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Bugs in code continue to pose a fundamental problem for software reliabil-
ity and cause expensive failures. The process of removing known bugs is termed
debugging, which is a classic methodology commonly performed before code is de-
ployed. Traditionally, debugging is tedious, often requiring much manual effort. A
more recent technique that complements debugging is data structure repair, which
handles bugs that make it to deployed systems and lead to erroneous behavior at
runtime by modifying erroneous program states to recover from errors. While data
structure repair presents a promising basis for dealing with bugs at runtime, it re-

mains computationally expensive.

Our thesis is that debugging and data structure repair can be integrated to
provide the basis of an effective approach for removing bugs before code is de-
ployed and handling them after it is deployed. We present a bi-directional integra-

tion where ideas at the basis of data structure repair assist in automating debugging
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and vice versa. Our key insight is two-fold: (1) a repair action performed to mutate
an erroneous object field value to repair it can be abstracted into a program state-
ment that performs that update correctly; and (2) repair actions that are performed

repeatedly to fix the same error can be memoized and re-used.

We design, develop, and evaluate two techniques that embody our insight.
One, we present an automated debugging technique that leverages a systematic
constraint-based data structure repair technique developed in previous work and
provides suggestions on how to fix a faulty program. Two, we present repair ab-
stractions that are based on the same central ideas as in our automated debugging
technique and memoize how an erroneous state was repaired, which enables priori-

tizing and re-using repair actions when the same error occurs again.

The focus of our work is programs that operate on structurally complex
data, e.g., heap-allocated data structures that have complex structural integrity con-
straints, such as acyclicity. Checking such constraints plays a central role in the
techniques that lay at the foundation of our work. These techniques require the
user to provide the constraints, which poses a burden on the user. To facilitate the
use of constraint-based techniques, we present a third technique to check constraint
violations at runtime using graph spectra, which have been studied extensively by
mathematicians to capture properties of graphs. We view the heap of an object-
oriented program as an edge-labeled graph, which allows us to apply results from
graph spectra theory. Experimental results show the effectiveness of using graph
spectra as a basis of capturing structural properties of a class of commonly used

data structures.
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Chapter 1

Introduction

Traditional methodologies for increasing software reliability using analysis
fall in two basic categories: checking before code is deployed [1, 10, 17,81, 115],
e.g., using software testing and debugging, model checking, or static analysis; and
runtime monitoring or error recovery after code is deployed [14, 18,26, 30], e.g.,
using data structure repair. We introduce a novel methodology that integrates ideas
from a pre-deployment technique — debugging — and a post-deployment tech-
nique — data structure repair — to enable a synergy that holds potential to signifi-

cantly increase software reliability.

1.1 Our thesis

Our thesis is that debugging and data structure repair can be integrated to
provide the basis of an effective specification-based approach for removing bugs at
compile-time and handling them at runtime. We propose a bi-directional integration
where ideas at the basis of data structure repair assist in automating debugging and
vice versa. Our key insight is two-fold: (1) a repair action performed to mutate an
erroneous object field value to repair it can be abstracted into a program statement

that performs that update correctly; and (2) abstract repairs can capture the essence



of how to fix specific kinds of errors in concrete data structures and help optimize
fixing the same error in future through memoization and re-use. Moreover, to ease
the burden on the user to write specifications, we propose a technique based on

graph theoretic foundations to detect and check invariants of data structures.

1.2 This dissertation

This dissertation presents the design, implementation and evaluation of three
techniques for program repair, data structure repair and structural invariant detec-
tion, which embody our thesis (Figure 1.1). We next describe the background for

each technique and summarize its key ideas.

Repair Abstractions

Invariant Detection using
Graph Spectra
[ICSENIER'11, ICST’ 12

Program Repair
[ASE'09, ICST'11]

Data Structure Repair
[RV'13]

Repair Actions

Figure 1.1: Dissertation overview. Data structure repair provides the basis of pro-
gram repair [67]. Repair actions are concrete mutations to fix errors in program
state and provide hints for likely fault location and repair. We implemented [72]
a program repair framework that abstracts repair actions using heuristics, dataflow
and control-flow analysis and presented experimental evaluation. The idea of ab-
stracting repair actions enables more efficient data structure repair [113]. Both our
approaches for program repair and data structure repair require the user to provide
a given specification of data structure properties. We introduced the idea of us-
ing graph spectra to capture structural constraints of data structures using dynamic
analysis [68].



1.2.1 Debugging

Debugging faults in code is tedious and can itself be error-prone. Using a
traditional debugging environment, a programmer has to manually trace the execu-
tion of the program. On finding a corrupted program state the programmer has to
make assumptions about fault location(s) and create possible fix(es). This can be
quite time-intensive; moreover the fix may introduce some new bugs. Sometimes
it is hard to trace the root fault as the fault may seem to propagate from one place
to another. A variety of tools and techniques have been developed to help with
localizing bugs in programs [43, 115]. Sometimes localizing bugs and fixing code
manually can create more bugs or different types of bugs that might not have been

present earlier.

A key element of debugging is program repair, which is the problem of
transforming faulty lines of code into correct code. We present a novel technique
for automated repair of buggy programs, which eases the burden of debugging by
suggesting likely fixes to faulty code [67,72]. Our technique first uses the buggy
program to generate corrupt program states, next it repairs these states by invoking
an off-the-shelf data structure repair tool [32,60], and then it abstracts the repair
actions and synthesizes code that represents a likely fix. Our technique performs
specification-based repair using given data structure invariants. Such invariants
have been used in previous work on systematic testing [13], which can be applied

in conjunction with our program repair approach.



1.2.2 Data structure repair

A variety of techniques [26,27] have been developed during the last decade
to repair structurally complex data that do not satisfy the desired structural integrity
constraints at run-time. Conventional use of these techniques has been to enable
continued execution of programs in case of otherwise fatal data structure corrup-
tion. One such technique is Juzi, which provides an enabling technology for our
work [30,32,33,60]. To fix corrupt data structures, Juzi generates and applies repair
actions that represent mutations to the structures so that the transformed structures

satisfy the desired constraints.

While data structure repair presents a promising basis for dealing with bugs
at runtime, scaling it remains a key challenge. We introduce repair abstractions for
more efficient data structure repair. Our key insight is that if an error in the program
state is due to a bug in code (or a fault in hardware), a similar error may occur again,
say when the same buggy code segment is executed again (or when the same faulty
memory location is accessed again). Conceptually, repair abstractions capture how
erroneous program executions are repaired using concrete repair actions to allow

faster repair of similar errors in future executions.

1.2.3 Structural constraints

The focus of our work is programs that operate on structurally complex
data, e.g., heap-allocated data structures that have complex structural integrity con-
straints, such as acyclicity. Checking such constraints plays a central role in the

techniques that lay at the foundation of our work. These techniques typically re-
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quire the user to provide the constraints. Writing complex constraints manually
poses a burden on the user. To facilitate the use of constraint-based techniques, we
present a novel technique to check constraint violations at runtime using graph spec-
tra, which have been studied extensively by mathematicians to capture properties of
graphs [68,69]. Viewing the heap of an object-oriented program as an edge-labeled
graph allows us to apply results from graph spectra theory [22] to perform dynamic

program analysis.

1.3 Illustration

This section gives an illustrative overview of our techniques using a faulty
implementation of a doubly-linked list data structure. Consider the following dec-

laration of a class List:

class List/{
static class Node({
int data;
Node next;
Node prev;

}
Node head, last;
The class Node implements the list nodes. Each node has an integer data,
as well as next and prev pointers to other nodes. Figure 1.2(a) illustrates a linked

list with four nodes.

The structural invariants (called class invariants in object oriented programs)
of doubly-linked lists in this example are acyclicity along next fields as well as

along prev fields, and transpose relation between next and prev fields. Any
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head last

next next next
No| -1 N,| 9 N,| 1 N,| 8
prev prev prev
(a)
head next last
/;\next next /
No| -1 Ny 97 TN, 1 N,| 8
“prev. __l__| Q prev
prev
(b)
head next last
/m next /
No| -1 N, 97 TN, 1 N;| 8
“prev.__L__| prev
prev

(©)

Figure 1.2: (a) A doubly linked list with four nodes. (b) Erroneous output (post-
state) of the remove method where the value 9 is removed from the list in part a (c)
Correct output of the repaired remove method.

valid list must satisfy these invariants (in all publicly visible states). These invari-
ants can be represented using a repOk [66] method that traverses its input structure

and returns true if and only if the input satisfies all the invariants:

public boolean repOK() {

if (head == null || last == null)
return head == last;
if (head.prev != null)

return false;
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if (last.next != null)
return false;
HashSet<Node> hs = new HashSet<Node> () ;
Node curr = head;
while (curr != null) {
if (!'hs.add(curr))
return false;
if (curr.next != null && curr.next.prev != curr)
return false;
curr = curr.next;
}

return true;

Class invariants implicitly form a part of the preconditions and postcondi-

tions of public methods. Thus, all executions of a public method are expected to

terminate in a state where the class invariants hold.

1.3.1 Program Repair

o0
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18
19
20
21
22

Consider the following implementation of the method remove:

public void remove (int n) {

Node curr = head;

while (curr != null && curr.data !'= n) {
curr = curr.next;
}
if (curr == null) //Data not found, nothing to delete
return;
if (curr.next == null && curr.prev == null) {
head = last = null;
return;
}
if (curr.next == null){ //last element in the list
last = curr.prev;
last.next = null;
return;
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}

if (curr.prev == null) {

head = curr.next;

head.prev = null;

return;
}
curr.prev.next = curr.next;
//curr.next.prev = curr.next; // Error
curr.next.prev = curr.prev; // Fix

The method has a fault at the assignment statement on line 30. The line
erroneously sets the prev pointer of the next of curr to point back to itself, thus
violating the transpose relationship. Figure 1.2(b) illustrates the state of the list once
the method is executed on the input list from Figure 1.2(a). Figure 1.2(c) shows the

repaired output.

A faulty assignment of curr.next.prev to curr.next breaks the trans-
pose relationship between next and prev and violates the structural integrity of the
list. A data structure repair routine such as Juzi [32] is able to restore the structural
integrity by repairing this data structure corruption. Juzi uses the repOk method
to check the structural constraints and when it detects a violation it systematically
mutates the structure by performing repair actions to transform it into one that does
not violate the constraints. A Juzi repair action is a triple < s, f, d > where s is the
source node, f is the field mutated and d is the destination node. In this example,
Juzi first attempts < N2, prev, null > which fails to fix the structure, followed by

< N2,prev, NO > which brings the list to a valid structural state.



Our program repair approach translates the concrete repair action performed
by Juzi into a Java statement, i.e., curr.next.prev = curr.prev;, using pro-
gram variables visible in the scope, e.g., head, last, curr and this, which hold
references to objects on the heap. Our approach records the heap locations refer-
enced by each of these variable and uses bounded path expressions over recursive

fields to determine statements that capture the state modifications suggested by Juzi.

1.3.2 Data Structure Repair

To illustrate our approach to data structure repair, consider a scenario where
the remove method is executed periodically and it continually produces incorrect
outputs, which are repaired using a data structure repair routine, such as Juzi. Each
invocation of Juzi requires a systematic exploration of a space of candidate struc-
tures. However, it is the same fault in remove that is the cause of data structure

corruption.

Our data structure repair approach creates a repair abstraction for a concrete
repair action to memoize how the corruption was fixed. When a similar corruption
is encountered during a future run, the abstract repair action is first performed as
a heuristic; if the heuristic leads to a successful repair, data structure repair com-
pletes, and otherwise, the default Juzi algorithm applies. For this example, the Juzi
repair action < N2, prev, NO > is abtracted to < prev, Neighbor >, where the
keyword Neighbor indicates that a mutation of the prev field should be (heuris-
tically) prioritized to first point to a neighboring node, i.e., a node that is directly

connected to the source node along one field access. Thus, the value null has a



lower priority among the set of possible repairs.

1.3.3 Graph Spectra

Data structure repair routines, such as Juzi, that provide the foundation of
our work use given structural invariants as a basis of performing repair. While
user-provided repOk methods enable such routines to apply, we envision new ap-
proaches that do not require the users to provide detailed invariants. Specifically,
here we illustrate our approach for capturing structural invariants using graph spec-

tra [22].

Recall that our example lists are acyclic along prev fields. Note also that
the faulty remove method violates this property. Our technique represents object
graphs using adjacency matrices and uses their spectra, i.e., eigenvalues, to classify
them. The eigenvalues for lists in Figure 1.2 (a) and (c) are (0,0, 0,0) and (0, 0, 0)
respectively, i.e., they are all zeroes. However, the eigenvalues for the list in Fig-
ure 1.2(b) are (0,0, 0, 1), i.e., they contain a non-zero element. Since all eigenvalues
of an acyclic structure are zero [22], the list in part (b) violates the acyclicity invari-
ant. Thus, this violation is detected by using results from graph spectra, without

using a user-provided repOk method.

1.4 Contributions

The results in this thesis are based on work published at: ASE 2009 [67],
ICST 2011 [72], ICSE NIER 2011 [68], ICST 2012 [69] and RV 2013 [113]. We

make the following contributions:

10



1. Program Repair using Data Structure Repair
We present an approach to repair programs using data structure specifications

with the following key contributions:

e Algorithms. We present two algorithms that form the basis of our ap-
proach: one algorithm performs the abstraction of concrete repair ac-
tions and the other algorithm uses abstract repair to generate debugging

suggestions. We argue the correctness of our approach.

e Evaluation. We evaluate our approach for its success rate on faulty mu-
tants of a suite of programs, including some benchmark data structures
as well as parts of the ANTLR and RayTrace applications. Experimental

results show our approach generates accurate debugging suggestions.

