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Renewable energy is key to a sustainable future. However, the inter-

mittency of most renewable sources and lack of sufficient storage in the current

power grid means that reliable integration of significantly more renewables will

be a challenging task. Moreover, increased integration of renewables not only

increases uncertainty, but also reduces the fraction of traditional controllable

generation capacity that is available to cope with supply-demand imbalances

and uncertainties. Less traditional generation also means less rotating mass

that provides very short term, yet very important, kinetic energy storage to

the system and enables mitigation of the frequency drop subsequent to major

contingencies but before controllable generation can increase production.

Demand, on the other side, has been largely regarded as non-controllable

and inelastic in the current setting. However, there is strong evidence that a

vii



considerable portion of the current and future demand, such as electric vehicle

load, is flexible. That is, the instantaneous power delivered to it needs not to

be bound to a specific trajectory.

In this thesis, we focus on harnessing demand flexibility as a key to

enabling more renewable integration and cost reduction. We start with a data

driven analysis of the potential of flexible demands, particularly plug-in electric

vehicle (PEV) load. We first show that, if left unmanaged, these loads can

jeopardize grid reliability by exacerbating the peaks in the load profile and

increasing the negative correlation of demand with wind energy production.

Then, we propose a simple local policy with very limited information and

minimal coordination that besides avoiding undesired effects, has the positive

side-effect of substantially increasing the correlation of flexible demand with

wind energy production. Such local policies could be readily implemented

as modifications to existing “grid friendly” charging modes of plug-in electric

vehicles. We then propose improved localized charging policies that counter

balance intermittency by autonomously responding to frequency deviations

from the nominal frequency and show that PEV load can offer a substantial

amount of such ancillary services.

Next, we consider the case where real-time prices are employed to pro-

vide incentives for demand response. We consider a flexible load under such

a pricing scheme and obtain the optimal policy for responding to stochastic

price signals to minimize the expected cost of energy. We show that this opti-

mal policy follows a multi-threshold form and propose a recursive method to
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obtain these thresholds. We then extend our results to obtain optimal poli-

cies for simultaneous energy consumption and ancillary service provision by

flexible loads as well as optimal policies for operation of storage assets under

similar real-time stochastic prices. We prove that the optimal policy in all

these cases admits a computationally efficient form. Moreover, we show that

while optimal response to prices reduces energy costs, it will result in increased

volatility in the aggregate demand which is undesirable.

We then discuss how aggregation of flexible loads can take us a step

further by transforming the loads to controllable assets that help maintain

grid reliability by counterbalancing the intermittency due to renewables. We

explore the value of load flexibility in the context of a restructured electric-

ity market. To this end, we introduce a model that economically incentivizes

the load to reveal its flexibility and provides cost-comfort trade-offs to the

consumers. We establish the performance of our proposed model through

evaluation of the price reductions that can be provided to the users compared

to uncontrolled and uncoordinated consumption. We show that a key advan-

tage of aggregation and coordination is provision of “regulation” to the system

by load, which can account for a considerable price reduction. The proposed

scheme is also capable of preventing distribution network overloads. Finally,

we extend our flexible load coordination problem to a multi-settlement market

setup and propose a stochastic programming approach in obtaining day-ahead

market energy purchases and ancillary service sales.

Our work demonstrates the potential of flexible loads in harnessing re-

ix



newables by affecting the load patterns and providing mechanisms to mitigate

the inherent intermittency of renewables in an economically efficient manner.
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Chapter 1

Introduction

1.1 Paradigm Shift in Power Systems

Renewable energy plays a key role for a sustainable future. However,

renewable sources, such as wind and solar PV, are usually intermittent and

much less controllable than the traditional forms of electricity generation. This

intermittency poses serious challenges to the electricity network, where contin-

uously maintaining supply-demand balance is essential for reliable operation.

Intermittency increases variability and uncertainty of the electricity genera-

tion, which complicates resource planning and scheduling and consequently

results in an increased demand for reserves. Moreover, since most of the re-

newable generators are coupled to the grid through power electronic devices,

they usually provide much less inertia to the grid than synchronous gener-

ators with a rotating mass. Understanding the fact that the stored kinetic

energy has a critical role in stabilizing and smoothing short-term supply de-

mand imbalances, replacing conventional generators with renewables, typically

results in a “lighter” system which is potentially less stable. Finally, being less

controllable means that renewable generators have much less potential in pro-

viding reserves and hence widespread adoption of renewables and particularly

wind energy can result in reserve adequacy issues [28].
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1.2 Demand Flexibility and Its Potential

In contrast to generation, electric demand has been typically treated

as inelastic and uncontrollable. So much so that uncontrollable, and usually

renewable, generation is often incorporated with demand as “net load.” How-

ever, a substantial amount of electric demand is flexible in the sense that it is

not bound to a specific power trajectory. Electric loads such as HVAC systems,

heating and cooling, and PEV charging are major examples which, based on a

US Energy Information Administration study [108], comprise more than one

third of US residential electric demand. Similar results exist for other sec-

tors, particularly office buildings and data centers. As an abstraction, flexible

demand can be modeled in most cases as a definite amount of energy that

should be delivered to the load subject to a deadline and potentially some rate

constraints.

In order to fully utilize demand flexibility, proper control and com-

munication infrastructure is indispensable. Smart grids are the right step in

providing the infrastructure for communication with and control of demand-

side resources. Demand flexibility, coupled with proper communication and

control infrastructure, as smart grids become mainstream, can enable more

control over the demand and basically transform the demand to another (par-

tially) controllable element in the supply-demand equation.

As a result of these two trends, we are departing from a paradigm

in which controllable generation matches uncontrollable demand to one in

which controllable assets on both supply and demand-sides are utilized to
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maintain the delicate balance of the electrical grid. In other words, as the

amount of non-dispatchable generation increases, we need more control on

the demand-side for reliable operation of the system. Since the contribution

of assets to maintaining safe operating conditions is a valuable service which

should be paid for, this shift has market implications, particularly regarding

how we distribute the cost of reserves necessitated by uncontrollable/uncertain

generation. Moreover, distributed and variable nature of demand-side assets

pose a challenge in their wide adoption.

The need to enable demand-side participation has been recognized at

different levels of policy making and market operation. The Federal Energy

Regulatory Commission (FERC) has issued recent orders regarding demand

response participation in organized wholesale markets [41] and frequency regu-

lation compensation [42]. Different Independent System Operators (ISO) have

also taken steps towards facilitating demand-side participation in the market.

For example, the Electric Reliability Council of Texas (ERCOT) which serves

as the Texas independent system operator, has programs that enable loads to

respond to economic and reliability signals through Voluntary Load Response

and Emergency Response Service as well as participating in the Ancillary Ser-

vices (AS) market [98]. Moreover, ERCOT ran a pilot project for evaluating

the effects of Fast Responding Regulation Service (FRRS) potentially provided

by non-conventional assets [100] from 2012 to 2013 and decided to keep the

pilot as part of the standard market operation. The Midcontinent ISO (MISO)

[69] and California ISO (CAISO) [20] have similar programs to enable demand

3



participation. Such programs are key for incentivizing demand-side resources

and particularly flexible resources to participate in the market and justify the

overheads associated with their participation.

1.3 Overview of the Dissertation

In this dissertation, we focus on investigating the potential of flexible

demands in reducing costs, facilitating integration of renewables, and provi-

sion of ancillary services. We start with studying plug-in electric vehicle (PEV)

demand as one of the prime examples of flexible loads. PEV demand is par-

ticularly interesting not only because transportation electrification is key to a

sustainable future, but also because of the flexibility of the resulting electric

load. We first propose a simple yet effective measure for demand flexibility

and show that, based on empirical vehicle transportation data, PEV demand

is substantially flexible. Then, we investigate the effect of different charging

policies on the grid and conclude that under current charging practices, there

is a high correlation between the PEV demand and the load in the ERCOT

system in an average sense. We then propose a simple charging policy, called

Average Rate (AR) policy, that uses only local information, namely arrival

and departure time of the vehicle as well as its energy requirements, and show

that under this policy PEV demand has much less correlation with usual elec-

tric demand and better correlation with renewable generation in the ERCOT

system. To make the proposed localized policy more robust to uncertainties

in driver behavior, we then propose a modified version or AR policy, called

4



Average Rate with Minimum Range (ARMR), that achieves a minimum de-

sired range in minimal time while maintaining the general properties of AR

policy, so that unexpected changes in transportation plans would minimally

affect drivers’ comfort.

Next, we study alternative behavior models for PEV users and study

its impact on load patterns. We conclude this part of the dissertation by

quantifying the potential of PEV load in providing autonomous frequency

response and show that the frequency responsive capacity provided by PEVs

loads under AR policy, even at modest electrification levels, is comparable to

the total amount of regulation purchased in ERCOT.

Localized policies can be very effective in an average sense, however, in

presence of more information and incentives, more efficient coordination should

be possible. To this end, we study the response of flexible loads under real-

time stochastic prices and show that the optimal policy follows an extended

threshold policy. We further propose a recursive method for obtaining the op-

timal policy and show that the optimal policy has an efficient parameterization

and the parameters can be computed efficiently. We then extend the model

and the resulting optimal policy to the case where the flexible loads sell their

flexibility as Ancillary Services in conjunction with their energy purchases.

We prove that a similar optimal policy can be obtained and its parameters

can be obtained in a computationally efficient manner. Next, we show that

our model for flexible loads can be extended to storage assets and prove that

under some conditions, the optimal policy for operating a storage asset with

5



ramp rate constraints can be parametrized and computed efficiently.

In order to measure the effectiveness of our proposed optimal policy

for energy consumption and AS provision, we test it through simulation and

study the collective impact of widespread adoption of our proposed optimal

policy by flexible loads. We conclude that while prices provide an effective

mechanism to shift consumption to off-peak hours, the collective behavior of

price responsive flexible demand would adversely impact the grid and does not

incentivize efficient response from the loads. Moreover, each load might not be

large enough to participate directly in the AS market. These issues motivates

us to consider the benefits of closer coordination.

We therefore move on to a more coordinated setup where an Energy

Service Company (ESCo) or Load Aggregator (LA) contracts flexible loads to

deliver their requested energy demand by their desired deadline. The ESCo

then participates in the wholesale electricity market as a buyer for energy and

a seller for ancillary services. Moreover, the ESCo is assumed to only use the

spare capacity of the distribution network. While most methods proposed in

such a setup assume constant “subscription plan” based contracts between

the ESCo and the loads, we propose a pricing mechanism, called “Transac-

tion Pricing,” which rewards each load’s flexibility in an economically efficient

manner and hence provides the right incentives for the loads to expose their

flexibility. Our simulation results show that under typical loads at the distribu-

tion network level, besides reduced costs of energy delivery and more efficient

use of the distribution network infrastructure, the proposed mechanism offers

6



better prices for the majority of flexible loads, even when they have access

to wholesale prices for energy and consume optimally. Furthermore, our re-

sults show that the ESCo provides substantial amounts of AS to the market

and payments due to AS provision are responsible for the lion’s share of the

advantage in the energy price offered to the flexible loads.

Many restructured electricity markets in US are organized in a multi-

settlement fashion, consisting of at least a day-ahead market (DAM) and a

(close to) real-time market (RTM). Moreover, in some jurisdictions like ER-

COT, AS can only be offered in DAM. Therefore, to consider a more efficient

and realistic setup for coordinating energy delivery to flexible loads, we then

consider the decision problem faced by the ESCo for participating in the multi-

settlement setup. We particularly focus on DAM participation where decision

about AS provision should be made without perfect knowledge of flexible loads’

availability and demand. We formulate this problem as a two stage stochastic

program and propose a data driven scenario generation technique. Finally, we

evaluate the performance of the proposed DAM participation method through

simulations and show that total costs can be reduced into half compared to un-

controlled charging of PEVs. We also observe AS sales contributes to roughly

a quarter of the cost reduction.

The rest of this dissertation is organized as follows: In Chapter 2 we

present our analysis of PEV demand flexibility and the localized policies which

utilize it. Chapter 3 is dedicated presentation of our results on optimal re-

sponse of flexible loads to real-time prices. In Chapter 4 we extend the results

7



of Chapter 3 to include AS provision by flexible loads. In Chapter 5, we ex-

tend our model for flexible loads under stochastic prices to optimal storage

operation. In Chapter 6 we move beyond prices for energy consumed period

by period to prices for total energy delivery. Considering a more coordinated

model, we present our novel method for pricing energy delivery transactions

for flexible loads to provide ancillary services in an economically efficient man-

ner. Chapter 7 is dedicated to optimal decision making for participation in a

multi-settlement market and in Chapter 8 we conclude this dissertation. Proof

of key theorems are moved to the appendices to improve readability.
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Chapter 2

Localized Charging Policies for Harnessing

PEV Demand Flexibility

2.1 Introduction

Transportation is one of the major consumer of energy in US and

around the world. According to the latest Department of Energy (DOE) Trans-

portation Data Book [34], 27.8% of total US energy consumption is attributed

to transportation. Of this amount, 58.9% is consumed by cars and light duty

trucks to make up 16.4% of total energy consumed by Americans. To put this

in perspective, according to DOE energy usage estimates [64], which is also

depicted in Figure 2.1, 39.2% of energy consumed in US is spent for electricity

generation.

With this outlook, reduction in Green House Gas (GHG) emissions

alone may provide an argument for transportation electrification. Yet, the

synergy between flexible demands from electric vehicles and intermittent gen-

eration, mostly due to renewables, provides a more profound argument towards

this end. Of course, there are challenges ahead, but given the substantial size of

the potential PEV energy demand, it might be one of the major facilitators of

renewable integration. Moreover, since the transportation electrification land-
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scape is not completely formed yet, there is much more room for pushing for

more efficient designs and less worry about legacy systems and compatibility

as standards are being developed.

Transformation of energy demand from gasoline to electric demand

on the grid can substantially impact the grid as well. Most basically, this

new energy demand should be transmitted through the grid, which would

potentially need expansion in its capacity and lead to other inefficiencies [88].

However, if managed properly, it can be used to increase the efficiency of

infrastructure usage [26, 30, 31, 46, 47, 49, 62]. Therefore, investigating the

effects of different charging policies and designing efficient ones with respect

to information available at each charging station is an important problem.

In this section, we focus on understanding the potential of PEVs, par-

ticularly their energy demand pattern, its flexibility and how it translates into

electric demand. Taking a data driven approach, we aim to answer the follow-

ing key questions:

� How much is the potential?

� How do the current EV charging approaches perform in aligning their

load with the renewable, particularly wind, generation?

� Are there simple, yet effective, policies for utilizing PEV demand flexi-

bility based on local information available at the PEV load for matching

renewables?

11



To answer these questions, we first utilize empirical travel data deduced

from vehicle locations and map them into the PEV availability and energy de-

mand. We refer to times when the vehicle is not moving as “dwell times.” We

analyze the electric demand and dwell times of PEVs to measure empirical

demand flexibility of PEV load. Then, we map the demand data to electric

demand as seen by the grid when PEVs employ various conventional charging

policies available on current PEVs like the Chevy Volt and Nissan Leaf. We

observe that due to the natural availability patterns of vehicle usage as well

as wind generation (in Texas), uncontrolled PEV demand shows negative cor-

relation with wind in average sense. Finally, we propose a novel and simple

charging policy which improves this negative correlation. It is worth noting

that this policy does not need grid information and can be easily integrated

into current PEVs, perhaps though a software update.

The rest of this chapter is organized as follows: In Section 2.2 we

describe our data set, define our demand flexibility measure and present the

results of our demand flexibility analysis. In Section 2.3, we translate the

PEV demand data to electric load using the conventional charging policies

and analyze its correlation with wind and net load in Texas. In Section 2.4,

we introduce our proposed localized policy and compare its performance with

the conventional charging policies. In Section 2.5, we introduce anticipative

charging behavior and study its impact on PEV load. In Section 2.6, we

propose methods for enhancing localized policies introduced earlier to respond

to frequency deviations and study the potential of such methods in providing

12
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ancillary services to the grid. Finally in Section 2.7, we conclude the chapter.

2.2 Demand Flexibility of PEV Load

In this section we analyze PEV demand data and particularly its flex-

ibility in order to assess the potential of PEV demand in affecting electric

demand patterns and provision of controllable loads.

2.2.1 Dataset

As PEVs are still not very widespread, finding reliable transportation

data sets for analyzing their behavior is a challenging task. To deal with this

challenge, similar to other studies [61], we use the publicly available dataset

from Traffic Choices Study [75] by the Puget Sound Regional Council which is

based on a sample of 449 conventional vehicles. In this study, each vehicle is

equipped with a set of sensors including a Global Positioning System (GPS)

based location recorder. The public version of the dataset contains compiled

results of the raw location data, filtered and combined mainly for privacy pur-

poses, mainly consisting of vehicle speed trajectories over time and trips made

13



by each vehicle over the course of the survey. The major advantage of this

dataset is that the data is collected for more than a year per vehicle and conse-

quently a much better picture of vehicle use can be obtained from it compared

to other datasets, e.g. National Highway Travel Survey (NHTS) data set [106],

which usually contain a data for periods as short as 24 hours. The transporta-

tion dataset in our study is collected in Seattle, Washington area and roughly

contains 738,000 usable trips. Table 2.1 summarizes the general statistics of

the dataset. While there are other datasets with transportation info based

on GPS location of the vehicle, we have particularly chosen this dataset for

two main reasons: a) The length of the study as mentioned previously. b)

In this dataset, the trips to/from drivers’ home and work place are flagged

accordingly. No other transportation dataset has these two properties to the

best of our knowledge. As demonstrated in the proceeding text, knowledge

of stops that happen at home location provides us with very valuable insight

about user behavior.

We have assumed no change in driving patterns between the PEVs and

conventional vehicles mainly because of lack of data that could help us in

the adjustment process. Nonetheless, one would argue that the drivers would

prefer no change in their driving patterns too since the purpose of driving is

usually independent of the vehicle’s drivetrain technology.

As will be discussed later, we have scaled the results obtained from

this dataset to match the scale of light duty transportation in Texas, so that

the results can be interpreted in the contexts of the ERCOT system. While
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Table 2.1: Dataset statistics. Averages are per vehicle.

Number of Vehicles 449

Average Data Collection Time Length 360 days

Average Number of Trips 1645 trips

Average Miles Traveled 9711 miles

Data Collection Date Range 11/7/2004 - 4/5/2006

Average Speed 23.5 mph

Percentage of Stops at Home 29.5%

patterns and statistics of driving in Texas might differ from that of Seattle

area, we argue that typical driving patterns in large urban areas in Texas

and Seattle are similar. Our focus is on major urban areas because they are

prime places for PEV adoption. This is because the trips are typically shorter

in urban areas, PEVs are much better suited for driving in traffic and the

impact of transportation electrification on air quality is more pronounced in

dense urban areas. We also had access to and experimented with GPS based

transportation dataset for different cities in Texas, including Austin, Houston

and San Antonio, although the vehicles where studied for a much shorter

period (about a week) and other transportation data, e.g. home location,

were not included. Our results, particularly in Austin, did not show any

major difference in the overall patterns in cases where comparison was possible.

Therefore, we feel confidant to use the Traffic Choices Study dataset as our

reference dataset here and interpret the results in the context of the ERCOT

system.
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In order to deduce the PEV electric demand from the conventional ve-

hicle data, we use the Nissan Leaf specifications. We deduce electrical demand

of the vehicle by using its average kWh/mile from its EPA fuel economy spec-

ification [38], according to which a Leaf consumes 0.33 kWh/mile on average.1

Using this conversion rate, we map the trip distance to kWh of accumulated

energy demand at the end of the trip (c.f. Figure 2.2). Moreover, we restrict

our attention to the trips and vehicles where the trips are viable using the

Nissan Leaf’s battery capacity. We should note that only less than 1% of the

total trips fall under the non-viable category. For charging, we have assumed

availability of an AC Level 2 Electric Vehicle Service Equipment (EVSE) with

3.3kW capacity.

In order to establish a comparison to typical load patterns in the grid,

we have used the load and wind generation data provided by Electric Reli-

ability Council of Texas (ERCOT) [97] for years 2009 and 2010. Moreover,

we have assumed PEV penetration rate of 30% and 15 million vehicles total,

which is roughly the number of registered cars and light duty trucks in Texas

in 2012.

2.2.2 Measure of Demand Flexibility

Before presenting our results on PEV demand flexibility, we first need

to precisely define demand flexibility. In its broad sense, flexible demand is

1We are already working on more accurate estimates of energy demand using vehicle
road load equations and will report them in our future work.
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Figure 2.3: Delivered amount of energy to a flexible demand.

electric demand where the energy delivery rate, i.e. power, is not bound to

a specific trajectory. In many cases such a load can be modeled as one with

certain amount of energy demand, d, an availability window of [ta, td) and

usually is subject to some rate constraints as depicted in Figure 2.3. Given

a maximum power constraint, the upper and lower thin solid curves show

immediate and late energy delivery while the middle solid curve shows one

other potential energy delivery trajectory over time. This model particularly

matches relatively simple loads like PEV charging as it accumulates energy

demand while on a trip and satisfies it while dwelling if charging is available

and the user desires to do so. We define demand flexibility as:

Flexibility = 1− Accumulated Energy Demand

EVSE Capacity×Dwell Time

f(d, x, ta, td) = 1− d

x(td − ta)
, (2.1)
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where x represents the EVSE capacity. Basically, (2.1) defines demand flexibil-

ity as what portion of charging capacity can be left unused during dwell time.

Using this definition, flexibility can vary between −∞ and 1. It is negative if

the dwell time is inadequate for completely satisfying the demand, zero if the

time is just enough and approaches one as demand becomes more flexible.

2.2.3 Flexibility of PEV Demand

In order to evaluate the charging demand, we also need to identify likely

dwell times. In particular, not all the dwell times are suitable for charging.

Moreover, a charging station might not be available at the dwell location. Fi-

nally, the driver might not connect the vehicle for other non-technical reasons.

In this section, to simplify the analysis, we assume the deciding factor for a

dwell time suitability is mainly its length and partially its location.

To this end, we assume the driver does not charge at those dwell times

shorter than a threshold, say h, and basically continues on accumulating de-

mand until the battery is completely drained or a stop with a dwell time at

least h is encountered. For all dwell times at least h, we assume the availabil-

ity of EVSE as well as the willingness of the driver to charge. The intuition

behind this method of categorizing dwell times is the following: First, in short

dwell times, there is much less potential in actually charging the PEV as the

time is limited. Second, short dwell times can be typically associated with

locations where people typically do not stay long and hence a charging station

might not be available. Conversely, it is typical to observe the vehicles having

18
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Figure 2.4: Flexibility of EV load at different minimum dwell times.

their longest dwells at the driver’s home or work place. Finally, the drivers are

less inclined to charge for a short amount of time, simply because the hassle

is not worth the amount of energy replenished.

Figure 2.4 shows the average flexibility of PEV load, averaged over

the entire potential charging events versus the minimum dwell time i.e. the

threshold. We have considered two cases: First, when charging is available

at every long enough dwell time. Second, if charging is only available at a

long enough dwell time that happens at home. When charging everywhere,

although demand flexibility is generally high for the range of minimum dwell

times considered, the interesting phenomenon is that it is maximized at around

h = 5 to h = 7 hours. The intuition behind the reduced flexibility at smaller

thresholds is the fact that such dwells are basically too short for replenish-
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ing the energy demand accumulated in the trip(s) leading to them. As the

minimum length of long enough dwell times is increased, however, the dwell

time length catches up with energy accumulated, even though there are fewer

such dwell times. Finally, if charging happens only at very long (greater than 9

hours) dwell times, the demand flexibility starts to diminish due to the reduced

frequency of such dwell times encountered, which is typically one per 24 hours

at the driver’s home. When charging is available only at home, although the

flexibility is reduced as the charging location is much more restricted, the load

still shows a substantial amount of flexibility. Also, average flexibility remains

almost constant throughout different minimum dwell times since the majority

of dwell times at home are typically at least couple of hours long. We will

discuss the effects of restricting charging to drivers’ home in the proceeding

sections as well.

2.3 Impact Analysis of Conventional PEV Charging Poli-
cies

In order to analyze the effective demand of PEV charging, we also need

to consider the charging policy, which translates the energy demand to power

demand on the grid. To this end, in this section, we consider two charging

policies common in most PEVs: immediate charging and delayed charging.

20



2.3.1 PEV Demand with Immediate Charging

In immediate charging, the vehicle starts charging at the nominal EVSE

rating as soon as it is connected and continues charging until either the battery

is full or the dwell time is finished. That is, the charging rate in immediate

charging is given by:2

xt =

x t ≤ min

{
d

x
, td
}
,

0 otherwise.

(2.2)

Immediate charging is the most natural charging policy when the only

available information is the amount of energy required. In other words, in

the absence of information like departure time or if there are no incentives

such as time-of-use tariffs to vary the timing of charging, and in the absence

of demand management/load aggregation mechanisms, there is no incentive

except faster availability of the vehicle, which leads to immediate charging at

the maximum power.

Figure 2.5 shows the results of immediate mode charging. In this figure

and several subsequent figures, demand is shown from the PEVs versus time

of day, but averaged across days in the traffic survey data. The PEV demand

is scaled to represent 30% penetration of PEVs in the Texas light vehicle fleet

of roughly 15 million vehicles [43]. The trip data for the conventional vehicles

2Here we are assuming a linear model for the battery, that is, we assume that the rate
of charge can remain constant over the whole State of Charge (SoC) range. For typical
batteries; however, this is true on about 80% of SoC range and as the battery gets closer to
its high SoC region, charging is typically done at a lower rate. We have left investigation of
more detailed battery models for future work.
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is used to estimate the PEV demand. A minimum dwell time of three hours

is assumed for charging. The scale for the PEV demand is on the left of the

graph and the PEV demand for 30% penetration is shown as the dashed curve.

The solid curves in Figure 2.5 show the aggregate of ERCOT net load

plus PEV load versus time of day, averaged across days in 2010, with the scale

on the right of the graph. The lowest solid curve shows ERCOT net load,

while the higher curves show ERCOT net load plus PEV load for various PEV

penetrations of 10%, 30%, and 70%.

Figure 2.5 shows that the aggregate load can be very correlated with

current demand, exacerbating the diurnal patterns of the total ERCOT net

load and worsening the capacity factor of the electricity system. Moreover,

if there is vehicle clustering in particular areas then high Peak-to-Average

Ratios (PAR) can affect the distribution network, even if the PEV load might

be relatively small compared to total aggregate load. Clustering is indeed

likely. For example, the recently developed Mueller residential area in Austin,

Texas, has a very high penetration of electric vehicles.

2.3.2 PEV Demand with Delayed Charging

Some PEVs support delayed charging where the PEV owner is required

to enter his/her departure time and the PEV automatically starts at the latest

time possible to finish charging before the departure time. The PEV is charged

at the full charging rate and the charging profile is similar to immediate mode,

except that is shifted to the end of the dwell time. Delayed charging rate is
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Figure 2.5: PEV load under immediate charging and its effect on ERCOT net
load at different penetration levels.

given by:

xt =

x t ≥ max

{
td − d

x
, ta
}
,

0 otherwise.

(2.3)

From a PEV owner perspective, providing the departure time allows the

car to use grid power to heat or cool the car before departure, which can reduce

the load on the battery and therefore increase the distance that can be traveled

in comfort. This is attractive in hot and cold climates and consequently it is not

unreasonable to expect the owner to provide this information. Alternatively,

the car could keep track of driver habits and estimate departure time on a

daily basis.

Figure 2.6 shows the average electric demand when delayed charging
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is employed by the users. Delayed charging is, in part, designed to avoid

synchronization of start times of charging and the consequent high total loads.

