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In the first part of this work, we describe a theory of the ground states

and charge gaps in the fractional quantum Hall states of graphene. The theory

relies on knowledge of these properties for filling fractions smaller than one.

Then, by the application of two mapping rules, one is able to obtain these

properties for fractional quantum Hall states at arbitrary fillings, by conceiv-

ing the quantum Hall ferromagnets as vacua on which correlated electrons or

correlated holes are added. The predicted charge gaps and phase transitions

between different fractional quantum Hall states are in good agreement with

recent experiments.

In the second part, we investigate the low energy theory for the neutral

Landau level of bilayer graphene. We closely analyze the way different terms

in the Hamiltonian transform under the action of particle-hole conjugation

symmetries, and identify several terms that are relevant in explaining the lack

of such symmetry in experiments. Combining an accurate parametrization
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of the electronic structure of bilayer graphene with a systematic account of

the impact of screening we are able to explain the absence of particle-hole

symmetry reported in recent experiments. We also study the energetics of

fractional quantum Hall states with coherence between n = 0 and n = 1

cyclotron quantum numbers, and obtain a general formula to map the two-

point correlation function from their well-known counterparts made from only

n = 0 quantum numbers. Bilayer graphene has the potential for realizing these

states which have no analogue in other two-dimensional electron systems such

as Gallium Arsenide. We apply this formula to describe the properties of the

n = 0/n = 1 coherent Laughlin state which displays nematic correlations.
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Chapter 1

Introduction

In this document I will describe theories of the quantum Hall regime in

monolayer and bilayer graphene and their connection to experiments. Chap-

ters 2 and 3 elaborate and expand the results described in this publication [68].

Chapter 2 attempts to present a general theory for multicomponent

fractional quantum Hall states without explicit connection to any particular

material system, but relying chiefly on the general assumption that the in-

compressible liquids are ground states of a repulsive interaction with a strong

hard-core or on-site energy cost. The fermions making up the liquid are con-

ceived as having some internal degrees of freedom and their interaction to be

invariant under global unitary transformations of these internal flavors. In

addition we could have some weak symmetry breaking terms. The purpose

of this general construction is to provide a theory that could cover systems,

other than monalyer graphene, that would share these characteristics.

Chapter 3 follows closely Ref. [68] and applies the theory described in

Chapter 2 to the specific case of monolayer graphene. In particular, we provide

a series of direct comparisons with the beautiful measurements performed in

these works [20, 21], which have been a source of motivation and inspiration
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for our work.

In chapter 4 we discuss the construction of low energy theories for bi-

layer graphene. The landscape of experimental observations that has been

reported so far is quite rich [5, 39, 40, 44, 49]. We focus on understanding one

specific aspect: the absence of particle-hole symmetry reported in Ref. [40].

We first underscore that particle-hole symmetry is expected in the convetional

models of bilayer graphene and that it cannot be destroyed simply by the

presence of a magnetic field. We then make use of recent density-functional

theory estimations of the explicit particle-hole symmetry breaking terms in the

Hamiltonian to predict the charge gaps at integer fillings. We will find that

accounting for screening is crucial in understanding the absence of particle-

hole symmetry in Ref. [40]. The reason is that the terms that attempt to

restore particle-hole symmetry arise from exchange interactions with the neg-

ative energy sea. However, the substantial screening of Coulomb interactions

in bilayer graphene reduce these terms in comparison to the explicit single-

particle terms that break this symmetry. As a consequence the system behaves

as if the symmetry is explicitly broken.

Finally in chapter 5 we put aside the details of the microscopic Hamil-

tonian to investigate a novel possibility offered by bilayer graphene: FQH

states with coherence between the n = 0 and n = 1 cyclotron quantum num-

bers. This possibility arises from their near degeneracy in the neutral Landau

level. These states are interesting because in addition to its quantum Hall

characteristics they display ferroelectric and nematic behavior.
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I have not included an introduction to the general physics of the quan-

tum Hall effect. Many excellent reviews and textbooks cover this subject. A

wonderful introduction that help me much in learning the subject is the one

written by Allan [46]. Very insightful discussions are also provided in the

different chapters of this early book [27].

I have not included thorough descriptions of monolayer and bilayer

graphene either but have included brief mentions of the specific properties that

are relevant for our purposes. This review article [10] provides a comprehensive

introduction to various aspects of graphene.
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Chapter 2

SU(N) fractional quantum Hall states

The fractional quantum Hall effect (FQHE) is a transport anomaly

that occurs whenever a two-dimensional electron system (2DES) in a strong

perpendicular magnetic field has a gap for charged excitations at a fractional

value of the Landau level (LL) filling factor. Gaps at fractional filling fac-

tors can only be produced by electron-electron interactions. The FQHE has

therefore been a rich playground for the study of strongly correlated phases of

the electron liquid, hosting a variety of exotic phenomena including fractional

and non-Abelian quasiparticle statistics [54] and electron-hole pair superfluid-

ity [18].

The integer and fractional quantum Hall effects differ in a manner

analogous to that in which a paramagnet in a magnetic field differs from a

ferromagnet. In the former the order is imprinted by an external field which

polarizes the spin of the electrons, whereas in the second the order arises “spon-

taneously” from interactions. In the integer Hall phases the order is imprinted

by the external field coupling to the orbital motion of the electrons, whereas in

the fractional quantum Hall phase the order is “spontaneously” arising from

the interactions. The external magnetic field is not a sufficient cause for the
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fractional quantum Hall order. The latter is evident from the fact Wigner

crystal type states instead of fractional quantum Hall liquids are also possible

in strong magnetic fields.

However, integer quantum Hall phases can also arise spontaneously as

a consequence of interactions and are known as integer quantum Hall ferro-

magnets. They arise when different internal degrees of freedom are nearly

degenerate in a single Landau level.

2.1 SU(N) fractional quantum Hall states

Let us imagine electrons whose orbital wavefunction is constrained to

be in the Lowest Landau Level (LLL), but posses N internal discrete degrees of

freedom or flavors, and let us imagine that their interactions are independent

of such flavors. Their Hamiltonian is simply,

H = PLLL
∑
i<j

v(ri−rj)PLLL =
1

2

∑
v(m1,m2;m′2,m

′
1)c†m1,σ1

c†m2,σ2
cm′2,σ2cm′1,σ1 ,

(2.1)

where m are intra-Landau level guiding center labels and σ labels the N inter-

nal degrees of freedom. This Hamiltonian is endowed with a SU(N) symmetry

associated with global unitary transformations in the flavor space. As a result

there appear a set of operators that commute with the Hamiltonian and with

each other which serve as labels for the eigenstates. In particular the number

of particles in any of the flavors are good quantum number. Additionally the

5



eigenstates would appear in SU(N) multiplets, namely subspaces that have the

same energy and that are “irreducible” under the action of SU(N). Another

way of saying this is that there exist N − 1 additional good quantum which

correspond to a set of independent Casimir operators of SU(N) and which

serve to Label its irreducible representations.

The ground state of the system thus belongs to an irreducible represen-

tation of SU(N). The irreducible representations of a system of Ne electrons,

with internal SU(N) symmetry can be labeled by a set of non-decreasing num-

bers n1 ≥ n2 ≥ · · ·nN ≥ 0, satisfying the constraint Ne =
∑

i ni. And one can

define an associated SU(N) magnetization vector specifying the partial filling

of each flavor (ν1, · · · , νN), such that νi = ni/Nφ, with the total filling factor

being ν =
∑

i νi, and Nφ being the total number of flux quanta.

It has been known for a long time that when the system has a total

filling factor which is an integer, ν = {0, 1, · · · , N}, the Slater determinants

that have maximal polarization are exact many body eigenstates of the Hamil-

tonian in Eq. (2.12). These states are known by the name of “Quantum Hall

Ferromagnets”. This conclusion simply follows from the fact that the Hilbert

space has a single maximally polarized state at integer filling fractions. These

states typically are the ground states of repulsive interactions, and in particu-

lar they have been shown to be the ground states of the Coulomb interaction

in exact diagonalization studiess.

The fact that ground states at the integers are maximally polarized can

be viewed as a type of many-body Hunds’ rule. Essentially, the Pauli exclusion

6



principle will gurantee the existence of zeroes of the many body wavefunction

whenever any two particles that have the same SU(N) flavor coincide spatially.

Therefore electrons try to “pile up” into as little flavors as possible in order to

create as many of these zeroes as they can in order to minimize their repulsive

energy, whereby forming a state with largest possible SU(N) magnetization.

I will next demonstrate a property of quantum Hall ferromagnets which

has been used by several authors in the past, but which I have never seen

stated in a completely explicit fashion. The property is that quantum Hall

ferromagnets serve as perfect vacua on top of which strongly correlated phases

can be constructed just in the same manner as they can be constructed on top

of the completely empty LLL.

Imagine a many-body eigenstate filling F flavors (F < N), which would

describe a strongly correlated multicomponent fractional quantum Hall state.

This state would belong to an SU(N) representation with N − F completely

empty components an would thus have an SU(N) polarization vector of the

form,

~ν = (ν1, · · · , νF , 0, · · · , 0). (2.2)

This state can be created on top of vacuum by the action of creation operators

and have an expansion in Slater determinants of the form,

7



|Ψ~ν〉 =
∑

Mn1 ···MnF

C[Mn1 , · · · ,MnF ]

 ∏
m∈Mn1

c†m,1

 · · ·
 ∏
m∈MnF

c†m,F

 |Φ0〉,

(2.3)

where Mn denotes a set of labels for guiding center states with n elements,

and C[Mn1 , · · · ,MnF ] is the probability amplitude of the corresponding Slater

determinant in which those states are filled. Now, we could instead construct

this state on top of a quantum Hall ferromagnet which completely fills some

of the flavors that are left empty in the correlated state. This quantum Hall

ferromagnet would serve as a vacuum, in which N1 flavors are completely filled

(N1 ≤ N − F ), and let us call it |ΦN1〉. It can be shown that if the initial

correlated initial |Ψ~ν〉 is an exact eigenstate, the new state |Ψ1
~ν′〉 is also a many

body eigenstate:

|Ψ1
~ν′〉 =

∑
Mn1 ···MnF

C[Mn1 , · · · ,MnF ]

 ∏
m∈Mn1

c†m,1

 · · ·
 ∏
m∈MnF

c†m,F

 |ΦNv〉.

(2.4)

The new state will have a different SU(N) magnetization vector given by:

~ν ′ = (1, . . . , 1, ν1, . . . , νF , 0, . . . , 0), (2.5)

and a larger total filling ν ′ = ν + N1, which is the sum of the filling of the

original correlated state and that of the ferromagnet that serves as vacuum.

In other words, we have an exact way to construct correlated states of higher

8



density, from correlated states of lower density, by combining them with quan-

tum Hall ferromagnets. The energies of both states can be shown to be related

in a simple fashion:

E[Ψ1
~ν′ ] = E[Ψ~ν ] + E[ΦN1 ] +

νNφN1

2πl2

∫
d2rv(r), (2.6)

where the last term is simply the classical Hartree potential arising from the

repulsion between the correlated part of liquid and the quantum Hall ferromag-

net part, and would be absent if there is a neutralizing background. Therefore,

for the Coulomb interaction the energy of the ferromagnet and the correlated

liquid would simply add up:

E[Ψ1
~ν′ ] = E[Ψ~ν ] + E[ΦN1 ]. (2.7)

But this is not the end of the story. So far we have constructed corre-

lated states by adding correlated particles to the ferromagnets. It is possible

to perform a similar construction by removing particles on a correlated fash-

ion from the ferromagnets, in other words by adding correlated holes. This is

possible because in addition to a global particle-hole symmetry, the interac-

tion in Eq. (2.12) possesses additional restricted particle-hole symmetries in

which only some of the flavors are particle-hole conjugated, when acting on

the subspace of functions on which only those flavors are occupied.

More explicitly, consider the quantum Hall ferromagnet in which all

of the flavors involved in making the correlated state |Ψ~ν〉 of Eq. (2.3), are

9



completely filled. This ferromagnet has therefore F completely filled flavors

and let us denote by |ΦF 〉. It follows that the following state of correlated

holes is an exact eigenstate provided the original correlated state is too:

|Ψ2
~ν′〉 =

∑
Mn1 ···MnF

C[Mn1 , · · · ,MnF ]

 ∏
m∈Mn1

cm,1

 · · ·
 ∏
m∈MnF

cm,F

 |ΦF 〉.

(2.8)

This new state will have a SU(4) magnetization vector:

~ν ′ = (1− νF , · · · , 1− ν1, 0, · · · , 0), (2.9)

and its total filling factor is ν ′ = F−ν, and it will have higher density than the

original state if ν < F/2. The energy of this state also has a simple relation to

that of the original correlated state and can be obtained from it by applying

a particle-hole transformation restricted to the F flavors involved:

E[Ψ2
~ν′ ] = E[Ψ~ν ] +Nφ(F −ν)

[
F

2πl2

∫
d2rv(r)−

∫
d2q

(2π)2
v(q)|F (q)|2

]
, (2.10)

where |F (q)|2 = exp(−q2l2/2) is the squared density form factor of the LLL,

and the Hartree piece would be absent if there would be a neutralizing back-

ground and only the exchange potential would be left:

E[Ψ2
~ν′ ] = E[Ψ~ν ]−Nφ(F/2− ν)

∫
d2q

(2π)2
v(q)|F (q)|2, (2.11)
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for Coulomb interaction
∫

d2q
(2π)2

v(q)|F (q)|2 =
√
π/2e2/εl.

In summary, we have described two rules to construct correlated states

on top of quantum Hall ferromagnets, provided we know how to construct

them on top of the original vacuum.

2.2 SU(N) V0 Hard-core model

An important observation made in the early days of the FQHE by

Haldane [26] was that the Laughlin wavefunction at ν = 1/3 [43] is the ex-

act ground state of a short-ranged interaction potential in which only the

V1 Haldane pseudopotential is finite and positive [27]. Moreover, for spinless

fermions, the Laughlin state is the highest density state that remains a zero

energy state for such model, implying the existence of discontinuity in chemical

potential at ν = 1/3 and hence the presence of a charge gap.

A by-product of Haldane’s argument is that the Laughlin wavefunction

cannot be an exact eigenstate of the full Coulomb interaction. This is because

the Coulomb interaction has finite Haldane pseudopotentials of higher angular

momentum, which when viewed as perturbations added to the V1 hard-core

model, will necesarily induce mixing with excited non-zero energy eigenstates

of the V1 model. In these states particles have a finite probability amplitude

of being in pairs of relative angular momentum m = 1, which are completely

absent in the Laughlin state.

This is however not a problem. Numerical studies have overwhelm-
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ingly demonstrated that the true ground state of the Coulomb interaction

is extremely well described by the Laughlin wavefunction, and in particular,

that the adiabatic “turning on” of higher angular momentum pseudopoten-

tials added to the Hard-core model do not meet an intermediate phase tran-

sition [28]. In other words the two wavefunctions, namely the true Coulomb

ground state and Laughlin’s, are two representatives of the same phase of the

strongly correlated fractional quantum Hall liquid. The Laughlin state can be

thought of as the ideal representative of such phase [46].

The lesson from this is that Hard-core models serve to define the ide-

alized fractional quantum Hall states. They are also useful in discriminating

what is the relevant low-energy physics. We will find useful in our study of the

SU(N) quantum Hall states to consider the V0 hard-core model, in which only

the m = 0 relative angular momentum is energetically penalized [68]. The

interaction for such model can be written as:

H = V0

∑
i<j

4πl2PLLLδ(ri − rj)PLLL = V0

∑
i<j

P 0
ij. (2.12)

where P 0
ij is the projector of two-particles into a state of zero relative angular

momentum contained in the LLL.

For V0 > 0 the Hamiltoninan is a positive definite operator, and hence

the lowest energy eigenstates cannot have negative energies. In the symmetric

gauge, the zero energy eigenstates of the model can be written generally as a
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product of the Vandermonde determinant and an SU(N) bosonic wavefunc-

tion [47, 78],

Ψ =
∏
i<j

(zi − zj) ΨB
SU(N), (2.13)

where ΨB
SU(N) is a SU(N) bosonic wavefunction in the lowest Landau level. In

other words, the zero energy manifold of the Hard-core model contains all the

wavefunctions in which every pair of electrons has zero probablity amplitude

to coincide spatially with any other electron. The highest density state that

satisfies this constraint is the SU(N) ferromagnetic Vandermonde determinant

whose spatial part is:

Ψν=1 =
∏
i<j

(zi − zj) e−
|zi|

2

4l2 . (2.14)

This state has total filling ν = 1 and SU(N) polarization (1, 0, · · · , 0), i. e.

it is a qunatum Hall ferromagnet. The zero energy manifold of the SU(N) V0

Hard-core model is highly degenerate. For n fermions and total number of Nφ

flux quanta, one finds that the total number of many-body zero energy states

is:

(
n− 1 +N(n+ 1−Nφ)

n

)
, (2.15)

the number above includes the multiplicity within the SU(N) multiplets, but

the number of states is large even after removing such redundancy.
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Equation (2.13) makes manifest that it is impossible to construct zero

energy states of density higher than ν = 1 for the V0 model. This is the

origin of the incompressibility at the integer fillings for the quantum Hall

ferromagnets. The construction of the lowest energy states for ν ∈ [1, 2] is

achieved by employing the observations made in section 3.1. The two mappings

will produce states of equal energy:

E = 2V0(n−Nφ), for n ∈ [Nφ + 1, 2Nφ]. (2.16)

Above equation follows from Eq. (2.6), after the following observations: (1)

E[Ψν ] = 0, because the correlated liquid created on top of the ferromagnet

is a zero energy eigenstate of V0 hard-core model; (2) E[ΨNv=1] = 0 because

the ferromagnet itself is a zero energy eigenstate of V0 hard-core model; (3)

v(r) = 4πl2δ(r). The same equation follows from the second mapping, namely

from Eq. (2.10) by similar reasonings (note that in Eq.(2.10) ν was referring to

the filling of the original correlated state with ν ≤ 1, so it must be changed into

ν → 2− ν, to denote the filling of the state with ν ≥ 1 after the particle-hole

conjugation).

This degeneracy obtained from the two mappings emphasizes that there

are two competing vacua at any filling factor ν ∈ ([ν], [ν] + 1): one of them

is the quantum Hall ferromagnet with filling [ν], which sustains a correlated

liquid of Nφ(ν − [ν]) particles, and the other is the adjacent quantum Hall
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ferromagnet at [ν] + 1, which sustains a correlated liquid of Nφ([ν]−ν) holes1.

