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Some oil and gas companies are drilling and developing fields in the

Arctic Ocean, which has an environment with sea ice called ice floes. These

companies must protect their platforms from ice floe collisions. One proposal

is to use a system that consists of autonomous underwater vehicles (AUVs)

and docking stations. The AUVs measure the under-water topography of

the ice floes, while the docking stations launch the AUVs and recharge their

batteries. Given resource constraints, we optimize quantities and locations for

the docking stations and the AUVs, as well as the AUV scheduling policies,

in order to provide the maximum protection level for the platform. We first

use an queueing approach to model the problem as a queueing system with

abandonments, with the objective to minimize the abandonment probability.

Both M/M/k + M and M/G/k + G queueing approximations are applied

and we also develop a detailed simulation model based on the queueing

vii



approximation. In a complementary approach, we model the system using

a multi-stage stochastic facility location problem in order to optimize the

docking station locations, the AUV allocations, and the scheduling policies

of the AUVs. A two-stage stochastic facility location problem and several

efficient online scheduling heuristics are developed to provide lower bounds

and upper bounds for the multi-stage model, and also to solve large-scale

instances of the optimization model. Even though the model is motivated by

an oil industry project, most of the modeling and optimization methods apply

more broadly to any radial detection problems with queueing dynamics.
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Chapter 1

Introduction

1.1 Background

Since oil was first discovered near Alaska’s North Slope in 1968, there

has been significant interest in exploring for oil and gas in the Arctic Ocean.

The United States Geological Survey (USGS) [32] estimates that 90 billion

barrels of oil, 1,670 trillion cubic feet of natural gas, and 44 billion barrels of

natural gas liquids are recoverable in the area north of the Arctic Circle, and

the USGS also estimates that these constitute 22% of the world’s recoverable

resources.

With improved technology for recovering these resources, and

increasing oil prices, some oil and gas companies have begun operations in

the Arctic region. The Arctic region has large bodies of sea ice called ice floes,

which make operating in the region challenging as the platform and other

structures where operations take place must be protected. These structures are

designed to resist a collision with an ice floe whose thickness and size are below

certain thresholds. However, for an ice floe whose thickness or size exceeds this

threshold, the collision could collapse the structure. An unexpected collapse

would be life-threatening for those on the platform and also may cause a
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severe oil spill and marine pollution. When a potentially threatening ice floe

approaches the platform, one option is to dispatch an icebreaker to break, or

divert, the floe. If the ice floe is too large for an icebreaker to handle, it would

be necessary to evacuate the personnel, and to close all the drilling pipelines,

which takes up to 72 hours. We call this 72-hour circle around the platform

the alert zone.

By using satellite imaging, we can track movements of the ice floes,

and measure their areas [20]. The trajectory, velocity and surface area of a

floe can be updated when new satellite images are available. However, the ice

floe thickness cannot be measured satisfactorily through satellite imaging at

this point. A satellite can be used to measure the topography of the skyward

surface of a floe, but not the under-water topography. One possibility is to

use autonomous underwater vehicles (AUVs) to carry out this task. To do so

requires the use of docking stations to launch and charge these AUVs, as well

as upload the data they collect. The docking stations are connected to the

platform, so all the uploaded information will be transmitted to the platform

immediately.

When possible, it is desirable to locate the platform in relatively shallow

water, but that location may be near deeper ocean depths. The docking station

installation cost grows quickly as the water depth increases. Because the ocean

can become much deeper outside the alert zone, it is not economical to place

the docking stations there. So we need to locate the docking stations inside

the alert zone. Ideally, we should measure the thickness of every arriving ice
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floe and upload it to the docking station before the floe enters the alert zone.

In reality, we have a budget constraint on the quantities of the AUVs and the

docking stations, so the goal here is to develop mathematical models that can

provide the maximum protection level for the drilling platform under the given

limitations.

In our radial detection model, an AUV travels from its docking station

to scan an ice floe. After that, the AUV returns to its original docking station,

uploads information on the floe, and recharges its battery. An AUV cannot be

dispatched to a floe if the total service time exceeds its battery life. When an

ice floe is ready to be served by an AUV and all AUVs at the stations eligible

to serve it are busy, the floe must “wait” for an available AUV. Of course, the

floe continues to move and if the delay in service is too long, we effectively

abandon the ice floe, at least with respect to scanning by an AUV, because the

floe would reach the alert zone before the service process could be completed.

We call this an abandonment and when such an event occurs, backup plans

are used to handle the floe, e.g., sending an icebreaker to break up the floe, or

to redirect, the ice floe.

In this dissertation, we present several queueing and simulation models

to approximate the ice floe measurement dynamics, which we have just

sketched, and also to evaluate the system performance measures. We also

develop optimization models to minimize the probability of an ice floe

abandonment or equivalently, the expected number of abandonments for a

given set of ice floe arrival scenarios.
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The ice floe arrival process is uncertain and the arrival rate varies by

season. We consider two types of decisions in an attempt to minimize the

ice floe abandonment rate, subject to resource limits. The system design

decisions involve the number and location of the docking stations along with

the allocations of the AUVs to each station. The system operation decisions

include the assignment and scheduling policy by which the AUVs serve the

ice floes. Specifically, the docking stations and AUVs must be located prior

to observing the arrival process of the ice floes. Then, we alternately observe

the ice floe arrival process for a given set of time periods and dispatch AUVs

to serve those ice floes in a multi-stage setting.

Several related detection models can be found in the operations research

literature. For example, Atkinson and Wein [19] study a model to detect

nuclear terrorist attack of a city by locating radiation sensors, and they analyze

the system via a spatial queueing model. Molyboha and Zabarankin [26]

develop a stochastic optimization model to maximize the diver detection

rate within a hydrophone network. Szechtman et al. [33] build several

models to place a moving sensor for border surveillance with different system

characteristics. We apply both queueing approximations and stochastic

optimization to solve the problem, and part of the work in this dissertation

can be found in different forms in papers, see [17], [8] and [7].

Even though this problem is motivated by an oil industry project,

most of the modeling and optimization methodologies we use here can be

applied more broadly to any radial detection models with queueing dynamics.
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For example, we could envision applying the same type of nuclear detection

problem introduced by Atkinson and Wein [19], where the city is similar to the

drilling platform, which is the object to protect. Semi-tractor trailers driving

on the roads constitute the arrivals in this case (with some subset of these

trucks containing a nuclear device), and the system has similar wait-time

dependent queues as our ice floe detection model. The objective is again

to optimize the locations of radiation sensors in order to provide maximum

security for the city, or equivalently, to minimize the abandonment rate, where

an abandonment in this case can be defined as a terrorist that the system fails

to detect and intercept.

1.2 Stochastic Models

We use a spatial Poisson process to approximate the arrival process of

the ice floes. For simplicity, we start with an M/M/k + M queueing system

to characterize the abandonment feature of the detection model, where the ice

floes are modeled as customers arriving to the system according to a spatial

Poisson process and the AUVs are servers with an exponential service time

distribution. An abandonment in this queueing system refers to the event

that a customer’s waiting time exceeds its tolerance, so it leaves the system

without having been served. In an M/M/k+M queueing system, we assume

the customer’s abandonment time also has an exponential distribution.

Given the locations of the docking stations, the information of the

ice floes, and the allocation of AUVs at each docking station, we further
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approximate the ice floe measurement process by an M/G/k + G queueing

system. Here the AUVs have a general service time distribution, which

depends on the mechanics of scanning the ice floes, uploading data, and

recharging batteries. In this M/G/k + G queueing system, an ice floe’s

abandonment time also has a general distribution.

By employing the M/G/k + G queue to approximate the spatial

detection system in which AUVs serve ice floes, the probability distributions

for the service and abandonment processes need to be estimated. We assume

independence of the inter-arrival times, and that service times do not depend

on the state of the system in both queueing approximations. That said, one key

aspect of the ice floe system that an M/M/k+M or an M/G/k+G queueing

approximation neglects is that the service time for an ice floe depends on how

long the floe has waited in the queue. Because the ice floes are in motion at

all times, so the length of the service process changes over time.

We can assess the extent to which, and under what conditions, this

compromises the quality of an M/G/k + G approximation by employing a

more detailed simulation model. Further advantages of the simulation model

we describe next are that it also allows us to explore a richer class of queueing

policies for dispatching AUVs to serve floes, and it allows us to analyze the

sensitivity of our results to changes in the underlying system parameters. We

also compare the performance measures obtained from both queueing systems

to the simulation results to test the quality of the approximations.
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1.3 Optimization Models

The stochastic models provide us accurate estimations of the system

performance measures and the simulation model can capture high fidelity

system dynamics. Several stochastic optimization models are further built

to answer the following questions with respect to providing the maximum

protection level for the drilling platform with a limited budget:

• How many docking stations do we need and where should we put them?

• How many AUVs should be assigned to each docking station?

• What is the optimal scheduling policy for the AUVs?

In Chapter 3, we present a multi-stage stochastic facility location

problem, which reflects the timing of the design decisions, the realizations

of randomness, and the operation decisions. Specifically, the docking stations

must be located prior to observing the arrival process of the ice floes. However,

we assume the decisions governing the dispatching of AUVs to serve ice floes

can be made after observing the set of ice floes to be served under a specific

arrival process scenario. The objective function that we minimize is the

expected total number of abandonments under a given set of scenarios.

Generally speaking, a facility location problem consists of a set of

potential facility sites, where several facilities can be opened, and a set of

spatially located demands to be served. The goal is to open a set of facilities,

accounting for both an operational cost and a cost of system design [28]. For
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example, subject to a budget constraint limiting facility installation cost, we

may seek to locate facilities to minimize a weighted sum of distances from each

demand point to its nearest facility. Facility location decisions affect system

operation costs over a long time horizon, and so making a good decision about

system design is crucial. The environment of the decision making process can

be classified into three categories, see Rosenhead et al. [18]: (1) certainty,

(2) risk, and (3) uncertainty. In the first situation, all the parameters are

known and deterministic. Both the risk and uncertainty situations involve

randomness and uncertainty in the model parameters. We call a facility

location problem stochastic when, for example, the set of customers requiring

service is known only through a probability distribution when we must locate

the facilities, or the probability distribution may not even be available. Further

model embellishments can include a time window during which each customer

can be served, and objective functions such as minimizing the expected total

number of unserved customers. See Snyder [31] for a detailed review of the

facility location problem under uncertainty.

In facility location problems in the literature, customer service times do

not change over time. In contrast, in our multi-stage stochastic facility location

problem, the customer service time depends on the waiting time, since the ice

floes are moving while they are “waiting” in the queue for service. Also, we

capture the queueing dynamics of the system in the multi-stage model by

keeping track of the AUV inventory at each docking station.
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Generally, this multi-stage stochastic facility location problem is very

difficult to solve directly due to the large number of decision variables and

constraints. So several approximate approaches are developed in Chapter 3,

including a simplified docking station location problem, a two-stage stochastic

facility location problem and several online scheduling heuristics. By using the

simplified docking station location problem, we can gain useful insights on the

docking station locations. The two-stage stochastic facility location problem

provides lower bounds for the multi-stage model with certain assumptions on

the model parameters. Furthermore, the online scheduling heuristics provide

upper bounds for the multi-stage model. We discuss the computational

analysis and the optimality gap performance of these optimization models

in Chapter 4.
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Chapter 2

Queueing Approximation and Simulation

2.1 Queueing System with Abandonments

Queueing theory is the mathematical study of queues and it has been

applied widely in applications as diverse as telecommunications, computer

science, operations management, manufacturing and health care [6]. We focus

on queueing systems with abandonments in this dissertation, and such a

queueing system includes several related processes, among which there are

three basic ones: (1) the arrival process, which describes the characteristics of

the incoming customers that arrive to the system; (2) the service process, which

consists of the scheduling policy along with the stochastic process governing the

service times; (3) the abandonment process, which represents the impatience

of the customers while they are waiting in the queue.

We can use the standard notation A/B/k + C to describe a queueing

system with abandonments, where A characterizes the arrival process,

B characterizes the service process, k is the total number of servers,

and C characterizes the abandonment process. Specifically, M means

the inter-arrival, service, or the abandonment times have an exponential

distribution and G indicates that these times have a general distribution. For
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example, M/G/1 + M refers to a queueing system that has the following

properties: (1) the inter-arrival times of the customers have an exponential

distribution, which is equivalent to saying that the arrival process is a Poisson

process; (2) the service times are generally distributed; (3) there is only one

server in the system; and, (4) the abandonment times (or, patience times) are

exponentially distributed.

Queueing systems with abandonments arise in multiple applications

recently, such as the proper staffing levels in hospital emergency rooms in

order to cope with various patient arrival rates [16], perishable goods inventory

management to determine suitable queueing policies [27] and the call center

staffing levels to minimize the customer abandonment rate [3]. For example,

when a customer calls an inbound call center, if there is no available agent

immediately, this customer has to be placed on hold for the next available

agent. Some customers will end the call before an agent is available because

the waiting time exceeds their tolerance. These customers are considered

as the abandonments in this queueing system since they leave the system

without being served. For customers, a high abandonment rate indicates high

customer dissatisfaction. As such, a high abandonment rate may also lead

to large economic losses. Also, the customer arrival rate may vary during

different time slots. So the call centers need to determine their staffing

levels according to different customer arrival rates in order to minimizing the

abandonment rate. For given staffing level, they can also employ queueing

theory to study different queueing policies by assigning priorities to different
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types of customers. There are many studies on large scale call center queueing

models with customer abandonments, in order to approximate the system

performance and to improve the service quality, or equivalently, to decrease

the abandonment probability of the system. See Reed [30] for a detailed review

on queueing models for large scale call centers.

For theM/M/k+M queue, we can do exact Markovian analysis and the

Erlang-A formula provides a way to calculate the system performance measures

directly [25]. But the difficulty of analysis increases when the service time

distribution or the abandonment time distribution is not exponential. Lots

of research work has been done in recent years in order to develop efficient

approximation methods for queueing systems with abandonments, especially

systems with a large number of servers [5]. In the following sections, we start

with the M/M/k + M queueing approximation, and then analyze both the

service time and abandonment time distributions for our spatial detection

model. The M/G/k + G queueing approximation is then introduced and

the performance of both queueing approximation methods are assessed by

comparing with the simulation results.

2.2 Basic Queueing Approach: M/M/k +M Queue

In this basic queueing approach, we use the M/M/k+M queue due to

its tractability with the Erlang-A formula. Assume we have a fixed number

of docking stations placed around the drilling platform and the ice floe arrival

process is a spatial Poisson process for each docking station. In both queueing
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and simulation approaches, instead of analyzing all the stations simultaneously,

we focus on each individual docking station. We further assume that both

the AUV service time and the ice floe abandonment time are exponentially

distributed. Denote the total number of AUVs at docking station i as ki,

∀i ∈ I. Here I denotes the set of docking stations. When the ice floe arrival

rate λi, the AUV service rate µi and the ice floe abandonment rate βi are given

for docking station i, we can model each docking station as an M/M/ki +M

queueing system to approximate the system performance measures.

2.2.1 Erlang-A Formula

By approximating the spatial detection system using an M/M/ki +M

queue, we can characterize each docking station by using the following four

parameters:

• λi: the ice floe arrival rate for docking station i;

• µi: the AUV service rate at docking station i;

• ki: the total number of AUVs at docking station i;

• βi: the ice floe abandonment rate at docking station i.

Define ρi := λi/kiµi as the offered work load and ri as the utilization

for each AUV at docking station i, then ri ≤ ρi because of the abandonments.

Due to the Markovian property of the model, we can use balance equations

to compute the steady state distribution of the system. We briefly introduce
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the Erlang-A formula below, and readers are referred to Mandelbaum and

Zeltyn [25] for more detailed information.

Define the function C(x, y) as:

C(x, y) :=
xey

yx
· γ(x, y) = 1 +

∞
∑

j=1

yj
∏j

p=1(x+ p)
, x > 0, y ≥ 0

where γ(x, y) :=

∫ y

0

tx−1e−tdt is the incomplete gamma function.

An M/M/ki/ki denotes a queueing system with Poisson arrival process,

exponential service time, ki servers and no waiting space. In an M/M/ki/ki

queue, if all the servers are busy when a customer arrives, the customer

is blocked to the system. Define Bki as the blocking probability in the

M/M/ki/ki queueing system, and recall the Erlang-B formula [6]:

Bki =

(

λi

µi

)ki

/ki!

ki
∑

j=0

(

λi

µi

)j

/j!

.

Then the probability of waiting Pi(W > 0), the abandonment

probability Pi(AB), the expected waiting time Ei(W ) and the expected queue

length Ei(Q) are given as follows:

Pi(W > 0) =

C

(

kiµi

βi

,
λi

βi

)

· Bki

1 + C

(

kiµi

βi

,
λi

βi

− 1

)

· Bki

, (2.1)

Pi(AB|W > 0) =
1

ρi · C
(

kiµi

βi

,
λi

βi

) + 1− 1

ρi
, (2.2)
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Pi(AB) = Pi(AB|W > 0) · Pi(W > 0), (2.3)

Ei(W ) = Pi(AB)/βi, (2.4)

Ei(Q) = λi ·Ei(W ). (2.5)

2.2.2 Water-Filling Algorithm

Suppose we have h available AUVs in total due to the budget

limitations, and we need to allocate them to m docking stations. Assume

h ≥ m since at least one AUV should be placed at each docking station. In

this section, we propose a water-filling algorithm to calculate the optimal AUV

allocation policy among the docking stations.

A water-filling algorithm is a concept that arises in communication

channel design [14]. As the name water-filling suggests, it is similar to filling

a container which has multiple openings with water. The water level in the

container depends on the opening with the lowest height. We can prove that

the water-filling algorithm is optimal as long as the objective is to minimize the

maximum value of a function that is non-increasing when the AUV quantity

ki at docking station i increases.