2. Dynamic Analysis using Graph Spectra
We present an approach for dynamic analysis of data structure implementa-

tions with the following key contributions:

e Graph spectra in dynamic analysis. We introduce the use of graph
spectra in dynamic analysis of programs that manipulate structurally

complex data.

e Technique. We present a technique for detecting likely properties of

object graphs in Java programs.

e Evaluation. We use a suite of subject programs that implement com-

plex data structures to evaluate our technique. Experimental results

11



show that our technique holds much promise in accurately identifying

structural properties as well as detecting likely erroneous executions.

3. Prioritizing Data Structure Repair using Repair Abstractions
We present a technique to prioritize repairs based on previously known errors

and repairs.

e Memoizing repair actions. We introduce the idea of memoizing re-
pair actions from previous runs of a data structure routine in order to

prioritize future repairs and optimize performance.

e Repair abstractions. We define repair abstractions that generalize con-
crete data structure repair actions into concepts based on rooted, edge-
labeled graphs, which capture the essence of concrete repair actions and

enable their re-use in future.

e Evaluation. We experimentally evaluate our technique and compare it

with previous work on invariant-based repair.

1.5 Organization

The rest of this document is organized as follows. Chapter 2 presents our
work on program repair. Chapter 3 describes our technique to capture data structure
invariants using graph spectra. Chapter 4 describes our technique to optimize data
structure repair using repair abstractions. Chapter 5 presents the related work and

Chapter 6 concludes the thesis.

12



Chapter 2

Program Repair Using Data Structure Repair

This chapter describes our approach to program repair using data struc-
ture repair. The basic problem our approach addresses is to modify a given faulty
program p into another program p’ such that p’ is correct with respect to a given
bounded correctness criteria. We support two forms of criteria: (1) a given test
suite where each test case consists of an input and the corresponding expected out-
put; and (2) a given specification, which allows enumerating test inputs and pro-
vides the correctness properties of p, as well as a bound on the input size to check
p. Thus, the transformed program p’ is correct with respect to a bounded number of
possible program behaviors, which are either presented explicitly in the form of the
given test suite or implicitly in the form of the specification and the bound on input
size. This chapter is based on our work presented in ASE 2009 [67]' that makes a
case for state repair for program repair, and our ICST 2011 [72]? paper that presents

the details and evaluation of the work.

'Muhammad Zubair Malik, Khalid Ghori, Bassem Elkarablieh, Sarfraz Khurshid. A Case for
Automated Debugging Using Data Structure Repair. ASE 2009. (Ghori and Elkarablieh are former
UT students supervised by Khurshid.)

Muhammad Zubair Malik, Junaid Haroon Siddiqui, Sarfraz Khurshid. Constraint-Based Pro-
gram Debugging Using Data Structure Repair. /CST 20171. (Siddiqui is a former UT student super-
vised by Khurshid.)
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The key insight of the work presented in this chapter is to leverage the in-
formation available in program state to repair the program code. We show that for
a large class of programs that operate over complex data structures using the data
structure repair is efficient and effective for program repair. Traditional approaches
of automated debugging such as delta debugging [114], statistical debugging [15],
and spectral techniques [56] focus on isolating cause of failure in code but do not
provide repair suggestions on how to modify code. More recent work addresses
automated program repair [40], which we discuss in detail in Chapter 5. To our
knowledge, our work is the first to introduce the idea of modifying program states

as a basis of synthesizing code that repairs a faulty program.

We present a novel methodology for developing reliable software: data
structure repair for automated debugging. A technique embodying the methodol-
ogy is developed based on two algorithms: (1) repair abstraction algorithm, which
translates concrete repair actions of a data structure repair tool into Java code that
represents the actions using variables visible in the scope of the faulty code; and
(2) debugging advisor algorithm, which (heuristically) computes where to apply the
fix. Demonstration of the technique using the Juzi repair tool as an enabling tech-
nology on subject programs from standard benchmarks and Java libraries shows the

effectiveness and versatility of the technique.

The idea of using data structure repair for program repair was first intro-
duced in Ghori’s Masters thesis [39]. This chapter refines the original ideas into
two core algorithms, argues the correctness of the approach, and presents a rigor-

ous experimental evaluation using textbook data structure implementations as well
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as structures derived from parts of the ANTLR [84] and RayTrace [11] applications.

2.1 Debugging Using Data Structure Repair Overview

Systems with high reliability and availability requirements have used data
structure repair over the last few decades as an effective means to recover on-the-fly
from errors in program state [26,32]. Our insight is that since the goal of repair is to
transform an erroneous state into an acceptable state, the state mutations performed
by repair provide a basis of debugging faults in code (assuming the erroneous states
are due to bugs and not external events, say cosmic radiation). A key challenge to
embodying our insight into a mechanical technique arises due to the difference in
the concrete level where the program states exist and the abstract level where the
program code exists: repair actions apply to concrete data structures that exist at
runtime and have a dynamic structure (i.e., may get mutated), whereas debugging

applies to code that has a static structure.

Given a Java method that takes as input structurally complex data, the struc-
tural invariants that the method must preserve, and an input that leads to an invariant
violation by the method, our technique performs three basic steps. (1) It uses data
structure repair to transform the erroneous output into a program state that satisfies
the structural invariants. (2) It abstracts the set of concrete repair actions by gen-
erating a sequence of Java statements using variables visible within the scope of
the method. (3) It determines, using dataflow and heuristics, the place to put the

generated sequence in the method.
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2.2 Motivating Example

Consider the following declaration of a class implementing doubly-linked

circular lists based on the java.util.LinkedList class from Java libraries:

public class LinkedList {

03N N kW~

11
12
13
14
15
16
17
18
19
20

private Entry header=new Entry(null, null, null);
private int size = 0;

public LinkedList () {
header.next = header.previous = header;

private static class Entry {
Object element;
Entry next;
Entry previous;

Entry (Object element, Entry next,
Entry previous) {

this.element = element;
this.next = next;
this.previous = previous;

Each list object has a sentinel header node and caches the number of nodes

in the field size. The class Entry implements the list nodes. Each node has
an element, and next and previous pointers to other nodes. Figure 2.1 (a)

illustrates an empty list.

The structural invariants (called class invariants in object-oriented programs)
of doubly-linked lists are sentinel header nodes, circularity along next fields,
transpose relation between next and previous fields, and correct value for size.

Any valid list must satisfy these invariants (in all publicly visible states). These
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invariants can be represented using a repOk [66] method that traverses its input

structure and returns true if and only if the input satisfies all the invariants:

public boolean repOk () {
if (header == null)
if (header.element

Set visited =
visited.add (header) ;
Entry current = header;
while (true) {
Entry next =
if (next == null)
if
current =
if

next;

}

if (current
if (visited.size ()
return true;

= header)
-1

(next .previous!=current)

(!'visited.add (next))

= size)

return false;
!= null)
new HashSet () ;

return false;

current.next;
return false;

return false;

break;

return false;

return false;

Class invariants implicitly form a part of the preconditions and postcondi-

tions of public methods. Thus, all executions of a public method are expected to

terminate in a state where the class invariants hold.

Consider the following implementation of the method addFirst, which

has been modified from its original implementation:

public void addFirst (Object e) {

Entry entry =
Entry newkEntry =
new Entry (e,

entry,

header.next;

entry.previous);

newEntry.previous.next = newEntry;

newEntry.next.previous =

size++;
return newEntry;
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This method has an injected fault in its third assignment statement (Line
44), which erroneously sets a previous field to entry instead of newEntry>. To

illustrate the effect of this fault, consider the following code snippet:
LinkedList 1 = new LinkedList ();
assert l.repOk(); // pass
1l.addFirst (0);
assert l.repOk(); // fail
The second assertion (Line 53) fails. Figure 2.1 (b) illustrates the erroneous

list in the post-state of addFirst. The previous field of the header node (Ey)

is erroneously set to the node itself (instead of £).

Given the erroneous list and the repOk method, Juzi — a data structure
repair tool discussed in Section 2.3 — repairs the list by performing the following
repair action: (FEy, previous, F1), i.e., by setting the previous field of Ej to £},
thereby generating a valid list of size 1 containing the element 0—the list a correct

implementation of addFirst would generate.

Atevery control point in the program we record all objects that are reachable
from any reference field. Based on Juzi’s concrete repair action, our repair abstrac-
tion algorithm using semantics of Java reference fields finds the correct mapping
from Ej to newEntry.next and E) to newEntry that enables it to generate the

following Java code:

newEntry.next.previous = newEntry;

3The addFirst method is correctly implemented in java.util.LinkedList and
uses the helper method addBe fore, which we inline here to make it accessible for our tool
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Figure 2.1: Doubly-linked circular list with sentinel header. (a) An empty list
(size 0). (b) An erroneous list of size 1 containing element 0. A small box-pair
represents a list object and is labeled with the object’s identity and the value of its
size. Large box-pairs represent entry objects and are labeled with object identity
and value of element.

Our debugging advisor algorithm based on the dataflow suggests this fix for

Line 46, which corrects the fault.

2.3 Background: Data Structure Repair using Juzi

Juzi is an automated framework for on-the-fly repair of data structures [30,
32,33,60]. Given a corrupt data structure, as well as a repOk method that describes
the structural integrity constraints, Juzi systematically mutates the fields of the cor-

rupt data structure so that it satisfies the given constraints. In addition to repairing
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the given structure, Juzi reports the repair actions it performed on the corrupt struc-
ture in a log-file that holds a sequence of tuples (o, f, o'}, i.e., an assignment to field

f of object o the value o’'—each tuple represents a repair action.

To illustrate Juzi and its repair mechanism, consider the example of repair-
ing corrupt doubly linked lists. Consider the list in Figure 2.1 (b). The list has one
corruption in the previous field on node £j. Given the corrupt structure and the
repOk method, Juzi first invokes repOk on the corrupt structure and monitors the
fields accessed by repOk during its execution. When repOk returns false due to
a constraint violation, Juzi systematically mutates the last field accessed by repOk
by non-deterministically setting it to : (1) null, (2) nodes that have already been

visited during repOk’s execution, and (3) one node that has not yet been visited.

To illustrate, monitoring the execution of repOk, Juzi detects the fault in
the previous field of node Fj, and mutates its value first to null, which does not
repair the fault, and then to node(s) that have been previously encountered during
the execution of repOk. Since FEj is the original value of the field, Juzi does not
need to try it again (unless some other fields are modified first). Therefore, Juzi

tries node F; next, which repairs the fault in the structure.

In addition to repairing the corrupt structure, Juzi reports the tuple (FEj,
previous, F1) to indicate the repair action that fixed the corruption. Note that
although Juzi tries several mutations on corrupt fields, only the repair actions that

result in repairing the fields are reported.

To provide more effective repair, Juzi tries to preserve the reachability of the
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Figure 2.2: Automated program repair using data structure repair. Solid boxes
represent computation modules, the ovals represent data, and the arrows show the
flow of information. The dashed box represents the two algorithms that embody
our technique. The arrows reaching only the dashed box imply that the information
is available to both the algorithms.

data in the given structure. In particular, if a sequence of repair actions generates a
valid structure that has fewer data than the original structure, Juzi performs further

repair actions to preserve the reachability if possible.

The next section describes how to translate these repair actions into code

statements that can be used as effective suggestions for debugging faulty code.

2.4 Program Repair

Figure 2.2 illustrates key components of our technique. Given an erroneous
output of a faulty method and the structural invariants (repOk) expected of a cor-
rect output, data structure repair generates concrete repair actions, i.e., a sequence
of field mutations, that repair the corrupt structure. The repair abstraction algorithm

takes as input the faulty method, the valid input for which the method gives the er-

21



roneous output, and the concrete repair actions of the data structure repair routine,
and generates abstract repair code that represents the concrete actions using a se-
quence of Java statements. The debugging advisor determines (heuristically) where
the abstract repair code provides a bug fix in the faulty method and generates a
repaired method, which is validated over the test cases that represent the bounded

correctness criteria.

2.4.1 Repair Abstraction Algorithm

This algorithm abstracts concrete repairs suggested by Juzi into the actual
program code. Figure 2.3 presents our repair abstraction algorithm. Given a faulty
method, an input state of the program, and a list of repair actions along with output
state suggested by Juzi, this algorithms initialize the code handles to correct value.
For all Juzi repair actions it map objects in Juzi repair action to code handles using
conservative reasoning, and translate repair action to build a code statement. The
algorithm updates the code and applies repair actions on the program state. And

finally it updates the handles to reflect the changes in program state.

A key auxiliary data structure the algorithm maintains for every control
point during a method execution is a map, Map<Variable, Object>, from stat-
ically declared variables that are visible at the control point (including the input
parameters, such as this) to their values at that control point for the current exe-

cution.

