
Copyright

by

Aibo Tian

2014

The Dissertation Committee for Aibo Tian
certifies that this is the approved version of the following dissertation:

Automatic Data Integration with Generalized Mapping

Definitions

Committee:

Daniel P. Miranker, Supervisor

Suzanne Barber

William R. Cook

Craig A. Knoblock

Raymond J. Mooney

Bruce W. Porter

Automatic Data Integration with Generalized Mapping

Definitions

by

Aibo Tian, B.E.; M.S.Comp.Sci.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014

To my parents and Wen.

Acknowledgments

Five years, eighteen hundred days, forty thousand hours - that is how

long it takes to become a PhD. I cannot reach this far without the guidance

of my advisor, Daniel Miranker. Dan is encouraging and optimistic especially

during my difficult time. He is like a friend, standing by my side, supporting

me to achieve my goals. He is full of energy and patience. I am glad that I

spent the past years working with him.

I would like to thank all my committee members Suzanne Barber,

William Cook, Craig Knoblock, Raymond Mooney, and Bruce Porter for their

insightful feedback and inspiring discussions.

I would also like to thank Peter Stone and Matthew Lease for helping

me during my early PhD career. I had a lot of fun during the year working on

robot soccer in Peter’s lab. Matt devoted a big chunk of his time to help me

extend a course project to a publication.

My research has been largely supported by the members of our research

group. I want to thank Juan Sequeda, Mayank Kejriwal, Lee Thompson, and

Nathan Clement for their valuable feedback on my research. Specifically, Juan

is like my older brother. He is always energetic, and willing to help me on

every aspect of my research. I also want to thank the undergraduates in our

lab: Albert Haque, Slavcho Slavchev, and Colin Forage.

v

I would like to thank all my mentors during my internships in HP Labs

and Google: Xuemei Zhang, David Ross, Yong Sheng, Pei Yin, and Arthur

Asuncion. They gave me a taste of real industry problems.

I want to thank all my friends Xiaohu Shen, Hongkun Yang, Xue Chen,

Na Meng, Chao Ruan, and Xu Wang for their support during my study. Par-

ticularly, I want to thank John Edwards for helping me when I first came here,

and teaching me US cultures.

Finally, this work would not have been possible without the support of

my parents and my girlfriend Wen Li. Particularly, Wen is always supportive

and has faith in me. She always stands by my side to share both ups and

downs during my PhD journey. She is my source of happiness.

Aibo Tian

The University of Texas at Austin

August 2014

vi

Automatic Data Integration with Generalized Mapping

Definitions

Publication No.

Aibo Tian, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Daniel P. Miranker

Data integration systems provide uniform access to a set of heteroge-

neous structured data sources. An essential component of a data integration

system is the mapping between the federated data model and each data source.

The scale of interconnect among data sources in the big data era is a new im-

petus for automating the mapping process. Despite decades of research on

data integration, generating mappings still requires extensive labor.

The thesis of this research is that the progress on automatic data in-

tegration has been limited by a narrow definition of mapping. The common

mapping process is to find correspondences between pairs of entities in the data

models, and create logic expressions over the correspondences as executable

mappings. This does not cover all issues in real world applications.

This research aims to overcome this problem in two ways: (1) gen-

eralize the common mapping definition for relational databases; (2) address

vii

the problem in a more general framework, the Semantic Web. The Semantic

Web provides flexible graph-based data models and reasoning capabilities as

in knowledge representation systems. The new graph data model introduces

opportunities for new mapping definitions. The comparison of mapping def-

initions and solutions for both relational databases and the Semantic Web is

discussed.

In this dissertation, I propose two generalizations of mapping problems.

First, the common schema matching definition for relational databases is gen-

eralized from finding correspondences between pairs of attributes to finding

correspondences consisting of relations, attributes, and data values. This gen-

eralization solves real world issues that are not previously covered. The same

generalization can be applied to ontology matching in the Semantic Web. The

second piece of work generalizes the ontology mapping definition from finding

correspondences between pairs of entities to pairs of graph paths (sequences of

entities). As a path provides more context than a single entity, mapping be-

tween paths can solve two challenges in data integration: the missing mapping

challenge and the ambiguous mapping challenge.

Combining the two proposed generalizations together, I demonstrate a

complete data integration system using the Semantic Web techniques. The

complete system includes the components of automatic ontology mapping and

query reformulation, and semi-automatically federates the query results from

multiple data sources.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Overview of Dissertation . 3

1.1.1 Mapping Different Types of Database Elements 3

1.1.2 Mapping Paths in the Semantic Web 4

1.1.3 Complete Data Integration System 5

1.2 Organization . 6

Chapter 2. Background 7

2.1 Data Models . 7

2.1.1 Relational Database . 7

2.1.2 The Semantic Web . 7

2.1.3 Comparison . 11

2.2 Executable Mappings for Data Integration and Data Exchange 14

2.2.1 Relational Database . 14

2.2.2 The Semantic Web . 16

2.2.3 Comparison . 17

2.3 Schema Matching and Ontology Matching 17

2.3.1 Common Matching Techniques 19

2.3.2 Comparison . 21

ix

Chapter 3. Test Data 23

3.1 Databases Requiring Mapping Different Types of Elements . . 23

3.2 Ontologies Associated with Query Workloads 26

Chapter 4. Mapping Different Types of Database Elements 29

4.1 Problem Definition . 33

4.2 Generating Correspondences 38

4.2.1 Duplicate Method . 39

4.2.2 Non-duplicate Method 41

4.2.3 Implementation . 42

4.3 Tuple-Generating Dependency 45

4.3.1 Formulation . 46

4.3.2 Generation . 47

4.3.3 Applications . 52

4.4 Experiments . 56

4.4.1 Test Sets . 56

4.4.2 Baselines . 57

4.4.3 Metrics . 58

4.4.4 Results . 59

4.4.5 Error Categorization . 67

4.5 Related Work . 69

4.5.1 Schema Matching . 69

4.5.2 Record Linkage . 69

4.6 Discussion and Future Work 70

Chapter 5. Mapping Paths in the Semantic Web 71

5.1 Problem Definition . 75

5.1.1 Basic Graph Definition 75

5.1.2 Assumptions . 77

5.1.3 Query-Specific Ontology Mapping 77

5.2 QODI: Mapping and Reformulation 80

5.2.1 ss-path Similarity Measure 80

5.2.2 q-mapping . 82

x

5.2.3 Solving the Maximization 82

5.2.4 Query Reformulation 89

5.3 Experimental Setup . 91

5.3.1 Test Sets . 91

5.3.2 Baselines . 92

5.3.3 Metrics . 93

5.4 Experimental Results . 95

5.4.1 valid rate . 95

5.4.2 Precision . 98

5.4.3 Parameter Tuning . 100

5.4.4 Ambiguity . 101

5.5 Discussion and Future Work 102

Chapter 6. Complete Data Integration System 104

6.1 Compile Time . 106

6.1.1 Executable Mappings 107

6.1.2 Entity Name Service . 110

6.2 Run Time . 111

6.2.1 Query Reformulation 112

6.2.2 Query Results Combining 114

6.2.3 Provenance . 116

6.3 Experiments . 116

6.3.1 Test sets . 117

6.3.2 Baselines . 118

6.3.3 Results on the Test Sets without Instances 119

6.3.4 Results on the Test Sets with Instances 124

6.4 Related Work . 127

6.5 Discussion and Future Work 128

Chapter 7. Future Work 131

7.1 Generalized Mapping Definition 131

7.2 Human Involvement . 132

7.3 Similarity Measure . 134

xi

Chapter 8. Conclusion 136

Appendix 139

Appendix 1. Datalog Rules of Direct Mapping 140

Bibliography 143

Vita 156

xii

List of Tables

2.1 A list of schema (ontology) matchers. 18

3.1 Statistics of the relational test sets. 24

3.2 The number of groundtruth correspondences of different types. 26

3.3 Statistics of the Semantic Web test sets. 27

4.1 The number of groundtruth correspondences of different types. 57

5.1 The ambiguous rate and query precision of queries with datatype
ambiguous q-mapping using Substring as matcher. 100

5.2 The ambiguous rate and query precision of queries with datatype
ambiguous q-mapping using SMOA as matcher. 101

5.3 The ambiguous rate and query precision of queries with datatype
ambiguous q-mapping using AgreementMaker as matcher. . . 101

6.1 Query reformulation correctness of the Bibliography test set. . 120

6.2 Query reformulation correctness of the Conference test set. . . 120

6.3 Query reformulation correctness of the Life Science test set. . 121

6.4 Number of valid query reformulation of the Bibliography test set.122

6.5 Number of valid query reformulation of the Conference test set. 122

6.6 Number of valid query reformulation of the Life Science test set. 123

6.7 Query reformulation correctness of the Stock test set. 124

6.8 Query reformulation correctness of the Ecommerce test set. . . 124

6.9 Query reformulation correctness of the Enrollment test set. . . 125

6.10 Query reformulation correctness of the Game test set. 125

6.11 Number of valid query reformulation of the Stock test set. . . 126

6.12 Number of valid query reformulation of the Ecommerce test set. 126

6.13 Number of valid query reformulation of the Enrollment test set. 126

6.14 Number of valid query reformulation of the Game test set. . . 127

xiii

List of Figures

2.1 Ontology example. 9

2.2 Example of translation between database and ontology. 11

2.3 Example database and equivalent ontology of stock prices. . . 13

2.4 Database examples to illustrate TGD. 15

3.1 Two commercial use schemas in the Ecommerce test set. . . . 24

3.2 Real SPARQL queries generated for the Specify ontology. . . . 28

4.1 Six possible correspondence types. 30

4.2 Two commercial use schemas in the Ecommerce data set. . . . 30

4.3 Example databases of stock prices. 31

4.4 Shading indicates compound correspondences. 35

4.5 Correspondence f-measures. 60

4.6 Precision and recall of the Ecommerce dataset. 61

4.7 Precision and recall of the Stock dataset. 61

4.8 Precision and recall of the Enrollment dataset. 62

4.9 Precision and recall of the Game dataset. 62

4.10 Precision and recall for each type of correspondences of the
Ecommerce dataset. 65

4.11 Precision and recall for each type of correspondences of the
Stock dataset. 65

4.12 Precision and recall for each type of correspondences of the
Enrollment dataset. 66

4.13 Precision and recall for each type of correspondences of the
Game dataset. 66

5.1 Diagram of OBDI systems with traditional and the proposed
ontology mapping. 72

5.2 Ontology examples about the domain of course. 72

5.3 SPARQL query example and query graph. 73

xiv

5.4 An example ontology graph with reachable label sets. 84

5.5 Real SPARQL queries generated for the Specify ontology. . . . 92

5.6 valid rate for different test sets. 96

5.7 query precision for different test sets. 97

5.8 path precision for different test sets. 98

5.9 query precision using different η. 99

6.1 Alamo system diagram. 105

6.2 Stock price examples including the target ontology and two data
sources. 106

6.3 Executable mappings between the target and source 1. 108

6.4 Executable mappings between the target and source 2. 108

6.5 ENS between source 1 and source 2. 110

6.6 SPARQL query asking the price and trading volume of stock
“IBM” on “1/3/2012”. 112

6.7 Reformulated SPARQL queries in terms of data sources. . . . 113

6.8 Executed results of the reformulated queries. 114

6.9 Normalized query results. 114

6.10 An example provenance produced by Alamo. 115

xv

Chapter 1

Introduction

Data integration systems provide uniform access to a set of hetero-

geneous structured data sources [29]. In large enterprises, data integration

consumes about 40% of IT budget [14]. Data integration research has been

continuously active for more than 30 years.

The research of data integration largely focuses on relational databases.

Recently, the Semantic Web is emerging as a common framework to share and

reuse data in the Web [17]. The promise of the Semantic Web is to represent

data on the web as a globally linked database. In the Semantic Web, both

data and metadata (ontology) are modeled as labeled directed graphs. In fact,

those graphs are linked together as one graph. This representation provides

flexibility to operate on both data and metadata. In this dissertation, both

relational database schemas and ontologies are used to define data models.

An essential component of a data integration system is the mapping be-

tween the federated data model and each data source. The common mapping

process contains two steps: (1) find correspondences between pairs of enti-

ties with the same type, called schema (ontology) matchings; (2) create logic

expressions over the correspondences as executable mappings. This mapping

1

definition has the following limitations:

1. The matchings in step (1) are usually restricted to be between the same

type of entities, which only cover part of real world cases.

2. Step (2) usually requires extensive labor.

3. The mappings are usually generated based on schema only, and may

have ambiguity.

4. The two-step process propagates errors in both steps.

The thesis of this research is that the progress on automatic data in-

tegration has been limited by a narrow definition of mapping. The research

aims to develop generalization of mapping definitions and resolve the listed

limitations of the common mapping process. Since both relational databases

and the Semantic Web are considered in this research, a comparison between

them is discussed. The comparison covers both data models and mapping

solutions.

The departure from the conventional mapping definition raises the chal-

lenge of finding test cases for evaluation. We collected test sets from four

application domains for relational databases and three application domains

for the Semantic Web. These test sets are available as public benchmarks.

Requests for copies of these test sets have already been received.

2

1.1 Overview of Dissertation

This dissertation comprises three pieces of work. The first two pieces

generalize the mapping problems in different aspects, and implement auto-

matic systems for mapping generation. The first piece resolves limitation 1

of the common mapping process, and the second piece resolves limitations 2,

3, and 4. The third piece of work demonstrates a complete data integration

system, using the two automatic systems for mapping.

1.1.1 Mapping Different Types of Database Elements

In relational database, schema matching is the task of finding cor-

respondences between two database entities. Typically, automatic schema

matching algorithms are only concerned with finding attribute correspon-

dences. However, real world data integration problems often require matchings

whose arguments span all three types of elements in relational databases: re-

lation, attribute and data value. In a seminal paper, Krishnamurthy, Litwin,

and Kent demonstrate this requirement using real world stock price databases

as examples [54].

We introduce the definitions and semantics of three additional corre-

spondence types concerning both schema and data values. These correspon-

dences cover the higher-order mappings identified in [54]. It is shown that

these correspondences can be automatically translated to tuple-generating de-

pendency (TGD), which is the common mapping representation in data in-

tegration systems. We show that existing algorithms of generating universal

3

solutions for data exchange and reformulating queries for data integration can

be applied to the TGDs representing the correspondences in this paper. Thus,

this research is compatible with data integration applications that leverage

TGDs.

Two methods for automatically identifying these correspondences are

developed. One requires a limited number of duplicates across data sources.

The other is a general instance-based method with no such requirement. Ex-

periments conducted on four real world test sets demonstrate the effectiveness

of the methods.

1.1.2 Mapping Paths in the Semantic Web

The second mapping system, QODI (short for Query-driven Ontology-

based Data Integration), is designed for the Semantic Web. QODI is dis-

tinguished in that the ontology mapping algorithm dynamically determines a

partial mapping specific to the reformulation of each query. The query pro-

vides application context not available in the ontologies alone; thereby the

system is able to disambiguate mappings for different queries. Instead of rep-

resenting the mappings as correspondences between ontology entities, QODI

decomposes the query into a set of paths, and represents the mappings as cor-

respondences between paths. Since the path similarity is not dependent on the

precise alignment of entities, the missing mapping challenge is resolved. The

path-based solution also simplifies the query reformulation problem as path

traversal.

4

Given an input query, QODI decomposes the query into a set of paths,

and searches for a subgraph of the source ontology, such that the set of path

correspondences has the highest confidence. The confidence is measured using

similarity of bag-of-words features. QODI exploits efficient heuristic search

algorithms, which guarantee to find optimal solutions.

Using test sets from three real world applications, QODI achieves favor-

able results compared with AgreementMaker, a leading ontology matcher, and

an ontology-based implementation of the mapping methods detailed for Clio,

the state-of-the-art relational data integration and data exchange system.

1.1.3 Complete Data Integration System

In the Semantic Web literature, most existing research focuses on sub-

problems of data integration, such as ontology matching [35], instance match-

ing [69], and query rewriting [55]. Each sub-problem has its own assumptions

that may not be compatible with others. Problems on complete data integra-

tion system have not been well studied.

This piece of work details the architecture of Alamo, a system with

complete data integration workflow using the Semantic Web techniques. As

a complete data integration system, Alamo can automatically generate exe-

cutable ontology mappings in compile time, and reformulate queries in run

time. It also supports federation of query results from multiple data sources.

Alamo combines both previously mentioned mapping systems to au-

tomatically generate ontology mappings. Thus, it can handle the use cases

5

that are covered by both systems. For query rewriting, Alamo uses the algo-

rithm proposed by Le et. al., which guarantees to find an equivalent query

reformulation [55]. Federation of query results from multiple data sources is

done through the semi-automatic creation of entity name service (ENS), which

groups instances that refer to the same real objects together.

1.2 Organization

This dissertation is organized as follows. Chapter 2 discusses the back-

ground knowledge and the comparison between relational databases and the

Semantic Web. Chapter 3 describes our efforts of collecting test sets. Chap-

ter 4 details the generalization of schema (ontology) matchings, and Chapter 5

details the generalization of ontology mappings. Chapter 6 demonstrates the

complete data integration system in the Semantic Web. Finally, Chapter 7

discusses the future work, and Chapter 8 concludes the dissertation.

6

Chapter 2

Background

2.1 Data Models

2.1.1 Relational Database

Relational Model The relational data model is based on first-order pred-

icate logic [7]. In the relational data model, data is represented in terms of

tuples (rows), grouped into relations (tables). A schema is a finite set of rela-

tions. A relation is a finite set of attributes. A tuple is a finite set that contains

a value for each attribute of a relation.

A relational database allows specification of some constraints. The two

most common constraints are primary key, which is a set of attributes that

functionally determines all other attributes in a relation, and foreign key, which

is a set of attributes that enforces a link between two relations.

SQL The standard query language for a RDBMS is SQL. SQL is a first order

language, which has capabilities close to that of relational algebra.

2.1.2 The Semantic Web

The Semantic Web technology consists of a set of languages: a graph

data model (RDF) to publish data; an ontology (RDFS/OWL) to represent

7

knowledge based on Description Logic; and a query language (SPARQL). This

set of languages forms an inheritance stack. RDFS inherits from RDF, and

OWL inherits from RDFS. RDFS and OWL ontologies can be represented as

RDF graphs.

RDF The Resource Description Framework (RDF) is a data model for rep-

resenting information about resources on the world wide web [4]. The RDF

specification considers three types of values: resource identifiers (URIs) to de-

note web resources, literals to denote values such as strings, and anonymous

resources (blank nodes) which are existentially quantified variables that can

be used to make statements about unknown (but existent) resources.

Formally, an RDF graph is a finite set of RDF triples, and an RDF

triple is a tuple:

(s, p, o) ∈ (U ∪B)× U × (U ∪B ∪ L)

where s is the subject, p the predicate and o the object. U , L, and B denote the

set of all URIs, the set of all literals and the set of all blank nodes, respectively.

These three sets are disjoint.

Example 2.1.1. The statement “Database is taught by Dan” can be represented

in RDF as the following triple:

(course:database, course:teacher, people:dan)

where course:database, course:teacher, and people:dan represent URIs.

8

Course'

People'

string'

teacher' student'

3tle'

name'

Figure 2.1: Ontology example. Round rectangles are classes, rectangles are
datatypes, and edges represent properties.

RDF Schema (RDFS) RDF Schema extends RDF as a schema language

for RDF and a lightweight ontology language [5]. RDFS defines three types of

entities: classes, object properties, and datatype properties. Classes represent

concepts in a domain. Object properties are relationships between classes.

Datatype properties are relationships between classes and datatypes. RDFS

also allows to state that a certain object is an instance of a certain class.

In addition, RDFS can describe hierarchies between classes and properties in

order to express semantic relationships. Finally, it is possible to relate the

domain and range of a property to a certain class.

Web Ontology Language (OWL) The Web Ontology Language (OWL)

is a language to describe ontologies with higher expressive power [3]. As ex-

tensions of RDF, both RDFS and OWL ontologies are directed labeled graphs.

Example 2.1.2. Figure 2.1 shows an example ontology. “Course” and “People”

are classes. “teacher” and “student” are object properties. “title” and “name”

are datatype properties. “string” is a datatype.

9

SPARQL SPARQL is the standard language for querying RDF data [6].

SPARQL is a graph pattern matching query language and is similar to SQL.

It contains a set of triple patterns called basic graph patterns. Triple patterns

are similar to RDF triples with the exception that the subject, predicate or

object can be variables (denoted by a leading “?”). The result of a basic graph

pattern query is a list of all variable bindings that cause a query pattern to

match a subgraph of an RDF graph.

Example 2.1.3. Consider the following RDF triples:

(course:database, course:teacher, people:dan)

(course:database, course:title, “Database”)

(people:dan, people:name, “Dan”)

The following SPARQL query asks for the titles of courses that are

taught by a professor, whose name is “Dan”.

SELECT ?title

WHERE {

?course course:teacher ?teacher .

?teacher people:name "Dan" .

?course course:title ?title .

}

The basic graph pattern consists of three triple patterns. Matching

these patterns with the RDF triples, the answer of the query is “Database”.

10

CREATE TABLE Course(id int PRIMARY KEY,title varchar(255));

CREATE TABLE People(id int PRIMARY KEY,name varchar(255));

CREATE TABLE Teacher(c_id int,p_id int,

FOREIGN KEY (c_id) REFERENCES Course(id),

FOREIGN KEY (p_id) REFERENCES People(id));

CREATE TABLE Student(c_id int,p_id int,

FOREIGN KEY (c_id) REFERENCES Course(id),

FOREIGN KEY (p_id) REFERENCES People(id));

(a) A database in SQL.

Course'

People'

string'

teacher' student'

3tle'

name'

(b) An equivalent ontology.

Figure 2.2: Example of translation between database and ontology.

2.1.3 Comparison

Translation between Data Models The data models of relational data-

bases and the Semantic Web share similarity. Doan et. al. states that

“relational schemas can be viewed as ontologies with restricted relationship

types” [30].

Relational databases can be translated to RDF by direct mapping,

which is a W3C standard [1]. Sequeda, Arenas, and Miranker introduce a

direct mapping that extends the functionalities of W3C direct mappings to

translate relational schemas to OWL ontologies [80]. The schema translation

is defined as a set of Datalog rules (see Appendix 1). They are summarized

as follows. A table is translated to a class unless the table represents a bi-

nary relationship, then it is translated to an object property. Foreign keys

are translated to object properties while attributes are translated to datatype

properties. These translations have been implemented in a system, Ultra-

wrap [81].

Example 2.1.4. The ontology in Figure 2.2b is translated from the relational

11

database in Figure 2.2a. The relations “Course” and “People” are translated

to classes. The attributes “title” and “name” are translated to datatype prop-

erties. The binary relations “Teacher” and “Student” that only contain two

foreign keys are translated to object properties.

Expressive Power An OWL ontology has more expressive power than a

relational schema. Shvaiko and Euzenat assert that an ontology encompasses

several data models, such as database schema and classifications [82]. One key

difference is class hierarchy. An ontology can express class hierarchy through

built-in property “rdfs:subClassOf”, while a relational schema cannot. Specif-

ically, an OWL ontology may represent a taxonomy, such as gene ontology1.

Higher Order Queries SQL, the standard query language in relational

databases, cannot express high-order logic. For example, it is impossible

to include variables for metadata, such as relations and attributes. Higher-

order logic is important especially in data integration problems, as pointed

out by Krishnamurthy, Litwin and Kent [54]. Federating views declaratively

over heterogeneous databases require special, higher-order, syntactic features.

Metadata-variables bridge schematic discrepancies where information in one

source appears as explicit data and the same information in another source

has been integrated into the schema definition.

1http://www.geneontology.org/

12

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196.4

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

(a) Relational database

Stock&

date&
AAPL& IBM&

GOOG&

(b) Ontology

Figure 2.3: Example database and equivalent ontology of stock prices.

In the semantic web, both schema and data are represented as RDF

graphs in triples. The standard query language, SPARQL, supports variables

at any of the three positions in a triple pattern. Thus, SPARQL can express

higher-order queries. Although the same higher-order logic issues in [54] are

still higher-order in the Semantic Web, the federating SPARQL queries are

first-order.

Example 2.1.5. Figure 2.3 shows a relational database of stock prices, and

an ontology that is equivalent to the database. Suppose a user wants to ask

“which stock has the price $196 on the date 1/2/13”. This question cannot be

formulated as a SQL query, because the variables are attributes. A SPARQL

query can represent this question as:

SELECT ?code

WHERE {

?stock ?code "196" .

?stock stock:date "1/2/13" .

}

13

2.2 Executable Mappings for Data Integration and Data
Exchange

A data integration system offers uniform access to a set of autonomous

and heterogeneous data sources [29, 48, 25, 31, 84, 46]. Data exchange is the

problem of transforming instances of a data source to instances of the tar-

get [38, 9]. In relational database, Clio is the state-of-the-art semi-automatic

data integration and exchange system [37]. In the Semantic Web, Karma is a

recent semi-automatic data exchange system [51]. Specifically, Karma is built

to map structured data sources (relational databases, xml, etc.) to populate

existing ontologies.

