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Accurate and efficient localization of facial features is a crucial first

step in many face-related computer vision tasks. Some of these tasks include,

but not limited to: identity recognition, expression recognition, and head-pose

estimation.

Most effort in the field has been exerted towards developing better ways

of modeling prior appearance knowledge and image observations. Modeling

prior shape knowledge, on the other hand, has not been explored as much.

In this dissertation I primarily focus on the limitations of the existing

methods in terms of modeling the prior shape knowledge. I first introduce

a new pose-constrained shape model. I describe my shape model as being

“highly flexible yet sufficiently strict”. Existing pose-constrained shape mod-

els are either too strict, and have questionable generalization power, or they

are too loose, and have questionable localization accuracies. My model tries
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to find a good middle-ground by learning which shape constraints are more

“informative” and should be kept, and which ones are not-so-important and

may be omitted.

I build my pose-constrained facial feature localization approach on this

new shape model using a probabilistic graphical model framework. Within

this framework, observed and unobserved variables are defined as the local im-

age observations, and the feature locations, respectively. Feature localization,

or “probabilistic inference”, is then achieved by nonparametric belief propa-

gation. I show that this approach outperforms other popular pose-constrained

methods through qualitative and quantitative experiments.

Next, I expand my pose-constrained localization approach to uncon-

strained setting using a multi-model strategy. While doing so, once again I

identify and address the two key limitations of existing multi-model methods:

1) semantically and manually defining the models or “guiding” their genera-

tion, and 2) not having efficient and effective model selection strategies. First,

I introduce an approach based on unsupervised clustering where the models

are automatically learned from training data. Then, I complement this ap-

proach with an efficient and effective model selection strategy, which is based

on a multi-class näıve Bayesian classifier. This way, my method can have many

more models, each with a higher level of expressive power, and consequently,

provides a more effective partitioning of the face image space. This approach is

validated through extensive experiments and comparisons with state-of-the-art

methods on state-of-the-art datasets.
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In the last part of this dissertation I discuss a particular application

of the previously introduced techniques; facial feature localization in uncon-

strained videos. I improve the frame-by-frame localization results, by estimat-

ing the actual head-movement from a sequence of noisy head-pose estimates,

and then using this information for detecting and fixing the localization fail-

ures.
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Chapter 1

Introduction

Face perception is a critical aspect of social interactions. One may

almost instantly recognize familiar faces, generate names for them, bring-up

relevant memories, and interpret expressions. This seemingly easy task is

possibly one of the most highly developed visual perceptual skills humans

have [31].

A commonly accepted cognitive model for face perception argues that

understanding faces involves multiple, distinct processes [7]. This functional

model of Bruce and Young is presented in Figure 1.1.

From a psychological point of view the highlight of this model is the

fact that face perception involves multiple, distinct processes. For this dis-

sertation though the highlight is much more subtle, and is the fact that all

these processes, either directly or indirectly, depend on some initial, low-level,

view-dependent representation of the perceived face.

Perhaps not so surprisingly, face-related computer vision research fol-

lows a very similar model to the one in Figure 1.1. Furthermore, in computer

vision, this “initial, low-level, view-dependent representation” is fairly well

defined, and is based on “facial features”.
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Image Credit: Bruce and Young [7].

Figure 1.1: A functional model for face processing.

Facial features are the salient points on a face. These points usually

consist of a set of anatomical landmarks (such as the eye corners) and a set

of pseudo-landmarks that are equally-spaced between these anatomical land-

marks (Figure 1.2). The focus of this dissertation is “facial feature localiza-

tion”, which is the problem of detecting these landmarks in face images.

This is an important problem because just like the “view-dependent

descriptions” of the human perception model in Figure 1.1, most of the face-

related computer vision applications rely on accurate and efficient localization

of facial features. Some of these applications include: facial identity recogni-
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Image Credit: http://www.dailymail.co.uk.

Figure 1.2: Facial features.

tion, facial expression recognition, head-pose estimation, and markerless facial

motion capture.

Although it seems that the appearance of these features and their con-

figuration across the population are fairly uniform [28], from a computer’s

perspective they are not, and this is what makes facial feature localization a

remarkably difficult task. As illustrated in Figure 1.3, facial features and their

configuration change significantly in face images depending on: the facial at-

tributes of the person, the expression of the person, the viewer (i.e. camera)

angle, and the imaging conditions.

Facial feature localization is by no means a new problem. In fact related

work may be traced back to early 1970s making this one of the very first

problems, which the researchers in the field were interested in. That being said,

after more than 40 years we are yet to find solutions that are robust, accurate,
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Figure 1.3: Facial features and their configuration change significantly in un-
constrained face images.

and efficient enough to satisfy the demands of the real-world applications. Our

collective progress so far has been truly impressive, but the real exciting part

is what we may possibly achieve in the future.

1.1 Overview of Dissertation

Any facial feature localization algorithm needs to blend-in two distinct

sources of information in order to achieve good results:

• Prior knowledge, and

• Image observations.

This is actually true for many computer vision problems. Systems that

rely only on image observations exhibit high false positive and false negative

rates. Whereas systems that fuse this information with prior domain knowl-

edge are usually capable of eliminating most, if not all, of these false positives
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and false negatives.

In facial feature localization, the prior knowledge consists of two parts:

prior appearance knowledge, and prior shape knowledge. The former is our

prior knowledge on the appearance of these facial features, and the latter is

our prior knowledge on their locations with respect to each other.

Interestingly, most of the previous work in the field focus on different

ways of modeling the prior appearance knowledge and/or the image observa-

tions. In contrary, modeling the prior shape knowledge has not been explored

as much.

In the following subsections I provide brief summaries of the main com-

ponents of my dissertation. First, I introduce a nonparametric facial feature

localization method. This method is accompanied by a learned frontal face

shape model, and consequently is “pose-constrained”. Next, I introduce a

divide-and-conquer strategy for expanding the pose-constrained approach to

the unconstrained setting. This strategy is based on partitioning the face im-

age space into smaller subsets, and learning one pose-constrained model for

each of these partitions. Finally, I discuss facial feature localization in un-

constrained videos as a specific application of the previously introduced tech-

niques. While doing so, I use head-pose continuity as a heuristic to improve

the localization results.
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1.1.1 Constrained Facial Feature Localization

Depending on how the prior shape knowledge is modeled and enforced,

all existing methods may be grouped into three categories: parameterized shape

models, part-based shape models, and implicit shape models.

By far the most common approach among the related work is the pa-

rameterized shape models (e.g. [12, 14, 19, 45, 53]). These methods model the

non-rigid shape variations linearly, where the variational bases are learned

from training data. They are holistic in nature and this makes them fairly

strict models of shape.

If we imagine a “strictness spectrum” for shape models, and position the

parameterized shape models on the “strict end” of this spectrum, the “loose

end” would contain the existing part-based models (e.g. [8, 26, 58, 63, 69]).

These methods model the face as a configuration of parts. A common strategy

among part-based methods is to omit some inherited facial shape constraints

for the sake of computability. This usually results in models which are too

loose for accurate facial feature localization.

A relatively more recent strategy is to model and enforce the shape

constraints with the use of “shape regressors” (e.g. [9, 44, 67]). These methods

are of less interest to this dissertation, since they do not employ explicit shape

models. When the “big picture” of face processing is considered, the benefits

of an explicit shape model is apparent.

The insight here is to have a shape model which is highly flexible so
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that it generalizes well to unseen images, but at the same time strict enough so

that it does not allow unnatural deformations. With this insight, I introduce

a novel part-based shape model, which tries to find a good middle-ground

within the previously mentioned “strictness spectrum”. My model “learns”

which shape constraints are inherently “more important” and captures them,

while omitting the “not-so-important” constraints. This way, it is necessarily

more strict than the existing part-based models, while still being a lot more

flexible than the existing parameterized models.

I use this learned shape model as the basis of a probabilistic graphical

model, where the feature locations become the unobserved random variables,

and the shape constraints are captured within the graph topology. Image

observations are incorporated into this graphical model as observed variables.

Within this framework, facial feature localization (i.e. probabilistic inference

in the graph) is achieved through nonparametric belief propagation.

The details of this framework is discussed in Chapter 3. Section 3.1 pro-

vides more insight on the motivation, primarily focusing on the limitations of

the existing methods. Then, the reader is provided with the required technical

background knowledge in Section 3.2, which includes:

1. Procrustes Analysis (Section 3.2.1),

2. Probabilistic Graphical Models (Section 3.2.2),

3. Belief Propagation (Section 3.2.3), and

7



4. Nonparametric Belief Propagation (Section 3.2.4).

Next, Section 3.3 goes into the details of the introduced framework and Sec-

tion 3.4 validates the method through qualitative and quantitative results and

comparisons. The chapter is concluded with a discussion in Section 3.5.

1.1.2 Unconstrained Facial Feature Localization

So far, I have introduced a pose-constrained facial feature localization

method, which is based on a “highly flexible, yet sufficiently strict” shape

model. This method is capable of accurately localizing facial features in generic

near-frontal face images. In other words, it can handle the feature appearance

and configuration changes due to facial attributes and/or mild facial expres-

sions, but it cannot handle the changes due to viewer angle (or equivalently

subject pose) and/or extreme facial expressions. A single two-dimensional

shape model is simply not powerful enough to precisely model that level of

prior knowledge.

That being said, we are interested in facial feature localization in the

wild due to ever increasing amounts of such unconstrained data. In order to

achieve this, once again, we need to model our prior domain knowledge and

incorporate that with the image observations. However, this time modeling

the prior domain knowledge is much harder since now the domain covers all

face images.

Existing methods have addressed this problem in one of three ways: by

employing more sophisticated shape models (usually three-dimensional, e.g.
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[6, 65]), by employing multiple two-dimensional shape models (e.g. [15, 69]),

or by using elaborate “shape regressors” (e.g. [9, 67]).

Out of these three strategies, using multiple two-dimensional shape

models is preferable due to several reasons:

1. Even though faces are three-dimensional objects, and a three-dimensional

shape model seems like an intuitive way of modeling the prior shape and

appearance knowledge, in reality building such models is not an easy

task. The resulting models are usually not powerful enough to cover all

shape and appearance variations exhibited in unconstrained localization.

2. Methods which employ elaborate shape regressors model the prior shape

and appearance knowledge implicitly. However, having an explicit shape

model is more intuitive and more beneficial when the “big picture” is

considered.

3. The constrained facial feature localization method which I have intro-

duced is based on a single two-dimensional shape model. Hence, expand-

ing this with a multi-model strategy is more natural.