The energy of the low energy states of the V0 hard-core model for n particles

can be obtained inductively from the previous reasoning using either Eq. (2.6)

or Eq. (2.10) and reads as follows:

E(n) = 2V0 [ν] n− V0 [ν]([ν] + 1) Nφ, (2.17)

the chemical potential of the V0 model has therefore jumps of size 2V0, when-

ever the filling fraction is an integer, indicating the consecutive filling of the

different SU(N) flavors:

µ ≡ dE

dn
= 2V0 [ν], (2.18)

the energy and filling factor are illustrated in fig 2.1. These integer incompress-

ibilities of the hard-core model are analogous to the behavior of a Hubbard

model of fermions on a lattice with onsite repulsions, no kinetic energy, and

N internal flavors.

I believe equations (2.17) and (2.18) describe exhaustively the lowest

energy manifold V0 SU(N) hard-core model exactly, although I have not con-

structed a rigourous proof thus far. In other words, the entire lowest energy

manifold of the hard-core model in the filling factor range ν ∈ ([ν], [ν] + 1) is

constructed from these two mappings, one of which adds correlated holes to

1[x] denotes the integer part of x.
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Figure 2.1: Energy (a) and chemical potential (b) of the SU(N) V0 hardcore
model as a function of filling, displaying the cusps and chemical potential
jumps associated with the incompressible integer quantum Hall ferromagnets.

the quantum Hall ferromagnets at ν = [ν] + 1 and the other adds correlated

electrons to the quantum Hall ferromagnets at ν = [ν], in exactly the same

fashion that correlated particles are added to the true vacuum at ν = 0.

2.3 Theory of weakly broken SU(N) FQHE ground states

More realistic repulsive interactions will contain in general finite Hal-

dane pseudopotentials of higher angular momentum, in addition to the V0

term present in the hard-core model described in the previous section. How-

ever, for many repulsive interactions, including the Coulomb potential, the

V0 pseudo-potential is the strongest. This motivates the conjecture that the

ground states of a large class of SU(N) invariant repulsive interactions can

be well described by states in the lowest energy manifold of the V0 hard-core

model. As previously discussed, except at integer fillings factors, this manifold

is in general highly degenrate. Therefore, many states in the manifold might
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not be suitable for describing the ground states of a particular interaction.

But the conjecture is that at least one of them will have the right type of cor-

relations to optimize the finite repulsive energy created by the higher angular

momentum Haldane pseudopotentials.

This conjectures leads to a remarkable conclusion: in order to construct

the ground state manifold of an SU(N) repulsive interaction for the entire filling

factor range ν ∈ [0, N ], whose dominant term is the V0 pseudo-potential, it is

only sufficient to construct it for the the filling factor range ν ∈ [0, 1]. This

follows from the fact that given the ground states in the range ν ∈ (0, 1), one

is able to consruct the lowest energy states in a filling range ν ∈ ([ν], [ν] +

1) by using the two mappings described in section 3.1, in which one adds

either correlated holes to the quantum Hall ferromagnet at ν = [ν] + 1 or else

correlated electrons to the quantum Hall ferromagnet at ν = [ν]. Since these

mappings are believed to exhaust the lowest energy manifold model, they will

contain the states that have the right correlations to optimize the repulsive

energy of an interaction with finite Haldane pseudopotentials of higher angular

momentum.

Let us now consider that the SU(N) symmetry is not exact but weakly

broken by an additional Hamiltonian of the form:

Ha =
∑
i<j,σ

Vσ τ
i
σ P

ij
0 τ jσ −

∑
i,σ

hστ
i
σ (2.19)

where τσ are the N2− 1 traceless hermitian matrices that generate the SU(N)
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Lie algebra, and serve as a basis for the vector space of N ×N traceless her-

mitian matrices. P ij
0 is the projector into the state with zero relative angular

momentum for particles i and j, and Vσ are flavor dependenpent Haldane-

pseudopotentials. hσ are the strength of single particle flavor-dependent sym-

metry breaking terms.

At this point the choice of symmetry breaking Hamiltonian in Eq. (2.19)

might appear somewhat arbitrary. The motivation for it, is that it parametrizes

a large class of short-ranged symmetry breaking interactions. In particular it

contains as a specific case a model for the symmetry breaking interactions that

are believed to be relevant in the lowest Landau level of graphene [38]. The

single particle term parametrized by hσ can be thought of as a generalized

form of the Zeeman-like term for N flavors. In the case of graphene it can

account for the real Zeeman term as well as a sublattice staggered potential.

The specific realization of this Hamiltonian for monolayer graphene will be

discussed in Chapter 3.

We would like conceptualize the symmetry breaking terms as being

weak in comparison to the dominant SU(N) invariant energy scales. In the case

of Coulomb interaction this can be explicitly stated as follows: Vσ � e2/εl and

hσ � e2/εl. In this case we can pressume that the symmetry breaking terms do

not alter the orbital correlations that optimize the SU(N) invariant interaction,

but that their role is to pin down the specific SU(N) spinors associated with the

flavors that are filled in a particular state. Essentially this same idea underlies

the analysis of Ref. [2], where the correlated states of electrons or holes was
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added to quantum Hall ferromagnetic state of graphene at neutrality, but the

correlated part was assumed to have zero probability amplitude for the spatial

coincidence of electrons, which is equivalent to the statement that it is a lowest

energy state of the V0 hard-core model.

Let us then imagine a many-body ground state of the SU(N) repulsion

of the form described in Eq. (2.4), whose filling vector is:

(1, . . . , 1, ν1, . . . , νF , 0, . . . , 0), (2.20)

and is therefore made out of a quantum Hall ferromagnet with N1 complely

filled flavors which we call {|χ1〉, . . . , |χN1〉}, and a strongly correlated part

with fillings (ν1, . . . , νF ) and associated spinors {|χN1+1〉, . . . , |χN1+F 〉}. The

expectation value of Ha in this state takes the form:

〈Ha〉
Nφ

=
1

2
tr(PiH

HF
i ) + tr(PfH

HF
i )− 1

2

∑
σ

hσtr(Piτσ), (2.21)

where Pi = |χ1〉〈χ1|+· · ·+|χN1〉〈χN1 | is the projector onto the completely filled

flavors of the quantum Hall ferromagnet component, and Pf = ν1|χN1+1〉〈χN1+1|+

· · · + νF |χN1+F 〉〈χN1+F | is a weighed projector onto fractionally filled spinors

of the strongly correlated component. In Eq. (2.21), HHF
i is the anisotropy

contribution to the Hartree-Fock quasi-particle Hamiltonian that one would

obtain if there were no fractionally occupied components, namely:
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HHF
i =

∑
σ

Vσ [tr(Piτσ)τσ − τσPiτσ]−
∑
σ

hστσ. (2.22)

Equation (2.21) follows from the hard-core assumption, and from the

following property of completely filled spinors:

ρ̂m(r)|Ψ〉 =
1

2πl2
|Ψ〉, (2.23)

where ρ̂m(r) ≡ P̂LLL(
∑

i δ(r̂i − r)|χm〉ii〈χm|)P̂LLL is the particle density pro-

jected to the m-th completely filled spinor.

Equation (2.21) must then be seen as a variational expression for the

anisotropy energy whose variational parameters are the filled spinors. The

problem reduces then to minimize this expression with the only constraint

of keeping the spinors orthonormalized. An analogous expression can be de-

rived for the states obtained by adding correlated holes to the quantum Hall

ferromagnet by applying a global particle-hole conjugation.

2.4 Charge gaps of weakly broken SU(N) FQHE states

One of the necessary ingredients for the existence of the fractional quan-

tum Hall effect is the presence of gap for the charged exciations in the bulk

of the correlated liquid [46]. A similar reasoning to that presented in the pre-

vious section to obtain the variational estimate of the ground state energy in

Eq. (2.21) can also be used to compute the contributions of the anisotropy

term in the Hamiltonian Ha to the charge gaps.
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Charge gaps are defined as the sum of the energy of the single quasielec-

tron plus the energy of a single quasihole created on top of the incompressible

FQH liquid and which are arbitrarily spatially far apart from each other. If we

assume that the quasiparticle states in the presence of the symmetry break-

ing anisotropy Hamiltonian, Ha, evolve adiabatically from SU(N) quasiparticle

states, then, we can label them with SU(N) quantum numbers. Quasielectron-

quasihole pair states can be labeled by integers which specify changes in the

occupation numbers for each flavor relative to the incompressible ground state.

Let us assume that in creating the quasielectron-quasihole pair a number of

particles can flip their occupation numbers from the fractionally filled spinors

into the initially un-occupied spinors, as follows:

(Nφ, . . . , Nφ, n1, . . . , nF , 0, . . . , 0)→

(Nφ, . . . , Nφ, n1 + δn1, . . . , nF + δnF , δnF+1, . . . , δnN). (2.24)

Because the far distant quasielectron-quasihole pair can be seen as a neutral

excitation of the original system, the integers specifying the flavor flips are

constrained to satisfy δnN1+1 + · · ·+ δnnF + · · ·+ δnN = 0. Let us assume the

far distant quasielectron-quasihole pair to be well described by a V0 hard-core

model wavefunction as well. Then in the thermodynamic limit for excitations

involving a finite number of flips, i.e. when δni � Nφ, one can use Eq. (2.21)

to compute the correction to the energy of the quasielectron-quasihole pair

state arising from Ha much in the same way as it is done for the imcompress-
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ible ground state itself. Then, it follows that the gap for such excitations is

the SU(N) value plus an anisotropy correction arising from Ha given by the

expression:

∆a =
N∑

j=N1+1

δnj〈χj|HHF
i |χj〉. (2.25)

22



Chapter 3

FQHE in monolayer graphene1

Since its discovery [71] more than three decades ago, the FQHE has

been studied almost exclusively in the two-dimensional electron systems (2DESs)

formed near GaAs/AlGaAs heterojunctions. Because of their small Zeeman to

cyclotron energy ratio [29], the electron spin degree-of-freedom in the N = 0

LL of the GaAs conduction band is often experimentally relevant, endowing

the FQHE with ground and quasiparticle states that would not occur in the

spinless fermion case [69].

The N = 0 LL of monolayer graphene is nearly four-fold degenerate

because of the presence of spin and valley degrees of freedom, and is partially

occupied over the filling factor range from ν = −2 to ν = 2, opening the door to

SU(4) manifestations of the FQHE. However, because graphene sheets on sub-

strates generally have stronger disorder than modulation-doped GaAs/AlGaAs

2DESs, it has until recently not been possible to observe their fractional quan-

tum Hall effects. Recent studies of high-quality graphene samples have started

to clear the fog [9, 14, 17, 20–22] however, and a rich picture has emerged with

1This chapter is based on Ref. [68], all authors in this reference contributed equally to
this work.
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it. Experiments indicate that the graphene FQHE is stronger for 0 < |ν| < 1

than for 1 < |ν| < 2, and that phase transitions between distinct states at the

same ν occur as a function of magnetic field strength [20, 21]. In this work

we shed light on these trends by using the general variational approach de-

veloped in Chapter 2 to the specific case of the Landau level near neutrality

of graphene. We will account for the crucial SU(4) symmetry breaking terms

that are present in this system. A closely related analysis of the FQH states

in graphene can be found in Ref. [2].

We will find that in the absence of symmetry breaking terms the ground

state at |ν| = 1/3 is not of the simple Laughlin type, as it has been previously

assumed in the literature.

3.1 The N = 0 Landau level of graphene

Electrons in graphene possess a relativistic dispersion relation at low

energies. Low energy excitations appear at two inequivalent crystal momemta

at the K and K ′ points of the reciprocal unit cell. The kinetic energy at these

points in the presence of a magnetic field is within the continuum description:

HK = vσ · (p+ eA/c), HK′ = vσT · (p+ eA/c), (3.1)

where p = −i∇ is the two-dimensional momentum operator, A vector potential

associated with a uniform magnetic field B = ∇×A, and σ is a Pauli matrix

in the honeycomb AB sublattice degree of freedom [10]. The Landau levels of
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the relativistic fermions in graphene have energies given by [51],

EN =
v

l
sign(N)

√
2N. (3.2)

Counting spin, these Landau levels are nearly four-fold degenerate. We are

interested here in the Landau level that occurs near neutrality for N = 0. The

single-particle states in each valley are fully polarized in the subalttice degree-

of-freedom, and thus valley and sublattice are locked in the N = 0 Landau

level of graphene [10].

In the spirit of degenerate perturbation the interaction can be projected

into the N = 0 LL. It is worth emphasizing that cyclotron energy and long-

range part of the Coulomb interaction scale with the same power of the quan-

tizing perpendicular magnetic field, namely
√
B, and there is no analogue of a

formal large field limit to justify this projection, as it is the case for Galilean

fermions. A parameter controlling the Landau level mixing corrections is thus

the effective fine structure constant of graphene [59],

α =
e2

εv
(3.3)

which is not small for suspended graphene and approximately given by α ∼ 2.2.

The filling factor of graphene measured from neutrality ranges from

ν = [−2, 2] in the N = 0 LL. It is also convenient to define a filling factor

measured from the empty N = 0 LL, which we denote by ν̃ ∈ [0, 4] = 2 + ν.
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3.2 Symmetry breaking terms in the N = 0 LL

The long range part of the Coulomb interaction is independent of spin

and valleys and hence SU(4) invariant. However, it has become clear from

experimental [20, 21, 32, 79, 80] and theoretical [2, 4, 31, 34, 37, 38] studies that

short-range valley-dependent corrections to the long-range SU(4) symmetric

Coulomb interactions play a significant role in determining the ground state of

the quantum Hall ferromagnet state realized at neutrality (ν̃ = 2) in graphene.

It is natural that these symmetry breaking terms play an important role in

the FQH states as well.

The symmetry breaking interactions can be modeled as zero-range

valley-sublattice dependent interactions. The discrete symmetries of the hon-

eycomb lattice serve to constrain the allowed zero-range symmetry breaking

interactions [3]. The projection into the N = 0 produces additional simpli-

fications because of the equivalence between sublattice and valley degrees of

freedom in such subspace. As a consequence the symmetry breaking interac-

tions reduce to the following [38]:

Ha =
∑
i<j,σ

Vσ τ
i
σ P

ij
0 τ

j
σ −

∑
i

hσiz (3.4)

where τ iσ is a Pauli matrix which acts on the valley degree of freedom of

particle i, σ = {x, y, z}, σiz is the z-axis Pauli matrix which acts on the spin of

particle i, P ij
0 projects the pair state of particles i and j onto relative angular

momentum 0, and Vσ is a valley-dependent Haldane pseudopotential. Because
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conservation of total crystal momentum implies that the number of electrons in

each valley is conserved, we have Vx = Vy ≡ V⊥. The system’s weakly-broken

SU(4) symmetry is therefore characterized by three parameters Vz, V⊥, and by

the Zeeman field strength h. The values of Vz and V⊥ are dependent on the

component of magnetic field perpendicular to the graphene plane B⊥, whereas

the Zeeman strength is determined by the total magnetic field, therefore, their

relative strengths can be controlled by tilting the magnetic field away from the

2DES normal. In Eq. (3.4) the z-axis of spin is chosen along the direction of

the total magnetic field.

The symmetry breaking interaction parametrized by Vz, preserves the

valleys of the scattering electrons at each vertex but it has opposite sign for

intra- and inter-valley interactions, it is diagrammatically depicted in Figs. 3.1(a-

b). The symmetry breaking interaction parametrized by V⊥ is an inter-valley

scattering term, it flips the valleys of the electrons at each vertex, but it does

so in a manner that preserves the total number of electrons in each valley.

Therefore, it is non-vanishing only when the scattering electrons have oppo-

site valleys and it swaps their valleys after scattering, as it is diagrammatically

depicted in Fig. 3.1(c).

In addition to the Zeeman coupling, a single particle valley symmetry

breaking term could present. For example a sublattice staggered potential

would give rise to a term of the form:
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Figure 3.1: Diagramatic depiction of symmetry breaking interactions in the
N = 0 LL of graphene.

δHa = −
∑
i

mτ iz. (3.5)

A term of this form is ruled out for suspended graphene due to the symme-

try between A and B sublattices. However, terms of this sort are expected

to arise from the staggered potential created on graphene when it is closely

aligned with a boron-nitride substrate [32, 60, 75]. In this work we will focus on

understanding the FQH states of suspended graphene, but this term is likely

to be crucial in explaining the additional FQH states observed for graphene

on boron-nitride [32], as it will become clear in the coming sections.
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3.3 Multi-component FQH states in the N = 0 LL of
graphene

Because of the full particle-hole symmetry of the Hamiltonian describ-

ing the N = 0 LL of graphene it is sufficient to restrict the contruction to the

filling factor range ν̃ ∈ [0, 2], and incompressible states in the range ν̃ ∈ [2, 4]

can then be obtained by applying global particle-hole conjugation. To con-

struct the incompressible sates in the filling factor range ν̃ ∈ [0, 2] we apply the

formalism discussed in Chapter 2. Let us summarize the procedure for parti-

cles with four internal degrees of freedom, which correspond to the spin/valley

flavors of the electrons in the N = 0 LL of graphene. Consider a multicom-

ponent FQH state with total filling ν̃0 ∈ (0, 1). Then we can construct FQH

states using the following two rules:

Map 1 If the state involves three components or less, namely if it has a filling

vector (ν1, ν2, ν3, 0), we can construct an associated state by adding the

correlated particles to the quantum Hall ferromagnet at ν̃FM = 1 (as

described in Eq. (2.4)), to obtain a state with total filling ν̃0 + 1 and

filling vector (1, ν1, ν2, ν3). The Coulomb energy per flux quantum of the

state obtained from this map is related to the energy per flux quantum

of the original state as follows:

Eν̃0+1 = Eν̃0 + E1, (3.6)
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where E1 = −
√
π/2 e2/2εl is the Coulomb energy of the ν̃FM = 1

ferromagnet.

Map 2 If the state involves two components or less, namely if it has a filling

vector (ν1, ν2, 0, 0), we can construct an associated state by adding the

correlated holes to the quantum Hall ferromagnet at ν̃FM = 2 (as de-

scribed in Eq. (2.8)), to obtain a state with total filling 2− ν̃0 and filling

vector (1−ν2, 1−ν1, 0, 0). The Coulomb energy per flux quantum of the

state obtained from this map is related to the energy per flux quantum

of the original state as follows:

E2−ν̃0 = Eν̃0 + (1− ν̃0)E2, (3.7)

where E2 = 2E1 is the Coulomb energy of the ν̃FM = 2 ferromagnet.

We will focus on the states at ν̃ = p/3, with p = {1, 2, 4, 5}, which are

representative enough to understand the many of the observations reported in

Refs. [20, 21].

