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Synthesis Gas Production using Non-thermal Plasma Reactors 

 

Onur Taylan, Ph.D. 
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Supervisor: Halil Berberoglu 

 

Today we face the formidable challenge of meeting the fuel needs of a growing 

population while minimizing the adverse impacts on our environment. Thus, we search 

for technologies that can provide us with renewable fuels while mitigating the emission 

of global pollutants. To this end, use of non-thermal plasma processes can offer novel 

methods for efficiently and effectively converting carbon dioxide and water vapor into 

synthesis gas for the production of renewable fuels. Particularly, non-thermal plasma 

technologies offer distinct advantages over conventional methods including lower 

operating temperatures, reduced need for catalysts and potentially lower manufacturing 

and operation costs. The non-thermal plasma reactors have been studied for ozone 

generation, material synthesis, decontamination, thruster for microsatellites, and 

biomedical applications. This dissertation focuses on producing synthesis gas using a 

non-thermal, microhollow cathode discharge (MHCD) plasma reactor. 

The prototype MHCD reactor consisted of a mica plate as a dielectric layer that 

was in between two aluminum electrodes with a through hole. First, electrical 

characterization of the reactor was performed in the self-pulsing regime, and the reactor 

was modeled with an equivalent circuit which consisted of a constant capacitance and a 

variable, negative differential resistance. The values of the resistor and capacitors were 
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recovered from experimental data, and the introduced circuit model was validated with 

independent experiments. Experimental data showed that increasing the applied voltage 

increased the current, self-pulsing frequency and average power consumption of the 

reactor, while it decreased the peak voltage. Subsequently, carbon dioxide and water 

vapor balanced with argon as the carrier gas were fed through the hole, and parametric 

experiments were conducted to investigate the effects of applied voltage (from 2.5 to 4.5 

kV), flow rate (from 10 to 800 mL/min), CO2 mole fraction in influent (from 9.95% to 

99.5%), dielectric thickness (from 150 to 450 m) and discharge hole diameter (from 200 

to 515 m) on the composition of the products, electrical-to-chemical energy conversion 

efficiency, and CO2-to-CO conversion yield. Within the investigated parameter ranges, 

the maximum H2/CO ratio was about 0.14 when H2O and CO2 were dissociated in 

different reactors. Additionally, at an applied voltage of 4.5 kV, the maximum yields 

were about 28.4% for H2 at a residence time of 128 s and 17.3% for CO at a residence 

time of 354 s. Increasing residence time increased the conversion yield, but decreased 

the energy conversion efficiency. The maximum energy conversion efficiency of about 

18.5% was achieved for 99.5% pure CO2 at a residence time of 6 s and an applied 

voltage of 4.5 kV. At the same applied voltage, the maximum efficiency was about 

14.8% for saturated CO2 at a residence time of 12.8 s. The future work should focus on 

optimizing the conversion yield and efficiency as well as analyzing the temporal and 

spatial changes in the gas composition in the plasma reactor. 
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 Chapter 1

Introduction 

 MOTIVATION 1.1

Limited reserves of fossil fuels and their negative environmental effects impose 

significant problems in our energy security and sustainability. Figure 1.1 shows the 

energy potential and carbon emissions by most commonly used fuels along with 

hydrogen. Carbon dioxide as combustion product of fossil fuels contributes to global 

climate change as the International Energy Agency predicted that 31.6 gigatonnes was 

released to the atmosphere due to combustion of fossil fuels in 2011, and 32.6 gigatonnes 

of CO2 emission would yield to 2
o
C increase in the global average temperature [1]. Since 

this contribution is significant, there is a global effort to reduce the CO2 emissions, 

sequester or reutilize CO2 as a carbon source. However, CO2 is a fairly stable molecule 

and requires temperatures on the order of 8600 K at 1 atm for its complete dissociation 

[2]. Renewable energy sources can be used as alternatives to supplement and ultimately 

replace the use of fossil fuels. However, these sources generate electricity which requires 

storage for (i) powering transportation vehicles, (ii) mitigating the temporal mismatch of 

electricity demand and production rates, and (iii) dealing with the absence of electricity 

transmission lines through locations with abundant renewable energy resources. Storage 

of electricity can be done through batteries, ultra capacitors, or renewable fuels. Among 

these options, chemical storage through generation of renewable fuels have a number of 

advantages including (i) large energy density to weight ratio, (ii) extremely long energy 

storage durations, and (iii) not requiring expensive and scarce materials.  Hydrogen is 

preferable based on its energy potential as shown in Figure 1.1, but storage and 

transportation of hydrogen require high pressures, liquefaction or use of pipelines. These 
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are all costly solutions and have some problems. Alternatively, the renewable energy can 

be used to produce more complex synthetic fuels, commonly in two steps as shown in 

Figure 1.2: gas dissociation process to generate synthesis gas (syngas), followed by a 

synthesis process to produce the fuel. This study focuses on the dissociation part for 

syngas production. 

 

 

Figure 1.1. Comparison of different fuels in terms of their energy produced and CO2 

emission [3]. 

Most common and available methods for dissociation are thermolysis, cracking, 

reforming, gasification and through thermochemical cycles. Although these processes 

have been considered as promising paths for dissociation gases, they have some 

disadvantages and technical challenges which form the basis for future research including 

[4-7]:  
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Figure 1.2. Schematic for the synthetic fuel production and carbon and hydrogen cycles 

for carbon neutral fuel generation and use. 

 High temperatures needed for dissociation processes. High temperatures 

can be reached using solar concentrators with high concentrating ratios. 

However, high concentrating ratios bring high cost to the system, and high 

temperatures restrict the material choice. 

 Recombination of product gases, especially in thermochemical cycles, is a 

significant problem. This recombination significantly decreases both the 

process and energy conversion efficiency. 

 Quenching is introduced to products in order to cool the products and 

reduce the recombination. However, quenching adds additional cost and 

complexity to the reactor and the process management. For some 

processes, membranes are also required to separate product gases. 

 Particle accumulation at the exit of the reactor is a problem, especially in 

thermochemical cycles. This problem can be eliminated by introducing an 

inert gas with high flow rates to the reactor which further complicates the 

Gas Dissociation Synthesis

CO2+H2O
Fuel

(CxHyOz)

Syngas

(CO+H2)
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management of reaction in the reactor. Another solution is to heat the 

reactor indirectly which reduces the energy conversion efficiency. 

An alternative path to dissociate gases and produce syngas is through the use of 

plasma [8-10]. Specifically, the non-thermal plasma reactors are preferable because they 

can operate at about room temperatures, so that these reactors do not need to withstand 

high temperatures. Therefore, the use of non-thermal plasma reactors is expected to 

reduce the material and manufacturing cost of the reactor. Non-thermal plasma reactors 

have been used to generate plasma for various applications, including ozone generation 

[11-13], material synthesis [14, 15], decontamination [16, 17], microdischarge thruster 

for microsatellites [18-22], and biomedical applications [23, 24]. In particular, gas 

dissociation and syngas production using non-thermal plasma technologies can offer an 

alternative to conventional dissociation technologies. To this end, use of non-thermal 

plasmas can offer distinct advantages including (1) no need for catalysts, (2) lower cost 

due to simple metallic or carbon based electrodes, (3) lower temperatures involved, and 

(4) ability to work with a broad range of gases [6, 25-27]. There are different 

configurations of microdischarge plasma reactors, and in this study the focus was on 

microhollow cathode discharge (MHCD) plasma reactor which is more suitable for stable 

plasma generation at atmospheric pressure [28-30]. This reactor can be operated with 

direct (DC), alternating (AC) and pulsed excitation. However, in order to generate stable 

non-thermal plasma with DC excitation, the reactor needs to be operated in its self-

pulsing regime at which current and voltage of the discharges inherently oscillate [31-

33]. In this regime, voltage decreases with increasing current as the regime is 

characterized with a negative differential resistance [31-33]. A review of microdischarge 
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plasma reactors were given in detail by Foest et al. [34] and Papadakis et al. [35], and 

more information about plasmas and MHCD reactor is given in Chapter 2. 

This present study used a non-thermal microhollow cathode discharge reactor for 

dissociating humidified carbon dioxide for syngas production. Electrical characterization 

of the introduced reactor was performed using DC voltage in the self-pulsing regime, and 

the reactor was successfully represented with an equivalent circuit model. Additionally, 

the dissociation rate of pure and humidified CO2, power requirement, CO2-to-CO 

conversion yield and energy conversion efficiency of a prototype reactor were quantified. 

The parameters considered in this study included the applied voltage, flow rate of the 

gases, concentration of CO2 and H2O in the reactor influent, as well as the discharge hole 

size and the thickness of the dielectric material. 

 OBJECTIVES OF THE STUDY 1.2

The main objective of this study was to demonstrate and quantify the performance 

of a microhollow cathode discharge reactor for dissociating humidified carbon dioxide 

stream for producing synthesis gas. More specifically, this study aimed at:  

 Characterizing the microhollow cathode discharge reactor in the self-

pulsing mode for non-thermal plasma generation, and represent the reactor 

with an equivalent circuit model for understanding the operating scheme 

of the reactor 

 Quantifying and optimizing the performance of microhollow cathode 

discharge reactor for syngas production under following operating 

conditions and design parameters; 

o Applied voltage 

o Flow rate at the reactor influent 
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o Gas mole fraction at the reactor influent, balanced with an inert 

carrier gas 

o Dielectric layer thickness 

o Discharge hole diameter 

 Assessing the effects of these parameters on the performance of the 

reactor in terms of the following metrics; 

o Gas concentrations at the reactor effluent 

o Conversion yields 

o Electrical-to-chemical energy conversion efficiency 

 Finally, providing guidelines for improving the performance of the 

microdischarge reactor in future studies. 

 ORGANIZATION OF THE DISSERTATION 1.3

Chapter 2 provides the background information on the conventional dissociation 

processes, plasmas and the dissociation processes using plasma reactors. Chapter 3 

presents the design of the plasma reactor used in this study, the experimental setup and 

performance metrics used in this study to quantify the performance of this reactor. 

Chapter 4 presents the electrical characterization of the reactor along with a semi-

empirical equivalent circuit model that captures its voltage and current behavior under 

different operating conditions. Chapter 5 presents the performance of the plasma reactor 

on carbon dioxide dissociation under different applied voltages, flow rates and inlet 

concentration of the gas in terms of electrical-to-chemical energy conversion efficiency 

and conversion yield. Chapter 6 presents the same performance metrics for dissociation 

of water-saturated carbon dioxide and argon and discusses the performance of the reactor 

for carbon monoxide and hydrogen production. Chapter 7 investigates the effects of the 
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design parameters of the reactor, namely the dielectric thickness and the discharge hole 

size, on carbon dioxide dissociation. Finally, Chapter 8 summarizes the main findings of 

this study and presents recommendations for future research. 
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 Chapter 2

Current State of Knowledge 

This chapter presents the current state of knowledge on different dissociation 

processes that have been used conventionally, as well as some important background 

information about the plasmas and their characteristics. In Section 2.3, a number of 

dissociation processes using plasma technologies reported in the literature are given. In 

the final part of this chapter, Section 2.4, the state-of-the-art syngas production methods 

are summarized for simultaneous production of carbon monoxide and hydrogen from 

carbon dioxide and water. 

 CONVENTIONAL DISSOCIATION METHODS 2.1

The different methods of dissociation presented in this section are revised from 

previously published book chapter by Taylan and Berberoglu [36]. The focus of this 

section is hydrogen production as an alternative fuel; however, it is also possible to 

dissociate carbon dioxide into carbon monoxide if water is replaced by carbon dioxide in 

the corresponding chemical reactions. 

2.1.1 Thermolysis 

The term “thermolysis” refers to the thermal decomposition of water molecules 

into hydrogen and oxygen gases. Historically, due to high availability and simple 

molecular form of water, researches on solar fuel production started with direct hydrogen 

production by thermolysis of water as, 

 2 2 2 300K
kJ1 286 

2 mol
H O H O H     (2.1) 
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The reaction given in Equation (2.1) is an endothermic process, i.e., it requires 

energy to break the bonds. However, breaking all the bonds in water molecules requires 

temperatures as high as 2500 K [37]. At lower temperatures, partial decomposition 

occurs. Although it is possible to reach 2500 K with concentrated solar energy, the 

reactor where this process takes place shows material issues related to high temperatures. 

Additionally, after the dissociation of water molecules, hydrogen and oxygen gases 

require separation at high temperatures in order to prevent back-bonding, i.e., 

reproduction of water molecules with an exothermic process. Some solutions include 

cooling the reactor down by injecting a gas or expanding these gases through nozzle at 

the end of the reactor [37, 38]. Other solutions include using double or tubular 

membranes or using multi-stage steam ejectors to lower the exit pressure [39]. However, 

these solutions further reduce the efficiency of the process, and thus no commercial plant 

using this technology exits. 

2.1.2 Thermochemical Cycles 

The thermochemical cycles consist of at least two steps or reaction, reduction of a 

metal oxide and oxidation of gases. Some metal oxides are reduced in thermochemical 

cycles since metals provide good storage and transport of energy, such as solar energy. 

Such metal oxides include, but not limited to ZnO, MgO, SnO2, CaO, Al2O3 and Ce2O3. 

The reduction step of these metal oxides is generally followed by an oxidation step at 

lower temperatures than reduction step in order to convert or dissociate gases. The 

reduced metal oxides generally react with CO2 or steam. If steam is used in oxidation that 

step is called hydrolysis. The thermochemical cycles of different metal oxides are 

generally compared based on their temperature requirements for the reduction step, the 

reaction or dissociation rates and reaction kinetics. 
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ZnO is one of the most popular oxides mainly due to its abundance and relatively 

low temperature requirement for complete dissociation when compared to other metal 

oxides. Additionally, since ZnO is a simple metal oxide, it does not undergo multiple 

reactions before its full dissociation. The dissociation of ZnO occurs as according to, 

 2 2000K
kJ1 546 

2 mol
ZnO Zn O H     (2.2) 

The complete dissociation of ZnO to Zn requires temperatures higher than about 

2300 K whereas, for instance, the dissociation of MgO as another simple metal oxide 

requires about 3700 K at atmospheric pressures [38, 40]. As in water thermolysis, partial 

dissociations can occur at lower temperatures. Although hydrolysis of zinc is exothermic 

as given by Equation (2.3), only 24% of Zn could be oxidized to produce H2 at a reactor 

temperature of 800 K and an atmospheric pressure [41]. 

 2 2 300K
kJ62 

mol
Zn H O ZnO H H       (2.3) 

Figure 2.1 shows the overall process of hydrogen production from zinc-oxide. 

As an alternative to ZnO reduction, Abanades et al. [42] proposed SnO2 

reduction. Once the SnO2 is reduced to SnO in gaseous form at temperatures nearly 

1600
o
C, hydrolysis of SnO with steam at about 550

o
C and ambient pressure takes place 

in another step to form hydrogen gas as,  

 2( ) ( ) 2 1873K
kJ1 557 

2 mols gSnO SnO O H     (2.4) 

 ( ) 2 ( ) 2( ) 2 773K
kJ49 

mols g sSnO H O SnO H H       (2.5) 

 



11 

 

 

Figure 2.1. Flowchart for thermochemical hydrogen production from zinc-oxide using 

concentrated solar energy [40]. 

The advantages of SnO2/SnO reduction when compared to ZnO/Zn reduction are 

that (i) the SnO2-to-SnO conversion yield can be increased in Equation (2.4) by 

decreasing the pressure of the reactor which increases the overall conversion efficiency 

[42], (ii) SnO has higher melting and boiling points when compared to those of Zn, so 

that quenching rate of SnO is not as important as of Zn [42]. In ZnO/Zn dissociation, Zn 

needs to be quenched rapidly below its condensation temperature to prevent 

recombination, while this is not the case with SnO2/SnO system. 

There are some other metals that can be reduced with faster reaction kinetics such 

as Ce2O3. However, the reduction of Ce2O3 to CeO2 starts at temperatures about 2300 K 

[43, 44]. Full dissociation requires higher temperatures. This requirement of high 

temperatures creates some material limitations on the material of the reactor and 

increases the cost of the reactor significantly. Although there are some lab-scale 
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prototypes of Ce2O3/CeO2 reactor, it is not preferred due to these limitations and high 

cost. 

Another research was also started with producing hydrogen gas from hydrogen 

sulfide, H2S, as, 

 2 2 2 300K
kJ1 91.6 

2 mol
H S H S H     (2.6) 

Hydrogen sulfide is a toxic by-product gas of sulfur removing process from 

natural gas, petroleum and coal. Thermal decomposition of hydrogen sulfide requires 

about 1800 K [45]. It is advantageous over the other metal oxide reduction processes 

discussed above since this thermochemical process is only a one-step process that does 

not require additional oxidation step to produce hydrogen. Additionally, the temperature 

requirement for dissociation is lower than that for the direct water thermolysis. However, 

the product gases need to be cooled down after the dissociation as in the water 

thermolysis or other metal oxide reduction processes [46]. Some studies showed that the 

temperature of reduction could be reduced to about 1500 K, and they showed that the 

recombination of products into hydrogen sulfide is insignificant below 1500 K [38, 47, 

48]. 

In general, the chemical processes are clean ways to produce hydrogen or syngas 

without any carbon prints. Therefore, the hydrogen as a product of the chemical process 

can be used in fuel cells directly, or syngas can be directly synthesized in a Fischer-

Tropsch process. The chemical reduction steps of these chemical processes produce 

nanoparticles with high surface area to volume ratio, e.g., Zn, SnO which also create 

additional reaction centers for the dissociation to occur [42]. Therefore, the oxidation or 

gas dissociation occurs fast due to high mass transport of gases in the solid phase [42]. As 
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in the other dissociation processes, the products of the dissociation also need to be cooled 

in order to prevent recombination of products into reactants. Sandia National 

Laboratories of US released a comprehensive report on the thermochemical cycle 

selection with initial selection for further research [49], and Table 2.1 summarizes the 

studied thermochemical cycles [50]. 

 

Table 2.1. Summary of thermochemical cycles [50]. 

Cycle Reaction Steps 

High Temperature Cycles 

Zinc oxide o

o

1600 1800 C

2

400 C

2 2

1
2

ZnO Zn O

ZnO H O ZnO H

 

  

 

Iron oxide o

o

2000 2300 C

3 4 2

400 C

2 3 4 2

13
2

3

Fe O FeO O

FeO H O Fe O H

 

  

 

Cadmium carbonate o

o

o

1450 1500 C

2

350 C

2 2 3 2

500 C

3 2

1
2

CdO Cd O

Cd H O CO CdCO H

CdCO CO CdO

 

   

 

 

Hybrid cadmium 

 

 

o

o

o

1450 1500 C

2

25 C,electrochemical

2 22

375 C

22

1
2

2

CdO Cd O

Cd H O Cd OH H

Cd OH CdO H O

 

  

 

 

Sodium manganese o

o

o

1400 1600 C

2 3 2

627 C

2 2

25 C

2 2 2 3

12
2

2 2 2

2 2

Mn O MnO O

MnO NaOH NaMnO H

NaMnO H O Mn O NaOH

 

  

  
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Table 2.1 continued. 

Cycle Reaction Steps 

M-Ferrite 

(M = Co, Ni, Zn) 

o

o

1200 1400 C

3 4 3 4 2

1000 1200 C

3 4 2 3 4 2

2x x x x y

x x y x x

y
Fe M O Fe M O O

Fe M O yH O Fe M O yH



  



  

 

  

 

Low Temperature Cycles 

Sulfur-Iodine o

o

o

850 C

2 4 2 2 2

100 C

2 2 2 2 4

300 C

2 2

1
2

2 2

2

H SO SO H O O

I SO H O HI H SO

HI I H

  

   

 

 

Hybrid sulfur o

o

850 C

2 4 2 2 2

77 C,electrochemical

2 2 2 4 2

1
2

2

H SO SO H O O

SO H O H SO H

  

  

 

Hybrid copper 

chloride 

o

o

o

o

550 C

2 2 2

425 C

2

25 C,electrochemical

2

325 C

2 2 2 2

12
2

2 2 2

4 2 2

2 2

Cu OCl CuCl O

Cu HCl H CuCl

CuCl Cu CuCl

CuCl H O Cu OCl HCl

 

  

 

  

 

2.1.3 Cracking of Gaseous Hydrocarbons 

The term “thermal cracking” or “cracking” is used for thermal decarbonization of 

natural gas or other hydrocarbons. As a result of cracking, hydrogen, carbon and other 

possible products are formed without CO2 emissions. Therefore, this process is another 

method for clean fuel production. Cracking requires high temperatures of about 1500 K 

[51] that can be reached using concentrating solar collectors. For example, Maag et al. 

[52] tested a concentrated solar collector with a concentrating factor of 1720, and 

obtained a maximum temperature of 1600 K within the solar cavity reactor. In general, 

the advantages of solar cracking are the increase in value of feedstock using solar energy, 

pure and uncontaminated products and no CO2 emission [51]. 
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As being the simplest hydrocarbon and the main constituent of natural gas as 

given in Table 2.2, methane has been mainly considered for cracking. Chemical reaction 

of evolution of carbon black and methane is given in Equation (2.7) [53, 54]. The kinetic 

mechanism of methane cracking at 1500 K and atmospheric pressure was proposed as 

[55, 56], 

 2CH C H H C H 2H C H 3H 2C +4H
4 2 6 2 2 4 2 2 2 2 (solid) 2
        (2.7) 

 

Table 2.2. Compositions of natural gas from different sources [55]. 

 Volume Fractions (%) 

 CH4 C2H6 C3H8 C4H10 CO2 N2 

Modified Algeria Gas 91.2 6.5 2.1 0.2 - - 

Modified Groningen Gas 83.5 4.7 0.7 0.2 - 10.8 

North Sea Gas 88.2 5.4 1.2 0.4 1.4 3.2 

 

Another important aspect of producing hydrogen and carbon black (solid carbon) 

is their market values. Hydrogen and carbon black have a market value of about $135 

billion per year and between $7 and $11 billion per year depending on the grade of the 

carbon black in the world, respectively [57]. 

Under an EU project named SOLHYCARB, a 50-kWth indirectly heated, cavity 

type solar reactor was developed for methane cracking [43]. Its 10-kWth prototype was 

built and tested using natural gas, and 97% conversion was obtained with a maximum 

temperature above 2000 K under concentrated solar irradiation of 4 MW/m
2 

[58]. The 

difficulties that prevent this technology to become commercial are mainly the cost of the 

reactor and the complicated flow pattern inside the reactors. For example, in order to 



16 

 

prevent particle accumulation on the window, some inert gas is introduced to the reactor 

with high flow rates and pressures, or indirectly heated solar reactors are used which 

decreases the solar-to-fuel conversion efficiency or further increase the cost. 

Summary of the operating conditions of a number of designs for methane 

cracking is given in Table 2.3. 

 

Table 2.3. Operating conditions of different reactor designs for methane cracking. 

Reference 

Maximum 

Temperature 

(
o
C) 

Inlet CH4 

Dilution 

(%vol.) 

Reactor 

Dimensions 

(mm) 

Aperture 

Diameter 

(mm) 

Inlet 

Flow 

Rate 

(l/min) 

Catalytic   

or Particle 

Fed 

Directly Irradiated Solar Reactors 

Maag et al. 

[52] 
1327 

6-30 

(in Argon) 

100 (diameter) 

200 (length) 
60 

8.6-

15.6 

Carbon 

black 

seeded 

Yeheskela 

and Epstein 

[59] 

1450 
98 

(in catalysts) 

200 (diameter) 

300 (length) 
200 5-9.7 

Flow with 

Fe(CO)5, 

Fe(C5H5)2 

Abanades 

and 

Flamant 

[60, 61] 

1110 
11-20 

(in Argon) 

10 (diameter) 

65 (length) 
10 0.9 

No particle 

feeding 

Klein et al. 

[62] 
1471 

10-24 (in 

Argon or 

CO2) 

160 (diameter) 

266 (length) 
60 37-60 

Carbon 

black 

seeded 

Indirectly Heated Solar Reactors 

Rodat et al. 

[63] 
1800 

10-20 

(in Argon) 

18 (tube 

diameter) 

200 (cube side) 

90 - 
No particle 

feeding 

German 

Aerospace 

Center [47] 

1400 
5 

(in Argon) 
- - 3.8 

Reactor 

walls with 

Rh 

Maag et al. 

[64] 
1600 

10-20 

(in Argon) 

24 (tube 

diameter) 

200 (cube side) 

9 10-48 
No particle 

feeding 
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2.1.4 Gasification and Reforming of Coal and Biomass 

Gasification is a chemical process that converts carbonaceous feedstock into 

gaseous fuels under a controlled amount of oxygen and/or steam [65]. Main difference 

between gasification and combustion is that products in gasification have useful heating 

value. In gasification, pressure inside the gasifier is generally in the range from 20 to 40 

bar, whereas methanol or ammonia synthesis requires 50 to 200 bar [66]. In addition, 

temperatures inside the gasifier is generally in the range from 1400 to 1700
o
C [66]. 