Therefore, it is somewhat surprising that delayed charging can actually be

worse than immediate charging in terms of correlation with peak demand.

In particular, the peaks of PEV load that occurred at 19:00 and 9:00 for

immediate mode charging as shown in Figure 2.5 are shifted to 7:00 and 17:00,

respectively, in delayed mode charging, as shown in Figure 2.6. The PEV load

peak at 17:00 coincides with ERCOT typical summer peak demand that is

due to air conditioning, increasing the aggregate peak. Again, high PARs can

also affect distribution network, even if the aggregate PEV load is relatively

small compared to total load. Moreover the morning charging contributes to

greater net load ramp rates from 3:00 to 7:00, which can be problematic for

thermal generation resources.

2.4 Improved Localized Policies for EV Charging

In this section, we develop localized policies that are aimed at improv-

ing the shape of the aggregate demand compared to immediate and delayed

charging. We continue to assume, however, that the PEV/EVSE has no in-

formation/incentives about time varying electricity prices nor network status.

We are also concerned with minimizing the burden on the local distribution

network and furthermore observe that lower charging rates may be beneficial

to batteries and infrastructure. However, we do not want to sacrifice any con-

venience for the PEV driver. In the next section, we present a charging policy
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Figure 2.6: PEV load under delayed charging and its effect on ERCOT net
load at different penetration levels.

that aids in these goals.

2.4.1 The Average Rate (AR) Charging Policy

Consider the following charging policy: As in delayed charging, upon

arrival, the driver is asked for departure time. Charging is carried out at

the minimum of: the EVSE capacity, and the ratio of the energy demand

divided by dwell time. That is, the rate is chosen such that the dwell time

is just enough to finish the charging, subject to EVSE capacity. We call this

charging policy the Average Rate (AR) charging policy, and the charging rate

for this policy is given by:

xt = min

{
d

td − ta
, x̄

}
. (2.4)
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The AR policy requires no information nor incentives about prices or

network status. It achieves a full charge by the departure time if possible, and

so does not sacrifice convenience compared to immediate or delayed charging.

A variation on all of the localized policies is to restrict charging to

periods when the vehicle is at home. In particular, the AR at home policy

involves charging only at home, but at the average rate necessary to achieve

a full charge between arrival at home and departure from home.

2.4.2 PEV Load vs. Wind Generation

Figure 2.7 compares the average PEV load using immediate, delayed,

and average rate policies to the average ERCOT net load and to average

ERCOT wind generation. Figure 2.8 shows the corresponding policies when

charging is only available at home. Strikingly, the AR policy results in much

lower peak rates of charging. As shown in Figure 2.7, the AR charging load

is approximately flat throughout the day. As shown in Figure 2.8, the AR at

home charging load peaks at night, is correlated with average wind production

and is negatively correlated with average ERCOT net load.

2.4.3 Average Rate Policy - Analysis

The average rate policy has several advantages over the other localized

policies. In particular, it results in:

� a much smoother local and aggregate load profile;
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Figure 2.7: Comparison of Average Rate charging with immediate and de-
layed charging in terms of average daily profile and its alignment with average
ERCOT net load and wind generation.

� much better correlation with wind generation;

� lower average state of charge for the battery, which may result in a longer

battery life [89].

Like the other localized policies, it does not require communication and control

between the PEV and a coordinator, there is essentially no sacrifice of user

comfort, and can be readily implemented in current PEVs, possibly through

a software update.

As discussed in the Section 2.2, electric vehicles have significantly more

flexibility than is being exploited by the AR policy and the question arises as to

whether this flexibility can be further exploited. Presumably, policies relying
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on non-local information such as market prices would require communication

and control to the PEV, but could then be used to track actual net load

or system needs, rather than the average. Even policies based on locally

available information such as frequency deviations from nominal, would require

either incentives such as prices, or standards for frequency response to provide

incentives for their adoption.

With communication and control, either explicitly to the vehicle or

implicitly through pricing, demand response and coordination with the grid

could enable the provision of, for example, ancillary services [25, 55, 58]. How-

ever, given that the localized policies like Average Rate charging can achieve

significant benefits in terms of average load shaping, the additional cost of im-

plementing communication and control for non-localized policies would need

to be justified by significant benefits in terms of value of ancillary services or

of matching PEV load to actual wind or net load profiles. The average rate

policy sets a “high bar” for cost effectiveness of such non-localized policies.

2.4.4 Average Rate Charging with Minimum Range (ARMR)

While AR charging does not compromise user comfort in expected

sense, it is not robust to unexpected changes in future plans. In other words,

pure AR charging delivers a full charge by the expected departure time and if

some emergency happens, the vehicle might not be ready for departure. One

of the common examples illustrating such a situation is when a nearly empty

PEV battery is needed to be ready by morning for the work commute; how-

28



00:00 06:00 12:00 18:00 00:00

0.5

1

1.5

2

2.5

3

3.5

4
A

v
e

ra
g

e
 T

o
ta

l 
P

E
V

 D
e

m
a

n
d

 [
G

W
]

Time of Day

 

 

2

2.5

3

3.5

4

E
R

C
O

T
 W

in
d

 [
G

W
]/

N
e

t 
L

o
a

d
 [

1
0

G
W

]

Average Rate Policy

Immediate Charging

Delayed Charging

ERCOT Wind

ERCOT Net Load

Figure 2.8: Comparison of Average Rate, immediate and delayed charging
policies when charging is only available at home.

ever, a need for a trip to hospital might arise in the middle of the night. Yet,

the simple solution to this issue, which would be picking a much earlier time

for departure would effectively neutralize the benefits of AR charging.

To address this issue, we propose mixed AR policies, or AR policy with

Minimum Range (ARMR). Under this policy, the driver is expected to provide

a his/her desired minimum range/SoC level. Using this information, the EVSE

would charge in immediate mode until that minimum range/SoC is satisfied

and continues the charging process in AR mode. Let us denote the desired

minimum SoC level, which can be translated to/from minimum desired range,

by s◦ and defining d◦ as:

d◦ = (d− (s− s◦))+, (2.5)

29



s

s

s◦

SoC

d

d◦

s−s◦

charge at maximum rate, x

charge at average rate, min

{
d− d◦

td − ta
, x̄

}

Figure 2.9: Average Rate Charging with Minimum Range when d◦ ≥ 0, i.e.
d ≥ s−s◦. s and s denote maximum and minimum allowable SoC respectively.

where s is the maximum SoC of the PEV battery and (•)+ , max{0, •}. Then,

the rate of charging for AR charging with minimum range is given by:

xt =


x t ≤ min

{
d◦

x
, td
}
,

min

{
d− d◦

td − ta
, x̄

}
otherwise.

. (2.6)

Figure 2.9, schematically depicts s◦ and charging rate as prescribed by ARMR

in each region of SoC. Note that if SoC upon arrival is above s◦, then the

immediate mode would never be activated. This policy can be seen as a

combination of pure AR and pure immediate charging. The ratio of mixing,

however, changes based on demand since the s◦, which is independent of d, is

constant. Just like AR, ARMR only relies on the local information and hence

inherits all implementation advantages of AR charging.

Using the same methodology as before, we investigated the performance

of ARMR policy. Figure 2.10 compares the diurnal pattern of the load ex-

pected from ARMR with immediate and AR charging for s◦ = s/2, i.e. 50%

30



00:00 06:00 12:00 18:00 00:00

0.5

1

1.5

2

2.5

A
v
e

ra
g

e
 T

o
ta

l 
P

E
V

 D
e

m
a

n
d

 [
G

W
]

Time of Day

 

 

2

2.5

3

3.5

4

E
R

C
O

T
 W

in
d

 [
G

W
]/

N
e

t 
L

o
a

d
 [

1
0

G
W

]

Immediate

Average Rate

ARMR 50%

ERCOT Wind

ERCOT Net Load

Figure 2.10: Comparison of Average Rate with Minimum Range (ARMR),
Average Rate and immediate charging policies.

minimum SoC. Although this threshold seems pretty demanding, about 35-50

miles for a Nissan Leaf, the results show that ARMR maintains most of the

benefits of AR charging. This strong performance stems from the fact that

typically, PEV SoC upon arrival is above the minimum SoC. Moreover, even

when there is need for immediate charging, the immediate charging period is

much shorter and hence there is much less chance of coinciding the maximum

rate consumption from various PEVs.

Similar to previous cases, we also studied home only charging under

ARMR and the results are presented in Figure 2.11. Again, the results are

very positive and close to pure AR policy. We find it very interesting that

even for a minimum range of 50%, most of the benefits of AR charging are
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Figure 2.11: Comparison of Average Rate with Minimum Range (ARMR),
Average Rate and immediate charging policies when charging is only available
at home.

still valid while user comfort is robustly maintained.

2.5 Anticipative Charging and Its Impacts

2.5.1 Anticipative PEV Charging Model

Most previous work and our earlier analysis have studied electrical de-

mand from PEVs as a group of independent charging sessions that randomly

occur over time, with potentially time varying probability of occurrence.

In contrast, we argue that an anticipative model needs to be adopted

for modeling and optimization of PEV charging load, where user demand and

hence charging decisions are made by the driver in anticipation of his/her
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future transportation plans. This anticipative behavior particularly has two

aspects: First, how does the length of future trips affect the likelihood of

charging. That is, the impact of the range needed to complete future trip(s)

given the current State of Charge (SoC) and consequently available range of

the vehicle. Second, how does the location of future destination(s) affect the

charging decision at the current location. That is, whether or not charging is

available, economic or convenient at that destination.

Let us illustrate the anticipative behavior with an example. Consider

a PEV owner that leaves home in the morning, goes to work and finally vis-

its a store sometime in the afternoon on his way back home. Assume that

charging is available at all of these places. In the non-anticipative model, the

charging policies would consider three potential charging sessions at each of

these locations with energy demand to potentially fill the battery. Under the

anticipative model, however, the charging sessions and even user availability

for charging at each of these locations, are considered in a correlated fashion.

For example, the user may not even plug-in to the charging station at the

store, just because the available range of the PEV is enough to reach home,

where charging is potentially more comfortable and/or economic. In contrast,

if charging is complimentary at the store or work, then the user might be more

inclined to charge at the store/work.

The impact of the anticipative model on the performance of charging

algorithms and its resulting impact on the grid can be significant. Let us con-

sider a charging cost minimization algorithm similar to what is introduced by
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Mohsenian-rad et al. [72] to demonstrate this impact. In this charging algo-

rithm the price of electricity is assumed to be time dependent but known. The

goal of the algorithm is to find the charging power trajectory that minimizes

the total energy cost of charging. To achieve this, the algorithm needs to de-

cide how much to consume at each time slot to minimize the total charging

cost subject to the known prices for each time slot, energy demand of the PEV,

charging capacity of the EVSE and its availability window. To formalize, the

algorithm tries to solve the following optimization problem:

min
xt

∑
ta≤t<td

ctxt + η(d−
∑

ta≤t<td
xt) (2.7)

st. 0 ≤ xt ≤ xt, ∀t ∈ [tai , tdi) (2.8)∑
ta≤t<td

xt ≤ d, (2.9)

where η is the unit cost of unsatisfied demand, ta and td are the arrival and

(desired) departure times of the PEV, ct is the price of electricity over time,

d is the desired demand and finally xt is the EVSE capacity at time t. The

optimal solution to this problem, x∗, is the optimal trajectory which minimizes

the total cost. In contrast, if an anticipative model is considered, the objective

would still be minimizing the total cost of energy. However, the minimization

would take place over the potential future charging sessions so that all the

trips can be made while considering price variations across time and location

as well as EVSE capacity variations over different locations. This problem can
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be similarly formulated as a linear program:

min
xt

∑
t∈T

ctxt + η(s− stmax) (2.10)

st. 0 ≤ xt ≤ xt, ∀t ∈ T (2.11)

xt = 0, ∀t /∈ Ta (2.12)

st = st−1 + xt − dt, ∀t ∈ T (2.13)

s ≤ st ≤ s, ∀t ∈ T (2.14)∑
t′>t

dt′ + s ≤ st, ∀t ∈ T (2.15)

where T is the span of time over which the optimization takes place (e.g.

the next 24 hours), Ta is the set of times at which the PEV is available for

charging, ct is the cost of electricity at time t and location PEV at time t

and, st is the State of Charge (SoC), with s and s as its lower and upper

bounds respectively. Also, dt is the total energy demand accumulated at time

t (due to travel – over which the PEV is unavailable for charging). Finally

tmax = max{t|t ∈ T}. As mentioned, besides the standard constraints in

(2.11)-(2.14), we have constraint (2.15) that enforces the ability of the vehicle

to finish all the trips without running out of energy. Note that since constraint

(2.15) guarantees feasibility of future trips, if possible, we might want to set η

to zero.

While these two optimization problems seem very different at first

glance, we argue that the differences are minimal. In fact, the changes in

the constraints and model are only there to jointly consider multiple charging
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sessions, which are the result of the anticipative behavior. For example, if

we have multiple potential charging sessions in the horizon, indexed by i, we

would essentially have, T a =
⋃
i[t
ai , tdi) and dtai = di. Since the anticipative

approach effectively jointly considers multiple instances of the original model,

it always yields a better solution. In cases where the anticipative information

is not available, the problem will be reduced to the non-anticipative model.

However, the future behavior information is typically available, over a reason-

able time horizon, due to the routines in the driver’s life. This is in fact the

basis of many decisions people take. For example, let us consider a typical

decision making process for filling up a gas tank. Most people typically fill

their tanks in an anticipative fashion, that is, they refill when the level of gas is

so low that they might not make their anticipated trips in near future and/or

they are at a position when the time/energy cost is relatively low. In other

words, drivers do not go to gas station as soon as their level falls below full.

Another similar example is the decision process in eating out vs. taking food

from home for office workers. In fact, the current models for charging mostly

stem from the relatively low capacity of the batteries and the range anxiety

perception, which is shown to go away once drivers establish their driving

behavior [61].

Anticipative charging behavior can result in a multitude of changes:

First, the SoC of the PEV arriving at the charging station would typically

be lower because the users do not charge as soon as a charging opportunity

is found and there is charging demand; resulting in typically higher energy
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demand. Second, anticipating their ability to finish their future trips, the

users would skip some charging opportunities. Under the anticipative model,

charging sessions will be less frequent and more demanding and hence less

flexibility is expected. Yet, while we show this decreased flexibility in the next

section based on transportation data, the impact on the overall behavior of

the users may or may not be negative and depends on the charging algorithm

employed.

2.5.2 Analysis of the Impact of Anticipative Behavior

To model the anticipative behavior, we consider the case where at every

stop the driver knows how far away the next potential charging stop, one that

is going to be longer than three hours, is and charges only if the remaining

range of the PEV is not sufficient to reach this destination. This is of course

an extreme case in the sense that this is basically minimal amount of charging

stops to keep the normal travel plan feasible.3 Moreover, information about

future trip(s) may not always be available.

Given the fact that longest stops typically happen at home and they

are typically before the longest commute of the day, home charging can be

considered an asymptotic approximation of the anticipative behavior to some

3In fact, this kind of behavior may not guarantee feasibility of future plans since it is
possible that the trip after the next stop might demand more than what can be charged in
the next stop. For this reason, the kind of anticipative behavior we modeled here can be
referred as myopically anticipative. Yet, this should perhaps be the appropriate behavior
since a fully anticipative model requires full information about all future trips, which is a
very demanding assumption.
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extent. For this reason and the other reasons discussed in previous sections, we

pay particular attention to anticipative behavior when charging is restricted

to home only.

Anticipative behavior, as modeled here, only affects drivers decision

to charge or not charge. Therefore, in order to analyze the impact of the

anticipative model, we consider our previously introduced charging policies:

immediate and Average Rate.

Let us consider average flexibility as defined in (2.1) for different mini-

mum dwell times for everywhere charging and home only charging under an-

ticipative and non-anticipative models, which is presented in Figure 2.12. The

average flexibility presented in this figure is over all charging sessions in the

dataset which have occurred under each scenario. For example, setting a min-

imum dwell length of three hours, under the non-anticipative charging model,

all the stops with length more than three hours at the respective locations (ev-

erywhere or home only) are considered for charging. Under anticipative model,

not only the minimum stop time and location is taken into account, but also

charging happens only if the current SoC cannot support driving to the next

potential charging stop that satisfies the length and location requirements.

As expected, the average flexibility of anticipative charging is uniformly

and significantly below the non-anticipative model. The reduction in average

flexibility is roughly 50% across different minimum dwell lengths. We must

stress however, that while in most scenarios we have assumed that the whole

population shall follow the same behavioral model, in reality, the diversity
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Figure 2.12: Average flexibility of PEV charging under various models.

in the population of drivers and their preferences results in a mixture of the

extreme points demonstrated here corresponding to various pure behaviors.

The reduction in flexibility means that the charging optimization prob-

lem, irrespective of its particular algorithm, would be more constrained. Con-

sequently, the gains envisioned for PEV charging might not materialize as

strongly as suggested in previous studies.

In order to investigate the impacts of the anticipative behavior we com-

pared the charging policies introduced previously under anticipative and non-

anticipative behaviors. Figure 2.13 compares the diurnal patterns of immedi-

ate and Average Rate charging policies under anticipative and non-anticipative

behaviors when charging can happen at every location the PEV stops more
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than three hours. The PEV average diurnal load, marked on the left axis, is

averaged over all PEVs and all days. Note that it does not represent how a

typical PEV load looks over the day, rather, it shows the typical normalized

fleet load by PEV. As previously suggested [56], Average Rate charging re-

sults in a much smoother impact on the average diurnal load. Our results here

show that anticipative charging does not fundamentally change the diurnal

patterns of the charging policy and hence the benefits of AR charging are still

valid. Interestingly, anticipative immediate charging results in better overall

patterns compared to the non-anticipative version by shifting the peak load of

PEVs to further times in the evening and reducing coincidence with the net

load peak. To demonstrate the impact of the PEV load on the net load, we

have also plotted the ERCOT diurnal net load average and augmented it by

the expected power load from each scenario in Figure 2.14. Here we have as-

sumed electrification of 30% of roughly 15 million vehicles registered in Texas.

As depicted in this figure, anticipative charging actually reduces the negative

impact of added PEV load while AR policy works well under both models.

Note that even AR charging needs an increase in the total capacity of the grid

since it almost uniformly affects the diurnal pattern of the load.

The shift of the load towards later hours of the day as a result of

anticipative behavior can be attributed to stops that are not used for charging

since a short trip in the evening (perhaps for some shopping or having dinner)

is expected and hence the stop between arrival from work and that trip is

skipped in favor of the long stop over night; particularly because the next trip
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Figure 2.13: The average diurnal pattern of PEV load under various behavioral
models and charging policies when charging is available at all stops longer
than three hours and its comparison with average diurnal net load and wind
generation in ERCOT.

will be the morning trip to work which is typically one of the longest trips

taken routinely. As we pointed out in the preceding analysis, this makes the

result of anticipative behavior look more like home only charging.

As discussed in the previous sections, home only charging, particularly

in presence of financial incentives, presents itself as the dominant place where

PEVs are to be charged. Moreover, since stops happening at home tend to

be the longest, mostly overnight and before the longest typical trip of the day

(e.g. going to work or running errands), home charging can be viewed as the

asymptotic limit of anticipative behavior. Therefore, we specifically studied
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Figure 2.14: The impact of various behavioral models and charging policies
on the average diurnal pattern of ERCOT net load when charging is available
at all stops longer than three hours.

charging under the same policy set and scenarios assuming that charging can

happen only at home. Figure 2.15 compares various policies and scenarios in

terms of their average diurnal power load. Similar to everywhere charging,

anticipative charging does not have a dominant effect on the overall behavior

of the charging policies investigated. A similar shift to later times of the

day is observed in case of immediate charging. Affirming our hypothesis on

the connection between home charging and anticipative behavior, it can be

observed that there is no material difference between the results of the AR

policy when users behave anticipatively or not. Similar to Figure 2.14, we have

presented the superposition of the expected PEV load in ERCOT assuming
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Figure 2.15: The average diurnal pattern of PEV load under various behavioral
models and charging policies when charging is only available at home (with
minimum stop time of three hours) and its comparison with average diurnal
net load and wind generation in ERCOT.

30% penetration rate of PEVs on the ERCOT net load in Figure 2.16. It

can be observed that the concentration of the load resulting from immediate

charging in the early hours of evening shifts and exacerbates the peak hours

of load. Moreover, anticipative behavior marginally improves the situation by

shifting the load further in the evening hours which would overall help the load

pattern. Finally, it is confirmed that AR charging has a very marginal effect,

1.2% to be exact, on the peak of the diurnal pattern. The increase is about

3% for immediate charging under anticipative model and about 5% under non-

anticipative immediate charging. This is particularly interesting considering
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Figure 2.16: The impact of various behavioral models and charging policies
on the average diurnal pattern of ERCOT net load when charging is available
at all stops at home that are longer than three hours.

the fact that anticipative charging generally decreases demand flexibility and

hence could have a negative effect on the benefits of the charging algorithm.

We believe that this improvement, rather than worsening, is because non-

anticipative immediate charging does not utilize flexibility at all.

2.6 Ancillary Service Potential of Localized Charging
Policies

2.6.1 Background

Although the grid is a very complex network with different constraints,

its stability first and foremost hinges on supply demand balance. Maintaining
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this balance at fine grained time steps seems a very challenging task due to the

need for coordination; however, in the current grid structure, frequency is the

key global indicator that reflects the overall supply demand balance relatively

instantaneously. In fact, the rate of change in the system frequency, which is

essentially4 the same quantity at any point in the grid5, is a strictly increasing

function of supply minus demand at the normal operation point. Hence, it

can be used as the error signal to locally estimate the imbalance and respond

to it. This basically forms the basis for the control system implemented in

the governor of most of the generation assets in the current grid and plays a

fundamental role in responding to contingencies like unit trips [12]. Therefore,

it should be fair to say that frequency is the heartbeat signal of a synchronous

grid.

Maintaining supply demand balance and frequency control (a.k.a. fre-

quency regulation) is one of the major tasks of the ISOs and to this end, all

North American power markets include products that help this cause, broadly

referred to as reserves or Ancillary Services (AS). The variety of the reserve

products, at least traditionally, stems from the variety in different events that

cause frequency deviations and can be coarsely categorized by their speed of

response and magnitude.

4Disregarding transients, and putting aside difficulty in defining frequency when the
system is not in quasi-steady-state as frequency and its rate of change may vary across the
system in that situation.

5Here the grid means a wide area synchronous grid, which in the context of the North
American grid includes the Eastern, Western, Quebec, Texas and Alaska Interconnections.
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Of particular interest in our work is the frequency regulation service

(REG), also known as Automatic Generation Control6 (AGC) and Load Fre-

quency Control (LFC), which is a paid service that is deployed by the ISO to

correct frequency deviations in between the market clearing set-points. This

service traditionally handles load forecast errors and usually is dispatched in

the order of seconds, e.g. every four second in ERCOT. As more wind is in-

tegrated into the system, however, REG is used to stabilize the “net-load”

deviations and hence used to control (short-term) uncertainties due to wind

as well. Various authors [26, 33, 58] have proposed using flexible loads, and

particularly PEV load to provide regulation service, however, most of the pro-

posed solutions require communication capability between EVSE and the ISO

or a Load Aggregator. Here, our focus is on localized policies that minimize

the need for communication with a central management entity.

2.6.2 Frequency Responsive Average Rate Charging

Given that frequency measurement can be done inexpensively at each

charging station7, our work on localized policies for serving flexible demand,

can be extended by augmenting the proposed policies to respond to frequency,

as yet another localized piece of information. Recent results [113–116] establish

that frequency can in fact provide the right signal for re-balancing the system

6Technically speaking, AGC is the control system and communication medium through
which the REG signal is delivered to the resources.

7In fact, there are some charging stations already capable of measuring grid frequency
in the market.
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after contingencies and such frequency responsive policies can be viewed as a

primal-dual algorithm for minimizing the deviations from the desired frequency

set-point. Frequency augmented policies can improve the accuracy of the

response from flexible loads, particularly PEVs, to the instantaneous status

of the grid; and, not only counter balance intermittency of wind, but also,

compensate for the “reduced inertia” if they respond fast enough. In its most

basic form, using a proportional controller, the frequency responsive average

rate policy is given by:

xt = min

{(
dt

td − t
+ αt∆ft

)+

, x̄

}
. (2.16)

where dt denotes the remaining demand of the load which is initialized by dta =

d, αt is the coefficient of response and ∆ft is the measured frequency deviation.

In practical settings, ∆ft can be a low-pass and dead-band filtered version of

instantaneous frequency deviation measurement which would correspond to a

PI controller with dead-band for noise rejection. To maintain user comfort

by guaranteeing energy delivery by the desired deadline, the policy needs to

respond to deviations of the charging rate from the desired average rate due

to frequency deviations and particularly their imbalance.

Determining the proper coefficient of response, αt, which is analogous

the droop characteristic in governors, can play an important role as well. While

it can be preprogrammed off-line, it can be adjusted more dynamically based

on willingness to cooperate by the PEV owner. It can also depend on time

and/or remaining time to depart. Figure 2.17 depicts sample response of
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Figure 2.17: Frequency Responsive Average Rate Charging with high and low
demand. (Linear αt decrease, x = 4kW)

flexible loads under frequency responsive average rate and compares them

with AR policy for high and low demands. Due to the other feedback loops

inside the battery charging power electronics, there can be different delays

between the actual behavior of the battery and the desired charge rate. Such

delays can affect the actual performance of load response to frequency and in

pathological cases, when it is mostly out of phase with frequency deviations,

it can negatively affect the supply-demand balance.

It should be noted that such localized response can be compensated at

some level based on performance since measuring performance and deciding on

compensation can be done ex-post based on the metered consumption data. Of

course the data communication and storage requirements in this case is much
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higher as the (time) resolution of the recorded signal significantly increases.

For example, moving from a quarter hour metering which is common in most

Advanced Meter Reading (AMR) and Smart Grid setups to an every four

second metering, equivalently increasing sampling frequency from 1 mHz to

0.25 Hz, results in 225 times more metering data! However, the total amount

of data remains very manageable by today’s communication and computing

capabilities; e.g. a month worth of 4 byte data samples with 1Hz sampling

frequency would take only about 10 MB. In line with the rest of this chapter,

here we focus more on quantifying the potential of AS that can be provided

by PEV demand and leave particular algorithms for designing the optimal

response by PEVs for future work.

2.6.3 Symmetric AS Potential of Average Rate Charging

In most markets, regulation products are viewed as (reserve) capacity

and are expected as symmetric capacity to move up and down at a minimum

specific rate8. The symmetry requirement effectively disqualifies immediate

and delayed charging, or any charging policy that only uses max rate over its

period of activity for that matter, because at maximum rate, there is no room

for more consumption. For AR charging, however, there is some headroom

that enables provision of AS.

Note that, for PEVs demand response potential, as in the amount of

8To the best of our knowledge, ERCOT is the only market in which REG service is
traded asymmetrically, i.e. a market participant can provide REG Up, REG Down or both
with different capacities and each of these commodities are priced separately.
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Figure 2.18: The average diurnal pattern of symmetric AS capacity due to PEV
load under various behavioral models and Average Rate charging policy when
charging is available at all stops longer than three hours and its comparison
with average diurnal REG UP and REG DN amounts purchased by ERCOT.

load that can be reduced in relatively short period of time, is roughly equal to

the PEV load level. This is because in most cases, the flexibility in PEV load

makes it plausible to completely stop consumption without causing noticeable

discomfort for the users for short periods of time. Therefore, in the proceeding

text, we focus on symmetric capacity of PEV load since most frequency based

AS has such requirements.