3.3.1 FQH states at ν̃ = 1/3 and ν̃ = 2/3

The FQH states ν̃ = 1/3 and ν̃ = 2/3 involve only two flavors and are

therefore familiar from the studies in the context of gallium arsenide (GaAs)

when spin is considered to be an active degree of freedom. We will describe

the properties of these states in the absence of symmetry breaking terms and

discuss the symmetry breaking in the next sections. We begin by considering
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the ground state for ν̃ = 1/3. At this fraction the expected ground state is

the SU(4) ferromagnet Laughlin state [43], with filling vector (1/3, 0, 0, 0), and

wavefunction,

Ψ1/3 =

[∏
i<j

(zi − zj)3 e−
|zi|

2

4l2

][⊗
i

|χ〉i
]
. (3.8)

In this state electrons are fully polarized into occupying a single SU(4) spinor

which we denote by |χ〉. The energy per particle of this state for the Coulomb

interaction is−0.41e2/εl, as determined from exact diagonalization studies [28].

At ν̃ = 2/3, two incompressible states compete in correlation energy.

One of them is the single component particle-hole conjugate of the Laughlin

state, with filling vector (2/3, 0, 0, 0). The other state is a two-component sin-

glet with filling vector (1/3, 1/3, 0, 0). Exact diagonalization studies have de-

termined that the ground state of the Coulomb interaction for two-component

fermions is the singlet with fillings (1/3, 1/3) [12, 13, 55, 72, 76, 77], whose wave-

function is of the form:

Ψ(1/3,1/3) = A1↔2

[
Ψorb

(1/3,1/3)[{zi}]
N/2⊗
i=1

|χ1〉i
N⊗

i=N/2+1

|χ2〉i
]
. (3.9)

In this state electrons would occupy two of the SU(4) spinors which we de-

note by |χ1〉, |χ2〉. A1↔2 denotes the antisymmetrization between electrons

in these two flavors. An explicitly holomorphic form for the orbital part of

31



this wavefunction analogous to that of the Laughlin state in Eq. (3.8) is un-

known. A composite fermion wavefunction for this state can be written, and it

is such that the composite fermions experience an effective field with opposite

direction to that of the physical field and make a two-component singlet at

ν = 2 [33].

Exact diagonalization studies find that the Coulomb energy difference

per particle between the two competing states at ν̃ = 2/3 is [12, 13, 55, 72, 76,

77],

ECoul
(2/3,0,0,0) − ECoul

(1/3,1/3,0,0)

n
≈ 0.009

e2

εl
. (3.10)

Composite Fermion trial wavefunctions significantly underestimate this energy

difference to be about 0.0036e2/εl [12, 13], although they correctly predict the

ground state to be the singlet [76].

3.3.2 FQH states at ν̃ = 4/3 and ν̃ = 5/3

At ν̃ = 4/3, we obtain two competing states with flavor compositions

(1, 1/3, 0, 0) and (2/3, 2/3, 0, 0), by applying the two-component particle-hole

conjugation to the states (2/3, 0, 0) and (1/3, 1/3, 0, 0) at ν̃ = 2/3 discussed

in the previous sections. These two states are well known from work on the

FQHE of spinful fermions as well. From Eq. (3.7) it follows that the state with

lower Coulomb energy is (2/3, 2/3, 0, 0).

At ν̃ = 5/3 we obtain two states with flavor fillings (1, 2/3, 0, 0) and
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(1, 1/3, 1/3, 0). These two states are obtained by constructing the same two-

component correlated states (2/3, 0, 0) and (1/3, 1/3, 0, 0) at ν̃ = 2/3, but

instead of particles being added to the vacuum the are added to the quantum

Hall ferromagnet at ν̃ = 1. Note that the state (1, 2/3, 0, 0) could also be con-

ceptualized as adding a Laughlin state of correlated holes to the quantum hall

ferromagnet at ν̃ = 2, with fillings (1, 1, 0, 0). However the state (1, 1/3, 1/3, 0)

needs to be thought of as two-component correlated state added to the quan-

tum hall ferromagnet at ν̃ = 1. Figure 3.2 illustrates how the states at ν̃ = 4/3

and ν̃ = 5/3 are related to the states at ν̃ = 2/3.

The appearance of a three-component state at ν̃ = 5/3 demonstrates

that there is no reason to anticipate a simple relationship between ν̃ and 2− ν̃

states in graphene. The (1, 1/3, 1/3, 0) state has not previously been discussed

as a possible ground state of graphene. Interestingly, Eq. (3.6) implies that this

state has lower Coulomb energy than the Laughlin state of of holes (1, 2/3, 0, 0),

which is believed to be realized in graphene. As we will illustrate later on, this

is likely to be the case when the symmetry braking interactions are added.

3.4 FQH phases with SU(4) symmetry breaking inter-
actions

In this section we will consider the effects of the terms that explicitly

break the SU(4) spin-valley symmetry in graphene described in Eq. (3.4).

We assume that these symmetry breaking terms are not strong enough to

alter the Coulomb correlations of the SU(4) model states. Much as in the
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Map 2

Map 1

Figure 3.2: ν̃ = 5/3 can be understood as electrons added to ν̃ = 1 ferro-
magnet. ν̃ = 4/3 can be understood as holes added to ν̃ = 2/3 quantum
Hall ferromagnet. The black (white) boxes represent to filled (empty) single-
particle states, and thus are the Young tables of the electron (hole) many-body
wavefunction.

case of standard magnetic systems, the role of the anisotropy terms is to

select the 4-component spinors assigned to wave function components. Since

more than one incompressible state might enjoy good Coulomb correlations

at a given ν̃, symmetry breaking terms will also alter the energy balance

between these states. This occurs in spite of their smallness compared to the

Coulomb energy scale, and the reason for this is that typically the Coulomb

energy favors the correlation of a particular state with respect to another one

rather weakly as illustrated in Eq.(3.10), thus the symmetry breaking terms
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can play a role in deciding which state is favored. Additionally the scaling

of the symmetry breaking terms is typically linear with the perpendicular

magnetic, B⊥, whereas the Coulomb energies scale as the square root of field
√
B⊥, therefore the anisotropy energy scales tend to dominate at large fields,

whereas Coulomb energy tends to dominate at low fields. This different scaling

is the ultimate reason for the observation of phase transitions between different

FQH states of graphene [21], in an analogous fashion as the transtions between

states of different spin-polarization observed in GaAs [16, 41].

3.4.1 Symmetry breaking at ν̃ = 1/3 and ν̃ = 2/3

The states at ν̃ = 1/3 and ν̃ = 2/3 can be well approximated by

zero energy states of the Hard-core model. In other words they are such that

there is vanishing probability amplitude for spatial coincidence of fermions.

As a consequence they do not experience the short range valley-dependent

interactions [2], the only relevant symmetry breaking term is therefore the

Zeeman coupling of the electron spin.

At ν̃ = 1/3 we therefore expect the Laughlin state to be fully spin

polarized, with a remnant valley SU(2) symmetry of the form:

Ψ1/3 =

[∏
i<j

(zi − zj)3

][⊗
i

| ↑〉i ⊗ (uK |K〉+ vK′|K ′〉)i
]
, (3.11)

where uK |K〉 + vK′ |K ′〉 designates an spinor which is an arbitrary coherent

combination of both valleys. In the presence of this effective SU(2) symme-

35



try, the charged quasiparticles near ν̃ = 1/3 are expected to be large valley

skyrmions [52, 69]. These valley skyrmions would have 1/3 of the electron

charge and involve a soliton-type texture where the valley ferromagnetic order

of the state described in Eq. (3.11) is locally deformed so that it points into the

orthogonal spinor v∗K′|K〉−u∗K |K ′〉 at the core of the skyrmion and it smoothly

heals into the ground state spinor as one moves away from the skyrmion core.

Within the classical non-linear sigma-model (Ginzburg-Landau) de-

scription of the ferromagnetic order, the charge gap to create an arbitrarily

distant pair of skyrmion quasi-electron and skyrmion quasi-hole pair can be

related to the stiffness of the ferromagnetic order parameter, ρs, as follows,

∆skyrm
NLσ = 8πρs. (3.12)

This formula predicts that a charge gap [48, 52, 69]:

∆sky
1/3 ≈ 0.023 e2/εl, (3.13)

which is expected to be reduced by a factor of approximately 5, relative to that

of the usual single-component Laughlin quasi-electron and quasi-hole pairs,

which is approximately 0.104e2/εl.

The considerable reduction of this charge gap possibly explains why

there is no discernible signature of incompressibility in the measurements in

suspended graphene samples [2, 14, 20, 21]. It is worth contrasting this to the

behavior reported for graphene on boron nitride substrates [32]. There it
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is likely that a single particle term acting as the analogue of the Zeeman

coupling in the valley space, such as that described in Eq. (3.5) is present,

hence breaking the remnant valley symmetry, and, if strong enough, turning

the quasiparticles into conventional Laughlin quasi-electrons and quasi-holes.

At ν̃ = 2/3 we expect a fully spin polarized valley-singlet state of the

form:

Ψ2/3 = AK↔K′

Ψorb
2/3[{zi}]

N/2⊗
i=1

| ↑ K〉i

⊗
 N⊗
i=N/2+1

| ↑ K ′〉i

 . (3.14)

This state is unique and has no spontaneously broken symmetries unlike that

at ν̃ = 1/3, and appears quite robust in experiments [14, 20, 21].

Although the ground state at ν̃ = 2/3 is expected to be fully spin

polarized, it is possible that spin reversed quasiparticles are relevant for de-

termining the charge gap at this fraction. In the absence of Zeeman terms,

quasiparticles could lower their Coulomb energy by making flavor flips into the

completely empty spinors. This is the behavior found for composite fermion

wavefunctions at ν̃ = 2/5 [70], which we anticipate to display a similar behav-

ior to ν = 2/3 in the absence of Zeeman terms. However, a numerical study of

SU(4) flavor reversed quasiparticles would be needed to quantitatively assess

this scenario at ν̃ = 2/3. If the spin-reversed quasiparticles were found to be

lower in Coulomb energy they could determine the charge gaps at low fields.

At higher fields, where the Zeeman energy dominates and penalizes
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the spin-reversed quasiparticles one would recover the picture of fully spin

polarized quasiparticles in the SU(2) valley space. The gap would then be [77]:

∆2/3 ≈ 0.0784e2/εl. (3.15)

These quasiparticles do not involve valley flips, since additional flips in the

background of a singlet state tend to increase the Coulomb energy of the

quasiparticles, contrary to the situation for polarized states as demonstrated

in exact diagonalization studies [72].

3.4.2 Ordered phases for two-component states with ν̃ ∈ [1, 3]

In this section we consider the subset of incompressible states in the

filling factor range ν̃ ∈ [1, 3] that can can be understood as arising from adding

quasiparticles or quasiholes in a correlated fashion to the quantum Hall ferro-

magnet at neutrality with ν̃ = 2, these states can be viewed as two-component

states. The states previously discussed at ν̃ = 4/3 can both be understood

in this fashion. At ν̃ = 5/3 only the two-component state with filling vector

(1, 2/3, 0, 0) is contained in this class. The specifics of the symmetry broken

phases for these states will be discussed in the next section. A different analysis

is required for the three-component state (1, 1/3, 1/3, 0).

For ν̃ ∈ (1, 2) these states would partially occupy only two spinors.

The equivalent particle-hole conjugate states in ν̃ ∈ (2, 3) fully occupy two

spinors and partially occupy two other spinors. Without loss of generality

we will describe only the ν̃ ∈ (2, 3) case for which the flavor composition
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is (1, 1, ν3, ν4). Let us call the fully occupied spinors |χ1〉 and |χ2〉 and the

partially occupied spinors |χ3〉 and |χ4〉. We assume that the spinors that

minimize the energy do not have valley-spin entanglement, i.e. they can be

written as |χi〉 = |ti〉 ⊗ |si〉 ≡ |ti, si〉, where ti denotes a unit vector in the

valley Bloch sphere, and si denotes a unit vector in the spin Bloch sphere,

in analogy with the quantum Hall ferromagnet at neutrality [38]. Given this

assumption, one finds that the states which minimize the anisotropy energy,

which is the expectation value of the Hamiltonian appearing Eq. (3.4), can

be seperated into two classes: spin-ordered phases and valley-ordered phases.

The spin ordered phases have spinors,

|χ1〉 = |K, sK〉, |χ2〉 = |K ′, sK′〉,

|χ3〉 = |K,−sK〉, |χ4〉 = |K ′,−sK′〉.
(3.16)

Their anisotropy energy per flux quantum computed using Eq. (2.21) can be

shown to be,

εa =− V⊥(1− ν)sK · sK′ − Vz − V⊥(1 + ν)

− h(1− ν3)szK − h(1− ν4)szK′ ,
(3.17)

where ν = ν3 + ν4. This equation is equivalent to Eqs.(18)-(20) of Ref. [2]

up to an overall constant that arises from particle-hole conjugation. Within

the spin ordered phases the state that minimizes the energy depends solely on

the ratio V⊥/h. Three different spin ordered phases are found depending on
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the value of this ratio. Without loss of generality we assume in the remainder

that ν3 ≥ ν4 and h ≥ 0. First we have a collinear antiferromagnet (CoAFM),

where the spin orientations are collinear with the Zeeman field axis, sK = −ez

and sK′ = ez. This phase is stable for V⊥ < 0 and,

|V⊥|
h
≥ (1− ν3)(1− ν4)

(1− ν)(ν3 − ν4)
, (3.18)

and has energy εa = −Vz − 2νV⊥ − h(ν3 − ν4). Second we have a canted

antiferromagnet (CaAFM), where the spin orientations are canted away from

the Zeeman field axis in opposite directions and with different canting angles

in each valley in general. This phase is stable for V⊥ < 0 and,

(1− ν3)(1− ν4)

(1− ν)(ν3 − ν4)
≥ |V⊥|

h
≥ (1− ν3)(1− ν4)

(2− ν)(1− ν)
, (3.19)

the energy and canting angles of the spinors in each valley are,

εa =|V⊥|(1 + ν)− |V⊥|
2

(1− ν)

(
1− ν4

1− ν3

+
1− ν3

1− ν4

)
− h2

2|V⊥|
(1− ν3)(1− ν4)

(1− ν)
− Vz,

szK =
h(1− ν4)

2|V⊥|(1− ν)
+
|V⊥|(1− ν)

2h(1− ν4)

[
1−

(
1− ν4

1− ν3

)2
]
,

(3.20)

and szK′ can be obtained from above expression by switching labels 3↔ 4. The

third and last spin-ordered phase is the ferromagnet (FM), where both spins

point along the Zeemann axis sK = sK′ = ez, and is stable in the remaining
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range of V⊥/h, and has energy εa = −Vz − 2V⊥ − h(2 − ν). An important

special case is when the two valleys are equally filled, i.e. ν3 = ν4. As this

limit is approached the boundary to the CoAFM goes to infinity and only the

CaAFM and FM phases are present. For ν3 = ν4 the valleys have canting

angles of equal magnitude and opposite sign with respect to the Zeeman axis.

Note that all transitions between the spin-ordered phases are continuous.

The second class of states, the valley ordered states, occupy spinors

|χ1〉 = |t, ↑〉, |χ2〉 = |t, ↓〉,

|χ3〉 = | − t, ↑〉, |χ4〉 = | − t, ↓〉.
(3.21)

One finds two valley-ordered phases that minize the anisotropy energy. First

the charge-density-wave (CDW) phase with t = ±ez, where the north/south

poles of the Bloch sphere designate valleys K/K ′. The CDW phase has energy

εa = V⊥(1− 3ν)− νVz − h(ν3− ν4). Second the Kekule-distortion (KD) phase

with tz = 0, and energy εa = Vz(1− 2ν)− 2νV⊥ − h(ν3 − ν4). The KD-CDW

phase transition is first order and occurs along the line V⊥ = Vz. It terminates

at the multicritical point V⊥ = Vz = −h(1−ν3)/(2(1−ν)), where three phases

coexist (KD-CDW-FM) for ν3 > ν4 and four phases coexist (KD-CDW-FM-

AFM) for ν3 = ν4.
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Figure 3.3: Broken symmetry phases for the state (1, 1, 2/3, 0) in a), and for
the state (1, 1, 1/3, 1/3) in b).

3.4.3 Symmetry breaking for two-component states at ν̃ = 4/3 and
ν̃ = 5/3

The anisotropic interaction has a greater impact in selecting the ground

states at ν̃ = 4/3 and ν̃ = 5/3, compared to the previously discussed states at

ν̃ = 1/3 and ν̃ = 2/3, which were insensitive to such short range interactions

and only selected by the Zeeman term.

At ν̃ = 4/3 we have two candidate incompressible states, namely

(1, 1/3, 0, 0) and (2/3, 2/3, 0, 0). To employ the results of the previous section,

we perform a global particle-hole transformation into the states (1, 1, 2/3, 0)

and (1, 1, 1/3, 1/3) respectively. An analysis of the possible ordered phases

leads to the phase diagrams depicted in Fig. 3.3.

Experiments suggest canted antiferromagnetic order at ν̃ = 2 [79], and

are consistent with V⊥/h ∼ −10 [2]. According to the phase diagrams in

Fig. 5.1, this would imply that the (1, 1, 2/3, 0) state is a collinear antiferro-

magnet (CoAFM) in perpendicular field measurements, whereas (1, 1, 1/3, 1/3)
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is a canted antiferromagnet (CaAFM). We estimate that the critical field for

the transition between (1, 1, 2/3) and (1, 1, 1/3, 1/3) states is:

Bc =
1

(1− h/|V⊥|)2

(
δεc2/3
h

)2

, (3.22)

where δεc2/3 is the Coulomb energy difference per-particle between the single

component state and the singlet at ν̃ = 2/3 that was reported in Eq. (3.10),

and all the quantities on the right hand side of this equation are understood to

be evaluated at a magnetic field of 1T. In a SU(2) system like GaAs with sym-

metry broken only by Zeeman, the transition at ν̃ = 2/3 between the singlet

and spin polarized states would occur at Bc = (δεc2/3/h)2. Eq. (3.22) reduces

to this expression for h � |V⊥| because the anisotropy energy difference be-

tween the CoAFM and CaAFM states is dominated by Zeeman energies in

this limit, as can be deduced from Eq. (3.17). In graphene the ratio of Zeeman

to Coulomb energies can be estimated to be

h

e2/εl
∼ 0.001ε

√
B[T]. (3.23)

To account for the impact of screening at a qualitative level, we can

use the RPA value of the dielectric constant of suspended graphene: ε =

1 + πα/2 ≈ 4.6 [66]. We thus obtain the following estimate for the critical

value of the perpendicular magnetic field at which the transition between the

canted antiferromagnet (CaAFM) state with filling (1, 1, 1/3, 1/3) into the

collinear antiferromagnet (CoAFM) state with filling (1, 1, 2/3, 0) occurs,
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Figure 3.4: a) Broken symmetry phases for the state (1, 1, 1/3, 0), b) charge
gap indicating the number of spin-reversals, δN , in the quasielectron-quasihole
pairs.

Bc = 4.7 T for |V⊥|/h = 10, (3.24)

if instead one uses |V⊥|/h = 5 one gets Bc = 6T. These values are in agreement

with the magnetic field at which a transition is observed in experiments [21].

