data offloading processes. The literature on CPS mainly focused on the feedback loop 

where physical processes affect computation and vice versa (Lee 2008). The economic 

incentives of different entities have been overlooked in the design of CPS. Our automated 
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auction system consists of multiple self-interested WiFi hotspots each operating 

according to its own objectives, and the strategic behaviors of these hotspots may make 

predictable and reliable real-time performance difficult. We address this issue by using 

economic theory to design an incentive compatible procurement mechanism. The 

conventional data offloading is on the basis of the access network discovery and selection 

function (ANDSF)23 that processes static WiFi offload policies. Recently, the intelligent 

mobile solution company, Tekelec, Inc., has developed its Mobile Policy Gateway 

(MPG)24 to implement complex WiFi offload policies. The Tekelec MPG enables 

support for our smart data offloading based on the real-time auction approach. 

In terms of the system design, one might wonder why cellular service providers 

wouldn’t build their own hotspots instead of procuring capacity from hotspots. In fact, we 

have seen some pilot projects for self-managed hotspots (Aijaz et al. 2013). However, to 

fully reap the benefits of offloading, cellular service providers need to ensure that their 

customers are able to offload data as frequently as possible. Iosifidis et al. (2013) pointed 

out that directly managing a hotspot is very expensive and even impractical in some 

cases. The option of more hotspots directly managed by the service provider is always 

available, but not cost-effective. Paul et al. (2011) found that 28% of subscribers generate 

traffic only in a single hour during peak hours in a day. Offloading traffic to third party 

hotspots overcomes the obstacle of managing a hotspot and ensures the high availability 

of WiFi resources. This strategy allows operators to handle mobile data traffic with 

reduced capital and operational expenditures. Another question related to the design of 

our system is whether service providers should use competitive bidding instead of 

                                                 
23 The purpose of the ANDSF is to assist user equipment to discover and select non-3GPP networks such as 
WiFi and WiMax. 
24 See http://www.tekelec.com/2012-press-releases/tekelec-and-roke-partner-to-deliver-policyonthemobile-
solutions.aspx.  
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negotiation to select a contractor (a WiFi hotspot). Bajari et al. (2009) considered several 

determinants that may influence the choice of auctions versus negotiations. For complex 

projects, auctions may stifle communication between the buyer and the contractor. But 

for products with standardized characteristics, competitive bidding is perceived to be a 

better way to select the lowest cost bidder. In our context, the WiFi capacity satisfies the 

standard assumption of well defined products in auction literature. 

 

 

Figure 1.10: A Supply Chain of Procuring Multiple Products 

 

The model in the present study can be generalized to discussing a supply chain 

problem of procuring multiple products. The independent management of procuring 

multiple products could be inefficient in the presence of limited product-flexible capacity 

(Demirel 2012). Van Mieghem and Rudi (2002) studied newsvendor networks allowing 

for multiple products. In our theoretical model, the wireless service in different WiFi 

regions can be thought of as different products in the supply chain problem. When we 

consider the procurement of third party WiFi capacity, the service provider owns the 

cellular capacity that can serve traffic in all WiFi regions, whereas each WiFi hotspot can 

only serve local traffic. A similar supply chain problem is shown in Figure 1.10: Consider 
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a firm that produces multiple products using a shared resource (in-house capacity) that is 

common to products 1, 2, and 3. Because of capacity limitations, the firm also may need 

to procure the products from different suppliers. In this example, suppliers 1, 2, and 3 

only produce product 1; suppliers 4, 5, and 6 only produce product 2, and so on. Because 

the in-house capacity is a shared resource that can be used for all products, we cannot 

decompose this supply chain problem into several independent procurement problems. 

Our theoretical model provides an auction framework for the downstream firm to 

optimally integrate the upstream capacity with its own product-flexible capacity. 

 

1.8  Conclusions  

In the present study, we designed an optimal procurement auction with contingent 

contracts for mobile data offloading. The integration of both cellular and WiFi resources 

significantly improves mobile bandwidth availability. A unique challenge in this 

procurement auction is that the longer range cellular resource introduces coupling 

between the shorter range WiFi hotspots. We characterized the Bayesian-Nash 

equilibrium of the auction and computed the corresponding contingent contract. The 

simulation results showed that our procurement auction significantly outperforms the 

standard VCG auction. Our analysis is also useful for mechanism designers in developing 

procurement auctions in the presence of product-flexible capacity. 

In the telecommunications industry, consumers, especially business users, are 

concerned about mobile QoS because the effects of congestion are costly to them. For 

simplicity, we abstracted away the consumer side in our model. It is possible that 

congestion costs may lead consumers to respond by switching to a different provider, or 

by changing their usage behavior. It would therefore be interesting to consider how 

rational consumers would behave in the presence of large congestion costs. A future 
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direction is to study the procurement auction when consumers form rational expectations 

of the network congestion (Su and Zhang 2009). It allows the cellular service provider to 

consider various types of QoS warranties; that is, when a severe congestion occurs, the 

cellular service provider compensates business users through monetary payments, or 

other forms of goodwill. The provision of warranties may serve as signals of QoS for 

cellular service providers. 

The present study has several limitations. We assume that WiFi hotspots can 

always provide the promised capacity. However, WiFi hotspots need to purchase WiFi 

capacity from internet service providers (ISP). What if hotspots cannot deliver the 

capacity because of a problem on the ISP side? The procurement auction might be 

plagued with a chosen hotspot’s failure or correlated failures (Chen, Kataria, and 

Krishnan 2011). To better manage the suppliers’ failure risks, the design of our 

procurement mechanism should include a contingent payment when a hotspot fails in the 

future research (Chen et al. 2009). When multiple hotspots fail, the problem becomes 

even more widespread and network managers must then address the most severe outages 

first. Successful automated auction systems must be robust to unexpected failures. 

In our present study, we also assume that the cost function is purely related to the 

relationship between capacity and traffic and abstract away the setup costs which could 

not be traffic related (e.g., the cost to establish business agreements and security 

mechanisms with WiFi hotspots, and the handshaking and hand-off costs for each traffic 

flow). Incorporating these costs in the future research can provide a more practical view 

of our procurement mechanism. 

Another limitation of the present study is the use of only one cellular service 

provider in the procurement auctions. An important direction for future research is to 

extend our model to a setting with multiple cellular service providers. The wireless 
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services market is highly concentrated.25 On the regional level the concentration is more 

severe: Often only two cellular service providers are true head-to-head competitors in a 

given area. In many geographical markets, one cellular service provider may dominate 

and operate as a monopoly (Cramton et al. 2007). In this case, a procurement auction 

framework with one cellular service provider is appropriate. However, for example, an 

intense duopoly competition has arisen between Verizon and AT&T in some other areas. 

Thus, in the problem setting of two competing cellular service providers, the design of 

the optimal procurement auction remains an open question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
25 The most widely used measure of market concentration is the Herfindahl-Hirschman Index (HHI). HHI 
in the wireless services industry at the end of 2005 was over 2,700.6 (Cramton et al. 2007). 
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Chapter 2:  Information Exchange in Prediction Markets: Do Social 
Networks Promote Forecast Efficiency?  

2.1  Introduction 

Prediction markets have long been regarded as an effective way to tap into the 

wisdom of crowds by aggregating dispersed information within a social system (Berg and 

Rietz 2003). Several empirical studies have demonstrated the power of prediction 

markets in areas such as political science (Berg et al. 2008), supply chain management 

(Guo, Fang and Whinston 2006), marketing (Chen and Plott 2002), and finance (Berg, 

Neumann, and Rietz 2009). In most of the previous literature, researchers have assumed 

that the participants in the prediction markets are isolated: They receive small bits and 

pieces of independent information and cannot affect the decisions of other participants. 

However, in reality, people often mobilize their social networks to collect information 

and opinions on a variety of issues. CNBC recently reported an effective information 

exchange network through which tweeting with fellow farmers has become a way for 

participants in a far-flung and isolating business to compare notes on everything from 

weather conditions to new fertilizers.26 These tweets are dramatically accelerating the 

flow of information that may give investors an edge in the commodities market. With the 

advance of information technologies and the rise of social media, information exchange 

is ubiquitous these days. Indeed, people can use their smartphones or computers to share 

information with their social network neighbors at almost any place, at any time. The 

ubiquity of information exchange on social networks and the lack of understanding about 

their effects on prediction markets motivate us to explore the following research 

question: How does information exchange among the participants of a prediction market 
                                                 
26 The information is from CNBC News, March 8, 2011. The CNBC reporter called the phenomenon 
"Trading on Twitter." Grisafi, known as @IndianaGrainCo on Twitter, said he tweets with at least 15 
farmers on a regular basis to check on crop conditions. 
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affect the behavior and performance of the participants as well as the performance of the 

prediction market?  

Only a few attempts have been made in the previous literature to address this 

research question or other similar questions. For example, in a different context, Coval 

and Moskowitz (2001) asked a similar question and found that social networks help fund 

managers earn above-normal returns in nearby investments: The average fund manager 

generates an additional 2.67% return per year from local investments, relative to nonlocal 

holdings. The closest research to the present paper is a recent work that used game theory 

to study the Bayes-Nash equilibrium of an incomplete information game among 

participants in a social-network-embedded prediction market (Qiu, Rui, and Whinston 

2013a, b). They found a symmetric equilibrium by which participants with few social 

connections typically exert effort to acquire information, whereas participants with many 

social connections typically free-ride others’ information. However, in their stylized 

model, they made several simplifying assumptions: 1) people can always observe 

information from their direct neighbors; and 2) people are fully rational and have infinite 

computation capacity to integrate information in an optimal way.  

Apparently, these assumptions might not hold in some real-world contexts. 

However, relaxing these assumptions in an analytical model could easily yield 

intractability of the results. To further our understanding of the research question without 

confining ourselves to these assumptions, we take a different approach in this paper by 

carrying out an experimental study. In particular, to address the research question, we test 

a series of hypotheses through our experiments. First, we test how participants’ degree 

(the number of social connections) in the social network influences their decisions 

regarding whether to invest in information acquisition and affects their performance in 

the form of earnings. Following Qiu, Rui, and Whinston (2014a, b), information 
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acquisition in our paper specifically refers to information gathering from outside sources 

and does not include asking network neighbors for information. Unlike an experimental 

approach, the traditional econometric methods are often subject to identification 

difficulty because the network structure is usually endogenously determined (Manski 

1993), as a result, empirically disentangling the unobserved individual characteristics 

(e.g., the predictive ability) from the actual effects of network degree on an individual’s 

information acquisition and prediction performance is difficult. In our controlled 

experiment, participants are randomly assigned to different network positions, which 

allows us to identify the causal relationship between network structure and the 

individual’s information acquisition and prediction performance. The experimental 

results are consistent with the theoretical prediction: participants with higher degrees in 

the social network are less likely to invest in information acquisition, compared with 

participants that have lower degrees, and they actually earn more by free-riding 

neighbors’ information. 

Second, the wisdom of crowd effect has been extensively studied in the literature 

(Lorenz et al. 2011): The average of many individuals’ estimates can cancel out errors 

and be surprisingly close to the truth. However, this approach requires independent 

estimates, which are rare in a social networking world. Lorentz et al. (2011) demonstrate 

that sharing information corrupts the wisdom of the crowds. Contrary to previous work, 

our study shows that information sharing in a social network need not undermine the 

wisdom of crowd effect. The experimental results suggest that when the cost of 

information acquisition is low, a social-network-embedded prediction market 

outperforms a prediction market without a social network in terms of prediction accuracy. 

On the other hand, when the cost of information acquisition is high, we do not find any 

significant difference between the performances of these two types of prediction markets. 
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In addition to these two major hypotheses, we also test whether the structure of the 

underlying social network has any effect on the performance of prediction and the 

experimental results suggest that network structure does matter. 

 

2.2  Literature Review  

A large body of literature explores the role of social networks in student alcohol 

use (Gaviria and Raphael 2001), product adoption (Aral and Walker 2011), financial 

markets (Cohen, Frazzini, and Malloy 2008), the use of technology (Wattal, Racherla, 

and Mandviwalla 2010; Stieglitz and Dang-Xuan 2013), and health plan choice (Sorensen 

2006). The standard empirical approach is a regression of an individual’s behavior on his 

or her social connectedness or his or her peers’ behaviors. The growing literature on the 

identification of the effect of network structure and social influence has recognized an 

econometric challenge: The network structure is endogenously determined (Garg, Smith, 

and Telang 2011). In our context, the network structure can be the result of past 

prediction performance. The confounding factors, such as participants’ unobserved 

characteristics, make it difficult to identify the causal effect of network structure on an 

individual’s behavior. For example, the positive correlation between social connectedness 

and individuals’ prediction performance can be driven either by the actual social effect or 

the unobserved individual characteristics. In the first case, individuals gain from their 

social ties. In the second case, individuals self-select their friends and tend to associate 

with the participants having high predictive ability. Both of the two cases are 

theoretically plausible and need to be empirically distinguished. Failure to account for the 

second case might lead to an overestimation of the effect of social connectedness.  

Researchers in the existing empirical literature have addressed this econometric 

challenge using different approaches. One approach was the use of natural experiment 
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(Zhang and Wang 2012). Sacerdote (2001) studied peer effects among college roommates 

in a natural experiment: Freshmen entering Dartmouth College were randomly assigned 

to dorms and to roommates. A second approach relied on the panel nature of the data to 

control the unobserved characteristics. Sorensen (2006) examined the effect of social 

learning on University of California employees’ choices of health plans using a rich panel 

data set. After controlling for the department-specific unobservables, the estimated social 

effects were smaller but remained significant. A third approach was the use of exogenous 

instrument variables. Gaviria and Raphael (2001) corrected the spurious estimates of 

school-based peer effects by instrumenting for peer behavior using the average behavior 

of the peers’ parents. Our method belongs to a fourth approach: a randomized laboratory-

controlled experiment. In our present experiment, participants are randomly assigned to 

different network positions in prediction markets.  

The present study is also closely related to the literature on prediction markets. 

Researchers in previous studies have focused on how to elicit dispersed private 

information, for example, by using some variation of scoring rules. Scoring rules do not 

suffer from the irrational participation or thin market problems that plague standard 

prediction markets. They instead suffer from a thick market problem, namely how to 

produce a single consensus estimate when different people give differing estimates. 

Hanson (2003) suggested a new mechanism for prediction markets, the market scoring 

rule, which combines the advantages of markets and scoring rules. The market scoring 

rule avoids the problems by being automated market makers in the thick market case and 

simple scoring rules in the thin market case. Fang, Stinchcombe, and Whinston (2010) 

proposed a proper scoring rule that elicits agents' private information, as well as the 

precision of the information. In their work, the agents’ private signals are independent. In 
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our present social-network-embedded prediction market, the information that participants 

have is correlated with that of their friends. 

The present work is also related to the work on network games by Galeotti et al. 

(2010), who provided a framework to analyze strategic interactions in an incomplete 

information network game. Golub and Jackson (2010) discussed how network structure 

influences the spread of information and the wisdom of the crowds.  

A handful of research has examined the mechanisms of prediction markets using 

laboratory experiments. Healy et al. (2010) found that the performance of the prediction 

market mechanisms is significantly affected by the complexity of the environment. Jian 

and Sami (2012) compared two commonly used mechanisms of prediction markets: the 

probability-report mechanism and the security-trading mechanism. A great deal of 

attention has also been paid to the experimental work that considers the effect of 

exogenously specified network structures on outcomes (Çelen and Hyndman 2012). Hinz 

and Spann (2008) examined the effects of different network structures on bidding 

behaviors in name-your-own-price auctions. Bapna et al. (2011) studied the effect of the 

strength of social ties on Facebook using a field experiment. To the best of our 

knowledge, our paper is the first to study the effect of network structure on individual 

behavior and on forecasting performance in prediction markets using a laboratory 

controlled experiment, thus enriching the literature by identifying the causal effect of the 

social network on prediction markets.  

 

2.3  A Simple Model of a Social-Network-Embedded Prediction 

Market 

2.3.1  Model Setup 
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In this section, we set up a simple model of a social-network-embedded prediction 

market, which both captures the key features of the experiment and serves as the 

benchmark for the hypotheses we test in the experiment. Table 1 summarizes the 

notations used for our model. 

 
Table 2.1: Summary of Notations   

V The random variable that the principal wants to forecast 
n The number of participants in the prediction market 
଴ܸ The prior mean of V 
 ௏ The prior precision of Vߩ
݇௜ The number of Participant ݅'s friends 
௜ܵ Participant ݅'s private signal 
 ௜ The signal’s errorߝ
 ఌ The precision of participants’ signal errorߩ 
 ݅ ௜ The prediction reported by Participantݔ 
݉௜ Whether Participant ݅ acquires information 
  ௜ Participant ݅'s mixed strategy of information acquisitionߪ
ܿ The cost of information acquisition  

 

A principal wants to forecast the realization of a random variable V. In reality, V 

could be movie box office revenue, future demand for electricity, or election outcomes. 

The principal resorts to n participants to obtain an accurate prediction. For ease of 

exposition, we refer to the principal as “he” and each participant as “she.” Before 

receiving any private information, the principal and the participants share a common 

prior on the distribution of V, given by:  

ܸ ׽ ܰሺ ଴ܸ,  ௏ሻ,                           (2.1)ߩ/1

where V଴ is the mean of the normal distribution, and ρV is the precision of the prior. 

Participants in the prediction market are linked to each other according to a social 

network, and information is transmitted over the network. The social network Γ ൌ ሺN, Lሻ 

is given by a finite set of nodes N ൌ ሼ1,2, . . . , nሽ and a set of links L ك N ൈ N. Each 
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node represents a participant in a prediction market. The social connections between the 

participants are described by an n ൈ n dimensional matrix denoted by g א ሼ0,1ሽ୬ൈ୬ such 

that: 

݃௜௝ ൌ ൜ 1, if ሺ݅, ݆ሻ א ܮ
0, otherwise  . 

Let N୧ሺgሻ ൌ ሼj א N: g୧୨ ൌ 1ሽ represent the set of friends of Participant i. The 

degree of Participant i is the number of Participant i's friends: k୧ሺgሻ ൌ #N୧ሺgሻ. The 

principal does not know the social network graph. For simplicity, we assume the network 

is undirected, but the results also hold for directed networks. 