Dissociation of coal and biomass can be made in steps. Pyrolysis is a 

thermochemical process that occurs before gasification, and it decomposes the complex 

hydrocarbons into smaller and less complex molecules in the absence of oxidizers. In 

pyrolysis, the yield of char can be maximized by slowing the heating rate, lowering the 

temperature or allowing a longer residence time [67]. On the contrary, a higher heating 

rate and a higher temperature maximize the gas yield. Additionally, liquid yield at an 

intermediate temperature can be maximized by increasing the heating rate or minimizing 

the residence. Tar is an undesired by-product of gasification and pyrolysis. It can cause 

condensation and consequent plugging, formation of aerosols and polymerization into 

more complex structures [67]. 

Gasification is an endothermic process and requires energy to occur. In case of 

conventional gasification, this energy is supplied from the partial combustion or 

gasification of feedstock which emits CO2 to the atmosphere. Use of concentrated solar 

energy eliminates or reduces the CO2 emission and utilizes the clean high-temperature 

gasification process. Additionally, fuel value of the feedstock is increased with solar 

gasification. For example, fuel value of coal can be increased by about 45% using solar 
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coal gasification [68], and CO2 emission can be reduced by about 30% when compared to 

conventional coal gasification [69].  

Gasification of coal and other carbonaceous products is the process of converting 

these feedstock materials into syngas as well as unreacted CO2 and water vapor [70]. The 

gasification products can be further processed. For example, syngas can be processed to 

form methanol or ammonia or used in cement production, and lean gas can be combusted 

for heating or used in power stations to generate electricity [51, 71]. Gasification can be 

performed using CO2 or steam. In general, steam gasification of coal can be written as, 

 2 2 2Coal aH O bH cCO dCO     (2.8) 

This process is endothermic and requires temperatures above 1000
o
C. Similar to 

coal and other carbonaceous feedstock, biomass can also be gasified in reactors. 

Conventionally, gasification of biomass has been done using the exhaust gas of 

combustion of fossil fuels or biomass itself. Biomass includes demol wood, wood chips, 

sewage sludge, almond shells, straw, etc. If biomass is used, nearly 30% of the initial 

biomass has to be combusted with oxygen to drive the gasification process due to the 

temperature requirement [50]. This temperature requirement varies from 600 to 1000
o
C 

[72]. Additionally, one of the other disadvantages of conventional biomass gasification is 

the formation of tar which blocks and clogs the equipment. There have been some efforts 

to eliminate the tar formation with proper selection of materials, operating conditions and 

the design of the gasifier [72]. 

Solar-assisted gasification of biomass has advantages over the conventional 

process. The main advantages are the elimination of tar formation, even at temperatures 

as high as 1200
o
C, and high and rapid conversion of biomass to syngas. At the National 
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Renewable Energy Laboratory (NREL) in USA, bluegrass was gasified with a maximum 

conversion of 95% and about 5% of the products were hydrocarbons, ash and char [73]. 

The resident times can be less than 5 seconds [73]. There is also a solar reactor design to 

combine solar biomass gasification and steam reformation [73]. 

The previous studies showed the operating conditions and limitations of the 

conventional dissociation methods, such as high temperature and catalysts requirements. 

This study aims to address their issues and propose a simple and efficient plasma reactor 

for syngas production that can be further processed to produce synthetic fuels. 

 INTRODUCTION TO PLASMAS 2.2

Plasma is as a cloud of charged particles, often referred as “ionized gas” that 

respond strongly to electromagnetic field. Plasmas have free charge carriers, so that they 

are electrically conductive, and as bulk, plasmas are assumed to be electrically neutral. 

The three parameters that characterize the plasmas are (1) their particle density, (2) 

temperature of their particles, given in eV where 1 eV corresponds to 11,605 K, and (3) 

their steady state magnetic field [74]. Figure 2.2 shows the classification of plasmas in 

terms of their characteristic electron temperatures and number densities. 

In terms of particle densities, plasmas can be categorized into three types 

according to Bellan [74]: (1) non-fusion terrestrial, (2) fusion terrestrial, and (3) space. 

Non-fusion terrestrial plasmas have particle densities in the range from 10
14

 to 10
22

 m
-3

, 

and the particles in these plasmas are weakly ionized. These plasmas feature temperatures 

of a few eV, and they do not impose or self-produce magnetic field. Magnetic 

confinement devices produce fusion terrestrial plasmas which have particle densities in 

the range from 10
19

 to 10
21

 m
-3

, and the particles in these plasmas are fully ionized. These 
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Figure 2.2. Classification of plasmas in terms of electron temperatures and number 

densities [25, 75]. 

plasmas have temperatures from tens to tens of thousands of eV, and produce magnetic 

fields from 1 to 10 Tesla. Extra-terrestrial or space plasmas have a particle density from 

10
6
 to 10

20
 m

-3
, and feature temperatures from 1 to 100 eV. The particles in these plasmas 

are fully ionized. 

Plasmas are used in (1) abating low VOC emissions, (2) coating industry, (3) arc 

welding, and (4) surface modification as printing, painting, metallization, etc. 

Additionally, plasmas can be used in dissociating gases due to their (1) compact and low 

weight reactor, (2) high conversion yield, (3) low manufacturing cost due to simple 

metallic or carbon electrodes, (4) fast response time, (5) ability to work with a broad 

range of gases, (6) low power requirement, and (7) no need for catalysts [6]. 
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Plasmas can be also categorized in terms of the electron temperatures, such as 

thermal and non-thermal plasmas. In thermal plasmas, electron and heavy particle 

(neutrons, protons, etc.) temperatures are the same. On the other hand, non-thermal or 

cold plasma refers to a plasma state that is not in thermal equilibrium, where electron 

temperatures are in the range from 10,000 to 100,000 K, and heavy particle temperatures 

are in the range from the room temperature to 1000 K [76]. The equilibrium is not 

attained as the electron number density is not high enough when compared to other heavy 

particles to achieve sufficient energy transfer between the electrons and the heavy 

particles [76]. Therefore, the temperature of the electrons increases whereas the 

temperature of the heavy particle can remain at or near the ambient temperature. 

Non-thermal plasmas can be further categorized according to their generation 

mechanism as [26]. The mechanisms include, but not limited to the following types, 

 Glow discharge: Glow discharges are commonly used in fluorescent 

lightings. Two electrodes are placed in a dielectric tube at pressures of a 

few Torr. The gap between electrodes at low pressure poses a high 

resistance that prevents high current to flow and form a glow discharge. 

 Corona discharge: Corona discharge occurs when electric field near one of 

the electrodes is significantly higher or lower than the rest of the system. 

 Dielectric barrier discharge or silent discharge: Dielectric barrier discharge 

reactors (DBD) use two parallel-plate metal electrodes, separated by a few 

millimeters. One of the electrodes is covered by a dielectric layer. Plasma 

is generated within the gap between the electrodes. A historical 

perspective, applications and physics of DBD plasmas were given in detail 

by Kogelschatz [77]. 
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 Microwave discharge: Microwave induced plasmas have no electrodes, 

and require frequencies higher than about 1 GHz. In cold microwave 

plasmas, as the frequency of the electrons in the plasma is increased, the 

electrons start to follow the oscillations of the electric field whereas the 

heavy particles follow the average temporal local values of the magnitude 

of electric field. 

 Radio frequency discharge: The mechanism is similar to microwave 

discharges, except radio frequency discharges require frequencies on the 

order of 1 to 100 MHz. 

Mechanism of non-thermal plasma formation were given by Moreau [78] and 

Forte et al. [79]  in detail. In all these mechanisms, if the gap between the electrodes is 

less than a millimeter, the plasma is referred as “microplasma” or “microdischarge.” 

Microplasmas and applications are reviewed by Becker et al. [80]. This review paper 

summarized the electrode geometries, materials and fabrication methods, electron and gas 

temperatures in the reactors. The authors also mentioned the applications of microplasma 

reactors and modeling studies. In this study, the focus is given in glow discharges with 

direct current (DC) excitation in microplasmas, and further detail is given in the next 

subsections. 

2.2.1 Different Operating Regimes of Plasma 

Figure 2.3 shows the voltage and current characteristics of discharges [25, 75]. 

The region AB in this figure shows the abnormal regime in which a small increase in 

current results with significant increase in voltage. At low currents, the dark discharge 

regime occurs which corresponds to region BC in Figure 2.3. In this regime, the current is 

so low that the electric field is not disturbed and stays uniform. The plasma is confined in 
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the discharge hole in these low-current regimes. As the current increases, transition from 

dark to glow discharge occurs. With the increase of current, the number density of 

positive space charges becomes higher near the cathode. Therefore, this layer of positive 

space charges causes the electric field between the electrodes to be disturbed. The current 

density and electric field increase near cathode, and they both decrease near anode. This 

redistribution of electric field yields to lower voltages in glow discharge than that in the 

dark discharge. Additionally, a significant voltage drop occurs near cathode due to 

positive charge accumulation [25, 75]. This transitional regime corresponds to region CD 

in Figure 2.3. This regime is also referred as the “self-pulsing regime” in DC plasmas. 

This study focuses on this self-pulsing regime with DC excitation to generate non-

thermal plasmas. 

As the current further increases, the normal glow discharge occurs which 

corresponds to region DE in Figure 2.3. The normal glow discharge regime has constant 

voltage and current density regardless of the current. The normal current density can be 

obtained if the cathode surface area is large enough to carry the current which is larger 

than the ones for transition and dark discharges. This mechanism keeps the voltage 

constant in the normal glow discharge regime. When the current is greater than the 

current that can be sustained in the normal discharge regime, the discharge covers the 

entire cathode surface, and current density increases [25, 75]. This regime is called the 

abnormal glow regime and corresponds to region EF in Figure 2.3. As the current density 

increases, the thickness of cathode layer and the voltage drop in the cathode layer 

decrease, whereas the electric field increases. Additionally, due to the increase in current 

density, gas heating occurs such that transition from abnormal glow to arc discharge 
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happens in some cases [25, 75]. The regions FG and GH show the transitional regime 

from glow to arc and arc discharge regime, respectively. 

 

 

Figure 2.3. Voltage and current characteristics of DC discharges [25, 75]. 

2.2.2 Electron Avalanche (Townsend Breakdown) Mechanism 

The breakdown mechanism considers an electron that is liberated at cathode 

surface and accelerated due to presence of the electric field between the electrodes. As 

the electron is drifted towards the anode, it collides with molecules and causes ionization 

if it has enough energy for ionization. In general, ways of ionization for gas particles can 

be listed as, 

 electron impact with heavy particles 

 collisions among heavy particles 

 excitation of particles 

 photo-ionization of particles 

 electron attachment to and detachment from particles 

Then, the generated electrons continue to accelerate and move towards the anode 

under the effect of electric field and create a cascade of ionizations. As the electrons 
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reach the anode, breakdown occurs, medium between the electrodes neutralize, and 

another avalanche starts forming if the discharges are stable and continuous. Figure 2.4 

illustrates the breakdown mechanism and cascade of ionizations due to electron 

avalanche. 

 

 

Figure 2.4. Schematic illustrating the Townsend breakdown mechanism and electron 

avalanche [81]. 

In order to mathematically analyze the cascade of ionizations, the Townsend 

ionization coefficient, , is used rather than the ionization rate coefficient which is for a 

single ionization process. Each electron generated near cathode leaves [exp(d) – 1] 

positive ions which eliminate [exp(d) – 1] electrons from the plasma phase where  is 

the secondary emission coefficient and d is the distance between the electrodes. 

Secondary ionization coefficient shows the probability of electron generation on the 

cathode surface by positive ion impact on the cathode. This coefficient depends on the 

cathode material, surface condition, the medium (gas) and reduced electric field (E/p). 
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Additionally, the Townsend breakdown analysis does not consider electron losses due to 

recombination and attachment to electronegative molecules. Based on the current due to 

primary electrons, Io, the current considering the secondary emissions becomes, 

 
 

 

exp

1 exp 1

oI d
I

d



 


   

 (2.9) 

At the instant of breakdown, the current tends to go to infinity which requires the 

nominator goes to zero. Therefore, for self-sustained breakdown, the following condition 

is necessary, 

  exp 1 1d       (2.10) 

Therefore, if this condition is met, the current flows continuously between the electrodes. 

In some cases, such as in the self-pulsing regime, it requires some time to accumulate the 

charges in the discharge gap, i.e., between the electrodes, to meet this condition. 

Although the current is not continuous in this regime, the discharges are self-sustained at 

a particular frequency. 

2.2.3 Paschen Curve 

When a gas is subjected to electric fields larger than its breakdown threshold, it 

can be ionized and form plasma between the electrodes. During this process, electrons of 

the gas molecules receive energy from electric field due to their high mobility and low 

weights compared to those of heavy particles. Due to high surface-to-volume ratio, the 

electron number densities in microdischarge plasma are on the order of 10
12

-10
16

 cm
-3

 

which is on the same order for thermo nuclear fusion [75]. Electric field is reduced in the 

discharge gap as the charges accumulate near the electrodes caused by electrode 
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polarization. After a short duration on the order of 10 ns, the current is terminated [25]. 

The plasma in the gap can remain non-thermal because of this short duration of 

discharges. Therefore, heating of the reactor and the gas in the discharge gap is avoided. 

In a non-thermal plasma, also known as non-equilibrium plasma, the temperature of the 

electrons is significantly higher than that of heavy particles, often exceeding 10,000 K 

[75], whereas the effective temperature of the gas being at about room temperature. The 

plasma phase is maintained for continuous operation by successive discharges which 

occur at locations other than the preceding discharge locations due to residual charges 

[25]. However, if the electric field is applied for a long period of time or higher electric 

field is applied, non-thermal plasma can reach thermal equilibrium and thermal plasma 

can be generated. 

The breakdown voltage, Vbr, which is the minimum required value for plasma 

generation is computed using the approach of Townsend breakdown mechanism for gases 

[82]. This mechanism assumes uniform electric field and considers independent electron 

avalanches which occur at electron separation gaps smaller than 50 mm at atmospheric 

pressure [25]. Additionally, as mentioned in the previous section, the Townsend 

mechanism does not consider electron losses due to recombination and attachment to 

electronegative molecules [25]. Using this mechanism, the breakdown voltage, Vbr, was 

calculated as [25, 82, 83], 

 
 

2

3 ln
br

A pd
V

A pd



 (2.11) 

where A2 is a gas-specific constant given in Table 2.4, p is the pressure of the gas in Torr, 

d is the distance between the electrodes in cm and A3 is a parameter defined as, 
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  3 1ln lnA A d   (2.12) 

where A1 is a gas-specific constant given in Table 2.4, and  is the Townsend coefficient 

defined as, 
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Since Vbr is a function of A3, and A3 is a function of  which is a function of Vbr, Vbr 

cannot be solved explicitly. For this reason, Vbr was calculated iteratively using Equations 

(2.11) through (2.13). 

 

Table 2.4. Parameters for calculation of breakdown voltage [25, 75, 83]. 

 Gas A1 (cm
-1

 Torr
-1

) A2 (V cm
-1

 Torr
-1

) 

 Air 15 365 

 Ar 12 180 

 CO2 20 466 

 H2 5 130 

 H2O 13 290 

 

Figure 2.5 shows the breakdown electric field and voltage for some selected gases 

as a function of the pressure times the discharge gap, referred as the Paschen curve. In 

Appendices, Section B.1 shows the numerical code used in this study for Paschen curve 

calculations. 
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Figure 2.5. Paschen curves for selected gases. 

The Paschen curves can be used to estimate the applied voltages to generate 

plasma. However, these curves are valid for uniform electric fields. Therefore, as the 

electron avalanches occur, the electric field is disturbed and the Paschen curves fail to 

estimate the voltage requirement. Additionally, for electrode separations larger than 50 

mm at atmospheric pressure, i.e., where Townsend breakdown mechanism cannot be 

used, Spark mechanism was introduced [25, 75]. This mechanism considers a concept of 

streamers which are highly ionized, more confined beams of charges between the 

electrodes. 

Moreover, the pd values less than the one that corresponds to the minimum 

breakdown voltage (referred as the left hand side of Paschen curve) correspond to 

discharges called obstructed glow discharge. In these discharges, the actual pd is less than 

required pd for normal current density in the reactor. Therefore, the normal current 
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density cannot be achieved in the reactor, and electron avalanches cannot continue for 

self-sustained discharges. This condition causes unstable plasma generation, and thus, it 

is not preferred. 

In order to sustain the discharges, the electrons must be continuously supplied by 

the cathode, and the work function is defined as the minimum energy required to be 

supplied to a metal to pull an electrode from the surface. It is the difference between the 

electrochemical potential (Fermi level) of electrons and the potential of the medium near 

the electrode. Table 2.5 shows work functions of some metal electrodes for clean 

surfaces. Work function changes with the condition of the surface, such as its 

contamination and roughness [84]. 

 

Table 2.5. Work function of some metal electrodes [84]. 

Electrode Material Work Function (eV) 

Barium 2.49 

Aluminum 4.25 

Molybdenum 4.3 

Iron 4.31 

Copper 4.4 

Nickel 4.5 

Tungsten 4.54 

Carbon 4.7 

Platinum 5.32 

 

The ways to create sustainable discharges can be summarized as follows, 

 Photoelectric emission: a photon with enough energy hits the electrode 

and an electron is emitted from the electrode. 
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 Thermionic emission: if an electrode is heated enough, it will emit 

electrons. 

 Field emission: when the potential near the electrode surface is small 

enough that it creates a “potential well,” electrons can tunnel from the 

electrode to this well. 

 Secondary electron emission: when the positive ions hit the electrode 

surface with enough energy, they both get neutralize and can pull an 

electrode from the electrode. 

2.2.4 Glow Discharge 

Glow discharge shows higher degree of ionization than dark discharge and has 

more effective volume than arc discharges. Therefore, the dissociation studies focus on 

glow discharges as shown in the next section, Section 2.3. Figure 2.6 shows the general 

structure of a glow discharge as well as the distribution of some parameters in a tubular 

reactor. In general, a glow discharge consists of the following regions, in order according 

to their distances from cathode, 

 Cathode layer: This region is dominated by positive ions as the electrons 

are repelled from cathode and drifted under the effect of electric field. 

This region consists of sub-regions, namely Aston dark space, cathode 

glow, cathode dark space, negative glow and Faraday dark space. In Aston 

dark space, the electrons liberated from cathode is accelerated towards 

anode, but they do not have enough energy to cause excitation. Therefore, 

no phonon emission is observed and this sub-region seems dark. As they 

reached the energy to excite the gas particles, cathode glow sub-region 

forms. As the electrons are further accelerated, they cause ionization rather 
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than excitation. This cause cathode dark space formation. The high density 

of electrons significantly causes phonon emission at the end of cathode 

dark space at which negative glow sub-region starts. Due to collisions in 

the negative glow sub-region, the electrons lose energy and this cause 

transition to Faraday dark space. 

 Positive column: This region occurs if electrodes are separated enough 

from each other, so that cathode and anode layers do not overlap. As the 

electron energy reaches enough energy under the electric field, the 

excitation happens and the excited species start emitting phonons. The 

plasma in the positive column is independent of the phenomena of cathode 

and anode layers. The rate of ionization and loss of electrons due to 

diffusion do not depend on the electron density in the positive column 

according to Engel-Steenbeck relation [25, 75]. Therefore, the electric 

field in this region only depends on the gas type, pressure and the diameter 

of the tube, and the electric current in the positive column is determined 

by external resistance or the load. 

 Anode layer: This region is dominated by electrons and negative space 

charges. Similar to cathode layer, there exists an anode dark space and 

anode glow sub-region in the anode layer. In this layer, the ionization is 

about three orders of magnitude smaller than that in the cathode layer [25, 

75]. Therefore, the voltage drop in the anode layer is smaller as shown in 

Figure 2.6c. 

In general, the plasma in the glow discharge is quasi-neutral, i.e., the number of 

electrons and negative ions is equal to number of positive ions in all regions, except the 
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“sheath” regions. Figure 2.6f and g show that sheath regions occur near the electrodes 

due to the interaction of electrodes with ions. The electrons move away from the cathode 

under the effect of applied electric field which decreases the electron density near 

cathode. This depreciation of electrons induces an opposing electric field and makes the 

electrons diffuse towards the cathode. Under the effect of electric field, positive ions 

move towards the cathode. However, the flux of ions towards the cathode is significantly 

smaller than that of electrons due to their mass differences. These differences in fluxes 

cause deviation from quasi-neutrality and define the sheath regions. Similar approach can 

be discussed for the anode. 

Instabilities might occur in glow discharges. These instabilities are mainly in 

terms of discharge contraction due to overheating (thermal) instability and stepwise 

ionization instability [25, 75, 85]. These instabilities can cause nonlinear electron 

ionization and it happens if the current or current density exceeds a critical value. As a 

result, contracted glow discharge filaments occur along the axis of the tube. After 

contraction, the required energy for ionization decreases due to increase in the number 

density of excited species. This may yield to thermal plasma after the contraction. The 

common solution is the cathode segmentation in which each segment of the cathode is 

externally applied voltage so that the voltage drop due to contraction is no longer 

significant. Increasing flow rate with more uniform flow is another solution to 

contraction. Additionally, the transverse and longitudinal instabilities cause striations or 

grooves. This kind of instabilities is mainly due to localized high or low electron or ion 

densities. However, these instabilities do not affect the non-thermal nature of glow 

discharges unlike the discharge contraction. 
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Figure 2.6. The glow discharge regions and the distribution of some key parameters 

between the electrodes [25, 75]. 
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2.2.5 Hollow Cathode Discharge 

Hollow cathode discharge is also used for the geometry of the plasma reactor 

which consists of a hollow cathode and an anode with arbitrary shape. Figure 2.7 shows a 

schematic of a simple geometry for hollow cathode discharge reactor. As the distance 

between the cathodes, D, gets smaller, their negative glow sub-regions become closer or 

overlap. Electrons liberated from or near one of the cathodes move towards the positive 

column under the effect of electric field. If these electrons have enough energy, they enter 

the negative glow sub-region of the cathode on the opposite side, and they feel the 

presence of the opposing electric field. These opposing electric fields between the 

cathodes make the electrons move back and forth between the cathodes like pendulums. 

These electrons are sometimes referred as “pendulum electrodes,” and this mechanism is 

called “Pendel effect” [80, 86]. Due to Pendel effect, the ionization effect of electrons is 

significantly increased with respect to other glow discharges. Additionally, in the hollow 

cathode discharge, secondary electron emission is more pronounced than the glow 

discharge since the electron number density in the negative glow increases the number of 

positive ions close to the cathode. Higher photoemission from cathodes augments the 

ionization as well. 

 

 

Figure 2.7. Schematic of a hollow cathode discharge [80]. 
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When the distance between the cathodes is less than a millimeter, the hollow 

cathode discharge is called “microhollow cathode discharge” (MHCD). MHCD reactors 

follow the general electrical characteristics of glow discharges. However, the term 

MHCD is ambiguously used in the literature for the transitional regime CD in Figure 2.3 

where voltage decreases with increasing current. MHCD reactors can be operated in any 

regimes with alternating, direct or pulsed excitation. This study proposes a MHCD 

reactor operating at self-pulsing regime for CO2 and H2O dissociation. Additionally, 

Chapter 4 shows the electrical characterization of the MHCD reactor in this regime. 

 PLASMA DISSOCIATION 2.3

This section summarizes gas dissociation using different plasma reactors and 

technologies, including microdischarge plasmas. 

2.3.1 Plasma Studies and Plasma Reactor Designs 

Subrahmanyam et al. [87] designed a novel dielectric barrier discharge (DBD) 

plasma reactor to oxidize the volatile organic compounds that are toxic and carcinogens 

and are emitted by various industrial processes. The oxidation of volatile organic 

compounds requires temperatures about 700-900
o
C, and plasma reactors can be used as 

catalysts for this process. With the use of catalysts, the temperature of the oxidation 

process can be reduced to 300-500
o
C, but conventional catalysts require high energy 

supply even at low concentrations. Subrahmanyam et al. [87] suggested using a DBD 

plasma reactor to overcome this limitation of conventional catalysts. They tested their 

reactor design using toluene at room temperature and pressure. During their experiments, 

they varied toluene concentration, applied AC voltage and frequency. Figure 2.8 shows 

the schematic of the reactor. A cylindrical quartz tube with inner diameter of 18.5 mm 
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and wall thickness of 1.6 mm was used. The tube was covered with silver which was used 

as an outer electrode. The inner electrode was copper, and AC voltage with peak of 12.5-

22.5 kV was applied in the range of 200-450 Hz. Alternatively, inner electrode was 

replaced with stainless steel sintered Mn or Co metal fibers. Reactor with Co/SMF 

electrode showed the highest conversion, ~85% at 12.5 kV with 200 Hz. The conversion 

ratio could reach up to 100% as the voltage was increased to 22.5 kV or the frequency 

was increased to 450 Hz. Their results also showed that the toluene-to-CO2/H2O 

conversion decreased as the flow rate of toluene increased for each electrode. 