An analysis of the gaps for the states at ν̃ = 4/3 indicates that the quasipar-

ticles involve a few flavor flips, in analogy with GaAs [72].

Let us now consider the broken symmetry phases of the two component

state at ν̃ = 5/3, whose particle-hole mirror state at ν̃ = 7/3 has filling vector

(1, 1, 1/3, 0). By applying the formulas developed in section 3.4.2 we arrive at

the possible phases depicted in Fig. 3.4(a).

Let us also apply our formalism discussed in Section 2.4 to determine

the charge gaps of this state. In the perpendicular field configuration the state

of graphene is expected to be in the collinear antiferromagnet phase (CoAFM).
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For this state there are two kinds of quasiparticles involving flavor flips. The

first involves flips from the completely filled spinors. These quasiparticles have

lower Coulomb energy, but considerably larger anisotropy energy and are thus

likely irrelevant in experiment. We relegate the details of this discussion to

Appendix C.

We will focus here on the second kind of flavor reversed quasi-particles,

which involve flips between the fractionally filled and the empty spinors. In

this specific case of two completely filled spinors and two fractionally filled

spinors Eq. (2.25) reduces to:

∆a = δN(〈χ4|HHF
i |χ4〉 − 〈χ3|HHF

i |χ3〉), (3.25)

with,

HHF
i =

∑
σ

Vσ [tr(Piτσ)τσ − τσPiτσ]− hσz, (3.26)

Pi = |χ1〉〈χ1|+ |χ2〉〈χ2|, (3.27)

where {|χ1〉, |χ2〉} are the completely filled spinors, and {|χ3〉, |χ4〉} are the

fractionally filled and empty spinors in the state (1, 1, 1/3, 0).

For the CoAFM state, (1, 1, 1/3, 0), we can choose the completely filled

spinors to be |K, ↑〉, |K ′, ↓〉, and the 1/3 filled spinor to be |K ′, ↑〉. The

quasiparticles can lower their energy by flavor flips from the spinor, |K ′, ↑〉,

into the unoccupied spinor |K, ↓〉. The anisotropy contribution to the gap
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from Eq. (2.25) per flavor flip is simply 2h, the conventional single spin-flip

Zeeman gap. Therefore the total charge gap at ν̃ = {5/3, 7/3} when the

quasielectron-quasihole pairs involve a total of δN spin reversals is,

∆tot = ∆Coul(δN) + 2hδN (3.28)

where ∆Coul(δN) is the contribution arising from the Coulomb energy and

2hδN is the Zeeman energy penalty for reversing spins. This is analogous to

the situation of GaAs at ν̃ = 1/3, where one expects the quasiparticles of the

Laughlin state to involve a few spin flips up to magnetic fields ∼ 10T [11,

15, 48, 61, 74]. Hence, it is likely that the quasiparticles of the ν̃ = {5/3, 7/3}

states in graphene involve a few spin flips as well.

Let us assess this scenario quantitatively. The conventional Coulomb

gap of the Laughlin state without flavor flips is ∆0
1/3 ≈ 0.1036 e2/εl [19]. The

gap for a single flip corresponds to a spin-flipped quasielectron and a no-flip

quasihole pair, and it is about ∆1
1/3 ≈ 0.075 e2/εl [11, 15, 48, 61]. The gap for

two flavor flips, ∆2
1/3, is known with less accuracy, but can be estimated to be

lower than ∆1
1/3 by about 0.01 e2/εl [15, 48, 74], and it is expected to correspond

to a single spin-flipped quasielectron and single spin-flipped quasihole pair.

The predicted gap behavior is depicted in Fig. 3.4(b), and is in good agreement

with experiment [20, 21]. Figure 3.4(b) indicates that for most of the range

probed in Refs. [20, 21] the relevant quasiparticles involve a single spin flip.
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3.4.4 Symmetry breaking for the three-component state at ν̃ = 5/3

At ν̃ = 5/3, in addition to the two-component Laughlin-type state

described in the previuos section, there is a three component incompressible

state with flavor composition (1, 1/3, 1/3, 0). We will discuss in this section

the possible symmetry breaking patterns that minimize the anisotropy energy

of this state.

We assume again that these states have no valley-spin entanglement,

and thus that the occupied spinors have the form |χi〉 = |ti〉 ⊗ |si〉 ≡ |ti, si〉,

where ti denotes a unit vector in the valley Bloch sphere, and si denotes a unit

vector in the spin Bloch sphere. With this restriction, we find seven phases that

minimize the anisotropy energy for different values of the symmetry breaking

parameters. They fill spinors: (a) |K, ↑〉, |K ′, ↓〉, |K ′, ↑〉; (b) |t⊥, ↑〉, |− t⊥, ↑〉,

|−t⊥, ↓〉; (c) |K, ↑〉, |K, ↓〉, |K ′, ↑〉; (d) |K, s1〉, |K ′, s2〉, |K,−s1〉; (e) |t, ↑〉, |K, ↓

〉, |K ′, ↓〉; (f) |t⊥, s1〉, | − t⊥, s2〉, |t⊥,−s1〉; (g) |t⊥, ↑〉, | − t⊥, ↑〉, |t⊥, ↓〉. In this

listing the first spinor is understood to be fully filled and the other two to be

fractionally filled, t⊥ is a unit vector on the equator of the valley Bloch sphere,

t is an arbitrary unit vector on the valley Bloch sphere, and {s1, s2} are unit

vectors in the spin Bloch sphere. Any of the listed states with definite valley

numbers is understood to have the Z2 valley interchange symmetry K ↔ K ′,

and we have listed only one of its realizations.

The anisotropy energy per flux quantum of these phases are,

47



(a) εa = −2

3
(Vz + V⊥)− h,

(b) εa = −1

3
(Vz + 3V⊥)− h,

(c) εa = −2

3
V⊥ − h,

(d) εa =
1

12
V⊥ +

1

3

h2

V⊥
,

(e) εa = −h
3
,

(f) εa =
1

24
(Vz + V⊥) +

2

3

h2

(Vz + V⊥)
,

(g) εa = −1

3
(Vz + V⊥)− h.

(3.29)

Phases (d) and (f) have spins canted away from the Zeeman field. The

projection of the spins along the Zeeman axis are

sz =
h

2|V⊥|
+

3|V⊥|
8h

, s2z =
h

|V⊥|
− 3|V⊥|

4h
. (3.30)

for phase (d) and

sz =
h

|Vz + V⊥|
+

3|Vz + V⊥|
16h

,

s2z =
2h

|Vz + V⊥|
− 3|Vz + V⊥|

8h
.

(3.31)

for phase (f).

The phase diagram obtained by comparing the energies of these states

depicted in Fig. 3.5. The dashed lines in Fig. 3.5 depict the boundaries of the
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Figure 3.5: (Color online) Phase diagram of three component state
(1, 1/3, 1/3, 0). See text for description of the labels. The dashed lines cor-
respond to the phase boundaries for the integer quantum Hall ferromagnet
realized at neutrality [38].

ordered phases of the integer quantum Hall ferromagnet described in Ref. [38].

An important observation is that, given that the ground state of the inte-

ger quantum Hall ferromagnet is likely to be in the canted antiferromagnetic

phase [79] and that V⊥ ∼ −10h [2], the three component state that competes

with the two component Laughlin-type (1, 2/3, 0, 0) collinear antiferromagnet

state is likely to be in phase (a). This is true except for an extremely small

region in the V⊥, Vz, h parameter space close to the boundary between the (g)

and (a) phase in Fig. 3.5 (see also Fig. 3.4(a)).
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Chapter 4

Quantum Hall regime in bilayer graphene

4.1 Experiments on FQHE in bilayer graphene

At the moment of writing this dissertation four experimental groups

have reported the observation of FQH states in bilayer graphene [5, 39, 40,

49]. The observations are substantially distinct from each other, suggesting

a special sensitivity to specific experimental conditions for bilayer graphene.

This offers the potential for exploring the FQH by tunning several physical

parameters. But in order to achieve control over them it is necessary to gain

better understanding of the low-energy physics to be able tame this variability.

The observations made so far are quite rich. Reference [39] reported a

FQH state at ν = −1/2 and an incipient state at ν = −5/2. These states have

been argued to be a realization of the Moore-Read Pffafian phase [57]. If so,

this would be the second instance in which this kind of non-Abelian FQH state

is realized, the other one being at ν = 5/2 in the 2DES of GaAs [73]. The sam-

ples in Ref. [39] were suspended and the FQH states were detected via four ter-

minal transport measurements. Essentially all of the FQH states in this study

were detected in the hole side (i.e. for a net number of electrons removed from

neutral bilayer graphene), except for an incipient FQH state at ν = 2/3. The
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fractions observed in this study were {−5/2,−8/5,−4/3,−2/3,−1/2, 2/3}.

Reference [40] reported a FQH states occuring at ν = {n+2/3, n+3/5},

with n = {−4,−2, 0, 2}. Remarkably a large gap of about 25meV was found

at neutrality ν = 0, which was present at zero magnetic field and was nearly

independent of the magnetic field strength. The samples in Ref. [40] were

on a boron-nitride substrate. This implies an asymmetry between bottom

and top layers which could be the source of this large gap1. The FQH states

were detected via local compressibility measurements in this study. An ad-

ditional noteworthy aspect was the lack of electron-hole symmetry ν → −ν.

Although electron-hole asymmetries are commonly detected in transport mea-

surements and are associated with extrinsic effects, the great degree of electron-

hole symmetry achieved in similar compressibility measurements on monolayer

graphene [20, 21] indicates that this result is not a measurement artifact.

Several authors have incorrectly argued this electron-hole asymmetry

to naturally arise from the near degeneracy of n = 0 and n = 1 cyclotron

wavefunctions in the neutral Landau level of bilayer graphene. Indeed, the

properly projected interaction Hamiltonian into the neutral Landau level which

includes all the leading terms in degenerate perturbation theory would contain

the exchange interaction with the negative energy sea. This term produces a

splitting of the n = 0 and n = 1 states, which favors n = 1 states, and it is

1Monolayer graphene samples on boron-nitride have also displayed large gaps at zero
magnetic field [32, 60, 75], however, these were samples with near commensurability of the
graphene and boron-nitride honeycomb lattices giving rise to moire-pattern superlattices.
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necessary to restore electron-hole symmetry, as was originally pointed out by

Shizuya [63]. As will be shown in this chapter one would expect this symmetry

to be exact to all orders in perturbation theory, provided the original lattice

model of bilayer graphene has an exact particle-hole symmetry. Therefore, it

is likely that the origin of this electron-hole asymmetry is intrinsic and arises

from the terms that explicitly break electron-hole symmetry in the microscopic

lattice model.

More recently in Ref. [49] transport measurements were performed on

bilayer graphene encapsulated in boron-nitride. The encapsulation reduces the

asymmetry between top and bottom layers that is present when boron-nitride

serves only as the substrate. The devices were dual-gated which allowed for an

independent control of the the electron density and the interlayer displacement

field in the graphene bilayer. The control over the displacement field allowed

for the tunning of phase transitions between integer and fractional quantum

Hall states with different layer polarizations. Similar observations were also

reported in the studies of Ref. [44] for the integer quantum Hall ferromagnets

of bilayer graphene.

4.2 Particle-hole symmetry in the minimal two-band
model for bilayer graphene

In this section we will illustrate that particle symmetry is expected

in bilayer graphene if one employs the conventional two-band model. The

main purpose of this section is to illustrate that this symmetry remains in
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the presence of a magnetic field, but to see it requires the proper inclusion of

the exchange interaction with the negative energy which produce a splitting

between the the n = 0 and n = 1 states.

We concentrate here in the study of AB stacked bilayer graphene (also

known as Bernal stacked bilayer graphene). The low energy dispersion of

electrons can be described within a continuum two-band model on which the

sublattice low energy states reside in opposite layers [50],

HK =

(
u/2 −(πx − iπy)2/2m

−(πx + iπy)
2/2m −u/2

)
, π = p+ eA/c, (4.1)

where the matrix elements are in top and bottom layer/sublattice indices, u is

an interlayer bias, and HK′ = HT
K . We have also ignored the trigonal warping

term. In the presence of a magnetic field the single particle spectrum is,

EnK = u/2, n = 0, 1 (4.2)

EnK = u/2 + sign(n)
√
ω2
c |n|(|n| − 1) + u2/4, |n| ≥ 2, (4.3)

where n = −∞, ...,−2, 0, 1, 2, ...,∞, ωc = eB/mc. The single particle states

associated with these levels are:
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ψnK =

(
φn
0

)
, n = {0, 1}, (4.4)

ψnK =

(
cos(θn/2) φ|n|

sin(θn/2) φ|n|−2

)
, n ≤ −2, ψnK =

(
− sin(θn/2) φ|n|
cos(θn/2) φ|n|−2

)
, n ≥ 2,

(4.5)

cos(θn) =
u/2√

ω2
c |n|(|n| − 1) + u2/4

, sin(θn) =
ωc
√
|n|(|n| − 1)√

ω2
c |n|(|n| − 1) + u2/4

, (4.6)

and the eigenvalues for the opposite valley are:

ψnK′ =

(
0 1
1 0

)
ψu→−unK , EnK′ = Eu→−u

nK , (4.7)

where φn are the conventional cyclotron eigenstates for Galilean particles.

Therefore the neutral landau level of bilayer graphene is eight-fold degenerate

when spin is included. The single particle states would be labeled by |n, v, s〉,

with n = 0, 1, v = K,K ′, s =↑, ↓, in addition to the intra-Landau level guid-

ing center numbers. The sublattice degree of freedom, which in this case is

equivalent to a layer index, becomes locked to the valley number in the neutral

Landau level, in an analogous fashion to monolayer graphene. In this work

we will focus on the properties on this neutral nearly eight-fold degenerate

Landau level.

Particles will interact via two-body forces. A parameter that justifies

a controlled projection onto the zero energy Landau level is the ratio of the

Coulomb interaction to the cyclotron energy κ = e2/ωcεl [8, 53, 59, 64, 67]. I

will describe the projected interaction Hamiltonian into the neutral Landau
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level next. This follows the spirit of degenerate perturbation theory, in which

the projected Hamiltonian can be argued to produce correct results in the first

order in the κ expansion.

In second quantization the unprojected interaction Hamiltonian is,

V =
1

2

∑
All

v(1; 2|3; 4)c†n1v1m1
c†n2v2m2

cn3v2m3cn4v1m4 . (4.8)

Here v(1; 2|3; 4) is a short-hand for the matrix elements of the two-body in-

teraction in the single particle basis that diagonalizes the kinetic term in the

presence of magnetic field. We are so far considering only the part of the

interaction that is valley and sublattice independent.

To project the Hamiltonian is not sufficient to simply restrict all the

Landau level indices to be in the neutral Landau level. To leading order

in κ one must include all terms that do not involve changes in the kinetic

energy of the electrons. These include the exchange interactions with the

completely filled negative energy sea [67]. In the context of Galilean Landau

levels these terms give rise simply a global shift of the chemical potential of

the Landau level in question, and hence have a trivial role in the intra-Landau

level energetics. In the present context, however, they will have the non-trivial

consequence of producing different shifts to the single particle energies of the

n = 0 and n = 1 orbitals [30, 63]. The projected interaction Hamiltonian is

thus:
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PV P = V̄ +X− =
1

2

∑
n∈{0,1}

v(1; 2|3; 4) c†n1,v1,m1
c†n2,v2,m2

cn3,v2,m3cn4,v1,m4

−
∑

n1,4∈{0,1},n3≤−2

v(3; 1|3; 4) c†n1,v1,m1
cn4,v1,m4 , (4.9)

where the second term, X−, is the aforementioned exchange field generated by

the negative energy sea with n ≤ −2, and the Hartree term vanishes because

of the neutralizing background. The invariance of the completelly filled neg-

ative energy sea under magnetic translations and rotations implies that this

exchange field is diagonal and independent of the intra-Landau level indices.

It can be shown to have three contributions which is convenient to distinguish:

X− = X0 +X1 +X2. (4.10)

The first contribution, X0 reads as,

X0 = −µ0

∑
n∈{0,1}

c†nvmcnvm, µ0 = − 1

2A

∑
q

vq (4.11)

This contribution is the shift of the Dirac point in the presence of

interactions, which is determined by the on-site Hubbard type energy U0 =

1
A

∑
q vq. It is independent of the magnetic field and its origin can be more

transparently understood in the Lattice model as I will illustrate in the next

section. It produces a simple global shift of the chemical potential of no interest

for the present discussion.
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The second contribution, X1, is:

X1 = µ1

∑
(c†0vmc0vm + c†1vmc1vm) + ∆1

∑
(c†0vmc0vm − c†1vmc1vm), (4.12)

µ1 =
11e2

16εl

√
π

2
, ∆1 =

e2

16εl

√
π

2
. (4.13)

This term contains the splitting between the n = 0, n = 1 orbitals, which

has the effect of favoring the n = 1 orbitals. This term is the same as that

appearing in Eq.(4.10) of Ref. [30]. We will sometimes refer to this as the

Shizuya term below.

The third contribution, X2, is:

X2 =
∑

ξn(c†nKmcnKm − c
†
nK′mcnK′m), (4.14)

ξ0 = −e
2

εl

∞∑
n=2

Γ(n+ 1/2)√
2n!

cos(θn) , (4.15)

ξ1 = −e
2

εl

∞∑
n=2

(n− 1/4)Γ(n− 1/2)√
2n!

cos(θn). (4.16)

This term will favor n = 0 in one valley and n = 1 in the opposite valley, and

would vanish when the interlayer bias vanishes u = 0.

Now consider a particle-hole transformation applied to Eq. (4.18), in

which labels for particles are exchanged by holes in the neutral Landau level:

C†c†nvmC = cnvm. (4.17)
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The interaction hamiltonian changes into,

C†V̄ C = V̄ +
∑

n∈{0,1}

v(3; 1|3; 4) c†n1,v1,m1
cn4,v1,m4 + const (4.18)

C†X−C = −X− + const (4.19)

therefore the particle-hole transformation generates an additional one body

term and changes the sign of the exchange field with the vacuum. However,

the newly generated one body term can be shown to be:

∑
n∈{0,1}

v(3; 1|3; 4) c†n1,v1,m1
cn4,v1,m4 = −2X1 (4.20)

Therefore,

C†(V̄ +X−)C = V̄ −X0 +X1 −X2 + const. (4.21)

When the interlayer bias vanishes, u = 0⇒ X2 = 0. In this case C is an exact

particle-hole symmetry between ν → −ν in bilayer graphene, since the change

of the global chemical potential from X0 has a trivial impact in the energetics,

in particular the charge gaps satisfy:

∆(ν) = ∆(−ν). (4.22)

At zero bias the swap of valleys is also an exact symmetry:
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P †c†nvmP = cnv̄m. (4.23)

This is no longer a symmetry at finite bias u, and neither is C by itself.

