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Perceptual, “context-aware” applications that observe their environment

and interact with users via cameras and other sensors are becoming ubiquitous

on personal computers, mobile phones, gaming platforms, household robots, and

augmented-reality devices.

This dissertation’s main thesis is that perceptual applications present several

new classes of security and privacy risks to both their users and the bystanders.

Existing perceptual platforms are often completely inadequate for mitigating these

risks. For example, we show that the augmented reality browsers, a class of popular

perceptual platforms, contain numerous inherent security and privacy flaws.

The key insight of this dissertation is that perceptual platforms can provide

stronger security and privacy guarantees by controlling the interfaces they expose

to the applications. We explore three different approaches that perceptual plat-

forms can use to minimize the risks of perceptual computing: (i) redesigning the

perceptual platform interfaces to provide a fine-grained permission system that al-

lows least-privileged application development; (ii) leveraging existing perceptual

vii



interfaces to enforce access control on perceptual data, apply algorithmic privacy

transforms to reduce the amount of sensitive content sent to the applications, and

enable the users to audit/control the amount of perceptual data that reaches each

application; and (iii) monitoring the applications’ usage of perceptual interfaces to

find anomalous high-risk cases.

To demonstrate the efficacy of our approaches, first, we build a prototype

perceptual platform that supports fine-grained privileges by redesigning the percep-

tual interfaces. We show that such a platform not only allows creation of least-

privileged perceptual applications but also can improve performance by minimiz-

ing the overheads of executing multiple concurrent applications. Next, we build

DARKLY, a security and privacy-aware perceptual platform that leverages exist-

ing perceptual interfaces to deploy several different security and privacy protec-

tion mechanisms: access control, algorithmic privacy transforms, and user audit.

We find that DARKLY can run most existing perceptual applications with minimal

changes while still providing strong security and privacy protection. Finally, We

introduce peer group analysis, a new technique that detects anomalous high-risk

perceptual interface usages by creating peer groups with software providing similar

functionality and comparing each application’s perceptual interface usages against

those of its peers. We demonstrate that such peer groups can be created by leverag-

ing information already available in software markets like textual descriptions and

categories of applications, list of related applications, etc. Such automated detec-

tion of high-risk applications is essential for creating a safer perceptual ecosystem

as it helps the users in identifying and installing safer applications with any desired
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functionality and encourages the application developers to follow the principle of

least privilege.
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Chapter 1

Introduction

One of the emerging trends among modern software is increasing support

for perceptual functionality. Such functionality allows the software to interact with

their users by observing them in their physical environment using different sensors

like cameras, microphones, etc. We collectively refer to them as perceptual soft-

ware. These software come in many forms: “natural user interface” systems that

interact with users via gestures and sounds, image recognition applications such as

Google Goggles, monitoring software such as motion detectors and face recogniz-

ers, augmented reality applications, “ambient computing” frameworks, a variety of

video-chat and tele-presence programs, etc.

The common requirement for executing perceptual software on a system is

the availability of high-bandwidth sensors. Most modern devices usually come with

multiple such sensors. Widespread availability of sensors allow perceptual appli-

cations to execute on a diverse set of hardware platforms including mobile phones,

programmable robotic pets and household robots (e.g., iRobot Create platform),

gaming devices (e.g., Kinect), augmented reality displays (e.g., Google Glass),

and conventional computers equipped with webcams. Most of these hardware pro-

vide support for running third-party perceptual applications through online software
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markets i.e. “app stores”. For example, robotappstore.com (“your robots are

always up-to-date with the coolest apps”) allows consumers to download and exe-

cute thousands of third-party perceptual applications on household robots.

One of the hardest parts of developing these perceptual applications is pro-

cessing raw sensor data and extracting high-level semantics like detecting the pres-

ence of an object. Consider the case of a simple gesture-controlled perceptual ap-

plication that allows controlling the audio volume using hand gestures. The appli-

cation developer has to detect the presence of a hand in the input image, recognize

the gesture made by the hand, and change the audio volume accordingly. This is a

tall order for a regular developer without specific computer vision know-how. To

make such tasks easier for third-party developers, several platform owners have de-

signed different perceptual computing platforms like Microsoft Kinect SDK [22],

augmented reality browsers [44], and OpenCV [70] that provide API support for

extracting high-level information from the raw sensor data. For example, Microsoft

Kinect SDK provides library functions for detecting the outline of a human body

(i.e., skeleton) to help the application developers in creating gesture-controlled ap-

plications. OpenCV provides more than 500 functions for detecting high-level fea-

tures (e.g., edges, shapes, and contours etc.) from input images. Augmented Real-

ity (AR) browsers provide abstractions for performing tasks like outsourced image

matching to enable faster development of AR content using web technologies (i.e.,

HTML, CSS, and JavaScript). AR is a special class of perceptual computation

that, besides processing perceptual input from the sensors, also enhance users’ per-

ception of the surrounding world by blending interactive virtual objects with the
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visual representation of actual objects in real time [5, 6]. Perceptual computing

platforms have gained significant popularity —the OpenCV library has been down-

loaded more than 7 million times, AR browsers (e.g., Junaio, Layar, and Wikitude

together) have more than 30 million users, and more than 24 million units of Mi-

corsoft Kinect have been sold so far.

However, despite their tremendous potential, untrusted perceptual applica-

tions pose serious security and privacy threats to both their users and other people

in the vicinity, as these applications can spy on the people by scanning their sur-

roundings. For example, perceptual applications running in one’s home or a public

area may conduct unauthorized surveillance, intentionally or unintentionally over-

collect information (e.g., keep track of other people present in a room), and capture

sensitive data such as credit card numbers, license plates, contents of computer

monitors, etc. that accidentally end up in their field of vision. Even more dis-

turbingly, a programmable robot can move around and focus on specific targets.

Some of these security and privacy concerns have already become a reality: many

people are uncomfortable with law enforcement agencies conducting large-scale

facial recognition [13, 61].

In this dissertation, we systematically analyze the security and privacy risks

posed by the emerging trends of perceptual computation and propose solutions to

mitigate the threats. By analyzing the design of existing perceptual computing plat-

forms (e.g. AR browsers, Microsoft Kinect SDK, OpenCV) we show that these

platforms allow untrusted applications unrestricted access to sensitive perceptual

data regardless of their functionality. We also perform a thorough evaluation of
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the security and privacy properties of AR browsers, one of the most popular per-

ceptual platforms, and found several serious security vulnerabilities resulting from

their ad hoc design. However, modifying these platforms to protect sensitive data

is non-trivial as it is difficult to isolate sensitive information that are intermingled

with benign perceptual content in the data streams coming out of the sensors. Our

key thesis is that perceptual platforms can provide stronger security and privacy

guarantees by controlling the interfaces they expose to the applications. This dis-

sertation explores three different approaches for building secure and privacy-aware

perceptual computing platforms and implement two different prototypes with com-

plementary techniques for improving security and privacy.

The rest of this chapter is organized as follows. We provide an overview of

different stages of perceptual computation in Section 1.1 followed by a description

of the perceptual computing ecosystem in Section 1.2. We analyze the structure of

today’s perceptual applications in Section 1.3. Section 1.4 summarizes the threat

model that we consider in this dissertation. We provide a hierarchy of different

types of security and privacy risks resulting from perceptual computation in Sec-

tion 1.5. We conclude the chapter by summarizing the solutions that we explore to

mitigate such risks in Section 1.6.

1.1 Different stages of perceptual computation

In this section, we describe four abstract stages of perceptual computation

in detail: accessing sensor data, extracting high-level semantic content, modifying

parts of the semantic content, and displaying some parts of the modified content
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Figure 1.1: A sample posture improvement application that tracks the user’s posture
over time using video frames from the camera and provides suggestions about better
posture.

back to the user. While all perceptual applications implement first two stages, the

last two stages are only used by a subset of perceptual software like AR applica-

tions. We explain the functionality of each of the stages below. To demonstrate

how these abstract stages are used by real applications, we use a simple posture im-

provement application that takes video frames from the camera as input, shown in

Figure 1.1, as a running example throughout this section. The posture improvement

application simply monitors the user’s posture over time and suggests improve-

ments.

• Accessing sensor data. All perceptual applications, by definition, need ac-

cess to read data from different sensors like camera, microphone etc. Many

perceptual applications may access the sensors even when they are executing

in the background and the users are not interacting with these applications

or any other applications running on the device. For example, the posture
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monitoring application (shown in Figure 1.1) may read video frames from

the camera even when the user is not using the device in order to provide

feedback about the user’s posture later.

• Extracting semantic content from sensor data. For most practical pur-

poses, perceptual applications must understand the contents of raw sensor

data before it can perform any useful task for the user. Therefore, all per-

ceptual applications must extract high-level semantic information from the

sensor data. For example, our posture improvement application must detect

the presence of humans in the image streams coming out of the camera and

estimate their poses.

Extracting semantic content from the sensor data is usually computationally

expensive as they involve complex computer vision or speech recognition al-

gorithms. Perceptual applications running on resource-constrained devices

like mobile phones often outsource such computations to remote third-party

perceptual services. Several different providers like QualComm Vuforia [19]

or Catchoom [20] provide cloud-based web services for locating and recog-

nizing different objects in a given input image.

• Modifying extracted semantic content. After extracting high-level content

from the sensor data, some perceptual applications, as part of their function-

ality, also need to manipulate these contents by either adding new objects or

modifying/deleting existing objects. For example, the posture improvement

application may want to show the suggested posture together with the current
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Figure 1.2: Different stages of perceptual computation. Note that the last two stages
are optional.

posture of the user as shown in Figure 1.1. This requires the application to

add the outline of a human body with the suggested posture along with the

extracted posture of the user.

• Display the modified semantic content. Finally, the perceptual applications

modifying the semantic information extracted from the sensors also need to

display the information through different output devices like LCD monitors,

VR headsets, etc. Our posture monitor application, in order to be useful, must

provide feedback about the user’s posture by displaying the suggested posture

together with the current posture of the user.

1.2 Perceptual computing ecosystem

The perceptual computing ecosystem consists of several different entities as

shown in Figure 1.3. Users install third-party perceptual applications on their de-

vices from online software markets (e.g., Apple app store, Google play store). Once

7



Figure 1.3: Perceptual computing ecosystem.

executed by the users, the perceptual applications interact with the sensors using the

API functions provided by the corresponding perceptual platform. Some perceptual

applications may fetch and execute third-party perceptual content (e.g., advertise-

ments, web content ) hosted in third-party servers as shown in Figure 1.3. Simi-

larly, some perceptual applications may also outsource computationally-intensive

tasks like detecting objects in an image to third-party perceptual web services. We

describe the major components of this ecosystem in detail below.

Online software markets. Online software markets host a diverse set of soft-

ware (including perceptual software) created by application developers. The hosted

software may either be available free of cost or for a certain developer-determined

price. Most of the online software markets (e.g., Apple app store, Google play

store) are maintained by the platform owners. The software markets usually provide

users with the facilities for performing keyword searches for particular applications,

8



browsing all available applications, or viewing a list of related applications. Once

a user has located the desired application in a market and paid for the application,

she can install it on her device directly from the online market.

Perceptual application developers. Perceptual application developers create their

applications for different platforms and publish them through the corresponding

online software markets. The development process of perceptual applications usu-

ally is platform-specific as the APIs for accessing perceptual data vary significantly

across different platforms.

Perceptual platform API. Perceptual applications interact with the platforms through

the APIs exposed by the platforms. Depending on the platform, the API func-

tions work at different levels of abstraction. For example, OpenCV lets the appli-

cations extract high-level features like outline of objects, edges etc. using func-

tions like cvF indContours and cvCanny. Microsoft Kinect SDK operates at a

higher level of abstraction than OpenCV and let the applications directly detect

objects like human faces, skeletons, etc. using API functions like GetFaceRect,

NuiSkeletonGetNextFrame respectively.

Third-party perceptual content. Most perceptual applications often fetch and ex-

ecute some third-party content. Such content usually is fetched over the network

during application execution . Application developers include third-party content

for different reasons ranging from monetization through advertisements to support-

ing new features using third-party modules/content. For example, an application

may include a perceptual advertisement for earning money from the advertisement
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providers or incorporate perceptual third-party web content to provide new func-

tionality like displaying user-submitted annotations overlayed on top of different

objects.

Third-party content providers. Third-party perceptual content is usually hosted

in content servers. These servers may be maintained by someone other than the

content developers. For example, advertisements are usually hosted by the adver-

tisement providers like Google, Microsoft etc. The content provider servers must

ensure that the perceptual application accessing a particular content is actually au-

thorized to do so. The provider must also ensure that the third-party content do not

get modified in transit.

Perceptual services. Perceptual services allow applications running on resource-

constrained devices to outsource computation-intensive perceptual tasks like object

recognition, facial emotion detection, etc. The perceptual services must ensure

that the sensitive perceptual data sent by the applications do not get leaked to an

untrusted party during either transmission over the network or processing of the

data in remote machines.

1.3 Architecture of today’s perceptual applications

Today’s perceptual applications get direct access to the raw sensor data and

are responsible for extracting semantic content from the data either by themselves or

by using APIs provided by perceptual platforms like OpenCV or Microsoft Kinect

SDK. Figure 1.4 shows how existing perceptual applications are structured. These
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Figure 1.4: Architecture of today’s perceptual applications. The gray boxes indicate
trusted components of the system.

Figure 1.5: Sample video frame captured from a Kinect containing multiple pieces
of sensitive information: the face of the author, drawings on the whiteboard, and a
bottle of medicine with the label showing.

applications can only run one at a time, and they receive unrestricted and exclusive

access to read the input sensors and perform their computations. However, this

approach has two major drawbacks, user privacy and lack of support for concurrent

applications, which we discuss below.

First, it is undesirable to give any untrusted application complete access to

video and other sensor streams. Consider Figure 1.5, which shows a video frame

captured from a Kinect using the Kinect for Windows SDK. In the current archi-

tecture of perceptual applications, any application using the SDK has access to the
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raw video and depth stream. In this case, that includes the users face, the contents

of the whiteboard, and a bottle of medicine. This is a severe privacy risk. There-

fore, we must rethink how the perceptual computing platforms interpret and deliver

perceptual input to applications while preserving user privacy.

Second, rather than continue running perceptual applications one at a time,

it is desirable and compelling to let multiple AR applications from different vendors

simultaneously read sensor inputs and perform their computations. Being able to

run concurrent tasks is an essential functionality of all advanced computing plat-

forms. Similarly, an multi-application perceptual platform will be more desirable

over execution of one application at a time. Existing perceptual platforms like mo-

bile phone AR browsers, such as Layar, have already created rich and diverse APIs

for third parties to write applications on top of Layar. Currently, Layar sports over

five thousand applications in its Layar Catalogue [58], each of which adds different

annotations to the world. However, the lack of support for executing them concur-

rently often limit the usefulness of such annotations.

1.4 Threat model

We primarily focus on the scenario where the users are executing untrusted

third-party perceptual applications on their devices. However, the device running

these applications, its operating system, and the hardware of its perceptual sensors

are trusted as shown in Figure 1.4. The perceptual applications can be arbitrarily

malicious, but they run with user-level privileges and can only access the system,

including perceptual sensors, through a trusted API provided by the corresponding
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perceptual computing platform. For the applications using third-party cloud-based

perceptual services, we assume that the services are honest but may be curious and

thus may overcollect user-specific perceptual data. In our model, the attacker may

also compromise the network over which the applications communicate with these

services. For the perceptual applications that support execution of third-party code

like syndicated advertisements, we also assume that the third-party code can be

arbitrarily malicious. We summarize the different classes of attackers in perceptual

ecosystem in detail below.

Untrusted perceptual applications. We assume that perceptual applications are

untrusted and thus either erroneously or maliciously can overcollect user-specific

perceptual data and send it over to remote servers. We classify untrusted applica-

tions in two different classes: malicious and benign but buggy applications. Ma-

licious applications willingly overcollect sensitive perceptual data and exfiltrate it.

By contrast, benign but carelessly designed buggy perceptual applications may leak

sensitive data to other applications or remote servers accidentally.

Untrusted perceptual applications are very common in practice as most of

the users often install different third-party perceptual applications from online soft-

ware markets and have little visibility into the applications’ inner workings. Al-

though, the market owners often try to detect and remove blatantly malicious appli-

cations, they are not known to be very effective against applications surreptitiously

collecting privacy-sensitive information about their users.

Curious perceptual services. Many perceptual applications tend to outsource data
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and computation intensive parts of perceptual computation to third-party percep-

tual services as shown in Figure 1.3. In our model, we assume these services to be

honest in the sense that they provide their advertised functionality correctly. How-

ever, we allow the services to be curious i.e. they may store the perceptual data

sent to them by applications and peek into it for identifying and collecting targeted

user-specific data.

Malicious third-party code in perceptual applications. As Figure 1.3 shows, per-

ceptual application developers may include third-party contents such as syndicated

advertisements in their applications for better monetization. We assume that an at-

tacker can trick any perceptual application that includes such third-party content

into incorporating her malicious content, e.g., via ad brokers.

Network attackers. We assume that the network over which the perceptual ap-

plications communicate (either with third-party perceptual services or third-party

content providers as shown in Figure 1.3) can be controlled by the attacker either

through man-in-the-middle attacks or by being on the same network as the victim.

A network attacker can listen in on the communications between the perceptual

application and the perceptual services or any other remote servers.

1.5 Security & privacy risks of perceptual computation

In this section, we categorize and describe different types of new security

and privacy risks that are posed by perceptual computation.

14



1.5.1 Security risks

• Lack of access control for perceptual data. Today’s perceptual computing

platforms do not support enforcing fine-grained access control over the per-

ceptual data accessed by different applications through the platform API as

shown in Figure 1.3. This results in all applications getting full access to the

sensors irrespective of the parts of the data they need for their functionality.

An untrusted application, with such access, can completely violate the user’s

privacy.

• Lack of isolation of third-party code in perceptual applications. Percep-

tual applications often include third-party code that is not written by the ap-

plication developer like advertisements provided by ad-brokers as shown in

Figure 1.3. As perceptual applications deal with sensitive perceptual data,

they must ensure that the untrusted third-party code is correctly isolated and

do not get access to the perceptual data unless it needs some parts of the data

for its functionality. Without such protection, malicious third-party code may

steal and exfiltrate sensitive perceptual data from a benign application. It is

usually hard for the perceptual application developers to correctly enforce

such isolation. Support for isolated execution of third-party code should be

implemented in the perceptual computing platforms themselves so that the

application developers can create safe applications by simply invoking the

appropriate functions in the framework.
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1.5.2 Privacy risks

What does a scanner see? Into the head? Down into the heart? Does it
see into me, into us? Clearly or darkly?

—A Scanner Darkly (2006)

Perceptual applications present unique privacy risks because they collect

perceptual data from the sensors at a fast rate over a long duration of time. These

applications often get access to sensitive perceptual content mixed with benign con-

tent. A malicious or buggy perceptual applications leaking such sensitive content

may have disastrous privacy consequences. For example, the posture improvement

application mentioned in Section 1.2 may leak collected video feeds, read credit

card numbers, text on drug labels and computer screens, etc. A simple robot dog

programmed to follow hand signals and catch thrown balls—can be turned into a

roving spy camera. A face detector, which hibernates the computer when nobody

is in front of it, can surreptitiously gather information about people in the room.

The privacy risks of perceptual applications not only affect the users of those

applications but also affect the bystanders i.e. people who are present around the

user. For example, perceptual computing hardware such as Google Glass, have

already raised significant discussion of bystander privacy —the ability of people

around the user to opt out of recording and object recognition. Moreover, certain

places like public saunas may want to limit the use of perceptual applications in

their premises to protect their patron’s privacy.

We categorize the privacy risks posed by untrusted perceptual applications

into four different categories based on the required effort and sophistication of the
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attacker. We describe each of these categories in detail below.

• Overcollection of perceptual data. The simplest privacy risk associated

with perceptual applications is overcollection of raw perceptual data. Be-

sides malicious applications, even benign but poorly designed applications

may also overcollect sensitive perceptual data. For example, a security-cam

application that is designed to detect motion in a room and raise an alarm

may collect and store frames from the camera even when there is no motion

in the room.

Identify sensitive items. A more targeted privacy risk than simple over-

collection is automated identification and storage of sensitive items. Unlike

overcollection of data, such attacks require willing developer participation

in violating the user’s privacy. For example, a perceptual application may

specifically look for items like credit card numbers, license plates numbers,

etc. in video frames.

Aggregation, tracking, and surveillance. Aggregation, tracking, and surveil-

lance are the next class of privacy risks in our hierarchy. Malicious per-

ceptual applications can aggregate large amount of sensitive perceptual data

about their users in a short amount of time and use it for tracking and surveil-

lance of the users. In essence, the problem of aggregation is similar to that

of public surveillance: a single photograph of a subject in a public place

might make that individual mildly uncomfortable, but it is the accumulation

of these across time and space that causes major concerns. Even ignoring
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its usage for tracking and surveillance, aggregation itself may inherently be

considered a privacy violation. For example, Ryan Calo argues that “One of

the well-documented effects of interfaces and devices that emulate people is

the sensation of being observed and evaluated. Their presence can alter our

attitude, behavior, and physiological state. Widespread adoption of such tech-

nology may accordingly lessen opportunities for solitude and chill curiosity

and self-development.” [16]

• Semantic Inferences based on perceptual data. Semantic inferences based

on perceptual data is the most sophisticated privacy risk in our hierarchy.

Semantic inference does not even require access to raw perceptual data. A

perceptual application can perform such inferences with only access to the

high-level objects detected in the perceptual data. For example, an application

with only access to a rough sketch based on a video frame may be able to infer

potentially sensitive gestures, movements, proximity of faces, bodies, etc.

1.6 Towards secure and private perceptual computation
1.6.1 Basic principles

Our main insight is that the perceptual interfaces that platforms provide to

the applications are key to providing stronger security and privacy properties as

these interfaces control the data getting released by the trusted platform to the un-

trusted applications. Below we describe the design principles behind the security

and privacy protection mechanisms in the perceptual computing platforms that we

have built as part of this dissertation.
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• Implement security and privacy protection mechanisms at the platform

level. For wider adoption, the security and privacy protection mechanisms

should be implemented as part of the perceptual computing platforms them-

selves. Individual application developers neither have the expertise nor the

time to implement security and privacy protection mechanisms correctly by

themselves. However, if the platform supports such mechanisms, application

developers can be encouraged and educated to use them.

• Redesign perceptual interfaces supporting fine-grained privileges. The

permission system in most of the existing perceptual platforms (as shown in

Figure 1.3) are too coarse-grained for creating applications that follow the

principle of least privilege. Principle of least privilege dictates that each

application should only have the privileges that it needs for its functional-

ity [86]. This ensures that the security and privacy risks of an untrusted

application will be restricted only to the privileges that the application has.

However, existing perceptual platforms tend to have one privilege associated

with each sensor. Such coarse-grained privileges do not allow perceptual ap-

plication developers to minimize the privileges needed for their applications.

For example, a perceptual application that requires access to any parts of the

visual data stream coming from the camera must have the privileges to ac-

cess the entire camera feed. The existing perceptual interfaces operate at the

raw sensor level and therefore are not amenable for enforcing fine-grained

privileges. To minimize the security and privacy risks from untrusted appli-

cations, the perceptual computing platforms should redesign their interfaces
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that allow application developers to restrict their applications to only access

certain parts of the data from the sensors.

• Automated identification of high-risk applications. Supporting fine-grained

privileges in the perceptual platforms will only be useful if developers use

such privileges to restrict their applications’ access only to the resources

needed for their functionality by following the principle of least privilege.

However, prior research [36] has shown that, in existing software markets,

the application developers often violate the principle of least privilege and re-

quest/use more privileges than the ones that are needed for their application’s

functionality. This is primarily caused by the fact that the application de-

velopers have no incentives to create least-privilege low-risk applications as

users do not have the expertise to detect least-privilege violations. This prob-

lem can be solved if the market owners provide users access to automated

identification mechanisms for high-risk applications violating the least priv-

ilege principle and thus encourage them to avoid applications with spurious

privileges unrelated to their functionality. This, in turn, will encourage the

application developers to follow the principle of least privilege as not doing

so may result in lower popularity of their applications.

• Defense in depth. As fine-grained privileges alone may not be enough to mit-

igate all the security and privacy risks of untrusted perceptual applications,

the perceptual computing platforms should also use other complementary

techniques to minimize such risks. For example, a perceptual platform may
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want to minimize the amount of sensitive information available in the per-

ceptual data by applying privacy transforms before allowing the applications

to access the data. Alternatively, the perceptual platforms may support appli-

cations operating on sensitive perceptual data through invocations of trusted

API functions by passing opaque references to the data around without ever

revealing the raw data to the applications.

• Users are the last line of defense. Despite the usage of multiple protection

mechanisms, it might be still hard to mitigate all the security and privacy

risks posed by the perceptual applications through technical means alone.

Therefore, we must depend on the users to discover and mitigate risks by

themselves as the last line of defense. To make the users life easier, the per-

ceptual computing platforms should provide tools to let the users visualize

and control the perceptual data an application is getting access to. For exam-

ple, the perceptual platforms may allow the user to control the data released

to an application by tuning parameters like the amount of privacy transforms

or by adding/removing the application’s access to certain types of sensitive

objects (e.g., credit cards, LCD screens, and human faces). The users can use

the visualization of the perceptual data going out to the applications provided

by the platform to decide when to tune these parameters. The visualization

of the perceptual data provided by the perceptual platforms should also be

intuitive to the user in order to be useful for such purposes.
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1.6.2 Our contributions

As part of this dissertation, we first show that existing perceptual computing

platforms like AR browsers are riddled with security and privacy flaws. We present

a detailed system-level evaluation of their security and privacy properties, which

are often overlooked in the current implementations of perceptual platforms. We

start by analyzing the functional requirements that AR browsers must support in

order to present AR content. We then investigate the security architecture of the

existing AR browsers, focusing on Junaio, Layar, and Wikitude, which are running

today on more than 30 million iOS and Android devices. For each functional re-

quirement, we analyze how they implement it using off-the-shelf and custom com-

ponents; identify design flaws and new categories of security and privacy vulnera-

bilities unique to AR browsers; and explain how to securely implement the relevant

AR functionality.

Next, we explore the following three research questions in order to create

a safer perceptual ecosystem. We describe the questions and our answers in detail

below.

• How can perceptual platforms redesign their interfaces to the applications for

minimizing security and privacy risks?

We show how perceptual interfaces can be redesigned to support fine-grained

privileges to mitigate the security and privacy risks posed by the applica-

tions. We also demonstrate that platform support for fine-grained privileges

not only minimizes the privacy risks posed by the applications but also frees
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the application developers from performing complicated and computation-

intensive object recognition on their own. No existing perceptual platform

supports support fine-grained privileges. As a result, all perceptual applica-

tions must ask for access to raw sensor feeds, such as video and audio. These

raw feeds expose significant additional information beyond what applications

need, including sensitive information such as the users location, face, or sur-

roundings. Instead of exposing raw sensor data to applications directly, we

introduce a new platform abstraction: the recognizer. A recognizer takes raw

sensor data as input and exposes higher-level objects, such as a skeleton or

a face, to applications. We propose a fine-grained permission system where

applications request permissions at the granularity of recognizer objects. We

analyze 87 shipping perceptual applications for the Xbox and find that a set

of four core recognizers covers almost all current apps. We also introduce

privacy goggles, a visualization of sensitive data exposed to an application.

Surveys of 962 people establish a clear privacy ordering over recognizers and

demonstrate that privacy goggles are effective at communicating application

capabilities. We build a prototype on Windows that exposes nine recognizers

to applications, including the Kinect skeleton tracker. Our prototype incurs

negligible overhead for single applications, while improving performance of

concurrent applications and enabling secure offloading of heavyweight rec-

ognizer computation. This work was originally published in [51].