 

  

Figure 2.8. Schematic of plasma reactor design of Subrahmanyam et al. [87]. 

Cal and Schleup [88] also considered oxidation of volatile organic compounds, 

and used dielectric barrier discharge (DBD) plasma reactor for the process. They tested 

their reactors using benzene at room temperature and pressure. Two planar DBD reactors 

consisting aluminum electrodes of spacing of 3 mm and 5 mm were designed. As a 

dielectric medium, Pyrex glass was used. Aluminum electrodes had 18 cm width and 30 

cm length. AC voltages and frequencies were varied from 9 to 20 kV and from 45 Hz to 

15 kHz, respectively, and the residence times were varied from 5 and 32 seconds. The 

results of this study showed that increasing applied voltage, increasing residence time, 

decreasing relative humidity, and decreasing electrode spacing increased the benzene-to-
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products conversion. They could achieve conversion yields higher than 99%. Conversion 

yield is defined as the number of moles of net produced product divided by that of fed 

reactant. Additionally, increasing relative humidity decreased CO formation. At an 

applied voltage of 9 kV, frequency of 1 kHz, gap distance of 3 mm and a residence time 

of 5 seconds, the benzene dissociation decreased from about 47% to 12% when the 

relative humidity increased from zero to 90%. 

Jahanmiri et al. [89] investigated the dissociation of naphtha as a heavy 

hydrocarbon using a nanosecond pulsed dielectric barrier discharge plasma reactor at 

room temperature and pressure. Figure 2.9 shows the schematic of their experimental 

setup. The plasma reactor was made of a cylindrical Pyrex glass with an inner diameter of 

15 mm and a wall thickness of 2 mm. The cylindrical glass was covered by 10-cm-long 

aluminum foil as the outer electrode. A copper rod with a diameter of 1.35 mm was used 

as an inner electrode to test different voltages and frequencies. Copper was selected due 

to its low electrical resistance. Moreover, they investigated effect of inner electrode 

material on the conversion efficiency and used copper, iron, brass, aluminum and 

stainless steel electrodes. Each electrode had a diameter of 6 mm. Voltages up to 7 kV 

with corresponding applied power from 3 to 24.7 W and frequencies up to 18 kHz were 

applied to the reactor with pulse duration less than 50 ns. The results of this study showed 

that better conversion could be obtained with increasing applied voltage or frequency. 

Conversion yields up to 69% were reported. The temperatures of the inner and outer 

electrodes at different voltages and frequencies were also reported. The temperature of 

the inner copper electrode was about 190
o
C whereas the temperature of the outer 

aluminum electrode was about 160
o
C at 7 kV and 18 kHz. Among the investigated five 

electrodes, the lowest temperatures were observed for steel electrode whereas inner 
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aluminum electrode had the second lowest temperature. The energy efficiencies of the 

reactor which was defined as the ratio of the total volume of produced gas to the input 

power listed as steel, aluminum, brass, iron and copper electrodes in the decreasing order. 

 

  

Figure 2.9. Experimental representation of Jahanmiri et al. [89]. 

Studies on conversion of methane to methanol using non-thermal dielectric 

barriers discharge plasmas were reviewed by Indarto [90]. Three main designs were 

reported in this paper as given in Figure 2.10. The parameters mentioned in this study 

were methane-to-oxidizer ratio, residence time, applied voltage, and use of noble gas as a 

carrier gas. As an oxidizer; oxygen, carbon dioxide and water vapor were considered. It 

was reported that as the oxygen-to-methane ratio was increased, the methanol formation 

increased up to oxygen-to-methanol ratio of 4:1 after which the conversion decreased 
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[91, 92]. Increasing the residence time decreased the methanol formation as the produced 

methanol was converted into other compounds, such as formic acid, methyl formate on 

longer residence times [93]. On the other hand, shorter residence time reduced the 

methane-to-methanol conversion [94]. Required voltage for methanol formation was also 

a function of the electrode gap, and increasing voltage increased the methanol formation. 

Okumoto et al. [95] stated that increasing the concentration of an inert gas in the plasma 

reactor could increase the methanol conversion when the concentration of the oxidizer 

was kept constant as the number of free electrons increased and the partial pressure of 

methane decreased. When carbon dioxide was used as an oxidizer, more complex 

products, such as formic acid were also observed in addition to methanol formation. They 

also stated that use of water vapor as the oxidizer without supplementary oxygen or 

carbon dioxide could limit the over-oxidation of methanol after its formation. 

Mfopara et al. [98] studied the effects of water vapor on methane dissociation 

using dielectric barrier discharge (DBD) plasma reactor under atmospheric pressure and 

temperatures less than 150
o
C. The reactor was made of Pyrex glass cylinder with an outer 

diameter of 25 mm and a wall thickness of 3 mm. The inner and outer electrodes were 

stainless steel and copper, respectively. The inner electrode was at the center of glass 

cylinder and had a diameter of 19 mm. The outer electrode covered the glass cylinder 

from outside. The electrodes had a length of 10 cm. They applied a peak voltage of 10 kV 

at 7350 Hz, and the maximum power per flow rate was about 1500 J/L. Methane was 

diluted in nitrogen, and effects of water vapor on methane oxidation were investigated 

under 0 or 10% per volume oxygen conditions. When water vapor was introduced to the 

reactor,  methane   molecules   competed   with   water   molecules   for   active   nitrogen 
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(a) 

  
(b) (c) 

Figure 2.10. Different plasma reactor designs given in Indarto [90]; (a) Larkin et al. [93], 

(b) Okumoto and Mizuno [96], (c) Nozaki et al. [97]. 

molecules, and the conversion yield of methane decreased from about 50% to 35%. 

Addition of water vapor promoted the carbon monoxide and carbon dioxide formations 

instead of hydrogen cyanide (HCN) formation which was the case under no oxidant 
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conditions. In the presence of oxygen, methane conversion was increased and the process 

yielded towards complete oxidation, i.e., towards carbon monoxide and carbon dioxide 

formation. 

 

 

Figure 2.11. Experimental setup of Mfora et al. [98]. 

Jun and Jacobson [99] designed a dielectric barrier discharge (DBD) non-thermal 

plasma reactor for CO2 dissociation. The reactor had a 1 mm by 1 mm square plasma 

channel with two 65-mm-long copper electrodes. Glass with 1 mm thickness was used as 

a dielectric barrier. CO2-to-CO conversion was investigated with varying residence time, 

flow rate of CO2 and applied voltage. The applied voltage was varied from 5.9 to 6.9 kV 

at 1.1 kHz, residence time was between 0.3 and 2 seconds. The CO2 flow rate was varied 

from 3 to 20 cm
3
 for DBD reactor. The results showed that as the applied voltage and 

residence time increased, CO2-to-CO conversion was increased. As the applied voltage 

increased from 5.9 to 6.9 kV, CO concentration at the reactor effluent increased by about 

8 times at a flow rate of 10 mL/min. Additionally, as the residence time increased from 

0.3 to 2 seconds at an applied voltage of 6.9 kV, the CO concentration increased more 

than 4 times. 

Liang et al. [100] designed and analyzed a dielectric barrier discharge plasma 

reactor for H2S dissociation at room temperature and pressure. The reactor was made of 
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20-cm-long poly(methyl methacrylate) (PMMA) cylinder with an outer diameter of 32 

mm and a wall thickness of 2 mm. Iron was used as an outer electrode, and tungsten wire 

with 1.25 mm diameter was used as an inner electrode. Air was used as a carrier gas. 

Similar to the other studies mentioned above, H2S conversion increased with increasing 

applied AC voltage and frequency. H2S conversion yield increased from 6.8 to 7.8% 

when frequency was increased from 100 to 400 Hz at 10 kV. The conversion yield was 

defined as the concentration change in H2S before and after the plasma reactor divided by 

the initial concentration. The maximum yield of 82.8% was obtained at 21 kV and 400 

Hz. These valued were obtained when the inlet concentration was 30 ppm, gas flow rate 

was 0.25 L/s and residence time was 0.8 s. Increasing residence time and specific energy 

density (J/L) increased the decomposition efficiency. The authors further improved their 

design by randomly packing the reactor with ceramic Raschig rings or glass pellets. 

Results showed that pellets increased the H2S conversion yield were about 93%, 80% and 

69% for ceramic Raschig rings, glass pellets and no pellets, respectively, at 21 kV. The 

major products observed were H2O, SO2 and SO3. 

Kappes et al. [101] designed a dielectric barrier discharge (DBD) reactor for 

steam reforming of methane to produce hydrogen. Figure 2.12 shows the design of DBD 

reactor. The 450-mL reactor was made of alumina ceramic tube with inner diameter of 46 

mm and wall thickness of 5 mm. The inner electrode had metal disks with 38 mm in 

diameter. The outer electrode was deposited outside the alumina ceramic tube. Pulse 

voltage was applied to the inner electrode with a rise time of 15 V/ns, a frequency of 15 

kHz and a peak voltage of 40 kV. Average of 180 W was supplied which corresponded to 

3.6 kJ/L. The reactor was heated to around 400
o
C before the gas fed into the reactor. 

Methane-to-hydrogen conversion was less than 6%, and the rest of the products were 
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C2H6, CO, C2H4, C2H2, C3H8, CH3OH, CO2, C3H6, and C4H10 in the decreasing order of 

volume fractions. The authors stated that only about 3% of the total input power 

corresponded to the reaction enthalpy rate, whereas about 63% of the total power was 

used in heating the alumina ceramic tube. 

Spencer and Gallimore [102] experimentally studied CO2 dissociation in a 1-kW 

RF discharge at the frequency of 13.56 MHz. The CO2 was fed into a 15-cm diameter and 

50-cm long cylindrical quartz tube. The power was varied from 0 to 1 kW, and an 

external magnetic field was applied from 0 to 60 A. The results showed that external 

magnetic field increased CO production up to 20% at 1 kW and flow rate of 100 ml/min. 

 

 

Figure 2.12. DBD reactor by Siemens, Germany [101]. 

The effect of external magnetic field for the other cases was found to be insignificant. 

This result indicated the plasma type change from capacitive to inductive plasma under 

higher flow rates and higher applied power. Additionally, the yield per mass basis was 

about 80% at 1 kW under all flow rates, whereas the energy efficiency was less than 1% 

at these conditions. The energy efficiency increased to about 3% when the yield was 

about 20%. 
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Zheng et al. [103] experimentally studied the dissociation of CO2 and CO in a 

dielectric barrier discharge (DBD) plasma reactor as the applied voltage, humidity and 

concentration of reactant gas changed. The carrier gas was either Ar or oxygen. The 

reactor consisted of two quarz tubes with an outside diameters of 10 mm and 32 mm and 

a length of 200 mm. One stainless steel rod as an electrode was placed inside the inner 

quartz tube, and a stainless steel band was circled around the inner tube as shown in 

Figure 2.13. The voltage was varied from 0 to 9 kV at a frequency of 2.2 kHz, and the 

total flow rate was kept constant at 2 L/min. The results showed that at zero humidity the 

conversion ratio of CO2 had a maximum value of about 9% at 4 kV for Ar carrier, and it 

was constant about 1.5% for oxygen system. The CO2 conversion decreased almost 

linearly with increasing CO2 concentration for both systems. For CO, as the applied 

voltage increased to 7.2 kV at zero humidity, the conversion ratio of CO increased to 

about 35% for O2 and 8% for Ar. The convergence ratio for oxygen system was higher 

than Ar system since atomic oxygen reacted with CO to form CO2. Increasing the CO 

concentration decreased the conversion ratio of CO similar to CO2 case. Finally, the 

energy conversion efficiency was about 1% and 1.6% at 7.2 kV for CO2 and CO, 

respectively. The energy conversion efficiency increased to 10% and 9.6% at 1.8 kV for 

CO2 and CO, respectively. 

Finally, Li et al. [104] summarized the conversion ratio for methane dissociation 

using different plasma reactors at atmospheric conditions as well as the specific energy 

required to convert methane into acetylene, ethane and hydrogen. Table 2.6 shows this 

comparison. 
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Figure 2.13. Schematic of the experimental setup for the study of Zheng et al. [103]. 

Table 2.6. Conversion and energy cost for methane reforming into C2 hydrocarbons and 

H2 using different atmospheric non-thermal plasma discharge methods [104]. 

 Methane 

Conversion  

(%) 

Acetylene 

Formation 

(eV/mol) 

Ethane 

Formation 

(eV/mol) 

Hydrogen 

Formation 

(eV/mol) 

Pulsed spark 18-69 14-25 35-65 10-17 

Pulsed streamer 19-41 17-21 38-59 12-19 

Pulsed DBD 6-13 38-57 137-227 47-75 

AC DBD 5-8 116-175 446-637 151-205 

 

2.3.2 Microdischarge Plasma Studies 

This subsection summarizes the studies to show the applications of 

microdischarge plasma reactors in the literature, as well as MHCD reactors for gas 

dissociation. 

Shin and Raja [105] combined a DBD plasma generator with microdischarge 

plasma actuator for pure helium or pure nitrogen. The microdischarge plasma actuator 

was used as a precursor or a catalyst to DBD reactor. Figure 2.14 shows the schematic of 
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their design. The hybrid reactor consisted of 635 m-thick upper alumina, 100-m thick 

middle mica and 200-m thick lower mica dielectrics with a 50 m-thick common nickel 

or aluminum cathode electrode. Four holes with diameter of 342 m were used for the 

microdischarge plasma actuator. The discharge gap for DBD plasma generator was 6 mm 

for helium and 3 mm for nitrogen. The power requirement for microdischarge actuator 

was 3.2 and 6.6 W at 15 kHz for 300 and 700 Torr, respectively. The average breakdown 

voltage for DBD reactor was measured as 1143 V. The addition of microdischarge 

actuators reduced the required voltage for DBD reactor by about 50% for both helium 

and nitrogen. Current of 4 mA was measured at 15 kHz, 300 Torr and 500 V for helium 

with 6 mm gap, and peak current of 9 mA was measured at 10 kHz, 300 Torr and 2.8 kVp 

for nitrogen. 

 

 

Figure 2.14. Schematic of hybrid DBD microdischarge plasma reactor by Shin and Raja 

[105]. 

Kothnur et al. [106] modeled one-dimensional, parallel-plate DC microdischarge 

plasma reactor for helium. The reactor had a gap of 250 m, operated at 250 Torr. The 

applied voltage and current density varied from 140 to 190 V and from 100 to 2000 

mA/cm
2
, respectively. The current density of 2000 mA/cm

2
 resulted with maximum gas 

temperature of 1500 K while 100 mA/cm
2
 yielded to a maximum gas temperature of 340 

K. The corresponding maximum electron temperatures were about 10 and 40 eV. 
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However, the charge density at lower current density was two orders of magnitude less 

than that at higher current density on the order of 10
12

 cm
-3

 and 10
14

 cm
-3

. The authors 

also concluded that the microdischarges had generally nonhomogeneous charge 

distributions in the discharge gap, and a cathode sheath generally occurred. 

A tubular microdischarge thruster was modeled for microsatellites by Sitaraman 

and Raja [18]. The inlet and exit diameters of the tube were 100 and 300 m, 

respectively, and the length of the tube was 560 m. The electrodes were embedded in 

the dielectric which had a dielectric constant of 9, and the electrodes were separated by 

160 m. The width of the electrodes was 115 m, and the distance between the flow and 

electrodes was 40 m. Argon was fed to the thruster, and a peak voltage of 600 V was 

applied at either 10 or 20 MHz. The inlet pressure was 40 kPa, and the flow rate was 0.55 

mg/s. Figure 2.15Figure 2.14 shows the schematic of their design and the pressure 

distribution inside the reactor. Total of 269 N thrust was obtained while the gas 

temperature increased by only 150 K,  and  the  maximum  current density was about 600  

 

 

Figure 2.15. Schematic of and pressure distribution within the tubular microdischarge 

thrusted modeled by Sitaraman and Raja [18]. 
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mA/cm
2
 at a frequency of 10 MHz. When the frequency was 20 MHz, thrust reached the 

value of 278 N, and the thermal power dissipation also increased from 62 to 84 mW due 

to Joule heating. 

Kushner [107] numerically modeled a cylindrical microdischarge device whose 

schematic is given in Figure 2.16. The hole for Ar gas in the center of the tube was 100 

m in radius near the anode and 150 m in radius near the cathode. The thickness of the 

dielectric was 200 m, and the electrodes were 100 m thick. There was no flow in the 

tube, and in the base case 2 mA was applied at the pressure of 250 Torr. For the base 

case, the voltage of 181 V was observed and the maximum electron temperature was 6.1 

eV with the maximum electron density of 2.2x10
14

 cm
-3

. Moreover, the peak electric field 

was estimated as 80 kV/cm
-1

 and the temperature of the gas increased to 580 K. As the 

pressure varied, the Paschen curve was obtained with a minimum potential of 165 V at 

125 Torr. Consequently, the electron density increased with increasing pressure. The 

temperature in the center of the tube was 200 K higher in the case of 50 Torr when 

compared to 500 Torr. When the current through the reactor was increased from 0.15 mA 

to 4 mA, the voltage increased from 138 V to 196 V and the peak gas temperature 

increased from 360 K to 1100 K. In the case of multistage microdischarge where two 

metal-dielectric-metal configurations were stacked together, the peak electron densities 

and gas temperatures were comparable to those of one reactor, whereas the current was 

split equally into two. Kushner [107] also stated that the microdischarge plasma can reach 

the power densities such that only pulsed macroscopic discharges can go up to. However, 

high power density yields to larger momentum transfer from electric field to gas, and 

thus, the temperature of the gas is expected to increase. 
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There are only a few experimental studies that illustrated the use of MHCD 

reactors for gas dissociation prior to this study. Qui et al. [108] studied hydrogen 

generation from ammonia at atmospheric conditions using a molybdenum electrodes 

separated by a 250-m-thick mica plate. The discharge hole was 100 m in diameter. 

When the inlet concentration of ammonia was 6.25% in argon, the authors were able to 

dissociate about 20% of the ammonia and achieved an energy efficiency of 11%. They 

showed that the conversion yield and energy efficiency increased linearly with the 

residence time. In another study, Hsu and Graves [109] used a MHCD reactor with a 

discharge hole of 200 m in diameter and 460 m in length to dissociate NH3 and CO2, 

separately. They reported maximum conversion yields of about 30% for NH3 at a 

pressure of 700 Torr and about 47% for CO2 at a pressure of 250 Torr. 

 

 

Figure 2.16. Schematic of microdischarge device modeled by Kushner [107]. 
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The previous studies showed the operating conditions, power requirements and 

dissociation capabilities of plasma reactors. Although these studies showed variety in 

operation, design and application, they mainly focused on dielectric barrier discharge 

reactors and plasma generation using inert gases. To our knowledge, there is no study that 

investigates the syngas production in a microhollow cathode discharge plasma reactor at 

atmospheric pressure and about room temperature. 

 STATE-OF-THE-ART SYNGAS PRODUCTION METHODS FROM CO2 AND H2O 2.4

A number of studies reported different methods for simultaneously dissociating 

CO2 and H2O for syngas production. These methods can be categorized as 

electrochemical, photochemical and thermochemical production. This section 

summarizes these state-of-the-art different methods for syngas production and compares 

them in terms of their energy efficiencies, production rates, operation times and 

temperatures. 

Delacourt et al. [110] studied an electrochemical cell to produce syngas from H2O 

and CO2 mixture at room temperature. They suggested a cell similar to a proton exchange 

membrane fuel cell with some modifications for CO2. They used silver as cathode, 

platinum-iridium alloy as anode, and aqueous 0.5 M KHCO3 solution between the 

cathode and Nafion membrane. CO2 was fed to the cathode side with a flow rate of 20 

mL/min, whereas deionized water was recirculated at the anode side with a flow rate of 

27 mL/min. The authors stated H2 to CO ratio of 2 at a total current density of 80 

mA/cm
2
, and at this current density, electrical-to-chemical conversion efficiency of about 

35%. 

Kumar et al. [111] studied the generation of H2 and CO simultaneously from H2O 

and CO2 using photochemical cell in which Re(bipy-tbu)(CO)3Cl and p-Si catalysts were 
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used in non-aqueous medium. The authors dissociated water up to 1.5 mL in acetonitrile 

of 30 mL at 1 atm CO2. The authors showed that H2 to CO ratio of 2 was possible when 

the electrolysis was performed at -1.9 V with respect to Fc/Fc
+
. These conditions 

achieved at a charge of about 9.8 C after 110 minutes. The authors also reported a light-

to-chemical energy conversion efficiency of 4.6% when monochromatic light at 661 nm 

was used at an intensity of 95 mW/cm
2
. 

Chueh et al. [44] constructed a prototype of a solar thermochemical reactor to 

dissociate CO2 and H2O using ceria. The reactor was cylindrical with a cavity receiver of 

absorptivity of 94%, and the walls of the cylinder with a radius of 35 mm and a height of 

102 mm was covered with monolithic and porous ceria of 325 g. Argon was used as a 

carrier gas, and the incident radiation was set to 1.9 kW at 1500 suns. At these conditions, 

the temperature of ceria increased up to 1640
o
C, and the maximum solar-to-chemical 

conversion efficiency was achieved as 0.8%. The maximum production rates of H2 and 

CO were about 1.5 and 5 mL/min/gceria, respectively. Furler et al. [112] studied similar 

solar thermochemical reactor with 127 g ceria, and reported that it was possible to 

achieve H2-to-CO ratios from 0.25 to 2.34 when H2O-to-CO2 ratios at the reactor influent 

varied from 0.8 to 7.7. The peak production rates of H2 and CO were 0.32 and 0.16 

mL/min/gceria at power input of 3.6 kW for reduction (30 minutes) and 0.7 kW for 

oxidation (15 minutes). Recently, Scheffe et al. [113] stated that the solar-to-chemical 

fuel efficiency increased by 12 times when the mass of ceria increased from 90 to 1400 g 

by scaling up the reactor volumetrically. 

For dissociating H2O and CO2, Ermonoski et al. [114] suggested another solar 

thermochemical reactor that had moving packed beds carrying reactive particles such as 

CeO2. The authors numerically analyzed their system and stated that solar-to-chemical 
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could theoretically reach 30% for operating temperatures up to 1500
o
C. Smestad and 

Steinfeld [115], Bader et al. [116] also reported that theoretical solar-to-chemical energy 

efficiencies could go up to 30% in a solar thermochemical reactor when metal oxides 

were used as catalysts. However, these efficiency calculations did not take into account 

the energy required for quenching the products. 

More recently, Jin et al. [117] reported H2O and CO2 dissociation with zinc 

powder and analyzed the autocatalytic formation of formic acid (HCOOH). They used 

aqueous NaHCO3 as CO2 source, and the pH of the solution was adjusted by NaOH or 

NaCl as the pH of the solution affected the dissociation. Their results showed that the 

maximum formic acid yield of about 80% at temperature of 325
o
C, Zn of 10 mmol, 

NaHCO3 of 1 mmol, reaction time of 90 minutes and initial pH of 8.6. The maximum Zn-

to-HCOOH energy conversion efficiency was reported as 16.9% at the yield of 70% 

when Zn:NaHCO3 ratio was 3. Assuming Zn-to-ZnO energy conversion efficiency of 

30%, the overall solar-to-HCOOH energy conversion efficiency was estimated around 

5%. 

In this study, the MHCD plasma reactor will be evaluated and its advantages and 

disadvantages over these state-of-the-art methods and processes in the literature will be 

presented for dissociating H2O and CO2 based on operation and manufacturing 

simplicity, energy conversion efficiency and conversion yield. 
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 Chapter 3

Materials and Methods 

This chapter presents the materials and methods used in this study. Section 3.1 

introduced the microhollow cathode discharge (MHCD) reactor used in this study with its 

materials and geometrical dimensions. Section 3.2 describes the experimental setup, 

specifically the equipment and controllers used in this study with their limitations as well 

as the measured parameters. The last part of this chapter, Section 3.3, presents the 

performance metrics in terms of the measured parameters. Throughout this study, these 

metrics were used to quantify the dissociation and syngas production of the MHCD 

reactor. 

 MICROHOLLOW CATHODE DISCHARGE REACTOR PROTOTYPE 3.1

Figure 3.1 shows the schematic of the microhollow cathode discharge (MHCD) 

plasma reactor. Microhollow cathode discharge plasma reactor consisted of two 

aluminum electrodes that were separated by mica as a dielectric layer. Mica was selected 

as dielectric material based on its large operation voltage as explained in detail in 

Appendix D. Each aluminum electrodes had a thickness of 10 m, and a single mica 

layer had a thickness of 150 m. In this study, mica layers were stacked to increase the 

electrode separation. The electrodes were attached on the mica plate with an offset to 

ease the electrical connections to the electrodes as shown in Figure 3.1. A discharge hole 

was featured through these three layers, and gas was fed through this hole in this study. 

The width and length of mica were selected such that the discharge would only occur in 

the discharge hole.  
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Figure 3.1. Schematic of the microdischarge reactor used in the study, (a) cross-sectional, 

and (b) top view. 