For example, if the objective is to minimize the maximum abandonment

probability among all the docking stations, then the problem can be formulated

as the nonlinear program shown as model (2.6). For example, we can denote

the abandonment probability Pi(AB) of docking station i as F (ki). Then

according to the Erlang-A formula which is described in the previous section,
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F (ki) is a non-increasing function of ki, where ki is the total number of AUVs

at docking station i. The objective function of model (2.6) is defined as

z = maxi∈I F (ki), so z is also a non-increasing function of ki, ∀i ∈ I. The

same property holds for many other system performance measures, e.g., the

probability of waiting Pi(W > 0), the expected queue length Ei(Q) and the

expected waiting time Ei(W ).

min z (2.6a)

s.t. z ≥ F (ki), ∀i ∈ I (2.6b)

∑

i∈I

ki ≤ h (2.6c)

ki = 0, 1, 2..., h, ∀i ∈ I (2.6d)

Algorithm The Water-Filling Algorithm

Input:
Total number of AUVs: h; Total number of stations: m; λi, µi, βi, ∀i ∈ I.

• Step 0: Initialize ki = 1, ∀i ∈ I, j = 0 and c = h−m;

• Step 1: j = j + 1; Set z∗j = maxi∈I F (ki); i
∗
j = argmaxi∈I F (ki);

• Step 2: if c = 0, z∗ = z∗j , STOP;
Otherwise, ki∗j = ki∗j + 1, c = c− 1, go to Step 1.

Output:
AUV allocation: ki, ∀i ∈ I; Objective value: z∗ = maxi∈I F (ki); Bottleneck
station index: i∗ = argmaxi∈I F (ki).

Here are a few comments for this water-filling algorithm:
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• There are h − m + 1 iterations in total. The first iteration involves

calculating the function F (ki) n times using the Erlang-A formula,

while the other iterations only need to calculate it once. Also, we need

determine z∗j = maxi∈I F (ki) and the docking station that achieves the

maximum at each iteration.

• z∗j is non-increasing at each iteration: z∗1 ≥ z∗2 ≥ ... ≥ z∗h−m+1 and the

optimal value z∗ = z∗h−m+1.

• At each iteration, we call the docking station with the maximum

F (ki) the “bottleneck” since it determines the optimal value z∗j at that

iteration.

• If there is a tie in F (ki) in any iteration, we break it in an arbitrary way.

Now we prove the optimality of the water-filling algorithm. Suppose the

solution we get from the above water-filling algorithm is (k1, k2, ..., km), where

ki is the total number of AUVs to be assigned to the station i and
∑

m

i=1 ki = h.

We order the docking stations such that F (k1) ≥ F (k2) ≥ . . . ≥ F (km). So

the value of the objective function is z∗ = F (k1) and the first station is the

bottleneck station in this case.

We prove the optimality of the water-filling algorithm by contradiction.

Assume the solution given by the water-filling algorithm is not optimal and

instead, the optimal solution is (k̄1, k̄2, ..., k̄m) with optimal value z̄∗. Then
∑

m

i=1 k̄i = h and z̄∗ < z∗ due to the optimality of the solution. Assume
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that the order of the stations is the same as the solution obtained from the

water-filling algorithm, then we do not have clear relations between F (k̄i) and

F (k̄j) in this case for ∀i 6= j. The first station is no longer guaranteed to be

the bottleneck station in the optimal solution, so the optimal objective value

z̄∗ may or may not be achieved by the first station and we need to discuss

both scenarios.

• If the first station is the bottleneck station, then z̄∗ = F (k̄1):

Since z̄∗ = F (k̄1) < z∗ = F (k1), then k̄1 > k1. As h is a given constant,

then ∃j ∈ I s.t. k̄j < kj. So F (kj) < F (k̄j) ≤ F (k̄1) < F (k1). Since

k̄j ≥ 1, then kj ≥ 2. So in the water-filling algorithm, there exist kj − 1

iterations for which the j th station is the bottleneck station.

Suppose in the rth iteration of the water-filling algorithm, the j th station

is the bottleneck station and there are k̄j AUVs in the station at that

iteration. Then z∗r = F (k̄j). As we mentioned before, z∗r is non-increasing

in r. Thus z∗ = F (k1) ≤ z∗r = F (k̄j), which contradicts the conclusion

above that F (kj) < F (k̄j) ≤ F (k̄1) < F (k1).

So, there cannot exist an alternate optimal solution in which the first

station is the bottleneck.

• If the first station is not the bottleneck station, and the qth (q 6= 1)

station is the bottleneck instead, then z̄∗ = F (k̄q):

Also we have F (k̄1) < F (k̄q) = z̄∗ < F (k1), so k̄1 > k1. Since h is a

constant, then ∃j ∈ I such that k̄j < kj. We have F (kj) < F (k̄j) ≤
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F (k̄q) < F (k1). Since k̄j ≥ 1, then kj ≥ 2. So in the water-filling

algorithm, there exist kj − 1 iterations for which the jth station is the

bottleneck station. By following the analysis in the previous scenario,

we can show that there cannot exist an alternate optimal solution in this

case either.

We have proved that the water-filling algorithm is optimal for this

M/M/k + M basic queueing approach for allocating AUVs among docking

stations. As a matter of fact, the water-filling algorithm is also optimal

if we change the M/M/k + M to an M/G/k + G queueing system. The

difficulty in that case is how to estimate the service time and abandonment

time distributions and how to calculate the system performance measures.

2.3 M/G/k+G Queueing Approximation

In this section, we introduce the M/G/k+G queueing approximation,

where both the AUV service time and the ice floe abandonment time have

general distributions. Given the locations of the docking stations, the velocities

of the ice floe arrivals, and the total number of AUVs at each docking station,

we can approximate the ice floe measurement process at each docking station as

an M/G/k+G queueing system, where the ice floes are modeled as customers

arriving to the system according to a spatial Poisson process and the AUVs

are servers with a general service time distribution which depends on the

mechanics of scanning the ice floes, uploading data, and recharging batteries.
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We start with the ice floe arrival process simulation, and then analyze the

general distributions for the service time and the abandonment time. The

M/G/k + G queue is then employed to approximate the system performance

measures.

2.3.1 Arrival Process Simulation

We model the ice floe arrival process using a spatial Poisson process

with given arrival rate λ. Two different types of ice floe arrival processes

are simulated in this model. In the first type of arrival process, we assume

a deterministic and fixed velocity vector for a given arrival (although each

arrival may have a different vector), which means the trajectory of an arrival

is simply a deterministic straight line, given the arrival’s velocity vector. In

the second type of arrival process, the velocity vector for each arrival changes

according to a specified distribution at certain time increments. So each arrival

has a stochastic trajectory, instead of the straight-line trajectory as in the first

arrival process. We first introduce the deterministic trajectory arrival process

simulation methods.

Since we only need to investigate the arrival of ice floes that will enter

the alert zone, we characterize a deterministic arrival trajectory of an ice floe

using three parameters, θ, α and v, as follows:

• θ generates the pair (R sin θ, R cos θ) on the circumference of the alert

zone circle, where R is the radius of the alert zone. θ determines where

the arrival will intersect the perimeter of the alert zone.
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• α determines the direction of the arrival’s velocity, α ∈ [0, π]. The angle

α is relative to the tangent of the arrival point of the ice floe on the

circumference of the alert zone, as depicted in Figure 2.1.

• v represents the speed of the arrival.

Figure 2.1: We use parameters θ and α to simulate an arrival’s velocity. The
origin of coordinates is the platform and the alert zone radius is R. θ generates
the intersection point on the circumference of the alert zone, and α determines
the angle of the arrival trajectory.

So, θ and α uniquely determine the trajectory of an arriving ice floe

and v is the speed of the arrival on this trajectory. Note that we can restrict

attention to α values in (0, π) because we are only interested in arrivals that

eventually enter the alert zone. The distributions of θ and α depend on the

characteristics governing the movement of arrivals.
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Simulating a stochastic trajectory arrival process is more complicated

than simulating a deterministic one because we need to repeatedly resample

both the direction and the speed of each arrival. In reality, the velocity vector

changes on a continuous basis but we can only obtain satellite images every

T time periods to update the locations of the ice floes and to estimate their

velocities. So in order to model the movements of the ice floe arrivals, we

assume each arrival’s velocity vector changes according to certain distributions

which we can obtain from historical data. Four parameters are needed here in

order to characterize an arrival’s stochastic arrival trajectory: θ, α, ι and v.

• θ and α are similar to the deterministic trajectory arrival process, except

here these parameters are anchored to the arrival circle instead of the

alert zone. The arrival circle is outside the alert zone and the detailed

definition is given in the following paragraph. So θ and α determine the

location and the direction of an ice floe when it arrives.

• ι is the current direction of the arrival, which has a probability density

function fι. Every T time periods we generate a new movement direction

of the arrival using fι.

• v is the speed of an arrival, but it is no longer fixed in this arrival process.

Similar to the parameter ι, v is sampled from a known probability density

function fv every T time periods.

Figure 2.2 shows some examples of the ice floe trajectories generated

via the scheme just described. The ice floe arrivals are initiated on the
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Figure 2.2: Examples of three arrivals’ stochastic trajectories, which are
generated by the same distribution.

arrival circle, which is defined as the circle where the ice floes are first seen

or considered as arrivals to the system. Here we assume α = π/2, which

means all the ice floe arrivals are heading directly towards the platform when

they first appear on the arrival circle. These figures exemplify the difference

between the two methods of generating ice floe trajectories. In particular, even

though the initial trajectory direction is directly towards the platform, some

ice floes will nonetheless not enter the alert zone. As shown in Figure 2.2,

we see that arrival 1 moves between the arrival circle and the alert zone, and

eventually leaves the arrival circle without entering the alert zone. arrival 2

almost goes directly into the alert zone and arrival 3 finally enters the alert
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zone after meandering between the two circles.

2.3.2 General Distribution Analysis

By using the arrival process simulation methods in Section 2.3.1 for the

deterministic ice floe trajectories, we know an ice floe arrival enters the alert

zone at the point p1 = (R sin θ, R cos θ), where R is the radius of the alert

zone and we assume the center of the platform is the origin of coordinates.

For given parameters θ and α, an arrival’s trajectory can be characterized by

the following equation:

y = − tan(θ + α)x+
R cosα

cos(θ + α)
, θ ∈ [0, 2π], α ∈ [0, π]. (2.7)

We denote the radius of the arrival circle as R̂, where we assume R̂ > R.

Assuming the docking stations are uniformly placed on a circle with radius r

inside the alert zone, then we have r < R < R̂. Before entering the alert

zone, an ice floe arrives at the arrival circle at point p2 = (R̂ sin β, R̂ cos β).

Since p2 is also a point on the ice floe’s trajectory, we can plug it into (2.7)

to calculate β. We get two possible values for β (assuming the domain of

the arccos function is between 0 to π) as shown by (2.8) since the ice floe

trajectory has two intersections with the arrival circle. If θ + α ≤ π or 2π <

θ + α ≤ 3π, then cos β = max{cos β1, cos β2}; if π < θ + α ≤ 2π, then

cos β = min{cos β1, cos β2}. The parameters β1 and β2 can be calculated as
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follows:

β1 = θ + α + arccos
R cosα

R̂
, (2.8a)

β2 = θ + α− arccos
R cosα

R̂
. (2.8b)

Here we denote the speed ratio between the AUVs and the ice floes

as k (k > 1). The speed of the ice floe is v, as defined before, so the speed

of the AUV is k · v. We analyze the service time and abandonment time for

each individual docking station. When an ice floe arrives to the system, it is

assigned to the closest docking station. If an AUV is available at that station,

the service process starts right away. If not, the ice floe waits in the queue

until either an AUV becomes available for it, or the abandonment tolerance

time is reached. There are five steps in an AUV service process:

• Step 1: An AUV goes out to meet the ice floe. We denote the distance

it travels as Dout;

• Step 2: When the AUV meets the ice floe, it starts the scanning process.

The length of the scan time ts can be influenced by several factors, such

as the size of the ice floe, the density of the sea water and the speed of the

ocean current. Here we assume the scan time is uniformly distributed

between one and eight hours.

• Step 3: After the scanning process, the AUV obtains the thickness

information of the ice floe and travels back to its original docking station.
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Denote the distance it travels as Din, and in general Din 6= Dout since

the ice floe is moving during the scanning process;

• Step 4: When the AUV gets back to its docking station, it uploads the

thickness information of the ice floe and we assume the uploading process

is instantaneous;

• Step 5: The battery of the AUV needs to be recharged for four hours

after each scanning sortie, so the distance that the ice floe travels is 4 · v

during the battery recharge process.

If an ice floe cannot be served before it enters the alert zone, we

simply abandon the ice floe from the queue to avoid further delay. Denote

the coordinates of a particular docking station that we want to analyze as

[m,n]. The ice floe trajectory is characterized by (2.7) and we denote it as

ax+ by + c = 0 for simplicity. Then the distance between the docking station

and the ice floe trajectory is Dp = |am+bn+c|/
√
a2 + b2. Also, when we draw

a line that passes the docking station and is also perpendicular to the ice floe

trajectory, the intersection point is Pm = [(b2m − ac− abn)/(a2 + b2), (a2n −

bc− abm)/(a2 + b2)].

Assume an AUV becomes available and starts the service process when

an ice floe has waited for tmax time periods; then the ice floe will be on the

edge of the alert zone when the service process finishes. We can write out (2.9)

based on the geometry shown in Figure 2.3, and we can calculate the maximum
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tolerance time tmax as the ratio between the distance it travels during waiting

and the speed of the ice floe.

In Figure 2.3, the distance between points D and C is denoted as

D(D,C), and it is the distance that the ice floe travels during the scanning

process, so it is a known parameter that is determined by the scanning time

and the speed of the ice floe. D(Pm, P1) is the distance between Pm and the

point P1 on the alert zone, while D(B,P2) is the distance the ice floe travels

while waiting in the queue. The point Pm can either be inside or outside the

alert zone and our analysis holds for both cases. Then we can write out the

following equations based on the geometry of the model:

Figure 2.3: The ice floe enters the arrival circle on point P2, and waits for
tmax time periods until it moves to point B, where tmax is the abandonment
tolerance time. The docking station sends out an AUV, which travels distance
Dout to meet the ice floe at point C. After the scanning process, the ice floe
moves to point D, and the AUV travels distance Din to go back to the docking
station and recharge its battery. The ice floe arrives at the alert zone when
the service process finishes.
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D(P1, P2) =
Din

k
+ 4v +D(D,C) +

Dout

k
+D(B,P2), (2.9a)

D2
in = D2

p + (D(Pm, P1) +
Din

k
+ 4v)2, (2.9b)

D2
out = D2

p + (D(Pm, P1) +
Din

k
+ 4v +D(D,C))2. (2.9c)

Solving the above equations gives us the maximum abandonment
tolerance time tmax:

Din =
D(Pm, P1) + 4v +

√

D2
p(k

2 − 1) + (D(Pm, P1) + 4v)2k2

k − 1/k
, (2.10a)

Dout =

√

D2
p + (D(Pm, P1) +

Din

k
+ 4v +D(D,C))2, (2.10b)

tmax =
D(P1, P2)−D(D,C)− 4v −Din/k −Dout/k

v
. (2.10c)

Figure 2.4 illustrates the service process when an ice floe waits for t time

periods in the queue, assuming that t ≤ tmax. Using similar geometric analysis

for the maximum abandonment tolerance time calculation, we obtain (2.11)

from Figure 2.4:

D(P1, P2) = D(P1, F ) +
Din

k
+ 4v +D(D,C) +

Dout

k
+D(P2, B),(2.11a)

D2
in = (D(Pm, P1) +D(P1, F ) +

Din

k
+ 4v)2 +D2

p, (2.11b)

D2
out = (D(Pm, P2)−D(B,P2)− Dout

k
)2 +D2

p. (2.11c)
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Figure 2.4: The ice floe enters the arrival circle on point P2, and waits for
t time periods until it moves to point B. The docking station sends out an
AUV, which travels distance Dout to meet the ice floe at point C. After the
scanning process, the ice floe moves to point D, and the AUV travels distance
Din to go back to the docking station and recharge its battery. The ice floe
arrives at point F when the service process finishes.

Given the model setting and the ice floe trajectory, the unknown

parameters are Din, Dout and D(P1, F ), where D(P1, F ) is the distance the ice

floe travels after the service process. By solving the above equations, we can

obtain the following parameters and calculate the service time S:

D(Pm, B) = D(Pm, P2)−D(B,P2), (2.12a)

Dout =
−D(Pm, B) +

√

D2
p · (k2 − 1) +D(Pm, B)2 · k2

k − 1/k
, (2.12b)

Din =
√

D2
p + (D(Pm, B)−D(D,C)−Dout/k)2, (2.12c)

S =
Dout +Din

k · v + ts + 4. (2.12d)
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Assume the AUV speed is 8 knots (nautical miles per hour) and the

ice floe speed v = 0.5 knots, then the speed ratio k = 16. Also, we assume

θ ∼ U[0, π/3] and α ∼ U[0, π]. The radius of the arrival circle is 50 nautical

miles and the radius of the alert zone is 36 nautical miles. The location of the

docking station is [m,n] = [30 sin(π/6), 30 cos(π/6)]. Again, the ice floe scan

time is uniformly distributed between one hour to eight hours.

Using the above given parameters, we can calculate the abandonment

time and the service time. Figure 2.5 shows the histogram of the ice floe

abandonment time, and we can see that it is a truncated distribution with

a minimum value of 10.71 hours and a maximum value of 62.83 hours. The

average abandonment time is 27.91 hours and the variance is 152.34.
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Figure 2.5: Ice floe abandonment tolerance time histogram.

Figure 2.6 shows the histogram of the ice floe service time, and here
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we incorporate the wait time dependent characteristics of the service time in

our analysis. For each ice floe, the service time changes while it waits in the

queue, so we sample multiple service times for each ice floe and calculate the

average as the approximate service time for this particular floe. The service

time also has a truncated distribution. The average service time is 12.85 hours

with a variance of 5.17.
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Figure 2.6: Ice floe service time histogram.

2.3.3 Going Beyond the Erlang-A Formula

The Erlang-A formula provides us useful closed form analysis for the

M/M/k + M queueing system. However, applying the Erlang-A formula to

a M/G/k + G queueing system usually yields poor approximations for the

system performance measures. In general, it is very difficult to derive explicit

expressions for a queueing system with general service time and abandonment
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time distributions. The most common approach in the queueing literature

is to develop system performance measure approximation models based on

fluid or diffusion approximation [36], and most of these models are targeted to

heavy traffic queueing systems with many servers [34]. Some computational

research has shown that the performance measures of a M/G/k+G queueing

model primarily depends on the abandonment time distribution, rather than

the service time distribution. So that we can sometimes approximate the

M/G/k+G model by the corresponding M/M/k+G model [35].