However, their product CP remains a symmetry,

(CP )†(V̄ +X−)CP = V̄ −X0 +X1 +X2 + const. (4.24)

Implying an exact symmetry between electron and hole gaps in bilayer graphene

at finite bias: ∆(ν) = ∆(−ν). So far we have not discussed the presence of

spin and the Zeeman term. In this case the operation needs to swap the spins

as well in order to be a symmetry: P †c†nvsmP = cnv̄s̄m.

4.3 Particle-hole conjugation symmetries in the lattice

In this section we will demonstrate that the particle-hole symmetry,

ν → −ν, is as consequence of the underlying particle-hole symmetry of the

microscopic lattice Hamiltonian. A crucial conclusion of the discussion in the

lattice model is that the particle-hole symmetry is exact in a non-perturbative

sense, and it is not restricted to a particular order of perturbation theory such

as the leading order of κ which is implicitly assumed in the models of the

interaction Hamiltonian projected to lowest Landau level. This is also an im-

portant difference with respect to the Landau levels in parabolic band systems

like GaAs, where the particle-hole symmetry is only valid to leading order in κ.

The exact lattice particle-hole symmetry has important consequences in per-
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turbation theory such as the absence of certain three-body interaction terms

in the neutral Landau level of monolayer [59] and bilayer graphene, which are

expected to be present in GaAs.

As we will see, it is actually easier to demonstrate the particle-hole

invariance in the lattice model. In particular we will find that, if the Hamilto-

nian is particle-hole invariant in the absence of a magnetic field, the product

of particle-hole conjugation and time reversal will remain an exact symmetry

in the presence of magnetic field. In other words, there is no reason to ex-

pect that a system will cease to be particle-hole symmetric by the action of a

quantizing magnetic field.

4.3.1 Particle-hole symmetries of single particle terms

Consider a bipartite lattice whose hopping terms link only sites in op-

posite sublattices:

K0 = −
∑
ij

tijc
†
iσcjσ (4.25)

where i denotes lattice sites and σ spin. These lattice models include mono-

layer graphene without second nearest neighbor hopping, and bilayer graphene

with no intralayer hopping terms between the same sublattice and no interlayer

hopping terms between A and A’ sites or B and B’ sites. For completeness, in

the remainder of this section we will deal with both cases: monolayer and bi-

layer graphene. Asumme tij to be real, then hermiticity implies tij = tji. This
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Hamiltonian posseses time-reversal and particle-hole conjugation symmetries,

whose action respectively is:

T zciσ T
−1 = z∗ciσ̄, (4.26)

C ciσ C
† = (−1)sic†iσ, (4.27)

where z is any complex number, and si = {0, 1} for sites on sublattices {A,B}

respectively (in bilayer we can think of the pairs AA’ and BB’ as the being in

the same sublattice, i.e. si = 0 for i ∈ {A,A′} and si = 1 for i ∈ {B,B′}).

Namely we have:

TK0T
−1 = K0, CK0C

† = K0. (4.28)

In the pressence of a magnetic field the hoppings become complex:

tij → tij exp(ie/~
∫ rj
ri
A(r) · dl). Generically the magnetic field would break

both symmetries separately, however, their product remains a symmetry:

(CT )−1KA CT = KA. (4.29)

In other words there exists a symmetry that exchanges particles and holes,

namely CT , that remains intact as the magnetic field is increased provided

it is a symmetry at zero field (indeed CT is a good symmetry even when the

original hoppings are complex).
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When there is a bias between the two sublattices an additional parity

operation is needed to construct a particle-hole symmetry. The honeycomb

lattice of monolayer graphene has an inversion center at the middle point of

the line that joins any two nearest-neighbor carbons. This inversion swaps

sublattices and it also inverts real space coordinates about such point. Let us

denote by r the position of a unit cell containing two nearest neighbor carbons.

Single particle states in lattice site basis can thus be labeled with r, α, σ, with

α = {A,B} denoting the sublattice within a unit cell, and σ the spin. Then

consider the space inversion operation,

P †crασP = c−r,ᾱ,σ. (4.30)

Consider a staggered sublattice potential (which gives rise to the term in

Eq. (3.5)):

∆TTZ = ∆T

∑
rσ

(c†rAσcrAσ − c
†
rBσcrBσ) (4.31)

This term is odd under the action of P and C, and therefore invariant

under their product CP . It is also invariant under time reversal, and hence

under CPT . The kinetic term is also invariant under P , therefore the com-

bined symmetry CPT is an exact particle-hole symmetry of the single particle

Hamiltonian in the presence of magnetic field. This is also true when the

Zeeman term, ∆ZSZ , is present. Therefore:
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(CPT )−1(KA + ∆TTZ + ∆ZSZ)CPT = KA + ∆TTZ + ∆ZSZ (4.32)

For bilayer graphene we can have a potential that biases the top layer with

respect to bottom layer:

∆TTZ = ∆T

∑
rσ

(c†rAσcrAσ + c†rBσcrBσ − c
†
rA′σcrA′σ − c

†
rB′σcrB′σ) (4.33)

This potential is odd under the inversion about the inversion center right in

the middle of the line joining the sites that are directly located on top of each

other. This inversion swaps top and bottom layers and inverts real space as

well,

P †crAσP = c−r,B′,σ, P
†crBσP = c−r,A′,σ. (4.34)

TZ is also odd under the action of C, therefore CP is a symmetry of bilayer

graphene. And much like in monolayer we have an exact CPT symmetry for

the single-particle Hamiltonian in the same form of Eq. (4.32).

However, in bilayer graphene, an onsite energy that distinguishes the sites that

are directly on top of each other from those that are not is odd under CPT.

Namely the term:

∆UUZ = ∆U

∑
rσ

(c†rAσcrAσ + c†rB′σcrB′σ − c
†
rA′σcrA′σ − c

†
rBσcrBσ), (4.35)
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transfroms as:

(CPT )−1∆UUZCPT = −∆UUZ . (4.36)

These terms have been argued to be present in addition to second nearest

neighbor hopping terms which are also odd under CPT [35, 42, 56, 62, 81]. As

we will discuss in the next section, these two kinds of terms are likely to be

responsible for the particle-hole asymmetry observed in the experiments of

Ref. [40].

Another term that respects the CPT symmetry is one in which a stag-

gered potential is added to each layer:

∆V VZ = ∆V

∑
rσ

(c†rAσcrAσ + c†rA′σcrA′σ − c
†
rB′σcrB′σ − c

†
rBσcrBσ), (4.37)

namely,

(CPT )−1∆V VZCPT = ∆V VZ . (4.38)

In particular it is plausible that if bilayer graphene is closely aligned

with a boron-nitride substrate a staggered potential acting on the bottom layer

would be present. Let us for the moment ignore the lattice mismatch between

graphene and boron-nitride. Then such potential would be of the form

Vsubs = ∆subs
UZ + VZ

2
, (4.39)
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Therefore, this potential has odd and even components under the action of

CPT, namely UZ and VZ , and will not respect this symmetry:

(CPT )−1VsubsCPT = ∆subs
−UZ + VZ

2
. (4.40)

This term therefore would give rise to additional particle-hole asymmetries.

We have considered several types of staggered potentials which have

zero average on the full lattice. If a potential has a finite average, this can

be absorbed into a global chemical potential shift, which is always odd under

the CPT transformation. This however does not mean that the CPT is not

a good symmetry in the presence of a chemical potential shift since the effect

of such term is trivial in the energetics. In particular, if NL is the total

number of states in a finite lattice, CPT will map the number of particles

as N → NL − N . Thus the fact that the global chemical potential changes

sign does not alter the spectrum of the problem at a given total number of

particles but simply produces a global energy shift. In particular it follows

that the neutral excitation energies, i.e. those that are defined as many-body

energies after subtracting the energy of the ground state of reference, are

unaltered. Under the action of CPT quasi-holes will turn into quasi-electrons

and viceversa, but the charge gaps would be left invariant.

4.3.2 Particle-hole symmetries of interactions terms

The full unprojected interaction Hamiltonian is independent of mag-

netic field. Let us start from the most general spin-independent interaction in
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the lattice model:

V =
1

2

∑
U(ij; kl) c†iσc

†
iσ′ckσ′clσ. (4.41)

Under the action of CT four terms are generated:

CT V (CT )−1 = (4.42)

1

2

∑
U(ij; kl)(−1)si+sj+sk+sl c†iσc

†
iσ′ckσ′clσ (4.43)

− gs
∑

U(jk; ki)(−1)si+sj c†jσciσ (4.44)

+
∑

U(kj; ki)(−1)si+sj c†jσciσ (4.45)

+
gs
2

∑
[gsU(ij; ji)− U(ij; ij)], (4.46)

gs is the spin degeneracy, and the only properties invoked to arrive at above

result are the indistinguishability of particles U(ij; kl) = U(ji; lk) and her-

miticity U(ij; kl)∗ = U(lk; ji). The first term is a genuine interaction. The

second and third are hopping terms because of lattice translational symmetry.

The last term is the interaction energy of the completely filled lattice which is

simply a constant.

In order for CT to be a good transformation the following condition

must be satisfied:

U(ij; kl)(−1)si+sj+sk+sl = U(ij; kl). (4.47)
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In other words, all the non-vanishing matrix elements of U(ij; kl) must have

an even number of legs in each sublattice. This immediately implies a sim-

plification of the Hartree and Fock terms: U(jk; ki)(−1)si+sj = U(jk; ki),

U(kj; ki)(−1)si+sj = U(kj; ki). This constraint also implies that their as-

socited effective hoppings are either between sites in the same sublattice,

namely a global chemical potential shift, or hoppings that are non-vanishing

starting at the second nearest neighbor distance (in the taxi-cab distance de-

fined by tij in general, but in particular in the sense of true distance in mono-

layer and Bernal bilayer graphene).

Therefore, generically the new hoppings would destroy the CT sym-

metry. A sufficient condition to retain CT as a symmetry is that the lattice

orbitals interact the way point-like objects do: U(ij; kl) = δilδjkU(ij; ji). Un-

der this assumption the Hamiltonian is invariant under CT up to a global

chemical potential shift and an overall constant:

CT V (CT )−1 = V − λN + Vfull, (4.48)

λ = −U(ii; ii) + gs
∑
k

U(ik; ki), (4.49)

Vfull =
gs
2

∑
[gsU(ij; ji)− U(ij; ij)]. (4.50)

The chemical potentials for addition and removal of particles are: µ+
N =

EN+1 −EN and µ−N = EN −EN−1, where EN is the ground state energy of N

particles. The charge gap is ∆N = µ+
N −µ

−
N . Among many other consequences

the CT symmetry implies:
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µ+
NL−N = −µ−N + λ, (4.51)

µ−NL−N = −µ+
N + λ, (4.52)

∆NL−N = ∆N . (4.53)

where NL =
∑

iσ 1 is the total number of single-particle states in the lattice.

An interesting observation is that when the system is gappless the chem-

ical potential at neutrality is µ∆=0
NL/2

= λ/2. This is the position of the Dirac

point in the presence of interactions. It is remarkable that this position de-

pends only on the onsite Hubbard-like term after subtracting the neutralizing

background energy,

µ∆=0
NL/2

= −U(ii; ii)

2
. (4.54)

This can be thought of as the binding energy of electrons to the lattice. This is

the meaning of the X0 correction described previously in the continuum model

in Eq. (4.11).

Since the space inversions considered in the previous section, denoted

by P , are also symmetries of the interaction Hamiltonian, it follows that, for

the model of interactions here considered, CPT will be a symmetry of the full

Hamiltonian provided it is a symmetry of the single-particle terms described

in the previous section.
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4.4 Low energy theory of bilayer graphene with explicit
particle-hole symmetry breaking terms

The two previous sections have illustrated that particle-hole asymme-

tries between states at ν and −ν, must originate from the microscopic terms in

the lattice models. These terms have been recently estimated from atomistic

density-functional theory-calculations in Ref. [35] which we will use to explain

the particle hole asymmetries observed in bilayer graphene.

4.4.1 Two-band model with explicit particle-hole symmetry break-
ing terms

We begin by deriving the low energy two-band model that descends

from the four-band model obtained in Ref. [35] by fitting the results of density

functional with a tight-binding model that includes explicitly particle-hole

symmetry breaking terms. After a dummy swap of rows and colums in Eq.(26)

of Ref. [35], the four band model effective Hamiltonian for valley K is:

H4b
K =


u/2 −v3π vπ† −v4π

†

−v3π
† −u/2 −v4π vπ

vπ −v4π
† u/2 + ∆ t1

−v4π vπ† t1 −u/2 + ∆


=

(
H00 H01

H10 H11

)
.

(4.55)

where the matrix columns correspond to A, B′, B, A′ sites respectively. In

this model the terms that break the particle hole symmetry are v4 and ∆.

v4 = t4
√

3a/2~ ≈ 4.47× 104 m/s, is proportional to the hopping amplitude t4
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which connects the A and A′ sites in opposite layers (and B and B′ sites), with

a = 2.46Åis the lattice constant of monolayer graphene [35]. ∆ ≈ 0.015eV is

an onsite energy that produces a small penalty for electrons to occupy the

sites that are directly on top of each other [35]. These term thus breaks the

electron-hole symmetry explicitly according to the discussion of the previous

section.

Let us now construct the effective two-band model that descends from

this four-band model with explicit particle-hole symmetry breaking terms. An

equivalent non-linear eigenvalue problem for the projected wavefunction into

the A, B′ low energy sites is:

(
H00 +H01

1

E −H11

H10

)
φ0 = Eφ0. (4.56)

In order to turn this into a conventional eigenvalue problem we would like to

set E = 0 in the energy denominator. To be able to do this we must resort to

the approximation that we are only interested in the leading corrections to the

eigenenergies in the dimensionless parameters: (v|π|/t1, v4|π|/t1, u/t1, v3|π|/t1).

This leads to the following eigenvalue problem:

(
H00 −H01

1

Hu=0
11

H10

)
φ0 = Eφ0. (4.57)

It is important to set u = 0 in H11. If we don’t do this, we would be including

some terms of order u|vπ|2/t31, but not all them, since we have already neglected
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terms of order u coming from the energy denominator and thus their inclusion

would not be systematic. The effective low energy two-band model is therefore:

H2b
K =

(
u/2 0
0 −u/2

)
− v3

(
0 π
π† 0

)
− 1

2m0

(
0 π†2

π2 0

)
+

1

2m1

(
π†π 0
0 ππ†

)
,

(4.58)

with:

1

2m0

=
t1(v2 + v2

4) + 2∆vv4

t1 −∆2
,

1

2m1

=
∆(v2 + v2

4) + 2t1vv4

t1 −∆2
.

(4.59)

For the K’ valley we have H4b
K′ = [H4b

K (v → −v, v4 → −v4, v3 → −v3)]T . The

effective two-band hamiltonian for valley K’ is therefore:

H2b
K′ =

(
u/2 0
0 −u/2

)
+ v3

(
0 π
π† 0

)
− 1

2m0

(
0 π2

π†2 0

)
+

1

2m1

(
ππ† 0
0 π†π

)
.

(4.60)

the Hamiltonians in the two valleys are related by: H2b
K′ = σxH

2b
K σx(u →

−u, v3 → −v3). The Hamiltonians of the valleys are exchanged by time rever-

sal T, since TπT † = −π†. Therefore the product of time reversal and valley

swap is a symmetry: TσKK
′

x . The term that breaks explicitly the particle-hole

symmetry in the two-band model is the last one parametrized by the effective

mass m1.

71



I have verified using perturbation theory that it is safe to neglect the

trigonal warping term, i.e. to set v3 = 0. Additionally, this term is particle-

hole symmetric, so there is no qualitative or quantitave danger in neglecting

it. In the presence of magnetic field we define a = lπ/
√

2. The Hamiltonian

reads as:

H2b
K =̇

(
u/2 + ω1n −ω0

√
n(n− 1)

−ω0

√
n(n− 1) −u/2 + ω1(n− 1)

)
,

σAB
′

x H2b
K′σ

AB′

x =̇

(
−u/2 + ω1n −ω0

√
n(n− 1)

−ω0

√
n(n− 1) u/2 + ω1(n− 1)

)
,

(4.61)

where the matrix in valley K has the first column associated with state |n,A〉

and the second with |n− 2, B′〉, whereas the matrix in valley K’ has the first

column associated with state |n,B′〉 and the second with |n− 2, A〉.

The eigenfunctions and energies of the neutral Landau level are there-

fore:

H2b
K |0, A〉 = u/2|0, A〉, H2b

K |1, A〉 = (u/2 + ω1)|1, A〉,

H2b
K′|0, B′〉 = −u/2|0, B′〉, H2b

K′ |1, B′〉 = (−u/2 + ω1)|1, B′〉.
(4.62)

We see therefore that the particle-hole symmetry breaking term ω1, produces

a small single partilce splitting between the n = 0 and n = 1 states in the

neutral Landau level.

The energies of the negative and positive energy Landau levels for n > 2

are:
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E±nK = ω1n±

√(
u+ ω1

2

)2

+ ω2
0 n(n− 1), (4.63)

And E±nK′ = E±nK(u → −u). The states associated with the negative and

positive energy Landau levels are:

φ+
nK =

(
cos(θn/2)
− sin(θn/2)

)
, φ−nK =

(
sin(θn/2)
cos(θn/2)

)
, (4.64)

with

cos θn =

(
u+ω1

2

)√(
u+ω1

2

)2
+ ω2

0n(n− 1)
, (4.65)

sin θn =
ω0

√
n(n− 1)√(

u+ω1

2

)2
+ ω2

0n(n− 1)
. (4.66)

The states at valley K’ can be obtained from formulae above by replacing

u→ −u.

4.4.2 Interaction with negative energy sea in the presence of ex-
plicit particle-hole symmetry-breaking terms

Let us now revisit the interaction with the negative energy sea in the

presence of explicit particle-hole symmetry-breaking terms. The exchange po-

tential generated by valley K can be written as:

X̂−K = − 1

A

∑
q

vqe
iq·r̂ P̂−K e−iq·r̂, (4.67)
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with P̂K
− the projector into the occupied negative energy sea of valley K:

P̂−K =
∑
n≥2,m

|φ−nmK〉〈φ
−
nmK |. (4.68)

Because the interaction conserves valley at its vertices there will not be

intervalley exchange potential, and a completely analogous expression for the

intravalley exchange potential for valley K’ would hold. When acting on the

neutral Landau level, Eq. (4.67) can be written as:

X̂−K = X̂0K + X̂1K + X̂2K , (4.69)

where X̂0K is binding energy of the Dirac point (namely the UV divergent

term that depends only on the onsite Hubbard type term) and X̂1K is the

exchange interaction with the negative energy sea, which sometimes we refer

to as the Shizuya term:

X̂0K + X̂1K = − 1

2A

∑
q

vqe
iq·r̂

(∑
n≥2

P̂nAK

)
e−iq·r̂. (4.70)

More explicitly one has,

X̂0K = −U0

2
(N̂0K + N̂1K), (4.71)

X̂1K = η0N̂0K + η1N̂1K , (4.72)

η0 =
3

4

√
π

2

e2

εl
, η1 =

5

8

√
π

2

e2

εl
, U0 =

1

A

∑
q

vq (4.73)
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where N̂0K/N̂1K is the number of electrons in the neutral Landau level with

n = 0/n = 1 cyclotron wave-functions2.