Based on the symmetry requirement and using the same notation we

used in previous sections, the AS capacity of a PEV charging at rate xt is
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Figure 2.19: The average diurnal pattern of symmetric AS capacity due to PEV
load under various behavioral models and Average Rate charging policy when
charging is only available at home (with minimum stop time of three hours)
and its comparison with average diurnal REG UP and REG DN amounts
purchased by ERCOT.

given by:

ct = min{xt, x− xt}. (2.17)

Using this measure, we can now analyze the potential symmetric AS

capacity of PEVs similar to our analysis in the previous sections, in terms of

its average diurnal patterns. To this end, we have presented the results in Fig-

ure 2.18 and Figure 2.19 for everywhere and home charging respectively. We

have also depicted the patterns for anticipative and non-anticipative models

to demonstrate the effect of the anticipative behavior.
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It is very interesting that the total AS capacity provided at 30% pene-

tration rate is a pretty sizable number, roughly between 600MW to 1300MW

for everywhere charging and 200MW to 1600MW for home only charging,

which is comparable to diurnal average of total amount of REG purchased by

ERCOT as depicted in dashed lines. Note that even with anticipative charg-

ing, the amount of REG potential of average charging stays completely above

the current total purchases of REG, suggesting that even if only a fraction of

the PEVs adopt the frequency augmented AR, the REG burden of the system

can be potentially reduced. Although capturing the reliable amount of this

autonomous response, in a way that the ISO can count on, might be hard, the

impact of such response on REG deployments would reduce the utilization of

such assets and automatically reduce the total amount acquired if the system

is designed to decide total purchases based on performance (e.g. ERCOT).

Overall, we believe that there is substantial potential in autonomous response

and localized ancillary service provision by flexible loads and in particular

PEVs.

The other interesting result is that the amount of AS capacity, which

unsurprisingly has a similar pattern as the diurnal average load, has close to

maximal capability on early hours of day and night. These hours, as sug-

gested by the diurnal patterns of AS purchases, are the hours in which REG is

needed most, which is mainly due to the typical wind power fluctuations and

uncertainties in those hours. Therefore, AS capacity provided by AR charging

is well correlated with the system need. The other positive aspect of this AS
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capacity is that particularly in early hours of the day, many generators are

ramping up production and providing AS adversely affects their ramp rate;

hence, the AS provided by load can open up some ramping capacity for the

system.

The impact of increased energy demand and reduced flexibility due to

anticipative charging is very vivid, particularly when charging is available ev-

erywhere. AS capacity is reduced almost by 40% when anticipative model

is adopted. Yet, this is not very surprising given the fact that we already

knew that average flexibility of PEV load is almost reduced to half under

the anticipative model. In fact, since our flexibility measure and the rate

adopted by AR charging have a very similar structure,9 this result suggests

that under non-anticipative charging, charge rates are typically closer to zero,

the lower bound in Equation 2.17, rather than the EVSE capacity while un-

der anticipative charging the rates are typically closer to the EVSE capacity.

Consequently, charging headroom plays a more important role in setting the

AS capacity, similar to what is depicted in Figure 2.17.

2.7 Conclusion

Plug-in electric vehicles are one of the prime examples of flexible loads

and expected to have major impact on the grid in terms of overall energy

demand. In this chapter, we took a data driven approach to study the impacts

9The rate adopted by AR charging is essentially 1-flexibility, subject to EVSE rate limit.
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of transportation electrification. We quantified energy needs of PEV charging

and its distribution over time under various charging policies. We particularly

demonstrated that under conventional consumption, also known as immediate

charging, the resulting electrical demand would negatively impact the grid by

exacerbating demand peaks. We then proposed Average Rate charging as a

simple alternative which would only depend on local information about PEV

and showed that it would substantially change the PEV charging load patterns

by decreasing its correlation with current net load of the grid and increasing its

correlation with wind generation on average, particularly if charging is limited

to homes. We then proposed improvements to AR charging to make it more

robust to unexpected changes in transportation plans. We also studied more

realistic models of user behavior under which drivers may not take advantage

of all charging opportunities and showed that while it considerably reduces

demand flexibility, it will not have a substantial effect on average diurnal

patterns of the load. Finally, we studied ancillary service potential of PEV

demand and concluded that, with proper infrastructure and incentives, the

PEVs can provide substantial amounts of ancillary services.
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Chapter 3

Optimal Response of Flexible Loads to

Real-time Stochastic Prices

3.1 Introduction

From the consumers’ perspective, the value of demand flexibility can

be translated into reduced bills. However, in many cases, there is a trade-off

between the level of flexibility and the consumer’s comfort. For example, it

is typically desired to charge an EV battery as fast as possible, i.e., minimal

flexibility; yet, should the right incentives be provided, the consumer would

trade-off his/her comfort/desire. The key to achieving this value is not only

the right pricing schemes on the utility side, but also optimal algorithms to

respond to those schemes with minimal intervention by a user.

Using demand flexibility to improve costs has been considered in various

contexts by different authors [22, 25, 58, 72, 79, 103, 104]. Mohsenian-Rad et

al. [72] propose a price-based residential load scheduling algorithm for smart

grids. They consider a combination of real-time pricing (RTP) and inclining

block rates (IBR) and model delay aversion by inflating future prices. They

first formulated and solved the deterministic model and then extended it to

the stochastic case by proposing a price estimation method, essentially run-
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ning a certainty equivalence control (CEC) technique. Although their model

can be applied to a wide range of scenarios, due to adopting CEC, it fails to

capture the opportunistic behavior of load in response to actual variation of

prices. Caramanis and Foster [25] consider optimal operation of a load aggre-

gator responding to the spot market and simultaneously offering reserves to

the grid by modulating its instantaneous demand by directly controlling each

load. A computationally efficient approximate method to solve this problem is

later proposed by Kefayati and Caramanis [58]. In another approach to utilize

demand flexibility, Papavasiliou et al. [79], consider coupling flexible loads

with wind generation to reduce the uncertainty of net production. Solutions

based on approximate dynamic programming are proposed and used to fur-

ther analyze the economic merits of the coupling. Neely et al. [76] approach

the same problem through Lyapunov optimization and obtain a computation-

ally efficient approximate solution that guarantees order-wise delay and cost

performance.

In this chapter, we study the demand flexibility, particularly translated

to time flexibility or delay tolerance by proposing a model for delay tolerant

loads which have cost/delay trade-offs subject to uncertain spot pricing. We

formulate the problem of energy delivery to such loads as a dynamic program

and propose an efficiently computable closed form solution both for the optimal

policy and the expected energy delivery cost given price statistics and load

preferences. Using our proposed model, we analyze the value of flexibility

from the consumers’ perspective in terms of the reduction in the expected
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cost of demand satisfaction. Finally, we analyze the collective behavior of

delay tolerant loads through simulations. We show that, similar to the results

by Sioshansi [88], real-time pricing does not always induce desired behavior

of the load since opportunistic behavior of demand can exacerbate uneven

distribution of the demand and lead to high peak-to-average ratios (PAR) in

the aggregate demand.

The rest of this chapter is organized as follows: In Section 3.2 we present

our model. Section 3.3 is dedicated to presenting our results on the optimal

demand satisfaction algorithm and discussion on its computational efficiency.

Section 3.4 is dedicated to a comparative analysis of the performance of our

proposed algorithm through simulation as well as its system level impacts.

The proofs are moved to appendices for better readability.

3.2 The Model

We consider a flexible consumer with a total energy demand. We desire

to satisfy its demand by deciding how much to consume in a discrete time

fashion over a finite horizon. We assume that only statistics of the energy cost

is known a priori. Furthermore, the consumer is assumed to be potentially

delay-averse, that is, there is a (subjective) cost to the consumer associated

with delaying demand satisfaction.

This model captures the essential features of a delay tolerant demand

for the purpose of our analysis. Consider an electric vehicle (EV), for example,

under real time pricing (RTP) of electricity at the charger location. This model
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essentially captures the cost of charging subject to a deadline. Furthermore,

as the vehicle owner may need the car before his stated deadline, there is

a tendency to get the vehicle (at least partially) ready before the deadline

(potentially by paying more for the energy).

To demonstrate the trade-off between delay and energy cost let us con-

sider the example of a water heater in which the controller is designed to

maximize the utility of the consumer by considering energy cost and the tem-

perature deviations simultaneously. Delaying the energy demand translates to

temperature deviations. A similar situation holds for most air conditioning

systems. The hard deadline in time is when the temperature goes out of the

ultimate comfort zone of the user.

To formalize this model, consider the following dynamic programming

(DP) formulation: we have a certain amount of energy demand to satisfy,

d, through purchasing in an uncertain market as a price taker1 over T time

stages. The time varying stage cost, denoted by gt(xt, ut,γt), can depend on

the remaining demand, xt, and on the purchased electricity denoted by ut.

The stage cost can include the cost of waiting. The terminal cost is denoted

by gT (xT ). The uncertainty in the market (e.g. random price) is modeled by

random vector γt. We assume γt to evolve over time according to the following

Markovian model:

γt = λt(γt−1) + εt, γ−1 given, (3.1)

1That is, our actions do not affect the price.
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where εt is the random variable modeling price innovations and λt(•) is model-

ing the inter-stage correlation of prices and seasonality. We assume εt ∼ Ft(•)

to be independent, λt(γ) to be monotone to avoid some technicalities, and

define θt , γt−1 for notational convenience.

At each stage, ut is to be decided after observing γt. Moreover, ut

is subject to the remaining demand and capacity, ū. The dynamics of the

problem is given by:

xt+1 = xt − ut, x0 = d,
0 ≤ ut ≤ min{xt, ū},

(3.2)

and, the objective is to minimize the total expected net present value of costs:

J∗0 (d, θ0)= minEγt [
T−1∑
t=0

c(t)gt(xt, ut, γt)+c(T )gT (xT )], (3.3)

where: c(t) =
∏

t′<t αt′ ; αt is the discount factor; and the minimization is over

policies that give ut, denoted by ut(xt,γt) by abuse of notation.

In this work, we consider real time pricing as a method to incentivize

automatic demand response and incorporate the consumer desire for shorter

delays using the following stage cost structure:

gt(xt, ut,γt) = γtut + ηt(xt − ut) + η′t, (3.4)

gT (xT ) = mTxT , (3.5)

where γt is the spot price, ηt is the penalty rate for unsatisfied demand and

η′t is the cost of waiting. In this structure, the first term represents real time

pricing. The rest of the cost models delay aversion in an affine fashion. In line
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with our real time pricing scheme, through this affine model, at each stage the

demand suffers a constant loss due to (precommitted) waiting and a linear loss

due to the unsatisfied portion of demand. Of course, the functional form of the

delay aversion term generally depends on the actual nature of the demand and

consumer preferences but we leave the general case for future investigations.

The model presented in this section and the coming results can be

extended to the case where the stage capacities arbitrarily depend on time as

well as some cases where there are multiple options for purchasing electricity,

with different prices and different capacity implications.

3.3 Optimal Demand Satisfaction Algorithm

In this section we first state our main result which provides a closed

form for the value function and the optimal policy that solves our model and

yields the optimal demand satisfaction algorithm and then comment on the

implications of this result on the trade-off between cost, delay, and arrival

time.

Theorem 3.1. Consider the system described in (3.1)–(3.5).

(a) The optimal value function is continuous, piecewise linear and convex

with T + 1 pieces given by:

J∗0 (d, θ0)=
T−1∑
j=0

mj
0(θ0)[(d−jū)+∧ū]+mT

0 (θ0)[(d−T ū)+]+C(0), (3.6)
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where a ∧ b , min{a, b}, C(t) =
∑T−1

τ=t c(τ)η′τ and mi
t(θt) is given by the

following backward recursion:

mi
t(θt) = Eεt [M(θt, εt)], (3.7)

where,

M(θ, ε)=


m̃i
t+1(λt(θ)+ε) m̂i

t+1≤λt(θ)+ε

λt(θ)+ε m̂i−1
t+1≤λt(θ)+ε<m̂i

t+1

m̃i−1
t+1(λt(θ)+ε) λt(θ)+ε<m̂

i−1
t+1

, (3.8)

m̃i
τ (θ) , ατ−1m

i
τ (θ) + ητ−1, m̂i

T = mi
T (θ) = mT , ∀i, θ, m̂0

t = m0
t (θ) =

−∞, ∀t, θ and m̂i
t is the extended solution to the following equation:

µ = m̃i
t(µ). (3.9)

(b) The optimal policy is given by:

u∗t (x, γt) = (x− i∗ū)+ ∧ ū, (3.10)

where

i∗ = max{i|m̂i
t < γt}. (3.11)

The proof is provided in Appendix A.

Theorem 3.1 establishes a separation structure between remaining de-

mand and price state. In other words, it shows that the shape of the optimal

value function only depends on the evolution of prices and consumer’s delay

aversion and not the demand. Moreover, it shows that the optimal consump-

tion policy is obtained through an extended threshold policy. The extended
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Figure 3.1: Optimal policy assuming iu ≤ xt ≤ (i+ 1)u.

thresholds, denoted by m̂i
t, essentially give the expected opportunity cost-to-go

of satisfying their corresponding portions of demand. Therefore, the optimal

policy mainly compares these opportunity costs-to-go for each portion and

opts for consumption if the current price is below it. This opportunity costs-

to-go includes both future prices as well as delay costs. Figure 3.1 depicts the

optimal policy and Figure 3.2 depict the form of the extended thresholds or

alternatively the slopes of the piecewise linear value function.

xt/ui i+11 2

m̂0
t

m̂1
t

m̂it

T

m̂Tt =mT

Figure 3.2: Extended thresholds at stage t.
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Figure 3.3: Recursive calculation of extended thresholds.

In terms of computation, the result of Theorem 3.1 essentially reduces

two dimensional state space to a one dimensional one and only mi
t(θ) functions

need to be recursively calculated. This still may pose computational overhead

if the algorithm is to be implemented in embedded systems. Moreover, there

are O(T ) fixed point computations per stage due to (3.7) which might be

computationally undesirable. Figure 3.3 depicts recursive calculation of the

extended thresholds in block diagram form.

Next, we present our result for the independent price case and show that

in this case the optimal policy can be considerably simplified and a closed form

can be obtained. Moreover we show that this closed form can be efficiently

computed.

Theorem 3.2. Consider the system described in (3.1)–(3.5) and assume λt(θ) =

0 for all t, then, the optimal value function given in Theorem 3.1 simplifies to:

J∗0 (d)=
T−1∑
j=0

mj
0[(d−jū)+∧ū]+mT

0 [(d−T ū)+]+C(0), (3.12)

where mi
t is given by:

mi
t = m̃i

t+1 −Gt(m̃
i−1
t+1, m̃

i
t+1), (3.13)
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in which,

Gt(z, z
′) ,

∫ z′

z

Ft(ζ) dζ. (3.14)

and m̃i
τ , ατ−1m

i
τ + ητ−1 as defined in Theorem 3.1. Moreover, the optimal

policy is given by the same policy as in Theorem 3.1.

The proof is provided in Appendix B.

Based on Theorem 3.2, it is straightforward to see that the description

of the optimal policy is reduced to Θ(T ) storage at each stage and Θ(T 2) total.

Moreover, assuming evaluating the G(•, •) function is Θ(1), the computational

complexity of obtaining each mi
t is Θ(1) and hence the overall computational

complexity of obtaining the solution is Θ(T 2), which can be implemented in

parallel from according to (3.13) for higher efficiency. Figure 3.4 shows the

simplified block diagram for calculation of the extended thresholds under in-

dependent price assumption.

Theorems 3.1 and 3.2 also quantify and demonstrate the cost-delay

trade-off. To capture delay aversion, we assume η, η′ ≥ 0 and αt ≥ 1 which

translates to a non-decreasing threshold going backwards unless the negative

mi−1
t

// ∼

��

mi
t

// ∼ //
OO

G(z, z′)
−// +

OO

Figure 3.4: Simplified recursive calculation of extended thresholds under in-
dependent prices.
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term in (3.13) overweighs the increase. Hence, the extended thresholds are not

guaranteed to be increasing in t and in most cases become decreasing at some

point. This leads to existence of a soft deadline for demand satisfaction which

depends on delay aversion parameters. Moreover, non-stationary prices enable

the consumer to further optimize its utility by jointly choosing its arrival time

and availability interval subject to its constraints.

A consequence of piecewise linear value function (which is essentially

the demand function of the load) is that it automatically matches most of

the current bidding models in electricity markets where offers consist of price-

quantity pairs. In other words, if instead of simple consumption, the load is

supposed to make an offer, there is no lack of optimality by constraining the

offers to be a set of price-quantities.

Since the demand is only decreasing over the horizon, the effective

number of m coefficients to compute depends on d. In particular, if the initial

demand is below the capacity, ū, the optimal value function becomes linear

and the optimal policy transforms to a threshold type one, and in case of

independent prices, we obtain the following simple corollary:

Corollary 3.3. If the initial demand is less than the stage capacity, i.e. d ≤ ū,

the optimal value function and policy for the system are given by:

J∗0 (d) = m0d+ C(0), (3.15)

u∗t (γt) = 1{γt ≤ m̃t+1}d, (3.16)

65



where 1{A} is the indicator function of event A and {mt} is given by the

following backward recursion:

mt = m̃t+1 −Gt(−∞, m̃t+1). (3.17)

Moreover, the probability of failure in meeting the demand is given by
∏T

t=0(1−

Ft(m̃t+1)).

Proof. Only the last part is not immediate from Theorem 3.1 so we only prove

the last claim. Observe that at each stage the demand remains unsatisfied if

the price, γt is greater than the threshold mt+1, which happens with proba-

bility 1− Ft(m̃t+1). The desired product form follows from the independence

assumption on prices. �

Note that load capacity is the maximum energy load can consume over

a decision interval. So Corollary 3.3 can be realistic or not depending on how

fast prices are updated (and hence decisions are made). It roughly holds if

the load usually runs shorter than the length of the decision interval. In this

case, the problem essentially transforms to a stopping problem where all the

demand is satisfied at once. Moreover, the probability of failure in meeting

the demand can be made arbitrarily small by setting a large enough terminal

cost, mT .

3.4 Numerical Results and Network Level Impacts

In this section, we present the result of a case study to demonstrate

the performance of the proposed optimal policy and study its impact on the
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network when a group of flexible loads adopt such algorithm.

For each scenario we consider a group of 1000 PEVs which show up over

a 24 hour period of time. To have the most realistic arrival, energy demand,

and departure patterns, we use the results of our study in Chapter 2 based

on the transportation dataset we discussed in that chapter. We considered

the charging sessions realized as the result of a non-anticipative model when

charging is available everywhere. We further truncated the availability length

of the PEVs to 24 hour for ease of calculations.

Price statistics are based on the real-time market prices in the Houston

Load Zone for year 2012. For easier analysis, we have only considered the

independent case here. The prices are assumed to be normally distributed with

mean from average Houston Load Zone prices for each hour and simulations

are done for various price uncertainties reflected in the standard deviation of

price realizations, denoted by σ. Price uncertainty here can be interpreted as

Gaussian price estimation error from the flexible loads perspective.

We have compared the optimal algorithm against the policies we previ-

ously studied, i.e. immediate and average rate, as well as a Certainty Equiva-

lent Control (CEC) based algorithm adopted by other authors previously (e.g.

[72]) under which, the optimal consumption is solved as a deterministic pro-

gram where stochastic prices are replaced by their estimates. In this case, CEC

based policy would essentially solve a linear program with expected prices over

the availability horizon as cost coefficients and unrolled version of system dy-

namics, i.e. (3.2) as constraints. Note that the CEC approach ignores price
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Figure 3.5: Cost comparison between various consumption policies under dif-
ferent levels of uncertainty.

uncertainty. Yet, it responds to the general trend (expected value) of prices,

while immediate and average policies are completely oblivious to prices. The

optimal policy on the other hand takes advantage of the uncertainty as well

as the trend.

Finally, to reach statistical consistency, the simulations are repeated

10,000 times.

From the consumers’ perspective, the projected savings suggests a strong

case. As depicted in Figure 3.5, adopting the optimal policy by the consumers

results in roughly 14%-30% reduction in cost on average, compared to imme-

diate consumption, depending on the level of uncertainty, as measured by σ.

As previously mentioned, all policies except the optimal policy are oblivious
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Figure 3.6: Average diurnal load comparison between various consumption
policies (σ = 10).

to the stochastic nature of the prices and hence cannot adapt to it. The most

interesting comparison here is between CEC and the optimal policy. While

both result in the same cost at low levels of price uncertainty, the difference

grows with uncertainty, to about 10% for σ = 10. Combined with the fact

that the computational cost of obtaining the optimal policy is not very differ-

ent from the CEC, we conclude that the optimal policy should be adopted by

the loads, if cost is the most important factor to them.

To study the impact of wide spread adoption of the optimal policy

and compare it with other policies, in line with our results in the previous

chapters, we considered the average diurnal pattern of the load produced by

each of these policies which is presented in Figure 3.6. Note that this diurnal
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pattern is formed by averaging almost 10 million charging sessions (10,000

scenarios each with 1000 charging sessions). Moreover, the curves are less

smooth compared to the figures presented in Chapter 2 since the curves are

based on hourly data as opposed to minutely curves presented previously. For

a better comparison, the expected price is also depicted in dashed lines.

Each policy results in its own unique diurnal pattern. As expected from

our previous results, immediate consumption produces its maximum consump-

tion at peak hours in the evening, while Average Rate consumption results in

an almost flat consumption. Price responsive policies, i.e. CEC and optimal,

shift the load towards the locally low price times, i.e. times in which the price

is lower than its neighboring times, which typically happen over night. Their

response, however, are quite different on average sense. In particular, CEC

creates a huge peak at the lowest expected price while the peak created by

the optimal method is lower and more spread over night, almost as high as

the peak in the evening by immediate consumption. This is mainly due to

the fact that the optimal policy looks for (and usually successfully finds) the

realized locally low price while the CEC policy only considers expected values,

and hence the consumption is concentrated around the expected low prices for

all scenarios. Since the uncertainty in the price changes the exact time of the

low prices, the average result of the optimal behavior does not show its sample

behavior properly.

To study the behavior of the optimal policy more carefully, let us con-

sider a sample path realization of the response. Figure 3.7 compares the aggre-
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gate load of a single scenario for different uncertainty levels. In these figures,

it is evident that as the time of the locally low price changes due to increased

uncertainty, the optimal policy tracks the realized low price successfully and

creates a similar pattern as CEC around it. Note that the height of the peak

does not change much because the minimal price typically happens sometime

over the night, when the expected price is also typically low and there is not

much change in availability of the demand at the particular locally low price

time versus the expected locally low price. This is also confirmed by our mea-

sured Peak-to-Average Ratios presented in Table 3.1. Consequently, we can

observe an indirect synchronization of load around the realized low prices. As

expected, PAR values for CEC does not depend on σ. The interesting ob-

servation, however, is that PAR values for the optimal policy are also pretty

constant and close to the values for CEC, both in terms of maximum and

average values (across scenarios.). This affirms that the multi-threshold form

of the optimal policy is more sensitive to the time of the locally low prices

rather than their magnitude.
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As discussed, interestingly, yet not surprisingly, the increased volatil-

ity/uncertainty in prices leads to lower relative costs, which essentially shows

that the optimal policy efficiently adapts to market uncertainty. On the other

hand, at the transmission and distribution network level, the consequence of

such opportunism is not necessarily desired. One key driver for real-time pric-

ing is to shift consumption to low price and hence low load times (i.e. off-peak)

and hence get a smoother overall load profile. Our simulation results, how-

ever, show that load profiles may be less smooth than expected because of

opportunism as depicted in Figure 3.7 and Table 3.1.

Although such behavior from the load can eventually affect the behavior

of the price over time towards a more flat one, our results show that it would

not fundamentally change the undesirable behavior of the flexible loads if

uncertainty persists. The uneven aggregate load behavior is mainly due to

opportunism from the load side which is triggered by local price minima. In

other words, locally low prices act as synchronization signals to the loads. For

example, in Figure 3.7(c), some peak loads happen at a low price for which the

expected price is high. Moreover, the market response to such concentrations

Table 3.1: Peak to Average Ratio of Aggregate Load vs. price uncertainty.

σ CEC Optimal

Average Max Average Max

1 6.9 7.9 6.8 7.9
5 6.9 7.9 6.2 7.9
10 6.9 7.9 5.9 7.7
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does not happen in a timely manner, and hence, cannot control it. Moreover,

the prices at wholesale may not be affected if a relatively small number of

opportunistic loads (with respect to the total system load) are clustered under

the same distribution feeder.

Considering the structure of the optimal consumption policy, one fun-

damental reason behind the undesired behavior of the aggregated load can be

attributed to the linear pricing scheme. The linear pricing effectively trans-

forms the optimal consumption to a pseudo-stopping problem where the de-

mand usually consumes as much as it can when the price is low enough. Non-

linear pricing can better distribute the load over the availability interval of the

demand; however, with the prospect of bidirectional energy exchange, such

proposals should be considered more carefully.

Another approach which can effectively enforce distribution level con-

gestion constraints is to utilize the bidirectional communication mechanism of

the smart grid and have local auctions at the distribution network level. Our

early results in this direction suggest that using the thresholds in our proposed

algorithm as bids, and selecting highest bids up to network capacity, can result

in a better solution. We leave detailed consideration of this setting to future

work.

3.5 Conclusion

In this chapter, we presented a model for delay-averse flexible demands

and the optimal solution for minimizing the average cost of energy consump-

74



tion by them under uncertain prices. We showed that the solution to our

model which is a stochastic dynamic program admits a closed form which is

efficiently computable.

We also investigated the energy cost savings and network level behavior

of a flexible demands adopting our proposed optimal policy through simula-

tion. We concluded that, while the optimal policy achieves considerable cost

savings, contrary to common belief, network level impact of wide spread adop-

tion of price responsive algorithms for electricity consumption might not be

as desired under simple dynamic pricing. Therefore, we concluded that fur-

ther coordination should be necessary to prevent undesired demand patterns

at network level. We will be investigating such methods and architecture in

the later chapters of this thesis.
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Chapter 4

Optimal Policies for Simultaneous Energy

Consumption and Ancillary Service Provision

for Flexible Loads under Stochastic Prices

4.1 Introduction

As discussed in previous chapters, smart grids are expected to bring

about fundamental changes in terms of information availability to electricity

networks and provide bidirectional communication and energy exchange even

to the end points of the distribution network. Although it is generally under-

stood that the closed loop of information/energy exchange can improve the

overall energy exchange process in many ways (e.g. reducing cost, increasing

reliability), models to quantitatively understand the fundamental benefits of

the information availability over smart grids are relatively lacking.

A considerable portion of the current electricity demand is inherently

flexible i.e., electric power need not be delivered to the load at a very specific

trajectory over time. For these loads, an amount of energy is needed by some

(potentially recurring) deadline. In other words, over the operation time of

the load, the trajectory of the delivered power only needs to satisfy some

constraints instead of exactly following a specific trajectory. Such loads include

most heating/cooling systems and electric vehicles (EV). The most recent EIA
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statistics [107] suggest that such loads comprise more than 50% of average

residential electricity consumption. The prospect of such loads comprising

a considerable portion of emerging loads urges us to investigate the benefits

obtained from such flexibility utilizing the infrastructure provided by smart

grids.