• Can security and privacy protection be retrofitted under existing perceptual

interfaces that can support exiting applications with minimal change?
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We find that careful retrofitting of security and privacy protection layers can

allow most existing perceptual applications to run unchanged. To this end, we

describe the design and implementation of DARKLY, a practical security and

privacy protection system for perceptual platforms that can run existing un-

trusted perceptual applications with minimal changes. DARKLY is integrated

with OpenCV, a popular computer vision library used by such applications

to access visual inputs. It deploys multiple privacy protection mechanisms,

including access control, algorithmic privacy transforms, and user audit. We

evaluate DARKLY on 20 perceptual applications that perform diverse tasks

such as image recognition, object tracking, security surveillance, and face

detection. These applications run on DARKLY unmodified or with very few

modifications and minimal performance overheads vs. native OpenCV. In

most cases, privacy enforcement does not reduce the applications function-

ality or accuracy. For the rest, we quantify the tradeoff between privacy and

utility and demonstrate that utility remains acceptable even with strong secu-

rity and privacy protection. DARKLY was originally described in [53].

• Will monitoring the usage of perceptual Interfaces by untrusted applications

help in identifying anomalous, high-risk applications?

We demonstrate that monitoring interface usage of applications can lead to

detection of high-risk applications violating least-privilege. More specifi-

cally, we show how least-privilege violations can be automatically detected

by clustering software available from the online markets into peer groups

based on its apparent functionality. Such peer groups provide a basis for one
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simple, intuitive way of assessing the privileges that are required for pro-

viding a certain functionality. Such a basis, once computed by the software

market owners, can help users to estimate the risks associated with a piece

of software. It can explain how the same privileges may sometimes be nat-

ural, yet in other cases be unexpected and suspicious—i.e., why an instant

messenger app should get access to the users address book, while an image-

editing application might not. We introduce software peer group analysis, a

novel technique to identify malicious or unexpected privileges and rank soft-

ware behavior based on risk. We show that peer group analysis is an effective

tool for risk assessment. It provides intuitive, meaningful results, even across

different definitions of peer groups and security-relevant behavior. Our evalu-

ation is based on empirically applying our analysis to over a million software

items, in two different online software markets, and on a validation of our

assumptions in a medium-scale user study.
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Chapter 2

Overview of related work

In this section, we provide a brief overview of related works exploring the

security and privacy issues in perceptual computing. Detailed comparisons of prior

works with the contributions of this dissertation are provided in the corresponding

chapters.

2.1 Security and privacy issues in perceptual applications

Some of the security and privacy issues in perceptual applications have been

explored in isolation by prior works. However, most of these projects primarily fo-

cus on specific ways of exploiting perceptual data under specific threat models but,

unlike us, do not perform a comprehensive evaluation of the security and privacy

properties of perceptual platforms. For example, Lookout Mobile Security demon-

strated how to use a malicious QR code to force Google Glass to connect to an

attacker-controlled Wi-Fi access point.1 Denning et al. [26] showed that lack of

proper encryption and authentication in many off-the-shelf consumer robots allows

a network attacker to control the robot or extract sensitive data. However, they only

1http://www.techweekeurope.co.uk/news/google-glass-security-
vulnerability-internet-of-things-122073
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considered the network attackers and did not explore the case of untrusted applica-

tions. PlaceRaider [97] is a hypothetical mobile malware that can construct a 3-D

model of its environment from the phone-camera images assuming that the malware

already has access to the camera images.

2.2 Privacy-preserving perceptual computing

There have been several prior attempts at building privacy-preserving per-

ceptual systems. However, all of them are task-specific e.g. only work for the

specific task they were designed for (e.g., facial recognition, counting the number

of pedestrians etc.) and incur significantly high overhead for being used by the real-

time perceptual applications. Unlike these works, our solutions are lightweight and

generic.

SciFi [71] leverages techniques for secure multiparty computation for per-

forming facial recognition against a database in a privacy-preserving manner. How-

ever, the overhead of SciFi renders it unusable for real-time applications as it can

only process one image in 10 seconds. Moreover, SciFi’s threat model is quite

different as it does not consider the case of untrusted applications.

Prior works often try to detect certain specific sensitive items and remove

them from the perceptual data. For example, existing perceptual systems like Google

Maps’ Street View [95] use simple, ad hoc methods like the blurring of faces and

license plates for protecting specific sensitive items. Detecting sensitive objects in

surveillance videos by segmenting each frame and transforming them using user-

specified policies has been explored be Senior et al. [90]. Dufaux and Ebrahimi [27]
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used encryption to protect regions of interests surveillance videos on the network

to protect them from unauthorized leakage or modification. However, This requires

computationally expensive, offline image segmentation and it is not clear whether

perceptual applications would work with the modified videos. A computer vision

technique for counting the number of pedestrians in surveillance videos without

tracking any single individual was proposed by Chan et al. [17]. Several papers by

Sweeney et al. [42,43,67] proposed different methods for “de-identifying” datasets

of face images.

2.3 Sensor security and privacy

With numerous sensors being packed into computing devices, controlling

application access to sensor data has received significant attention from security and

privacy researchers. There are primarily four different techniques that can be used

to achieve minimize risks of untrusted applications accessing sensitive sensor data:

enforce access control on sensors, minimize the amount of sensitive information

in sensor data going to the applications, control the usage of sensor data after an

application obtains access to it, and let the user visualize sensor data accessed by

an application. We discuss related work for each of them below.

Access control. In most modern systems, access control often is implemented

through user permissions. Existing operating systems use sensor-specific permis-

sions to restrict access to the sensor data. For example, iOS’s permission system

prompts the user when an application accesses a sensor for the first time (e.g., a map

application first accessing GPS). Android and latest Windows OSes use application-

28



specific manifests to inform the user about an application’s sensor usage during

application installation. The application is installed only If the user allows the ap-

plication permanent access to all the requested permissions . One common problem

with the existing permission systems is that they are either disruptive or ask users’

permissions without providing the users any context. Prior work by Felt et al [37]

has shown that most people simply ignore manifests, and approve the permissions

requested by any application. Access control gadgets (ACGs) [81] address these

issues by introducing trusted UI elements for sensors, that can be embedded by the

applications. Users’ interactions with an ACG (e.g., a camera trusted UI) grants

the embedding application permission to access the corresponding sensor. The OS

ensures the authenticity of the user interaction with each ACG. However, even the

ACG-style permission granting is too coarse-grained for perceptual systems be-

cause it only allows the users to grant/deny application access to all sensor data

for each sensor. However, most perceptual applications only require access to spe-

cific parts of the sensor data for their functionality and giving them access to the

complete data stream.

Reducing sensitivity of sensor data. Another alternative way of minimize the se-

curity and privacy risks of sensor access is to reduce the sensitivity of sensor data

(e.g., GPS coordinates) reaching the applications. For example, MockDroid [10]

and AppFence [47] inject fake sensor data in order to make the applications execute

without access to the real sensor data. Krumm [57] surveys methods of reduc-

ing sensitive information conveyed by location readings. However, such simple

methods will prevent the applications using the sensor data for their computations
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from working correctly. By using well-known statistical methods for calculating

the amount of noise to add to a data set, differential privacy [29] can provide strong

guarantees against an adversarial application’s ability to learn about any specific

individual in the data set. While one can imagine using differential privacy for cer-

tain types of perceptual computation, in general, most perceptual computations like

detecting objects in images are not amenable to differential privacy techniques due

to their extremely large input space.

Controlling sensor data usage. Once an application obtains access to sensors

through access control mechanisms, the OS can still enforce information flow con-

trol based approaches to control/monitor an application’s usage of the sensitive data

as shown in TaintDroid [31] and AppFence [47].

Visualizing sensor data access by each application. Sensor-access widgets by

Howell and Schechter [48] introduced the idea of showing the outputs of sensors

to the users in order to make them aware of the perceptual data released to the

applications. However, their widgets always display the entire camera feed to the

users because applications in existing perceptual system allow the applications to

access the visual inputs without any restrictions.

Higher-level abstractions for sensors. CondOS [18] introduced the notion of Con-

textual Data Units (CDUs) as a new high-level OS abstraction for accessing the

sensor data along with its context. However, they did not choose a set of concrete

CDUs that can support a wide variety of real-world applications. Also, they did not

address the privacy risks arising from untrusted applications having access to CDU

values. Koi [45] provides abstractions for matching location data without requiring
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applications access raw GPS coordinates. However, Koi’s approach is limited to

only GPS coordinates and difficult to generalize across all sensors.

2.4 Protecting bystander’s privacy from perceptual applications

As perceptual applications like facial recognition is becoming commonplace

both for law enforcement purposes [13] and personal usages [4], the privacy of

bystanders who themselves are not using perceptual applications but accidentally

came into the field of view of some perceptual application running on others’ de-

vices. CV Dazzle [23] suggests innovative make up patterns that one can apply to

her face to avoid being detected by facial recognition software. However, such make

up, besides being cumbersome to apply, may attract significant human attention.

ObscuraCam [68] is a smart camera application that allows the application

owner to remove/blur the auto-detected faces in a image selectively before storing

or sharing it. Szegedy et al. [96] showed that every image, for which a object detec-

tor using deep neural networks can detect objects correctly, can be tweaked slightly

in a visually imperceptible way to create a new image where the object detector

will not work. Such techniques can also be used by a user to perturb the image be-

fore sharing it to prevent facial recognition from working on the image. However,

as the perturbation is specific to the facial recognition algorithm, recognition may

still be possible with other algorithms. PlaceAvoider, by Templeman et al., allows

the perceptual device owners to automatically prevent the sensors (e.g., camera)

from working in certain sensitive spaces (e.g., bathrooms, bedrooms, etc.). Un-

fortunately, all these techniques require cooperation of the perceptual application
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owner which may not be always feasible.
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Chapter 3

Security and privacy flaws in existing perceptual
platforms

3.1 Introduction

Most existing perceptual platforms like Microsoft Kinect SDK and OpenCV

do not protect the raw perceptual data from untrusted applications and therefore

do not provide any protection against them. However, Augmented Reality (AR)

browsers are one of the few perceptual platforms that provide a certain level of

isolation and protection from untrusted AR content. In this chapter, we evaluate

the security and privacy properties of AR browsers and show that they suffer from

serious flaws. We also provide guidelines for fixing these flaws in a principled

manner.

Augmented reality (AR) technologies enhance users’ perception of the world

by blending interactive virtual objects with the visual representation of actual ob-

jects in real time [5, 6]. Traditional AR applications range from medical visualiza-

tion to aircraft navigation, but only recently have consumer mobile devices become

sufficiently powerful to run AR software.

AR applications have three stages: sensing input, transforming sensed ob-

jects (e.g., adding virtual objects), and rendering the transformed objects to the
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user. Modern AR platforms ease the burden of implementing these tasks. By far

the most popular platforms are AR browsers like Junaio, Layar, and Wikitude, avail-

able as SDKs or standalone mobile apps. Junaio has more than 20 million users and

over 20,000 content developers who have created more than 210,000 AR “chan-

nels” [54]. Layar has 1.5 million users and 9,000 content developers [59]. Wikitude

has 13 million users [101] and over 30,000 content developers.

All existing AR browsers are based on Web browsers and are similar to

them in the sense that they, too, fetch and display interactive content from web-

sites (“channels,” in AR parlance). In addition to rendering HTML and executing

JavaScript, AR browsers provide support for the three key tasks necessary for AR

functionality: sensing, transforming, and displaying transformed objects. They en-

able AR channels to (1) access sensors on the mobile device, including the onboard

camera and GPS location, (2) create and manipulate a variety of 2D and 3D in-

teractive virtual objects, and (3) display virtual objects on top of the camera feed,

realistically blending them with real objects. The resulting AR content combines

image recognition, geolocation, interactive virtual objects, conventional Web con-

tent, and control code written in JavaScript (see an example in Figure 3.1).

The basic architecture of AR services is shown in Figure 3.2. From the

security and privacy perspective, its key aspect is that the AR browsers provide

augmentation mechanisms, but the actual AR content comes from channels created

by independent developers. Just like a conventional Web browser is an interface

between the user and Web content from independent websites, an AR browser is an

interface between the user and independent AR content.
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Figure 3.1: A Layar-based mobile app [33].

Figure 3.2: Basic structure of AR services.

A major difference between Web browsers and AR browsers is the business

model. Web browsers are typically part of the standard software distribution, and

their developers are paid by the licensing fees from OEMs and OS owners and by

the search engines. This model works because there is already a wealth of Web

content. AR browsers, however, need a different model because there is not much

AR content available today. Their sources of revenue include advertising injected

into AR content, registration fees from content developers, and revenue sharing for
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paid content. This business model has an impact on the architecture of AR services:

unlike Web content, which is accessed directly from the Web browser, requests to

load third-party AR content must go through the AR service provider, as shown in

Figure 3.2.

Our contributions. We perform the first systematic analysis of the security and pri-

vacy properties of AR browsers and how they differ from Web browsers. Untrusted

AR content presents new, unique types of threats, yet—in contrast to the Web-

browser specifications—the latest Augmented Reality Markup Language (ARML)

specification [69] barely mentions security or privacy, and they are often overlooked

in the design of the existing AR browsers.

We start by analyzing the functional requirements needed to support sens-

ing, transforming, and rendering of AR content. These include new ways of com-

bining AR objects and conventional HTML content from multiple origins, new

APIs for accessing objects outside the browser, new mechanisms for controlling

the display of AR and HTML objects, and new ways of launching content (e.g., by

scanning a picture or QR code).

Then, for each functional requirement, we investigate how it is implemented

by the existing AR browsers, all of which are based on embedded Web browsers

such as WebView. Web browsers do not provide system support for AR function-

ality, forcing AR browsers to resort to ad-hoc cross-origin mechanisms, APIs that

open holes in the browser sandbox, custom techniques for composing visual con-

tent from different origins, and non-standard delegation schemes for authentication
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credentials.

Architectural flaws in these mechanisms result in security and privacy vul-

nerabilities. We explore the threat model of AR browsers and demonstrate several

entirely new categories of threats caused by the AR browsers’ unique combination

of high-volume visual data gathering, image-triggered code execution, outsourced

image processing, and merging images from the onboard camera with third-party

content. For example, (1) individual-specific items such as license plates can au-

tomatically launch malicious AR content, enabling fully automated stalking and

tracking; (2) malicious AR channels can abuse image-triggered code execution; and

(3) a conventional webpage can hijack the AR browser installed on the user’s mo-

bile device and use it to gain unauthorized access to the device’s camera and GPS

without the user’s permission. We also show how the architecture of AR browsers

results in the amplification of existing threats. For instance, (4) a malicious AR

channel or even a malicious online ad can exploit the AR browsers’ mechanisms

for combining non-HTML AR objects with HTML content to perform universal

cross-site scripting attacks against any origin; (5) outsourced image recognition ac-

cidentally leaks private data (e.g., images of credit cards, computer monitors, etc.)

to the AR server and any network eavesdropper; (6) new mechanisms for visually

composing different types of AR content can be exploited for clickjacking; (7) a

malicious channel can exploit incorrect delegation of authentication credentials to

steal cookies belonging to any origin.

For each design flaw, we present our recommendations. Unfortunately,

few of the problems we identified can be solved simply by adding AR support to
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HTML5. Extending the same origin policy to AR tags is non-trivial, outsourced im-

age processing and image-triggered code execution will continue to present security

and privacy challenges, etc. For each functional requirement of the AR browsers,

we explain which features and system abstractions are needed to implement it prop-

erly. These recommendations include concrete fixes for specific vulnerabilities and

guidelines for securely re-engineering the architecture of AR browsers.

In summary, we present the first security and privacy specification for AR

browsers, a popular augmented-reality technology running on millions of devices.

3.2 Related work

Azuma et al. [5,6] identified three major properties of AR systems, exhibited

by all AR browsers in our study: combining real and virtual objects, real-time inter-

activity, and support for 3D blending of virtual and real objects. Several papers sug-

gested adding augmented reality to mobile applications such as tour guides [1, 34].

Spohrer et al. [94] explored the idea of associating information with real-world

objects using “WorldBoard channels.” Just like AR channels analyzed in this pa-

per, “WorldBoard channels” can display HTML-encoded information overlaid on

real-world objects. Kooper et al. [56] used the term “real world-wide web” for the

combined information space created by merging real-world objects with the HTML

content of the WWW. ARML [69] is a proposed standard for defining geospatial

AR objects through XML.

Roesner et al. surveyed various security concerns arising from the widespread

use of AR technologies [80]. By contrast, we analyze the technical architecture of
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popular, deployed AR platforms. With the exception of clickjacking and general

privacy concerns, none of the issues we discovered are mentioned in [80].

Several recent papers focused on privacy concerns arising from the unre-

stricted access to sensor data by untrusted third-party AR applications. Darkly,

by Jana et al., uses access control, algorithmic transformation of image features,

and user audit to prevent certain privacy violations by applications based on the

OpenCV computer vision library [53]. D’Antoni et al. [24] and Jana et al. [51]

show how to restrict AR applications’ access to sensor data by adding fine-grained

permissions to the OS. These systems are concerned with protecting users from

untrusted applications, whereas we investigate whether and how trusted AR appli-

cations protect users from untrusted content (i.e., our threat model is similar to the

standard threat model of Web browsers).

Some of our attacks involve pictures or QR codes placed in a public area

to trick AR browsers into launching a malicious AR channel. Lookout Mobile

Security used a QR code to force Google Glass to connect to an attacker-controlled

Wi-Fi access point.1 Both attacks employ malicious QR codes, but the similarities

end there. The attacks described in Section 3.7.2 exploit the deficiencies of user

interfaces in AR browsers, not software vulnerabilities.

Clickjacking attacks against conventional Web content were analyzed in [49,

83,84]. In Section 3.9.2, we explained that our clickjacking attacks and defenses are

somewhat different because of the architectural differences between Web browsers

1http://www.techweekeurope.co.uk/news/google-glass-security-
vulnerability-internet-of-things-122073
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and AR browsers.

3.3 AR services

AR services are deployed by AR service providers such as Junaio and La-

yar. These companies supply AR client software (we use the term AR browser)

to users and maintain dedicated AR servers through which users access third-party

AR content (see Figure 3.2). AR content providers are independent developers who

create AR content, host it on their own servers, and register this content with AR

service providers. We use the term channel generically for any AR content, but the

actual terminology differs from service to service (e.g., channels are called layers

in Layar).

By analogy with conventional Web, AR service providers are similar to

Web-browser developers, while AR channels are similar to Web applications. There

are important differences, however. AR providers make money by charging for

SDK licenses, features such as cloud storage for AR channels, and per-user fees

from third-party apps that connect to their services. All providers analyzed in

this chapter allow a limited use of free channels, but some charge for commer-

cial channels and/or may insert banner ads into free channels. Therefore, they typi-

cally require that browsers initiate access to third-party channels via providers’ own

servers.
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3.3.1 Functional requirements

Access to native resources on the user’s device. The AR browser must have access

to the onboard camera and GPS location to (1) recognize images and locations

that launch AR content, and (2) to correctly add AR objects to the user’s visual

environment.

Support for interactive, non-HTML AR content. In addition to HTML content

such as images and text, AR content may include 2D and 3D models and animations

that cannot be described in HTML. AR channels thus include service-specific XML

or JSON defining how to place and render these objects.

Image-triggered code execution. AR browsers access content in non-standard

ways: they send images from the device’s camera to their servers, which attempt

to recognize certain pictures and QR codes and automatically launch the associated

AR channels.

Outsourced image processing. Image recognition is a computationally heavy task

that may not be feasible on low-powered mobile devices and often involves pro-

prietary algorithms. Furthermore, image-based code execution requires the server

to extract the trigger image from the camera feed and match it against a propri-

etary database of registered images. Therefore, AR browsers send images from the

phone’s camera to the AR provider for processing.

Visual composition of AR content. The AR browser is responsible for constructing

a visual stack that combines non-HTML AR content, such as interactive 3D models,

41



Figure 3.3: Architecture of a typical AR service.

with HTML content from multiple origins (e.g., online ads) on top of the camera

feed.

Indirect retrieval of AR content. Instead of directly fetching AR content from

its developers, AR browsers typically submit requests via the AR provider’s server.

This enables providers to charge registration and usage fees, inject advertising, etc.

3.3.2 Components of AR services

The components of a typical AR service and their interactions are shown in

Figure 3.3.

AR browsers. Figure 3.4 shows the generic architecture of an AR browser. All AR

browsers include (1) one or more instances of an embedded Web browser such as

WebView, (2) a “native” component that has direct access to resources such as the

camera and GPS location via the mobile OS, and (3) ad-hoc mechanisms for gluing

these components together.
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Figure 3.4: Architecture of an AR browser.

AR channels. An AR channel is roughly similar to a website. It defines an aug-

mented reality experience by specifying AR content to display and how to display

it. This content may include AR objects linked to a geolocation (“points of interest”

or POI), HTML pages, audio, video, etc., as well as JavaScript to control these ob-

jects. The channel may also specify the actions to take when a certain object comes

into view or is clicked by the user.

For example, an AR channel may overlay historical pictures when view-

ing certain landmarks,2 show reviews for nearby restaurants,3 or control an avatar

running around the scene.4 A channel may directly incorporate third-party con-

tent—for instance, include online ads in its HTML—or instruct the AR browser to

load a third-party webpage when the user performs a certain action.

2http://layar.it/YuDzik
3Wikitude Restaurants
4junaio://channels/?id=127275
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A user launches a channel by selecting it from a list provided by the AR

browser (based on the geolocation or most popular channels), or by scanning an

image.

AR servers. As explained in Section 3.3.1, requests to load a channel are sent

by the AR browser to the AR provider’s server, not directly to the channel server

(see Figure 3.3). Each request includes some combination of the channel’s id, the

location of the device, and other data. The AR server forwards the request to the

relevant channel’s server, which is a server controlled by the channel owner and

registered with the AR provider. The AR server may also handle the authentication

of users to channels (Section 3.10). The response from the channel with the XML

or JSON definitions of AR objects is forwarded via the AR server, too. Subsequent

requests may be sent by the browser directly to the channel server.

3.3.3 Specific AR browsers

We focus on the most popular AR browsers. Junaio is an AR browser

developed by Metaio. It is designed to augment both print media and geolocation-

based environments (Figure 3.5). Layar focuses primarily on adding AR features

to print media such as magazines and newspapers (Figure 3.6), but also supports

geolocation-based AR. AR content for Layar is served by layers, but we will refer to

them as channels for terminological consistency. Wikitude is another AR browser,

but some of its features did not execute correctly in our testing, thus we discuss

only the features we were able to evaluate.

Unlike HTML, AR content is browser-specific, i.e., a Junaio browser can

44



Figure 3.5: Examples of a Junaio channel showing a 3D model placed over the
Junaio logo.

only display Junaio channels, etc. Wikitude and the Open Geospatial Consor-

tium have proposed the Augmented Reality Markup Language (ARML) standard

to unify the format of AR objects with XML [69].

3.4 Threat model

We are concerned with five classes of attackers.

AR attackers. An AR attacker is the equivalent of a standard Web attacker. He

controls the malicious content of his AR channel and may trick or entice users into

visiting it. He cannot observe users’ network communications with other destina-

tions, nor execute any code on their machines other than JavaScript served by his

own channel. For image-triggered channels, the attacker can associate any image

with his channel. Some—but not all—of the attacks described in this chapter re-

quire the attacker to place physical trigger images in a public place (e.g., as a sticker
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Figure 3.6: A Layar channel running on top of a scanned magazine page. The AR
objects are circled. Clicking any of the colors below the 3D watch model changes
its color. The user can also add the watch to his or her shopping cart.

on a wall).

Curious AR services. We assume that AR browsers are benign and secure (the

issues raised by malicious mobile apps are vast and well beyond our scope), but

we do investigate privacy risks caused by user-specific visual data collected by AR

services.

Ad attackers. AR channels can include third-party content such as syndicated

ads. An “ad attacker” tricks a trusted website or AR channel into incorporating

his malicious content, e.g., via ad brokers. We assume that ads can run arbitrary

JavaScript, but are confined into iframes when rendered by the AR browser.

Web attackers. While the focus of this chapter is on malicious AR content, we also

investigate how the mere presence of AR browsers on the device can be exploited

by conventional Web attackers (Section 3.5.2). A Web attacker controls his own

website and attempts to lure users to it via enticing content, ads, phishing, etc. Like

the AR attacker, the Web attacker cannot observe network traffic between the user
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and other sites.

Network attackers. We briefly analyze privacy threats posed by network attackers.

Either through man-in-the-middle attacks or by being on the same network as the

victim, a network attacker can listen in on the communications between the AR

browser and the AR provider, AR channel owners, and third-party servers.

3.5 Access to native resources

AR browsers cannot function without access to the camera and GPS location

since both are required to launch channels. Furthermore, individual AR channels

need access to these native resources in order to correctly add AR objects to the

user’s camera view. Consequently, all AR browsers equip JavaScript with some

form of access to native device resources outside the Web-browser sandbox. Script

access to AR objects is also required by the ARML 2.0 specification [69, Sec-

tion 9.1] and therefore must be supported by all compliant AR browsers.

Another common functionality is launching AR browsers via custom URLs.

This is needed for interoperability [76, Section 5]: for example, one AR browser

may launch another AR browser to render proprietary content that is not supported

by the first browser.

The control code of Junaio channels is written in JavaScript. Junaio executes

it in an embedded WebView browser extended with custom interfaces that allow

JavaScript to grab camera images, read and change the Junaio-reported geolocation,

control the device’s light, make requests to the channel server, open conventional
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Web-browser windows, or load a different channel.

Technically, these interfaces are accessed via AREL, a JavaScript library

from Junaio that encodes commands in pseudo-URIs. For example, arel://media/website/

?action=open&external=false&url=http%3a%2f%2f

www.google.com instructs the Junaio app to launch Google.com in a conventional

browser. There are several techniques to pass this pseudo-URI from WebView to

the Junaio app. The standard technique is to push the URI to the global “com-

mandQueue” and set window.location = “arel://requestsPending”. The Junaio app

intercepts the URL load event, reads the command off the queue, and performs the

requested action.

Layar supports a more restricted set of native-access capabilities. For exam-

ple, a channel can be invoked via a layar://[channelname] pseudo-URI.

3.5.1 Doing it wrong

The custom APIs described above are generic architectural features, univer-

sally supported by AR browsers and independent of any specific AR content. They

effectively open holes in the Web-browser sandbox, intended to support native ac-

cess by the channel’s own JavaScript. Unfortunately, these externally added APIs

are not protected by the same-origin policy, in part due to the lack of system sup-

port (WebView does not provide any way to restrict the origin of custom interfaces).

Consequently, they can be accessed by any HTML content regardless of its origin.

For instance, in Junaio on Android, any iframe can bypass AREL and execute na-

tive commands directly, without user permission, by setting window.location to the
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corresponding pseudo-URI.

3.5.2 Risks

In this section, we are concerned with (1) conventional Web attackers, whose

malicious pages are viewed by mobile users in conventional browsers, (2) “ad at-

tackers,” whose untrusted HTML is incorporated into trusted AR channels but con-

fined into iframes, and (3) AR attackers, who directly control malicious AR chan-

nels.

Hijacking AR browsers to bypass OS access control. AR browsers must have

access to the camera, but conventional webpages typically don’t, unless explicitly

authorized by the user. Unfortunately, the AR browser’s access rights can be hi-

jacked by malicious webpages to gain access without the user’s permission.

Suppose the user has the Junaio app installed on his Android phone. The

user accidentally visits a malicious webpage in the regular Web browser (e.g., An-

droid’s default system browser) by clicking on an ad, a link in a spam message, etc.