X̂2K is the correction to the Shizuya term arising from the presence of

the interlayer bias:

X̂2K =
1

2A

∑
q

vqe
iq·r̂

(∑
n≥2

cos θn P̂nAK

)
e−iq·r̂, (4.74)

in both expressions above P̂nAK =
∑

m |nmAK〉〈nmAK|, where m is an intra

Landau level label.

More explicitly the bias dependent exchange potential with the negative

energy sea can be shown to be,

X̂2K = ξ0KN̂0K + ξ1KN̂1K , (4.75)

ξ0K =
e2

εl

∞∑
n=2

Γ(n+ 1/2)

2
√

2n!
cos θn, (4.76)

ξ1K =
e2

εl

∞∑
n=2

(n− 1/4)Γ(n− 1/2)

2
√

2n!
cos θn. (4.77)

For large n: Γ(n + 1/2)/n! → 1/
√
n, and (n − 1/4)Γ(n − 1/2)/n! → 1/

√
n.

Therefore since:

2In the notation of Eq. (4.10) we had η0 = µ1 + ∆1 and η1 = µ1 −∆1.
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cos θn →
1

n

(
u+ ω1

2ω0

)
, for n→∞, (4.78)

for any finite ω0 the sums in Eqs. (4.76) and (4.77) are absolutely convergent.

In the zero field limit (i.e. ω0,1 = 0): θn = 0, ∀n, and hence the individual

sums are divergent. However the product of e/εl times the divergent sum

remains finite. In fact, using the approximation:

∞∑
n=2

Γ(n+ 1/2)

n!

1√
1 + ε2n(n− 1)

≈

1

ε

∫ ∞
2ε

Γ(x/ε+ 1/2)

(x/ε)!

dx√
1 + x(x− ε)

≈

1√
ε

8√
π

Γ(5/4)2 ≈ 3.708√
ε
, (4.79)

where ε ≡ 2ω0/|u+ω1|. By performing numerically the sums at small ε, above

constant is found to be ≈ 3.70 (this just to double check the approximations

capture the leading divergence in the limit ε→ 0). This implies that ξ0K and

ξ1K have the following limit as B → 0,

ξB→0
0K = ξB→0

1K = sign(u)
e2
√
m0|u|
ε

2√
π

Γ(5/4)2

≈ 0.92 sign(u)
e2
√
m0|u|
ε

. (4.80)

therefore this predicts an enhancement between the intervalley gap which will

be relevant in explaining the large gap ν = 0 found in the experiments of
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Ref. [40]. It is not surprinsing that an enhancement to the gap at ν = 0 exists

at zero field since the putative band structure is gapped at finite u and there

should be a finite exchange correction to such gap. It would be interesting to

compare this value to that enhancement, and to further examine the meaning

and validity of the term here found.

Since ξB→0
0K → ξB→0

1K as B → 0, it is also interesting to determine how

their splitting vanishes as B → 0. Indeed using the identity: Γ(n + 1/2) =

(n− 1/2)Γ(n− 1/2), one can verify that:

sign(ξ1K − ξ0K) = sign(u+ ω1), ∀B, (4.81)

and one finds that sums that determine this spliting remain absolutely con-

vergent even in the limit B → 0, and are given by:

ξB→0
1K − ξB→0

0K = sign(u)
1

8

√
π

2

e2

εl
. (4.82)

It is remarkable that the limit of this splitting is independent of the magni-

tude of u. Note that this term exactly equals the Shizuya term, η0 − η1, in

magnitude. Therefore, for u > 0, the Shizuya splitting tends to be doubled

in the valley/layer that is energetically favored by the interlayer bias, while it

tends to be completely canceled in the valley/layer that is unfavored by the

bias.

This exact balance is a consequence of the limiting form for the valley

valence band states:
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φ−B→0
nK =

(
0
1

)
, ∀n ≥ 2, u > 0, (4.83)

φ−B→0
nK′ =

(
1
0

)
, ∀n ≥ 2, u > 0, (4.84)

Which is completely different with the case in which the term |u+ ω1|

is set to zero from the start:

φ−nK =
1√
2

(
1
1

)
, ∀n ≥ 2, B > 0 (4.85)

φ−nK′ =
1√
2

(
1
1

)
, ∀n ≥ 2, B > 0. (4.86)

In other words, the limits B → 0 and u → 0 yield different states for

the valence Dirac sea when taken in different orders, and hence their associated

exchange potentials differ.

Table 4.1 summarizes the different energy scales of the effective two-

band model that includes explicit particle hole-symmetry breaking. The ex-

plicit particle-hole symmetry breaking energy scale, ~ω1, appears much smaller

than the Coulomb energy scale which dictates the strength of the exchange in-

teraction with vacuum and hence of the terms that attempt to restore particle-

hole symmetry. On this note, one could naively expect that the particle-hole

symmetry will be present. However, as we will see in the next section there

is a substantial reduction of the Coulomb energy scale from screening that in

turn reduces the vacuum exchange term substantially, making it smaller than

78



Table 4.1: Relevant energy scales for bilayer graphene in the quantum Hall
regime obtained from parameters in Ref [35].

m0/me 0.044
m1/me 0.301
~ω0 2.6meV B[T]
~ω1 0.38meV B[T]
µBB 0.058meV B[T]

e2/l 56meV
√
B[T ]

the explicit particle-hole symmetry-breaking scale at typical magnetic fields

where the quantum Hall effect is observable.

4.5 Gaps at integer fillings for the screened Coulomb
interaction

It is recognized that the effects of screening are more pronounced in

bilayer than in monolayer graphene in the quantum Hall regime [25, 57, 65].

We have developed a systematic discussion of static screening in bilayer which

is presented in Appendix B. In this section, we will employ the approximate

analytic expressions obtained in Section B.5, which are able to describe the

screening over a wide range or wavevectors, to compute the expected charge

gaps at integer fillings in the presence of an interlayer bias. As we shall see the

computed gaps are in very good agreement with those measured in Ref. [40].

4.5.1 Gap at ννν = −3

Let us assume without loss of generality that u > 0 so that valley K ′

is filled first. Generically if there exists a single particle term that favors the
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n = 1 states over the n = 0 states, such as the exchange interaction with the

negative energy sea described in Eqs. (4.71)-(4.73), the ground state at ν = −3

would a coherent combination of n = 0 and n = 1 states [30]. Therefore, the

criterion for the stability of ground state occupying the spinor |K ′ ↑ n = 0〉 is

that the effective single-particle energy of the n = 1 state is larger than that

of the n = 0 states. This energy contains contributions from the exchange

interaction with the negative sea as well as the explicit particle-hole symmetry

breaking splitting described in Eqs. (4.62). The criterion for the ground state

to be the completely filled spinor |K ′ ↑ n = 0〉 can therefore be written as:

ω1 + ξ1K′ − ξ0K′ + η1 − η0 ≥ 0. (4.87)

Where ξ1K′ , ξ0K′ , η1, η0 are the contributions from the exchange interac-

tion with the negative energy sea described in Section 4.4.2, but with the

bare Coulomb interaction replaced by the screened Coulomb interaction from

Eq. (B.2). Figure 4.1 plots this energy difference for typical parameters that

simulate the conditions of the experiment in Ref. [40]. This figure makes

evident that the screening reduces so much the total contribution from the

exchange energy with the negative energy sea that the dominant term is the

explicit single particle splitting ω1 which favors the n = 0 states. As a con-

sequence we expect that the ground state at ν = −3 is the completely filled

flavor |K ′ ↑ n = 0〉 in Ref. [40].

The charge gap at ν = −3 is therefore associated with a hole in |K ′ ↑

n = 0〉 and an electron in |K ′ ↑ n = 1〉 [1, 6], and it is:
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Figure 4.1: The solid line is the single particle energy difference between n = 0
and n = 1 states in the K ′ valley. We chose an extrinsic dielectric constant
that is the average of vacuum ε = 1 and that of boron nitride ε ≈ 4, and an
interlayer bias of u = 10meV. The dashed line is the single particle splitting
arising from the explicit symmetry breaking energy ~ω1.

∆−3 = ∆Coul
odd + ω1 + ξ1K′ − ξ0K′ + η1 − η0. (4.88)

where ∆Coul
odd is the contribution of the exchange interaction of the electron and

the hole at odd integers which reads as:

∆Coul
odd =

∫
d2q

(2π)2
vscq (|F00(q)|2 − |F10(q)|2). (4.89)

where Fn′n(q) are the usual parabolic band form factors (see e.g. Eq. C(21)

in Ref. [67]).
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4.5.2 Gap at ννν = −2

The ground state is expected to occupy spinors |K ′ ↑ n = 0〉, |K ′ ↑ n =

1〉 [1, 6]. The lowest energy gap is associated with a hole in |K ′ ↑ n = 1〉 and

an electron in |K ′ ↓ n = 0〉, and it is:

∆−2 = ∆Coul
even + ∆z − ω1 − ξ1K′ + ξ0K′ − η1 + η0. (4.90)

where ∆z = gµBB is the Zeeman gap, and the Coulomb gap at even integers

is:

∆Coul
even =

∫
d2q

(2π)2
vscq (|F11(q)|2 + |F10(q)|2). (4.91)

4.5.3 Gap at ννν = −1

The ground state is expected to occupy spinors |K ′ ↑ n = 0〉, |K ′ ↑

n = 1〉, |K ′ ↓ n = 0〉. The lowest energy gap is associated with a hole in

|K ′ ↓ n = 0〉 and an electron in |K ′ ↓ n = 1〉, and it has the same expression

as that at ν = −3 appearing in Eq. (4.88). It must be borne in mind however

that the screened interactions are slightly different by virtue of the fact the

polarizability of both states is slightly different, as described in Appendix B.

4.5.4 Gap at ννν = 0

The ground state is expected to occupy spinors |K ′ ↑ n = 0〉, |K ′ ↑ n =

1〉, |K ′ ↓ n = 0〉, |K ′ ↓ n = 1〉. The lowest energy gap is associated with a hole
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in |K ′ ↓ n = 1〉 and an electron in |K ↑ n = 0〉, and it is:

∆0 = ∆Coul
even + u−∆z − ω1 − ξ1K′ + ξ0K − η1 + η0. (4.92)

The large gap in the experiments of Ref. [40] is pressumably arising

from a large single particle bias u ∼ 10meV which is further enhanced by

exchage.

4.5.5 Gap at ννν = 1

In analogy with ν = −3, the ground state is expected to occupy spinors

|K ′ ↑ n = 0〉, |K ′ ↑ n = 1〉, |K ′ ↓ n = 0〉, |K ′ ↓ n = 1〉, |K ↑ n = 0〉, whenever

the following condition is met:

ω1 + ξ1K − ξ0K + η1 − η0 ≥ 0. (4.93)

This condition is met at any field because of the previously discussed

propertis in section 4.4.2 that the Shizuya term, η1 − η0, is nearly canceled

at low fields by the exchage term arising from the presence of a finite layer

bias, and the property described in Eq. (4.81) that ξ1K − ξ0K > 0. I have

also verified numerically the condition remains true in the case of the screened

interactions.

The lowest energy gap is associated with a hole in |K ↑ n = 0〉 and an

electron in |K ↑ n = 1〉, and it is:
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∆1 = ∆Coul
odd + ω1 + ξ1K − ξ0K + η1 − η0. (4.94)

4.5.6 Gap at ννν = 2

The ground state spinors are: |K ′ ↑ n = 0〉, |K ′ ↑ n = 1〉, |K ′ ↓ n =

0〉, |K ′ ↓ n = 1〉, |K ↑ n = 0〉, |K ↑ n = 1〉. The lowest energy gap is associated

with a hole in |K ↑ n = 1〉 and an electron in |K ↓ n = 0〉, and it is:

∆−2 = ∆Coul
even + ∆z − ω1 − ξ1K + ξ0K − η1 + η0. (4.95)

4.5.7 Gap at ννν = 3

The ground state spinors are: |K ′ ↑ n = 0〉, |K ′ ↑ n = 1〉, |K ′ ↓ n =

0〉, |K ′ ↓ n = 1〉, |K ↑ n = 0〉, |K ↑ n = 1〉, |K ↓ n = 0〉. The lowest energy

gap is associated with a hole in |K ↓ n = 0〉 and an electron in |K ↓ n = 1〉,

and it has the same expression as that at ν = 1.

Figure 4.2 depicts all the gaps with parameters suitable for experi-

ment [40] and there is overall good quantitative agreement.
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Figure 4.2: Predicted gaps at integer fillings in the neutral Landau level of
bilayer graphene for an interlayer bias of u = 10meV and surrounding medium
with dielectric constant ε = 2.5 which is the approximate value for a boron
nitride substrate. These gaps include the effects of exchange interactions with
the negative energy sea, screening at the level of static RPA, and explicit
particle-hole symmetry breaking terms, as described in the text.
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Chapter 5

Fractional quantum Hall states with

n = 0/n = 1 coherence in bilayer graphene

In this chapter we will put aside the question of the size and origin

of the term that splits the n = 0 and n = 1 orbitals and take it as a given

parameter. We will explore the ground states as a function of this parameter.

For simplicity we will consider many body states created within a fixed valley

and spin flavor and explore tendency to form states with coherence between

the n = 0 and n = 1 orbitals. The possiblity of creating states with strong

coherence between the n = 0 and n = 1 cyclotron indices has no analogue

in GaAs, therefore it holds the possibility of bringing novel quantum Hall

behaviour to life in bilayer graphene.

5.1 General mapping formula for two-point correlation
functions from n = 0 LL into coherent n = 0/n = 1
LLs

Imagine a “ferromagnetic” many-body state with coherence between

n = 0 and n = 1 cyclotron quantum numbers described by a spinor ζ =
(
u
v

)
of the form,
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|Ψ〉ζ = Ψ(b†1, ..., b
†
N)
∏
i

(u+ va†i )|O〉, (5.1)

where b and a are lowering operators of the guiding center and cyclotron

quantum numbers respectively and Ψ is a fully antisymmetric polynomial of

N coordinates.

Consider the operator that measures the conditional probability density

for finding a particle at position r2 given that another is at r1

G(r1, r2) =
∑
i 6=j

δ2(r1 − ri)δ2(r2 − rj) (5.2)

Decomposing the coordinates into guiding center c, and mechanical momentum

π variables: r = c + l2z × π, π = p + eA/c. One finds the projected operator

into the coherently rotated Landau level to be:

Gζ(r1, r2) =
1

A2

∑
q1,q2

eiq1·r1−iq2·r2Fζ(q1)Fζ(−q2)
∑
i 6=j

eiq1·ci−iq2·cj (5.3)

Where Fζ(q) is the form factor of the rotated LL:

Fζ(q) = (u∗〈0|+ v∗〈1|)e−il2z·q×π(u|0〉+ v|1〉). (5.4)

This expression is easily evaluated using Eq.(C21) from [67],

F (q, ζ) = F0(q)
[
1− q2

2
sin2(θ/2) + i

q√
2

sin θ sin(φq + φ)
]
, (5.5)
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with ζ =
( cos θ/2eiφ/2

sin θ/2e−iφ/2

)
, F0(q) = e−q

2l2/4 (the form factor of the usual n = 0

LL), and φq is the angle of the vector q.

Assuming the state is translationally invariant, one finds the expecta-

tion of Gζ to be

〈Gζ(r)〉Ψ =
1

A

∑
q

e−iq·r|Fζ(q)|2sΨ(q) (5.6)

Where sΨ is the guiding center structure factor which encapsulates the “in-

trinsic” density correlations of Ψ in a LL independent manner: sΨ(q) =

1/A
∑

i 6=j〈
∑

i 6=j e
iq1·ci−iq2·cj〉Ψ.

By suitably choosing the y-axis, so that qy = q sin(φq + φ), it is easy

to express 〈Gζ(r)〉Ψ in terms of 〈G0(r)〉Ψ, namely the correlation function one

would have for the conventional n = 0 LL, when θ = 0. Combining Eqs. (5.6)

and (5.5), this relation is easily seen to be,

〈Gζ(r)〉Ψ =
[(

1 +
1

2
sin2(θ/2)∇2

)2

− 1

2
sin2 θ ∂2

y

]
〈G0(r)〉Ψ (5.7)

The conventional two-point correlation function for a homogeneous

state of density n is given by: g(r) = n2〈Gζ(r)〉Ψ. Thus, above equation

maps the two-point correlation functions of given wavefunction in the n = 0

LL into its analogue in the coherent n = 0/n = 1 LL.

The interaction energy per particle (subtracting neutralizing background

contribution) is:
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V

N
=
n

2

∫
d2r v(r)(g(r)− 1) (5.8)

5.2 Laughlin state with coherence between n = 0/n = 1

Slater determinants with coherence between n = 0 and n = 1 at ν = 1

have been explored in Refs. [6, 30]. Here we will consider the case of the Laugh-

lin state with coherence between n = 0 and n = 1 at ν = 1/3. These states

have an XY order with ferroelectric behavior [6] and also nematic character-

istics as will be clear from the shape of their two-point correlation function.

The two-point correlation function of the Laughlin state has been widely

studied. A useful parametrization is [23]:

g(r) = 1− e−r2/2 +
∞∑
l=1

2cl
(2l − 1)!

(r2

4

)2l−1

e−r
2/4 (5.9)

I will use the coefficients cl from Table I of Ref. [24]. Fig 5.1 illustrates

the two-point correlations in the usual n = 0 and n = 1 LL. Fig 5.2 illustrates

the anisotropic two-point correlations in a ferroelectric-nematic Laughlin state

with n = 0/n = 1 coherence.