Zeltyn [37] provides a detailed review on the exact analysis and

many-server asymptotics of the M/M/k + G queue. We adopt the

approximation methodologies by Zeltyn [37] here to calculate the system

performance measures for the M/G/k + G queueing system. Similar to the

Erlang-A model, we need the arrival rate λi, the service rate µi, and the total

number of servers ki for docking station i as the input parameters. Unlike the

Erlang-A model, which only requires the mean of the abandonment time, here

we need the cumulative distribution function (cdf) of the abandonment time,

which is denoted as G(·). Denote Ḡ(·) = 1−G(·) as the survival function and

we define the following quantities:
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H(x) :=

∫ x

0

Ḡ(ui)dui, (2.13a)

J :=

∫ ∞

0

exp{λiH(x)− kiµix}dx, (2.13b)

J1 :=

∫ ∞

0

x exp{λiH(x)− kiµix}dx, (2.13c)

JH :=

∫ ∞

0

H(x) exp{λiH(x)− kiµix}dx, (2.13d)

ε :=

ki−1
∑

j=0

1

j!

(

λi

µi

)j

1

(ki − 1)!

(

λi

µi

)ki−1
. (2.13e)

So the probability of waiting Pi(W > 0), the abandonment probability

Pi(AB), the expected waiting time Ei(W ) and the expected queue length

Ei(Q) for docking station i are given as follows:

Pi(W > 0) =
λiJ

ε+ λiJ
· Ḡ(0), (2.14a)

Pi(AB) =
1 + (λi − kiµi)J

ε+ λiJ
, (2.14b)

Ei(W ) =
λiJH

ε+ λiJ
, (2.14c)

Ei(Q) = λi · Ei(W ). (2.14d)

We now have two queueing approximation models for the system. To

assess the approximation methods, as well as to better study the system
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dynamics with wait-dependent service times, we introduce a system simulation

model in the following section.

2.4 System Simulation and Computational Analysis

We use the commercial software package Arena [15] to implement

our simulation model. The simulation model provides accurate system

performance measures for our spatial detection model, and we compare the

simulation results with both the M/M/k +M and the M/G/k + G queueing

approximation results. Also, the flexibility of the simulation model allows us

to employ different queueing policies and to analyze the system sensitivity.

Figure 2.7 shows the flow chart of the simulation model. When an ice

floe arrives at a docking station, an AUV, if available, is sent out to scan it.

Otherwise, the ice floe waits in the queue for that particular docking station. If

an AUV becomes available later for this ice floe, we update its service time since

it is wait time dependent. When the waiting time exceeds the abandonment

time, the ice floe is abandoned.

We define three different traffic intensity levels based on the ice floe

abandonment rate. The high traffic intensity is when the ice floe abandonment

rate is above 40%, the medium traffic intensity has abandonment rate between

10% and 40%, and when the ice floe abandonment rate is below 10%, we call

it low traffic intensity.

Here we assume the arrival process is a spatial Poisson process with
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Figure 2.7: Flow chart for the Arena simulation model.

given arrival rate λ, and we assume the trajectories of all the arrivals are

deterministic. For the M/M/k + M queueing approximation, we apply

the Erlang-A formula with the mean service time and mean abandonment

tolerance time obtained from Section 2.3.2. The M/G/k+G queueing model

adopts the approximation methods in Section 2.3.3, and also the general

distribution analysis in Section 2.3.2. We first fix the arrival rate at λ = 0.5

arrivals per hour, and change the traffic intensity level by adjusting the total

number of AUVs. Later, we fix the total number of AUVs at k = 10, and

change the arrival rate to study the model behavior at different traffic intensity
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levels.

Tables 2.1, 2.2 and 2.3 show the system performance measures obtained

under three different traffic intensity levels. According to Little’s law, E(Q) =

λ ·E(W ). Also, P (AB) = β ·E(W ) in the M/M/k+M queueing model, where

β is the ice floe abandonment rate.

Table 2.1 shows that the M/G/k+G queueing system provides a very

good approximation for all four parameters at high traffic intensity. The

simulation column shows the average and 95% confidence interval for all the

performance measures. For example, when the arrival rate λ = 0.5, and there

are three AUVs in total, then the average probability of waiting is 0.9999, and

the 95% confidence interval is [0.9999−2.6468×10−5, 0.9999+2.6468×10−5].

The probability of waiting obtained from the M/M/k+M queueing model is

0.9917 in this case and the relative optimality gap is 0.82%. The M/G/k+G

queue approximates the probability of waiting as 0.9998 and the relative

optimality gap is 0.04%. The approximation results with tighter bounds are

marked in bold and we can see that the M/G/k+G queueing system provides

better approximations in most cases, especially for the expected waiting time

and the expected queue length.

During medium traffic intensity, the relative optimality gaps increase

for both the M/M/k+M and the M/G/k+G queueing models as shown by

Table 2.2. However, the M/G/k+G queueing system still provides very good

approximations since most of the optimality gaps are within 10%. Table 2.3

shows the model performance at low traffic intensity, and we can see the
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optimality gaps for the expected waiting time and the expected queue length

are still relatively small in the M/G/k + G queueing approximation, even

though all the optimality gaps increase when compared with the medium traffic

intensity setting.

These computational results show that the relative optimality gap has

different performance during different traffic intensity levels. The M/M/k+M

queue provides good approximations for all four parameters at high and

medium traffic intensity levels, and the optimality gaps increase for both

approximations when the traffic intensity decreases. The M/M/k+M queue

tends to overestimate the abandonment probability, and underestimate the

probability of waiting, the expected waiting time and the expected queue

length. In contrast, the M/G/k + G approximation usually underestimate

the probability of waiting, and overestimates the other three parameters.

In the above analysis, we assume both queues and the simulation

model use first in first out (FIFO) as the queueing policy. If we change the

queueing policy in the M/M/k+M or the M/G/k+G queueing system, it is

generally very difficult to analyze the system performance measures. Unlike

the queueing approximation, the simulation model provides us the flexibility

to employ different queueing policies. Tables 2.4, 2.5, and 2.6 show the system

performance with different queueing policies and traffic intensity levels.

We assume the arrival rate λ = 0.5 arrivals per hour and we change

the traffic intensity by varying the total number of AUVs. We focus on four

different queueing policies in this analysis:
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• FIFO: first in first out,

• LIFO: last in first out,

• EDD: earliest due date first,

• SST: shortest service time first.

Table 2.4 shows the system performance measures at high traffic

intensity, e.g., the abandonment probability is 0.5742 if we use LIFO as the

queueing policy, and the 95% confidence interval is [0.5742− 0.0021, 0.5742+

0.0021]. For each parameter, the minimum value is marked in bold, and we can

see that different queueing policies yield different model behavior. Table 2.5

shows the performance measures at medium traffic intensity and Table 2.6

shows the results at low traffic intensity. In general, the LIFO queueing policy

has a low probability of waiting, expected waiting time and expected queue

length when compared with the other three queueing policies. The EDD

queueing policy provides the lowest abandonment probability at all traffic

intensities, which is not surprising since those arrivals with the earlier due

dates have higher priorities while waiting in the queue. Also, the SST queueing

policy provides low expected waiting time and expected queue length.

The above analysis suggests that we should use EDD as the queueing

policy for the simulation model if the objective is to minimize the abandonment

rate, and LIFO is probably the best option if we aim to minimize the

probability of waiting. Both LIFO and SST are good choices when we want

to minimize the expected waiting time or the expected queue length.
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Performance
Measures

Simulation
M/M/k+M
Approximation

M/G/k+G
Approximation

Arrival Rate: λ = 0.5, No. of AUVs: k = 3

P (W > 0) 0.9999 0.9917 0.9995

(±2.6468×10−5) (0.82%) (0.04%)

P (AB) 0.5016 0.5346 0.533

(±0.0021) (6.58%) (6.26%)

E(W ) 21.4337 14.9194 21.809

(±0.0427) (30.39%) (1.75%)

E(Q) 10.7242 7.4597 10.9045

(±0.067) (30.44%) (1.68%)

Arrival Rate: λ = 1.5, No. of AUVs: k = 10

P (W > 0) 0.9999 0.9998 0.9999

(±2.3598×10−6) (0.01%) (0)

P (AB) 0.4468 0.481 0.481

(±8.7298e− 4) (7.65%) (7.65%)

E(W ) 20.5624 13.4248 20.7785

(±0.0204) (34.71%) (1.05%)

E(Q) 30.8173 20.1372 31.1677

(±0.0767) (34.66%) (1.14%)

Table 2.1: Simulation and queueing approximations with high traffic intensity.
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Performance
Measures

Simulation
M/M/k+M
Approximation

M/G/k+G
Approximation

Arrival Rate: λ = 0.5, No. of AUVs: k = 5

P (W > 0) 0.9934 0.8646 0.9742

(±6.5028×10−4) (12.97%) (1.93%)

P (AB) 0.2093 0.2586 0.2286

(±0.003) (23.55%) (9.22%)

E(W ) 16.0239 7.2173 17.2255

(±0.0822) (54.96%) (7.5%)

E(Q) 7.9661 3.6087 8.6128

(±0.0794) (54.7%) (8.12%)

Arrival Rate: λ = 1, No. of AUVs: k = 10

P (W > 0) 0.9997 0.918 0.9959

(±7.9881×10−5) (8.17%) (0.38%)

P (AB) 0.1973 0.2355 0.2222

(±0.0019) (19.36%) (12.62%)

E(W ) 16.5833 6.5739 17.1699

(±0.0511) (60.36%) (3.54%)

E(Q) 16.5704 6.5739 17.1699

(±0.1049) (60.33%) (3.62%)

Table 2.2: Simulation and queueing approximations with medium traffic
intensity.
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Performance
Measures

Simulation
M/M/k+M
Approximation

M/G/k+G
Approximation

Arrival Rate: λ = 0.5, No. of AUVs: k = 7

P (W > 0) 0.8241 0.5304 0.6263

(±0.0067) (35.64%) (24%)

P (AB) 0.0254 0.0904 0.0536

(±0.0012) (255.91%) (111.02%)

E(W ) 7.223 2.522 8.018

(±0.1558) (65.08%) (11.01%)

E(Q) 3.6805 1.261 4.009

(±0.1012) (65.74%) (8.93%)

Arrival Rate: λ = 0.75, No. of AUVs: k = 10

P (W > 0) 0.9074 0.5742 0.6986

(±0.0048) (36.72%) (23.01%)

P (AB) 0.0286 0.0871 0.0505

(±0.0011) (204.55%) (76.57%)

E(W ) 8.6067 2.4297 9.3359

(±0.1548) (71.77%) (8.51%)

E(Q) 5.8599 1.8223 7.0019

(±0.1555) (68.9%) (19.49%)

Table 2.3: Simulation and queueing approximations with low traffic intensity.

41



Performance
Measures

Simulation
(FIFO)

Simulation
(LIFO)

Simulation
(EDD)

Simulation
(SST)

Arrival Rate: λ = 0.5, No. of AUVs: k = 3

P (W > 0) 0.9999 0.9992 0.9999 0.9994

(±2.65× 10−5) (±4.96× 10−5) (±6.50× 10−6) (±5.48× 10−5)

P (AB) 0.5016 0.5742 0.4991 0.4968

(±0.0021) (±0.0021) (±0.0021) (±0.0019)

E(W ) 21.4337 17.2536 26.656 16.9546

(±0.0427) (±0.053) (±0.0285) (±0.0559)

E(Q) 10.7242 8.6274 13.3377 8.4797

(±0.067) (±0.0643) (±0.0696) (±0.0641)

Table 2.4: Simulation with different queueing policies during high traffic
intensity.

42



Performance
Measures

Simulation
(FIFO)

Simulation
(LIFO)

Simulation
(EDD)

Simulation
(SST)

Arrival Rate: λ = 0.5, No. of AUVs: k = 5

P (W > 0) 0.9934 0.9694 0.9983 0.9757

(±6.5× 10−4) (±0.0012) (±2.99× 10−4) (±0.0012)

P (AB) 0.2093 0.293 0.1827 0.2361

(±0.003) (±0.0031) (±0.0031) (±0.0026)

E(W ) 16.0239 10.4619 23.2918 10.4417

(±0.0822) (±0.0803) (±0.1115) (±0.0752)

E(Q) 7.9661 5.0761 11.6356 5.0989

(±0.0794) (±0.066) (±0.1068) (±0.0642)

Table 2.5: Simulation with different queueing policies during medium traffic
intensity.
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Performance
Measures

Simulation
(FIFO)

Simulation
(LIFO)

Simulation
(EDD)

Simulation
(SST)

Arrival Rate: λ = 0.5, No. of AUVs: k = 7

P (W > 0) 0.8241 0.7481 0.8473 0.7633

(±0.0067) (±0.0062) (±0.0068) (±0.0064)

P (AB) 0.0254 0.083 0.0063 0.0588

(±0.0012) (±0.0022) (±6.17× 10−4) (±0.0016)

E(W ) 7.223 4.5443 9.3555 4.599

(±0.1558) (±0.0778) (±0.2495) (±0.0841)

E(Q) 3.6805 1.7021 3.97 1.7578

(±0.1012) (±0.0502) (±0.1547) (±0.0544)

Table 2.6: Simulation with different queueing policies during low traffic
intensity.
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Chapter 3

Stochastic Facility Location Problem

3.1 Facility Location Problem Introduction

The queueing models introduced in Chapter 2 can approximate

key system performance measures, and the discrete-event simulation model

provides us the flexibility to study different queueing policies, as well as to

test the quality of the queueing approximations. However, none of these

models can give us optimal locations for the docking stations and the optimal

AUV allocations on the docking stations. In this chapter, we formulate a

stochastic facility location model, so exact optimization can be done by using

these integer programming models.

In Section 3.2, we present a multi-stage stochastic facility location

problem which characterizes the timing of the design decisions, the realizations

of randomness, and the operation decisions. Generally, solving this integer

programming model is computationally challenging due to the large problem

size [9], and so we develop approximation models in the following context,

including a simplified docking station location model in Section 3.3, a two-stage

stochastic facility location model in Section 3.4 and several online scheduling

heuristics in Section 3.5. Chapter 4 describes the computational analysis of
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these approximation models, and the performance of the optimality gaps.

3.2 Multi-Stage Stochastic Facility Location Problem

In our stochastic facility location model to locate docking stations and

AUVs, we assume we have a number of predetermined potential locations to

place these docking stations. We further assume that we can place at most m

stations; i.e., each candidate location has the same installation cost. At most

ni AUVs can be placed at location i due to a docking station’s limited number

of docks, and there are h AUVs in total to be positioned. Figure 3.1 shows an

example of the potential locations for the docking stations, which are inside

the alert zone. The arrival circle shown in Figure 3.1 is outside of the alert

zone, and an AUV can only be dispatched to an ice floe once the floe crosses

the arrival circle and the service time is within the AUV battery life.

A number of factors dictate the location of the arrival circle. The circle’s

radius should not significantly exceed the distance an AUV can travel to serve

a floe based on its battery life. In addition, the future trajectory of an ice floe

should not have significant variability once it reaches the arrival circle. A large

arrival circle increases the flexibility for the allowable scheduling decisions,

but excessive flexibility may lead to unrealistically complicated scheduling

decisions that make excessive use of the specific set of arrivals. A large

arrival circle also increases the complexity of the stochastic integer program,

decreasing its computational tractability. A small arrival circle narrows the

time window of service for each ice floe, which restricts the dispatching policies.
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Figure 3.1: The figure depicts the platform, potential locations for docking
stations, the alert zone, and the arrival circle. An AUV can be dispatched
from a docking station to scan an ice floe only after the floe reaches the arrival
circle. And, the AUV should complete scanning and uploading the data at its
docking station prior to the floe reaching the alert zone.

Either extreme may lead to an unsatisfactory result. Within these restrictions,

we have some flexibility in locating the arrival circle.

When a floe reaches the arrival circle, we calculate a time window for

each floe-station pair. Any station can deploy an AUV to scan an ice floe,

provided it can do so within the specified time window. An AUV can first

be dispatched to scan a floe provided the service process is shorter than the

AUV’s battery life, and an AUV will not be dispatched if it cannot complete

the service process before the ice floe enters the alert zone. An ice floe can

be served by at most one AUV, and each AUV needs to return to its original

docking station to upload the thickness information and recharge the battery

after each scanning sortie. Satellite images can be obtained every T time
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periods, which we call a stage, and we update the information regarding the

ice floes at the beginning of each stage as new satellite images become available.

Assume there are K+1 stages in total and stage 0 is the initial stage when all

the design decisions are made. We now introduce the multi-stage stochastic

integer programming formulation for this facility location problem.

Indices and Sets

k = 0, 1, 2, . . . , K: index for the stages;

ω = (ω1, . . . , ωK) ∈ Ω: set of scenarios, where ωk is the scenario in stage k;

ω[k] = (ω1, . . . , ωk) ∈ Ω[k]: set of scenarios up to stage k;

t = 0, 1, . . . , KT : index for the time periods;

T̂k = {(k − 1)T + 1, . . . , kT}: set of time periods in stage k, k = 1, 2, . . . , K;

k(t) = ⌈t/T ⌉: stage index for given time period t;

i ∈ I: set of potential locations for the docking stations;

j ∈ Jω: set of ice floes under scenario ω;

i ∈ Iωj : set of locations that can serve ice floe j under scenario ω;

j ∈ Jω
i : set of ice floes that can be served by location i under scenario ω.

Due to the multi-stage characteristics of the model, the size of the

scenario set grows exponentially as the total stage number K increases. See,

for example, Heitsch and Römisch [22] for a discussion of modeling scenario

trees for multi-stage stochastic programs. Figure 3.2 shows an example of the

scenario tree in which there are three stages (K = 2), and the scenario set is

Ω = {HH,HL, LH,LL}. Stage 0 is the initial stage in which all the system

design decisions are made. There is only one time period (t = 0) at stage
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Figure 3.2: An example of a scenario tree in a multi-stage model. Design
decisions are made in stage 0 to locate docking stations and assign AUVs
to those stations. Operation decisions are made in the subsequent stages to
dispatch AUVs to scan arriving ice floes. The figure depicts a high (H) and
low (L) number of ice floes arriving in each stage.