 EXPERIMENTAL SETUP 3.2

Figure 3.2 shows the schematic and the actual picture of the experimental setup. 

Carbon dioxide with 99.5% purity (Matheson Tri-Gas) and argon with 99.998% purity 

(Airgas) were fed to the H2O-saturator through flow rate controllers. Relative humidity 

controller (Walz, KF-18/2B) and the CO2/H2O analyzer (LI-COR, LI-840A) were used to 

verify that the gas streams were saturated with water. Then, the H2O-saturated gas stream 

was fed to the flow chamber in which the MHCD reactor was placed. The gas samples 

were taken at the inlet and at the exit of the flow chamber, and their compositions were 

analyzed in a gas chromatograph (Shimadzu GC-2014). In Appendix C, methodology for 

gas chromatography is given briefly as well as the calibration of the equipment and 

sample chromatograms used in this study. The aluminum electrodes of the MHCD 

reactor were connected to a high voltage power source (Stanford Research Systems, 

PS350). A ballast resistor with a resistance of 1 M was used to limit the current flowing  

Mica

(Dielectric)
Discharge HoleAluminum Electrodes

(a) 

(b) 
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(a) 

 
(b) 

 
(c) 

Figure 3.2. (a) Schematic, (b) picture of the experimental setup (gas chromatograph, 

relative humidity controller and CO2/H2O gas analyzer not shown in the picture), and (c) 

close-up picture of the reactor with flow chamber. 
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to the MHCD reactor and to operate the reactor in the self-pulsing regime. The self-

pulsing regime is characterized by a negative differential resistance. This resistance 

caused a decrease in voltage as current increased. At atmospheric conditions, 

microdischarges tend to generate arcs which prevent stable operation as glow discharge. 

This issue was addressed by operating the reactor at the self-pulsing regime [118]. 

Another resistor, RCVR, was used to measure the current through the MHCD 

reactor. Voltages, V1 and V2, were measured using two high voltage probes with 3-pF 

capacitances (Tektronix P6015A, 75 MHz), and these voltages were recorded using an 

oscilloscope (Tektronix, TDS2002C, 70 MHz). 

 

 ANALYSES 3.3

The temporal discharge current, I(t), was calculated by dividing the voltage drop 

across the current viewing resistor with the magnitude of this resistor, RCVR, as, 

  
   1 2

CVR

V t V t
I t

R


  (3.1) 

The electrical power requirement of the MHCD reactor, P(t), was calculated using 

the instantaneous voltage V2 and current I as, 

      2 P t I t V t  (3.2) 

Finally, the time-averaged power was calculated as, 
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where texp was the duration of each experiment. The energy density, ev, is then defined as, 

 
avg

v

in

P
e

V
  (3.4) 

where inV  is the total volumetric flow rate at the reactor influent. To evaluate the degree 

of dissociation, H2O-to-H2 and CO2-to-CO conversion yield were defined, respectively, 

as, 

 2
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H
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2
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n
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   (3.6) 

where in  is the molar flow rate of the specie i. Finally, the electrical-to-chemical energy 

conversion efficiency is defined as, 

 2 2 2H ,net ,H O CO,net ,CO

o o

rxn rxn

avg

n H n H

P


  
  (3.7) 

where o

rxnH  shows the enthalpy of the corresponding reaction at 298 K and 1 atm. The 

chemical reactions for H2O and CO2 dissociations and their corresponding standard 

reaction enthalpies can be written as [75, 119], 

 
2 2 2

1
2

H O H O  , 
2 2,H O H O

241.8kJ molo

rxnH   (3.8) 

 2 2
1

2
CO CO O  , 

2 2,CO CO
283kJ molo

rxnH   (3.9) 

Note that saturated gases can have maximum of 3.2% water content per mole at 

room temperature and atmospheric pressure. 
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Finally, the residence time, tres, was estimated based on the volume of the reactor 

and the volumetric flow rate as, 

 
2

4

hole
res

in

D d
t

V


  (3.10) 

where Dhole is the diameter of the discharge hole, and d is the distance between the 

electrodes. 

In Appendices, Appendix A shows the nomenclature, and Section B.2 shows the 

numerical code used to calculate the energy conversion efficiency and conversion yields 

in this study. 

Additionally, optical images of the reactor were taken using a CCD camera 

(Nikon DS-Qi1) and an inverted microscope (Nikon Eclipse Ti-E). The images were 

analyzed in microscope imaging software (Nikon NIS-Elements) to check the hole size of 

the reactor and to determine degraded electrode area around the hole. Details of the 

electrode degradation for the MHCD reactor are given in Section 5.3.4. 
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 Chapter 4

Electrical Characterization Model of MHCD Plasma Reactor 

This chapter reports the electrical characterization and an equivalent circuit of a 

microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD 

reactor was prototyped for air plasma generation, and its current-voltage characteristics 

were measured experimentally in the self-pulsing regime for applied voltages from 2000 

to 3000 V. The reactor was modeled as a capacitor in parallel with a variable resistor. A 

stray capacitance was also introduced to the circuit model to represent the capacitance of 

the circuit elements in the experimental setup. The values of the resistor and capacitors 

were recovered from experimental data, and the equivalent circuit model was able to 

accurately represent the peak and average power consumption as well as the self-pulsing 

frequency within the experimental uncertainty. Although the results shown in this chapter 

was for atmospheric air pressures, the equivalent circuit model of the MHCD reactor 

could be generalized for other gases at different pressures. 

 INTRODUCTION 4.1

Voltage and current characteristics of MHCD reactors determine not only the 

regime that the reactor operates but also the optimum operating voltage and current for 

the maximum energy efficiency of the reactor. There are four main plasma regimes based 

on the current; abnormal glow at low current, self-pulsing, normal glow and abnormal 

glow at high current in the order of ascending current [31, 32]. In the abnormal glow 

regimes, current increases with voltage, whereas in the normal glow regime the increase 

in current is independent of voltage. Self-pulsing regime is an unsteady regime between 

abnormal and normal glow regimes. In the self-pulsing regime, current and voltage 
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oscillate with time, and current increases with decreasing voltage such that the reactor has 

negative differential impedance in this region. Additionally, the plasma is confined in the 

discharge hole in abnormal glow regime at low currents, while the plasma expands 

outside of the discharge hole on the cathode side in the normal glow regime [31, 32]. In 

the self-pulsing regime the plasma expands outside of the discharge hole and then retracts 

back in the hole, and this behavior results in a pulsing effect at a particular frequency and 

oscillating discharge voltage and current [33].  

Previous modeling studies of these reactors operating in the self-pulsing regime 

did not successfully capture the current and voltage characteristics. This paper addresses 

these issues, provides experimentally measured current-voltage data over the range of 

applied DC voltages from 2000 to 3000 V, and proposes a simpler equivalent circuit 

model for the MHCD reactor operating in the self-pulsing regime. This model is expected 

to be applicable for wide ranges of gases and pressures. In this study, we specifically 

present the application of this model for air plasmas at atmospheric pressure. 

 CURRENT STATE OF KNOWLEDGE 4.2

Only a few studies reported the equivalent circuit of MHCD reactors operating in 

the self-pulsing regime, most of which focused on the operation under low pressure 

environments. Hsu and Graves [120] proposed a model composed of a variable resistor in 

series with a inductor which were in parallel with a capacitor as shown in Figure 4.1a. In 

their experiments, they used NH3 in a MHCD reactor with 500-m thick mica and 100-

m thick molybdenum electrodes and a 200-m diameter through hole. The reactor was 

operated at 100 Torr (13.3 kPa). They modeled the variable resistor as a function of the 

current and fit a second order polynomial to experimental data relating the observed 

resistance to reactor current. As shown in Figure 4.2b, although the model successfully 
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captured the negative differential resistance and the temporal variations in current and 

voltage, the waveform of the simulated current differed significantly from the 

experimentally measured one. 

 

  

(a) 

 
(b) (c) 

Figure 4.1. (a) The equivalent circuit proposed by Hsu and Graves [120], and (b) 

corresponding current and (c) voltage characteristics.  

In another study, Aubert et al. [121] modeled the self-pulsing behavior of a 

MHCD reactor using argon for the operating pressures from 40 to 200 Torr (5.3 to 26.6 

kPa) through a 200-m hole. Figure 4.2a shows their proposed equivalent circuit that was 

modeled as two parallel, constant resistors, a capacitor in parallel and a voltage-
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controlled switch in series with one of the resistors. The switch was operated based on the 

breakdown voltage obtained from the Paschen curve. Figure 4.2b shows the simulated 

voltage and current results as a function of time. Although the authors indicated that their 

model agreed well with the experimental data, this was neither quantified nor 

demonstrated by experimental voltage or current data. Additionally, when the applied 

voltage was increased from 1 to 2 kV, their results showed an increase in the current and 

frequency of the discharges, and the maximum and minimum discharge voltages were not 

altered as expected due to constant capacitance. 

 

  

(a) (b) 

Figure 4.2. (a) The equivalent circuit model by Aubert et al. [121], and (b) simulated 

voltage and current results at applied voltages of 1 kV (solid lines) and 2 kV (dashed 

lines). 

Figure 4.3a shows the equivalent circuit model proposed by Chabert et al. [122] 

who improved upon the model proposed previously by Hsu and Graves [120] modeling 

the variable resistance of the reactor as, 

150 200 250 300 350 

Time (s) 
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where A1, A2, p and Ilimit were constants determined empirically based on experimental 

data by Aubert et al. [121] and Hsu and Graves [120]. Figure 4.3b shows this resistance 

of the reactor as a function of the discharge current. In this circuit model of Chabert et al. 

[122], the inductor, Ld, was introduced to represent the electron inertia which was defined 

as the ratio of reactor resistance to the electron-neutron collusion frequency in the 

plasma. The authors indicated that introducing Ld enabled them to model the rise time 

and frequency of discharges. Nevertheless, eliminating Ld did not affect their simulation 

results, such as, waveforms or magnitudes of voltage, current or frequency of the 

discharges. Figure 4.3c shows the results of this model in terms of the voltage across the 

reactor and the current through the resistance and inductance of the reactor. Their results 

showed that although this model predicted the waveform of discharge current versus 

discharge voltage curve of MHCD reactor, the model failed to model the magnitude of 

peak voltages as mentioned by Lazzaroni and Chabert [123, 124]. 

Moreover, Lazzaroni and Chabert [123, 124] tried to address the discrepancy 

between experimental and modeled peak voltages in the equivalent circuit model by 

Chabert et al. [122] by introducing another parameter to their previously fitted Rd 

equation. The authors added A3/Id in Equation (4.1) where A3 is another constant [123, 

124]. The authors also introduced another capacitor in parallel with Cd to model the stray 

capacitance of the circuit elements and cables [124], and they argued that the stray 

inductance of the circuit was negligible [122]. Figure 4.4 shows the comparison of 

experimental and simulated voltage and current. Based on these results, although their 

model satisfactorily predicted the experimental voltage as a function of time, it predicted 
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twice of the experimentally obtained peak current in the self-pulsing regime. 

Additionally, the effects of the experimental conditions on the constants of Equation (4.1) 

were not discussed. 

 

 
(a) 

 
(b) (c) 

Figure 4.3. (a) Proposed equivalent circuit by Chabert et al. [122], (b) the modeled 

resistance as a function of discharge current, and (c) the simulated voltage and current 

characteristics of the proposed circuit. 
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(a) (b) 

Figure 4.4. Comparison of experimental and simulated results by Lazzaroni and Chabert 

[123], (a) voltage, and (b) current as functions of time. 

In another study, Du et al. [125] modeled the equivalent circuit of a MHCD 

reactor with electrodes of different thicknesses using argon at atmospheric pressure. 

Figure 4.5a shows their proposed equivalent circuit which consisted of a constant resistor 

of 14.5  with a switch in series and a capacitor in parallel. As shown in Figure 4.5b, the 

authors justified their model for one charge-discharge cycle only. Thus, their results did 

not reflect the pulses and the frequency of the self-pulsing regime. 

Thus, none of the models reported in the previous studies successfully captured 

the current-voltage characteristics of MHCD reactors in the self-pulsing regime with 

good accuracy. This chapter addresses this gap in the literature by proposing a simple 

equivalent circuit model derived from experimentally measured current and voltage data 

over the range of applied DC voltages from 2000 to 3000 V for air plasma at atmospheric 

pressure. 
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(a) (b) 

Figure 4.5. (a) The equivalent circuit proposed by by Du et al. [125], and (b) 

corresponding simulation results. 

 EXPERIMENTAL PARAMETERS 

Figure 3.1 shows the schematic of the microhollow cathode discharge (MHCD) 

reactor used in this study. The aluminum electrodes were separated by mica layer with a 

thickness of 150 m, and the diameter of the through hole was about 400 m. The 

applied voltage was varied from 2 to 3 kV with 0.25 kV increments. This range of 

applied voltage was selected based on the breakdown voltage of air at atmospheric 

pressure from Paschen curve [25, 75, 126]. Voltage and current values at each applied 

voltage were obtained as explained in Sections 3.2 and 3.3. This part of the study was 

performed in atmospheric stagnant air. Therefore, the gas tanks, the H2O saturator, the 

humidity, temperature and flow rate controllers shown in Figure 3.2 were not used in this 

part. Additionally, the gas chromatography was not used in this part since the aim was to 

electrically characterize the MHCD reactor. 
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 RESULTS 4.4

4.4.1 Experimental Characterization of the Reactor 

First, the current-voltage behavior of the MHCD reactor was characterized. Figure 

4.6a shows the experimentally measured current and voltage of the reactor for air at 

atmospheric pressure at an applied DC voltage of 2000 V. The figure shows that the 

reactor voltage increased to about 1400 V right before the discharge and quickly dropped 

to 90 V as the current increased from about 0.3 to 3.9 mA. The duration of one charge-

discharge cycle was about 32.7 s which corresponds to a self-pulsing frequency of 30.6 

kHz. This was consistent with the frequency range of MHCDs in self-pulsing regime 

reported in the literature [120]. Figure 4.6a illustrates that between consecutive 

discharges, reactor voltage increased and current exponentially decayed with time, 

indicating a capacitive behavior of the reactor. When the voltage difference between the 

electrodes reached the breakdown voltage of the gas, discharge occurred and electrons 

were liberated from the cathode ultimately reaching the anode. Thus, at the beginning of 

discharge, current instantly rose while voltage rapidly decreased below the breakdown 

threshold. Due to a smaller voltage across the electrodes, the electrons could not 

accelerate enough to ionize the gas within the reactor. Thus, the electron density in the 

reactor decreased causing a decay in current and buildup of charges at the electrodes. The 

accumulated charges at the cathode increased the voltage across the electrodes and the 

cycle continued. This charge-discharge period determined the “self-pulsing frequency” of 

the reactor. Additionally, Figure 4.6a shows that the current and voltage did not decrease 

to zero indicating plasma was not completely neutralized after the discharge and charges 

were always present in the reactor while the reactor was being charged. This corroborates 
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the observation that the recorded breakdown voltages for the MHCD were lower than that 

of what is predicted from the Paschen curve. 

Moreover, Figure 4.6b shows the magnitude of the impedance of the MHCD 

reactor as a function of the reactor current. The figure shows that the impedance of the 

reactor decayed exponentially and reached its minimum at the instant of discharge when 

the current was at its maximum. 

Furthermore, Figure 4.7a shows the experimentally measured peak, time-averaged 

and minimum currents as functions of the applied voltage from 2000 to 3000 V. The peak 

values are useful for determining the required power rating of high voltage power supply, 

whereas the average values are useful for calculating the energy efficiency of the reactor. 

Moreover, the minimum current signifies the charge density in the reactor just before the 

discharge. The figure indicates that as the applied voltage increased, the peak, average, 

and minimum currents increased linearly. At higher applied voltages, larger electron 

densities were expected due to more energetic collisions. Larger electron density yielded 

higher peak currents during discharge. As the rate of charges supplied to the reactor was 

higher at higher applied voltages, it required less time to reach the breakdown voltage. 

Due to faster charging of the cathode, the current did not have enough time to reach 

lower values as it did at lower applied voltages, resulting in larger number of charges in 

the reactor before the discharge. Therefore, the minimum current increased with 

increasing applied voltage. 

Additionally, Figure 4.7b shows the peak and average voltages as functions of the 

applied voltage. The peak voltages signify the breakdown voltage of the gas in the 

reactor.  As  mentioned  above, larger number of charges was left in the reactor before the 
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(a) 

 
(b) 

Figure 4.6. Voltage and current characteristics of the MHCD plasma reactor used in the 

experiments of this study at an applied voltage of 2000 V, (a) voltage and current as a 

function of time, (b) impedance of the reactor as a function of current. 
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discharge when the applied voltage was increased. These charges reduced the voltage 

required for breakdown because breakdown requires certain number of charges in the 

reactor. Thus, these charges resulted in lower breakdown voltages than those predicted 

from Paschen curve, which assumes no charges and uniform electric field in the reactor. 

Furthermore, Figure 4.7a and b show an inverse relation between the reactor current and 

voltage, indicative of negative impedance. 

Based on the experimentally measured current and voltage data, Figure 4.7c 

shows the time-averaged power and self-pulsing frequency as functions of applied 

voltage. The figure illustrates that both the average power and the frequency increased 

linearly from 0.7 to 1.5 W and from 30 to 78 kHz, respectively, as the applied voltage 

increased from 2000 to 3000 V. As the applied voltage was increased, greater charge 

density  was  expected  to yield larger power dissipation due to non-ionizing and inelastic  
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Figure 4.7 continued on the next page. 
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(b) 

 
(c) 

Figure 4.7. (a) Peak, time-averaged and minimum current, (b) peak and time-averaged 

voltage (c) time-averaged power and self-pulsing frequency as functions of applied 

voltage. 
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collisions. Therefore, average power consumption was increased with increasing applied 

voltage. Moreover, as mentioned above, less time was required to reach the breakdown 

voltage of the gas with increasing applied voltage. Thus, self-pulsing frequency increased 

2.6 times when the applied voltage increased from 2000 to 3000 V as shown in Figure 

4.7c. 

4.4.2 Equivalent Circuit Model 

Based on the measurements and observations in the previous section, an 

equivalent circuit was modeled as shown in Figure 4.8 to address the limitations of the 

previously published models [120-122, 124]. The experimental data presented in the 

previous section indicated negative differential impedance with a capacitive effect due to 

temporal current and voltage characteristics during charge-discharge cycles. To reflect 

these characteristics, the MHCD reactor was modeled as a negative differential resistor, 

Rd, in parallel with a capacitor, Cd. For simplicity, the capacitance of the reactor, Cd, was 

assumed to be constant and the characteristics of the negative variable impedance was 

attributed to a negative differential resistance, Rd. This approach overcame the issues 

associated with using a voltage-controlled switch as suggested by Aubert et al. [121] and 

Du et al. [125] The switch yielded infinite resistance and zero current through the reactor 

when the switch was off, whereas the experimental data indicated shown in Figure 4.6a 

indicated that current never decreased to zero. In addition, another capacitor, Cstray, was 

introduced to represent the equivalent stray capacitance of the experimental setup. 

Finally, the inductance of the reactor represents the inertia of the charges [122]. In this 

study, using an inductance from 1 nH to 10 mH in series with the rest of the reactor 

model changed the magnitudes current and voltage less than 2% for all cases in this 

study. Thus, the inductor was not used in this model for simplicity. 
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Figure 4.8. Equivalent circuit of the experimental setup. 

 

Assuming constant capacitances and negligible inductance, the impedance shown 

in Figure 4.6b was modeled as a negative differential resistance, Rd, and was modeled 

with a double exponential decay function as, 

      dR exp expd d dI a b I c d I       (4.2) 

where a, b, c and d were empirical parameters obtained through regression analysis. This 

equation, modeled the variable impedance with a goodness-of-fit R
2
, values greater than 

0.998 for all data. However, the asymptotic behavior of Equation (4.2) yielded some 

numerical singularities in the simulations. Thus, the resistance of the reactor was limited 

between Rmin and Rmax to eliminate the numerical singularities in the model. By limiting 

the resistance, non-zero minimum current and voltage values were also satisfied as 

experimentally observed. The next section discusses how these parameters were assigned 

and attributed to the experimental observations. 
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4.4.3 Analysis 

This section shows how the magnitudes of the circuit elements in the model were 

calculated using experimental data, namely V and Vi in Figure 4.8. From Kirchhoff’s 

Law, the relation between voltage and current through the MHCD reactor was written for 

the circuit shown in Figure 4.8 as, 

 
 

d

d

applied dd d

d strayballast d stray

V VV I

t C CR C C


 


 (4.3) 

where Vd is the voltage across the reactor, i.e., the difference of V and Vi. Assuming that 

the current only passes through Rd at the instant of discharges, the relation between the 

voltage across the reactor and the applied voltage could be written as, 

 1 expd applied

d

t
V V



  
     

  
 (4.4) 

where 

  d ballast d strayR C C    (4.5) 

and the time constant, d, can be obtained from the experimental data. Thus, the 

capacitance of the reactor, Cd, which is assumed to be constant, can be calculated from 

the time constant. Additionally, the temporal discharge current, Id, is calculated by 

dividing the voltage drop across the current viewing resistor, Vi, with the magnitude of 

this resistor, RCVR, as, 

 i
d

CVR

V
I

R
  (4.6) 
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The magnitude of the impedance of the reactor, Zd, is calculated at each time 

interval as the ratio of discharge voltage to the discharge current as, 

 
2 2

d d C
d

d d C

V R X
Z

I R X
 


 (4.7) 

where XC is the resistance equivalent of the capacitor as, 

 
1

2
C

d

X
fC

  (4.8) 

where f is the frequency. Since the capacitance of the reactor is assumed to be constant, 

Xc is also constant for each applied voltage value. Thus, using Equation (4.7), the 

resistance of the reactor is calculated as a function of time. 

4.4.4 Modeling Parameters and Simulation Results 

Simulations using the equivalent circuit model were performed using the AC/DC 

module of COMSOL Multiphysics
® 

version 4.3. The voltage drop across and current 

flow through all circuit elements in Figure 4.8 were simulated as functions of time with a 

time resolution of 0.1 s. A sensitivity analysis was performed to ensure that the 

simulation results were independent of time resolution and convergence criterion at the 

applied voltage of 2500 V. When both the time resolution and the convergence criterion 

were decreased by an order of magnitude the simulation results did not vary by more than 

3%. 

The simulation results showed that the capacitance of the reactor was the major 

parameter controlling the self-pulsing frequency. As the reactor capacitance was 

increased, longer times were required to charge the reactor, and thus, the self-pulsing 

frequency decreased. For each applied voltage, the magnitude of the capacitance of the 
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reactor was varied to match the experimentally obtained frequency. Table  shows the 

magnitudes of the capacitance of the reactor at each applied voltage. As the applied DC 

voltage was increased from 2000 to 3000 V, the reactor capacitance decreased by 34% to 

reflect the increase in the self-pulsing frequency in Figure 4.7c. For all cases, the 

magnitude of the capacitance of the MHCD reactor was found to be on the order of pF. 

Using the capacitance value and the measured impedance, resistance of the 

reactor, Rd, was determined at each time interval. Then, parameters of Equation (4.2) 

were obtained though regression analysis and this equation was used in the simulations. 

Table  shows the parameters for Equation (4.2) as well as the upper and lower limits of 

the resistance. The results showed that the reactor resistance remained at its upper limit, 

except during the discharge. The upper limit of the reactor resistance was determined by 

the remaining charges in the reactor before the discharge. As larger number of charges 

was present in the reactor at larger applied voltages, the maximum resistance was 

smaller. When the discharge occurred, the reactor resistance decreased to its minimum 

value. The minimum resistance was the resistance of the plasma which is a function of 

the collision frequency, the electron energy and density in the plasma [127, 128]. The 

maximum and minimum resistances were varied to match the peak and minimum 

voltages, respectively for each applied voltage. For all cases, the magnitude of the 

maximum resistance was on the order of M 

Using the negative differential resistance, Rd, with the capacitance, Cd, the 

temporal current-voltage waveforms of the self-pulsing behavior of the reactor were 

successfully simulated. Due to the existence of the experimental circuit around the 

reactor, it was not be possible to match the peak currents without a stray capacitance that 

also changed with applied voltage. Table  also shows the values of stray capacitance of 
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the model. Similar to the reactor capacitance, the stray capacitance decreased with 

increasing applied voltage. Although, these results captured both quantitatively and 

qualitatively the experimental observations of the current-voltage characteristics of the 

reactor, the values of the reactor capacitance and resistance reported in this study were 

larger than the ones reported in the literature [120, 123]. This difference was mainly 

attributed to the higher pressure used in this study. 

 

Table 4.1. Coefficients used in Equation (4.2), and parameters used in the equivalent 

circuit model. 