For both applications, the correspondences between entities are not

enough, since they are not executable mappings (the ones that represent trans-

formations of instances) [13]. Thus, how to represent, generate, and use exe-

cutable mappings are interesting research topics.

2.2.1 Relational Database

In the data exchange community, the commonly used mapping repre-

sentation is tuple-generating dependency (TGD) [11]. Let us denote the target

schema as T and the source schema as S. A TGD is in the form:

∀x(φS(x)→ ∃yψT(x,y))

where φS(x) is a conjunction of atomic formulas over S, ψT(x,y) is a conjunc-

tion of atomic formulas over T.

14

Course
title instructor Room
Machine1learning John 101
Database Dan 102

(a) Target database

People
id title id name
c1 Database p1 Albert

p2 Peter
p3 Dan

Teacher Student
c_id p_id c_id p_id
c1 p3 c1 p1

c1 p2

Course

(b) Source database

Figure 2.4: Database examples to illustrate TGD.

The generation of TGDs from correspondences of attributes has been

studied in Clio [37]. Schema mapping in Clio is done in 2-steps: finding initial

mappings between attributes; and associating mappings by logical inference

through referential constraints. The mapping association is done by a modifi-

cation of the chase algorithm [61].

Example 2.2.1. Consider the schema in Figure 2.4a as the target schema, and

the schema in Figure 2.4b as the source schema. A TGD example is as follows:

∀ title, instructor (

Course(c id, title) ∧ Teacher(c id, p id) ∧ People(p id, instructor)→

∃ room Course(title, instructor, room))

In data integration, the executable mappings can be represented in

three formalisms. Global-as-view (GAV) represents each relation in the target

schema as a view of the source schemas. Local-as-view (LAV) represents each

relation in the source schemas as a view of the target schema [57]. The com-

bination of GAV and LAV is Global-local-as-view (GLAV), which includes a

15

mapping from a view of the target schema to a view of the source schemas [39].

TGDs are equivalent in expressiveness to GLAV formalism.

2.2.2 The Semantic Web

Karma uses a similar logic representation as TGD to represent exe-

cutable mappings [51]. The mapping process consists of three steps. First,

find correspondences between columns in the source and classes and datatype

properties in the target. Second, construct a graph based on the target ontol-

ogy and the correspondences, and extract the minimal tree by a variation of the

Steiner Tree algorithm [52]. Finally, the executable mappings are generated

based on the minimal tree.

Rivero et. al. propose automatic algorithms to translate correspon-

dences to language-independent executable mappings as construct SPARQL

queries [78]. Specifically, for each entity correspondence, the algorithm ex-

pands each entity to a graph based on restrictions, and group all correspon-

dences within the graphs as a kernel. The considered restrictions include

domain, range, subclass, and subproperty. Finally, each kernel is transformed

to a construct SPARQL query.

Correndo et. al. study the problem of query rewriting based on entity

correspondences [22]. One intermediate step is to translate entity correspon-

dences to an internal representation, which can be seen as executable map-

pings. The internal representation maps each triple in the target ontology to

conjunction of triples in the source ontology. Given the internal representation,

16

a query rewriting algorithm is provided.

2.2.3 Comparison

Due to the similarity between the relational models and the data models

in the Semantic Web, the algorithms to generate executable mappings may

share similarity.

In Clio system, the matchings are associated by logical inference through

referential constraints. Thus, part of the mapping process in Clio exploits an

implicit graph representation of the relational schema. Recall in Section 2.1.3

that the translation from relational schemas to ontologies creates an explicit

graph representation that includes integrity constraints. Thus, Clio’s mapping

association in a relational schema is similar to path following in an ontology.

This implies the algorithms for the relational databases may be applied to the

Semantic Web with a small number of changes.

2.3 Schema Matching and Ontology Matching

An essential component of data integration systems is schema matching

(in relational database) [12] or ontology matching (in the Semantic Web) [35].

The schema matching problem is usually defined as finding correspondences

between attributes of two schemas. Similarly, the ontology matching problem

is defined as generating correspondences between entities of two ontologies.

Based on the rules of direct mapping, ontologies and schemas are

aligned in the translation, such as relations to classes, attributes that are

17

Resources Techniques Input

Schema Instance External ML User Aggregate
Ontology
otherwise
Relational

COMA [27]
√ √ √

GLUE [30]
√ √ √ √ √

BayesOWL [70]
√ √ √ √

OMEN [66]
√ √ √

Falcon-AO [75]
√ √

Gligorov et. al. [42]
√ √ √

RiMOM [58]
√ √ √

AgreementMaker [23]
√ √ √ √

LogMap [49]
√ √

Karma [51]
√ √ √ √ √

Parundekar et. al. [71]
√ √

Sarasua et. al. [79]
√ √ √ √

Duan et. al. [32]
√ √ √ √

QODI [Chapter 5]
√ √ √

Alamo [Chapter 6]
√ √ √ √

LSD [28]
√ √ √ √

Cupid [60]
√

SimFlood [64]
√

Ichise et. al. [45]
√ √

Kand et. al. [50]
√

iMap [26]
√ √ √ √ √ √

DUMAS [16]
√

Madhavan et. al. [59]
√ √ √ √

Bohannon et. al. [18]
√

Warren et. al. [90]
√

SPHINX [10]
√ √ √

McCann et. al. [63]
√ √ √

Clip [76]
√ √

Muse [8]
√ √ √

Dai et. al. [24]
√

Elmeleegy et. al. [34]
√

HAMSTER [68]
√

MWeaver [74]
√ √

Tian et. al. [Chapter 4]
√ √

Table 2.1: A list of schema (ontology) matchers.

foreign keys to object properties, and attributes that are not foreign keys to

datatype properties. Thus, the schema matching and the ontology matching

problems are similar. Recent review articles, one on schema matching [13] and

the other on ontology matching [82], make note of the overlap between schema

and ontology matching problems. As remarked by Shvaiko and Euzenat, “

they often share similar matching solutions” [82].

18

2.3.1 Common Matching Techniques

Existing schema (ontology) matchers can be classified in different di-

mensions. In this dissertation, we consider three dimensions: resources, tech-

niques, and inputs to matchers. The resources can be schema information,

instances, and external knowledge. We consider three recent techniques: ma-

chine learning, user involvement, and matcher aggregation. The inputs to

matchers can be either ontologies or relational schemas. Table 2.1 positions a

list of schema matchers into the three dimensions.

Schema-based Schema contains many clues for matching. The two types

of obvious clues are labels (name-based) and structures (structure-based).

The name-based techniques consider two entities as matched if they

share similar labels, descriptions, or comments. Euzenat and Shvaiko list

many string distances to measure similarity [35]. Techniques from information

retrieval are used [75]. Different from natural language processing and infor-

mation retrieval which mainly process natural languages, databases may con-

tain computer-generated strings. Stemming techniques specific for computer-

generated strings may be necessary for matching.

Structure-based techniques consider two entities as matched if they

have similar relationships or have relationships to similar elements [13, 66].

Local information, such as similarities of subclasses and properties, can be

aggregated [35]. Global structure can be used by propagating local structure

information [64, 36].

19

Instance-based Instances provide confident evidences for matching. Con-

straint characterization can be performed to summarize rules from instances.

The rules may include numerical value ranges, date, and phone numbers [77].

Entities with similar rules indicate possible matchings. Another direction is

to use machine learning techniques and statistics to classify whether two sets

of instances belong to the same class or not [28, 30, 26, 45] Machine learning

methods are more flexible, since there are no predefined rules.

External Knowledge The information is called external knowledge, if it is

neither from schema nor from instances. Different kinds of external knowledge

can be incorporated to facilitate matching. Thesauri, such as WordNet [65],

are commonly used to estimate string similarity [41]. Past matchings can also

provide valuable information for future matchings [28, 27]. Information can

be crawled from the web [59, 42, 70]. Database query logs can indicate hints

for matching [34, 68].

Machine Learning Machine learning has been widely used in schema (on-

tology) matchers. The instance-based matching problem can be seen as a clas-

sification task of pairs of columns [28]. The aggregation of multiple matchers

can be automatically learned [30]. Uncertainty in ontology matching has been

studied [70, 66]. Active learning has been used to reduce human labor [10].

User Involvement Fully automatic matching systems may not achieve per-

fect accuracy. Thus, user interaction may be an essential part of some applica-

20

tions [76, 8, 10, 74]. Crowdsourcing is emerging as a platform to utilize human

power, and is a great source for schema and ontology matchings [63, 79, 91].

Matcher Aggregation One matching algorithm may be only effective to

limited real cases. Aggregating multiple models together is more robust than

individual models [77, 28]. Recent matching systems are all built by combining

basic matchers [58, 60, 23, 47, 27]. Automatic parameter tuning techniques

are exploited to aggregate multiple models [62, 56, 72, 40].

2.3.2 Comparison

Goals of Matching The applications of schema matching for relational

databases are always related to both schemas and the data under schemas.

Although the schema mapping is expressed in terms of elements in the schema,

the applications are always related to data.

The definition of ontologies is more general than database schemas. An

ontology can be used to represent a knowledge base, a taxonomy, or a classi-

fication. The ontologies designed for these purposes may contain all valuable

information within the schema. The knowledge in life science is usually repre-

sented as ontologies. In the OAEI contest, there is specifically a track to match

adult mouse anatomy to a human anatomy (a part of NCI Thesaurus) [2].

These two ontologies themselves contain all the anatomy information. Given

these ontologies, the purpose of the matching is not to facilitate the trans-

ferring of data. Instead, the matching itself can be used directly to link the

21

taxonomies or knowledge bases. Technically, these ontologies usually contain

class hierarchy and other logic assertions which are not supported by relational

schemas.

Logic Reasoning Compared with relational data models, an OWL ontology

is capable of expressing more logic assertions. However, few ontology match-

ers exploit reasoning over the assertions to improve accuracy. LogMap is a

matcher that is scalable and capable of reasoning [49]. LogMap represents

both ontologies and matchings as Horn logic, and checks unsatisfiability. The

scalability is achieved by indexing techniques.

22

Chapter 3

Test Data

This section details the collected test cases. The first set highlights

the requirement of mapping different types of relational database elements.

The second set includes systematically generated query sets in addition to

ontologies and mapping groundtruth. The query sets enable the evaluation of

ontology mapping specific for data integration applications. The test suites

are available on our website1.

3.1 Databases Requiring Mapping Different Types of
Elements

Most of the existing schema matching test sets only contain examples of

the common matching definition as correspondences between attributes. We

identify test sets to highlight the requirement of mapping different types of

relational database elements in real world problems. This test set comprises

four application domains: Ecommerce, Stock Market, College Enrollment, and

Video Game. Table 3.1 illustrates the statistics.

The Ecommerce test set contains two schemas that are in commercial

1http://ribs.csres.utexas.edu

23

Dataset Schema # Attributes # Tuples

Ecommerce Opencart 3 109
Subrion 39 15

Chwab 4 250
Stock Euter 3 750

Ource 2 250

Statistics 26 358
Enrollment Ranking 5 50

Ranking 2009 4 10

Game Vgchartz 11 20000
Dbpedia 3 48132

Table 3.1: Statistics of the relational test sets.

product_id attribute_name language_name text
1 exterior English silver
1 interior English other
1 engine English 3.5L:V6:MPI:SOHC:24V
1 fuel English gasoline
1 mileage English 42953

product_attribute

(a) Open source ecommerce software

id mileage exterior_color engine transmission fuel_type …
4 240000 Blue 6:cylinders Manual Gasoline
5 160000 Black 4:cylinders Automatic Gasoline
6 100000 Blue 4:cylinders Automatic Gasoline,:Gas …
7 32000 Grey 4:cylinders SemiEautomatic Gasoline
9 150000 Gold 12:cylinders Manual Gasoline

autos

(b) Auto classified software

Figure 3.1: Two commercial use schemas in our Ecommerce test set. This test
set demonstrates the needs of correspondences between attributes and data
values in real applications.

use. The first one is from the backend database of an open source ecommerce

software2, populated with used car listings from a car dealer website3. The

2http://www.opencart.com/
3http://www.centraltxautos.com/

24

second one is from the backend database of an automobile ecommerce software4

that includes demo data. Both databases are very large, containing 115 and

37 tables respectively. We only take the product-attribute tables as shown

in Figure 3.1. The schema from the second database contains 39 attributes

in a single relation describing car information. The integer foreign keys are

substituted with real values if each key refers to a unique value.

The Stock Market test set contains real stock prices of three IT compa-

nies (AAPL, GOOG, and IBM) in 2012, downloaded from Yahoo! Finance5.

The data is transformed in the formats of the three real world schemas de-

scribed in a seminal paper by Krishnamurthy, Litwin, and Kent [54].

The College Enrollment test set includes a schema of college enrollment

statistics downloaded from the National Center for Education Statistics6, and

two schemas of college enrollment rankings crawled from Wikipedia7. The

statistics schema contains the enrollment number of 358 colleges from 1990 to

2010. One ranking schema contains the top 10 enrolled colleges in 2009. The

other combines the top 10 enrolled colleges from 2008 to 2012.

The Video Game test set includes a schema of the global sales of com-

puter games crawled from VGChartz8, and a schema of game information

queried from DBpedia9. The schema from VGChartz contains 20000 games,

4http://www.subrion.com/product/autos.html
5http://finance.yahoo.com/
6http://nces.ed.gov/
7http://www.wikipedia.org/
8http://www.vgchartz.com/
9http://dbpedia.org/

25

Ecommerce Stock Enrollment Game
attribute-attribute 1 2 2 1
attribute-value 5 3 3 3
relation-attribute 0 1 1 0
relation-value 0 2 4 0
total 6 8 10 4

Table 3.2: The number of unique groundtruth correspondences of different
types.

and the schema from DBpedia contains 48132 triples.

For all test sets, we manually determine groundtruth correspondences.

Table 3.2 shows the number of unique groundtruth correspondences of different

types.

3.2 Ontologies Associated with Query Workloads

Ontology mapping test sets usually only contain ontologies and map-

ping groundtruth. Although those test sets are able to evaluate mapping

generation as a standalone application, they do not cover real use cases of

mapping, such as data integration. Thus, we collect test sets that include

both ontologies and queries associated to each ontology. The queries enable

the evaluation of mapping generation for data integration applications.

This test set comprises three application domains: Life Science, Bib-

liography, and Conference Organization. The test cases include an ontology

created by an international standards body, two ontologies created from direct

mapping relational databases, and three ontologies used in OAEI [2]. Table 3.3

26

Dataset Ontology Class Class hierarchies OP DP

Life Science DSW 18 7 18 53
SPECIFY 11 0 33 380

Bibliography DBLP 17 7 9 42
UMBC 15 11 4 42

Conference SIGKDD 49 39 14 11
SOFSEM 60 46 29 22

Table 3.3: Statistics of the test sets. OP and DP represent object property
and datatype property, respectively.

shows the statistics.

The Life Science domain consists of Darwin Core and Specify. Darwin

Core is an ontology at the center of the standardization efforts of the Global

Biodiversity Information Foundation (GBIF), an organization concerned with

cataloging the impacts of climate change. Darwin Core contains 18 classes, and

71 properties. The Specify ontology was created from direct mapping the SQL

schema of the database in the Specify biological collections software package10.

Specify is used to manage over 200 field specimen collections. The specify on-

tology has 11 classes, and 413 properties. The Bibliography domain comprises

the UMBC ontology from OAEI, and an ontology that models DBLP, gen-

erated from the direct mapping of a relational database of DBLP metadata

through Ultrawrap [81]. Class hierarchies are manually added. DBLP ontol-

ogy has 17 classes, and 51 properties. The Conference domain consists of two

ontologies SIGKDD and SOFSEM from OAEI.

10http://specifysoftware.org/

27

BASE%%<http://ribs.csres.utexas.edu/specify/>%
Select%?v%%
Where%{%%
%%?c0%%<locality#Latitude1>%%?v.%
%%?c0%%rdf:type%%<locality>.%
}%

(a) PathOnly query, asking for the latitude of all locations.!
BASE!!<http://ribs.csres.utexas.edu/specify/>!
Select!?v0!?v1!?v2!?v3!?v4!?v5!?v6!!
Where!{!!
!!?c0!!<determination#DeterminedDate>!?v0.! ?c0!!<determination#Qualifier>!?v1.!
!!?c0!!<determination#Remarks>!?v2.! !!! ?c0!!<determination#refNTaxonID>!?c1.!
!!?c1!!<taxon#Name>!?v3.! ! ! ?c0!!<determination#refNPreferredTaxonID>!?c2.!
!!?c2!!<taxon#Name>!?v4.! ! ! ?c0!!<determination#refNCreatedByAgentID>!?c3.!
!!?c3!!<agent#DateOfBirth>!?v5!!! ! ! ?c0!!<determination#refNModifiedByAgentID>!?c4.!
!!?c4!!<agent#DateOfBirth>!?v6.!!! ! ! ?c0!!rdf:type!<determination>.!
!!?c1!!rdf:type!<taxon>.!!! ! ! ! ?c2!!rdf:type!<taxon>.!
!!?c3!!rdf:type!<agent>.!!! ! ! ! ?c4!!rdf:type!<agent>.!
}!

(b) ClassAll query, asking for the dates, remarks, and qualifiers of all determination
of taxons, as well as the birthdays of the agents that determine the taxons.

Figure 3.2: Real SPARQL queries generated for the Specify ontology.

Sets of test queries are created as follows. First, we identify groundtruth

path mappings between each pair of ontologies. Subsequently, a computer pro-

gram systematically generates two kinds of SPARQL queries for each ontology.

1) A PathOnly query has a query graph consisting of only one path in the

groundtruth. 2) A ClassAll query has a query graph consisting of all paths

(at least two) that share a source in the groundtruth. A ClassAll query is

the most complicated query with one conjunction over the source. In English

specification, a PathOnly query asks for all values of a single attribute of a

concept, and a ClassAll query asks for all values of all attributes of a concept.

Figure 3.2 shows examples of real PathOnly and ClassAll queries generated

for the Specify ontology, as well as the meaning of both queries.

28

Chapter 4

Mapping Different Types of Database

Elements

Schema matching is an essential component of information integration

systems [12, 13]. Most existing automatic schema matchers define the match-

ing problem as determining correspondences between attributes. This defini-

tion has practical limitations. In a seminal paper, Krishnamurthy, Litwin, and

Kent show that interoperability of databases requires higher-order capabilities

over both metadata and data [54]. They assert that higher-order schematic

discrepancies are frequent. We observe this problem in our experiences of

integrating two commercial ecommerce databases. Figure 4.2 shows two car

listing databases. One is from a general purpose open source ecommerce soft-

ware that has been downloaded more than 300,000 times1. The other is an

ecommerce software specific to automobiles2. The fifth row of the first table

contains “mileage” as a data value and the number “42953” as another data

value. In the second database, “mileage” is the name of the second column,

and the numbers are data values in that column. The attribute correspon-

dences cannot cover this matching of mileage.

1www.opencart.com
2www.subrion.com

29

! Relation! ! !
Relation! ! Attribute! !

Attribute! ✔! ✔ Conventional!
schema!matching! Value!

Value! ✔! ✔! !
!

Figure 4.1: Six possible correspondence types. The checked correspondence
types are detailed in this work. The definition of correspondence is based
on a given pair of relations, so correspondence between relations is ignored.
Correspondence between values does not involve metadata; hence it is not
considered.

product_id attribute_name language_name text
1 exterior English silver
1 interior English other
1 engine English 3.5L:V6:MPI:SOHC:24V
1 fuel English gasoline
1 mileage English 42953

product_attribute

(a) Open source ecommerce software

id mileage exterior_color engine transmission fuel_type …
4 240000 Blue 6:cylinders Manual Gasoline
5 160000 Black 4:cylinders Automatic Gasoline
6 100000 Blue 4:cylinders Automatic Gasoline,:Gas …
7 32000 Grey 4:cylinders SemiEautomatic Gasoline
9 150000 Gold 12:cylinders Manual Gasoline

autos

(b) Auto classified software

Figure 4.2: Two commercial use schemas in our Ecommerce data set. This
data set demonstrates the needs of correspondences between attributes and
data values in real applications.

A relational database contains three types of elements: relation, at-

tribute, and data value. Any pair of elements can form a correspondence,

resulting in six possible correspondence types (see Figure 4.1). The conven-

tional schema matching definition only considers one possibility. We call the

correspondences between elements of the same type as same-type correspon-

dences, and similarly different-type correspondences.

30

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

(a) Database D: stock as [D]ata value

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196.4

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

(b) Database C: stock as attribute ([C]olumn)

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196.4

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

(c) Database R: stock as [R]elation

Figure 4.3: Example databases of stock prices.

Different-type correspondences are frequently required in real world

data integration applications. In our experiences of integrating the two car

listing databases, we observe that without identifying different-type correspon-

dences the matching accuracy cannot exceed 0.81. The open source ecommerce

software has 115 relations, and the automobile ecommerce software has 37 re-

lations. After manually inspecting the databases to find correspondences con-

cerning products and transactions, we find 26 correspondences in total, and

5 of them are different-type correspondences. Especially, these different-type

correspondences match the product-property tables as shown in Figure 4.2,

which are the most important matchings to integrate the two databases. As

a general purpose ecommerce software, the first database does not have prior

information of products. Thus the car properties, such as mileage and color,

are designed as data values. The second database is specific for cars, so the

properties can be designed as attributes.

31

Figure 4.3 shows three stock price databases from the seminal paper,

which are asserted in commercial use [54]. We will use these databases as

examples throughout the work. The three databases contain similar informa-

tion, but are organized differently. For example, the stock “IBM” is a [D]ata

value in database D, an attribute ([C]olumn) in database C, and a [R]elation

in database R. An element in a database is denoted as its name prepended by

the database name and a colon, e.g. “C:IBM”.

The same-type correspondence between two attributes a and b has clear

semantics. If two tuples s and t satisfy the correspondence, the value of a in s

equals the value of b in t. The semantics of different-type correspondences are

not clear. In Figure 4.3, correspondence between attribute “C:IBM” and data

value “D:IBM” indicates a relationship between static metadata and dynamic

data. The meaning of such a relationship is not obvious.

We observe that a different-type correspondence takes on clear seman-

tics if combined with an appropriate same-type correspondence. For example,

consider the different-type correspondence between attribute “C:IBM” and

data value “D:IBM”. When combined with the same-type correspondence be-

tween the data values of attributes “C:IBM” and “D:clsPrice”, it represents

the matching of IBM stock prices. “IBM” and its stock price “196” in both

databases can now be matched by specifying this compound correspondence.

In this work, the definitions and semantics of three types of compound

correspondences are introduced [85]. The compound correspondence types

are named by their different-type correspondences as attribute-value, relation-

32

attribute, or relation-value. The checked cells (except correspondence between

attributes) in Figure 4.1 represent these different-type correspondences.

Two algorithms to automatically generate compound correspondences

are detailed. Both algorithms exploit database instances. One algorithm gen-

erates correspondences using duplicates in the two databases, an idea demon-

strated to be effective in the DUMAS system [16]. The other algorithm is

more general in that it does not use duplicates. Comparing with DUMAS and

an instance-based schema matcher, experiments conducted on four real world

data sets demonstrate the effectiveness of the two methods.

A common schema mapping representation in information integration

applications is tuple-generating dependency (TGD). To demonstrate that com-

pound correspondences can be used in both data exchange and data inte-

gration applications, we propose algorithms to automatically translate these

correspondences to TGDs with constants. We slightly change the chase al-

gorithm [61] to generate universal solutions based on these TGDs for data

exchange. Further more, discussion on applying existing query rewriting algo-

rithms to these TGDs for data integration is provided.

4.1 Problem Definition

This work considers relational data models. A schema is a finite set of

relations. We denote schemas as A,B, and relations as A,B. A relation is a

finite set of attributes. A tuple is a finite set that contains a value for each

attribute. Attributes are represented as a, b, and tuples are represented as s, t.

33

Given an attribute a and a tuple t, the value of a in t is denoted as ta.

In order to define compound correspondences, we introduce the term

database element set. Intuitively, the database element set of a relation A is the

set of all elements of A that can occur in correspondences. A database element

set contains relation names, attribute names, and data values. Introducing

data values in correspondences raises the issue of how to represent data values.

A straightforward way is to use actual data values. However, data values are

dynamic and can change frequently. A second way, which is used in this

work, is to use a symbolic representation. We use notation a to represent

the set of all possible data values of attribute a. For example, D:stkCode

represents “AAPL”, “IBM” and other stock codes. The program using the

correspondences needs to match the exact data values.

Definition 4.1.1 (database element set). Given a relation A, and the set of

attributes {ai|ai ∈ A, i = 1, . . . , |A|}, the database element set is ΘA, where

ΘA = {A} ∪ {ai|ai ∈ A} ∪ {ai|ai ∈ A}. A is used interchangeably to represent

the name of relation A and the set of all attributes in A, and ai is the symbol

representing the set of all possible data values of attribute ai.

To define compound correspondence, we first define primitive corre-

spondence as a correspondence between two elements in the database element

sets.