The malicious page contains a URL of the form junaio://channel=. . . and a script

in the page forces the browser to open this URL. This generates an Android intent,

which automatically starts the Junaio app and launches any channel chosen by the

attacker, e.g., the attacker’s own channel. Like all Junaio channels, the attacker’s

channel automatically has access to the device’s camera, can take pictures of the

user and its surroundings, etc. Layar, too, can be automatically launched from a

conventional webpage via a layar:// [channelname] pseudo-URI.
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This attack completely bypasses OS access control. Even though the user

granted camera access only to Junaio or Layar, this access has now been hijacked by

a conventional webpage. The attack can even be stealthy. Having grabbed images

from the camera, the attacker’s channel can relaunch the regular Web browser and

immediately redirect the user to the page he was initially browsing.

The ability to automatically launch an AR browser is required for interoper-

ability between AR browsers [76]. Therefore, the presence of a single AR browser

that can be launched in this fashion on the user’s device is exploitable by conven-

tional Web attackers.

Hijacking native-access rights by malicious ads. Because native-access rights

are not restricted to the channel’s own origin, any iframe can hijack them. In Sec-

tion 3.6.2, we describe how native-access capabilities can be used by a malicious

ad to perform a cross-site scripting attack against any origin of its choosing.

Furthermore, malicious third-party iframes included into a trusted channel

can take redirect the entire AR browser to malicious content. For example, in Layar,

a script in an iframe can use a layar:// command to switch the browser to a different

channel. In Junaio, the switchChannel command in AREL (also accessible from an

iframe) has the same effect. This can be exploited for undetectable phishing: an

iframe included in a trusted channel’s HTML can automatically switch the browser

to a visually indistinguishable malicious channel.

Abusing native-access rights by AR channels. The ability of AR channels to

access resources outside the browser sandbox presents privacy risks to their users.
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In Junaio, as long as the channel’s transparent overlay (Section 3.6) continues to

run in the background, it can surreptitiously grab images from the camera and send

them to the channel server even after the user moved away from the place where

he launched the channel. The user’s location can be tracked in a similar fashion in

Junaio, Layar, and Wikitude.

3.5.3 How to do it right

To prevent conventional webpages from gaining unauthorized access to the

camera and other resources by launching the AR browser and directing it to the

attacker’s channel, the user should be asked for confirmation whenever the AR

browser is invoked automatically. This presents serious interface-design and us-

ability challenges and calls for further research.

Interfaces to native resources must be protected by the same-origin policy,

lest they are hijacked by untrusted iframes. Recent solutions to the problem of

unauthorized native access by third-party origins in mobile apps, e.g., NoFrak by

Georgiev et al. [39], may be applicable to AR browsers. Alternatively, embedded

Web browsers such as WebView can be re-engineered so that the same-origin policy

applies to native-access interfaces.

Additionally, AR browsers could be re-designed to support fine-grained

native-access permissions. Instead of wholesale access to a particular resource,

the channel would be restricted to a limited set of actions outside the sandbox. For

example, it could only access the camera feed via pre-defined system abstractions

such as “recognizers” [51] for specific objects.
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Figure 3.7: Junaio’s visual stack. AR objects are on top of the camera feed, the
transparent overlay on top of the objects. If an object is clicked, a pop-up appears
at the very top.

3.6 Support for non-HTML AR content

In addition to HTML content such as images and text, interactive AR con-

tent includes videos, animations, and 2D and 3D models with unique visual pre-

sentation requirements. Because these AR objects cannot be described in HTML

alone, existing AR services rely on XML or JSON definitions to specify how to

place and render these objects, and on JavaScript to control these objects from in-

side the embedded Web browser.

Junaio. In Junaio, AR objects are defined in the XML page returned by the channel

server. Junaio supports floating clickable objects (“points of interest”), 3D models,

floating pictures, movies, and 360-degree panoramas. The Junaio browser renders

these objects in the visual stack shown in Figure 3.7.

On top of the AR objects, Junaio places a transparent window implemented

using WebView (Android) or UIWebView (iOS). We call it the transparent HTML
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overlay. This overlay provides GUI functionality to channels and enables them

to control AR objects outside WebView via special browser interfaces and a cus-

tom JavaScript library called AREL (Section 3.5). These interfaces can be used

to create, destroy, animate, move, or resize AR objects, to read and modify their

parameters such as id, name, geolocation, and the associated pop-up, and to handle

events based on channel state, object state, or user’s interaction with the object (e.g.,

channel ready, object loaded, sound finished playing, object rotated, etc.).

The URL of the transparent overlay is specified in the XML page and may

belong to a different origin than the AR channel itself. This URL cannot be viewed

by the user. The channel—and any third-party content included in the channel—can

also supply JavaScript that will be executed inside the transparent page.

Clicking a link in the transparent overlay loads the destination in the same

window, replacing the old page. JavaScript in the transparent overlay can also open

an opaque window with a conventional embedded Web browser. Another way to

open an opaque window is via a pop-up (Section 3.6.1). JavaScript continues to run

in the background after opening the window.

Layar. The Layar browser displays AR objects on top of the visual feed from the

device’s camera (Figure 3.8). The objects can be HTML webpages, 2D images,

3D models, or videos, and can have actions associated with them, such as placing

a phone call, sending an SMS or email, launching a website, loading or refreshing

channels, sharing the channel on Facebook or Twitter, and loading movies and mu-

sic. Actions are specified in the object definition via pseudo-URIs such as ‘tel:’,
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Figure 3.8: Layar’s visual stack. AR objects, which can include HTML pages, are
overlaid on the camera feed.

‘sms:’, ‘mailto:’, ‘layar://’ , ‘layarshare://’, etc.

Wikitude. Wikitude is architecturally similar to Junaio. AR content includes

a transparent webpage that shows a GUI and controls AR objects via a custom

JavaScript library called ARchitect. Object types include HtmlDrawable, intended

to display HTML content. HtmlDrawables have an evalJavaScript function that can

be used to execute JavaScript inside a drawable (it worked only sporadically in our

testing on Android 4.1.2).

3.6.1 Doing it wrong

Web browsers take great care to confine untrusted Web content. The same-

origin policy (SOP) ensures that content from a given origin—defined by the pro-

tocol (HTTP or HTTPS), domain name, and port number—cannot access the non-

trivial attributes of any content from a different origin [93]. Web browsers pro-

vide abstractions such as iframes for confining content from untrusted origins, as
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well as structured cross-origin mechanisms (e.g., postMessage), which, if used cor-

rectly [92], enable content from different origins to communicate.

AR browsers face a similar challenge because AR channels may combine

content from different origins. Interactive, non-HTML AR objects make this chal-

lenge much harder because they are must be described in XML or JSON, which are

not governed by the SOP. Therefore, any Web content included in XML definitions

must be sanitized to prevent cross-origin attacks. None of the existing AR browsers

apply such sanitization.

For example, the XML definition of an AR object in Junaio can have a pop-

up field with a textual description and an array of buttons. Each button contains

either a URL, or JavaScript code. When such an object is clicked, a partially trans-

parent window with the pop-up’s description and buttons is opened on top of the

transparent overlay (Figure 3.7). When a button is clicked in the pop-up, the as-

sociated URL is loaded in an opaque window. If the pop-up contains JavaScript

instead, this JavaScript is executed in the transparent overlay—even if the origin of

the content in the overlay is different from the origin of the channel that provided

the script.

Furthermore, AR browsers provide ad-hoc interfaces for communication be-

tween layers of the visual stack (Section 3.5). The interfaces used by HTML content

to manage AR objects outside the embedded Web browser are not protected by the

SOP.
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Figure 3.9: Cross-site scripting (XSS) in Junaio

3.6.2 Risks

In this section, we are concerned with AR attackers, who may incorpo-

rate trusted content into their malicious AR channels, and “ad attackers,” whose

malicious content (e.g., online ads) is incorporated into trusted AR channels, but

confined into iframes.

Cross-site scripting. As described above, an AR object in Junaio may be asso-

ciated with a pop-up button, which can inject JavaScript into the transparent web-

page overlaid on the channel. This setup opens a hole in the same-origin policy.

A malicious channel can specify any origin for the transparent page and associate

an arbitrary script with the button. When the button is clicked, this script is in-

jected into the transparent page and gains unrestricted access to all content from

this page’s origin—see Figure 3.9. This cross-site scripting (XSS) vulnerability can
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(a) Step 1 (b) Step 2 (c) Step 3

Figure 3.10: Universal XSS vulnerability in Junaio.

be exploited, for example, to modify the DOM of the victim page or steal cookies.

HtmlDrawable objects in Wikitude contain an even simpler XSS vulnera-

bility. A malicious channel can (1) specify any URL for an HtmlDrawable object,

and (2) use evalJavaScript to inject an arbitrary script into this object. In effect,

HtmlDrawable objects present an easy-to-use, structured API for performing XSS

attacks.

Universal cross-site scripting in Junaio. The above XSS attacks assume that the

channel is malicious. Unfortunately, even if (i) the channel itself is benign, (ii) all

untrusted, third-party content such as online ads is correctly confined to iframes,

and (iii) the embedded Web browser running the channel’s HTML correctly en-

forces the SOP, confined third-party content in Junaio can perform XSS attacks

against any origin of its choosing.

Consider a benign Junaio channel that includes an AR object with a pop-

up button and suppose that the channel’s transparent HTML page contains an ad

in an iframe (Figure 3.10(a)). Malicious JavaScript hidden in such an ad can (1)

use AREL commands (Section 3.5) to change the script associated with the pop-
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up button to the attack script, and (2) change the URL of the transparent overlay

to the victim page (Figure 3.10(b)). When the button is clicked, the attack script

will be executed in the victim page (Figure 3.10(c)). These architectural features

thus amount to a universal XSS vulnerability: a malicious ad can pick any origin

whatsoever and inject an arbitrary script into it.

3.6.3 How to do it right

Quick patches. The cross-site scripting vulnerabilities described above are caused

in part by the fact that the origin of HTML incorporated into an AR channel may

be different from the channel’s own origin. A plausible defense is to require the

AR browser to ensure that the two origins are the same, but this requires the AR

browser to reason about the origins of content specified in custom XML definitions

(as opposed to HTML). AR browsers can no longer rely on WebView to manage

the same-origin policy and must correctly replicate a complex piece of Web-browser

functionality.

Another defense is to sanitize XML so that it does not contain scripts, which

is a notoriously difficult problem [8] and, in the case of AR browsers, requires

careful reasoning about origins that normally would have been the responsibility

of the Web browser. Both defenses disable important features of AR browsers and

may break existing applications.

In Wikitude, where evalJavaScript allows channels to inject scripts into an

HtmlDrawable regardless of its origin, restricting the origin is not feasible because

HtmlDrawable is intended to display content from origins other than the channel
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itself. The evalJavaScript interface should simply be removed.

Principled solutions. The root cause of many security holes described in this

section (but not those in the other sections) is that AR objects cannot be described

in HTML, thus AR browsers must use custom mechanisms to enable HTML content

to control these objects. Standardizing AR object description languages, including

them in HTML5 via either tags, or a special document type, (e.g., channel), and

adding support for these new HTML5 features into embedded Web browsers like

WebView would allow AR content to execute entirely within the Web browser,

eliminating the need for XML and some of the ad-hoc browser interfaces.

Unfortunately, assigning origins to these tags is not trivial. In the existing

AR browsers, all AR objects are treated as if their origin is the domain where the

main AR channel is hosted. Since any of these objects may contain JavaScript, this

is extremely dangerous.

The alternative, which is to extend the same-origin policy to AR tags, is

problematic as well. These tags are intended to support 3D models, animations, UI

elements, etc. which may come from different domains but are intended to work

smoothly together to produce a unified AR experience. A naive extension of the

SOP would isolate the AR HTML tags based on their domains, but this would

prevent them from communicating. The developers would then have to implement

cross-origin communication mechanisms, which is fraught with peril [92]. Enforce-

ment of the SOP is complicated even further by the fact that several of these new

tags may need plugins to be rendered (similar to Flash).
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Lacking HTML5 support for AR, embedded Web browsers such as Web-

View can at least provide SOP-protected APIs that (1) render arbitrary objects on

top of camera images, and (2) let JavaScript inside WebView control these objects.

This would support safe implementation of an important subset of AR functionality.

3.7 Image-triggered code execution

The ability to scan their surroundings and to recognize and track images is

fundamental in AR browsers [69, Section 7.5.1.2]. This enables new methods for

invoking AR content. In Junaio and Layar, AR channels can be associated with

pictures or QR codes and launched simply by scanning the corresponding image.

3.7.1 Doing it wrong

When the user is scanning his surroundings through the Junaio or Layar

browser, the AR service is continuously analyzing the camera feed. As soon as

it recognizes an image associated with some channel, it automatically launches

and executes the channel’s content, without any confirmation prompts. The user

is not given an opportunity to preview the URL or any other information about the

content, with one exception: for QR codes (but not pictures), Layar previews the

URL by showing it as a button before launching the channel. Unfortunately, its

URL parser is broken (Figure 3.11). For example, if the URL in the QR code is

http:////attacker.com, it will not be displayed in the preview, but the browser will

launch AR content hosted at http://attacker.com.

In Junaio, after a channel is fully loaded, the user can see its description and
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Figure 3.11: Both codes launch the same channel, but Layar fails to parse the code
on the right and does not show the URL.

the developer’s name.

3.7.2 Risks

In this section, we are primarily concerned with AR attackers who can

choose any picture or QR code as the automatic trigger for their malicious chan-

nels. For some (but not all) attacks, the attacker also needs to physically place these

images in public places, possibly in proximity to other channels’ trigger images.

Stealthy tracking. Because AR services do not vet pictures associated with AR

channels, they can be used for automated stalking and tracking. Layar’s image

recognition algorithm is sufficiently precise to distinguish between different license

plate numbers. An AR attacker can register a Layar channel associated with the

photo of a specific license plate. Whenever any Layar user scans his surround-

ings and the license plate is prominent in the camera’s view, the channel would

get launched automatically and the plate’s location, along with its entire visual en-

61



vironment, will be sent to the channel’s owner, enabling him to track the plate’s

movements. Other sensitive items can be tracked in a similar fashion.

Crucially, this attack does not require the attacker to distribute physical im-

ages associated with his channel.

Exploiting automatic channel launching. As soon as the image is recognized

by the AR service’s (black-box) recognition algorithm, the code of the associated

channel executes automatically, without user confirmation or channel identification.

If the scanned image contains sub-images or a familiar image in an unusual envi-

ronment, the user cannot know ahead of time which channel will be launched. If

the images are similar, yet subtly different from each other, the user may not be able

to tell which channel they launch.

Image recognition algorithms suffer from false positives and are inevitably

nondeterministic from the user’s point of view [102]. Unfortunately, user interfaces

of the existing AR browsers are derived from the embedded Web browsers on which

they are based and do not inform the user about spurious matches and other potential

problems with visual identification.

This can be exploited by an AR attacker in two ways: (1) register an image

trigger that is very similar to an image already associated with a trusted channel, or

(2) combine the image associated with a malicious channel with a trusted channel’s

image into a single composite image. In either of these scenarios, the AR browser

may be tricked into automatically launching the malicious channel when scanning

a physical image placed by the attacker (e.g., on a building wall, bus shelter, etc.).
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Figure 3.12: Depending on the angle, each poster nondeterministically launches
either its own channel, or the channel associated with the other poster.

In Layar, the same picture may be associated with multiple channels. For

example, we have been able to register our channel with the same movie-poster im-

age as one of Layar’s demo channels. If there are multiple channels associated with

a picture, the user may open a menu in the corner to see channel names and switch

between them. It is possible, however, to create visually similar images that auto-

matically and non-deterministically launch different channels without the browser

presenting the channel selection menu to the user. Each poster in Figure 3.12 nonde-

terministically launches the channel associated with the poster or the (completely

different) channel associated with the other poster. At many viewing angles, the

channel selection menu is not offered.

Furthermore, a malicious channel can suppress the channel selection menu

using the native-access capabilities described in Section 3.5.2. A layar://[channelname]

pseudo-URI instructs the browser to launch a channel. In this case, the browser

does not show other channels associated with the image. Consider a malicious

channel that associates itself with the same image as a benign channel. If the

user previews the malicious channel before flipping to the benign channel, the first
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(a) (b) (c) (d)

Figure 3.13: Different combinations of the Junaio mascot and the QR code launch
different channels.

object loaded from the malicious channel can reload the entire channel using la-

yar://[channelname] and the other, benign channel will no longer be visible to the

user.

The other risk is composite images that include a trusted image in an unex-

pected visual environment. When faced with a composite image, Junaio’s choice of

the channel to launch depends on the camera angle and distance. For example, the

images in Figs. 3.13(a) and 3.13(b) launch different channels depending on whether

the mascot or the QR code is more prominent. Sometimes, changing the angle of

the camera by a few degrees or less changes which channel is launched. The image

in Figure 3.13(c) automatically launches the channel associated with the mascot

when scanned from a close distance, and the one associated with the QR code when

scanned from further away. Figure 3.13(d) launches the channel associated with the

QR code, even though the mascot is visible. This means that even after scanning

a familiar image, a user cannot be sure that the automatically launched channel is

the one he expects. Another image in the camera’s field of vision may “re-route”

Junaio’s image recognition algorithm to a different channel.
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3.7.3 How to do it right

The risk of an AR attacker registering an image trigger that is specific to an

individual (e.g., a license plate) is inherent in AR services. A service may attempt

to filter out such images during channel registration, but this requires deep semantic

analysis of submitted images and will be inevitably bypassable. This inherent risk

is exacerbated, however, by the fact that AR content is executed immediately after

the image is scanned.

First, AR browsers should inform the user about the origin of AR content

before launching it (at the very least, display the developer’s name and basic infor-

mation about the channel). Second, automatic, image-triggered code execution is

fraught with danger and should be used sparingly—for example, only with trusted

channels—and not with every image that happens to fall into the camera’s field of

vision. Third, AR browsers should develop better user interfaces that inform users

about the possibility of spurious image matches and non-deterministic launches of

unexpected content.

3.8 Outsourced image processing

AR browsers must continuously analyze the device’s camera feed in order

to recognize automatic content triggers and to anchor or position AR objects on the

screen. Existing AR browsers such as Junaio and Layar do not process the captured

images on the device; instead, they send them to central AR servers.
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Figure 3.14: An image sent by the Layar browser over HTTP so that the Layar
server can recognize content triggers. Note the accidentally captured credit card.

3.8.1 Doing it wrong

There are several reasons for outsourced image processing. First, for busi-

ness reasons—injecting ads, charging content providers, keeping usage statistics,

etc.—all AR content retrieval is mediated by the AR service. To facilitate image-

based channel launching, recognition of trigger images is done at the server. Sec-

ond, this involves matching against proprietary databases using proprietary algo-

rithms. Centralized image processing helps protect intellectual property and re-

moves the need to replicate and update the service’s image database on millions of

devices. Third, many image recognition algorithms are computationally intensive

and would heavily task low-powered mobile devices.

3.8.2 Risks

In this section, we are concerned with (1) network attackers who observe

network traffic between the device and the provider’s AR server, and (2) the AR

service itself.

Accidental overcollection of sensitive data is a big risk in this setting. For

example, the Layar browser sends raw images from the device’s camera to the
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server over unencrypted HTTP. If such an image contains sensitive items (see Fig-

ure 3.14), they are leaked to any Wi-Fi eavesdropper.

Even if network communications were secure, the AR service inevitably

collects a tremendous amount of raw visual data about its users’ physical environ-

ment. This is an inherent design flaw of all existing AR services. The users must

trust them to safeguard captured images, which contain a lot of sensitive infor-

mation that is completely irrelevant to the AR functionality: accidentally captured

computer screens, credit cards, license plates, etc. For example, in addition to the

unencrypted camera image of its environment sent at the start of each scan, the La-

yar browser occasionally sends a log message to the server with the location of the

phone. The user is not informed about this information leakage and, in general, has

no way to learn which data is sent to AR servers.

3.8.3 How to do it right

When image recognition is outsourced to the server, a secure protocol should

be used to prevent accidental leakage of irrelevant information in the images. If the

server is attempting to recognize a channel trigger on a magazine page, there is no

need for it to “see” the physical objects surrounding the page.

This is a difficult problem, but there has been some recent progress. Osad-

chy et al. described a prototype system for secure outsourced face matching [71].

This system cannot be directly applied in AR browsers, however, because images

matched by AR browsers may appear in different lighting, under different angles,

etc. Another approach is taken by Darkly [53], which can perform simple computer
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vision tasks without access to raw image details.

3.9 Visual composition

To render AR content—images, text, 2D and 3D models, and HTML content

from multiple origins (e.g., the channel itself and advertisers)—on top of the camera

feed, AR browsers maintain a complex visual stack. For example, Junaio’s visual

stack is described in Section 3.6.

In Layar, a channel can use a webpage as an AR object, called an HTML

widget. Each widget opens in its own WebView and does not display URLs or any

Web-browser buttons. HTML widgets may not be covered by other types of AR

objects, but can be overlaid on each other to create a visual AR experience.

3.9.1 Doing it wrong

Conventional Web browsers provide the iframe abstraction that allows com-

position and stacking of HTML content from different origins. To defend against

clickjacking, a webpage can ensure that it is not framed by a page from a different

origin, either via framebusting [84] (special code that moves the page to the top

frame), or via X-Frame-Option [103].

AR browsers must deal with both HTML and non-HTML content, and thus

resort to custom mechanisms to implement the functional equivalent of iframe.

Consequently, standard defenses based on framebusting or X-Frame-Option no

longer work. For example, as described above, Layar puts each instance of HTML

content into its own WebView instance. Each instance acts like an iframe and can be
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overlaid on other instances. Therefore, a malicious AR channel can overlay content

from another origin (B) on top of its own content (A) without B being technically

“framed” by A.

3.9.2 Risks

In this section, we are concerned with an AR attacker whose channel com-

bines his own malicious HTML content with trusted HTML content from other

origins.

By cleverly overlaying HTML widgets from different origins, a malicious

channel can “hijack” the user’s clicks. The user sees a button that appears to belong

to some window, but the click is actually captured by a different window. For

example, Figure 3.9.2 shows a malicious Layar channel that overlays two Twitter

windows. The user may think that the visible “Tweet” button submits the “Hello!”

tweet, but it actually belongs to the bottom window and thus submits the invisible,

malicious tweet.

Because the victim page is in the top/main frame of its own WebView in-

stance, it cannot prevent this attack or even detect when it is being framed in this

way.

3.9.3 How to do it right

Defenses against clickjacking in AR browsers would benefit from a whole-

browser equivalent of X-Frame-Option. Layar already prevents non-widget objects

from covering widgets, but there is no way for HTML content to specify that its
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(a) Overlapped HTML widgets in Layar.
The widget with “Hello” is cut off before
its Tweet button.

(b) The two HTML widgets expanded. In the attack,
the bottom widget is not fully shown (its tweet text is
covered and not visible to the user).

Figure 3.15: Clickjacking in Layar.

widget—or any WebView in which it is displayed—should not overlap with other

widgets.

In general, using conventional embedded Web browsers such as WebView to

render AR content is dangerous. WebView is not designed to display AR content,

forcing AR browsers to use ad-hoc mechanisms for visually combining content

from different origins. A principled solution to clickjacking in AR browsers should

involve a clean-slate redesign of their user interfaces.

3.10 Indirect retrieval of AR content

AR content comes from independent third-party developers. While in the-

ory the AR browser could fetch this content directly from the developers’ servers,

in practice the business models of AR services require tight control over AR con-

tent. They track usage, charge fees for channel registration, inject advertising, and,

in general, monitor the interaction between their browsers and third-party content.
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Consequently, content requests must pass through the AR provider’s own servers.

3.10.1 Doing it wrong

Some AR browsers enable third-party channels to authenticate users or keep

track of users’ preferences between their visits. For example, Layar supports a

cookie-based user authentication scheme that can be deployed by geolocation chan-

nels. This protocol is diagrammed in Figure 3.16.

Figure 3.16: User authentication in Layar.

As mentioned above, the Layar server is involved in the launches of both

authenticated and unauthenticated channels. When requesting a channel, the Layar

browser sends a POST request to the Layar server and attaches the cookies associ-

ated with the channel’s origin. The Layar server then attaches these cookies to the

GET request it forwards to the channel server.

Cookie security depends on the binding between the cookie and its origin.
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A conventional Web browser (a) maintains this binding internally, and (b) automat-

ically attaches the cookie to every request sent to that origin. In Layar, channel

launches are mediated by the Layar server, which must maintain the same cookie-

origin binding as the Layar browser.

The Layar browser learns the origin of the channel from the Layar server.

When the browser first loads the channel, the cookies are set by the channel’s au-

thentication page and thus correctly bound to the channel’s origin at that time. If

this origin changes later (e.g., the channel moves to a different domain), the Layar

server notes the change and forwards all browser requests to the new location. Crit-

ically, the Layar server does not notify the browsers connected to the channel that

the channel’s origin has changed. The browsers continue to attach the cookies from

the old origin to their requests, and the Layar server obliviously forwards them to

the new origin.

3.10.2 Risks

In this section, we are concerned with AR attackers who lie about the URLs

of their channels. By “desynchronizing” the Layar browser’s and the Layar server’s

understanding of the channel’s origin, a malicious channel can steal cookies be-

longing to any origin (Figure 3.17).

For example, the attacker initially tells Layar that the URL of his channel

is https://www.twitter.com. When a user launches the channel, the Layar browser

attaches Twitter cookies to every channel update request. Next, the attacker changes

his channel’s URL to https://attacker.com. The Layar server registers the change,
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(a) (b)

Figure 3.17: Layar cookie stealing attack.

but does not inform the browsers connected to the channel. They continue to attach

Twitter cookies to every channel update request. The Layar server forwards these

requests, cookies attached, to

https://attacker.com, and the attacker steals all of its users’ Twitter cookies.

This attack works for any domain of the attacker’s choosing (we tested it

for Twitter and Facebook). Note that many AR channels are integrated with online

social networks, thus the user is likely to be logged into Facebook and Twitter

through his AR browser.

3.10.3 How to do it right

The first defense is to avoid replicating the state of the browser on the Layar

server. The browser may request the URL of the channel server from the Layar

server, but subsequent communication should be conducted directly between the

browser and the channel server. The same-origin policy within the browser will

then ensure that cookies are disclosed only to their origins. This defense, however,
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may break Layar’s business model.

The second defense is for the Layar server to ensure that it agrees with the

browser about the channel server’s URL. This defense requires re-engineering the

protocol between the browser, Layar server, and channel server.

The final defense is to use an authentication protocol that supports delega-

tion, e.g., OAuth. In current Layar, channels may use OAuth 1.0 to authenticate

the Layar server. This protects benign AR developers from spoofed Layar servers,

but not legitimate Layar servers from malicious developers, and thus does not help

against the cookie-stealing attack.

3.11 Conclusions

Perceptual computing platforms help developers in creating perceptual ap-

plications efficiently. In this chapter, we presented the first in-depth analysis of the

security and privacy properties of the AR browsers, one of the most popular percep-

tual platforms, identified multiple architectural flaws, and proposed both short-term

fixes for specific vulnerabilities and some directions for future research on building

secure AR browsers.
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Chapter 4

Redesigning perceptual interfaces with recognizers

4.1 Introduction

Today’s perceptual applications are monolithic. The application itself per-

forms sensing, rendering, and user input interpretation (e.g., for gestures), aided

by user-space libraries, such as the Kinect SDK, OpenCV [22, 70], or cloud object

recognition services, such as Lambda Labs or IQ Engines. Existing perceptual com-

puting platforms offer only coarse-grained access to sensor streams, such as video

or audio data. This raises a privacy challenge: it is difficult to build applications

that follow the principle of least privilege, having access to only the information

they need and no more. Today’s platforms do not support fine-grained permissions

required for development of least-privilege applications, relying instead on careful

pre-publication vetting of applications [21].