Vapplied 

(V) 

Cd 

(pF) 

a 

(M) 

b 

(A
-1

) 

c 

(M) 

d 

(A
-1

) 

Rmin 

(k 

Rmax 

(M 

Cstray 

(pF) 

2000 15.0 14.1 -5270 2.39 -1163 45.9 3.15 2.29 

2250 13.6 9.09 -4170 2.54 -1242 48.6 1.68 2.50 

2500 12.2 6.44 -2680 1.43 -821.6 45.6 1.11 1.93 

2750 11.2 6.66 -2687 1.72 -837.5 39.6 0.94 1.40 

3000 9.84 9.14 -2960 2.13 -872.1 55.6 0.79 1.50 

 

Figure 4.9 compares the temporal voltage and current characteristics obtained 

from experiments and simulations at 2000 V. Similar results were obtained for all other 

applied voltages, and the results were not repeated here for brevity. The maximum and 

minimum voltages from simulation agreed with the experimental ones within 2.5% for all 

cases, giving goodness-of-fit R
2
 value of 0.93. Similarly, the peak current agreed with the 

experimental one within 1.0%. However, the model overestimated the value of the 

minimum current by about 0.35 mA. The model for current data resulted with R
2
 value of 

0.86. 
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(a) 

 
(b) 

Figure 4.9. Comparison of experimental data and modeling results for (a) voltage across 

and (b) current through the reactor as functions of time.  
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Finally, Figure 4.10 compares the peak and average power as functions of applied 

voltage for experimental data and results of the simulations. The figure shows that the 

peak and average power obtained from simulation results agreed with the experimental 

results within the experimental uncertainty. The maximum discrepancy between the 

experimental and simulation results was 3.7% and 8.5% for the peak and average power, 

respectively. 

 

 

Figure 4.10. Comparison of experimental data and modeling results for peak and average 

power required for the reactor as functions of applied voltage. 
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modeled as a negative differential resistor in parallel with a capacitor. The introduced 

equivalent circuit model was in better agreement with the experimental results than the 

other models reported in the literature in terms of representing both the temporal 

waveforms and magnitudes of voltage and current. Given the physics of discharges and 

the nature of MHCD reactors, the equivalent circuit model would be valid for different 

gases, reactor dimensions and pressures provided that the model parameters are adjusted 

based on these conditions. 
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 Chapter 5

Dissociation of Carbon Dioxide using MHCD Plasma Reactor 

This chapter reports an experimental study on dissociating carbon dioxide using a 

microhollow cathode discharge (MHCD) plasma reactor operated at 1 atm. The MHCD 

plasma reactors can be a promising technology for dissociating gases, including CO2, as 

they do not require catalysts, operate at equilibrium temperatures that are lower than 

those in conventional thermochemical processes, and can be inexpensively built and 

operated. In this study, a MHCD plasma reactor was designed and prototyped for CO2 

dissociation. The prototype consisted of a mica plate as a dielectric layer that was in 

between two aluminum electrodes with a through hole of 400 m in diameter. Carbon 

dioxide balanced with the carrier gas argon was fed through the hole, and parametric 

experiments were conducted to investigate the effects of applied voltage (from 2.5 to 4.5 

kV), flow rate (from 10 to 800 mL/min), and CO2 mole fraction in influent (from 9.95% 

to 99.5%) on the composition of the products, electrical-to-chemical energy conversion 

efficiency, and CO2-to-CO conversion yield. 

 INTRODUCTION 5.1

The literature on MHCD plasma reactors focused on plasma generation using 

noble gases [125, 129, 130]. There are only a few experimental studies that illustrated the 

use of MHCD reactors for gas dissociation prior to this study. Qui et al. [108] studied 

hydrogen generation from ammonia at atmospheric conditions using a molybdenum 

electrodes separated by a 250-m-thick mica plate. The discharge hole was 100 m in 

diameter. When the inlet concentration of ammonia was 6.25% in argon, the authors were 

able to dissociate about 20% of the ammonia and achieved an energy efficiency of 11% 
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when the residence time was 5 s. They showed that the conversion yield and energy 

efficiency increased linearly with the residence time. In another study, Hsu and Graves 

[109] used a MHCD reactor with a discharge hole of 200 m in diameter and 460 m in 

length to dissociate NH3 and CO2, separately. They reported a maximum conversion yield 

of about 30% for NH3 at a pressure of 700 Torr (93.3 kPa) and residence time of 9 s, 

and about 47% for CO2 at a pressure of 250 Torr (33.3 kPa) and a residence time of about 

8 s. However, the authors did not report the energy conversion efficiencies. In these 

studies as well as in the applications such as surface treatment, thin-film deposition, low 

pressures have been used to eliminate unstable plasma generation at about 1 atm [28]. To 

overcome these instabilities and increase the overall conversion efficiency by eliminating 

the need for low pressures, MHCD reactors can be operated in the self-pulsing regime 

based on their voltage and current characteristics. 

To the best of our knowledge, there is no prior study that experimentally 

investigates the effects of voltage, flow rate and mole fractions in influent on CO2 

dissociation in a MHCD plasma reactor in the self-pulsing regime at 1 atm. This study 

aims to address this gap in the literature and reports the optimum operating conditions of 

MHCD plasma reactor for CO2 dissociation for maximizing electrical-to-chemical energy 

conversion efficiency and CO2-to-CO conversion yield as the applied DC voltage, inlet 

flow rate, and CO2 mole fraction in influent are varied. 

 EXPERIMENTAL PARAMETERS 

Sections 3.2 and 3.3 present the prototype MHCD plasma reactor and the 

experimental setup used in this part of the study. A mica plate with a thickness of 150 m 

as a dielectric material separated the hollow aluminum electrodes. The discharge hole 

was featured as about 400 m in diameter.  
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Carbon dioxide (99.5% purity, Matheson Tri-Gas) and argon as the carrier gas 

(99.998% purity, Airgas) were fed to the flow chamber through flow rate controllers. The 

H2O saturator, the humidity and temperature controller shown in Figure 3.2 were not 

used in this part of the study. The gases were sampled at the reactor effluent and analyzed 

in gas chromatograph. 

Based on the atmospheric pressure (1 atm) and the size of the discharge hole used 

in this study, the breakdown voltage for pure CO2 was estimated as 2.1 kV using 

Townsend breakdown mechanism. Based on this estimated breakdown voltage value and 

the voltage limit of the power supply, the applied DC voltage to the reactor was varied 

from 2.5 kV to 4.5 kV. In addition, based on the limit of the flow rate controllers, the 

flow rate of the gas fed to the reactor was varied from 10 to 800 mL/min. Each parameter 

combination was independently repeated at least 4 times. The error bars in figures 

reported in the Results and Discussion section below reflect the standard deviation of the 

data obtained from these replicates. 

 RESULTS AND DISCUSSION 

The self-pulsing regime was observed through voltage and current measurements 

for all parameter combinations in this study. Figure 5.1 shows the voltage and current 

characteristics of the reactor at the applied DC voltage of 4.5 kV and the CO2 flow rate of 

100 mL/min. The voltage and current characteristics of the reactor show two distinct 

regimes of charging and discharging. In the charging regime, the charges accumulate at 

the cathode, raising the voltage difference between the electrodes. During this time the 

current through the reactor exponentially decays as the plasma is not fed with high energy 

electrons from the cathode. When the voltage difference reaches the breakdown threshold 

of the gas, discharge occurs and the electrons are liberated from the cathode further 
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ionizing the gas phase which causes a sharp increase in current and a sharp decrease in 

voltage. As the voltage decreases below the breakdown threshold, the electrons do not 

have enough energy to ionize the gas. Thus, the electron density in the reactor decreases 

and high currents cannot be sustained, such that charging regime takes place again. This 

charging-discharging characteristic of the MHCD reactor resembles a capacitive 

behavior. Chapter 4 reported the characterization and modeling of the current-voltage 

behavior of the MHCD plasma reactor in detail in the self-pulsing regime as a function of 

applied DC voltage The MHCD reactor was modeled as a capacitor parallel with a 

negative differential resistor. 

 

 

Figure 5.1. Voltage and current of the MHCD plasma reactor as a function of time in the 

self-pulsing regime. 
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5.3.1 Effects of Applied Voltage 

Prior to experimental investigation, electric field distribution in the reactor before 

the first discharge was simulated, and the results are given in Appendix D. The 

simulation results suggested increasing the applied voltage would increase the discharge 

gas volume based on the electric field distribution. This section complements the 

simulation results with experiments with the redistribution of charges and electric field in 

the reactor. First, we investigated the effects of applied DC voltage on the performance of 

the MHCD reactor in dissociating CO2. For this purpose, experiments were conducted at 

varying voltages from 2.5 kV to 4.5 kV while providing the reactor with CO2 at a molar 

concentration of 99.5% at a constant flow rate of 100 mL/min. Figure 5.2 shows the 

concentrations of CO2, CO and O2 in the reactor effluent as functions of applied voltage. 

The results showed that CO2 concentration in the reactor effluent decreased linearly from 

99.4% to 98.3% as the applied voltage increased from 2.5 to 4.5 kV. In addition, CO and 

O2 concentrations increased linearly from 0.37% to 1.28% and from 0.10% to 0.42%, 

respectively, in the same applied voltage range. These observations can be attributed to 

the electron density and the electron energy distribution of the generated plasmas. First, 

at large applied voltages the electric fields in the reactor were larger yielding higher 

electron energies and more energetic collisions [131-133]. More energetic collisions 

yielded larger electron densities in the reactor per unit time, and combined effects of 

these phenomena resulted in the observed increases in reaction products in the reactor 

effluent. Although the concentration of produced CO was stoichiometric, i.e., carbon 

species were conserved, the concentration of molecular oxygen was found to be lower 

than the stoichiometric concentrations as some O2 was converted into ozone in all cases. 
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Figure 5.2. Concentrations of CO2, O2 and CO in the reactor effluent as a function of 

applied voltage at a flow rate of 100 mL/min.  

Moreover, Figure 5.3 shows the energy density and the self-pulsing frequency in 

the MHCD reactor as a function of applied voltage when the inlet flow rate was 100 

mL/min. The energy density refers to the ratio of the average power consumed by the 

reactor to the volumetric flow rate of CO2 in reactor influent. The figure shows that 

energy density in the reactor increased from 0.5 to 1.5 J/cm
3
 as applied voltage increased 

from 2.5 to 4.5 kV. Similarly, the self-pulsing frequency increased from 12 to 47 kHz for 
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the plasma increases requiring less time for the discharge to occur, thus, increasing the 

self-pulsing frequency. 

 

 

Figure 5.3. Average energy density and self-pulsing frequency as a function of applied 

voltage at a flow rate of 100 mL/min. 
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with applied voltage. Additionally, the conversion yield increased by about 2.4 times 
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over the applied voltage range. This indicates that a significantly larger increase in CO 

production rate compensated for the majority of increase in power consumption resulting 

in a fairly stable energy conversion efficiency of about 10%. The energy lost to inelastic 

collisions that did not dissociate the gas and to the heating of the gas. These mechanisms 

decreased the energy conversion efficiency. 

 

 

Figure 5.4. Electrical-to-chemical energy conversion efficiency and CO2-to-CO 

conversion yield as a function of applied voltage at a flow rate of 100 mL/min. 
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rate increased from 10 to 800 mL/min, CO2 concentration in the effluent increased from 

86.3% to 99.4%, whereas the concentrations of CO and O2 decreased linearly on a 

logarithmic scale from 9.9% to 0.38% and from 3.48% to 0.09%, respectively. This 

decrease in dissociation rate of CO2 was attributed to the decrease in CO2 residence time 

in the reactor with increasing flow rate. The residence time of CO2 in the reactor was 

estimated as the ratio of the discharge hole volume to the volumetric flow rate. Residence 

times in this study were about six orders of magnitude larger than the timescales 

associated with CO2 dissociation, which can be estimated on the order of picoseconds 

based on the collision frequencies [75]. Thus, the flow rate is not expected to 

significantly affect the collision frequencies at a given charge density. However, note that 

the residence times were comparable to the times between consecutive discharges. Thus, 

at higher flow rates, the charges, especially the heavy charges (i.e., protons and negative 

ions), are expected to be forced out of the reactor when the voltage difference between 

the electrodes was low after each discharge as shown in Figure 5.1. Since ionization is 

mainly followed by dissociation, less dissociation is expected to occur at lower charge 

densities. Thus, in our experiments less dissociation was observed at higher flow rates as 

shown in Figure 5.5. 

Figure 5.6 shows the average energy density by the reactor as the inlet flow rate 

was varied from 10 to 800 mL/min at an applied voltage of 4.5 kV. It indicates that the 

energy density decreased linearly with the flow rate on a logarithmic scale from 15.2 to 

0.2 J/cm
3
 in the specified flow rate range. Figure 5.6 also shows that the self-pulsing 

frequency decreased logarithmically by about 35% from 50 to 33 kHz in the same flow 

rate range. At larger flow rates, lower charge densities were expected as mentioned 

above.  Higher  charge  densities  would  yield  more  energy  dissipation  due  to inelastic  
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Figure 5.5. Concentrations of CO2, O2 and CO in the reactor effluent as a function of inlet 

flow rate at an applied voltage of 4.5 kV.  

collisions such as recombination, ion-ion collision, etc. Thus, the decrease in energy 

density at larger flow rate can be attributed to the lower charge density in the reactor. 

Similarly, as mentioned above, the self-pulsing frequency is related to the charge density. 

For that reason, the frequency decreased due to lower electron density as flow rate 

increases. Additionally, as mentioned above, the observed frequencies and the residence 

times were on the same order of magnitude. This result suggests that the plasma was 

expected to be more neutral after the discharges at higher flow rates. 

Figure 5.7 shows the electrical-to-chemical energy conversion efficiency and 

CO2-to-CO conversion yield as functions of the inlet flow rate of CO2. The figure 

indicated that energy conversion efficiency logarithmically increased by about 28% from 

8.2% to 10.5% as the inlet flow rate increased from 10 to 800 mL/min. On the other 
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hand, the CO2-to-CO conversion yield decreased linearly on a logarithmic scale from 

10.5% to 0.38% for the same flow rate range. Using the obtained trend for conversion 

yield, the yield could be expected to reach as high as 87% at an inlet flow rate of 1 

mL/min which corresponds to a residence time of 1.28 ms. The increase in energy 

conversion efficiency showed that the number of moles of generated CO increased with 

increasing flow rate despite the concentration of CO in the reactor effluent was lower. 

The power consumption did not affect the energy conversion efficiency, as the power 

consumption stayed fairly constant with flow rate. 

 

 

Figure 5.6. Average energy density and frequency of self-pulsing discharges as a function 

of inlet flow rate at an applied voltage of 4.5 kV.  
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Figure 5.7. Power efficiency and CO2-to-CO conversion yield as a function of inlet flow 

rate at an applied voltage of 4.5 kV.  

5.3.3 Effects of Concentration 
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Paschen curves suggested, the breakdown voltage of argon was smaller than that of CO2, 

and argon would yield larger secondary electron emission from cathode due to its higher 

ionization energy [25, 75]. Therefore, diluting CO2 with argon would result with higher 

electron density in the reactor than pure CO2. The liberated electrons would yield more 

collisions; thus, increasing the dissociation of CO2 through collisions. 

 

 

Figure 5.8. Concentrations of CO2, O2 and CO in the reactor effluent as a function of inlet 

CO2 concentration at a total inlet flow rate of 100 mL/min and an applied voltage of 4.5 

kV. 
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figure indicates that the self-pulsing frequency decreased from 72 to 35 kHz for as the 

CO2 mole fraction increased. These observations further corroborated that presence of 

argon increased the electron density and energies in the reactor, leading to increase in 

energy density and frequency. 

 

 

Figure 5.9. Average energy density and self-pulsing frequency as a function of inlet CO2 

concentration at a total inlet flow rate of 100 mL/min and an applied voltage of 4.5 kV. 
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Figure 5.10. Electrical-to-chemical energy conversion efficiency and CO2-to-CO 

conversion yield as a function of inlet CO2 concentration at a total inlet flow rate of 100 

mL/min and an applied voltage of 4.5 kV.  

5.3.4 Assessment of Electrode Degradation 
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determine the degraded electrode area. Figure 5.11a shows the microscope image of the 

reactor, illustrating the affected electrode region around the discharge hole after 25 

minutes of operation at an applied voltage of 4.5 kV. Additionally, Figure 5.11b shows 

the affected electrode diameter, which was measured from the center of the discharge 

hole, and degraded electrode area around the hole as a function of time. The figure shows 

that the diameter of the affected region increased quadratically with time. Additionally, 

affected area on electrode linearly increased with time at a rate of about 0.01 mm
2
/min. 

This rate is expected to be the maximum degradation rate of this study as at lower applied 

voltages or with gas flow the current was also lower and degradation rate would be lower. 

Moreover, in dissociation studies, each reactor was not used more than about 30 minutes, 

and each experimental case were repeated with three different reactors. The error bars 

shown in figures also reflect deviation due to electrode degradation. 

Additionally, an endurance test was performed on the reactor under the same 

conditions as the degradation test. The reactor was successfully operated in the self-

pulsing regime for about 27 hours after which the current suddenly decreased by about 

two orders of magnitude. This decrease in current signified a change in the operating 

regime of the reactor which no longer was in the self-pulsing regime. As mentioned 

above, lower degradation rates were expected at lower voltages or with gas flow which 

would yield to longer operation times of the reactor. 
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(a) 

       

(b) 

Figure 5.11. (a) Microscope image of the reactor after 25 minutes of operation showing 

the affected electrode region around the discharge hole, and (b) degraded electrode 

diameter and area as a function of time for MHCD reactor operated in stagnant air at an 

applied voltage of 4.5 kV. 
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5.3.5 Implications on the Operation of MHCD Reactor for CO2 Dissociation 

In this study, the maximum electrical-to-chemical energy conversion efficiency 

was found to be 13.7% when mole fraction of CO2 was 89.6% in argon at an applied 

voltage of 4.5 kV and a total inlet flow rate of 100 mL/min. The trends in the results 

suggested that larger applied voltages and smaller residence times increased the energy 

conversion efficiency of the reactor. Moreover, it was observed that introducing small 

amounts of argon at low concentrations also increased the energy conversion efficiency. 

On the other hand, higher conversion yields were achieved at larger applied 

voltages, longer residence times and higher concentrations of argon. The maximum CO2-

to-CO conversion yield was 10.5% at a flow rate of 10 mL/min, applied voltage of 4.5 

kV and a CO2 concentration of 99.5%. Extrapolation of the trends indicated that yields as 

large as 87% could be achieved if the flow rate was reduced to 1 mL/min which 

corresponds to a residence time of 1.28 ms. 

The results indicated that it was not possible to maximize the energy conversion 

efficiency and the conversion yield at the same time as these were competing objectives 

with each other. Although counter intuitive, this result can be explained by noting that 

increasing yield requires high electron density and energy in the plasma which result in 

large energy density in the reactor. Large energy density corresponds to large power 

consumption, and thus, decreases the overall energy conversion efficiency of the reactor. 

Finally, we compared the observed performance of the MHCD reactor to other 

competing technologies for converting and utilizing CO2. When compared with 

electrochemical reactors, both systems featured similar CO2 dissociation rates on the 

order of 10 cm
3
/min [134]. However, CO2 needs to be dissolved in electrolyte in 

electrochemical systems and saturating electrolyte requires a few hours [134]. 
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Additionally, solubility of gas in electrolyte poses another limitation for the 

electrochemical reactors. Moreover, although 100% yields were possible with 

electrochemical reduction, it was reported that the efficiency of the device quickly 

deteriorated and operation ceased after 5 hours when Cu electrodes were used [135]. As 

an alternative way for dissociating CO2, photocatalytic reactors showed lower energy 

conversion efficiencies than MHCD reactors. Deguchi et al. [136] used a photocatalytic 

reactor with AlGaN/GaN and Cu electrodes in 3.0M KCl solution and showed an energy 

conversion efficiency of 0.13%. CO2 was also considered as a feedstock for producing 

solar fuels in solar thermochemical reactors [137]. These systems featured very high 

temperatures in excess of 1500
o
C, during operation and yielded only solar to fuel 

conversion efficiencies of 0.7% to 0.8% [137]. Considering the use of 20% efficient 

photovoltaics in conjunction with the MHCD, solar to fuel conversion efficiencies of 

2.7% are possible based on the results reported in this study. Thus, the MHCD plasma 

reactor featured numerous advantageous over other methods and processes for 

dissociating CO2 based on its simplicity, relatively large energy conversion efficiency 

and conversion yield. 

 CHAPTER SUMMARY 5.4

This chapter experimentally demonstrated the dissociation of carbon dioxide 

using a microhollow cathode discharge (MHCD) plasma reactor in the self-pulsing 

regime at 1 atm for the first time. Moreover, the chapter reported the CO2 dissociation 

performance of the MHCD reactor as a function of key operational parameters. These 

included the applied voltage, the gas flow rate, and the concentration of CO2 in the 

influent gas mixture. The performance of the reactor was evaluated based on the effluent 

composition, power consumption, electrical-to-chemical energy conversion efficiency 
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and CO2-to-CO conversion yield. The results showed that increasing applied voltage 

increased both conversion efficiency and yield, whereas efficiency and yield were 

competing as flow rate and CO2 concentration in the influent were varied. The maximum 

energy conversion efficiency and yield achieved experimentally in this study were 13.7% 

and 10.5%, respectively. 
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 Chapter 6

Dissociation of Water-Saturated Carbon Dioxide  

using MHCD Plasma Reactor 

This chapter presents an experimental study that reports production of 

hydrogen and synthesis gas (syngas) from water vapor-saturated argon and carbon 

dioxide in a microhollow cathode discharge (MHCD) plasma reactor at 

atmospheric pressure. The MHCD reactor was fed with H2O-saturated Ar or CO2 

at flow rates of 10, 50 and 100 mL/min and an applied voltage of 4.5 kVDC. The 

current through and voltage across the reactor were measured for each 

experimental case, and gas compositions at the reactor effluent were analyzed in a 

gas chromatograph. 

 INTRODUCTION 

Syngas is mainly produced through CO2 reforming of CH4 [10, 36, 138, 139]. 

Although this process utilizes CO2 and reduces its negative effect on the global warming, 

it dissociates CH4 which already has a high heating value as a fuel. This reforming 

process also requires metal catalysts which are expensive, and these catalysts decompose 

or deactivate as a result of carbon deposition on their surfaces [10, 36, 138, 139]. An 

alternative path to produce syngas is through the use of plasma [8-10]. Plasma processes 

do not require catalysts and effectively couples the energy input to the molecules for 

dissociation when compared to conventional processes [6, 25-27]. Additionally, the non-

thermal plasma reactors can operate at about room temperatures, so that these reactors do 

not need to withstand high temperatures. Therefore, the use of non-thermal plasma 

reactors would reduce the material and manufacturing cost of the reactor. One of the non-

thermal plasma reactors that can be used to dissociate gases is microhollow cathode 
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discharge (MHCD) reactor which consists of two hollow metal electrodes that are 

separated by a dielectric material [33, 140]. This reactor can be operated with direct 

(DC), alternating (AC) and pulsed excitation. However, in order to generate stable non-

thermal plasma, the reactor needs to be operated in its self-pulsing regime at which 

current and voltage of the discharges inherently oscillate [31-33]. In this regime, voltage 

decreases with increasing current as the regime is characterized with a negative 

differential impedance [31-33]. This chapter focused on MHCD plasma reactors operated 

in self-pulsing regime to dissociate humidified argon and carbon dioxide. 

This chapter reports the hydrogen and syngas generation through dissociation of 

H2O-saturated Ar and CO2 in a MHCD plasma reactor at atmospheric pressure. A 

prototype MHCD reactor was used to dissociate saturated gases as the inlet volumetric 

flow rate varied. Voltage and current characteristics of the reactor were reported and used 

to calculate the power consumption of the reactor for all the experimental cases. The 

results are presented in terms of gas compositions at the reactor effluent, conversion yield 

and electrical-to-chemical energy conversion efficiency. 

 EXPERIMENTAL PARAMETERS 

The reactor and experimental setup used in this part of the study were given in 

Sections 3.2 and 3.3. The aluminum electrodes were separated by a mica plate with a 

thickness of 150 m as a dielectric material. The discharge hole was about 400 m in 

diameter. Figure 3.2 shows the experimental setup used in this part. Carbon dioxide with 

99.5% purity (Matheson Tri-Gas) and argon with 99.998% purity (Airgas) were fed to the 

H2O-saturator through flow rate controllers. Relative humidity controller (Walz, KF-

18/2B) and the CO2/H2O analyzer (LI-COR, LI-840A) were used to verify that the gas 

streams were saturated with water. Then, the H2O-saturated gas stream was fed to the 
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flow chamber in which the MHCD reactor was placed. The gas samples were taken at the 

exit of the flow chamber, and their compositions were analyzed in a gas chromatograph 

(Shimadzu GC-2014). 

Based on the atmospheric pressure and the size of the thickness of dielectric 

material used in this study, the breakdown electric field for pure CO2, Ar and H2O were 

estimated as 2.1, 1.0 and 1.6 kV, respectively, using the Townsend breakdown 

mechanism. As mentioned before, the gas needs to be subjected to a voltage that is 

greater than the breakdown voltage to breakdown the gas and generate microdischarges. 