Definition 4.1.2 (primitive correspondence). Given two relations A and B,

a primitive correspondence is a pair (e1, e2), where e1 ∈ ΘA, and e2 ∈ ΘB. ΘA

34

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

IBM AAPL
date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

Stock Stock

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

IBM AAPL
date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

Stock Stock

(a) Attribute-value

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

IBM
date clsPrice
1/2/13 196
1/3/13 195

StockStock

IBM AAPL

Stock Stock
date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

IBM AAPL
date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

Stock Stock

(b) Relation-attribute

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

IBM
date clsPrice
1/2/13 196
1/3/13 195

StockStock

IBM AAPL

Stock Stock
date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

date AAPL IBM GOOG date stkCode clsPrice
1/2/13 549 196 723 1/2/13 AAPL 549
1/3/13 542 195 723 1/2/13 IBM 196

IBM AAPL
date clsPrice date clsPrice
1/2/13 196 1/2/13 549
1/3/13 195 1/3/13 542

StockStock

IBM AAPL

Stock Stock

(c) Relation-value

Figure 4.4: Shading indicates compound correspondences.

and ΘB are database element sets of A and B, respectively.

A compound correspondence is a pair of primitive correspondences,

with the constraint that the second element is always defined as a primitive

correspondence between data values.

Definition 4.1.3 (compound correspondence). Given two relations A and B,

the three types of compound correspondences are defined as follows:

• Attribute-value correspondence: for an attribute a ∈ A and attributes

b1, b2 ∈ B, an attribute-value correspondence is a pair ((a, b1), (a, b2)),

where (a, b1) and (a, b2) are primitive correspondences;

• Relation-attribute correspondence: for an attribute a ∈ A and an at-

tribute b ∈ B, a relation-attribute correspondence is a pair ((A, b), (a, b)),

where (A, b) and (a, b) are primitive correspondences;

• Relation-value correspondence: for an attribute a ∈ A and attributes

b1, b2 ∈ B, a relation-value correspondence is a pair ((A, b1), (a, b2)),

where (A, b1) and (a, b2) are primitive correspondences.

35

Figure 4.4 illustrates some compound correspondences of the stock

price examples. ((C:IBM,D:stkCode), (C:IBM,D:clsPrice)) is an attribute-

value correspondence. ((R:IBM,C:IBM), (R:clsPrice,C:IBM)) is a relation-

attribute correspondence, and ((R:IBM,D:stkCode), (R:clsPrice,D:clsPrice))

is a relation-value correspondence.

The semantics of compound correspondences are defined as follows. For

completeness, the semantics of the conventional attribute-attribute correspon-

dence are also presented. The notation in Definition 4.1.3 is employed. s and

t represent tuples of relations A and B. The value of an attribute a in s is

denoted sa.

• Attribute-attribute correspondence (a, b)

s and t satisfy correspondence (a, b), if sa = tb.

Example: (C:date,D:date) is an attribute-attribute correspondence. The

first tuple of database C and the first tuple of database D satisfy the

correspondence.

• Attribute-value correspondence ((a, b1), (a, b2))

s and t satisfy correspondence ((a, b1), (a, b2)), if a = tb1 and sa = tb2 .

Example: The first tuple of database C and the second tuple of database

D satisfy ((C:IBM,D:stkCode), (C:IBM,D:clsPrice)), since “IBM” oc-

curs as the name of attribute “C:IBM” and as the value of attribute

“D:stkCode”, and “196” occurs as the value of both attributes “C:IBM”

and “D:clsPrice”.

36

• Relation-attribute correspondence ((A, b), (a, b))

s and t satisfy correspondence ((A, b), (a, b)), if A = b and sa = tb.

Example: The first tuple of database R and the first tuple of database C

satisfy ((R:IBM,C:IBM), (R:clsPrice,C:IBM)), because “IBM” occurs as

the name of relation “R:IBM” and as the name of attribute “C:IBM”, and

“196” occurs as the value of both attributes “R:clsPrice” and “C:IBM”.

• Relation-value correspondence ((A, b1), (a, b2))

s and t satisfy correspondence ((A, b1), (a, b2)), if A = tb1 and sa = tb2 .

Example: The first tuple of database R and the second tuple of database

D satisfy ((R:IBM,D:stkCode), (R:clsPrice,D:clsPrice)), since “IBM” oc-

curs as the name of relation “R:IBM” and as the value of attribute

“D:stkCode”, and “196” occurs as the value of both attributes “R:clsPrice”

and “D:clsPrice”.

The semantics of attribute-value and relation-value correspondences

involve two data values in tuple t at the same time. These semantics show

the dependency between the two primitive correspondences in a compound

correspondence.

Given the definition of correspondences, a schema matching is a set of

relation matchings, each of which includes a set of correspondences.

Definition 4.1.4 (relation matching). Given two relations A and B, a relation

matching M is a triple (A,B,Σ), where Σ is a set of correspondences between

37

A and B.

Definition 4.1.5 (schema matching). Given two schemas A and B, a schema

matching M is a set of relation matchings, each of which is between a relation

of A and a relation of B.

4.2 Generating Correspondences

Data dependencies make automatically generating compound corre-

spondences more difficult than the conventional attribute-attribute correspon-

dences. For generating attribute-attribute correspondences, instance-based

matchers need to only determine if two attributes have similar values. For com-

pound correspondences, dependencies may not be evident for all values of an

attribute. For example, to generate ((C:IBM,D:stkCode), (C:IBM,D:clsPrice)),

a matcher needs to compare the values of attribute “C:IBM” and the values

of “D:clsPrice” when the values of “D:stdCode” is “IBM” for the same tuples.

Two algorithms are proposed to automatically generate correspondences.

The first algorithm relies on the existence of duplicates in two databases. The

second is a general instance-based method. Both methods require basic sim-

ilarity measures. Sfield is a measure of similarity between two database ele-

ments. Slist measures the similarity between two lists of elements. Similarity

measures have been well studied [21]. Any similarity measure can be used.

38

4.2.1 Duplicate Method

The idea of the duplicate method is to find similar tuples from different

databases, and determine schema matchings based on the similarity of values

in those similar tuples [16].

In our problem, the objective is to find correspondences between dif-

ferent types of database elements. This requires a uniform representation of

all database elements. We define a schema tuple as a uniform representation

of both schema information and data values in a tuple.

Definition 4.2.1 (schema tuple). Given a relation A and a tuple t, a schema

tuple t̂ is a set such that t̂ = {A} ∪ {ai|ai ∈ A, for i = 1, . . . , |A|} ∪ t, where

A is used interchangeably to represent the name of relation A and the set of

all attributes in A, and ai is an attribute of A.

For example, the schema tuple of the first tuple of database D is a set

{Stock, date, stkCode, clsPrice, 1/2/13,AAPL, 549}.

Given the schema tuples from two databases, any general-purpose record

linkage algorithms can be used to find similar pairs. The implementation de-

tails of this work are described in Section 4.2.3. Given a parameter N , the

output of the record linkage algorithms are N pairs of schema tuples ranked

by similarity in descending order.

The next subproblem is to measure the confidence of every correspon-

dence given the N duplicate pairs. For each correspondence, the idea is to

39

compute a score to measure how likely a duplicate pair satisfy the correspon-

dence based on the similarity measure Sfield. The confidence measure of the

correspondence is the average of the scores across all duplicate pairs. All

correspondences above a confidence threshold are considered as predicted cor-

respondences.

Given two relations A andB, denote the attributes a ∈ A, and b, b1, b2 ∈

B. The tuple of A in the ith duplicate pairs is denoted Ii, and the tuple of B

in the ith duplicate pairs is denoted Ji. The confidence of correspondence σ

is represented as p(σ).

Attribute-attribute correspondence (a, b)

p((a, b)) =

∑
i Sfield(I

a
i , J

b
i)

N
(4.1)

Attribute-value correspondence ((a, b1), (a, b2)) The attribute-value cor-

respondences involve data values. Thus, we need to distinguish individual data

values. The N duplicate pairs are grouped by the unique data values of at-

tribute b1. A score is computed for each group, and the maximum score over

all groups is the confidence of the correspondence.

p(((a, b1), (a, b2))) = max
v∈Jb1

∑
i,J

b1
i =v

√
Sfield(a, v) · Sfield(Iai , J b2i)∑

i,J
b1
i =v

1
(4.2)

where J b1 represents the set of unique values of attribute b1 in all duplicate

tuples.

40

Relation-attribute correspondence ((A, b), (a, b))

p(((A, b), (a, b))) =

∑
i

√
Sfield(A, b) · Sfield(Iai , J bi)

N
(4.3)

Relation-value correspondence ((A, b1), (a, b2)) The relation-value corre-

spondences also need to distinguish individual data values.

p(((A, b1), (a, b2))) = max
v∈Jb1

∑
i,J

b1
i =v

√
Sfield(A, v) · Sfield(Iai , J b2i)∑

i,J
b1
i =v

1
(4.4)

4.2.2 Non-duplicate Method

The non-duplicate method is a general-purpose solution, which does

not require duplicate data. As long as the two databases have data, the non-

duplicate method can be used. As in the duplicate method, the task is to

measure the confidence of every correspondence. All correspondences with

confidence above a threshold are considered as predicted correspondences.

Instead of computing the average similarity of all duplicate pairs in the

duplicate method, the non-duplicate method estimates the confidence using

the similarity measure between lists of data values, Slist.

The list of all values of attribute a in relation A is represented as Ia,

and the list of all values of attribute b in relation B is represented as J b.

Attribute-attribute correspondence (a, b)

p((a, b)) = Slist(I
a, J b) (4.5)

41

Attribute-value correspondence ((a, b1), (a, b2)) Similar to the duplicate

method, the tuples are grouped by the unique values of attribute b1. A score

is computed for each group, and the maximum score is the confidence of the

correspondence.

p(((a, b1), (a, b2))) = max
v∈Jb1

√
Sfield(a, v) · Slist(Ia, J b2v) (4.6)

where J b2v represents the list of all values of attribute b2 in the tuples having

the value of attribute b1 as v.

Relation-attribute correspondence ((A, b), (a, b))

p(((A, b), (a, b))) =
√
Sfield(A, b) · Slist(Ia, J b) (4.7)

Relation-value correspondence ((A, b1), (a, b2)) The tuples are grouped

by the unique values of attribute b1, and the confidence is computed as the

maximum score of all groups.

p(((A, b1), (a, b2))) = max
v∈Jb1

√
Sfield(A, v) · Slist(Ia, J b2v) (4.8)

4.2.3 Implementation

Similarity measure The field similarity, Sfield, measures the similarity be-

tween two database elements. Any similarity measure can be used. To be

comparable with the baseline, we use a similar measure as DUMAS. The sim-

ilarity measure is SoftTF, which is a variation of SoftTFIDF by dropping the

42

IDF (IDF is not well defined in our problem) [21]. This soft measure takes

into account similar terms, while conventional TF only considers equal terms.

The list similarity, Slist, measures the similarity between two lists of

database elements. One choice is to cast the similarity as a supervised machine

learning problem. This is not applicable to our problem due to lack of human

labels. A second choice is to directly measure the intersection between the two

lists. This may not perform well if there is no exact duplicate in the lists. We

take a third choice, which uses statistics of the two lists to measure similarity.

Statistics are summarizations of the lists, and not sensitive to individual values.

As demonstrated in iMap, different data types should have different

similarity measures [26]. Thus, our measure of list similarity is specialized

for different data types. The current implementation details three data types:

string, number, and date. Given a list, all elements are attempted to be parsed

to the three types. The type with the most successfully parsed elements is

the estimated data type for the list. The statistics are extracted as a vector

from all elements that can be parsed as the estimated data type. For string,

the vector contains term frequencies (TF) after tokenizing all elements. For

number, a twenty-bin histogram is generated to represent the distribution of all

elements. Before generating the histogram, outliers are eliminated by sorting

the elements and keeping the middle 95% data. For date, strings such as

“January” and “Monday” are converted to numbers, and the vector contains

the frequencies of numbers with one to four digits. Note that if an element

has more than three numbers (a date at most contains year, month, and day)

43

or less than two numbers (should be a number instead of date) or more than

one number with three or four digits (only year has three or four digits), that

element is not parsed as a date. The similarity between two lists l1 and l2 that

has the same estimated data type is computed as follows:

Slist(l1, l2) =
√
Stype(l1, l2) · Sstat(l1, l2) (4.9)

where Stype(l1, l2) is the minimum of percentage of the elements that are parsed

as the estimated data type in l1 and l2. Sstat(l1, l2) is cosine similarity between

the two vectors of statistics.

Record linkage Record linkage is the task of matching records that refer to

the same entity across different data sources [20, 53]. It is also called duplicate

detection if the task is within only one data source [33]. Any record linkage

algorithm can be used in our duplicate methods. We use an algorithm similar

to Bike and Naumann [16]. The algorithm is distinguished in the way that it

can handle databases with different schema.

Given two relations A and B, the algorithm computes similarity be-

tween each pair of schema tuples. Schema tuples are tokenized into a set of

terms. TFIDF is used for weighting terms. Specifically, the weight of a term

τ in a schema tuple t̂ is computed as:

w′(t̂, τ) = log(tft̂,τ + 1) · log(
n

dfτ
+ 1)

where tft̂,τ is the term frequency of τ in t̂, dfτ is the number of schema tuples

in which τ appears, and n is the total number of schema tuples. These weights

44

are normalized for each schema tuple as:

w(t̂, τ) =
w′(t̂, τ)√∑
τ ′∈t̂w

′(t̂, τ ′)2

where τ ∈ t̂ means τ is a term of t̂ after tokenization. The similarity between

two schema tuples t̂1 and t̂2 are computed as:

Stuple(t̂1, t̂2) =
∑

τ∈t̂1∩t̂2

w(t̂1, τ) · w(t̂2, τ)

These pairs of schema tuples are ranked by the similarity in descending

order. Given a parameter N , the top N pairs of schema tuples are predicted

as duplicates.

When predicting attribute-value and relation-value correspondences,

the value v in (4.2) and (4.4) are required to occur in at least two, and at

least 10% duplicate pairs to eliminate outliers. The value v in (4.6) and (4.8)

are required to occur in at least 10% tuples. In addition, the value v is un-

likely to occur in the attributes with many unique values. We prune the

attributes with more than ten unique values to improve speed. If a predicted

attribute-attribute correspondence has lower confidence than its correspond-

ing compound correspondences, the attribute-attribute correspondence will be

ignored.

4.3 Tuple-Generating Dependency

In this section, we introduce the algorithm to formulate compound

correspondences as TGDs with constants. We also discuss how to use these

45

TGDs in data exchange and data integration applications.

4.3.1 Formulation

Given a target schema A and a source schema B, a TGD is a first-order

logic formula in the form:

∀x(φ(x)→ ∃yψ(x,y))

where φ(x) is a conjunction of atomic formulas over B, and ψ(x,y) is a con-

junction of atomic formulas over A.

With the conventional schema matchings that only contain attribute

correspondences, a TGD assigns variables to the attributes of A and B. The

matched attributes share the same variable.

Compound correspondences defined in this work involve matchings of

relations, attributes, and data values. Representations of compound corre-

spondences need higher-order logic as shown by Krishnamurthy, Litwin, and

Kent, which cannot be expressed as TGDs [54]. We observe that relations and

attributes in correspondences can be considered as constants. This is because

if relations or attributes in databases are changed, the correspondences should

be recomputed. Thus, if the correspondences are in use, the relations and

attributes within the correspondences can be considered as constants. Instead

of representing compound correspondences as higher-order logic, we represent

them in first-order logic (TGDs) by substituting relations and attributes with

their names as constants.

46

For example, ((C:IBM,D:stkCode), (C:IBM,D:clsPrice)) can be repre-

sented in TGD as:

∀x1 x2 x3 x4 (C:Stock(x1, x2, x3, x4)→ ∃y D:Stock(y, “IBM”, x3))

where “IBM” is a constant.

4.3.2 Generation

For simplicity, we generate TGDs from one relation of the target schema

A to one relation of the source schema B. The generation of TGDs including

more than one relation is discussed later. Given relations A ∈ A, B ∈ B, and

a set of correspondences Σ between A and B, the task is to formulate Σ as a

set of TGDs.

The preliminary step of formulating TGDs is to group the correspon-

dences in Σ into subsets such that the correspondences in each subset are

non-overlaping. A TGD will be generated for each subset. This is important

for compound correspondences, since multiple correspondences may share el-

ements. The correspondences ((C:IBM,D:stkCode), (C:IBM,D:clsPrice)) and

((C:AAPL,D:stkCode), (C:AAPL,D:clsPrice)) are examples.

We first define the overlap of two correspondences. Correspondences

can contain relations, attributes, and symbols representing data values. The

overlap includes the common elements in the two correspondences. In addition,

we are also concerned with the attributes underlying the symbols representing

data values.

47

Definition 4.3.1 (non-overlap correspondence). Given two correspondences

σ1 and σ2, Θ1 and Θ2 are the sets containing all database elements in σ1 and

σ2, respectively. σ1 and σ2 are non-overlaping, if:

• Θ1 ∩Θ2 = ∅

• Denote {a0, . . . , ai} and {b0, . . . , bj} as the set of attributes and the set of

symbols representing data values in Θ1, and {c0, . . . , ck} and {d0, . . . , dl}

as the set of attributes and the set of symbols representing data values

in Θ2. {a0, . . . , ai} ∩ {d0, . . . , dl} = ∅ and {b0, . . . , bj} ∩ {c0, . . . , ck} = ∅.

Definition 4.3.2 (non-overlap correspondence set). A set of correspondences

Σ is non-overlaping, if ∀ σ1, σ2 ∈ Σ that σ1 6= σ2, σ1 and σ2 are non-overlaping.

Given a set of correspondences Σ, a minimum non-overlap support Σs is

defined as a set of subsets of Σ, each of which is a non-overlap correspondence

set and is as large as possible.

Definition 4.3.3 (minimum non-overlap support). Given a set of correspon-

dences Σ, a set Σs is a minimum non-overlap support of Σ if the following

conditions are satisfied:

• ∀ ∆ ∈ Σs, ∆ ⊆ Σ;

• ∀ ∆ ∈ Σs, ∆ is a non-overlap correspondence set;

• ∀∆′ ⊆ Σ that is non-overlap, ∃∆ ∈ Σs such that ∆′ ⊆ ∆;

48

Algorithm 1 Formulate correspondences in TGDs

Input: target relation A, source relation B, a minimum non-overlap support
Σs

Output: a set of TGDs Ω
for ∆ ∈ Σs do

// M is a map from an attribute to a variable or constant
M = ∅
Assign a unique variable to each attribute of A and B to M
for σ ∈ ∆ do

M = SubstituteVariables(A,B, σ,M)
end for
// Generate TGD based on the map M
ω =“∀”
Add the variables of source attributes to ω
Add B and the values of all attributes of B to ω
Add “→ ∃” to ω
Add the variables of target attributes that are not shared with source

attributes to ω
Add A and the values of all attributes of A to ω
Add ω to Ω

end for
return Ω

• ∀ ∆1,∆2 ∈ Σs, ∆1 6= ∆2, then ∆1 6⊂ ∆2 and ∆2 6⊂ ∆1.

Given the fact that the number of correspondences is usually small, the

minimum non-overlap support can be found by brute force.

Algorithm 1 and 2 describe the details of generating TGDs given a

minimum non-overlap support. The algorithms maintain a map data struc-

ture with all attributes of both A and B as keys, and strings as values. The

map is initialized by assigning a unique variable to each attribute. The al-

gorithms visit each correspondence, and substitute some variables in the map

49

Algorithm 2 The SubstituteVariables function in Algorithm 1

Input: target relation A, source relation B, correspondence σ, map M
Output: M

function SubstituteVariables(A, B, σ, M)
Let ΘA be the database element set of A
// e represents the data values of attribute e
if σ is attribute-attribute correspondence (e3, e4) or relation-attribute

correspondence ((e1, e2), (e3, e4)) then
// Substitute target variables with source variables
if e3 ∈ ΘA then

M(e3) = M(e4)
else

M(e4) = M(e3)
end if

else
// σ is attribute-value or relation-value ((e1, e2), (e3, e4))
// Substitute target variables with source variables
if e3 ∈ ΘA then

M(e3) = M(e4)
else

M(e4) = M(e3)
end if
// Substitute variables with constants
M(e2) = e1

end if
return M
end function

with other variables or constants according to the correspondence. Finally, a

logic representation is generated based on the map. The variable substitutions

for a relation-attribute correspondence ((e1, e2), (e3, e4)) and a corresponding

attribute-attribute correspondence (e3, e4) are the same. This is due to the

fact that the primitive correspondence (e1, e2) is between a relation and an

50

attribute. Both relation and attribute are constants, so there is no variable

to substitute. This fact shows that a relation-attribute correspondence does

not provide more information than its corresponding attribute-attribute corre-

spondence in a TGD. For attribute-value and relation-value correspondences,

the substitution involves constants. Both variables of the target attributes and

the source attributes may be substituted with constants.

In the examples in Figure 4.3, let databases D and C be the target and

source databases, respectively. The set of correspondences Σ is:

Σ = { (C:date,D:date),

((C:AAPL,D:stkCode), (C:AAPL,D:clsPrice)),

((C:IBM,D:stkCode), (C:IBM,D:clsPrice)) }

The set of generated TGDs is:

Ω = { ∀x1 x2 x3 x4 (C:Stock(x1, x2, x3, x4)→ D:Stock(x1, “AAPL”, x2)),

∀x1 x2 x3 x4 (C:Stock(x1, x2, x3, x4)→ D:Stock(x1, “IBM”, x3)) }
(4.10)

TGDs with multiple relations The problem of generating schema map-

pings with multiple relations has been discussed in Clio, which semi-auto-

matically generates mappings as TGDs [37]. The mappings are created in

two steps: finding initial correspondences between attributes and associating

correspondences by logical inference through referential constraints. The cor-

respondence association is done by a modification of the chase algorithm [61].

51

To generate schema mappings with multiple relations in our problem, we can

directly apply the method of correspondence association in Clio to the TGDs

between a pair of relations generated by Algorithm 1.

4.3.3 Applications

Data Exchange Data exchange is the problem of transforming an instance

of a source schema to an instance of the target schema, given a mapping

between the two schemas [38, 9]. Let us denote the target schema as A and

the source schema as B. A mapping, M, is defined as a triple (A,B,Ω),

where Ω is a set of source-to-target dependencies. In this definition, we ignore

the constraints on the target schema, and only consider the source-to-target

dependencies. The source-to-target dependencies are usually TGDs.

A target instance I is a solution of a source instance J under mapping

M, if I and J satisfy Ω. There may exist more than one solution of a source

instance. A universal solution is a target instance that contains no more and

no less than what the mapping specification requires. As it is widely accepted

in the data exchange literature, universal solutions reflect the source data

better [9].

Generating universal solutions is an important task in data exchange.

The chase algorithm is generally used to find universal solutions [61, 38]. Given

a source instance, the chase algorithm iteratively visits a TGD in the schema

mapping, and generates a target tuple. The process is stopped if no new target

tuples can be generated.

52

Algorithm 3 Generate universal solutions for data exchange

Input: mapping (A,B,Ω), instance J of B
Output: instance I of A
I = ∅
while new tuples can be added to I do

Let ω ∈ Ω be ∀x(φ(x)→ ∃yψ(x,y))
Let α be a mapping from x to the constants in J such that φ(α(x)) ∈ J
// α exist if the constants in J and φ(α(x)) are the same
if α exists then

Let β be a mapping from y to the variables in I such that
ψ(α(x), β(y)) ∈ I

if β does not exist then
Let γ be a mapping that maps each variable in y to a new variable

that is not in I
Add ψ(α(x), γ(y)) to I

end if
end if

end while
return I

In our problem, TGDs include constants to represent compound cor-

respondences. We extend the chase algorithm to generate universal solutions

for our problem. Algorithm 3 is a slightly modified chase algorithm based on

the version in [29]. The only change in Algorithm 3 is the check of whether

the constants in the source instance and the TGDs are the same.

Given the TGDs in (4.10) and the instance of database C in Figure 4.3,

53

the universal solutions are:

(1/2/13,AAPL, 549)

(1/2/13, IBM, 196)

(1/3/13,AAPL, 542)

(1/3/13, IBM, 195)

Data Integration Data integration provides uniform access to a set of au-

tonomous, heterogeneous structured data sources [29]. Given a target schema

A, a set of source schemas B1,B2, . . . , schema mappings Ω, and a user query

qA over A, the task of data integration is to rewrite qA to queries over the

source schemas and answer qA using the data in the data sources. The schema

mappings can be represented in three formalisms. Global-as-view (GAV) rep-

resents each relation in the target schema as a view of the source schemas.

Local-as-view (LAV) represents each relation in the source schemas as a view

of the target schema. The combination of GAV and LAV is Global-local-as-

view (GLAV), which includes a mapping from a view of the target schema to

a view of the source schemas.