Here, I introduce a new multi-model approach for attacking the un-

constrained localization problem. This method is based on partitioning the

space of all face images into a number of clusters and then training separate

cluster-specific shape and appearance models. Unlike any existing multi-model
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approach, I do not define these clusters semantically (or “guide” their genera-

tion manually), but rather automatically learn them from a very large training

dataset.

For the cluster classification task I train a multi-class näıve Bayesian

classifier using ferns [47] as image features. These features are extremely effi-

cient to compute, and the resulting cluster classifier is proved to be sufficiently

discriminative.

This divide-and-conquer approach effectively reduces the difficult “un-

constrained localization” problem into a set of much simpler “constrained lo-

calization” sub-problems, each with very precise shape and appearance models.

This approach is further discussed in Chapter 4. Section 4.1 provides

more insight on the motivation, primarily focusing on the limitations of the

existing methods. Then, the reader is provided with the required technical

background knowledge in Section 4.2, which includes:

1. Principal Component Analysis (Section 4.2.1), and

2. k-means Clustering (Section 4.2.2).

Next, Section 4.3 goes into the details of the divide-and-conquer strategy and

Section 4.4 validates the method through qualitative and quantitative results

and comparisons. The chapter is concluded with a discussion in Section 4.5.
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1.1.3 Facial Feature Localization in Videos

Facial feature localization in unconstrained videos is a challenging task.

These videos consist of a sequence of unconstrained images and hence form

a very good testbed for the underlying localization method. A successful

method is expected to handle significantly different head-poses, as well as the

transitions in between.

Most existing facial feature localization methods (including the ones I

have introduced in the previous sections) are designed for still images. Usually

these methods are extended to work with videos by leveraging the motion

continuity. In most cases, this step simply involves initializing the models

in one frame, with the results obtained in the previous frame. Clearly this

approach is exploiting the motion continuity within the image domain, and

may result in significant failures due to accumulating errors. Common ways of

addressing this limitation include: using more elaborate tracking techniques

(such as Kalman filters [35]) and/or failure detection mechanism which are

based on trained classifiers (e.g. [53]).

Unlike these methods, I primarily exploit the motion continuity in the

real-world domain. In an unconstrained video with a high-enough frame-rate,

the subject is expected to exhibit a continuous motion. This actual head-

movement may be used for detecting and fixing the localization failures.

In order to do so, one first needs to estimate the head-pose in each

frame. For this, I formulate the head-pose estimation as an optimization
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problem, where yaw, pitch, and roll angles are estimated by fitting a generic

three-dimensional face model to the two-dimensional feature localization re-

sults. This formulation makes crude assumptions (such as image formation

based on orthographic projection), but nevertheless performs well with chal-

lenging examples.

Next, I take the estimated head-pose parameters within a window of

frames, and fit n-order polynomials to these results for enforcing a continuous

head-motion. The fitted polynomials provide the “expected” parameter values,

which are then used for detecting and fixing the failures. Furthermore, these

polynomials also provide a means for “predicting” the head-pose parameters

in near-future frames.

This method is further discussed in Chapter 5. Section 5.1 provides

more insight on the motivation. Then, the reader is provided with the required

technical background knowledge in Section 5.2, which includes:

1. Orthographic Projection (Section 5.2.1).

Next, Section 5.3 goes into the details of the approach highlighting the head-

pose continuity heuristic and Section 5.4 validates the method through quali-

tative results and comparisons. The chapter is concluded with a discussion in

Section 5.5.

1.2 Key Contributions

The key contributions of this dissertation are three-fold:
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• Modeling the prior shape knowledge in facial feature localization has not

been well explored. Most existing work focuses on modeling the prior

appearance knowledge and/or the image observations, while taking the

shape models for granted. Instead in this dissertation, I focus primarily

on shape modeling. I introduce a novel model, which is highly flexible,

yet sufficiently strict, and formulate the constrained facial feature local-

ization problem as an inference problem within an intuitive probabilistic

graphical model framework. This framework, accompanied by the new

shape model, addresses the limitations of the existing constrained local-

ization methods.

• The two key limitations of the existing multi-model unconstrained local-

ization methods are: 1) semantically and manually defining the models,

and 2) not having efficient and effective model selection strategies. Con-

sequently, these methods have relatively few number of semantically-

fixed models. It is questionable whether these methods may take full

advantage of ever growing amounts of training data, without serious

manual intervention. I address both of these two limitations in this

dissertation. First, I introduce an approach based on unsupervised clus-

tering where the models are learned from the training data. Then, I

complement this approach with an efficient and effective model selection

strategy, which is based on a multi-class näıve Bayesian classifier. This

way, if in a few years the amount of training data we have increases by

n-fold, all it will take for my method to take full advantage of this much
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larger dataset is a simple re-clustering and re-training.

• For last, I explore the problem of facial feature localization in uncon-

strained videos as a validation of the previously introduced techniques.

I show how “head-pose continuity” may be leveraged for improving the

frame-by-frame localization results by: 1) detecting and fixing past fail-

ures, and 2) predicting future models.

1.3 Road Map

The rest of this dissertation is organized as follows: In Chapter 2 I

provide an in-depth review of the related work. I review the existing work

in two primary, and several secondary categories, so that the reader has a

better understanding of where the techniques described in this dissertation fit

in. In Chapter 3, I present my constrained facial feature localization method,

with an emphasis on the underlying shape model. Later in Chapter 4, I de-

scribe a “divide-and-conquer” strategy for expanding the constrained localiza-

tion framework of Chapter 3 to unconstrained setting. In Chapter 5 I present

a particular application: facial feature localization in videos, and discuss how

head-pose continuity may be leveraged as a heuristic in order to improve the

frame-by-frame localization results. Finally, I conclude by summarizing my

key contributions in Chapter 6.
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Chapter 2

Related Work

In this chapter, I review the related work in two main sections: con-

strained and unconstrained (i.e. in-the-wild) facial feature localization. Within

each section, I first categorize the methods based on how the prior shape knowl-

edge is modeled, and then discuss the categorized work in more detail.

2.1 Constrained Facial Feature Localization

I define “constrained facial feature localization” to be the problem of

localizing facial features in near-frontal face images. Both generic and person-

specific localization may be considered “constrained” if the input domain con-

sists of only frontal-face images. Hence, the methods I discuss here are pri-

marily “pose-constrained”, rather than anything else.

Based on how the prior shape knowledge is modeled, existing methods

may be categorized into three groups: part-based shape models, parameterized

shape models, and implicit shape models. Former two groups explicitly define

shape models. On contrary, methods in the third group enforce the shape

constraints implicitly. In this section I review the related work in the first two

groups, and postpone the review of implicit shape models to the next section.
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2.1.1 Part-based Shape Models
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Figure 2.1: Selected influential work based on part-based shape models.

Figure 2.1 illustrates some of the selected influential work in this cate-

gory.

The seminal work of Fischler and Elschlager [26], published in 1973,

may be considered one of the very first related works in this field. Even

though the authors’ problem statement involves “object detection”, their ob-

ject model is “composed of a number of rigid pieces (components) held to-

gether by ‘springs’ ” (see Figure 2.2), and hence inherently involves localizing

the parts of the corresponding object. Foundations laid by this work in terms

of defining “part-based shape models” have been used intensively in the object

detection (or “recognition”) field (e.g. [8, 22–25]), but not so much in the fa-

cial feature localization field (e.g. [57, 63, 69]). Hence, in this section I do not

limit the discussion with the methods which particularly attach the problem
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of facial feature localization. Instead, I also mention some related work from

the object detection field, where sometimes the objects of interest are “faces”.

Image credit: Fischler and Elschlager [26]

Figure 2.2: Spring model of a face.

As Figure 2.2 demonstrates, part-based methods model the objects as a

configuration of parts. Depending on the object and the application of interest,

these parts may be defined in varying levels of abstraction. For example, in

Figure 2.2, parts (e.g. “left eye”, “hair”, etc.) are defined at a relatively higher

level since the application of interest is face detection. On the other hand, in

facial feature localization, these parts are defined as the facial features, which

are at a much lower abstraction level.

An undirected graph G = (V , E) is a natural way of expressing such

part-based models. Here, V = {v1, . . . , vn} represent the n parts of the model,

whereas the edges, (vi, vj) ∈ E , represent the encoded spatial relationships.

The location of the object in an image is given by a configuration of its parts

L = {l1, . . . , ln}, where li = (xi, yi) is the location of the ith part. Then the

localization problem may be formulated as finding the most probable configu-
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ration of the parts given an image I:

L∗ = arg max
L

[P (L|I)] = arg max
L

[P (I|L) P (L)] (2.1)

It is useful to further examine two terms in this optimization problem:

P (I|L) and P (L). P (I|L) represents the image support of a given configura-

tion of parts, and in a way models both the prior appearance knowledge and

the image observations. P (L), on the other hand, represents the likelihood of

a particular configuration, and hence models the prior shape knowledge.

Part-based facial feature localization methods usually differ at how they

define and incorporate: V , E , and P (L). Most of the existing work either over-

simplifies the graph structure E , or over-constraints P (L), primarily to make

the inference tractable and efficient.

Due to the algorithmic and computational limitations of the time, Fis-

chler and Elschlager [26] employ binary-state edge potentials. Wiskott et al.

[63], on the other hand, define “graph elasticity” in terms of the difference

between the edges of the fitted model and the actual shape model, but choose

to adjust the landmark locations individually, over a single-pass procedure.

Note that both of these earlier works do have cyclic graphs (i.e. graphs with

loops) as their shape models.

A common over-simplification of the graph structure is to assume that E

is an acyclic graph (i.e. a tree). Felzenszwalb and Huttenlocher [24] show that

when the graph G is a tree, and the pairwise spatial relationships are assumed
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to be Mahalanobis distances, the model matching essentially becomes linear

in the number of parts. Ramanan and Sminchisescu [50] further improve

this idea by using Gaussian relationships and a tree-structured Conditional

Random Field (CRF) [38] as the shape model. Recently, Zhu and Ramanan

[69] proposed a “mixture-of-trees” model, where they model multiple facial

configurations with individual trees. The tree property allows for efficient

inference, and gives good results with relatively simpler object classes such

as airplanes, motorcycles, and horses. However, it lacks the necessary loopy

spatial constraints and produces unnatural deformations in the case of facial

feature localization.

Crandall et al. [17] addresses this limitation of the tree-structured

graphs by introducing a class of spatial priors, which they call “k-fans” (see

Figure 2.3). k-fans depend on choosing k reference nodes from the n parts

of the shape model. The reference nodes form a fully connected sub-graph,

and each non-reference node is simply connected to every reference node. For

simpler object classes, k-fans do capture more spatial relationships. However,

for the case of facial feature localization, choosing the correct number and the

configuration of these reference nodes is not intuitive. Moreover, k-fans may

introduce unnecessary constraints, while failing to capture the necessary ones.