0. The realization of scenarios starts at the beginning of stage 1, and the

figure depicts two scenarios at each stage, H and L. After the realization of

randomness in stage 1, the AUV scheduling decisions are made to serve the

ice floes, which arrive in stage 1. After T time periods, new satellite images

become available in stage 2. After observation of the new arrivals in stage

2, we again make AUV scheduling decisions for unserved floes, which have

arrived so far. We define the following parameters and decision variables, and

we then show the integer programming formulation in model (3.1).

Parameters

sωi,j,t: service time of ice floe j (hours) if served from location i at time t under

scenario ω;

[Lω
i,j , U

ω
i,j]: time window (hours) for location i to dispatch an AUV to scan floe

j in scenario ω;
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pω: probability of scenario ω;

m: maximum number of docking stations to locate;

h: maximum number of AUVs to locate;

ni: maximum number of AUVs to locate at location i.

Decision Variables

yi: indicates whether a station is placed at location i;

xi,0: number of AUVs allocated to location i;

xω
i,t: number of AUVs that are not dispatched at location i at time t under

scenario ω;

zωi,j,t: indicates whether an AUV at location i is dispatched for floe j at time

t under scenario ω;

rωj : indicates whether floe j is served under scenario ω.

Multi-stage Stochastic Facility Location Problem Formulation

z∗ = min
∑

ω∈Ω

pω
∑

j∈Jω

(1− rωj ) (3.1a)

s.t.
∑

i∈Iωj

Uω
i,j

∑

t=Lω
i,j

zωi,j,t = rωj , j ∈ Jω, ω ∈ Ω (3.1b)

Uω
i,j

∑

t=Lω
i,j

zωi,j,t ≤ yi, i ∈ Iωj , j ∈ Jω, ω ∈ Ω (3.1c)

∑

i∈I

yi ≤ m (3.1d)

xi,0 ≤ niyi, i ∈ I (3.1e)
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∑

i∈I

xi,0 ≤ h (3.1f)

xω
i,t +

∑

j∈Jω
i

zωi,j,t = xω
i,t−1 +

∑

j∈Jω
i

t
∑

t′=1

zωi,j,t′I(t
′ + sωi,j,t′ = t),

i ∈ I, t ∈ T̂1 \ {1}, t ∈ T̂k, k = 2, . . . , K, ω ∈ Ω (3.1g)

xω
i,1 +

∑

j∈Jω
i

zωi,j,1 = xi,0 +
∑

j∈Jω
i

zωi,j,1I(s
ω
i,j,1 = 0),

i ∈ I, ω ∈ Ω (3.1h)

xω
i,t = xω̄

i,t, i ∈ I, t = 1, . . . , KT,

ω, ω̄ ∈ Ω (ω[k(t)] = ω̄[k(t)], ω̄ 6= ω) (3.1i)

zωi,j,t = zω̄i,j,t, t = Lω
i,j, . . . , U

ω
i,j,

i ∈ Iωj , j ∈ Jω, ω, ω̄ ∈ Ω (ω[k(t)] = ω̄[k(t)], ω̄ 6= ω) (3.1j)

yi ∈ {0, 1}, i ∈ I (3.1k)

xi,0 ∈ {0, 1, ..., ni}, i ∈ I (3.1l)

xω
i,t ∈ {0, 1, ..., ni}, i ∈ I, ω ∈ Ω, t ∈ T̂k, k = 1, 2, . . . , K(3.1m)

zωi,j,t ∈ {0, 1}, t = Lω
i,j , . . . , U

ω
i,j, i ∈ Iωj , j ∈ Jω, ω ∈ Ω (3.1n)

rωj ∈ {0, 1}, j ∈ Jω, ω ∈ Ω. (3.1o)

We seek to minimize the expected number of ice floe abandonments via

the objective function in (3.1a). Constraint (3.1b) indicates whether an ice

floe has been served within its time window. Constraint (3.1c) implies we can

only dispatch an AUV from location i if we have put a docking station at that

location. Constraint (3.1d) limits the number of stations, (3.1e) restricts the
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number of AUVs at each station, and (3.1f) bounds the total number of AUVs

for all the docking stations.

Constraint (3.1g) tracks the inventory of AUVs at each time period,

where the indicator function on the right-hand side of the constraint indicates

whether an AUV deployed at time t′ is now available after returning and

recharging its battery. Constraint (3.1h) is a special case of constraint (3.1g)

that differs because xi,0 does not depend on ω, and there is only one time period

in the first stage. Constraints (3.1i) and (3.1j) enforce non-anticipativity at

each stage. If any two scenarios share the same history in the first k stages,

then their inventory and dispatching decisions must be the same in the first

k stages. These constraints are called non-anticipativity constraints in the

stochastic optimization literature [4]. Finally constraints (3.1k)-(3.1o) enforce

binary and integer restrictions on the decision variables.

Model (3.1) is a multi-stage stochastic facility location problem, which

is computationally challenging to solve when the problem size is large. In the

next section, we introduce approximations, which have lower computational

complexity and can provide useful bounds for model (3.1). For reasons that

become clear in the next section, we assume that the system has a basic

time unit, denoted a, and all time-related parameters are multiples of a; e.g.,

parameter a could denote one second.

There are different methods to approximate the multi-stage stochastic

optimization model. Section 3.3 simplifies the queueing dynamics and assumes

radial symmetry in order to provide insight on how to locate docking stations.
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We coarsen time and simplify the timing of decisions and the realization of

uncertainty in a two-stage stochastic facility location problem in Section 3.4.

Unlike the multi-stage model, in which we have limited information on future

arrivals, the two-stage model assumes full knowledge of the arrivals after

locating docking stations in the first stage. As a result, the model’s scheduling

decisions result in an optimistic number of ice floe abandonments. Employing

coarser time units allows us to round service times and time windows in an

optimistic manner. This, coupled with the optimistic assumption on knowing

the future prematurely, means that the two-stage model leads to a lower bound

on the optimal value, z∗, of model (3.1). When the system design decisions

are fixed in the initial stage, model (3.1) reduces to a scheduling problem with

the objective of minimizing the total number of abandonments. Several online

scheduling heuristics are introduced in Section 3.5, and they provide upper

bounds on the optimal value of model (3.1).

3.3 Simplified Docking Station Location Problem

In this section, we consider a simplified optimization model for the

problem of locating docking stations. This approach gives useful insights

into the placement of candidate docking station locations in a more detailed

location model. In this model, we assume that docking stations must be placed

on a circle inside the alert zone for reasons we discuss above regarding the cost

of locating stations in deep water. And, we assume that the docking stations

must be placed uniformly on this circle, which is natural if the arrival process
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is radially homogeneous. In this setting we seek to optimize the radius of the

docking station’s circle.

Let R denote the radius of the alert zone, and r denote the radius of the

docking station’s circle. Then, we seek the value of η = r/R, which minimizes

the expected one-way travel time of an AUV to the ice floe assuming we

dispatch an AUV from the closest station at the time with the shortest travel

time to the floe.

Designing the system to minimize the one-way travel time leads to an

optimal design under several simplifying assumptions:

• there are ample AUVs at each station, so there are no queueing dynamics;

• an AUV can instantaneously scan an ice floe;

• every ice floe is assigned to the docking station that achieves the shortest

travel time for that floe;

• the speed is the same for all the ice floes;

• ice floes arrive according to a spatial Poisson process with deterministic

arrival trajectories;

• ice floes head towards the platform;

• an AUV is dispatched to an ice floe at the latest feasible time, i.e., so that

data regarding the floe’s thickness is uploaded just at the floe reaches

the alert zone.
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Figure 3.3: Relationship between the expected one-way travel time and the
ratio of radii, η. We see from the figures that as the number of stations grows
the optimal radius of the docking-station circle grows quickly toward the radius
of the alert zone.

The subfigures in Figure 3.3 relate the expected one-way travel time

(in hours) by an AUV to serve an ice floe and the radius ratio, η, when

m = 2, 3, 4, 5, respectively, where m denotes the total number of docking

stations. We also mark the optimal radius ratio η∗, which achieves the shortest

one-way travel time in Figure 3.3. For these computations, the radius of the

alert zone is assumed to be R = 36 nmi (nautical miles), and the speed of the

ice floes is 0.5 knot (nautical mile per hour). The ratio of an AUV’s speed

to that of an ice floe is set to 16. Figure 3.4 depicts the locations of docking

stations when we have two or three stations and we are using the optimal

radius η∗ obtained from Figure 3.3. The asterisks locate the docking stations

and the smallest dashed circle inside is the platform we want to protect. The
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Figure 3.4: The left-hand figure shows two optimally-located docking stations.
The inner dashed circle denotes the alert zone and the outer boundary indicates
the point at which an AUV meets an arriving flow. The values on the axes
denote nautical miles relative to the platform in the center.

large dashed circle is the alert zone, and the curve outside the alert zone is

where the AUVs meet the ice floes.

Intuitively we might think the optimal strategic is to put the docking

stations as close to the alert zone as possible, but this is not true according to

the optimal solutions for two and three docking stations. We can prove that

the optimal ratio of radii η∗ → 1 as m, which is the total number of docking

stations, grows large. Also, η∗ is a non-decreasing function of m.

As we can see from the above analysis, this simplified docking station

location problem provides a way to calculate the docking station locations that

minimize the expected travel time of the dispatched AUV. The results of this

section suggests that if we locate docking stations on a concentric circle about

56



the platform, but within the alert zone, the radius of that circle can be close

to that of the alert zone.

3.4 Two-Stage Stochastic Facility Location Problem

The two-stage stochastic facility location problem is a special case of

the multi-stage model with K = 1. Reducing the number of stages reduces

the problem size, and we further coarsen the resolution of time in the model

by changing the basic time unit to be uq = 2q · a, where q ∈ Z. Given uq,

we round all time-related parameters in the two-stage model, and we assume

that the final time period is of the form nquq+1 for some integer nq for values

of q of interest. Here, a is the underlying time unit used for model (3.1) as

described in Section 3.2. A model with a longer basic time unit has smaller

problem size but also has reduced system fidelity, since increasing the basic

time unit lowers the dynamic resolution of the system. We show our two-stage

stochastic facility location problem in model (3.2). Unlike model (3.1), the

non-anticipativity constraints do not appear here, since the realization of

randomness only happens once. Model (3.2) uses uq = 2q ·a (q ∈ Z) as its basic

time unit, and we define the following sets and parameters for model (3.2).

After stating the model we discuss bounding results based on specific means

of rounding these parameters.

Sets and Parameters

Tq = {0, 1, uq + 1, 2uq + 1, . . . , nquq + 1}: index set for the time periods;

Lω
i,j,q ∈ Tq: lower bound of the time window;
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Uω
i,j,q ∈ Tq: upper bound of the time window;

TW ω
i,j,q = {Lω

i,j,q, L
ω
i,j,q + uq, . . . , U

ω
i,j,q − uq, U

ω
i,j,q}: time window for location i

to dispatch an AUV to scan floe j under scenario ω;

sωi,j,t,q: service time of ice floe j if served from location i at time t under scenario

ω.

Two-Stage Stochastic Facility Location Problem Formulation

z∗q = min
∑

ω∈Ω

pω
∑

j∈Jω

(1− rωj ) (3.2a)

s.t.
∑

i∈Iωj

∑

t∈TWω
i,j,q

zωi,j,t = rωj , j ∈ Jω, ω ∈ Ω (3.2b)

∑

t∈TWω
i,j,q

zωi,j,t ≤ yi, i ∈ Iωj , j ∈ Jω, ω ∈ Ω (3.2c)

∑

i∈I

yi ≤ m (3.2d)

xi,0 ≤ niyi, i ∈ I (3.2e)

∑

i∈I

xi,0 ≤ h (3.2f)

xω
i,t +

∑

j∈Jω
i

zωi,j,t = xω
i,t−uq

+
∑

j∈Jω
i

∑

t′∈Tq

t′≤t

zωi,j,t′I(t
′ + sωi,j,t′,q = t),

i ∈ I, t ∈ Tq \ {0, 1}, ω ∈ Ω (3.2g)

xω
i,1 +

∑

j∈Jω
i

zωi,j,1 = xi,0 +
∑

j∈Jω
i

zωi,j,1I(s
ω
i,j,1,q = 0),

i ∈ I, ω ∈ Ω (3.2h)

yi ∈ {0, 1}, i ∈ I (3.2i)

xi,0 ∈ {0, 1, ..., ni}, i ∈ I (3.2j)

xω
i,t ∈ {0, 1, ..., ni}, i ∈ I, t ∈ Tq \ {0}, ω ∈ Ω (3.2k)
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zωi,j,t ∈ {0, 1}, i ∈ Iωj , j ∈ Jω, t ∈ TW ω
i,j,q, ω ∈ Ω (3.2l)

rωj ∈ {0, 1}, j ∈ Jω, ω ∈ Ω. (3.2m)

For a given time horizon, model (3.2) is generally easier to solve than

model (3.1). But it is still computationally challenging when the problem

size grows large. Since the simplified docking station location problem in

Section 3.3 provides a way to estimate the docking station locations, we

temporarily restrict our attention to the operation decision variables. Denote

the objective function in both models (3.1) and (3.2) as f(X0, Y, S), where

X0 and Y are the system design decisions and S stands for all the operation

decisions, and let G denote the feasible region for model (3.1). Under basic

time unit uq, we let fq(X0, Y, Sq) denote model (3.2)’s objective function,

Sq denote the operation decisions and Gq denote the feasible region. Then

z∗ = min(X0,Y,S)∈G f(X0, Y, S) is the optimal value for model (3.1), and

similarly, z∗q = min(X0,Y,Sq)∈Gq
f(X0, Y, Sq) is the optimal value for model (3.2).

Denote the feasible region of model (3.1) with fixed (X0, Y ) by G(X0, Y ), and

let Gq(X0, Y ) denote the analogous feasible region for model (3.2). Then we

let ẑ∗ = minS∈G(X0,Y ) f(X0, Y, S) denote the optimal value for model (3.1) with

fixed design decisions (X0, Y ), and ẑ∗q = minSq∈Gq(X0,Y ) fq(X0, Y, Sq) denotes

the analog for model (3.2). Lemma 1 states that if the time related input

parameters are rounded optimistically, and the service time has a relatively

small change rate, increasing uq in model (3.2) decreases ẑ∗q .

Lemma 1. Fix design decisions X0 and Y in model (3.2). If sωi,j,t,q =
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⌊

sωi,j,t
uq

⌋

uq, Lω
i,j,q =

⌊

Lω
i,j−1

uq

⌋

uq + 1, Uω
i,j,q =

⌈

Uω
i,j−1

uq

⌉

uq + 1, nquq + 1 =

nq−1uq−1 + 1, and |sωi,j,t − sωi,j,τ |≤ |t − τ |, ∀i ∈ Iωj , ∀j ∈ Jω, ∀ω ∈ Ω,

∀t, τ ∈ TW ω
i,j,q, ∀q ∈ Z, then ẑ∗q−1 ≥ ẑ∗q .

Proof. Let model Mq denote model (3.2) with basic time unit uq and fixed

design decisions X0 and Y , ∀q ∈ Z. Let S∗
q−1 denote an optimal solution

for Mq−1. Mq and Mq−1 have the same final time period by hypothesis. We

construct a solution Sq for Mq as follows: if zωi,j,t = 1 (t ∈ Tq−1 \ {0}) in S∗
q−1,

then set zωi,j,τ = 1 (τ ∈ Tq \ {0}) in Sq, where τ =
⌊

t−1
uq

⌋

uq + 1. The decision

variable rωj is identical in both models since any served (unserved) ice floes in

Mq−1 (with solution S∗
q−1) remain served (unserved) in Mq (with solution Sq),

so fq(X0, Y, Sq) = fq−1(X0, Y, S
∗
q−1) = ẑ∗q−1. It follows that ẑ

∗
q−1 ≥ ẑ∗q if Sq is a

feasible solution for Mq.

Given τ =
⌊

t−1
uq

⌋

uq + 1 and the definitions for Lω
i,j,q and Uω

i,j,q, if

t ∈ TW ω
i,j,q−1 then τ ∈ TW ω

i,j,q. So constraints (3.2b) and (3.2c) are

satisfied in model Mq with solution Sq. As the design decisions are fixed,

constraints (3.2d), (3.2e), and (3.2f) hold in model Mq. If z
ω
i,j,t = 1 in solution

S∗
q−1, then the service process for floe j starts at time t and finishes at time

t̂ = t+ sωi,j,t,q−1. In the corresponding schedule Sq for model Mq, z
ω
i,j,τ = 1 and

the service process finishes at time τ̂ = τ +sωi,j,τ,q. Since τ =
⌊

t−1
uq

⌋

uq+1, then

either t = τ or t − τ = uq−1. If t = τ then sωi,j,t = sωi,j,τ and sωi,j,τ,q ≤ sωi,j,t,q−1,

so we have τ̂ ≤ t̂. If t − τ = uq−1 then |sωi,j,t − sωi,j,τ |≤ |t − τ |= uq−1 by

hypothesis. If sωi,j,t ≥ sωi,j,τ then sωi,j,t,q−1 ≥ sωi,j,τ,q, so τ̂ ≤ t̂. If sωi,j,t ≤ sωi,j,τ then
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sωi,j,τ − sωi,j,t ≤ uq−1 yields sωi,j,t,q−1 − sωi,j,τ,q ≥ −uq−1, and again we have τ̂ ≤ t̂.

Consider constraint (3.2g) in Mq−1 with solution S∗
q−1 at time period t,

where t ∈ Tq \ {0, 1}. Then we can write out the following constraints:

xω
i,t +

∑

j∈Jω
i

zωi,j,t = xω
i,t−uq−1

+
∑

j∈Jω
i

∑

t′∈Tq−1

t′≤t

zωi,j,t′I(t
′ + sωi,j,t′,q−1 = t),

xω
i,t+uq−1

+
∑

j∈Jω
i

zωi,j,t+uq−1
= xω

i,t +
∑

j∈Jω
i

∑

t′∈Tq−1

t′≤t+uq−1

zωi,j,t′I(t
′ + sωi,j,t′,q−1 = t+ uq−1).