Query rewriting is an important task in data integration. The rewriting

in GAV formalism is simply query unfolding. The rewriting in LAV formalism

is more complex. It needs algorithms for answering queries using views, such

as MiniCon [73]. The rewriting in GLAV formalism combines the rewriting

in both GAV and LAV. The algorithm contains two steps: (1) rewrite the

54

target query using the views of the target schema in the schema mappings, (2)

replace the views of the target schema by the views of the source schema and

unfold the queries.

In our problem, the schema mappings are represented as TGDs, which

are equivalent in expressiveness to GLAV formalism. Thus, the rewriting

algorithms for GLAV can be applied to TGDs. MiniCon is a well-known

rewriting algorithm that translates a conjunctive query to union of conjunc-

tive queries [73]. It supports constants in both queries and mappings. Thus,

the MiniCon algorithm can be directly applied to the TGDs in our solution.

In the examples in Figure 4.3, let databases D and C be the target

and source databases, respectively. The schema mappings are given in (4.10).

Consider a query Q(x, y) over database D asking the prices of all stocks of

date “1/2/13 ”. For clarity, queries are written in relational calculus.

Q(x, y) :- D:Stock(1/2/13, x, y)

The first step of the rewriting represents the query using union of two con-

junctive views of database D in the TGDs:

Q′(x, y) :- D:Stock(1/2/13,AAPL, y), x = AAPL

Q′(x, y) :- D:Stock(1/2/13,IBM, y), x = IBM

The final rewritten query is union of two conjunctive views of the source schema

55

C:

Q′′(x, y) :- C:Stock(1/2/13,y, z1, z2), x = AAPL

Q′′(x, y) :- C:Stock(1/2/13,z3, y, z4), x = IBM

Comparing Q(x, y) and Q′′(x, y), the target query is a conjunctive

query, but the rewritten query is a union of two conjunctive queries. Re-

call that the schema mappings between database C and D include attribute-

value correspondences. Although we represent the attribute-value correspon-

dences in first-order logic, the semantics still need second-order logic. Thus,

the rewritten query needs to enumerate (union) the attributes to express the

second-order logic by first-order logic.

4.4 Experiments

4.4.1 Test Sets

The test sets are detailed in Section 3.1. There are four application

domains: Ecommerce, Stock Market, College Enrollment, and Video Game.

Table 4.1 shows the number of unique groundtruth correspondences of different

types. Compound correspondences occur in all test sets, which demonstrates

their importance.

56

Ecommerce Stock Enrollment Game
attribute-attribute 1 2 2 1
attribute-value 5 3 3 3
relation-attribute 0 1 1 0
relation-value 0 2 4 0
total 6 8 10 4

Table 4.1: The number of unique groundtruth correspondences of different
types.

4.4.2 Baselines

DUMAS is the schema matching system that is closely related to our

proposed duplicate method [16]. We implement DUMAS baselines as follows.

First, the record linkage algorithm in Section 4.2.3 is applied to generate du-

plicate tuples, instead of schema tuples. A similarity matrix of all pairs of at-

tributes is computed as in (4.1). All pairs with similarity above the threshold

are the predicted correspondences. These baselines are named as DUMAS x,

where x is the number of duplicates used for matching. In the experiments, x

is set to 5 and 10 as in our proposed methods.

We also implement a general-purpose instance-based matching baseline

to compare with our proposed non-duplicate method. The instance-based

matching baseline extracts the data of each attribute as a set, and compute a

similarity matrix of all pairs of attributes as in (4.5). All pairs with similarity

above the threshold are the predicted correspondences. The instance-based

baseline is named Instance. Instance uses at most 1000 tuples from each

schema for matching.

57

The proposed duplicate methods are Dup 5 and Dup 10, which use

5 and 10 duplicates, respectively. The proposed non-duplicate method is

NonDup. NonDup uses the same tuples as Instance baseline. The main dif-

ference between the proposed methods and the baselines is that the baselines

only predict attribute-attribute correspondences.

4.4.3 Metrics

We measure the precision, recall, and f-measure of correspondences.

Denote the set of predicted correspondences as P , and the set of groundtruth

correspondences as T . The precision (corr p), recall (corr r), and f-measure

(corr f) are defined as follows:

corr p(P, T) =
|P | ∩ |T |
|P | , corr r(P, T) =

|P | ∩ |T |
|T |

corr f(P, T) = 2 · corr p(P, T) · corr r(P, T)

corr p(P, T) + corr r(P, T)

Per Section 4.3, a relation-attribute correspondence and its corresponding

attribute-attribute correspondence are formulated to the same TGD. Thus,

we do not distinguish a relation-attribute correspondence and its correspond-

ing attribute-attribute correspondence in the evaluation.

Generating TGDs based on correspondences is a deterministic process.

Thus we do not measure the correctness of TGDs in the experiments.

If a data set has more than two schemas, the experiments are conducted

on each pair of schemas, and the average results are reported.

58

4.4.4 Results

The threshold to determine predicted correspondences has a large im-

pact to all methods (predicted correspondences must have higher confidence

than the threshold). We vary the threshold from 0.1 to 0.9 to give a compre-

hensive comparison.

A fair comparison should consider both precision and recall at the same

time. Figure 4.5 shows the correspondence f-measures given various thresholds.

F-measure is a tradeoff between precision and recall, and higher f-measure

indicates better performance. Figure 4.6, 4.7, 4.8, and 4.9 show both precision

and recall given different correspondence thresholds.

In summary, at least one of the proposed methods dominates all base-

lines in all four data sets. Comparing the duplicate methods with the non-

duplicate methods, the duplicate methods usually achieve higher precision

while the non-duplicate methods achieve higher recall. Their overall perfor-

mance depends on individual data set.

The Ecommerce data set is challenging for all methods. First, the data

of the two schemas are completely from independent data sources. There is no

duplicate data. Second, one of the relations is large, containing 39 attributes.

The data values of those attributes span many data types, including integer,

real number, date, binary, url, and string. As shown in Figure 4.5, every

proposed method performs better than all baselines. The top proposed method

(NonDup with 0.6 threshold) has 0.667 of f-measure, while the top baseline

59

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rr_

f

correspondence threshold

(a) Ecommerce

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rr_

f

correspondence threshold

(b) Stock

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rr_

f

correspondence threshold

(c) Enrollment

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
rr_

f

correspondence threshold

(d) Game
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
co

rr_
pr

ec
is

io
n

correspondence threshold

DUMAS_5 DUMAS_10 Instance Dup_5 Dup_10 NonDup

(e) Legend

Figure 4.5: Correspondence f-measures (corr f, vertical axis) with various cor-
respondence thresholds (horizontal axis). Some points in the figures may be
missing due to the fact that no predicted correspondence has confidence higher
than the threshold. Higher value means better performance.

(Instance with 0.6 threshold) only has 0.167. NonDup dominates both Dup 5

and Dup 10 too. The NonDup achieves higher f-measure because of higher

recall as shown in Figure 4.6.

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DUMAS 5 corr p .07 .09 .00 .00 - - - - -

corr r .17 .17 .00 .00 - - - - -
DUMAS 10 corr p .05 .00 .00 .00 - - - - -

corr r .17 .00 .00 .00 - - - - -
Instance corr p .04 .04 .04 .08 .10 .17 .00 .00 .00

corr r .17 .17 .17 .17 .17 .17 .00 .00 .00
Dup 5 corr p .08 .14 .33 .50 1.0 1.0 1.0 1.0 -

corr r .17 .17 .17 .17 .17 .17 .17 .17 -
Dup 10 corr p .13 .33 .50 1.0 - - - - -

corr r .33 .33 .17 .17 - - - - -
NonDup corr p .20 .23 .24 .35 .38 .50 .33 .25 .20

corr r 1.0 1.0 1.0 1.0 1.0 1.0 .50 .33 .17

Figure 4.6: Precision (corr p) and recall (corr r) of the Ecommerce dataset
obtained by varying correspondence threshold (columns) from 0.1 to 0.9. Some
cells have “-” due to the fact that no predicted correspondence has confidence
higher than the threshold.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DUMAS 5 corr p .42 .44 .44 .44 .50 .50 .67 .67 .67

corr r .42 .42 .42 .42 .42 .42 .42 .42 .42
DUMAS 10 corr p .44 .44 .44 .44 .44 .67 .67 .67 .67

corr r .42 .42 .42 .42 .42 .42 .42 .42 .42
Instance corr p .42 .42 .42 .42 .42 .42 .42 .50 .67

corr r .42 .42 .42 .42 .42 .42 .42 .42 .42
Dup 5 corr p .92 .92 .92 1.0 1.0 1.0 1.0 1.0 1.0

corr r .92 .92 .92 .92 .92 .92 .92 .92 .92
Dup 10 corr p .92 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

corr r .92 .92 .92 .92 .92 .92 .92 .92 .92
NonDup corr p 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

corr r 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Figure 4.7: Precision (corr p) and recall (corr r) of the Stock dataset. See
Figure 4.6 for explanations.

61

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DUMAS 5 corr p .18 .18 .33 .33 .67 .67 .67 - -

corr r .42 .42 .42 .42 .42 .42 .42 - -
DUMAS 10 corr p .14 .22 .22 .31 .50 .67 .67 - -

corr r .42 .42 .42 .42 .25 .25 .25 - -
Instance corr p .04 .06 .04 .05 .06 .07 .08 .08 .00

corr r .42 .42 .25 .25 .25 .25 .25 .25 .00
Dup 5 corr p .41 .41 .61 .72 .80 .83 .83 - -

corr r .92 .92 .92 .92 .92 .92 .83 - -
Dup 10 corr p .37 .52 .52 .61 .80 .83 .83 - -

corr r .92 .92 .92 .92 .75 .67 .58 - -
NonDup corr p .17 .18 .18 .16 .16 .17 .25 .08 .00

corr r 1.0 1.0 .83 .58 .58 .58 .58 .25 .00

Figure 4.8: Precision (corr p) and recall (corr r) of the Enrollment dataset.
See Figure 4.6 for explanations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DUMAS 5 corr p .33 .50 .50 .50 .50 .50 .50 .50 1.0

corr r .25 .25 .25 .25 .25 .25 .25 .25 .25
DUMAS 10 corr p .50 .50 .50 .50 .50 .50 .50 .50 1.0

corr r .25 .25 .25 .25 .25 .25 .25 .25 .25
Instance corr p .10 .13 .14 .17 .33 .50 - - -

corr r .25 .25 .25 .25 .25 .25 - - -
Dup 5 corr p .67 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

corr r .50 .50 .50 .50 .50 .50 .50 .50 .50
Dup 10 corr p 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

corr r .75 .75 .75 .75 .50 .50 .50 .50 .50
NonDup corr p .40 .44 .44 .44 .57 .67 .75 1.0 1.0

corr r 1.0 1.0 1.0 1.0 1.0 1.0 .75 .25 .25

Figure 4.9: Precision (corr p) and recall (corr r) of the Game dataset. See
Figure 4.6 for explanations.

The data of all schemas in the Stock data set come from the same

source, so the comparison is mainly to highlight the importance of predicting

62

all types of correspondences instead of only attribute-attribute. All proposed

methods achieve f-measure above 0.9, while all baselines are under 0.5. The

big gaps between the proposed methods and the baselines demonstrate the

importance of predicting all types of correspondences.

For the Enrollment data set, Dup 5 and Dup 10 dominate all baselines.

NonDup performs better than or as well as Instance baseline, but worse than

DUMAS 5 and DUMAS 10. This is because most of the enrollment data are

numbers of enrollment for different colleges in different years. The numbers are

too similar to be distinguished by the non-duplicate methods. Dup 5 performs

better than Dup 10 on the Enrollment data set. This is because the number

of real duplicates in the data set is small. Thus, more duplicates introduce

more errors to Dup 10.

For the Game data set, all proposed methods perform better than or

as well as the top baseline. The Dup 5 and Dup 10 still dominate all base-

lines with big gaps. The NonDup method achieves the highest f-measure

with threshold 0.5 to 0.7, and the duplicate methods perform better for other

thresholds.

The performance of the proposed duplicate methods is stable and ro-

bust on the Stock, Enrollment, and Game data sets, which contain some dupli-

cates. Even on Enrollment data set with most of the data as numbers, the du-

plicate methods still achieve the highest performance. The drawback of these

methods is the requirement of duplicate data from two schemas. However, our

experimental results demonstrate that the number of required duplicate data

63

is small. The top method only needs 5 duplicates. This small requirement

enables duplicate methods to be used in broad applications.

The non-duplicate method is general for all schemas with data. On

the Ecommerce, Stock and Game sets, NonDup performs better than the du-

plicate methods given certain correspondence thresholds. The performance is

highly dependent on the capabilities of the underlying similarity measures. On

Enrollment data set, NonDup is dominated by Dup 5 and Dup 10 with large

gaps, because the similarity measures are confused by the numeric data.

The proposed duplicate methods usually achieve higher precision, while

the proposed non-duplicate method achieves higher recall. This is illustrated

by the Ecommerce and Game data sets in Figure 4.6 and 4.9. For the Ecom-

merce data set, the duplicate methods can have as high as 1.0 of precision,

but lower than 0.4 of recall. The non-duplicate method can have 1.0 of recall,

but lower than 0.5 of precision. This indicates that the duplicate and non-

duplicate methods should be used in applications with different requirements.

The duplicate methods give high accuracy, while the non-duplicate method

gives high coverage.

Correspondence threshold has a large impact on performance. Higher

threshold gives higher precision, but lower recall. The optimal choice of thresh-

old is dependent on data sets. For the schemas with higher data similarity,

such as the Stock data set, a higher threshold should be chosen. On the con-

trary, a lower threshold gives better performance for the schemas with lower

data similarity, such as the Game data set.

64

corr p corr r
a-a 0.00 0.00
a-v 0.00 0.00
r-a - -
r-v - -

(a) Ecom, DUMAS 5

corr p corr r
a-a 0.00 0.00
a-v 0.00 0.00
r-a - -
r-v - -

(b) Ecom, DUMAS 10

corr p corr r
a-a 0.17 1.00
a-v 0.00 0.00
r-a - -
r-v - -

(c) Ecom, Instance

corr p corr r
a-a 0.00 0.00
a-v 1.00 0.20
r-a - -
r-v - -

(d) Ecom, Dup 5

corr p corr r
a-a 0.00 0.00
a-v 0.00 0.00
r-a - -
r-v - -

(e) Ecom, Dup 10

corr p corr r
a-a 0.20 1.00
a-v 0.71 1.00
r-a - -
r-v - -

(f) Ecom, NonDup

Figure 4.10: Precision (corr p) and recall (corr r) for each type of correspon-
dences of the Ecommerce dataset. a-a is the typical attribute correspondence.
a-v, r-a, and r-v are attribute-value, relation-attribute, and relation-value cor-
respondences. If a correspondence type is not existed in the groundtruth, we
set both precision and recall as “-” for fair comparison.

corr p corr r
a-a 0.75 1.00
a-v 0.00 0.00
r-a 1.00 1.00
r-v 0.00 0.00

(a) Stock, DUMAS 5

corr p corr r
a-a 1.00 1.00
a-v 0.00 0.00
r-a 1.00 1.00
r-v 0.00 0.00

(b) Stock, DUMAS 10

corr p corr r
a-a 0.63 1.00
a-v 0.00 0.00
r-a 1.00 1.00
r-v 0.00 0.00

(c) Stock, Instance

corr p corr r
a-a 1.00 1.00
a-v 1.00 0.67
r-a 1.00 1.00
r-v 1.00 1.00

(d) Stock, Dup 5

corr p corr r
a-a 1.00 1.00
a-v 1.00 0.67
r-a 1.00 1.00
r-v 1.00 1.00

(e) Stock, Dup 10

corr p corr r
a-a 1.00 1.00
a-v 1.00 1.00
r-a 1.00 1.00
r-v 1.00 1.00

(f) Stock, NonDup

Figure 4.11: Precision (corr p) and recall (corr r) for each type of correspon-
dences of the Stock dataset. See Figure 4.10 for explanations.

65

corr p corr r
a-a 1.00 1.00
a-v 0.00 0.00
r-a 1.00 1.00
r-v 0.00 0.00

(a) Enroll, DUMAS 5

corr p corr r
a-a 1.00 1.00
a-v 0.00 0.00
r-a 0.00 0.00
r-v 0.00 0.00

(b) Enroll, DUMAS 10

corr p corr r
a-a 0.11 1.00
a-v 0.00 0.00
r-a 0.00 0.00
r-v 0.00 0.00

(c) Enroll, Instance

corr p corr r
a-a 1.00 1.00
a-v 1.00 0.67
r-a 1.00 1.00
r-v 1.00 1.00

(d) Enroll, Dup 5

corr p corr r
a-a 1.00 1.00
a-v 1.00 0.33
r-a 0.00 0.00
r-v 1.00 1.00

(e) Enroll, Dup 10

corr p corr r
a-a 0.11 1.00
a-v 0.00 0.00
r-a 0.00 0.00
r-v 0.67 1.00

(f) Enroll, NonDup

Figure 4.12: Precision (corr p) and recall (corr r) for each type of correspon-
dences of the Enrollment dataset. See Figure 4.10 for explanations.

corr p corr r
a-a 0.50 1.00
a-v 0.00 0.00
r-a - -
r-v - -

(a) Game, DUMAS 5

corr p corr r
a-a 0.50 1.00
a-v 0.00 0.00
r-a - -
r-v - -

(b) Game, DUMAS 10

corr p corr r
a-a 0.50 1.00
a-v 0.00 0.00
r-a - -
r-v - -

(c) Game, Instance

corr p corr r
a-a 1.00 1.00
a-v 1.00 0.33
r-a - -
r-v - -

(d) Game, Dup 5

corr p corr r
a-a 1.00 1.00
a-v 1.00 0.33
r-a - -
r-v - -

(e) Game, Dup 10

corr p corr r
a-a 1.00 1.00
a-v 0.75 1.00
r-a - -
r-v - -

(f) Game, NonDup

Figure 4.13: Precision (corr p) and recall (corr r) for each type of correspon-
dences of the Game dataset. See Figure 4.10 for explanations.

Figure 4.10, 4.11, 4.12, and 4.13 show the precision and recall of each

type of correspondences. Given the limited space, we only show the results

66

using 0.6 as the correspondence threshold, since most methods achieve top

performance using that threshold. Comparing our methods with the base-

lines, our methods are capable to generate all types of correspondences. The

baselines can only generate attribute correspondences (baselines may get non-

zero for relation-attribute correspondences, because we do not distinguish the

correctness between relation-attribute correspondences and their correspond-

ing attribute correspondences). Dup 5 has the highest precision of all types of

correspondences for Stock, Enrollment, and Game. NonDup has the highest

recall of all types of correspondences for Ecommerce, Stock, and Game.

4.4.5 Error Categorization

To detail insight into the proposed methods, we categorize the main

problems observed in the experiments.

1. Attribute-value and relation-value correspondences have similar

confidence to their corresponding attribute-attribute correspondences. By

definition, the elements of an attribute-value correspondence ((a, b1), (a, b2))

form two primitive correspondences (a, b1) and (a, b2). The elements in an

attribute-attribute correspondence (a, b2) form the same primitive correspon-

dence (a, b2). These two types of correspondences usually have similar confi-

dence. For example, an attribute-value correspondence may have high confi-

dence 0.9, but the corresponding attribute-attribute correspondence may have

confidence 0.8 or even 0.95. This tends to predict more correspondences, re-

ducing precision. Relation-value correspondences have the same issue.

67

2. Duplicate methods cannot discover all correspondences with limited

duplicate data. These methods determine correspondences from limited num-

ber of duplicate data (5 and 10 in our experiments). These limited number

of duplicate data may not cover all cases of correspondences. In the Stock

data set, the top duplicate data only cover company AAPL and GOOG, but

no IBM. Thus, the correspondences involved IBM cannot be predicted, which

reduces recall. One possible solution is to increase the number of duplicates.

However, as the number of duplicates increases, there will be more errors in

record linkage. A possible future work should select duplicate data by not only

considering confidences, but also diversity in terms of generating correspon-

dences.

3. The similarity measures in both duplicate and non-duplicate meth-

ods need improvement. The distinguishing capability of similarity measure

is difficult to choose. For one extreme end, the similarity measure may only

consider exactly matched data. For the other extreme end, the similarity

measure may just consider the data types. Different distinguishing capability

determines the balance between precision and recall. In our experiments, the

implemented similarity measure performs well on the Stock and Game set, but

poorly on the Ecommerce set for the duplicate methods and on the Enrollment

set for the non-duplicate method. This indicates that different applications

may need similarity measures with different capabilities.

68

4.5 Related Work

4.5.1 Schema Matching

Most instance-based schema matching systems extract the values of all

tuples for each attribute as a set, and compute the confidence of a correspon-

dence either by similarity measures or machine learning algorithms [28, 30].

The DUMAS system proposes another approach that first finds similar tu-

ples, and determines schema matchings based on those tuples [16]. Although

DUMAS has the limitation that the two databases need to share duplicate

tuples, the experiments show that they only need a few duplicates (fewer than

10) to achieve reasonable accuracy. In schema matching literature, most sys-

tems define the matching task as finding correspondences between attributes.

In this paper, we define three additional correspondence types as compound

correspondences.

iMap system introduces a special attribute-value correspondence [26].

They focus on the case where target attributes have binary data values. We

define the attribute-value correspondences for general cases. In addition, we

also define relation-attribute and relation-value correspondences.

4.5.2 Record Linkage

Record linkage is the task of matching records that refer to the same

entity across different data sources [20, 53]. It is also called duplicate detection

if the task is within only one data source [33]. In the relational database

context, the goal of record linkage is to find pairs or groups of tuples that

69

refer to the same real-world identity. Bilke and Naumann consider a tuple as

a set of strings, and scores a pair of tuples by a similarity measure of the two

sets [16]. The similarity measure is the cosine similarity between two TFIDF

feature vectors.

4.6 Discussion and Future Work

Schema matching is conventionally defined as finding correspondences

between attributes. As shown in our real world data sets of four application

domains, this conventional definition has limitations. We introduce three types

of compound correspondences consisting of relations, attributes, and data val-

ues. These compound correspondences complement the typical attribute cor-

respondences. The two proposed algorithms can automatically generate these

correspondences. The correspondences can be formulated to TGDs, and used

in data exchange and data integration applications.

Many potential research questions are emerged following this work.

First, a ranking algorithm of duplicate pairs considering diversity in addition

to similarity is important to improve the recall of duplicate methods. Sec-

ond, similarity measures for non-string data types is a promising direction to

improve schema matching systems.

70

Chapter 5

Mapping Paths in the Semantic Web

This work details the mapping algorithms of the Query-driven Ontology-

based Data Integration (QODI) [87, 88, 89]. QODI considers two OWL ontolo-

gies: the target ontology, which is the federated data model, and the source

ontology. SPARQL queries are issued over the target ontology by users, and

translated to queries over the source ontology. Although QODI is designed to

integrate RDF data, a primary motivation is the integration of relational data.

Several of our test cases comprise relational databases virtualized as RDF, and

SQL schemas translated to ontologies [80, 81].

In the typical organization of an Ontology-based Data Integration sys-

tem (OBDI), ontology mapping is a separate and prerequisite step of query

reformulation (see Figure 5.1a). Ontology matchers may be introduced to au-

tomatically determine corresponding entities [13, 35]. In this work, an entity

refers to a class or a property. We tested AgreementMaker [23], one of the top

finishers in 2010 Ontology Alignment Evaluation Initiative (OAEI) [2]. The

highest accuracy of AgreementMaker on our test sets is less than 42%. Inspec-

tion of these results revealed two dominant challenges: ambiguous mapping

and missing mapping. We create a small example to illustrate the challenges.

71

!

Ontology!
Mapping!

Query!
Reformulation!

Ontology!T!
Ontology!S!

Query!over!S!

Query!over!T!

(a) Traditional

!

Ontology!
Mapping!

Query!
Reformulation!

Ontology!T!
Ontology!S!

Query!over!S!

Query!over!T!

(b) The proposed, QODI

Figure 5.1: Diagram of OBDI systems with traditional and the proposed on-
tology mapping.

time

name

Course

string

date

People

teacher student

title

(a) Ontology T

hasSchedule

name

Course

string date

Student

name

Teacher

place

Schedule

date

offeredBy takenBy

name

(b) Ontology S

Figure 5.2: Ontology examples about the domain of course. Oval vertices
represent classes, and rectangular vertices are datatypes. Edges represent
object properties, or datatype properties.

Figure 5.2 shows a target ontology T , and a source ontology S about courses.

Figure 5.3 shows a SPARQL query q which asks for the time of any course

that is taught by Einstein.

The ambiguous mapping challenge: an entity in the target ontol-

ogy has an ambiguous mapping if it can be mapped to more than one entity

in the source ontology, and the correct choice is dependent on the application.

In other words, there is not enough information in the ontologies alone to

determine a correct mapping. An example of ambiguous mapping considers

that name of class People in T can be mapped to name of either class Teacher

or Student in S. There is no basis for preferring one mapping or another.

However, considering query q, clearly Teacher is preferred.

72

Prefix course : < T/Course >

Prefix people : < T/People >

Select ?t

Where {
?c course : time ?t .

?c course : teacher ?p .