Another fairly less explored approach involves approximating the prob-

abilistic inference, rather than the underlying shape model. Sudderth et al.

[56] approximates the complex node potentials and spatial relationships using

Gaussian kernel density estimates (KDEs) [54]. Just like any other work in
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Image credit: Crandall et al. [17]

Figure 2.3: Some k-fans on 6 nodes.

this and the following section, Sudderth et al. manually define the underly-

ing shape model (see Figure 2.4). Nodes in this model are high-dimensional

feature vectors, representing both the location and the appearance of the cor-

responding part (e.g. left eye).

Image credit: Sudderth et al. [56]

Figure 2.4: Part-based face model used in [56].

Other simplifications applied by existing methods in order to make

the solution of Equation 2.1 tractable include: assuming that the parts of

the model are jointly Gaussian [25], defining graph nodes with binary states

(nodes representing part relations, rather than part locations) [44, 58], and
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doing “hard-detection” (first detecting candidates and then applying the con-

straints [10, 18, 58]. All of these methods try to simplify the initial localization

problem, in order to employ efficient inference algorithms.

The last method I discuss in this section is called “Snakes” [36]. The

basic snake model is a “controlled continuity spline”. The continuity of the

spline is enforced through “internal spline forces”, whereas “external image

forces” push the snake towards salient image features. Since the snake model

consists of a set of loosely connected vertices, it may still be considered a part-

based shape model. Note that, the snake model does not encode global shape

constraints. Nevertheless, the parameterized shape models that are reviewed

in the next section are all influenced by this basic model.

2.1.2 Parameterized Shape Models
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Figure 2.5: Selected influential work based on parameterized shape models.

Figure 2.1.2 illustrates some of the selected influential work in this cat-
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egory. Even though the parameterized shape models were introduced almost

two decades after the work of Fischler and Elschlager [26], they have been the

most popular method for modeling the prior shape knowledge in the facial

feature localization field.

Cootes and Taylor [13] have laid the foundations of parameterized shape

models in their seminal work “Active Shape Models - ‘Smart Snakes’ ”. They

have named their approach “Smart Snakes” because they address a particular

limitation of the basic snake model of Kass et al. [36]. As I have discussed in

the previous section, regular snakes do not encode any global shape constraints.

The fitting procedure only enforces that the fitted spline has “controlled conti-

nuity”, which maps to simple and local shape constraints. Most object classes,

on the other hand, have well defined global shape constraints (such as faces,

resistors, cars, etc.).

Cootes and Taylor [13] address this limitation by their “Point Distribu-

tion Model (PDM)”. PDM models the non-rigid shape variations of an object

linearly and composes it with a global similarity transform (see Figure 2.6):

x = sR(x̄+ Φq) + t (2.2)

where x = (x0, y0, . . . , xn, yn)T denote the 2D-coordinates of the n feature

points, and p = {s, R, t, q} are the PDM parameters consisting of a global

scaling s, a rotation R, a translation t, and a set of non-rigid shape parameters

q. Here, x̄ is the mean shape, and Φ = [φ1, . . . , φk] is a matrix consisting of

k linearly independent modes of variation (i.e. “shape vectors”). Both x̄ and
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Φ are estimated from a set of training examples using Principal Component

Analysis (PCA) [49].

Image credit: Matthews and Baker [45]

Figure 2.6: The mean shape and the shape vectors used in PDMs.

Given the PDM of Equation 2.2, the facial feature localization problem

may be formulated as a minimization over the model parameters:

p∗ = arg min
p

[R(p) +D(x; I)] (2.3)

where R(p) is the regularization term, and D(x; I) represents the misalignment

error associated with model x given image I. One may think of these two terms

as analogous to P (L) and P (I|L) of Equation 2.1, respectively. Here, R(p)

is used to bound the model parameters so that no unnatural deformations

are allowed. D(x; I), on the other hand, is a measure representing the fitting

quality based on the image observations. Almost all PDM-based methods solve

Equation 2.3 iteratively, and relate the image observations to the parameter

updates δp for computing:

p← p+ δp (2.4)

Depending on how the image observations are modeled and incorpo-

rated with the PDM of Equation 2.2, methods in this category may further be
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divided into two main classes. The first class of methods, which are derived

from “Active Shape Models” [13], make use of local image observations. These

methods are collectively named Constrained Local Models (CLMs). CLMs

utilize an independent set of local detectors (i.e. “experts”) to obtain feature-

specific response maps. Then, the optimization in Equation 2.3 is performed

over these local response maps (see Figure 2.7).

Image credit: Saragih et al. [53]

Figure 2.7: Constrained local models.

Nonparametric and noisy response maps are usually replaced with para-

metric approximations in order to make the problem more stable and tractable.

Using isotropic Gaussians (e.g. [13]), anisotropic Gaussians (e.g. [46, 60, 68]),

or Gaussian Mixture Models (e.g. [30]), are common techniques for this. Even

though the resulting objectives are easier to solve, parametric approximations

are just crude approximations of the true response maps and may potentially

miss out important details. Saragih et al. [53] addresses this limitation by

using nonparametric approximations in the form of homoscedastic isotropic
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Gaussian kernel density estimates (KDEs) [54].

Cristinacce and Cootes [19] follow a slightly different approach for both

obtaining the response maps, and handling the noise associated with these re-

sponse maps. They first built a joint parameterized shape and “local” texture

model from a set of training images. During the fitting, at each iteration

they generate feature-specific “templates” using the estimated model parame-

ters, and then use these templates to obtain the response maps, making their

method more robust.

The second class of methods, derived from “Active Appearance Models

(AAMs)” [12], use a more holistic approach for modeling and incorporating the

prior appearance knowledge. Unlike CLMs, which embed this prior knowledge

in local experts, in AAMs holistic “shape-normalized” images are used for

determining the parameter updates δp. “Shape-normalization” is a piece-wise

linear warping of a particular face image into the mean shape (x̄ of Equation

2.2). This process removes all shape variations, and consequently results in an

“appearance-only” image.

In the initial AAM formulation of Cootes et al. [12], a second PCA is

performed on shape-normalized training images to get a “mean appearance”

and a set of linearly independent “appearance vectors” (see Figure 2.8). At

each iteration of the fitting, the current parameter estimates are used to gener-

ate a model, which is then used to compute an “error image”. In this work the

error images are related to the parameter updates δp using linear regression.
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Image credit: Matthews and Baker [45]

Figure 2.8: The mean appearance and the appearance vectors used in AAMs.

Cootes et al. [12] employ linear regression primarily due to efficiency

concerns. Using linear regression does make the parameter update compu-

tations very fast, but nevertheless it is a rough approximation of the real

relationship. Matthews and Baker [45] address this limitation by interchang-

ing the roles of input images with the generated models. Their efficient inverse

compositional algorithm results in a much faster and a more accurate local-

ization.

These initial AAM formulations [12, 45] perform well in person-specific

feature localization (i.e. training images contain the images of the test sub-

ject). However, as discussed in Gross et al. [29] the performance degrades

rapidly when the same formulation is used for generic facial feature localiza-

tion. Gross et al. [29] attributes this degradation primarily to the shape

component of the AAM. That being said, most AAM-based methods try to

address this limitation by re-formulating the appearance component of AAMs

in different ways.
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Liu [41], Wu et al. [64], and Saragih and Goecke [52], all choose to

model the appearance by a set of discriminative features (usually Haar-like fea-

tures [59]) instead of the PCA-based approach described above. In “Boosted

Appearance Model” of Liu [41], these features are related to the parameter

updates through the use of a trained binary boosted classifier, which distin-

guishes between correct and incorrect alignments. “Boosted Ranking Model”

of Wu et al. [64] takes this one step further by introducing a boosted classifier

that behaves as an alignment score function. Similarly, Saragih and Goecke

[52] learns a nonlinear boosted regressor to relate the appearance features to

the parameter updates of the model.

2.2 Unconstrained Facial Feature Localization

Simple 2D shape models are not capable of modeling the significant

head-pose and expression variations in face images captured in uncontrolled

settings. Consequently, in unconstrained facial feature localization we need

more sophisticated methods for modeling the prior shape and appearance

knowledge.

A common strategy among the researchers is to employ multiple-models

in order to address the challenges of unconstrained feature localization (see

Figure 2.9). “View-based Active Appearance Models (AAM)” of Cootes et al.

[15], “Direct Appearance Models (DAM)” of Li et al. [40], and “Mixture-of-

Trees” of Zhu and Ramanan [69] are all examples of such multi-model methods.

Former two methods employ a relatively small number of linear shape models,
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whereas Zhu and Ramanan [69] use a “mixture-of-trees” consisting of 18 tree-

models to model the shape constraints. All existing multi-model methods

define their models manually and semantically based on head-pose [15, 40]

and/or facial expressions [69], or manually “guide” their generation [34].

Image credit: Zhu and Ramanan [69]

Figure 2.9: “Mixture-of-Trees” model of Zhu and Ramanan [69].

Belhumeur et al. [3] use all the training shapes (around 1000 of them)

as global models, and hence in a way avoids defining explicit shape models.

Given a new face image, the authors identify a set of best matching global

models, which are then used as prior shape knowledge.

Similarly Cao et al. [9] and Yang and Patras [67] choose not to use

explicit shape models. Shape constraints are implicitly enforced in shape re-

gressors of [9] and in the head center sieve of [67].

More recently, Supervised Descend Method of Xiong and De la Torre

[66], and Discriminative Response Map Fitting approach of Asthana et al.

[1], are shown to perform well in unconstrained feature localization. In [66], a

sequence of generic descent directions are learned from training data, and then

used in model fitting. [1], on the other hand, learns a set of weak learners,

which model the non-linear relationship between the response maps and the
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3D shape model parameter update.
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Chapter 3

Constrained Facial Feature Localization

3.1 Motivation

Existing shape models that are used for constrained facial feature lo-

calization are either too strict or too loose. If a shape model is too strict,

its generalization power is questionable. This is the case for parameterized

shape models. They are holistic models of shape, where the non-rigid shape

variations are modeled linearly. Changing one parameter, in theory, affects all

the feature locations in this shape model.

On the other hand, if a shape model is too loose, then it allows for

unnatural deformations. This results in poor localization results. Existing

part-based shape models face this difficulty. In order to employ efficient infer-

ence algorithms, they either omit some necessary spatial constraints, or make

unrealistic assumptions about the feature relationships.