Each participant is risk neutral and can access a private independent information 

source at a cost c. m୧ is a binary variable indicating whether Participant i acquires 

information. Participants exchange information over the social network: For simplicity, 

we assume that they can observe their direct friends’ information, but not their second-

order friends’ (friend’s friend) information. More precisely, if Participant i acquires 

information from her private source (m୧ ൌ 1), she observes a conditionally independent 

private signal and passes it to her friends: 

௜ܵ ൌ ܸ ൅ ,௜ߝ ௜ߝ ׽ ܰሺ0,1/ߩఌሻ,                       (2.2) 

where ρக is the precision of Participant i's information source for i ൌ 1,2, . . . , n. The 

signals' errors εଵ, . . . , ε୬ are independent across participants and are also independent of 

V. We assume that the precision of all participants' information sources is equal, which 

implies that no one is especially well informed, and that the valuable information is not 

concentrated in a few hands.  

The principal designs a quadratic loss function to elicit the private information of 

participants. A participant’s payoff function is given by: 

,ሺ݉௜ݓ ,௜ݔ ܸሻ ൌ ܽ െ ܾሺݔ௜ െ ܸሻଶ െ ݉௜ܿ,                (2.3) 
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where x୧  is the prediction reported by Participant i, and bሺx୧ െ Vሻଶ  is a quadratic 

penalty term for mistakes in the forecast. Notice that the optimal report for Participant 

i  is x୧כ ൌ EሾV|I୧ሿ, where I୧ is the information set of Participant i, which includes both 

the information she acquires and the information passed to her from the social network Γ. 

We can also use other strictly proper scoring rules (Fang, Stinchcombe, and Whinston 

2010). The qualitative results remain unchanged. 

A participant follows a two-step decision procedure. In the first stage, all of the 

participants decide whether to acquire information simultaneously. In the second stage, a 

participant makes use of her signal, as well as of the signals of her friends, to report her 

best prediction.  

We first focus on the optimization problem in the second stage. In the second 

stage, Participant i 's best prediction x୧כ  depends on whether Participant i  and her 

friends acquire information; thus, x୧כ is a function of m୧ and mN౟ሺ୥ሻ, where mN౟ሺ୥ሻ א

ሼ0,1ሽ୩౟  is the action profile of Participant i 's friends, and it represents whether 

Participant i's friends acquire information. 

If Participant i acquires information (m୧ ൌ 1), she forms her private belief from 

the private signal S୧, as well as from information she obtains from her neighbors, and her 

payoff is: 

ܽ െ ൫݉௜כ௜ݔൣܾ ൌ 1,݉ே೔ሺ௚ሻ൯ െ ܸ൧ଶ െ ܿ. 

If the participant has decided not to acquire information (m୧ ൌ 0), she forms the 

belief only from her neighbors' signals, and her payoff is: 

ܽ െ ൫݉௜כ௜ݔൣܾ ൌ 0,݉ே೔ሺ௚ሻ൯ െ ܸ൧ଶ. 

2.3.2  Equilibrium Results  

Given the action profile of her friends, Participant i’s utility is given by 

൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ ௏ܧ ቂܽ െ ൫݉௜,݉ே೔ሺ௚ሻ൯כ௜ݔൣܾ െ ܸ൧ଶ െ ݉௜ܿቃ,         (2.4) 
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where EV is the expectation with respect to V. The utility u൫m୧,mN౟ሺ୥ሻ൯ depends on 

whether Participant i and her neighbors acquire information.  

Following Galeotti et al. (2010), we assume that each participant observes her 

own degree k୧, which defines her type, but does not observe the degree or connections of 

any other participant in the network. For example, people who graduated from the same 

MBA program might have a good sense of their classmates after graduation, but they do 

not know who the friends of these classmates are. Another example is that people only 

pay attention to a subset of their friends in the Facebook and Twitter network, given their 

limited cognitive resources. They don’t know to whom their friends pay attention. 

Each participant’s belief about the degree of her friends is given by: 

ڄሺߎ |݇௜ሻ א ,ሼ1߂ . . . , ݇௠௔௫ሽ௞೔, 

where k୫ୟ୶  is the maximal possible degree, and Δሼ1, . . . , k୫ୟ୶ሽ୩౟  is the set of 

probability distribution on ሼ1, . . . , k୫ୟ୶ሽ୩౟. For simplicity, we make an assumption that 

neighbors' degrees are all stochastically independent, which means that Participant i's 

degree is independent from the degree of one of her randomly selected friends. This 

assumption is true for many random networks, such as the Erdös-Rényi random graph 

(Erdős and Rényi 1960).  

A strategy of Participant i is a measurable function σ୧: ሼ1. . . , k୫ୟ୶ሽ ՜ Δሼ0,1ሽ, 

where Δሼ0,1ሽ is the set of probability distributions on ሼ0,1ሽ. This strategy simply says 

that a participant observes her degree k୧, and on the basis of this information she decides 

whether to acquire information. Notice that Δሼ0,1ሽ means that the participant adopts a 

mixed strategy: She randomizes her actions with some probabilities in m୧ ൌ 1 and in 

m୧ ൌ 0. The strategy profile of Participant i’s friends is denoted by σN౟ሺ୥ሻ. 

We focus on symmetric Bayes-Nash equilibria, where all participants follow the 

same strategy σ . A Bayes-Nash equilibrium is a strategy profile, such that each 
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participant with degree k୧ chooses a best response to the strategy profile of her friends. 

Let Ԅ൫mN౟ሺ୥ሻ, σ, k୧൯ be the probability distribution over mN౟ሺ୥ሻ induced by Πሺڄ |k୧ሻ. 

The expected payoff of Participant i with degree k୧ and action m୧ is equal to: 
ܷ൫݉௜, ;ே೔ሺ௚ሻߪ ݇௜൯ ൌ ௠ಿ೔ሺ೒ሻܧ

൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ

∑ ߶൫݉ே೔ሺ௚ሻ, ,ߪ ݇௜൯ݑ൫݉௜,݉ே೔ሺ௚ሻ൯௠ಿ೔ሺ೒ሻ
,                                 (2.5) 

where E୫N౟ሺౝሻ
 is the expectation with respect to mN౟ሺ୥ሻ. We say that Participant i's 

strategy σ୧  is non-increasing if σ୧ሺk୧ሻ dominates σሺk୧ᇱሻ in the sense of first-order 

stochastic dominance (FOSD) for each k୧ᇱ ൐ k୧. In other words, if the strategy σ୧ is non-

increasing, high-degree participants randomize their actions with less probability in 

m୧ ൌ 1 and thus are less likely to acquire information. 

Proposition 2.1 gives us the basic result of the Bayes-Nash equilibrium. 

 

Proposition 2.1. There exists a symmetric Bayes-Nash equilibrium that is non-

increasing in degree. There exists some threshold kכ א ሼ0,1,2, . . . ሽ,  such that the 

probability of choosing to acquire information satisfies: 

ሺ݉௜ߪ ൌ 1|݇௜ሻ ൌ ቐ
1,          for ݇௜ ൏ כ݇
0,          for ݇௜ ൐ כ݇
ሺ0,1ሿ,   for ݇௜ ൌ כ݇

. 

Furthermore, the expected payoffs are non-decreasing in degree. 

 

The proof is included in the Appendix C. Proposition 2.1 has very clear 

implications. The participant's equilibrium action is weakly decreasing in her degree. In 

other words, the more friends she has, the less willing she is to acquire information. 

Participants can free ride on the actions of their friends. If Participant i has more friends, 

she is more likely to benefit from the signals passed around by her friends. It should also 

be emphasized that participants who have more friends earn higher payoffs under the 
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appropriate monotone equilibrium because of the positive externalities. Here, higher 

degree participants exert lower efforts but earn a higher payoff than do their less 

connected peers. The non-increasing property of equilibrium actions implies that social 

connections create personal advantage. In the network game with positive externalities, 

well-connected participants earn more than poorly connected participants. Note that the 

threshold degree kכ is a function of parameters such as c, ρக, and ρV. 

After making the decision on information acquisition, each participant reports the 

best point estimation. The purpose of prediction markets is to generate fairly accurate 

predictions of future events by aggregating the private information of a large population. 

How does the principal aggregate these small bits and pieces of relevant information that 

exist in the opinions and intuitions of diverse individuals? We assume that the principal 

adopts a simple averaging rule, and his prediction is ଵ
୬
∑  ୬
୧ୀଵ x୧כ. Note that the simple 

averaging rule is optimal only when all the participants' forecasts are independent and 

equally accurate; however, it is a good operational rule for limited information (e.g., 

Armstrong 2001). In our networked prediction markets, the principal has limited 

information: He does not know the social network graph. In this case, the principal 

cannot propose a weighted averaging rule and simply follows the operational rule of 

thumb: "Use equal weights unless you have strong evidence to support unequal weighting 

of forecasts" (Armstrong 2001, p. 422). 

 

2.4  An Experimental Analysis on Network Structure and Forecasting 

Performance  

In this section, we compare the performance of non-networked prediction markets 

(NNPM) with the performance of social-network-embedded prediction markets (SEPM) 

using controlled laboratory experiments. We also take into account the network structure 
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in which the participants are embedded. Our experiment demonstrates that network 

structure has a significant effect on the individual’s behavior of information acquisition 

and the prediction market performance. Eighty undergraduate students were recruited as 

subjects from a large university, and they had no previous experience in prediction 

market experiments. There were four experimental sessions, each consisting of five 

groups. We restricted our attention to the case of four-person networks, so each group 

consisted of four randomly assigned participants. The average earnings were $8.50 per 

person, including a $1.50 show-up fee, for a 40-minute session.  

2.4.1  Experimental Design 

 Similar to the setup of the theoretical model, participants were asked to predict a 

random variable V during the experiment. The common prior is given by equation (2.1) 

in our model setup, and in the experiment we set V଴ ൌ 10  and ρV ൌ 0.5 . Each 

participant could receive a private signal S୧ at a cost c. The signal S୧ is given by 

equation (2.2), and ρக ൌ 1.  

The experiment had a 4 ൈ 2  design: four different treatments of network 

structures ൈ two levels of information acquisition cost. The four treatments of network 

structures include: 1. the baseline treatment, non-networked environment; 2. complete 

network; 3. star network; and 4. circle network. They are illustrated in Figure 2.1. In all 

of the treatments, subjects participated in the experiment via the computer system we 

developed. Throughout the experiment, the subjects were not allowed to communicate in 

person and could not see others’ screens. The only communication channel available to 

them was to chat via designated Gmail accounts. In the baseline treatment, N୧ሺgሻ ൌ  ,׎

and each participant was isolated. In a complete network, Participant i was connected to 

three other participants (we call them Participant i’s “friends”). As Figure 2.2 shows, the 

participant “crecaustin02” could chat with “crecaustin”, “crecaustin03”, and 
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Each treatment was conducted in an experimental session with two independent 

decision-rounds. In Round 1, the cost of information acquisition was $0.50. In Round 2, 

the cost of information acquisition was $1. The order of the acquisition cost was always 

low and then high. To minimize the effect of reputation, each round started with the 

randomly formed groups (four-person networks). Participants in each round followed a 

two-stage decision process: information acquisition and prediction. Figure 2.3 depicts a 

flow chart of experiment round t, t = 1, 2 (the only difference between the two rounds is 

the cost of information acquisition). In the stage of information acquisition, participants 

made their decisions about whether to purchase a signal from an outside expert. If they 

paid the cost of information acquisition c, they would receive a private signal. Once all 

the decisions of information acquisition were made, participants could communicate over 

the given network under each treatment (After the experiment, we checked the 

participants’ chat history and found that no one misreported the private signal to others). 

In this stage, every participant chatted with every neighbor at the same time. It means that 

focal participants might receive information from their second-order friends. After 

checking the chat history, we found that participants received a substantial amount of 

information from their first-order friends but less information from their second-order 

friends. On average, a participant received information from 61.88% of her first-order 

friends and 4.38% of her second-order friends. This result implies that most participants 

were willing to exchange their private signals with others but were less willing to tell 

others the information they got from someone else. Specifically, we find that central 

participants in a star network only exchanged their own signals with peripheral 

participants. This information diffusion pattern is consistent with the exchange theory 

that explains the reciprocity based on the idea of socially embedded behavior (Jackson 

2008). Peripheral participants had no other information channels, except for their own 
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private signals and the information from the hub. Thus, central participants exchanged 

only their private signals, excluding information from others with peripheral nodes 

according to reciprocity and norms of fairness.  

 

 

Figure 2.3: The Flow Chart of the Experiment Round t, t = 1, 2 

 

After the experiment, the computer system calculated the total payoff of each 

participant according to the payoff function (2.3). We set a ൌ 5 and b ൌ 1. Therefore, 

the maximum payoff for each round was $5. We are interested in testing the following 

four hypotheses. Hypotheses 2.1 and 2.2 are motivated by Proposition 2.1 in the 

analytical model.  

 

Hypothesis 2.1. Each individual’s information acquisition is non-increasing in the 

participant’s degree. 
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Hypothesis 2.2 The participant’s earnings are non-decreasing in the degree. 

 

Hypothesis 2.3 is motivated by the following arguments: Even if participants are 

isolated in a non-networked environment, individual estimates are no longer independent 

because of the common prior (public information). The existence of a social network 

facilitates the dissemination of private information among participants, which effectively 

puts more weights on private information when participants’ predictions are aggregated 

in the prediction market. Such adjustment is beneficial to the forecasting accuracy 

because it corrects to a certain extent a possible bias toward the common prior. Social 

networks need not undermine the wisdom of crowd effect, especially when people share a 

common prior. On the other hand, when the cost of information acquisition is very high, 

the existence of a social network can impede information acquisition by the community 

as a whole because of possible free-riding opportunities, thus lowering the forecasting 

accuracy of the prediction market. 

 

Hypothesis 2.3. An SEPM outperforms an NNPM when the cost of information 

acquisition is low. 

 

Hypothesis 2.4 is motivated by a large body of literature on the identification and 

estimation of peer effects (Aral and Walker 2011). Peer effects are economically 

important because they are present in many decision domains, such as students’ academic 

performance (Sacerdote 2001), mutual fund managers’ portfolio choices (Cohen, 

Frazzini, and Malloy 2008), and health plan choices (Sorensen 2006). In our experiment, 

we tested whether the prediction performance of a participant is influenced by the 

members of the group to which they belong. 
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Hypothesis 2.4. Peer effects exist in the prediction accuracy among participants.   

 

In a star network, the central participant has an above-average influence. 

Hypothesis 2.5 is motivated by the following arguments: If the hub has a relatively wrong 

estimate, the above-average influence exacerbates the problem and hurts the prediction 

market performance significantly. 

Hypothesis 2.5. In a star network, the prediction market performance is positively 

correlated with the performance of the central participant. 

  

2.4.2  Summary Statistics 

Table 2.2 summarizes the statistics of participants’ predictions under different 

network structures. We perform two variance-comparison tests: the Variance ratio test (F 

test) and the Brown–Forsythe test. Note that the F test relies on the assumption that the 

samples come from normal distributions, and the Brown–Forsythe test (Brown and 

Forsythe 1974) provides robustness against many types of non-normal data while 

retaining good power. By calculating the standard deviations of predictions under 

different treatments, we find that the standard deviation under a complete network is 

significantly lower than the standard deviation under a non-networked environment 

(1.237 vs. 2.186, F test: p < 0.01; Brown–Forsythe test: p < 0.05), which suggests that 

communications lead to greater consensus about the true value.  

 
Table 2.2: Descriptive Statistics of the Participants’ Predictions 

 Mean The Std. Dev. Obs 
Non-Networked Environment 9.853364 2.186319 40 
Complete Network 9.893607 1.237169 40 
Star Network 9.916362 2.025045 40 
Circle Network 9.616113 1.532874 40 
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Figure 2.4: Predictions under Different Network Structures  

 

As Table 2.2 and Figure 2.4 show, the variation of the prediction also depends on 

the network structure. The standard deviation of the predictions under a star network is 

significantly higher than the standard deviation under a circle network (2.025 vs. 1.533, F 

test: p < 0.05; Brown–Forsythe test: p < 0.05), and the standard deviation of the 

predictions under a circle network is significantly higher than the standard deviation 

under a complete network (1.533 vs. 1.234, F test, p < 0.10; Brown–Forsythe test: p < 

0.10). The denser the network is, the lower the standard deviation of the predictions (the 

density of the network: complete > circle > star > non-networked). To address the 

problem that the underlying observation may not be independent, we also compute the 

average prediction in each four-person group (essentially removing the within group 

correlation) and then test the standard deviation under different network structures. The 
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result is robust. The intuition is that participants communicate with each other more 

effectively in a denser network. Thus, information exchange reduces the variance of the 

predictions.  

 

2.4.3 Experimental Results: Testing of H1 

Do participants play an equilibrium strategy of information acquisition in social 

networks? To test this hypothesis, we first compute the mean of information acquisition 

(if Participant i acquires information, m୧ ൌ 1; otherwise m୧ ൌ 0) when participants’ 

degree varies. Figure 2.5 shows that the equilibrium strategy of information acquisition is 

decreasing in the number of connections. 

We then run a logistic regression of participants’ information acquisition decision 

on their degree and the cost of information acquisition: 

logit Eሺacquisition୧|degree୧, cost୧, sdummy୧ሻ ൌ β଴ ൅ βଵdegree୧ ൅ βଶcost୧ ൅

βଷsdummy୧,                                                         (2.6)        

where, sdummy, a dummy variable included for a robustness check, indicates whether the 

participant having three connections is in a star network (because such participants can 

also be in a complete network). We find that participants’ information acquisition 

behavior is indeed consistent with the equilibrium strategy predicted by the analytical 

model: A larger number of connections leads to a lower probability of information 

acquisition. The result is shown in Column 1 of Table 2.3. We find that the probability of 

participants’ acquiring information decreases with the degree and the cost of information 

acquisition. Roughly speaking, the logit estimates should be divided by four to compare 

them with the linear probability model estimates (Wooldridge 2002). For example, 

Column 1 of Table 2.3 shows that adding a degree can reduce the probability of 

information acquisition by 7.6%.  
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Figure 2.5: Information Acquisition and Participants’ Degrees 

 

Column 2 suggests that the result is also robust to the inclusion of sdummy (Note 

that the P value for the coefficient of degree is 0.064, which is very close to a 5% 

significance level). Small sample size is a common problem for the experimental method. 