?p people : name “Einstein00 .}

Note that since the predicate of a triple pattern is not allowed to be a variable
in our definition, there exists only one query graph for each query q. The query
graph of the SPARQL query in Figure ?? is shown in Figure ??.

2.3 Problem Definition

A ss-path correspondence records the mapping confidence between two ss-paths.

Definition 9 (SS-PATH CORRESPONDENCE). Given two graphs G and
G0, a ss-path correspondence between two ss-paths p and p0 (denoted by ⇡p,p0) is
a tuple < p, p0, cp >, such that p 2 GRAPH-SS-PATH-SETG, p0 2 GRAPH-SS-
PATH-SETG0 , and cp is a confidence measure.

We say p 2 ⇡p,p0 , and p0 2 ⇡p,p0 . We also use ↵⇡p,p0 to denote the confi-
dence measure, which is ↵⇡p,p0 = cp. In the above definition, we assume the
correspondence measures equivalence.

Definition 10 (MATCH CANDIDATE). Given a query graph Tq, a graph
G is called a match candidate in terms of a set of correspondences ⌦Tq,G, where
⌦Tq,G = {⇡p,p0 : p 2 GRAPH-SS-PATH-SETTq

, p0 2 GRAPH-SS-PATH-SETG},
if the following conditions are satisfied:

– G is a subgraph of S;

– SINKG ✓ SINKS;

– for all ss-path p 2 GRAPH-SS-PATH-SETTq
, there exists exact one ss-path

correspondence ⇡p,p0 2 ⌦Tq,G, where p0 2 GRAPH-SS-PATH-SETG;

– for all ss-path p0 2 GRAPH-SS-PATH-SETG, there exists exact one ss-path
correspondence ⇡p,p0 2 ⌦Tq,G, where p 2 GRAPH-SS-PATH-SETTq

;

– for all pair of ss-paths p1, p2 2 GRAPH-SS-PATH-SETTq
, if SOURCEp1

= SOURCEp2 , the two corresponded ss-paths p01, p
0
2 2 GRAPH-SS-PATH-

SETG, ⇡p1,p0
1
2 ⌦Tq,G, ⇡p2,p0

2
2 ⌦Tq,G, also share the same source, SOURCEp0

1

= SOURCEp0
2
;

(a) SPARQL query

time

name

Course

string

date

People

teacher

(b) Query graph

Figure 5.3: SPARQL query example and corresponding query graph. The
SPARQL query asks for the time of any course taught by “Einstein”.

Some matchers would identify this example as a complex mapping such

that name of People maps to the union of both name of Teacher and Student,

since both Teacher and Student can be identified as subclasses of People. In

isolation of an application, the logic of the complex mapping is correct. But, if

the example query is reformulated using both alternatives, the translated query

will return the time of any course that either taught or taken by Einstein. The

reformulation is incorrect. Thus, only after the query is known, is it possible

to disambiguate the mapping.

Ambiguous mappings occur often. In our real world test sets, two out

of three domains have ambiguity. In those, 10% to 30% of the query workload

displays ambiguity.

The missing mapping challenge: some entities do not have any

mapping, such as the class Schedule and property hasSchedule in S. Matchers

can find out that both Course in T and S are mapped, and time and date

are mapped. However, Schedule and hasSchedule, which are in the middle of

the path from Course to date, do not have any mapping. Query q cannot be

73

reformulated for execution on S without including Schedule and hasSchedule.

We formally define query-specific ontology mapping. For each input

query, the system determines a partial ontology mapping sufficient to refor-

mulate the specific query. In effect, a query becomes a third argument to the

ontology mapping algorithm (see Figure 5.1b). Note that using the query as

context requires no extra input from users or experts. In QODI, both the

input query and the source ontology are decomposed into paths, and map-

ping concerns identifying correspondences between paths instead of entities.

Path similarity is estimated based on the feature vectors that are generated

by representing each path as a bag of entity labels. Given an input query,

QODI searches for a subgraph of the source ontology, such that the set of

path correspondences has the highest confidence. QODI exploits heuristic

search algorithms, which guarantee to find an optimal solution. By leverag-

ing queries to provide context, the ambiguous mapping challenge is resolved.

Since the path similarity is not dependent on the precise alignment of entities,

the missing mapping challenge is resolved.

In our running example, the path that contains People and name in

query q also contains teacher. In ontology S, the path with Teacher has higher

string vector similarity than the one with Student. The two path correspon-

dences for the query should be:

74

{Course,teacher,People,name,string}

= {Course,offeredBy,Teacher,name,string}

{Course,time,date}

= {Course,hasSchedule,Schedule,date,date}

QODI is evaluated on three real world application domains: Life Sci-

ence, Bibliography, and Conference Organization. QODI outperforms all base-

lines on all test cases.

5.1 Problem Definition

The following section begins with graph definitions and culminates with

the formal definition of the mapping problem.

5.1.1 Basic Graph Definition

An ontology graph is a representation of an ontology as a directed la-

beled graph, where classes and datatypes are vertices, and properties are edges

(see Figure 5.2). Target and source ontologies are distinguished as T and S,

respectively. These notations are used interchangeably to denote ontologies

and ontology graphs. To simplify handling inheritance relationships, rather

than coding the logic of inheritance into the path-related algorithms, an on-

tology graph is expanded by replicating properties. If the domains or ranges

of a property have subclasses, new edges with the same label as that property

are created for each subclass.

75

Definition 5.1.1 (source and sink). In a directed labeled graph G, a source is

a vertex with 0 in-degree, and a sink is a vertex with 0 out-degree. The sets of

all sources and sinks of G are denoted SOURCEG and SINKG, respectively.

Definition 5.1.2 (ss-path). A source-to-sink path or ss-path is a path from

a vertex v1 to a vertex v2 in a directed labeled graph G, where v1 is a source

and v2 is a sink of G.

For convenience, we represent a path p as an ordered list of vertices

and edges, and define the length, denoted as |p|, as the sum of the number of

vertices and edges in p.

Definition 5.1.3 (ss-path-set). The set of all possible ss-paths from source

v1 to sink v2 in a directed labeled graph G is called an ss-path-set (denoted as

SS-PATH-SETG,v1,v2).

Definition 5.1.4 (graph-ss-path-set). Given a directed labeled graph G, the

set of all ss-paths (denoted as GRAPH-SS-PATH-SETG) is the union of all

ss-path-sets from all sources to all sinks in G.

Definition 5.1.5 (query graph). Given a SPARQL query q over ontology T ,

a query graph (denoted as Q) is a subgraph of T that corresponds to q.

The query graph of the SPARQL query in Figure 5.3a is shown in

Figure 5.3b.

76

5.1.2 Assumptions

Basic assumptions are as follows:

1. All object properties and datatype properties have domains and

ranges. This assumption simplifies the construction of ontology graphs. High

quality manually designed ontologies will detail domains and ranges. Ontolo-

gies automatically translated from relational schemas include domains and

ranges [80, 81].

2. We consider conjunctive SPARQL queries in the SELECT query

form, and exclude variables from the predicates of triple patterns. For each

variable, the class, which is the type that the variable is binding to, either can

be inferred from the domains or ranges of predicates or is provided by rdf:type.

Given these assumptions, there exists only one query graph for each query. If

multiple query graphs are allowed, each of them can be mapped separately.

For simplicity, we leave the relaxing of these assumptions for future work.

3. The sinks of a query graph only represent datatypes. This work

concerns ontologies that describe database content and queries that retrieve

information from databases. Retrieving database data ultimately requires the

rewriting of datatype properties.

5.1.3 Query-Specific Ontology Mapping

The following definitions define query-specific ontology mapping, which

is the core problem of this work. An ss-path correspondence records the map-

77

ping confidence between two ss-paths.

Definition 5.1.6 (ss-path correspondence). Given two directed labeled graphs

G and G′, an ss-path correspondence between two ss-paths p and p′ (denoted

by πp,p′) is < p, p′, απp,p′ >, such that p ∈ GRAPH-SS-PATH-SETG, p′ ∈

GRAPH-SS-PATH-SETG′ , and απp,p′ is a confidence measure between 0 and

1.

A match candidate is a set of ss-path correspondences between the ss-

paths in the query graph, and the ss-paths in a subgraph of the source ontology

graph.

Definition 5.1.7 (match candidate). Given a query graph Q, a match candi-

date ΩQ,G is a set of ss-path correspondences between the ss-paths in Q and

the ss-paths in a graph G, which is a subgraph of the source ontology S, if the

following conditions are satisfied:

• The sinks of G are datatypes;

• for each ss-path p ∈ GRAPH-SS-PATH-SETQ, there exists exactly one

ss-path correspondence πp,p′ ∈ ΩQ,G, where p′ ∈ GRAPH-SS-PATH-

SETG;

• for each ss-path p′ ∈ GRAPH-SS-PATH-SETG, there exists ss-path cor-

respondences πp,p′ ∈ ΩQ,G, where p ∈ GRAPH-SS-PATH-SETQ;

78

• for each pair of ss-paths p1, p2 ∈ GRAPH-SS-PATH-SETQ, if they share

a common source, then the two corresponding ss-paths p′1, p
′
2 ∈ GRAPH-

SS-PATH-SETG also share a common source, where πp1,p′1 ∈ ΩQ,G, πp2,p′2 ∈

ΩQ,G.

Definition 5.1.7 contains several constraints. First, all sinks of G are

required to be datatypes, because the sinks of the query graph Q are also

datatypes. Second, we are interested in a one-to-one mapping, which restricts

each ss-path in Q to be contained in exactly one correspondence. Third, if the

ss-paths in Q share a source, the mapped ss-paths in G also share a source.

We assign a confidence measure βΩQ,G
, which is defined as the product of all

ss-path correspondence confidence measures:

βΩQ,G
=

∏
πp,p′ ∈ ΩQ,G

απp,p′

The task of query-specific ontology mapping, q-mapping, is to find the

match candidate with the highest confidence.

Definition 5.1.8 (q-mapping). Given two ontology graphs T , S, and a SPARQL

query q over T , the query-specific ontology mapping (denoted q-mapping(T ,S,q))

is the set of ss-path correspondences ΩQ,Ḡ, where Q is the query graph, and

Ḡ is a subgraph of S, such that ΩQ,Ḡ is a match candidate, and βΩQ,Ḡ
=

maxG⊆S βΩQ,G
.

79

5.2 QODI: Mapping and Reformulation

The goals of mapping include defining a similarity score between two

ss-paths, and determining the highest scoring ss-path correspondences without

an exhaustive search.

5.2.1 ss-path Similarity Measure

The ss-path similarity measure must be able to disambiguate uncertain

mappings. Given a pair of ss-paths, the similarity is defined as a product of

four factors: similarity between source classes, similarity between datatype

properties, similarity between path labels, and a penalty for path length dif-

ferences. The source class and datatype property determine the two ends of

an ss-path. A path label, containing the labels of all entities except datatypes

in an ss-path, is used to disambiguate uncertain mappings.

Similarity estimation of source classes and datatype properties has been

well studied in prior work [23, 58, 35]. Any existing method may be used for

this component. In the experiments, we evaluated both simple string dis-

tance and sophisticated ontology matchers. The similarity between all classes

and datatype properties can be computed beforehand and stored as similarity

matrices for lookup.

We borrow techniques from information retrieval to measure the simi-

larity between path labels. For an ss-path, we process the labels of all entities

except datatypes in the path using linguistic processing, and add the pro-

cessed strings to a list. The linguistic processing includes tokenization by

80

punctuation, numbers, and uppercase letters (if the letter is not preceded by

an uppercase letter); stop words removal; and stemming (using SimPack1). All

strings are converted to lowercase. A feature vector is generated by indexing

the list of strings, and using frequencies as features. Given that different labels

may contain a different number of tokens, the frequency of a token is set to

one over the number of tokens in a label. The path label similarity, SL, is

computed as the intersection between the two feature vectors.

SL(p, p′) =

∑m
i=1 min(fi(p), fi(p

′))∑m
i=1 fi(p) + fi(p′)−min(fi(p), fi(p′))

(5.1)

where fi(p) is the ith element of the feature vector of ss-path p, and m is the

dimension of the feature vectors.

If two paths are similar, their lengths may not have a large difference.

We use an exponential function to penalize the path length difference. During

mapping generation, this penalization prevents infinite loops when the ontolo-

gies contain cycles. The ss-path similarity measure, SSS, is defined as,

SSS(p, p′) = SC(p, p′)
1
np · SD(p, p′) · SL(p, p′) · e−η · | |p|−|p′| | (5.2)

where SC and SD are similarity measures for source classes and datatype prop-

erties, which are provided by matchers. |p| is the length of path p, and η is

a non-negative real number. np is the number of ss-paths in the query graph

that share the same source with p. np is introduced because the same similar-

ity between sources will be multiplied np times when measuring the confidence

of a match candidate.

1files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/

81

5.2.2 q-mapping

We denote the set of all possible match candidates of query graph Q

as MQ. Ḡ, which is the subgraph of S involved in the match candidate with

the highest similarity, is determined by maximizing the confidence measure.

q-mapping(T ,S,q) is the set of ss-path correspondences ΩQ,Ḡ between Q and

Ḡ.

Ḡ = arg max
ΩQ,G∈MQ

βΩQ,G

= argG⊆S {
∏

c∈SOURCEQ

{ max
c′∈SOURCEG

{
∏

p∈SS-PATH-SETQ,c,∗

{ max
p′∈SS-PATH-SETG,c′,∗

SSS(p, p′)}}}} (5.3)

where βΩQ,G
is the confidence measure of the match candidate, and SS-PATH-

SETG,c,∗ represents the set of all ss-paths with source c in G.

Equation (5.3) specifies the mapping as: for each source vertex in the

query graph, find a vertex in the source ontology as a source vertex, such that

the product of all ss-path similarities is the maximum.

5.2.3 Solving the Maximization

Equation (5.3) does not specify how to solve the maximization. A naive

algorithm may score all possible match candidates. However, the number of

all possible paths can be exponential in the number of vertices for acyclic

ontology graphs, and is infinite for cyclic ontology graphs. It is infeasible

to compute similarity between all pairs of paths. Thus, we employ heuristic

82

search algorithms to reduce the computation.

We decompose the search problem into two phases: 1) given an ss-path

in the query graph and a vertex in S, search for the ss-path in S with the given

vertex as source that has the highest similarity; 2) given a set of ss-paths that

share a source in the query graph, find a set of paths in S that share a source

and have the highest product of similarities. Phase 1) is a subproblem of 2).

Thus, we solve 1) then 2).

Phase 1) can be solved by a heuristic search algorithm similar to A*

search. A* is commonly applied to find a minimal cost path in a graph [44]. A*

requires a function that computes the cost of a partial path, and a heuristic

cost function that estimates the cost of completing a path. The search is

guaranteed to terminate with an optimal path if the heuristic is admissible.

We cannot exploit the traditional structure of A* search. Our definition of

path similarity considers all labels in a path as a bag of words. Thus, we can

not decompose a partially computed answer into the sum of two functions. We

define a single function that, given a partial path, will never overestimate the

cost of a complete optimal path. With similar proof as A* search given below,

our heuristic search is guaranteed to find an optimal path. The implementation

of the search algorithm remains largely unchanged. Search states, representing

partial paths, are saved in an open-list P. P is initialized by the path that

only contains one vertex (the given vertex). The paths in P are sorted in

ascending order using our heuristic function. The search terminates when a

path p̄ containing a sink (datatype) is pulled from P.

83

$

% '

&

D�
D�E�

E�

F�

G� G�
^&�F�`
^�`

^&�'�F��G�`
^'�G�`

^$�%�&�'�D��D��E��E��F��G�`
^$�%�'�D��D��E��G�`

^$�%�&�'�D��D��E��E��F��G�`
^$�%�'�D��D��E��G�`

Figure 5.4: An example ontology graph with reachable label sets. The dashed
boxes around each non-sink vertex contain the reachable label sets through
the two datatype properties c1 and d1. For example, the reachable label set
from C through c1 is {C, c1}, and through d1 is empty.

We introduce two techniques to help create the heuristic cost function.

First, the similarity between datatype properties (SD), which is a factor of

SSS, is considered at the beginning of the search. A datatype property is the

last edge in an ss-path, and connects to a datatype. Thus, a large amount of

computation can be potentially wasted by the search before discovering the

similarity between datatype properties is low. To address this, P is initialized

by a set of paths, each of which only contains the given vertex and only leads to

the sink through a specific datatype property. Following that, SD is a constant

for each path. SC is also a constant, since the source vertex is given. Only the

cost of adding new vertices and edges to the path needs to be considered.

The second technique is a preprocessing step that associates reachable

label sets and shortest path lengths to each class. We define a reachable label

set from a vertex through a datatype property as the union of the path labels of

all possible paths from the vertex to a datatype through the datatype property.

Each vertex of S is associated with the reachable label sets, from itself through

84

Algorithm 4 Generate reachable label sets.

Input: ontology graph G without reachable label sets
Output: ontology graph G with reachable label sets

for all vertex v of G do
for all sink s of G do

v.reachable[s] = ∅
end for

end for
// q stores all vertices that will be expanded
Queue q is initialized to contain all sinks of G
while q 6= ∅ do

v = q.dequeue()
for all parent vertex p of v do

// changed records whether p.reachable is changed
changed = false
Ep is the set of all edges from p to v
for all sink s of G do

// prop is the set of entities that will be propagated
prop = v.reachable[s] ∪ Ep ∪ {p}
if p.reachable[s] 6⊇ prop then

p.reachable[s] = p.reachable[s] ∪ prop
changed = true

end if
end for
if changed == true then

q.enqueue(p)
end if

end for
end while
for all vertex v of G do

for all sink s of G do
set v.reachable labels[s] as the labels of v.reachable[s]

end for
end for
return G

85

each datatype property. Figure 5.4 illustrates an example of reachable label

sets. The reachable label sets are computed by recursively propagating the

reachable label sets of each vertex to its parents. The algorithm terminates

when the reachable label sets are not changed for all vertices. The pseudo

code is detailed in Algorithm 4. The worst case complexity of this algorithm

is quadratic in the number of vertices. Given that a reachable label set is

a superset of the labels that may appear in an optimal path, an admissible

heuristic can be defined to guarantee the optimality. In addition, each vertex

of S is also associated with the lengths of the shortest paths from itself to

datatypes through each datatype property. The lengths of shortest paths are

also used in the heuristic. Note that the preprocessing only need run once.

We denote the ss-path in the query graph as r, the path in S that needs

heuristic scoring as p, the last element of p as x, and the objective datatype

as e. The reachable label set from x to e is denoted as Lx,e, and the length of

the shortest path from x to e is denoted as lx,e. The heuristic cost function h

is defined as follows:

h(p) = − SC(r, p)
1
nr ·SD(r, p)·

∑m
i=1 min(fi(r), fi(p) + f̄i(r, p, Lx,e))∑m
i=1 fi(r) + fi(p)−min(fi(r), fi(p))

·e−η · g(r,p,lx,e)

(5.4)

where nr is the number of paths in the query graph that share the same source

as r, and fi(p) is the ith element of the feature vector of path p. f̄i(r, p, Lx,e)

86

and g(r, p, lx,e) are:

f̄i(r, p, Lx,e) =

{
max(fi(r)− fi(p), 0) , if x 6= e and string i ∈ Lx,e
0 , otherwise

(5.5)

g(r, p, lx,e) =

{
max(|p|+ lx,e − 1− |r|, 0) , if x 6= e
| |p| − |r| | , if x = e

(5.6)

Comparing (5.4) with (5.2), h is derived from the negation of SSS by

substituting a real path by an estimation. Let us denote the path as p̄, when

the search terminates. Based on the termination condition, x = e. Substi-

tuting x with e, h(p̄) = −SSS(r, p̄). The following lemma and theorem prove

that p̄ is the best scoring path. Lemma 5.2.1 corresponds to the proof of

admissibility of the heuristic in A* search.

Lemma 5.2.1. Suppose the search has not terminated. For any optimal path

p̃, there exists a path p in the priority queue P, which can be expanded to p̃,

such that h(p) ≤ h(p̃).

Proof. h is the negation of a product of four non-negative factors. We will

prove that each factor of h(p) is greater than or equal to the corresponding

factor of h(p̃). Then h(p) ≤ h(p̃).

The first two factors, SC and SD, are the same for both p and p̃.

Consider the third factor. Denote the last element in path p as x. The

reachable label set, Lx,e, contains the labels of all possible paths from x to e,

including those in p̃. Per the definition of f̄i, the numerator in h(p) is greater

than or equal to that in h(p̃). Since p is a sub-path of p̃, the denominator

87

in h(p) is less than or equal to that in h(p̃). Thus the third factor of h(p) is

greater than or equal to the third factor of h(p̃).

Consider the fourth factor. lx,e is the length of the shortest path from

x to e, so |p|+ lx,e − 1 ≤ |p̃|. Consider two cases:

1. |p|+ lx,e−1 ≥ |r|. Then g(r, p, lx,e) = |p|+ lx,e−1−|r|, and g(r, p̃, le,e) =

|p̃| − |r|. Thus, g(r, p, lx,e) ≤ g(r, p̃, le,e).

2. |p| + lx,e − 1 < |r|. Then g(r, p, lx,e) = 0, and g(r, p̃, le,e) ≥ 0. Thus,

g(r, p, lx,e) ≤ g(r, p̃, le,e).

Thus the fourth factor of h(p) is greater than or equal to the fourth factor of

h(p̃).

Theorem 5.2.2. When the search terminates, the path p̄ is an optimal path.

The proof of Theorem 5.2.2 can be derived from the proof of the similar

theorem for A* search by substituting the sum of the two cost functions with

our heuristic h(p) [44].

If there is no path from the given vertex through any datatype property,

there is no solution for the search. The search algorithm terminates by knowing

the reachable label sets of the vertex are all empty. Otherwise, the algorithm

will find an optimal path with finite length, because h of a path with infinite

length is infinitesimal due to the path length penalty. Most real world queries

do not have cycles, so we prune cyclic paths during the search to further

88

reduce the computation. This heuristic can be disabled for the applications

with cyclic queries.

Phase 2) involves selecting a vertex as a source, and jointly finding

multiple optimal paths that share a source. For each possible source class,

we exploit the heuristic proposed in phase 1) to estimate the product of the

highest path similarities of all paths as the score for the class. The algorithm

in phase 1) runs using each class as the given source in descending order of

the estimated score. If the real score of a class is greater than or equal to the

estimated score of the remaining classes, those classes can be pruned. This

algorithm also terminates with an optimal solution. The proof is similar to

the proof of Theorem 5.2.2.

If the query graph has multiple sources, the algorithm in phase 2) runs

for each source separately.

5.2.4 Query Reformulation

We briefly explain the benefits of using q-mapping for query reformu-

lation. A central challenge in query reformulation is missing mapping. In

QODI, this challenge manifests as a mapping between a path in the query

graph and a path in the source ontology graph. The determination of an

ss-path correspondence anticipates that the paths may be of different lengths.

Given ss-path correspondences as mapping, the reformulation algorithm

is simplified as traversing the mapped ss-paths, and generating a triple pattern

for each graph edge. The URI of each edge in the ss-path is translated as the

89

Algorithm 5 Query reformulation.

Input: SPARQL query qt on ontology T , and q-mapping M
Output: SPARQL query qs on ontology S

// Select clause
Copy the select clause from qt to qs
// Where clause
qs + = “Where {”
for all ss-path correspondence πp,p′ in M do

for all property e in path p′ do
if e is datatype property then

Assign a variable c to the domain of e
Assign the value v of the datatype in p to the range of e
qs + = c + e.URI + v

else
Assign a variable c1 to the domain of e
Assign a variable c2 to the range of e
qs + = c1 + e.URI + c2

end if
end for

end for
qs + = “}”
return qs

predicate of a triple. The subject and object of the triple are variables or

literals assigned to the domain and range of the edge, respectively. Assigning

variables to classes that are shared by multiple paths is an open research

topic. We do not elaborate on this topic. Algorithm 5 details the reformulation

algorithm. For the query in Figure 5.3, a path correspondence and the resulting

translated triple patterns are:

90

{Course,teacher,People,name,string}

= {Course,offeredBy,Teacher,name,string}

?c1 course:offeredBy ?c2 .

?c2 teacher:name “Einstein” .

5.3 Experimental Setup

The objectives of the evaluation are threefold: determine how capable

the method is of generating mappings, how accurate the mappings are, and

finally, how well the method resolves ambiguity.

5.3.1 Test Sets

The test sets are detailed in Section 3.2. There are three application

domains: Life Science, Bibliography, and Conference Organization. The test

cases include an ontology created by an international standards body, two on-

tologies created from direct mapping relational databases, and three ontologies

used in OAEI [2].