In Chapter 3, we considered flexible loads responding to real-time prices

from the grid as a signal to reflect the more realistic cost of energy consump-

tion. Yet, if the communication infrastructure and the dynamics of the loads

allow, their flexibility can be further utilized by the grid. This would be

achieved by the loads not only participating in the market for purchasing en-

ergy they need, but also for providing ancillary services. Under such scenarios,

loads would not only respond to energy prices but also to requests for adjusting

their consumption, at rates much faster than market or pricing intervals, which

are typically issued by the ISO. Such adjustment signals are typically designed

to fine tune supply demand mismatches by regulating system frequency, as we

discussed them in Chapter 2. This form of service, however, needs much faster

communication and capability but as we previously discussed, are well within

rates available to residential and commercial Internet users. Such ancillary

services are typically traded as capacity, that is, the operator pays for the

ability to adjust the current rate (consumption of generation) of the provider

within a specified range (i.e. capacity).

In this chapter, we consider an extension of the problem we consid-

ered in Chapter 3 by adding the potential for offering ancillary services to the
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problem of optimal energy consumption by a flexible load. We first examine

the model carefully and show that multiple cases are possible depending on

the form of capacity constraints to which the load is subjected when changing

consumption at paces faster than the decision interval. We then show that

our previous techniques to obtain the optimal policy can be extended to joint

optimization of energy consumption and AS provision and the optimal policy

has a very similar multi-threshold form. We also show that the optimal policy

can be computed efficiently in a similar recursive fashion and the complexity

order of computations stays the same. Considering joint energy consumption

and AS provision is not only a natural extension of the optimal consumption

problem, but also play as a bridge towards the work we present in later chap-

ters, where an Energy Services Company (ESCo) is in charge of solving the

optimal energy delivery and AS provision for a group of flexible loads.

The rest of this chapter is organized as follows: In Section 4.2 we present

and analyze our model and the optimal demand satisfaction algorithm. In Sec-

tion 4.3 we present our proposed optimal joint consumption and AS provision

policy for the case that AS provision does not need capacity reservation. Sec-

tion 4.4 is dedicated to analysis of network level performance of our proposed

algorithm through simulation as well as its system level impacts, similar to

Chapter 3. We conclude this chapter and comment on our future directions in

Section 4.5. The proof of the theorems are moved to the appendices for better

readability.
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4.2 System Model

We model a consumer with a flexible load subject to a total energy

demand and energy rate limits. Assuming a discrete time model, our objective

is to find out how much energy the consumer should consume towards its total

demand so that its total expected cost is minimized. The consumer can also

offer some of its flexible capacity for use as reserve in return for some reward.

Let us first introduce the price model which is very similar to the price

model we considered in Chapter 3. We assume a Markovian price structure

for energy and reserve prices, denoted by πet and πrt respectively. Defining

πt , (πet , π
r
t ):

πt = λt(θt) + εt, θ0 given, (4.1)

where εt , (εet , ε
r
t ) is the random vector capturing price innovations, λt(θt) ,

(λet (θt), λ
r
t (θt)) models inter-stage correlation of prices and seasonality and

θt represents the state of the Markov process and throughout this work we

assume θt = πt−1, i.e. the previous prices form the state of the price process.

We denote the distribution function of εt by Ft(•) and assume independent

price innovations over time, i.e. εt ⊥⊥ εt′ , ∀t 6= t′. Note that the prices are

assumed to be non-stationary, generally distributed and arbitrarily correlated

(between energy and reserves). Moreover, we assume λt(θt) to be monotone

but otherwise arbitrary to avoid some technicalities.

We model the cost minimization problem faced by the consumer as a

Dynamic Program (DP) (a.k.a. Markov Decision Process). Under this model,
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Flexible Load Controller

Grid

πt, στ

Figure 4.1: System model.

which is schematically depicted in Figure 4.1, the consumer is assumed to have

a certain amount of energy demand at time t = 0, and needs to make decisions

about exactly how to consume electricity in the next T time periods with the

knowledge of past and current prices and (remaining) energy demand. In

other words, the consumer has a deadline of T time slots and seeks an optimal

demand satisfaction policy. We assume that the consumer acts as a price

taker; consequently, the optimal policy alternatively captures the consumer’s

bid for purchasing energy and offer for providing reserves. The consumer is

also subject to consumption rate limits; that is, its consumption at every

stage cannot exceed a certain amount. This models the capacity limits that a

typical consumer is facing, from local transformer capacity limits to the rate

supported by the device (e.g. charging capacity of a charger).

. . .. . . . . .

t− 1 t t+ 1

τ

Figure 4.2: Timeline of decisions versus reserve deployments.
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The consumer is also assumed to sell its flexibility, i.e. its ability to

change its consumption rate, as a reserve capacity to the grid too. By modu-

lating its output in a time frame faster than the decision intervals, see Figure

4.2, it provides a balancing service (a.k.a. reserve) to the grid. An example of

such a situation in ERCOT is providing Regulation (REG) service in intervals

of four seconds while the market (and hence energy prices) is cleared every

five minutes. Since the fast deployments of the reserves is usually designed

to manage the uncertainty between the anticipated supply demand balance

and its actual behavior, it is fair to expect that reserve deployments have a

zero mean and balance out over (relatively) long periods of time. Figure 4.3

demonstrates a sample path of this operation where et, energy consumption by

the flexible load, is modulated by reserve deployments (στ ). Note that the re-

serve deployments happen at about two orders of magnitude higher frequency

and hence the time indexes are different. Since the consumer is assumed to be

solely capable of consuming energy and not injecting it back, the amount of

reserves offered by the consumer cannot exceed its consumption in that time

slot. On the upper bound on consumption rate however, the actual constraint

on the instantaneous rate depends on the underlying limiting factor and can

be either an average rate constraint (over the time slot) or an instantaneous

rate limit similar to the lower bound on consumption. For example, if the

constraint on the maximum consumption rate is due to thermal limits, like

a transformer, then typically the capacity can be modeled as an average rate

limit per time slot. Consequently, while instantaneous changes in consumption
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Figure 4.3: A sample path of energy consumption by the consumer while
providing reserves.

(due to the summation of designated consumption and reserve deployments)

can exceed the upper bound of the consumption rate, the average rate of con-

sumption remains within desired limits since reserve deployments are assumed

to be zero mean. This is the model we adopt in this chapter.

Alternatively, the rate limit could be due to a hard limit and hence,

the total consumption rate (the sum of designated energy consumption rate

and reserve deployments) cannot exceed the rate limit. This alternate model

basically asks the consumer to reserve some capacity for reserves that could

otherwise be used for energy consumption and will result in a more complex

optimal policy. We leave this case for future work.

With this model and denoting the remaining energy demand of the
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consumer by dt, and the amount of consumed energy and offered reserve by et

and rt, respectively, we have the following dynamics:

dt+1 = dt − et + st, d0 given,
0 ≤ rt ≤ et ≤ min{dt, e},

(4.2)

where d0 denotes the initial energy demand of the flexible load, e denotes

the maximum amount of energy the consumer can consume in one time slot,

st =
∑

τ στ denotes the sum of reserve deployments over the time interval.

Generally, st is assumed to be a zero mean independent process, i.e. E[st] =

0, ∀t and εt ⊥⊥ st ⊥⊥ st′ , ∀t 6= t′; in this work, however, we assume st = 0, ∀t as a

simplifying assumption. That is, we assume that reserve deployments over each

time slot are balanced and sum up to zero. Note that in some jurisdictions,

there are balanced reserve products that ensure a balanced property.

The objective of the problem is to minimize the expected cost, i.e. to

obtain J∗0 (d0,θ0):

J∗0 (d0,θ0)= min
et(dt,πt),
rt(dt,πt)

Eεt [
T−1∑
t=0

gt(et, rt,πt)+gT (dT )], (4.3)

where the minimization is over policies that give et and rt upon observing

(dt,πt), which we denote by et(dt,πt), rt(dt,πt) by abuse of notation. Finally,

we need to define our stage and final cost:

gt(et, rt,πt) = πet et − πrt rt, (4.4)

gT (dT ) = m̂TdT , (4.5)

where mT is basically the marginal cost of unsatisfied energy demand which

depends on the type of the load. For example, for plug-in hybrid vehicles, m̂T
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is on the order of the equivalent price of gasoline. This model can capture

a wide range of flexible loads. The prime example of such loads are battery

charging loads like plug-in electric vehicles.

4.3 Optimal Energy Consumption and Reserve Provi-
sion Policy without Capacity Reservation

First, we present our main result which gives the optimal joint energy

consumption and reserve provision policy. Then, we present the algorithm

to recursively calculate the parameters of this optimal policy derived from

the main theorem and discuss its implications and complexity. Finally, we

establish another theorem which considers the result for the uncorrelated price

case.

Theorem 4.1. Consider the system described in (4.1)–(4.5).

(a) The optimal value function is continuous, piecewise linear and convex

with T + 1 pieces given by:

J∗0 (d0,θ0) =
T−1∑
j=0

mj
0(θ0)[(d0 − je)+∧e] +mT

0 (θ0)(d0 − Te)+, (4.6)

where a ∧ b , min{a, b} and mi
t(θt) is given by the following backward

recursion:

mi
t(θt) = Eεt [Mi(θt, εt)], (4.7)
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where,

Mi(θt, εt)=


mi
t+1(πt) m̂i

t+1 ≤πat ,

πat m̂i−1
t+1 ≤πat < m̂i

t+1,

mi−1
t+1(πt) πat < m̂i−1

t+1,

(4.8)

πt = λt(θt) + εt by (4.1), πat = πet − (πrt )
+, mi

T (θt) = m̂i
T = m̂T , ∀i,

m0
t (θt) = m̂0

t = −∞, ∀t and m̂i
t is given by:

m̂i
t = {mi

t(µ1, µ2)|mi
t(µ1, µ2) = µ1 − (µ2)+}. (4.9)

(b) The optimal policy is given by:

e∗t (d,πt) = (d− i∗e)+ ∧ e, (4.10)

r∗t (d,πt) = e∗t (d,πt)1{πrt ≥ 0}, (4.11)

where 1{•} is the indicator function and,

i∗ = max{i|m̂i
t < πet − (πrt )

+}. (4.12)

The proof is provided in Appendix C.

The value function obtained in Theorem 4.1 shows an interesting prop-

erty of the problem under study: even with arbitrary prices and correlation,

the value function remains not only piecewise linear, but also, all the pieces

have the same length, namely e. More importantly, the number of pieces

scales only linearly with the number of available time slots, T , as opposed to

exponential scaling which typically happens in dynamic programming prob-

lems [13]. Consequently, a relatively simple multi-threshold optimal policy for
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...
...

m̂i−1
t (•)i−1 = • mi−1

t (θ) Mi−1(θ, ε) Eεt [•]

m̂i
t (•)i = • mi

t(θ) Mi(θ, ε) Eεt [•]

...
...

Figure 4.4: Recursive calculation of value function coefficients and thresholds
in block diagram form. Note that recursions are backward on t and (•)j = •
represents the corresponding solution to (4.9).

joint demand satisfaction and reserve provision can be obtained. Since such

a policy is either to be implemented in embedded devices such as the EVSE,

PEV, Home Energy Management System (HEMS) or thermostat or used to

control a large group of flexible loads by a load aggregator, such scalability is

very important.

While Theorem 4.1 gives a closed form optimal policy and value func-

tion, it also encapsulates the essential richness of the problem due to the

general price structure into the coefficients of the value function and the cor-

responding thresholds obtained through (4.9). Whether a closed form can be

attained for these thresholds depends on the assumed price statistics. Nev-

ertheless, Theorem 4.1 gives a straightforward algorithm for calculating these
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thresholds. Figure 4.4 depicts the recursive algorithm that is used to calculate

the coefficients and corresponding thresholds in a block diagram form, mainly

around the ith element. This block diagram basically depicts (4.7), (4.8) and

(4.9). Let us go through these steps for more clarity, assuming time t at the

beginning:

1. Using mj
t(θ), obtain m̂j

t using (4.9) for all j.

2. For all j form the corresponding Mj(θ, ε) using mj
t(θ), mj−1

t (θ), m̂j
t ,

m̂j−1
t obtained in previous step and (4.8).

3. For all j take the expected value of Mj(θ, ε) and obtain mj
t−1(θ) as in

(4.7).

4. Repeat these steps letting t = t− 1.

A considerable advantage of the above algorithm for obtaining the op-

timal thresholds is that it can be implemented in parallel very efficiently. In

particular, at each time t, all the T pieces, indexed by j can be calculated in

parallel. This is implicitly reflected also in the steps described above, noting

that each step happens for all j simultaneously for a given time slot t, without

using any of the information corresponding to other time slots. This paral-

lelism can also be seen in the parallel branches of the block diagram in Figure

4.4.

The computational complexity of obtaining the optimal policy using

Theorem 4.1 is O(T
2

δ
), assuming the operations in equations (4.7), (4.8) and
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(4.9) are O(1) and the resolution of mj
t(θ) in θ is O(δ). Note that mj

t(θ)

is a function of θ and, hence, at worst, it needs to be calculated and stored

numerically. Given the above discussion on the parallel computation of the

optimal policy, establishing this bound is straight forward. Note that we have

at most O(T ) pieces and T time slots. Bear in mind that assuming O(1)

computation time on each operation only implies that these computations do

not depend on T and hence, do not scale with the problem.

In terms of storage complexity of the optimal policy, Theorem 4.1 gives

an even better result. Note that once (4.9) is solved, there is no need to store

mj
t(θ) since m̂j

t is enough to run the optimal policy. Therefore, the storage

complexity of the optimal policy is O(T 2), which is great for embedded systems

or when the optimal policy is computed in the cloud and should be transferred

to the controller.

Another advantage of the proposed computational structure becomes

vivid when multiple flexible loads are involved and an aggregator is controlling

all the loads simultaneously. In such setups, the load aggregator can reuse

the calculated coefficients and thresholds for the loads which share the same

(absolute) deadline and capacity. To observe this property, first note that the

loads with the same per stage capacity have the same break points in their

value function. Now, consider two loads with potentially different demands,

say d and d′ and potentially different dwell lengths, e.g. T and T ′, but with

the same deadline, i.e. td = t′d. Now, for calculating the optimal coefficients

backward, the actual statistics seen by these loads are the same for all times
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πat = πet − (πrt )
+

dt−ie

e

m̂i−1
t m̂i

t

Figure 4.5: Optimal policy.

between td = t′d and td − min{T, T ′} since their deadlines are equal. Note

that since the times are measured relative to arrival times, the time indexes

for these two loads might not be the same. For the period where both loads

share the same statistics, i.e. between td −min{T, T ′} and td, the coefficients

obtained in backward recursion discussed in the above algorithm are the same.

Note that the coefficients, mj
t(θ), do not depend on the demand. Hence, the

load aggregator essentially needs to calculate these coefficients and optimal

thresholds only once per deadline and load capacity, for the maximum amount

of load dwell time. Moreover, in case a new load arrives sharing deadline

and capacity with another load but staying for more time, computations are

needed to be performed only for the extra amount of steps this load stays

compared to longest staying load with the same deadline and capacity. That

is, the optimal policy parameters only get augmented by the ones that are not

calculated before arrival of a new load.
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The optimal coefficients in the value function and their corresponding

thresholds also have a very interesting economic interpretation. Consider a

load with demand d and capacity e and let us define i = bd
e
c, then for any

t, mi
t(θ) basically gives the expected effective marginal cost of energy for this

load, noting that the expected value function is the expected cost to go for such

a load. This economic interpretation of the optimal coefficients results in a

very intuitive interpretation of the optimal policy: It basically says consume if

the effective price, πat , i.e. energy price minus reserve price if positive, is better

than what you believe as the expected effective marginal cost of consumption

(at the level of remaining demand upon finishing consumption). If the effective

price is only better than the current expected effective marginal cost to go, then

only consume enough to satisfy the partial demand. Finally, if the effective

price is higher than the current expected effective marginal cost, then do not

consume. Figure 4.5 depicts this interpretation. Note that the price axis in

this figure, and the price considered in the optimal policy, is the effective price

which depends on price of energy as well as price of reserve. Figure 4.6 depicts

price regions corresponding to the three effective price regions in Figure 4.5

more vividly. Note that these regions are exactly the ones defined by the

conditional function Mi(θ, ε) in (4.8).

If further assumptions are made about the price statistics, the com-

putational complexity of the optimal policy can be further improved. An

interesting case in this direction is the independent price case, which also cov-

ers deterministic prices. We address the independent case in the following
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Figure 4.6: Price regions.

theorem:

Theorem 4.2. Consider the system described in (4.1)–(4.5) and assume λt(θ) =

0, ∀t,θ, then, the optimal value function given in Theorem 4.1 simplifies to:

J∗0 (d0) =
T−1∑
j=0

m̂j
0[(d0 − je)+∧e] + m̂T

0 (d0 − Te)+, (4.13)

where mi
t is given by:

m̂i
t = m̂i

t+1 −Gt(m̂
i−1
t+1, m̂

i
t+1), (4.14)

in which,

Gt(z, z
′) ,

∫ z′

z

F a
t (ζ) dζ, (4.15)

where F a
t (•) is the marginal probability distribution function of the effective

price random variable defined as πat = εat , εet − (εrt )
+.

Moreover, the optimal policy is given by the same policy as in Theo-

rem 4.1.
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...
...

m̂i−1
t Gt(•, •)

+

m̂i
t Gt(•, •)

+

...
...

−

−

Figure 4.7: Recursive calculation of optimal thresholds under price indepen-
dence assumption as described by (4.14).

The proof is provided in Appendix D.

A corollary of Theorem 4.2, is that the computational and storage com-

plexity of the description of the optimal policy and value function is Θ(T ) for

each t, and hence Θ(T 2). This is assuming that evaluating Gt(•, •) function

is Θ(1), which is in line with other assumptions we had in the general case.

Similar to the general case, this solution can be implemented in T

parallel processes in a very straightforward way essentially resulting in a (T +

1)× (T +1) table that represents the optimal thresholds for every i and t. The

implementation complexity of each branch, however, is reduced dramatically.

Figure 4.7 depicts the block diagram form of the optimal threshold calculation

algorithm.
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As discussed, the independent case covers the deterministic price case.

In deterministic case finding the optimal consumption and reserve provision

amounts is a straightforward optimization problem, Theorem 4.2 gives a quick,

recursive and parallel method to obtain the optimal policy independent of the

actual amount of demand. This is particularly useful for an aggregator which

would calculate the policy once and reuse it for many loads as discussed in

the general case. Note that in deterministic case, Gt(•, •) can be calculated in

closed form very easily as:

Gt(z, z
′) = (z′ − (z ∨ εat ))+, (4.16)

where (a∨ b) , max{a, b} and εat = εet − (εrt )
+ is a given deterministic number.

4.4 Numerical Analysis

Although we have proven the optimality of the proposed algorithms

mathematically, we still need to establish the improvements of optimal re-

sponse and also compare it to the no AS case we studied in Chapter 3. To

this end, we use a similar setup as in Chapter 3 where we studied the cost im-

provements for PEV loads based on the dataset and charging session patterns

obtained in Chapter 2.

In a same setup as in Chapter 3, we considered 10,000 scenarios in

which a group of 1000 PHEVs which show up over a 24 hour period of time.

Energy demand, arrival and departure patterns are based on the results of

our study in Chapter 2 based on the transportation dataset with minimum
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dwell time of three hours and availability of charging everywhere under a non-

anticipative model. Dwell times of the loads are truncated to 24 hour for ease

of calculations.

Energy price statistics are based on the real-time market prices in the

Houston Load Zone for year 2012 and only independent case is considered for

simplicity. The prices are assumed to be normally distributed with mean from

average Houston Load Zone for each hour and simulations are done for various

price uncertainties reflected in the standard deviation of price realizations,

denoted by σ. Price uncertainty here can be interpreted as Gaussian price

estimation error from the flexible loads perspective. AS prices are based on

average of ERCOT REG Up and REG Down prices and are assumed to be

known to the load because AS prices are typically obtained in the day-ahead

market and hence are available at real-time.

For the comparative cost performance study, we have depicted the nor-

malized per charging session costs in Figure 4.8, normalized by the no-AS

case. The comparison is done against no-AS optimal algorithm, the static

price responsive CEC based method we introduced in Chapter 3, as well as

price oblivious methods we studied in Chapter 2: immediate and AR charg-

ing. Moreover, to compare the network level impact of AS providing optimal

response, we have plotted the average diurnal pattern of load produced by the

above mentioned charging policies in Figure 4.9.

Figure 4.8 demonstrates considerable reduction in total cost due to AS

provision, roughly about 10% to 15%, for all uncertainty levels. Since this
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Figure 4.8: Cost comparison between various consumption policies under dif-
ferent levels of uncertainty.

cost savings is accompanied by AS capacity offered to the grid equal to the

amount of load served (since AS prices are always positive in practice and

hence optimal amount of AS to offer is equal to the amount of consumption

due to Theorem 4.1 and Equation 4.11), it is in the best interest of both

load and the grid to adopt this method versus the optimal consumption, if

possible. On the other hand, the added cost of infrastructure for receiving AS

commands and reporting back to the grid, or localized AS provision in case

of autonomous response, should be considered. Finally, Figure 4.9 compares

the average diurnal pattern of load induced by various consumption policies.

Based on this figure, we observe no significant change in the pattern of load,

mainly because the pattern of AS prices is very similar to the pattern of energy
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Figure 4.9: Average diurnal load comparison between various consumption
policies (σ = 10).

prices as depicted in the figure.

4.5 Conclusion

In this chapter we extended our results in Chapter 3 for optimal re-

sponse of flexible loads to the case where the loads can provide ancillary ser-

vices in sub-market interval time frame and showed that a similar optimal

policy structure holds. We particularly considered the case where no capacity

reservation is needed for AS provision. Considering the case with capacity

reservation is an ongoing future work.

Based on our performance evaluation on PEV load, we observed similar

network load patters due to the high correlation of energy and AS prices.
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Moreover, we observed consistent cost reduction across the studied levels of

uncertainty. Combined with the fact that AS provided by the flexible loads

can ultimately help the grid, we conclude that AS providing optimal response

should be adopted when communication infrastructure is readily available or

economically justifiable.

As a natural direction for this work, we are already working on the

case with capacity reservation requirement. Our preliminary results suggest

that the same multi-threshold optimal policy structure holds and there exists

a similar efficient method for calculating the thresholds. We plan to perfect

this case as our future work. To extend this work further, we also consider

AS providing optimal response as building block for approximating the coor-

dinated energy delivery problem we study in later chapters. This is another

direction we are planning to work on in the future.
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Chapter 5

Optimal Operation of Storage Devices under

Stochastic Market Prices

5.1 Introduction

The need to maintain continuous supply demand balance in electric

grid, and the increased variability and stochasticity in demand, and more

recently supply due to intermittent renewables has exacerbated the need for

energy storage in the grid. This need has resulted in a trend in development

of storage assets at different levels of the grid and in different sizes.

As these assets become mainstream, a key question that needs to be

addressed is how to efficiently operate them. For most of the current assets,

efficient and optimal operation is defined with respect to the asset owners

objective. For example, in some cases, the storage is used to displace the

energy generated by renewables from the time they are more abundant to the

time they are more needed, i.e. high demand times. The time scale in such

cases can vary from a day to a season. In other cases, such assets are primarily

geared towards grid stabilization and provision of ancillary services, and some

newer applications involves firming intermittent sources. At micro grid and

consumer level, storage assets have been used to increase reliability and more
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recently, shaping the load profile to reduce the overall energy bill; e.g. by

reducing demand charges.

What ultimately drives operation of an asset; however, is the economic

value it provides to its operator. Hence, it is conceivable for the owner to op-

erate the asset to maximize its economic benefit. This economic value depends

on the structure of the underlying energy market. In other words, the optimal

operation of the asset, and hence its impact on the overall power system is

directly influenced by the incentives provided by the market.

In restructured electricity markets, the grid is operated as an open mar-

ket in which power is traded while grid reliability and supply demand balance is

maintained by the Independent System Operator (ISO). The incentives in such

markets, also known as the restructured electricity markets, are mainly prices

that are formed as a result of market clearance based on the bids submitted

by participants. Given the stochastic nature of demand and most renewable

supplies, market participants, particularly smaller ones, effectively respond to

market prices. Hence, for a storage asset operator, optimal operation of the

asset is equivalent to optimal response to real-time stochastic prices and this

is our focus in this chapter.

Potential benefits and applications of the storage assets in power sys-

tems has been investigated in the past by various authors. Eyer and Corey [39]

aim at giving a broad perspective of the value of energy storage in power sys-

tems, one that is most suitable for assessment of long term benefits and invest-

ment purposes. Many authors have proposed optimizing the storage operation
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to stabilize the combined output of an intermittent generation source, like a

wind farm, and the storage asset. Korpaas et al. [63] investigate optimal op-

eration of a combination of a storage asset and a wind farm and propose using

the storage asset to meet the output schedule which has been formed based

on a forecast model. Along the same lines, Teleke [96] considered control

strategies for smoothing wind farm output using battery storage. Denholm

and Sioshansi [35], examined co-locating wind farms with Compressed Air En-

ergy Storage (CASE) to assess the value of energy storage. Divya and Øster-

gaard [36] investigate various applications of battery storage in power systems.

They discuss firming wind power as well as using battery for energy arbitrage

between high and low price times. Qin et al. [85] studied the arbitrage value

of storage assets under locational marginal prices. Secomandi [87] studied op-

timal commodity trading with a capacitated storage asset and showed that

a multi-threshold policy (buy, idle, sell) is optimal under some conditions.

Faghih et al. [40] studied economic value of ramp-constrained storage assets

and particularly showed that storage assets can improve price elasticity near

average prices.

In this chapter, we present our preliminary results on optimal operation

of the energy storage device as an independent asset in response to stochastic

real-time market prices. We first present our generic model for an storage asset

and then formulate the optimal operation problem as a dynamic program

whose objective is to maximize the net present value of the profit achieved

by operating the asset. Our main contribution in this work is to give the
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exact optimal operation policy under fairly generally distributed stochastic

prices and demonstrate that under some conditions, the optimal policy can

be computed and stored in a computationally efficient manner. Our approach

is not limited to grid scale storage devices and can be applied to micro grid

or even consumer level storage assets, e.g. Vehicle to Grid (V2G), if they are

under the same pricing structure.

The rest of this chapter is organized as follows: In Section 5.2 we present

our generic storage asset model. Section 5.3 is dedicated to presenting our main

result on optimal operation of the storage assets. We conclude the chapter and

comment on our future directions in Section 5.4.

5.2 System Model

In this section, we first introduce our general model for energy storage

assets and the objective of the optimization problem. We then make some

simplifying assumption and prepare the ground for our results on optimal

operation of the proposed model in the proceeding section.

We consider an energy storage asset which is being operated under real-

time prices where the asset owner aims at maximizing its profit through buying

and selling energy over time. We assume the storage operator participates as

a price taker; i.e. its decisions does not impact the prices. Considering a

discrete time setup, at each time slot, the storage operator needs to decide

how much energy to buy or sell given the price of energy over that time slot.

Note that due to lack of market power assumption, obtaining the optimal
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policy for energy trading is equivalent to finding the optimal bidding strategy.

Similar to Chapter 3, we assume a Markovian model for prices whose

statistics are available to the operator. Following a similar model as in [57],

we assume stochastic prices evolving as:

πt = λt(πt−1) + εt, (5.1)

where εt is the random variable modeling price innovations and λt(•) is model-

ing the inter-stage correlation of prices and seasonality. We assume εt ∼ Ft(•)

to be independent with respect to t, λt(•) to be monotone to avoid some tech-

nicalities, and define θt , πt−1 for notational convenience. Note that the price

innovation statistics is assumed to be completely general with arbitrary mean

and distribution.