The validity of z-statistics depends on the asymptotic distribution of large samples. When 

the sample size is insufficient for straightforward statistical inference, bootstrapping is 

useful for estimating the distribution of a statistic without using asymptotic theory. In 

Column 3, we use bootstrapping to compute the standard errors and find that the result is 

robust (we draw a sample of 160 observations with replacement, and repeat this process 

10,000 times to compute the bootstrapped standard errors). To account for the possible 

unobserved heterogeneity of participants, we control for the subjects’ latent 

characteristics using a random effects model in Column 4, and the result is robust.  
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Table 2.3: Logistic Regression Analysis of Information Acquisition Using Model (2.6) 
(1) (2) (3) (4) (5) (6) (7) 

VARIABLES Logit Logit Bootstrapping Random 
effects 

Cluster 
effects 

Cluster 
Bootstrap 

Robust 
Std. Err.

     
degree -0.304** -0.293* -0.304** -0.296** -0.293*** -0.293*** -0.293**

[-2.010] [-1.855] [-2.017] [-2.201] [-6.692] [-3.361] [-2.092]
cost -1.302*** -1.302*** -1.302*** -1.317*** -1.302** -1.302*** -1.302**

[-3.706] [-3.706] [-3.567] [-3.352] [-2.492] [-4.162] [-3.712]
sdummy -0.154 -0.156 -0.154 -0.154 -0.154 

[-0.213] [-0.211] [-0.313] [-0.890] [-0.213]
Constant 1.693*** 1.686*** 1.693*** 1.704*** 1.686*** 1.686*** 1.686***

[4.403] [4.374] [4.393] [3.882] [4.191] [6.333] [4.560] 
     

Observations 160 160 160 160 160 160 160 
R-squared 0.186 0.187 0.186 0.111 0.187 0.187 0.187 

z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1 
    

 

As shown in Table 2.2, the standard deviations are not the same under different 

network structures. Potential problems arise with statistical inference in the presence of 

clustering effects. Default standard errors that ignore clustering can greatly understate 

true standard errors (Cameron, Gelbach, and Miller 2008). Wooldridge (2003) provided 

an econometric approach to analyzing cluster sample. Following his approach, we 

compute the variance matrices that are robust to arbitrary cluster correlation and 

unknown heteroskedasticity. 27  In our context, the observations are clustered into 

different network topologies. Standard errors are adjusted for clusters in Column 5, and 

the result is similar. A practical limitation of inference with cluster-robust standard errors 

is the assumption that the number of clusters is large. Cameron, Gelbach, and Miller 

(2008) show that cluster bootstraps can lead to considerable improved inference when 

there are few clusters. Column 6 shows that the results of the cluster bootstrap are robust. 

                                                 
27 Wooldridge’s example (2002) is to estimate the salary-benefits tradeoff for elementary school teachers 
in Michigan. Clusters are school districts. Units are schools within a district.  
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Because of the strong suspicion of heteroskedasticity, we also compute the 

heteroskedasticity-robust t statistics using the Huber-White sandwich estimators in 

Column 7 to check the robustness of our results. The robust t statistics can deal with the 

concerns about the failure to meet standard regression assumptions, such as 

heteroskedasticity (Wooldridge 2002). Our results are robust to the case when the 

modeling errors depend on the explanatory variables, such as degree and sdummy. Note 

that different network topologies can be linearly predicted from the variables degree and 

sdummy (dummy variables indicating network structures are redundant when we have 

the two explanatory variables, degree and sdummy, so adding additional dummy 

variables indicating network structures causes the problem of multicollinearity). Thus, the 

results in Column 7 are also robust to the case when the modeling errors depend on 

different network topologies.  

 

2.4.4 Experimental Results: Testing of H2 

We also examine the effect of social connections on individuals’ earnings. Figure 

2.6 shows that the mean of earnings for each round is increasing in the number of 

connections. 

Next, we run an ordinary least squares (OLS) regression of earnings on the degree 

and the cost of information acquisition: 

earnings୧ ൌ β଴ ൅ βଵdegree୧ ൅ βଶcost୧ ൅ βଷsdummy୧൅βସacquisition୧ ൅ ε୧.   (2.7) 

Table 2.4 shows that the participants’ earnings increase with the degree and 

decrease with the cost of information acquisition. Being excluded from these connections 

is thus a handicap for a participant. The basic result remains unchanged when we add a 

star network dummy variable, sdummy, or a dummy variable, acquisition, indicating 

whether a participant acquires information. Column 4 shows that the result is robust when 
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we use the method of bootstrapping. The result of a random effects model is similar and 

reported in Column 5. In Column 6, we account for clustering in data. Column 7 reports 

the results of the cluster bootstrap. We also run a robust regression and compute the 

robust t statistics in Column 8. Our estimators are shown to be robust to various kinds of 

misspecification. The experimental results in Tables 2.3 and 2.4 thus support Hypotheses 

2.1 and 2.2. Because of the randomization of the network position assignments, our 

experimental results do not suffer from the identification problem related to the 

endogenous network structure and reveal causality rather than mere correlation.  

 

 

Figure 2.6. Earnings for Each Round and Participants’ Degrees 
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Table 2.4. OLS Regression Analysis of the Participants’ Earnings Using Model (2.7) 
(1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES OLS OLS OLS Bootstrapping Random 
effects 

Cluster 
effects 

Cluster 
Bootstrap 

Robust 
Std. Err. 

       
degree 0.214** 0.228** 0.179** 0.214** 0.228** 0.228** 0.228** 0.228** 

 [2.119] [2.142] [2.060] [2.131] [2.012] [2.691] [2.101] [2.230] 
cost -0.774*** -0.774*** -1.001*** -0.774*** -0.786*** -0.774** -0.774*** -0.774***

 [-3.286] [-3.277] [-4.161] [-3.303] [-3.482] [-2.232] [-4.460] [-3.282] 
sdummy -0.217 -0.246 -0.217 -0.217 -0.217 -0.217 

 [-0.424] [-0.494] [-0.404] [-1.224] [-0.792] [-0.353] 
acquisition  -0.789***     

  [-3.142]     
Constant 3.560*** 3.552*** 4.234*** 3.560*** 3.558*** 3.552*** 3.552*** 3.552***

 [15.22] [15.09] [13.42] [16.31] [14.52] [47.10] [19.44] [16.14] 
       

Observations 160 160 160 160 160 160 160 160 
R-squared 0.287 0.287 0.343 0.287 0.187 0.287 0.287 0.287 

z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1   

 

2.4.5 Experimental Results: Testing of H3  

Hypothesis 2.3 predicts that when the cost of information acquisition is low, an 

SEPM outperforms an NNPM. In our experiment, each group is a prediction market, so 

we have 20 prediction markets in total. The performance of a prediction market g is 

measured by forecast accuracy: 

MAccuracy୥  ൌ  1  െ Absolute Percentage Error୥ ൌ 1 െ
หF୥ െ V୥ห

V୥
, 

where F୥ is the forecast of prediction market g, calculated as the average of all 

four participants’ predictions (the principal’s prediction) in that market, and V୥ is the 

realization of the random variable in market g. To test Hypothesis 2.3, we perform t-tests 

and Monte Carlo permutation tests with 10,000 permutations. A t-test relies heavily on 

the asymptotic distributional assumption and may not perform well when the sample size 

is small. A Monte Carlo permutation test gives a non-parametric way to compute the 

sampling distribution because no assumption on the sampling distribution is required (for 
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another example, see Jian and Sami (2012) who also compared the performance of 

different prediction markets using a permutation test). 

We find that when the cost of information acquisition is low ($0.50), a complete 

networked prediction market significantly outperforms an NNPM (t statistics: p = 0.04; 

permutation test: p = 0.02). When the cost of information acquisition is high ($1), the 

performance difference is not significant (t statistics: p = 0.42; permutation test: p = 

0.47). Therefore, the superior forecasting performance of a networked prediction market 

decreases with the cost of information acquisition. The relative performance of a 

networked prediction market to a non-networked prediction market depends on the cost 

of information acquisition. 

 

2.4.6 Experimental Results: Testing of H4 and H5 

Hypothesis 2.4 states that participants’ prediction accuracy can be affected by the 

accuracy of other participants in their network. There are several challenges in 

identifying the peer effects (Manski 1993). First, network formation could be 

endogenous: Individuals self-select their friends. For example, many social networks 

exhibit homophily: People are more prone to make friends with those who are similar to 

themselves. This makes it difficult to disentangle the selection effect and the real peer 

effects. This challenge is similar to the identification problem in estimating the effects of 

network structure. In our experiment, the “friends” of a participant were randomly 

assigned. Random assignment implies that a participant’s background characteristics, 

such as predictive ability, are uncorrelated with their friends’ background characteristics. 

This approach allows us to take care of the first challenge. 

Second, Participants i and j can affect each other simultaneously. This reflection 

problem (Manski 1993) causes a difficulty in identifying the actual causal effect if we 



 68

adopt a linear-in-means specification: Participant i’s prediction performance is a linear 

function of the average performance level of his or her friends.  

The reflection problem can be overcome by introducing nonlinearities into social 

interactions (Jackson 2008). The prediction accuracy of Participant i is influenced by the 

maximal accuracy of her friends: 

Accuracy୧ ൌ β଴ ൅ βଵmax୨אN౟Accuracy୨ ൅ βଶΩ୧ ൅ ε୧.         (2.8) 

N୧ሺgሻ ൌ ൛j א N: g୧୨ ൌ 1ൟ is the set of friends of Participant i, Ω୧ represents the 

control variables, and the prediction accuracy of Participant i is given by: 

Accuracy୧ ൌ 1  െ Absolute Percentage Error୧ ൌ 1 െ
|x୧ െ V|

V , 

where x୧  is the prediction of Participant i, and V is the realization of the random 

variable in the corresponding prediction market. In our experiment, this specification is 

reasonable because participants with high predictive ability share their “forecasting 

formula.” The performance of a participant directly depends on whether she has a clever 

friend. For example, as shown in Figure 2.7, a clever participant proposed a useful 

average rule. As a result, a participant’s prediction is influenced by her friends with the 

best forecasting performance. 

Table 2.5 presents the regression results. Again, we control for participants’ 

degree, the cost of information acquisition, and the dummy variable, acquisition. The 

variable, social influence, represents the maximal accuracy of Participant i’s friends. Our 

interest is the coefficient on social influence, βଵ, and we find that the coefficient is 

significantly positive in Column 1. This result is also robust to a different model 

specification in Column 2 and the use of bootstrapping. The coefficient implies that a 1% 

increase in the maximal accuracy of the friends of a focal player is associated with a 
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roughly 0.5% increase in the focal player’s prediction accuracy. This coefficient is 

moderate in size and seems plausible. 

 

 

Figure 2.7: A Screenshot of Chats between Two Participants in the Experiment 

 

Table 2.5: Estimation of Peer Effects using the Regression Model in (2.8) 
  (1) (2) (3) 
VARIABLES OLS OLS Bootstrapping 
   
social influence 0.460*** 0.492*** 0.460*** 

[6.299] [6.391] [2.606] 
acquisition -0.0147 -0.0262 -0.0147 

[-0.362] [-0.632] [-0.374] 
cost -0.0387  

[-1.474]  
degree -0.2461  

[-0.601]  
Constant 0.483*** 0.483*** 0.483*** 

[6.874] [6.874] [2.853] 
 

Observations 120 120 120 
R-squared 0.255 0.271 0.255 
z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1  

 

Hypothesis 2.5 states that peripheral nodes are influenced by the central 

participant in a star network, so the prediction market performance is positively 

associated with the prediction performance of the central participant. To test this 

hypothesis, we run an OLS regression of the prediction market accuracy of a star network 
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in market g (MAccuracy୥ ) on the prediction accuracy of the central participant 

(Accuracy୥ ), the cost of information acquisition, and the number of participants 

acquiring information in market g (signal): 

MAccuracy୥ ൌ β଴ ൅ βଵAccuracy୥ ൅ βଶcost ൅ βଷsignal ൅ ε୧.          (2.9) 

Table 2.6 shows the regression results. In Column 1, we find that a 1% decrease 

in the prediction accuracy of the central node is associated with a 0.534% decrease in the 

prediction market accuracy. When a hub has a relatively wrong estimate, it will cause a 

serious problem in a star networked prediction market. Column 2 shows that the result is 

robust after we control for the information acquisition in the market. To address the small 

sample concern, we do bootstrapping in Column 3, and the positive correlation is still 

significant.  

 

Table 2.6. Estimation of the Hub Effects using the Regression Model in (2.9) 
  (1) (2) (3) 
VARIABLES OLS OLS Bootstrapping 
   
Accuracy 0.534*** 0.520*** 0.534** 

[7.380] [6.721] [2.061] 
cost -0.0828 -0.0775 -0.0828 

[-1.621] [-1.450] [-1.282] 
signal -0.0316  

[-0.733]  
Constant 0.478*** 0.559*** 0.478* 

[6.882] [4.242] [1.893] 
 

Observations 10 10 10 
R-squared 0.896 0.904 0.896 
z or t-statistics in brackets, *** p<0.01, ** p<0.05, * p<0.1  
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2.5 Extension 

2.5.1 What Happens with a Complex Social Network? 

One shortcoming of the controlled experiment approach is that the network 

structure is relatively simplistic. A natural question is whether our hypotheses are 

supported when the underlying social network is more complicated. In particular, from a 

manager’s perspective, seeing how well Hypothesis 2.3 is supported with a more 

complex social network is important. This is because if an SEPM always (weakly) 

dominates an NNPM, then the manager of a prediction market should always promote the 

use of social networks among the participants. In this section, we conduct numerical 

simulations based on the analytical model to further analyze the effects of social 

networks on the forecast accuracy of prediction markets when the social network is more 

complex. The simulation results complement our findings from the experiment by 

demonstrating that a social network is actually a double-edged sword in a prediction 

market: When the cost of information acquisition is low, a social network can promote 

forecast efficiency, as suggested by our experimental results, but if the cost of 

information acquisition is high, it could decrease the prediction performance. 

Using our analytical model, we conduct a variety of agent-based simulations in 

the social-network-embedded prediction markets. In every simulation round, a random 

social network that includes 100 participants is generated, using a 100 ൈ 100 

dimensional matrix. Following the Erdős–Rényi random graph model, we assume that the 

link between two participants is formed with independent probability p  in our 

simulation. We set the parameter values for the common prior V~NሺV଴, 1/ρVሻ ൌ

Nሺ10, 2ሻ, and the noise of the signal ε୧~Nሺ0,1/ρகሻ ൌ Nሺ0, 1ሻ. The results are robust for 

other parameter values. On the basis of Proposition 2.1, we can compute the fixed point, 
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the threshold degree kכ, and then further compute the prediction by each participant, 

which enables us to compute the forecasting accuracy of the prediction market. 

In the simulation, we use two measures of prediction market performance: the 

forecast accuracy and the mean squared errors (MSE) of the prediction market. Recall 

that the forecast of prediction market g, F୥, is the simple average of all 100 participants’ 

predictions (the principal’s prediction) in that market. 

For each cost level of information acquisition, we run 1,000 simulations for both 

the SEPM and the NNPM, and then we compute the estimated forecast accuracy and the 

MSE. Figure 2.8 llustrates the effect of the cost of information acquisition on prediction 

market performances of the SEPM and the NNPM. The figure is drawn for parameter 

values n = 100, p = 0.3, V0 = 10, ρV = 0.5, ρ஫ = 1, and b = 1. Accuracy0  represents the 

forecast accuracy computed in the NNPM, and Accuracy1  represents the forecast 

accuracy in the SEPM. The forecast accuracy is defined as: 

Accuracy୥  ൌ  1 –Mean Absolute Percentage Error୥ ൌ 1 െ
1

1000 ෍
หF୥୨ െ Vห

V

ଵ଴଴଴

୨ୀଵ

,

g ൌ 0,1. 

Figure 2.8(a) shows that when the cost of information acquisition is low, the 

SEPM outperforms the NNPM in terms of forecast accuracy, and when the cost is high, 

the NNPM outperforms the SEPM. In Figure 2.8(b), this result is robust to a different 

measure of prediction market performance: MSE. MSE0 represents the MSE computed 

in the NNPM, and MSE1  represents the MSE in the SEPM. When c  is small, 

MSE0 െMSE1 ൐ 0 , which means that the SEPM outperforms the NNPM. As c 

increases, MSE0 െ MSE1 decreases, and when c is large enough, the NNPM performs 

better than the SEPM. 
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(a) Forecast Accuracy (b) MSE 

Figure 2.8: A Comparison between the Performances of the SEPM and the NNPM 

(Erdős–Rényi random graph) 

 

The Erdős–Rényi random graph may be inappropriate for modeling some real-life 

phenomena. Typical real-world social networks possess additional structure that is absent 

in the Erdős–Rényi random graph. For example, the Erdős–Rényi random graph does not 

exhibit power laws. Using the similar simulation approach, we can also study the 

prediction performance under more realistic social networks, such as the Preferential 

Attachment graph (Jackson 2008). In the Preferential Attachment graph, two participants 

are more likely to be socially connected if they have a common acquaintance. Note that 

the Preferential Attachment graph has two parameters: the number of participants n and 

the total number of edges in the graph e. To compare the Preferential Attachment graph 

with the Erdős–Rényi random graph we already discussed, we calculate the expected 

number of edges in the Erdős–Rényi random graph (n = 100, p = 0.3): [n(n-1)p]/2 = 1485 

(corresponding to the mean degree 29.7). Thus, we do a robustness check on the 
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Preferential Attachment graph for parameter values n = 100, e = 1485, V0 = 10, ρV = 0.5, 

ρ஫ = 1, and b = 1. Figure 2.9 shows that the results are robust. 