The energy per particle is,

ε(θ) =
νe2

l0
(ε0 + ε1 cos θ + ε2 cos 2θ), (5.10)

It interesting to note that the dependence on θ is general: the energy
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Figure 5.1: Two-point function for the Laughlin state in the n = 0 (blue) and
n = 1 (red) LLs.

of any state is a quadratic polynomial of cos θ. Therefore knowing its value

at 3 specific angles would determine the whole function (unfortunately, one

usually knows only two angles θ = 0 and θ = π for well-studied states). The

values of the coefficients for the Laughlin state are,

ε0 = −1.07781, (5.11)

ε1 = −0.12583, (5.12)

ε2 = −0.02165, (5.13)

Imagine there is an additional Zeeman-like term with a contribution

to the energy per particle of the form e2

l
εz cos θ, which tends to favor n = 1

LL, like that generated from the exchange interaction with the vacuum which

we discussed previously. The angle that minimizes the energy of the Laughlin
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Figure 5.2: Two-point function for the ferroelectric/nematic Laughlin state
with equal mixing of n = 0 and n = 1 (i.e. θ = π/2) along the y-axis (blue)
and x-axis (red).

state is depicted in Fig. 5.3. The critical Zeeman value where coherence starts

being energetically favorable is,

εz,crit = ν(4ε2 − ε1) ≈ 0.0130718. (5.14)

The prefactor ν is not a notational artifact and suggests that the critical

Zeeman to destabilize states of lower filling fractions is smaller. This is a

consequence of the exchange-correlation energy per particle having an overall

decrease with total density (see e.g. the n prefactor in Eq. (5.8)).
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Figure 5.3: Optimal orientation of ferroelectric/nematic Laughlin state for a
Zeeman-like term, εz, favoring the n = 1 orbital.
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Appendix A

Flavor flip quasiparticles for the Laughlin type

state at ν̃ = 7/3 involving the completely filled

flavors1

As discussed in the main text the two-component Laughlin type state

at ν̃ = 5/3, i.e. (1, 2/3, 0, 0) is not the ground state in the absence of symmetry

breaking terms, and instead the three component state (1, 1/3, 1/3, 0) has lower

Coulomb energy. This statement also applies at ν̃ = 7/3 because of the global

particle-hole symmetry. We therefore expect the state (1, 2/3, 2/3, 0) to have

lower Coulomb energy than (1, 1, 1/3, 0). However, sufficiently strong Zeeman

or V⊥ anisotropy terms will make (1, 1, 1/3, 0) have lower energy. We believe

that the state observed in experiments on suspended graphene samples in

graphene is likely the (1, 1, 1/3, 0) state. For V⊥ < 0 and |V⊥| > 3h the

phase that minimizes the anisotropy energy of (1, 1, 1/3, 0) is the collinear

antiferromagnet as explained in the first section of this supplement. This

collinear antiferromagnetic Laughlin-like state is likely the one realized in the

experiments of Refs. [20, 21].

We would like to determine what type of quasiparticles give rise to

1This Appendix is based on Ref. [68], all authors in this reference contributed equally to
this work.
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the charge gap of this state. These quasiparticles will generally involve flavor

flips. There are two types of flavor flips which is convenient to distinguish.

The first kind is more easily conceptualized for the state (1, 1, 1/3, 0). For the

collinear antiferromagnetic order the completely filled spinors can be chosen

to be |K ↑〉 and |K ′ ↓〉. The neutral quasiparticle-quasihole pairs can involve

flips from the 1/3 filled spinor, i.e. |K ′ ↑〉, into the empty spinor |K ↓〉. The

anisotropy energy contribution to this gap reduces simply to the Zeeman gap,

2h, per flavor-flip. In particular, as discussed in the text, the flavor flipped

quasi-electron and no flip quasi-hole are expected to be the lowest energy

excitations for most of the magnetic field range explored in Refs. [20, 21]. The

gap associated with these excitations is expected to be ∆1
1/3 = 0.075e2/εl +

2h, where the Coulomb energy has been extracted from exact diagonalization

studies extrapolated to the thermodynamic limit [15, 48, 61, 74].

A second kind of quasiparticle-quasihole pair associated with the state

(1, 1, 1/3, 0), would involve flavor flips from either of the completely filled

spinors into the 1/3 filled spinor. Quasiparticles involving a flip from one

of the completely filled spinors into the completely empty spinor would have

an associated Coulomb gap
√
π/2e2/εl, which is considerably larger than

those here considered and hence unlikely to be lowest energy charged exci-

tations. These quasiparticles are more easily conceptualized in the particle-

hole mirror state (1, 2/3, 0, 0), where they appear as involving flavor flips from

the 2/3 filled spinor into the completely empty ones. For (1, 2/3, 0, 0) if we

choose the completely filled spinor to be |K ↑〉, the partially filled spinor
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would be |K ′ ↓〉 in the collinear antiferromagnetic phase. Since there are

two completely empty spinors, there are two-types of flavor flips. In the first

one we remove an electron from |K ′ ↓〉 and place it into |K ′ ↑〉. Applying

Eq. (3.25) from the main text one finds that these quasiparticles would have

a gap ∆1
2/3 ≈ 0.051e2/εl − 2(V⊥ + h). For the second type of flavor flip we

remove an electron from |K ′ ↓〉 and place it into |K ↓〉, these quasiparticles

would have a gap ∆1
2/3 ≈ 0.051e2/εl+2Vz. We have obtained the Coulomb gap

for a quasiparticle-quasihole pair involving a single flavor flip from the exact

diagonalization studies of Ref. [72], which are not extrapolated to thermody-

namic limit and thus might contain finite size effects. Reference [72] found

that the charged gap for a single spin-flip is associated with a single spin-flip

quasielectron and a no spin-flip quasihole. Note that in the absence of sym-

metry breaking terms these quasi-particles are expected to have lower energy

than those discussed in the previous paragraph. We believe this is a natural

explanation for the finding in Ref. [58] that there is an intermediate regime in

which the lowest energy excitations of the Laughlin like state (1, 1, 1/3) involve

flips from the completely filled spinors.

However, it is unlikely that the latter quasiparticles play a role at mag-

netic fields where the FQHE is observable. The reason is the relatively large

anisotropy energy cost they involve. The critical fields at which the two types

of charge gaps of the second kind of flavor flipped quasiparticle equals the first

kind are,
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Bc =

[
0.024e2

(2|V⊥| − 4h)εl

]2

,

Bc =

[
0.024e2

2Vzεl

]2

,

(A.1)

where the quantities in the right side are understood to be evaluated at 1T.

For the first critical field one obtains, Bc = 0.1T for V⊥ = −10h. One obtains

Bc = 0.74T for V⊥ = −5h. The second critical fields is expected to be even

smaller because the stability of collinear antiferromagnetic states requires Vz ≥

|V⊥|.
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Appendix B

Screening in bilayer graphene with and

without magnetic fields

In this appendix we will compute the static density response function

χq of bilayer graphene within the two-band and four-band models. The need

to consider both models stems from the fact that the screening of charge

fluctuations at a length scale r will depend on the available electron-hole exci-

tations that have total momentum q ∼ r−1. Therefore, a proper account of the

screening of the short-range behavior of the interactions requires the account

of particle-hole excitations of large total momentum. Thus the screening of

short range components will be dictated by large momentum and high energy

virtual electron-hole pairs requiring us to go beyond the two-band model.

We will distinguish three different regimes of screening: (i) a long wave-

length screening for q � max(l−1,
√
mu) where χq vanishes quadratically due

to the absence of zero energy particle-hole excitations associated with cyclotron

and/or interlayer bias gap. In this regime the interactions remain essentially

unscreened because of the gap. (ii) An intermediate-wavelength screening

max(l−1,
√
mu) � q � t1/v, where the screening function is essentially con-

stant, χq ≈ m ln 2
π

, due to finite density of states in the two-band model at

98



neutrality. (iii) A short-wavelength screening t/v � q � 1/a, where the

screening is effectively that of two-decoupled graphene layers χq ≈ q
8v

, and t is

the interlayer hopping amplitude in bilayer graphene. (Formulae just described

don’t contain spin-valley multiplicity factor). We will also derive approximate

formulae that interpolate the three regimes reproducing exactly their asymptic

behavior, which are used to compute the gaps discussed in section 4.5.

B.1 When is it OK to use statically screened RPA?

The static density response function of a non-interacting fermion sys-

tem is in general1:

χq =
2

A

∑
e,h

|〈e, h|n−q|0〉|2

Ee + Eh
(B.1)

where e and h label electron and hole states added to a reference ground state

|0〉, Ee +Eh is the excitation energy of the electron-hole pair state |e, h〉, and

n−q =
∑

i e
iq·ri is the density operator.

Static screening is typically a reasonable description of the effective

interactions for integer quantum Hall ferromagnets provided that the non-

interacting cyclotron gaps are much larger than the interaction induced gaps.

This is because the density response is well approximated by the static value

for frequencies smaller than the non-interacting cyclotron gaps: χ(q, ω) ≈

1The only assumption is inversion symmetry of the density response χq = χ−q.
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χ(q, ω = 0) for ω � ∆0. When this condition is satisfied, we expect that the

effective screened interaction is well described by:

vscq =
vq

1 + vqχq
. (B.2)

The integer quantum Hall ferromagnetic gaps are typically dominated

by the short range components of the interactions, because they are predom-

inantly determined by the zero relative angular momentum Haldane pseu-

dopotential. Therefore the gaps will be determined by the behavior of the

interactions for q & l−1, where l is the magnetic length. This is why the

sole inclusion of the short range corrections to the interactions in monolayer

graphene produces a typically good description of its integer quantum Hall

ferromagnetism.

The form of the dielectric function at increasingly large momentum be-

comes less and less sentitive to low frequency corrections, therefore the short

range behavior of the screened interaction is better described by static screen-

ing as compared to its long range behavior. Since the short range part of

the interaction dominates the integer quantum Hall ferromagnetism physics,

this is another reason to justify the use of static screening for the purposes of

estimating the gaps at integer fillings.
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B.2 Large q behavior: four band model without mag-
netic field

Let us consider the 4-band model with the minimal features that are

needed to describe short-wavelengths q & t/v:

H4b
K =


0 0 vp∗ 0
0 0 0 vp
vp 0 0 t
0 vp∗ t 0

 , (B.3)

the matrix columns correspond to A, B′, B, A′ sites respectively. The following

unitary transformation is convenient:

Up H
4b
K U †p =

(
0 tAB
tAB 0

)
,

tAB =

(
t v|p|
v|p| 0

)
,

Up =


0 0 0 1
eiφp 0 0 0
0 0 1 0
0 e−iφp 0 0

 .

(B.4)

From it we get:
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Up (H4b
K )2 U †p =

(
t2AB 0
0 t2AB

)
,

t2AB = (vp)2 + t2/2 +mpm̂p · σ,

mp =
√

(t/2)2 + (vp)2,

m̂p = cos θpẑ + sin θpx̂,

cos θp = t/(2mp), sin θp = vp/(2mp).

(B.5)

From this representation we obtain the spectrum:

|p, s1s2〉=̇
1√
2
U †p

(
φs2
s1φs2

)
,

Es1s2 = s1t/2 + s1s2 mp.

(B.6)

where s1,2 = {+,−}, and:

φ+ =

(
cos θp/2
sin θp/2

)
, φ− =

(
− sin θp/2
cos θp/2

)
. (B.7)

When momentum is a good quantum number we have:

n−q =
∑
pα

c†p+q,αcp,α, (B.8)

with α denoting the sublattice index. In this case, Eq. (B.1) reduces to:

χq =
2

A

∑
p,ss′

|〈p+ q, s1s2|p, s′1s′2〉|2

Ep+q,s1s2 − Ep,s′1s′2
np,s′1s′2(1− np+q,s1s2) (B.9)
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Figure B.1: Particle hole excitations contribution to screening in the four band
model.

where the factor np,s′1s′2(1 − np+q,s1s2) enforces that p + q, s1s2 and p, s′1s
′
2 are

electron and hole states respectively. There are four particle-hole excitations

in the four-band model for a neutral system, depicted in Fig. B.1. The first

excitation from near-valence to near-conduction we denote by χ1:

χ1 =

∫
d2p

(2π)2

(mp + t/2)(mp+q + t/2) sin2(φp − φp+q)
2mpmp+q(mp +mp+q − t)

. (B.10)

The second excitation from far-valence to far-conduction we denote by χ2,

and satisfies χ2 = χ1|t→−t. Finally, the contributions from far-valence to near-

conduction and near-valence to far-conduction are identical to each other and

we denote their sum by χ3,
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χ3 =

∫
d2p

(2π)2

[
(mp − t/2)(mp+q + t/2) + (mp + t/2)(mp+q − t/2) cos2(φp − φp+q)

mpmp+q(mp +mp+q)

− 2v2p · (p+ k)

mpmp+q(mp +mp+q)

]
,

(B.11)

The behavior of these functions at small q is,

χ1 ≈
t

v2

ln 2

2π
≈ m

ln 2

π
,

χ2 ≈
q2

t

[
1− ln 2

8π
+O(vq/t)

]
,

χ3 ≈
q2

t

[
1

12π
+O(vq/t)

]
,

(B.12)

The large q behavior of these functions is:

χ1 ≈
q

v

[
4− π

8π
+O(t/vq)

]
,

χ2 ≈
q

v

[
4− π

8π
+O(t/vq)

]
,

χ3 ≈
q

v

[
3π − 8

8π
+O(t/vq)

]
,

χ1 + χ2 + χ3 ≈
q

8v
[1 +O(t/vq)] .

(B.13)

The last result coincides with twice the dielectric function for monolayer

graphene for a single spin and valley, as expected.
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B.3 Intermediate q behavior: two-band model without
magnetic field

Let us consider the two-band model with finite interlayer bias:

H2b
K =

(
u/2 −p∗2/2m
−p2/2m −u/2

)
= µpµ̂p · σ,

µp =
√

(u/2)2 + (p2/2m)2,

(B.14)

where m = t/2v2. And the spectrum is:

|p,+〉=̇
(

eiφp cosϑp/2
−e−iφp sinϑp/2

)
,

|p,−〉=̇
(
eiφp sinϑp/2
e−iφp cosϑp/2

)
,

Eps = sµp, cosϑp =
u/2

µp
, sinϑp =

p2/2m

µp
,

(B.15)

with s = ± denoting the conduction and valence bands.

In the two-band model there is only one type of particle-hole excitations

which are the analogue of the χ1 term discussed in the four-band model. We

label this term as χ1 as well:

χ1 =

∫
d2p

(2π)2

µpµp+q − (u/2)2 − (p2/2m)((p+ q)2/2m) cos(2φp − 2φp+q)

µpµp+q(µp + µp+q)
.

(B.16)

The small and large q behaviors of this function are:
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χ1 ≈
q2

u

[
1

3π
+O

(
q2

mu

)]
,

χ1 ≈ m

[
ln 2

π
+O

(
mu

q2

)]
.

(B.17)

For u = 0, the integral can be performed analytically for any q. For this

it is particularly convenient to use Elliptic coordinates: px = q
2
(coshµ cos ν−1),

py = q
2

sinhµ sin ν, ν ∈ [−π, π[, µ ∈ [0,∞). The value of the density response

is:

χ1(q) = m
ln 2

π
, ∀q. (B.18)

The result above is remarkable. A convetional parabolic 2DEG has a static

reponse of the form:

χ2DEG(q) =
m

2π

[
1− θ(q − 2kF )

√
q2 − 4k2

F

q

]
. (B.19)

Hence, short-range components of the interaction r � k−1
F , remain unscreened.

In contrast in bilayer graphene the vanishing gap between valence and conduc-

tion band produces a density response function that is independet of wavevec-

tor throughout the range of applicability of the two-band model q � t/v.

B.4 Small q behavior: two-band model with magnetic
field

In the presence of a magnetic field the two band model Hamiltonian is:
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H2b
K =̇

(
u/2 −ω0

√
n(n− 1)

−ω0

√
n(n− 1) −u/2

)
, (B.20)

where the matrix has the first column associated with state |n,A〉 and the

second with |n − 2, B′〉. For valley K’ the first column associated with state

|n,B′〉 and the second with |n− 2, A〉, and u→ −u.

The eigenfunctions and energies of the neutral Landau level are:

H2b
K |0, A〉 = u/2|0, A〉, H2b

K |1, A〉 = u/2|1, A〉, (B.21)

The energies of the negative and positive energy Landau levels for n ≥ 2 are:

E±n = ±µn, µn =
√

(u/2)2 + ω2
0 n(n− 1), (B.22)

The eigen-states are:

φ+
n =

(
cos(θn/2)
− sin(θn/2)

)
, φ−n =

(
sin(θn/2)
cos(θn/2)

)
, (B.23)

with

cos θn =
u/2

µn
, sin θn =

ω0

√
n(n− 1)

µn
. (B.24)

The states at valley K’ can be obtained from formulae above by replacing

u→ −u.
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Figure B.2: Particle hole excitations contributing to screening in the two-band
model with a magnetic field.

Equation (B.1) in the presence of the magnetic field reduces to:

χq =
1

πl2

∑
ab

|〈a|eiq·ẑ×π|b〉|2

Ea − Eb
nb(1− na), (B.25)

where a and b are the single particle eigenstates just described.

The small q behavior of the screening function will depend on which

cyclotron states are filled in the neutral Landau level. Let us consider in detail

the case in which the neutral Landau level is completely filled. We will later

relate the results at different fillings to these.

Figure B.2 illustrates three kinds of particle-hole excitations whose ex-

plicit forms are:

χa(q, u) =
1

2πl2

∑
n≥2

µn + u/2

µn(µn − u/2)
|Fn1(q)|2, (B.26)

χb(q, u) =
1

2πl2

∑
n≥2

µn + u/2

µn(µn − u/2)
|Fn0(q)|2, (B.27)
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χc(q, u) =

1

4πl2

∑
n,n′≥2

[
(µn′ + u/2)(µn − u/2)|Fn′n|2 + (µn′ − u/2)(µn + u/2)|Fn′−2,n−2|2

µnµn′(µn + µn′)

−
2ω2

0

√
n(n− 1)n′(n′ − 1)|Fn′,n||Fn′−2,n−2|

µnµn′(µn + µn′)

]
,

(B.28)

where |Fn′n(q)| are the usual parabolic band form factors as defined in Eq.

C(21) in Ref. [67]. χc is an even function: χc(q, u) = χc(q,−u).

For χa and χb the small q behavior is:

χa ≈
q2

2π

µ2 + u/2

µ2(µ2 − u/2)
+O(q4),

χb ≈ O(q4),

χc ≈
q2

2π

∑
n≥2

n[µn+1µn − (u/2)2 − ω2
0(n2 − 1)]

µnµn+1(µn + µn+1)
+O(q4).

(B.29)

Let us label the coefficient of the q2 term in χa as:

γa(u) ≡ µ2 + u/2

µ2(µ2 − u/2)
, χa ≈

q2γa
2π

. (B.30)

The coefficient of the q2 term in χc can be very well approximated by the

following form:
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Figure B.3: Coefficient γc in the small-q expansion: χc = γcq2

2πω0
. The blue curve

is the exact value and the purple is the approximation described in Eq. (B.31)

γc(u) ≡
∑
n≥2

n[µn+1µn − (u/2)2 − ω2
0(n2 − 1)]

µnµn+1(µn + µn+1)
≈

1√
(aω0)2 + (bu)2

, a ≈ 5.881, b =
3

2
.