Our objective is to find the optimal policy which can be employed by

the storage operator, or operator in short, to maximize its expected profit from

operating the storage asset. To this end, we need to model the dynamics of

the storage asset. Storage assets come in wide variety depending on their size

and technology. Examples range from batteries based on different chemistries

and in various sizes to flywheels, thermal storages, pumped hydro assets and

Compressed Air Energy Storage (CAES). Although the dynamics of each of

these storage technologies are different, they share some common fundamen-

tals. From grid’s perspective, all of these assets have a State of Charge (SoC)

which is basically the amount of energy stored in them. For efficient operation

of the asset, its SoC is bounded to a specific range. Moreover, the operator
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can control the flow of energy in and out of the asset and similar to SoC, for

efficient operation of the asset, there are upper and lower bounds on the rate

of energy flow. The operator pays for flows going in, i.e. consuming electricity

and is paid for flows out.

We formalize this model as follows. Let us denote the state of charge

by xt and the total energy transfered in/out of the storage asset at time t by

ut, then the dynamics of the asset can be described as:

xt+1 = xt − (η+(ut)
+ + η−(ut)

−),
u ≤ ut ≤ u,
x ≤ xt ≤ x,

(5.2)

where η− and η+ capture inefficiencies in energy storage and retrieval respec-

tively; and, x, x, u and u represent the upper and lower bounds on feasible SoCs

and energy flow per time slot respectively. Also, we define: (•)+ , max{0, •}

and (•)− , min{0, •}. Note that for a physical system where losses are always

non-negative:

0 ≤ η− ≤ 1 ≤ η+. (5.3)

Moreover, the bi-directional flow of energy implies that:

u ≤ 0 ≤ u. (5.4)

At each time step, the utility of the operator is given by its energy sales

to the grid:

gt(xt, ut, πt) = πtut, (5.5)
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and final stage utility at stage T , which captures the effect of remaining energy

in the storage device is given by:

gT (xT ) = mT (xt − x). (5.6)

where mT is the price for energy remaining in the storage asset after final

stage. The objective is to maximize the total expected net present value of

the profits:

J∗0 (x0, θ0)= maxEπt [
T−1∑
t=0

a(t)gt(xt, ut, πt)+a(T )gT (xT )], (5.7)

where a(t) =
∏

t′<t αt′ ; αt is the discount factor; and the maximization is over

all policies that admit a feasible ut, denoted by ut(xt, πt) by abuse of notation.

Here, we consider a finite horizon model due to the non-stationary statistics

of prices and the infinite horizon case can be approximated by picking a large

enough T .

5.3 Optimal Operation of Storage Assets

In this section, we state our main result which provides a closed form

optimal policy and value function for the no-loss case and then show that

under price independence assumption, the optimal policy can be computed and

stored computationally efficiently. We then discuss the technical challenges

with the lossy case and shed some light on sufficient conditions on tractable

cases.

For the sake of brevity and notational clarity, let us define some notation

and make some simplifying assumptions. We define a ∧ b , min{a, b} and
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a∨ b , max{a, b}. Also, we assume symmetry in the rate limits in and out of

the storage device from the grid perspective, i.e.:

u = −u. (5.8)

Also, defining rP = x−x
u

and nP = brP c, we assume:

rP ∈ Z, (5.9)

which implies that state space range is divisible by the per time step limit of

energy transfer and rP = nP . Moreover, without loss of generality, we assume:

x = 0. (5.10)

Finally, for the ideal case, we assume:

η− = η+ = 1. (5.11)

Now we are ready to present our first result, which gives the optimal

operation policy under correlated prices:

Theorem 5.1. Consider the system described in (5.1)–(5.11).

(a) The optimal value function is continuous, piecewise linear and concave

with nP + 1 pieces given by:

J∗0 (x, θ)=

nP∑
j=0

mj
0(θ)[(x−jū)+∧ū] + c0(θ)ū, (5.12)

where mi
t(θt) is given by the following backward recursion:

mi
t(θt) = Eεt [M(θt, εt)], (5.13)
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where,

M(θt, εt)=


m̃i+1
t+1(πt) πt<m̂

i+1
t+1

πt m̂i+1
t+1≤πt<m̂i−1

t+1

m̃i−1
t+1(πt) m̂i−1

t+1≤πt

, (5.14)

πt , λt(θ)+ε, m̃
i
τ (θ) , ατ−1m

i
τ (θ), m̂i

T = mi
T (θ) = mT , ∀i, θ, m̂0

t =

m0
t (θ) = +∞, ∀t, θ and m̂nP

t = mnP
t (θ) = −∞, ∀t, θ, and m̂i

t is the

extended solution to the following fixed point equation:

µ = m̃i
t(µ), (5.15)

and, ct(θt) is given by:

ct(θt) = Eεt [C(θt, εt)], (5.16)

where πt = λt(πt−1) + εt.

C(θt, εt)=αtct+1(πt) +

m̃i
t+1(πt)−πt πt<m̂

i
t+1

πt−m̃i−1
t+1(πt) m̂i−1

t+1≤πt
. (5.17)

(b) The optimal policy is given by:

u∗t (x, πt)=



u πt ≤ m̂i+1
t ,

x− (i+ 1)u m̂i+1
t <πt ≤ m̂i

t,

x− iu m̂i
t <πt ≤ m̂i−1

t ,

u m̂i−1
t <πt.

, (5.18)

where

i = bx
ū
c. (5.19)
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The proof is provided in Appendix E.

Theorem 5.1 demonstrates that the optimal operation policy follows a

multi-threshold form in the sense that for any given x and its corresponding i,

the thresholds can be obtained. Moreover, the number of these thresholds are

limited to nP which is basically the minimum number of time steps needed to

span the SoC state space.

Moreover, one main result of this theorem is the structure of the optimal

value function. Equation (5.12) basically shows how the price state and SoC

state interact. In particular, the optimal value function is piecewise linear in

SoC state and the price statistics only affect the coefficients of the pieces.

Intuitively, these coefficients correspond to the expected marginal net

present value of the storage at different SoCs. That is, at given SoC, x, these

coefficients represent the expected marginal change in the profit of operation

given the price statistics forward, adjusted by the discount rate. This marginal

profit involves both selling and buying energy forward in time. ct(θ), on the

other hand, is the constant profit obtained from the operation at stage t inde-

pendent of x, or basically the base profit.

Since we have assumed that the storage operator acts as a price taker, it

is not hard to see that the optimal policy obtained also corresponds to the opti-

mal bidding strategy by the operator. Therefore, the piecewise linear structure

of the optimal value function means that using piecewise linear marginal cost

specification which is common in many energy markets does not impact opti-
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mality of the bidding for the storage operator, and Theorem 5.1 indeed gives

the optimal bidding strategy under assumptions given in (5.1-5.11).

Although Theorem 5.1 simplifies the structure of the value function by

decomposing the role of SoC and prices and giving O(nP ) fixed point calcula-

tions for SoC recursions, price expectation recursions still pose a computational

challenge due to correlations. Taking this lead, in the next theorem, we show

that there recursions can be much simplified and the optimal policy can be

computed and stored in a computationally efficiently under price independence

assumption.

Theorem 5.2. Consider the system specified by (5.1)–(5.11) and further as-

sume λt(θ) = 0 for all t, then, the optimal value function given in Theorem 5.1

simplifies to:

J∗0 (x)=

nP∑
j=0

mj
0[(x−jū)+∧ū] + c0ū, (5.20)

where mi
t is given by:

mi
t = m̃i+1

t+1 −Gt(m̃
i−1
t+1, m̃

i+1
t+1), (5.21)

and ct is given by:

ct = αtct+1 +Gt(−∞, m̃i
t+1) + Ḡt(m̃

i−1
t+1,∞), (5.22)

in which,

Gt(z, z
′) ,

∫ z′

z

Ft(ζ) dζ, (5.23)

Ḡt(z, z
′) ,

∫ z′

z

(1− Ft(ζ)) dζ, (5.24)
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and m̃i
τ , ατ−1m

i
τ . The optimal policy remains the same as given in Theo-

rem 5.1.

The proof is provided in Appendix F.

According to this result, the description of the optimal value function,

and hence optimal policy, which essentially consists of mi
t and ct can be stored

in vector of nP + 1 elements per time step and hence is Θ(nP ). For any given

T , the total size of the optimal policy description would be Θ(TnP ). Com-

putationally, assuming G(•, •) and Ḡ(•, •) are Θ(1), we have the same result

computationally. Moreover, the per stage computation can be parallelized into

nP + 1 independent computations for higher efficiency.

5.4 Conclusion

In this chapter, we extended our results on flexible loads to storage

assets and proposed a generic model for energy storage assets. We then for-

mulated the profit maximization problem for the asset owner under stochastic

prices. We also obtained the exact optimal policy for operation of such assets

under no-loss assumption and further demonstrated that if prices are not cor-

related, the optimal policy and value function can be computed and stored in

a computationally efficient manner.
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Chapter 6

Energy Delivery Transaction Pricing for

Flexible Electrical Loads

6.1 Introduction

Price signals are considered by many authors as the key demand-response

method to coordinate supply and demand and induce demand elasticity, espe-

cially to shift load to off-peak hours. Various dynamic pricing methods such

as Time of Use (ToU) pricing [4], Real-Time Pricing (RTP) [50, 82], Critical

Peak Pricing (CPP) [32, 110] have been proposed, studied and experimentally

evaluated, and optimal algorithms for responding to such prices have been de-

signed [72]. Various authors [17, 18, 66, 73, 105] have taken a game-theoretic

approach and sought existence of Nash-Equilibria (NE), its stability, conver-

gence and efficiency, and prices supporting it. Nevertheless, as shown in [57],

exposing flexible consumers to real-time prices can induce undesired aggregate

load profiles with high peak-to-average ratios (PAR) that can be particularly

detrimental to the distribution network.

Alternatively, recent work such as [6, 8, 9, 11, 14, 15, 25, 44, 45, 48, 58,

60, 74, 86, 91–94, 102] suggest that more coordination among flexible loads can

provide benefits beyond merely shifting and distributing the load over time by
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providing ancillary services to the grid. This coordination is usually achieved

by an Energy Service Company (ESCo) which is delegated the control of the

energy delivery process by the consumer in return for a low flat energy price

to the consumer. The ESCo utilizes aggregate demand flexibility to minimize

total energy delivery cost by offering some of the load as responsive reserves

in the market while keeping the aggregate load profile under capacity con-

straints of the distribution network (DN). Increasing penetration of uncertain

generation sources, emergence of new flexible loads, and the inefficiency of

existing reserve provisioning methods make such proposals very appealing.

Consequently, some authors [7, 19, 76, 79, 90] have considered direct coupling

of uncertain renewables, e.g., wind, with flexible demands. However, since

methods similar to ones in [25] and [58] charge users at a fixed flat rate inde-

pendent of demand flexibility and time, they fail to efficiently incentivize users

to reveal their flexibility and may face fundamental challenges in real world

implementations.

In this chapter, we aim to fill the gap between dynamic pricing and

coordinated energy delivery approaches by proposing a novel interaction and

pricing scheme in which the process of energy delivery has a central role, and

demand flexibility and system state play major roles besides market prices and

demand amount.

We define an Energy Delivery Transaction (EDT) as the process of

delivering a certain amount of electric energy subject to given power trajectory

and time constraints. The trajectory constraints may involve maximum and
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minimum limit but implicitly assumed to provide some flexibility. Although

our method can be used in most EDT classes, for more clear demonstration,

here we focus on a particular class of EDTs in which a certain amount of

energy should be delivered by some deadline subject to rate constraints. EVs

constitute a natural, and perhaps the most important, example of this class

where, upon plugging in, the battery needs to be charged over a given period

of time subject to the charger power constraints.

Building on our previous work in [58], we consider an ESCo as a cen-

tral entity which receives EDT requests from users, and prices them accord-

ing to market prices, demand amount and flexibility, and congestion level of

the distribution network. The ESCo also makes decisions necessary for pur-

chasing and delivery process to minimize energy delivery cost while observing

distribution network constraints. At the system level, the ESCo plays an im-

portant role in stabilizing the uncertainty in the system through aggregating

and controlling the flexible demands and coupling them with the uncertain-

ties in distribution load level and supply demand balance in the market. The

response to distribution load level uncertainty is achieved by only using the

excess capacity of the distribution network. Response to uncertainty in the

wholesale market is accomplished through responding to reserve prices, which

are expected to go up as supply demand mismatch in the wholesale market

becomes more uncertain. At the user level, the ESCo simplifies demand re-

sponse participation and increases its efficiency by managing user schedules,

and hedges the risk of real-time prices for the users. Our focus in this work
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is to design a pricing mechanism that reflects the value of flexibility to the

users so that they can make clear cost-comfort trade-offs and are incentivized

to reveal their true flexibility. Our main contributions can be summarized as

follows:

� Introducing the concept of Energy Delivery Transaction and using it as

the commodity which is priced and exchanged, and analyzing the effects

of trading such a commodity besides the real time electric power.

� Proposing and analyzing a new pricing scheme for EDTs, and particu-

larly showing that it provides efficient incentives to flexible users in a

coordinated energy delivery context and can be implemented in a com-

putationally efficient manner.

� Verifying, through simulation, the effectiveness of the method under dif-

ferent distribution network load levels, and analyzing network level user

response to such a scheme and its efficiency in competition with oppor-

tunistic response under RTP and conventional consumption.

The rest of this section is organized as follows: In Section 6.2 we present

the model according to which the ESCo interacts with the users, the market

and the distribution network. In Section 6.3 we introduce and discuss energy

delivery transaction pricing. In Section 6.4 we present our simulation results

and compare the performance of transaction pricing with optimal user response

to real-time prices and conventional consumption. Finally, in Section 6.5 we

conclude the chapter.
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6.2 Preliminaries and Model

6.2.1 The Energy Services Company (ESCo)

We consider a model similar to that discussed in [58] where the ESCo

acts as a mediator between the wholesale market and the end-users and there-

fore has a role similar to the retailers or retail electricity providers (REPs).

The main difference, however, is that the ESCo offers a different type of ser-

vice, targeted at delay tolerant demands. Instead of committing to deliver

at a certain rate, the ESCo provides the requested amount of energy by the

requested deadline. In case of failure in delivery, the ESCo reimburses the load

at a pre-negotiated inconvenience price, denoted by s. This service is either

provided at end-points called smart plugs which are capable of communica-

tion and control with the ESCo or using Home Energy Management Systems

(HEMS), which collaborate with the ESCo on energy delivery control process

in smart grid environments. The ESCo also contracts with the distribution

network operator to only use the excess capacity of the distribution network

and in return receives a discount on the distribution costs. Table 6.1 summa-

rizes the interactions of the ESCo with the other entities in the system and

Figure 6.1 visualizes them.

To satisfy its commitment to the users, the ESCo should receive the user

energy demand information and decide the amount of electricity purchases on

behalf of each user over time. For notational convenience, we arrange the user

energy demands into a column vector denoted by d̃t and d̃ =
∑

t d̃t, where

the subscript t allows for capturing user arrivals at different times. The user
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Figure 6.1: ESCo interactions.

arrival and departure times (based on their deadlines) are similarly denoted by

ta and td. We also arrange ESCo power purchase decisions on behalf of users

at each time t in xet and corresponding decisions for the amount of reserves to

offer in xrt , and define xt = (xet ,x
r
t ) for notational convenience.

Table 6.1: ESCo interactions with different entities.

Entity Interactions

ISO Wholesale market participation: Purchasing
electricity and offering reserves.

Distribution Network
Operator

Obtaining the excess capacity information.

Smart Plugs Obtaining demand information, user selections
and controlling the energy delivery schedule.

Home Energy Manage-
ment Systems (HEMS)

Obtaining demand information, system prefer-
ences and selection, communicating the energy
delivery schedule.
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The ESCo participates in the wholesale electricity market for purchas-

ing electricity. Besides conventional participation, just like other load serving

entities, the ESCo utilizes the flexibility of the delay-tolerant loads at its dis-

posal to offer reserve services in the market. To keep the model simple and

manageable, we assume a single time scale for the market clearing interval, ∆t,

essentially assuming the real-time market; however, this model can be general-

ized to multiple time scales as done in [26]. We assume that the market requires

bi-directional reserve offers, where, the reserve provider offering x amount of

reserves should be able to modulate its consumption around its nominal value

up and down up to x. Furthermore, we assume that reserve deployment re-

quests are net zero over the decision period. Assuming the ESCo participating

as a price-taker, it should decide bid/offer prices ue, ur, us corresponding

to electricity purchases, reserve deployment, and reserve standby prices, re-

spectively. Denoting the market clearing prices for energy and reserves by pe

and pr, similar to [58] and [25], the indicators for the events of winning the

bids for electricity and reserve offers are obtained as wet = 1{uet ≥ pet} and

wrt = 1{|pet − urt | + ust ≤ prt} respectively, as a result of co-optimization of

energy and reserves, where 1{•} is the indicator function. We assume that

reserves are paid pr for being standby, while deployment remunerations are cal-

culated according to real-time energy price, pe. We also define wt = (wet , w
r
t )

and ut = (uet , u
r
t , u

s
t).

As treated more extensively in [58], the problem of minimizing the total

cost of energy purchases for the users subject to market uncertainties can be
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formulated as a Dynamic Program (DP) with the following dynamics:

dt+1=dt+d̃t−we
t ◦ xet∆t, t = 0, . . . , T − 1, (6.1)

where ◦ denotes element-wise product and dt is the vector of remaining de-

mands. The step and terminal cost functions, gt(·) and gT (·), are given by:

gt(xt,ut) = 1>(petw
e
t ◦ xet−prtwr

t ◦ xrt )∆t, (6.2)

gT (dT ) = s1>dT , (6.3)

where 1 is the all ones vector of appropriate length. The decision variables,

xt and ut are subject to the following constraints:

1>(xet + xrt ) ≤ Ct, ∀t, (6.4)

xrt ≤ xet , ∀t, (6.5)

xet + xrt ≤ x̄, ∀t, (6.6)

∆t xet ≤ dt, ∀t, (6.7)

xet,i, x
r
t,i = 0, ∀i, , ∀t /∈ [tai , t

d
i ], (6.8)

xet ,x
r
t ≥ 0, ∀t, (6.9)

where index i indicates the ith user, Ct denotes distribution network excess

capacity, which we refer to as capacity for short, and x̄ encompasses max-

imum input rates. Note the positivity constraint on xet implies no reverse

power transfer back to the grid unlike what is suggested in [59] and dubbed as

“Vehicle-to-Grid” (V2G). The objective of the ESCo then can be formulated

as:

DP : J∗(d̃, ta, td)= minEpt [
T−1∑
t=0

gt(xt,ut)+gT (dT )], (6.10)
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where the minimization is over the policies which give xt and ut as a function

of the current state, dt.

6.2.2 The LP Scheduler

As discussed in [58], the problem in (6.10) cannot be solved in a compu-

tationally efficient manner; nevertheless, a computationally efficient approx-

imate solution can be obtained by using a mixture of certainty equivalence

control [13] for obtaining xt, and a heuristic method for obtaining ut. This

solution is called the LP Scheduler since it casts the approximate problem

in a Linear Programming (LP) model to approximate the expected cost-to-go

function. The LP Scheduler is implemented in a rolling horizon fashion, i.e., at

each step, the next stage solution is implemented and the system state is up-

dated based on the evolution of the system. By some abuse of notation, from

the LP Scheduler’s perspective, d̃ captures the system state as the demand

currently owed to each load, i.e., all loads arrived before the current stage

are treated like loads arrived just now with demand equal to their remaining

demand and ta and td are modified similarly. Denoting the estimated market

prices by p̂e and p̂r, the LP Scheduler obtains the solution for xt, denoted by

x̂t at each step by solving:

Ĵ(d̃, ta, td)= minx 1>[sd̃+
∑T−1

t=0 (p̂et−s)xet−p̂rtxrt ]
st. ∆t

∑
t x

e
t ≤ d̃, ∀τ ≤ t,

1>(xet + xrt ) ≤ Ct, ∀τ ≤ t,
xet + xrt ≤ x̄, ∀τ ≤ t,
−xet + xrt ≤ 0, ∀τ ≤ t,
xet,i, x

r
t,i = 0, ∀i, , ∀t /∈ [tai , t

d
i ],

xet ,x
r
t ≥ 0, ∀τ ≤ t.

(6.11)
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Now let us define the conditional one step forward solution, denoted by Ĵ+1(·|xe,xr),

as the next stage solution cost, assuming the state, (d̃, ta, td), is updated by

(xe,xr). Then ût is obtained by the approximated opportunity cost of losing

the corresponding bid:

ûe0,i =
Ĵ+1(·|x̂e−x̂e0,iei,x̂

r)−Ĵ+1(·|x̂e,x̂r)
x̂e0,i

,

ûr0,i − ûs0,i =
Ĵ+1(·|x̂e,x̂r−x̂r0,iei)−Ĵ+1(·|x̂e,x̂r)

x̂r0,i
,

(6.12)

and setting ûr0,i + ûs0,i to the minimum possible (by market rules) where ei is

the standard unit vector in the ith dimension as discussed in more detail in

[58].

Since the LP scheduler is a linear program at heart, it can be solved in a

computationally efficient (polynomial time) manner and there are already free

and commercial software packages available for that purpose. The effective

number of variables in (6.11) is 2
∆t

∑
i∈I(t

d
i − tai ) where I is the set of active

users in the system. To obtain offer prices, a problem similar to (6.11) should

be solved at most 2|I| times; however, such subproblems can be solved with

less effective complexity due to availability of the solution of (6.11).

6.3 Energy Delivery Transaction Pricing (EDTP)

6.3.1 Motivation

In the energy delivery model proposed in [25] and [58], the users are

charged at a pre-negotiated flat rate for their demands independent of their

arrival and departure times and distribution network congestion level. Such
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pricing scheme effectively makes the users insensitive to market prices and dis-

tribution network congestion and hence reduces demand elasticity; essentially

restoring the problematic situation of inelastic demand. Due to the inherent

desire of most users in minimizing their energy acquisition time, the users have

no incentive to declare their actual desired deadline or alternatively, no way

to find it out through cost-comfort analysis.

To address this issue, we propose a new user interaction method for

the ESCo that reflects the value of flexibility to the user by pricing the energy

delivery transaction request based on the arrival time, deadline, and requested

demand for various deadlines. This approach essentially balances between

RTP settings which can result in overreaction by loads, and flat rates which

result in inelastic demand.

6.3.2 User Interactions Model

To accommodate differentiated service offerings and user choice on

smart plugs, the user interaction model should be changed. The following

shows the step by step process through which each user is offered prices and

potentially commits to a deadline:

1. The user communicates its demand amount, d, and maximum acceptable

delay, τmax, i.e., its transaction request.

2. The ESCo responds with the vector of energy delivery costs for all feasible

deadlines, i.e., the transaction prices vector.
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3. The user does the cost-comfort analysis and potentially picks the desired

deadline, τ .

4. The ESCo commits to deliver the requested energy or pay the inconve-

nience fee at rate s.

5. The ESCo communicates proper control commands necessary to com-

plete the energy delivery transaction schedule as well as potential up-

dates in response to reserve calls to the smart plug.

In case of HEMS, there is not a fundamental change in the interac-

tion scheme at the negotiation phase. However, the actual implementation

of the schedule commands are delegated to the HEMS. The same negotiation

framework can be used with proper generalization of fixed and flexible param-

eters for more general energy delivery transactions. HEMS are advantageous

in terms of privacy by limiting ESCo’s access to appliances as well as further

optimization by appropriately grouping appliances and serving them under

different transactions.

6.3.3 Scheduling Algorithm and Transaction Pricing

The LP Scheduler is employed by the ESCo to jointly solve the market

participation and user scheduling problem in a computationally efficient man-

ner, minimizing the total cost of satisfying the energy delivery to the users.

Therefore, the ESCo has an estimate of the expected cost-to-go given the time

and current initial state of the system with respect to problem (6.10), com-
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posed of (remaining) user demands and arrival and departure times. Let us

define the unperturbed evolution of the system as the situation where the de-

sired decisions are implemented at each step and no arrival or early departure

happens. The ESCo also can use the LP Scheduler to obtain estimates of the

potential perturbed evolutions of the state, as used for obtaining offer prices

for the market.

Using this methodology, the ESCo calculates the estimated cost of en-

ergy delivery for an arriving user by obtaining the differential estimated cost

of the current schedule versus a new schedule obtained from perturbing the

system state with the new demand included in the schedule assuming it leaves

at deadline τ :

c(d, τ) = Ĵ([d̃ ; d], [ta ; 0], [td ; τ ])− Ĵ(d̃, ta, td), (6.13)

where semicolon denotes vertical augmentation. In other words, the ESCo

prices energy delivery cost to each new user as the estimated extra cost due

to the perturbations in the initial state caused by the new arrival.

The vector c(d) = [c(d, 1) . . . c(d, τmax)] forms the prices offered by

the ESCo to the incoming user and, as discussed, it can form a basis for the

user to make cost-comfort analysis as depicted in Figure 6.2. Note that it is

implicitly assumed that the user arrives at t = 0 since the LP Scheduler is

running in rolling horizon manner and hence t = 0 is the current time for the

scheduler.

A key aspect of such pricing scheme is that it is incentive revealing.
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Figure 6.2: Interactions between a PEV and the ESCo.

Inspecting the LP Scheduler formulated in (6.11), the new arrival effectively

translates to addition of 2τmax variables and their corresponding constraints.

In this setting, obtaining c(d, τ) is equivalent to adding more constraints to

the problem enforcing the corresponding xeτ ′ (and consequently xrτ ′) to zero for

τ ′ > τ ; hence, c(d, τ) ≥ c(d, τ + 1). In other words, the more flexible the new

user is, the less would be its energy delivery cost.

More generally, since the cost of initial state perturbation is directly

reflected to the arriving user we can conclude that a rational incoming user

has incentives that are aligned with the ESCo in minimizing its cost and hence

desires the same decisions. This property of differential pricing addresses the

admission control problem, another main issue with the flat pricing model

discussed in [25]. As pointed out in [58], the cost of serving the new demand,

d, approaches sd with increasing demand irrespective of demand flexibility

and the demand will be left unserved due to congestion. This is because the

total amount of demand approaches the maximum ultimate capacity of the
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system, ∆t
∑

tCt. New arrivals have no way to respond to such a situation

since flat prices do not reflect the system load level and the ESCo cannot

reduce congestion by blocking users. An interesting property of transaction

pricing is to reflect the effect of system load. Consequently, transaction pricing

incentivizes the incoming users to join the system at the right time, preventing

congestion and automatically and gracefully handling the admission control

problem. In other words, the pricing dynamically combines market prices (as

in dynamic pricing) and distribution level congestion cost.

The drawback of differential pricing for the ESCo is that, at least in this

most simple form, the total amount collected from the new users and the cost

of energy procurement (generation and transmission) in the market balance

out, hence leaving the ESCo with almost no profit. We address this issue,

by considering the total cost of energy delivery and including the distribution

cost which roughly accounts for 20% to 40% of a typical residential electricity

bill. By factoring in the gains to the distribution network, we assume that the

ESCo gets 50% discount on the distribution network costs and collects it as

profit. That is, the ESCo is able to potentially undercut competing retailers

in the total delivered price to consumers, in part, because it guarantees to the

distribution network provider that it will not overload distribution network

capacity.

Similar to obtaining offer prices, energy delivery transaction pricing

can be implemented in a computationally efficient manner. Although it seems

that roughly τmax instances of (6.11) type problems should be solved in the
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formation of each c(d) vector, the effective complexity of such instances are

substantially reduced noticing that the solver can warm start from the current

scheduler solution.