  
(a) Forecast Accuracy (b) MSE 

Figure 2.9: A Comparison between the Performances of the SEPM and the NNPM 

(Preferential Attachment graph) 

 

This simulation analysis suggests the following results.   

 

Simulation Result: The performance of an SEPM increases compared to an 

NNPM with decreasing information acquisition costs. 

 

There are two implications of this result: First, when the cost of information 

acquisition is low, a social network can enhance forecast accuracy in prediction markets. 

Second, a social network also has a negative effect on the forecast accuracy of a 

prediction market when the cost of information acquisition is high. The second 

implication is driven by the fact that in our analytical model, social networks could 
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reduce people's incentive to acquire information and could then be detrimental to the 

forecast accuracy of the prediction market as a whole. Our result depends crucially on the 

cost of information acquisition. Coval and Moskowitz (2001) show that investors prefer 

to hold local firms rather than distant ones, because the cost of acquiring information 

about companies located near investor is lower.28 Similarly, if a prediction market is 

created for forecasting the performance of a firm, participants have easier access to 

private information and have the lower travel, time, and research costs associated with 

obtaining private information.29 If participants in the United States are trying to predict 

the performance of a Chinese company, the cost of acquiring private information is 

extremely high.30 

These implications are critical to understanding how to use social networks to 

improve the performance of prediction markets. Our present results suggest the following 

guidance for the business practice of prediction markets: When the predicted event is 

simple, which is interpreted as a low information acquisition cost, we recommend a 

social-network-based prediction market. When the predicted event involves complicated 

issues, which can be interpreted as a high cost of information acquisition, the traditional 

non-networked prediction market is preferred. For example, it is rather difficult for 

people to know some information about the event, "Hugo Chavez to no longer be the 

President of Venezuela before midnight ET 31 Dec 2012" (Intrade Prediction Market). 

However, it is relatively easy to have some ideas about the Twilight movie box office 

                                                 
28 The “Home bias puzzle” has been widely studied in the finance literature (Coval and Moskowitz 2001). 
Investment managers exhibit a strong preference for domestic equities. 
29 Local participants can visit the firm’s operations, talk to employees, managers, and suppliers of the firm, 
and assess the local market conditions in which the firm operates. They may have close personal ties with 
local executives (e.g., run in the same circles, belong to the same country club). 
30 That is why Muddy Waters Research Group is especially known for its keen eye in spotting fraudulent 
accounting practices at Chinese companies. See http://blogs.wsj.com/deals/2012/11/28/examining-muddy-
waters-track-record/. 
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(Iowa Electronic Markets). Whether to use social networks in prediction markets depends 

on the cost of information acquisition. 

 

2.5.2 What Happens When the Signals Are Misleading? 

In the previous analysis, we assume that the private signals in the market are 

informative. However, under some circumstances, the signals may be misleading or 

systematically biased. For example, stocks plunged sharply on April 23, 2013, after a 

hacker accessed a newswire's account and tweeted about a false White House 

emergency. 31  The erroneous tweet, which was posted around 1:07 p.m. ET, said 

"BREAKING: Two Explosions in the White House and Barack Obama is injured." This 

tweet sent shock waves through the stock market and caused the market to tumble.  

What would happen when the signals in the markets are systematically biased? 

More formally, we modify equation (2.2) and assume that the signal is misleading in the 

sense that S୧ ൌ V ൅ d ൅ ε୧, where d > 0 or d < 0. The absolute value of d measures the 

systematic bias of the signal. The underlying social network is the Erdős–Rényi random 

graph. In Figure 2.10, we redo the simulation analysis when the signal is misleading. 

Accuracy0   represents the forecast accuracy computed in the NNPM, and 

Accuracy1 represents the forecast accuracy in the SEPM. In Figure 2.10(a), we find that 

when the systematic bias is small ( i.e., the absolute value of d is 1), the result is similar: 

The performance of an SEPM increases compared to an NNPM with decreasing 

information acquisition costs. However, when the systematic bias is sufficiently large 

(the absolute value of d is 3, 5, or 10), the result is the opposite (Figure 2.10(b)). Note 

that because our problem is symmetric, the simulation results when d = y are the same as 

                                                 
31 See http://buzz.money.cnn.com/2013/04/23/ap-tweet-fake-white-house/?iid=EL. 
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the results when d = - y, y = 1, 3, 5, 10. The intuition is that when the bias is large, 

receiving more signals is misleading rather than beneficial (the role of signals is just the 

opposite). When the cost of information acquisition is small, a social network between 

participants exacerbates the spread of misleading signals. Instead of improving the 

market performance, the dissemination of information is detrimental in this case. When 

the cost is high, the existence of a social network impedes the acquisition of biased 

information because of possible free-riding opportunities. Thus, an SEPM outperforms an 

NNPM. 
 

(a) Small-Bias Signal  (b) Large-Bias Signal 

Figure 2.10: A Comparison between the Performances of the SEPM and the NNPM 

When the Signals are Systematically Biased 
 

2.5.3 What Happens When Participants Can Observe Their Friends’ degrees? 

In our theoretical model, we assume that each participant observes her own 

degree, but does not observe the degrees of her friends. In many situations, a participant 
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has a good forecast of her own degree, but has incomplete information about the degrees 

of others (Galeotti et al. 2010). However, this is a strong assumption when we talk about 

social media, such as Facebook and LinkedIn. In this section, we extend our analytical 

model and relax this assumption by allowing each participant to observe her friends’ 

degrees in the four networks shown in Figure 2.1. The model setup in this section is 

similar to the setup in the previous theoretical analysis, except that the social networks 

are topologies in Figure 2.1 instead of random graphs. It is a complete information game 

in the sense that each participant has perfect knowledge about her friends’ degrees, so the 

equilibrium concept is a Nash equilibrium rather than a Bayes-Nash equilibrium. In this 

section, we show that a non-increasing strategy in information acquisition is also a Nash 

equilibrium strategy (it might not be the unique equilibrium strategy). In other words, the 

basic result in Proposition 2.1 is also valid when each participant can observe the degrees 

of her friends.  

For simplicity, let’s consider sixteen participants in total, and each network 

structure consists of four participants (four network structures). Participant i’s net benefit 

of acquiring information when kୟ (kୟ= 0, 1, 2, or 3) of her friends acquire information 

is: 
NB୩౗ ൌ u൫m୧

ᇱ ൌ 1,mN౟ሺ୥ሻ൯ െ u൫m୧ ൌ 0,mN౟ሺ୥ሻ൯ ൌ b ቀ ଵ
୩౗஡಍ା஡V

െ ଵ
ሺ୩౗ାଵሻ஡಍ା஡V

ቁ െ c, 

and for vector mN౟ሺ୥ሻ, there are kୟ elements of 1 and k୧ െ kୟ elements of 0. Note that 

NB୩౗ is decreasing in kୟ, so we have five possible cases:  

ଷܤܰ (1) ൏ ଶܤܰ ൏ ଵܤܰ ൏ ଴ܤܰ ൑ 0.   

 In this case, the cost of information acquisition is too high, and m୧ ൌ 0 is a Nash 

equilibrium strategy for all sixteen participants in the four networks. It is trivial to show 

that the equilibrium strategy is non-increasing in degree.  

(2) NBଷ ൏ ଶܤܰ ൏ ଵܤܰ ൑ 0 ൏  .଴ܤܰ



 79

In Case 2, a Nash equilibrium strategy for all four participants in the non-

networked environment is m୧ ൌ 1, because the net benefit of acquiring information 

when kୟ= 0 is positive. A Nash equilibrium strategy for participants in the complete 

network is that one participant acquires information and the other three participants do 

not acquire information. For participants in the star network, a Nash equilibrium strategy 

is that the central participant does not acquire information and the other three participants 

acquire information. A Nash equilibrium strategy for participants in the circle network is 

that Participants 1 and 3 in Figure 2.1 acquire information and the other two participants 

do not acquire information. Summarizing all the equilibrium strategies, we find that 

100% of participants with degree 0 acquire information, 100% of participants with degree 

1 acquire information, 50% of participants with degree 2 acquire information, and 20% of 

participants with degree 3 acquire information. Thus, the equilibrium strategy is non-

increasing in degree.  

(3) NBଷ ൏ ଶܤܰ ൑ 0 ൏ ଵܤܰ ൏  .଴ܤܰ

Similarly, in Case 3, Nash equilibrium strategies for participants in the non-

networked environment, the star network, and the circle network are the same as the 

strategies in Case 2. For participants in the complete network, a Nash equilibrium 

strategy is that two participants acquire information and the other two participants do not 

acquire information. We find that 100% of participants with degree 0 acquire 

information, 100% of participants with degree 1 acquire information, 50% of participants 

with degree 2 acquire information, and 40% of participants with degree 3 acquire 

information. Thus, the equilibrium strategy is non-increasing in degree.  

(4) NBଷ ൑ 0 ൏ ଶܤܰ ൏ ଵܤܰ ൏  .଴ܤܰ

In Case 4, Nash equilibrium strategies for participants in the non-networked 

environment and the star network are the same as the strategies in case (2). For 
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participants in the complete network, a Nash equilibrium strategy is that three 

participants acquire information and the other one participant does not acquire 

information. A Nash equilibrium strategy for participants in the circle network is that all 

of them acquire information. We find that 100% of participants with degree 0 acquire 

information, 100% of participants with degree 1 acquire information, 100% of 

participants with degree 2 acquire information, and 60% of participants with degree 3 

acquire information. Thus, the equilibrium strategy is non-increasing in degree.  

(5) 0 ൏ ଷܤܰ ൏ ଶܤܰ ൏ ଵܤܰ ൏  .଴ܤܰ

In Case 5, the cost of information is low, and the net benefit of acquiring 

information when kୟ= 3 is positive. All participants in the four networks acquire 

information. The equilibrium strategy is trivially non-increasing in degree. 

 

2.6  Conclusions 

In this paper, we designed and carried out a laboratory experiment to examine the 

effect of a social network on the performance of a prediction market, as well as on the 

behavior of its participants. Through randomization in the controlled experiment, we 

were able to identify the causal relationship between the network degrees of players and 

their performance in the prediction market as well as their strategic decisions regarding 

whether to acquire costly information. More importantly, we tested the hypotheses that 

social-network-embedded prediction markets outperform prediction markets without 

social network in terms of prediction accuracy, and we found the difference to be 

significant when the cost of information acquisition is low but insignificant when the cost 

of information acquisition is high. Further numerical simulations suggest that the 

existence of a social network in a prediction market lowers the forecasting accuracy when 

the cost of information acquisition is high. This has a direct managerial implication for 
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the business practice of prediction markets: When the predicted event is simple, 

promoting social networking among participants is beneficial, whereas if the predicted 

event involves complicated issues, a social network among participants should be 

discouraged. 

In the past few years, many large firms, such as Google, Microsoft, and HP, have 

experimented with internal prediction markets to improve business decisions (Chen and 

Plott 2002). The primary goal of these markets is to generate predictions that efficiently 

aggregate many employees’ information. It is easier for employees to gain access to 

private information about the company. Compared to outsiders, the cost of information 

acquisition is lower for internal employees. In this context of corporate prediction 

markets, the implication of our results is that an SEPM outperforms an NNPM when 

participants are internal employees.   

Our experiment results also suggest that network structure matters when it comes 

to the performance of social-network-embedded prediction markets. An important future 

research direction is to extend our static model to further investigate exactly how the 

network structure affects prediction market performance as well as the performance and 

behavior of each participant over time. It would be interesting to create some social 

network measures that can help explain the variation of performances of prediction 

markets with different social network structures. Another interesting future research 

direction is to examine the incentives to share information in a social network through a 

laboratory experiment. Do participants exchange information according to reciprocity and 

norms of fairness? Studying the incentives for sharing information or the sale of 

information in social-network-embedded prediction markets remains an open question. 
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Chapter 3: Learning from Your Friends’ Repeated Check-Ins: An 
Empirical Study of Location-Based Social Networks 

3.1  Introduction 

The most famous example of herd behavior is a sequential decision model in 

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992): people make their 

decisions on whether or not to dine on the basis of how many consumers are already in a 

restaurant. In the current practice, however, people tend to seek information available on 

location-based social networking applications for decision making (e.g., Foursquare, 

Facebook Place, or Google Latitude). 32  The location-sensing mobile devices offer 

geolocation capabilities to share the users’ location information with their friends. People 

“check in” at restaurants using a mobile website, text messaging, or a device-specific 

application in order to have their check-ins posted on their social network accounts. As 

technology evolves, the emerging location-based service makes us rethink the classical 

theory of herding and observational learning and try to upgrade it to a 2.0 version 

embedded with social media features.  

The location information adds an important social network dimension to prior 

herding literature. People can observe the choices made by their Foursquare or Facebook 

friends without having to physically visit the restaurants to observe. As a result of these 

new technologies, a striking difference has arisen: In the previous herding story, people 

arrive at the restaurants in a sequence, and they can observe all of the choices made by 

people before them, including many anonymous consumers. In the current practice, 

people are connected by a Foursquare or a Facebook network, and they can observe only 

                                                 
32 As of December 19, 2013, Foursquare has 45 million users and 60 million locations. Locations consist 
of restaurants, theaters, bars, museums, or schools. See http://expandedramblings.com/index.php/by-the-
numbers-interesting-foursquare-user-stats/#.U0GFrvldVIE.  
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their friends' choices.33 Such features change the way people find what they want online. 

Searching the web is the traditional way that people discover contents, and people can 

read online comments of anonymous consumers by searching the web. However, as 

location-based social networks become increasingly important in information exchange 

and transmission, friends start to direct each to interesting content. People actively share 

their check-ins to interact with their friends, family, and colleagues, and provide social 

recommendations (Lindqvist et al. 2011). Therefore, the study of the herd behavior in 

location-based social networks is both interesting and important. 

In prior literature, observational learning means that individual’s decisions are 

affected by the observation of others’ choices because of its informational content. 

Despite the intuitive appeal of observational learning, the estimation of the effects of 

observational learning is complicated by a plausible confounding mechanism: the 

saliency effects, an aspect of a stimulus that stands out from the rest (Cai et al. 2009).  

In this study, we aim to take a step further to examine these confounding 

mechanisms and estimate observational learning and the saliency effect in a structural 

model of location-based social networks. In our context, observational learning means 

“check-ins” made by friends to help users learn the quality information of a venue; the 

saliency effect refers to the fact that check-ins leads some of the uninformed consumers 

to discover a new venue. Both effects are theoretically plausible and need to be 

empirically examined. 

The recent growth of location-based social networks provides an ideal 

environment to study observational learning. First, the well-known reflection problem 

(Manski 1993) arises when there is a circularity of cause and effect: Person i’s choice is 
                                                 
33 Although users can also observe anonymous people’s check-ins on Foursquare, they only receive push 
check-in notification from their friends. We argue that this push technology makes friends’ check-ins stand 
out from all check-ins on Foursquare because of users’ limited attention.  
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influenced by the mean of peer behavior, which reflects person i’s behavior. Social 

interactions models can fail to be fully identified for this interdependency in behaviors. In 

our context, the problem does not occur because of the rich data: we can observe the 

chronological sequence of users’ check-in behavior. Later check-in behavior is 

influenced by early check-in behavior, but not vice versa. 

Second, social network platforms are prone to abusive use and manipulations 

from strategic parties.34 Without a proper verification mechanism to filter out opinion 

spam, firms can manipulate the process of observational learning by deploying spam bots 

and leaving fake messages to deceive consumers. It is difficult to identify the real effect 

of observational learning in an environment where firms deliberately manipulate public 

beliefs by exploiting spamming techniques to create information cascades (such as Yelp 

and TripAdvisor reviews). Recently, there are more concerns about the authenticity of 

restaurant reviews. For example, only diners who have booked and honored a reservation 

through OpenTable.com are able to submit ratings and reviews.35 In contrast with other 

social network platforms, location-based service is less susceptible to these types of 

contamination by integrating location-based information which can be used for additional 

verification (Lindqvist et al. 2011). A check-in using the location-sensing mobile devices 

requires verification of users’ GPS data, so it represents a real visit. When a focal user’s 

friends check in at venues, the push notification service uses push technology36 through a 

constantly open IP connection to forward notifications from the servers of the location-

based application to the focal user’s mobile devices. 

                                                 
34 For example, Yelp allows its users to sign up free and post reviews under a made-up "screen name." The 
Federal Trade Commission has received more than 2,046 complaints filed about Yelp from 2008. Most of 
the complaints are from small businesses that claim to have received unfair or fraudulent reviews. See 
http://online.wsj.com/news/articles/SB10001424052702303847804579477633444768964.   
35 See http://support.opentable.com/app/answers/detail/a_id/152/kw/rr/related/1.  
36 See http://en.wikipedia.org/wiki/Push_technology.  
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Third, in the classical story of observational learning (Banerjee 1992), a consumer 

is not allowed to visit a restaurant repeatedly. However, we observe a pattern of repeated 

check-ins in location-based social networks. To motivate our analysis, consider the 

following example. Assume that Mr. A observes that his friend Miss. B checked in at 

Restaurant C once one month ago, and after that Miss B has never visited again. Mr. A 

also observes that Miss B has checked in Restaurant D four times in the past month. 

What then could Mr. A conclude? He might believe that Miss B’s repeated visits signal 

the suitability and quality of Restaurant D. Differing from the classical observational 

learning theory, one check-in during a long time period could be a bad signal for 

Restaurant C in contrast with Restaurant D. Location-based service allows us to offer 

insights into real-world observational learning in social networks. 

Using a unique dataset from a major location-based social networking website in 

China, we estimate a structural model of observational learning. A tight integration of 

structural modeling and location-based technology allows us to identify the parameters of 

the underlying individual choice model and conduct counterfactual analysis. Our 

structural model goes beyond location-based service, and applies to other experience 

goods where observational learning occurs in social networks. For example, Amazon 

allows consumers to socially-share their purchases across Facebook, Twitter and e-mail.37 

 

3.2  Literature Review 

This present study adds to prior research by offering a new perspective on 

location-based services. Xu et al. (2010) address the privacy concerns in location-based 

networks. They differentiate three privacy intervention approaches --- compensation, 

                                                 
37 See http://www.amazon.com/gp/feature.html?docId=1001426011.  
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industry self-regulation, and government regulation --- and examine their impacts on the 

privacy calculus. Xu et al. (2012) conduct an experimental study to further explore the 

effects of these three approaches on control perceptions and privacy concerns. In the 

present study, we focus on answering a different question about location-based networks: 

Given that consumers check in at restaurants using location-based services, how does 

observational learning (friends’ check-ins) affect the focal consumer’s decision?  