The perceptual data coming out of the sensors often contain sensitive infor-

mation. An application, however, may not need any of this sensitive information to

do its job. For example, Figure 4.1 shows a screenshot from the “Kinect Adven-

tures!” game that ships with the Microsoft Xbox Kinect. First, the game estimates

the body position of the player from the video and depth stream of the Kinect. Next,

the game overlays an avatar on top of the player’s body position. Finally the game
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Figure 4.1: Perceptual applications often need only specific objects rather than the
entire sensor streams. The “Kinect Adventures!” game only needs body position to
render an avatar and simulate game physics.

simulates interaction between the avatar and a virtual world, including a ball that

bounces back and forth to hit blocks. To do its job, the game needs only body

position, and not any other information from the video and depth stream.

Kinect is just one example of an perceptual platform; this principle of per-

ceptual applications benefiting from “least privilege” is more general. We show two

mobile phone examples in Figure 4.2. On the left, the Macy’s Believe-O-Magic ap-

plication shows a view of a child standing next to a holiday-themed cartoon charac-

ter. While the application today must ask for raw video access, which includes the

face of the child and of all bystanders, the only information the application needs

is the location of a special marker to enable rendering the cartoon in the correct

place. On the right, Layar is an “AR browser” for mobile phones, here showing a

visualization of where recent tweets have originated near the user. Again, Layar

must ask for raw video and location access, but in fact it needs to only know the

GPS position of the tweet relative to the user.

Beyond these examples, Figure 4.3 shows the top 5 Amazon best-selling
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Figure 4.2: Two examples of mobile perceptual applications that only need specific
objects in a sensor stream. On the left, Macy’s Believe-O-Magic only needs the
location in the frame of a special marker, on top of which it renders a cartoon
character. On the right, Layar only needs to know the GPS location and compass
position to show geo-tagged tweets.

Kinect-enabled applications for the Xbox 360, along with the Xbox Dashboard and

representative perceptual apps on mobile phones. For each application, as well as

the Xbox Dashboard, we enumerate the objects recognized; in Section 4.4 we carry

out a similar analysis for all shipping Xbox Kinect applications. None of these

applications need continuous access to raw video and depth data, but no current

perceptual platform allows a user to restrict access at finer granularity.

The Recognizer Abstraction. To address this problem, we introduce a new least-

privilege abstraction called a recognizer for perceptual computing platforms. A

recognizer takes as input a sensor stream and creates events when objects are rec-

ognized. These events contain information about the recognized object, such as its

position in the video frame, but not the raw sensor information. By making access

to recognizer-exposed objects a first-class permission in the perceptual computing

platform, we enable least privilege for perceptual applications. We assume a fixed
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Application Objects recognized

Your Shape 2012 skeleton, person texture
Dance Central 3 skeleton, person texture
Nike+Kinect skeleton, person texture
Just Dance 4 skeleton, video clip
NBA 2K13 voice commands
Xbox Dashboard pointer, voice commands

Layar GPS “points of interest”
Red Bull Racing Red Bull Cans
Macy’s Believe-O-Magic Macy’s store display

Figure 4.3: Sample perceptual applications and the objects they recognize. Kinect
apps are above the line, mobile below.

set of system-provided recognizers in this work. This is justified by our analysis

of over 87 shipping applications, which shows a set of four “core recognizers” is

sufficient for the vast majority of such applications (Section 4.4).

Supporting recognizers in the perceptual platform incurs several benefits.

Besides enabling least privilege, recognizers lead to a performance improvement,

as heavyweight object recognition can be shared among multiple applications. We

show how a perceptual platform can compose recognizers in a dataflow graph,

which enables precise reasoning about which recognizers should be run, depending

on the set of running applications. Finally, we show how making dataflow explicit

allows us to prune spurious permission requests.

Challenges. We faced several challenges designing our recognizer-based percep-

tual platform. First, other fine-grained permission systems, such as Android, have

been shown to be difficult to interpret for users [37]. To address this problem, we in-

troduce privacy goggles: an “application’s-eye view” of the world that shows users
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which recognizers are available to an application. Users see a video representation

of sensitive data that will be shown to the application (Figure 4.7). This, in turn,

lays the foundation for informed permission granting or permission revocation. Our

surveys of 462 people show that privacy goggles are effective at communicating ca-

pabilities to users.

Another challenge concerned recognizer errors. For example, an applica-

tion may have permission for a skeleton recognizer. If that recognizer mistakenly

finds a skeleton in a frame, the application may obtain information even though

there is no person present. This information leakage violates a user’s expectations,

even though the application sees only a higher-level object such as the skeleton.

We address recognizer errors with a new perceptual platform component,

recognizer error correction. We evaluate three approaches: blurring, frame sub-

traction, and recognizer combination. The first two manipulate raw sensor data to

reduce false positives in a recognizer-independent way. The last reduces false posi-

tives by using context information available to the platform from its use of multiple

recognizers that could not be available to any individual recognizer author. We

show that our techniques reduce false positives across a set of seven recognizers

implemented in the OpenCV library [70].

Our final challenge concerned recognizers that require heavyweight ob-

ject recognition algorithms which may run poorly or not at all on performance-

constrained mobile devices [64,66]. We thus build and evaluate support for offload-

ing of particularly heavyweight recognizers to a remote machine.
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We have implemented a prototype of our system on Windows, using the

Kinect for Windows SDK. Our system includes nine recognizers, including face

detection, skeleton detection, and a “plane recognizer” built on top of KinectFu-

sion [66].

Contributions. We make the following contributions:

• We introduce a new perceptual platform abstraction, the recognizer, which

captures the core object recognition capabilities of perceptual applications.

Our novel fine-grained permission system for recognizers enables least priv-

ilege for perceptual applications. We show that all shipping Kinect applica-

tions would benefit from least privilege. Based on surveys of 500 people, we

determine a privacy ordering on common recognizers.

• We introduce a novel visualization of sensitive data provided to perceptual

applications, which we call privacy goggles. Privacy goggles let users inspect

sensitive information flowing to an application, to aid in permission granting,

inspection, and revocation. Our surveys of 462 people show that privacy

goggles are effective at communicating capabilities to users.

• We recognize the problem of granting permissions in the presence of object

recognition errors and propose techniques to mitigate it.

• We demonstrate that raising the level of abstraction to the “recognizer” en-

ables the perceptual platform to offer services such as offloading and cross-
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application recognizer sharing that improve performance. Our implemen-

tation has negligible overhead for single applications, yet greatly increases

performance for concurrent applications and allows the platform to offload

heavyweight recognizer computation.

In the rest of the chapter, Section 4.2 discusses our recognizer abstraction, and

Section 4.3 describes our implementation. Section 4.4 evaluates privacy goggles,

recognizers required for shipping perceptual applications, recognizer error correc-

tion, and performance of our prototype. Sections 4.5 and 4.6 present related and

future work, and Section 4.7 concludes.

4.2 The recognizer abstraction

We propose a new perceptual platform abstraction called a recognizer. A

recognizer is a component of the perceptual computing platform that takes a sensor

stream, such as video or audio, and “recognizes” objects in the sensor stream. For

example, Figure 4.4 shows a recognizer that wraps face detection logic. This rec-

ognizer takes a raw RGB image and outputs a face object if a face is present. The

recognizer abstraction lets us capture that most perceptual applications operate on

specific entities with high-level semantics, such as the face or the skeleton. To en-

able least privilege, the platform exposes higher level entities through recognizers.

Recognizers create events when objects are recognized. A recognizer event

contains structured data that encodes information about the objects. Each recog-

nizer declares a public type for this structured data that is available to applications.
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Applications register callbacks with the perceptual platform that fire for events from

a particular recognizer; the callbacks accept arguments of the specified type. For

example, the recognizer in Figure 4.4 declares that it will return a list of points cor-

responding to facial features, plus an RGB texture for the face itself. A callback for

an application receives the points and texture in its arguments, but not the rest of

the raw RGB frame.

The recognizer is the unit of permission granting. Every time an application

attempts to register a callback with the platform for a specific recognizer, the ap-

plication must be authorized by the user. Different applications can, depending on

the user’s authorization, have access to different recognizers.This gives us a fine-

grained permission mechanism.

Users can restrict applications to only “see” a subset of the raw data stream.

For example, Figure 4.4 shows a bounding box in the raw RGB frame that can be

associated with a specific application. If a face happened to be present outside this

bounding box, that application would not see the resulting event. Such regions are

useful to (1) prevent an application from seeing sensitive information in the envi-

ronment, and (2) improve efficiency and accuracy of recognizers (e.g., by skipping

a region that generates false positives). This bounding box works for sensors where

the data is spatial, such as RGB, depth, or skeleton feeds. Other cutoffs would work

for other sensors, such as filtering audio to a certain frequency range to ensure voice

data is not leaked while other sounds are kept.

Recognizers can also subscribe to events from other recognizers, just like

applications. The platform includes recognizers for raw sensor streams, such as
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Figure 4.4: Example of a recognizer for face detection. The input is a feed of raw
RGB video plus a region within that video. The recognizer outputs an event if a face
is recognized in the region. Applications register callbacks that fire on the event and
are called with a list of points outlining the face plus an RGB texture, but not the
rest of the video frame.

Figure 4.5: A sample directed acyclic graph of recognizers. Arrows denote how
recognizers subscribe to events from other recognizers.
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Figure 4.6: Recognizer-based perceptual platform architecture. Applications re-
quest subscriptions to sets of recognizers, which the OS then confirms with the user
using privacy goggles (Figure 4.7). Once the user grants permission, the platform
delivers recognizer events to subscribed applications.

RGB frames from a camera. Because subscribing to events is an explicit call to

the platform, the platform can construct a dataflow graph showing how raw sensor

streams are progressively refined into objects. Figure 4.5 shows an example. Hav-

ing explicit data flow helps the platform with both security and performance, as we

describe below.

Architecture and Threat Model: Figure 4.6 shows the core architecture of a per-

ceptual platfom with multiple applications and multiple recognizers. “Root” recog-

nizers acquire raw input from sensors such as the Kinect, then raise events that are

consumed by other recognizers. An application may request a subscription for a set

of recognizers. The platform confirms this request with the user using our “Privacy

Goggles” visualization (Section 4.2.3). If the user agrees to the request, the plat-

form then delivers events from appropriate recognizers to the application. While

our implementation and example focuses on the Kinect, our architecture applies to
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all forms of object recognition across different platforms such as mobile phones.

The applications are not trusted, while the platform, recognizer implementa-

tions, and hardware are trusted. This is similar to the threat model in today’s mobile

devices. Third-party recognizer implementations are out of scope of this work.

4.2.1 Security benefits

The recognizer abstraction has two key security benefits:

Least privilege: Applications can be given access only to the recognizers they

need, instead of to raw sensor streams. Before recognizers, OSes could expose

permissions only at a coarse granularity. As we will see in Section 4.4, a small set

of recognizers is sufficient to cover most shipping perceptual applications.

Reducing permission requests: If an application requests access to the skeleton

and hand recognizers from the DAG shown in Figure 4.5, a user only needs to grant

access to the skeleton recognizer. More generally, the recognizer DAG allows us to

find such dependencies efficiently. This helps with warning fatigue, which is one of

the major problems with existing permission systems [37].

4.2.2 Performance benefits

Besides the security benefits described above, recognizer DAGs also allow

us to achieve significant performance gains.

Sharing recognizer output: Most computer vision algorithms used in recognizers

are computationally intensive. Since concurrently running perceptual applications
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may access the same recognizers, our recognizer DAG allows us to run such shared

recognizers only once and send the output to all subscribed applications. Our ex-

periments show that this results in significant performance gains for concurrent

applications.

On-demand invocation: The recognizer DAG allows us to find all recognizers

being accessed by currently active applications at all times. We can then prevent

scheduling inactive recognizers.

Concurrent execution: The recognizer DAG also allows us to find true data de-

pendencies between the recognizers. We leverage this to schedule independent rec-

ognizers in multiple threads/cores and thus minimize inter-thread/core communica-

tion.

Offloading: Some recognizers require special-purpose hardware such as a pow-

erful GPU that may not be available in mobile devices. These recognizers must

be outsourced to a remote server. For example, the real-time 3D model generation

of KinectFusion [66] requires a high-end nVidia desktop graphics card, such as a

GeForce GTX 680. Therefore, if we want to use a commodity tablet with a Kinect

attached to scan objects and create models, we must run the recognizer on a re-

mote machine. While applications could implement offloading themselves, adding

offloading support to the platform preserves least privilege. For example, the plat-

form can offload KinectFusion without giving applications access to raw RGB and

depth inputs, which would be required if an application were to offload it manually.
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4.2.3 Privacy goggles

We introduce privacy goggles, an “application-eye view” of the world for

running applications. For example, if the application has access to a skeleton rec-

ognizer, a stick figure in the “privacy goggles view” mirrors the movements of

any person in view of the system, as shown in Figure 4.7. A trusted visualization

method for each recognizer communicates the capabilities of applications that have

access to this recognizer. If an application requests access to more than one rec-

ognizer, the platform will compose the appropriate visualizations. In Section 4.4

we survey 462 people to demonstrate that privacy goggles do effectively communi-

cate capabilities for “core recognizers” derived from analyzing shipping perceptual

applications. Privacy goggles are complementary to existing permission widgets,

such as those of Howell and Schechter [48], which allow users to understand how

apps perceive them in real time.

Permission Granting and Revocation. Privacy goggles lay a foundation for per-

mission granting, inspection, and revocation experiences. For example, we can

generalize existing install-time manifests to use privacy goggles visualizations. At

installation time, a short prepared video could play showing a “raw” data stream

side by side with the privacy goggles view. The user can then decide to allow ac-

cess to all, some, or none of the recognizers.

A major difference between privacy goggles and existing permission grant-

ing systems like Android manifests is the visual representation of the sensitive

data. The visual representation helps users to make informed decisions about grant-

ing and revoking an application’s access to different recognizers. Traditional sys-
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tems do not need this representation because they ask for permissions about well-

understood low-level hardware, such as the camera and microphone. Because we

are fine-grained and must consider higher-level semantics, we need privacy goggles

to show the impact of allowing applications access to specific recognizers.

After installation, privacy goggles are a natural way to inspect sensitive data

exposed to applications. The user can trigger a “privacy goggles control panel”

to zero in on a particular application or view a composite for all applications at

once. From the control panel, a user can then turn off an application’s access to a

recognizer or even uninstall the application.

4.2.4 Handling recognizer errors

Because our permission system depends on recognizer outputs, we have a

new challenge: recognizer errors. Object recognition algorithms inside recognizers

have both false positives and false negatives. A false negative means that applica-

tions will not “see” an object in the world, impacting functionality. False negatives,

however, do not concern privacy.

A false positive, on the other hand, means that an application will see more

information than was intended. In some cases the damage will be limited, because

the recognizer will return information that is not sensitive. For example, a false

positive from a recognizer for hand positions is unlikely to be a problem. In others,

false positives could leak portions of raw RGB frames or other more sensitive data.

To address recognizer errors, we introduce a new platform component for

recognizer error correction. While recognizers themselves implement various tech-
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niques to decrease errors, in our setting false positives are damaging, while false

negatives are less important. Therefore, we are willing to tolerate more false neg-

atives and fewer false positives than a recognizer developer who is not concerned

with basing permission decisions on a recognizer’s output.

For recognizer error correction, we first considered two techniques: blur-

ring and frame subtraction, both of which are well-known graphics techniques that

can be applied in a recognizer-independent way. We apply these techniques to rec-

ognizer inputs to reduce potential false positives, accepting that they may raise false

negatives. We discuss the results and show data in Section 4.4.

In addition, the platform has information not available to an individual rec-

ognizer developer: results from other recognizers in the same system on the same

environment. Recognizer error correction can therefore employ recognizer combi-

nation to reduce false positives. For example, if a depth camera is available, the

platform can use the depth camera to modify the input to a face detection recog-

nizer. By blanking out all pixels past a certain depth, the platform can ensure a face

recognizer focuses only on possible faces near the system. While combination does

require knowing something about what a recognizer does, it is independent of the

internals of the recognizer implementation. For another example, the platform can

combine a skeleton recognizer and a face recognizer to release a face image only if

there is also a skeleton with its head in the appropriate place.
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Figure 4.7: Example of “privacy goggles.” The user sees the “application-eye view”
for a skeleton recognizer.

4.2.5 Adding new recognizers.

Today’s perceptual platforms ship with a small fixed set of recognizers. Ap-

plications that want capabilities outside that set need to both innovate on object

recognition and on app experience, which is rare. As the platforms mature, we

expect additional recognizers to appear. The main incremental costs for new rec-

ognizers are 1) coming up with a privacy goggles visualization, 2) measuring the

effectiveness of this visualization at informing users (and re-designing if not effec-

tive), and 3) defining relationships with existing recognizers to support recognizer

error correction. For example, a new “eye recognizer” would have the invariant that

every eye detected should be on a head detected by the skeleton recognizer. Third-

party recognizers raise additional security issues outside the scope of this work.

4.3 Implementation

We have built a prototype implementation of our architecture. Our proto-

type consists of a multiplexer, which plays the role of the perceptual computing

platform, and ARLib, a library used by perceptual applications to communicate to
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API Purpose

init Register
destruct Clean up
event generate Notify apps of recognized objects
visualize Render recognized objects
filter Restrict domain for recognition
cache compare Compare to previous inputs

Figure 4.8: The APIs implemented by each recognizer. The first four are required,
while filter and cache compare are optional.

the multiplexer. Our system uses the Kinect RGB and depth cameras for its sensor

inputs.

Multiplexer. The multiplexer handles access to the sensors and also contains im-

plementations of all recognizers in the system. Our applications no longer have

direct access to Kinect sensor data and must instead interact with the multiplexer

and retrieve this data from recognizers. The multiplexer supports simultaneous

connections from multiple applications. To simplify implementation, we built the

multiplexer as a user-space program in Windows that links against the Kinect for

Windows SDK.

The multiplexer registers each recognizer using a static, well-known name.

Applications use these names to request access to one or more recognizers. When

the multiplexer receives such an access request, it asks the user whether or not

permission should be granted using privacy goggles (Section 4.2.3). If the user

grants permission, the multiplexer will forward future recognizer events, such as

face mesh points from a face recognizer, to the application.
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The multiplexer interacts with recognizers via an API shown in Figure 4.8.

All recognizers must implement the first four API calls. The multiplexer calls init

to initialize a recognizer and destruct to let a recognizer release its resources. In

our current implementation, the multiplexer calls the event generate function

of each recognizer in a loop, providing prerequisite recognizer inputs as parameters,

to check if any new objects have been recognized. If so, the recognizer will return

data that the multiplexer will then package in an event data structure and pass to

all subscribed applications. We plan to implement a more efficient interrupt-driven

multiplexer in the future.

The next two API calls are optional. The filter call allows the multi-

plexer to tell the recognizer that only a specific subset of the raw inputs should

be used for recognition. For example, only a sub-rectangle of the video frame

should be considered for a face detector. Finally, cache compare is a recognizer-

specific comparator function that takes two sets of recognizer inputs and determines

whether they are considered equal. The multiplexer uses this comparator to imple-

ment per-recognizer caching. For example, the multiplexer may pass the previous

and current RGB frames to the cache compare function of the face recognizer

and potentially avoid a recomputation of the face model if the two frames have not

sufficiently changed.

Our multiplexer and recognizers consisted of about 3, 000 lines of C++ code.

We wrote a total of nine recognizers, which we summarize in Figure 4.9.
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Recognizer Input dependencies Output

RGB Kinect RGB camera frames
Depth Kinect Depth camera frames
Skeleton Kinect Computed skeleton model(s)
Hand Skeleton Hand positions
FaceDetect RGB 2D face models for faces in current view
PersonTexture Depth, Skeleton Depth “cutout” of a person
Plane RGB, Depth 3D polygon coordinates constructed with Kinect-

Fusion (see Section 4.4.3)
FaceRecognize RGB, FaceDetect Name of person in current view (see Section 4.4.3)
CameraMotion Kinect Camera movements detected using an accelerome-

ter/gyro

Figure 4.9: The nine recognizers implemented by our multiplexer. A “Kinect” input
dependency means that the recognizer obtains data directly from the Kinect rather
than other recognizers.

Application support. Applications targeting our multiplexer run in separate Win-

dows processes. Each application links against the ARLib library we have built. AR-

Lib communicates with the multiplexer over local sockets and handles marshaling

and unmarshaling of recognizer event data. By calling ARLib functions, an appli-

cation can request access to specific recognizers and register callbacks to handle

recognizer events. ARLib provides two kinds of interfaces: a low-level interface

for applications written in C++ and higher-level wrappers for .NET applications

written in C# or other managed languages. ARLib consists of about 500 lines of

C++ code and 400 lines of C# code.

Sample code in Figure 4.10 shows a part of a test application we wrote that

detects faces and draws pictures on the screen which follow face movements. The

application connects to the multiplexer and subscribes to face recognizer events. In

our implementation, these events contain approximately 100 points corresponding
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var client = new MultiplexerClient();
client.Connect();
client.OnFace += new FaceEventCallback(ProcessFace);
...
public void ProcessFace(FTPoint[] points)
{

if (points.Length > 0) {
DrawFace(points);

} else {
RemoveFace();

}
}

Figure 4.10: Code used by a sample C# application to connect to the multiplexer,
subscribe to events from the face recognizer, and use those events to update its face
visualization.

to different parts of the face, or 0 points if a face is not present. The application

handles these events in the ProcessFace callback by checking if a face is present

and calling a separate function (not shown) that updates the display.

In addition to face visualization, we ported a few other sample applications

bundled with the Kinect SDK to our system. These included a skeleton visualizer

and raw RGB and depth visualizers. We found the porting effort to be modest,

aided in part by the fact that we modeled our event data formats on existing Kinect

SDK APIs. In each case, we only changed a handful of lines dealing with event

subscription. We additionally wrote two applications from scratch: a 500-line C++

application that translates hand gestures into mouse cursor movements, and a 300-

line C# application that uses face recognition to annotate people with their names.

Overall, we found our multiplexer interface simple and intuitive to use for building

perceptual applications.
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4.4 Evaluation

We first evaluate how recognizers are used by an analysis of 87 shipping

AR applications and users’ mental models of AR applications. A survey of 462

respondents shows that users expect AR applications to have limited access to raw

data. Furthermore, no shipping application needs continuous RGB access, and in

fact a set of four recognizers is sufficient for almost all applications. For these

“core” recognizers, we design privacy goggles visualizations and evaluate how well

users understand them. Next, we look at how the perceptual platform can mitigate

recognizer errors once an application has access to recognizers. Finally, we show

that our abstraction enables performance improvements, making this a rare case

when improved privacy leads to improved performance.

4.4.1 Recognizers

Core Recognizers. We analyzed 87 AR applications on the Xbox Kinect platform,

including all applications sold on Amazon.com. We focused on Kinect because it

is widely adopted and sits in a user’s home. For each application, we manually

reviewed their functionality, either through reading reviews or by using the applica-

tion. From this, we extracted “recognizers” that would be sufficient to support the

application’s functionality.

Figure 4.11 shows the results. Four core recognizers are sufficient to sup-

port around 89% of shipping AR applications. The set consists of skeleton track-

ing, hand position, person texture, and keyword voice commands. Person texture

reveals a portion of RGB video around a person detected through skeleton track-
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ing, but with the image blurred or otherwise transformed to hide all details. Fitness

applications, in particular, use person texture when instructing the user on proper

form.

After the core set, there is a “long tail” of seven recognizers. For exam-

ple, the Alvin and the Chipmunks game uses voice modulation to “Alvin-ize” the

player’s voice, and NBA Baller Beats actually tracks the location of a basketball

to check that the player dribbles in time to music. None of the applications in our

set, however, require continuous access to RGB data. Instead, applications take a

short video or photo of the player so that she can share how silly she looks with

friends; this could be handled via user-driven access control [81]. Only 3 applica-

tions require audio access beyond voice command triggers. There is plenty of room

to improve privacy with least privilege enabled by the recognizer abstraction.

Privacy Expectations for Applications. To learn users’ mental models of percep-

tual application capabilities, we showed 462 survey respondents a video of a Kinect

“foot piano” application in action: the Kinect tracks foot positions and plays music.

We then asked about the capabilities of the application. Figure 4.15(A) shows the

results. Over 86% of all users responded that the application could see the foot posi-

tions, while a much smaller number believed this application had other capabilities.

Overall, users expect applications will not see the entire raw sensor stream.

Privacy Goggles for Core Recognizers. As we discussed in Section 4.2, every

recognizer must implement a visualization method to enable the privacy goggles

view. The platform uses these visualizations to display to the user what information

is obtained by each application. We developed privacy goggles visualizations for
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Recognizer % Apps

Skeleton 94.3%
Person Texture (PT) 25.3%
Voice Commands (VC) 3.44%
Hand Position (HP) 5.74%
Video Clip 3.4%
Picture Snap 1.1%
Voice Intensity 1.1%
Voice Modulation 1.1%
Speaker Recognition 1.1%
Sound Recognition 1.1%
Basketball Tracking 1.1%

Skeleton+PT+VC 82.75%
Skeleton+PT+VC+HP 89.65%

Figure 4.11: Analysis of all recognizers used by 87 shipping Xbox applications. For
each recognizer, we show what percentage of apps use that recognizer (and possibly
others). We also show two sets of recognizers, and for each set, the percentage of
apps that use recognizers in this set and no others. A set of four recognizers cov-
ers 89.65% of all applications. No application needs continuous raw RGB access,
and only 3 need audio access beyond voice commands.

three of the four core recognizers: skeleton, hand position, and person texture.

While voice commands are also a core recognizer, we decided to focus first on the

visual recognizers and leave visualization of voice commands for future work.

Privacy Attitudes for Core Recognizers. We then conducted surveys to measure

the relative sensitivity of the information released by the core recognizers. We

also added the “face detector” recognizer, because intuitively the face is private

information, and a “Raw” video recognizer that represents giving all information to

the application. For each pair of recognizers, we showed a visualization from the

same underlying video frame, then asked the participant to state which picture was

“more sensitive” and why. Figure 4.13 shows an example comparing raw RGB and
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Figure 4.12: Example survey question for privacy goggles. An embedded warning
video shows two views: the raw video on the right, and what the application will
see on the left. Survey respondents watched the warning video, then answered
questions about what the app could or could not do after installation. Out of 152
respondents, 80% correctly identified that the app could see body position, and 47%
correctly determined the app could see hand positions.

face detector recognizers.

For each pair of recognizers, we asked 50 people to rate which picture con-

tained information that was “more sensitive.” Figure 4.14 shows the results. In

total we had 500 survey respondents, all from the United States. As expected, re-

spondents find that the raw RGB frame is more sensitive than any other recognizer.

Based on the responses, we can order recognizers from “most sensitive” to “least

sensitive”, as follows: Raw, Face, Person Texture, Skeleton, and finally the least

sensitive is Hand Position.

Effectiveness of Privacy Goggles. Finally, we evaluated whether our “privacy

goggles” visualizations successfully communicate the capabilities of applications.

We created three surveys, one for each of the skeleton, person texture, and hand

recognizers. We had at least 150 respondents to each survey, with a total of 462 re-

spondents. Our surveys are inspired by Felt et al.’s Android permission “quiz.” [37]
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Figure 4.13: Example survey on relative sensitivity. Respondents indicated which
picture is more sensitive: the “raw” RGB video frame or an image showing only
the output of a face detector. Out of 50 respondents, 86% indicated the raw image
was more sensitive.

We showed a short video clip of the privacy goggles visualization for the tar-

get recognizer. Figure 4.12 shows an example for the skeleton recognizer. The right

half shows the raw RGB video of a person writing on a whiteboard and handling a

small ceramic cat figurine. The left half shows the “application-eye view” showing

the detected skeleton. We then asked users what they believed the capabilities of the

application would be if installed. Figure 4.15 shows the results, with a check mark

next to correct answers. We see that a large number of respondents (over 80%)

picked the correct result and relatively few picked incorrect results. This shows that

privacy goggles are effective at communicating application capabilities to the user.

Respondent Demographics. Our survey participants were recruited from the U.S.

through uSample [99], a professional survey service, via the Instant.ly web site.