To illustrate, consider executing the method addrFirst on the empty input

list shown in Figure 2.1 (a). The map at Line 46 for this execution is:
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Vector<AssignmentStatement> repairAbstraction (
Vector<RepairAction> ras, Method faulty,
Object input, Object output) {
Vector<AssignmentStatement> abstractRepair =
new Vector<AssignmentStatement> () ;
Map<Variable, Object> variableValueMap =
buildVariableValueMap (faulty, input);
for (RepairAction ra: ras) {
Expression source =
abstraction(ra.source (), variableValueMap, output);
Expression target =
abstraction(ra.target (), variableValueMap, output);
abstractRepair.add (new
AssignmentStatement (source, ra.field(), target));
performRepairAction (output, ra);
updateVariableValueMap (variableValueMap, output);
}

return abstractRepair;

Figure 2.3: Repair abstraction algorithm.
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Note the map is with respect to the variables that are visible in the context of the
method that contains the control point. Thus, if a method invokes a helper method,

the map is updated to reflect the invocation.

The method buildvariableValueMap initializes the map with respect to
the last control point that performs a mutation on an object field of the method input
when the faulty method is executed on that input. The state of the map reflects that
last mutation. Therefore, if the input method calls a helper method that performs all
the mutations, the map is built with respect to the variables of the helper method,

and the abstract repair code applies to the helper method.
The method abstraction has the signature:

Expression abstraction (Object o,Map<Variable, Object> v,
Object root){... }

It outputs a path expression that starts traversal at an object pointed to by a variable
in the variable-value map, and terminates at the desired object o, which is reachable
from root along some sequence of field dereferences. The output path expression
is loop-free, i.e., it does not include a sub-sequence of field dereferences starting at
an object and evaluating to the same object. More formally, if for variable v, and
fields f1,..., fx (k > 1), v.f1.--- . fx evaluates to v, the generated expression will

not take the form e.f.--- .f,.e/ for any expression e that evaluates to v, rather it
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will take the form v.€’. This allows abst raction to consider a bounded number of
path expressions. Moreover, an expression that is not loop-free is likely to represent

a programming error.

Among the set of loop-free path expressions that provide the desired handle,
abstraction prioritizes expressions that start with a local variable declared by the
method, since methods that manipulate input object graphs often use local variables
as pointers into the input graphs for traversing them and accessing their desired

components.

To illustrate, consider the repair action (E, previous, E;) (Section 3.2).
Applying abstraction to the action’s source object F using the variable-value
map at the method exit point generates two loop-free expressions “newEntry.next”
and “entry”—both expressions evaluate to £j. Since priority is given to local vari-

ables, abstraction outputs the expression “newEntry.next”.

The method per formRepairAction updates the object graph that is reach-
able from a given root object with respect to the given repair action by mutating the
object graph. After that, the method updatevariableValueMap modifies the

map with respect to the updated object graph.

Correctness. We argue that the repair abstraction algorithm generates a sequence
of program statements that represent the given sequence of repair actions. In other
words, appending the generated code at the tail of the current execution path (just
before the return statement) in the control-flow graph results in a modified pro-

gram that (1) compiles and (2) when executed on the original input, generates the
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repaired output (up to isomorphism [13]).

Central to our correctness argument is a property of the Juzi data structure
repair framework. Juzi performs a systematic search of a neighborhood of the given
corrupt structure using backtracking. The basis of the search is an iterative process
for mutating object fields and re-executing repOk after each mutation to check
the validity of the resulting structure. Juzi keeps no explicit pointers into the given
object graph other than the given root pointer (this of repOk). Therefore, the final
sequence of repair actions, say 71, . .., r,, Where 1; = (0,5, fi, 0;4) for 1 <i <mn,
performed by Juzi is such that for any repair action r; (1 < j < n) and for any repair
action 73, (j < k < n), the objects o, ; and o are still reachable from the given
root pointer. Thus, the method abstraction can always generate a legal path.
Hence, the generated sequence of assignment statements compiles and each repair
action is abstracted into one assignment statement that represents that action. Thus,
executing the sequence of statements performs the same mutations in the same order
as Juzi. Therefore, the resulting structure is the same (up to isomorphism) as the

repaired structure generated by Juzi.

2.4.2 Debugging Advisor Algorithm

The abstract repair code can directly serve as a debugging suggestion: ap-
pend the sequence at the tail of the execution path (just before the return state-
ment). While this suggestion is likely to fix the specific erroneous execution, it
does so by undoing any erroneous field mutations of the execution—technically,

this may qualify as a bug fix, however, the user may have to go through a tedious
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Method debuggingAdvisor (Method faulty, Object input,
Object repairedOutput,
Vector<AssignmentStatement> stats,
Vector<RepairAction> ras) {
MethodGen repairedMethod = new MethodGen (faulty);
for (int i1 = 0; 1 < stats.size(); 1i++) {
AssignmentStatement stat = stats.elementAt (i);

ExecutionPath path = tracePath (repairedMethod, input);
AssignmentStatement last =

locatelastRelevantAssignment (path, input,

stat, ras.elementAt (1)) ;
if (last != null &&

checkFixFeasibility (repairedMethod, last,

stat, stats, ras, repairedOutput)) {
repairedMethod.replace(last, stat);
} else(

repairedMethod.append (path, stat);

}

return repairedMethod.method() ;

Figure 2.4: Debugging advisor algorithm.
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process of determining what fault each assignment statement is fixing. Ideally, we
would like to mechanically determine where the erroneous mutations are located in
the faulty code and to replace them with repaired mutations. The debugging advisor

algorithm (Figure 2.4) uses a heuristic approach to provide this functionality.

The algorithm takes as inputs the faulty method (faulty), the input (input)
that exhibits an erroneous output, the sequence of assignment statements (stats)
that represent repair actions, termed repair statements, and the corresponding se-
quence of concrete repair actions (ras). Intuitively, the algorithm determines for
each repair statement where to place it in the faulty method. There are two place-
ment possibilities: (1) replace an existing statement with it, or (2) insert it in the
execution path as a new statement. The debugging advisor first tries to find an ex-
isting statement for replacement, but if it fails to find such a statement, it inserts it

as a new statement.

The class MethodGen represents mutable method objects. The method
tracePath builds an explicit representation of the execution path of the faulty

method on the given input.

The method locateLastRelevantAssignment provides the key func-
tionality of suggesting an effective bug fix: it traverses the execution path to find
an assignment statement that assigns the same object field as the repair statement,
heuristically treating the original assignment as erroneous. If it does not find such a
statement, it returns null, and debuggingAdvisor simply appends the repair
statement to the execution path. Otherwise, the function debuggingAdvisor

checks the feasibility of swapping the statements subject to the repair actions that
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have yet to be integrated into the faulty code.

Recall the faulty method addFirst (Section 2.2). For the repair statement
“newEntry.next.previous=newEntry;” and for the corresponding repair ac-
tion (Ey, previous, F1), locateLastRelevantAssignment returns the state-

ment on Line 46, since it assigns to the same object field as the repair action.

The method checkFixFeasibility returns true if swapping the variable
last with stat permits the application of remaining repair actions as a sequence
of operations at the tail of the (modified) execution path to generate the repaired out-
put (up to isomorphism). If the replacement is determined infeasible, the function

debuggingAdvisor appends the repair statement to the path.

Correctness. We argue that the debugging advisor generates a method that, for
the given input, outputs a structure isomorphic to the repaired structure gener-
ated by Juzi. If debuggingAdvisor performs no statement replacements, it sim-
ply appends the repair statements to the execution path, and hence the correct-
ness argument for repairAbstraction establishes the correctness argument for
debuggingAdvisor. Consider next the case when the debuggingAdvisor re-
places an existing statement. By construction, such a replacement is only performed
if there exists an integration of the remaining repair actions such that the repaired
method generates the repaired output. Thus, the replacements are safe with respect

to generating the repaired output by the repaired method.
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Table 2.1: Success Rate Evaluation

Class Method Niegh g d Variants | Faulty | Repairable | Fixed SLE;CBSS l;zgilg‘:tl‘:
Singly Linked List addLast 6 7 7 2 2 28 % 100%
. . addBefore 5 31 30 28 28 90% 100%
Doubly Linked List remove 9 104 96 70 68 1% 97%
Disjoint Set insertFirst 17 179 164 79 79 44% 100%
remove 16 23 23 10 9 39% 90%
Binary Search Tree addlterative 27 12 12 5 3 25% 60%
Linked Priority Queue insert 14 6 6 2 2 33% 100%

2.4.3 Possible Integration with Bounded Exhaustive Testing

To increase confidence in the correctness of the repaired method, our tech-
nique allows a direct application of the Korat framework for systematic testing [13,
73] to automatically generate valid inputs and check outputs using repOk when the
correctness criteria includes the repOk method. Moreover, any bugs discovered by
Korat can feedback into our technique to use it to iteratively debug a faulty program

that has multiple faults along different control-flow paths.

The validation by Korat can be implemented within the method checkFixFeasibility,
which allows us to use a counterexample-driven refinement of fixes proposed by our
algorithm. Korat is a structural constraint solver that can be used to generate non-
isomorphic inputs for bounded exhaustive testing. The inputs generated by Korat

can be used to check the proposed fixes.

2.5 Evaluation

We report experiments and case studies designed to evaluate success rate of

our approach and its effectiveness. We use fault injection in sourcecode to create

30



faulty versions of our subject programs. We apply our technique to repair the faulty
versions and compare the repaired code to original correct code. We use five text-
book data structures to compute the success rate of our approach in repairing faults.
Moreover, we evaluate the applicability and effectiveness of our approach by case

studies on programs based on parts of two real-world applications.

Our approach is implemented as a stand-alone command line application,
and uses the AST classes provided by Eclipse JDT library. All experiments were
run on an Intel Dual Core 2.8GHz machine with 2GB of RAM.

2.5.1 Success Rate

We report the overall Success Rate of our approach as the ratio of the num-
ber of correct fixes generated by our approach with respect to the total number of
faulty versions created by our fault injection methodology. Since our approach re-
lies fundamentally on the ability of Juzi to successfully repair program state and
Juzi may or may not be able to repair each erroneous state, we also report Re-
pairable Success Rate, which is the success rate ratio computed only with respect

to errors that actually can be repaired by Juzi.

We consider faults of omission, where the programmer forgets to write the
necessary code, and faults of commission, where the programmer writes incorrect
code. Our focus is on injecting semantic faults, which are not detected in the com-
pilation process. We assume that the starting code is correct. To inject faults that
mimic omission, we remove one or more lines of code; the faults of commission

are mimicked by using standard mutation operators [1].
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Table 2.1 shows our results on seven mutator methods from five different
classes. All of these classes implement a predicate function repOk which is used
to verify the state of the class objects. The methods chosen for our experiments
vary in size and complexity of control structure. Not all program variants result in
failure. We consider a variant to be Faulty which causes repOk to return false when
applied on a valid structure. Not all failures result in errors that are repairable. We
consider an error Repairable if Juzi can find a fix for the structure produced by the
program variant. An error is Fixed when we can modify the erroneous program
into a new program which when applied to any valid structure (in the bounded
exhaustive sense) results in valid structures output. Rate of Success is the ratio of
Fixed programs to programs resulting in Failure. Repairable Rate of Success is the

ratio of Fixed programs to the programs that caused a Repairable error.

The success rate of our approach is high (97% on average) if we consider the
fixes generated only for the cases that are repairable. The success rate is directly af-
fected by structural redundancy of data (that guards against reachability violations)
and we observe that our approach works best for doubly linked list with the largest

ratio of redundant links among all structures in our experiment.

2.5.2 Applicability and Effectiveness

To evaluate the applicability and effectiveness of our approach, we per-
formed two case studies on code derived from parts of real programs. Our stud-
ies show that program repair approach holds potential to work on real programs

and fix non-trivial bugs. Specifically, we consider (1) ANTLR [84] — a compiler
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generator, and 2) RayTrace [11] — a program for tracing lights paths through an

image.

2.5.2.1 Experiment Design

Debugging and repairing large scale open source software is as much art as
much it is a systematic processes. The well defined application programming inter-
faces promote component based development and allow unit tests to be performed
using stubs. The stubs present pre-defined correct behaviour of interacting compo-
nents and allow the debugging process to focus on the behavior of the piece of code
under test. This simplifies the test input generation and makes unit testing more
effective. This processes does not exclude the need of system-level testing but does

give confidence on the features tested for the current piece of code.

In the design of this study we have focused our approach only on the relevant
piece of code, assuming that the source of error has already been localized. The tests
used were also generated to specifically reach the faulty method and hit the faulty
code block. The various method calls in these methods were stubbed to return only
the correct and desired output when called with the provided test.Using this setup
we were able to focus our approach on the desired functionality and error. This
behavior is inline with the actual debugging process followed by human developers
and does not undermine the soundness of our approach. It does reflect our belief that

we expect every other part of the code to behave according to their specifications.
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Figure 2.5: CommonTree accessible from root.(a) A bug free tree.(b) Tree T4
that has no payload but has children. (c) Erroneous tree state with two structural
violations resulting from faulty method addchild. (d) Resulting structure after
applying Juzi, this step also generated two repair actions that are translated to valid
working Java statement.
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2.5.2.2 ANTLR

ANother Tool for Language Recognition (ANTLR) [84] is a language tool
that generates recognizers, compilers, and translators from grammatical descrip-
tions. Using a formal grammar ANTLR automates the construction of language
recognizers and generates a program that determines whether sentences conform to
that language. It is one of the most widely used parser generators, language trans-
lator and interpreter. The heap of ANTLR at run time consists mainly of custom
data structures, errors in which have known to cause major bugs in the program.
This makes ANTLR an excellent case study for verifying the scalability and useful-
ness of our approach. To generate lexical analyzer and parser for a given grammar,
ANTLR represents the grammar internally in an n-ary tree structure. Since this
structure is at the core of ANTLR, any error can have far reaching impact. All bugs
in this structure are considered Major priority bugs in ANTLR (such as bug 15 and

133 in ANTLR version 3 bug repository).