Our present work also contributes to existing literature on network effects. Most 

prior research focuses on payoff externalities of network effects: The value of the service 

directly depends on the consumption choices made by some other consumers, irrespective 

of their reasons for the choices. Pang and Etzion (2012) analyze the optimal pricing of the 

online service when a firm sells a product and can offer a complementary online service 

that displays network effects. Kauffman et al. (2000) empirically examine the impact of 

network externalities on the adoption of networks. Oestreicher-Singer and Zalmanson 

(2013) show that consumers’ willingness to pay is strongly linked to community 

participation using the data from the online music website Last.fm. These studies share a 

similar feature: payoff externalities. Similar to their models, in our structural model of 

location-based networks, a customer's dining decision is also affected by the decisions of 

other consumers. However, our study focuses on information externalities instead of 

payoff externalities: A customer's utility does not directly depend on other people's prior 

dining decisions. She makes an inference about the restaurant quality by observing other 

people's choices. The decisions of her friends are useful signals that extract more 

information about the quality.  

Herd behavior and information cascade have been widely studied in the literature 

(Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992). In the canonical model of 

observational learning, agents make decisions sequentially after having observed their 



 87

predecessors' choices. In a sequential decision making setup, they show that at some 

point, people follow the decisions of their predecessors regardless of their private 

information. Smith and Sørensen (2000) further generalize the model by allowing taste 

diversity and find that herding is not the only possible long run outcome: there exists an 

informational pooling equilibrium where everyone must rely on her private signal. In 

these models, people can observe the decisions of all their predecessors. This is not an 

appropriate assumption in location-based networks. People have limited attention and 

tend to be worried about letting strangers know where they are. Acemoglu et al. (2011) 

study a theoretical observational learning model over a general social network. In their 

model, people observe only subsets of their predecessors. Golub and Jackson (2010) 

examine how network structure influences learning and the diffusion of information. In 

our structural model, we assume that a customer can observe only her friends' decisions, 

which fits the important feature of location-based social networks.  

A handful of empirical research has examined the mechanism of observational 

learning in reality. Duan, Gu, and Whinston (2009) empirically examine herd behavior 

and informational cascades in the context of online software adoption. Zhang (2010) 

study observational learning in the U.S. kidney market. Chen, Wang, and Xie (2011) 

disentangle if consumers' purchase decisions can be influenced by others' opinions (word 

of mouth) or others' actions (observational learning) using a natural experiment from 

Amazon. Hendricks, Sorensen, and Wiseman (2012) develop a model of social learning 

in which consumers observe only the aggregate purchase history and test the model using 

the data from a controlled laboratory experiment. In our present study, we use a structural 

approach to empirically estimate parameters of an observational learning model in 

location-based social networks.  
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Our work is also related to social influence models that can fail to be fully 

identified for a variety of reasons. Manski (1993) discusses the econometric challenge of 

identifying social effects: Is a person’s behavior caused by his social reference group, or 

does it simply reflect the same movement in his reference group? The observation that 

individuals belonging to the same group tend to behave similarly might result from social 

contagion, exogenous contextual effects, or homophily. Failure to account for contextual 

effects or homophily — the tendency of individuals to associate with similar others, 

might lead to an overestimation of the effect of social effects. These confounding effects 

are difficult to distinguish, and the identification of social effects often requires strong 

parametric assumption or rich data collection. Aral, Muchnik, and Sundararajan (2009) 

distinguish influence-based contagion from homophily-driven diffusion using a dynamic 

matched sample of global instant messaging users. Iyengar et al. (2011) distinguish social 

contagion from homophily and exogenous contextual effects in prescribing behavior 

among networks of doctors. Shi and Whinston (2013) use the nonnegative matrix 

factorization technique to solve the problem of correlated unobserved heterogeneity and 

identify the real social effects. In our context of location-based networks, homophily 

(correlated unobserved taste) may also provide useful information to help people make 

inference about the quality of venues. Thus, we do not formally differentiate real social 

effects and homophily, and the estimate in our study is an upper bound of social learning.    

It is also instructive to contrast our model with the diffusion model in marketing 

literature, especially the repeat purchase diffusion model (Rao and Yamada 1988). 

Different types of social learning are at work under different circumstances. Word of 

mouth has been studied widely in the previous literature, but there have been very few 

attempts to examine the effects of observational learning in location-based networks. 

Several studies have shown the presence of diffusion in new product adoption and the 
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role of word of mouth (e.g., Godes and Mayzlin 2009; Goldenberg et al. 2009). In our 

study, social learning also plays a critical role in location-based networks, but the 

diffusion mechanism is different. Our model captures the feature of observational 

learning, which is different from word of mouth. People can infer the quality of venues 

by observing the choices of their friends: their check-ins.  

 

3.3  Data 

The dataset comes from a major location-based social networking website (a 

foursquare-like website) in China. As of July 2013, it has 5 million users. Users can 

check in at a venue to say that they are currently there using this location-based mobile 

application. It also lets users connect to their friends, which are equivalent to the concept 

of friends on Facebook. Users can observe their network friends’ check-ins through the 

mobile application like Figure 3.1. 38  Users can choose to have their check-ins 

synchronized to their other social-network accounts, such as Twitter, Sina Weibo, and 

Tencent Weibo (see Figure 3.2). 

                                                 
38 The screenshot is actually from a U.S. location-based app: Foursquare, however, the Chinese location-
based social networking website described in our paper is highly similar to Foursquare and is frequently 
called the Foursquare of China.  
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China. The period of check-in history is from May, 2010 – Jan, 2013. We can observe 

when who checked-in and where. The total number of users is 138,972, and the total 

number of check-ins is 391,767. Figure 3.3 depicts the frequency histogram of the check-

ins of restaurants, and Figure 3.4 is the frequency histogram of the unique customers of 

restaurants. The other part of our data is the undirected friendship network. The social 

network is recorded as of February 15, 2011. Table 3.1 summarizes the descriptive 

statistics by a user. It shows that on average each user has approximately 35 friends and 

makes 3 check-ins in the sampling time period. 

 

 

Figure 3.3: Histogram of the Check-ins of Restaurants 
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Figure 3.4: Histogram of the Unique Customers of Restaurants 
 

Table 3.1: Descriptive Statistics of Location-Based Service Users 
 Mean The Std. Dev. Max Min Obs 

The number of check-ins 2.819 6.839 817 1 138,972
The number of friends 34.639 529.883 5,461 0 138,972
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friend’s first time check-in (see Figure 3.5) or her repeated check-ins (see Figure 3.6). 

The role of these two types of check-ins is different. When a user checks in at venue, a 
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application, an extensive empirical literature on limited attention shows that attention is a 

scarce resource and people have limited cognitive abilities to process information 

(Lacetera, Pope, and Sydnor 2012). The push notification technology makes the friends’ 

check-ins more salient to the focal user than other anonymous check-ins.  

Repeated friends’ check-ins do not add additional information about the existence 

of a new restaurant. However, your friends’ repeated visits show that they are satisfied 

with the restaurant food and service. Repeated check-ins imply that the ex-post utility is 

higher than the reservation utility and further signal the quality of the restaurant. To some 

extent, a first time check-in might also signal the restaurant quality: It shows that a 

consumer’s ex-ante utility from visiting a venue is higher than her reservation utility. 

However, in contrast with repeated check-ins, the main role of a first-time check-in is the 

awareness effect.  

 

 

Figure 3.5: A First Check-in at a Restaurant 
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Figure 3.6: Repeated Check-ins at a Restaurant 

 

3.4  A Structural Model of Learning in Location-Based Networks 

In this section, we develop and estimate a model of restaurant discovery and quality 

learning. Following Hendricks and Sorensen (2009), the probability that a consumer 

visits a venue is the product of two probabilities: the probability that she likes the venue 

conditional on discovering the venue and the probability that she discovers the venue. It’s 

important to consider the awareness probability in restaurant discovery. Note that neither 

of these two probabilities is directly observable in the data. We estimate them from a 

structural model.  

We outline the sequence of events in period t as follows (the process proceeds in a 

similar manner in period t + 1): 
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Stage 1: Consumers become aware of a restaurant ݆  in period t. Following 

Hendricks and Sorensen (2009), we specify a functional form for the conditional 

probability that an uninformed consumer discovers venue ݆ in period t: 

 Pr൫ܦ௜௝௧ ൌ 1൯ ൌ ௣ೕ௘
್ೕ೑೔ೕ೟షభ

൫ଵି௣ೕ൯ା௣ೕ௘
್ೕ೑೔ೕ೟షభ

,                        (3.1) 

where ܦ௜௝௧ denotes a binary variable that is equal to one if consumer ݅ learns about 

venue ݆ in period ݐ (conditional on not having learned in any prior period), and ௜݂௝௧ିଵ 

is the number of first time check-ins of consumer ݅’s friends in period ݐ െ 1. In this 

specification, the number of unique friends’ check-ins can increase the awareness 

probability in the first stage. A friend may check in a restaurant several times in a period, 

and we assume that only the first check-in matters in terms of awareness probability. 

Repeated check-ins may increase the focal consumer’s expectation about the quality of a 

restaurant, but they do not add new information about the existence of the restaurant. In 

location-based social networks, the focal consumer becomes aware of a restaurant via the 

first time check-in.  

 If the number of first time check-ins (unique friends’ check-ins) is zero ( ௜݂௝௧ିଵ =  

0), then the default awareness probability is: Pr൫ܦ௜௝௧ ൌ 1൯ ൌ -௝. Without a location݌

based social network, a consumer can still discover a new restaurant by searching on 

Yelp, TripAdvisor, and other sources of public information. As the number of first time 

check-ins gets very large, the probability converges to one, at a rate that depends on the 

parameter ௝ܾ, which measures the saliency effect of first time check-ins.  

Note that we are not trying to answer the question why people would like to check in 

using location-based services when they visit a venue in this study.39 Instead, we assume 

                                                 
39 Lindqvist et al. (2011) find that people actively use location-based service mainly because of pro-social 
motivations. Some restaurants and bars also reward consumers (typically in the form of discounts) when 
they check in using the mobile application. 
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that active users always check in at a venue using their smart phones if they visit the 

venue. In future research, this assumption can be relaxed in a more complete structural 

model considering the check-in incentives based on a trade-off between check-in deals 

and privacy concerns for friends.  

The unconditional probability that an uninformed consumer discovers venue ݆ in 

period ݐ: 

௜௝௧ݍ  ൌ ௜௝௧ିଵݍ ൅ ሺ1 െ ௜௝௧ܦ௜௝௧ିଵሻPr൫ݍ ൌ 1൯.                (3.2) 

We set ݍ௜௝଴ ൌ  ௜௝௧ݍ .݆ ௝଴ is interpreted as the baseline awareness of venueݍ .௝଴ݍ

can be interpreted as the proportion of informed consumers for venue j in period t, and 

the proportion accumulates over time. Unlike purchasing durable goods (Berry, 

Levinsohn, and Pakes 1995), consumers can repeatedly visit a venue in different time 

periods in our context.  

Stage 2: Conditional on that they are aware of the restaurant, consumers make a 

decision on whether to go to this restaurant.  

The utility function for consumer ݅ conditional on having learned venue ݆ 

 ௜ܷ௝௧ ൌ ,ሺܳ௝หܴ௜௝௧ିଵܧ ௝൯ߙ ൅ ,௜௝௧ߝ ,௜௝௧~ܰሺ0ߝ  ଶሻ,           (3.3)ߪ

where ܧሺܳ௝หܴ௜௝௧ିଵ, ௝൯ߙ ൌ ௝ߙ ൅ ௝ܴ௜௝௧ିଵߛ . The reservation utility ܷ  is normalized to 

zero. R୧୨୲ିଵ is the number of friends’ total repeated check-ins at venue j up until period 

t - 1. The parameter α୨ is the heterogeneity of restaurants. Consumers interpret their 

friends repeated check-ins as more credible signals of the suitability and quality of 

restaurants. Yan, Wang, and Chau (2013) empirically show that the higher satisfaction a 

restaurant delivers, the higher the possibility that consumers will revisit. Following the 

test of herding proposed in Zhang and Liu (2012), the coefficient on ܴ௜௝௧ିଵ measures the 

effect of observational learning. In our study, we focus on the learning effect of repeated 

check-ins and assume that the restaurant quality is exogenously given and cannot be 
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changed over time. In reality, the positive effect of repeat purchases on quality can 

mitigate the lemons problem (Riordan 1986): A restaurant has an incentive to provide 

higher quality in order to retain repeat purchases. ߝ௜௝௧  represents individual taste 

heterogeneity and is i.id. distributed. Note that in equation (3.3), we do not directly model 

the process of Bayesian learning in networks because the decision rules used in perfect 

Bayesian equilibria are complicated and the analytic solution requires strong assumptions 

on network topology (Acemoglu et al. 2011; Qiu and Whinston 2012).  

Conditional on discovering the venue, if the utility of visiting restaurant j in period t, 

௜ܷ௝௧, is greater than the reservation utility, consumer i will go to restaurant j in period t. 

The probability that consumer ݅ visits venue ݆ in period ݐ conditional on discovering 

the venue is given by 1ൣܧ൫ ௜ܷ௝௧ ൒ ܷ൯൧.40 The probability that a consumer visits a venue 

in period ݐ is the product of two probabilities: ݍ௜௝௧ ڄ 1൫ൣܧ ௜ܷ௝௧ ൒ ܷ൯൧. Let’s consider the 

benchmark case: In the absence of a location-based social network, the probability that 

consumer i visits a venue in period 1 is ሾݍ௝଴ ൅ ሺ1 െ ௝ߙ௝ሿPr൫݌௝଴ሻݍ ൅ ௜௝ଵߝ ൒ 0൯. Note that 

in this model, we do not consider the strategic behavior of delaying the decision making 

process to obtain more information about restaurant quality.41  This assumption is 

appropriate in our context because the dining choice is not a critical decision, in contrast 

with the purchase of durable goods, such as automobiles. When the product is purchased 

repeatedly and is relatively unimportant, consumers tend to apply very simple choice 

rules that provide a satisfactory choice to make a quick decision (Hoyer 1984). It is also 

important to note that in Berry, Levinsohn, and Pakes (1995), a consumer can only 

choose one from several brands available in the automobile market. In contrast with the 
                                                 
40 Each time people check in, they show the restaurants and bars they like to their friends. Because of this 
reputation concern, some consumers may only check in at a restaurant when they truly like it. In the present 
study, we do not consider the heterogeneity of individual’s reservation utility.   
41 Similarly in the behavioral literature, preference uncertainty may lead to choice deferral when no single 
alternative has a decisive advantage (Dhar 1997). We also do not consider this situation.  
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durable good market discussed in Berry, Levinsohn, and Pakes (1995), our setup allows a 

consumer to visit several different venues during one time period. We think this is more 

realistic for non-durable goods, such as restaurant dining.   

We construct the likelihood function to estimate the empirical model: 

logܮሺߠሻ ൌ logෑ 
்

௧ୀଵ

ෑ 
௃

௝ୀଵ

ෑ 
ே

௜ୀଵ

௜௝௧ݍൣ ڄ Pr൫ ௜ܷ௝௧ ൒ 0൯൧௒೔ೕ೟ൣ1 െ ௜௝௧ݍ ڄ Pr൫ ௜ܷ௝௧ ൒ 0൯൧ଵି௒೔ೕ೟ 

 ൌ ∑  ்
௧ୀଵ ∑  ௃

௝ୀଵ ∑  ே
௜ୀଵ ൤ ௜ܻ௝௧log

௤೔ೕ೟ڄ௉௥൫௎೔ೕ೟ஹ଴൯
ଵି௤೔ೕ೟ڄ௉௥൫௎೔ೕ೟ஹ଴൯

൅ log ቀ1 െ ௜௝௧ݍ ڄ Pr൫ ௜ܷ௝௧ ൒ 0൯ቁ൨,  

where ௜ܻ௝௧ is an indicator for whether consumer ݅ visits venue ݆ in period ݐ from the 

real data. In the estimation, we use one month as the time unit of analysis. ܶ is the 

number of time periods (T = 32), J is the number of venues (J = 50), and ܰ is the 

number of consumers (N = 138,972). Note that if ௜ܻ௝௧ ൌ 1, then Prሺܦ௜௝௠ ൌ 1ሻ ൌ 1, for 

݉ ൌ ,ݐ ݐ ൅ 1, . . . , ܶ. 

Our estimates of the parameters are chosen to satisfy: 
෠ߠ ൌ ሺߙఫෝ , ఫෝߛ , ఫෝ݌ , ఫܾ෡ , ො௝଴ሻݍ ൌ argmax

ఈೕ,ఊೕ,௣ೕ,௕ೕ,௤ೕబ
logܮሺߠሻ              (3.4) 

To summarize, the parameters to estimate include the observational learning effect 

௝ߛ , restaurant heterogeneity ߙ௝ , the default awareness probability ௝݌  , the 

saliency/awareness effect ௝ܾ, and the baseline awareness ݍ௝଴.  

The saliency/awareness parameters ݌௝ , ௝ܾ , and ݍ௝଴  are identified from the 

variation in first time check-ins of focal user’s friends and the functional form of 

conditional awareness probability specified in equation (3.1). The observational learning 

effect ߛ௝, and restaurant heterogeneity ߙ௝ together shape the second stage of consumers’ 

decision process. Note that they cannot separately identified from the variance of 

individual taste heterogeneity ߪଶ. Therefore, we normalize the variance ߪଶ to be one, 

and estimate ߛ௝ and ߙ௝ as free parameters. In the present study, we do not use the fixed 
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effect method because in general our two-stage model is not linear although in the second 

stage, equation (3.3) is linear.  