Two kinds of SPARQL queries are generated for each ontology. 1)

A PathOnly query has a query graph consisting of only one ss-path in the

groundtruth. 2) A ClassAll query has a query graph consisting of all ss-paths

(at least two) that share a source in the groundtruth. A ClassAll query is

the most complicated query with one conjunction over the source. In English

specification, a PathOnly query asks for all values of a single attribute of a

91

BASE%%<http://ribs.csres.utexas.edu/specify/>%
Select%?v%%
Where%{%%
%%?c0%%<locality#Latitude1>%%?v.%
%%?c0%%rdf:type%%<locality>.%
}%

(a) PathOnly query, asking for the latitude of all locations.!
BASE!!<http://ribs.csres.utexas.edu/specify/>!
Select!?v0!?v1!?v2!?v3!?v4!?v5!?v6!!
Where!{!!
!!?c0!!<determination#DeterminedDate>!?v0.! ?c0!!<determination#Qualifier>!?v1.!
!!?c0!!<determination#Remarks>!?v2.! !!! ?c0!!<determination#refNTaxonID>!?c1.!
!!?c1!!<taxon#Name>!?v3.! ! ! ?c0!!<determination#refNPreferredTaxonID>!?c2.!
!!?c2!!<taxon#Name>!?v4.! ! ! ?c0!!<determination#refNCreatedByAgentID>!?c3.!
!!?c3!!<agent#DateOfBirth>!?v5!!! ! ! ?c0!!<determination#refNModifiedByAgentID>!?c4.!
!!?c4!!<agent#DateOfBirth>!?v6.!!! ! ! ?c0!!rdf:type!<determination>.!
!!?c1!!rdf:type!<taxon>.!!! ! ! ! ?c2!!rdf:type!<taxon>.!
!!?c3!!rdf:type!<agent>.!!! ! ! ! ?c4!!rdf:type!<agent>.!
}!

(b) ClassAll query, asking for the dates, remarks, and qualifiers of all determination
of taxons, as well as the birthdays of the agents that determine the taxons.

Figure 5.5: Real SPARQL queries generated for the Specify ontology in the
experiments.

concept, and a ClassAll query asks for all values of all attributes of a concept.

For ontology T in Figure 5.2, a PathOnly query could ask for name of all

students taking courses, and a ClassAll query could ask for titles, time, and

name of all students of all courses. Figure 5.5 shows examples of real PathOnly

and ClassAll queries generated for the Specify ontology, as well as the meaning

of both queries.

5.3.2 Baselines

We compare QODI against two kinds of baselines: ontology matching

systems, and an ontology-based implementation of an existing relational data

integration system.

92

For ontology matching baselines, a matcher computes the similarity

between classes, object properties, and datatype properties. Given a query,

each entity is translated to an entity in S with the highest similarity.

Clio is a relational data integration and exchange system that is closely

related to QODI [37]. Clio generates mappings between attributes, and finds

associations between those mappings through foreign key constraints. We

implement baselines with similar ideas as Clio. A matcher first generates

mappings between datatype properties by picking the ones with the highest

similarity. Given a query, the baselines find the match candidates that contain

all the mapped datatype properties. Clio asks a user to pick one match can-

didate, which is not allowed in our automated setting. We approximate this

process by first picking the match candidates with highest similarity between

source classes, and then picking the one with the least summation of path

lengths.

We use three matchers for all methods. One matcher is substring string

similarity that measures the portion of the longest common substrings between

entity labels. The second matcher is SMOA string similarity between entity

labels [83]. The third is AgreementMaker configured as detailed in OAEI 2010

conference track [23].

5.3.3 Metrics

The assessments are reminiscent of recall and precision used in ontol-

ogy matching and information retrieval. valid rate is the metric similar to

93

recall, which is the proportion of queries with complete q-mappings generated,

independent of correctness. We use # to represent the number of.

Definition 5.3.1 (complete q-mapping). A q-mapping with a set of corre-

spondences ΩQ,Ḡ is complete, if for every ss-path in the query graph Q, there

exists a correspondence to an ss-path in Ḡ with non-zero confidence measure.

valid rate =
queries with complete q-mappings generated

queries
(5.7)

For measuring the precision of mapping systems, we consider the case

that a query is correctly mapped, and also the case that a query is partially

correctly mapped.

query precision =
correctly mapped queries

queries
(5.8)

path precision =

∑
q percentage of correctly mapped ss-paths in q

queries
(5.9)

A measure of ambiguity can facilitate the analysis of experimental re-

sults. An accurate measure of ambiguity is difficult, since it has to anticipate

all possible application scenarios. We define an approximate measure of ambi-

guity, which only considers mapping between datatype properties as the source

of ambiguity, and considers two datatype properties as mapped if a matcher

assigns them the highest similarity.

Definition 5.3.2 (datatype ambiguous q-mapping). Given a datatype prop-

erty similarity measure SD, a target ontology T , a source ontology S, a query

94

q over T , and the set of ss-path correspondences Ω of q-mapping(T ,S,q), the

mapping is datatype ambiguous if for at least one ss-path correspondence

πpt,ps ∈ Ω, SD(pt, ps) = maxp SD(pt, p), and there exists a datatype property

d /∈ ps, such that the similarity between d and the datatype property of pt

equals SD(pt, ps).

ambiguous rate is a measure of the proportion of queries that have

datatype ambiguous q-mappings.

ambiguous rate =
queries with datatype ambiguous q-mapping

queries
(5.10)

5.4 Experimental Results

Given a pair of ontologies, O1 and O2, the experiments are conducted

on two directions of mappings: using O1 as target and using O2 as target. The

results for the two mapping directions are shown separately for ambiguous rate

to distinguish the differences. For other metrics, the results are averaged. We

set η = 0.3 based on the tuning on the Bibliography test set with PathOnly

queries using Substring as matcher. Section 5.4.3 discusses the accuracy using

different η.

5.4.1 valid rate

Figure 5.6 shows the valid rate for each test set. The three methods

of QODI achieve 100% valid rate for all test sets. This is because QODI does

not determine any entity mapping beforehand. Each path correspondence is

95

0.375	

0.431	

0.306	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(a) Life Science, PathOnly

0.000	
 0.000	
 0.000	

1.000	

0.834	

1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(b) Life Science, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(c) legend

0.428	
 0.396	
 0.420	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(d) Bibliography, PathOnly

0.063	
 0.063	
 0.063	

0.938	

0.563	
 0.563	

1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(e) Bibliography, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(f) legend

0.375	

0.417	

0.500	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(g) Conference, PathOnly

0.167	
 0.167	
 0.167	

1.000	
 1.000	
 1.000	
 1.000	
 1.000	
 1.000	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(h) Conference, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(i) legend

Figure 5.6: valid rate for different test sets. Higher number means better
performance.

assigned a confidence, and the mapped paths has the highest confidence.

The Clio baselines are able to generate complete mappings for two

thirds of test sets. Bibliography and Life Science with ClassAll query set are

the exceptions. Bibliography and Life Science have many datatype ambiguous

q-mappings. For some ClassAll queries, Clio cannot find a complete q-mapping

if the mapped entities are incorrectly selected from ambiguous mappings. The

96

0.320	

0.375	

0.278	

0.597	
 0.584	

0.320	

0.764	

0.833	

0.639	

-­‐0.050	

0.050	

0.150	

0.250	

0.350	

0.450	

0.550	

0.650	

0.750	

0.850	

0.950	

(a) Life Science, PathOnly

0.000	
 0.000	
 0.000	
 0.000	
 0.000	
 0.000	

0.333	
 0.333	
 0.333	

0.000	

0.050	

0.100	

0.150	

0.200	

0.250	

0.300	

0.350	

0.400	

(b) Life Science, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(c) legend

0.339	
 0.347	

0.266	

0.581	

0.525	

0.460	

0.702	

0.565	

0.468	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(d) Bibliography, PathOnly

0.063	
 0.063	
 0.063	
 0.063	
 0.063	
 0.063	

0.250	

0.125	
 0.125	

0.000	

0.050	

0.100	

0.150	

0.200	

0.250	

0.300	

(e) Bibliography, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(f) legend

0.375	

0.417	
 0.417	

0.375	

0.417	

0.500	
 0.500	

0.458	

0.625	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(g) Conference, PathOnly

0.167	
 0.167	
 0.167	
 0.167	
 0.167	
 0.167	
 0.167	
 0.167	

0.417	

0.000	

0.050	

0.100	

0.150	

0.200	

0.250	

0.300	

0.350	

0.400	

0.450	

0.500	

(h) Conference, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(i) legend

Figure 5.7: query precision for different test sets.

comparison between QODI and Clio shows that disambiguation is important

even for generating complete q-mappings regardless of correctness.

The ontology matching baselines can generate complete q-mappings for

less than 50% of PathOnly queries, but barely generate complete q-mappings

for ClassAll queries. The big gap between ontology matching baselines and

Clio baselines demonstrates the importance of the missing mapping challenge.

97

0.320	

0.375	

0.278	

0.597	
 0.584	

0.320	

0.764	

0.833	

0.639	

-­‐0.050	

0.050	

0.150	

0.250	

0.350	

0.450	

0.550	

0.650	

0.750	

0.850	

0.950	

(a) Life Science, PathOnly

0.286	
 0.295	

0.236	

0.466	

0.380	

0.211	

0.842	

0.892	
 0.881	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

0.900	

1.000	

(b) Life Science, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(c) legend

0.339	
 0.347	

0.266	

0.581	

0.525	

0.460	

0.702	

0.565	

0.468	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(d) Bibliography, PathOnly

0.344	
 0.347	

0.289	

0.449	

0.416	

0.340	

0.670	

0.545	

0.426	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(e) Bibliography, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(f) legend

0.375	

0.417	
 0.417	

0.375	

0.417	

0.500	
 0.500	

0.458	

0.625	

0.000	

0.100	

0.200	

0.300	

0.400	

0.500	

0.600	

0.700	

0.800	

(g) Conference, PathOnly

0.167	
 0.167	
 0.167	
 0.167	
 0.167	

0.333	

0.208	

0.333	

0.500	

-­‐0.050	

0.050	

0.150	

0.250	

0.350	

0.450	

0.550	

(h) Conference, ClassAll

Substring*
SMOA*
AgreementMaker*
Clio_Substring*
Clio_SMOA*
Clio_AgreementMaker*
QODI_Substring*
QODI_SMOA*
QODI_AgreementMaker*

(i) legend

Figure 5.8: path precision for different test sets.

5.4.2 Precision

Figure 5.7 and 5.8 show the precisions of all methods. For all test sets,

at least one QODI method dominates all baselines in terms of both precision

measures. For ClassAll query sets, there are big gaps between QODI and all

baselines. QODI is the only system that achieves non-zero query precision for

the Life Science test set with ClassAll query set. For ClassAll query set, each

query has more than one path that shares a source. On one hand, more paths

98

0.300$

0.400$

0.500$

0.600$

0.700$

0.800$

0.900$

0.0$ 0.2$ 0.4$ 0.6$ 0.8$ 1.0$ 1.2$ 1.4$ 1.6$ 1.8$ 2.0$

Substring$

SMOA$

AgreementMaker$

(a) Life Science, PathOnly

0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(b) Life Science, ClassAll0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(c) legend

0.200$

0.300$

0.400$

0.500$

0.600$

0.700$

0.800$

0.0$ 0.2$ 0.4$ 0.6$ 0.8$ 1.0$ 1.2$ 1.4$ 1.6$ 1.8$ 2.0$

Substring$

SMOA$

AgreementMaker$

(d) Bibliography, PathOnly

0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(e) Bibliography, ClassAll0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(f) legend

0.200$

0.250$

0.300$

0.350$

0.400$

0.450$

0.500$

0.550$

0.600$

0.650$

0.0$ 0.2$ 0.4$ 0.6$ 0.8$ 1.0$ 1.2$ 1.4$ 1.6$ 1.8$ 2.0$

Substring$

SMOA$

AgreementMaker$

(g) Conference, PathOnly

0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.400#

0.450#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(h) Conference, ClassAll0.000#

0.050#

0.100#

0.150#

0.200#

0.250#

0.300#

0.350#

0.0# 0.2# 0.4# 0.6# 0.8# 1.0# 1.2# 1.4# 1.6# 1.8# 2.0#

Substring#

SMOA#

AgreementMaker#

(i) legend

Figure 5.9: query precision using different η (horizontal axis).

may lead to poor mapping results since each path may be mapped incorrectly.

On the other hand, the context from different paths may be used by QODI

to map the correct source class shared by the paths. The precision results

indicate the importance of resolving the ambiguous mapping challenge.

Comparing Clio with ontology matching baselines, for all test sets and

all measures, at least one Clio baseline dominates or performs as well as on-

tology matching baselines.

99

L↑ L↓ B↑ B↓ C↑ C↓
ambiguous rate 0.333 0.111 0.242 0.113 0.000 0.000

Substring 0.333 0.250 0.267 0.000 - -
Clio Substring 0.417 0.500 0.667 0.000 - -

QODI Substring 0.500 0.500 0.933 0.000 - -

Table 5.1: The ambiguous rate (row 2) and query precision of queries with
datatype ambiguous q-mapping (row 3, 4, 5) using Substring as matcher. L↑
uses Darwin Core and L↓ uses Specify as the target ontology for the Life
Science test set. B↑ uses UMBC and B↓ uses DBLP as the target ontology
for the Bibliography test set. C↑ uses SIGKDD and C↓ uses SOFSEM as the
target ontology for the Conference test set. If ambiguous rate is zero, there is
no query precision for the queries with datatype ambiguous q-mapping. Higher
query precision means better performance.

5.4.3 Parameter Tuning

Figure 5.9 shows the query precision using different path length penalty

parameter η. With the same length difference, a large η gives big penalty. As

a special case, η = 0 does not have any penalty on the path length.

For most cases, the penalty improves query precision comparing to the

case of η = 0. However, if η is too large, the query precision can be decreased.

With large η, the penalty of length dominates the similarities of source classes,

datatype properties, and path labels in (5.2). Thus only the paths with the

same lengths are considered as similar, ignoring the labels of the paths. For

Life Science, most of the mapped paths in the groundtruth have the same

length, so the precision is not decreased with large η.

100

L↑ L↓ B↑ B↓ C↑ C↓
ambiguous rate 0.194 0.000 0.177 0.000 0.000 0.000

SMOA 0.143 - 0.364 - - -
Clio SMOA 0.429 - 0.364 - - -

QODI SMOA 0.714 - 0.636 - - -

Table 5.2: The ambiguous rate and query precision of queries with datatype
ambiguous q-mapping using SMOA as matcher. See caption of Table 5.1 for
details.

L↑ L↓ B↑ B↓ C↑ C↓
ambiguous rate 0.139 0.000 0.000 0.000 0.000 0.000

AgreementMaker 0.000 - - - - -
Clio AgreementMaker 0.000 - - - - -

QODI AgreementMaker 0.200 - - - - -

Table 5.3: The ambiguous rate and query precision of queries with datatype
ambiguous q-mapping using AgreementMaker as matcher. See caption of Ta-
ble 5.1 for details.

5.4.4 Ambiguity

As the primary motivation is the identification that mapping correct-

ness may be query dependent (ambiguous), we assess how much of QODIs

improved performance over Clio is explained by the presence of ambiguity and

the respective systems ability to resolve it. In this section, we measure the

ambiguous rate of all test sets, and compute the query precision of all methods

over PathOnly queries with ambiguous mappings to measure the capability of

disambiguation. If there is no ambiguity, the precision column is empty.

Per Definition 5.3.2 and Equation (5.10), ambiguous rate is related to

matchers. The result using each matcher is reported separately in Table 5.1,

101

5.2, and 5.3.

Two out of three test sets, Life Science and Bibliography, have non-zero

ambiguous rate. The ambiguous rate measured with different matchers share

similarities. All three matchers assert that Life Science with Darwin Core

as target ontology has ambiguity, with rates from 0.139 to 0.333. Substring

and SMOA agree on the ambiguity of Bibliography with UMBC as target

ontology, with rates 0.242 and 0.177. For both L↑ and B↑, QODI achieves the

highest query precision on the queries with datatype ambiguous q-mappings.

Comparing with Clio, the relative improvement of QODI is 66% and 75%.

This shows that QODI is capable of disambiguation.

5.5 Discussion and Future Work

This work identifies ambiguous mappings as sources of errors in auto-

matic data integration. In our experiments, two out of three test domains

have ambiguity. Around 10% to 30% of queries involve ambiguous mappings

in the test sets with ambiguity.

We introduce query-specific ontology mapping to resolve ambiguous

mappings, and implement an OBDI system, QODI. For all test sets in our

evaluation, at least one QODI method outperforms all baselines with both

precision measures.

Future work consists of at least three possible directions. First, new

methods of path similarities can be explored. In our current implementation,

102

contexts are extracted as path labels, and factors of the path similarity are

multiplied as probabilities. Other methods that extract context from queries

as well as weighting schemes that balance different factors should be studied.

Second, although the focus of this presentation is algorithmic, the fundamen-

tal organization of QODI admits integration of user interaction for refinement.

Users input may be integrated at different places. Similarity between entities

is pre-computed and stored in matrices. Values in the matrices may be over-

written directly by users. When a q-mapping is generated, users may label

the correctness of path correspondences. After executing the reformulated

query, users may label the correctness of the query results. These labels can

be exploited by machine learning algorithms to subsequently adjust both path

mapping and similarity between entities. Third, path mappings can be accu-

mulated over time as in pay-as-you-go systems. Although QODI may choose

different entity mappings for different queries, the path mapping is static for

a specific path. This motivates a design of workload to accumulate path map-

pings over time, such that a path mapped before need not be mapped in

future.

103

Chapter 6

Complete Data Integration System

In the Semantic Web literature, most existing research focuses on sub-

problems of data integration. Ontology matching finds correspondences be-

tween ontology entities [35]. Instance matching assigns “owl:sameAs” to in-

stances that refer to the same real world object [69]. Query rewriting algo-

rithms are proposed for particular mapping representations [55]. Each sub-

problem has its own assumptions that may not be compatible with others.

Problems on complete data integration system have not been well studied.

This work details Alamo, a semi-automatic data integration system

using Semantic Web techniques. Figure 6.1 shows the system diagram of

Alamo. The inputs of Alamo are the target ontology and a set of data sources.

Users issue queries in terms of the target ontology through an application, and

Alamo will translate them over data sources and return the federated query

results as well as provenance. The existence of Alamo separates the application

from data sources. Thus, new data sources can be added without modifying

the application software, which is critical due to the scale and the distributed

nature of RDF data. Alamo supports both RDF triple stores and relational

databases as data sources. For relational databases, Alamo uses Ultrawrap to

104

Source'1' Source'n'

Query&
Federator&

Reformulator&1&

URI&
Normalizer&

Applica/on'

Target'queries'

Construct'
queries'

RDF'with'source'URIs'

RDF'with'target'URIs'

Target'query'

En8ty&
Name&
Service&

Executable&
Mapping&
Generator&

Source'1'
Ontology'

Mapping'

Compile' Run'

Source'n'
Ontology'

Target'
Ontology'

.&&.&&.&

...&

Alamo&

ENS'

Query'results'

Result&
Combiner&

Reformulator&n&

.&&.&&.&

Provenance'

Figure 6.1: Alamo system diagram.

automatically translate to RDF and OWL [81]. For clarity, we assume data

sources are RDF triple stores with ontologies as data models.

Alamo is a large system that consists of many components. My con-

tribution focuses on the two automatic components central to the system:

mapping generator and query reformulator. The rest of this chapter overviews

the whole system, and details the mapping generator and query reformulator.

We will illustrate Alamo using the stock price examples in Figure 6.2,

including the target ontology and two source ontologies as well as their RDF

triples. These examples are derived from the real examples introduced in a

seminal paper by Krishnamurthy, Litwin, and Kent [54]. The integration of

these examples requires higher-order logic.

105

Stock&Code&

Industry&

IBM& AAPL&

IT&

code&

industry&

volume&

price&

date&

Finance&

..."

..."

(a) Target ontology

Stock&Company&

IBM& AAPL&

company&

volume& close_date&
..."

Date&
date&

(b) Source ontology 1

IBM&
date&price&

AAPL&
date&price&

..."

(c) Source ontology 2

Subject Predicate Object

src1:stk1 src1:company src1:IBM
src1:stk1 src1:volume 5.6m
src1:stk1 src1:close date src1:date1
src1:date1 src1:date 1/3/2012

(d) RDF triple store 1

Subject Predicate Object

IBM:ibm1 IBM:price 186.3
IBM:ibm1 IBM:date 1/3/2012
AAPL:aapl1 AAPL:price 411.2
AAPL:aapl1 AAPL:date 1/3/2012

(e) RDF triple store 2

Figure 6.2: Stock price examples including the target ontology and two data
sources. Source 1 contains trading volumes, and source 2 contains stock prices.

6.1 Compile Time

In the compile time, Alamo finds the relationship between the target

ontology and source ontologies through executable mapping generator. The

relationship between instances in different data sources are discovered through

entity name service. The compile time components only need to run once for

each new data source.

106

6.1.1 Executable Mappings

An executable mapping is a mapping representing transformations of

instances [13]. In relational database, an executable mapping is a logic for-

mula over relations and attributes. A common representation is the tuple-

generating dependency (TGD), which is a first-order logic containing conjunc-

tions of atomic formulas [11].

We define executable mappings in the Semantic Web following a similar

representation of TGDs. An executable mapping is represented as a logic

formula:

∀x(φ(x)→ ∃yψ(x,y)) (6.1)

where φ(x) is a conjunction of triples from the source and ψ(x,y) is a con-

junction of triples from the target.

To physically represent the mappings, we use construct SPARQL queries

as Rivero et. al. [78]. There are two reasons to represent mappings as SPARQL

queries: (1) SPARQL queries can be easily used in the Semantic Web appli-

cations, since SPARQL is the standard query language; (2) SPARQL queries

are capable of expressing conjunctive logic formulas. Given an executable

mapping, the head of the construct query contains the logic formulas from the

target (ψ), and the body contains the formulas from the source (φ). Figure 6.3

and 6.4 show some executable mappings between the target ontology and the

two data sources in our example, respectively.

Using SPARQL query as the executable mapping representation, any

107

CONSTRUCT {

?x target:code ?y.

} WHERE {

?x src1:company ?y.

}

(a) stock code

CONSTRUCT {

?x target:volume ?y.

} WHERE {

?x src1:volume ?y.

}

(b) trading volume

CONSTRUCT {

?x target:date ?y.

} WHERE {

?x src1:close_date ?z.

?z src1:date ?y.

}

(c) trading date

Figure 6.3: Executable mappings between the target and source 1.

CONSTRUCT {

?x target:code target:IBM.

?x target:price ?y.

} WHERE {

?x IBM:price ?y.

}

(a) IBM stock price

CONSTRUCT {

?x target:code target:IBM.

?x target:date ?y.

} WHERE {

?x IBM:date ?y.

}

(b) IBM trading date

Figure 6.4: Executable mappings between the target and source 2. Due to
space limit, only mappings related to IBM are shown. Similar mappings exist
for other stocks.

ontology mapping generator that produces mappings in this format can be

used in Alamo. However, generating executable mappings is more difficult

than matching individual ontology entities, because the formulas in executable

mappings can contain a set of conjunctive atomic formulas. Alamo generates

the mappings by the two automatic mapping systems developed in previous

chapters [87, 85]. The mappings can be also adjusted manually.

The first system is detailed in Chapter 4. It is extended from relational

databases to the Semantic Web. For each class in the target ontology and

each class in a source ontology, the nonduplicate-based method is used to find

108

correspondences between different types of entities, including classes, object

properties, datatype properties, and data values. Each correspondence is then

automatically translated to a SPARQL query as an executable mapping.

Both executable mappings in Figure 6.4 can be generated by this sys-

tem. The mapping in Figure 6.4a expresses that the target property “price” is

matched to property “price” of class “IBM” if the target property “code” has

a value of “IBM”. This example demonstrates the importance of dependency.

If the target property “code” has “AAPL” as value, then the target property

“price” should be mapped to property “price” of class “AAPL”.

The second system is QODI, detailed in Chapter 5. Given a SPARQL

query, QODI is designed to generate mappings specific to that query to resolve

ambiguity. The choice of queries passed to QODI is the place where prior

knowledge can be used. The queries that are frequently issued before are

more likely to be seen in future. Thus, QODI can generate mappings for

those frequent queries. Developers can also manually pick candidate queries as

inputs of QODI. If there is no prior knowledge, QODI will generate a mapping

for each query consisting of one triple in the target ontology by default. QODI

had an assumption that only paths with datatype properties are considered.

We extend QODI to consider all paths in Alamo.

All mappings in Figure 6.3 can be generated by QODI. Especially, the

mapping in Figure 6.3c is between an entity in the target ontology and a set

of entities in the source ontology, which corresponds to a sub-ontology.

109

Group uri Source 1 uri Source 2 uri

target:group1 src1:stk1 IBM:ibm1

Figure 6.5: ENS between source 1 and source 2.

6.1.2 Entity Name Service

Aiming at integrating multiple data sources, a research question is how

to combine query results given that instances from different data sources usu-

ally have different uri domains. As stated by Bouquet et. al., recognizing

that information from different sources refers to the same real world entity is

a prerequisite for combining information [19]. Alamo relies on the concept of

entity name service (ENS) proposed by Bouquet et. al. [19]. The idea behind

the project is to enable the systematic reuse of global identifiers for entities

that are described in heterogeneous data collections on the web.