(B.31)

where a and b are obtained from the u → 0 and ω0 → 0 limits of the infinite

sum in question. Figure B.3 illustrates this behavior.

Another class of particle-hole excitations that are available at odd inte-

ger fillings are those from n = 0 to n = 1. In the four-band model of Eq. (B.3)

n = 0 and n = 1 are degenerate and hence, these transitions would have

a zero energy. However once the particle-hole symmetry breaking terms are

included these states are split by the energy ω1 as described in Eq. (4.62).

These transitions will produce a contribution to the density susceptibility of
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the form:

χd =
1

πl2
|F10(q)|2

ω1

≈ q2

2πω1

+O(q4) (B.32)

We are now in a position to obtain the screening function for any filling

factor of the neutral Landau level. Because the interactions do not flip spin

or valleys the total density susceptibility are additive:

χ =
∑
σ,v

χσv (B.33)

where σ runs over spins and v = K,K ′. The susceptibilities at different fillings

can be related to the functions χa, χb, χc, χd discussed above as follows:

χ−1
σ,K(q, u) = χa(q,−u) + χb(q,−u) + χc(q, u)

χ0
σ,K(q, u) = χa(q,−u) + χb(q, u) + χc(q, u) + χd(q, u)

χ1
σ,K(q, u) = χa(q, u) + χb(q, u) + χc(q, u)

(B.34)

Where the superscripts −1, 0, 1 denote the filling of the corresponding

spin-valley flavor, namely −1 stands for n = 0 and n = 1 empty, 0 stands

for n = 0 occupied and n = 1 empty, and 1 stands for n = 0 and n = 1

occupied. The susceptibilities for valley K ′ can be obtained from those above

by changing u → −u in the right-hand-side of the equations. Figure B.4

illustrates the particle-hole transitions and the different contributions to the

formulae (B.34).
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Figure B.4: Left: particle hole transitions contributing to screening to valley K
when n = 0 and n = 1 are empty. Left: particle hole transitions contributing
to screening to valley K ′ when n = 0 and n = 1 are full.

B.5 Closed approximate forms for all q

For the four-band model we want an expression that reduces to t ln 2
2πv2

for

q � t/v, and asymptotes to q
8v

for q � t/v. A natural choice for a function

that interpolates between such asymptotic behavior is:

[χ4b(q; η)]η =
( q

8v

)η
+

(
t ln 2

2πv2

)η
, (B.35)

where η can be seen as a fitting parameter. Figures B.5 and B.6 illustrate that

η = 3 provides a very good fit.

For the two-band model we want an expression that reduces to γq2

2π
, for q �√

m/γ � t/v, and that asymptotes to the χ4b expression for
√
m/γ � q �

t/v. This is naturally accomplished by the following function:
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Figure B.5: Screening in four-band model: blue is the sum χ1+χ2+χ3, purple,
yellow and green are the approximate forms with η = {3, 2, 1} respectively.
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Figure B.6: Screening in four-band model: blue is the sum χ1+χ2+χ3, purple,
yellow and green are the approximate forms with η = {3, 2, 1} respectively.
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1

[χ(q; ξ, η)]ξ
=

1(
γq2

2π

)ξ +
1

[χ4b(q; η)]ξ
. (B.36)

where ξ is another fitting parameter. χ(q; ξ, η) is an approximate form that

describes the screening from long range to short range components all the way

down to the order of the lattice constant where the four-band model ceases to

be valid. Although it correctly fits the short distance q � t/v and the longer

range distances q �
√
m/γ, it does not capture the intermediate oscillatory

behavior displayed on scales q ∼
√
m/γ, which is particularly pronounced

when u/ω0 & 1. This is illustrated in Figs. B.7. This produces an understi-

mation of screening in the intermediate wavelength regime. Hence predictions

with the approximate forms will effectively describe slightly stronger interac-

tion strengths. If we happen to find small gaps with these approximate forms,

the use of the full screening functions would only produce even smaller ones.
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Figure B.7: Static polarizability function of bilayer graphene χq. (a) Illustra-
tres clearly the the three regimes of screening. For small q the polarizability
vanishes due to the cyclotron and interlayer bias gaps. At intermediate q the
function is flat, as one expects from the two band model due to its finite density
of states and semimetallic behavior. At large q the function becomes linear
in q as one expects for two decoupled graphene monolayers. (b) Detail of the
behavior at small q. The green curve is the exact density response function
computed within the two-band model in the presence of an interlayer bias and
magnetic field, and the purple curve is the approximate expression obtained
from Eq. (B.36).
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Appendix C

Effective low energy theory in the two-band

model

In our discussion of bilayer graphene we have not included the possible

short-range interactions allowed by the lattice symmetries which break the

SU(4) spin-valley invariance as we did for monolayer graphene. We discuss

these terms in this appendix and demonstrate that they do not produce a

splitting of the n = 0 and n = 1 states as the Coulomb interaction with the

negative energy sea does.

C.1 Symmetries of Bloch wavefuntions at K,K ′ points

The lattice of bilayer graphene has a D3d point symmetry. In addition

it is invariant under the translations by Bravais lattice vectors na1 + n′a2. At

neutrality there are four degenerate eigenstates which are four Bloch wavefunc-

tions that can be denoted by uAK(r), uB̃K(r), uAK′(r), uB̃K′(r). This eigen-

states must form a “multiplet” of all the symmetries of the Hamiltonian,

namely the action of the symmetry operators acting on any of these wavefunc-

tions is closed within the subspace spanned by the wavefunctions themselves.

Following Ref. [45] we write the column vector
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u = (uAK(r), uB̃K(r), uB̃K′(r),−uAK′(r))
T

≡ (uĀK(r), uB̄K(r), uĀK′(r), uB̄K′(r))
T. (C.1)

Let us denote the Pauli matrices in valley as ρ and those in the ĀB̄ indices as

τ . Then the D3d is composed of 2π/3 rotations around the z-axis centered on

any carbon atom, denoted by Ĉ3 which transforms the Bloch wavefunctions

as [3, 7, 45]:

Ĉ3u = ei
2π
3
τzu. (C.2)

The other operations that belong to the D3d symmetry are a reflection about

the y-axis of Fig.1 in Ref [45], labeled R̂h, and a reflexion about the x-axis

composed by an inversion about the plane that swaps the top and bottom

layers, labeled R̂v. Their action on Bloch wavefunctions is,

R̂hu = τyρyu, (C.3)

R̂vu = τxρzu, (C.4)

the two operations correspond simply to swaping the valleys and swaping the

sublattices respectively. Finally the translations act as,

Ta1u = eiK·a1ρzu = ei
2π
3
ρzu, (C.5)
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C.2 Low energy theory of bilayer graphene

A continuous theory can be constructed by writing all short range in-

teractions that are allowed by the symmetried of the lattice. In the spirit of

k · p we expand the low energy single-particle states using as basis the Bloch

wavefunctions of the high-symmetry points:

uk(r) =
eik·r√
A

∑
v,l

cvl(k)uvl(r), (C.6)

where v = K,K ′ and l = Ā, B̄. The coefficients cvl(k) are the components of

the spinors in the low energy theory.

Let us now consider the most general form of sort-ranged interactions

that are consistent with the symmetries of the Lattice. The discrete rotational

symmetry Ĉ3 implies sublattice conservation (in the bar indices basis but not

the original one), the discrete translational symmetry Ta1 implies valley conser-

vation, and the mirror symmetries Rh and Rv imply invariance under swapping

K ↔ K ′, and Ā ↔ B̄ respectively. These constraints allow for nine types of

short ranged interaction, one of which is the SU(4) valley/subalttice indepen-

dent delta function, and the other eight can be separated into two classes:

three “gz-type” interactions, which differentiate intra/inter valley/sublattice

interactions but don’t flip these degrees of freedom, and five “g⊥-type” in-

teractions that produce flips of valley/sublattice while conserving the total

valley/sublattice numbers.
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Any of these interactions can be written in first quantization in the

form

V12 = v̂(v1, l1; v2, l2)δ(r1 − r2), (C.7)

where v̂(v1, l1; v2, l2) is a two-body matrix acting on valley and sublattice de-

grees of freedom. The three “gz-type” interactions have the following v′s:

v̂0z = g0zτz1τz2, (C.8)

v̂z0 = gz0ρz1ρz2, (C.9)

v̂zz = gzzρz1τz1τz2ρz2, (C.10)

The five “g⊥-type” interactions have the following v′s:

v̂0⊥ = g0⊥τ⊥1 · τ⊥2, (C.11)

v̂⊥0 = g⊥0ρ⊥1 · ρ⊥2, (C.12)

v̂z⊥ = gz⊥τ⊥1 · τ⊥2ρz1ρz2, (C.13)

v̂⊥z = g⊥zρ⊥1 · ρ⊥2τz1τz2, (C.14)

v̂⊥⊥ = g⊥⊥ρ⊥1 · ρ⊥2τ⊥1 · τ⊥2, (C.15)
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C.3 Projection into neutral Landau level and exchange
interaction with negative energy sea

Once projected into the zero energy Landau level these interactions will

get regrouped into a few terms. The usual gz and g⊥ we have been considering

in monolayer graphene will appear and in particular: gz = gz0 + gzz, g⊥ =

g⊥0 +g⊥z, as pointed out in Refs. [36, 38]. One might expect these interactions

to contribute to the exchange potential with the negative energy sea, much

like the Coulomb potential discussed in the main text.

However, as we will demonstrate next, because these interactions are

all short range it turns out that they will not produce a splitting between

the n = 0 and n = 1 like the Coulomb interaction does. Let us label the

single particle eigenstates by three labels |v, n,m〉, where v = {K,K ′}, n =

{−∞, ...,−2, 0, 1, 2, ...,∞} labels the Landau levels of bilayer, and n = 0, n = 1

form the neutral Landau level, and m is the intra-Landau level guiding center

number. Another complete single particle basis is |v, l, r〉 where l = {Ā, B̄},

and |r〉 is a position eigenstate.

Consider for the moment a more general symmetry breaking interaction

between particles i and j of the form:

i〈v1l1r|j〈v2l2r
′|vij|v3l3r

′〉j|v4l4r〉i = (C.16)

V (v1l1, v2l2; v3l3, v4l4) v(r − r′) (C.17)
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The exchange potential generated by the negative energy sea level n2 ≤

−2, on the states in the n = 0, n = 1 levels can be written in general as,

X̂v2n2 = −
∑
l2,l′2

∫
drdr′V (vl, v2l2; v′l′, v2l

′
2)v(r − r′) (C.18)

×Pv2n2(l2r, l
′
2r
′)|vlr〉〈v′l′r′| (C.19)

Where Pv2,n2 is the density matrix of the occupied level:

Pv2n2(l2r, l
′
2r
′) = 〈v2l

′r′|
(∑
m2

|v2, n2,m2〉〈v2, n2,m2|
)
|v2l

′
2r
′〉. (C.20)

Invariance under magnetic translations implies that the density matrix at co-

incident points r = r′ is independent of position Pv2n2(l2r, l
′
2r) = Pv2n2(l2, l

′
2).

Thus when the interaction is a delta function, v → δ, the exchange becomes

independent of position,

X̂v2n2 = −
∑
l2,l′2

V (vl, v2l2; v′l′, v2l
′
2)Pv2n2(l2, l

′
2)|vl〉〈v′l′|, (C.21)

thus short-range interactions are unable to produce a splitting of the orbital

degree of freedom of the neutral Landau level.
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Appendix D

Haldane pseudo-potentials for n = 0 and n = 1

cyclotron pseudo-spin

Consider the basis of two-body states for spin-1/2 particles projected

into the n = 0 LL

Ψ1,−1
M,m =

B†Mb†m√
M !m!

|0 ↓, 0 ↓〉 (D.1)

Ψ1,0
M,m =

B†Mb†m√
M !m!

σ+
1 + σ+

2√
2
|0 ↓, 0 ↓〉 (D.2)

Ψ1,1
M,m =

B†Mb†m√
M !m!

σ+
1 σ

+
2 |0 ↓, 0 ↓〉 (D.3)

Ψ0,0
M,m =

B†Mb†m√
M !m!

σ+
1 − σ+

2√
2
|0 ↓, 0 ↓〉 (D.4)

Where ΨS,Sz
M,m is a state with spin of magnitude S, projection Sz, center

of mass angular momentum M and relative angular momentum m, and σ+ =

(σx + iσy)/2. Thus for spinless particles, by imagining the cyclotron quantum

number as a pseudo-spin, we can label the states of two particles constrained

to occupy the n = 0 and n = 1 LL as,
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Ψ1,−1
M,m =

B†Mb†m√
M !m!

|00, 00〉 (D.5)

Ψ1,0
M,m =

B†Mb†m√
M !m!

a†1 + a†2√
2
|00, 00〉 (D.6)

Ψ1,1
M,m =

B†Mb†m√
M !m!

a†1a
†
2|00, 00〉 (D.7)

Ψ0,0
M,m =

B†Mb†m√
M !m!

a†1 − a
†
2√

2
|00, 00〉 (D.8)

A convenient basis for finding the matrix elements of the Coulomb

interaction is the center of mass and relative coordinates basis,

ΦM,m,N,n =
B†Mb†m√
M !m!

A†Na†n√
N !n!

|00, 00〉 (D.9)

where A = (a1 + a2)/
√

2, a = (a1 − a2)/
√

2. In this basis the interaction is

almost diagonal (only three indices specify non-vanishing matrix elements),

〈ΦM ′,m′,N ′,n′ |v(r1 − r2)|ΦM,m,N,n〉 = (D.10)

δM ′N ′,MNδm′−n′,m−nv(n′m′, nm) (D.11)

For an analytic expression of v(n′m′, nm) see Eq.(C6) in [67]. The

pseudo-spin basis of Eqs. (D.5)-(D.8), relates to the latter basis as follows,
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Ψ0,0
M,m = ΦM,m,0,1, (D.12)

Ψ1,−1
M,m = ΦM,m,0,0, (D.13)

Ψ1,0
M,m = ΦM,m,1,0, (D.14)

Ψ1,1
M,m =

1√
2

(ΦM,m,2,0 − ΦM,m,0,2), (D.15)

The interaction can be decomposed into Haldane pseudo-potential ma-

trices. The states Ψ1,0
M,m are completely decoupled from the remainder because

they are the only ones with center of mass kinetic energy N = 1. Since the

remaining states all have projection into states with center of mass kinetic

energy N = 0, there will be off-diagonal matrix elements of the interaction

between them. Thus the interaction can be separated into two pieces, one

piece is diagonal and projects into the N = 1 states:

v1 =
∑
m

v1
m|Ψ

1,0
M,m〉〈Ψ

1,0
M,m| (D.16)

and the other piece has the structure of 3 × 3 matrices and projects

into the remaining states with N = 0 components,

v0 =
∑
m

|Ψ1,1
M,m+1〉 |Ψ

0,0
M,m〉 |Ψ

1,−1
M,m−1〉

−− −− −−
−− −− −−

 (D.17)

The notation above simply specifies the states labeling the columns

of the matrix (same order for the rows). For m = 0 the last colum/row
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is understood to be absent (the matrix is 2 × 2). The total interaction is

v = v0 + v1. For fermions (bosons) m in Eq. (D.16) is restricted to be odd

(even), and in Eq. (D.17) to be even (odd).

Let me now discuss the interpretation of the different states, compare

them with the spinful case and list some of the relevant pseudopotentials (re-

stricted to fermions).

For m = 0 in Eq. (D.17) we have 2×2 matrix with states: Ψ1,1
M,1 (ν ∼ 1

polarized into the n = 1 LL) and Ψ0,0
M,0 (ν ∼ 2 singlet of n = 0 and n = 1 LL),

with the following pseudo-potentials,

v0
0 =

(
0.42 −0.11
−0.11 0.44

)
SU(2)−−−→

(
0.44 0

0 0.87

)
(D.18)

The symbol
SU(2)−−−→ indicates the values the pseudopotentials have for

the conventional real spin case, listed for comparison.

For m = 1 from v1 we have the state Ψ1,0
M,1 (ν ∼ 1 polarized along the

equator of the n = 0/n = 1 pseudo-spin Bloch sphere, i.e. nematic-like)

v1
1 = 0.44

SU(2)−−−→ 0.44 (D.19)

The fact that the pseudo-potential coincides with that of the usual spin

case is no accident, and it can be verified that all the Haldane pseudopotentials

associated with v1 are identical to those of the conventional n = 0 LL.
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For m = 2 in Eq. (D.17) we have states: Ψ1,1
M,3 (ν ∼ 1/3 polarized into

the n = 1 LL), Ψ0,0
M,2 (ν ∼ 2/5 singlet of n = 0 and n = 1 LL, i.e. a pseudo-

spin Halperin state or un-projected composite fermion state at 2/5), and Ψ1,−1
M,1

(ν ∼ 1 polarized into n = 0 LL) with the following pseudo-potentials,

v0
2 =

 0.32 −0.12 −0.07
−0.12 0.39 −0.11
−0.07 −0.11 0.44

 SU(2)−−−→

0.28 0 0
0 0.33 0
0 0 0.44

 (D.20)

For m = 3 in Eq. (D.16) we have the state Ψ1,0
M,3 (ν ∼ 1/3 polarized

nematic state) with the following pseudo-potential,

v1
3 = 0.28

SU(2)−−−→ 0.28 (D.21)

For m = 4 in Eq. (D.17) we have states: Ψ1,1
M,5 (ν ∼ 1/5 polarized into

the n = 1 LL), Ψ0,0
M,4 (ν ∼ 2/9 singlet of n = 0 and n = 1 LL), and Ψ1,−1

M,3

(ν ∼ 1/3 polarized into n = 0 LL, i.e the conventional Laughlin state) with

the following pseudo-potentials,

v0
2 =

 0.22 −0.06 −0.02
−0.06 0.26 −0.05
−0.02 −0.05 0.28

 SU(2)−−−→

0.22 0 0
0 0.24 0
0 0 0.28

 (D.22)

The chemical potential jump at 1/3 for spinless electrons is controlled

by the difference between V3 (0.28) and V1 (0.44). For spinful electrons the

jump is controlled by the difference between V3 (0.28) and V2 (0.33), and hence
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it is substantially reduced. A more elaborate guess for chemical potential

jumps for n = 0/n = 1 pseudo-spins would require some correction for the

fact that the wavefunctions made from n = 0 and n = 1 LL’s have slighlity

different sizes (i.e. different densities), however ignoring this for the time being,

and neglecting the off-diagonal Haldane pseudopotentials, we can imagine the

chemical potential jump at 1/3 to be roughly controlled by the difference of the

expectation values of Coulomb for Ψ1,−1
M,3 (0.28) and Ψ0,0

M,2 (0.39). This reduced

jump, which is comparable to the conventional case of spinful electrons could

be important in understanding the missing fractions in Ref. [40].
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