The estimation of our model is different from the generalized method of 

moments (GMM) algorithm used by Berry, Levinsohn, and Pakes (1995). Because we 

have a richer individual level dataset, we don’t need to match the calculated market 

shares with the observed market shares. In contrast with the structural models in cereal 

industry (Nevo 2001) and hotel industry (Ghose, Ipeirotis, and Li 2012), we propose and 

estimate a two-stage individual decision model considering new restaurant discovery in 

the first stage and quality learning in the second stage. Following Erdem, Keane, and Sun 

(2007), we can also construct ܴ௜௝௧ିଵ as an exponentially smoothed weighted average of 

friends’ repeated check-ins, and the estimation results are similar.  

 

3.5  Empirical Results 

 In this section, we present the empirical results estimated from equation (3.4). 

Figure 3.7 shows the estimated ߛ௝ for each restaurant in equation (3.3). We can also see 

the heterogeneity of observational learning effects in Figure 3.7. This might be driven by 

the heterogeneity of restaurant characteristics. For example, a restaurant in a downtown 

area might be more affected by observational learning effects than a roadside restaurant 

on a highway: The business of the first restaurant relies heavily on repeat purchases. 

 Figure 3.8 show that ௝ܾ  is significantly positive for some restaurants, but 

insignificant for some other restaurants. This implies that for some restaurants, the 

saliency effect may not exist in location-based social networks. As the number of first 

time check-ins gets larger, the probability of discovering a new restaurant converges to 

one, at a rate that depends on the parameter ௝ܾ. It would be interesting to compare our 
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estimates with Hendricks and Sorensen (2009): the awareness rate b = 0.065 in their 

estimation.  

 

 

Figure 3.7: Histogram of the Effect of Repeated Check-ins  

 

 

Figure 3.8: Histogram of the Effect of First Time Check-in 
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 Figure 3.9 depicts the estimation results of the default learning probability. If the 

number of first time check-ins is zero, then the conditional probability that an uninformed 

consumer discovers venue ݆ in period t is ݌௝. For most restaurants, ݌௝ is less than 0.5%. 

The result indicates that the location-based social network could play a great role in 

increasing the initial awareness of restaurants. Figure 3.10 shows the estimated baseline 

awareness in the initial period. For most restaurants, ݍ௝଴ is less than 5%. Figure 3.11 

depicts the estimated restaurant heterogeneity, ߙ௝. 

 

 

Figure 3.9: Histogram of the Default Learning Probability  
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Figure 3.10: Histogram of the Baseline Awareness 

 

 

Figure 3.11: Histogram of the Restaurant Heterogeneity  
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3.6  The Strength of Strong Ties  

 In this section, we further examine the strength of social ties on observational 

learning in location-based networks. The role of social ties has been extensively 

examined in literature (Shriver, Nair, and Hofstetter 2013). The strand of research on 

social ties originates from the “strength of weak ties” hypothesis proposed by Granovetter 

(1973). The gist of the hypothesis is that we always get truly new information from 

acquaintances, rather than from our close friends. The groups with which we have strong 

ties, although they are filled with people eager to help, are also filled with people who 

know roughly the same things we do. Thus, strong ties usually result in informational 

redundancy. Weak ties, meanwhile, are much more valuable in terms of contributing 

genuinely new information. 

 However, when we consider observational learning in location-based social 

networks, our estimation in this section shows the strength of strong ties: Strong ties were 

more likely to be activated for observational learning. In other words, a “closer” friend’s 

check-in would play a more important role in the focal consumer’s decision making.  

 The strength of social ties between consumer i and her friend, consumer j, is 

measured by the number of their common friends, adjusted by the number of consumers 

who are friends of either consumer i and consumer j. More formally,       
௜௝ݏ ൌ ௝௜ݏ ൌ

ீሺ௜ሻீתሺ௝ሻ
ீሺ௜ሻீ׫ሺ௝ሻ

,                        (3.5) 

where ܩሺ݅ሻ represents the set of friends of consumer i. This measure is widely used in 

the literature (Shi and Whinston 2013). We divide a consumer’ friends into two equally 

sized groups depending on the tie strength: The group of close friends include consumer 

i’s friends who have the highest 50% of the level of ݏ௜௝. The left is the group of ordinary 

friends. Let ܥሺ݅ሻ represent the set of close friends of consumer ݅, and ܱሺ݅ሻ represent 

the set of ordinary friends of consumer ݅. 
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 We modify the structural model to investigate the role that tie strength plays in the 

process of observational learning. The awareness stage (the first stage) remains 

unchanged, and we focus on the observational learning stage (the second stage). The 

equation (3.3) is modified to the following utility function: 

 ௜ܷ௝௧ ൌ ௝ߙ ൅ ௝ߚ ௜ܸ௝௧ିଵ ൅ ௝௖ܴ௜௝௧ିଵ௖ߛ ൅ ௝௢ܴ௜௝௧ିଵ௢ߛ ൅ ,௜௝௧ߝ ,௜௝௧~ܰ൫0ߝ  ௝ଶ൯.       (3.6)ߪ

where ܴ௜௝௧ିଵ௖  is the number of close friends’ total repeated check-ins at venue ݆ up until 

time period t - 1, and ܴ௜௝௧ିଵ௢  is the number of ordinary friends’ total repeated check-ins 

at venue ݆ up until period t - 1. The parameter ߛ௝௖ measures the observational learning 

effect of strong ties, and ߛ௝௢ measures the observational learning effect of weak ties.   

 The strength of strong ties could be driven by two reasons. First, close friends’ 

check-ins can be a more credible signal because of trust and reputation based on repeated 

interactions. People tend to trust information from close trusted sources more. A 

recommendation from a close friend is more reliable than an acquaintance who may have 

an incentive to mislead the focal consumer. Forman, Ghose, and Wiesenfeld (2008) show 

that identity and reputation of online review authors are often factored when consumers 

make purchase decisions and evaluate the helpfulness of online reviews. Online 

community members rate reviews containing identity-descriptive information more 

positively. 

 Second, homophily caused by close friendship might accelerate the speed of 

observational learning. Homophily refers to the fact that people are more prone to 

maintain friendship with people who are similar to themselves. It has profound 

implications for the spread of information (Jackson 2008) and the speed of opinion 

convergence and learning (Golub and Jackson 2012). In our context, a close friend’s 

check-in could be more informationally valuable because it reflects both the quality of 

the restaurant and the correlated taste. In the present study, we do not formalize 
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homophily in the structural model, and it could be a future extension of our work.  

 Note that in both specifications (3.3) and (3.6), we find a significant observational 

learning effect in location-based social networks. It shows that our estimates are more 

likely driven by credible sources of identification in the data rather than functional forms. 

 

3.7  Counterfactual Analysis: the Engineering of Observational 

Learning  

 A major advantage of the structural approach is that it allows for interesting 

counterfactual analysis that is simply not possible with reduced form regressions by 

recovering fundamental structural parameters (Nevo and Whinston 2010). If 

observational learning can provide consumers with useful quality information when they 

purchase experience goods, we would like to know the value of observational learning. 

We may also want to evaluate the effectiveness of different seeding strategies that can 

strengthen the awareness effect and induce consumers’ observational learning. Seeding is 

the process of allocating marketing to specific customers. In our context, seeding refers to 

the fact that restaurants reward specific consumers in the form of discounts (check-in 

deals) when they check in using location-based services to stimulate observational 

learning. In order to compute such values, we need to be able to adjust optimal consumer 

behavior when observational learning is amplified (by different seeding strategies). With 

a structural model a managerial recommendation is possible, unlike reduced form 

regressions that would suffer from a lack of external validity to predict responses to not-

yet-observed changes when past evidence is not rich enough to provide exogenous 

sources of variation to accurately identify treatment effects (Nevo and Whinston 2010).42 

                                                 
42 It is also important to note that when exogenous variations have occurred before and we have a rich set 
of directly observable controls, a reduced form model (based on treatment effects) has its own advantages 
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 In the present study, we allow the heterogeneity of structural parameters across 

different firms, and therefore can more precisely predict consumers’ responses to 

different seeding strategies. Our firm-specific counterfactual analysis could expand the 

business model of location-based service and has profound implications for local 

business to engage with consumers in experience good markets.  

 In our context, restaurants must consider three critical factors that can affect the 

success of seeding strategies: 

(1) The initial set of targeted consumers (the portion of targeted consumers x); 

(2) The length of the viral marketing campaign periods, w; 

(3) Seeding effort, e. 

 Note that for (1) the initial set of targeted consumers, restaurants could 

collaborate with location-based networks and seed to well-connected consumers in terms 

of degree centrality. (3) seeding effort is measured by the number of additional check-ins 

made by each consumer in the initial targeted set. If restaurants provide a higher reward 

in the forms of check-in deals (high seeding efforts), they may induce a larger number of 

consumers’ check-ins within a certain time period. For example, a new restaurant might 

attract more check-ins by the deal “free lunch special on your 8th visit this month” than 

the deal “free jamaica iced tea on your 4th visit this month.” 

Let’s consider the following seeding strategy: seeding to 5% well-connected 

consumers (in terms of degree centrality) and induce each of them to make four more 

check-ins in period 0. In this case, e = 4, w = 1, and x = 5%. Figure 3.15 is an illustrating 

example and shows the effect of the seeding strategy on the number of consumers dining 

in a specific restaurant. We can observe a similar pattern when we examine different 

                                                                                                                                                 
and can “trace a shorter route from facts to findings” (Angrist and Pischke 2010). For example, Aral and 
Walker (2011) examine how to engineer social contagion using a randomized field experiment.  
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restaurants. The triangle markers represent the growth of the number of consumers dining 

in the restaurant from real data, and the circle markers represent the counterfactual 

growth patterns when the restaurant uses the seeding strategy. The counterfactual analysis 

based on the estimates from equation (3.4) demonstrates that the seeding strategy can 

significantly increase the number of future consumers. This result is consistent with the 

findings in the prior literature showing that seeding tends to be more cost efficient than 

traditional mass media advertising (Hinz et al. 2011). Aral and Walker (2011) 

econometrically identify the effect of different viral product features on social contagion. 

In their paper, the passive-broadcast viral feature is the automated broadcast notifications 

that are passively triggered by user activity. For example, Facebook notifies friends 

automatically when a user adopts a new application. Actually, this passive-broadcast viral 

feature also induces consumers’ observational learning. They find that designing products 

with passive-broadcast viral messaging capabilities generates a significant (246%) 

increase in local peer influence and social contagion. Dou, Niculescu, and Wu (2013) 

explore how a monopolistic firm can strategically engineer the strength of network 

effects via social media with the right market seeding strategies. 

 Through the counterfactual policy simulations, we quantify the value of check-in 

deals offered by the collaboration between location based platforms and local business. In 

contrast with the business model of online coupon websites, such as Groupon, the 

business model of location-based service could be more sustainable because of the 

positive effect of observational learning induced by friends’ check-ins.  
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Figure 3.12: The Effect of Seeding Strategies 

 

 It is believed that one of the major advantages of the business model of Groupon 

is that Groupon’s offerings create Word-of-Mouth and buzz for new products and 

services, helping them reach the “tipping point.” The theory is that even though local 

business would lose money on the coupons, they can attract long-term customers for 

listing the deal. However, in practice, local merchants already have their doubts about the 

effectiveness of daily deals: they find their customer volume falls off after the deals are 

done and they are not much better off than before they offered the coupon.43 In our study, 

we find that consumers’ observational learning is particularly important for local business, 

considering its limited advertising campaigns. Check-in deals targeting well-connected 

consumers could be a more effective seeding strategy to help local business reach the 

                                                 
43 See http://www.usnews.com/news/blogs/rick-newman/2013/03/01/maybe-groupons-problem-isnt-its-
ceo. Groupon’s stock has plunged from $20 in 2011 to around $7 in 2014. The shrinking profit margins 
make future earnings and revenue growth unsustainable.  
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tipping point of customer volume.   

  

3.8  Conclusions  

 In this paper, we estimated a structural model of social learning in location-based 

networks using data from a Foursquare-like website in China. Through estimating a 

model of restaurant discovery and quality learning, we were able to identify observational 

learning and the saliency effects in location-based social networks. 

 The present study has several limitations. We did not differentiate real social 

effects and homophily. Although these mechanisms lead to similar empirical outcome, 

their implications are vastly different (Aral, Muchnik, and Sundararajan 2009). It would 

be interesting to allow correlated unobserved tastes in the estimation of our structural 

model. Like Hinz et al. (2011), we also assumed that the location-based social network 

remains fixed for the duration of our study. This assumption ignores the effects of 

dynamic network formation in real-world social networks. 

 The business model of location-based service relies on the active online sharing of 

check-ins. However, personally identifiable check-in data can place the user at 

unexpected risk.44 People who highly value privacy can be less willing to share their 

check-ins when they visit venues.45 In reality, people may choose not to check in when 

they visit venues because of privacy concerns. Real-time location sharing could be used 

for criminal purposes, ranging from spying and stalking to theft.46 A site known as 

                                                 
44 See http://www.huffingtonpost.com/christopher-burgess/the-double-edged-sword-of_b_643178.html.  
45 This might cause a selection bias problem in sampling (Heckman 1979). However, As Lindqvist et al. 
(2011) shows, privacy concerns have not kept user from experimenting with and adopting location-based 
service. Restaurants and bars are fairly popular places to check-in at. Therefore, we believe the selection 
bias is small.  
46 In 2012 Foursquare blocked an app called ‘Girls Around Me’ which highlighted the locations of young 
women using Foursquare in the area. See http://bits.blogs.nytimes.com/2012/03/30/girls-around-me-ios-
app-takes-creepy-to-a-new-level/?_php=true&_type=blogs&_r=0.  
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“Please Rob Me” raises awareness about the privacy concerns of location sharing. The 

site scrapes data from public Twitter messages that have been pushed through Foursquare 

to list people who were not at home. The positive effect of observational learning in 

social networks would be weakened as a result of privacy concerns. For example, 

Blippy was a social networking site for users to post and follow each other's updates 

about their credit card purchases of goods and services. The purchase sharing service was 

shut down as of May 2011 because it is risky to share online purchases with friends on 

the web: Several credit card transactions shared on Blippy have been exposed — with full 

credit card numbers included — in Google search results.47 Studying the effect of 

privacy concerns on observational learning in social networks remains an open question.   

 Another future research direction is to examine welfare implications of location-

based services using structural estimations. When changes in consume welfare is 

unobserved, estimation of classical treatment effects is not possible, but inferences about 

underlying parameters drawn from observed behavior using structural modeling can 

allow us to predict these welfare changes (Nevo and Whinston 2010). Another issue is 

related to big data and sampling strategies. In very large samples, p-values could go 

quickly to zero, and they are not reliable for statistical significance. Our estimation 

results are robust when we draw a smaller sample and use different sampling strategies.  

 

 

 

 

 

                                                 
47 See http://techcrunch.com/2011/05/19/the-end-of-blippy-as-we-know-it/.  
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Appendix A: Proof of Results in Chapter 1 

Proof of Proposition 1.1 

Proof. Suppose that the bidding strategy of all other hotspots is Qכሺθሻ, and let’s consider 

hotspot i’s expected profit. If Qכሺθሻ is also an optimal strategy for hotspot i, hotspot i 

should have no incentive to pretend that the cost parameter is θ෨  when the true cost 

parameter is θ୧. Let vሺθ෨, θ୧ሻ be hotspot i’s expected profit if he bids Q൫θ෨൯ while his 

true cost parameter is θ୧: 

,෨ߠሺݒ  ௜ሻߠ ൌ ൣ1 െ ෨൯൧௡ିଵߠ൫ܨ ቂܤ ቀܳ൫ߠ෨൯ቁ െ ,෨൯ߠ൫ܳ൫ܥ  ௜൯ቃ.       (A.1)ߠ

For vሺθ෨, θ୧ሻ to be maximized at θ෨ ൌ θ୧, we need ∂vሺθ෨, θ୧ሻ/ ∂θ෨|஘෩ୀ஘౟ ൌ 0: 

 ሾ1 െ ௜ሻߠ௜ሻሻܳᇱሺߠᇱሺܳሺܤ௜ሻሿ௡ିଵൣߠሺܨ െ ,௜ሻߠொሺܳሺܥ  ௜ሻ൧    (A.2)ߠ௜ሻܳᇱሺߠ

 ൌ ሾܤሺܳሺߠ௜ሻሻ െ ,௜ሻߠሺܳሺܥ ௜ሻሿሺ݊ߠ െ 1ሻሾ1 െ  .௜ሻߠᇱሺܨ௜ሻሿ௡ିଶߠሺܨ

Let vሺθ୧ሻ ൌ vሺθ୧, θ୧ሻ. Plugging (A.2) into the expression of vᇱሺθ୧ሻ, we can 

obtain that vᇱሺθ୧ሻ ൌ െሾ1 െ Fሺθ୧ሻሿ୬ିଵC஘ሺQሺθ୧ሻ, θ୧ሻ, and 

௜ሻߠሺݒ ൌ ׬  ఏכ

ఏ೔
ሾ1 െ ,ሻݔఏሺܳሺܥሻሿ௡ିଵݔሺܨ  (A.3)                .ݔሻ݀ݔ

On the other hand, the hotspot with the lowest θ always wins the auction, so the 

sum of the expected profits of the cellular service provider and the hotspots is  

݊න  
ఏכ

ఏ
൫1 െ ሻሾܸሺܳሻߠᇱሺܨሻ൯௡ିଵߠሺܨ െ ,ሺܳܥ  ,ߠሻሿ݀ߠ

where n is the number of hotspots and n൫1 െ Fሺθሻ൯୬ିଵFᇱሺθሻ is the density of the 

lowest θ. The cellular service provider’s expected profit is given by 

݊න  
ఏכ

ఏ
൫1 െ ሻሾܸሺܳሻߠᇱሺܨሻ൯௡ିଵߠሺܨ െ ,ሺܳܥ ߠሻሿ݀ߠ െ  ,௜ሻሿߠሺݒሾܧ݊

where nEሾvሺθ୧ሻሿ is the sum of the expected profits of all hotspots because the hotspots 

are ex-ante symmetric. After integration by parts, the equation above reduces to:  

݊න  
ఏכ

ఏ
൫1 െ ሻሾܸሺܳሻߠᇱሺܨሻ൯௡ିଵߠሺܨ െ ,ሺܳܥ ሻߠ െ ,ఏሺܳܥ  .ߠሻሿ݀ߠሺܪሻߠ
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Let Qכሺθሻ be determined by the following first-order condition:  

ܸᇱሺܳכሺߠሻሻ ൌ ,ሻߠሺכொሺܳܥ ሻߠ ൅ ,ሻߠሺכொఏሺܳܥ  .ሻߠሺܪሻߠ

Because Vሺڄሻ is strictly concave and Hሺڄሻ is increasing, we can easily show that 

Qכሺθሻ is decreasing in θ. In addition, Qכሺθሻ clearly maximizes the cellular service 

provider’s expected profit. We need to further show that Qכሺθሻ is an equilibrium 

bidding strategy for the hotspots. Suppose that Qכሺθሻ  is the equilibrium bidding 

strategy. From (A.1), we have 

,௜ߠሺݒ ௜ሻߠ ൌ ሾ1 െ ௜ሻሻߠሺܳሺܤ௜ሻሿ௡ିଵሾߠሺܨ െ ,௜ሻߠሺܳሺܥ  .௜ሻሿߠ

Combining this equation with (A.3), we can obtain: 

ሻ൯ߠሺכ൫ܳܤ ൌ ,ሻߠሺכሺܳܥ ሻߠ ൅
׬  ఏכ

ఏ ൫1 െ ,ሻݔሺכఏሺܳܥሻ൯௡ିଵݔሺܨ ݔሻ݀ݔ

൫1 െ ሻ൯௡ିଵߠሺܨ
, 

and then we can verify that under Bሺڄሻ, Qכሺθሻ is indeed an equilibrium bidding strategy.    