The objective of the ENS in Alamo is to group equivalent instances

from individual data sources, and assign a target uri to each group. Although

the instances in the same group are from different data sources, Alamo will

join them to combine the query results. The details of ENS are beyond the

scope of this dissertation.

Figure 6.5 shows the ENS generated based on the RDF triples of data

sources. The instance “src1:stk1” from source 1 and instance “IBM:ibm1”

from source 2 are grouped together, because they contain information of IBM

stocks of the same date “1/3/2012”.

110

6.2 Run Time

At run time, Alamo takes an input of a query in terms of the target

ontology from the application, and returns the combined query results from

all data sources as well as provenance.

The target query is passed to query federator first, which determines

the sub-queries that will be reformulated in terms of individual data sources.

Each data source is associated with a reformulator. Although the target query

can be in any form (select, construct, etc.), a reformulator reformulates the

query as a construct query, whose head contains triples in terms of the target

ontology and body contains triples in terms of the data source. Executing these

construct queries results in triples. Thus, combining the query results from

different data sources is simply combining all triples together. The combined

query results are processed by URI normalizer, which substitutes any source

instance uri by group uri in ENS such that instances from different data sources

can be joined together. Finally, result combiner executes the original target

query over the combined triples, and returns the query results.

Figure 6.6 shows a target SPARQL query that asks the price and trad-

ing volume of stock “IBM” on “1/3/2012”. We will show how Alamo executes

this target query using the two data sources based on the executable mappings

in Figure 6.3 and 6.4.

111

SELECT ?p ?v

WHERE {

?x target:code target:IBM .

?x target:date "1/3/2012".

?x target:price ?p .

?x target:volume ?v .

}

Figure 6.6: SPARQL query asking the price and trading volume of stock
“IBM” on “1/3/2012”.

6.2.1 Query Reformulation

The task of a reformulator is to translate the target query in terms

of a data source based on executable mappings. The reformulated queries

are always construct queries, no matter the query form in the target query.

Since the results of construct queries are triples, combining the query results

from different data sources is simply combining all triples together. The query

reformulation process is defined as follows:

Definition 6.2.1 (query reformulation). Given a SPARQL query in terms of

the target ontology qt and a data source S, query reformulation is a process

to return a SPARQL query qs, such that:

• qs is a construct query;

• the head of qs is the same as the body of qt;

• ∃ qe in terms of source S and qe is equivalent to qt, s.t. the body of qs is

the same as the body of qe.

112

CONSTRUCT {

?x target:code target:IBM.

?x target:date "1/3/2012".

?x target:volume ?v.

} WHERE {

?x src1:company src1:IBM.

?x src1:close_date ?y.

?y src1:date "1/3/2012".

?x src1:volume ?v.

}

(a) In terms of source 1

CONSTRUCT {

?x target:code target:IBM.

?x target:date "1/3/2012".

?x target:price ?p.

} WHERE {

?x IBM:date "1/3/2012".

?x IBM:price ?p.

}

(b) In terms of source 2

Figure 6.7: Reformulated SPARQL queries in terms of data sources.

There are two steps to automatically generate the reformulated queries

in Definition 6.2.1. First, find a source query that is equivalent to the target

query. Second, change the equivalent source query as a construct query.

To perform the first step, a naive algorithm is to consider all possible

combinations of executable mappings, and output the union of valid ones. The

complexity of this algorithm is too high to be used in a real system. We use

the query rewriting algorithm proposed by Le et. al. [55]. This algorithm is

similar to the bucket algorithm in relational database [57].

The idea of the query reformulation algorithm is to create a bucket for

each property existed in the target query, and add all executable mappings

containing that property in the bucket [55]. The reformulated query is the

union of all valid Cartesian product of the mappings in the buckets with vari-

able substitution. The reformulated query is proved to be equivalent as the

target query.

113

Subject Predicate Object

src1:stk1 target:code target:IBM
src1:stk1 target:date “1/3/2012”
src1:stk1 target:volume 5.6m

(a) Results from source 1

Subject Predicate Object

IBM:ibm1 target:code target:IBM
IBM:ibm1 target:date “1/3/2012”
IBM:ibm1 target:price 186.3

(b) Results from source 2

Figure 6.8: Executed results of the reformulated queries.

Subject Predicate Object

target:group1 target:code target:IBM
target:group1 target:date “1/3/2012”
target:group1 target:volume 5.6m
target:group1 target:price 186.3

Figure 6.9: Normalized query results.

After obtaining the equivalent source query, the second step syntacti-

cally combines the target query and the equivalent source query to generate

a construct query as the final reformulated query. The head of the construct

query consists of all triples in the target query, and the body consists of all

triples in the equivalent source query.

Figure 6.7 shows the reformulated queries in terms of data source 1 and

data source 2 based on the executable mappings in Figure 6.3 and 6.4.

6.2.2 Query Results Combining

Each reformulated query is executed on its corresponding data source.

Since the reformulated queries are construct queries, the results are RDF

triples as shown in Figure 6.8. The instance uris in the results are from indi-

vidual data sources, such as “src1:stk1” and “IBM:ibm1”, although they refer

to the same real world object.

114

Q

Reformulate,

Execute,

Normalize,

Q1,

ST1,

TT1,

S1,

M11, M12,

E11,

E12,

Reformulate,

Execute,

Normalize,

Q2,

ST2,

TT2,

S2,

M21, M22,

E21,

E22,

..., ...,

...,

...,

mapping, mapping,

so
ur
ce
,

source,

source,

source,

source,

so
ur
ce
,

mapping, mapping,

ens, ens,

triple, triple,

query, query,

Figure 6.10: An example provenance produced by Alamo. Artifacts are rep-
resented by ellipses, and processes are represented by rectangles.

URI normalizer substitutes the data source uris of the RDF triples

based on the ENS generated in compile time. After the normalization, in-

stances can be joined by the group uris. The normalized RDF triples based

on the ENS in Figure 6.5 is shown in Figure 6.9. These RDF triples do not

contain any uri from data sources.

Result combiner finally executes the original target query on the nor-

malized RDF triples and returns the results. In the example, the query in

Figure 6.6 is executed based on the triples in Figure 6.9. The results of the

query assign “186.3” to ?p and “5.6m” to ?v.

115

6.2.3 Provenance

Along with the query results, Alamo also returns the provenance to

facilitate the users to inspect the results. The provenance is represented using

the Open Provenance Model (OPM) [67]. A provenance is a directed labeled

graph that can be serialized to OWL, XML, etc. A vertex can be an artifact

that models an immutable piece of state, a process that models an action, or an

agent that models context enabling or facilitating the execution of a process.

Vertices are distinguished by unique uris. Edges can be labeled as different

roles. Both vertices and edges can have annotations to store information.

Figure 6.10 shows an example provenance produced in Alamo considering two

data sources. The vertices S represent data sources, and Q represent queries.

M and E represent executable mappings and entries in ENS, respectively. ST

and TT represent RDF triples. The actual values, such as mappings, queries,

triples, etc., are stored as annotations of corresponding vertices.

6.3 Experiments

Comparing to the conventional mapping process, the objective of the

experiments is to assess the impacts of our generalizations of mapping prob-

lems to the entire data integration system. The evaluation focuses on the

accuracy of reformulated queries instead of executable mappings or query ex-

ecution results for three reasons. (1) The accuracy of reformulated queries

measures the performance of both executable mapping generator and query

reformulator. These two components are fully automatic, and contain AI algo-

116

rithms. They are usually the main sources of errors. (2) It is difficult to fairly

compare executable mapping accuracy, since different systems may generate

a different number of mappings, and there is no unique groundtruth mapping

(for example, the combination of two correct mappings is also correct). (3)

Reformulated queries are usually not affected by instances. Thus, the evalua-

tion does not depend on underlying instances, and in fact it does not require

them.

6.3.1 Test sets

The evaluation is conducted on both test suites discussed in Chapter 3.

The first one is detailed in Section 3.2. It comprises three application

domains: Bibliography, Conference Organization, and Life Science, and does

not contain data instances. In the Bibliography test set, UMBC is the target

ontology, and DBLP is the source ontology. In the Conference test set, SOF-

SEM is the target ontology, and SIGKDD is the source ontology. In the Life

Science test set, Darwin Core is the target ontology, and Specify is the source

ontology.

The advantage to use these test sets is that each ontology is associated

with sets of SPARQL queries. Specifically, each ontology is associated with two

kinds of SPARQL queries. 1) A PathOnly query has a query graph consisting

of only one path. In English specification, a PathOnly query asks for all

values of a single attribute of a concept. 2) A ClassAll query has a query

graph consisting of all paths (at least two) that share a source. In English

117

specification, a ClassAll query asks for all values of all attributes of a concept.

It is the most complicated query with one conjunction over the source. ClassAll

queries are more difficult to be reformulated than PathOnly queries, because

ClassAll queries contain many triples. If one triple is reformulated incorrectly,

the whole reformulation will be wrong.

The second one is detailed in Section 3.1. We automatically translate

the relational databases into ontologies and RDF files through Ultrawrap [81].

There are four application domains: Stock Market, Ecommerce, College En-

rollment, and Video Game. In the Stock test set, Chwab is the target ontology,

and Euter is the source ontology. In the Ecommerce test set, Subrion is the

target ontology, and Opencart is the source ontology. In the Enrollment test

set, Statistics is the target ontology, and Ranking is the source ontology. In

the Game test set, Vgchartz is the target ontology, and Dbpedia is the source

ontology.

We follow the same method to generate the PathOnly and ClassAll

query sets for each test domain. In addition to these queries, each test domain

is associated with RDF files as data instances. Thus, mappings between on-

tologies and data instances can be generated and used for query reformulation.

6.3.2 Baselines

The baseline implements the conventional mapping process, and uses

the same query reformulation algorithm as in Alamo. An ontology matcher is

used to generate correspondences between the same type of ontology entities,

118

and the executable mappings are generated using a recent method proposed

by Rivero et. al. [78]. The executable mapping generator proposed by Rivero

et. al. takes a set of entity correspondences and a set of restrictions of each

ontology as inputs, and outputs a set of executable mappings as construct

SPARQL queries [78]. Specifically, for each entity correspondence, the algo-

rithm expands each entity to a graph based on restrictions, and group all cor-

respondences within the graphs as a kernel. Finally, each kernel is transformed

as a construct SPARQL query. The restrictions considered in the baseline are

domain and range. The baseline is denoted as EntityKernel.

Both the baseline and Alamo require an ontology matcher to compute

the similarity between entities. We use SMOA string similarity as the matcher

for all methods [83].

6.3.3 Results on the Test Sets without Instances

The threshold to determine predicted correspondences has a large im-

pact to all methods (predicted correspondences must have higher confidence

than the threshold). We vary the threshold as 0.3, 0.5, and 0.7 to give a

comprehensive comparison.

Table 6.1, 6.2, and 6.3 show the number of correctly reformulated

queries versus the number of total queries given various thresholds. The num-

ber of correctly reformulated queries is the main measure to compare different

data integration systems in the experiments. Table 6.4, 6.5, and 6.6 show the

number of valid reformulation regardless of correctness. The number of valid

119

0.3 0.5 0.7

PathOnly query set
EntityKernel 12 / 62 15 / 62 18 / 62

Alamo 39 / 62 39 / 62 33 / 62

ClassAll query set
EntityKernel 1 / 8 1 / 8 0 / 8

Alamo 1 / 8 1 / 8 0 / 8

Table 6.1: Query reformulation correctness of the Bibliography test set. A cell
is in the form x / y, where x is the number of correctly reformulated queries,
and y is the number of total input queries. The three columns show the results
when the correspondence threshold is 0.3, 0.5, and 0.7. EntityKernel is the
baseline, and Alamo is the proposed system. PathOnly and ClassAll are two
query sets.

0.3 0.5 0.7

PathOnly query set
EntityKernel 4 / 12 4 / 12 0 / 12

Alamo 5 / 12 7 / 12 0 / 12

ClassAll query set
EntityKernel 1 / 3 1 / 3 0 / 3

Alamo 1 / 3 1 / 3 0 / 3

Table 6.2: Query reformulation correctness of the Conference test set. See
Table 6.1 for explanations.

reformulation indicates the coverage of different data integration systems.

The proposed system Alamo dominates the baseline in all test sets

with PathOnly queries. This is especially demonstrated in the Bibliography

set (Table 6.1), and the Life Science set (Table 6.3). In the Bibliography

set, Alamo correctly reformulates 33 to 39 queries, and the baseline correctly

reformulates at most 18 queries. In the Life Science set, the number of cor-

rectly reformulated queries by Alamo is between 19 and 30, and the number

120

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 36 0 / 36 7 / 36

Alamo 30 / 36 25 / 36 19 / 36

ClassAll query set
EntityKernel 0 / 3 0 / 3 0 / 3

Alamo 0 / 3 0 / 3 0 / 3

Table 6.3: Query reformulation correctness of the Life Science test set. See
Table 6.1 for explanations.

is at most 7 by the baseline. The big gap between Alamo and the baseline

emphasizes the difference of the underlying mapping generator. The base-

line first generates entity correspondences, and transforms them to executable

mappings. It is limited by the expressiveness and correctness of entity corre-

spondences. In the test sets, one triple may be mapped to multiple triples,

which cannot be expressed by entity correspondences. Alamo uses two map-

ping generators, including QODI. QODI is capable to find correspondences

between sub-ontologies; thus, can resolve this issue.

Alamo performs similarly to the baseline on ClassAll queries. The per-

formance of both systems on ClassAll queries is worse than that on PathOnly

queries. A ClassAll query is more complex than a PathOnly query. For ex-

ample, one ClassAll query of the Life Science test set contains 44 triples. If

one triple is not reformulated correctly, the whole reformulation is wrong. We

manually checked the reformulated queries. Wrong reformulation usually only

involves one or two triples that are incorrectly mapped. With a small amount

of human labors to correct mappings, the correctness of ClassAll query refor-

121

0.3 0.5 0.7

PathOnly query set
EntityKernel 28 / 62 28 / 62 24 / 62

Alamo 42 / 62 42 / 62 42 / 62

ClassAll query set
EntityKernel 1 / 8 1 / 8 0 / 8

Alamo 1 / 8 1 / 8 0 / 8

Table 6.4: Number of valid query reformulation of the Bibliography test set.
A cell is in the form x / y, where x is the number of valid reformulated queries
regardless of correctness, and y is the number of total input queries. The
three columns show the results when the correspondence threshold is 0.3, 0.5,
and 0.7. EntityKernel is the baseline, and Alamo is the proposed system.
PathOnly and ClassAll are two query sets.

0.3 0.5 0.7

PathOnly query set
EntityKernel 5 / 12 5 / 12 0 / 12

Alamo 12 / 12 10 / 12 1 / 12

ClassAll query set
EntityKernel 1 / 3 1 / 3 0 / 3

Alamo 2 / 3 1 / 3 0 / 3

Table 6.5: Number of valid query reformulation of the Conference test set. See
Table 6.4 for explanations.

mulation will be drastically improved.

The correspondence threshold has different impacts on Alamo and the

baseline. For Alamo, a smaller threshold usually achieves higher reformulation

correctness. This is because one of Alamo’s mapping generator, QODI, consists

of an optimization over sub-ontologies. A smaller threshold provides more

correspondences to be considered in the optimization. Thus, the mapping is

highly likely to be better. For the baseline, the threshold determines the entity

122

0.3 0.5 0.7

PathOnly query set
EntityKernel 36 / 36 15 / 36 13 / 36

Alamo 36 / 36 36 / 36 28 / 36

ClassAll query set
EntityKernel 2 / 3 0 / 3 0 / 3

Alamo 2 / 3 2 / 3 0 / 3

Table 6.6: Number of valid query reformulation of the Life Science test set.
See Table 6.4 for explanations.

correspondences as well as the number of executable mappings, because one

entity correspondence is transformed as one executable mapping. A smaller

threshold increases the coverage of the mappings, but decreases the accuracy.

Thus, the reformulated queries tend to have more unrelated triples as union.

A larger threshold produces fewer mappings. Thus, the reformulated queries

may only cover part of the original queries. The choice of the threshold is a

tradeoff for the baseline that has to be tuned based on individual problems.

As shown in Table 6.4, 6.5, and 6.6, the number of valid reformulated

queries generated by Alamo is more than or equal to the number by the base-

line. Similarly to query reformulation correctness, Alamo dominates the base-

line on PathOnly queries, and the difference is small on ClassAll queries. The

correspondence threshold has a big impact. Smaller threshold generates more

entity correspondences and more executable mappings. Thus, the number of

valid query reformulation will be larger.

123

0.3 0.5 0.7

PathOnly query set
EntityKernel 1 / 4 1 / 4 1 / 4

Alamo 4 / 4 4 / 4 4 / 4

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 1 / 1 1 / 1 1 / 1

Table 6.7: Query reformulation correctness of the Stock test set. See Table 6.1
for explanations.

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 6 0 / 6 0 / 6

Alamo 3 / 6 2 / 6 2 / 6

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 0 / 1 0 / 1 0 / 1

Table 6.8: Query reformulation correctness of the Ecommerce test set. See
Table 6.1 for explanations.

6.3.4 Results on the Test Sets with Instances

Table 6.7, 6.8, 6.9, and 6.10 show the number of correctly reformulated

queries versus the number of total queries given various thresholds. Table 6.11,

6.12, 6.13, and 6.14 show the number of valid reformulation regardless of cor-

rectness.

Similar to the results on the previous test sets, Alamo usually achieves

higher accuracy than the baseline on PathOnly queries. Particularly in the

Stock test set, Alamo correctly reformulates all four PathOnly queries, and

the baseline only reformulates one. These test sets are difficult, because they

124

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 4 0 / 4 0 / 4

Alamo 0 / 4 1 / 4 1 / 4

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 0 / 1 0 / 1 0 / 1

Table 6.9: Query reformulation correctness of the Enrollment test set. See
Table 6.1 for explanations.

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 4 0 / 4 0 / 4

Alamo 3 / 4 2 / 4 1 / 4

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 0 / 1 0 / 1 0 / 1

Table 6.10: Query reformulation correctness of the Game test set. See Ta-
ble 6.1 for explanations.

require mappings between ontologies and data instances. One of Alamo’s

mapping generator is capable to find this kind of mappings. The baseline

generates executable mappings based on correspondences between ontology

entities, thus it cannot find mappings between ontologies and data instances.

Neither system achieves high accuracy on ClassAll query sets. Alamo

is better than the baseline in the Stock test set, and performs the same in

the other test sets. As explained before, ClassAll queries are difficult to re-

formulate since each query contains many triples. If one triple is incorrectly

reformulated, the whole query is failed.

125

0.3 0.5 0.7

PathOnly query set
EntityKernel 1 / 4 1 / 4 1 / 4

Alamo 4 / 4 4 / 4 4 / 4

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 1 / 1 1 / 1 1 / 1

Table 6.11: Number of valid query reformulation of the Stock test set. See
Table 6.4 for explanations.

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 6 0 / 6 0 / 6

Alamo 6 / 6 5 / 6 2 / 6

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 1 / 1 0 / 1 0 / 1

Table 6.12: Number of valid query reformulation of the Ecommerce test set.
See Table 6.4 for explanations.

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 4 0 / 4 0 / 4

Alamo 1 / 4 1 / 4 1 / 4

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 0 / 1 0 / 1 0 / 1

Table 6.13: Number of valid query reformulation of the Enrollment test set.
See Table 6.4 for explanations.

In terms of the number of valid query reformulation, Alamo dominates

the baseline in all test sets on PathOnly queries, and slightly better on ClassAll

126

0.3 0.5 0.7

PathOnly query set
EntityKernel 0 / 4 0 / 4 0 / 4

Alamo 4 / 4 2 / 4 1 / 4

ClassAll query set
EntityKernel 0 / 1 0 / 1 0 / 1

Alamo 1 / 1 0 / 1 0 / 1

Table 6.14: Number of valid query reformulation of the Game test set. See
Table 6.4 for explanations.

queries. In the Stock test set, Alamo reformulates all PathOnly and ClassAll

queries, and the baseline only reformulates one PathOnly query. In the Ecom-

merce test set, Alamo reformulates all PathOnly queries given 0.3 as threshold,

and the baseline never reformulates any query. The big gap between Alamo

and the baseline demonstrates the effectiveness of the two mapping generators

used in Alamo.

6.4 Related Work

In the Semantic Web, Karma is a complete data exchange system

that semi-automatically transfers structured data sources into the Semantic

Web [51]. Karma uses a similar logic representation as TGD to represent ex-

ecutable mappings. The mapping process consists of three steps. First, find

correspondences between columns in the source and classes and datatype prop-

erties in the target using CRF [43]. Second, construct a graph based on the

target ontology and the correspondences, and extract the minimal tree by a

variation of the Steiner Tree algorithm [52]. Finally, the executable mappings

127

are generated based on the minimal tree. There are mainly three differences

between Karma and Alamo. The task of Karma is to transfer structured data

sources into RDF, while Alamo is designed to answer queries using multiple

structured data sources. The inputs to Karma are the target ontology and

source databases (csv, xml, etc.), while the inputs to Alamo are all ontologies

and data sources in the Semantic Web. To use databases in Alamo, Ultrawrap

is used to automatically translate them to the Semantic Web [81]. The map-

ping process in Karma is semi-automatic, since CRF needs human labels for

training. The two mapping generators in Alamo are automatic.

6.5 Discussion and Future Work

This work details the architecture of a complete ontology-based data

integration system, Alamo. Alamo uses construct SPARQL queries as the rep-

resentation of executable mappings. Any ontology mapper that can produce

mappings in this representation can be integrated in Alamo. Given a user

query, the query reformulation algorithm can produce equivalent queries as a

union of triples based on executable mappings. To combine the query results

from individual data sources, Alamo uses its ENS to join multiple instances.

Alamo implements the two mapping systems proposed in this disser-

tation to automatically generate executable mappings. To support our thesis

that automatic data integration systems are limited by a narrow definition of

mapping, we conduct experiments on seven application domains to compare

Alamo to the baseline that implements the conventional mapping definition.

128

The best run of Alamo correctly reformulates 84 PathOnly queries out of 128

in total, and the best run of the baseline only correctly reformulates 26. The

number of queries correctly reformulated by Alamo is three times more than

that by the baseline. This big gap between the two methods demonstrates

the importance of generalizing the conventional mapping definition. Although

better than the baseline, the two mapping systems may not be enough to cover

all real use cases. The architecture of Alamo enables the integration of addi-

tional mapping systems that produce construct SPARQL queries as executable

mappings.

One drawback of the evaluation is the lack of real user queries in the test

sets. Instead of creating random queries to mimic real queries, we choose to

systematically and consistently create queries based on the criterion of number

of paths. A PathOnly query has a query graph consisting of only one path.

A ClassAll query has a query graph consisting of all paths (at least two) that

share a source. PathOnly queries are the simplest queries. ClassAll queries are

the most complicated queries with one conjunction over the source. These two

kinds of queries can be deemed as the lower bound and upper bound of real user

queries. A real user query can be seen as the combination of multiple PathOnly

queries. Thus, the accuracy of query reformulation of PathOnly queries can be

seen as the probability of the success of real user queries. In most of the cases,

a ClassAll query is more complicated than a real user query. We manually

inspect the results. Failure cases of ClassAll queries usually involve a small

number of incorrect mappings. Take the Bibliography test set for example.

129

All methods fail to generate the mapping between the property “name” of the

class “Person” in the target ontology and the property “author” of the class

“Author” in the source ontology. That single incorrect mapping appears in all

seven failure cases out of eight queries in total. Manually correction of this

mapping will drastically improve the accuracy of ClassAll queries.

Future work of Alamo consists of at least two possible directions. First,

the mapping generator is fully automatic in current implementation. A graph-

ical interface that facilitates users to manually adjust incorrect mappings can

drastically improve the accuracy. Second, query federator is an interesting

research topic. A promising direction is to determine the sub-query passed to

one data source based on the mappings and ENS of all data sources. Given the

information from all data sources, the federator can make an optimal decision.

130

Chapter 7

Future Work

In this chapter, I discuss the research directions for the ontology map-

ping area in general. The future work specific to the proposed systems in this

dissertation is discussed at the end of each chapter.

7.1 Generalized Mapping Definition

This dissertation consists of two work to generalize the common defini-

tion of ontology mapping. The first work can express the mappings between

ontology entities and data instances. The second work can express the map-

pings between sub-ontologies. Both work still have some limitations in expres-

siveness. In the first work, the mappings between ontology entities and data

instances have to be within the same class. In the second work, the mappings

are generated only for paths in the ontologies.

A more general definition should allow to express the mappings be-

tween any sub-ontology and any data instance. The Semantic Web data model

provides a starting point for this general definition. In the Semantic Web,

both ontologies and data instances are represented as directed labeled graphs,

and these two kinds of graphs are connected as one graph by a special edge

131

“rdf:type”. Thus, a data source is essentially a large graph that contains both

ontologies and instances. The mapping can be defined as correspondences

between a target subgraph and a subgraph in the source in general. This

definition subsumes both generalized definitions proposed in this dissertation.