In this chapter, I introduce a new shape model, which aims at find-

ing a good compromise between these two extremes. My part-based model

learns “important” constraints and captures them while omitting the not-so-

important ones. This way, it is necessarily more strict than the other part-

based models, while still being more flexible than the parameterized models.
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This shape model is incorporated with local image observations within

a probabilistic graphical model framework, where inference is achieved by non-

parametric belief propagation.

3.2 Background

In the following subsections I provide the required technical background.

First, I define the concept of a “true shape”, and discuss Procrustes Analy-

sis, which is a method for “aligning” a set of shapes. Then, I provide a brief

explanation of Probabilistic Graphical Models, and discuss the details of an

approximate inference technique called “Belief Propagation”. In the last sec-

tion, I focus on an extension of the standard Belief Propagation algorithm

called “Nonparametric Belief Propagation”.

3.2.1 Procrustes Analysis

A “true shape” is defined as “all the geometrical information that re-

mains when location, scale, and rotational effects are filtered out from an ob-

ject” [21]. In other words, the “true shape” of an object is invariant to the

Euclidean similarity transforms [55].

When we are trying to model our prior shape knowledge about an

object, it is very important to filter out these similarity transforms, so that

our model captures only the “true shape”, and is not affected by the shape

variations due to similarity transforms.

A two-dimensional shape with N -points (i.e. “landmarks”) may be
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represented by a matrix p ∈ R2×N , where pn = [xn, yn]T represents the two-

dimensional coordinates of the nth point. “Aligning” one shape p2 to another

shape p1 may then be formulated as a minimization problem:

{s∗, R∗, t∗} = arg min
s,R,t

|| p1 − sR[p2 + t] ||2 (3.1)

where, s ∈ R, R ∈ R2×2, and t ∈ R2×N , represent the alignment parameters:

scale, rotation, and translation, respectively.

Procrustes Analysis provides an algorithm for the solution of this align-

ment problem:

1. Compute the centroids - The centroid of a shape p is defined as the

center of mass of the physical system consisting of unit masses at each

landmark:

p̄ = (p̄x, p̄y) = (
1

N

N∑
n=1

xn,
1

N

N∑
n=1

yn) (3.2)

2. Re-scale the shapes - Each shape is scale-normalized using the Frobe-

nius norm as the size metric:

p1 =
p1

FN(p1)
p2 =

p2

FN(p2)
(3.3)

where

FN(p) =

√√√√ N∑
n=1

(xn − p̄x)2 + (yn − p̄y)2 (3.4)

3. Align w.r.t. location - A common strategy is moving both shapes to the

center of the coordinate system:

p1 = p1 − p̄1 p2 = p2 − p̄2 (3.5)
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4. Align w.r.t. rotation - The best rotational alignment between p2 and p1

is determined by computing the Singular Value Decomposition (SVD) of

p1p
T
2 :

UDV T = p2p
T
1 (3.6)

where V UT gives us the R∗ of Equation 3.1.

The “Generalized Procrustes Analysis (GPA)” is an extension of this

algorithm used for aligning a set of shapes (see Figure 3.1). At each iteration

of the GPA algorithm all shapes in the set are aligned to the mean shape, and

then the mean shape is re-computed. This iterative refinement is done until

the mean shape does not change.

Image Credit: [55].

Figure 3.1: Generalized Procrustes Analysis (left: unaligned shapes, right:
aligned shapes with mean shape in red).

3.2.2 Probabilistic Graphical Models (PGMs)

PGMs use a graph-based representation as the basis for compactly en-

coding complex joint distributions over multiple, high-dimensional random
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variables [37]. An undirected graph G is defined by a set of nodes V and

a set of edges E (see Figure 3.2). Each node s ∈ V represents either an

unobserved, or hidden, random variable xs, or a noisy local observation ys.

Following the notation in [56], the neighborhood of a node s ∈ V is defined as

Γ(s) , {t|(s, t) ∈ E}.

Figure 3.2: An undirected graph.

In undirected, pairwise PGMs the joint distribution over all variables

p(x, y) factorizes as:

p(x, y) =
1

Z

∏
(s,t)∈E

φs,t(xs, xt)
∏
s∈V

φs(xs, ys) (3.7)

where Z is a normalization constant, φs,t(xs, xt) is the compatibility potential

between nodes s and t, and φs(xs, ys) is the observation potential of node s.

While the joint distribution p(x, y) is hard to estimate, in many appli-

cations, the real interest is in the computation of conditional marginal distri-

butions p(xs|y) for all xs ∈ V .
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3.2.3 Belief Propagation (BP)

BP provides a convenient way for computing the conditional marginal

distributions p(xs|y) in a graph. At iteration n of the BP algorithm, each node

t ∈ V sends a message mn
t,s(xs) to each of its neighbors s ∈ Γ(t):

mn
t,s(xs) = α

∫
xt

φs,t(xs, xt)φt(xt, yt)
∏

u∈Γ(t)\s

mn−1
u,t (xt)dxt (3.8)

where α denotes a proportionality constant.

At any iteration n, the belief of node s about the hidden variable xs

may be computed as follows:

p̂n(xs|y) = αφs(xs, ys)
∏
u∈Γ(s)

mn
u,s(xs) (3.9)

BP algorithm guarantees that the node beliefs will converge to the cor-

rect conditional marginals in singly connected graphs [48]. Even though there

is little theoretical analysis on the performance of BP in graphs with loops

([61, 62]), loopy BP has shown excellent empirical performance in a number of

applications [4, 27].

3.2.4 Nonparametric Belief Propagation (NBP)

Equation 3.8 may be evaluated analytically only when both the com-

patibility and the observation potentials have special forms. When both are

Gaussians, the calculations are straightforward since the product of a number

of Gaussian densities is another Gaussian. When either potential is a Gaus-

sian mixture and the other one is a Gaussian or a Gaussian mixture, still the
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integration is straightforward, but now the number of mixture components in-

crease exponentially at every iteration. And when the potentials do not have

special forms, analytical evaluation of the integral in Equation 3.8 becomes

intractable.

In order to address this limitation of the BP algorithm, Sudderth et

al. [56] and Isard [33] independently developed almost identical algorithms,

which incorporate particle filters into the BP framework.

In these algorithms, nonparametric Gaussian KDEs [54] are used to

represent the messages at each iteration. Then the BP update rule defined in

Equation 3.8 becomes:

mn
t,s(xs) =

M∑
i=1

w(i)
s N (xs;µ

(i)
s ,Λs) (3.10)

where w
(i)
s is the weight associated with the ith kernel with mean µ

(i)
s and

bandwidth Λs.

Given input messages mu,t(xt) for each u ∈ Γ(t)\s, the output message

mt,s(xs) is then computed as follows:

1. Draw M independent samples {x̂(i)
t }Mi=1 from φt(xt, yt)

∏
u∈Γ(t)\sm

n−1
u,t (xt)dxt,

and

2. For each {x̂(i)
t }Mi=1 sample x̂

(i)
s ∼ φs,t(xs, xt = x̂

(i)
s ).

Details may be found in [56].
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3.3 Approach

In this section I introduce a new framework for constrained facial fea-

ture localization. I first define my shape model, and then explain how the prior

appearance knowledge and image observations are modeled and incorporated

into this shape model. In the last subsection, I discuss the handling of the

similarity transforms, which is very important for robustness.

3.3.1 Prior Shape Knowledge

In my formulation, x = {xs|s ∈ V} represent the 2D landmark loca-

tions, and y = {ys|s ∈ V} represent the corresponding local image observa-

tions.

As previously discussed, the proposed approach may be thought as

modeling the prior shape knowledge in terms of multiple, weak, pairwise spatial

relationships. In order to fully specify this shape model, one needs to define

both the pairwise compatibility potentials and the topology of the underlying

graph.

3.3.1.1 Compatibility Potentials

Anisotropic Gaussians are used to model the pairwise compatibility

potentials:

φs,t(xs, xt) = N ((xs − xt);µs,t,Σs,t) (3.11)

where µs,t is the mean, and Σs,t is the covariance matrix of the Gaussian. Both

of these parameters are learned from training data.
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This potential encloses the prior shape knowledge between two land-

marks, since given the location of a landmark xt and the potential φs,t(xs, xt),

one may estimate the likely locations of landmark xs by:

φs,t(xs, xt = x̂t) = N (xs;µs,t + x̂t,Σs,t) (3.12)

As Figure 3.3 illustrates, anisotropic Gaussians model the compatibility

potentials well. Furthermore, one may estimate the “importance” of a par-

ticular pairwise potential within the model, simply by examining the learned

covariance matrices. A potential with a smaller Σs,t will have a higher pre-

cision, and hence would be more informative than a potential with a larger

Σs,t.

-25

-20

-15

-10

-5

 0

 5

-5  0  5  10  15  20  25

d
y

dx

Figure 3.3: Example (xs−xt) scatter plot. Note that an anisotropic Gaussian
would model this distribution fairly well.
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3.3.1.2 Graph Topology

One of the primary advantages of using a PGM-based shape model is

the flexibility in determining the graph topology. The possibilities range from

a loose, singly connected graph, to a very strict, fully connected graph. A

singly connected graph would reminiscence Snakes [36], whereas parametrized

shape models [14] would be considered fully connected graphs.

In this work, the graph topology of the shape model is learned from

training data. For each node s, the neighborhood Γ(s) is determined using the

computed compatibility potentials. Only the k most informative (smaller Σs,t)

nodes are connected to node s. Note that the “informativeness” of a neighbor

is determined with respect to the eigenvectors of the covariance matrix of the

corresponding pairwise relationships. This approach allows for capturing a

lot of shape knowledge in a fairly simple graph. Figure 3.4 illustrates the

computed topologies for k = 1, 2, 3, 4.

Please note that the proposed approach actually generates a “class” of

spatial models, rather than just a single one. Hence, the appropriate level of

flexibility may be chosen with respect to the application.

3.3.2 Prior Appearance Knowledge and Image Observations

A variety of observation models have been used in the facial feature

localization literature. These methods vary from using gradients as in the

case for Snakes [36], to using holistic error images as in the case of AAMs

(e.g. [12, 45]). CLMs, on the other hand, use “local experts” (i.e. local patch
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(a) k = 1. (b) k = 2.

(c) k = 3. (d) k = 4.

Figure 3.4: Learned graph topologies for k = 1, 2, 3, 4.

detectors), and have shown to perform superior [53]. Hence, I employ a “local”

modeling approach in this work as well, which is illustrated in Figure 3.5.

The local experts used in this work are linear support vector machines

(SVMs) [16] and the features used are 3 × 3 histograms of oriented-gradients

(HOGs) [20] with 6−bin histograms in each cell.