Our proof of concept implementation does not handle all intricacies of class
hierarchy which is fairly complicated in large scale software like ANTLR. We adapt
the ANTLR code by squashing the class hierarchy and bringing all declarations in

the instantiable class CommonTree.

The representation invariants of this structure are acyclicity along Children
and transpose relationship between parent and child. Unlike data structures in JAVA
Collections, (1) the CommonTree in ANTLR does not contain a sentinel root and
(2) information about the size of structure is not kept within the structure. The

repOk for CommonTree is:
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public static boolean repOk () {
CommonTree root = this;
if (root==null) return true;
Set<CommonTree> visited = new HashSet<CommonTree> () ;
visited.add (root);
LinkedList<CommonTree> workList =
new LinkedList<CommonTree> () ;
workList.add (root) ;
while (!'workList.isEmpty()) {
CommonTree current = workList.removeFirst ();
if(!visited.add (current))
return false;
for(int i= 0;i<current.children.size();i++) {
if ((current.children.get (i)) .parent != current)
return false;
workList.add ((Tree)current.children.get (1)) ;

}

return true;

Lets consider a variant of addCchild method that adds another CommonTree

by adopting all its children:

public void addChild (CommonTree childTree) {
if ( childTree==null ) {

return;
}
if ( childTree.isNil () ) {
if ( this.children!=null &¢&
this.children == childTree.children ) {

throw new RuntimeException (
"attempt to add child list to itself");
}
if ( childTree.children!=null ) {
if ( this.children!=null ) {

int n = childTree.children.size();
for (int 1 = 0; 1 < n; i++) {
CommonTree ¢ = childTree.children.get (1i);
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96 this.children.add (c);

97 c.setParent (this) ;

98 c.setChildIndex (children.size()-1);
99 }

100 } else {

101 this.children = childTree.children;

102 for (int ¢ = 0; ¢ < children.size(); c++) {
103 CommonTree child = getChild(c);

104 child.setChildIndex (c);

105 child.setParent (this) ;

106 }

107 }

108 }

109 lelse {

110 if ( children==null ) {

111 children = createChildrenList ();

112 }

113 children.add (childTree);

114 //childTree.setParent (this); //Injected Error
115 childTree.parent = this; //Fix

116 childTree.setChildIndex (children.size()-1);

117 }

118 }

This method has a bug that it does not update parent relationship of adopted
node. This bug can go undetected during the construction of the tree but can result

in a faulty grammar later.

Figure 2.5 (a) shows a valid tree accessible from root and Figure 2.5 (b)
shows another tree accessible from t. The addChild method is called on T; and
Figure 2.5 (c) shows the resulting erroneous structure with multiple missing parent
assignments. Juzi returns (75, parent, T1) and (Tg, parent, T7) and repairAb-
straction and debugAdviser suggest adding childTree.parent = this; atline

115 to fix the problem. The fix is verified by bounded exhaustive testing.
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2.5.2.3 RayTrace

Ray tracing is a technique to produce images with realistic graphics by trac-
ing paths of light through pixels in an image. RayTrace maintains the 3D model of
the image in a structure OctNode. This structure divides the 3D space into eight
subspaces hierarchically. Since most of the space is empty, OctNode avoids divid-
ing empty subspaces. It maintains an object-list ObjList of type ObjNode and
only constructs deeper tree in subspaces that contain objects. This design saves

both memory and search time in the tree.

We inject a bug in the construction of Ob jList and show how our approach
can detect and fix it. We simplified the original code for our study to enable our tool
to handle it; specifically, we remove the abstract classes and interfaces in the class

hierarchy and focus on the concrete class Ob jNode:

public class ObjNode({
private Object theObiject;
private ObjNode NextLink;
public ObjNode (Object newOb7j) {
theObject=newObij;

The workhorse class of RayTrace is OctNode that operates on these struc-
tures to maintain the space of the image it is representing. Each OctNode object has
a sentinel header ObjList pointing to a list of objects contained in the OctNode
space, it caches the size of this list in the field NumOb j. Figure 2.6a illustrates an

empty OctNode.

The structural invariants of OctNode, which are relevant to its list nodes,

are acyclicity along Next Link fields and correct value for NumOb 5:
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Adjacent
OctFaces
Child
NumOhbj=0
ObjList 1
(@)
OctNodel
Adjacent
OctFaces Objects
Child
NumObj=3 ObjNode,/ ~ ObjNode,  [ObjNode,
ObjList NextLink NextLink NextLink
[ |
(b)
OctNodel
Adjacent
OctFaces Objects
Child
NumObj=3 ObjNode,| ~ ObjNode,|  |ObjNode,
ObjList NextLink NextLink NextLink—)
(©

Figure 2.6: OctNode structure in RayTrace. (a) An empty ObjList (ObjNum
0).(b) An erroneous list of size 3 containing a cycle introduced by faulty code.
(c) Fixed structure after applying Juzi.
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30 boolean repOk () {

31
32
33
34
35
36
37
38
39
40
41
42

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

if (ObjList == null) return NumObj==0;
java.util.Set<ObjNode> visited =
new java.util.HashSet<ObjNode> () ;
ObjNode current = ObjlList;
while (current != null) {
if(!visited.add(current)) {
return false;
}

current = current.Next ();

}

return visited.size ()== NumObij;

Consider the implementation of the method CreateTree below, that adds
objects to ObjList when the objects are not null and less than maximum number

of objects allowed for this OctNode:

void CreateTree (ObjNode objects, int numObjects) {
ObjNode newnode = new ObjNode () ;

if (objects != null) {
if (numObjects > MaxOb7j) CreateChildren (objects, 1);
else {

ObjNode currentObj = objects;
ObjNode last = ObjList;

while (currentObj != null) ({
newnode = new ObjNode (currentObj.GetObj());
if (ObjList == null) {
ObjList = newnode;
last = ObjList;
lelse(
last.SetNext (newnode) ;
last = newnode;
}
currentObj = currentObj.Next ();

}
//newnode.SetNext (ObjList); //injected error
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86
87
88
89
90
91

newnode .NextLink = null; //Fix
NumObj = numObjects;

The method CreateTree has a fault in its line 85 that erroneously sets the
last Ob jNode is Next Link to the Ob jNode pointed to by ObjList. Figure 2.6(b)

demonstrate one such fault.

Based on Juzi’s concrete repair action, our repair abstraction algorithm gen-
erates the following Java code, which results in correct ObjList in Figure 2.6(c).

newnode .NextLink = null; //Fix

2.6 Limitations

The current embodiment of our approach does not fix faults that alter reach-
ability in a data structure since we use Juzi, which only repairs data structures with
respect structural invariants that specify properties of the structure reachable from
the given root of the erroneous structure. We believe our technique can use spec-
ifications richer than structural invariants to generate debugging suggestions for a
larger class of faults. For example, in more recent joint-work, we investigated the
use of postconditions that relate method pre-state with post-state to correct erro-
neous implementations [40]; this work leverages a SAT backend. Moreover, if the
underlying data structure repair routine (Juzi) can be modified to generate the re-
pair actions to correct other classes of functional errors, our technique will be able

to handle more complex program bugs.
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In general, programs can have several different kinds of faults, e.g., a fault
in a loop condition that performs an incorrect check or an incorrect overriding
of equals method. Our technique addresses faults along one execution path. A
method that has multiple independent faults along different execution paths can be
handled by an iterative application of our technique using inputs that execute the

different paths and augmenting bug fixes generated by the debugging advisor.

2.7 Discussion

We believe our methodology holds much promise, and is likely to provide
a basis for developing new techniques that systematically test and debug erroneous
programs and result in a synergy that significantly enhances software reliability and

reduces the cost of software development.

2.7.1 Efficient Data Structure Repair

The technique developed in this chapter focuses on automated debugging,
but the algorithms that embody the technique have other novel applications, e.g., for
highly optimized data structure repair. Abstract repair code could be injected into
the faulty method to allow it to repair its own output on-the-fly without having to
repeatedly run Juzi to repair the output. This approach has the potential of providing
a substantial speed-up since Juzi performs a systematic search and requires repeated
executions of repOk on each candidate repair action. Injecting abstract repair code
would replace the search and perform repair in a negligible amount of time. This

insight forms the basis of Chapter 4.
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2.7.2 Programming by Sketching

Another application is for programming by sketching [96]. The user could
annotate the right-hand-side of a field assignment statement as unspecified, which
can be treated initially as null and then repaired using our technique. We plan to
build on our core technique to handle a larger class of faults and explore various

novel applications in future work.

2.8 Summary

This chapter introduced a novel methodology for developing reliable soft-
ware: data structure repair for automated debugging. A technique embodying the
methodology was developed based on two algorithms: (1) repair abstraction al-
gorithm, which translates concrete repair actions of a data structure repair tool into
Java code that represents the actions using variables visible in the scope of the faulty
code; and (2) debugging advisor algorithm, which (heuristically) computes where
to apply the fix. Demonstration of the technique using the Juzi repair tool as an en-
abling technology on subject programs from standard benchmarks show the effec-
tiveness and versatility of the technique. We believe our methodology holds much
promise, and is likely to provide a basis for developing new techniques that system-
atically test and debug erroneous programs and result in a synergy that significantly

enhances software reliability and reduces the cost of software development.
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Chapter 3

Representing Data Structure Properties using Graph
Spectra

This chapter introduces a novel dynamic technique for identifying proper-
ties of the program’s key data structures. This work addresses a main hindrance in
our goal to automate the debugging process: programs do not always provide spec-
ifications like repOk methods to describe the key structural properties, which are
required by both program repair and data structure repair (Figure 2.2); moreover,
writing these properties by hand poses a challenge in itself. We borrow classical
results from graph theory [22] to characterize the shape of the program’s dynamic
data structures. Specifically, spectral graph theory, a field that studies the properties
of a graph in relation to the properties of matrices based on the graph provides the
foundational ideas. The work presented here is based on our ICSE NIER 2011 [68]"
paper, which introduces the idea of using graph spectra for representing data struc-

ture properties, and our ICST 2012 [69]? paper that presents the detailed results.

This chapter first gives an overview, which is followed by an illustrative

example to describe the basic idea of our approach. Then, we describe its details as

'"Muhammad Zubair Malik. Dynamic shape analysis of program heap using graph spectra. ICSE
2011.

Muhammad Zubair Malik, Sarfraz Khurshid. Dynamic Shape Analysis Using Spectral Graph
Properties. ICST 2012.
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well as its application to finding bugs using runtime checking. Finally we describe

our experimental evaluation.

3.1 Overview

Automated analysis and testing of programs with dynamic data structures
requires reasoning about these structures that may have complex structural prop-
erties (as discussed before). A number of existing tools can systematically check
such programs for given structural properties. Shape analysis [77,89] is a class of
techniques that address reasoning about such programs. Traditionally, shape analy-
sis is performed using static analysis of the program code. A key motivation behind
the use of static analysis is to determine the properties at desired control points for
all program executions, say for program verification. Shape analysis techniques
and other specification-based techniques, e.g., our program repair technique from
Chapter 2, require the user to provide structural properties. Recent work introduced
dynamic techniques for shape analysis, which inspect actual program states to iden-
tify key data structure properties without requiring the user to provide them [58,70].
While these techniques do not enable verification for all executions, they enable de-
tecting likely erroneous executions at runtime and promise to be more scalable for

finding bugs than techniques based on static analysis.

This chapter introduces a novel dynamic technique, which adapts well-
studied results from graph theory to determine the shape of the program’s key data
structures. We view the object graph that represents a program heap as a mathe-

matical object — an edge-labeled graph, where graph vertices correspond to objects
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allocated on the heap and graph edges correspond to fields of these objects [51]. We
leverage results from spectral graph theory [22] — a field that studies the properties
of a graph in relation to the properties of matrices based on it, such as its adjacency
matrix or its Laplacian matrix. Specifically, we define properties of recursive data
structures using properties of eigenvalues of the associated matrices as well as other

graph properties, such as in-degree of a vertex.

Our technique builds on our previous work on the Deryaft framework [61,
70] for generating likely representation invariants. Deryaft takes its inspiration from
the Daikon invariant detector [35]. In contrast to Daikon, which is a general pur-
pose invariant detection engine, Deryaft focuses on structural properties and as such
generates more accurate structural invariants. We follow the general approach in-
troduced by Deryaft for structural invariants: first, identify core and derived fields
of a data structure; and then, check which properties from a pre-defined collection
of properties hold for the field values for a given set of program states. The prop-
erties that hold for a given set of states are used in two ways: (1) to directly check
if a new program state satisfies them; and (2) to generate a representation of the
properties as an executable Java predicate, which can be used in a number of ways,

e.g., as a runtime assertion or to perform data structure repair [31].

A key advantage of using graph spectra over Deryaft’s approach is that, in
principle, they allow checking for (violation of) properties that may not be pre-
defined and computed only based on the program states once they are encountered.
Thus, graph spectra not only introduce a novel abstraction for properties of program

state, but they also enhance our ability to dynamically detect a larger class of errors
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Figure 3.1: This example shows four binary trees with parent pointers. The first
three trees (parts (a), (b) and (c)) are valid but the fourth tree (part (d)) has a cycle
along the right field which breaks the representation invariant.

without requiring the user to provide detailed specifications. As a first step to enable
detecting properties that are not directly characterized in spectral graph theory, we
conjecture that an invariant learning mechanism using support vector machines [76]

may provide a viable solution.