6.4 Simulation Results

Two sets of data is used for the simulations: A set of synthetic data,

and another set based on the dataset introduced in Chapter 2.

6.4.1 Results Based on Synthetic Data

In order to evaluate EDTP, we considered a group of total 300 users

randomly arriving according to a non-homogeneous Poisson process whose rate

of arrival is proportional to market prices over 24 hours to simulate the effect of

more arrivals at peak hours. Maximum deadlines are selected uniformly over 24

hours and upon joining the system, the user selects its deadline as the first one

which achieves the minimum cost. Each user selects its demand uniformly over

[0,1
2
x̄i(t

d
i −tai )], half of user’s maximum total capacity, taking into account that

people typically expect their waiting time proportional to their demand and

would not ask for an amount that is infeasible to receive. Market prices over

the 24 hours are obtained from perturbing average ERCOT real-time market

prices for the Houston zone over the 2009 year by Gaussian perturbations with

standard deviation of roughly 10% of the average prices. Excess distribution

network capacity is inversely affected by the general consumer demand. To

model this effect, distribution network excess capacity is obtained by scaling
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of the difference of a constant capacity and the estimated consumer demand,

where the latter is estimated from market prices. To model different traffic

scenarios, we scale distribution network capacity appropriately. Each scenario

is run 10 times and the results are appropriately averaged for further statistical

consistency.

We compare the performance of EDTP with the conventional consump-

tion and opportunistic consumption. Conventional consumption, which is sim-

ilar to immediate charging in PEVs, is defined as the setting in which an incom-

ing load starts its consumption at its arrival time with its maximum rate and

continues until its total demand is satisfied. Opportunistic consumers, on the

other hand, optimally respond to real-time prices using the algorithm derived

in Chapter 3. In order to obtain an upper bound on the performance of the

opportunistic consumers, they are assumed to be subject to the same real-time

prices on generation, transmission and distribution as the ESCo is, while not

being constrained by distribution network capacity. Hence, opportunistic con-

sumption is the best alternative users could have and the strongest competitor

for EDTP. As will be shown, however, it occasionally results in overloads of

the distribution system.

Table 6.2 summarizes our macro level results for the three load level

scenarios we considered named as high, medium, and low load conditions cor-

responding to different total requested demand divided by the total (energy)

capacity available to the ESCo, i.e., 1>d̃
∆t

∑
t Ct

.

Considering the total G&T cost for the ESCo, there is not much dif-
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Table 6.2: Simulation results for EDTP, opportunistic and conventional meth-
ods based on synthetic load.

Scenario Low Load Med. Load High Load

Total capacity (MWh) 31.05 20.7 13.8

Demand/Capacity ratio 31% 46% 72%

ESCo G&T cost $182 $182 $224

Reserves offered by ESCo 78% 75% 36%

Average delay reduction 7.6% 7.8% 8.6%

Total G&T Cost (Opportunistic) $229 $218 $226

Total over-capacity by opportunistic
loads

0% 3% 20%

Peak over-capacity by opportunistic
loads

0% 30% 96%

Total G&T (Conventional) $317 $319 $317

Total over-capacity by conventional
loads

2% 5% 11%

Peak over-capacity by conventional
loads

43% 104% 233%

ference in the total cost between the low and medium load scenarios which is

remarkable considering roughly 50% utilization factor of the distribution net-

work capacity. As expected, the cost increases under heavy load as capacity

becomes scarce; yet, we never encountered any unserved demand. In compar-

ison, the ESCo keeps a relatively good margin, roughly 46% to 77% versus

the conventional, and 1% to 20% versus opportunistic methods. There are

two main reasons enabling the ESCo keep its margin despite working under

distribution network constraints: First, its ability to sell back portions of its
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Figure 6.3: Empirical cumulative distribution function of unit costs experi-
enced by users assuming synthetic demand patterns.

load as reserves and second, its ability to run centralized scheduling over the

active users which leads to more efficient scheduling.

In order to get a more detailed view, let us consider Figure 6.3 where

the empirical cumulative distribution function (CDF) of the unit cost experi-

enced by users is depicted. Comparing EDTP and opportunistic consumption,

at low and medium load levels, shows a uniform unit cost difference of roughly

0.4¢/kWh in average unit cost of 2¢/kWh (i.e. roughly 20%) in advantage

of EDTP, demonstrated by the horizontal difference between the correspond-

ing curves at different levels of the vertical axis. However, the competition

gets very tight under the low capacity/high load regime. The shape of the

CDF for heavy load conditions suggests that although there is moderate con-

centration at relatively low prices, the competition gets tight between EDTP
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Figure 6.4: Histogram of unit cost differences between EDTP and opportunis-
tic consumption, i.e. costOpp−costEDTP

d
, in ¢/kWh, for synthetic demand patterns.

and opportunistic methods for a considerable portion of the users. To have a

better comparison from users perspective, we analyzed the cost difference be-

tween opportunistic consumption and EDTP for each user and normalized it

by the total energy demand of the user to obtain the users unit cost difference.

Figure 6.4 provides a histogram of the unit cost advantage of EDTP whose

formula is given in the caption of the figure. This figure gives a more vivid

comparison of the two methods. More mass on the positive side of the hori-

zontal axis basically means that more users will be happier with EDTP rather

than opportunistic consumption. Unsurprisingly, as the load levels increase,

EDTPs ability to offer better prices is reduced since it is subject to capacity

constraints. Having in mind that high load levels happen are unlikely in well

designed distribution networks, we conclude that EDTP is in fact very robust

to capacity constraints and performs well even under heavy congestion.

Conventional and opportunistic consumers are insensitive to load level
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as reflected in their total costs because these methods are oblivious to the

distribution network capacity; that is, some consumption is at the expense

of overloads in the distribution network. The total overcapacity load, served

while the distribution feeder has been overloaded, can be as large as 11% for

conventional and 20% for opportunistic loads, which essentially asserts the

potential overreaction issues of exposing flexible demands to real-time prices.

More concerning situations are observed in peak demand capacity violations.

In conventional settings the overcapacity situation mostly happens at peak

hours; however, in opportunistic settings, overcapacity situations happen dur-

ing off-peak hours corresponding to lowest prices in the market as a result of

overreaction to such prices.

The amount of reserves offered, which generally depends on distribu-

tion network capacity, load flexibility and reserve prices, is a key social value

proposition for the ESCo’s operation. Our results show that the ESCo can

handle the flexibility of the demand quite well and offer up to 75% of the load

back to the market as reserves. Moreover, as a consequence of positive cor-

relation of the amount of offered reserves with reserve prices over time, these

reserves are offered at the time they are needed most. Remarkably, even at

high load settings, the ESCo manages to offer 40% of its load back while other

methods only overload the capacity by 10%-20%.

We also analyzed how the offer vector provided by the ESCo is used by

the users to do cost-comfort analysis and its impact on both parties. We have

assumed that users choose the smallest deadline among the ones which give
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the least cost. Interestingly, in many situations, minimum cost choice may not

result in the maximum delay as the gains from more flexibility can become

very marginal to the total schedule cost of the ESCo and consequently the

cost offered to the user. This is exhibited at user level by the amount of delay

reduction with respect to maximum delay allowed by the user. As shown in

Table 6.2, roughly 8% delay reduction, compared to maximum allowed delay,

is observed independent of the congestion level.

Although EDTP provides many benefits to the grid and distribution

networks, its fate is ultimately decided by user adoption. For this matter,

perhaps the number of users who benefit from adopting it is more important

than their total cost reduction. Figure 6.3 illustrates the big picture show-

ing the strong performance of EDTP, especially at medium to low congestion

levels. We believe this advantage stems from offering reserves as the value of

the advantage is roughly about the average price of the reserves in the mar-

ket. A more detailed comparative view is given in Figure 6.4, where average

normalized advantage of EDTP versus opportunistic consumption is depicted.

Here we can particularly see the effect of capacity as it becomes scarce: More

users are pushed to the negative tail of the distribution although the main

concentration exhibits a steady 20% difference between the two since the av-

erage unit price is roughly 2¢/kWh from Figure 6.3 and the average difference

in unit cost is about 0.4¢/kWh. However, it should be emphasized that the

users in the negative tail typically correspond to cases where opportunistic

consumption overloads the distribution system. That is, this apparent price
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advantage of opportunistic consumption is not sustainable.

6.4.2 Results Based on PEV Energy Demand

In order to obtain more realistic results, particularly in case of PEVs,

we repeated our numerical experiments with the PEV dataset we introduced

in Chapter 2. We also used more recent ERCOT load and price data for the

experiments presented here. In particular, we used the minutely total overall

ERCOT load as the existing load in the system and obtained the base capacity

available to the ESCo as the excess capacity left after subtracting this average

existing load from a constant capacity of 120% of max average demand over

the 24 hour period. This base capacity pattern is then scaled for the various

level of load to obtain the target energy demand to capacity ratios presented

in Table 6.3. With this method, we basically assumed that the pattern of

the capacity available to the ESCo follows the constant capacity of the circuit

minus the average existing system demand; consequently, we did not have to

use prices as proxy to system demand as we did in the synthetic case. For

prices, we used Houston Load Zone prices for energy and ERCOT wide REG

prices for Ancillary Services, averaged over year 2012. To obtain symmetric

REG price, we averaged REG UP and REG DN prices for each hour.

Similar to the previous section, the simulations were limited to a 24

hour arrival period with maximum 24 hour dwell time, to obtain PEV demand

for such a profile, we randomly sampled the PEV charging request that would

arise from a non-anticipative everywhere charging model and truncated their
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maximum desired dwell time to 24 hours. It is worth pointing out that the

maximum capacity of each load in the PEV based setup is set to 3.3kW,

consistent with the capacity assumed in previous chapters, which is roughly one

third of the capacity assumed under the synthetic demand model. Moreover,

while the energy demand for the synthetic model was almost uniform, our

observations show that the energy demand from PEVs has a non-uniform,

almost exponential, empirical distribution. Finally, we have assume minimum

dwell time of two hours.

For each high, medium and low load scenario, similarly defined as in

the synthetic case, the model is run 160 times and the average results are

presented in Table 6.3, in a similar format as in Table 6.2. Similar to the

synthetic demand case, each scenario consisted of 300 users with their arrivals

following the arrivals of PEVs. The prices in each scenario are obtained from

perturbing average ERCOT prices as discussed above by Gaussian perturba-

tions with standard deviation of roughly 10% of the average prices. Similar

to the synthetic case, and in line with the previous chapters, we compare the

performance of EDTP with the conventional consumption and opportunistic

consumption.

Table 6.3 compares the performance of EDTP with opportunistic and

conventional consumption. As previously observed, EDTP adapts to tight

network constraints very well and its total cost is not heavily affected by the

level of load, about 10% change in cost for 40% change in demand to capacity

ratio. In other words, EDTP packs the flexible loads pretty efficiently. More-
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Table 6.3: Simulation results for EDTP, opportunistic and conventional meth-
ods based on PEV induced demand.

Scenario Low Load Med. Load High Load

Total capacity (MWh) 4.6 2.8 2

Demand/Capacity ratio 30% 50% 70%

ESCo G&T cost $96 $102 $106

Reserves offered by ESCo 75% 74% 50%

Average delay reduction 15.0% 16.7% 19.0%

Total G&T Cost (Opportunistic) $109 $109 $109

Total over-capacity by opportunistic
loads

5% 16% 23%

Peak over-capacity by opportunistic
loads

60% 200% 269%

Total G&T (Conventional) $120 $120 $120

Total over-capacity by conventional
loads

0% 8% 17%

Peak over-capacity by conventional
loads

32% 111% 205%

over, the total cost remains below the best total cost achievable to energy

only methods even in higher load levels. That is, EDTP outperforms oppor-

tunistic consumption in terms of total cost, which is mainly due to the gains

from offering ancillary services. In fact, considering the percentage of load

offered back as AS, which varies between 50% to 75%, the cost performance

of EDTP comes as no surprise. This significant amount of load offered as AS

also strengthens the benefits of EDTP versus other methods. The third main

advantage of EDTP shows itself comparing the overcapacity consumptions of
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the aggregated demand. In particular, it is observed that the cost advantage

of opportunistic consumption vs. conventional consumption, which is roughly

10%, comes at the cost of increased overcapacity consumption, roughly 1.5 to

2 times both on average and at peak. Note that EDTP always observes the ca-

pacity constraints and hence no overcapacity is observed. In fact, since EDTP

typically reserves some capacity for AS provision, its consumption is typically

below the full network capacity. So, as concluded before, EDTP presents a

strong case for managing load in the overall sense.

In comparison with the results based on synthetic load data, as pre-

sented in Table 6.2, first we observe that the general trend of EDTP’s perfor-

mance advantage is maintained. Although it may appear that the total costs

are drastically changed, it should be noted that this change is mainly due to

the reduced total energy load, rather than the change in demand patterns. To

observe this, note the reduced total capacity available at each load level, which

is almost six times. Also, less importantly, the change in the base prices in the

two cases contributes to the change in absolute values of total cost. Overall,

we conclude that the results in the two cases are consistent while EDTP shows

slightly higher advantage for the PEV users.

EDTP is designed to attract users to the ESCo’s program and address

incentive compatibility issues in coordinated energy management. To evaluate

its success in this goal, we need to compare the cost offered to the users. As

expected, the reduction in total cost may not be uniformly passed down to

the users due to their diverse preferences and demands. Similar to the pre-
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Figure 6.5: Empirical cumulative distribution function of unit costs experi-
enced by PEV users.

vious section, we have used empirical CDF of the unit cost to the users and

the histogram of unit cost advantage of EDTP versus opportunistic consump-

tion. Figure 6.5 and Figure 6.6 present our results on these two measures. As

observed before, Figure 6.5 shows a considerable cost advantage in favor of

EDTP, demonstrated by the horizontal difference between the corresponding

curves at different levels of the vertical axis, and as the capacity gets tighter,

this cost advantage diminishes. An interesting observation is the comparison

between the empirical distribution of the low load case and the opportunistic

case which shows the same change pattern and almost a uniform horizontal

difference. Interestingly, this pattern goes away as the capacity gets tighter.

We believe that the pattern is induced by the prices, and basically the signifi-
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Figure 6.6: Histogram of unit cost differences between EDTP and opportunis-
tic consumption, i.e. costOpp−costEDTP

d
, in ¢/kWh, for PEV users.

cant cost difference between consumption in on-peak hours and off-peak hours.

The similarity between low load curve and opportunistic curve shows that the

total capacity constraint of the network does not heavily constrain the overall

schedule under low load situations. Consequently, similar load patterns should

be expected under EDTP and opportunistic consumption and the cost differ-

ence, demonstrated by the horizontal difference between the curves, is mainly

due to the added value of AS provision. As the load level is increased, the

effect of network constraint becomes more pronounced and we see a complete

change in the empirical CDF in the high load regime.

The unit cost advantage of EDTP versus opportunistic consumption, as

depicted in Figure 6.6, shows that for most PEV users, EDTP offers superior

costs particularly at low and medium load levels. We believe that the users

who prefer opportunistic consumption at high loads are mainly the ones that

cause distribution network overloads and since EDTP pushes them to other
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hours, they are essentially subject to an increased cost to comply with network

constraints. For these particular users, the benefits of AS provision is not large

enough to compensate for the change in cost induced by their shifted load.

In comparison with Figure 6.4, Figure 6.6 shows higher advantages for

EDTP, roughly about two times. This observation suggests that PEV demand

patterns are more fitting to the EDTP scheduling structure and hence PEV

users would be more inclined to EDTP based programs. This is a very positive

result since it translates to EDTP’s ability to incentivizes PEV owners to

subscribe to programs that are more advantageous to the rest of the power

system without adding much more complexity.

6.5 Conclusion

In order to address the need for incentive revealing schemes to ensure

successful implementation of coordinated energy delivery solutions for flexible

and delay-tolerant loads, we took a fresh look at the problem by viewing the

complete process of delivering the requested energy to a load over time as a

single transaction. This approach helped us propose a natural dynamic pricing

scheme for such transactions which provides efficient incentives to the users as

well as substantial benefits to the grid and distribution network. We showed

that Energy Delivery Transaction Pricing not only reduces the total cost of

energy delivery compared to optimal response to real-time prices, but also,

provided with moderate distribution network capacity, gives a roughly 20%

better unit cost for most users and very few may actually find it not beneficial.
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Such gains are provided to the users while the ESCo protects distribution

feeder from overloading and offers roughly 75% of the load back to the market

as reserves.
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Chapter 7

Scheduling Flexible Loads for Ancillary

Service Provision in Multi-settlement

Electricity Markets

7.1 Introduction

Demand flexibility is one of the key enablers of demand response. Flex-

ible loads, i.e. loads not bound to a specific instantaneous power consumption

trajectory, comprise a considerable portion of the current load and are hence

potential demand response providers. Moreover, plug-in electric vehicle (PEV)

charging, which is projected to be a considerable future load, has shown to

be very flexible [56]. This flexibility not only enables displacement of electric

energy consumption by flexible loads to the time when it is more abundant

and hence cheaper, but also helps counterbalance the intermittency and un-

certainty of renewable sources, should the proper communication, control and

service infrastructure be in place. Furthermore, flexibility can be used to match

renewable generation to maximize its utilization without need for expensive

storage.

Utilizing demand flexibility and instigating demand response, however,

is a challenging task. As restructured electricity markets become standard
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in the US and around the world, economy becomes the main driver of sup-

ply demand balance. However, a considerable portion of flexible demand has

been shielded from market prices through utilities and Retail Energy Provider

Companies (REPCo) for technical and non-technical reasons. The major in-

frastructure challenges, i.e. fine grained measurement of consumption over

time and communication of prices to the consumer, are being addressed by

smart grids and other innovative communication mechanisms like OpenADR

[101]. However, new services should be offered over this infrastructure to en-

able full utilization of demand side assets. Due to the diversity in flexible loads

and their preferences, as discussed in Chapter 6, common pricing of electricity

such as Time of Use (ToU) and dynamic pricing cannot fully utilize the po-

tential of flexible loads and may result in undesired behavior at network level,

as demonstrated in Chapter 3.

In this context, an Energy Services Company (ESCo) or Load Aggre-

gator (LA), which can be a part of a REPCo, can orchestrate flexible demands

and aggregate them to a level that can participate in the electricity market at

the wholesale level. The motivation for such organization of flexible loads goes

beyond facilitation of operations and market participation to more control on

the aggregate level load, avoiding distribution network (DN) congestion, and

enabling provision of Ancillary Services (AS) in a reliable manner, which is re-

quired by most Independent System Operators (ISO) as a part of market rules.

Ancillary Services, and particularly frequency regulation service (REG), are

basically reserves provisioned by the system operator to cover supply-demand
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imbalances and maintain system stability. By modulating the instantaneous

consumption of a large enough group of flexible loads, the LA can operate

flexible loads as a REG provider while they are actually net consumers.

Aggregating flexible loads by the LA, however, is a technically challeng-

ing problem due to the wholesale market structure and inherent uncertainties

in the process. Most wholesale electricity markets are organized in a multi-

settlement fashion [21, 52, 70, 77, 84, 99] with at least two stages: The forward

stage, which we refer to as the day-ahead market (DAM), plays an operations

planning role. It is also where the reserves and unit commitment decisions are

usually made, in co-optimization with energy decisions, to ensure reliable oper-

ation of the grid. Most markets also incorporate a “real-time” market (RTM),

acting as a recourse stage, which is usually implemented as an adjustment

market.

The DAM is usually cleared hours before the actual operation time,

when information about flexible loads is available. Although LA can solely

participate in the RTM for energy purchases, offering AS usually requires

participating in the DAM. Moreover, participating in DAM can potentially

result in better total costs of energy to LA, if it can buy energy at a lower

cost. On the other hand, making day-ahead commitments are challenging as

there are various uncertainties faced by the LA in real-time in addition to load

arrivals and departures, including changes in real-time prices and distribution

network congestion situation.

Scheduling and participation in multi-settlement markets have been
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studied by many authors in the past and using various approaches. The major

part of the past work [10, 29, 54, 78, 109, 111, 112] has focused on the strategic

behavior of generation entities and firm resources in multi-settlement markets

and how various aspects, like risk, offering ancillary services and market rules

affect the results. Various approaches have been taken by the authors, from

Supply Function Equilibria (SFE) [10, 78] methods to simulation based ap-

proaches [112]. However, optimal participation of collections of demand side

resources in multi-settlement markets is much more challenging and is not

studied as extensively. One the most challenging aspects, from the perspec-

tive of this work, is the uncertainty in availability of resources which would

add a technically challenging dimension to the problem.

Caramanis and Foster [26] and [23] take an aggregation based approach

and hypothesize that only the total purchases of energy and sales of AS for

each group of users with the same deadline needs to be tracked and scheduled

and an optimal algorithm to distribute the optimal totals among the flexible

resources can be found. Using this assumption and focusing on PEVs, they

model the multi-settlement market consisting of a day-ahead and an hour-

ahead market and consider the interaction between various entities in the

market. They particularly aim at modeling the decision problem faced by the

Load Aggregator, which is obtaining optimal bids for energy and reserves in

both markets. They propose a stochastic dynamic programming formulation

for this problem and discuss its extension to other classes of flexible loads

like HVAC systems. They, however, do not discuss tractability of their model
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and have not shown any numerical results as to how their model performs

should approximate techniques be used to tractably solve the problem. In

their follow up work [24], the authors suggest modifications to the market

structure to enable better integration of flexible loads in the multi-settlement

market by opening the possibility of complex bids.

Jin et al. [53] propose a scheduling model for co-optimizing PEV load

and energy storage in a multi-settlement market as well as a communication

infrastructure model to support their scheduling algorithm. They show that

their model admits a mixed integer linear program and propose a heuristic

method to tackle its tractability which is essentially rounding a continuous

relaxation of the original problem. They study the performance of their model

through simulation and show major reduction in total cost by optimal schedul-

ing compared to uncontrolled charging. Moreover, they show that the loss of

performance due to their heuristic solution to the mixed integer program is

acceptable. The major shortcoming of their work, however, is adopting a de-

terministic model and resorting to the flexibility of the energy storage asset to

tackle the uncertainties faced by the system.

Subramanian et al. [95] consider the problem of a “Cluster Manager

(CM)” (i.e. Load Aggregator) which participates in a two stage market. The

CM has to satisfy the demand of a group of flexible and non-flexible loads

by purchasing energy on their behalf in the market and has access to an in-

termittent cheap generation asset (e.g. a wind farm). Unlike typical models,

they also assume that the CM has to buy reserve capacity to cover its de-
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viations from its base points cleared in the market. They aim at obtaining

cost minimizing decisions for bulk energy and reserve purchases in the day-

ahead market. They present their results for the case of fully flexible loads

and non-flexible loads. They obtain the optimal energy purchase policies for

the two cases by solving the dynamic programming problem resulting from

their model. Besides the fact that their model does not match the established

market rules in terms of reserve provision, their theoretical results apply only

to extreme cases they consider, i.e. the fully flexible loads and non-flexible

loads. While providing some insight into the nature of the problem, the sim-

plifying assumptions in studying the two extreme cases limit the applicability

of the model by relaxing essential constraints in the model. Consequently, it

is hard to generalize the result or numerically evaluate the performance of the

full model using the presented results.

Al-Awami and Sortomme [5], similar to the work presented here, ap-

proach the problem of optimal decisions in DAM and RTM using stochastic

programming. However, they differ from our work in that they assume avail-

ability of multiple generation resources, both intermittent and firm, to the load

aggregator and do not consider the possibility of AS provision by the flexible

loads, nor the distribution network constraints that the load aggregator might

be subject to. They also factor in the trading risk between DAM and RTM by

adding a conditional value at risk term to their objective. Their model results

in a stochastic mixed integer linear program which they solve using CPLEX.

Their model, however, captures uncertainty only in wind production scenar-
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ios and assumes PEV demand is known. Therefore, their scenario generation

technique is completely different from what is presented here. Their results

only show modest gains from coordination, about 3% improvement in total

cost. Unsurprisingly, their results show that including risk in their objective

improves the Conditional Value at Risk (CVaR) measure substantially.

In this chapter, we extend the work in Chapter 6 and [58] and propose

a model focused on the challenges in capturing the uncertainties in flexible

loads, particularly PEV loads, in a systematic way. The first contribution of

this work is to propose a stochastic programming approach that fits well with

the multi-settlement structure of the market and provides a realistic scheduling

mechanism for implementation by the load aggregators. The proposed scenario

generation technique which can handle heterogeneous scenarios is the second

main contribution of this work.

The rest of this chapter is organized as follows: In Section 7.2 we in-

troduce our system model. In Section 7.3 we present our formulation for

the planning method for DAM scheduling and our proposed scenario gener-

ation technique. In Section 7.4 we analyze the performance of the proposed

stochastic programming approach through numerical simulation. Finally, in

Section 7.5 we conclude and discuss our future directions.

7.2 System Model

To fully utilize the demand response potential of flexible loads, a sys-

tematic approach should be adopted for market participation and load schedul-
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Figure 7.1: Interactions of the Load Aggregator (LA) with other entities.

ing by the LA. This is the problem we tackle in this chapter by proposing a

model for the decision problem faced by the LA in the context of a multi-

settlement electricity market. To this end, similar to Chapter 6, we assume

a general information and power flow architecture which can be implemented

on smart grids or even independently. As illustrated in Figure 7.1, we assume

the LA communicating with the ISO for wholesale related operations, namely

bidding in the DAM and RTM for purchasing energy and offering AS as well

as other wholesale level information. The LA also communicates with the

distribution network operator to ensure feasibility of energy transfers and AS

services scheduled without overloading the network. Finally, the LA commu-

nicates with the flexible loads to gather their energy requests and preferences

and implement the energy delivery schedule and AS deployment commands.

The LA is assumed to participate in both DAM and RTM as a price taker,
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i.e. its decisions will not affect the prices.

The multi-settlement structure of the market calls for two main stages

for decision making, namely day-ahead and real-time. Day-ahead decisions

consist of bids for total energy purchased and offers for reserves for every

interval, usually an hour, in the following day. The decision problem faced

in real-time, however, has a multi-stage structure itself, i.e. at every interval,

which is usually five to fifteen minutes long, the LA should decide its bids

for energy, and reserves, should there be a real-time market for reserves.1

Moreover, the LA should decide the amount of energy transferred to each

flexible load as well as the portion of reserves provided by it at every real-

time stage. These decisions are subject to distribution network constraints

and individual load capacity constraints. Figure 7.2 depicts the decision time-

line where the square corresponds to the day-ahead decisions and the circles

denote the decisions made at each real-time stage and T denotes the number

of real-time stages considered by the LA.

Let us first introduce our notation. We denote the arrival time, depar-

1In RTM, the bids might be only allowed to change once every couple of intervals, e.g.
once every hour, although the market is run for every interval, e.g. 5 minutes.
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ture time/deadline and electric demand of each flexible load, e.g. a plug-in

electric vehicle (PEV), by tai , t
d
i and di respectively where i ∈ I is the set of

flexible loads. We assume that the ESCo has to supply the flexible load its

desired demand, di, up to the given deadline at some pre-negotiated rate and

any shortfall in the energy delivery is penalized at sEV $/kWh, which can be

seen as a proxy for price of gasoline in case of plug-in hybrid electric vehicles

(PHEV) like Chevy Volt. We further assume that the instantaneous rate of

energy delivered to each load can be varied continuously between zero and

x̄i. In other words, each load is assumed to have an individual capacity of

x̄i kW. In case of a PEV, tdi denotes the desired departure time, di can be

the depleted capacity of the EV battery and x̄i represents the Electric Vehicle

Supply Equipment (EVSE) capacity.