Inspired by the results of Saragih et al. in [53], the observation poten-

tials are defined to be the nonparametric isotropic Gaussian KDEs [54] of the
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Figure 3.5: Local response maps obtained at several feature locations.

expert response maps:

φs(xs, ys) =
∑
zi∈Ψs

πziN (xs; zi, ρI) (3.13)

where Ψs denotes the set of integer pixel locations within a square region

centered at xs, ρ is the bandwidth of the kernels, and πzi is the probabilistic

expert response at location zi.

This observation potential has two advantages:

1. Its Gaussian mixture form fits well into the NBP framework (much better

than than the one proposed in [56]), and allows for the employment of

efficient sampling methods (e.g. [32]), and
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2. It estimates the true response maps much better than the existing para-

metric methods [53].

3.3.3 Handling Similarity Transforms

Similarity transforms may be incorporated into this model either by

scaling and rotating the compatibility potentials (Equation 3.11), or by keeping

them constant, but instead aligning the current landmark estimates and the

image with the mean scale and rotation at each iteration. I followed the second

approach since it also implicitly solves the scale and rotation variance of the

experts. This fitting process is illustrated in Figure 3.6.

3.4 Results

Extensive qualitative and quantitative experiments are performed on

The Extended Cohn-Kanade Dataset (CK+) [42] and random images obtained

from the Internet. These experiments contain subjects with different ethnic-

ities, performing acted and/or spontaneous expressions. Imaging conditions

and quality change significantly between the examples.

3.4.1 Shape and Expert Training

“Ground-truth” landmarks provided by the CK+ dataset are used for

both shape and local expert training. Chin and nose region landmarks are

ignored since these landmarks contribute much less information in most ap-

plications.
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(a) Initialization. (b) Iteration 1.

(c) Iteration 2. (d) Result.

Figure 3.6: The fitting process. At each iteration the image is “similarity
normalized” by aligning the current shape with the mean shape (best viewed
in color and high-resolution).

For the shape training, first the landmarks are shape normalized using

Generalized Procrustes Analysis [21] (see Figure 3.7). Then the compatibility

potential parameters, µs,t and Σs,t, are computed. Finally the graph topology

is determined using the computed covariance matrices as illustrated in Figures

3.4(a)-3.4(d).

Figure 3.4 demonstrates a major advantage of this algorithm. By learn-

ing the graph topology from training data, we effectively obtain the smallest

graph that would capture the most prior shape knowledge.

The resulting graph, in the case of faces, is a very intuitive one, where
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Figure 3.7: Alignment of the training images.

the parts of the face (e.g. eyes, mouth, etc.) are densely connected, while the

parts themselves are loosely connected. Such a model will allow for a high

variability between the locations of the parts, but at the same time enforce

more strict constrains on how the parts themselves may deform. In these

experiments I used k = 3 connectivity.

24× 24 patches are used to train the local experts. For each landmark,

positive examples are obtained from 1000 randomly selected images. Approx-

imately 8000 negative examples are extracted from the remaining landmarks

and other randomly selected images. LIBSVM [11] library is used for the SVM

training.

3.4.2 Testing

Unless otherwise specified, all test images are automatically initialized.

Local “search window”, Ψs, of Equation 3.13 is set to be a 23 × 23 region

centered around the current estimate. ρ is set to 1 and finally M = 200

particles are used for belief propagation.

44



Algorithm convergence is determined using the node beliefs. At each

iteration the beliefs (i.e. landmark locations) are computed and when none

of the landmarks move more than 1.5 pixels in radius, the algorithm is termi-

nated.

3.4.3 Qualitative Results

Qualitative results on the CK+ dataset are presented in Figure 3.8. As

the figure illustrates, the proposed algorithm performs equally well in a wide

variety of examples, where both the facial expressions and the facial attributes

of the subject change significantly. This is primarily due to the higher level of

shape flexibility provided by the model.

3.4.4 Qualitative and Quantitative Comparisons

The proposed approach is compared with two state-of-the-art methods

in Figures 3.9 and 3.10: 1) the “Tree-model” by Zhu and Ramanan [69], and

2) CLM by Saragih et al. [53].

A total of 5876 images from 327 sequences have been tested. For every

sequence, the first frame is automatically initialized. Every other frame in the

sequence is initialized with the results of the previous frame.

As Figures 3.9 and 3.10 illustrate, both CLM and the proposed method

significantly outperforms the “Tree-model”. Even though similar tree-models

perform well in other applications (such as part-based object classification),

for facial feature localization they are too flexible, and hence allow unnatural
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Figure 3.8: Qualitative results of the proposed PGM-based approach (best
viewed in color and high-resolution, green: ground truth, red: results).

deformations in the shape.

Out of 5876 tested images, the proposed approach achieved a lower

average error in 3468 images (59.02%), CLM achieved a lower average error
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Figure 3.9: Quantitative comparison of Tree-model [69], CLM [53] and the
proposed approach (best viewed in color).

in 2296 images (39.07%) and the Tree-model achieved a lower average error in

112 images (1.91%). Corresponding error distributions are presented in Figure

3.9.

3.4.5 Generalization

Even though the proposed algorithm is trained on a relatively small,

fairly controlled dataset, as Figures 3.11 and 3.15 illustrate, it generalizes very

well to real world images. This may be explained by two primary properties:

1) pairwise unimodal Gaussian compatibility potentials in the shape model

allow for a great level of flexibility and generalization power, and 2) the HOG

features capture the “generic” appearance properties of the landmarks very
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Avg. Pixel Error: 8.22902

Avg. Pixel Error: 9.91872

Avg. Pixel Error: 7.4538

(a) Tree-model [69].

Avg. Pixel Error: 5.35974

Avg. Pixel Error: 6.65247

Avg. Pixel Error: 4.86823

(b) CLM [53].

Avg. Pixel Error: 4.25422

Avg. Pixel Error: 4.64804

Avg. Pixel Error: 3.26781

(c) The proposed approach.

Figure 3.10: Qualitative comparison of Tree-model [69], CLM [53] and the
proposed approach (best viewed in color and high-resolution, green: ground
truth, red: algorithm-specific results, less green seen means a better fit).

well.

The generalization power and the localization accuracy of the proposed

algorithm is further demonstrated in Figures 3.12 and 3.13. In these figures the

proposed algorithm is qualitatively compared with the “Tree-model” [69] and

CLM [53] on two unseen examples. Especially Figure 3.13 provides interesting

results since this is a fictitious input, where the face of the subject is half-Asian

and half-Caucasian.
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Figure 3.11: Generalization to random Internet images (best viewed in color
and high-resolution).

As the figures illustrate, CLM is very strict, and hence does not gener-

alize well to unseen shape variations. The “Tree-model”, on the other hand,

does generalize well to unseen shape variations, but allows for unnatural de-

formations while doing so. The proposed algorithm addresses both of these

limitations.

3.4.6 Importance of the Graph Topology

The fictitious input of Figure 3.13 is further used in Figure 3.14 for

demonstrating the importance of the graph topology. The experiments in

these figures are done using the same initialization, the same local experts,

the same compatibility potentials, and the same observation potentials, but

different graph topologies. In Figure 3.14(a) 75 randomly selected edges are

used, whereas in Figure 3.14(b) 75 “most informative” (see Section 3.3.1.2)

edges are selected. The importance of the graph topology on the localization

results may easily be seen especially in the mouth region, where there are more

complicated loopy spatial constraints.

49



(a) “Tree-model” [69]. (b) CLM [53].

(c) The proposed approach.

Figure 3.12: Qualitative comparison in terms of generalization power and
localization accuracy.

3.4.7 Implicit Occlusion Handling

Unlike parameterized shape models, my approach models the prior

shape knowledge as pairwise local spatial relationships. Figure 3.15 illustrates

an important advantage of this local model over the holistic approaches. Even

with highly occluded faces: 1) the visible landmarks are not affected from

the occlusion, and 2) reasonable predictions can be made about the occluded

landmarks. Please note that the results in the figure are obtained without any

explicit occlusion handling mechanism.
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(a) “Tree-model” [69]. (b) CLM [53].

(c) The proposed approach.

Figure 3.13: Qualitative comparison in terms of generalization power and
localization accuracy.

3.5 Discussion

I have presented a new framework for pose-constrained facial feature

localization. This approach is based on a new shape model, which addresses
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(a) 75 random edges. (b) 75 “most informative” edges.

Figure 3.14: Importance of the graph topology on localization accuracy.

Figure 3.15: Implicit occlusion handling example (best viewed in color and
high-resolution).

the limitations of the existing methods. My model “learns” which shape con-

straints are inherently “more important” and captures them, while omitting

the “not-so-important” constraints. This way, it is necessarily and sufficiently

more strict than the existing part-based models, while still being a lot more
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flexible than the existing parameterized models.

Prior shape knowledge, prior appearance knowledge, and the image ob-

servations, are incorporated within a graphical model. Within this framework,

facial feature localization (i.e. probabilistic inference in the graph) is achieved

through nonparametric belief propagation.

I have validated my method through qualitative and quantitative ex-

periments and comparisons with the state-of-the-art.
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Chapter 4

Unconstrained Facial Feature Localization

4.1 Motivation

In Chapter 3, I introduce a pose-constrained feature localization method

that is based on a highly flexible, yet sufficiently strict shape model. In this

chapter, I extend this pose-constrained method to unconstrained setting by

introducing a multi-model approach. While doing so, I address two key limi-

tations of the existing multi-model methods:

1. Semantically and manually defining the models, and

2. Not having efficient and effective model selection strategies.

Unlike any existing multi-model method, my approach uses unsuper-

vised clustering on a large training set for automatically learning a large num-

ber of pose-constrained models. Furthermore I complement this multi-model

approach with an effective model selection strategy to be used in testing.

This way, my method can have many more models, each with a higher

level of expressive power. Consequently, it is a more effective partitioning of

the face image space.
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4.2 Background

In the following subsections I provide the required technical background.

First, I discuss Principal Component Analysis, which is a widely used dimen-

sionality reduction technique, based on finding a subspace that captures the

most variation in the training data. Then, I discuss a popular data clustering

technique called “k-means”.

4.2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA), is a dimensionality reduction

technique that is widely used in a variety of applications. It is originally

introduced by Pearson [49] in 1901 as “finding a line (or plane) which will be

the ‘best fit’ to a system of points”. In other words, PCA seeks for the linear

projection which minimizes the projection error, defined as the mean squared

distance between the data points and their projections [5].