 

Proof of Proposition 1.2 

Proof. This proof is similar to the proof of Proposition 1.1. For a multiple region auction, 

the cellular service provider’s expected profit is 

ܧ ൥ ෠ܸ ൭෍ 
௡

௜ୀଵ

௜൱ݍ െ෍ 
௡

௜ୀଵ

,௜ݍሺܥ ௜ሻߠ െ෍ 
௡

௜ୀଵ

,௜ݍఏሺܥ  .௜ሻ൩ߠሺܪ௜ሻߠ

Because the hotspots’ congestion cost functions are convex, the virtual marginal 

costs are equalized across hotspots:  

 ෠ܸ ᇱሺ∑  ௡
௜ୀଵ ௜ሻݍ ൌ ܿሺݍ௜, ௜ሻߠ ൅ ܿఏሺݍ௜,  ௜ሻ.                  (A.4)ߠሺܪ௜ሻߠ

for i ൌ 1,2, . . . n. The bandwidth allocation schedule q୧ ൌ Qሺθ୧, θି୧ሻ satisfying (A.4) 

maximizes the cellular service provider’s expected profit. Using arguments analogous to 

those in Proposition 1.1, we can show that Qሺθ୧, θି୧ሻ is decreasing in θ୧ and that 

Qሺθ୧, θି୧ሻ is an equilibrium bidding strategy for the hotspots.    
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Proof of Proposition 1.3 

Proof. We first show that the cellular service provider does not have incentive to 

misreport the demand vector when M ൌ 1. The proof for the case that M ൐ 1 is similar. 

 If the cellular service provider purchases Yଵ units of bandwidth in region 1, then given 

the realization of the demand, X෩, the expected reduction of congestion cost for the 

cellular service provider is: 

ܷሺ ଵܻሻ ൌ ଴ሺܥ ෨ܺ െ ܺ஻ሻ െ ଴ሺܥ ෨ܺ െ ܺ஻ െ ଵܻሻ. 

UሺYଵሻ is strictly increasing and strictly concave, and 

ܷᇱሺ ଵܻሻ ൌ ଴ᇱሺܥ ෨ܺ െ ܺ஻ െ ଵܻሻ. 

 

Lemma A.1 If Xୟ ൌ X෩, the optimal bidding strategy Qכ൫θ, X෩൯ is strictly increasing in X෩. 

Proof: The bidding strategy Qכ൫θ, X෩൯  is determined by the following first order 

condition:  

ܷᇱሺܳכ, ෨ܺሻ ൌ ,כொሺܳܥ ሻߠ ൅ ,כொఏሺܳܥ  .ሻߠሺܪሻߠ

Using the implicit function theorem, we can obtain: 
డொכ

డ௑෨
ൌ ି஼బᇲᇲሺ௑෨ିொכሻ

ି஼బᇲᇲሺ௑෨ିொכሻି஼ೂೂሺொכ,ఏሻି஼ೂೂഇሺொכ,ఏሻுሺఏሻ
൐ 0.  Q.E.D. 

 

Let UୟሺZଵሻ ൌ C଴ሺXୟሻ െ C଴ሺXୟ െ Zଵሻ. If Xୟ ് X෩, the cellular service provider 

should pretend that the demand is Xୟ. Under the payment-bandwidth schedule B, the 

bidding strategy for a hotspot is Qכሺθ, Xୟሻ, which is given by: 

ܷ௔ᇱ ሺܳሻ ൌ ,ொሺܳܥ ሻߠ ൅ ,ொఏሺܳܥ  .ሻߠሺܪሻߠ

However, the cellular service provider’s expected profit is  

݊න  
ఏכ

ఏ
൫1 െ ሻሾܷሺܳሻߠᇱሺܨሻ൯௡ିଵߠሺܨ െ ,ሺܳܥ ሻߠ െ ,ఏሺܳܥ  ߠሻሿ݀ߠሺܪሻߠ
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The bidding strategy Qכሺθ, Xሻ maximizes the cellular service provider’s expected 

profit. Because Xୟ ് X෩ , and by Lemma A.1, Qכሺθ, Xሻ  is strictly increasing in X , 

Qכሺθ, Xୟሻ cannot maximize the cellular service provider’s expected profit. Thus, the 

cellular service provider does not have incentive to misreport the demand information.    

 

Proof of Proposition 1.4 

Proof. The proof is straightforward from the proof of Proposition 1.2.    

 

Proof of Proposition 1.5 

Proof. First, we need to show that hotspot i does not have an incentive to misreport its 

type under the mechanism ሺP୧ככ, q୧ככ, λ୫ככሻ. Let’s define 

ככ௜ݍ ൌ ככܳ ቀߠ௜, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,௜ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ, 

ܳᇱ ൌ ככܳ ቀߠ෠௜, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,෠௜ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ, 

where θ෠୧ ് θ୧. Without loss of generality, we assume θ෠୧ ൐ θ୧. It is easy to show that 

Qככ ቀθ୧, θି୧, X෩ଵ, X෩ଶ, λ୫ככ൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ቁ is nonincreasing in θ୧ (A higher reported type 

results in less bandwidth purchased from this hotspot). Given that other hotspots report 

their types truthfully, the gain of hotspot i if it reports its true type θ୧ is: 

௜ܲ
,௜ߠሺכ ௜ሻିߠ െ ,௜ߠሺכሺܳܥ ,௜ሻିߠ  ௜ሻߠ

ൌ න  
ఏכ

ఏ೔
ఏܥ ቀܳככ ቀߠ, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  ߠ݀

ൌ න  
ఏ෡೔

ఏ೔
ఏܥ ቀܳככ ቀߠ, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  ߠ݀

൅න  
ఏכ

ఏ෡೔
ఏܥ ቀܳככ ቀߠ, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  ߠ݀

൒ න  
ఏ෡೔

ఏ೔
ఏܥ ቀܳככ ቀߠ෠௜, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,෠௜ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  ߠ݀
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൅න  
ఏכ

ఏ෡೔
ఏܥ ቀܳככ ቀߠ, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  ߠ݀

ൌ ,ሺܳᇱܥ ෠௜ሻߠ െ ,ሺܳᇱܥ  ௜ሻߠ

൅න  
ఏכ

ఏ෡೔
ఏܥ ቀܳככ ቀߠ, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  ,ߠ݀

where the inequality comes from the fact that Qככ ቀθ୧, θି୧, X෩ଵ, X෩ଶ, λ୫ככ൫θ୧, θି୧, X෩ଵ, X෩ଶ൯ቁ is 

nonincreasing in θ୧ and the assumption c஘ ൒ 0. Therefore, hotspot i does not have an 

incentive to report θ෠୧ when its true type is θ୧. 

Then we need to show the proposed mechanism is optimal for the cellular service 

provider. If 0 ൑ y୫ככ ൑ XB, we have: 

஻ܺככ௠ߣ ൌ ככ௠ݕ ൌ ሺ ෨ܺ௠ െ തܺሻ െ ሺ ௠ܻ െ തܻሻ. 

The expected payment from the cellular service provider to hotspot i is 

න  
ఏכ

ఏ
ቈܥሺݍ௜ככ, ௜ሻߠ ൅ න  

ఏכ

ఏ೔
,ככ௜ݍఏሺܥ ቉ߠሻ݀ߠ ௜ߠ௜ሻ݀ߠᇱሺܨ ൌ න  

ఏכ

ఏ
,ככ௜ݍሺܥ  ௜ߠ௜ሻ݀ߠᇱሺܨ௜ሻߠ

൅න  
ఏכ

ఏ
ቈන  

ఏכ

ఏ೔
ఏܥ ቀܳככ ቀߠ, ,௜ିߠ ෨ܺଵ, ෨ܺଶ, ,ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ቁ , ቁߠ  .௜ߠ௜ሻ݀ߠᇱሺܨ቉ߠ݀

After integration by parts (the second term), this reduces to 

න  
ఏכ

ఏ
ሾܥሺݍ௜ככ, ௜ሻߠ ൅ ,ככ௜ݍఏሺܥ  .௜ሻߠሺܨ௜ሻሿ݀ߠሺܪ௜ሻߠ

We can show that the expected payment under the proposed mechanism is the 

same as the payment characterized in Proposition 1.4 if 0 ൑ y୫ככ ൑ XB. Because the 

mechanism described in Proposition 1.4 is optimal for the cellular service provider when 

0 ൑ y୫ככ ൑ XB, the proposed mechanism is also optimal when 0 ൑ y୫ככ ൑ XB. If y୫ככ ൏ 0, 

or y୫ככ ൐ XB, then we have λ୫ככ ൌ 0 or 1. Without loss of generality, we assume that 

λଵככ ൌ 1, and λଶככ ൌ 0. In this case, an optimal mechanism is to allocate all cellular 

resource to region 1, and then organize two separate local auctions. This result is given 

by the following lemma: 
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Lemma A.2 If the feasibility condition is not satisfied, then it is optimal for the cellular 

service provider to organize two local auctions with  

,௜ߠ൫ככ௠ߣ ,௜ିߠ ෨ܺଵ, ෨ܺଶ൯ ൌ ൜0, if ݕ௠
ככ ൏ 0

1, if ݕ௠ככ ൐ ܺ஻
,݉ ൌ 1,2. 

Proof: Under the contingent procurement auction, we need to solve the following 

optimization problem under each demand contingency: 

݉݅݊
௬భ,௬మ

෍  
ଶ

௠ୀଵ

଴ሺܥ ෨ܺ௠ െ ௠ܻ െ  ௠ሻݕ

.ݏ   .ݐ ෍  
ெ

௠ୀଵ

௠ݕ ൌ ܺ஻, ௠ݕ ൒ 0. 

Because the feasibility ratio is 0, the constraint is always binding for all ሺθ୧, θି୧ሻ. 

Thus the optimal solution is  yଵכ ൌ XB, yଶכ ൌ 0, or yଵכ ൌ 0, yଶכ ൌ XB. Without loss of 

generality, we assume that  yଵכ ൌ XB, and yଶכ ൌ 0. 

The expected reduction of congestion cost for the cellular service provider is 

given by 

ܷሺ ଵܻ, ଶܻሻ ൌ ݔܽ݉
௬భ,௬మ

෍  
ଶ

௠ୀଵ

଴ሺܥ ෨ܺ௠ሻ െ ෍  
ଶ

௠ୀଵ

଴ሺܥ ෨ܺ௠ െ ௠ܻ െ  .௠ሻݕ

According to the Envelope Theorem, we have: 

ܷ௒భሺ ଵܻ, ଶܻሻ ൌ ଴ሺܥ ෨ܺଵ െ ଵܻ െ ܺ஻ሻ ൌ ଴ሾሺܥ ෨ܺଵ െ ܺ஻ሻ െ ଵܻሿ, 

ܷ௒మሺ ଵܻ, ଶܻሻ ൌ ଴ሺܥ ෨ܺଶ െ ଶܻሻ. 

Thus, the cellular service provider can implement the optimal allocation by two 

independent local auctions with λଵככ ൌ 1 and λଶככ ൌ 0. Q.E.D. 

 

According to Lemma A.2, we need to show that the expected payment from the 

cellular service provider under the proposed mechanism is the same as the payment under 



 117

two separate local auctions. In our proposed mechanism, the bandwidth allocation is 

given by: 

଴ᇱ൫ܥ ෨ܺ௠ െ ஻ܺככ௠ߣ െ ∑  ௜אఅ೘  ௜൯                      (A.5)ݍ

ൌ ܿሺݍ௜, ௜ሻߠ ൅ ܿఏሺݍ௜, ,௜ሻߠሺܪ௜ሻߠ for  ݅ א  .௠ߖ

This bandwidth allocation is the same as the allocation generated by two separate 

local auctions. Under the proposed mechanism, the expected payment from the cellular 

service provider to hotspot i, i א Ψ୫ is: 

න  
ఏכ

ఏ
௜ܲ
 ௜ߠ௜ሻ݀ߠᇱሺܨככ

ൌ න  
ఏכ

ఏ
ቈܥሺܳככ൫ߠ௜, ,௜ିߠ ෨ܺ௠, ,൯ככ௠ߣ ௜ሻߠ ൅ න  

ఏכ

ఏ೔
,ߠ൫ככఏሺܳܥ ,௜ିߠ ෨ܺ௠, ,൯ככ௠ߣ ቉ߠሻ݀ߠ  ௜ߠ௜ሻ݀ߠᇱሺܨ

ൌ න  
ఏכ

ఏ
,௜ߠ൫ככሺܳܥൣ ,௜ିߠ ෨ܺ௠, ,൯ככ௠ߣ ௜ሻߠ ൅ ,௜ߠ൫ככఏ൫ܳܥ ,௜ିߠ ෨ܺ௠, ,൯ככ௠ߣ  ,௜ሻߠሺܨ௜ሻ൧݀ߠሺܪ௜൯ߠ

where P୧ככ  is given by equation (1.13) and Qככ൫θ୧, θି୧, X෩୫, λ୫ככ൯  is the solution to 

equation (A.5). We compare this with the expected payment under two separate local 

auctions and find that they are equal.  

   

Proof of Proposition 1.6 

Proof. Let R୩ା be the set of m such that y୫୩ ൒ 0, and R୩ି be the set of m such that 

y୫୩ ൏ 0. We have the following lemma: 

 

Lemma A.3 If region m א R୩ି, then m ב R୩ିଵା , for k ൌ 2,3, . . . , M. 

Proof: If the cardinality of the set |R୩ି| ൌ 1, it is trivial to show that m ב R୩ିଵା . Thus, 

we focus on the non-trivial case: |R୩ି| ൒ 2. Without loss of generality, we assume that 

y୩୩ ൏ 0, and m ് k. Let’s consider a k-region procurement auction. According to 
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equation (1.10), the optimal bandwidth allocation schedule 

q୧ ൌ Qכ൫θ୧, θି୧, X෩ଵ, X෩ଶ,ڮ , X෩M൯ is given by: 

଴ᇱሺܥ തܺ െ തܻሻ ൌ ܿሺݍ௜, ௜ሻߠ ൅ ܿఏሺݍ௜, ,௜ሻߠሺܪ௜ሻߠ for ݅ ௝ୀଵ௞׫א  ௝,        (A.6)ߖ

where Xഥ ൌ X෩భାX෩మାڮାX෩ౡିXB
୩

, and Yഥ ൌ ଵ
୩
∑ q୧୧׫אౠసభ

ౡ ஏౠ
. The allocation of cellular resource 

across regions in a k-region procurement auction is y୫୩ ൌ ሺX෩୫ െ Xഥሻ െ ሺY୫ െ Yഥሻ. In the 

next iteration, the optimal bandwidth allocation schedule under an auction with k െ 1 

regions, q୧ᇱ, is given by the following equation: 

C଴ᇱ ሺXഥᇱ െ Yഥᇱሻ ൌ cሺq୧ᇱ, θ୧ሻ ൅ c஘ሺq୧ᇱ, θ୧ሻHሺθ୧ሻ, for  i ୨ୀଵ୩ିଵ׫א Ψ୨,         (A.7) 

where Xഥᇱ ൌ X෩భାX෩మାڮାX෩ౡషభିXB
୩ିଵ

, and Yഥᇱ ൌ ଵ
୩ିଵ

∑ q୧Ԣ୧׫אౠసభ
ౡ ஏౠ

. We show that there exists 

i ୨ୀଵ୩ିଵ׫א Ψ୨ , such that q୧ᇱ ൒  q୧ , by contradiction. Suppose that q୧ᇱ ൏  q୧  for all 

i ୨ୀଵ୩ିଵ׫א Ψ୨. By equation (A.6) and (A.7), Xഥᇱ െ Yഥᇱ ൏ Xഥ െ Yഥ. Let the allocation of cellular 

resource across regions in a k െ 1-region procurement auction be y୫,୩ିଵ, and we have 

ym,୩ିଵ ൌ ሺX෩୫ െ Xഥᇱሻ െ ሺY୫ᇱ െ Yഥᇱሻ 

൐ ൫X෩୫ െ Xഥ൯ െ ሺY୫ െ Yഥሻ ൌ y୫୩, for  m ൌ 1,2, . . . , k െ 1. 

where Y୫ᇱ ൌ ∑ q୧ᇱ୧אஏ୫ . Because ∑  ୫ୀଵ୩ y୫୩ ൌ XB , and y୩୩ ൏ 0 , ∑  ୫ୀଵ୩ିଵ y୫,୩ିଵ ൐

୫ୀଵ୩ିଵߑ y୫୩ ൐ XB, which contradicts Σ ୫ୀଵ୩ିଵ y୫,୩ିଵ ൌ XB in an auction with k െ 1 regions. 