For simplicity, we assume a single feeder which we model to a single

capacity limited element. We denote excess capacity of this element by Ct.

As will be discussed later, our method can be extended for handling more

sophisticated radial distribution networks as well as multi-feeder setups, where

feeders are all in the same load hub.

Participation in DAM and RTM has a very different nature in the

sense that DAM is a forward market whose corresponding decisions are made

without the exact knowledge of the flexible loads availability and demand.

Moreover, only the aggregate amount of power needed for serving flexible load

is to be decided. Finally, the time resolution in DAM is usually different from

RTM (e.g. 1 hour vs. 5 minutes in ERCOT). This implies that the decisions
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made for DAM should be good for multiple market intervals in RTM. We

denote the DAM and RTM interval lengths by ∆tDA and ∆tRT, respectively.

For simplicity, we assume m = ∆tDA

∆tRT to be an integer. Since we are assuming all

the loads under the same bus, from the bulk power system perspective, we only

have to consider a single set of energy and reserves, in particular regulation,

prices. Since our focus here is to address the coupling between DAM and

RTM, we assume that the ESCo participates in the market as a price taker

and does not focus on optimal bidding. That is, unlike our previous work in

Chapter 6 and [58], the ESCo estimates prices for DAM and forms its offers

based on its marginal penalty (sEV). We denote the DAM predicted prices for

energy and reserves by pe,DA
t and pr,DA

t respectively. In RTM, we assume that

the ESCo is only allowed to purchase or sell energy, whose price is denoted

by pe,RT
t . We assume only statistical information of the real-time prices are

available to the ESCo.

The multi-settlement setup of the market implies two main set of de-

cisions to be made by the ESCo. In DAM, the ESCo should decide amounts

of total energy to purchase and reserves to sell for each time interval, which

we denote by xe,DA
t and xr,DA

t respectively. In real-time operation, in contrast,

amount of energy to be delivered to each load as well the share of the com-

mitted AS is to be decided besides the amount of purchases/sales of energy to

achieve a balanced schedule.
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7.3 Scheduling in Multi-settlement Electricity Markets

7.3.1 Participation in the Day-Ahead Market (DAM)

To address the day-ahead decisions, we adopt a stochastic optimization

model in accordance with the two stage structure of the problem. Our first

stage planning decisions consist of the quantities of energy purchased and

reserves offered in the day-ahead market. These decisions are used as nominal

values for total energy consumption and reserves offered in the recourse stage,

i.e. real-time. Constructing the recourse expected cost, as a function of the

planning stage decisions, however, is a challenging problem since the recourse

is a multi-stage problem itself. Moreover, in practice, only historical sample

information is available about load availability and demand amount, rather

than their distribution and patterns.

We formulate the DAM planning problem as follows:

min
xe,DA,xr,DA

(pe,DAxe,DA − pr,DA
t xe,DA)∆tDA + Eξ[h(xDA, ξ)]

st. xe,DA,xr,DA ≥ 0,
1>|TDA|x

e,DA ≤ xe,DA,

(7.1)

where:

� Vectorization is done with respect to the DAM time index, t ∈ TDA;

� TDA is the set of DAM time indices;

� pe,DA, pr,DA represent the expected day-ahead prices for energy and reg-

ulation in a row vector format;

� 1n denotes the column vector of all ones with length n;
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� |A| denotes the number of elements of set A;

� xDA = (xe,DA,xr,DA);

� ξ ∈ Ξ is the random variable indexing different potential scenarios;

� Ξ is the scenario set;

� xe,DA, the upper bound on the total DAM energy purchases;

� ∆tDA is the time interval length for the DA market;

� h(xDA, ξ) is the optimal objective of the real-time (RT) problem.

The upper bound on the total energy purchases in DAM, xe,DA, is added

as a regulatory constraint to decrease the scheduler’s tendency towards DAM-

RTM trading and arbitrage, particularly because risk is not directly modeled

in this formulation. In this work we have set xe,DA to minξ
∑

i∈Iξ di,ξ, that is,

the ESCo is required not to buy more energy in DAM than it almost surely is

going to consume. We will comment on this constraint later in this chapter.

In the recourse stage, the LA actually serves the PEVs and responds

to the regulation signal dispatched by the ISO. The impact of the planning

stage decision on this stage is the total amount of energy purchased in DAM

(at DA price) and the regulation commitments. Hence, we have the following

152



problem in recourse (not considering the bidding process):

h(xDA, ξ) = min
xe,RT
i,ξ ,xr,RT

i,ξ

pe,RTξ (xe,RT
ξ −Mxe,DA)∆tRT

+ sAS∆tRT1>|TRT|(Mx
r,DA − xr,RT

ξ )+

+ sEV
∑
i∈Iξ

(di,ξ −∆tRT1>|TRT,EV|x
e,RT
i,ξ ) (7.2)

st. xe,RT
ξ = Wξ

∑
i∈Iξ

xe,RT
i,ξ , (7.3)

xr,RT
ξ = Wξ

∑
i

xr,RT
i,ξ , (7.4)

xe,RT
ξ + xr,RT

ξ ≤ Cξ (7.5)

xe,RT
i,ξ + xr,RT

i,ξ ≤ xi,ξ, ∀i ∈ Iξ, (7.6)

xr,RT
i,ξ ≤ x

e,RT
i,ξ , ∀i ∈ Iξ, (7.7)

∆tRT1>|TRT|x
e,RT
i,ξ ≤ di,ξ, ∀i ∈ Iξ, (7.8)

xe,RT
τ,i,ξ = 0, ∀τ /∈ [tai,ξ, t

d
i,ξ), i ∈ Iξ, (7.9)

xei,ξ,x
r
i,ξ ≥ 0, ∀i ∈ Iξ, (7.10)

where:

� Vectorization is done with respect to the RTM time index, τ , τ ∈ TRT;

� TRT denotes the set of RTM time indices (as seen in the planning stage)

for all variables except the ones that are indexed by i, the PEV index,

for which, τ ∈ TRT,EV
ξ = [min{TRT},maxi t

d
i,ξ −min{TRT}];

� Iξ is the PEV index set for scenario ξ;
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� M is the time synchronization matrix between markets which is defined

as:

M = I |TDA| ⊗ 1m; (7.11)

� m = ∆tDA
/∆tRT as defined previously;

� In denotes the n× n identity matrix;

� ⊗ denotes Kronecker product;

� pe,RTξ is the real-time price of electricity in row format;

� sAS captures the penalty for unsatisfied regulation commitment;

� sEV captures the penalty for the unserved EV demand;

� ∆tRT is the period of the real-time market;

� Cξ represents the excess capacity of the distribution network available

for charging;

� tai,ξ, t
d
i,ξ, di,ξ,xi,ξ represent arrival time, departure time, energy demand

and EVSE capacity for each vehicle;

� Wξ is the time wrapping matrix, defined as:

Wξ = cols(1>

d
|TRT,EV
ξ

|

|TRT|
e
⊗ I |TRT|, [1, |TRT,EV

ξ |]); (7.12)

� cols(M,A) denoted the columns of M whose indices appear in set A;

Wξ is essentially a horizontal repetition of the identity matrix with

width truncated to |TRT,EV
ξ |. The main purpose of using this time wrapping
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matrix is to give the optimization problem a consistent rolling view of time.

Time wrapping basically wraps the time line of each of the PEVs back in

TRT range. Let us elaborate on time wrapping by going through an example.

Consider a PEV that arrives at 5pm and leaves at 8am next day. Assuming

∆tDA = 1hr and ∆tRT = 15min with a 24 hour planning horizon, the time

span of the PEV stay goes beyond the planning horizon for a particular day.

However, when time wrapped, the period between 12am to 8am is mapped

back to the same period in the problem’s time span, as if some other PEV has

previously started at 5pm yesterday and is finishing today at 8am. In other

words, time wrapping folds individual PEV time lines and aligns them to the

DAM and RTM time windows.

As discussed, constraints (7.3) and (7.4) define the time wrapped total

energy and AS variables, xe,RT
ξ , xr,RT

ξ . Constraint (7.5) ensures that total PEV

energy consumption and head room reserved for REG down remain below dis-

tribution network capacity. Constraint (7.6) ensures individual PEV capacity

limits of EVSE are similarly observed. Constraint (7.7) guarantees feasibility

of down REG. Constraint (7.8) prevents over-satisfaction of individual PEVs.

Constraint (7.9) ensures that energy can be consumed only over the availabil-

ity window of the PEV. Finally, constraint (7.10) ensures unidirectional flow

of power, i.e. no-V2G.

There are a couple of parameters that are potentially different in each

scenario. We overload ξ to represent the particular realization of these param-
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eters as:

ξ = (pe,RTξ ,Cξ, {(tai,ξ, tdi,ξ, di,ξ,xi,ξ)|i ∈ Iξ}). (7.13)

That is, we can have uncertainty in real-time prices, (excess) distribution

network capacity, and the PEV parameter set which includes demand arrivals,

departures, amount of energy requested by each EV and its EVSE capacity.

Consequently, each scenario has a realization of all of the above parameters.

Note that the parameters in the above triplet is a set, whose size, namely

the number of PEVs, is scenario dependent and hence imposes a challenge in

forming the distribution needed for scenario generation.

7.3.2 Participation in the Real-Time Market (RTM)

The stochastic program proposed above results in DAM market posi-

tions, xDA. In real-time however, the ESCo faces another multi stage problem

as the PEVs show up and prices change. The problem in real-time, however,

is very similar to the problem we studied in Chapter 6 and [58]. Therefore, we

skip further treatment of the real time decision problem for the sake of brevity

and to keep our focus on the effect of DAM planning on the overall cost faced

by the ESCo.

7.3.3 Scenario Generation

In this subsection we introduce how we obtain the expected value in

(7.1) by discussing our scenario generation approach. The major challenge

in obtaining scenarios, which are essentially realizations of (7.13) is the third
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element of it, which is the set of PEVs and their demands. Generating sce-

narios for time series data, i.e. prices and distributions network capacity, has

been studied in the past, e.g. [81], [80] and the references within. So the main

challenge is generating good scenarios for the group of PEVs.

Generating PEV scenarios has a couple of challenging aspects: First,

the number of PEVs in each group can be different and hence, the size of

each scenario is different. This makes finding a proper probability distribution

function rather challenging. Second, the arrival, departure and demand pro-

cess of the PEVs may have hidden correlations that might be hard to capture

by tractable probability distributions. As discussed in earlier chapters, user

preferences can be very diverse and capturing the non-stationary and time and

location dependent behavior of the users is a challenging problem.

To address these issues, we propose data driven method based on sub-

setting and sampling for scenario generation. The main motivation here is

that the ESCo has access to all the realized charging sessions for PEVs sub-

scribing to its programs at different locations. Using this dataset, similar to

what we used in the previous chapters, the ESCo first subsets the dataset to

obtain the relevant data subset, e.g. by time and/or location. Then based

on the probability distribution of the number of users in each scenario, it de-

cides the number of users in each scenario. Note that forming a distribution

function for the number of users expected to arrive over each day is relatively

straightforward. Then, for each scenario ξ, given the |Iξ|, the ESCo picks |Iξ|

samples from the relevant dataset with uniform probability. Alternatively, this
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method uniformly picks a subset of the relevant set with size |Iξ|. Finally, the

probability assigned to each of the scenarios is set to 1
|Ξ| .

The main advantage of the proposed scenario generation method is sim-

plicity and the fact that it does not need to form the distribution functions

(empirical or parametric) from the data and then sample them for scenario

generation. This would be particularly challenging since the correlation be-

tween various aspects of the loads and their potential correlation with each

other would be hard to capture. Moreover the dimensionality of the joint

distributions does not pose an issue in the proposed method.

The major downside of the proposed scenario generation method, how-

ever, is inability in capturing low probability tail scenarios. We do not believe

that this would pose an issue in our case since rare behavior patterns can only

minimally affect the bulk transactions in DAM and the ESCo usually has an

adequate amount of flexibility in recourse.

7.4 Performance Analysis

To establish the effectiveness of our proposed method, we measure the

cost reductions compared to various localized charging policies through simu-

lation. We also measure the amount of reserves offered by the LA and their

reliability in terms of deviations of reserves offered in real-time from day-ahead

offers. Finally, we study the aggregate load to measure the distribution level

impacts of our proposed method.
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To generate the simulation model and furnish it with data, we use

the transportation induced PEV dataset we introduced in Chapter 2, similar

to Chapter 6, where we use ERCOT prices for Houston load zone as our

reference prices, ERCOT’s diurnal load pattern as the pattern from which we

drive out excess distribution network capacity and the PEV dataset resulting

from everywhere charging with minimum dwell time of three hours. More

specifically, the prices are generated by perturbing the historical prices with

Gaussian samples with roughly 5%-10% standard deviation. The distribution

network is first obtained by subtracting the ERCOT minutely average diurnal

pattern from 120% of its maximum (as the feeder capacity) and then scaling

the total energy capacity in the pattern appropriately so that 50% excess

capacity loading is achieved.

We implemented the stochastic program in its deterministic expansion

form. The entire simulation process is implemented in MATLABTM [67], in-

cluding scenario generation, and YALMIP [65] is used as the optimization

modeling interface to the solvers. We have experimented with various solvers

including CPLEX 12.6 [51], Gurobi 5.6 [2], MOSEK 7 [3] and GLPK [1], where

the first three are commercial and were available on an academic license and

the latter is an open source solver. Our computational experience with these

solvers in our application was mixed, and sometimes contrary to established

benchmarks [71]. All the commercial solvers performed much better than

GLPK as expected. CPLEX performed worst among the commercial solvers,

ranging between 2-3 times slower than Gurobi. To our surprise, however,

159



MOSEK performed better in most cases, our performing Gurobi between 10%

to 20% in terms of run time.

We assume roughly 50 charging sessions per day scenario (since the ex-

act number depends on the scenario and day of week). To achieve a consistent

result from the DAM stochastic program we experimented with the number of

scenarios. Based on our dataset and sampling, we found out that the total cost

of the DAM planning problem does not change more than 10−3 for number of

scenarios greater than 250 scenarios; therefore, we ran each day of planning

with 250 scenarios.

We have performed the simulations for the complete year of 2012 to

minimize the effect of fluctuations in prices. Figure 7.3 summarizes the re-

sults in terms of the average normalized cost over 2012. In comparison with

uncoordinated charging, as expected from the results in the previous chapter,

there is substantial amount of saving even when the coordinated users are

subject to capacity constraints while uncoordinated users are not. We have

also demonstrated the effect of savings on the total cost as the stacked block.

That is, if the savings from AS offering, which can only happen if the ESCo

participates in the market, are taken off the ESCo’s balance sheet, the cost

will go up by the block on top of the cost for the scheduled users. Note that

this is a rough estimate of the contribution of AS provision in total costs since

if the ESCo forgoes the AS provision option, its schedule would most likely

change. In other words, the AS savings block shown here is an upper bound

on the contribution of AS in total cost reduction.

160



Immediate AR Sched
0

0.5

1

1.5

2

2.5

3

N
o

rm
. 

A
v
g

. 
C

o
s
t 

p
e

r 
E

n
e

rg
y
 D

e
liv

e
ry

 S
e

s
s
io

n

Consumption Policy

 

 

Cost

AS savings

Figure 7.3: Average cost comparison between immediate charging, AR charg-
ing and multi-settlement scheduling.
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Figure 7.4: Average cost of multi-settlement scheduling per month over the
year.

As demonstrated by Figure 7.3, scheduling in DAM reduces the energy

cost to approximately half that of price insensitive methods. Also, roughly

one fourth of the savings comes from the AS provision. In order to get a

more detailed view and observe the seasonalities in costs, we have also plotted

the monthly averages of cost per PEV charging session in Figure 7.4. This

figure shows that the main monthly trend of the costs remain the same and

are mostly influenced by the trend of electricity and AS prices.

Finally, we study the ratio of AS capacity offered to energy served in

Figure 7.5, where we have plotted this ratio for year 2012 on a monthly basis.

Based on this figure, the ratio of AS capacity offered to energy served remains
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Figure 7.5: Monthly AS offered to energy served ratio.

above 50% for all months and relatively steady. This is good news since it

suggests that overall, the PEV load can be seen as a substantial and reliable

source of AS in terms of capacity.

Careful investigation of the source of cost savings, which is better than

what expected from the previous chapter, revealed that some of the savings, in

some cases a major portion of it, came from the ESCo ceasing the DAM-RTM

trading opportunities. Since we have assumed that unused DAM purchases can

be sold back to the market, when prices are expected to be better in DAM,

the ESCo purchases considerable amounts in those times, almost regardless of

its schedule and sells it in RTM. Since we expect these arbitrage opportunities

to be short lived, we tried to set in place measures to prevent extensive oc-
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currence of such situations. In this work, as discussed in the formulation, we

have bound the total amount energy purchase volume in DAM to be the mini-

mum amount of total energy demand over the scenarios. We believe, however,

that systematic modeling of risk in DAM-RTM decisions, through including a

systematic measure of risk into the objective function, e.g. CVaR, would help

with such situations. Finally, we believe there is nothing systematically wrong

in ESCo seeking profit maximization in any possible way, if the risks of such

decision making is modeled properly. We have left investigation of this path

for future work.

7.5 Conclusion

In this chapter we proposed a systematic method for an Energy Services

Company, particularly one that serves PEV load, to participate in a multi-

settlement market structure. We focused on the DAM planning problem and

formulated it as a stochastic program. We then discussed the challenges in

scenario generation in case of PEV load and proposed a data driven approach

for generating scenarios. We finally presented our performance analysis on the

proposed method and showed that adopting the proposed method can result

in cost reductions of about 50%, roughly half of which is due to AS sales by

the ESCo. Moreover, we observed that the ESCo would offer roughly 50% of

its served load back in the market as AS.

We plan to add a measure of risk to our future implementation of our

proposed method to have a more realistic view of the decision making process
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by the ESCo. Moreover, we are working on more efficient implementation of

the proposed stochastic program though L-shaped method [16] and similar

techniques.
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Chapter 8

Conclusion

8.1 Conclusion

Utilizing demand flexibility is key for increasing efficiency of asset uti-

lization in the current grid and effective integration of intermittent renewables.

In this dissertation, we investigated various methods for harnessing demand

flexibility and its extension to other assets.

First, we investigated the potential of PEV load and proposed simple,

yet effective charging policies that could have substantial impact on the de-

mand patterns of the grid without much overhead for communication and con-

trol. We demonstrated that PEV load is substantially flexible under different

charging behavior models and proposed easy to implement charging algorithms

that can substantially impact the demand patterns induced by PEV charging.

We also discussed methods for improving these charging algorithms to be more

robust with respect to uncertainties in departure times. We demonstrated that

the proposed charging algorithms can be modified to improve grid stability by

automatically responding to frequency deviations. We quantified the capacity

of frequency responsive PEV load and showed substantial potential in that

capacity.
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Then we investigated the optimal response of flexible loads under real-

time pricing and proved that the optimal policy can be calculated recursively

and in a computationally efficient manner. We also studied the impact of

widespread adoption of such optimal algorithms and concluded that while they

would substantially reduce energy costs to the users, the load patterns they

induce at network level can cause high peak-to-average ratios and adversely

impact the grid. We further extended the theoretical foundation we laid in

this part of the work to the case where flexible loads can provide ancillary

services while consuming energy and obtained the optimal response under such

scenarios. We also showed that the model for flexible loads can be extended

to storage assets. We used this connection to obtain optimal operation policy

of an ideal storage asset under real-time prices.

Next, we proposed a new model for pricing energy for flexible loads

that would encourage them to reveal their flexibility under a centralized load

aggregation model. We demonstrated that this method not only encourages

loads to reveal their flexibility but also provides most loads with a better total

energy cost because the ESCo can aggregate loads for provision of ancillary

services.

Finally, we considered the decision problem faced by a load aggregator

when the market is organized in a multi-settlement fashion, namely decid-

ing the levels of energy purchase and ancillary service sales in the day-ahead

market. We formulated this problem as a two stage stochastic program and

proposed a data driven scenario generation method capable of dealing with the
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uncertainties in availability and demand from flexible loads at the day-ahead

stage.

8.2 Future Directions

The work presented in this dissertation can be extended in multiple

directions. Using more data from PEV users, we can build more realistic PEV

charging models which would help us to study the current and proposed charg-

ing algorithms more accurately. Also, using a dynamic model for the grid, such

as one proposed by Peydayesh [83] or Chavez [28], we plan to study the impact

of frequency responsive flexible loads, particularly under high penetration of

renewables, on the frequency performance of the grid and quantify its eco-

nomic value by measuring potential reductions in ancillary service utilization,

and hence purchases.

The theoretical framework we used in Chapter 3, Chapter 4 and Chap-

ter 5 can be further used to obtain optimal energy consumption and ancillary

service provision by the flexible loads when capacity reservation should be

made for offering ancillary services. This is a problem we are already working

on as one immediate directions for extending this thesis. The results of this

extension can then be used at the load aggregator level to approximate the

optimal decision making problem faced by the Energy Services Company, the

same problem we discussed in Chapter 6. The main promise of this approach,

which bridges from single load price based coordination to more sophisticated

and cooperative energy delivery mechanisms is that it would result in a com-
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putationally efficient dynamic approximation for the ESCo’s decision problem.

We believe that the Transaction Pricing concept we introduced in this

dissertation can be studied further, particularly from a game theoretic perspec-

tive. Finally, we are planning to extend our work in multi-settlement markets

to capture risk in inter-stage trading and model the real-time operation more

carefully.

Finally, we would like to mention that, in cooperation with ERCOT, we

have implemented a testbed for implementing and evaluating PEV charging

algorithms. Our current testbed, implemented by the author and Dr. Mike

Legatt from ERCOT, includes servers at UT-Austin and ERCOT which would

play as the ESCo, PEV communication and control server and grid informa-

tion server. The current testbed includes eight EVSEs at ERCOT offices in

Taylor, three EVSEs at ERCOT Met Center. Due to API issues, our current

testbed can only control PEVs though EVSE control using the ChargePoint

network [27]. All the EVSEs are also measured through eGauge system [37] at

a secondly resolution besides every 30sec measurements by the ChargePoint

network. The communication over the testbed is implemented through a Web

API between the entities: ESCo (a.k.a. scheduling server), Grid Information

Server and PEV Control Server. Since December 2011, the EVSEs have de-

livered more than 13.7MWh of energy to six employee PEVs as well as visitor

EVs.

We have already implemented AR charging and coordinated energy

delivery algorithm discussed in Chapter 6 on the testbed. The latter is imple-
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mented in C], leveraging Microsoft Solver Foundation [68] as the middleware

for modeling and coding the optimization problem and using Gurobi solver.

Implementing more advanced charging algorithms discussed in this disserta-

tion and perfecting the testbed is another direction we are pursuing.
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Appendix A

Proof of Theorem 3.1

The proof is by establishing that the proposed optimal value function

satisfies the Bellman equation. We assume the cdfs, expected values, and

integrals exist throughout and the correlation structure is well behaved, which

holds for all cases of interest.

The convexity of the optimal value function can be deduced from stage

and final costs convexity and linearity of dynamics, so we skip its explicit treat-

ment for brevity. A similar argument can be found in the proof of Proposition

1 in [79].

First, we claim that the optimal value function has the following form:

J∗t (x, θ) =
∞∑
j=1

mj
t(θ)[(x− jū)+ ∧ ū] + C(t). (A.1)

where we define mj
t(θ) = mT

t for j ≥ T . We establish this claim by showing

that it satisfies the Bellman equation and establish the optimal policy along

the way. The proof is then completed by backward induction on t using the

assumption mi
T = mT . From the Bellman equation and using (3.2) we have:

J∗t (xt, θt)=Eεt [min
u

{
γtu+ηt(xt−u)+η′t+αtJ

∗
t+1(xt−u, γt)

}
], (A.2)
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since θt+1 = γt by definition. Without loss of generality, let i satisfy iū ≤ xt ≤

(i+ 1)ū. By the induction hypothesis, assuming that (A.1) holds for t+ 1, we

prove it for t. This is equivalent to obtaining mi
t(θ) and the desired optimal

value function in the following form:

J∗t (xt, θ) =
i−1∑
j=1

mj
t(θ)ū+mi

t(θ)[xt − iū] + C(t). (A.3)

Since 0 ≤ u ≤ ū, (i− 1)ū ≤ xt− u ≤ (i+ 1)ū, using (A.1) for t+ 1 and

similar to (A.3), we have:

J∗t+1(xt−u, γt)=
i−2∑
j=1

mj
t+1(γt)ū

+mi−1
t+1(γt)[(xt−u−(i−1)ū)+ ∧ ū]

+mi
t+1(γt)(xt−u−iū)++C(t+1),

=
i−1∑
j=1

mj
t+1(γt)ū+mi

t+1(γt)[xt−iū]

−mi−1
t+1(γt)[(u−(xt−iū))+]

−mi
t+1(γt)[u ∧ (xt−iū)]+C(t+1),

(A.4)

Now, let us substitute (A.4) in (A.2) as depicted in (A.5):

J∗t (xt, θt)=Eεt

[
min
u

{
(γt−ηt)u+ηtxt+η

′
t (A.5)

+αt

(
i−1∑
j=1

mj
t+1(γt)ū+mi

t+1(γt)[xt−iū]+C(t+1)

−mi−1
t+1(γt)[(u−(xt−iū))+]−mi

t+1(γt)[u ∧ (xt−iū)]

)}]
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(a)
= Eεt

[
min
u

{
(γt−ηt)u−αtmi−1

t+1(γt)[(u−(xt−iū))+]

−αtmi
t+1(γt)[u ∧ (xt−iū)]

}]
+ηtxt+αt

(
i−1∑
j=1

mj
t+1(γt)ū+mi

t+1(γt)[xt−iū]

)
+C(t)

(b)
= Eεt

[
min
u

{
(γt−m̃i−1

t+1(γt))(u−(xt−iū))+

+(γt−m̃i
t+1(γt))[u ∧ (xt−iū)]

}
+

i−1∑
j=1

m̃j
t+1(γt)ū+m̃i

t+1(γt)[xt−iū]

]
+C(t)

where, (a) is obtained by rearranging terms and the fact that C(t) =

αtC(t+ 1) + η′t and (b) is obtained by rewriting xt as iū+ (xt− iū), rewriting

u as (u − b)+ + [u ∧ b] where b = xt − iū and then factoring terms. Since

m̃j−1
t+1(γt) ≤ m̃j

t+1(γt),∀j due to convexity of the optimal value function, we

need to consider only three cases for obtaining the optimal u. Considering

the two terms inside the minimization, either both coefficients are negative,

denoted by event (e3), in that case we want u as large as possible (namely

ū), or just the second term’s coefficient is negative, denoted by event (e2),

which makes the optimal u = xt − iū or none of the coefficients are negative,

denoted by event (e1), and the optimal u will be zero. Hence the optimal

policy, u∗(x, γt), is given by:
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u∗(x, γt)=


0 if (e1) : m̃i

t+1(γt)≤γt,

x−iū if (e2) : m̃i−1
t+1(γt)<γt≤m̃i

t+1(γt),

ū if (e3) : γt≤m̃i−1
t+1(γt).

Note that in order to find the actual thresholds on γt for each event we need

to solve m̃j
t+1(µ) = µ. Calling this fixed point m̂j

t+1 gives (3.9). Aggregating

this policy over i results in (3.10).