Automatically generating mappings in this general definition is chal-

lenging. There are many potential problems to resolve. First, how to ensure

that the generated mappings have valid semantics, especially for the mappings

related to both ontologies and instances. Second, more general definitions lead

to larger pool of possible solutions. Achieving reasonable accuracy is more dif-

ficult. Third, as the graph is very large, the computation complexity will be

very high. Efficient graph matching algorithms have to be incorporated.

7.2 Human Involvement

Automatic mapping systems usually cannot produce perfect results.

People should be involved for the applications that require high accuracy.

Research in this direction should consider three questions.

How to interact. A straightforward way of involving people in data inte-

gration systems is to ask them to provide mappings or label the correctness

of mappings. These labeled mappings have been used to train supervised

machine learning models to predict more mappings [28]. However, existing

machine learning based methods mostly only generate correspondences be-

tween entities. An interesting research direction is to apply these learning

132

algorithms to identify executable mappings. This comprises the tasks of for-

mulating the executable mapping generation as a classification problem, and

identifying meaningful features (e.g. structures of graphs). Active learning

is known to be effective in reducing the number of labels [10, 86]. To apply

active learning on ontology mapping problems, the research question is how

to automatically pick candidate mappings to label. A possible solution is to

pick the most uncertain mapping (the one with the lowest probability). An

advanced solution should ask the label of the mapping that can contribute the

largest gain of accuracy of the whole system.

What to display. People are usually asked to label mappings only based on

ontologies. This kind of interface is suitable for experts, not general users. A

future direction is to display richer information. Example information can be

consequences of labels, including what are the reformulations of frequent input

queries given the current labeled mappings, what are the executing results of

those queries, etc. Sometimes, users need external information to understand

some ontology entities. That information can be retrieved by searching the

entities in public search engines, linking information from known websites

(such as DBpedia), or finding similar entities in other ontologies. Given this

information, users can have a better understanding of whether the labels are

correct.

Who to ask. People with different expertise should all be able to participate

in the mapping process. Experts can provide labels at any mapping stage.

133

Users can provide mapping labels in pay-as-you-go fashion, when they use data

integration systems [25]. Recently, crowdsourcing has been used to annotate

ontology mappings to reduce labor cost [63, 79, 91]. This approach has some

problems. One problem is how to teach ordinary people to understand ontology

mappings and annotate them correctly. Existing methods only consider entity

correspondences, and only ask simple binary labels. Even for this basic task,

the labels from the crowd are too noisy to use directly. Majority voting is

commonly used to reduce the noise. Advanced techniques should be explored.

7.3 Similarity Measure

Similarity measure is a fundamental requirement of all ontology map-

ping systems. String similarity measure has been thoroughly studied. There

are many string distances that can be used in different applications [21]. In

addition to strings, data sources usually contain many other data types, such

as number, date, boolean, category, etc. Chapter 4 implements similarity mea-

sures for number and date. A comprehensive study of similarity measures for

all data types will be valuable to ontology mapping systems.

In addition to syntactic similarity measures, machine learning algo-

rithms can be applied to this task [15]. These algorithms are usually super-

vised, and require labels. Unsupervised algorithms are promising, and should

be explored. Natural language processing (NLP) algorithms can be applied

to ontology mapping. These algorithms are especially important to the task

of mapping multiple attributes that require concatenation (e.g. name to first

134

name and last name). Databases usually contain computer-generated strings.

Stemming techniques specific for computer-generated strings are necessary for

mapping.

Similarity measure is not restricted to single data value. As the map-

ping definition is generalized, similarity between structures is needed. For

example, QODI exploits similarity measures of paths. A more general ques-

tion is how to measure the similarity between graphs. The research of graph

matching should be introduced to the ontology mapping community.

135

Chapter 8

Conclusion

This dissertation starts from a thesis that the progress on automatic

data integration has been limited by a narrow definition of mapping. The

common mapping process is to find correspondences between pairs of enti-

ties in data models, and create logic expressions over the correspondences as

executable mappings. This does not cover all issues in real world applications.

My first results are to collect real world examples and show that they

support my thesis. With the help of the whole research group, we collect two

test suites. One suite includes relational databases in four application do-

mains: ecommerce, stock price, college enrollment, and video game. This test

set demonstrates that mappings can be between different types of database

elements, including relation, attribute, and data value. The other test suite

consists of the ontologies in three application domains: life science, bibliogra-

phy, and conference organization. This set demonstrates that mappings are

sometimes ambiguous, and defining mappings as pairs of entities is not enough.

We also systematically generate queries for each ontology, such that the test

set can be used as a benchmark for data integration systems instead of merely

for ontology mapping.

136

Carefully observing these real world examples, I have intuitions of how

to formulate the mapping definitions. I propose two generalizations in this

dissertation. First, I introduce compound correspondences, which can specify

correspondences between any type of database elements, consisting of relation,

attribute, and data value. Most importantly, I provide semantics to these com-

pound correspondences, and demonstrate that these correspondences can be

translated to tuple-generating dependencies (TGDs). Thus, they can be used

in any data integration system that accepts TGDs. The second generalization

is for data sources in the Semantic Web. I introduce the query-specific ontol-

ogy mapping, which takes a user query as input in addition to ontologies. User

queries provide more context information, which can be used to disambiguate

mappings. The mappings are defined as correspondences between pairs of

graph paths (sequences of entities). By this definition, query reformulation is

simplified.

Automatically generating mappings for the two generalized definitions

is more difficult than that for the common ontology matching problem. I pro-

pose two methods to generate mappings for the first definition. Both methods

estimate the probabilities of mapping candidates. One is a general instance-

based method, and the other one requires a few duplicate instances. For the

second generalized mapping definition, I propose the mapping system QODI.

QODI is distinguished in that the ontology mapping algorithm dynamically de-

termines a partial mapping specific to the reformulation of each query. Given

an input query, QODI decomposes the query into a set of paths, and searches

137

for a subgraph of the source ontology, such that the set of path correspondences

has the highest confidence. QODI exploits heuristic search algorithms, which

guarantee to find an optimal solution. Both mapping systems are evaluated

on our test suites, and achieve favorable results over state-of-the-art baselines.

My last piece of work is motivated by two reasons. (1) In the Seman-

tic Web community, most research focus on sub-problems of data integration.

Complete data integration systems have not been well studied. (2) To test the

thesis, I want to integrate the two proposed mapping systems together, and

evaluate their performance in a real complete data integration system. My

last piece of work contributes to the ontology mapping and query reformu-

lation components in a data integration system, Alamo. I define executable

mappings, and use construct SPARQL queries as the physical representation.

User queries can be automatically reformulated to different data sources based

on the executable mappings.

Alamo implements the two mapping systems proposed in this disserta-

tion. I conduct experiments on seven application domains to compare Alamo

to the baseline that implements the conventional mapping definition. The

best run of Alamo correctly reformulates 84 PathOnly queries out of 128 in

total, and the best run of the baseline only correctly reformulates 26. This big

gap between the two methods demonstrates the importance to generalize the

conventional mapping definition, and supports my thesis.

138

Appendix

139

Appendix 1

Datalog Rules of Direct Mapping

Sequeda, Arenas, and Miranker detail the datalog rules of mapping

relational databases to ontologies and RDF instances [80]. The rules that

translate relational schemas to ontologies are summarized as follows:

Classes A class is any relation that is not a binary relation.

Class(X)← Rel(X),¬IsBinRel(X)

where Class(X), Rel(X), and IsBinRel(X) indicate that X is a class, rela-

tion, and binary relation, respectively. An RDF triple is generated for each

class.

Triple(U, “rdf:type”, “owl:class”)← Class(X), ClassIRI(X,U)

where ClassIRI(X,U) generates uri U for relation X, and Triple is used to

collect all the triples of the RDF graph generated by the direct mapping.

Object Properties An object property is generated either from a binary

relation (OP1) or a foreign key (OP2).

OP1(X,D,R)← BinRel(X,D,R)

OP2(X,D,R)← FK(X,D,R),¬IsBinRel(D)

140

where OP (X,D,R) represents object property X with domain D and range R,

BinRel(X,D,R) indicates X is a binary relation referencing relations D and

R, and FK(X,D,R) represents X is a foreign key in relation D referencing

relation R. The following RDF triples are generated:

Triple(U, “rdf:type”, “owl:ObjectProperty”)

← OP (X,D,R), OP IRI(X,D,R, U)

Triple(U, “rdfs:domain”,W)

← OP (X,D,R), OP IRI(X,D,R, U), ClassIRI(D,W)

Triple(U, “rdfs:range”,W)

← OP (X,D,R), OP IRI(X,D,R, U), ClassIRI(R,W)

where OP IRI(X,D,R, U) generates uri U for object property X.

Datatype Properties A datatype property is an attribute in non-binary

relations.

DP (X,D)← Attr(X,D),¬IsBinRel(D)

where DP (X,D) indicates X is a datatype property with domain D, and

Attr(X,D) indicates X is an attribute in relation D. The following RDF

141

triples are generated:

Triple(U, “rdf:type”, “owl:DatatypeProperty”)

← DP (X,D), DP IRI(X,D,U)

Triple(U, “rdfs:domain”,W)

← DP (X,D), DP IRI(X,D,U), ClassIRI(D,W)

where DP IRI(X,D,U) generates uri U for datatype property X.

142

Bibliography

[1] Direct Mapping. http://www.w3.org/TR/rdb-direct-mapping/.

[2] OAEI. http://oaei.ontologymatching.org/.

[3] OWL. http://www.w3.org/TR/owl-features/.

[4] RDF. http://www.w3.org/TR/PR-rdf-syntax/.

[5] RDFS. http://www.w3.org/TR/rdf-schema/.

[6] SPARQL Language. http://www.w3.org/TR/rdf-sparql-query/.

[7] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Data-

bases. Addison-Wesley, 1995.

[8] Bogdan Alexe, Laura Chiticariu, Renee J Miller, and Wang-Chiew Tan.

Muse: Mapping understanding and design by example. In IEEE 24th

International Conference on Data Engineering, pages 10–19. IEEE, 2008.

[9] Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak. Rela-

tional and xml data exchange. Synthesis Lectures on Data Management,

2(1):1–112, 2010.

[10] F. Barbançon and D.P. Miranker. Sphinx: Schema integration by exam-

ple. Journal of Intelligent Information Systems, 29(2):145–184, 2007.

143

[11] Catriel Beeri and Moshe Y Vardi. A proof procedure for data dependen-

cies. Journal of the ACM (JACM), 31(4):718–741, 1984.

[12] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm, editors. Schema

Matching and Mapping. Springer, 2011.

[13] P.A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching,

ten years later. Proceedings of the VLDB Endowment, 4(11), 2011.

[14] Philip A Bernstein and Laura M Haas. Information integration in the

enterprise. Communications of the ACM, 51(9):72–79, 2008.

[15] Mikhail Bilenko and Raymond J Mooney. Adaptive duplicate detection

using learnable string similarity measures. In Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 39–48. ACM, 2003.

[16] A. Bilke and F. Naumann. Schema matching using duplicates. In 21st

International Conference on Data Engineering, pages 69–80. IEEE, 2005.

[17] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story

so far. International Journal on Semantic Web and Information Systems

(IJSWIS), 5(3):1–22, 2009.

[18] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting context

into schema matching. In Proceedings of the 32nd international confer-

ence on Very large data bases, pages 307–318. VLDB Endowment, 2006.

144

[19] Paolo Bouquet, Heiko Stoermer, Claudia Niederee, and A Maa. En-

tity name system: The back-bone of an open and scalable web of data.

In Semantic Computing, 2008 IEEE International Conference on, pages

554–561. IEEE, 2008.

[20] P. Christen. A survey of indexing techniques for scalable record linkage

and deduplication. Knowledge and Data Engineering, IEEE Transactions

on, (99):1–1, 2011.

[21] WW Cohen, P. Ravikumar, and SE Fienberg. A comparison of string dis-

tance metrics for name-matching tasks. In Proceedings of the IJCAI2003

Workshop on Information Integration on the Web IIWeb03, pages 73–78,

2003.

[22] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt.

Sparql query rewriting for implementing data integration over linked data.

In Proceedings of EDBT, page 4. ACM, 2010.

[23] I.F. Cruz, F.P. Antonelli, and C. Stroe. Agreementmaker: efficient

matching for large real-world schemas and ontologies. Proceedings of

the VLDB Endowment, 2(2):1586–1589, 2009.

[24] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony KH Tung, and

Suresh Venkatasubramanian. Validating multi-column schema matchings

by type. In IEEE 24th International Conference on Data Engineering,

pages 120–129. IEEE, 2008.

145

[25] A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping pay-as-you-go

data integration systems. In SIGMOD 2008, pages 861–874. ACM, 2008.

[26] R. Dhamankar, Y. Lee, A.H. Doan, A. Halevy, and P. Domingos. imap:

discovering complex semantic matches between database schemas. In

SIGMOD 2004, pages 383–394. ACM, 2004.

[27] H.H. Do and E. Rahm. Coma: a system for flexible combination of

schema matching approaches. In Proceedings of the 28th international

conference on Very Large Data Bases, pages 610–621, 2002.

[28] A.H. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of

disparate data sources: A machine-learning approach. In SIGMOD 2001,

pages 509–520. ACM, 2001.

[29] A.H. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. El-

sevier Science, 2012.

[30] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos,

and Alon Halevy. Learning to match ontologies on the semantic web.

The VLDB Journal, 12(4):303–319, 2003.

[31] X.L. Dong, A. Halevy, and C. Yu. Data integration with uncertainty.

The VLDB Journal, 18(2):469–500, 2009.

[32] Songyun Duan, Achille Fokoue, Oktie Hassanzadeh, Anastasios Kementsi-

etsidis, Kavitha Srinivas, and Michael J Ward. Instance-based matching

146

of large ontologies using locality-sensitive hashing. In The Semantic

Web–ISWC 2012, pages 49–64. Springer, 2012.

[33] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios. Duplicate record

detection: A survey. Knowledge and Data Engineering, IEEE Transac-

tions on, 19(1):1–16, 2007.

[34] H. Elmeleegy, M. Ouzzani, and A. Elmagarmid. Usage-based schema

matching. In IEEE 24th International Conference on Data Engineering,

pages 20–29. IEEE, 2008.

[35] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag New

York Inc, 2007.

[36] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in owl-

lite. In ECAI, volume 16, page 333, 2004.

[37] R. Fagin, L. Haas, M. Hernández, R. Miller, L. Popa, and Y. Velegrakis.

Clio: Schema mapping creation and data exchange. Conceptual Model-

ing: Foundations and Applications, pages 198–236, 2009.

[38] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa.

Data exchange: semantics and query answering. Theoretical Computer

Science, 336(1):89–124, 2005.

[39] M. Friedman, A. Levy, and T. Millstein. Navigational plans for data

integration. In Proceedings of the National Conference on Artificial In-

telligence, pages 67–73, 1999.

147

[40] Avigdor Gal and Tomer Sagi. Tuning the ensemble selection process of

schema matchers. Information Systems, 35(8):845–859, 2010.

[41] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm

and an implementation of semantic matching. The semantic web: re-

search and applications, pages 61–75, 2004.

[42] Risto Gligorov, Warner ten Kate, Zharko Aleksovski, and Frank Van Harme-

len. Using google distance to weight approximate ontology matches. In

Proceedings of the 16th international conference on World Wide Web,

pages 767–776. ACM, 2007.

[43] Aman Goel, Craig A Knoblock, and Kristina Lerman. Using conditional

random fields to exploit token structure and labels for accurate semantic

annotation. In AAAI, 2011.

[44] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. Systems Science

and Cybernetics, 4(2):100–107, 1968.

[45] Ryutaro Ichise, Hiedeaki Takeda, and Shinichi Honiden. Integrating

multiple internet directories by instance-based learning. In international

joint conference on artificial intelligence, volume 18, pages 22–30, 2003.

[46] Marie Jacob and Zachary Ives. Sharing work in keyword search over

databases. In Proc. SIGMOD, pages 577–588. ACM, 2011.

148

[47] Y.R. Jean-Mary, E.P. Shironoshita, and M.R. Kabuka. Ontology match-

ing with semantic verification. Web Semantics: Science, Services and

Agents on the World Wide Web, 7(3):235–251, 2009.

[48] S.R. Jeffery, M.J. Franklin, and A.Y. Halevy. Pay-as-you-go user feed-

back for dataspace systems. In SIGMOD 2008, pages 847–860. ACM,

2008.

[49] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based

and scalable ontology matching. In The Semantic Web–ISWC 2011,

pages 273–288. Springer, 2011.

[50] Jaewoo Kang and Jeffrey F Naughton. On schema matching with opaque

column names and data values. In International Conference on Man-

agement of Data: Proceedings of the 2003 ACM SIGMOD international

conference on Management of data, volume 9, pages 205–216, 2003.

[51] C. Knoblock, P. Szekely, J. Ambite, A. Goel, S. Gupta, K. Lerman,

M. Muslea, M. Taheriyan, and P. Mallick. Semi-automatically mapping

structured sources into the semantic web. The Semantic Web: Research

and Applications, pages 375–390, 2012.

[52] L Kou, George Markowsky, and Leonard Berman. A fast algorithm for

steiner trees. Acta informatica, 15(2):141–145, 1981.

[53] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity

measures and algorithms. In Proceedings of the 2006 ACM SIGMOD

149

international conference on Management of data, pages 802–803. ACM,

2006.

[54] Ravi Krishnamurthy, Witold Litwin, and William Kent. Language fea-

tures for interoperability of databases with schematic discrepancies. In

ACM SIGMOD Record, volume 20, pages 40–49. ACM, 1991.

[55] Wangchao Le, Songyun Duan, Anastasios Kementsietsidis, Feifei Li, and

Min Wang. Rewriting queries on sparql views. In Proceedings of the 20th

international conference on World wide web, pages 655–664. ACM, 2011.

[56] Y. Lee, M. Sayyadian, A.H. Doan, and A.S. Rosenthal. etuner: tuning

schema matching software using synthetic scenarios. The VLDB journal,

16:97–122, 2007.

[57] Alon Y Levy, Anand Rajaraman, and Joann J Ordille. Querying het-

erogeneous information sources using source descriptions. In Proceedings

of the 22th International Conference on Very Large Data Bases, pages

251–262, 1996.

[58] J. Li, J. Tang, Y. Li, and Q. Luo. Rimom: A dynamic multistrat-

egy ontology alignment framework. IEEE Trans. Knowl. Data Eng.,

21(8):1218–1232, 2009.

[59] J. Madhavan, P.A. Bernstein, A.H. Doan, and A. Halevy. Corpus-based

schema matching. In 21st International Conference on Data Engineering,

pages 57–68. IEEE, 2005.

150

[60] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. Generic

schema matching with cupid. In Proceedings of the International Con-

ference on Very Large Data Bases, pages 49–58, 2001.

[61] David Maier, Alberto O Mendelzon, and Yehoshua Sagiv. Testing impli-

cations of data dependencies. ACM Trans. Database Systems (TODS),

4(4):455–469, 1979.

[62] A. Marie and A. Gal. Boosting schema matchers. On the Move to

Meaningful Internet Systems: OTM 2008, pages 283–300, 2008.

[63] R. McCann, W. Shen, and A.H. Doan. Matching schemas in online com-

munities: A web 2.0 approach. In IEEE 24th International Conference

on Data Engineering, pages 110–119. IEEE, 2008.

[64] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A ver-

satile graph matching algorithm and its application to schema matching.

In 18th International Conference on Data Engineering, pages 117–128.

IEEE, 2002.

[65] G.A. Miller. Wordnet: a lexical database for english. Communications

of the ACM, 38(11):39–41, 1995.

[66] Prasenjit Mitra, Natalya F Noy, and Anuj R Jaiswal. Ontology mapping

discovery with uncertainty. In Proc. 4th International Semantic Web

Conference (ISWC), volume 3729, pages 537–547, 2005.

151

[67] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul

Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers,

et al. The open provenance model core specification (v1. 1). Future

Generation Computer Systems, 27(6):743–756, 2011.

[68] Arnab Nandi and Philip A Bernstein. Hamster: using search clicklogs for

schema and taxonomy matching. Proceedings of the VLDB Endowment,

2(1):181–192, 2009.

[69] Andriy Nikolov, Alfio Ferrara, and François Scharffe. Data linking for

the semantic web. Int. J. Semant. Web Inf. Syst., 7(3):46–76, 2011.

[70] Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng. A bayesian network

approach to ontology mapping. The Semantic Web–ISWC 2005, pages

563–577, 2005.

[71] Rahul Parundekar, Craig A Knoblock, and José Luis Ambite. Discovering

concept coverings in ontologies of linked data sources. In Proc. ISWC,

pages 427–443. Springer-Verlag, 2012.

[72] Eric Peukert, Julian Eberius, and Erhard Rahm. A self-configuring

schema matching system. In IEEE 28th International Conference on

Data Engineering (ICDE), pages 306–317, 2012.

[73] Rachel Pottinger and Alon Halevy. Minicon: A scalable algorithm for

answering queries using views. The International Journal on Very Large

Data Bases, 10(2-3):182–198, 2001.

152

[74] Li Qian, Michael J Cafarella, and HV Jagadish. Sample-driven schema

mapping. In Proc. SIGMOD, pages 73–84, 2012.

[75] Yuzhong Qu, Wei Hu, and Gong Cheng. Constructing virtual documents

for ontology matching. In Proceedings of the 15th international conference

on World Wide Web, pages 23–31. ACM, 2006.

[76] Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauri-

cio A Hernandez. Clip: a visual language for explicit schema mappings.

In IEEE 24th International Conference on Data Engineering, pages 30–

39. IEEE, 2008.

[77] E. Rahm and P.A. Bernstein. A survey of approaches to automatic

schema matching. the VLDB Journal, 10(4):334–350, 2001.

[78] Carlos R Rivero, Inma Hernández, David Ruiz, and Rafael Corchuelo.

Generating sparql executable mappings to integrate ontologies. In Con-

ceptual Modeling–ER 2011, pages 118–131. Springer, 2011.

[79] Cristina Sarasua, Elena Simperl, and Natalya F Noy. Crowdmap: crowd-

sourcing ontology alignment with microtasks. In The Semantic Web–

ISWC 2012, pages 525–541. Springer, 2012.

[80] Juan F Sequeda, Marcelo Arenas, and Daniel P Miranker. On directly

mapping relational databases to rdf and owl. In Proceedings of the 21st

international conference on World Wide Web, pages 649–658. ACM,

2012.

153

[81] Juan F Sequeda and Daniel P Miranker. Ultrawrap: Sparql execution

on relational data. Web Semantics: Science, Services and Agents on the

World Wide Web, 22:19–39, 2013.

[82] P. Shvaiko and J. Euzenat. Ontology matching: state of the art and fu-

ture challenges. IEEE Transactions on Knowledge and Data Engineering,

2012.

[83] G. Stoilos, G. Stamou, and S. Kollias. A string metric for ontology

alignment. Proc. ISWC, pages 624–637, 2005.

[84] Partha Pratim Talukdar, Zachary G Ives, and Fernando Pereira. Auto-

matically incorporating new sources in keyword search-based data inte-

gration. In Proc. SIGMOD, pages 387–398. ACM, 2010.

[85] Aibo Tian, Mayank Kejriwal, and Daniel Miranker. Schema matching

over relations, attributes, and data values. In Proceedings of the 26th

International Conference on Scientific and Statistical Database Manage-

ment. ACM, 2014.

[86] Aibo Tian and Matthew Lease. Active learning to maximize accuracy

vs. effort in interactive information retrieval. In Proceedings of the 34th

international ACM SIGIR conference on Research and development in

Information Retrieval, pages 145–154. ACM, 2011.

[87] Aibo Tian, Juan Sequeda, and Daniel Miranker. Qodi: Query as con-

text in automatic data integration. In 12th International Semantic Web

154

Conference, pages 624–639. Springer Berlin Heidelberg, 2013.

[88] Aibo Tian, Juan Sequeda, and Daniel P Miranker. Queries, the miss-

ing link in automatic data integration. In International Semantic Web

Conference (Posters & Demos), 2012.

[89] Aibo Tian, Juan F Sequeda, and Daniel P Miranker. On ambiguity and

query-specific ontology mapping. Proc. ISWC Workshop on Ontology

Matching, poster, Boston, US, 2012.

[90] Robert H Warren and Frank Wm Tompa. Multi-column substring match-

ing for database schema translation. In Proceedings of the 32nd inter-

national conference on Very large data bases, pages 331–342. VLDB En-

dowment, 2006.

[91] Chen Jason Zhang, Lei Chen, HV Jagadish, and Chen Caleb Cao. Re-

ducing uncertainty of schema matching via crowdsourcing. Proceedings

of the VLDB Endowment, 6(9):757–768, 2013.

155

Vita

Aibo Tian was born in Tianjin, China in 1986. He received the Bachelor

of Engineering degree from the department of Automation, Tsinghua Univer-

sity in 2009. He then enrolled in the University of Texas at Austin to pursue

the PhD degree in the department of Computer Science working on automatic

data integration systems. He received the Master of Science degree in the

department of Computer Science in 2012.

Permanent address: atian@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

156