Experimental results using a suite of data structures demonstrate the poten-
tial the technique holds in identifying data structure properties and detecting likely

erroneous program states.

3.2 Ilustrative Example

This section illustrates the working of our invariant generation technique
using an example binary tree data structure that additionally maintains min-heap

property [20]. We use this example as our running example for the rest of the
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Figure 3.2: The matrix representations computed along various fields for the three
valid trees from Figure 3.1 (a),(b) and (c). The matrix along left and right
is the one that ensures reachability and is used for detecting most of the global
properties. The matrices computed along derived fields are used primarily to check
local properties of the structures. Spectrum for acyclic trees is a zero vector —
however, this property more generally holds for directed acyclic graphs, not just
trees. To identify the sub-class of trees, we additionally use the property that in-

degree of any vertex is < 1.
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chapter. Consider the following class declaration:

class BinaryTree {
Node root;
int size; // number of nodes in the tree

static class Node {
int key;
Node left;
Node right;
Node parent;

A binary tree object has a root node; each node has a 1eft and a right
child node, a parent node, and an integer key. The structural integrity constraints,
which are also termed representation invariants, are: acyclicity along left and
right, and correctness of parent-child relationship and of the size value, as well

as the min-heap property, i.e., the key in a node is smaller than those in its children?.

The rooted binary tree has three recursively declared fields. However, in all
positive instances of the tree, i.e., valid trees, we can reach all connected parts of the
structure from the root using only the two fields 1eft and right. These are called
the core-fields [70]; they are useful in detecting various global and local properties.
For each reachable node, the algorithm builds a directed adjacency matrix along
each reference field. The matrices formed using the core-fields are the basis of the
structure, and the structure core is computed using matrix summation. This basic
representation is used to derive other matrix representations (such as Laplacian) that

are used in spectral graph theory to detect a number of properties.

30ur example structure is different from the binary heap data structure, which additionally main-
tains a complete binary tree
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Figure 3.3: This example shows the matrix representation of the invalid tree from
Figure 3.1(d) that has a cycle. The spectra of this tree form a non-zero vector.

The input to our technique is concrete structures, such as the valid binary
trees as shown in Figure 3.1 (a),(b) and (c). The technique takes a graph view
of the heap, identifies the core-fields and abstracts the heap-state to matrix form.
Figure 3.2 gives a traditional |V/|? representation of the matrices, where V is the set
of nodes in the structure. Each entry that is 1 in the matrix corresponds to an edge

in the corresponding structure, while a O entry represents lack of an edge.

For each of the given structures, the property detection algorithm first checks
top-level properties in the dictionary hierarchy, which narrows the search to rele-
vant properties. For example, in this case, the algorithm will not check for girth,
which requires circularity, since it is determined that the structure is acyclic. Fig-
ure 3.2 (bottom row) demonstrates that all acyclic structures (Figure 3.1 (a), (b)
and (c)) along core fields have similar spectra — all their eigenvalues are zero when
represented as directed adjacency matrices. When a cycle is introduced in one of
the trees (Figure 3.1 (d)) the spectra form a non-zero vector, a property that is used
to detect a cyclic structure. The other relevant tree-properties in the dictionary of
rules include cardinality constraints for which integer values in the object holding

root pointer are compared with cardinality of the set of nodes in the tree.
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The algorithm next checks local properties. First, it checks for symmetry
along various fields. The directed adjacency matrix along parent+left is not
symmetric; other field combinations also fail except parent+right+left, which
is symmetric. Note that this property is implied by the correctness of parent
pointers, i.e., parent is transpose of le ft + right for structures that are trees along

left and right fields.

Next, it checks for arithmetic relations among values in nodes: if a ma-
trix generated by applying comparison relationships <, <, =, >, > along a set of
fields is equal to the directed adjacency matrix along the same set of fields then the
comparison relationship holds along that fields. For the binary trees in Figure 3.2
‘<’ holds along 1eft and right, because positive instances maintain a min-heap
property.

We write the properties that hold for all positive instances as a Java predicate
function, named repOk, which can, in principle, be used in a number of analyses
(e.g., runtime checking using assertions and test input generation [13]). The fol-
lowing code shows parts of the repOk method for the binary tree example, which

uses the matrix library JAMA [82] for basic matrix operations:

boolean repOk () {
Matrix m = Matrix.buildDirectedAdjacency (
this,new String[]{"left","right"});

if (lacyclicCore (m))
return false;
if (!sizeOk(m,size))

return false;
if (!symmetric(root,
new String[] {"parent","left","right"}))
return false;
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if(!lessAlong(root,
new String[] {"left","right"}, "key"))
return false;
return true;
}
//Graph spectral rule for acyclicity
boolean acyclicCore (Matrix m) {
return m.spectra() .equals (Matrix.zeros (m.dim)) &&
maxInDegree (m) <= 1;
}
//Graph matrix property for size
boolean sizeOk (Matrix m,int cardinality) {
return m.dim==cardinality;
}
//Graph matrix property for symmetry
boolean symmetric(
Object root,String fields[]) {
Matrix m = Matrix.buildDirectedAdjacency (
root, fields) ;
//check m[i][j] == m[j][i] for all i, 7
return m.symmetric();
}
//Less than along a set of fields
boolean lessAlong (
Object root, String[] f,String wval) {
Matrix ml = Matrix.buildAdjacencyAlongFields (root, f);
Matrix m2 = Matrix.buildLessThanAlong(root, f,val);
return ml.equals (m2);

3.3 Technique

This section describes our spectra-based technique for detecting structural
invariants. We take an abstract view of the program heap as an edge-labeled graph [51,

52,59, 74]. Our technique uses a partitioning of the set of object fields into core
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fields and derived fields [70]. Given a set of positive instances (i.e., structures
whose properties are to be detected), our technique constructs the relevant matrices
based on these structures to enable property detection based on graph spectra [22]
using an iterative algorithm. To enable detecting properties that are not captured by
spectra, we conjecture that an invariant learning mechanism using support vector

machines [76] may provide a viable solution.

3.3.1 Program Heap as an Edge-Labeled Graph

We take a relational view of the program heap and view the heap of a
Java program as an edge-labeled directed graph whose nodes represent objects and
whose edges represent fields. For languages, such as C and C++, that allow pointer
arithmetic and arbitrary conversions between integer values and memory addresses,
a different view would be needed. However, for type-safe subsets of such lan-
guages, the relational view applies. The presence of an edge labeled f from node
o to v says that the field f of the object o points to the object v or has the primitive
value v. Mathematically, we treat this graph as a set of vertices and a collection of
edges, one for each field. We partition the set of vertices according to the declared
classes and partition the set of edges according to the declared fields. We represent
null by the absence of the edge. A particular program state is represented by an
assignment of values to these sets and relations. Since we model the heap at the
concrete level, there is an isomorphism between program states and assignments of
values to the corresponding sets and relations. The model for our BinaryTree ex-

ample consists of three sets, each corresponding to a declared class or primitive type
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BinaryTree, Node, int and six relations corresponding to a declared field:

root:BinaryTree x Node
size: BinaryTree x int
key : Node x int

left: Node x Node
right: Node x Node
parent: Node x Node

We assume (without the loss of generality) that each structure in the given
set has a unique root pointer. Thus, the abstract view of a structure is a rooted edge-

labeled directed graph, whose properties are detected based on its reachability.

3.3.2 Core and Derived Fields

Following our previous work on structural invariant generation [70], we par-
tition the set of reference fields declared in the classes of objects in the given struc-
tures (i.e., positive instances) into two sets: core and derived. For a given set, S, of

structures, let F' be the set of all reference fields.

Definition 1. A subset C' C F' is a core set with respect to S' if for all structures
s € S, the set of nodes reachable from the root r of s along the fields in C' is the

same as the set of nodes reachable from r along the fields in F.

In other words, core set preserves reachability in terms of the set of reachable nodes.
Indeed, the set of all fields is itself a core set. We aim to identify a minimal core set,

i.e., a core set with the least number of fields.

To illustrate, the set containing both the reference fields 1eft and right in
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the example from Section 3.2 is a minimal core set with respect to the given set of

trees.
Definition 2. For a core set C the set of fields F' — C'is the derived set.

Our partitioning of the reference fields is inspired by the notion of back-bone in

certain data structures.

3.3.3 Matrix Representation of Heap

Spectral graph theory [22] characterizes properties of graphs in terms of
their spectra: the spectrum of a graph is based on the eigenvalues of its adjacency
matrix. The properties are largely defined in terms of directed adjacency matrix,
undirected adjacency matrix, and Laplacian matrix representations. Our technique

primarily uses directed adjacency matrix representation.

In the following discussion, we denote a graph by G = (V, E') where V is
the set of nodes and £/ C V' x V is the set of edges. The degree of a vertex u is the
number of edges connected to u and is denoted by d,,. The in-degree of a vertex is

the number of edges incident on the vertex.

The directed adjacency matrix representation of a graph is given by:

1 (u,v) € E,
0 otherwise

B(u,v) = {

Since we view the program heap as a directed graph, the adjacency matrix may not

be symmetric.

55



The undirected adjacency matrix A, which is always symmetric, can be de-

rived from the directed adjacency matrix representation:

[ 1  B(u,v)=1lor B(v,u) =1,
Alu,v) = { 0 otherwise

Note that adjacency matrices on recursive fields are always square, i.e., have

the same number of rows and columns.

For a square matrix A, a non-zero vector v is an eigenvector if Av = \v
for some scalar A\. The scalar A is termed the eigenvalue corresponding to v. The

eigenvalues are solutions to the equation |A — AI| = 0, where [ is identity matrix.

3.3.4 Properties of Interest

Following our previous work on structural invariant generation [70], we
consider global as well as local properties of rooted edge-labeled directed graphs
as likely representation invariants structurally complex data. The properties are

divided into the following categories:

e Global reference field properties, which include properties on the shape of

the structure reachable from the root along some set of reference fields.

e Global primitive field properties. In reasoning about graphs, the notion of a
cardinality of a set of nodes occurs naturally, e.g., to cache the number of
nodes reachable from a root pointer. We consider properties relating values

of integer fields and cardinalities of sets of reachable objects.
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Table 3.1: Properties identified using directed adjacency matrix representation. Let

A = (a;;) for1 <i,j < nbeann x nadjacency matrix. Let A be an eigenvalue
of A.

Property Rule

Directed acyclic (DAG) | VA, A =0

Tree DAG ANVYj ) .a;; <1
Circular girth=n

Symmetric Vi, g a;; = aj;
Min-heap less-than = A

SizeOk size=n

e Local reference field properties. We consider local properties that relate dif-

ferent types of edges, e.g., the transpose relationship.

e [ocal primitive field properties. We check for order (e.g, less than) rules for
values in nodes connected by an edge. To enable the use of matrix algebra,
we define a relative ordering matrix where an entry m, ; = 1 iff there is an
edge from node 7 to node j and the integer values in nodes 7 and j satisfy the

corresponding ordering relation (e.g., value(i) < value(j)).

Table 3.1 presents a list of rules that we apply to detect properties of graphs
using directed adjacency matrices that are built using our abstract view of the pro-
gram heap. A directed acyclic graph (DAG) has all eigenvalues of its directed
adjacency matrix equal to zero. A tree is a DAG where the in-degree of each vertex
< 1. For a circular structure (along one field), the girth of its graph, i.e., the length
of the shortest cycle in the graph, equals the number of vertices in the graph. The

transpose relationship between certain data structure fields, such as previous and
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next for doubly-linked lists, or parent and left + right for binary trees, is
detected based on symmetry of corresponding directed adjacency matrices. For a
min-heap, the less-than matrix H = (h; ;), which is defined as h; ; = 1 iff there is
an edge from node 7 to node j and the integer value in node ¢ is less than the integer
value in node 7, equals the directed adjacency matrix. A max-heap can similarly be
characterized. Structures with a fop-level integer field, such as size in binary tree

are checked to see if the value of that field equals the number of reachable nodes.

3.3.5 Algorithm

Algorithm 1 gives the pseudo-code of our approach. It first computes the
data structure backbone through core-field analysis. In the beginning it assumes that
all properties are valid but gradually keeps narrowing its search to only properties
of interest that hold on given structures. Once the algorithm has identified all valid

properties, a repOk, which only checks for these properties is created.

Our dictionary is organized to minimize checks. We use a hierarchical de-
sign and utilize order between various properties to reduce checks. For example,
it is wasteful to check girth of an acyclic structure. Similarly, there is no need to

check for treeness in a structure that violates the DAG property.