Summing these two equations yields:

xω
i,t+uq−1

+
∑

j∈Jω
i

(zωi,j,t + zωi,j,t+uq−1
) = xω

i,t−uq−1
+

∑

j∈Jω
i

(
∑

t′∈Tq−1

t′≤t

zωi,j,t′I(t
′ + sωi,j,t′,q−1 = t) +

∑

t′∈Tq−1

t′≤t+uq−1

zωi,j,t′I(t
′ + sωi,j,t′,q−1 = t+ uq−1)).

Consider time period τ in model Mq, where τ = t. Then
∑

j∈Jω
i
(zωi,j,t +

zωi,j,t+uq−1
) in model Mq−1 is equivalent to

∑

j∈Jω
i
zωi,j,τ in model Mq. Since

we have shown τ̂ ≤ t̂, there exists xω
i,τ ≥ 0 and xω

i,τ−uq
≥ 0 that satisfy

constraint (3.2g) in model Mq. This establishes the feasibility of schedule Sq

for model Mq.

Lemma 2 shows that under the same hypotheses as lemma 1, if

model (3.2) adopts the original basic time unit a from model (3.1) (or a smaller

basic time unit), it achieves the largest optimal value.

Lemma 2. Fix design decisions X0 and Y in model (3.2). If sωi,j,t,q =
⌊

sωi,j,t
uq

⌋

uq, Lω
i,j,q =

⌊

Lω
i,j−1

uq

⌋

uq + 1, Uω
i,j,q =

⌈

Uω
i,j−1

uq

⌉

uq + 1, nquq + 1 =
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nq−1uq−1 + 1, and |sωi,j,t − sωi,j,τ |≤ |t − τ |, ∀i ∈ Iωj , ∀j ∈ Jω, ∀ω ∈ Ω,

∀t, τ ∈ TW ω
i,j,q, ∀q ∈ Z, then ẑ∗q = ẑ∗0 if q ∈ Z

−, where Z
− is the set of

non-positive integers.

Proof. Let model Mq denote model (3.2) with basic time unit uq and fixed

design decisions X0 and Y , ∀q ∈ Z. From Lemma 1 we have ẑ∗q ≥ ẑ∗0 , ∀q ∈ Z
−.

Notice that sωi,j,t,q = sωi,j,t, L
ω
i,j,q = Lω

i,j , and Uω
i,j,q = Uω

i,j when q ∈ Z
−, which

means the input parameters for Mq and M0 are the same. So any scheduling

solution that is feasible for M0 is also feasible for Mq due to the finer basic

time unit in Mq, which further indicates ẑ∗q ≤ ẑ∗0 . Combining the results we

have ẑ∗q = ẑ∗0 , ∀q ∈ Z
−.

Theorem 1. Fix design decisions X0 and Y in model (3.1) and model (3.2).

If sωi,j,t,q =
⌊

sωi,j,t
uq

⌋

uq, L
ω
i,j,q =

⌊

Lω
i,j−1

uq

⌋

uq+1, Uω
i,j,q =

⌈

Uω
i,j−1

uq

⌉

uq+1, nquq+1 =

KT , and |sωi,j,t − sωi,j,τ |≤ |t − τ |, ∀i ∈ Iωj , ∀j ∈ Jω, ∀ω ∈ Ω, ∀t, τ ∈ TW ω
i,j,q,

∀q ∈ Z, then ẑ∗q ≤ ẑ∗, ∀q ∈ Z.

Proof. With q = 0 we have that TW ω
i,j,0 = {Lω

i,j, L
ω
i,j + 1, . . . , Uω

i,j − 1, Uω
i,j}.

Hence, for model (3.2) with basic time unit u0, G(X0, Y ) ⊆ G0(X0, Y ) due to

the non-anticipativity constraints, and so ẑ∗0 ≤ ẑ∗. Lemmas 1 and 2 show that

ẑ∗0 ≥ ẑ∗q . So ẑ∗q ≤ ẑ∗, ∀q ∈ Z.

Theorem 2. If sωi,j,t,q =
⌊

sωi,j,t
uq

⌋

uq, L
ω
i,j,q =

⌊

Lω
i,j−1

uq

⌋

uq+1, Uω
i,j,q =

⌈

Uω
i,j−1

uq

⌉

uq+

1, nquq + 1 = KT , and |sωi,j,t − sωi,j,τ |≤ |t − τ |, ∀i ∈ Iωj , ∀j ∈ Jω, ∀ω ∈ Ω,

∀t, τ ∈ Tq \ {0}, ∀q ∈ Z, then z∗q ≤ z∗.
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Proof. Let (X∗
0 , Y

∗) denote an optimal design decision for model (3.1).

According to Theorem 1, ẑ∗q ≤ ẑ∗ = z∗ if both models (3.1) and (3.2) adopt

(X∗
0 , Y

∗) as the design decision. Also, z∗q ≤ ẑ∗q . So z∗q ≤ z∗, ∀q ∈ Z.

Theorem 2 shows how to calculate a lower bound on the optimal value

of model (3.1) by utilizing model (3.2), and we evaluate the computational

performance in Chapter 4. In the next section, we introduce several online

scheduling heuristics that provide upper bounds for model (3.1).

In the results we have presented above, we have assumed that the

difference in the service times for serving floe j using an AUV from station i

starting at times t and τ is bounded by the difference in those times. We close

this section by showing this hypothesis holds provided the AUV speed exceeds

the ice floe speed by a factor of two. Suppose the AUV speed is va and the

speed for ice floe j is v. Then Proposition 1 shows that the change rate of the

service time sωi,j,t depends on the ratio between va and v.

Figure 3.5: An AUV travels distance D1 (D3) from the docking station to
meet the ice floe and travels distance D2 (D4) to return to its docking station
if the service process starts at time t (τ).
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Proposition 1. Assume that the ice floe moves on a straight-line trajectory

at speed v, and an AUV moves directly from the docking station to the floe and

vice versa at speed va when servicing the floe. If va/v ≥ 2 then |sωi,j,t − sωi,j,τ |≤

|t− τ |, ∀i ∈ Iωj , ∀j ∈ Jω, ∀ω ∈ Ω, ∀t, τ = 1, . . . , KT .

Proof. Let C denote the sum of the scan time and the AUV battery recharge

time for ice floe j. Let D1 and D2 denote the outbound and inbound distances

the AUV travels to the floe and back to the docking station if the AUV leaves

the station at time t. We similarly letD3 andD4 depict the analogous distances

if service starts at time τ , as depicted in Figure 3.5. Then, sωi,j,t = (D1 +

D2)/va + C and sωi,j,τ = (D3 + D4)/va + C. We have |D1 − D3|≤ |t − τ |v

and |D2 − D4|≤ |t − τ |v due to triangle inequality. Then |sωi,j,t − sωi,j,τ |=

|D1 − D3 + D2 − D4|/va ≤ |D1 − D3|/va + |D2 − D4|/va ≤ 2|t − τ |v/va. So

|sωi,j,t − sωi,j,τ |≤ |t− τ | if va/v ≥ 2.

3.5 Heuristics and Scheduling Policies

In addition to the uncertainty regarding the floes requiring service, the

two-stage stochastic facility location problem we present in the previous section

involves scheduling dynamics associated with dispatching AUVs, presenting

further computational challenges. Next, we provide an example that shows

the scale of the problem size for model (3.2).

Suppose we have the following input:

• the length of the time horizon is 30 days and the basic time unit is half
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an hour, so T = 1440;

• there are 12 potential locations to put the stations;

• there are 10 scenarios in total and around 200 ice floe arrivals per

scenario;

• the time window for each ice floe is approximately 40 hours; and,

• every ice floe has a list of six stations that are eligible to serve it.

This yields a stochastic integer program for model (3.2) with 17,442,704 integer

decision variables and 186,694 constraints, which will challenge current integer

programming solvers. So, we seek heuristic algorithms that can approximately

solve such a large scale problem efficiently.

The simplified docking station location problem gives us insights about

the optimal radius of the docking station circle, which is closely related to the

system design decisions in our problem. Given the locations of the docking

stations, we then determine the system operation decisions, which involve

scheduling the AUVs, by heuristic methods.

In the scheduling literature, a tardy job refers to a job whose service

process cannot be finished by its due date, which coincides with the notion of

ice floe abandonment in our model, while the objective is to minimize the total

number of tardy jobs. We can also assign different priorities for different jobs,

and then the objective becomes to minimize a weighted sum of the number of

tardy jobs. This objective is an important performance measure in many
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applications, and so it has received significant attention in the scheduling

theory and a number of heuristic algorithms have been developed to minimize

the weighted total number of tardy jobs under different model settings. In the

next few sections, we start with the problem of minimizing the total number

of tardy jobs, which corresponds to minimizing the total number of ice floe

abandonments. Here, the scheduling problem perfectly captures the system

dynamics of our spatial detection model. Then we assign weights for each ice

floe and study the problem of minimizing the weighted total number of ice

floes. Efficient scheduling heuristics are developed for both cases and they

provide upper bounds for the optimal value of model (3.1).

3.5.1 Minimize the Total Number of Tardy Jobs

We start with the most basic setting of the scheduling problem here.

Consider a set of jobs, which may have different due dates and processing times,

that are all available at the same time, and assume there is a single server

to process these jobs. In this setting, Moore’s algorithm easily determines

an optimal job sequence to minimize the total number of tardy jobs. See

Chapter 3 of Pinedo [29] for more detailed information. However, if we assume

the jobs become available at different times and there are multiple servers,

the problem is more difficult to solve, and we rely on heuristics to find good

solutions when the problem size grows large.

Given the docking station locations and the AUV allocations, our

problem of scheduling AUVs to minimize the number of ice floe abandonments
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has much in common with these scheduling problems. The ice floes correspond

to jobs with different arrival times, which we denote as Li,j from the lower

bound of the time window for ice floe j at docking station i in model (3.1).

Here we suppress the scenario index ω in the notation for simplicity since it

does not affect the analysis. The due date, which we denote as Ui,j , for ice

floe j is the latest feasible time that an AUV in station i can be dispatched

to serve it. Again, this corresponds to the upper bound of the time window

for ice floe j at station i defined in model (3.1). Note that the service time

si,j,t depends on the ice floe waiting time and the station locations in our

problem, and we only learn the information for an ice floe when it appears in

the satellite images. These characteristics make the problem nonstandard and

harder to solve. Several online scheduling heuristics are described in the sequel

to determine the AUV dispatch policies, given the docking station locations

and the number of AUVs at each station. Similar techniques have been applied

in Ho and Chang [23] when the arrival times, due dates and processing times

for all the jobs are static.

We assume the docking station locations, and the number of AUVs

at each station, are fixed when we apply these scheduling heuristics. When

new satellite images become available every T time periods, we update the

ice floe profiles and run one of the following heuristics to obtain the AUV

schedules. Suppose set J indexes newly arrived ice floes, which are unassigned

and ready to be served. Let set Jc
i index the ice floes that have been served or

are awaiting service by an AUV which has been assigned from docking station
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i. We initialize Jc
i = ∅, ∀i ∈ I, when we employ the heuristics for the first

time, but the heuristics subsequently take Jc
i as input. Suppose there are ni

AUVs at station i, and also define nak, k ∈ Gi, as the next available time of

AUV k at station i. Here Gi is the set of all the AUVs at docking station

i. We initialize nak as the current system time t, ∀k ∈ Gi, when we employ

the heuristics for the first time, and in subsequent time periods we take nak

values as input. Also, we define stj as the service process start time for ice

floe j, which means an AUV is dispatched to serve ice floe j at time stj . We

let Jd index floes that, at least for the moment, have been declared as being

abandoned. Our heuristics can attempt to reschedule AUVs to remove a floe

from Jd. We use function A(j) to track how many times floe j has been place

in set Jd.

Scheduling Heuristic 1

• Input: Set I, J , Gi, current system time t, Li,j, Ui,j, si,j,t, ∀i, j, t;

Jc
i , nak, ∀k ∈ Gi, ∀i ∈ I; ı̄j , k̄j, stj , ∀j ∈ Jc

i ;

• Output: Jd: set of ice floe abandonments;

Jc
i , ∀i ∈ I: set of ice floes that have been served or are awaiting service

by docking station i;

nak, ∀k ∈ Gi, i ∈ I: next available time for each AUV;

ı̄j , k̄j , stj, ∀j /∈ Jd: station ı̄j dispatches AUV k̄j at time stj to serve

floe j if it is not abandoned.

• Subroutines: Assign(t1, j, stj , si,j,t1, J
c
i ): {stj = t1, t1 = t1 + si,j,t1,

68



Jc
i = Jc

i ∪ {j}};

Abandon(̄ı, j, I, Jd, A(j), t, si,j,t, Ui,j): {if argmin{i∈I,i 6=ı̄}{si,j,t|Ui,j ≥

t} = ∅, Jd = Jd ∪ {j}, A(j) = A(j) + 1}.

• Step 0: Initialize A(j) = 0, stj = 0, ∀j ∈ J ; Jd = ∅, j = 1.

• Step 1: Assign floe j to station ı̄j ∈ argmini∈I{si,j,t|Ui,j ≥ t}. If t > Ui,j,

∀i ∈ I, then Jd = Jd ∪ {j} and go to step 3.

• Step 2:

k̄j ∈ argmink∈Gı̄j
{nak}; if nak̄j ≤ Uı̄j ,j, then call

Assign(nak̄j , j, stj, sı̄j ,j,nak̄j , J
c
ı̄j
) and go to step 3; otherwise,

A(j) = A(j) + 1 and call Abandon(̄ıj , j, I, J
d, A(j), t, si,j,t, Ui,j).

• Step 3:

If j = |J |, go to step 4; otherwise, j = j + 1 and go to step 1.

• Step 4:

Loop(j ∈ J |A(j) = 1): {assign floe j to station ı̂j ∈

argmin{i∈I,i 6=ı̄j}{si,j,t|Ui,j ≥ t}; let ı̄j = ı̂j and k̄j ∈ argmink∈Gı̄j
{nak}.

If nak̄j ≤ Uı̄j ,j, then call Assign(nak̄j , j, stj, sı̄j ,j,nak̄j
, Jc

ı̄j
); else, Jd =

Jd ∪ {j}}.

Scheduling Heuristic 2

• Input: Set I, J , Gi, current system time t, Li,j, Ui,j, si,j,t, ∀i, j, t;

Jc
i , nak, ∀k ∈ Gi, ∀i ∈ I; ı̄j , k̄j, stj , ∀j ∈ Jc

i ;
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• Output: Jd: set of ice floe abandonments;

Jc
i , ∀i ∈ I: set of ice floes that have been served or are awaiting service

by docking station i;

nak, ∀k ∈ Gi, i ∈ I: next available time for each AUV;

ı̄j , k̄j , stj, ∀j /∈ Jd: station ı̄j dispatches AUV k̄j at time stj to serve

floe j if it is not abandoned.

• Subroutines: Assign(t1, j, stj , si,j,t1, J
c
i ): {stj = t1, t1 = t1 + si,j,t1,

Jc
i = Jc

i ∪ {j}};

Abandon(̄ı, j, I, Jd, A(j), t, si,j,t, Ui,j): {if argmin{i∈I,i 6=ı̄}{si,j,t|Ui,j ≥

t} = ∅, Jd = Jd ∪ {j}, A(j) = A(j) + 1}.

• Step 0: Initialize A(j) = 0, stj = 0, ∀j ∈ J ; Jd = ∅, Jz = ∅, j = 1.

• Step 1: Assign floe j to station ı̄j ∈ argmini∈I{si,j,t|Ui,j ≥ t}. If t > Ui,j,

∀i ∈ I, then Jd = Jd ∪ {j} and go to step 4.

• Step 2: k̄j ∈ argmink∈Gı̄j
{nak}; if nak̄j ≤ Uı̄j ,j, then call

Assign(nak̄j , j, stj, sı̄j ,j,nak̄j
, Jc

ı̄j
) and go to step 4; else, let ẑ ∈

argmaxz∈Jc
ı̄j
{sı̄j ,z,stz |stz ≥ t}, loop(k ∈ Gı̄j ): {pnak = nak, pnak =

minq∈Jc
ı̄j
{stq|k̄q = k, stq ≥ stẑ}}.

• Step 3: Loop(q ∈ Jc
ı̄j
|stq > stẑ): {k̄q ∈ argmink∈Gı̄j

{pnak}, pstq =

pnak̄q , pnak̄q = pnak̄q + sı̄j ,q,pstq}, k̄j ∈ argmink∈Gı̄j
{pnak}; if pnak̄j ≤

Uı̄j ,j, then call Assign(pnak̄j , j, stj , sı̄j ,j,pnak̄j
, Jc

ı̄j
), loop(k ∈ Gı̄j , q ∈

Jc
ı̄j
|stq > stẑ, q 6= j): {nak = pnak, stq = pstq}, Jc

ı̄j
= Jc

ı̄j
\{ẑ},
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A(ẑ) = 1, Jz = Jz ∪{ẑ}, and call Abandon(̄ıj , ẑ, I, J
d, A(ẑ), t, si,ẑ,t, Ui,ẑ);

else, A(j) = A(j) + 1 and call Abandon(̄ıj , j, I, J
d, A(j), t, si,j,t, Ui,j).

• Step 4: If j = |J |, then go to step 5; else, j = j + 1 and go to step 1.

• Step 5: Loop(j ∈ J ∪ Jz |A(j) = 1): {assign floe j to station ı̂j ∈

argmin{i∈I,i 6=ı̄j}{si,j,t|Ui,j ≥ t}; let ı̄j = ı̂j and k̄j ∈ argmink∈Gı̄j
{nak}.

If nak̄j ≤ Uı̄j ,j, then call Assign(nak̄j , j, stj , sı̄j ,j,nak̄j
, Jc

ı̄j
); else, Jd = Jd ∪

{j}}.

In both Heuristic 1 and Heuristic 2, ice floe j is assigned to the station

for which it has the shortest service time, given the floe’s due date using that

station exceeds the current system time t. If there is no AUV that can serve

floe j before its due date on that station, we reassign it in Heuristic 1. In

Heuristic 2, if ice floe j cannot be served before its due date by the station

with the shortest service time, we reassign the floe with the longest service

time in the queue for that particular station, given that we can serve floe j by

reassigning this ice floe. For the reassigned ice floe, if t is smaller than its due

date then it means there may be another station that can serve the floe before

its due date. So we give such an ice floe “another chance” by reassigning it

to the station with the second shortest service time, given that the ice floe’s

due date using this station exceeds t. The function A(j) restricts the total

number of reassignments for floe j. The reassignment procedure is necessary

here because the ice floe service time depends on its waiting time and the

docking station locations. Also, each floe has a different due date using each
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station. Heuristics 1 and 2 take all the AUVs in the assigned station into

account and hence balance the workload of the AUVs within a station.