Based on the estimated breakdown voltage values and the upper voltage limit of the 

power supply, DC voltage was chosen as 4.5 kV, and based on the flow rate controllers 

the flow rate of the fed gas was chosen as 10, 50 and 100 mL/min in this part of the 

study. Each parameter combination was run 6 times as independent experiments, and the 

error bars shown in this chapter reflect the standard deviation of these independent 

experiments. 

 RESULTS AND DISCUSSION 6.3

6.3.1 Voltage and Current Characteristics of Dissociation Process 

This section shows the results of and discussion on the current and voltage 

characteristics of the reactor as H2O-saturated Ar and CO2 provided to the MHCD reactor 

at different flow rates. These characteristics were compared with those of 99.5%-pure 

CO2. The current and voltage characteristics guide towards selecting the power supply 

and enhancing the conversion yield and efficiency. Figure 6.1 shows the experimentally 

measured voltage across and current through the MHCD reactor as functions of time at a 

flow rate of 10 mL/min. Results with other flow rates showed similar behavior, and they 
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were not repeated here for brevity. This figure clearly illustrates that there are distinct 

operating regimes of charging and discharging. Figure 6.1a shows that voltage increased 

in charging regime as electrons were accumulated at the cathode, and decreased sharply 

when the voltage reached the breakdown voltage of the gas indicating the discharge. As 

the voltage decreased below the threshold value due to discharge, the electron density in 

the reactor was not high enough to sustain the discharge and the charging regime started 

again. This charging-discharging scheme is referred as the self-pulsing regime of MHCD 

reactor. The maximum voltages in Figure 6.1a were equal to the breakdown voltages of 

corresponding gases. As shown in Figure 6.1a, breakdown voltage of H2O is greater than 

Ar, but lower than CO2. Accordingly, when Ar and CO2 were saturated with H2O, the 

breakdown voltages of Ar and CO2 got closer to that of H2O based on the gas 

concentrations. However, the observed breakdown voltages were slightly lower than 

those estimated from Paschen curves which assume uniform electric field and no charge 

between the electrodes initially. The experimental results showed that the minimum 

voltage for each gas was non-zero indicating that a number of charges were present in the 

reactor after the discharge. These charges yielded lower breakdown values than those 

estimated from Paschen curve as discussed in Chapter 4. As a result, the maximum 

voltages were measured about 1640 V for 99.5%-pure CO2, 1540 V for saturated CO2 

and 730 V for saturated Ar. 

As Figure 6.1b shows, the current through the reactor exponentially decayed with 

time after the discharge and abruptly increased when discharge occurred. The results 

showed that the maximum currents were about 11.6 and 7.8 mA for saturated CO2 and 

Ar, respectively, at a flow rate of 10 mL/min. The maximum currents were attributed to 

the maximum number of charges accumulated at the cathode. These charges were 
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abruptly discharged when the voltage reached breakdown threshold resulting in a peak in 

current. Therefore, gases with higher breakdown voltages featured higher peak currents. 

Moreover, saturated Ar showed the highest minimum current of about 1.9 mA, whereas 

saturated CO2 showed the lowest minimum current of about 1.1 mA. The minimum 

currents could be associated with the number of charges in the reactor just before the 

discharge. In high pressure plasma systems, charges are mainly lost due to binary and 

three-body collisions for electronegative gases [75]. Ar as a noble gas is not 

electronegative; thus, charge loss through collisions in Ar should be less than that in CO2. 

Therefore, cases with Ar had higher charge density in the reactor which should also have 

favored the secondary electron emission from the cathode [84]. Additionally, Ar has 

higher ionization energy which also favors the secondary electron emission. Overall, 

cases with saturated Ar were expected to have higher ion and electron densities which 

yielded higher currents in the charging regime. Furthermore, as the water vapor content 

in saturated CO2 was about 3.2%, the current for the case with saturated CO2 did not 

significantly deviate from the case with 99.5%-pure CO2. 

Moreover, Figure 6.1 illustrates the self-pulsing frequencies of the reactor 

presenting charging-discharging period. As mentioned above, breakdown voltages 

indicated the number of charges required to be accumulated at cathode for discharge. 

Therefore, saturated CO2 having higher breakdown voltage than saturated Ar required 

longer time to accumulate required number of charges for its discharge. So, saturated 

CO2 showed smaller self-pulsing frequency than saturated Ar which featured higher 

frequency than 99.5%-pure CO2. 
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(a) 

 
(b) 

Figure 6.1. (a) Voltage drop across and (b) current through the reactor as functions of 

time for H2O-saturated CO2, H2O-saturated Ar and 99.5%-pure CO2 at a flow rate of 10 

mL/min and an applied voltage of 4.5 kV. 
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Figure 6.2 shows the average voltage versus average current for (i) H2O-saturated 

CO2, (ii) H2O-saturated Ar and (iii) 99.5%-pure CO2 at volumetric flow rates of 10, 50 

and 100 mL/min and an applied voltage of 4.5 kV. This figure illustrates that average 

voltage decreased almost linearly with increasing average current confirming that the 

reactor had negative differential impedance and was operated in the self-pulsing regime. 

Figure 6.2 also shows that voltage of cases with saturated Ar was lower by about 1.4 

times than that of saturated CO2, whereas current of cases with saturated Ar was about 

22% higher than that of saturated CO2 at all flow rates. Lower voltage for cases with 

saturated Ar was mainly due to lower breakdown voltage of Ar with respect to CO2 and 

H2O. Moreover, higher current for cases with saturated Ar can be related to higher charge 

density in the reactor as discussed above. Additionally, as mentioned above, saturated 

CO2 required less number of charges for discharges with respect to 99.5%-pure CO2 due 

to presence of H2O which has lower ionization energy than CO2. Therefore, as shown in 

Figure 6.1, saturated CO2 showed smaller maximum and minimum currents than 99.5%-

pure CO2. Therefore, average current of saturated CO2 was lower than that of 99.5%-pure 

CO2. Based on the negative differential impedance of the self-pulsing regime of MHCD 

reactor, average voltage of saturated CO2 was higher than that of 99.5%-pure CO2. 

Figure 6.2 also illustrates that the average voltage and current were weak 

functions of the volumetric flow rate. For all gases, increasing the flow rate from 10 to 

100 mL/min decreased the average current by about 4% and increased the average 

voltage by 12%. Higher flow rates would yield lower charge density in the reactor as 

more charges were carried out the reactor at higher flow rates, especially after the 

discharge when the electric field was weak between the electrodes. Therefore, lower 

charge density resulted in lower current and higher voltage in the self-pulsing regime. 
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Figure 6.2. Time-averaged discharge voltage versus time-averaged discharge current of 

the experimental cases at flow rates of 10, 50 and 100 mL/min and an applied voltage of 

4.5 kV. 

6.3.2 H2 and CO Generation from Saturated Ar and CO2 

To analyze the performance of proposed MHCD reactor for hydrogen production, 

H2O-saturated argon was fed to the reactor. Figure 6.3a shows the concentration of gases, 

namely H2O, H2 and O2, at the reactor effluent at the inlet flow rates of 10, 50 and 100 

mL/min. Based on these results, as the inlet flow rate increased from 10 to 100 mL/min, 

the concentration of H2 decreased from 0.9% to 0.2%. Correspondingly, H2O 

concentration increased from 2.2 to 2.9% for the same flow rate range. Note that 

stoichiometric balance was met for hydrogen atoms, but not the oxygen atoms since some 

of oxygen from H2O was converted to ozone rather than O2. As previously mentioned, 
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higher charge density was expected in the reactor at smaller flow rates as less charges 

were forced out of the reactor [141]. Thus, the reaction rates increased with increasing 

charge density, and higher concentration of H2 was achieved at the reactor effluent with 

decreasing flow rate. 

In another set of experiments, H2O-saturated CO2 was fed to analyze H2 and CO 

production in the proposed MHCD reactor. Figure 6.3b shows the concentration of gases 

in the reactor effluent after the dissociation process as the flow rate was varied. The 

results showed that concentrations of H2 and CO in the reactor effluent were 0.2% and 

13.4%, respectively, at the flow rate of 10 mL/min. As the flow rate increased to 100 

mL/min, the concentrations of H2 and CO in effluent decreased to 0.02% and 2.02%, 

respectively. Thus, increasing the flow rate decreased the dissociation of H2O and CO2 as 

in the case with saturated Ar. 

When H2 production from saturated CO2 and Ar was compared, it was observed 

that H2 production from saturated Ar was about 6 times higher than that from saturated 

CO2 at the flow rate of 10 mL/min. Although the ionization energy of Ar is larger than 

CO2, electron density in the case with saturated Ar should be higher than that of saturated 

CO2, as Ar was expected to have higher secondary electron emission due to higher 

ionization energy, and less charge losses due to recombination as mentioned above. 

Overall, higher electron density enhanced gas dissociation in the reactor, and higher H2 

concentrations were observed for saturated Ar than saturated CO2.  

Based on the concentrations at the reactor influent and effluent, H2 and CO 

conversion yields were calculated for saturated Ar and saturated CO2. Figure 6.4a shows 

the conversion yield values at the inlet flow rates of 10, 50 and 100 mL/min.  The  results 
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(a) 

 
(b) 

Figure 6.3. Concentrations of gases in the reactor effluent as functions of inlet flow rate 

for (a) H2O-saturated Ar, and (b) H2O-saturated CO2. 
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showed that at 10 mL/min, H2 yields were 28.4% for saturated Ar and 4.9% for saturated 

CO2. At the same flow rate, CO yields were about 14.5% for saturated CO2 and 10.5% 

for 99.5%-pure CO2. So, the presence of H2O in CO2 increased the CO yield by about 

38% at the flow rate of 10 mL/min. This result suggested that electrons due to ionization 

of H2O, which has lower ionization energy than CO2, contributed to CO2 dissociation 

rather than H2O dissociation. This should be related to high concentration of CO2 with 

respect to H2O in the reactor, so that the probability of electrons, which were liberated 

due to ionization of H2O and collided with CO2 molecules, was higher than that with H2O 

molecules at a given flow rate. 

As the flow rate increased from 10 to 100 mL/min, H2 yield decreased from 

28.4% to 5.9% for saturated Ar and from 4.9% to 0.7% for saturated CO2 cases as shown 

in Figure 6.4a. Lower conversion yields at higher flow rates were attributed to lower 

charge densities as mentioned above. Additionally, using Ar as carrier gas improved 

H2O-to-H2 yield about 6 times at 10 mL/min and 8 times at 100 mL/min when compared 

to CO2. As a result, diluting the gas with an inert gas enhanced the dissociation and 

resulted in higher conversion yield. 

Finally, Figure 6.4b shows time-averaged power requirement of the reactor and 

electrical-to-chemical energy conversion efficiency of the same cases. Average power 

requirements were independent of flow rate and about 1.6 and 2.8 W for saturated Ar and 

CO2, respectively. Power requirement of each case was related to the required number of 

charges for its discharge. This requirement also included the power dissipation due to 

binary and three-body collisions which decreased the charge density in the reactor. As 

saturated  Ar  required  fewer  charges  than saturated CO2, as shown in Figure 6.1, power 
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(a) 

 
(b) 

Figure 6.4. (a) Conversion yield, (b) average discharge power and energy conversion 

efficiency as functions of inlet flow rate. 
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requirement for saturated Ar was lower. Moreover, Figure 6.4b shows that the energy 

conversion efficiency was 2.0% for saturated Ar at the flow rate of 100 mL/min. Low 

efficiency for saturated Ar suggested that the power input was lost to ionize Ar rather 

than to dissociate H2O which was expected due to low concentration of H2O in saturated 

Ar. Moreover, saturating CO2 with H2O increased the conversion efficiency from 9.5% to 

14.8% at 100 mL/min. Higher energy conversion efficiency with the presence of H2O 

was attributed to higher CO2-to-CO conversion yield as discussed above. Additionally, 

energy conversion efficiency decreased with decreasing flow rate, showing that the molar 

flow rates of H2 and CO decreased, although their concentrations were higher at the 

reactor effluent. 

The results presented here demonstrated that it was possible to convert electrical 

energy to chemical energy using non-thermal plasma in a MHCD reactor. The hydrogen 

production yield of the reactor was promising such that about 28.4% of H2O was 

converted to H2 in saturated Ar at a flow rate of 10 mL/min. At the same flow rate, when 

the reactor was fed with saturated CO2, H2O-to-H2 conversion yield was about 4.9% 

whereas CO2-to-CO conversion yield was about 14.5%. These results showed 

simultaneous H2/CO production ratio of 0.013 in molar basis from saturated CO2. Higher 

H2/CO ratios could be obtained by increasing the residence time of gases in the reactor 

and increasing the concentration of H2O at the reactor influent. Alternatively, if H2O and 

CO2 were dissociated in separate reactors at appropriate flow rates, any H2/CO ratio 

could be achieved with MHCD reactors. Moreover, due to compactness of the proposed 

MHCD reactor, it is also possible to scale up the system with multiple reactors in series 

to increase H2 and CO production rate. Therefore, the proposed MHCD reactor shows a 

promising alternative for H2 and CO generation. 
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 CHAPTER SUMMARY 6.4

This study presented the hydrogen and carbon dioxide production by dissociating 

H2O-saturated argon and carbon dioxide in a microhollow cathode discharge reactor 

(MHCD). Prototype of MHCD reactor consisted of three layers; one layer of mica as 

dielectric and single layers of electrode on each side of the dielectric with a through hole 

across these three layers. Argon or carbon dioxide was saturated with water and fed to the 

MHCD reactor through the humidity and temperature controller at three different flow 

rates at atmospheric pressure. A direct-current high voltage of 4.5 kV was applied to one 

of the electrodes and the other electrode was grounded. High voltage probes were used to 

measure voltage drop across the reactor and across a current viewing resistor to obtain 

discharge current. Voltage and current characteristics of each experimental case were 

compared. Additionally, gas compositions at the exit of the reactor were analyzed for 

each case in a gas chromatograph, and conversion yields, power requirement of the 

reactor and electrical-to-chemical energy conversion efficiencies were calculated. Based 

on the obtained results, the maximum hydrogen yield was about 28.4% from saturated 

argon whereas it was about 4.9% from saturated carbon dioxide at a flow rate of 10 

mL/min. Additionally, introducing water vapor in carbon dioxide increased the CO yield 

from 10.5% to 14.5% at 10 mL/min. Moreover, the maximum energy conversion 

efficiencies of about 14.8% and 2.0% were obtained for saturated carbon dioxide and 

argon, respectively. The efficiency for argon was lower as some of the energy input was 

lost to ionizing and heating argon which enhanced the conversion yield. Overall, in this 

chapter, hydrogen and carbon dioxide generation from saturated gases was demonstrated 

using microhollow cathode discharge plasma reactor. 
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 Chapter 7

Effects of Design Parameters on Dissociation 

using MHCD Plasma Reactors 

This chapter reports experimental results on dissociation of carbon dioxide in a 

microhollow cathode discharge reactor at atmospheric conditions. Microhollow cathode 

discharge reactor consists of two hollow metal electrodes that are separated by a 

dielectric material. This part of the study focused on the effects of the thickness of the 

dielectric material and the size of the hole in the reactor on dissociation of carbon 

dioxide. The dielectric thickness was chosen as 150, 300 and 450 m, whereas the 

discharge hole diameter was selected as 200, 400 and 515 m. The results of each 

experimental case in this study were presented in terms of the concentration of gases at 

the exit of the reactor, power requirement, carbon dioxide-to-carbon monoxide 

conversion yield, and electrical-to-chemical energy conversion efficiency. 

 INTRODUCTION 7.1

This chapter focuses on CO2 dissociation using non-thermal plasma generated by 

a prototype MHCD reactor. CO2 is a greenhouse gas, widely accepted to contribute 

towards global temperature rise. Thus, there is an urgent need to reduce the CO2 

emissions from the use of fossil fuels and/or utilize CO2 as a carbon source for the 

manufacture of fuels and chemicals. Conventionally CO2 utilization requires high 

temperatures and catalysts and often the generated carbon black particles clog the 

conventional reactors [71, 138, 139, 142]. Alternatively, non-thermal plasma by means of 

MHCD reactors does not require high temperatures or catalysts, and these reactors have 

low cost, low power requirement and could work with different gas compositions [6, 25-

27]. 
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This study investigated the effects of dielectric thickness and hole size on CO2 

dissociation in a prototype MHCD plasma reactor at ambient pressure. Prior to this study, 

the effect of electrode separation was investigated mainly on the voltage requirement of 

plasma reactors, and the results were generalized as Paschen curves [25, 82, 83]. These 

curves along with their restrictions were discussed in more detail in the next section. 

Additionally, Lennon et al. [143] showed that increasing dielectric thickness decreased 

the capacitance of the reactor so that the frequencies of the discharges increased at a 

given average current through the reactor. The studies in the literature showed that the 

hole size did not affect the voltage requirement of MHCD reactors for plasma generation 

[31, 144]; however, decreasing the hole size increased the electron density in the reactor 

[145]. Although these studies investigated the effects of geometric parameters on voltage 

requirement and electron density, they did not investigate the effects on the applications, 

such as on gas dissociation. 

To our knowledge, there is no study that has experimentally investigated the 

performance of a prototype MHCD plasma reactor for dissociating CO2 at atmospheric 

pressure as the dielectric thickness and hole size were varied. The dissociation 

performance of the reactor was quantified in terms of gas concentrations in the reactor 

effluent, electrical-to-chemical energy conversion efficiency and CO2-to-CO conversion 

yield. 

 EXPERIMENTAL PARAMETERS 7.2

Sections 3.2 and 3.3 present the prototype MHCD plasma reactor and the 

experimental setup used in this part of the study. A mica plate as a dielectric material 

separated the hollow aluminum electrodes. The discharge hole was featured through these 

three layers. In this chapter, thickness of the dielectric layer and size of the discharge hole 
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were varied to investigate their effects on dissociation of CO2. The thickness of the 

dielectric layer, d, was chosen as 150, 300 and 450 m, whereas the diameter of the 

discharge hole, Dhole, was chosen as 200, 400 and 515 m. 

Based on the atmospheric pressure (1 atm) and the size of the discharge hole used 

in this study, the breakdown voltage for pure CO2 was solved iteratively as explained in 

detail in Section 2.2.3 using Townsend breakdown mechanism. Figure 7.1 shows the 

Paschen curve for CO2 and the estimated breakdown voltages that correspond to the 

electrode separations used in this part of the study. The breakdown voltages were 

estimated as 2.1, 3.3 and 4.3 kV for the electrode separations of 150, 300 and 450 m, 

respectively.  

Carbon dioxide (99.5% purity, Matheson Tri-Gas) and argon as the carrier gas 

(99.998% purity, Airgas) were fed to the flow chamber through flow rate controllers. The 

H2O saturator, the humidity and temperature controller shown in Figure 3.2 were not 

used in this part of the study. Flow rate in this study was chosen between 10 and 800 

mL/min based on the limits of the flow rate controller. The gases were sampled at the 

reactor effluent and analyzed in gas chromatograph. Based on these values, the applied 

voltage was selected as 4.5 kV due to upper limit of the power supply used in the study. 

Each parameter combination was independently repeated at least 4 times. The 

error bars in figures reported in the Results and Discussion section below reflect the 

standard deviation of the data obtained from these independent experiments. 
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Figure 7.1. Breakdown voltage for CO2 as a function of pressure times the discharge 

distance, and the breakdown voltages that correspond to the discharge distances used in 

this study. 

 RESULTS AND DISCUSSION 7.3

Prior to experiments to investigate the effects of geometrical parameters of the 

reactor, electric field distribution in the reactor was simulated before the first discharge, 

and the results are given in Appendix D. The simulations ignored the redistribution of the 

electric field and charges in the reactor due to discharges, and also the flow of the gas. 

The simulation results estimated that the dissociated gas volume decreased slightly as 

dielectric thickness increased from 150 to 450 m. Thus, the yield would decrease 

slightly based on the electric field distribution in a stagnant CO2 under uniform electric 

field. In addition, the simulation results suggested increasing the hole size would not 

change the maximum electric field in the gas, but the gas subjected to electric fields 

greater than breakdown electric field would be lower. Therefore, the conversion yield 
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would decrease. This section further investigates the effects of dielectric thickness and 

hole size through experiments with the redistribution of charges and electric field in the 

reactor. 

7.3.1 Effects of Dielectric Thickness on Dissociation 

Firstly, a series of experiments were conducted to investigate the effects of 

dielectric thickness on the performance of the MHCD reactor in dissociating CO2. At an 

applied voltage of 4.5 kV and a discharge hole diameter of 400 m, the flow rate was 

varied between 10 and 800 mL/min. Note that at a given reactor geometry, the residence 

time is inversely related to flow rate per Equation (3.10). 

Figure 7.2 shows the gas concentrations of CO2, CO and O2 in the reactor effluent 

as functions of residence time for three different dielectric thicknesses. The results 

showed that increasing dielectric thickness decreased the concentrations of CO and O2 for 

all residence times. At a residence time of 6 s, CO and O2 concentrations in the reactor 

effluent decreased by about 11% and 38%, respectively, as the dielectric thickness 

increased 3 times from 150 to 450 m. Additionally, CO and O2 concentrations decreased 

by 19% and 81%, respectively, by doubling the dielectric thickness at a residence time of 

25.6 s. Therefore, at longer residence times, the effect of dielectric thickness was more 

pronounced. Larger dielectric thickness at a given applied voltage reduced the electric 

field in the reactor as distance between the electrodes was greater. For this reason, lower 

electron energies, thus less ionization and dissociation, were expected at larger dielectric 

thicknesses due to lower electric field. 

Moreover, Figure 7.2 shows the effect of residence time on the concentration of 

gases at the reactor effluent. In this figure, note that residence time was a function of both 

the flow rate and the dielectric thickness. The results showed that with increasing 
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residence time, concentration of CO2 decreased exponentially, whereas concentrations of 

CO and O2 increased linearly on a logarithmic scale. For a given reactor volume, the 

number of collisions in the reactor increased with residence time per unit mole of the fed 

gas. Therefore, higher the electron density was expected which would yield greater CO2 

dissociation as it was observed as in Figure 7.2. As the residence time increased 40 times, 

CO concentrations at the reactor effluent increased about 27.4, 20.4 and 15.6 times for 

dielectric thickness of 150, 300 and 450 m, respectively. As the residence time 

decreased for all the dielectric thicknesses, the slopes of CO and O2 concentrations were 

flattened. This must be due to very low concentrations of these species. Additionally, the 

stoichiometric balance on oxygen suggested that some of the oxygen content in the 

reactor influent converted to ozone, whereas the the stoichiometric concentration for 

carbon was satisfied for all cases. 

 

Figure 7.2. Concentrations of CO2, CO and O2 in the reactor effluent as functions of 

residence time for three different dielectric thicknesses. The legend shows the dielectric 

thickness in m. 
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Figure 7.3 shows the energy density and self-pulsing frequency of the 

microdischarge reactor at different dielectric thicknesses as functions of residence time. 

The energy density presented here corresponds to the total energy consumed by the 

reactor over the duration of experiments per volumetric flow rate of CO2 in the reactor 

influent. The energy density increased linearly with residence time on a logarithmic scale 

for each dielectric thickness. Energy density increased 71 times for 150 m as the 

residence time increased 80 times from 1.6 to 128 s. Additionally, the increase rate of 

energy density with residence time was about 2.6 times greater for the dielectric thickness 

of 150 m than 450 m. The increase in energy density with residence time could be 

related to the increase in electron density. As the electron density increased in the reactor, 

more inelastic collisions occur and more energy was dissipated through collisions, which, 

in return, increased the energy density. 

Additionally, self-pulsing frequency increased almost exponentially with 

residence time. The relative increase was 28% for 150 m and 72% for 450 m as the 

residence time increased from 6 to 25.6 s. As mentioned above, longer residence times 

yield higher electron densities. So, less time would be required to reach the electron 

density required for discharge to occur, and thus, self-pulsing frequency increased with 

residence time. For the same reason, electron density decreased with increasing dielectric 

thickness which yielded lower frequencies. For instance, at a residence time of 12.5 s, 

the self-pulsing frequency decreased from 42.3 to 20.6 kHz as the dielectric thickness 

increased from 150 to 450 m. 
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Figure 7.3. Energy density and self-pulsing frequency of the microdischarge plasma 

reactor as functions of residence time for three different dielectric thicknesses. The 

legend shows the dielectric thickness in m. 

Figure 7.4 shows the electrical-to-chemical energy conversion efficiency and 

CO2-to-CO conversion yield at different dielectric thicknesses as functions of residence 

time. The energy efficiency values mainly show how much of the electrical power 

consumption was used for generating CO at each experimental case. The results showed 

that at a given residence time, the energy conversion efficiency increased with dielectric 

thickness. This result could be attributed to lower energy density and higher CO 

concentration at larger dielectric thicknesses. At a residence time of 6 s, the energy 

conversion efficiency increased from 9.8% to 18.5% when the dielectric thickness 

increased from 150 to 450 m. Additionally, the energy conversion efficiency decreased 

with increasing residence time as more energy was lost due to inelastic collisions at 

longer residence times as mentioned above. For instance, increasing the residence time 60 
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times from 5.9 to 354 s, the energy efficiency decreased from 18.5% to 12.6% for the 

dielectric thickness of 450 m. 