3.3.5.1 Learning new Properties

To enable new properties to be detected and checked using graph spectra,
we envision the use of machine learning techniques. We conducted an initial in-

vestigation into learning the height balance property in trees by training a support
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input : ¢ — Data structure declaration
input : .7 — Valid Structures
input : ¥ — Dictionary of p, where p € graph properties
output: repOk, a Java predicate representing invariant properties
F < coreFields(€¢,.7);
V < D.get All Properties();
for Vt € 7 do
for Vp € 7 do
Fields f[] < p.getRequiredFields(.F);
matriz < Matriz.build(t.root, f);
if /matriz.statifies(p) then

if p.hasChildren() then

| ¥ removeSubHeirarchy(p);

end

¥V .remove(p);
end
end

end
V. .minimizeRules();
repOk < 0;
for Vp € 7 do
code < p.synthesize();
repOk.append(code);
end
Algorithm 1: Invariant generation
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Table 3.2: Results for subject data structures (of size < 5)

Structures repOk Time (ms
Benchmark Generated s ™ FP FN Marlljual Spéfctrezl
Singly-linked acyclic list 7776 24 7752 0 0 0.02 0.11
Singly-linked circular list 7776 24 7752 0 0 0.01 0.01
Doubly-linked circular list | 60466176 24 60466152 0 0 0.01 0.01
Binary tree 60466176 1008 60462888 | 2280 0 0.01 0.02
DAG (binary) 60466176 | 32712 | 60433464 0 0 0.01 0.01

vector machine [76] using positive and negative instances. The accuracy of the rule
learnt was better than a chance classifier, which is an encouraging result. We believe
the numeric encoding of graph properties using spectra will enable future work to
develop novel applications of machine learning techniques in more accurately de-

tecting erroneous program executions.

3.4 Application: Dynamic Shape Analysis using Graph Spectra

Our work on using graph spectra to represent properties of dynamic data
structures provides a new approach for dynamic shape analysis [58]: record the
spectra at control points of interest for representative executions and then verify the

spectra for future executions to check their validity.

3.5 Evaluation

In this section we present our experiments designed to address the following

research questions:

1. Are the properties detected by our approach comparable to those written man-

ually as predicates?
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2. How well does our approach disambiguate Trees, DAGs and Cycles ?

3. Are the properties detected useful in finding bugs in software?

3.5.1 Comparing deteced properties with those written manually as predi-
cates

We conduct this experiment as a basic sanity check and to investigate the
sources of error in the properties that are detected using graph spectra. We compare
properties generated by our approach with manually written predicates based on
previous work [13]. Graph spectra are computed using operations on real numbers;
to allow for errors in representing reals using oatingpoint number, we check values

to lie within a small threshold (10°) of the expected value.

Our experimental setup uses an exhaustive generator, which enumerates all
(valid and invalid) structures of a class within a given size. Given the declaration of
a recursive data structure consisting of nodes, our structure generator enumerates
for a set of all recursive fields ', all possible field assignments for each field for
a given set of node objects O to the same set of nodes O and the literal null. We
fix the value of the size field to the number of nodes; thus, a correct repOk will
only accept structures with exactly n nodes. For this implementation all objects
are uniquely labeled, which allows us to sequentially permute all possible field

assignments.

We evaluate the validity of each of these structures against two repOk func-
tions, one based on the properties detected by our approach using graph spectra and

the other written manually (oracle). We define true positive (TP) to mean that if
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oracle accepts a structure and so does the spectral repOk. Similarly, true negative
(TN) means that when oracle rejects a structure and so does the spectral repOk. We
define false positive (FP) when the oracle rejects a structure but the spectral repOk
admits it. We define false negative (TN) when oracle accepts a structure but the

spectral repOk rejects it. The accuracy of the approach is the proportion of true

TP4+TN
TP+FP+FN+TN*

results in the population: accuracy =

A possible source of errors in the result of spectral repOKk is lack of preci-
sion due to finite representation of numbers. For example, on a 32-bit machines
addition rule valid for all x € Z: x+1 > x, does not hold for integers; similarly the
addition rule for all x € R: 2+ 1 # x, breaks down for IEEE 754 oating point num-
ber representation. In general, limited precision binary machines cannot precisely
represent fractions if 2 is not a prime factor of the number. Spectral rules require
many oating point computations and suffer from lack of precision in computation.
In these experiments we have used an error bound of 10° for comparing equality of

numbers.

Another source of possible errors in detecting properties using graph spec-
tra is the encoding of data structures that reside on the program heap using adja-
cency matrices that may represent connectivity along a set of fields (e.g., 1eft and

right) and hence lose the distinction between left pointers and right pointers.

Table 3.2 tabulates the experimental results for five subject data structures:
singly-linked acyclic lists, singly-linked circular lists, doubly-linked circular lists,
binary trees, and directed acyclic graphs where each node has a left and a right

child. We use our exhaustive structure generator to generate all possible structures
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with up to 5 nodes.

For all chosen subjects except binary tree, the result of spectral repOk
matches exactly the result of the oracle. For binary tree, we observe 2280 false pos-
itives. These are all due to the imprecision in the adjacency matrix representation
where the distinction between left and right fields is lost. More specifically, if a
node 7 points to another node j along 1eft as well as along right, the adjacency

matrix A will represent the two edges with a single edge: a; ; = 1.

The running time of repOk using graph rules is comparable with the oracle
for these structures with up to 5 nodes in majority of the cases. However, for larger
structures, we expect the oracle to run substantially faster than spectral repOk due
to the complexity of the underlying matrix operations. We expect an incremen-
tal approach for updating spectra to provide a practical basis for the use of graph

spectra in real applications.

3.5.2 Isitatree, DAG or a cycle?

A key question in traditional shape analysis is to see if the shape of heap-
allocated data structure is a tree, DAG, or a cyclic graph [38]? While such analysis
is traditionally done statically and is required to be safe, our approach provides an
(unsafe) way to detect the shape dynamically based on the observed executions of

the program.

The last two rows of Table 3.2 show how our approach performs empirically
in correctly identifying trees, DAGs, and cyclic structures, where each node has two

labeled children (1eft and right). If such a structure has a directed cycle, it is
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always correctly identified (FP=0 for DAG). If the structure has an undirected cycle,
it may not be correctly identified, and instead may be classified as a tree (FP>0 for
binary tree) — thus a DAG, which is not a tree, may be classified as a tree. If the

structure is a tree, it is always classified correctly.

3.5.3 Error detection

While many programming errors are discovered before deployment, some
may only be encountered after deployment. These errors can cause run-time fail-
ures, resulting in security violations and increased down time. Many systems that
have high security and availability requirements may need to perform run-time
checking for timely detection of errors and applying possible corrective actions. We
evaluate our approach for capturing run-time errors in code adapted from two case
studies: RayTrace which is part of SPECjvm [21] and ANTLR which is taken from
DaCapo [11] benchmark. In the setup of this experiment, first we detect properties
of the valid heap structures generated by the selected code from each benchmark
program. Then, we execute a faulty version of the code to generate invalid struc-
tures and check if spectral repOk identifies it. These errors in the code are manually

injected based on our understanding of how the code works.

The errors detected and properties observed clearly depend on the capabili-
ties of our approach to observe them and the fault injection model. For example if
the fault injection model only mutates object reference fields it is less likely for our

approach to detect error in object keys.
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3.5.3.1 ANTLR

ANTLR [84] is a language tool that generates recognizers, compilers, and
translators from grammatical descriptions. We used it for our case study in Chap-
ter 2 and provided a detailed description of its key data structure CommonTree in
Section 2.5.2.2. We use the same example to test the error detection ability of spec-

tral repOXk.

Recall that the relevant representation invariants of CommonTree are acyclic-
ity along children and transpose relationship between parent and children. While
these are standard properties of trees with parent pointers, an adjacency matrix rep-
resentation cannot be built directly based on the given data declarations because
children is a field of declared type java.util.List. Our implementation only
considered recursively declared fields during matrix translation, it required us to
write a dedicated matrix translator for the given non-parameterized lists. However,
now with parameterized lists List<CommonTree> we allow adjacency lists of re-

cursively declared data types as general graph representation.

We use the method addchild from Section2.5.2.2 with the same injected
error. The erroneous example we consider adds another CommonTree that has its
own children but has no payload to the given CommonTree instance by adopting all
its children. The injected fault omits the update of parent pointers in the adopted
nodes thus violating parent-child transpose relationship. The spectral repOk cor-

rectly detects this error.
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3.5.3.2 RayTrace

RayTrace [21] is a Java program that produces realistic graphics by trac-
ing path of light through pixels in an image. We introduced it in Section 2.5.2.3
of Chapter 2. As discussed earlier, RayTrace maintains the 3D world model of
the image in a structure OctNode. The OctNode maintains object list ObjList

composed of object nodes ObjNode to record the objects inside the space.

The ObjList implements an acyclic list whose cardinality is cached in
NumOb j field of OctNode. We revisit the CreateTree example from Section 2.5.2.3
where a cycle was introduced in the list by erroneous code. The spectral repOk suc-

cessfully detects the bug in the state of RayTrace like the manual repOk.

3.6 Discussion

This section discusses the mathematical basis, possible implementation op-
timizations, as well as uses and limitations of our approach. We also briefly com-
pare our approach to previous work on using dynamic analysis for detecting prop-

erties of recursive data structures.

3.6.1 Basis of our approach

We view the heap of recursively declared data structures as edge-labeled
graphs represented using matrices. Our basic observation is that invariants of the
heap that a program updates are related to the properties of matrices. We have used

this simple yet elegant observation to build an invariant detector for programs that
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operate on structurally complex data.

3.6.2 Fast Computation of Matrix Operations

Matrix operations required for computation of graph spectra can be rela-
tively expensive for non-small data structures. For example, a traditional repOk
might only perform one traversal of the structure to check for acyclicity whereas a
spectral repOk may have to perform an operation of polynomial complexity in the
size of structure. This problem can be addressed in two ways: 1) by using opti-
mized libraries Basic Linear Algebra Subprograms (BLAS) [83] for various matrix
computations; 2) many matrix operations that we perform are repeated over the
same set of values, therefore we can also exploit memoization strategies to imple-
ment an incremental technique for computing spectra — one such possibility is to

use Cuppen’s divide-and-conquer algorithm for calculating eigenvalues [87].

3.6.3 Uses

Two software checking techniques enabled by our approach in addition to
runtime checking are test input generation [13] and error recovery using data struc-
ture repair [31]. The spectral repOk could be produced using a small number of
manually created structures that satisfy desired properties. The repOk could then
be used by a test generation tool, such as Korat [13] to enumerate desired test in-
puts. It could also be used by a data structure tool, such as Juzi [32], to mutate
erroneous program states to satisfy structural constraints. How tools such as Korat

and Juzi perform using spectral repOk’s requires further investigation.
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We conjecture it may even be possible to apply our dynamic analysis in
the context of parallelizing compilers where traditional shape analysis has been
used [38]. Traditionally, the goal of shape analysis has been to statically determine
the shape of data structures using formal reasoning by relating locally visible vari-
ables on the stack to dynamically allocated variables on the heap. An optimizing
and parallelizing compiler can use this information to apply optimizing transforma-
tions such as loop unrolling, null pointer dereference detection, improved pipelin-
ing or dead code elimination. Basic structural information such as the knowledge
that a local variable points to a tree-like structure can give compiler the clue that
memory regions accessed through different fields of the variables are disjoint and
may be processed in parallel. Similarly, for a DAG like structure traversing along
different fields does not guarantee disjointness, however, such guarantees may be
given for subsequences of the accessible links. Finally, for cyclic structures disjoint
substructures are not possible. We conjecture that in contrast to the traditional use
of static analysis, compilers may be able to use the statistics from the profile runs
of a program to perform optimized recompilation of the program, which may allow
shape information collected using our dynamic shape analysis technique to improve

efficiency of compiled code.

3.6.4 Limitations

Detecting invariants dynamically has two inherent limitations [35]: not all
invariants of observed structures can be detected; and invariants that are detected

may be violated by a valid structure not observed thus far. However, from a practical
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Figure 3.4: (a) A valid tree and (b) an invalid tree (invalid parent pointers). The use
of degree metrics alone [58] is unable to distinguish between the two structures.

perspective, the approach can lay the foundation of a useful tool that assists in

writing correct programs.

3.6.5 Comparison with previous work on dynamic analysis for invariant de-
tection

Our previous work on Deryaft [70] introduces a dynamic approach for de-
tecting structural invariants by checking a (fixed but extensible) collection of invari-
ants for a given set of program states. Similar to our approach in this paper, Deryaft
enables runtime checking, test input generation, and runtime error recovery using
data structure repair. The key novelty of our approach in this paper is the use of
graph spectra to abstract data structure properties. Moreover, the use of spectra is
more general than checking a fixed set of properties, since the values of eigenvalues

could themselves be used as a check.
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The ShapeUp framework [58] presents a dynamic approach to shape analy-
sis using degree metrics, which summarize the in-degrees and out-degrees of nodes
in recursive structures. While degree metrics provide a lighter-weight mechanism
than graph spectra for dynamic shape analysis, degree metrics are not sufficient to
identify certain errors, such as certain incorrect parent pointers in a binary tree. Fig-
ure 3.4 illustrates such an error. Each node has the same in-degree and out-degree
in both the structures. Therefore, using degree metrics, the two structures have the
same abstract representation and are indistinguishable. In contrast, our approach

detects such errors in binary trees with parent pointers.

3.7 Summary

Spectral graph theory explores the properties of a graph in relation to the
properties of the matrices representing the graph, e.g., eigenvalues of its adjacency
matrix. In this chapter we viewed the program heap as an edge-labeled graph and
defined the rules based on graph spectra to characterize data structure properties.
Our experiments on a suite of text book data structures showed that graph spectra
can characterize these data structures correctly and can detect violations of struc-

tural properties.
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Chapter 4

Repair Abstractions

Systematic data structure repair techniques [32, 112] allow programs to re-
pair from erroneous state by performing a bounded exhaustive search to find the
correct structure. Our basic observation is that many program errors do not happen
purely at random, rather they are caused by a specific source in the system, such as
a faulty method, and in cases where such errors recur we can have more efficient

techniques that re-use work performed during repair.

This chapter is based on our work published at RV 2013 [113]".