Scheduling Heuristic 3

• Input: Set I, J , Gi, current system time t, Li,j, Ui,j, si,j,t, ∀i, j, t;

Jc
i , nak, ∀k ∈ Gi, ∀i ∈ I; ı̄j , k̄j, stj , ∀j ∈ Jc

i ;

• Output: Jd: set of ice floe abandonments;

Jc
i , ∀i ∈ I: set of ice floes that have been served or are awaiting service

by docking station i; nak, ∀k ∈ Gi, i ∈ I: next available time for each

AUV;

ı̄j , k̄j , stj, ∀j /∈ Jd: station ı̄j dispatches AUV k̄j at time stj to serve

floe j if it is not abandoned.

• Subroutines: Assign() and Abandon() from Algorithm 1;

Move(j, A(j), Jz , Jc
i ): {A(j) = 1, Jz = Jz ∪ {j}, Jc

i = Jc
i \{j}}.

• Step 0: Initialize A(j) = 0, stj = 0, ∀j ∈ J ; Jd = ∅, Jz = ∅, j = 1.

• Step 1: Assign floe j to station ı̄j ∈ argmini∈I{si,j,t|Ui,j ≥ t}. If

t > Ui,j, ∀i ∈ I, then Jd = Jd ∪ {j} and go to step 4. Loop(k ∈

Gı̄j ):{nak = max{t,minq∈Jc
ı̄j
{stq|k̄q = k, stq ≥ t}}}, Jc

ı̄j
= Jc

ı̄j
∪ {j},

stj = t, loop(q ∈ Jc
ı̄j
|stq ≥ t): {order the floes according to EDD},

Js = ∅.

• Step 2: Loop(k ∈ Gı̄j ):{loop(q ∈ Jc
ı̄j
| q /∈ Js, stq ≥ t):{If nak ≤ Uı̄j ,q,

then k̄q = k and call Assign(nak, q, stq, sı̄j ,q,nak , J
s). If nak > Uı̄j ,q, then
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ẑ ∈ argmaxz∈Js{sı̄j ,z,stz |k̄z = k}, pnak = stẑ and loop(r ∈ Js | k̄r = k,

str > stẑ): {pstr = pnak, pnak = pnak + sı̄j ,r,pstr};

if pnak ≤ Uı̄j ,q, then call Assign(pnak, q, stq, sı̄j ,q,pnak , J
s),

nak = pnak, loop(r ∈ Js | k̄r = k, str > stẑ):

{str = pstr}, Js = Js\{ẑ}, and if k = |Gı̄j |, call

Move(ẑ, A(ẑ), Jz, Jc
ı̄j
) and Abandon(̄ıj , ẑ, I, J

d, A(ẑ), t, si,ẑ,t, Ui,ẑ); if

pnak > Uı̄j ,q and k = |Gı̄j |, then call Move(q, A(q), Jz, Jc
ı̄j
) and

Abandon(̄ıj , q, I, J
d, A(q), t, si,q,t, Ui,q).}}

• Step 3: If j = |J |, then go to step 4; else, j = j + 1 and go to step 1.

• Step 4: Loop(j ∈ J ∪ Jz |A(j) = 1): {assign floe j to station ı̂j ∈

argmin{i∈I,i 6=ı̄j}{si,j,t|Ui,j ≥ t}; let ı̄j = ı̂j and k̄j ∈ argmink∈Gı̄j
{nak}.

If nak̄j ≤ Uı̄j ,j, then call Assign(nak̄j , j, stj , sı̄j ,j,nak̄j
, Jc

ı̄j
); else, Jd = Jd ∪

{j}}.

As in Heuristics 1 and 2, Heuristic 3 assigns each unassigned ice floe

j to the station ı̄j that achieves the shortest service time, given the floe has

not reached its due date for that station. Let Jc
ı̄j
index the ice floes that are

awaiting service by an AUV from docking station ı̄j, and order them according

to earliest due date (EDD); i.e., order them based on their Uij values. We break

the nı̄j–AUV scheduling problem at station ı̄j into nı̄j one–AUV scheduling

problems and solve them one by one, where nı̄j is the total number of AUVs

at station ı̄j . The one–AUV problem can be solved by Moore’s algorithm,

which is described in Step 2 of Heuristic 3. We employ the same reassignment
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procedure as in Heuristics 1 and 2 after solving the nı̄j one–AUV scheduling

problems. Heuristic 3 greedily solves a sequence of single AUV scheduling

problems to minimize the number of abandonments among the remaining ice

floes by using Moore’s algorithm.

We can adjust the abandonment criterion by allowing multiple

reassignments, which means we can put A(j) > Â as the reassignment criterion

in the heuristics, where Â can be any finite integer threshold. We expect the

abandonment rate to be non-increasing as Â grows, since this essentially gives

more opportunities for each ice floe to be served. However, increasing Â also

increases the computational complexity of the algorithm and computational

experiments show little gain with respect to minimizing the total number of

tardy jobs by increasing Â, and so we choose Â = 1 in all of our scheduling

heuristics.

3.5.2 Minimizing the Weighted Total Number of Tardy Jobs

As we mention in the previous sections, for a given set of jobs that

is all available at the beginning of the time horizon to be processed on a

single server, the problem of minimizing the total number of tardy jobs is

relatively easy, and we have an efficient algorithm to determine the optimal

sequence of jobs. However, if we assign different weights to each job and the

objective function is to minimize the weighted total number of tardy jobs, the

problem becomes NP-hard. Still, there is a pseudopolynomial algorithm based

on dynamic programming that can solve the problem to optimality [24].
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In Chapter 2, we introduce the simulation process of the ice floe arrivals,

and there are two different types of ice floe trajectories. The first approach

assumes every ice floe has a deterministic trajectory, and we know its velocity

after the ice floe enters the alert zone. The system restricts attention to

those ice floes whose trajectories intersect the alert zone. In this case, the

problem of minimizing the total number of abandonments perfectly captures

the scheduling dynamics of the model. In the second approach, the ice floes

have stochastic trajectories which may, or may not, intersect the alert zone.

So each ice floe has a different probability of entering the alert zone, and we

consider that probability as the weight wj in this case. The objective becomes

to minimize the weighted total number of ice floe abandonments. Also, the

due date, Ui,j, is no longer deterministic, and it must be updated every time

when we have new satellite information.

We describe four different heuristic algorithms for the problem with

stochastic ice floe trajectories, and the basic structure for these algorithms is

similar, except that we use different criteria to sequence the jobs. It is worth

mentioning that we can also assign weights to the ice floes based on other

criteria, e.g., we can give larger weights to those ice floes with longer service

times, or faster speeds. Here we also assume set J contains all the unassigned

ice floes between the alert zone and the arrival circle. Notice if an ice floe goes

out of the arrival circle, we simply delete it out from the system. If the same

ice floe reenters the arrival circle, we consider it as a new arrival.

Scheduling Heuristic 4
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• Input: Set I, J , Gi, current system time t, Li,j, Ui,j, si,j,t, ∀i, j, t;

Jc
i , nak, ∀k ∈ Gi, ∀i ∈ I; ı̄j , k̄j, stj , ∀j ∈ Jc

i ;

• Output: Jd: set of ice floe abandonments;

Jc
i , ∀i ∈ I: set of ice floes that have been served or are awaiting service

by docking station i; nak, ∀k ∈ Gi, i ∈ I: next available time for each

AUV;

ı̄j , k̄j , stj, ∀j /∈ Jd: station ı̄j dispatches AUV k̄j at time stj to serve

floe j if it is not abandoned.

• Subroutines: Assign() and Abandon() from Algorithm 1;

Move(j, A(j), Jz , Jc
i ): {A(j) = 1, Jz = Jz ∪ {j}, Jc

i = Jc
i \{j}}.

• Step 0: Initialize A(j) = 0, stj = 0, ∀j ∈ J ; Jd = ∅, Jz = ∅, j = 1.

• Step 1: Assign floe j to station ı̄j ∈ argmini∈I{si,j,t|Ui,j ≥ t}. If

t > Ui,j, ∀i ∈ I, then Jd = Jd ∪ {j} and go to step 4. Loop(k ∈

Gı̄j ):{nak = max{t,minq∈Jc
ı̄j
{stq|k̄q = k, stq ≥ t}}}, Jc

ı̄j
= Jc

ı̄j
∪ {j},

stj = t, loop(q ∈ Jc
ı̄j
|stq ≥ t): {w1/(Uı̄j ,1 − t) ≥ w2/(Uı̄j ,2 − t) ≥ · · ·},

Js = ∅.

• Step 2: Loop(k ∈ Gı̄j ):{loop(q ∈ Jc
ı̄j
| q /∈ Js, stq ≥ t):{If nak ≤ Uı̄j ,q,

then k̄q = k and call Assign(nak, q, stq, sı̄j ,q,nak , J
s). If nak > Uı̄j ,q, then

ẑ ∈ argmaxz∈Js{sı̄j ,z,stz |k̄z = k}, pnak = stẑ and loop(r ∈ Js | k̄r = k,

str > stẑ): {pstr = pnak, pnak = pnak + sı̄j ,r,pstr};

if pnak ≤ Uı̄j ,q, then call Assign(pnak, q, stq, sı̄j ,q,pnak , J
s),
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nak = pnak, loop(r ∈ Js | k̄r = k, str > stẑ):

{str = pstr}, Js = Js\{ẑ}, and if k = |Gı̄j |, call

Move(ẑ, A(ẑ), Jz, Jc
ı̄j
) and Abandon(̄ıj , ẑ, I, J

d, A(ẑ), t, si,ẑ,t, Ui,ẑ); if

pnak > Uı̄j ,q and k = |Gı̄j |, then call Move(q, A(q), Jz, Jc
ı̄j
) and

Abandon(̄ıj , q, I, J
d, A(q), t, si,q,t, Ui,q).}}

• Step 3: If j = |J |, then go to step 4; else, j = j + 1 and go to step 1.

• Step 4: Loop(j ∈ J ∪ Jz |A(j) = 1): {assign floe j to station ı̂j ∈

argmin{i∈I,i 6=ı̄j}{si,j,t|Ui,j ≥ t}; let ı̄j = ı̂j and k̄j ∈ argmink∈Gı̄j
{nak}.

If nak̄j ≤ Uı̄j ,j, then call Assign(nak̄j , j, stj , sı̄j ,j,nak̄j
, Jc

ı̄j
); else, Jd = Jd ∪

{j}}.

Heuristic 4 is very similar to Heuristic 3, except here we give priorities

to those jobs with earlier due dates and larger weights, because they may be

more likely to enter the alert zone. The only difference between Heuristic 4

and the following heuristics is the ordering criterion in Step 1. In particular,

in each of the heuristics we give below, the rule based on ordering the floes

is changed. For example, for Heuristic 5 we replace “loop(q ∈ Jc
ı̄j
|stq ≥ t):

{w1/(Uı̄j ,1 − t) ≥ w2/(Uı̄j ,2 − t) ≥ · · ·}” with “loop(q ∈ Jc
ı̄j
|stq ≥ t): {w1 ≥

w2 ≥ · · ·}”.

• Scheduling Heuristic 5:

w1 ≥ w2 ≥ · · ·.
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• Scheduling Heuristic 6:

w1(t− Lı̄j ,1) ≥ w2(t− Lı̄j ,2) ≥ · · ·.

• Scheduling Heuristic 7:

w1/sı̄j ,1,t ≥ w2/sı̄j ,2,t ≥ · · ·. This criterion is called weighted shortest

processing time (WSPT) in the scheduling literature.

In Heuristic 5, we order the jobs according to their weights, since

the objective is to minimize the weighted total number of abandonments.

Heuristic 6 gives priority to jobs with larger weights and longer waiting time.

The intuition behind this algorithm is that a late deadline does not always

mean that the ice floe is not a real threat to the system. For instance, it is

possible that the deadline for the ice floe is far away, but the ice floe has been

in the neighborhood of the alert zone for a long time. In this case, it may be a

good idea to serve this ice floe as soon as possible. Heuristic 7 represents the

WSPT heuristic, which is the most popular heuristic to solve the problem of

minimizing weighted total number of tardy jobs in the scheduling literature.

The computational performance of these scheduling heuristics is

presented in the following Chapter. Since model (3.2) provide lower bounds

for the multi-stage model and the scheduling heuristics provide upper bounds,

our computational experience with the optimality gap is also discussed in the

following Chapter.
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Chapter 4

Computational Analysis

In this chapter, we discuss our computational experience with the

optimization models and the scheduling heuristics presented in Chapter 3.

We start with the parameter values for the optimization models, followed

by the strategies to improve the solution time. Section 4.3 presents an

analysis on the optimality gaps since the two-stage stochastic facility location

problem and the scheduling heuristics provide respective lower bounds and

upper bounds on the optimal value z∗ of the original multi-stage model.

The computational performance of the scheduling heuristics is also studied

in Section 4.4. Section 4.5 further demonstrates the value of our approach by

comparing its performance with a simpler facility location model that fails to

fully capture queueing dynamics.

4.1 Input Parameters

Using current technology, satellite images are updated every four hours,

and we call this a stage in model (3.1). Increasing the number of stages

increases the fidelity of the solutions since the design decisions affect the system

over a long horizon, but the model becomes computationally intractable even
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when the number of stages is relatively small. That is why we need to develop

the two-stage model and the scheduling heuristics to obtain upper and lower

bounds for the optimal solution. We use the arrival process simulation methods

introduced in Section 2.3.1 to generate synthetic data in order to test the

performance of these approximation models.

The parameter θ generates the pair (R sin θ, R cos θ) on the

circumference of the alert zone circle, where R is the radius of the alert zone.

Here we assume θ ∼ Unif [−π
2
, π
2
], since the platform is close to the continent

in reality as shown in Figure 4.1. Parameter α ∈ [0, π] determines the direction

of the velocity and we assume α ∼ Unif [0, π], independent of θ, since we only

consider the ice floes that enter the alert zone. The distribution of θ and α

depends on the characteristics governing the movement of ice floes, and here

we adopt independent uniform distributions for both.

Figure 4.1: Potential docking station locations on two concentric circles.
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We first provide a two-stage model with six potential docking station

locations on two concentric circles as shown in Figure 4.1. Again, the alert

zone radius R is 36 nmi. The outer docking station circle radius r equals to

30 nmi, and the inner docking station circle radius r̃ equals to 25 nmi. During

the computational experiments, the locations on the inner circle are never

selected as optimal system design decisions to model (3.2), unless there are

more than three docking stations to locate. This observation is consistent with

intuition since locating docking stations on the outer circle results in shorter

service times, and the observation is further consistent with our results from

Section 3.3, which suggest the optimal radius of the docking station circle is

close to the radius of the alert zone. This analysis suggests that we place

the potential docking station locations on one circle instead of several circles,

so we assume there are six potential docking station locations as shown in

Figure 4.2. The radius r for the docking station circle is set to be 30 nmi by

taking both the ocean depth (in a particular case study with industry) and

the results from the simplified docking station location model in Section 3.3

into consideration.

We assume the ice floe scan time is uniformly distributed between one

hour and eight hours. Also, the AUV speed is assumed to be va = 8 knots

and the ice floe speed is v = 0.5 knots. We assume the AUV battery life is 48

hours, and the AUVs must charge for four hours after each scanning sortie.

Due to limited capacity at the docking station, we assume at most six AUVs

can be allocated to each docking station. We generate scenarios using a spatial
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Figure 4.2: Potential docking station locations on one circle.

Poisson process with λ = 0.5 arrivals per hour, which means on average one

ice floe arrives to the system every two hours. In the following analysis, the

probabilities for all the scenarios are equal.

In Section 3.4, we present a two-stage stochastic facility location model

called model (3.2) which provides a lower bound on the optimal value of

model (3.1). Ideally, we want the optimization model to be large enough

so it can provide us with a high fidelity solution. Also, we want it to be

computationally tractable. In this section, we explore the appropriate basic

time unit (uq), the number of scenarios (|Ω|) and the length of time horizon

(T ) for model (3.2). Lemma 1 states that increasing the basic time unit,

uq, decreases the optimal value of model (3.2) if we fix the system design

decisions. Assume we put one docking station and four AUVs at location 3 in

Figure 4.2. Then, Figure 4.3 shows the (normalized) optimal value, ẑ∗q , under
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three independent and identically distributed (i.i.d.) data sets with different

values of uq.

Figure 4.3: Normalized optimal value from two-stage model (3.2) with fixed
design decisions (y3 = 1, x3,0 = 4; yi = 0, xi,0 = 0, ∀i 6= 3, see Figure 4.2).
The y-axis corresponds to ẑ∗q/

∑

ω∈Ω pω|Jω|, the normalized optimal value of
model (3.2). The x-axis corresponds to uq, the basic time unit.

Figure 4.3 plots the abandonment rate, ẑ∗q/
∑

ω∈Ω pω|Jω|, instead of

the expected number of abandonments to normalize the model output. The

time horizon T = 512 hours, and we generate |Ω|= 5 i.i.d. scenarios for each

model instance. Figure 4.3 shows the abandonment rate decreases as the basic

time unit uq increases, and the rate drops more quickly as uq grows. These

observations are consistent with Lemma 1, since optimistic rounding has a

greater impact on model (3.2) when uq is large. For example, when uq is 32

hours, all the ice floes with service times less than 32 hours can be served
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instantaneously in model (3.2) due to the optimistic rounding, and so the

abandonment rate drops to zero in all the data sets shown in Figure 4.3. On

the other hand, the abandonment rates only change slightly when uq decreases

from 0.5 hour to 0.25 hour, but the required computational effort to solve

model (3.2) to optimality grows from two hours to five hours. All computations

we report here are carried out on a 3.33 GHz Xeon processor with 24 GB of

shared memory, using CPLEX version 12.4.

Figure 4.4: Results from Heuristic 2 with different time horizon T .