The CO2-to-CO conversion yield showed a similar trend as CO concentration as 

the inlet concentration of CO2 was constant in these cases. The CO2-to-CO conversion 

yield increased linearly with the residence time on a logarithmic scale for all dielectric 

thicknesses, and the maximum CO2-to-CO conversion yield was about 17.3% for the 

dielectric thickness of 450 m and a residence time of 354 s within the investigated 

range of parameters. 

 

  

Figure 7.4. Energy conversion efficiency and CO2-to-CO conversion yield of the 

microdischarge reactor as functions of residence time for three different dielectric 

thicknesses. The legend shows the dielectric thickness in m. 
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7.3.2 Effects of Discharge Hole Diameter on Dissociation 

Secondly, the effect of hole size on CO2 dissociation was analyzed using three 

different hole diameters, 200, 400 and 515 m, at a constant applied voltage of 4.5 kV 

and a constant dielectric thickness of 150 m. Figure 7.5 shows concentrations of CO2, 

CO and O2 at the reactor effluent as functions of residence time at the specified hole 

diameters. The effect of residence time was discussed in the previous section and not 

repeated here for brevity. The figure shows that concentrations of CO and O2 decreased 

with increasing hole size. For instance, at the residence time of 6 s, CO concentrations 

at the reactor effluent were 2.6%, 0.7% and 0.4% for hole diameters of 200, 400 and 515 

m, respectively. Similar results were obtained at other residence times as shown in 

Figure 7.5. The decrease in CO2 dissociation with increasing hole size could be attributed 

to the electric field distribution in the discharge hole. In smaller hole sizes, the magnitude 

of the electric field near the electrodes would be higher due to pendulum effect which 

was expected to result in more energetic electrons and more probability for ionization and 

dissociation to occur in the plasma through collisions [80, 86]. 

Figure 7.6 shows the required average energy density consumed to dissociate CO2 

and self-pulsing frequency as functions of residence time at the specified hole sizes. The 

energy density increased with decreasing hole size at a given residence time and constant 

applied voltage. Energy density decreased about 3.7 times as the hole diameter increased 

from 200 to 400 m and about 1.8 times from 400 to 515 m. This decrease could be 

attributed to the decrease in the electron densities and energies in the reactor at a given 

instant as explained above. Lower electron densities and energies resulted in fewer and 

less energetic collisions, and thus, energy lost through inelastic collisions would be 

lower. 
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Figure 7.5. Concentrations of CO2, O2 and CO in the reactor effluent as functions of 

residence time for three different hole diameters. The legend shows the hole diameter in 

m. 

Additionally, Figure 7.6 shows the self-pulsing frequency at the specified hole 

sizes. As mentioned above, larger hole sizes yielded lower electron densities. For this 

reason, at larger hole sizes, more time was required to reach the required number of 

charges for discharge at a given applied voltage. Thus, self-pulsing frequency decreased 

with increasing hole size. For instance, as the hole diameter increased from 200 to 515 

m, the frequency increased by about 22% and 28% at residence times of 6 and 13 s, 

respectively. 

Figure 7.7 shows the electrical-to-chemical energy conversion efficiency and 

CO2-to-CO conversion yield as functions of residence time at the specified hole 

diameters. Energy conversion efficiency increased with decreasing residence time or with 
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increasing hole size. The highest observed energy conversion efficiency was about 10.6% 

for the hole size of 515 m at a residence time of 6 s which was equal to the energy 

conversion efficiency for the hole size of 400 m and a residence time of 1.6 s. The 

results suggested that larger power consumption could not be compensated by higher CO 

production due to higher charge density, so lower efficiency was obtained at smaller hole 

sizes at a given residence time and dielectric thickness. 

As in the previous section, the CO2-to-CO conversion yield reflected the CO 

concentration at different hole sizes as the CO2 concentration at the reactor influent was 

the same for all cases. The conversion yield increased linearly with the increasing 

residence time on a logarithmic scale for all dielectric thicknesses, and decreased with 

increasing hole diameter. The conversion yield decreased about 3.8 and 1.7 times as the 

hole size increased from 200 to 400 m and from 400 to 515 m, respectively. The 

obtained trends showed that it could be possible to reach about 90% conversion yield for 

the hole diameter of 200 m at a residence time of 350 s. 

The simulation results given in Appendix D, Section D.2.2 overestimated the 

conversion yield as the dielectric thickness and hole diameter varied as the model 

assumed uniform electric field in the reactor and did not consider the redistribution of 

charges and electric field. However, the simulation results showed similar trend as in the 

experimental results, especially the significance of hole size being higher than that of 

dielectric layer in terms of improving conversion yield. 
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(a) 

 
(b) 

Figure 7.6. (a) Energy density, and (b) self-pulsing frequency of the microdischarge 

plasma reactor as functions of residence time for three different hole diameters. The 

legend shows the hole diameter in m. 
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(a) 

 
(b) 

Figure 7.7. (a) Electrical-to-chemical energy conversion efficiency, and (b) CO2-to-CO 

conversion yield as functions of residence time for three different hole diameters. The 

legend shows the hole diameter in m. 
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 CHAPTER SUMMARY 7.4

An experimental study was presented for CO2 dissociation using a prototype 

MHCD plasma reactor. The MHCD reactor consisted of two hollow electrodes that were 

separated by a dielectric material. The objective of this study was to investigate the 

effects of the dielectric thickness and the hole size on the performance of the MHCD 

reactor in terms of CO2 dissociation. CO2 was fed to the reactor at different flow rates 

and DC voltage was applied to the reactor. The performance of the reactor was quantified 

in terms of concentration of gases at the reactor effluent, electrical-to-chemical energy 

conversion efficiency and CO2-to-CO conversion yield. The results showed that 

conversion yield decreased, but efficiency increased with increasing dielectric thickness 

and hole diameter for all residence times. The maximum energy conversion efficiency 

obtained was 18.5% for the dielectric thickness of 450 m and a residence time of 6 s. 

Based on the obtained trends, the conversion yield could reach about 90% for hole 

diameter of 200 m at a residence time of 350 s. 

To conclude this chapter, the energy conversion efficiency and conversion yield 

were found to be competing as dielectric thickness and hole diameter were varied. 

Depending on the application, higher conversion yield could be obtained by using thin 

dielectric material and small discharge hole at a given residence time. Additionally, 

longer residence times and larger voltage could be applied for higher yields. The opposite 

should be considered to increase the energy conversion efficiency. Overall, this chapter 

successfully demonstrated the potential of CO2 dissociation using a MHCD plasma 

reactor under atmospheric pressure. For the investigated range of parameters, the energy 

conversion efficiency values were low, although CO2-to-CO conversion yield values 

were promising. 
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 Chapter 8

Summary, Conclusions and Recommendations 

 SUMMARY 8.1

This study focused on the dissociation of H2O and CO2 in a microhollow cathode 

discharge reactor (MHCD) for hydrogen and syngas generation. A MHCD reactor was 

prototyped which consisted of three layers; one layer of mica as dielectric and single 

layers of electrode on each side of the dielectric with a through hole across these three 

layers.  

The first part of the study, Chapter 4, presented the electrical characterization and 

equivalent circuit modeling of a MHCD reactor operating in self-pulsing regime. The 

prototyped reactor was operated for atmospheric air plasmas at different applied DC 

voltages while measuring the voltage across and current through the reactor using high 

voltage probes. The experimental current and voltage characteristics showed that the 

reactor had a capacitive behavior, and showed two distinct regimes as charging and 

discharging regimes. In the equivalent circuit model, the capacitance behavior was 

attributed to a constant capacitance and the self-pulsing behavior was related to a 

variable, negative differential resistor in parallel with the capacitor. The results also 

showed that the maximum voltage corresponded to the breakdown threshold of the gas, 

and it decreased with increasing applied voltage. Additionally, increasing applied voltage 

increased the peak, average and minimum current as well as the power consumption and 

self-pulsing frequency of the reactor. The parameters of the proposed model were 

adjusted to reflect the changes in the magnitudes of current and voltage as a function of 

applied voltage. The introduced equivalent circuit model was in better agreement with the 

experimental results than the other models reported in the literature in terms of predicting 
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both the temporal waveforms and magnitudes of voltage and current. Given the physics 

of discharges and the nature of MHCD reactors, the equivalent circuit model would be 

valid for different gases, reactor dimensions and pressures provided that the model 

parameters are adjusted based on the conditions.  

Chapter 5 experimentally demonstrated carbon dioxide dissociation using 

microhollow cathode discharge plasma reactor in the self-pulsing regime at atmospheric 

pressure, and investigated the CO2 dissociation performance of a microhollow cathode 

discharge plasma reactor as functions of applied voltage (from 2.5 to 4.5 kV), gas flow 

rate (from 10 to 800 mL/min) and CO2 mole fraction in the influent gas mixture (from 

9.95% to 99.5%). The performance of the reactor was evaluated based on the gas 

composition at the reactor effluent, power consumption, electrical-to-chemical energy 

conversion efficiency and CO2-to-CO conversion yield. The results reported in this 

chapter can be summarized as follows: 

 Within the investigated parameters range, the results suggested using 

higher applied voltage or smaller flow rates or to dilute CO2 with high 

concentration of carrier inert gas to increase the dissociation rate of CO2.  

 Time-averaged power requirement of the reactor increased with applied 

voltage, inlet flow rate or inlet CO2 concentration. The average power 

requirement was less than 3 W for all the analyzed cases. 

 The self-pulsing frequency was found to be directly related to the average 

discharge current, the dissociation rate and the CO2-to-CO conversion 

yield. For all the analyzed parameters, frequency varied between 12 and 

72 kHz as it increased with increasing applied voltage or with decreasing 

the flow rate or inlet concentration. 
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 Within the analysis of this study, the maximum electrical-to-chemical 

energy conversion efficiency was found to be 21% for 99.5% pure CO2 at 

an applied voltage of 4.5 kV, inlet flow rate of 800 mL/min. Additionally, 

the results showed the maximum CO2-to-CO conversion yield of 99.5% 

pure CO2 as 10.5%, which was achieved at an applied voltage of 4.5 kV 

and an inlet flow rate of 800 mL/min. Higher conversion yields can be 

obtained with higher residence times. 

 Diluting CO2 with an inert gas or a gas with lower breakdown voltage 

increased the dissociation rate and the conversion yield at a penalty in 

energy conversion efficiency. For instance, if N2 which is the major 

component in air exists in the influent gas, it would increase the yield as 

the breakdown voltage of N2 is lower than that of CO2, but presence of N2 

would also yield NOx generation. 

In Chapter 6, argon and carbon dioxide was saturated with water and fed to the 

MHCD reactor through the humidity and temperature controller at three different flow 

rates at atmospheric pressure. A direct-current high voltage of 4.5 kV was applied to one 

of the electrodes and the other electrode was grounded. High voltage probes were used to 

measure voltage drop across the reactor and across a current viewing resistor to obtain 

discharge current. The performance metrics used in this chapter were the same as in 

Chapter 5. Voltage and current characteristics of each experimental case were also 

compared. Based on the obtained results, the following conclusions can be made: 

 Average current, which was a strong function of the gas but weak function 

of flow rate, signified the charge density in the reactor. Additionally, the 
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maximum voltage of each case showed the corresponding breakdown 

value. 

 Within the parameter ranges used in this study, the maximum hydrogen 

yield was about 28.4% from saturated argon whereas it was about 4.9% 

from saturated carbon dioxide at a flow rate of 10 mL/min. This suggested 

that an inert gas with high ionization energy was favorable as a carrier gas 

for hydrogen production in MHCD plasma reactors.  

 The decrease in yield with increasing flow rate was mainly due to lower 

charge density in the reactor. 

 Introducing water vapor in carbon dioxide increased the CO yield from 

10.5% to 14.5% at 10 mL/min. This result showed that a gas could be 

subjected to higher degree of dissociation when it is fed with low 

concentration of a gas that has lower ionization energy than the gas itself. 

 The maximum energy conversion efficiencies of about 14.8% and 2.0% 

were obtained for saturated carbon dioxide and argon, respectively. The 

efficiency for argon was lower as some of the energy input was lost to 

ionizing and heating argon which enhanced the conversion yield. 

In Chapter 7, another experimental study was presented to investigate the effects 

of the dielectric thickness (from 150 to 450 m) and the hole size (from 200 to 515 m) 

on the performance of the MHCD reactor in terms of CO2 dissociation. CO2 was fed to 

the reactor at different residence times and DC voltage was applied. The performance of 

the reactor was quantified in terms of the same performance metrics as in the previous 

chapters. Based on the obtained results the following conclusions can be drawn: 



135 

 

 CO2 dissociation rate decreased with increasing dielectric thickness for all 

residence times. For instance, at a residence time of 6 s, CO 

concentration in the reactor effluent decreased by about 11% as the 

dielectric thickness increased from 150 to 450 m. 

 Increasing the dielectric thickness decreased the energy conversion 

efficiency, but decreased the conversion yield. The maximum energy 

conversion efficiency was obtained as 18.5% for the dielectric thickness of 

450 m and a residence time of 6 s. Additionally, based on the obtained 

trends, the conversion yield could reach to 87% for the dielectric thickness 

of 150 m at a residence time of 1.28 ms. 

 CO2 dissociation rate decreased with increasing hole diameter regardless 

of the residence time. For instance, at the residence time of 6 s, the CO 

concentration at the reactor effluent were 2.6% and 0.4% for hole 

diameters of 200 and 515 m, respectively. 

 Increasing the discharge hole diameter increased the energy conversion 

efficiency, but decreased the conversion yield. Based on the obtained 

trends, the energy efficiency could reach about 13% for the hole diameter 

of 515 m at a residence time of 1 s. Similarly, the conversion yield 

could reach about 90% for hole diameter of 200 m at a residence time of 

350 s. 

 Experimentally obtained energy density and self-pulsing frequency were 

used to show that the electron energy and density increased with residence 

time and dielectric thickness, but decreased with hole diameter. 
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 CONCLUSIONS 8.2

The major conclusions of this study can be listed as follows: 

 Residence time significantly affected the conversion yields. 

o CO2-to-CO conversion yield could reach 97% at the residence time 

of 1.2 ms for 99.5% pure CO2 in a reactor with a dielectric 

thickness of 150 m and a hole diameter of 400 m operating at an 

applied voltage of 4.5 kV. 

o Maximum H2O-to-H2 conversion yield of 28.4% observed for 

saturated argon at the residence time of 128 s in a reactor with a 

dielectric thickness of 150 m and a hole diameter of 400 m 

operating at an applied voltage of 4.5 kV. 

o Residence times did not affect energy efficiency significantly. 

 When the power consumption of the reactor per flow rate increased, 

o The conversion yields increased linearly. 

o The electrical-to-chemical energy conversion efficiency decreased 

logarithmically. 

o The maximum electrical-to-chemical energy conversion efficiency 

was achieved as 18.5% for 99.5% pure CO2 at a residence time of 

6 s in a reactor with a dielectric thickness of 450 m and a hole 

diameter of 400 m operating at an applied voltage of 4.5 kV. 

 Energy efficiency and conversion yield were competing objectives. 

Increasing yield required high electron density and energies which were 

attributed to the energy density in the reactor. Increasing energy density 

required larger power consumption which reduced energy efficiency. 
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 It was observed that higher conversion yield was obtained at, 

o higher applied voltages 

o longer residence times or smaller flow rates 

o higher concentrations of inert carrier gas 

o thinner dielectric material 

o smaller discharge hole 

When the MHCD reactor and its performance for dissociation were compared 

with the other state-of-the-art technologies proposed in the literature, the following 

conclusions can be drawn: 

 Electrochemical reactors show dissociation rates on the order of 10 

cm
3
/min [110, 134] which are similar to the MHCD reactor. However, the 

electrochemical reactors are prone to changes in composition of 

electrolyte, and they are very sensitive to the purity of electrodes which 

typically degrade after couple of operational hours. The MHCD reactor 

was successfully tested up to 27 hours in the self-pulsing regime. 

Additionally, in electrochemical reactors, the electrolytes need to be 

saturated with the gas before the operation which requires couple of hours 

of set-up time before the operation. 

 A photocatalytic reactor with AlGaN/GaN and Cu electrodes in 3.0M KCl 

solution showed an energy conversion efficiency of 0.13% which was 

close to plants’ photosynthetic efficiency [136]. The efficiencies reported 

in this study were much higher than these photocatalytic reactors. 

 Solar thermochemical reactors required temperatures higher than 1500
o
C 

for operation and featured solar-to-chemical energy conversion 
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efficiencies less than 1% [44]. The operating temperatures of MHCD 

reactor was much lower than the operating temperatures of solar 

thermochemical reactors, and the efficiencies were greater even if solar 

conversion efficiency of 20% was considered. Additionally, due to high 

temperatures in solar thermochemical reactors, the products need to be 

quenched whereas the products of MHCD reactor do not need quenching. 

 A dielectric barrier discharge (DBD) reactor with alternating-current 

excitation showed conversion yield of 18% at an energy density of 23 

J/cm
3
 [146] compared to 17% of MHCD reported in this study. Although 

the yields were comparable, the AC excitation of DBD reactor would add 

more complexity to the operation of the reactor and extra cost for the 

overall system. Additionally, DBD reactor was operated at 19.5 kVAC and 

showed an energy conversion efficiency of 35%. Even though this study 

showed lower efficiencies, the applied voltages were lower, and it was 

observed that higher applied voltages yielded to higher efficiencies. 

Therefore, when compared with other available technologies in the literature, the 

MHCD reactor featured many advantages for dissociating gases and producing syngas. 

The opposite should be considered to increase the energy conversion efficiency. Overall, 

this experimental study successfully demonstrated the potential of H2O and CO2 

dissociation for syngas and hydrogen production using a MHCD plasma reactor under 

atmospheric pressure. For the investigated range of parameters, the results showed that 

the MHCD reactors can be used to effectively couple electric energy into chemical bonds 

and dissociate gases, especially when compared to other state-of-the-art technologies 

given in the literature. 
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 RECOMMENDATIONS FOR FUTURE RESEARCH 8.3

Based on the obtained results in this study, the following recommendations can be 

made for future research to improve the performance of the reactor and to better 

understand the physical phenomena behind the operation of the reactor. 

 Chapter 4 shows the electrical characterization of the reactor as a function of 

applied DC voltage and proposes an equivalent circuit model for stagnant air. The 

results in the other chapters showed that the flow rate of the gas affected the self-

pulsing frequency which was on the same order of magnitude as the residence 

time of the gas in the discharge hole. To further investigate the relation between 

the flow rate and the self-pulsing frequency, the equivalent circuit model in this 

study should be expanded to incorporate the gas flow and relate the model 

parameters to the flow rate or residence time. This model can help understanding 

the physical effect of flow rate on gas dissociation. The results of this study can 

provide necessary and sufficient data to expand the proposed circuit model for 

CO2 at different applied voltages, flow rates, concentrations at the reactor effluent 

and reactor dimensions. 

 To increase the conversion yield or the syngas production rate of the reactor, 

higher voltages should be applied. At a given reactor geometry, flow rate and 

concentration, the transition from self-pulsing regime to normal regime would 

occur. Therefore, there is an upper limit of the applied DC voltage at a given 

reactor geometry and operating pressure. If the reactor would be operated at that 

limit, the conversion yield limits could be experimentally quantified. The 

drawback of applying higher voltages would be higher gas temperatures. To 

overcome overheating the gas issues, alternating or pulsed excitation can also be 
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used at an appropriate frequency for continuous and stable operation of the 

reactor. 

 To further increase the conversion yield or the syngas production rate of the 

reactor, reactors with smaller discharge hole diameters should be manufactured. 

As mentioned in Chapter 7, smaller hole size would be expected to yield to higher 

electron density near cathode due to the nature of pendulum effect of the hollow 

cathode. Additionally, more uniform charge distribution would be predicted in the 

discharge hole based on the expected electric field distribution in the hole. 

However, with smaller hole sizes, higher pressure drops would occur across the 

reactor and should be taken into account during the experiments and analyses. 

 One of the ways to increase the energy conversion efficiency is operating the 

reactor at lower pressures. Based on the breakdown voltages predicted by Paschen 

curve, the voltage requirement would be lower at lower voltages which would 

decrease the power consumption. Additionally, the energy loss mechanisms such 

as gas heating can be assessed to increase the efficiency by minimizing these 

losses for each mechanism. 

 To enhance the H2/CO ratio in syngas, the influent gas can be pre-heated. 

Therefore, the partial pressure of water vapor in carbon dioxide would be higher 

in the influent gas. Alternatively, H2O and CO2 can be dissociated in two different 

reactors in parallel to enhance H2/CO ratio. This ratio can be adjusted as 

necessary by optimizing the operating parameters of these reactors independently. 

Additionally, hydrolyzer can be used in addition to the plasma reactor to 

supplement the H2 content in syngas if required. 
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 The presence of nitrogen in the influent stream can be analyzed experimentally, as 

N2 is the major component of air, and N2 and NOx would exist if air is used as an 

oxidizer. Therefore, it would be beneficial to use N2 as the carrier gas for 

saturated CO2 and investigate the performance difference of the MHCD reactor 

for syngas production. Additionally, difference in NOx concentration between the 

influent and effluent gas would also be analyzed. 

 Although the effect of electrode degradation was inherently included in the results 

of this study, it should be studied independently. An online gas chromatograph 

and mass spectroscope can be used to identify the product yield and conversion 

efficiencies as a function of time. Ultimately, the degradation of electrodes should 

be eliminated for better performance of the reactor as well as for longer operation 

times. Although electrodes with enhanced durability, such as nickel or platinum 

based electrodes would show lower degradation, they would also increase the cost 

of the reactor. Alternatively, operating the reactor with pulsed or alternating 

excitation would also decrease the degradation rate of electrodes. For instance, 

square wave excitation with frequency lower than self-pulsing frequency would 

increase the lifetime of the reactor by changing the polarity of the electrodes 

without affecting the discharge formation. 

 The identification of species, their number densities and temperatures as well as 

number density and temperature of electrons can be estimated using spectroscopy. 

If fast spectroscopy is used, it would be possible to distinguish discharging and 

charging regimes of the self-pulsing regime in terms of number density of species 

and their temperatures. Additional to temporal variation, depending on the spatial 

resolution of the spectroscope, the local dissociation rates could be investigated, 
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and therefore, effects of each parameter analyzed in this study would be further 

discussed and justified. One example of this analysis can be the size of sheath 

regions as the operational parameters vary. As a result of these analyses, more 

recommendations can be made to enhance the dissociation, efficiency and syngas 

production. 

 Stacked reactors in series or parallel can be established to enhance the production 

of hydrogen and syngas. The parallel reactors would enhance the production rate 

whereas the reactors in series would enhance the yield. 

 The renewable energy can be incorporated to this reactor for hydrogen and syngas 

production. Based on the availability of the renewable energy, demand and supply 

relation can be established for economical and life-cycle analyses to assess the 

viability of this proposed method. Using these analyses, it would be also possible 

to show the feasibility of scaling up the system. 
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Appendix A 

Nomenclature 

A area [m
2
] 

C capacitance [F] 

d distance between electrodes [m] 

D diameter [m] 

e energy density [J m
-3

] 

E electric field [V m
-1

] 

f frequency [Hz] 

H  enthalpy [kJ kmol
-1

] 

I current [A] 

L length [m] 

n  molar flow rate [mol s
-1

] 

p pressure [Pa] 

P power [W] 

R resistance [] 

t time [s] 

V voltage [V] 

V  volumetric flow rate [mL min
-1

] 

X equivalent resistance [] 

Z impedance [] 

 

Greek Symbols 

 Townsend coefficient [m
-1

] 
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 conversion yield 

 electrical-to-chemical energy conversion efficiency 

 time constant

 

Subscripts 

avg average 

br breakdown 

C capacitor 

cvr current viewing resistor 

d discharge 

deg degraded 

exp experimental 

in reactor influent/inlet 

res residence 

rxn reaction 

v volumetric 



146 

 

Appendix B 

Numerical Codes Used in the Study 

B.1 PASCHEN CURVE CALCULATION 

This code was used to calculate the breakdown voltage and electric field for 

gases, and to plot the Paschen curves which show breakdown voltage as a function of 

pressure times the distance between the electrodes. This script was written in MATLAB. 