We did not specify any restrictions on demographics to recruit. As reported by

uSample, participants are 66% female and 33% male, with 10.2% in the 0–22

age range, 12.9% 22–26, 21.2% 26–34, 16.8% 34–42, 13.5% 42–50, 15.1% 50–
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Recognizers Left more 95%
Left Right sensitive CI

Raw Face 86% ± 9.6%
Raw Skeleton 78% ± 11.48%
Raw Texture 88% ± 9.01%
Raw Hand 88% ± 9.01%
Texture Skeleton 82% ± 10.65%
Texture Face 35% ± 13.22%
Texture Hand 84% ± 10.16%
Skeleton Face 24% ± 11.84%
Skeleton Hand 84% ± 10.16%
Hand Face 22% ± 11.48%

Figure 4.14: Results from relative sensitivity surveys. Users were shown two pic-
tures, one from each recognizer, here shown as the “left” and the “right” recognizer.
The table reports which picture respondents thought contained “more sensitive” in-
formation and the 95% confidence interval. For example, in the first line, 86% of
people thought that the view from the “Raw” RGB recognizer was more sensitive
than the view from a face detector, with a 95% confidence interval of ± 9.6%.

60, 8.1% 60–70, and 1.8% 70 or older.

4.4.2 Noisy permissions

While privacy goggles are effective at communicating what an app should

and should not see to the user, the recognizers we use can have false positives.

These could leak information to applications. We first evaluated a representative

set of recognizers on well-known vision data sets to quantify the problem. Next, we

evaluated platform-level mitigations for false positives.

Recognizer Accuracy. We picked three well-known data sets for our evaluations:

(1) a Berkeley dataset consisting of pictures of objects, (2) an INRIA dataset con-

taining pictures of a talking head, and (3) a set of pictures of a face turning toward
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A. Foot Piano (462 respondents)

See my body position 76 (16%)
See my foot positions X 400 (86%)
See what I look like 28 (6%)
See the entire video 52 (11%)
Learn my heart rate 21 (4%)
None of the above 20 (4%)
I don’t know 20 (4%)

B. Skeleton (152 respondents)

See what I look like 17 (11%)
See my body position X 122 (80%)
See my location 24 (16%)
Read the contents of the
whiteboard

14 (9%)

Send premium SMS mes-
sages on my behalf

4 (3%)

Track the position of my
hands X

71 (47%)

None of the above 4 (3%)
I don’t know 1 (1%)

C. Person Texture (156 respondents)

See what I look like 36 (23%)
See my body position X 137 (88%)
See my location 25 (16%)
See the ceramic cat 19 (12%)
Read the contents of the
whiteboard

5 (3%)

Send premium SMS mes-
sages on my behalf

0 (0%)

Track the position of my
hands X

60 (38%)

None of the above 2 (1%)
I don’t know 5 (3%)

D. Hand Position (154 respondents)

See what I look like 17 (11%)
See my body position 32 (21%)
See my location 14 (9%)
See the ceramic cat 12 (8%)
Read the contents of the
whiteboard

7 (5%)

Send premium SMS mes-
sages on my behalf

2 (1%)

Track the position of my
hands X

125 (81%)

None of the above 3 (2%)
I don’t know 4 (3%)

Figure 4.15: Results from privacy goggles effectiveness surveys. For each of our
three core recognizers, we first asked respondents to answer questions about the
capabilities of a Kinect “foot piano” application based on a short video of the appli-
cation in use (A). We next showed a privacy goggles “permission warning video”
and asked questions about what the application could do if installed (B-D).
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Figure 4.16: Recognizer combination in action. The left figure shows results of
running a face detector on a raw RGB video frame. Two faces are detected, but
only one belongs to a real person. On the right, face detection is run after combining
RGB and depth. Only the real person is detected.

the camera and then away. We then evaluated baseline false positive and false neg-

ative rates for seven object recognition algorithms contained in the widely adopted

OpenCV library. All seven had false positives on at least one of the data sets.

Input Massaging. We then implemented pre-permission blurring, in which frames

are put through a blurring process using a box filter before being passed to the face

detection algorithm. We used a 12× 12 box filter. We also used frame subtraction

as a heuristic to suppress recognizer false positives. In frame subtraction, when a

recognizer detects an object with a bounding box b in a frame F1 that it did not detect

in the previous frame F0, we compute the difference Crop(F1, b)−Crop(F0, b) and

check the number of pixels that have a difference. If this number does not exceed a

threshold, we ignore the detected object as a false positive.

For three out of our seven recognizers, blurring decreases false positives

with no effect on false negatives, with a maximum reduction for our lower body

recognizer from 19.5% false positives to 4.6% false positives. For the remaining
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Recognizer Data Set False
Positive

False
Negative BlurFP BlurFN SubFP SubFN

Face Objects 10.6% 0% 6% 0% 9.6% 0%
Face Talking

Head
0.2% 0% 0% 0% 0% 0%

Face Turning
Face

19.1% 16.1% 15% 16.1% 17.64 % 16.1%

FullBody Objects 14.8% 0% 3.5% 0% 9.6% 0%
FullBody Talking

Head
0.2 % 0% 0% 0% 0% 0%

FullBody Turning
Face

24.6% 0% 22.7 % 0% 20% 0%

LowBody Objects 19.5% 0% 4.6% 0% 17.9% 0%
LowBody Talking

Head
6.2% 0% 0.3% 0% 0% 0%

LowBody Turning
Face

33% 0% 25% 0% 28.3% 0%

UpperBody Objects 41% 0% 10% 0% 38.1% 0%
UpperBody Talking

Head
5.3% 0% 0.1% 0% 0.2% 0%

UpperBody Turning
Face

86% 0% 0% 0% 19.9% 0%

Eye Object 35% 0% 83% 0% 32 % 0%
Eye Talking

Head
64 % 0 % 100 % 0% 30% 2%

Eye Turning
Face

23 % 5% 100% 0% 9% 10%

Nose Object 17.8% 0% 57% 0% 17.1 % 0%
Nose Talking

Head
90 % 0% 86% 0% 90% 0%

Nose Turning
Face

24.5 % 0% 43% 7% 24% 0%

Mouth Object 61% 0% 75% 0% 59 % 0%
Mouth Talking

Head
100 % 0% 75% 0% 100% 0%

Mouth Turning
Face

75 % 0% 82% 0% 74% 0%

Table 4.1: False positive and false negative rates for OpenCV recognizers on com-
mon data sets. False positives are important because they could leak unintended
information to an application. We also show the effect of blurring and frame sub-
traction. For blurring we used a 12x12 box filter.
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recognizers, false positives decrease but false negatives also increase. Frame sub-

traction decreases false positives for six out of seven recognizers and has no effect

on the seventh, with no impact on false negatives. This is in line with our goals,

because false positives are more damaging to privacy than false negatives. The full

results are in Figure 4.1.

Recognizer Combination. Finally, we implemented recognizer combination, in

which the platform can take advantage of the fact that multiple recognizers are

available. Specifically, we combined the OpenCV face detector with the Kinect

depth sensor. We chose the OpenCV face detector because its developers could

depend only on the presence of RGB video data. We ran an experiment that first

acquires an RGB and depth frame, then blanks out all pixels with depth data that is

further away than a threshold. Next, we fed the resulting frame to the face detector.

An example result is shown in Figure 4.16. On the left, the original frame shows a

false positive detected behind the real person. On the right, recognizer combination

successfully avoids the false positive.

4.4.3 Performance

In our performance evaluation, we (1) measure the overhead of using our

system compared to using the Kinect SDK directly, (2) quantify the benefits of

recognizer sharing for multiple concurrent applications, and (3) evaluate the benefit

of recognizer offloading.
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Recognizers Kinect SDK Our framework

RGB Video 29.87 fps 30.02 fps
Skeleton 29.59 fps 28.65 fps
Face 28.24 fps 28.00 fps

Figure 4.17: Frame rates for a single application using the Kinect SDK vs. using
recognizers from our system. Our system incurs negligible overhead.

Overhead over Kinect SDK. Compared to directly using the Kinect SDK, an ap-

plication that uses our multiplexer will face extra overhead due to recognizer event

processing in the multiplexer as well as data marshaling and transfer over local

sockets. To quantify this overhead, we wrote two identically functioning applica-

tions to obtain and display a raw 640x480 RGB video feed, a skeleton model, and

points from a face model. The first application used the Kinect SDK APIs directly,

while the second used our multiplexer with RGB, skeleton, and face detection rec-

ognizers.

Figure 4.17 shows the frame rates when running these two applications on

a desktop HP xw8600 machine with a 4-core Core i5 processor and 4 GB of RAM.

We see that, fortunately, our current prototype incurs negligible overhead over the

Kinect SDK when used by a single application.

Recognizer Sharing. Next, we ran multiple concurrent copies of the two applica-

tions above to evaluate the benefits of recognizer sharing as well as the scalability

of our prototype. Since the Kinect SDK does not permit concurrent applications,

we wrote a simple wrapper for simulating that functionality, i.e., allowing multiple

applications as if they were linking to independent copies of the Kinect SDK.
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Figure 4.18: Effect of sharing a concurrent RGB video stream between applications.
Our framework enables 25 frames per second or higher for up to six applications,
while without sharing the frame rate drops.

Figure 4.18 shows the average frame rate for multiple concurrent applica-

tions using the RGB recognizer. We see that without recognizer sharing, frame rates

quickly stall as the number of concurrent applications increases, becoming unusable

beyond five applications. In contrast, our approach maintains at least 25 frames per

second up to six concurrent applications and degrades gracefully thereafter. We

experienced similar recognizer sharing benefits for skeleton and face recognizers.

While currently shipping AR platforms do not yet support multiple concur-

rent applications, the above experiment demonstrates that our system is ready to

efficiently embrace such support. Indeed, we believe this to be the future of AR

platforms. Mobile phone “AR Browsers” such as Layar already expose APIs for

third-party developers, with over 5,000 applications written for Layar alone [58].

Users will benefit from running these applications concurrently; for example, look-

ing at a store front, one application may show reviews of the store, while another

shows information about its online catalog, and yet a third application attaches a
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Throughput (frames/sec)
Recognizer Tablet Offloaded Server

Plane detection 0 4.17 4.46
Face recognition 2.04 2.73 2.84

Figure 4.19: Frames processed per second when running recognizers (1) locally on
a client tablet, (2) offloaded to the server and shipping results back to the tablet, and
(3) locally on the server.

name to the face of someone walking by.

Recognizer Offloading. We evaluated offloading of two resource-intensive recog-

nizers: plane and face recognition. The plane recognizer reconstructs planes in the

current scene using KinectFusion, which computes 3D models from Kinect depth

data [66]. The face recognizer uses the Microsoft Face SDK [64] to identify the

name of the person in the scene using a small database of known faces.

We implemented offloading across two devices linked by an 802.11g wire-

less network. For face recognition, the client sends RGB bitmaps of the current

scene to the server as often as possible; the client additionally includes the depth

bitmap for the plane recognizer.

Our client device was a Samsung Series 7 tablet running Windows 8 Pro 64-

bit with a 2-core Core i5 processor and 4 GB of RAM, hooked up to a Kinect. Our

server device was a desktop HP Z800 machine running Windows 8 Pro 64-bit with

two 4-core Xeon E5530 processors, 48 GB of RAM, and an Nvidia GTX 680 GPU.

The first two columns of Figure 4.19 show throughputs experienced by the

client when running recognizers locally and when offloading them to the server.

The plane recognizer requires a high-end Nvidia GPU, which prevented it from
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running on our client at all; we report this as zero frames per second. With of-

floading, however, the client is able to detect planes 4.2 times per second. For face

recognition, the client processed 2.73 frames per second when offloading, a 34%

improvement in response time compared to running face recognition locally. In

addition, when run locally, face recognition placed heavy CPU load on the client,

completely consuming one of its two cores. With offloading, the client’s CPU con-

sumption dropped to 15% required to send bitmaps, saving battery and freeing re-

sources for processing other recognizers. Note that our setup allows the offloading

server to service multiple clients in parallel. For example, the server was able to

handle eight concurrent face recognition clients before saturating.

We also considered the overhead of our offloading mechanism by plugging a

Kinect into our server and running the recognizer framework directly on it. Column

3 of Figure 4.19 shows these results. We see that offloading with the Kinect on the

client is only 4–7% slower than running the Kinect on the server, meaning that the

offloading overhead of transferring bitmaps and recognition results is reasonable.

4.5 Related work

Augmented Reality. Azuma surveyed augmented reality, defining it as real-time

registration of 3-D overlays on the real world [5], later broadening it to include

audio and other senses [6]. We take a broader view and also consider systems that

take input from the world. Qualcomm now has an SDK for augmented reality that

includes features such as marker-based tracking for mobile phones [78]. Previous

work by our group has laid out a case for adding OS support for augmented reality
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applications and highlighted key challenges [24].

Common shipping object recognition algorithms include skeleton detec-

tion [91], face and headpose detection [64,100], and speech recognition [65]. More

recently, Poh et al. showed that heart rate can be extracted from RGB video [77].

Our recognizer graph and simple API allow quickly adding new recognizers to our

system.

Sensor Privacy. There are several parts to sensor privacy: access control on sen-

sors, sensor data usage control once an application obtains access to sensor data,

and access visualization; we discuss related work for each.

Access control can take the form of user permissions. iOS’s permission

system is to prompt a user at the first time of the sensor access (such as a map ap-

plication first accessing GPS). Android and latest Windows OSes use manifests at

application installation time to inform the user of sensor usage among other things;

the installation proceeds only if the user permits the application to permanently ac-

cess all the requested permissions. These existing permission systems are either

disruptive or ask users’ permissions out-of-context. They are not least-privilege;

permanent access is often granted unnecessarily. Felt et al [37] has shown that most

people ignore manifests, and the few who do read manifests do not understand

them. To address these issues, access control gadgets (ACGs) [81] were introduced

to be trusted UI elements for sensors, which are embeddable by applications; users’

authentic actions on an ACG (e.g., a camera trusted UI) grants the embedding appli-

cation permission to access the represented sensor. In this paper, we argue that even

the ACG style of permission granting is too coarse-grained for augmented reality
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systems because most AR applications only require specific objects rather than the

entire RGB streams (Section 4.4.1).

Another form of access control is to reduce the sensitivity of private data

(e.g., GPS coordinates) available to applications. MockDroid [10] and AppFence [47]

allow using fake sensor data. Krumm [57] surveys methods of reducing sensitive in-

formation conveyed by location readings. Differential privacy [29] uses well-known

methods for computing the amount of noise to add to give strong guarantees against

an adversary’s ability to learn about any specific individual. Similarly, we proposed

modifying sensor inputs to recognizers in specific ways to reduce false positives

that could result in privacy leaks. Darkly [53] transforms output from computer

vision algorithms (such as contours, moments, or recognized objects) to blur the

identity of the output. Darkly can be applied to the output of our recognizers.

Once an application obtains access to sensors, information flow control ap-

proaches can be used to control or monitor an application’s usage of the sensitive

data as in TaintDroid [31] and AppFence [47].

In access visualization, sensor-access widgets [48] were proposed to reside

within an application’s display with an animation to show sensor data being col-

lected by the application. Darkly [53] also gives a visualization on its transforms

(see above). Our privacy goggles apply similar ideas to the AR environment, allow-

ing a user to visualize an application’s eye view of the user’s world.

Abstractions for Privacy. Our notion of taking raw sensor data and providing the

higher-level abstraction of recognizers is similar to CondOS [18]’s notion of Con-
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textual Data Units. However, they neither choose a set of concrete Contextual Data

Units that are suitable for a wide variety of real-world applications nor address pri-

vacy concerns that arise from applications having access to Contextual Data Unit

values. Koi [45] provides a location matching abstraction to replace raw GPS co-

ordinates in applications. The approach in Koi is limited to location data and may

require significant work to integrate into real applications, while our recognizers

cover many types of sensor data and were specifically chosen to match application

needs.

4.6 Future work

In this section, we enumerate some of the interesting future research direc-

tions for enhancing our recognizer-based perceptual platform.

Further Recognizer Visualization. The recognizers we evaluated had straightfor-

ward visualizations, such as the Kinect skeleton. As we noted, some recognizers,

such as voice commands, do not have obvious visualizations. Other recognizers

might extract features from raw video or audio for use by a variety of object recog-

nition algorithms, but not in themselves have an easily understood semantics, such

as a fast Fourier transform of audio. One key challenge here is to design visualiza-

tions for privacy goggles that clearly communicate to users the impact of allowing

application access to the recognizer. For example, with voice commands we might

try showing a video with sound where detected words are highlighted with subti-

tles. A second key challenge is characterizing the privacy impact of algorithmic

transforms on raw data, especially in the case of computer vision features that have
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not been considered from a privacy perspective.

Third-Party Recognizers. All the recognizers described in this chapter are as-

sumed trusted. To enable new experiences, we would like to support extension

of the platform with third-party recognizers. Supporting third-party recognizers

raises challenges, including permissions for recognizers as well as sandboxing un-

trusted GPU code without sacrificing performance. We have developed recogniz-

ers in a domain-specific language that enables precise analysis [25]. Dealing with

such challenges is intriguing future work, similar in spirit to research on third-party

driver isolation in an OS. For example, we might require such recognizers to go

through a vetting program and then have their code signed, similar to drivers in

Windows or applications on mobile phone platforms.

Bystander Privacy. Our focus is on protecting a user’s privacy against untrusted

applications. Mobile perceptual systems such as Google Glass, however, have al-

ready raised significant discussion of bystander privacy — the ability of people

around the user to opt out of recording and object recognition. Our architecture

allows explicitly identifying all applications that might have access to bystander in-

formation, but it does not tell us when and how to stop sending recognizer events to

applications. Making the system aware of these issues is important future work.

4.7 Conclusions

We introduced a new abstraction, the recognizer, for operating systems to

support augmented reality applications. Recognizers allow applications to raise the

level of abstraction from raw sensor data, such as audio and video streams, to ask

112



for access to specific recognized objects. This enables applications to act with the

least privilege needed. Our analysis of existing applications shows that all of them

would benefit from least privilege enabled by a perceptual platform with support

for recognizers. We then introduced a “privacy goggles” visualization for recogniz-

ers to communicate the impact of allowing access to users. Our surveys establish a

clear privacy ordering on core recognizers, show that users expect perceptual apps

to have limited capabilities, and demonstrate privacy goggles are effective at com-

municating capabilities of apps that access recognizers. We built a prototype on top

of the Kinect for Windows SDK. Our implementation has negligible overhead for

single applications, enables secure platform-level offloading of heavyweight rec-

ognizer computation, and improves performance for concurrent applications. In

short, the recognizer abstraction improves privacy and performance for perceptual

applications, laying the groundwork for future platform support of rich sensing and

perceptual application rendering.
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Chapter 5

DARKLY: retrofitting privacy protection in existing
perceptual interfaces

5.1 Introduction

General-purpose, data-agnostic privacy technologies such as access control

and privacy-preserving statistical analysis are fairly blunt tools. Instead, we develop

a domain-specific solution, informed by the structure of perceptual applications and

the computations they perform on their inputs, and capable of applying protection

at the right level of abstraction.

Our system, DARKLY, is a privacy protection layer for untrusted perceptual

applications operating on trusted devices. Such applications typically access input

data from the device’s perceptual sensors via special-purpose software libraries.

DARKLY is integrated with OpenCV, a popular computer vision library which is

available on Windows, Linux, MacOS, iOS, and Android and supports a diverse

array of input sensors including webcams, Kinects, and smart cameras. OpenCV

is the default vision library of the Robot Operating System (ROS); our prototype

of DARKLY has been evaluated on a Segway RMP-50 robot running ROS Fuerte.

DARKLY is language-agnostic and can work with OpenCV programs writen in C,

C++, or Python. The architecture of DARKLY is not specific to OpenCV and can
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potentially be adapted to another perceptual software library with a sufficiently rich

API.

We evaluate DARKLY on 20 existing OpenCV applications chosen for the

diversity of their features and perceptual tasks they perform, including security

surveillance with motion detection, handwriting recognition, object tracking, shape

detection, face recognition, background-scenery removal from video chat, and oth-

ers.

18 applications run on DARKLY unmodified, while 2 required minor modifi-

cations. The functionality and accuracy of most applications are not degraded even

with maximum privacy protection. In all cases, performance with DARKLY is close

to performance on “native” OpenCV.

5.2 Threat model and design of DARKLY

We focus on the scenario where the device, its operating system, and the

hardware of its perceptual sensors are trusted, but the device is executing an un-

trusted third-party application. The application can be arbitrarily malicious, but it

runs with user-level privileges and can only access the system, including perceptual

sensors, through a trusted API such as the OpenCV computer vision library.

The system model of DARKLY is shown in Fig. 5.1 with the trusted com-

ponents shaded. DARKLY itself consists of two parts, a trusted local server and an

untrusted client library. We leverage standard user-based isolation provided by the

OS: the DARKLY server is a privileged process with direct access to the perceptual
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Figure 5.1: System architecture of DARKLY.

sensors, while applications run as unpriviliged processes that can only access the

sensors through DARKLY. Furthermore, we assume that no side-channel informa-

tion about DARKLY operation (e.g., screenshots of its console) can be obtained via

system calls. The untrusted DARKLY client library runs as part of each application

process and communicates with the DARKLY server. This is merely a utility for

helping applications access the perceptual API and the system remains secure even

if a malicious application modifies this library.

A major challenge in this design is figuring out which parts of the input

should be revealed to the application and in what form, while protecting “privacy”

in some fashion. Visual data in particular are extremely rich and diverse, making it

difficult to isolate and identify individual objects. Existing methods for automated

image segmentation are too computationally expensive to be applied in real time

and suffer from high false positives and false negatives.

DARKLY applies multiple layers of privacy protection to solve the problem:

access control, algorithmic transformation, and user audit. First, it replaces raw per-

ceptual inputs with opaque references. Opaque references cannot be dereferenced
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by an application, but can be passed to and from trusted library functions which thus

operate on true perceptual data without loss of fidelity. This allows applications to

operate on perceptual inputs without directly accessing them. This approach is so

natural that privacy protection is completely transparent to many existing applica-

tions: they work on DARKLY without any modifications to their code and without

any loss of accuracy or functionality.

Second, some applications such as security cameras and object trackers

require access to certain high-level features of the perceptual inputs. To support

such applications, DARKLY substitutes the corresponding library API with declas-

sifier functions that apply appropriate feature- or object-specific (but application-

independent!) privacy transforms before returning the data to the application. Ex-

ample of transforms include sketching (a combination of low-pass filtering and con-

tour detection) and generalization (mapping the object to a generic representative

from a predefined dictionary).

To help balance utility and privacy, the results of applying a privacy trans-

form are shown to the user in the DARKLY console window. The user can control

the level of transformation via a dial and immediately see the results. In our expe-

rience, most applications do not need declassifiers, in which case DARKLY protects

privacy without any loss of accuracy and the DARKLY console is not used. For those

of our benchmark applications that use declassifiers, we quantitatively evaluate the

degradation in their functionality depending on the amount of transformation.

DARKLY provides built-in trusted services, including a trusted GUI—which

enables a perceptual application to show the result of computation to the user with-
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out accessing it directly—and trusted storage. For example, after the security cam-

era detects motion, it can store the actual images in the user’s Google Drive without

“seeing” them.

A few applications, such as eigenface-based face recognizers, need to op-

erate directly on perceptual inputs. DARKLY provides a domain-specific ibc lan-

guage based on GNU bc. Isolating domain-specific programs is much easier than

isolating arbitrary code. Untrusted ibc programs are executed on the raw inputs,

but have no access to the network, system calls, or even system time. Further-

more, DARKLY only allows each invocation to return a single 32-bit value to the

application. We show that legitimate computations can be ported to ibc with little

difficulty.
...
// Grab a frame from camera
img=cvQueryFrame(..);
// Process the image to filter out unrelated stuff
...
// Extract a binary image based on the ball’s color
cvInRangeS(img, ...);
...
// Process the image to filter out unrelated stuff
...

// Compute the moment
cvMoments(...);

// Compute ball’s coordinates using moment
...
// Move robot towards the calculated coordinates
...

Program 5.1: Outline of the ball-tracking robot application.

To illustrate how DARKLY works on a concrete example, Listing 5.2 shows

a simplified ball-tracking application for a robotic dog. The code on the light
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gray background does not need direct access to image contents and can operate

on opaque references. The code on the dark gray background invokes a DARKLY

declassifier, which applies a suitable privacy transform to the output of the cvMo-

ments OpenCV function. The rest of the code operates on this transformed data.

DARKLY thus ensures that the application “sees” only the position of the ball. The

accuracy of this position depends on the privacy transform and can be adjusted by

the user via the privacy dial.

5.3 Privacy risks of perceptual applications

Perceptual applications present unique privacy risks. For example, a security-

cam application, intended to detect motion in a room and raise an alarm, can leak

collected video feeds. A shape detector can read credit card numbers, text on drug

labels and computer screens, etc. An object or gesture tracker—for example, a robot

dog programmed to follow hand signals and catch thrown balls—can be turned into

a roving spy camera. A face detector, which hibernates the computer when nobody

is in front of it, or a face recognizer, designed to identify its owner, can surrepti-

tiously gather information about people in the room. A QR code scanner, in addition

to decoding bar codes, can record information about its surroundings. App stores

may have policing mechanisms to remove truly malicious applications, but these

mechanisms tend to be ineffective against applications that collect privacy-sensitive

information about their users.

Overcollection and aggregation. The privacy risks of perceptual applications fall

into several hierarchical categories. The first is overcollection of raw visual data and
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the closely related issue of aggregation. The problem of aggregation is similar to

that of public surveillance: a single photograph of a subject in a public place might

make that individual uncomfortable, but it is the accumulation of these across time

and space that is truly worrying. Even ignoring specific inferential privacy breaches

made possible by this accumulation, aggregation itself may inherently be consid-

ered a privacy violation. For example, Ryan Calo argues that “One of the well-

documented effects of interfaces and devices that emulate people is the sensation

of being observed and evaluated. Their presence can alter our attitude, behavior,

and physiological state. Widespread adoption of such technology may accordingly

lessen opportunities for solitude and chill curiosity and self-development.” [16]

Many applications in DARKLY work exclusively on opaque references (Sec-

tion 5.6.2), in which case the application gets no information and the aggregation

risk does not arise. For applications that do access some objects and features of the

image, we address aggregation risks with the DARKLY console (Section 5.8). The

DARKLY console is an auxiliary protection mechanism that visually shows the out-

puts of privacy transforms to the user, who has the option to adjust the privacy dial,

shut down the application, or simply change his or her behavior. A small amount of

leakage may happen before the user has time to notice and react to the application’s

behavior, but we see this as categorically different from the problem of aggregation.

The DARKLY console is rougly analogous to the well-established privacy indicators

in smartphones that appear when location and other sensory channels are accessed

by applications.

Inference. The first category of inference-based privacy risks is specific, sensitive
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pieces of information—anything from a credit card number to objects in a room to

a person’s identity—that are leaked by individual frames.

DARKLY addresses such threats by being domain- and data-dependent, un-

like most privacy technologies. Privacy transforms (see Section 5.7), specifically

sketching, minimize leakage at a frame-by-frame level by interposing on calls that

return specific features of individual images (see examples in Figs. 5.2 and 5.3).

Privacy protection is thus specific to the domain and perceptual modality in ques-

tion, and some privacy decisions are made by actually examining the perceptual

inputs. In contrast to basic access control, this domain-specific design sacrifices

the simplicity of implementation and reasoning. In exchange, we gain the ability to

provide the far more nuanced privacy properties that users intuitively expect from

perceptual applications.

The last category in the hierarchy of privacy risks is semantic inference.