Another issue is the tradeoff between the time horizon, T , and the

number of scenarios, |Ω|. For example, we can have one long scenario, or

several short scenarios for each model. Assume we use Heuristic 2 with the

same design decisions y3 = 1 and x3,0 = 4. Figure 4.4 shows the relation

between the abandonment rate and T for three i.i.d. data sets. Here we start
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with one scenario with T = 900 hours. Then common random numbers are

used to generate two scenarios with T = 450 hours for each scenario. Following

the same technique, we generate up to nine scenarios with T = 100 hours

for each scenario. All AUVs are available at the beginning of each scenario,

which introduces initialization bias. Also, those ice floes whose time window

upper bounds exceed T are ignored, and we call this cutoff bias. Decreasing

T increases both the initialization bias and the cutoff bias, which lowers the

abandonment rate. From Figure 4.4 we can see the abandonment rate is

relatively stable when T exceeds 225 hours, and it decreases dramatically for

smaller values of T .

Based on these results, we choose T = 250 hours, and, uq = 0.5 hours

to evaluate the optimality gap using |Ω|= 2 i.i.d. scenarios for each data set.

Figure 4.5 shows optimal results from model (3.2) when we change the number

of stations and the number of AUVs. We can see that the percentage of ice

floes we fail to scan, which is the abandonment rate, drops quickly as we

increase the number of AUVs. When the number of AUVs is fixed, increasing

the number of docking stations also decreases the abandonment rate. For

example, when we have four AUVs and one single docking station, the ice floe

abandonment rate is 27.36%. This value drops to 21.63% and then to 19.51%

as we allocate four AUVs to two, and then three, docking stations.

We use CPLEX as the solver for our mixed integer optimization model.

In the next section, we discuss the strategies to reduce the solution time of

model (3.2).
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Figure 4.5: Efficient frontier depicting the tradeoff between the abandonment
rate and the total number of AUVs.

4.2 Strategies to Reduce MIP Solution Time

We use the General Algebraic Modeling System (GAMS, version 23.9.1)

to implement our mixed integer programming (MIP) models. GAMS links

to a number of high performance solvers and we use IBM CPLEX (version

12.4) here. All the computational experiments regarding MIP optimization are

performed on the University of Texas at Austin’s Mechanical Engineering high

performance computing machines, where “the machines each have two sixcore,

hyperthreading 3.33 GHz Xeon processors and 24 GB of shared memory.”

In this section, we discuss the strategies to improve CPLEX performance,

and thus to reduce the solution time of the model. We refer to Klotz and

Newman [2] for more general guidelines to solve difficult MIP models.

In order to solve a MIP, CPLEX uses a branch-and-bound algorithm,

which is an intelligent enumeration method, along with cut generation. The
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branch-and-bound process starts with the linear programming (LP) relaxation

of the MIP, where it assumes continuous values for all the decision variables.

The solution obtained from the LP relaxation is used as a starting point for

the branch-and-bound algorithm to obtain an optimal solution for the MIP.

In our spatial detection model, the objective is to minimize the expected total

number of abandonments. So the LP relaxation provides a lower bound for

the MIP, since the feasible region of the MIP is a subset of the feasible region

for the LP relaxation.

If the LP relaxation is infeasible, then the MIP is also infeasible. If

the optimal solution from the LP relaxation is feasible for the MIP, then the

solution is also optimal for the MIP. A solution with all the decision variables

equal to zero is feasible for both model (3.1) and model (3.2), which means that

the MIP models and the LP relaxations are always feasible in this case. But

according to our computational experiments, the optimal solution from the LP

relaxation is usually not feasible for the MIP, which means branch-and-bound

process has to be employed to arrive at an optimal solution for model (3.2).

Without loss of generality, we denote the LP relaxation of a model in

standard form as model (P), and we also label its dual problem as model (D):

(P ) min cTx (4.1a)

s.t. Ax = b (4.1b)

x ≥ 0; (4.1c)
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(D) max yT b (4.2a)

s.t. yTA ≤ cT . (4.2b)

See Chapter 4 of Bertsimas and Tsitsiklis [12] for more on duality

theory. There are different LP solution algorithms implemented in CPLEX,

and a user can specify the LP algorithm for both the root node and the

child nodes of the branch-and-bound tree [1]. If left to its default, CPLEX

automatically chooses the LP algorithm for the model. The three most popular

LP algorithms are the primal simplex algorithm, dual simplex algorithm, and

the interior point algorithm. We can apply either the primal simplex algorithm

or the dual simplex algorithm on both model (P) and model (D) given below,

and so there are four different ways to utilize the simplex algorithm on the LP

relaxation.

Let A denote an m × n matrix. Then, model (P) has m constraints

and n decision variables. The simplex algorithm moves from one vertex of

the feasible region to another with improved objective function value, until

an optimal solution is reached. So the simplex algorithm terminates with an

optimal basis for the LP relaxation and the branch-and-bound process uses it

as a starting point for the enumeration. For highly degenerate [21] LP models,

the simplex algorithm may not be the best option since it may cycle among,

or stall temporarily at, solutions with the the same objective value.

Unlike the simplex algorithm, an interior point algorithm moves
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through the feasible region of the LP relaxation to find an optimal solution,

which means it will not provide a basic feasible solution if the model has

multiple optimal solutions. One of the difficulties during the implementation

of an interior point algorithm is to construct an optimal basis, and CPLEX uses

a crossover algorithm (see, e.g., [11]) for that. However, a crossover algorithm

can be computationally expensive, and so it may not be a good idea to employ

the interior point as the LP algorithm for the root nodes.

In model (3.2), we have more decision variables than constraints, which

means m ≪ n for our matrix A. For this type of LP, applying the primal

simplex or the interior point algorithm on the primal problem may be more

efficient. By using the simplex algorithm, the number of constraints m has

more impact on the model solution time since it uses an m×m basis matrix

at each iteration. Typically, larger values of m indicate longer model solution

times, and so working on model (P) is more desirable in this case. Also, the

primal simplex may have more advantages than the dual simplex since the

primal simplex only needs to calculate the reduced costs for a small subset of

nonbasic variables at each iteration in this case. When m ≪ n, the interior

point algorithm is likely to be effective since AAT has relatively small size (an

m×m matrix). We refer to Klotz and Newman [1] for a detailed comparison

of different LP algorithms. For model (3.2), if we leave CPLEX to its default

setting, it chooses dual simplex on the primal problem to solve the LP for

the root node. When we change the root node LP algorithm to interior point,

CPLEX solves the LP relaxation much faster. For the child nodes, dual simplex
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on the primal problem works best for our model.

We can give the MIP an initial feasible solution, which may also help

to improve the solution time. In model (3.2), it may be challenging to come

up with an initial feasible solution which includes both the system design

decisions and the operation decisions. However, it is straightforward to come

up with a partial initial feasible solution which only has the system design

decisions, including the docking station locations and the AUV allocations.

We can provide the partial initial feasible solution to CPLEX to help reduce

the solution time.

In model (3.2), the integer decision variable xω
i,t indicates the total

number of available AUVs at location i at time t in scenario ω. Relaxing xω
i,t

to be continuous does not affect the optimal solution of the model as long

as the decision variable xi,0 is integer and zwi,j,t is binary, since the inventory

constraints ensure xω
i,t to be integer in this case. While changing a pure IP

problem into a MIP problem does not always help to reduce the solution time,

relaxing xω
i,t generally helps model (3.2) to arrive at an optimal solution more

quickly.

CPLEX allows users to set their preferences for cut generation.

Generally, aggressively generating cuts introduces extra constraints that may

not be helpful, which can increase solution time. When left as the default,

CPLEX generates cuts only if they seem to be useful. There are different types

of cuts that can be generated, e.g., clique cuts, mixed integer rounding cuts,

and cover cuts. During the branch-and-bound process for our MIP models, we
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notice that generating symmetry cuts aggressively usually helps the algorithm

to arrive at an optimal solution more quickly. This suggests that the model has

intrinsic symmetry that needs to be removed. When the branch-and-bound

tree has some symmetric nodes, it is more difficult to prune what amount to

redundant branches, and then the optimizer has to keep track of more nodes,

which increases the overall solution time of the model.

Besides generating symmetry cuts, there are several other methods that

may help to remove intrinsic symmetry in a model. The original objective

function of our spatial detection model is to minimize the expected total

number of abandonments, where we assign weight pω to scenario ω. This means

the ice floes that arrive in the same scenario have the same weights, which may

introduce symmetry. Instead, we can assign weight qωj to ice floe j in scenario

ω, so different ice floes have different weights. The weight qωj can be assigned

based on small perturbations, e.g., qωj ∼ Unif [1, 1+ ζ ], ∀j ∈ Jω, ω ∈ Ω, where

ζ is a very small number. We can also assign the weight according to different

characteristics of the ice floe, e.g., the size of the ice floe, the distance from

the ice floe to the platform, or the speed of the ice floe. The new objective

function is shown by (4.3):

∑

ω∈Ω

∑

j∈Jω

qωj · (1− rωj ). (4.3)

Another way to break intrinsic symmetry is to introduce a secondary

objective function that distinguishes the ice floes. For example, we can denote

the service completion time as scωj for ice floe j in scenario ω and use it as
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a secondary objective function. Then, the new objective function is defined

by (4.4) and we assign weight ǫ for the secondary objective:

∑

ω∈Ω

pω
∑

j∈Jω

(1− rωj ) + ǫ ·
∑

ω∈Ω

∑

j∈Jω

scωj . (4.4)

With the original objective function, model (3.2) provides lower bounds

for the multi-stage model according to Theorem 2. We can prove that if we

change the objective function in both the multi-stage model and the two-stage

model as (4.3) or (4.4), then the optimal objective value of the two-stage model

is still a lower bound for the multi-stage model.

When using CPLEX as the solver for a MIP, another important way

to control the branch-and-bound efficiency is to define branching priorities for

the decision variables. When left to its default, CPLEX makes the decision

about which variable to branch on at each node. If we assign different priorities

to different decision variables, then CPLEX branches on the higher priority

variables before the lower priority variables. In model (3.2), we can assign

higher priority for the design decisions, which includes the docking station

locations and the AUV allocations at each station, and lower priority for the

system operation decisions.

Suspected Issues Strategies
Average Performance

Improvement (based on the
original model)

Table 4.1: Strategies to improve MIP solution time for
model (3.2).
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Inefficient root
node LP algorithm

Apply interior point
algorithm on primal

Root node LP solution
time decreases 95%

Inefficient child
node LP algorithm

Apply dual simplex
algorithm on primal

Overall MIP solution time
stays the same

Lack of initial
feasible solution

Assign a partial initial
feasible solution

Overall MIP solution time
increases 20%

Unnecessary
integer decision

variables

Relax the decision
variable xω

i,t

Overall MIP solution time
decreases 15%

Intrinsic symmetry

Generate symmetry cuts
aggressively

Overall MIP solution time
decreases 6%

Assign different weights to
different ice floe arrivals

MIP solution time stays
the same for small weight
variation; MIP solution

time increases when weight
variation increases

Add a secondary objective
function to minimize the

sum of the service
completion times

Overall MIP solution time
decreases up to 90% when

the weight for the
secondary objective
function increases

Inefficient priority
branching

Assign higher priority for
design decisions and lower

priority for operation
decisions

Overall MIP solution time
stays the same

Inefficient cut
generation

Generate cuts
aggressively, e.g., clique,
cover, zero-half and mixed

integer rounding

Overall MIP solution time
increases

Table 4.1: Table 4.1 cont.

Table 4.1 shows a summary for all the strategies we discuss in this
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section to improve the solution time of model (3.2). The first column has

a short description for each of the suspected issues, and the second column

contains the proposed solutions for each specific issue. The third column shows

the average performance improvement based on the original model, where all

the CPLEX parameters are set as the default. We apply these techniques on

five instances of our MIP; each instance has 500 time periods and two i.i.d.

scenarios. We adopt the same assumptions on the other parameter settings as

introduced in the previous section. When we apply interior point algorithm

on the primal, relax the decision variable xω
i,t and generate symmetry cuts

aggressively in CPLEX, the overall solution time for model (3.2) decreases

17% on average.

CPLEX chooses dual simplex to solve the primal LP for the root node,

and we can see great improvement of the solution time for the LP relaxation

when we instead use an interior point algorithm at the root node. On average,

the root node LP solution time reduces 95% and the overall MIP solution

time reduces 4%. Also, the crossover process only takes a few seconds to

construct an optimal basis. For the child nodes, CPLEX uses dual simplex

on the primal, which is also the best algorithm based on our computational

experiments. When we assign a partial initial feasible solution to the MIP,

the solution time for most of the instances grows, indicating a partial initial

feasible solution does not help to improve the solution time of our MIP in

general. One possible reason is that CPLEX turns off some of its heuristics

when a partial initial feasible solution is provided, while these heuristics help
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the algorithm arrive at an optimal solution more quickly. When we relax the

decision variables xω
i,t to be continuous, the solution time decreases 15% on

average.

To eliminate intrinsic symmetry in our model, we develop three different

strategies. Generating symmetry cuts aggressively for model (3.2) helps to

reduce the solution time around 6% on average. When we change the objective

function of the MIP, it becomes a different model and the optimal solutions

may also change. When we assign different weights to different ice floes, we

start with small weight variation and assume qωj ∼ U [1, 1.01]. The solution

times of the MIP stay the same, and the optimal solutions are the same as the

original model. When we increase the weight variation, which means increasing

the upper bound of the uniform distribution for qωj in this case, the average

MIP solution time increases.

When a secondary objective is introduced, the weight, ǫ, for the

secondary objective function should be chosen judiciously according to the

magnitude of the primary objective. For model (3.2), the overall solution times

stay the same when the weight ǫ is very small, e.g., ǫ = 0.0001 in this case.

When we increase the value of ǫ, the solution times decrease, e.g., when we

set ǫ = 0.001, it decreases 58% on average. The solution time for model (3.2)

decreases up to 90% if we keep increasing the value of the weight ǫ. There is

no improvement in the overall solution time when we manually assign higher

priority for the system design decisions and lower priority for the operation

decisions.
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Besides generating symmetry cuts, we can also try to generate other

types of cuts for the model more aggressively. Clique cuts help to distinguish

incompatible variables, e.g., two binary variables are called incompatible if the

model has a constraint that specifies the sum of these two variables cannot

exceed one. The mixed integer rounding (MIR) cuts create cutting planes

that truncate fractional bounds for integer variables. Generating cover cuts

are usually helpful when the model has 0-1 knapsack constraints. Zero-half

cuts can be generated when the left-hand side of a constraint consists of

integer decision variables and integer parameters, while the right-hand side

has fractional values. Our computational experiments suggest we should

leave these cut generations as default in CPLEX, since CPLEX only seems

to generate the relevant ones. Manually forcing the optimizer to generate cuts

aggressively introduces unnecessary constraints in our model, and increases

the MIP solution time.

We solve model (3.2) to optimality in this dissertation, but it is worth

mentioning that the solution time reduces greatly if we allow a reasonable

relative tolerance when we solve model (3.2). For example, if the relative

tolerance is 5%, the MIP solution time reduces about 60% on average.

In the next section, we show the optimality gaps provided by the

two-stage optimization model (3.2) and the online scheduling heuristics from

Chapter 3. All the useful strategies we discuss in this section are applied to

the MIP to reduce its solution time.
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4.3 Optimality Gap

According to our study of the effect of selecting certain parameters in

Section 4.1, we choose T = 250 hours and uq = 0.5 hours to evaluate the

optimality gap using |Ω|= 2 i.i.d. scenarios in each data set. On average, it

takes eight hours to solve one instance of model (3.2) in CPLEX with these

parameters. Note there here we are optimizing both design and operation

decisions while the results we report in Section 4.1 use fixed design decisions.

Different traffic intensity levels are taken into consideration since the quality

of the optimality gap differs as the traffic intensity level changes. Similar to

the analysis of the simulation results in Chapter 2, we define the high traffic

intensity level to have abandonment rates above 40%, while the medium level

has abandonment rates between 10% and 40%, and the low traffic intensity

level has abandonment rates below 10%. The optimal design decisions

obtained from model (3.2) are used as the system design decisions in the

scheduling heuristics.

Figure 4.6 shows the optimality gap for five i.i.d. data sets with a single

docking station, by plotting the upper bound from a heuristic and the lower

bound from model (3.2)’s optimal value. We change the traffic intensity by

adjusting the total number of AUVs, from h = 2 to h = 4 to h = 6. Since

the objective is to minimize the expected number of ice floe abandonments,

Heuristics 1, 2 and 3 generate upper bounds, and we choose the tightest one

to report in Figure 4.6. With h = 2 AUVs, the minimum relative gap is 1.5%

and the average is 3.1%, while the minimum absolute gap is 0.9% and the
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Figure 4.6: Optimality gaps with one docking station.

average is 1.8%. When we increase the AUV quantity to h = 4, the minimum

relative gap increases to 6.5% and the average increases to 10%. Also, the

minimum absolute gap becomes 2.30% and the average is 3%. If we increase

the AUV quantity to h = 6, the lower bound provided by model (3.2) equals

to the upper bound obtained from Heuristic 3 in data set 2, so a zero gap is

achieved in this case. However, the average relative gap increases to 23.1%

and the average absolute gap becomes 1.8%. Here, the absolute gap for the

abandonment rate is the difference between the lower bound, z∗q/
∑

ω∈Ω pω|Jω|,

and the upper bound obtained from the heuristics. The relative gap is the

same difference divided by z∗q/
∑

ω∈Ω pω|Jω|.

Table 4.2, Figure 4.7 and Figure 4.8 show the optimality gap statistics

from 20 i.i.d. data sets under different traffic intensities and different numbers

of docking stations. Table 4.2 shows the average, the minimum, and the

98



maximum for both the absolute gap and the relative gap. For example, for

a single station with high traffic intensity, the average absolute gap is 2.02%,

while the minimum absolute gap is 0.59%, and the maximum is 3.04%.