Therefore, Xഥᇱ െ Yഥᇱ ൒ Xഥ െ Yഥ, and then we can obtain that y୫,୩ିଵ ൑ y୫୩. ܳ. .ܧ  ܦ

 

Our iteration process in Proposition 1.6 is essentially an iterated elimination of the 

regions with y୫୩ ൏ 0. This lemma says that if y୫୩ ൏ 0 in the iteration step k, the 

allocation of cellular resource in this region will be less than zero in the iteration step 

k ൅ 1 . Therefore, the regions with y୫୩ ൏ 0  will eventually be eliminated. The 

implication is important in the sense that the order of elimination does not matter, so in 

each iteration, we eliminate the region with the smallest y୫୩ if the smallest y୫୩ ൏ 0. 
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Now we can show the optimality of the iterated process. If yMM ൒ 0, the 

feasibility condition 1.8 is satisfied, and the cellular resource and bandwidth allocation is 

the same as the allocation in Proposition 1.4. If yMM ൏ 0, we generate two new regions: 

i ୨ୀଵMିଵ׫א Ψ୨  or ΨM . Using Proposition 1.5, we can show that λMככ ൌ 0 . Then, we 

continue to consider the iterated process: for i ୨ୀଵMିଶ׫א Ψ୨ or i א ΨMିଵ, if yMିଵ,Mିଵ ൒

0, the feasibility condition is satisfied when we consider a procurement auction such that 

the participating hotspot i ୨ୀଵMିଵ׫א Ψ୨. Therefore, the optimal bandwidth allocation for 

hotspot i ൌ 1,2, . . . , M െ 1 is given by equation (1.10) when the participating hotspot 

i ୨ୀଵMିଵ׫א Ψ୨ . If yMିଵ,Mିଵ ൏ 0 , we use Proposition 1.5 again, and λMିଵככ ൌ 0 . We 

complete the proof by iterating this process.    
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Appendix B: The Procedure of Computing the Optimal Mechanism 

    • Invite each of the n hotspots to report its cost parameter θ. Denote the submitted 

cost parameters as ሼθଵ, θଶ,ڮ , θ୬ሽ. 

    • Define the map q: Θ୬ ՜ R୬ as follows: 

        - For each i ൌ ڮ,1,2 , n  and x ൒ 0 , let Ԅ୧ሺxሻ  be the implicit function 

satisfying the following equation  

ܿሺ߶௜ሺݔሻ, ௜ሻߠ ൅ ܿఏሺ߶௜ሺݔሻ, ௜ሻߠሺܪ௜ሻߠ ൌ  .ݔ

Because the left-hand-side of the equation is increasing in Ԅ୧ሺxሻ, given a value of 

x, Ԅ୧ሺxሻ can be easily solved using bisection in the interval ሾ0, qത୧ሿ where qത୧ is a 

positive number large enough so that the value of left-hand-side exceeds x. 

        - From equation (1.9), V෡ᇱሺqሻ can be written as  

෠ܸ ᇱሺݍሻ ൌ න  
ଵ

௒ത
ܿ଴ሺ തܺ െ തܻሻ݀ܩҧሺ തܺሻ ൌ න  

ଵ

௤/ெ
ܿ଴ሺ തܺ െ ҧሺܩሻ݀ܯ/ݍ തܺሻ. 

Let qכ be the solution to the following equation:  

෍ 
௡

௜ୀଵ

߶௜൫ ෠ܸ ᇱሺݍሻ൯ ൌ  .ݍ

Again, because the left-hand-side is decreasing in q, we can easily solve for qכ 

using bisection in the interval ሾ0,Mሿ.48 

        - Let  

ݍ ؠ ሺݍଵ, ڮ,ଶݍ , ௠ሻݍ ؠ ൫߶ଵሺ ෠ܸ ᇱሺכݍሻሻ, ߶ଶሺ ෠ܸ ᇱሺכݍሻሻ,ڮ , ߶௠ሺ ෠ܸ ᇱሺכݍሻሻ൯. 

    • Define payment plan P୧ as  

௜ܲ ؠ ௜ܲሺߠଵ,ڮ , ௠ሻߠ ؠ ,௜ݍሺܥ ௜ሻߠ ൅ න  
ఏכ

ఏ೔
,ߠ௜ሺݍఏሺܥ ,௜ሻିߠ  ,ߠሻ݀ߠ

where θכ is a threshold cost parameter to be determined. 

                                                 
48 When ݍ ൌ 0, the left-hand-side is positive. When ݍ ൌ  can be found in כݍ ,the left-hand-side is nonpositive. More generally ,ܯ

the interval ሾ0,ܯ തܺതሿ where ҧܺҧ is the upper bound of ҧܺ . 
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    • Hotspot i  will provide capacity q୧  and receive payment P୧ . The capacity 

allocation and payment schedule ሺq୧, P୧ሻ consist of the optimal feasible mechanism with 

the choice of θ49.כ The expected profit of each hotspot before the auction is:  

௜ሻߠ௜ሺߎ ൌ න  
ఏכ

ఏ೔
,ߠ௜ሺݍఏሺܥ௜ሾିܧ ,௜ሻିߠ  .ߠሻሿ݀ߠ

    • The expected gain of the cellular service provider before the auction is  

ܹሺכߠሻ ൌ ܧ ൥ ෠ܸሺכݍሻ െ෍ 
௡

௜ୀଵ

,௜ݍሺܥ ௜ሻߠ െ෍ 
௡

௜ୀଵ

,௜ݍఏሺܥ  ௜ሻ൩ߠሺܪ௜ሻߠ

• The optimal procurement auction can be obtained by searching over ሾθ, θതሿ for the 

optimal threshold value θכ that yields the highest value of Wሺθכሻ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
49 The payment schedule ܲ and the non-increasing property of the ݅ݍሺ݅ߠ;  ݅ݍ െ݅ሻ guarantee incentive compatibility. The design ofߠ
guarantees optimality from the cellular network’s perspective. 



 122

Appendix C: Proof of Results in Chapter 2 

Proof of Proposition 2.1 

Proof. We say that a function u exhibits strategic substitutes if an increase in others' 

actions lowers the marginal returns from one's own actions: For all m୧
ᇱ ൐ m୧  and 

mN౟ሺ୥ሻ
ᇱ ൒ mN౟ሺ୥ሻ, 

൫݉௜ݑ
ᇱ,݉ே೔ሺ௚ሻ

ᇱ ൯ െ ൫݉௜,݉ே೔ሺ௚ሻݑ
ᇱ ൯ ൑ ൫݉௜ݑ

ᇱ,݉ே೔ሺ௚ሻ൯ െ  .൫݉௜,݉ே೔ሺ௚ሻ൯ݑ

When u exhibits strategic substitutes, a participant's incentive to take a given action 

decreases as more friends take that action. 

 

Lemma C.1. If the payoff is a quadratic loss function, then u൫m୧,mN౟ሺ୥ሻ൯ exhibits 

strategic substitutes.  

Proof: A participant's utility maximization problem given m୧ and mN౟ሺ୥ሻ is equivalent 

to a predictor error minimization problem. We can obtain the best mean square predictor 

of V based on S୧:  
|ሾܸܧ ௜ܵሿ ൌ

௏ߩ
ఌߩ ൅ ௏ߩ ଴ܸ ൅

ఌߩ
ఌߩ ൅ ௏ߩ ௜ܵ. 

Similarly, we can obtain the best mean square predictor of V based on other 

information sets. Assume that for mN౟ሺ୥ሻ, there are kୟ of Participant i's friends (among 

the total number k୧) who acquire information. In other words, for vector mN౟ሺ୥ሻ, there 

are kୟ elements of 1 and k୧ െ kୟ elements of 0. Let AN౟ሺ୥ሻ be the set of friends who 

acquire information. If Participant i acquires information, the best mean square predictor 

is: 

௏ߩ
ሺ݇௔ ൅ 1ሻߩఌ ൅ ௏ߩ ଴ܸ ൅

ఌߩ
ሺ݇௔ ൅ 1ሻߩఌ ൅ ௏ߩ

ቌ ෍  
௜א஺ಿ೔ሺ೒ሻ

௜ܵቍ. 

For Participant i's action, m୧ ൌ 0, and m୧
ᇱ ൌ 1: 
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൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ ܽ െ ܾ ቈ
௏ଶߩ

ሺ݇௔ߩఌ ൅ ௏ሻଶߩ
1
௏ߩ

൅
ఌଶߩ

ሺ݇௔ߩఌ ൅ ௏ሻଶߩ
݇௔
ఌߩ
቉ ൌ ܽ െ ܾ ൬

1
݇௔ߩఌ ൅ ௏ߩ

൰, 

And ݑ൫݉௜
ᇱ,݉ே೔ሺ௚ሻ൯ െ ൫݉௜,݉ே೔ሺ௚ሻ൯ݑ ൌ െܾ ቀ ଵ

ሺ௞ೌାଵሻఘഄାఘೇ
െ ଵ

௞ೌఘഄାఘೇ
ቁ െ ܿ. 

From here, obtaining the following equation is straightforward:  
డ
డ௞ೌ

൫݉௜ݑൣ
ᇱ,݉ே೔ሺ௚ሻ൯ െ ൫݉௜,݉ே೔ሺ௚ሻ൯൧ݑ ൌ െ ఘഄ

ሺ௞ೌఘഄାఘೇሻమ
൅ ఘഄ

ሾሺ௞ೌାଵሻఘഄାఘೇሿమ
൏ 0. 

Therefore, u exhibits strategic substitutes. Q.E.D. 

 

If the payoff function exhibits strategic substitutes, then for m୧
ᇱ ൐ m୧ and k୧ᇱ ൐ k୧, 

 ܷሺ݉௜
ᇱ, ;ߪ ݇௜ሻ െ ܷሺ݉௜, ;ߪ ݇௜ሻ 

 ൌ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜൯ൣݑ൫݉௜
ᇱ, ே೔ሺ௚ሻ൯ߪ െ ,൫݉௜ݑ ே೔ሺ௚ሻ൯൧௞ಿ೔ሺ೒ሻߪ

 

 ൌ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜൯ ቂݑ ቀ݉௜
ᇱ, ൫ߪே೔ሺ௚ሻ, 0൯ቁ െ ݑ ቀ݉௜, ൫ߪே೔ሺ௚ሻ, 0൯ቁቃ௞ಿ೔ሺ೒ሻ

 

 ൌ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜
ᇱ൯ ቂݑ ቀ݉௜

ᇱ, ൫ߪே೔ሺ௚ሻ, 0൯ቁ െ ݑ ቀ݉௜, ൫ߪே೔ሺ௚ሻ, 0൯ቁቃ௞ಿ೔ሺ೒ሻ
 

 ൐ ∑ ܲ൫݇ே೔ሺ௚ሻ|݇௜
ᇱ൯ ቂݑ ቀ݉௜

ᇱ, ൫ߪே೔ሺ௚ሻ,݉௞ାଵ൯ቁ െ ݑ ቀ݉௜, ൫ߪே೔ሺ௚ሻ,݉௞ାଵ൯ቁቃ௞ಿ೔ሺ೒ሻ
 

 ൌ ܷሺ݉௜
ᇱ, ;ߪ ݇௜ᇱሻ െ ܷሺ݉௜, ;ߪ ݇௜ᇱሻ,                                     (C.1) 

where the third equality follows from the assumption that neighbors' degrees are all 

stochastically independent, and the first inequality follows from strategic substitutes. 

Then, we show the existence of a decreasing symmetric equilibrium by using two steps: 

(1) There exists a symmetric equilibrium; and (2) every symmetric equilibrium is non-

increasing in degree. First, we want to show a symmetric equilibrium exists (we allow 

mixed-strategy equilibrium). Our game is a standard symmetric incomplete information 

game because all participants have identical action sets of information acquisition 

Δሼ0,1ሽ; the quadratic payoff functions are also the same; and participant’s beliefs 

concerning networks are ex-ante symmetric. Given that the action set Δሼ0,1ሽ is compact, 

and the payoff function is continuous, then a symmetric mixed strategy Bayes-Nash 

equilibrium exists according to the fixed-point theorem.  
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 Next, we show that every symmetric equilibrium is non-increasing. Let σ୩ be a 

symmetric equilibrium strategy for the participant with degree k. If σ୩ is a strategy with 

all degrees choosing action 1 with probability 1, the equilibrium is obviously non-

increasing. Thus, we focus on the non-trivial case. If σ୩ is not a trivial strategy, then let 

m୩ ൌ min ሾsuppሺσ୩ሻሿ, where suppሺσ୩ሻ is the support of the mixed strategy σ୩. In our 

context, the support can be {0}, {1}, or {0,1}. If m୩ ൌ 1, it is easy to show that 

m୩ᇱ ൑ m୩ for all m୩ᇱ suppሺσ୩ᇱሻ with  kᇱ א ൐ ݇. If m୩ ൌ 0, then for any m ൐ ݉୩, we 

have the following inequality by equation (C.1): 

ܷሺ݉, ;ߪ ݇ሻ െ ܷሺ݉௞, ;ߪ ݇ሻ ൐ ܷሺ݉, ;ߪ ݇ ൅ 1ሻ െ ܷሺ݉௞, ;ߪ ݇ ൅ 1ሻ. 

Note that m୩ א suppሺσ୩ሻ , so we have: Uሺm, σ; kሻ െ Uሺm୩, σ; kሻ ൑ 0 . Thus, 

Uሺm, σ; k ൅ 1ሻ െ Uሺm୩, σ; k ൅ 1ሻ ൏ 0, for all m ൐ ݉୩ . This implies that if m୩ାଵ א

suppሺσ୩ାଵሻ then m୩ାଵ ൑ m୩. Therefore, σ୩ FOSD σ୩ାଵ. The conclusion follows by 

iterating this process.  

 Now let’s show that the non-increasing strategy is actually a threshold strategy. 

Suppose that for degree k୧  participant, there is a positive probability of acquiring 

information, we can prove that σ൫m୧ ൌ 1|k෠൯ ൌ 1, for all k෠ ൏ k୧, by the decreasing 

difference of Uሺm୧, σ; k୧ሻ. Similarly, we can show that if for degree k୧ participant, there 

is positive probability of not acquiring information, then σ൫m୧ ൌ 1|k෠൯ ൌ 0, for all 

k෠ ൏ k୧. Then the equilibrium strategy is a threshold strategy.    

We make a few more remarks here. Because all participants adopt a threshold 

strategy, Participant i believes that the probability for a randomly chosen neighbor to 

acquire information is θ ൌ Pr൫k୨ ൑ kכ൯ , j א N୧ሺgሻ . Participant i 's belief about the 

number of informed neighbors thus follows a binomial distribution given by:  

݂ሺ݇௔; ݇௜, ሻߠ ൌ ൬݇௜݇௔
൰ ௞ೌሺ1ߠ െ  ,ሻ௞೔ି௞ೌߠ
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where kୟ is the number of participants who acquire information, and fሺkୟ; k୧, θሻ is the 

density function of the binomial distribution. Knowing the belief of Participant i, we can 

obtain the expected payoff U൫m୧, σN౟ሺ୥ሻ; k୧൯. Because kכ is a threshold, it is determined 

by the following inequalities: 

ܷ൫݉௜ ൌ 1, ;ே೔ሺ௚ሻߪ ݇
൯כ ൑ ܷ൫݉௜ ൌ 0, ;ே೔ሺ௚ሻߪ ݇

 ,൯כ

ܷ൫݉௜ ൌ 1, ;ே೔ሺ௚ሻߪ ݇
כ ൅ 1൯ ൐ ܷ൫݉௜ ൌ 0, ;ே೔ሺ௚ሻߪ ݇

כ ൅ 1൯. 

These inequalities simply mean that the participant with degree kכ is better off to 

acquire information, and the participant with degree kכ ൅ 1 is better off not to acquire 

information. 
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Appendix D: Experimental Instructions 

The following are the experimental instructions for an SEPM. The guidelines for an 

NNPM are similar except that the participants are not allowed to communicate with 

others. 

General Guideline: This is an economic experiment so it is conducted with Real 

Money! Your profit is a direct result of your prediction performance during the 

experiment. The experiment has 2 rounds. The highest cash payoff for you to earn is 

$5*2=$10! In order to maximize your profits, you need to read the instructions carefully 

and use your information wisely. The experiment has 2 rounds. Your total payoff is the 

sum of the payoff in each round. 

Experiment Description 

CREC (Central Real Estate Company) needs to predict the size of the rental market, 

V, in a large metropolitan area. The internal estimation predicted by employees within 

the company suggests that the market size, V, is probably around $10 millions. Below is 

the percent graph of the employees' predictions: Most of them think that the market size 

V is around 10. 
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As the head of the marketing department of CREC, you can also consider 

purchasing an evaluation of the market size from one of several outside experts. Your 

experience tells you that each expert's prediction is twice as accurate as the internal 

prediction. Obtaining the prediction of an outside expert will cost you money in this 

experiment. If you choose to purchase an expert's opinion, you can combine the internal 

estimation from employees with the expert prediction to get a more precise estimate. The 

actual market size, V, in million USD, will be announced right after the experiment (Note 

that the true value of V in round 1 is different from the value in round 2). Suppose that 

your prediction is x million USD, if you do not purchase expert opinions, your payoff in 

this round is: $ 5 - ( x - V )². If you choose to purchase an expert's opinion, you have to 

pay a cost c = $1 in this experiment and your payoff in the first round is $ 5 - ( x - V )² - 

c. 

Apparently, the more precise your estimate is, the higher the payoff you will get. 

You are free to communicate with other experiment participants on your designated 

Gmail account after making a decision about whether to purchase an expert’s signal. You 

can discuss with the other group members through Gtalk. If your group members 

purchase evaluations from outside experts, they may provide useful information to you. 

After reading the guidelines, you need to make a decision about whether to purchase a 

signal.  



 

 

 

 

 

 

 

 

 

 

 

Then, you caan submit yoour predictio
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ons on the baasis of the pr

 

rior and your

 

r signal.  
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