For example, even a sketch may allow inference of potentially sensitive gestures,

movements, proximity of faces, bodies, etc. It is unlikely these risks can be mit-

igated completely except for specific categories of applications, mainly those that

can function solely with opaque references or require only numerical features such

as histograms where techniques like differential privacy [28, 30] may apply. Un-

less the transformed data released to the application is sufficiently simple to reason

about analytically, the semantic inference risk will exist, especially due to the con-

tinual nature of perceptual observation.

That said, a machine-learning-based, data-dependent approach to privacy

transforms offers some hope. For example, in Section 5.7.2, we describe how to
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use facial identification technology to transform a face into a privacy-preserving

“canonical representation.” The key idea here is to take a technology that leads to

the inference risk, namely facial recognition, and turns it on its head for privacy pro-

tection. It is plausible that this paradigm can be extended to handle other types of

inference, and as more complex inference techniques are developed, privacy trans-

forms will co-evolve to address them. This is left to future work.

5.4 Structure of perceptual applications

DARKLY is based on the observation that most legitimate applications do

not need unrestricted access to raw perceptual inputs. This is reflected in their

design. For example, most existing OpenCV applications do not access raw im-

ages (see Section 5.9) because implementing complex computer vision algorithms

is difficult even for experienced developers. Fortunately, the OpenCV API is at

the right level of abstraction: it provides domain-specific functions for common

image-processing tasks that applications use as building blocks. This enables ap-

plications to focus on specific objects or features, leaving low-level image analysis

to OpenCV functions and combining them in various ways. DARKLY ensures that

these functions return the information that applications need to function—but no

more!

Perceptual applications can be classified into three general categories: (1)

those that do not access the perceptual inputs apart from invoking standard library

functions; (2) those that access specific, library-provided features of the inputs; and

(3) those that must execute their own code on raw inputs. For applications in the first
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category, DARKLY completely blocks access to the raw data. For the second cate-

gory, DARKLY provides declassifier functions that apply privacy transforms to the

features before releasing them to the application. For the third category, DARKLY

isolates untrusted code to limit the leakage of sensitive information.

For example, a security camera only needs to detect changes in the scene

and invoke a trusted service to store the image (and maybe raise an alarm). This

requires the approximate contours of objects, but not their raw pixels. Trackers

need objects’ moments to compute trajectories, but not objects themselves. A QR

scanner works correctly with only a thresholded binary representation of the image,

etc.

DARKLY is designed to support more sophisticated functionalities, too. For

example, applications dealing with human faces can be classified into “detectors”

and “recognizers.” Face detectors are useful for non-individualized tasks such as

emotion detection or face tracking—for example, a robotic pet might continually

turn to face the user—and need to know only whether there is a rectangle containing

a face in their field of vision. To support such applications, DARKLY provides a

privacy transform that returns a generic representation of the actual face.

Face recognizers, on the other hand, must identify specific faces, e.g., for

visual authentication. Even in this case, a recognizer may run an algorithm com-

paring faces in the image with a predefined face but only ask for a single-bit answer

(match or no match). To support such applications, DARKLY allows execution of

arbitrary image analysis code, but rigorously controls the information it can export.
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5.5 Design principles of DARKLY

Block direct access to perceptual inputs. DARKLY interposes on all accesses

by applications to cameras and other perceptual sensors. As shown in Fig. 5.1,

this privacy protection layer is implemented as a DARKLY server that runs as a

privileged “user” on the same device as the applications; only this user can access

the sensors. Applications interact with the DARKLY server via inter-process sockets

(UNIX domain sockets) and standard OS user isolation mechanisms prevent them

from accessing the state of DARKLY.

The key concept in DARKLY is opaque reference. Opaque references are

handles to image data and low-level representations returned by OpenCV func-

tions. An application cannot dereference them, but can pass them to other OpenCV

functions, which internally operate on unmodified data without any loss of fidelity.

Applications can thus perform sophisticated perceptual tasks by “chaining together”

multiple OpenCV functions. In Section 5.9, we show that many existing applica-

tions produce exactly the same output when executed on DARKLY vs. unmodified

OpenCV.

A similar architectural approach is used by PINQ [62], a system for privacy-

preserving data analysis. PINQ provides an API for basic data-analysis queries such

as sums and counts. Untrusted applications receive opaque handles to the raw data

(PINQueryable objects) which they cannot dereference, but can pass to and from

trusted API functions thus constructing complex queries.

DARKLY also provides trusted services which an application can use to
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“obliviously” export data from the system, if needed. For example, after a security-

camera application detects motion in the room, it can use a trusted remote-storage

service to store the captured image in the user’s Google Drive—without accessing

its pixels!

Support unmodified applications, whenever possible. DARKLY is language-

independent and works equally well with OpenCV applications written in C, C++,

or Python. It changes neither the API of the existing OpenCV functions, nor

OpenCV’s types and data structures. Instead, opaque references replace pointers

to raw pixels in the meta-data of OpenCV objects. DARKLY is thus completely

transparent to applications that do not access raw image data, which are the major-

ity of the existing OpenCV applications (Section 5.9).

Use multiple layers of privacy protection. Applications that do not access raw in-

puts assemble their functionality by passing opaque references to and from OpenCV

functions. For applications that work with high-level features, DARKLY provides

declassifiers that replace these features with safe representations generated by the

appropriate privacy transforms (Section 5.7). Privacy transforms keep the infor-

mation that applications need for their legitimate functionality while removing the

details that may violate privacy.

Inform the user. To help the user balance utility and privacy, our system includes a

trusted DARKLY console. For applications that operate solely on opaque references,

this window is blank. For applications that use declassifiers to access certain input

features, it shows to the user the outputs of the privacy transforms being used by
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the application at any point in time (Section 5.8).

The DARKLY console window also contains a privacy dial that goes from 0

to 11. By adjusting the dial, the user can increase or decrease the degree of privacy

transformation. Even at the setting of 0, DARKLY provides significant privacy pro-

tection; in particular, applications are always blocked from directly accessing raw

image data.

Be flexible. In rare cases, applications may need to execute arbitrary code on raw

inputs. For example, one of our benchmark applications runs the eigenface algo-

rithm [98] to match a face against a database (see Section 5.6.6).

For such applications, DARKLY provides a special ibc language inspired

by GNU bc [9]. Applications can supply arbitrary ibc programs which DARKLY

executes internally. These programs are almost pure computations and have no ac-

cess to the network, system calls, or even system time (Section 5.6.6). Furthermore,

DARKLY restricts their output to 32 bits, thus blocking high-bandwidth covert chan-

nels.

5.6 Implementation

The prototype implementation of DARKLY consists of approximately 10,000

lines of C/C++ code, not counting the ported ibc compiler and VM.
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5.6.1 OpenCV

OpenCV provides C, C++, and Python interfaces [70] on Windows, Linux,

MacOS, iOS and Android. OpenCV is also the default vision library of the Robot

Operating System (ROS), a popular platform that runs on 27 robots ranging from

the large Willow Garage PR2 to the small iRobot Create or Lego NXT. OpenCV

supports diverse input sensors including webcams, Kinects and smart cameras like

VC nano 3D1 or PicSight Smart GigE.2

The OpenCV API has more than 500 functions that applications—ranging

from interactive art to robotics—use for image-processing and analysis tasks. Our

prototype currently supports 145 of these functions (see Section 5.9 for a survey of

OpenCV usage in existing applications). Our design exploits both the richness of

this API and the fact that individual OpenCV functions encapsulate the minutiae of

image processing, relieving applications of the need to access raw image data and

helping DARKLY interpose privacy protection in a natural way. That said, the archi-

tecture of DARKLY is not specific to OpenCV and can be applied to any perceptual

platform with a sufficiently rich API.

OpenCV comprises several components: libcxcore implements internal data

structures, drawing functions, clustering algorithms, etc.; libcv – image processing

and computer vision tasks such as image transformations, filters, motion analysis,

feature detection, camera calibration, and object detection; libhighgui – functions

1http://www.vision-components.com/en/products/smart-cameras/vc-
nano-3d/

2http://www.leutron.com/cameras/smart-gige-cameras/
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for creating user interfaces; libml – machine learning algorithms; libcvaux – auxil-

iary algorithms such as principal component analysis, hidden markov models, view

morphing, etc.

OpenCV defines data structures for image data (IplImage, CvMat, CvMatND,

etc.), helper data structures (CvPoint, CvRect, CvScalar, etc.), and dynamic data

structures (CvSeq, CvSet, CvTree, CvGraph, etc.). OpenCV also provides functions

for creating, manipulating, and destroying these objects. For example, cvLoadIm-

age creates an IplImage structure and fills it with the image’s pixels and meta-data,

while cvQueryFrame fetches a frame from a camera or video file and creates an

IplImage structure with the frame’s pixels.

The OpenCV API thus helps developers to program their applications at a

higher level. For example, the following 8 lines of C code invert the image and

display it to the user until she hits a key:
1 IplImage* img = 0;
2 // load an image
3 img=cvLoadImage(argv[1]);
4 // create a window
5 cvNamedWindow("mainWin", CV_WINDOW_AUTOSIZE);
6 cvMoveWindow("mainWin", 100, 100);
7 // invert the image
8 cvNot(img, img);
9 // show the image

10 cvShowImage("mainWin", img );
11 // wait for a key
12 cvWaitKey(0);
13 // release the image
14 cvReleaseImage(&img );

OpenCV permits only one process at a time to access the camera, thus

DARKLY does not allow concurrent execution of multiple applications.
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5.6.2 Opaque references

To block direct access to raw images, DARKLY replaces pointers to image

data with opaque references that cannot be dereferenced by applications. Applica-

tions can still pass them as arguments into OpenCV functions, which dereference

them internally and access the data.

To distinguish opaque references and real pointers, DARKLY exploits the

fact that the lower part of the address space is typically reserved for the OS code,

and therefore all valid pointers must be greater than a certain value. For example,

in standard 32-bit Linux binaries, all valid stack and heap addresses are higher than

0x804800. The values of all opaque references are below this address.

DARKLY cannot simply return an opaque reference in lieu of a pointer to

an OpenCV object. Some existing, benign applications do dereference pointers,

but only read the meta-data stored in the object, not the image data. For example,

consider this fragment of an existing application:
surfer = cvLoadImage("surfer.jpg", CV_LOAD_IMAGE_COLOR);
...
size = cvGetSize(surfer);
/* create an empty image, same size, depth and channels of others

*/
result = cvCreateImage(size, surfer->depth, surfer->nChannels);

Here, surfer is an instance of IplImage whose meta-data includes the num-

ber of channels and the depth of the image. Even though this code does not access

the pixel values, it would crash if DARKLY returned an opaque reference instead of

the expected pointer to an IplImage object.

DARKLY exploits the fact that most OpenCV data structures for images and
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video include a separate pointer to the actual pixel data. For example, IplImage’s

data pointer is stored in the imageData field; CvMat’s data pointer is in the data

field. For these objects, DARKLY creates a copy of the data structure, fills the

meta-data, but puts the opaque reference in place of the data pointer. Existing ap-

plications can thus run without any modifications as long as they do not dereference

the pointer to the pixels.

5.6.3 Interposition

To support unmodified applications, DARKLY must interpose on their calls

to the OpenCV library. All of the applications we tested use the dynamically linked

version of OpenCV. We implemented DARKLY’s interposition layer as a dynam-

ically loaded library and set the LD PRELOAD shell variable to instruct Linux’s

dynamic linker to load it before OpenCV. The functions in the interposition library

have the same names as the OpenCV functions, thus the linker redirects OpenCV

calls made by the application.

This approach works for C functions, but there are several complications

when interposing on C++ functions. First, the types of the arguments to DARKLY’s

wrapper functions must be exactly the same as those of their OpenCV counterparts

because the C++ compiler creates new mangled symbols based on both the function

name and argument types.

The second, more challenging issue is C++ virtual functions. Because their

bindings are resolved at runtime, they are not exported as symbols for the linker to

link against. Instead, their addresses are stored in per-object vtables. To interpose
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on calls to a virtual function, DARKLY overrides the constructor of the class defining

the function. The new constructor overwrites the appropriate entries in the vtables

of newly created objects with pointers to DARKLY wrappers instead of the genuine

OpenCV functions. The formats of objects and vtables are compiler-dependent: for

example, GCC stores the vtable address in the object’s first 4 bytes. Our code for

hooking vtables is as follows:3

extern "C" void patch_vtable(void *obj, int vt_index, void *
our_func) {

int* vptr = *(int**)obj;
// align to page size:
void* page = (void*)(int(vptr) & ˜(getpagesize()-1));
// make the page with the vtable writable
mprotect(page, getpagesize(), PROT_WRITE|PROT_READ))
vptr[vt_index] = (int)our_func;

}

The vt index parameter specifies the index of the vtable entry to be hooked.

GCC creates vtable entries in the order of the virtual function declarations in the

class source file.

Dispatching OpenCV functions. For each call made by an application to an

OpenCV function, the interposition library must decide whether to execute it within

the application or forward it to the trusted DARKLY server running as a separate

“user” on the same device (only this server has access to camera inputs). To compli-

cate matters, certain OpenCV functions accept variable-type arguments, e.g., cvNot

accepts either IplImage, or CvMat. OpenCV detects the actual type at runtime by

looking at the object’s header.

3Cf. http://www.yosefk.com/blog/machine-code-monkey-patching.html
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After intercepting a call to an OpenCV function, the interposition library

determines the type of each argument and checks whether it contains an opaque

reference (the actual check depends on the object’s type). If there is at least one

argument with an opaque reference, executing the function requires access to the

image. The interposition library marshals the local arguments and opaque refer-

ences, and forwards the call to DARKLY for execution.

If none of the arguments contain an opaque reference, the function does not

access the image and the interposition library simply calls the function in the local

OpenCV library.

5.6.4 Privacy transforms

For applications that need access to image features—for example, to de-

tect motion, track certain objects, etc.—DARKLY provides declassifier functions.

Our prototype includes the following declassifiers: cvMoments returns moments,

cvFindContours – contours, cvGoodFeaturesToTrack – sets of corner points, cv-

CalcHist – pixel histograms, cvHaarDetectObjects – bounding rectangles for ob-

jects detected using a particular model (DARKLY restricts applications to prede-

fined models shipped with OpenCV), cvMatchTemplate – a map of comparison re-

sults between the input image and a template, cvGetImageContent – image contents

(transformed to protect privacy).

Declassifiers apply an appropriate privacy transform (see Section 5.7) to the

input, as shown in Table 5.1. For example, cvGetImageContent returns a thresh-

olded binary representation of the actual image. Furthermore, these outputs are
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Declassifier Privacy transform
cvMoments Sketching
cvFindContours Sketching
cvGoodFeaturesToTrack Increasing feature threshold
cvCalcHist Sketching
cvHaarDetectObjects Generalization
cvMatchTemplate Thresholding match values
cvGetImageContent Thresholding binary image

Table 5.1: Transforms used for each DARKLY declassifier.

displayed on the DARKLY console to inform the user.

5.6.5 Trusted services

Trusted services in DARKLY enable the application to send data to the user

without actually “seeing” it.

Trusted display. The trusted display serves a dual purpose: (1) an application can

use it to show images to which it does not have direct access, and (2) it shows to

the user the privacy-transformed features and objects released to the application by

declassifiers (see Section 5.8).

We assume that the OS blocks the application from reading the contents of

the trusted display via “print screen” and similar system calls. These contents may

also be observed and recaptured by the device’s own camera. We treat this like any

other sensitive item in the camera’s field of vision (e.g., contents of an unrelated

computer monitor).

To enable applications to display images without access to their contents,
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DARKLY must interpose on HighGUI, OpenCV’s user interface (UI) component [46].

HighGUI is not as extensive as some other UI libraries such as Qt, but the general

principles of our design are applicable to any UI library as long as it is part of the

trusted code base. Among other things, HighGUI supports the creation and destruc-

tion of windows via its CvNamedWindow and CvDestroyWindow functions. Appli-

cations can also use cvWaitKey to receive keys pressed by the user, cvSetMouse-

Callback to set custom callback functions for mouse events, and cvCreateTrackbar

to create sliders and set custom handlers.

The interposition library forwards calls to any of these functions to DARKLY.

For functions like CvNamedWindow, DARKLY simply calls the corresponding OpenCV

function, but for the callback-setting functions such as cvSetMouseCallback and

cvCreateTrackbar, DARKLY replaces the application-defined callback with its own

function. When the DARKLY callback is activated by a mouse or tracker event,

it forwards these events to the interposition library, which in turns invokes the

application-defined callback.

User input may be privacy-sensitive. For example, our benchmark OCR ap-

plication recognizes characters drawn by the user using the mouse cursor. DARKLY

replaces the actual mouse coordinates with opaque references before they are passed

to the application-defined callback.

HighGUI event handling is usually synchronous: the application calls cvWait-

Key, which processes pending mouse and tracker events and checks if any key has

been pressed. This presents a technical challenge because most application-defined

callbacks invoke multiple OpenCV drawing functions. If callback interposition is
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implemented synchronously, i.e., if the DARKLY callback handler forwards the

event to the application-defined callback and waits for it to finish, the overhead

of interposition (about 9% per each call forwarded over an interprocess socket, in

our experiments) increases linearly with the number of OpenCV functions invoked

from the application-defined callback. In practice, this causes the OpenCV event

buffer to overflow and start dropping events.

Instead, our callback handler runs in a separate thread in the DARKLY server.

The interposed callbacks forward GUI events asynchronously to a thread in the

interposition library, which then invokes the application-defined callbacks. Because

most OpenCV functions are not thread-safe, we serialize access with a lock in the

interposition library.
void on_mouse( int event, int x, int y, int flags, void* param ) {
...
cvCircle(imagen, cvPoint(x,y), r, CV_RGB(red,green,blue), -1, 4,

0);
// Get clean copy of image
screenBuffer=cvCloneImage(imagen);
cvShowImage( "Demo", screenBuffer );
...

}

int main(int argc, char** argv ) {
...
cvSetMouseCallback("Demo",&on_mouse, 0 );
for (;;) { ... c = cvWaitKey(10); ... } }

}

Program 5.2: Sample callback code.

Trusted storage. To store images and video without accessing their contents, appli-

cations can invoke cvSaveImage or cvCreateVideoWriter. The interposition library

forwards these calls to DARKLY, which redirects them to system-configured files
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that are owned and accessible only by the user who is running DARKLY. Dropbox

or Google Drive can be mounted as (user-controlled) remote file systems.

With this design, an application cannot store data into its own files, while

standard OS file permissions block it from reading the user’s files.

5.6.6 Support for application-provided code

Even though the OpenCV API is very rich, some applications may need

to run their own computations on raw images rather than chain together existing

OpenCV functions. DARKLY provides a special-purpose language that application

developers can use for custom image-processing programs. DARKLY executes these

programs inside the library on the true image data (as opposed to privacy-preserving

representations returned by the declassifiers), but treats them as untrusted, poten-

tially malicious code. Isolating arbitrary untrusted programs is difficult, but our

design takes advantage of the fact that, in our case, these domain-specific programs

deal solely with image processing.

The DARKLY language for application-supplied untrusted computations is

called ibc. It is based on the GNU bc language [9]. We chose bc for our prototype

because it (1) supports arbitrary numerical computations but has no OS interface,

(2) there is an existing open-source implementation, and (3) its C-like syntax is fa-

miliar to developers. ibc programs cannot access DARKLY’s or OpenCV’s internal

state, and can only read or write through the DARKLY functions described below.

They do not have access to the network or system timers, minimizing the risk of
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covert channels, and are allowed to return a single 32-bit value.4

Figure 5.2: Output of the sketching transform on a female face image at different
privacy levels.

ibc compiler. The GNU bc compiler takes a source file as input, generates byte-

code, and executes it in a bytecode VM. DARKLY cannot pay the cost of bytecode

generation every time an application executes the same program (for example, for

each frame in a video). Therefore, we separated the bytecode generator and the

VM.

DARKLY adds a bcCompile function to the OpenCV API. It takes as input a

string with ibc source code and returns a string with compiled bytecode. DARKLY

also adds a cvExecuteUntrustedCode function, which takes a bytecode string and

4The current DARKLY prototype allows an application to gain more information by invoking
ibc programs multiple times, but it is easy to restrict the number of invocations if needed.
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Figure 5.3: Output of the sketching transform on a credit card image at different
privacy levels.

pointers to OpenCV objects, executes the bytecode on these objects, and returns

a 32-bit value to the application. The latter required a VM modification because

GNU bc does not allow the main program to return a value.

To support computations on images and matrices, DARKLY adds iimport

and iexport functions. iimport takes the id of an OpenCV object (i.e., the order in

which it was passed to cvExecuteUntrustedCode), x and y coordinates, and the byte

number, and returns the value of the requested byte of the pixel at the x/y position

in the image. Similarly, iexport lets an ibc program to set pixel values.

Using custom ibc programs. To illustrate how to write custom image-processing

code in ibc, we modified an existing application that inverts an image by sub-

tracting each pixel value from 255 (this can be done by calling OpenCV’s cvNot
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function, but this application does not use it):
img = cvLoadImage(argv[1], 1);
data = (uchar *)img->imageData;
// invert the image
for(i=0;i<img->height;i++)

for(j=0;j<img->width;j++)
for(k=0;k<channels;k++)

data[i*step+j*channels+k]=255-data[i*step+j*channels+k];

Program 5.3: Application code for inverting an image.

bc_invrt_tmpl =
"for (i=0; i<%d;i++) {

for (j=0; j<%d; j++) {
for (k=0; k<4; k++) {

v = iimport(0, i, j, k);
iexport(0, i, j, k, 255-v); } } }

return 0;";
img = cvLoadImage(argv[1], 1);
snprintf(bc_invert_code, MAX_SIZE, bc_invert_tmpl, img->height,

img->width);
bc_bytecode = bcCompile(bc_invert_code);
ret = cvExecuteUntrustedCode(bc_bytecode, img, 0, 0);

Program 5.4: Using ibc code for inverting an image.

The iimport/iexport interface can also be used to access any 1-, 2- or 3-

D array. For example, we took an existing face recognition application (see Sec-

tion 5.9) and wrote an ibc program to find the closest match between the input

face’s eigen-decomposition coefficients computed by cvEigenDecomposite and a

dataset of faces. Running this program inside DARKLY allows the application to

determine whether a match exists without access to the actual eigen-decomposition

of the input face. The code is shown below.
int findNearestNeighbor( const Eigenface& data, float *

projectedTestFace ) {
double leastDistSq = 999999999; //DBL_MAX;
int iNearest = 0;
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for( int iTrain = 0; iTrain < data.nTrainFaces; iTrain++ ) {
double distSq = 0;
for( int i = 0; i < data.nEigens; ++i ) {

float d_i = projectedTestFace[i] - data.
projectedTrainFaceMat->data.fl[iTrain * data.
nEigens + i];

distSq += d_i * d_i / data.eigenValMat->data.fl[i]; }
if( distSq < leastDistSq ) {

leastDistSq = distSq;
iNearest = iTrain; } }

return iNearest;
}

cvEigenDecomposite(image,
data.nEigens,
&(*( data.eigenVectVec.begin())),
0, 0, data.pAvgTrainImg,
projectedTestFace);

int iNearest = findNearestNeighbor(data, projectedTestFace);

Program 5.5: Part of face-recognition application code for calculating the closest
match to the input image.

bc_dist_tmpl =
"fscale=2;
leastdistsq = 999999999
inearest = -1
for( itrain = 0; itrain < %d; itrain++ ) {

distsq = 0.0;

for( i = 0; i < %d; ++i ) {
a = iimport(0, i, 0, 0)
b = iimport(1, itrain * 2 + i, 0, 0)
di = a-b
c = iimport(2,i,0,0);
distsq += di * di / c ;

}
if( distsq < leastdistsq ) {

leastdistsq = distsq;
inearest = itrain;

}
}
return inearest;";

cvEigenDecomposite(image,
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data.nEigens,
&(*( data.eigenVectVec.begin())),
0, 0, data.pAvgTrainImg,
projectedTestFace);

snprintf(bc_dist_code, MAX_SIZE, bc_invert_tmpl, data.nTrainFaces,
data.nEigens);

bc_bytecode = bcCompile(bc_dist_code);
int iNearest = cvExecuteUntrustedCode(bc_bytecode,

projectedTestFace, data.projectedTrainFaceMat, data.
eigenValMat);

Program 5.6: Modified face-recognition application code using ibc for calculating
the closest match to the input image.

5.7 Privacy transforms

In Section 5.9, we show that many OpenCV applications can work, with-

out any modifications, on opaque references. Some applications, however, call

OpenCV functions like cvMoments, cvFindContours, or cvGoodFeaturesToTrack

which return information about certain features of the image. We call these func-

tions declassifiers (Section 5.6.4).

To protect privacy, declassifiers transform the features before releasing them

to the application. The results of the transformation are shown to the user in the

DARKLY console window (Section 5.8). The user can control the level of transfor-

mation by adjusting the privacy dial on this screen.

The transformations are specific to the declassifier but application-independent.

For example, the declassifier for cvGetImageContent replaces the actual image with

a thresholded binary representation (see Fig. 5.7). The declassifier for cvGoodFea-

turesToTrack, which returns a set of corner points, applies a higher qualitylevel
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threshold as the dial setting increases, thus only the strongest candidates for corner

points are released to the application.

The declassifiers for cvFindContours, cvMoments, and cvCalcHist apply the

sketching transform from Section 5.7.1 to the image before performing their main

operation (e.g., finding contours) on the transformed image. The application thus

obtains only the features such as contours or moments and not any other information

about the image.

Applying a privacy transform does not affect the accuracy of OpenCV func-

tions other than the declassifiers because these functions operate on true, unmodi-

fied data.

5.7.1 Sketching

The sketch of an image is intended to convey its high-level features while

hiding more specific, privacy-sensitive details. A loose analogy is publicly releasing

statistical aggregates of a dataset while withholding individual records.

The key to creating sketches is to find the contours of the image, i.e., the

points whose greyscale color value is equal to a fixed number. In our prototype we

use a hardcoded value of 50% (e.g., 127 for 8-bit color). Contours by themselves

don’t always ensure the privacy properties we want. For example, in Fig. 5.3, con-

tours reveal a credit card number. Therefore, the sketching transform uses contours

in combination with two types of low-pass filters.
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First, the image is blurred5 before contour detection. Blurring removes

small-scale details while preserving large-scale features. The privacy dial controls

the size of the filter kernel. Higher kernel values correspond to more blurring and

fewer details remaining after contour detection.

Just as contour detection alone is insufficient, low-pass filtering alone would

have been insufficient. For example, image deblurring algorithms can undo the

effect of box filter and other types of blur; in theory, this can be achieved exactly as

long as the resolution of the output image is not decreased [50]. By returning only

the contours of the blurred image, our sketching transform ensures that blurring

cannot be undone (it also removes all contextual information).

Another low-pass filter is applied after contour detection. The transform

computes the mean radius of curvature of each contour (suitably defined for non-

differentiable curves on discrete spaces) and filters out the contours whose mean

radius of curvature is greater than a threshold. The threshold value is controlled by

the privacy dial. Intuitively, this removes the contours that are either too small or

have too much entropy due to having many “wrinkles.”

Reducing an image to its contours, combined with low-pass filtering, en-

sures that not much information remains in the output of the transform. Due to

blurring, no two contour lines are too close to each other, which upper-bounds the

total perimeter of the contours in an image of a given size.

5We use a box filter because it is fast: it averages the pixels in a box surrounding the target pixel.
We could also use a Gaussian or another filter.
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Fig. 5.4 illustrates how sketching reduces information available to the ap-

plication, as a function of the user-selected privacy level. We also experimentally

estimated the entropy of sketches on a dataset of 30 frontal face images sampled

from the Color FERET database.6 These were cropped to the face regions, resulting

in roughly 220x220 images. We can derive an upper bound on entropy by repre-

senting contours as sequences of differences between consecutive points, which is

a more compact representation. Fig. 5.5 shows that, for reasonable values of the

privacy dial (3–6), the resulting sketches can be represented in 500-800 bytes.
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Figure 5.4: Sketching: reduction in information available to the application for
images from Figs. 5.2 and 5.3.