4.1 Overview

We introduce repair abstractions, which capture the essence of how certain
data structure corruptions are repaired by specific actions of a data structure repair
routine, such as Juzi [32], and allow more efficient repair of errors that recur. Recall
the data structure repair problem: given a structure s and a method repO¥k that
represents desired structural integrity constraints of the structure s such that s does

not satisfy repOFk, perform repair actions on s to transform it into a structure s

IRazieh Nokhbeh Zaeem, Muhammad Zubair Malik, Sarfraz Khurshid. Repair Abstractions for
More Efficient Data Structure Repair. RV 2013. (Zaeem is a former UT student supervised by
Khurshid.)
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such that it satisfies repOFk [32]. Juzi performs repair actions to mutate a corrupt
data structure into a valid one; each repair action is a triple < o, f,v > that sets
a field f of a object o to value v. Juzi performs a systematic search to compute
repair actions. The goal of abstract repair is to avoid this search by abstracting and
memoizing repair actions for future use. Conceptually, a repair abstraction is a tuple
(field, action) where action is an abstract repair action performed when field (of

some object) in the program state needs repair.

Our approach to repair abstractions consists of two key steps: (1) building
a repair abstraction based on a concrete repair action; and (2) applying the repair
abstraction when the same error is encountered again. We describe the central idea
of our approach by relating it to the search-based repair performed by Juzi. The
basic Juzi algorithm [60] repeatedly invokes repOFk on structures that are candidates
for the output (i.e., repaired) structure. During each invocation of repO¥k the repair
algorithm performs two key steps: (1) it monitors the order of field accesses, (2)
and if repOk returns false, non-deterministically updates the value of the last field
accessed — if all values have been checked, it systematically backtracks to update
the value of the second last field accessed and so forth. The algorithm terminates

when the structure is fixed or the (bounded) search space is exhausted.

Our approach using repair abstractions integrates with the basic Juzi algo-
rithm as follows. Every time Juzi finds a correct fix for a constraint violation, our
approach computes an abstraction for the repair based on simple rules, for example,
if Juzi repaired the structure by assigning a field f to null then repair abstrac-

tion records (f, Null) (i.e., if f needs to be mutated, set it to null) as an abstract
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repair action, thereby prioritizing it when a future execution encounters the same
error — even if the underlying repair routine would have first tried a non-null value

according to its default search.

Repair abstractions offer two key advantages. One, they allow summariz-
ing concrete repair actions into intuitive descriptions of how certain errors in data
structures were fixed, which helps developers understand and debug faulty program
behaviors (when the errors in state were due to bugs in code). Two, they allow
a direct re-use of repair actions without the need for a systematic exploration of
a large number of candidate structures (as is performed by Juzi) when the same
error appears in a future program execution, e.g, due to the execution of a faulty
statement in code. We have implemented this approach in a tool that we call Ab-
stractJuzi. Experimental results using a suite of complex data structures show that

repair abstractions allow more efficient repair than previous techniques.

4.2 Motivating Example

Recall the doubly-linked list example from Chapter 1 with the faulty addFirst
method. Consider the following code segment which shows two invocations of the
faulty method such that after each invocation the structural constraints are checked
and repair is performed using the Repair.assertrepair method, which checks
the list class invariant (by invoking repOk) and repairs the list if the invariant is

violated:

LinkedList 1 = new LinkedList ();
l.addFirst (0); Repair.assertrepair(l);
l.addFirst (1); Repair.assertrepair(l);
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Figure 4.1: Doubly-linked circular list with sentinel head.
(size 0). (b) An erroneous list of size 1 containing element E1. (c) List in part-
b is repaired by Juzi and the rule (prev, Neighbor) is learnt (d) An erroneous
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Figure 4.1 shows the pre-state and post-state for each of the two invocations
of addFirst as well as the repaired state after the final invocation. Note that
the post-state for the each invocation is repaired to form the pre-state for the next

invocation.

If we apply the standard Juzi algorithm [31] to repair the list after the first
addition, it has two iterations to fix the value of EO.prev: null and E1. To repair
the list again after the second addition, the standard Juzi algorithm would again

systematically search for a valid value for the corrupt prev field.

Our approach captures the essence of successful repair action after the first
addition using the repair abstraction (prev, Neighbor), which indicates that if prev
of a node n is mutated, try first as the destination a neighbor, i.e., a node that is
connected along one edge to n. By building this abstraction after Juzi first performs
its default search-based repair, we re-use the abstraction by prioritizing the repair
actions to check setting prev to a neighbor. This significantly reduces the repair

cost when similar errors are encountered in the data structure again.

4.3 Framework

Figure 4.2 gives an overview of AbstractJuzi, our repair abstraction frame-
work, which leverages Juzi’s systematic search together with repair abstractions.
Given a corrupt data structure and a corresponding repOk method, Abstractluzi

performs repair using Juzi’s core functionality modified in three key ways:

e Repository of repair abstractions. AbstractJuzi creates and maintains a repos-
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Figure 4.2: The AbstractJuzi repair framework.

itory of abstract repair actions, which are applied when needed. The reposi-

tory grows as more concrete repairs are abstracted.

Creation of repair abstractions. When Juzi performs a concrete repair that
is not based on an existing repair abstraction, AbstractJuzi creates a new re-
pair abstraction (if possible) and adds it to the repository. The algorithm
createRepairAbstraction describes this process (Figure 4.3). Abstrac-

tJuzi supports the following kinds of abstractions:
— Self: set the relevant object field to point to the object itself, e.g., next
of node n is set to n;

— First: set the relevant object field to point to the first object of the same

type reachable from the given root pointer;

— Leaf: set the relevant object field to point to the furthest object of the

same type reachable from the given root pointer;
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AbstractRepair createRepairAbstraction (Object root,
Object source, Field f, Object target) {
AbstractPosition ap = AbstractPosition.UNDEFINED;

if (target == null)

ap = AbstractPosition.NULL;
else if (source == target)

ap = AbstractPosition.SELF;
else if (target == getFirst (root))

ap = AbstractPosition.FIRST;
else if (isLeaf (target))

ap = AbstractPosition.LEAF;
else if (isNeighbor (source, target))

ap = AbstractPosition.NEIGHBOR;
return new AbstractRepair(f, ap);

List<RepairAction> applyRepairAbstraction (Object root,
Object source, Field f){
List<RepairAction> ras = new ArrayList<RepairAction>();
Iterator<AbstractRepairActions> itr =
AbstractRepairActions.getlIterator();
while (itr.hasNext ()) {
AbstractRepair ar = itr.getNext();
if (lar.field() .equals(f)) continue;
Object target = ar.concretize (input, source);
ras.add (new RepairAction (source, f, target));
}

return ras; // if ras is empty, apply default repair

Figure 4.3: Repair abstraction algorithms.
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— Neighbor: set the relevant object field to point to a neighboring object,

where two object 0 and o’ are neighbors if a field of o points to o';

— Null: set the relevant object field to the value null; and

The default kind Undefined is used to indicate that the relevant object field
needs to be set using the default Juzi algorithm. The predicate i sLeaf checks
that target has no non-null fields. The predicate isNeighbor checks

whether any field of source points to target and vice versa.

e Application of repair abstractions. When Juzi identifies an object field to mu-
tate, AbstractJuzi first checks if an existing repair abstraction can help with
the repair. The algorithm applyRepairAbstraction describes this pro-
cess (Figure 4.3). Given the root object that represents the corrupt structure,
the source object (reachable from root) that will have a field mutation (for
repair), and the field £ (of source) that will be mutated, the algorithm iter-
ates over existing repair abstractions to find the ones that are applicable, i.e.,
apply to the field £, concretizes them into the corresponding concrete repair
actions with respect to root, and returns them in a list. Finding the target
is straightforward for the cases self, first, and null. To find a leaf, we use a
breadth-first search (BFS) from the root and terminate the search when the
first leaf node is found. To find a neighbor, we again use a BFS until we find

the first object that has some field that points to source.
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4.4 Evaluation

This section presents the experimental evaluation. We compare AbstractJuzi

with the original Juzi repair algorithm using the following data structure subjects:

e Singly-linked, circular list. The errors injected in this structure violated the

circularity constraint.

e Doubly linked list. The errors injected violate the constraint that next is the

transpose of prev.
e Binary tree. The errors injected in violates the acyclicity constraint.

e Binary tree with parent pointers. The errors injected violate the constraint

that child (along left or right) is the transpose of parent.

Recall both Juzi and AbstractJuzi check the structure for validity by call-
ing repOk after every object field mutation. Therefore, the number of calls made
to repOk counts the number of candidate structures explored before repair com-
pletes. We report this number to compare the efficiency of the two algorithms. To
demonstrate the potential repair abstractions hold in optimizing repair in cases when
an error recurs, the tabulated number of repOk calls for AbstractJuzi excludes the
number of calls to create the particular abstraction (when no applicable abstraction
was found earlier during repair since it was the first occurrence of the particular

error).

We report results for two error scenarios: (1) the corrupt data structure has

exactly one erroneous object field (Section 4.4.1); and (2) the corrupt data structure
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Table 4.1: The number of repOk calls made by AbstractJuzi vs Juzi for fixing the
errors.

Structure size = 10 size = 500
Juzi AbstractJuzi  Juzi AbstractJuzi
Circular List 3 2 3 2
Doubly Linked List 6 2 251 2
Binary Tree 2 2 2 2
Binary Tree with Parent Pointers 8 2 263 2

has a small number (> 1) of erroneous object fields and each field is the same (e.g.,

parent) (Section 4.4.2).

All the experiments used a 2.50GHz Core 2 Duo processor with 4.00GB
RAM running 64 bit Windows 7 and Sun’s Java SDK 1.7.0 JVM.

4.4.1 Single error

We compare Juzi and AbstractJuzi for repairing a single error in small struc-
tures (with 10 nodes) and medium structures (with 500 nodes). Table 4.1 summa-
rizes the results of our experiments with the subject structures with one erroneous

object field in each subject.

Overall, Juzi’s number of repOk calls is linear in the size of the structure,
which is as expected (since there is exactly one error). However, in two case Juzi
makes a constant number of calls to repOk to complete the repair. To fix the cir-
cularity violation of circular lists, Juzi first tries null and then the first node of

the list, which works. To fix the acyclicity violation in binary trees, Juzi first tries
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null, which works.

For all cases, AbstractJuzi performs the repair using a constant number of
repOk calls — independent of the size of the structure. AbstractJuzi uses the fol-

lowing abstraction kinds for the four subjects:

Circularity violation in circular lists: F'irst;

Violation of the transpose relation (between next and prev) in doubly linked

lists: Netghbor;

Acyclicity constraint in binary tree: Nwull; and

Violation of the transpose relation (between left/right and parent) in

binary trees with parent pointers: Netghbor.

Thus, for the chosen subjects with single error, AbstractJuzi explores a much

smaller space of candidate repaired structures than Juzi.

4.4.2 Multiple errors

For two of the subjects, namely doubly linked lists and binary trees with
parent pointers, we compare Juzi with AbstractJuzi on repairing multiple errors.
We do not consider singly-linked lists here since by construction only one next
pointer can violate acyclicity (we do not consider nodes unreachable from the given
root since we do not have a handle to them). We do not consider binary trees with
acyclicity violation since AbstractJuzi reduces to Juzi for repairing cycles — both

algorithms use nul1 as the first choice.
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Table 4.2: The number of repOk calls made by AbstractJuzi vs Juzi for multiple
errors in Doubly Linked List (DLL) and Binary Tree with Parent Pointers (BTPP)
structures of size 500 nodes.

# Erros  doubly linked lists binary trees with parent pointers

AbstractJuzi Juzi  AbstractJuzi Juzi
2 3 319 3 231
3 4 576 4 378
4 5 680 5 567
5 6 769 6 743

Table 4.2 tabulates the results. We fixed the structure size to 500 nodes for
both the structures and injected 2,3,4 and 5 random errors — for doubly linked lists,
the errors were injected in the prev fields; and for binary trees with parent pointers,
the errors were injected in the parent fields. As before, we use the number of calls

made to repOk as our metric for comparison.

For all cases, Juzi’s number of repOk calls is proportional to the product of
the number of faults and the size of the structure, which is as expected (since these

faults can be fixed independently by Juzi).

For all cases, AbstractJuzi’s number of repOk calls is proportional to the
number of faults — independent of the size of the structure. AbstractJuzi uses the

same abstraction kinds for the two subjects as described in Section 4.4.1.

Thus, for the chosen subjects with multiple errors, AbstractJuzi explores a

much smaller space of candidate repaired structures than Juzi.

82



4.5 Summary

This chapter presented repair abstractions to enhance the efficiency and scal-
ability of data structure repair. Our insight is that if an error is due to a fault in soft-
ware or hardware, it is likely to recur. Therefore, we can abstract the concrete repair
actions taken to fix a particular erroneous state and reuse them when a similar error
is detected in future. Our embodiment of repair abstractions piggybacks on the ex-
isting repair framework Juzi and enables data structure repair using abstractions for
Java programs. Experimental results show that repair abstractions can substantially
reduce the space of candidate structures to explore in systematic techniques for data

structure repair.
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Chapter 5

Related Work

This chapter describes the projects most closely related to our work.

5.1 Program Repair

A number of program repair techniques have been introduced in the recent
years to repair real-world programs. This sections gives an overview of these tech-
niques. The key difference between our work and these techniques is our use of
systematic data structure repair for program repair, which is not the basis of these

techniques.