Following the notation of Bishop [5], we assume a complete orthonormal

set of D-dimensional basis vectors {ui} where i = 1, . . . , D. Any data point

in this space may be represented as a linear combination of the basis vectors:

xn =
D∑
i=1

αn,iui (4.1)

where αn,j = xTnuj is the coefficient of the data point along the direction of the

basis uj. Using this relationship, we can also represent the same data point

by:

xn =
D∑
i=1

(xTnui)ui (4.2)
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This data point may be approximated in a lower dimensional subspace

using:

x̃n =
M∑
i=1

zn,iui +
D∑

i=M+1

biui (4.3)

where M < D is the dimensionality of the subspace and {bi} are constants

that are the same for all data points.

PCA tries to find the “best” such subspace, which would result in

minimum average approximation error:

J =
1

N

N∑
n=1

||xn − x̃n||2 (4.4)

By substituting for x̃n, and setting the derivative of J with respect to

zn,j to zero, we obtain:

zn,j = xTnuj (4.5)

for j = 1, . . . ,M . Similarly, by substituting for x̃n, and setting the derivative

of J with respect to bj to zero, gives us:

bj = x̄Tuj (4.6)

for j = M + 1, . . . , D, where x̄ is the mean of the dataset.

If we substitute for zn,j and bj, and use the relation in Equation 4.2,

we obtain:

xn − x̃n =
D∑

i=M+1

{(xn − x̄)Tui}ui (4.7)

and the cost function becomes:

J =
1

N

N∑
n=1

D∑
i=M1

(xTnui − x̄Tui)2 =
D∑

i=M+1

uTi Sui (4.8)
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where S is the data covariance matrix defined by:

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (4.9)

The general solution of this minimization problem is obtained by choos-

ing the {ui} to be the eigenvectors of the covariance matrix S where i =

1, . . . , D. Equation 4.8 is minimized when the selected eigenvectors are the

ones corresponding to the D − M smallest eigenvalues. Hence, the eigen-

vectors corresponding to the M largest eigenvalues form the M-dimensional

subspace, which we are interested in. The principal components of a sample

two-dimensional dataset is illustrated in Figure 4.1.

Image Credit: Ben FrantzDale.

Figure 4.1: Principal components of a sample two-dimensional dataset.

4.2.2 k-means Clustering

The k-means algorithm is a clustering algorithm for assigning a set of

D-dimensional data points {xn}Nn=1 into K ≤ N clusters. It is an example of a
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“competitive learning algorithm”, where K clusters compete with each other

for the ownership of the data points [43].

The objective of the k-means algorithm is to partition N data points

into K clusters S = {S1, . . . , SK}, such that the overall sum-squared assign-

ment error is minimized:

arg min
S

K∑
k=1

∑
xj∈Sk

||xj − µk||2 (4.10)

where µk ∈ RD is the mean of the data points in Sk. Note that here “the

assignment error” is defined as the Euclidean distance between a data point

and its cluster mean.

The most common k-means algorithm uses an iterative refinement tech-

nique:

Initialization - Set {µk}Kk=1 to random values.

Assignment Step - At each iteration t, assign each data point to the closest

cluster:

S
(t)
k = {xj | ||xj − µ(t)

k ||
2 ≤ ||xj − µ(t)

p ||2 ∀ p, 1 ≤ p ≤ K, p 6= k} (4.11)

Update Step - Calculate the new means to be the centroids of the clusters:

µ
(t+1)
k =

1

|S(t)
k |

∑
xj∈S

(t)
j

xj (4.12)

Repeat - Until the assignments do not change.
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The “hierarchical k-means” algorithm is a recursive implementation

of the above algorithm where the dataset is recursively partitioned into two

groups until either a stopping criteria is reached, or every cluster contains only

a single element.

4.3 Approach

In this section, I first give an overview of my method and then discuss

each of its components in more detail.

“In the Wild” Face Image

Cluster-specific
Model Training

Classifier 
Training

Face Image 
Clustering

Cluster-specific Models

Face Image Classifier

(a) Training phase.

Face Image 
Classification

Input 
(face image)

Facial Feature 
Localization

Model Selector

Output 
(feature locations)

Cluster-specific Models

Face Image Classifier

(b) Testing phase.

Figure 4.2: System overview.

Figure 4.2 illustrates the system overview of my algorithm. In the

training phase, I first partition the face image space and then train a cluster
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classifier, and a set of cluster-specific shape and appearance models.

In the testing phase, I first determine the correct cluster of the given

image and then use the corresponding shape and appearance models for feature

localization. These precise models provide a better prior knowledge on relative

landmark locations and their appearances.

4.3.1 Face Image Clustering

As Figure 4.2 illustrates, my approach is built on partitioning the space

of all face images into a number of clusters, and then training cluster-specific

models for each of these partitions.

For face image clustering I first form a training set consisting of thou-

sands of annotated “in the wild” face images. Next, I centralize and scale

normalize all the shapes in the training set and perform a principal component

analysis (PCA). Even though the common practice is to do a Generalized Pro-

crustes Analysis [21] before PCA, note that I omit the “rotation” component.

This way, the principal components capture both the “head-pose variations”

and the variations due to non-rigid deformations (e.g. expressions).

I then perform a hierarchical k-means clustering using only the top 8

principal components (capturing 88% of the variation). Since, changes in the

head-pose result in very significant variations in landmark locations, these top

principal components are expected to capture mostly the head-pose changes (3-

degrees of freedom). However, in practice, they do also capture the expression

variations.
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4.3.2 Face Image Classification

The face image space partitioning explained in Section 4.3.1 is done

solely based on ground truth landmark locations. However, with an unseen test

image, one does not have this information, and needs to develop a mechanism

for determining the cluster of the image using only the image features. This

mechanism needs to be very efficient and fairly accurate.

Note that for face image classification it is assumed that the bounding

box of the face within the image is available, i.e. the face is detected by a

face detector. This is a common assumption between the feature localization

methods.
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Figure 4.3: An example binary feature. Note that both pixel locations are
defined as x- and y-coordinate ratios. This way pixel locations are consistent
across face images of different aspect ratios and scales.

For representing the face images I use very simple binary features:

fi =

{
1, if I(di,1) < I(di,2)

0, if I(di,1) ≥ I(di,2)
(4.13)
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where I(di,1) represents the pixel intensity of image I at pixel location di,1.

In order to make these simple features robust against image noise, I apply a

Gaussian filter to the images before computing them.

di,1 and di,2 of each binary feature is selected randomly as x- and y-

coordinate ratios within the ellipsis inscribed by the bounding box. As illus-

trated in Figure 4.3, this way selected pixel locations are consistent across face

images of different aspect ratios and scales.

Given these features, the classification may be formulated in a Bayesian

way as in [47]. Let fi, i = 1, . . . , N be the set of binary features, and cj, j =

1, . . . ,M be the set of clusters. Then the cluster assignment is done as:

c∗ = arg max
cj

P (C = cj|f1, . . . , fN) (4.14)

Using Bayes’ theorem and assuming uniform cluster priors, Equation 4.14

reduces to:

c∗ = arg max
cj

P (f1, . . . , fN |C = cj) (4.15)

With hundreds of binary features and dozens of clusters complete rep-

resentation of Equation 4.15 becomes infeasible. [47] introduced ferns to ad-

dress this problem. Each fern is a set of randomly assigned binary features:

Fk = {fσ(k,1), . . . , fσ(k,S)}, where S is the number of features per fern, and

σ(k, s) is a random permutation function with range 1, . . . , N .

Assuming ferns are independent, the cluster assignment equation be-
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comes:

c∗ = arg max
cj

K∏
k=1

P (Fk|C = cj) (4.16)

where P (Fk|C = cj) is computed in the training as an occurrence frequency.

Ferns usually are used for feature matching, where misclassification

tolerance is fairly high. However, it is demonstrated in Section 4.4 that they

perform exceptionally well in this difficult classification problem despite their

extreme simplicity.

4.3.3 Cluster-specific Model Fitting

Cluster-specific shape constraints are modeled using the part-based ap-

proach of Chapter 3. Note that any of the simple models mentioned in Section

2 could have been employed. However, I have already discussed in Chapter

3 that my “learned” model is “highly flexible, yet sufficiently strict”. These

properties are particularly useful when one have a significant number of clus-

ters, and some clusters have relatively few number of training examples.

For each cluster, I define a probabilistic graphical model Gj = (Vj, Ej).

Nodes in Vj represent landmark locations and image observations as hidden

and observed random variables, respectively. The graph topology is defined

by Ej.

Pairwise spatial relationships between the landmarks are modeled using

anisotropic Gaussians:

ψjs,t(x
j
s, x

j
t) = N ((xjs − x

j
t);µ

j
s,t,Σ

j
s,t) (4.17)
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where xjs ∈ Vj represents the sth landmark in jth cluster. Relationship param-

eters µjs,t and Σj
s,t are computed after all cluster members are aligned using

Generalized Procrustes Analysis [21].

The graph topology is then learned from training data. Each node xjs is

connected to its k most “informative” (i.e. smaller Σj
s,t) neighbors. This allows

me to train a number of shape models, all with possibly different topologies

and pairwise relationships (see Figure 4.4).

(a) c2 (b) c20 (c) c22 (d) c23

(e) c32 (f) c33 (g) c34 (h) c39

Figure 4.4: Cluster-specific learned shape models. Note that some edges are
enforced in all topologies to ensure that the graphs are connected. These edges
are determined experimentally (there are 5 of them).

For modeling the image observations I employed the local approach

explained in [53]. Cluster-specific “local experts” are trained using shape

normalized images. Obtained response maps are then approximated using
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isotropic Gaussian Kernel Density Estimates [54] and incorporated into the

shape model as “observation potentials”:

ψjs(x
j
s, y

j
s) =

∑
zi∈Ψj

s

πjs(zi) N (xjs; zi, ρI) (4.18)

where Ψj
s denotes the set of integer pixel locations within a square region

centered at xjs, ρ is the bandwidth of the kernels, and πjs(zi) is the probabilistic

response of the sth expert of jth cluster at location zi.

With these cluster-specific models, landmark localization becomes in-

ference on the corresponding graphs. This is achieved by nonparametric belief

propagation [56].

4.4 Results

I validate and evaluate the primary components of my proposed ap-

proach separately in the following sections:

4.4.1 Face Image Clustering

I formed my face image space by combining multiple publicly available

“in the wild” face image datasets: Labeled Face Parts in the Wild (LFPW) [3],

Annotated Faces in the Wild (AFW) [69], Helen Facial Feature Dataset [39],

and IBUG training set [51]. This combined set has a total of 3837 annotated

[51] face images.

I partitioned this space into M = 40 clusters, using hierarchical k-

means clustering. The average cardinality of the resulting clusters was 95.92,
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with only 3 clusters having less than 25 elements. Some cluster examples are

provided in Figure 4.4.