5.7.2 Generalization

In addition to generic image manipulation and feature extraction functions

like cvFindContours, OpenCV also provides model-based object detectors. An ap-

plication can load a Haar classifier using cvLoadHaarClassifierCascade and detect

objects of a certain class (for example, faces) by calling cvHaarDetectObjects with

6http://www.nist.gov/itl/iad/ig/colorferet.cfm
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Figure 5.5: Sketching: reduction in average information available to the application
for facial images in FERET database (size roughly 220x220).

a class-specific model. To prevent applications from inferring information via ma-

licious models, the current DARKLY prototype only allows predefined models that

ship with OpenCV.

If a match is found, cvHaarDetectObjects returns a rectangular bounding

box containing the object, but not the pixels inside the box. This still carries privacy

risks. For example, an application that only has an opaque reference to the box

containing a face can use OpenCV calls to detect the location of the nose, mouth,

etc. and learn enough information to identify the face. To prevent this, DARKLY

applies a generalization-based privacy transform.

Face generalization. Generalization has a long history in privacy protection; we

explain our approach using face detection as an example. Our privacy transform

replaces the actual face returned by cvHaarDetectObjects with a “generic” face

selected from a predefined, model-specific dictionary of canonical face images. We

call our face generalization algorithm cluster–morph.
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The generalization idiom is already familiar to users from “avatars” in video

games, online forums, etc. Sometimes avatars are picked arbitrarily, but often users

choose an avatar that best represents their own physical characteristics. In the same

way, the generalized face in DARKLY is intended to be perceptually similar to the

actual face, although, unlike an avatar, it is programmatically generated.

There are two components to generalization: first, fixing (and if necessary,

pre-processing) the canonical dictionary, and second, choosing a representative

from this dictionary for a given input face. The former is a one-time process, the

latter is part of the transform. For the first component, one straightforward approach

is to simply pick a small dictionary of (say) 20 faces and run a face detector on the

actual face to find and return its closest match from the dictionary.

Our proposed cluster–morph technique is a promising but more complex

approach to generalization. It works as follows: start from a large database of

images and compute its eigenfaces by applying a well-known algorithm [98] that

uses Principal Component Analysis to calculate a set of basis vectors for the set of

all faces. Then compute the eigen-decomposition of each face, i.e., represent it as a

linear combination of the basis vectors, and truncate each decomposition to the first

(say) 30 principal components. Next, cluster the set of faces using the Euclidean

distance between decompositions as the distance function.

Finally, to find the canonical face “representing” each cluster, morph the

faces in the cluster using standard morphing algorithms [15]. Fig. 5.6 shows an

example from a cluster of size 2 obtained by hierarchical clustering on a 40-person

ORL dataset [87]. Clustering and morphing are done once to produce a fixed dic-
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tionary of canonical faces.

We propose to use hierarchical agglomerative clustering. It offers the key

advantage that the level of generalization can be adjusted based on the setting of the

privacy dial: as the dial value increases, the transform selects clusters higher in the

hierarchy. If all clusters have at least k elements, then the number of clusters is no

more than 2N
k

where N is the total number of faces in the database.

At runtime, to generalize a given input face, compute its eigen-decomposition,

calculate its distance to each cluster center,7 and pick the closest. The transform

then returns the morphed image representing this cluster to the application.

Our DARKLY prototype includes a basic implementation of cluster–morph.

Evaluating the algorithm on the Color FERET database is work in progress. There

are at least three challenges: measuring the effectiveness of face clustering, finding

a mapping between privacy dial values and cluster hierarchy levels (e.g., dial values

can be pegged to either cluster sizes or cluster cohesion thresholds), and developing

metrics for quantifying privacy protection.

Our cluster–morph algorithm is inspired in part by Newton et al.’s algorithm

for k-anonymity-based facial de-identification [67], which works as follows: given

a database of images, repeatedly pick a yet-unclustered image from the database

7A cluster center is the mean of the eigen-decomposites of each image in the cluster. It does not
correspond to the morphed image. Since eigen-decomposition of a face is a linear transformation,
averaging in the eigenspace is the same as averaging in the original space; thus, the image corre-
sponding to the cluster center is a plain pixelwise average of the faces in the cluster. This average
would be unsuitable as a canonical representative due to artifacts such as ghosting, which is why we
use the morphed image.
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Figure 5.6: Face morphing for generalization. The left and right faces belong to the
same cluster; the morph “representing” this cluster is in the center.

and put it in a cluster with k − 1 of its “closest” images, according to an eigenface-

based distance measure. For each face in the input database, the average of the faces

in its cluster constitutes its de-identified version.

The salient differences in our case are as follows: our goal is not k-anonymity

within a database, but finding a canonical representation w.r.t. a globally predefined

dataset (in particular, the input image is not drawn from this dataset). Further,

Newton et al.’s algorithm has some weaknesses for our purposes: it uses greedy

clustering instead of more principled methods, requires re-clustering if the privacy

dial changes, and, finally, in our experiments averaging of faces produced results

that were visually inferior to morphing.

Figure 5.7: Output of the thresholding binary transform on an image of a street
scene with a QR code. QR decoding application works correctly with the trans-
formed image.

148



5.8 DARKLY console

The DARKLY console is a DARKLY-controlled window that shows a vi-

sual representation of the features and objects returned to the application by the

declassifiers. For applications that operate exclusively on opaque references, the

DARKLY console is blank. For applications that use declassifiers, the DARKLY

console shows the outputs of the corresponding privacy transforms—see examples

in Figs. 5.8 and 5.9. We assume that this window cannot be spoofed by the applica-

tion. In general, constructing trusted UI is a well-known problem in OS design and

not specific to DARKLY.

Figure 5.8: Motion detector: actual image and the DARKLY console view. Appli-
cation works correctly with the transformed image.

Figure 5.9: Ball tracker: actual image and the DARKLY console view. Application
works correctly with the transformed image.
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The DARKLY console is implemented as a separate process communicat-

ing with DARKLY over UNIX domain sockets. With this design, the application’s

declassifier function calls need not be blocked until the DARKLY console has fin-

ished rendering. We did not implement the DARKLY console as a thread inside the

DARKLY server because both use OpenCV, and OpenCV functions are not thread-

safe.

Consecutive DARKLY console views are stored as a movie file in AVI or

MPG format. If storage is limited, they can be compressed and/or stored at reduced

resolution. The user can play back the movie and see how the information released

to the application by privacy transforms evolved over time.

Privacy dial. The DARKLY console includes a slider for adjusting the level of

transformation applied by the privacy transforms. The values on the slider range

from 0 to 11. Absolute values are interpreted differently by different transforms, but

higher values correspond to coarser outputs (more abstract representations, simpler

contours, etc.). For example, higher values cause the sketching declassifier to apply

a larger box filter to smoothen the image before finding the contours, thus removing

more information (see Fig. 5.3).

5.9 Evaluation

We evaluated DARKLY on 20 OpenCV applications, listed in Table 5.2 along

with their source URLs. These applications have been selected from Google Code,

GitHub, blogs, and OpenCV samples for the variety and diversity of their features
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and the OpenCV functionality they exercise. With the exception of OCR, which

uses the C++ interface for nearest-neighbor clustering, they use OpenCV’s C inter-

face.

Our DARKLY prototype is based on OpenCV release 2.1.0. Applications

were evaluated on a Segway RMP-50 robot running ROS Fuerte and/or a laptop

with a quad-core 2.40GHz Intel Core i3 CPU and 4 GB of RAM running 32 bit

Ubuntu 11.10 desktop edition.

Results are summarized in Table 5.3. 18 out of 20 applications required no

modifications to run on DARKLY, except very minor formatting tweaks in a couple

of cases (removing some header files so that the program compiles in Linux). For

the face recognizer, we re-implemented the eigenface matching algorithm in our

ibc language (see Section 5.6.6) so that it can run on true images inside the library,

returning only the match/no match answer to the application.

For all tests, we used either a benchmark video dataset of a person talking,8

or the sample images and videos that came with the applications, including OpenCV

sample programs.9 Depending on the application, frame rates were computed for

the video or over the input images.

Performance. Performance is critically important for perceptual applications that

deal with visual data. If the overhead of privacy protection caused frame rates to

8http://www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/
talking_face.html

9https://code.ros.org/trac/opencv/browser/trunk/opencv/samples/
c?rev=27
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Application URL
OCR for hand-drawn dig-
its

http://blog.damiles.com/2008/11/basic-
ocr-in-opencv/

Security cam http://code.google.com/p/camsecure/
Ball tracker https://github.com/liquidmetal/AI-

Shack--Tracking-with-OpenCV/blob/master/
TrackColour.cpp

QR decoder https://github.com/josephholsten/
libdecodeqr

PrivVideo, video back-
ground subtractor and
streamer

http://theembeddedsystems.blogspot.com/
2011/05/background-subtraction-using-
opencv.html

Facial features detector http://opencvfacedetect.blogspot.com/
2010/10/face-detectionfollowed-by-
eyesnose.html

Face recognizer http://www.cognotics.com/opencv/servo_
2007_series/index.html

Histogram calculator
(RGB)

http://www.aishack.in/2010/07/drawing-
histograms-in-opencv/

Histogram calculator
(Hue-Saturation)

http://opencv.willowgarage.com/
documentation/cpp/histograms.html

Square detector https://code.ros.org/trac/opencv/browser/
trunk/opencv/samples/c/squares.c?rev=27

Morphological trans-
former

https://code.ros.org/trac/opencv/browser/
trunk/opencv/samples/c/morphology.c?rev=
27

Intensity/contrast
changer for images/
histograms

https://code.ros.org/trac/opencv/browser/
trunk/opencv/samples/c/demhist.c?rev=1429

Pyramidal downsampler
+ Canny edge detector

http://dasl.mem.drexel.edu/˜noahKuntz/
openCVTut1.html

Image adder http://silveiraneto.net/2009/12/08/
opencv-adding-two-images/

H-S histogram backpro-
jector

http://dasl.mem.drexel.edu/˜noahKuntz/
openCVTut6.html

Template matcher http://opencv.willowgarage.com/wiki/
FastMatchTemplate?action=AttachFile&do=
view&target=FastMatchTemplate.tar.gz

Corner finder http://www.aishack.in/2010/05/corner-
detection-in-opencv/

Hand detector http://code.google.com/p/wpi-rbe595-
2011-machineshop/source/browse/trunk/
handdetection.cpp

Laplace edge detector https://code.ros.org/trac/opencv/browser/
trunk/opencv/samples/c/laplace.c?rev=27

Ellipse fitter https://code.ros.org/trac/opencv/browser/
trunk/opencv/samples/c/fitellipse.c?rev=
1429

Table 5.2: Benchmark OpenCV applications.
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Application LoC Modified LoC Change in func-
tionality

Information accessed

QR decoder 4700 19 Works only at pri-
vacy level 0 ∗

Contours, thresholded im-
age

Face recognizer 851 1 + 19 (ibc) No change Match/no match
OCR 513 0 No change Output digit
Template matcher 483 0 No change Match matrix
Security cam 312 0 See Fig. 5.12 Contours
Facial features detector 258 0 No change ∗∗ Rectangular bounding

boxes
Square detector 238 0 See Fig. 5.12 Contours
Ellipse fitter 134 0 See Fig. 5.12 Contours
Intensity/contrast changer
for images/histograms

127 0 No change Histograms

Ball tracker 114 0 See Fig. 5.12 Moments
PrivVideo 96 0 No change None
Morphological trans-
former

91 0 No change None

H-S histogram backpro-
jector

81 0 See Fig. 5.12 Histogram

Laplace edge detector 73 0 No change None
RGB histogram calculator 70 0 See Fig. 5.12 Histogram
H-S histogram calculator 58 0 See Fig. 5.12 Histogram
Hand detector 48 0 No change Yes/no
Corner finder 42 0 See Fig. 5.12 Corner coordinates
Image adder 37 0 No change None
Downsampler + Canny
edge detector

36 0 No change None

∗ Even at level 0, privacy from the QR decoder is protected by the thresholding binary transform.
∗∗ Feature detection is performed on privacy-transformed faces (Section 5.7.2).

Table 5.3: Evaluation of DARKLY on OpenCV applications.

drop too much, applications would become unusable. Figure 5.10 shows that the

performance overhead of DARKLY is very minor and, in most cases, not perceptible

by a human user.

The effect of a given privacy transform depends on the setting of the privacy

dial, aka the privacy level. For example, sketching, the transform for the cvFind-

Contours declassifier, applies different amounts of blurring before finding contours.

Fig. 5.11 shows that the performance variation of the security camera application
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Figure 5.10: Frame rates with and without DARKLY.

at different privacy levels is minimal (within 3%). Interestingly, in this case perfor-

mance does not change monotonically with the privacy level. The reason is that the

OpenCV function used by the sketching transform switches algorithms depending

on the parameters.

Tradeoffs between privacy and utility. Table 5.3 shows that for most applications,

there is no change of functionality and no loss of accuracy even at the maximum

privacy setting. The reason is that these applications do not access raw images and

can operate solely on opaque references.

One application, the QR decoder, works correctly at privacy level 0, but

not at higher settings. Even at privacy level 0, significant protection is provided

by the thresholding binary transform (see Fig. 5.7). For the remaining applica-

tions, the tradeoff between their accuracy and user-selected privacy level is shown
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Figure 5.11: Frame rate of the security-camera application as a function of the
privacy level. At levels above 4, OpenCV switches from directly calculating the
convolution to a DFT-based algorithm optimized for larger kernels. Furthermore,
as privacy level increases, smaller motions are not detected and the application has
to process fewer motions.

in Fig. 5.12.

Support for other OpenCV applications. We found 281 GitHub projects men-

tioning “vision,” “applications,” and “opencv.”10 Filtering out empty projects and

clones with the same name and codebase reduced the set to 77 projects.

We scanned these 77 projects for invocations of cvGet2D, cvGetAt, or cvGe-

tRawData, and direct accesses to the imageData field of the image data structure.

After removing the spurious matches caused by included OpenCV header files, we

found that 70% of the projects (54 out of 77) do not access raw pixels. Furthermore,

only 11 projects access the network, and only 2 access audio inputs.

These 77 projects call a total of 291 OpenCV functions, of which 145 are

already supported by our DARKLY prototype, 118 can be supported with opaque

10A simple search for “opencv” returns different parts of the OpenCV library itself and does not
work for finding OpenCV applications.
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references, 15 can be supported with the sketching-based declassifier, and 3 require

porting application code to ibc. These 281 functions are sufficient to support 68

of the 77 surveyed projects.

The remaining 9 projects make calls to unsupported OpenCV functions

(10 in total) that perform tasks such as optical flow (cvCalcOpticalFlowBM, cv-

CalcOpticalFlowHS cvCalcOpticalFlowLK, and cvCalcOpticalFlowPyrLK), ob-

ject tracking (cvCamShift, cvMeanShift, and cvSnakeImage), camera calibration

(ComputeCorrespondEpilines), motion analysis (cvSegmentMotion), and image seg-

mentation (cvWatershed). Supporting these functions in DARKLY would require

new, task-specific privacy transforms and is an interesting topic for future research.

5.10 Related work

Denning et al. [26] showed that many off-the-shelf consumer robots do not

use proper encryption and authentication, thus a network attacker can control the

robot or extract sensitive data. By contrast, DARKLY protects users from untrusted

applications running on a trusted robot. PlaceRaider [97] is a hypothetical mobile

malware that can construct a 3-D model of its environment from phone-camera

images. DARKLY prevents this and similar attacks.

SciFi [71] uses secure multiparty computation to match faces against a

database. Matching takes around 10 seconds per image, thus SciFi is unusable

for real-time applications. The threat model of DARKLY is different (protecting im-

ages from untrusted applications), it handles many more perceptual tasks, and can

protect real-time video feeds.
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Ad-hoc methods for protecting specific sensitive items include the blurring

of faces and license plates in Google Maps’ Street View [95]. Senior et al. [90]

suggested image segmentation to detect sensitive objects in surveillance videos and

transform them according to user-provided policies. To protect surveillance videos

on the network, Dufaux and Ebrahimi [27] proposed to encrypt regions of interest.

This requires computationally expensive, offline image segmentation and it is not

clear whether perceptual applications would work with the modified videos. Chan

et al. [17] developed a method for counting the number of pedestrians in surveil-

lance videos without tracking any single individual.

Sweeney et al. published several papers [42, 43, 67] on “de-identifying”

datasets of face images. Many of their techniques, especially in the k-same-Eigen

algorithm, are similar to the generalization transform described in Section 5.7.2.

They do a “greedy” version of clustering and their model-based face averaging has

similarities with face morphing.

Showing the outputs of privacy transforms to the user on the DARKLY con-

sole is conceptually similar to the sensor-access widgets by Howell and Schechter [48].

Their widgets, however, display the entire camera feed because applications in their

system have unrestricted access to visual inputs.

Augmented Reality (AR) applications are a special subset of perceptual

applications that not only read perceptual data but also modify and display some

parts of the input back to the user. To protect user privacy from such applications,

D’Antoni et al. [24] argue that the OS should provide new higher-level abstractions

for accessing perceptual data instead of the current low-level sensor API. Jana et
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al. [52] built a new OS abstraction (recognizers) and a permission system for en-

forcing fine-grained, least-privilege access to perceptual data by AR applications.

This permission-based approach is complementary to DARKLY.

5.11 Conclusions

DARKLY is the first step towards privacy protection for perceptual applica-

tons. Topics for future research include: (1) evaluation of functionality and usability

on a variety of computer-vision tasks, (2) support for application-provided, poten-

tially untrusted object recognition models (the current transform for cvHaarDetec-

tObjects is based on the face detection model shipped with OpenCV) and third-

party object recognition services such as Dextro Robotics, and (3) development of

privacy transforms for untrusted, application-provided image-processing code. The

latter may obviate the restriction on the outputs of untrusted code, but would also

require a new visualization technique for displaying these outputs to the user on the

DARKLY console.

Longer-term research includes: (4) preventing inferential leaks by using

large-scale, supervised machine learning to construct detectors and filters for privacy-

sensitive objects and scenes, such as certain text strings, gestures, patterns of move-

ment and physical proximity, etc., and (5) extending the system to other perceptual

inputs such as audio.
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Figure 5.12: Change in the number of detected security breaches (Security cam),
detected squares (Square detector), detected contours (Ellipse fitter), moments (Ball
tracker), and histograms (RGB and H-S histogram calculators, Intensity/contrast
changer for images/histograms, and H-S histogram backprojector) as the privacy
level increases. Correlation between histograms was calculated using the cvHist-
Compare function. Accuracy for tracking was measured using the Euclidean dis-
tance between the object’s original position and the reported position after applying
privacy transforms.
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Chapter 6

Peer group analysis: automated detection of
applications violating least privilege

6.1 Introduction

Software risks can be assessed in a simple, intuitive manner by clustering

software from which users can expect similar functionality into peer groups, and

by analyzing the behavior of software relative to its peer group. In this chapter

we apply such software peer group analysis to online software markets (aka app

stores), and demonstrate its effectiveness in ranking software according to risk, and

in calling out risky outliers. This analysis provides clear and compact explanations

for its risk-assessment results, and applies equally well to both malicious software

and grayware, such as potentially-unwanted software [63]. We also show this anal-

ysis to be robust, by demonstrating that its results are meaningful, and stable, even

when software is clustered into peer groups using different means, or when different

aspects or metrics are used to define software behavior.

Intuitively, the security-relevant behavior of regular software is bounded by

its functionality; e.g., a voice-recording application will likely need access to au-

dio from the microphone, whereas a text editor will likely need access only to the

user’s files. Thus, the behavior of benign software can be circumscribed (although
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this bound may change over time, e.g., as it may become common for text editors

to support voice input, and for them to need access to the microphone). Meanwhile,

no such bounds apply to malicious or undesirable software which may hide their

malicious behavior behind a facade of innocent functionality, like a Trojan horse.

Furthermore, inherently, more risk is imposed by software that is privileged to ex-

hibit security-critical behavior, since the software’s intentions cannot be certain,

and may change over time, e.g., due to some compromise.

Therefore, if software exhibits behavior that is unexpected by its user, then

this is a natural indicator of increased risk. Supporting such risk assessment, Sec-

tion 6.3 describes the results of a user study that validates that users have different

expectations of security privileges when software provides different functionality.

However, such risk assessment cannot be performed in isolation: each individual

user has neither the means nor the opportunity to collect, examine, and compare

data about software behavior (and will be unsure of their expectations, anyway).

Instead, in practice, this risk assessment must be performed centrally, e.g., by mar-

ket operators, based on comprehensive data about the market’s software, including

crowdsourced data about software behavior and what software users find similar.

In this chapter, we describe software peer group analysis as an attractive

instance of the above approach to risk assessment. We apply peer group analysis

to the Chrome and Android online software markets, and describe the results in

detail.For both of the markets, we found the analysis to be effective in identifying

risky software as well as in ranking software to highlight for users the software with

fewer privileges, relative to its peer group.
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Figure 6.1: The description and related items for the Evernote software in the
Chrome Web Store market.

The security challenges of online software markets. Online software markets

have become a primary means by which end-user applications and other software

are discovered, installed, updated, and managed. Such markets contain a great va-

riety of software items (often in the millions), provide detailed categorization and

descriptions of this software and its circumscribed behavior, and also offer exten-

sive facilities for finding and ranking this software by either search keywords or

similarity. For example, Figure 6.1 shows how the Evernote Web Clipper software

appears in Google’s Chrome Web Store online software market.

These markets are part of a software ecosystem that typically consists of a

software platform (e.g., Google’s Chrome and Android, or Apple’s iOS), a com-

munity of developers writing applications for that platform, one or more online

software markets (with the main one usually maintained by the platform owner), as

well as enterprise administrators and other ecosystem actors. To maintain secure
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Figure 6.2: Permission screen shown while installing the Evernote extension from
the Chrome Web Store.

and thriving ecosystems, platform owners and market operators must help users

avoid malicious and abusive applications, and help developers adhere to the princi-

ple of least privilege [85]. All ecosystem parties stand to benefit, if a sound means

of software risk assessment can be applied to help users to avoid malicious and

unwanted software.

To limit software privilege, the online-software-market platforms imple-

ment permission systems such that application execution is isolated and circum-

scribed in its behavior by a developer-specified set of permissions [36]. These per-

missions systems allow developers to request access to platform functionality, (such

as the microphone hardware), and have that access granted by some combination of

the platform owners, market operators, or end-users themselves. In particular, when

installing an application from the online market, users may be asked to approve a

list of security-relevant privileges requested by the software, e.g., as in the graphical

user-interface dialog of Figure 6.2.

Therefore, the ecosystem’s security may depend on the users’ ability to

identify when software spuriously requests security privileges that are anomalous,

given the software’s purported functionality. However, this is an inherently-ambiguous
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task, which users are not in a good position to perform, as hinted at by the aforemen-

tioned example of text-editor access to the microphone. Furthermore, to correctly

assess the risk of such privilege requests, end users must have a good understand-

ing of the technical details and semantics of the platform’s security permissions,

and how they are used by other market applications. Thus, it is not surprising that

several studies have shown users to find it difficult to identify anomalous software

privileges, and limit the set of security permissions granted to applications [36,38].

Peer group analysis, ranking, and risky outliers. In this chapter, we show how a

simple, intuitive, and effective means for assessing software risks can be achieved

by clustering market-based software into peer groups, and analyzing their behavior

relative to the corresponding peer groups. A peer group consists of software that

(for the most part) provide similar features and functionality, and for which the

user can expect similar behavior. For example, different text-editing applications

are likely to belong in the same peer group, whereas mobile-phone software that

provides flashlight functionality belongs in another peer group.

Software peer groups offer the most meaningful points of comparison for

software whose functionality is defined by a limited, well-defined set of related

features. Fortunately, most software in online software markets satisfies this prop-

erty. In fact, for some markets, like the Chrome Web Store, the market operators

explicitly prohibit software that bundles unrelated features, as part of their fair use

policy [40].

Once peer groups have been defined, the common patterns of security-

164



relevant behaviors can be identified for each peer group, and software ranked in

terms of how unexpected its behavior is compared to its peer group. Thus, the

apples can be compared against the typical apple, and the oranges against the av-

erage orange. Then, outlier software whose security-related behavior is sufficiently

different can be isolated, and treated specially. As we show in this chapter, such

a ranking is helpful for multiple purposes like helping users to minimize risk by

picking lower-risk software with the desired features, allowing market owners to

identify unwanted applications, letting application developers know about potential

least-privilege violation etc.

Software risk assessment is a well-established idea, as are many related

forms of software analysis; recently, such techniques have been applied to the do-

main of online software markets [41, 72, 74]. Compared to this recent work, our

main contributions are as follows.

• We introduce the notion of peer group analysis in the context of software risk

assessment. We evaluate our technique and show its effectiveness on two

large datasets: one with 44, 000 Chrome extensions from the Chrome Web

Store and another with more than one million Android applications from the

Google Play Store. We show that the results of peer group analysis is intuitive

and easy-to-explain to the users. We also demonstrate that peer group analysis

is robust and generic: irrespective of which technique we used to construct

them, our peer groups permitted effective estimates of software risk, as long

as they correctly associated software with similar functionality.
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• We show that the idea of forming peer groups based on functionality is in sync

with user expectations of software security privileges. With a medium-scale

user study, we confirm that users expect applications to have different security

privileges based on their functionality. We also confirm that, in isolation, each

user has difficulty in reasoning about security permissions, by analyzing some

of the complaints filed by users of software in the Google Play Store.

• We propose and evaluate three different usages of ranking risks using peer

group analysis: a) providing users with lower-risk software for a desired fea-

ture; b) helping market owners to triage and identify unwanted software; and

c) informing software developers about potential least-privilege violations in

their applications.

We have developed peer group analysis in collaboration with the operators

of the Chrome Web Store and Google Play Store online software markets. Our

techniques have already seen limited deployment in both of those markets, where

they have been used to rank, identify, and triage potentially abusive software.

6.2 Securing online software markets with peer group analysis

Peer group analysis is a common technique in business economics to com-

pare a corporation’s financial performance against its peers [104]. The absolute

values of a corporation’s financial performance indicators (e.g., price-to-earnings

ratio [75]) depend on several external factors like the type of industry, geographical

location etc. Peer group analysis identifies peers of a particular corporation that
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share certain features (e.g., the geographical location and the industrial sector) and

thus provides a basis to compare the corporation’s financial performance against its

peers.

In the context of anomaly detection, peer group analysis has been used in

prior works to detect credit card frauds by Bolton et al. [12]. However, they tend to

focus more on the temporal aspect of the peers’ behavior. They formed peer groups

by selecting the credit cards showing similar behaviors in the past and argued that

their behavior should be similar in the future as well.

By contrast, in this work, we apply peer group analysis in a way that is

closer to its original usage in business economics. In essence, our approach is

somewhat similar to that of Keyani et al. [55] which detected attacks against peer-

to-peer networks by comparing each node’s estimate of the rate at which their first

and second-degree neighbors are leaving the network. We identify peer groups

of applications based on their functionality and compare their security privileges

to get a better understanding of how atypical a particular application’s privileges

are compared to those of its peers. Identifying the privileges commonly shared

by the applications in the same peer group allows us to indirectly estimate the set

of privileges required for providing the common functionality of that peer group.

Determining such mappings, without using peer group analysis, is extremely com-

plicated and requires in-depth understanding of the platform API as well as their

usage by the applications.

We define the following terms in the context of peer group analysis and use

them for the rest of this chapter.

167



• Peer group. Each peer group consists of a set of software applications from

which users expect similar functionality.

• Unexpectedness. For a given application, unexpectedness is the measure of

how atypical it is relative to its peers; this unexpectedness score is assumed

to be correlated to the risk that an application poses to its user.