Single Station:
Traffic Intensity

Absolute Gap Relative Gap

High 2.02% [0.59%, 3.04%] 3.18% [0.78%, 5.05%]

Medium 3.29% [2.17%, 4.52%] 10.27% [4.65%, 18.64%]

Low 2.19% [0, 3.74%] 21.92% [0, 41.66%]

Multi-Station:
Traffic Intensity

Absolute Gap Relative Gap

High 3.67% [2.78%, 5.32%] 6.19% [4.69%, 9.43%]

Medium 6.74% [4.74%, 8.97%] 17.06% [10%, 26.09%]

Low 6.76% [2.67%, 9.91%] 39.5% [27.27%, 55.17%]

Table 4.2: Statistics of the optimality gaps. Here T = 250 hours, |Ω|= 2, and
uq = 0.5 hours for model (3.2). We change the AUV number h from 2 to 6 to
achieve different traffic intensity levels, and the docking station number m = 2
or m = 3 in the multi-station case.

For the single station case, the bounds are reasonably tight when

the traffic intensity is high since the average relative gap is 3.18% and the

minimum relative gap is 0.78%. When we increase the total number of

AUVs, which implies a decrease in the traffic intensity, the absolute gap stays

relatively stable. For example, the average absolute gap is 2.02% when the

traffic intensity is high, 3.29% for medium traffic intensity, and 2.19% for low

traffic intensity. The abandonment rate decreases as we increase the total

number of AUVs, so the average relative gap increases to 10.27% for medium
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Figure 4.7: Relative optimality gaps for one docking station.

Figure 4.8: Relative optimality gaps for multiple docking stations.

traffic intensity and 21.92% for low traffic intensity. Even though the average

optimality gap is not ideal when traffic intensity is low, Figure 4.7 shows that

a zero optimality gap is achieved four times in this case, which indicates the

optimal solutions for model (3.1) are obtained. When more docking stations

are added to the system, both the absolute optimality gap and the relative
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optimality gap increase, as shown by Table 4.2 and Figure 4.8. One important

reason is that model (3.2) can capture the optimal collaboration dynamically

between docking stations as an optimization model, while both scheduling

heuristics rely on predetermined rules to decide the station collaboration.

With multiple docking stations, the average relative gap is 6.19% for high

traffic intensity, 17.06% for medium traffic intensity, and 39.50% when traffic

intensity is low.

During the experiments, we find that Heuristic 2 and Heuristic 3 always

outperforms Heuristic 1. Heuristic 2 generally performs better when the

abandonment rate is higher than 10%, while Heuristic 3 has better performance

otherwise. The detailed computational performance of all the scheduling

heuristics is introduced in the following section.

4.4 Performance of the Scheduling Heuristics

For the scheduling problem of minimizing the expected number of

abandonments, we develop three heuristic algorithms in Section 3.5.1. Here

we assume the length of the time horizon T = 720 hours and the docking

station locations are the same for each heuristic. We generate 14 i.i.d. data

sets and change the traffic intensity by changing the total number of AUVs.

Figure 4.9 shows the computational performance for Heuristics 1, 2, and 3.

The y axis shows the value of the objective and the x axis indicates the data

set index. We can see that Heuristic 2 always has lower abandonment rate than

Heuristic 1. When the abandonment rate exceeds 10%, Heuristic 2 provides

101



the lowest abandonment rate. When the abandonment rate is lower than 10%,

Heuristic 3 achieves the best performance. This indicates we should choose

Heuristic 2 under high and medium traffic intensities, and Heuristic 3 under

low traffic intensity as the scheduling heuristic for our spatial detection model

in order to minimize the expected number of ice floe abandonments.

Heuristic 1 is similar to the FIFO queueing policy that we use in the

simulation model, since here we always abandon the ice floes that cannot be

finished before their due dates. Heuristic 2 instead abandons the ice floe with

the longest service time, and Heuristic 3 is similar to the EDD queueing policy

in the simulation model analyzed in Section 2.4. Both the computational

analysis here and the simulation results suggest that FIFO is not a good policy

when the objective is to minimize abandonment rate.

Four heuristic algorithms are presented in Section 3.5.2 for the problem

of minimizing the weighted total number of abandonments. Here we assume

the weight for the ice floes has a uniform distribution between 0.5 and 1. The

y axis shows the value of the objective and the x axis indicates the data set

index in Figure 4.10. Here we also assume the length of the time horizon is 720

hours and the docking station locations are the same for each heuristic. We

again generate 14 i.i.d. data sets and change the traffic intensity by changing

the total number of AUVs.

Figure 4.10 shows the computational performance for these four

heuristics. We can see that Heuristic 6 only achieves the lowest objective

value in the first data set, which indicates that Heuristic 6 generally has
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Figure 4.9: Computational performance for Heuristics 1, 2, and 3. The design
decisions are fixed: y3 = 1, yi = 0, xi,0 = 0, ∀i 6= 3, and we change x3,0 from
1 to 6 to change the traffic intensity; see Figure 4.2 for the potential docking
station locations

worse performance than the other heuristics. Heuristic 7 achieves the lowest

objective value in five data sets during medium and low traffic intensity, while

Heuristic 4 achieves three during high and medium traffic intensity. Similar

to Heuristic 7, Heuristic 5 also achieves the lowest objective value in five data

sets during medium and low traffic intensity.

Table 4.3 summarizes the performance of all the scheduling heuristics.

For the problem of minimizing the expected number of abandonments,

Heuristic 2 is recommended during high and medium traffic intensity and

Heuristic 3 is recommended when traffic intensity is low. When the ice floes

have different weights, Heuristic 4 generally has the best performance during
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Figure 4.10: Computational performance for Heuristics 4, 5, 6, and 7. The
design decisions are fixed: y3 = 1, yi = 0, xi,0 = 0, ∀i 6= 3, and we change
x3,0 from 1 to 6 to change the traffic intensity; see Figure 4.2 for the potential
docking station locations

high traffic intensity, and we can choose either Heuristic 5 or Heuristic 7 during

low traffic intensity. For medium traffic intensity, we recommend selecting

either Heuristics 4, 5, or 7.

4.5 Facility Location Problem without Queueing

Dynamics

Both model (3.1) and model (3.2) have wait-time-dependent service

times and inventory constraints that keep track of system queueing dynamics.

These two characteristics distinguish our facility location problem from

traditional facility location problems. In this section, we introduce a simplified
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Traffic Intensity Minimize the Number of Abandonments

High Heuristic 2

Medium Heuristic 2

Low Heuristic 3

Traffic Intensity Minimize the Weighted Number of Abandonments

High Heuristic 4

Medium Heuristic 4 or Heuristic 5 or Heuristic 7

Low Heuristic 5 or Heuristic 7

Table 4.3: Scheduling heuristics recommendation.

version of our facility location problem, which does not include the queueing

dynamics, and we compare it with model (3.2) to show the importance of

incorporating queueing dynamics in our facility location model.

Facility Location Problem without Queueing Dynamics

z̃∗q = min
∑

ω∈Ω

pω
∑

j∈Jω

(1− rωj ) (4.5a)

s.t.
∑

i∈Iωj

∑

t∈TWω
i,j,q

zωi,j,t = rωj , j ∈ Jω, ω ∈ Ω (4.5b)

∑

t∈TWω
i,j,q

zωi,j,t ≤ yi, i ∈ Iωj , j ∈ Jω, ω ∈ Ω (4.5c)

∑

i∈I

yi ≤ m (4.5d)

xi,0 ≤ niyi, i ∈ I (4.5e)

∑

i∈I

xi,0 ≤ h (4.5f)

∑

j∈Jω
i

∑

t∈TWω
i,j,q

sωi,j,tz
ω
i,j,t ≤ (T + s̄ωi )xi,0,
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∀i ∈ I, ω ∈ Ω (4.5g)

∑

j∈Jω
i

min{t+ŝωi −uq,T}
∑

τ=min{t+uq ,T}

zωi,j,τ ≤ xi,0 −
∑

j∈Jω
i

zωi,j,t,

∀i ∈ I, t ∈ Tq \ {0}, ω ∈ Ω (4.5h)

yi ∈ {0, 1}, i ∈ I (4.5i)

xi,0 ∈ {0, 1, ..., ni}, i ∈ I (4.5j)

zωi,j,t ∈ {0, 1}, i ∈ Iωj , j ∈ Jω, t ∈ TW ω
i,j,q, ω ∈ Ω (4.5k)

rωj ∈ {0, 1}, j ∈ Jω, ω ∈ Ω. (4.5l)

In model (4.5), we define s̄ωi = maxt∈TWω
i,j,q ,j∈J

ω
i
{sωi,j,t} and ŝωi =

mint∈TWω
i,j,q,j∈J

ω
i
{sωi,j,t}. So s̄ωi is the maximum service time for location i in

scenario ω and ŝωi is the corresponding minimum service time. The optimal

objective function value is denoted as z̃∗q and constraints (4.5a)-(4.5f) are

the same as constraints (3.2a)-(3.2f) in model (3.2). Unlike model (3.2),

model (4.5) does not track the AUV inventory, xω
i,t, dynamically at each time

period t. Instead, model (4.5) restricts the AUV usage based on the capacity

at a lower resolution through constraints (4.5g) and (4.5h).

Constraint (4.5g) indicates that the total number of time periods

required to serve the arrivals at location i cannot exceed the maximum number

of time periods available at that location. Here T is the length of the time

horizon, and the right-hand side of constraint (4.5g) represents the maximum

number of time periods available at location i, since an AUV can be dispatched

at t = T and the maximum possible service time is s̄ωi . Constraint (4.5h)
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restricts excessive dispatch of the AUVs, while the right-hand side is the

maximum number of AUVs left at location i at time t and the left-hand side

is the total number of AUVs dispatched in the following ŝωi − 1 time periods.

Since ŝωi is the minimum service time for location i, an AUV that is dispatched

at time t from location i cannot return to that location in the next ŝωi −1 time

periods.

An ice floe arrival can be served by multiple AUVs in model (4.5)

while both model (3.1) and model (3.2) assume that an ice floe can be served

by at most one AUV. Similar to model (3.2), model (4.5) also provides a

lower bound for the multi-stage model if all the time-related parameters are

rounded optimistically; see Lemma 1 for the parameter rounding techniques.

We compare the design decisions provided by model (4.5) and model (3.2) by

fixing the respective design decisions and running our scheduling heuristics.

We use the same parameter settings as in Section 4.3 when we solve these two

MIP models, where T = 250 hours, |Ω|= 2 i.i.d. scenarios per data set, uq = 0.5

hours, the arrival rate λ = 0.5 arrivals per hour, and the six candidate locations

are shown in Figure 4.2. We assume there are m = 2 docking stations, and the

AUV quantity h = 2, 3, 4, or 5. We fix the design decisions we obtain from both

models in Heuristic 2 and compare the abandonment rates to study the quality

of the design decisions. Figure 4.11 shows that by using the design decisions

given by model (3.2), the scheduling heuristic provides lower abandonment

rates, which means we have a tighter upper bound for the multi-stage model.

The average relative gap between abandonment rates is 5.84% in Figure 4.11,
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and the results indicate that model (3.2), which includes queueing dynamics,

gives us better system design decisions than model (4.5).
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Figure 4.11: Abandonment rates from Heuristic 2 using different design
decisions from model (3.2) and model (4.5). Here we generate 10 i.i.d. data
sets and change the traffic intensity by changing the AUV quantity h.

Suppose we have seven potential docking station locations instead of

six, as shown in Figure 4.12. Assume we have m = 1 docking station and

h = 1 AUV to locate, and again, θ ∼ Unif [−π
2
, π
2
] when we generate the

arrival trajectories. Due to the symmetry of the arrival trajectories, we know

the middle location 4 is the optimal location to place the docking station in

the long run. We run model (3.2) and model (4.5) with m = 1 and h = 1

with four i.i.d. data sets, and Figure 4.13 shows the optimal design decisions

from these two models. The green pentagon shows the design decision from

model (3.2) while the black circle shows the design decision from model (4.5).
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Figure 4.12: Seven potential docking station locations.

We can see that model (3.2) always captures the symmetry in the model by

putting the docking station at location 4 in all the data sets, while model (4.5)

fails to capture the symmetry in two data sets.

Combining the above two observations, we can see the importance

of capturing queueing dynamics in our facility location problem. Another

way to check the importance of modeling queueing dynamics is to see the

computational behavior of the optimality gap by using the optimal value z̃∗q

from model (4.5) as a lower bound for the multi-stage model.

We run model (4.5) to obtain a lower bound and a candidate system

design decision. Then, we fix the design decision and run the scheduling

heuristic to assess the performance of the resulting optimality gap. Figure 4.14

compares the relative optimality gap for both model (3.2) and model (4.5). The
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Figure 4.13: The green pentagon shows the design decision from model (3.2)
while the black circle shows the design decision from model (4.5) with m = 1
docking station and h = 1 AUV for four i.i.d. data sets.

gap increases as the traffic intensity decreases in both models, and model (3.2)

provides much tighter optimality gap compared with model (4.5). The

optimality gap for model (4.5) exceeds 100% under medium traffic intensity

and grows to 900% under low traffic intensity. These gaps are dramatically

worse than the optimality gaps obtained via model (3.2), as the figure shows.

(See also Section 4.3 for a more analysis of model (3.2)’s optimality gap.)

The analysis of this section indicates the importance of capturing

queueing dynamics in our facility location model. The facility location problem

with queueing dynamics, model (3.2), not only provides better system design
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Figure 4.14: Relative optimality gap performance for model (3.2) and
model (4.5). Here we generate 10 i.i.d. data sets and change the traffic intensity
from high to low by changing the AUV quantity, h. The relative optimality
gap increases as the traffic intensity decreases.

decisions, but also provides much tighter optimality gaps when compared with

model (4.5), which does not fully capture queueing dynamics.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we develop queueing models, simulation models,

and optimization models for a spatial detection system in order to minimize

the abandonment rate. The topic arises in the oil industry where drilling

platforms in the Arctic Circle need to be protected from ice floe collisions.

The system uses AUVs to measure the under-water topography of the ice floes

and docking stations to launch and recharge the AUV batteries. There are

two types of decisions in this spatial detection model. The design decision

includes the locations of the docking stations and the allocations of AUVs

at each docking station, while the operation decision involves the scheduling

policies of the AUVs.

Even though this model is motivated by an oil industry project, most

of the modeling and optimization methods apply broadly to radial detection

systems with queueing dynamics. In a general radial detection model, the ice

floes are equivalent to the customers arriving to the system, while the AUVs

are the servers that provide service for the customers. An abandonment is

the same as an unserved customer, so the objective function is to minimize
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the rate of unserved customers in a general model. One important aspect

of our spatial detection model is that the customer service time depends on

the waiting time, and this, coupled with the associated queueing dynamics,

distinguishes our model from both existing facility location models and spatial

detection models.

In Chapter 2, we develop two queueing approximations and a simulation

model to calculate the important system performance measures, e.g., the

abandonment probability, the probability of waiting, the expected waiting

time and the expected queue length. The M/M/k + M queueing system

is used to derive closed form expressions of various performance measures.

Also, we propose a water-filling algorithm to allocate AUVs among different

docking stations and we prove its optimality if the objective is to minimize the

maximum value of function F (ki), where ki is the number of AUVs at docking

station i and F (ki) is a non-increasing function of ki.

The M/G/k + G queue is more complicated than the M/M/k + M

queue since closed-form analysis is unavailable, and we rely on approximations

to compute the system performance measures. To assess the two queueing

approximations, as well as to better study the system dynamics, we develop

a discrete event simulation model using the commercial software package

Arena. We compare the simulation results with both the M/M/k+M and the

M/G/k+G queueing approximation results. Also, different queueing policies

are utilized in the simulation model to study the system sensitivity.

Both the design decisions and the operation decisions are taken into
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consideration in the optimization models developed in Chapter 3. We

model the system as a multi-stage stochastic facility location problem which

characterizes the timing of the design decisions, the realizations of randomness,

and the operation decisions. Due to the computational complexity of the

multi-stage model, several approximation models are developed. A simplified

docking station location model is used to provide insights on the potential

docking station locations. We also develop a two-stage stochastic facility

location problem which provides lower bounds, and several online scheduling

heuristics that provide upper bounds for the optimal value of the multi-stage

model.

We study the computational performance for the optimization models

and the scheduling heuristics, and also evaluate the quality of the optimality

gaps provided by the two-stage model and the scheduling heuristics. We choose

CPLEX as the optimizer to solve our MIP models and different strategies are

discussed in order to decrease the MIP solution time in CPLEX.

5.2 Future Work

Among the queueing models, the M/G/k + G queue provides good

approximation during high and medium traffic intensity levels. When the

traffic intensity level is low, there is a significant gap in the abandonment

probability between the queueing approximation and the simulation results.

Different queueing approximation methods can be employed in the future

to achieve smaller gaps for the system performance measures at low traffic
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intensity. Currently, both the queueing approximations and the simulation

model are focused on a single docking station with multiple AUVs. If we want

to take all the docking stations into consideration concurrently, a network

model is required. One possibility in the future is to develop queueing

and simulation network models to obtain more accurate system performance

measures.

As we emphasize throughout the dissertation, the customer service

time in our spatial detection model depends on the customer’s waiting time

in queue. In our context this means the service time, si,j,t, for customer

j via docking station i depends on the time t. The two-stage stochastic

facility location problem provides lower bounds if we round the time-related

parameters optimistically, and the change rate of the service time is relatively

small, which means |si,j,t−si,j,τ |≤ |t−τ |, ∀t, τ . The corresponding constraints

(i.e., those involving si,j,t) amount to resource consumption constraints. A

possible direction for future research is to attempt to extend the optimistic

rounding theorems of Chapter 3 so that they capture more general time-staged

stochastic programs that involve resource consumption constraints. That is,

we seek conditions under which we can obtain optimistic bounds by coarsening

time and appropriately modifying resource-consumption coefficients.

The two-stage stochastic facility location problem is computationally

challenging when the problem size grows large. In order to reduce the model

solution time, we discuss various strategies with respect to the optimization

engine in Chapter 4. Beyond that, a reformulation of the MIP may lead to
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further computational efficiency gains. The computational results in Chapter 4

indicate that the optimality gaps are smaller when we have fewer docking

stations in the system. So another possibility is to develop online scheduling

heuristics that lead to improved collaborations between different docking

stations to achieve smaller optimality gaps. The optimality gap observed

between the two-stage model and the scheduling heuristics shows that the

variance of the relative gap increases as we decrease the traffic intensity level,

so decreasing the variance of the optimality gap is also a potential topic for

future work.
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