5.1.1 Genetic Programming

Genetic programming (GP) is a variant of genetic algorithms with variable-
length string encoding [64]. Arcuri et al. [4] used GP to automate the task of fixing
bugs. Their approach is based on co-evolution, in which programs and test cases
co-evolve, influencing each other with the aim of fixing the bugs of the programs.
Their approach requires formal specification along with the buggy program and

tests to work.

Weimer et al. [106] also use genetic programming for program repair; they
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generate program variants until one is found that both retains required functionality
and also avoids the defects found in the original program. Their technique takes as
input a program, a set of successful positive test cases that encode required program
behavior, and a failing negative test case that demonstrates a defect. They use GP
to maintain a population of variants of that program. Each variant is represented as
an abstract syntax tree (AST) paired with a weighted program path. They modify
program variants using two genetic algorithm operations, crossover and mutation.
Each modification produces a new abstract syntax tree and weighted program path.
The fitness of each variant is evaluated by running it on the test cases, and it is
assigned a value based on a weighted sum of the positive and negative test cases it
passes. The approach stops when it has evolved a program variant that passes all
of the test cases. To restrict the search space for the GP authors use two insights:
first, they limit the possible variations in the program to changes based on code
existing in program elsewhere; and second, the mutation and cross-over work only

over faulty part of the code.

5.1.2 Enforcing Contracts

Perkins et al. [85] developed a system for automatically patching errors in
deployed software called ClearView. It works on stripped Windows x86 binaries
without any need for source code, debugging information, or other external infor-
mation, and without human intervention. ClearView (1) observes normal executions
to learn invariants that characterize the applications normal behavior, (2) uses error

detectors to distinguish normal executions from erroneous executions, (3) identifies
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violations of learned invariants that occur during erroneous executions, (4) gener-
ates candidate repair patches that enforce selected invariants by changing the state
or flow of control to make the invariant true, and (5) observes the continued execu-

tion of patched applications to select the most successful patch.

Wei et al. [103] developed Auto-FixE. Their tool takes an Eiffel class and,
using their earlier work, generates test cases with AutoTest. From the execution
runs, they extract object states using boolean queries (similar to repOk). By com-
paring the states of passing and failing runs, they generate a fault profile which is
an indication of what went wrong in terms of abstract object state. From the state
transitions in passing runs, they generate a finite-state behavioral model, capturing
the normal behavior in terms of control. Both control and state guide the generation

of fix candidates. Only those fixes passing the regression test suite remain.

5.1.3 Specification Based Repair

Gopinath’s on-going dissertation work explores the problem of repairing
programs using more general forms of specifications, such as rich behavioral spec-
ifications given in the form of preconditions and postconditions. In a recent paper,
we collaborated on a SAT-based approach to generating likely bug fixes [40]. The
key insight was to replace a faulty statement that has deterministic behavior with
one that has nondeterministic behavior, and to use the specification constraints to
prune the ensuing nondeterminism and repair the faulty statement. The SAT-based
Alloy tool-set provided the enabling technology for writing specification constraints

as well as for solving them. While this approach supports richer forms of specifi-
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cations than the repOk methods, it also requires the use of SAT technology, which

has not yet been shown to scale to real applications for data structure repair.

5.1.4 Repairing Boolean Programs

Boolean programs are similar to a high-level imperative language programs
except that the only variables permissible are boolean variables. Roopsha et al. [90]
present an approach based on local Hoare-triple to fix boolean programs. Their
algorithm has two main steps. In the first step, they annotate the program by propa-
gating pre and post conditions through the program statements. In the second step,
they choose specified order to target statements for repair. For every chosen state-
ment, they synthesize a local repair using the propagated pre and post conditions.
Once a synthesis establishes the post condition for the entire function, a repair is
extracted and the algorithm halts. If all fix suggestions fail, the algorithm reports
that the program is irreparable within the constraints imposed by the repair model.

Their approach is promising but cannot be used for data manipulating programs.

5.1.5 Repair as a game

Jobstmann et al. [55] presented a technique that automatically fixes bugs
in finite state programs by considering repair as a game. Their approach requires
specifications in linear time logic (LTL) against which a program is verified. They
limit the faults they can handle to an incorrect left-hand side value of an assignment
statement, which they transform to an “unknown” variable. The winning strategy

for the system is able to replace the “unknown” variable with one that satisfies the
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specifications. The game is played between the LTL model which generates accept-
able inputs and the repair tool which provides values for the “unknown” variable.
They prove that the problem of program repair as a game is NP-complete but their
heuristic behaves well. The approach by Gopinath et al. [40] uses a similar insight

for heap manipulating programs with specifications.

5.1.6 Programming by Sketching

Solar-lezama et al. introduced the concept of programming by sketching [97].
Their goal is not program repair but rather code synthesis from a reference program
which is very similar to repair. The application of their technique is limited to
programs that deal with manipulating streams of data at the bit level. Such manipu-
lations have several properties that make them a hard domain for program developer
to produce error free code. The approach requires the programmer to first write a
full behavioral specification of a particular bit manipulation task, called as refer-
ence program. The reference program is written in a specialized dataflow language,
and represents an un-optimized version describing the task at bit level. Having
a reference program, the programmer sketches an efficient implementation. The
sketching provides only a loosely constrained template of the implementation, with
the compiler filling in the remaining details. The details are obtained by ensuring
that the resolved sketch is behaviorally equivalent to the reference program. Again
the application of this tool is limited to programs that deal with bit manipulation.

However, an extension to heap-manipulating programs was recently presented [94].
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5.2 Invariant Generation

Invariant generation is a classic research topic with a number of different
approaches. Our work is most closely related to dynamic invariant generation [35].
The key difference between our work and previous work is our support for structural
invariants of dynamic data structures as well as our idea of using graph spectra as

representing structural invariants, which has not been used in previous work.

5.2.1 Daikon

Daikon [35] pioneered dynamic invariant detection. Daikon demonstrated
how invariants can be dynamically detected from program traces that capture vari-
able values at program points of interest. The user runs the target program over a
test suite to create the traces, and an invariant detector determines which properties
and relationships hold over both explicit variables and other expressions. Properties
that hold over the traces and also satisfy other tests, such as being statistically jus-
tified, not being over unrelated variables, and not being implied by other reported
invariants, are reported as likely invariants. Like other dynamic techniques such as
testing, the quality of the output depends in part on the comprehensiveness of the

test suite. Daikon does not detect high-level data structure properties.

5.2.2 DIDUCE

Like Daikon, DIDUCE (Dynamic Invariant Detection N Checking Engine)
[43] tries to extract invariants dynamically from program executions. However,

instead of presenting the user with numerous invariants found after a programs ex-
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ecution, DIDUCE continually checks the programs behavior against the invariants
hypothesized up to that point in the programs run(s) and reports all detected vio-
lations. When a dynamic invariant violation is detected, the invariant is relaxed to
allow for the new behavior and program execution is resumed. This results in a fully
automatic tool that checks a program against a model it creates without requiring
any human intervention. However, similar to Daikon, DIDUCE does not detect data

structure properties.

5.2.3 Deryaft

We previously implemented Deryaft [70, 71] algorithm for dynamic invari-
ant detection, which is the closest approach to spectral invariant learning. Given a
small set of structure representations in heap as examples, Deryaft analyzes them to
formulate local and global properties that the structures exhibit. Deryaft focuses on
graph properties for effective formulation of structural invariants, including reacha-
bility, and views the program heap as an edge-labeled graph. Given a set of concrete
structures Deryaft inspects them to formulate a set of hypotheses on the underly-
ing structural as well as data constraints that are likely to hold. Next, it checks
which hypotheses actually hold for the structures. Finally, it translates the valid hy-
potheses into a Java predicate that represents the structural invariants of the given
structures. The resulting predicate takes an input structure, traverses it, and returns
true if and only if the input satisfies the invariants. We also adapted Deryaft for

declarative language Alloy in a tool aDeryaft [61].
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5.2.4 Dynamic Shape Analysis

Dynamic shape analysis, as described in ShapeUp [58], dynamically checks
recursive data structure invariants by summarizing data structures based on their in-
degrees and out-degrees. ShapeUp computes a class-field summary graph (CFSG)
which summarizes the dynamic object graph based on class definitions. The CFSG
records the number of objects and their recursive degree metrics as in- and out-
degree invariants. When a specific number of nodes of a data structure exhibit a
particular degree, they start using it as a stable matric to detect the shape. HeapMD

[16] is forerunner of ShapeUp and examines simple heap properties in C programs.

5.3 Data Structure Repair

Dynamic repair techniques that aim to counteract the effects of faults at run-
time and prolong the uptime of a system have been in existence for a long time. File
system utilities such as fsck and chkdsk, database check-pointing, and rollback
techniques are standard repair routines used to monitor and correct the state of sys-
tem at runtime. More recent techniques have used various forms of specifications
for data structure repair. The key difference between our work and previous work is
our idea to introduce repair abstractions to memoize and reuse repair actions, which

has not been performed in previous work.

5.3.1 Constraint-based Repair

Demsky and Rinard [26] pioneered the idea of constraint-based repair of

data structures. Constraints are written in a declarative language similar to Alloy
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and repair is performed by translating the constraints to disjunctive normal form

and solving them using an ad hoc search.

The Juzi framework [32, 60] that provides the basis of our work on pro-
gram repair presents an assertion-based technique for data structure repair, where
assertion violations as indicated by invocations of repOk methods that return false
are used to mutate and repair erroneous program states. Symbolic execution of the
repOK method combined with systematic search of the object space based on last
field access aids in efficiently restoring the data structure to a state satisfying the

invariants.

Dynamic Symbolic Data Structure Repair [49] (DSDR) extends Juzi’s tech-
nique by producing a symbolic representation of fields and objects along the path
executed in repOK. DSDR builds the path constraint required to take the current
path in repOK. When repOK returns false, DSDR uses the conjunction of the nega-
tion of the path constraint with the other path conditions and solves them, directly
generating a fix irrespective of the exact location of the corrupted object references

or fields in the repOK method.

A limitation of constraint-based techniques is that class invariants hold at
the entry and exit points of all public methods. These techniques alter the faulty
data structure to produce an arbitrary state which satisfies the integrity constraints

but can, in the worst case, be very different from the intended output of the method.
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5.3.2 Contract-based Repair

Tarmeem [112], Plan B [91], and Cobbler [111] are more recent frame-
works that support contract-based repair, where corrupt data structures can be re-
paired with respect to rich contracts that include method pre-conditions and post-
conditions. These frameworks are based on Alloy toolset [50] and use its SAT-based
backend for data structure repair. While contract-based repair allows handling a
wider class of errors than constraint-based repair, the cost of repair for using rich
contracts at runtime and repairing with respect to them is higher. Nonetheless, our
approach to repair abstractions is equally applicable to both constraint-based repair

(as we show in this dissertation) and contract-based repair (Section 5.4).

5.4 Repair abstraction using Alloy

The idea of abstracting concrete repair actions is orthogonal to the underly-
ing repair framework used. We can plug in a different backend repair framework
(instead of Juzi) and benefit from repair abstractions. Our joint work recently inte-
grated repair abstractions with Cobbler [111] (which uses the Alloy language [50]
for writing specifications and its SAT based backend for data structure repair). Ex-
perimental results show repair abstractions offer performance benefits in the context

of Cobbler similar to those in the context of Juzi.
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Chapter 6

Conclusion

We conclude this dissertation by providing a summary of our work on auto-
mated debugging, dynamic invariant generation, and efficient run time error recov-

ery.

6.1 Summary

Automated debugging is becoming increasingly important as the size and
complexity of software increases. We make a case for using constraint-based data
structure repair, a recently developed technique for fault recovery, as a basis for au-
tomated debugging. Data structure repair uses given structural integrity constraints
for key data structures to monitor their correctness during the execution of a pro-
gram. If a constraint violation is detected, repair performs mutations on the data
structures, i.e., corrupt program state, and transforms it into another state, which

satises the desired constraints.

The primary goal of data structure repair is to transform an erroneous state
into an acceptable state. The key insight of this thesis is that the mutations per-
formed by repair actions provide a basis of debugging faults in code (assuming the

errors are due to bugs). A key challenge to embodying this insight into a mechanical
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technique arises due to the difference in the concrete level of the program states and
the abstract level of the program code: repair actions apply to concrete data struc-
tures that exist at runtime, whereas debugging applies to code. This thesis addresses
this challenge by relating static structures (program variables) that hold handles to

dynamic structures (heap-allocated data), and performing a guided search.

This thesis focuses on programs that operate on structurally complex data,
e.g., heap-allocated data structures that have complex structural integrity constraints,
such as acyclicity. Checking such constraints is critical for our techniques and the
user must provide them. However, writing the constraints poses a burden on the
users. To facilitate the use of constraint-based techniques, we presented a tech-
nique to check constraint violations at runtime using graph spectra, which have
been studied extensively by mathematicians to capture properties of graphs. We
view the heap of an object-oriented program as an edge-labeled graph, which al-
lows us to apply results from graph spectra theory. Experimental results show the
effectiveness of using graph spectra as a basis of capturing structural properties of

a class of commonly used data structures.

Finally, the thesis presents abstractions for more efficient data structure re-
pair. When an error in the program state is due to a fault in software or hardware,
a similar error may occur again. This thesis presents a set of graph-based abstrac-
tions that capture how erroneous program executions are repaired using concrete

mutations to enable faster repair of similar errors in the future.
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