• Unexpected privileges. A privilege used by an application is identified as

unexpected if it is atypical relative to the privileges of the application’s peers.

• Risky applications. An application is assumed to pose higher risk if its unex-

pectedness value turns out to be greater than a certain threshold. The actual

value of the threshold is a tunable parameter and may vary across different

peer group analysis implementations.

Peer group analysis consists of two separate steps: identifying different peer

groups based on functionality and finding higher-risk applications by detecting out-

liers in each such peer group based on their privileges. The list of risky applications

along with their unexpectedness scores can be used in several ways to make soft-

ware markets more secure, as described below.

• Helping users avoid overprivileged software. As we show in Section 6.3,

security-conscious users try to detect spurious privileges of risky applica-

tions by associating its privileges with its functionality. Unfortunately, they

often make mistakes due to the complexity of the process. Unexpectedness
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estimation using peer group analysis can automate this process and make it

more robust.

• Detecting unwanted software. We confirm empirically, as described in Sec-

tion 6.6.2, that high unexpectedness score is a strong indicator of the presence

of potentially unwanted functionality in a software. Thus, market owners can

use the unexpectedness score as a signal for detecting unwanted software.

• Encourage developers to create low-risk software. Automated identification

of unexpected privileges can allow the market owners to provide concrete

guidelines for the developers on how to lower the unexpectedness scores of

their software. The market owners can also provide incentives to careless

non-malicious developers to write low-risk software by ensuring that riskier

software are ranked lower in the search results.

6.3 Do users expect security privileges to be tied to software
functionality?

In this section, we show that users expect software to use different privileges

based on their functionality. To that end, we first analyze the abuse reports filed by

users about the Google Play store applications and show that users often complain

about software with security privileges that the users cannot relate to the software’s

functionality. However, we also find that these complaints often make invalid as-

sumptions about the links between security privileges and software functionality,

which are often complicated, and always platform-dependent. Next, we describe
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an Amazon Mechanical Turk (MTurk) study with 300 participants whose results

confirm that users have different privilege expectations from applications providing

different functionality.

6.3.1 User reports of privilege abuse

We analyzed one month’s submitted abuse reports, from around the end of

2013, where users of Google Play Store software complain about abusive security

permissions. The dataset contained abuse reports for over 200 different applica-

tions, with between 1 − 40 abuse reports per application. We find that, in general,

users complained that applications require way too many permissions for their cor-

responding functionality. Many reports also explicitly stated several mismatches

between the expected functionality and the requested privilege. For instance, one

such report complained about a banking application requesting permissions to take

pictures or videos. Note that this user did not realize that this banking application

needed the picture of a check for automatic check processing. Another report was

concerned about a flashlight app requiring full network access. Similar to the pre-

vious case, the user did not understand that this application, like many other free

ones, use network access for serving advertisements.

These abuse reports show that users often try to detect unexpected privi-

leges, depending on software functionality, in line with previous findings by Jin et

al [60]. However, the reports also show that users may require significant assistance

in performing such analysis, e.g., by receiving a better basis for comparison from

an automated system.
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Figure 6.3: User expectations of different security privileges (making a phone call,
read SMS messages, access the internet, read the contacts on the phone, take pic-
tures, read calendar entries, find out phone’s location, and use the microphone)
required by applications with different functionality (social networking, shopping,
gaming, messaging).
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6.3.2 User study results

We conducted an MTurk survey with 300 participants to test if user expec-

tations of the privileges required by specific applications depend on the application

functionality. We had the survey reviewed by experts from our institution, and pi-

loted with 20 people on MTurk before launching it. Participants took on average 6

minutes to complete the survey, and were compensated with 0.91 US Dollar.

Previous studies showed that the MTurk population was more diverse than

that found on a typical college campus and that using MTurk could result in high-

quality data [14, 73]. However, as with any online survey, participants on MTurk

may cheat by answering all questions quickly without reading thoroughly to collect

the compensation. To prevent such spurious data affecting our results, we restricted

our survey only to the respondents who had a task approval rate of 95% or better

and had completed at least 100 tasks on MTurk. Furthermore, our survey had one

trap question, which had one single, obviously right answer. We ensured that all

participants answered that question correctly. Finally, one member of the research

team reviewed all responses to the open-ended questions to ensure that responses

were on topic.

Participant demographics. Participants in our MTurk survey were skewed slightly

towards male and young: 68% male, 32% female; 32% were between the ages of

18-24, 41% were 25-34, 18% were 35-44, 5% were 45-54, 3% were 55-64, and

1% were 65 or over. As to their education, just over a third of the participants had

Bachelor’s degrees and another third had ‘some college’. The remaining third was
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spread over a broad range: from ‘some high school’ (1%) or a Doctoral degree

(1%) to having a Master’s degree (8%) or a regular high school diploma (9%). Two

thirds of the participants were employed full- or part-time or were self-employed

(40% full-time, 15% part-time, and 13% self-employed). 17% of the participants

were students, some of whom were also employed, and 16% were unemployed or

looking for work. Participants represented a broad range of occupations like driver,

editor, photographer, library assistant etc.

Results. Figure 6.3 summarizes the results of our user study. We asked the partic-

ipants to rate on a 5 point Likert scale (‘No’, ‘Probably not’, ‘Neutral’, ‘Probably

yes’, and ‘Yes’), whether a social networking app, a gaming app, a messaging

app, and a shopping app should be able to do a set of actions if installed on a cell

phone. We intentionally did not use the worlds “permissions” or “privileges,” since

previous research has found that not all users know what application permissions

are [38].

Our results confirm that users expect applications with certain functionality

to access specific resources on the phone, but not others. Participants almost unan-

imously expected a shopping and a gaming application to not be able to read SMS

messages or read the contacts on the phone, while they thought a messaging ap-

plication should be able to have both of these privileges. However, opinions about

some privileges were mixed. For example, one participant said a shopping applica-

tion should be able to find out the phone’s location: “Absolutely needs location to

find more relevant deals” while another disagreed: “The app should not be able to

access GPS. It should simply ask you the first time you install for your zip code”.
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Note that both agree that shopping applications can have access to some form of

location information, but they differ in how fine-grained they think it should be.

6.4 Estimating unexpectedness using peer group analysis

In this section, first we show how software market peer groups can be iden-

tified using several different sources of information that most markets already main-

tain about their hosted software. Next, we enumerate different ways for approxi-

mating the security-relevant behaviors of an application. Finally, we describe how

one can compute an application’s unexpectedness score.

6.4.1 Identifying peer groups

As peer groups are based on application functionality, in order to identify

the peer groups, we must first be able to infer different applications’ functionali-

ties. Fortunately, most existing software markets maintain different sources of in-

formation about an application’s functionality: classification into pre-defined static

categories, list of other related applications, textual descriptions, screenshots etc.

The markets usually maintain such information to help users in finding out alter-

native applications providing similar functionality. We can simply leverage these

existing sources of information to classify applications into different peer groups as

described below.

Classification provided by the developers. Most markets including the Chrome

Web Store and Google Play Store require the developers to classify their appli-

cations in one out of a fixed set of pre-defined categories while registering them
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Figure 6.4: Word cloud showing the words taken from the ‘video download helper’
extension’s textual description hosted in the Chrome Web Store. The font sizes of
the words are proportional to their frequencies.

with the markets. These categories are broad and each of them cover a large set

of functionality. For example, Chrome Web Store supports different categories for

applications like shopping, sports, news, blogging etc. We can create peer groups of

applications using categories by simply putting all applications belonging to each

category in one peer group.

However, if category information is used to form peer groups, a malicious

developer may try to willingly mis-categorize her application to avoid it from being

detected as a high-risk application. However, we expect the security conscious users

to detect such cases and report them to the market owner. In fact, while analyzing

the abuse reports submitted to the Google Play Store as described in Section 6.3.1,

we found several such cases .

Classification using application metadata. Most software markets contain a large

amount of unstructured metadata about each application like its textual description

or user comments/reviews. These sources often contain a large amount of informa-
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tion about application functionality. Different automated classifiers can be designed

to assign the applications to different peer groups based on these sources. For the

rest of this subsection, we focus on identifying peer groups based on the textual

descriptions of applications even though some of our techniques may also work on

other sources like user reviews or comments.

In both the markets that we studied, all applications come with short textual

descriptions about their functionality. These textual descriptions are designed to

make human users better understand application features. For example, Figure 6.4

shows a word cloud representation of the words from the ‘video download helper’

extension’s textual description hosted in the Chrome Web Store.

We explore two different techniques for designing classifiers that can use

these textual descriptions to identify applications with similar functionality: one

uses supervised learning algorithms to classify the applications into pre-defined cat-

egories and the other leverages unsupervised learning algorithms to cluster similar

applications together. We describe both of these methods in detail below.

Supervised classification. Supervised classifiers can assign applications

automatically to a set of pre-defined categories using features extracted from the

textual descriptions of the applications. However, such classifiers require a set of

correctly labeled applications to train on, before they can be used for classifica-

tion. One way of creating such training data can be to simply use a small subset of

the developer-provided categorizations from the market. Obviously, to ensure the

quality of the training data, the categorizations should be manually checked.
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As a proof of concept, we built a Naive Bayes text classifier and used it

to classify the extensions hosted in the Chrome Web Store. We gathered 15000

extensions from the Chrome Web Store along with their textual descriptions and

their developer-provided categorization in one of 19 different categories. We further

divided the dataset into two sets: a training set with 9000 extensions and a test set

with 6000 extensions. Our Naive Bayes classifier is trained on the descriptions and

categories of the extensions in the training set. Once trained, we use the classifier

on the descriptions in the test set and evaluate the accuracy of the classifier by

comparing the assigned categories with the developer-provided ones. In our tests,

we found that our Naive Bayes classifier was able to correctly categorize almost

60% of the extensions. While manually inspecting some of the applications that

were assigned to different categories than their developer-provided ones, we found

that our classifier actually categorized several extensions correctly that were mis-

categorized by the developers. For example, the Google voice extension that can

be used to make calls or send SMS was mis-categorized by the developer under the

‘blogging’ category but the our classifier correctly assigned it to the ‘phone-and-

sms’ category.

Unsupervised classification. Unlike supervised techniques, the unsuper-

vised ones do not need any training data and thus they can be used to detect appli-

cations with similar functionality without any manual effort.

We built a prototype implementation using Latent Dirichlet Allocation (LDA) [11]

to both automatically find topics out of the textual descriptions and to estimate the

likelihood of an application belonging to a topic. We classify the applications into
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Figure 6.5: Word cloud showing top 20 words of a topic detected by LDA that
consists mostly of games. The font sizes of the words are proportional to their
probability of selection under the topic.

Figure 6.6: Word cloud showing top 20 words of a topic detected by LDA that con-
sists mostly of ‘movies’ and ‘videos’. The font sizes of the words are proportional
to their probability of selection under the topic.

different peer groups by creating one peer group for each such topic and including

all applications whose probability of belonging to that topic is higher than a thresh-

old. In order to evaluate our prototype, we collected the English textual descriptions

of 44, 000 extensions from Chrome Web Store. We used standard natural language

pre-processing techniques like removing the stop words and lemmatizing to clean

up the descriptions. We also removed very short words with less than 3 characters

and words that do not appear in a standard English dictionary. Our implementation

used the gensim library [79] for topic modeling to create a LDA model using the

cleaned descriptions.
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Note that for creating meaningful peer groups, the topics found by LDA

must map to real application functionality. In our experiments, we found that sev-

eral topics detected by LDA map to meaningful functionality. For example, Fig-

ure 6.5 and 6.6 show the word cloud representations of two of the topics found by

LDA. Our findings are in line with those of Gorla et al. [41], who explored the use

of LDA on the textual descriptions of Android applications for checking their API

usage against the descriptions.

However, we also find that some topics generated by LDA did not relate to

any particular functionality. For example, one such topic contained the following

words in decreasing order of probability of their selection - ‘page’, ‘click’, ‘search’,

‘link’, ‘image’, ‘test’, ‘button’, ‘icon’, ‘tab’, and ‘site’. Furthermore, when we

looked at some of the developer-assigned categories of the extensions belonging to

this topic, we found that 46%, 21%, 19%, 7%, and 7% of them are classified by the

developers under ‘productivity’, ‘communication’, ‘web development’, ‘fun’ and

‘search-tools’ categories respectively. As our primary goal is to find peer groups

based on functionality, we chose not to use the LDA-based classifiers further in our

experiments for the rest of this chapter.

Classification based on application recommendations. Software markets usually

maintain recommendation systems to help the users in finding new applications.

Most modern recommendation systems output a list of related-items for the item an

user is interested in. These related-items are usually computed based on collabora-

tive filtering i.e. by extracting patterns from different users’ behavior. For example,

the Chrome Web Store displays a list of related applications when a user looks at
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Figure 6.7: The related software items for the Google Translate extension in the
ChromeMarket.

Figure 6.8: Distribution of the number of related extensions extracted for each ex-
tension hosted in Chrome Web Store.

the details of any particular application. Figure 6.7 shows the list of related ap-

plications for the Google Translate extension. One can clearly see that the related

applications provide similar functionality i.e. translate text from one language to

another.

One simple way to create the peer group from the related application list is

to put all related applications in one group. Figure 6.8 shows that this technique is

very effective in creating small tightly-knit peer groups.
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6.4.2 Estimating security-relevant behavior

Before we can compare an application against its peers, we must be able to

enumerate all security-relevant behaviors of the application. A simple and effective

way of circumscribing such behaviors is to create a list of the security privileges

used by the application. Most modern software platforms including Chrome and

Android use pre-defined permissions to restrict an application’s privileges to access

arbitrary resources. Therefore, in such systems, the set of permissions used by

an application describes the privileges it used. However, finding the exact set of

permissions that are actually used by an application is a hard problem. Below, we

describe two different ways to approximate permissions used by applications.

Requested Permissions. In most static permission-based systems like Chrome or

Android, application developers must declare all the permissions that their applica-

tions need to operate correctly. However, in most cases, the application writers tend

to over-estimate the permissions used by their applications [3, 35].

Estimated Permissions. Permissions used by an application can be estimated by

first collecting all API calls that an application makes, then using a platform-specific

mapping between the API calls and the permissions to enumerate the corresponding

permissions [3, 35]. The API calls made by an application can either be estimated

statically or dynamically. The static techniques often overestimate the API calls

due to the presence of unused functions while the dynamic ones underestimate the

API calls because of the lack of full coverage.
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6.4.3 Estimating unexpectedness

For computing unexpectedness of an application’s privileges relative to its

peers, one can use standard machine learning techniques like One-Class Support

Vector Machines (OC-SVM) [89]. However, one of the major drawbacks of these

techniques is that the rationale behind their decisions is often hard to explain to a

human. We chose to use a simple intuitive technique, shown in Algorithm 1, for

computing unexpectedness scores. Our technique is easy to understand and reason

about. This is a necessary condition in our setting as the the unexpectedness scores

are designed to be interpreted by the users.

The basic intuition behind Algorithm 1 is to first isolate the uncommon

privileges for each peer group and then compute each application’s unexpectedness

score based on how many such uncommon privileges it uses. Wp in Algorithm 1

indicates the amount of weight we assign to each such uncommon privilege.

6.5 Experimental setup

We evaluate our techniques on two different software markets: the Chrome

Web Store and the Google Play Store. We describe our experimental setup for each

of these markets in detail below.

Extensions from Chrome Web Store. We collected a set of 44, 000 Chrome ex-

tensions covering all the extensions that were published in the Chrome Web Store

during early 2014. For each extension, we extracted its developer-provided cate-

gory, the list of related extensions, and the list of requested permissions from the
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Algorithm 1: Computing the unexpectedness value of an application a
with respect to peer group g.

for all application a in market do
unexpectednessa ← 0
Pa ← privileges used by a
ga ← peer group of a
for all p ∈ Pa do
Ng ← number of applications in ga
Ngp ← number of applications in ga using p
Xgp ← Ngp/Ng

if Xgp < relative frequency threshold then
unexpectednessa ← unexpectednessa +Wp

end if
end for

end for

Chrome Web Store. To extract the set of requested permissions, we first parse de-

clared permissions from the extension manifests, removed any invalid permissions

that the developers may have added by mistake. As specific host permissions are

usually rarely repeated across applications, we also filtered out such permissions

except all urls.

Android applications from Google Play Store. We gathered more than a million

Android applications covering all applications present in the Google Play Store

during a specific day in the last six months. We extracted the developer-provided

category, the list of requested permissions from the manifest, and the application

binary for each application. The application binaries were disassembled using the

smali disassembler and analyzed to enumerate all API calls as well as the permis-

sions required to successfully make those API calls. To estimate the permissions
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from API calls, we used the mapping of API calls to permissions provided by Au et

al. [3] For the rest of this chapter, we refer to these sets of permissions as “estimated

permissions” of an application. Note that neither the estimated permissions nor the

requested permissions exactly represent the permissions used by an application as

an application binary often contains code that do not get executed and developers

often request permissions that are never used by their applications. Therefore, to

get a better approximation of the actual used permissions, we also computed the

intersection of requested and estimated permissions for each application.

Implementation. We implemented our techniques using two MapReduce tasks:

one for computing relative frequency of privileges for each peer group and the other

for computing unexpectedness values for each application and detecting higher-risk

applications. We implemented Algorithm 1 as part of the second MapReduce task.

For all our tests, we set Wp to 1 for the privileges that we deemed security sensitive

and to 0 for the rest.

6.6 Evaluation

In this section, we first use our Chrome extension and Android application

datasets to evaluate how the actual methods for peer group estimation and the val-

ues of different settings for peer group analysis affect the estimated unexpectedness

scores. Next, we explore how useful the unexpectedness scores are for different pur-

poses (e.g., helping users avoid risky, overprivileged applications, helping develop-

ers adhere to the principle of least privilege, and detecting unwanted applications)

using the same datasets.
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6.6.1 Effects of peer group parameters

To estimate the effects of different settings of peer group analysis on its ef-

fectiveness, we measure how many applications in our datasets have no unexpected

privileges relative to their respective peer groups. As these applications represent

low-risk regular applications, we expect them to be the majority in our datasets.

A low number of such applications will indicate that the peer groups are not well

formed i.e. they contain applications with completely different functionality.

Picking relative frequency threshold. One of the main configuration parame-

ters for our unexpectedness estimation algorithm (Algorithm 1 in Section 6.4.3)

is relative frequency threshold. This parameter decides the minimum propor-

tion of applications in a peer group that has to use a privilege in order to label

that privilege as “expected” for that peer group. Figure 6.9 shows the variation

of the percentage of applications that have at least one unexpected privilege with

different values of relative frequency threshold. For all of our tests, we set

relative frequency threshold to 0.10 for Chrome extensions and 0.05 for An-

droid applications.

Peer group sizes. Figure 6.10 shows how the percentage of Chrome extensions

with no unexpected privileges varies with different peer group sizes. For peer

groups that contain only 1 − 4 peers, there are only around 60% of such exten-

sions even for a low relative frequency threshold of 0.10. This indicates that

such small peer groups may not be very effective in estimating unexpectedness as

they might mark a large number of applications as unexpected. However, with peer
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Figure 6.9: Variability of the percentage of applications with at least one unexpected
privileges, for different relative frequency threshold choices.

Figure 6.10: Variability of the percentage of outlying extensions with unexpected
privileges, for different peer group sizes.

groups of size 10− 14, the percentage of extensions with no unexpected privileges

rises to around 80% for the same relative frequency threshold. Nonetheless, for

peer groups of sizes larger than 14, their percentage falls to around 60− 70%.
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Figure 6.11: Variability of the percentage of applications with no unexpected priv-
ileges, for different privilege types.

Different types of privilege estimation. Figure 6.11 shows how the percentage of

low-risk applications vary with different types privilege estimation using the An-

droid dataset. We used four different ways for privilege estimation: requested priv-

ileges by the developers, method calls statically extracted from application binary,

statically estimated permissions from application binary, and intersection of stati-

cally estimated permissions and developer-requested permissions. We found that

the statically estimated permissions and the intersection of the requested and esti-

mated permissions yield the best results.

6.6.2 Effectiveness of peer group analysis

Helping users to avoid risky applications. Unexpectedness score provides the

users with a simple way to compare an application’s risks with respect to its peers

i.e. other applications providing similar functionality. A security-conscious user
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Table 6.1: Variation of unexpectedness across the search results returned for differ-
ent search queries.

Search query App name Score Unexpected permissions

PDF reader

pdf reader 1 0 -
PDF reader 2 0 -
PDF reader 3 1 webNavigation
PDF reader 4 3 WebNavigation , webRequest, webRequestBlocking
Chrome-office-viewer-beta 3 clipboardWrite, fileBrowserHandler, fileSystem

Tab manager

Tab Manager 1 0 -
Tab Manager 2 1 bookmarks
Tab Manager 3 2 bookmarks, unlimitedStorage
Tab Manager 4 2 bookmarks, unlimitedStorage
Tab Manager 5 3 idle, notifications, storage
Tab Manager 6 3 history, topsites, webNavigation
Tab Manager 7 3 bookmarks, history, unlimitedStorage
Tab manager 8 4 clipboardWrite, cookies, management, unlimitedStorage

should pick applications with low unexpectedness scores in each peer group.

To evaluate if it might be possible for a user to find low-risk applications

that provide the desired functionality, we check the variation of the unexpected-

ness score across different applications providing similar functionality. In order for

the unexpectedness to be helpful to the user, the scores of applications with simi-

lar features must have significant variations. To test our hypothesis, we used sev-

eral different search queries like: ‘pdf reader’, ‘tab manager’, ‘flashlight’, ‘music

player’ etc. and found that the unexpectedness scores of the applications shown in

the search results indeed vary significantly in both Chrome Web Store and Google

Play Store. Table 6.1 shows some of the results from two different queries for the

Chrome Web Store: ‘pdf reader’ and ‘tab manager’.

Encouraging developers to create low-risk software. The primary benefit of using

a simple easy-to-explain method for estimating unexpectedness over sophisticated

machine learning techniques is that the results can be easily explained to the de-
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Figure 6.12: Distribution of the percentages of suspended extensions with unex-
pectedness score in Chrome Web Store.

velopers. This can help the non-malicious but lazy developers to either remove the

offending permissions from their applications or clearly describe which features re-

quire these permissions as part of the textual descriptions of the application. For

example, Table 6.1 shows that both the ‘PDF reader 3’ and ‘Tab Manager 6’ use the

‘webNavigation’ permission which is unexpected in their respective peer groups.

With this information, the application developers can perform targeted audit of their

code to check if their applications really need this permission or if there is a way

to implement the desired functionality without this permission. However, if it turns

out that the application indeed needs the ‘webNavigation’ permission for one of its

features, the developer should be able to add an explain about it in the applications’

textual descriptions.

Detecting unwanted applications. To evaluate our technique’s effectiveness in de-

tecting unwanted applications, we created a new dataset by picking 3828 randomly
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chosen extensions from our existing Chrome Web Store dataset and augmenting

them with 3828 suspended extensions. These extensions have been suspended by

the market owner due to a variety of reasons including malicious activity, spam-

ming, violating market policies etc. We compute the unexpectedness values for all

extensions in the dataset including both the suspended and live extensions. For each

application with a unexpectedness score greater than zero, we compute the percent-

age of suspended applications for different scores. Figure 6.12 show the results

from the experiments using the category-based peer groups. This figure clearly

demonstrate that applications with high unexpectedness scores are very likely to be

suspended.

6.7 Related work

Risks of Android applications. Several prior works have explored identifying

risky combinations of Android permissions to warn the users more effectively than

the exiting system that shows warnings containing most of the requested permis-

sions [32, 88]. However, identifying such combinations without considering ap-

plication functionality often results in spurious warnings. To avoid such issues,

machine learning algorithms have been used to analyze permission requests from

different types of applications [7, 74]. Peng et al. [74] introduced the idea of risk

assessment of an Android application relative to other applications and evaluated

different machine learning techniques for computing an application’s risk score.

However, due to the complicated nature of the machine learning algorithms, such

risk scores are not easily explainable to the users or the developers. By contrast,
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the unexpectedness scores computed by peer group analysis are easy to understand

and intuitive. Moreover, unlike Peng et al., we evaluated peer group analysis on a

significantly larger dataset drawn from two different markets.

Textual descriptions and Android permissions. Gorla et al. [41] built a tool

called CHABADA that clusters the textual descriptions of Android applications

using LDA and identify outliers in each of the cluster according to their API us-

age. CHABADA can be thought of as a special case of peer group analysis that

uses textual descriptions to create peer groups. We identify and evaluate several

other sources for creating peer groups like related-items, categories etc. More-

over, unlike Gorla et al. whose main focus was detection of malicious software,

we show that peer group analysis can also be useful for other purposes like help-

ing users to pick safer applications or encouraging developers to write low-risk

applications. Furthermore, unlike CHABADA which was evaluated only on 22500

free Android applications, we evaluated peer group analysis on a larger and more

diverse dataset consisting of both free and paid applications from two different soft-

ware markets: around 44, 000 from the Chrome Web Store and more than 1 million

from the Google Play Store.

Pandita et al. [72] used natural language processing techniques to identify

sentences in application descriptions explaining why an application needs a partic-

ular permission. Their approach is complementary to ours and can be used together

to explain to the users why a high-risk application require certain permissions for

its functionality.
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Abusive software on Android. Prior work on the Android platform has focused

on detecting malicious software by comparing against a set of characteristic fea-

tures that has been extracted either manually or using supervised machine learning

from known-to-be-abusive software [2, 105, 106]. Our approach is fundamentally

different, as we do not learn any features of known abusers. Instead, we focus

on identifying common patterns across benign applications belonging to same peer

group.

User interfaces for Android permissions. Several studies have found that users

often have difficulty to comprehend the Android permissions shown to them during

the installation process and tend to install applications irrespective of the permis-

sions they request [35,38]. Peer group analysis can help users in estimating the risks

of installing an application without understanding each of the permissions. Roes-

ner et al. [82] have proposed using access control gadgets provided by the operating

system to allow users to grant permissions for user-controlled resources like camera

in a non-intrusive and more intuitive manner. Such solutions can be used together

with peer group analysis for helping users to control the sensitive privileges used

by high-risk applications.

6.8 Conclusion

In this chapter, we proposed and evaluated peer group analysis for effective

and easy-to-understand risk assessment of applications in online software markets.

We showed that peer group analysis efficiently seeks out the high-risk applications

irrespective of the actual techniques used for forming the peer groups. Our tech-
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nique has already been partially deployed in the Chrome Web Store and Google

Play Store software markets. We hope that our work will encourage other market

owners to also adopt peer group analysis.
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Chapter 7

Conclusions

In this dissertation, we showed that the emerging trend of perceptual com-

puting presents several new and unique security and privacy challenges. We ana-

lyzed existing perceptual computing platforms and showed that none of them pro-

vide strong guarantees against such risks. Moreover, several such platforms e.g.,

AR browsers also suffer form implementation flaws that makes them vulnerable

to a wide range of attacks. In order to solve these issues, we explored several

complementary techniques that leverage perceptual interfaces for creating security

and privacy-preserving perceptual computing platforms: supporting fine-grained

privileges, enforcing access control, applying privacy transforms to minimize the

amount of sensitive perceptual data released to the applications, etc. We built a pro-

totype perceptual platform with support for fine-grained permissions. We further

presented an automated risk assessment mechanism that can detect least privilege

violations by comparing the security-relevant behaviors of applications with similar

functionality. We believe that such automated detection of least privilege violations

will incentivize application developers to use fine-grained privileges safely. We also

developed DARKLY, a prototype perceptual platform that leverages several of the

techniques described above to provide strong security and privacy guarantees.
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In summary, this dissertation is the first step towards creating a perceptual

computing ecosystem with strong security and privacy guarantees. We believe that

perceptual computing is an exciting new area that deserves close attention of the se-

curity and privacy researchers. Now is the time to incorporate security and privacy

mechanisms in the perceptual platforms as most of them are still at the early stages

of their development.
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