As the dendrogram in Figure 4.5 illustrates, some clusters are much

more similar to each other than the others. This important property is further

discussed in the following sections.

Figure 4.5: Cluster dendrogram.

4.4.2 Testing Set Analysis

For image classification and model fitting (i.e. feature localization)

experiments I formed 4 separate test sets, one for each dataset used in the face

space partitioning. For IBUG, this testing set included all 135 IBUG images.

For Helen and LFPW, the testing sets included the provided “testsets” (330

and 224 images, respectively). And for AFW, I randomly selected 107 images

as the test set. In each experiment, the training set consisted of all the other

images in the combined dataset.

Analyzing the image distributions of these test sets, and comparing

them to the image distribution of the combined dataset revealed interesting

results as presented in Figure 4.6. Helen and LFPW datasets form a large por-
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tion of the combined dataset, and have similar image distributions, with their

“testsets” chosen seemingly without much bias. AFW and IBUG, on the other

hand, have significantly different image distributions, making corresponding

experiments fairly difficult.
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Figure 4.6: Element distributions of the test sets compared to the combined
dataset.

4.4.3 Face Image Classification

For each experiment, a Naive Bayesian cluster classifier is trained using

the parameters in Table 4.1. These parameters are determined empirically.

Note that for both training and testing of the classifiers, I have used
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Parameter Description Value

M # of Clusters 40
N # of B. Features 5000
K # of Ferns 1000
S # of B. Features per Fern 5

Table 4.1: Face image classification parameters.

the face detection bounding boxes provided by [51].

Figure 4.7 presents the Rank-n accuracies achieved in each experiment.

As the figure illustrates, Helen and LFPW classifiers perform much better than

the AFW and IBUG classifiers. This observation is in-line with my discussion

regarding the image distributions of each test set.
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Figure 4.7: Rank-n classification accuracies.

For Helen and LFPW, Rank-1 accuracies are around 34%, rapidly in-

creasing to about 68% in Rank-3, and reaching to more than 80% by Rank-5.
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For IBUG, Rank-1 accuracy is 31.85%, hitting to 60% in Rank-3, and reach-

ing to about 73% by Rank-5. These classification accuracies are in fact very

good, considering that: 1) this is an intra-class classification problem, which

is much harder than common inter-class classification problems, and 2) this

is a 40-class classification problem and random assignment would give a mere

2.5% accuracy.

I further analyze the misclassifications in the IBUG experiments in Fig-

ure 4.8. Note that, the axes of this confusion matrix are re-ordered according

to the “cluster similarities” presented in Figure 4.5. Hence, similar clusters are

closer to each other in the figure. As the figure illustrates, a significant por-

tion of the misclassifications in the IBUG experiments are located closer to the

primary diagonal. These misclassifications may be recoverable during model

fitting, since a misclassification in this step merely means that the prior shape

and appearance knowledge used during model fitting will not be optimal. This

is further discussed in the next section.

4.4.4 Facial Feature Localization in the Wild

Facial feature localization experiments are performed on four test sets

explained in Section 4.4.2. I compare my method with two of the most recently

published work in the field: Discriminative Response Map Fitting (DRMF) by

Asthana et al. [1], and Supervised Descend Method (SDM) by Xiong and De

la Torre [66]. For each method, I have used the implementations provided by

the authors.
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Figure 4.8: IBUG experiment confusion matrix.

All methods are initialized with the face detector bounding boxes pro-

vided by [51]. These bounding boxes are based on the “Mixture-of-Trees” face

detector of [69]. For SDM, I have adjusted the bounding boxes as suggested by

the authors. I found: offset = −0.1 ∗ bb.{width|height}, to be a good offset

between the “Mixture-of-Tree” face detector and the OpenCV face detector,

where bb.width and bb.height are the width and the height of the bounding

box, respectively. Note that this offset is applied to the top-left corner of the

bounding box. For DRMF I did not perform any adjustments since the origi-

nal implementation provided by the authors is based on the “Mixture-of-Tree“

face detector as well.

For DNC, I have initialized the model fitting with the top-5 models

given by the corresponding cluster classifier. Note that this is a common

strategy among multi-model methods (eg. [15, 69]), and pose-incorporated
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methods (eg. [2, 40]). If at some point the fitting score (computed using the

expert responses) is above a threshold the model fitting is terminated without

trying the rest of the models.

DRMF, SDM, and DNC, all detect a different number of landmarks: 66,

49, and 68, respectively. Figure 4.9 illustrates the 68 facial features detected by

DNC. For a fair comparison I have only considered the 49 landmarks used by

SDM in the localization experiments. All the localization errors are normalized

with respect to the corresponding interocular distance of the face.

Figure 4.9: 68 facial features that are used in the localization experiments.

In Figures 4.10-4.13, I present the cumulative error distributions of

DRMF, SDM, and DNC, on four testing sets. As discussed in Section 4.4.2,

Helen and LFPW test set image distributions are more similar to the image

distribution of the combined dataset. This, in a way, suggests that they are

relatively easier test sets when compared to AFW and IBUG. As illustrated in

Figures 4.10-4.13, all three methods do better in Helen and LFPW test sets.

As discussed in Section 4.4.3, the optimal, or the real, cluster of a given
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Figure 4.10: Cumulative error distributions for HELEN.
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Figure 4.11: Cumulative error distributions for LFPW.

test image is expected to be in the top-5 clusters of the classifier about 80% of

the time. Moreover, a misclassification in this case, does not necessarily mean

a total failure in localization. It merely means that the model fitting will be

performed with a not-so-optimal prior knowledge.
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Figure 4.12: Cumulative error distributions for AFW.
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Figure 4.13: Cumulative error distributions for IBUG.

Even though SDM does extremely well for a portion of the test images,

overall DNC clearly outperforms the two other methods. This can be explained

by two properties: 1) DNC models the prior shape and appearance knowledge

more precisely, and 2) DNC incorporates a very efficient and effective model
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selection strategy.

The qualitative results on the test sets are presented in Figures 4.14 -

4.17. The two-step nature of my approach has clear advantages in “in the wild”

feature localization. By first classifying the face image I effectively improve

both the initialization and the fitting accuracy.

Figure 4.14: Qualitative results on Helen.

I further analyze the effects of cluster misclassification on feature lo-

calization. As mentioned in Section 4.4.3, face image misclassifications are

inevitable during feature localization. However, a misclassification in the first

step does not necessarily mean that the feature localization in the second step

will fail. Flexibility and generalization power are two of the primary advan-

tages of the cluster-specific shape models I employ in this work. Figure 4.18

illustrates an example. In this figure the same input image is initialized and
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Figure 4.15: Qualitative results on LFPW.

Figure 4.16: Qualitative results on AFW.
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Figure 4.17: Qualitative results on IBUG.

fitted using two different, albeit “similar” models.

Figure 4.18: Effects of misclassification on feature localization.
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4.5 Discussion

I have presented a new approach for unconstrained facial feature lo-

calization. My approach addresses the two key limitations of the existing

multi-model methods, which are: 1) semantically and manually defining the

models, and 2) not having efficient and effective model selection strategies.

Unlike existing methods, I do not define the models semantically and

manually. Instead I generate them by first performing an unsupervised clus-

tering on a very large in-the-wild dataset, and then training cluster-specific

shape and appearance models. This way, my method can have many more

models, each with a higher level of expressive power.

I have also introduced a new model selection (i.e. face image classifi-

cation) technique, which is based on extremely efficient binary features and a

simply näıve Bayesian classifier. In despite of its simplicity, this model selec-

tion technique is shown to perform well in challenging experiments.

I have validated the effectiveness of each component of my approach

with extensive experiments. Furthermore, I have showed that the proposed

two-step approach outperforms the state-of-the-art in terms of localization

accuracy in unconstrained feature localization.

One exciting future work involves incorporating a coarse-to-fine model

selection and fitting strategy using the built hierarchical cluster structure.
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Chapter 5

Facial Feature Localization in Videos

5.1 Motivation

This chapter focuses on facial feature localization in unconstrained videos,

which is a particular application of the techniques introduced in the previous

chapters. In a way, it further tests and validates the two primary claims which

are made (and already proved) in the previous chapters:

1. Compared to the existing multi-model methods, I claim that my ap-

proach covers the face image space more effectively. While all existing

multi-model methods define their models semantically and manually, I

use unsupervised clustering for generating them. Processing an uncon-

strained video usually requires a number of these models.

2. What makes this application even more challenging is the fact that each

video covers a continuous subspace within the face image space. Multi-

model approaches, on the other hand, are “quantizations” of this space.

Consequently, regions that are close to the partition centers are modeled

well, whereas the intermediate regions are not covered so well. I claim

that my pose-constrained models are flexible-enough to cover these re-

gions.
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In order to improve the localization results within a window of frames,

I use a simple heuristic: head movements are continuous functions of time.

Consequently, each frame in a face video corresponds to a discrete sampling of

the underlying head movement. This observation is valuable for detecting and

fixing the feature localization failures as explained in the following sections.

Note that the concepts introduced in this chapter are supported by

some simple examples and experiments. The goal here is to provide a “proof-of-

concept” rather than extensive evaluation. The above claims, and the related

techniques, have already been extensively tested and validated in the previous

two chapters.

5.2 Background

In the following subsection I provide the required technical background

for this chapter.

5.2.1 Orthographic Projection

A perspective camera is usually modeled as a projective mapping from

three-dimensional scene to two-dimensional image plane. This mapping may

be represented by a 3× 4, rank-3 matrix P . The central projection equation is

then given by:

x = PX (5.1)

where X = [X Y Z 1]T is the scene point in homogeneous coordinates and

x = [x y 1]T is the corresponding image point in homogeneous coordinates.
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The matrix P may be decomposed as P = K[R|t]. In this decompo-

sition, R is a rotation matrix and t is a translation vector. These two define

the location and the orientation of the camera with respect to an absolute

coordinate frame. K, on the other hand, is called the calibration matrix and

encodes the intrinsic parameters of the camera:

k =

γf s u0

0 f v0

0 0 1

 (5.2)

Here, f is the focal length and γ is the aspect ratio. The principal point is

(u0, v0)T and s is the skew parameter.

Orthographic projection is possibly one of the simplest such projective

mappings. It is a form of parallel projection, where all the projection lines are

orthogonal to the projection plane as illustrated in Figure 5.1. Even though,

orthographic projection makes fairly crude assumptions, it is still useful in

situations where the scene distance (w.r.t. the camera) is much larger than

the scene depth. This is in fact true for most unconstrained face images and

videos.