Now, let us obtain the optimal value function encoded by m̃i
t(θt) by

plugging-in the optimal policy and correspondingly conditioning the expected

value on each event ek, which after simplifications yields:

J∗t (xt, θt)=J
∗
t (xt, θt|e1)P{e1}+J∗t (xt, θt|e2)P{e2}+J∗t (xt, θt|e3)P{e3}, (A.6)

where,

J∗t (x, θt|e1)=C(t)+
i−1∑
j=1

Eεt [m̃
j
t+1(γt)|e1]ū+Eεt [m̃i

t+1(γt)|e1][x−iū],

J∗t (x, θt|e2)=C(t)+
i−1∑
j=1

Eεt [m̃
j
t+1(γt)|e2]ū+Eεt [γt|e2](x−iū),

J∗t (x, θt|e3)=C(t)+(
i−2∑
j=1

Eεt [m̃
j
t+1(γt)|e3]+Eεt [γt|e3])ū+Eεt [m̃i−1

t+1(γt)|e3][x−iū].

Note the evolution of prices given by (3.1) and θt = γt−1. It can be seen now

that the optimal value function has the same structure as claimed in (A.3)

and equivalently (A.1). Now, it remains to establish the recursion in (3.7) by
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obtaining mi
t(θt) from (A.6) using M(θ, ε) as defined in (3.8):

mi
t(θt)=Eεt [m̃i

t+1(λt(θt) + εt)|e1]P{e1}+Eεt [γt|e2]P{e2}+Eεt [m̃i−1
t+1(λt(θt) + εt)|e3]P{e3}

=Eεt [M(θt, εt)].

(A.7)

The proof is completed by induction over t backward and the desired value

function as given in (3.15) is obtained at t = 0. �
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Appendix B

Proof of Theorem 3.2

In case of independent prices, the state space is automatically reduced

to the remaining commitment. Nevertheless, more can be done to simplify

the recursions and ease the computation burden. We establish the result by

starting from state independent mi
t (and consequently m̃i

t) and show that it

remains state independent and obtain the simplified update equation as shown

in (3.9) along the way.

Starting with state independent mi
t, which holds for t = T by assump-

tion, we can simplify M(θ, ε) to M(ε) as:

M(ε)=


m̃i
t+1 (e1) : m̃i

t+1 ≤ε

ε (e2) : m̃i−1
t+1 ≤ε < m̃i

t+1

m̃i−1
t+1 (e3) : ε < m̃i−1

t+1

,

Hence, since γt = εt, similar to (A.7) we have:

mi
t = m̃i

t+1P{e1}+ Eεt [εt|e2]P{e2}︸ ︷︷ ︸
A

+m̃i−1
t+1P{e3}. (B.1)
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Using integration by parts:

A =

∫ m̃it+1

m̃i−1
t+1

ζ dFt(ζ)

= m̃i
t+1Ft(m̃

i
t+1)− m̃i−1

t+1Ft(m̃
i−1
t+1)−

∫ m̃it+1

m̃i−1
t+1

Ft(ζ) dζ

= m̃i
t+1P{ē1} − m̃i−1

t+1P{e3} −Gt(m̃
i−1
t+1, m̃

i
t+1),

where ē1 is the complement of e1. Plugging for A in (B.1) we get:

mi
t = m̃i

t+1 −Gt(m̃
i−1
t+1, m̃

i
t+1).

�
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Appendix C

Proof of Theorem 4.1

We establish that the proposed optimal value function satisfies the Bell-

man equation. As in Appendix A, we assume the cdfs and expected values

exist throughout and the correlation structure is well behaved, which holds for

most practical cases. Before going through the details, let us first establish

some lemmas that help us streamline the proof.

Lemma C.1. For any d, e, e such that 0 ≤ d, 0 ≤ e, 0 ≤ e ≤ e, and letting

i = bd/ec, and d̃ = d− ie, we have:

1. [(d− e− (i− 1)e)+ ∧ e] = e− (e− d̃)+,

2. (d̃−e)+ = d̃− (e ∧ d̃).

Proof. 1. First observe that the left hand side (LHS) can be simplified as:

[(d− e− (i− 1)e)+ ∧ e] = [(d̃− e+ e)+ ∧ e].

Considering the left hand side, only three cases are possible:

(a) d̃−e+e ≤ 0: In this case, LHS=0. This condition can be rearranged

as e ≤ e− d̃. But given the conditions in the assumption, this can
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only happen if e = e− d̃. Consequently, the right hand side (RHS)

results in:

e− (e− d̃)+ = e− e = 0.

(b) 0 ≤ d̃ − e + e ≤ e: In this case, LHS=d̃ − e + e. Rearranging this

condition results in 0 ≤ e− d̃ ≤ e, which results in:

e− (e− d̃)+ = e− e+ d̃ = LHS.

(c) e ≤ d̃−e+e: In this case, LHS=e. This case can be also rearranged

to e− d̃ ≤ 0, and hence:

e− (e− d̃)+ = e− 0 = LHS.

2. For this part, only two cases can happen, if d̃−e ≥ 0, then:

(d̃−e)+ = d̃− e = d̃− (e ∧ d̃),

otherwise,

(d̃−e)+ = 0 = d̃− d̃ = d̃− (e ∧ d̃).

�

Lemma C.2. For any d̃, e such that 0 ≤ e, 0 ≤ d̃, we have e = (e−d̃)++(e∧d̃).

Proof. If e ≤ d̃:

(e− d̃)+ + (e ∧ d̃) = 0 + e = e,

otherwise:

(e− d̃)+ + (e ∧ d̃) = e− d̃+ d̃ = e.

�
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We skip establishing the convexity of the optimal value function for

brevity. As in the proof of Theorem 3.1 in Appendix A, a proof similar to

Proposition 1 in [79] can be applied using convexity of the stage and final

costs and linearity of dynamics.

The main proof is based on backward induction on t; to this end, let

us assume that the proposed following form of the value function in Theorem

4.1 holds:

J∗t (dt,θt) =
∞∑
j=1

mj
t(θt)[(dt − je)+ ∧ e]. (C.1)

where mj
t(θ) = mT

t for j ≥ T . We need to show that if this assumption holds

for t + 1, then it holds for t. These consecutive time slots are linked by the

Bellman equation; that is:

J∗t (dt,θt) = Eεt [min
e,r

{
πet e− πrt r + J∗t+1(dt − e,πt)

}
], (C.2)

using system dynamics equations and θt+1 = πt as assumed previously. Define

i = bdt/ec, ie ≤ dt < (i + 1)e. Our objective is to obtain mi
t(θ) in the desired

optimal value function; which in this case can be rewritten as:

J∗t (dt,θt) =
i−1∑
j=1

mj
t(θt)e+mi

t(θt)d̃t, (C.3)

where d̃t , dt − ie. Let us first rearrange the J∗t+1(dt − e,πt) term in (C.2).

Since 0 ≤ e ≤ e, (i − 1)e ≤ dt − e ≤ (i + 1)e. Using (C.1) for t + 1, by the
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induction hypothesis and similar to (C.3), we have:

J∗t+1(dt − e,πt) =
i−2∑
j=1

mj
t+1(πt)e

+mi−1
t+1(πt)[(dt − e− (i− 1)e)+ ∧ e]

+mi
t+1(πt)(dt − e− ie)+,

=
i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t

−mi−1
t+1(πt)(e− d̃t)+ −mi

t+1(πt)(e ∧ d̃t),

(C.4)

where we have used Lemma C.1 to obtain the second equality. Now, let us

substitute (C.4) in (C.2) as depicted in (C.5):

J∗t (dt,θt) = Eεt

[
min
e,r

{
πet e− πrt r +

i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t (C.5)

−mi−1
t+1(πt)(e− d̃t)+ −mi

t+1(πt)[e ∧ d̃t]

}]
(a)
= Eεt

[
min
e,r

{
πet e− πrt r

−mi−1
t+1(πt)(e− d̃t)+ −mi

t+1(πt)(e ∧ d̃t)

}

+
i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t

]
(b)
= Eεt

[
min
e,r

{
(πet −mi−1

t+1(πt))(e− d̃t)+

+ (πet −mi
t+1(πt))(e ∧ d̃t)− πrt r

}

+
i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t

]
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(c)
= Eεt

[
min
e

{
(πet − (πrt )

+ −mi−1
t+1(πt))(e− d̃t)+

+ (πet − (πrt )
+ −mi

t+1(πt))(e ∧ d̃t)

}

+
i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t

]

where, (a) is obtained by rearranging terms, (b) is obtained by using Lemma

C.2 and factoring common terms. To obtain (c), notice that the minimization

problem in r can be tackled directly, that is, if its coefficient, (πrt ) is positive,

then we want to maximize r and minimize it otherwise. But we already know

the 0 ≤ r ≤ e, hence, we can obtain the optimal reserve offering policy as:

r∗t (d,πt) = e∗t (d,πt) ∗ 1{πrt ≥ 0}. (C.6)

Now (c) is obtained by using (C.6), essentially substituting r with e with

proper conditionals on πrt , namely its positivity. The result of (C.5) leaves us

with a much simpler optimization problem since it is all in terms of e, which is

essentially cut into two pieces: (e− d̃t)+ and (e∧ d̃t) using Lemma (C.2). The

problem at hand is essentially a linear programing problem, however, using

the convexity of the value function, we can parametrically solve it, basically

by inspection. Since the value function is piecewise linear, its convexity is

equivalent to mj−1
t+1(πt) ≤ mj

t+1(πt),∀j; noting that mj
t+1(πt) is the slope of

the jth piece of the value function. This leaves us with essentially three cases

to consider for the minimization problem at hand, which we denote them by
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events E1, E2 and E3:

E1 : mi
t+1(πt) ≤ πet − (πrt )

+, (C.7)

E2 : mi−1
t+1(πt) ≤ πet − (πrt )

+ ≤ mi
t+1(πt), (C.8)

E3 : πet − (πrt )
+ ≤ mi−1

t+1(πt). (C.9)

Note that in each of these conditions, πt appears on both sides and hence

the above conditions are implicitly defined. Moreover, notice that each of

these events consist of two simple events corresponding to positivity of πrt .

Conditioned on each of these events, it is straightforward to solve the final

minimization problem in (C.5), understanding that the only constraint we are

facing is 0 ≤ e ≤ e: Under E1, none of the coefficients in are positive and hence,

the optimal decision is to minimize e. Under E2, only the second coefficient

is negative and hence the optimal decision is to maximize the second term,

i.e. e∗ = d̃t. Finally, under E3, both coefficients are negative and hence the

optimal decision is to maximize e, i.e. e∗ = e. This basically gives us the

optimal policy as:

e∗(dt,πt)=


0 if (E1): mi

t+1(πt) ≤πet − (πrt )
+,

d−ie if (E2): mi−1
t+1(πt) ≤πet − (πrt )

+ ≤ mi
t+1(πt),

e if (E3): πet − (πrt )
+ ≤ mi−1

t+1(πt).

(C.10)

As mentioned before, the conditions defining these events are implicit. There-

fore, we need to solve the following equation to obtain the explicit conditions:

mj
t+1(πet , π

r
t ) = πet − (πrt )

+ (C.11)
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Defining m̂j
t+1 as:

m̂j
t+1 = {mj

t+1(πet , π
r
t )|m

j
t+1(πet , π

r
t ) = πet − (πrt )

+}, (C.12)

similar to (4.9), we can make these conditions explicit. The desired form in

(4.10), is then obtained by paying attention to the fact that m̂j
t+1 is increasing

in j by convexity and hence there exists i∗ such that πet−(πrt )
+ < m̂i∗

t+1, ∀j > i∗

and therefore, we can formulate the optimal policy as stated in the theorem.

Plugging in the optimal policy in (C.5), we can continue the proof.

Conditioning based on the Ek events, we have:

J∗t (dt,θt)=J
∗
t (dt,θt|E1)P{E1}+ J∗t (dt,θt|E2)P{E2}+ J∗t (dt,θt|E3)P{E3},

(C.13)

where,

J∗t (dt,θt|E1)=
i−1∑
j=1

Eεt [m
j
t+1(πt)|E1]e+Eεt [mi

t+1(πt)|E1]d̃t,

J∗t (dt,θt|E2)=
i−1∑
j=1

Eεt [m
j
t+1(πt)|E2]e+Eεt [πet − (πrt )

+|E2]d̃t,

J∗t (dt,θt|E3)=
i−2∑
j=1

Eεt [m
j
t+1(πt)|E3]e+Eεt [πet − (πrt )

+|E3]e+Eεt [mi−1
t+1(πt)|E3]d̃t.

It is now clear that the optimal value function has the desired form and

what remains is to calculate the coefficient of d̃t, i.e. mi
t(θt), to obtain the full

recursion and conclude the proof. To this end, we use (C.13) and combine the
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three cases we introduced previously:

mi
t(θt)=Eεt [mi

t+1(πt)|E1]P{E1}+Eεt [πet − (πrt )
+|E2]P{E2}+Eεt [mi−1

t+1(πt)|E3]P{E3}

=Eεt [mi
t+1(λt(θt) + εt)|E1]P{E1}

+Eεt [λet (θt) + εet − (λet (θt) + εrt )
+|E2]P{E2}

+Eεt [mi−1
t+1(λt(θt) + εt)|E3]P{E3}

=Eεt [Mi(θt, εt)],

(C.14)

where we have used the price evolution equation we defined in (4.1) and the

definition of M(θt, εt) from (4.8). The proof is completed by backward induc-

tion over t where (4.6) is obtained at t = 0. �
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Appendix D

Proof of Theorem 4.2

With independent prices, we have πt = εt. Moreover, remaining de-

mand, dt, is the only element of state space. Therefore, the proposed form of

the value function is automatically obtained since mi
t(θt) is no longer a func-

tion of θt and hence mi
t(θt) = m̂i

t. This is because Mi(θt, εt) is no longer a

function of θt, i.e. Mi(θt, εt) = Mi(εt) and hence there would be no need to

solve (4.9). Consequently, equations (4.7), (4.8) and (4.9) can be consolidated

into a single recursion and conditional expected values can be approached

directly. This is essentially what we establish in this proof.

First let us define εat = πat , πet − (πrt )
+ as the effective price variable.

Now, let us revisit the definition of Mi(εt), in this case:

Mi(εt) =


m̂i
t+1 m̂i

t+1 ≤εat ,

εat m̂i−1
t+1 ≤εat < m̂i

t+1,

m̂i−1
t+1 εat < m̂i−1

t+1.

(D.1)

Note that the three cases in the above definition corresponds to the three

events E1, E2 and E3 defined in (C.7), (C.8) and (C.9) respectively. Now, we

can use this notation to obtain a closed form for (4.9), which would essentially

be (4.14). Starting with (4.9):
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m̂i
t = Eεt [Mi(ε)]

= Eεt [m̂i
t+1|E1]P{E1}+ Eεt [εat |E2]P{E2}+ Eεt [m̂i−1

t+1|E3]P{E3}

= m̂i
t+1P{E1}+ Eεt [εat |E2]P{E2}︸ ︷︷ ︸

A

+m̂i−1
t+1P{E3}

(D.2)

Now, using integration by parts:

A =

∫ m̂it+1

m̂i−1
t+1

ζ dF a
t (ζ)

= m̂i
t+1F

a
t (m̂i

t+1)− m̂i−1
t+1F

a
t (m̂i−1

t+1)−
∫ m̂it+1

m̂i−1
t+1

F a
t (ζ) dζ

= m̂i
t+1P{E1} − m̂i−1

t+1P{E3} −Gt(m̂
i−1
t+1, m̂

i
t+1),

where E1 is the complement of event E1 and we have used definition (4.15).

Plugging back for A in (D.2), we get:

m̂i
t = m̂i

t+1P{E1}+ m̂i
t+1P{E1} − m̂i−1

t+1P{E3} −Gt(m̂
i−1
t+1, m̂

i
t+1) + m̂i−1

t+1P{E3}

= m̂i
t+1 −Gt(m̂

i−1
t+1, m̂

i
t+1),

which is the desired result. �
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Appendix E

Proof of Theorem 5.1

We prove the result by establishing that the proposed optimal value

function satisfies the Bellman equation and deriving the optimal policy on

the way. As in Appendix A, we assume that the correlation function is well

behaved and to avoid technicalities, assume existence of expected values, cdfs

and integrals throughout.

Since the stage and final cost functions are assumed concave, linear

in fact, and the dynamics is linear establishing concavity of the optimal value

function is straightforward, hence we skip it here for brevity. As in the proof of

3.1 in Appendix A, a similar argument can be found in the proof of Proposition

1 in [79].

To establish part (a), we basically use backward induction on t, that is,

we assume that the optimal value function has the desired form as in (5.12)

for t+ 1:

J∗t+1(x, θ)=

nP∑
j=0

mj
t+1(θ)[(x−jū)+∧ū]+ct+1(θ)ū, (E.1)

and then plug it into the Bellman equation to show its validity for t. Note

that this form is valid for t = T by simply setting mj
T (θ) = mT , ∀j.
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Using the Bellman equation, we need to show:

J∗t (xt, θt)=Eεt [max
u
{gt(xt, u)+αtJ

∗
t+1(xt+1, θt+1)}], (E.2)

Using the dynamics equations, (5.1) and (5.2), (E.2) is transformed to:

J∗t (xt, θt)=Eεt [max
u

{
πtu+αtJ

∗
t+1(xt−u, πt)

}
], (E.3)

noting that θt+1 = πt by definition.

Since x ≤ xt ≤ x, there exists some i ≤ nP such that iū ≤ xt ≤ (i+1)ū.

Hence, we can rewrite (E.1) as:

J∗t (xt, θ) =
i−1∑
j=1

mj
t(θ)ū+mi

t(θ)[xt − iū]+ct(θ)ū. (E.4)

Since −ū ≤ u ≤ ū, (i − 1)ū ≤ xt − u ≤ (i + 2)ū, hence invoking a

similar expansion on J∗t+1(xt−u, πt) and some rearrangement, we have:

J∗t+1(xt−u, πt)=
i−2∑
j=1

mj
t+1(πt)ū+ct+1(πt)ū (E.5)

+mi−1
t+1(πt)[(xt−u−(i−1)ū)+ ∧ ū]

+mi
t+1(πt)[(xt−u−iū)+ ∧ ū]

+mi+1
t+1(πt)(xt−u−(i+ 1)ū)+,

(a)
=

i−1∑
j=1

mj
t+1(πt)ū+mi

t+1(πt)x̃t

+ct+1(πt)ū

−mi−1
t+1(πt)[(u−x̃t)+]

+mi
t+1(πt)[((x̃t − u)+ ∧ ū)− x̃t]

+mi+1
t+1(πt)(x̃t − u−ū)+
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=
i−1∑
j=1

mj
t+1(πt)ū+mi

t+1(πt)x̃t

+ct+1(πt)ū

−mi−1
t+1(πt)(u−x̃t)+

+mi
t+1(πt)[((x̃t−u)+ ∧ ū)−x̃t]

+mi+1
t+1(πt)(x̃t − u−ū)+

where x̃t , xt−iū. Now, substituting (E.5) in (E.3), we proceed as depicted

in (E.7) where, (a) is obtained by using the fact that −(•)+ = (−•)− and

substitution and (b) is obtained by using the equality:

− u ≡ [(x̃t−u)−]+[((x̃t−u)+ ∧ ū)−x̃t]+(x̃t − u−ū)+, (E.6)

and refactoring. Equality (E.6) can be verified to be valid for −ū ≤ u ≤ ū

and 0 ≤ x̃t ≤ ū by simple conditioning and inspection.

J∗t (xt, θt) = Eεt
[
max
u

{
πtu+αtJ

∗
t+1(xt−u, πt)

}]
(E.7)

(a)
= Eεt

[
max
u

{
πtu+αt

(
i−1∑
j=1

mj
t+1(πt)ū+mi

t+1(πt)x̃t+ct+1(πt)ū

mi−1
t+1(πt)(x̃t−u)−+mi

t+1(πt)[((x̃t−u)+ ∧ ū)−x̃t]

+mi+1
t+1(πt)(x̃t − u−ū)+

)}]
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(b)
= Eεt

[
max
u

{
(m̃i−1

t+1(πt)−πt)(x̃t−u)−

+(m̃i
t+1(πt)−πt)(((x̃t−u)+ ∧ ū)−x̃t)

+(m̃i+1
t+1(πt)−πt)(x̃t−u−ū)+

}

+

(
i−1∑
j=1

m̃j
t+1(πt)ū+m̃i

t+1(πt)x̃t+αtct+1(πt)ū

)]

Now, note that the optimization is only on the first three terms in (E.7)

since the sum is independent of u. Moreover, concavity of the value function,

implies that mj
τ is increasing in j; i.e. mj

τ ≤ mj′
τ , ∀j ≥ j′. This implies that

the price dependent coefficients of the form (πt − αtmj
t+1) are ordered as:

πt−αtmi−1
t+1(πt)≤πt−αtmi

t+1(πt)≤πt−αtmi+1
t+1(πt). (E.8)

Since the optimization problem at hand is piecewise linear in u, and the

ordering of the coefficients as in (E.8), only four cases can happen depending

on πt, resulting in different signs of the coefficients. Let us label the events

corresponding to each of these cases as:

e1 : πt≤αtmi+1
t+1(πt) (E.9)

e2 : αtm
i+1
t+1(πt)≤πt≤αtmi

t+1(πt) (E.10)

e3 : αtm
i
t+1(πt)≤πt≤αtmi−1

t−1(πt) (E.11)

e4 : αtm
i−1
t+1(πt)≤πt (E.12)
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In each case, the optimal u can be easily obtained by inspecting the

corresponding term in the optimization problem in (E.7):

� Under e1, all the coefficients are positive and hence all the terms involving

u need to be maximized. This is achieved by minimizing u and setting

u∗ = u = −ū.

� Under e2, only the first two coefficients are positive and hence u∗ = x̃t−ū.

� Under e3, only the first coefficient is positive and hence u∗ = ū− x̃t.

� Under e4, all the coefficient are negative and hence all terms should be

minimized. This is achieved by setting u∗ = ū.

Therefore, using the definition of x̃t, the optimal policy can be summarized

as:

u∗(xt, πt)=



−ū if e1,

xt−(i+ 1)ū if e2,

xt−iū if e3,

ū if e4.

The conditions defining ek are not explicit. Therefore, to achieve the

desired form in (5.18), we need to make the conditions explicit. Given the

assumptions on λt(•), this is achieved by simply calculating the extended fixed

point of the corresponding m̂j
t+1, as defined in (5.15).

Now we can plug the optimal policy and find the desired optimal value

function, J∗t (xt, θt). To this end, we decompose the optimal value function to

its conditionals over the partition formed by {ek}:
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J∗t (xt, θt)=J
∗
t (xt, θt|e1)P{e1}+J∗t (xt, θt|e2)P{e2}

+J∗t (xt, θt|e3)P{e3}+J∗t (xt, θt|e4)P{e4}, (E.13)

where,

J∗t (x, θt|e1)=
i−1∑
j=1

Eεt [m̃
j
t+1(πt)|e1]ū

+αtEεt [ct+1(πt)|e1]ū

+Eεt [m̃i
t+1(πt)− πt|e1]ū

+Eεt [m̃i+1
t+1(πt)|e1][x−iū],

J∗t (x, θt|e2)=
i−1∑
j=1

Eεt [m̃
j
t+1(πt)|e2]ū

+αtEεt [ct+1(πt)|e2]ū

+Eεt [m̃i
t+1(πt)−πt|e2]ū

+Eεt [πt|e2][x−iū],

J∗t (x, θt|e3)=
i−1∑
j=1

Eεt [m̃
j
t+1(πt)|e2]ū

+αtEεt [ct+1(πt)|e3]ū

+Eεt [πt|e3][x−iū],

J∗t (x, θt|e4)=
i−1∑
j=1

Eεt [m̃
j
t+1(πt)|e4]ū

+αtEεt [ct+1(πt)|e4]ū

+Eεt [πt−m̃i−1
t+1(πt)|e4]ū

+Eεt [m̃i−1
t+1(πt)|e4][x−iū].

(E.14)
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Combining these results with (E.13) we conclude the desired form as claimed

in (E.4) and equivalently (5.12). Now, what remains is to obtain recursions

for mi
t(θt) and ct(θt), which are basically coefficients of x−iū and ū. To this

end, we use the definitions of M(θ, ε) and C(θ, ε) as given in (5.14) and (5.17)

respectively. Using (E.13) and (E.14):

mi
t(θt)=Eεt [m̃i+1

t+1(λt(θt) + εt)|e1]P{e1}

+Eεt [λt(θt) + εt|e2 ∪ e3]P{e2 ∪ e3}

+Eεt [m̃i−1
t+1(λt(θt) + εt)|e4]P{e4}

=Eεt [M(θt, εt)].

(E.15)

Similarly:

ct(θt)=Eεt [αtct+1(πt)]

+Eεt [m̃i
t+1(πt)−πt|e1 ∪ e2]P{e1 ∪ e2}

+Eεt [πt−m̃i−1
t+1(πt)|e4]P{e4}

=Eεt [C(θt, εt)].

(E.16)

�
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Appendix F

Proof of Theorem 5.2

Under price independence assumption, i.e. λt(•) = 0,∀t, the state space

only consists of SoC. Moreover, there is no need for calculation of fixed points

since the conditions defining events ek automatically become explicit. More

simplification in the corresponding recursions can be made as well, which is

mainly what is claimed by this theorem.

To this end, we treat the corresponding recursions for mi
t and ct directly

by expanding the corresponding expectations noting that the price indepen-

dence assumption results in πt = εt. Using (E.15), we have:

mi
t=m̃

i+1
t+1P{e1}+Eεt [εt|e2 ∪ e3]P{e2 ∪ e3}︸ ︷︷ ︸

A

+m̃i−1
t+1P{e4}. (F.1)

Now, by definition of the conditional expected value and using integration by

parts:

A =

∫ m̃i−1
t+1

m̃i+1
t+1

ζ dFt(ζ)

= m̃i−1
t+1Ft(m̃

i−1
t+1)− m̃i+1

t+1Ft(m̃
i+1
t+1)−

∫ m̃i−1
t+1

m̃i+1
t+1

Ft(ζ) dζ

= m̃i−1
t+1P{ē4} − m̃i+1

t+1P{e1}−Gt(m̃
i+1
t+1, m̃

i−1
t+1),

where ēk is the complement of ek. Plugging for A in (F.1):

mi
t = m̃i−1

t+1 −Gt(m̃
i+1
t+1, m̃

i−1
t+1).
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Similarly, using (E.16), we have:

ct=αtct+1+Eεt [m̃i
t+1−εt|e1 ∪ e2]P{e1 ∪ e2}

+Eεt [εt−m̃i−1
t+1|e4]P{e4}

=αtct+1+m̃i
t+1P{e1 ∪ e2}−m̃i−1

t+1P{e4}

−Eεt [εt|e1 ∪ e2]P{e1 ∪ e2}︸ ︷︷ ︸
A′

+Eεt [εt|e4]P{e4}︸ ︷︷ ︸
B′

(F.2)

Similar to A:

A′ =

∫ m̃it+1

−∞
ζ dFt(ζ)

= m̃i
t+1Ft(m̃

i
t+1) +

∫ m̃it+1

−∞
Ft(ζ) dζ

= m̃i
t+1P{e1 ∪ e2}−Gt(−∞, m̃i

t+1),

B′ =

∫ ∞
m̃i−1
t+1

ζ dFt(ζ)

= m̃i−1
t+1(1− Ft(m̃i−1

t+1)) +

∫ ∞
m̃i−1
t+1

(1− Ft(ζ)) dζ

= m̃i−1
t+1P{e4}+Ḡt(m̃

i−1
t+1,∞),

Now using A′ and B′:

ct=αtct+1+Gt(−∞, m̃i
t+1)+Ḡt(m̃

i−1
t+1,∞),

which is the desired result. �
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