In homogeneous coordinates, the orthographic projection may be rep-

resented as:

P =

1 0 0 0
0 1 0 0
0 0 0 0

 (5.3)

Note that it simply eliminates the z-dimension of the scene-point.
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Image Credit: Yuri Raysper.

Figure 5.1: Orthographic projection.

5.3 Approach

Most still-image facial feature localization methods are extended to

work with videos by enforcing motion continuity in the image domain. Usu-

ally, this simply involves initializing the models in one frame, with the results

obtained in the previous frame. My method, on the other hand, is based on

enforcing the motion continuity in the real-world domain.

The flowchart of my approach is presented in Figure 5.2. First, I use my

unconstrained localization method, described in Chapter 4, for detecting the

landmarks in each frame. Next, I estimate the head-pose in each frame using

the two-dimensional localization results. I then estimate the actual three-

dimensional head-movement and finally use this information for detecting and

fixing the localization failures. I explain each of these latter three steps in
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Unconstrained Facial 
Feature Localization

Head-Pose
Estimation

Head-Movement
Estimation

Detecting and Fixing 
Failures

Figure 5.2: Facial feature localization in unconstrained videos.

Variable Dimensions Definition

N R Number of features.
x R2×N Two-dimensional shape.
X R3×N Three-dimensional generic model.
R R3×3 Rotation (three-dimensional).
t R3×1 Translation (three-dimensional).
s R Scale parameter.
P R2×3 Orthographic projection (Euclidean coordinates).

Table 5.1: Defined variables and their dimensions.

more detail in the following subsections.

5.3.1 Head-Pose Estimation

Head-pose estimation is the problem of computing the three-dimensional

head orientation, given a two-dimensional image. There are two assumptions:

1) geometric configuration of the features on the face is known, and 2) these

features can be located and matched in an image. Here, the first assumption

corresponds to having a generic three-dimensional face model, and the second

assumption corresponds to having the two-dimensional feature localization re-

sults.

Given the variables in 5.1, the head-pose estimation problem may be

formulated as a minimization problem. A valid objective function is the

sum-squared Euclidean distances between the coordinates of the given two-
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dimensional shape, and the rotated, projected generic three-dimensional model:

{s∗, R∗, t∗} = arg min
s,R,t

||x− P [s(RX − t)]||2 (5.4)

Assuming both the two-dimensional shape and the three-dimensional

generic model are centralized, and defining R′ = sPR, the above formulation

simplifies to:

R′
∗

= arg min
R′

||x−R′X||2 (5.5)

where R′ ∈ R2×3. This is a simple least-squared problem, with six variables,

and N equations.

Note that the rotation matrix is orthonormal and right-handed. Hence:

1. We need an additional constraint to enforce that the two rows of the R′∗

are orthogonal:

< R′1, R
′
2 >= 0 (5.6)

where R′i represents the ith row of R′.

2. The scale factor, s = norm(R′∗1) = norm(R′∗2).

3. The third row of R may be obtained by cross multiplying R′∗1 and R′∗2.

Once R is computed; yaw, pitch, and roll parameters may be deter-

mined.
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5.3.2 Head-Movement Estimation

Head-movements are continuous functions of time. Estimated head-

poses are nothing but samples drawn from these continuous functions at dis-

crete time steps. Hence, the goal here is to determine the most likely functions

given a set of samples (i.e. frame-by-frame head-pose estimations).

In order to ensure a “continuous” head-movement, I fit n-order poly-

nomials to the obtained frame-by-frame head pose estimations. This process

is illustrated in Figures 5.3 - 5.5.

Figure 5.3: Estimated head-movement (yaw).

5.3.3 Detecting and Fixing Failures

Once the actual head-movements are estimated, detecting and fixing

the localization failures become fairly straightforward. For each frame in the

sequence, the first step is determining the “expected” head-pose parameters,
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Figure 5.4: Estimated head-movement (pitch).

Figure 5.5: Estimated head-movement (roll).

and the corresponding “expected” shape model. This is then compared with

the “computed” shape model of this frame. If these two do not match, then

the results are considered a failure, and the frame is re-processed using the

“expected” model. This process is illustrated in Figure 5.6.
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Computed

Figure 5.6: Detecting and fixing failures.

5.4 Results

5.4.1 Head-Pose Estimation

Head-pose estimation performance is tested and validated both quan-

titatively and qualitatively through simple experiments. The quantitative ex-

periments are performed on synthesized data, whereas the qualitative tests are

performed on real-world data.

The testing data for the quantitative experiments are generated as fol-

lows:

1. Randomly rotate the generic three-dimensional model,
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2. Project it to the two-dimensional image space using orthographic pro-

jection,

3. Scale the two-dimensional shape so that it has reasonable dimensions in

“pixels” (i.e. s = 25), and

4. Add a significant Gaussian noise (µ = 0, σ = 5) to each feature location.

Note that this approach has some advantages and some disadvantages.

First of all, assuming orthographic projection provides an advantage, since my

head-pose estimation formulation assumes an orthographic projection as well.

On the other hand, adding a significant noise to each landmark independently,

introduces a challenge which would not be present in real localization results.

That being said, since with the synthesized data one knows the precise “ground

truth”, it forms a nice testbed for validation.

I have tested my method with a total of 16× 16× 16 = 4096 configura-

tions of the form: < θyaw, θpitch, θroll >, where −π
4
≤ θyaw, θpitch, θroll ≤ π

4
, with

0.1 radian increments. Each configuration is run ten times, each run having

a new random Gaussian noise. The mean and the standard deviation of the

pose estimation (in degrees) is presented in Table 5.2.

Note that the error in the pitch-angle estimates are much larger com-

pared to the error in the yaw- and roll-angles. This is expected since, changes

in yaw- and roll-angles result in much significant feature location changes, and

hence are much easier to estimate. Pitch-angle changes, on the other hand,
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Parameter µ σ

yaw 0.66296 0.19378
pitch 4.5097 3.1692

roll 0.76365 0.18554

Table 5.2: Pose estimation error (in degrees).

only result in minor changes in feature locations (when projected on the two-

dimensional image plane) and hence are much more ambiguous.

Figures 5.7-5.9 present some qualitative results. These experiments are

performed on a movie trailer (“Chef”), which is download from YouTube. In

these figures, plots on the right contain “centralized” and “scale-normalized”

landmarks. Hence, they may look slightly distorted compared to the actual

results presented on the left.

(a) Facial feature localization. (b) Head-pose estimation.

Figure 5.7: Head-pose estimation - Frame 74 (green: feature localization re-
sults, blue: aligned generic three-dimensional model).
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(a) Facial feature localization. (b) Head-pose estimation.

Figure 5.8: Head-pose estimation - Frame 115 (green: feature localization
results, blue: aligned generic three-dimensional model).

(a) Facial feature localization. (b) Head-pose estimation.

Figure 5.9: Head-pose estimation - Frame 136 (green: feature localization
results, blue: aligned generic three-dimensional model).

5.4.2 Detecting and Fixing the Failures

In these experiments I used 7-order polynomials for estimating the ac-

tual head-movements.

Figures 5.10 - 5.13 present some qualitative results of the method ex-

plained in Section 5.3.3. In these figures, the initial frame-by-frame results
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are presented on the left. Results on the right demonstrate the improvements

after the corresponding failures are detected and fixed.

(a) Before detecting & fixing failures. (b) After detecting & fixing failures.

Figure 5.10: Detecting and fixing failures - Frame 92.

(a) Before detecting & fixing failures. (b) After detecting & fixing failures.

Figure 5.11: Detecting and fixing failures - Frame 106.

As illustrated in Figures 5.10 - 5.13, estimating the head-movement,

and then using this for detecting and fixing the failures, is especially useful for

identifying the significant errors in the frame-by-frame results. These errors

are usually associated with a wrong model selection during the fitting.
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(a) Before detecting & fixing failures. (b) After detecting & fixing failures.

Figure 5.12: Detecting and fixing failures - Frame 135.

(a) Before detecting & fixing failures. (b) After detecting & fixing failures.

Figure 5.13: Detecting and fixing failures - Frame 165.

5.5 Discussion

In this chapter, I have focused on a particular application: facial feature

localization in unconstrained videos. I have presented a method for detecting

and fixing the localization failures. Unlike most existing methods, I use the

motion continuity in the real-world domain, rather than the motion continuity

in the image domain for extending my still-image unconstrained localization

method to videos. In order to so, I have also developed a clean formulation

for the problem of head-pose estimation.
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An exciting future work involves “predicting” the future models, using

the same exact techniques I have discussed in this chapter. This way, these

significant failures may be avoided all together.
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Chapter 6

Conclusion

I have presented several techniques for constrained and unconstrained

facial feature localization in still-images and videos. Unlike most of the existing

work, which take shape modeling for granted and focus on appearance mod-

eling, I chose to focus on the shape modeling aspect of the problem. I have

shown that there are better ways for modeling the prior shape knowledge,

which can make the corresponding localization algorithms more accurate and

more robust.

I first introduced a “highly flexible, yet sufficiently strict” shape model,

which addresses the limitations of the existing shape models. I then used this

shape model within a probabilistic graphical model framework, and formu-

lated the localization problem as a probabilistic inference on the corresponding

graphical model.

Then I used unsupervised clustering to partition the face image space

into a set of clusters. I trained one pose-constrained model for every partition,

and used an effective model selection technique for unconstrained facial feature

localization. I have shown that this is a better partitioning of the space, where

each model encloses precise prior knowledge about the shape and appearance
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of the features of images that reside in the corresponding partition.

In the last part of the dissertation, I discussed facial feature localization

in videos, which is a particular application of the previously introduced tech-

niques. For improving the frame-by-frame localization results I first computed

the head-pose in each frame, and then used this information for estimating

the actual head-movement within a sequence of frames. The estimated head-

movement is later used for detecting and fixing the localization failures.

I believe there is still a lot more to explore in terms of shape modeling.

I think better shape models will provide more drastic improvements in terms of

localization accuracy, robustness, and efficiency. I am particularly interested in

hierarchical two-dimensional shape models, with more “abstract” nodes (such

as “face center” or “eye center”) in the coarser levels, and the actual landmark

nodes in the finer levels. Such explicit models are yet to be fully explored.

Effective three-dimensional shape models and hybrid models that com-

bine two-dimensional models within a three-dimensional structure are also of

interest for future research. This is true not just for facial feature localization,

but also for other “object”-related computer vision applications. One simple

example is identity recognition. I believe the solution of this real-world prob-

lem requires models which are a lot more sophisticated than the ones we have

today. Furthermore, I think “the core” of these future models will again be

based on a geometric shape model.
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