 

% Purpose: Calculate Paschen curves for plasma generation via Townsend breakdown 1 

mechanism 2 

% by Onur Taylan, December 2012 3 

% Ref: A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, CRC, 2004. 4 

% Limitation: Townsend breakdown is valid for pd < 4000 Torr cm 5 

 6 

clear all 7 

 8 

i = 0; % setting the loop 9 

for d = logspace(-3,1) % solving for a range of electrode gap 10 

    i = i + 1; 11 

    A = 5;     % [cm-1 Torr-1] 15 for Air, 20 for CO2. It is approximated by 12 

1/(p*mean_free_path) [AME60637 Notes]. 13 

    B = 130;    % [V cm-1 Torr-1] 365 for Air, 466 for CO2. It is approximated by 14 

A/E_ionization [AME60637 Notes]. 15 

    p = 760;    % [Torr] 16 

     17 
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    gamma(i) = fsolve(@(x) (1/(exp((p*A*exp(B*p/(p*B/((log(A)-18 

log(log(1/x+1)))+log(p*d)))))*d)-1)-x),0.01,optimset('Display','off')); % 19 

iteratively solving for the parameter, gamma 20 

 21 

    C(i) = log(A) - log(log(1/gamma(i)+1)); 22 

    E(i) = p * B / (C(i)+log(p*d)); % the breakdown electric field 23 

    alfa(i) = p * A * exp(B*p/E(i)); 24 

    gamma_new(i) = 1 / (exp(alfa(i)*d)-1); % calculating gamma after the solver 25 

    error(i) = abs(gamma_new(i)-gamma(i)); % checking the accuracy of the solver 26 

 27 

    V(i) = B*p*d/(C(i)+log(p*d)); % the breakdown voltage 28 

end 29 

 

B.2 ENERGY EFFICIENCY AND CONVERSION YIELD CALCULATION 

This code was used to calculate the chemical-to-electrical energy conversion 

efficiency, and the H2O-to-H2 and CO2-to-CO conversion yields based on the volumetric 

flow rate of influent gas at a given temperature, pressure and humidity, average power 

consumption and gas concentrations at the reactor effluent. This script was written in 

Visual Basics. 

 

Function PlasmaCalc(ConcCO2 As Double, ConcCO As Double, ConcO2 As Double, 1 

ConcH2 As Double, Humidity As Double, VolFlowRate As Double, Power As 2 

Double) As Double 3 
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' This code calculates the electrical-to-chemical conversion efficiency for 4 

humidified CO2 5 

' by Onur Taylan, March 2013 6 

' Inputs:  ConcX [%] where X is the specified species 7 

'  Humidity [-] 8 

'  VolFlowRate [m3/s] 9 

'  Power [W] 10 

' Outputs:  PlasmaEfficiency [-] 11 

'  PlasmaYieldH2 [-] 12 

'  PlasmaYieldCO [-] 13 

'  SpecificEnergy [J/m3] 14 

 15 

Dim ResultMatrix(4) 16 

' Constants 17 

DH_CO = 110.53 * 1000 ' kJ/kmol 18 

DH_CO2 = 393.52 * 1000 ' kJ/kmol 19 

DH_H2O = 241.82 * 1000 ' kJ/kmol 20 

DH_O2 = 0 * 1000  ' kJ/kmol 21 

DH_rxn = 282.99 * 1000 ' kJ/kmol 22 

DH_rxnH2O = 241.82 * 1000' kJ/kmol 23 

Density_CO2 = 1.842  ' kg/m3 24 

Density_CO = 1.165  ' kg/m3 25 

Density_O2 = 1.331     ' kg/m3 26 

Density_H2 = 0.0852  ' kg/m3 27 
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Density_H2O = 1 / 43.36 ' kg/m3 28 

MCO2 = 44 ' kg/kmol 29 

MCO = 28 ' kg/kmol 30 

MO2 = 32 ' kg/kmol 31 

MH2 = 2 ' kg/kmol 32 

MH2O = 18 ' kg/kmol 33 

Ptot = 101.3 'kPa 34 

Psat = 3.169 ' kPa at 25degC for H2O 35 

Temperature = 25 + 273.15 'K 36 

Rbar = 8.314 'kJ/kmol/K 37 

 38 

' Calculations for flow rates in the reactor influent 39 

MoleFlowRateInTot = Ptot * VolFlowRate / Temperature / Rbar  'kmol/s 40 

MoleFlowRateCO2In = MoleFlowRateInTot * (Ptot - Humidity * Psat) / Ptot41 

 'kmol/s 42 

MoleFlowRateH2OIn = MoleFlowRateInTot * (Humidity * Psat) / Ptot 'kmol/s 43 

MassFlowRateH2OIn = MoleFlowRateH2OIn * MH2O   'kmol/s 44 

MassFlowRateCO2In = MoleFlowRateCO2In * MCO2   'kmol/s 45 

MassFlowRateInTot = MassFlowRateH2OIn + MassFlowRateCO2In 'kg/s 46 

 47 

' Calculations for flow rates in the reactor effluent 48 

Mout = (ConcCO * MCO + ConcO2 * MO2 + ConcCO2 * MCO2 + ConcH2 * 49 

MH2 + ConcH2Oout * MH2O) 50 

xH2 = ConcH2 * MH2 / Mout 51 
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xCO = ConcCO * MCO / Mout 52 

MassFlowRateCO = xCO * MassFlowRateInTot 'kg/s 53 

MassFlowRateH2 = xH2 * MassFlowRateInTot 'kg/s 54 

MoleFlowRateH2 = MassFlowRateH2 / MH2 'kmol/s 55 

MoleFlowRateCO = MassFlowRateCO / MCO 'kmol/s 56 

 57 

' Calculation for the energy efficiency, yields and specific energy 58 

ResultMatrix(1) = (MoleFlowRateCO * DH_rxn + MoleFlowRateH2 * 59 

DH_rxnH2O) / (Power / 1000)  ' PlasmaEfficiency 60 

ResultMatrix(2) = (MoleFlowRateH2) / (MoleFlowRateH2OIn) ' PlasmaYieldH2 61 

ResultMatrix(3) = (MoleFlowRateCO) / (MoleFlowRateCO2In) ' PlasmaYieldCO 62 

ResultMatrix(4) = (Power) / (VolFlowRate)  ' SpecificEnergy 63 

 64 

PlasmaCalc = ResultMatrix 65 

 66 

End Function67 
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Appendix C 

Gas Chromatograph Analysis 

A gas chromatograph analyzes the composition and concentration of sample gas 

by flowing it through long capillary tubes, called column, with a carrier gas as mobile 

phase. The columns are generally packed with specific fillings as stationary phase so that 

the components of the sample gas can be separated based on their physical and chemical 

properties. At the exit of the column, detectors are used to identify the component based 

on their retention times. 

In this study, gas chromatograph (Shimadzu GC-2014) was used to identify the 

gases and their concentrations at the influent and effluent of the reactor. Three stainless 

steel columns (Sigma-Aldrich Supelco) were used; (i) HayeSep N with a length of 3 m, 

inner diameter of 2.1 mm, (ii) HayeSep T with a length of 2 m, inner diameter of 2.1 mm, 

and (iii) mole sieve 5A with a length of 2.5 m, inner diameter of 2.1 mm. Argon was used 

as the carrier gas in both columns. At the end of columns, the gas chromatograph had two 

detectors, flame ionization detector (FID) as Channel 1, and the thermal conductivity 

detector (TCD) as Channel 2. FID was equipped with a methanizer that was heated up to 

380
o
C. FID is mainly used to detect hydrocarbons, and was used to determine CO2 and 

CO concentrations in this study. Whereas, TCD detect components based on the thermal 

conductivity differences, and was used to detect H2, O2 and N2 in this study. 

C.1 CALIBRATION OF GAS CHROMATOGRAPH 

Before analyzing the gases in the gas chromatograph (Shimadzu GC-2014), it is 

calibrated for 6 different gases using a gas calibration standard (SCOTTY 48). This 

standard contains 1 mol% each of CO2, CH4, CO, H2 and O2 in 95 mol% of N2. This gas 
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sample was injected to the gas chromatograph using glass syringes (Hamilton 

SampleLock Series 1700) of 50, 100 and 250 L. Using three different volumes allows 

three-point, linear calibrations for each gas as shown below. This section shows the 

results of gas chromatograph calibration in terms of area versus concentration plots for 

each gas and their corresponding parameters of goodness of fit. 

C.1.1 Carbon Dioxide 

 

Figure C.1. Calibration curve for carbon dioxide. 
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RF SD : 1034810 

RF %RSD : 10.68959 

C.1.2 Methane  

 

Figure C.2. Calibration curve for methane. 
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C.1.3 Carbon Monoxide 

 

Figure C.3. Calibration curve for carbon monoxide. 
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C.1.4 Hydrogen 

 

Figure C.4. Calibration curve for hydrogen. 
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C.1.5 Oxygen 

 

Figure C.5. Calibration curve for oxygen. 
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C.1.6 Nitrogen 

 

Figure C.6. Calibration curve for nitrogen. 
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microhollow cathode discharge reactor at different applied voltages and an inlet flow rate 

of 100 mL/min. The gas samples were taken at the reactor effluent using a 250-L 

syringe, and injected into the gas chromatograph. The results of the analysis of gas 

chromatograph are given in terms of chromatograms as shown below. The gas appears at 

a particular time, called retention time, on chromatograms and the area under each peak is 

used to find the corresponding gas concentration using the calibration results shown in 

the previous section. 

 

 

Figure C.7. Sample chromatogram of Channel 1 (FID) of the gas chromatograph for CO2 

dissociation at different applied voltages and an inlet flow rate of 100 mL/min. 
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Table C.1. Sample gas chromatograph results of Channel 1 (FID) for CO2 dissociation at 

different applied voltages and inlet flow rate of 100 mL/min. 

CO2 

        
Title Sample Name Sample ID Ret.Time Area Height Area% Conc. Units 

CO2_100mLmin_V4500.gcd CO2 4500 V 15 9.369 1752996629 51989589 98.755 98.490 mol % 

CO2_100mLmin_V4000.gcd CO2 4000 V 14 9.373 1763504091 52210900.8 98.990 95.902 mol % 

CO2_100mLmin_V3500.gcd CO2 3500 V 13 9.336 1844996852 53772042.4 99.214 98.868 mol % 

CO2_100mLmin_V3000.gcd CO2 3000 V 12 9.332 1858569894 54127815.7 99.485 99.595 mol % 

CO2_100mLmin_V2500.gcd CO2 2500 V 11 9.335 1831471626 53629438.6 99.670 99.117 mol % 

CO 

        
Title Sample Name Sample ID Ret.Time Area Height Area% Conc. Units 

CO2_100mLmin_V4500.gcd CO2 4500 V 15 22.887 22098235 908082.1 1.245 1.159 mol % 

CO2_100mLmin_V4000.gcd CO2 4000 V 14 22.89 17988785.3 736223.2 1.010 1.005 mol % 

CO2_100mLmin_V3500.gcd CO2 3500 V 13 22.883 14616998.5 599638.9 0.786 0.897 mol % 

CO2_100mLmin_V3000.gcd CO2 3000 V 12 22.884 9620028.9 395786.4 0.515 0.591 mol % 

CO2_100mLmin_V2500.gcd CO2 2500 V 11 22.885 6061932.1 249815.4 0.330 0.303 mol % 

 

 

Figure C.8. Sample chromatogram of Channel 2 (TCD) of the gas chromatograph for 

CO2 dissociation at different applied voltages and an inlet flow rate of 100 mL/min. 
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Table C.2. Sample gas chromatograph results of Channel 2 (TCD) for CO2 dissociation at 

different applied voltages and inlet flow rate of 100 mL/min. 

O2 

        
Title Sample Name Sample ID Ret.Time Area Height Area% Conc. Units 

CO2_100mLmin_V4500.gcd CO2 4500 V 15 4.544 3254.2 312.2 76.530 0.074 mol% 

CO2_100mLmin_V4000.gcd CO2 4000 V 14 4.548 2597.6 251.9 71.678 0.067 mol% 

CO2_100mLmin_V3500.gcd CO2 3500 V 13 4.531 2348.5 222.4 70.807 0.067 mol% 

CO2_100mLmin_V3000.gcd CO2 3000 V 12 4.529 1630.6 156.8 62.795 0.047 mol% 

CO2_100mLmin_V2500.gcd CO2 2500 V 11 4.525 994.6 103.3 53.729 0.005 mol% 

N2 

        
Title Sample Name Sample ID Ret.Time Area Height Area% Conc. Units 

CO2_100mLmin_V4500.gcd CO2 4500 V 15 6.028 998 60.8 23.470 0.220 mol% 

CO2_100mLmin_V4000.gcd CO2 4000 V 14 6.028 1026.4 61.5 28.322 0.222 mol% 

CO2_100mLmin_V3500.gcd CO2 3500 V 13 6.018 968.3 62.1 29.193 0.207 mol% 

CO2_100mLmin_V3000.gcd CO2 3000 V 12 6.01 966.1 60.2 37.205 0.207 mol% 

CO2_100mLmin_V2500.gcd CO2 2500 V 11 6.007 856.5 56.6 46.271 0.202 mol% 
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Appendix D 

Modeling of Electric Field Distribution in a Microhollow Cathode 

Discharge Reactor prior to Carbon Dioxide Dissociation 

 This appendix reports a numerical study on electric field distribution in a 

microhollow cathode discharge (MHCD) plasma reactor prior to carbon dioxide 

dissociation. These reactors can produce non-equilibrium plasmas and can be a promising 

technology for converting carbon dioxide into valuable chemicals and renewable fuels. 

However, these applications are currently in their early stages. In order to understand the 

effects of major design and operational parameters on the reactor performance of a 

MHCD system, electric field distribution was modeled and simulated before the first 

discharge occurred. In this study, different types of dielectrics including mica, alumina, 

acrylic and quartz were used, and applied DC voltage was varied from 250 to 10,000 V. 

First the operating voltage regions of this reactor were determined based on the 

breakdown thresholds of the dielectric and gas phase. Then, the effects of applied voltage 

on the discharge volume and power requirement of operation were determined. Results 

showed that the reactor with mica as the dielectric material showed the largest operating 

voltage range, as well as the highest power requirement. In addition, the discharge 

volume increased with applied voltage and it was possible to discharge about 96% of the 

gas in the MHCD reactor with mica at 10 kV. 

Prior to this study, a number of modeling studies have been published for the use 

of microdischarge plasma reactors. For instance, Kothnur et al. [106] modeled 1-D, 

parallel-plate DC microdischarge plasma reactor with a dielectric gap of 250 m using 

helium at a pressure of 250 Torr. They showed that the gas temperature in the discharge 

gap could be as high as 1500 K, even for voltages about 200 V. Additionally, Kushner 
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[107] numerically investigated the dynamics and transport of plasma in a cylindrical 

microdischarge device. He also analyzed multistage microdischarge reactors where two 

metal-dielectric-metal configurations were stacked together. The peak electron densities 

and gas temperatures of a multistage reactor were comparable to those of a single-stage 

reactor, and the current was shared equally by each stage. In another study, a tubular 

microdischarge thruster was modeled for microsatellites by Sitaraman and Raja [18]. 

Argon was fed to the thruster, and a peak voltage of 600 V was applied at either 10 or 20 

MHz, and thrust of 278 N and power dissipation of 84 mW were estimated at 20 MHz 

with an flow rate of 0.55 mg/s. 

This appendix reports a simple model to assist the material choice and applied 

voltage selection in a microdischarge plasma reactor, specifically a microhollow cathode 

discharge (MHCD) plasma reactor for CO2 dissociation in terms of avoiding dielectric 

breakdown, discharge gas volume and power consumption. 

D.1 MODELING ANALYSIS 

Figure 3.1 shows the schematic of the system modeled in this study. The system 

consisted of a dielectric material with a thickness of 150 m and two electrodes aligned 

as shown in Figure 3.1. Each electrode had a thickness of 10 m. A hole was featured 

through these three layers with a diameter of 400 m. These dimensions were chosen 

based on a MHCD reactor prototyped in this dissertation. The length and width of 

materials were sufficiently large not to affect the electric field in the hole. The hole was 

filled with pure carbon dioxide at a pressure of 1 atm and temperature of 20
o
C. Finally, it 

was assumed that during the operation of the reactor the material properties were constant 

at the system temperature and pressure, i.e., it was assumed that non-thermal plasma 

conditions were satisfied. 
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D.1.1 Governing Equation 

In order to estimate the volume of CO2 discharge, the volume of the reactor was 

calculated in which the local electric field was larger than the breakdown threshold of 

CO2. For this, the electric field distribution within the plasma reactor was determined 

from the charge conservation equation according to [147-149], 

 0J
t


 


 (D.1) 

where  is the electric charge density in C/m
3
, t is the time in s, and J is the current 

density in A/m
2
. The current density can be written in terms of electric field, E, without 

an external current source as follows [149], 

 
o rJ E

t
  

 
  

 
 (D.2) 

where  is the electrical conductivity in S/m, f is the frequency in Hz, o is the 

permittivity of vacuum which is constant and equal to 8.854×10
-12

 F/m, r is the relative 

permittivity which is the ratio of absolute permittivity of a material to the permittivity of 

vacuum, and E is the electric field in V/m. The electric field can be given as [148, 149], 

 E V   (D.3) 

where V is the electrical voltage. 

Finally, the theoretical power required to discharge the gas in the MHCD reactor 

was calculated as [150], 

 d
V

P J E V   (D.4) 

where V  is the volume of the reactor in m
3
. 
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D.1.2 Boundary and Initial Conditions 

Due to symmetry, the electrode choice to apply voltage was arbitrary, and 

according to the configuration given in Figure 3.1a, the top electrode was grounded and 

the bottom electrode was subjected to DC voltage such that, 

 
0top

bottom applied

V

V V




 (D.5) 

where Vapplied is the applied voltage in V. In this study, the applied voltage was varied 

from 250 to 10,000 V to dissociate CO2. The outer surfaces and the inlet and exit ports of 

the reactor were taken as electrically insulated such that, 

 ˆ 0n J   (D.6) 

Initially, the electric field in the system was zero. 

D.1.3 Material Properties 

Finally, Table D.1 summarizes the material properties used in this study, 

including the electrical conductivity and relative permittivity of the electrodes, dielectric 

materials and gas. 

D.1.4 Method of Solution 

The electric field distribution in the system was solved using AC/DC module of 

COMSOL Multiphysics
® 

version 4.3, finite element analysis software. A 3-D tetrahedral 

mesh which consists of 50,314 elements was applied for finite element analysis. 

Moreover, the breakdown electric field was solved iteratively as in Section 2.2.3, 

and applied as the threshold value for the discharge formation to the electric field 

obtained from finite element analyses.  Based  on  these equations, the breakdown electric 
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Table D.1. Electrical properties of the materials used in MHCD plasma reactor 

simulations at room temperature and pressure [151]. 

Material 

Electrical 

Conductivity  

 (S/m) 

Relative 

Permittivity 

r 

Breakdown 

Electric Field 

Ebr (V/m) 

Reference 

Dielectric     

Acrylic 1.00×10
-18

 2.6 19.7×10
6
 [152-154] 

Alumina 1.00×10
-15

 10.1 13.4×10
6
 [154-156] 

Quartz 1.00×10
-12

 4.2 13.8×10
6
 [154, 157] 

Mica 2.01×10
-15

 6.0 118×10
6
 [154, 157] 

Electrode     

Aluminum 3.77×10
7
 1.0 - [157] 

Medium     

CO2 5.00×10
-15

 1.0 from Paschen curve [158] 

 

field of CO2 was calculated as 1.2x10
7
 V/m at the dielectric gap of 400 m. With this 

threshold value, it was possible to estimate the discharge gas volume by integrating the 

differential volumes in which the electric field is greater than the breakdown electric 

field. 

Additionally, a sensitivity analysis was performed to ensure that the obtained 

parameters were independent of mesh size and convergence criteria for the case with 

aluminum electrodes and quartz as the dielectric material. When the number of mesh 

elements increased from 50,314 to 100,065, the relative difference between the electric 

field values was within 0.4%, but the simulation time was doubled. Additionally, the 

convergence criterion was decreased by an order of magnitude, and the results were in 

agreement within 0.01%. All simulations were performed on a computer with 64-bit Intel 

Xeon E5430 processor at 2.66 GHz and 16.0 GB of RAM. 
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D.2 SIMULATION RESULTS 

D.2.1 Effects of Dielectric Material and Applied Voltage 

In simulations, MHCD plasma reactor was considered with aluminum electrodes 

and different dielectric materials, and the operating voltage range of the reactor for each 

material was identified. Figure D.1 shows the maximum electric field in the dielectric 

materials and in CO2 as the gas phase as a function of applied voltage. The figure also 

shows the corresponding breakdown electric fields of the dielectric materials as given in 

Table D.1, as well as the electric field required to discharge CO2. Both electric fields 

increased linearly with the applied voltage, where the field in the gas phase had a larger 

gradient than that in the dielectrics. 

The operating range of the MHCD plasma reactor can be defined as the voltage 

region for which the electric field was larger than the breakdown threshold of the gas 

phase and smaller than the breakdown threshold of the dielectric. In this way, the 

discharge occurs in the gas phase rather than in the dielectric. Figure D.1 shows that the 

dielectric materials can be listed from the largest to the smallest operating range as mica, 

acrylic, quartz and alumina. Table D.2 summarizes the lower and upper voltage limits of 

the MHCD reactor with each dielectric material. From these results, it can be concluded 

that the dielectric with greater breakdown electric field should be used for a larger 

operating voltage range of MHCD plasma reactor. Additionally, the lower limit did not 

depend on the dielectric material and found to be 1 kV. Moreover, dielectrics with higher 

relative permittivity showed lower maximum electric fields in the gas phase. 
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Figure D.1. Maximum electric field in the gas and the dielectric as a function of applied 

voltage for the microdischarge plasma reactor with aluminum electrodes. 

Table D.2. Lower and upper limits for operating voltage range of microdischarge plasma 

reactor.  

Dielectric Lower Voltage Limit (V) Upper Voltage Limit (V) 

Mica 1000 > 10,000 

Acrylic 1000 3,250 

Quartz 1000 2,500 

Alumina 1000 2,500 

 

Figure D.2 shows the estimated volume of the discharged CO2 as a function of the 

applied voltage within the working voltage range of the MHCD reactor with aluminum 

electrodes and mica as dielectric material. Results with mica were given here since it had 

the largest operating voltage range among the other investigated dielectric materials. As 

the applied voltage increased, the dissociated gas volume approached to the total gas 

volume in the reactor. The figure indicates that the discharge volume increased to about 

93% of the total reactor volume at an applied voltage of 10 kV. Thus, it is suggested to 
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apply voltages near the dielectric breakdown threshold of the dielectric material to 

maximize the discharge gas volume. Similar results were obtained for other dielectric 

materials within their operating voltage ranges. 

 

Figure D.2. Estimated discharge gas volume as a function of applied voltage for the 

MHCD plasma reactor with aluminum electrodes and mica as the dielectric material. 

In addition, Figure D.3 shows the electrical power required to discharge CO2 as a 

function of applied voltage for the operating voltage ranges of each dielectric material. 

As in the previous cases, aluminum electrodes were considered in this figure. It shows 

that the power requirements increased with applied voltage quadratically. As in the 

operating voltage ranges, the power requirement of a dielectric with higher breakdown 

voltage was higher. Thus, reactor with mica had the highest and the reactor with alumina 

had the lowest power requirement among the investigated four dielectric materials. At 1 

kV, reactors with mica, acrylic, quartz and alumina required power of 0.22, 0.11, 0.08 
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and 0.002 W, respectively, whereas the power requirements increased to 1.38, 0.68, 0.52 

and 0.008 W at 2.5 kV. 

 

 

Figure D.3. Required power as a function of applied voltage for the MHCD plasma 

reactor with aluminum electrodes.  

D.2.2 Effects of Hole Size and Dielectric Thickness 

The simulations were also performed to investigate the effects of geometrical 

parameters of the MHCD reactor on electric field distribution and estimated discharge 

CO2 volume. In these simulations, mica was selected as the dielectric material since it 

showed the highest operating range among the other investigated dielectric materials. The 

results showed that the discharge hole diameter, Dhole, did not affect the maximum 

electric field strength in both dielectric and gas. Additionally, Figure D.4 shows the 

estimated discharge CO2 volume as functions of hole diameter from 100 to 900 m, and 

the ratio of the estimated discharge volume to the total volume of the gas in the discharge 

hole. The results showed that the estimated discharge volume increased with increasing 
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hole diameter, and at a hole diameter of 400 mm, it was possible to discharge about 92% 

of the total gas volume in the discharge hole. Based on the electric field distribution, this 

volume ratios were lower at other hole sizes and varied between 60% and 92% as shown 

in Figure D.4. 

 

Figure D.4. Estimated discharge gas volume as a function of discharge hole diameter of 

the MHCD plasma reactor at an applied voltage of 10 kV with aluminum electrodes and 

mica as the dielectric material. 

Moreover, the dielectric thickness was varied from 300 to 1000 m and its effect 

on the electric field distribution was analyzed at an applied voltage of 10 kV and a 

discharge hole diameter of 400 m. The simulation results showed that the maximum 

electric field in the reactor decreased as the dielectric thickness increased. At a constant 

applied voltage, thicker dielectric material showed lower electric field strength as electric 

field is a function of distance between the electrodes. Additionally, Figure D.5 shows the 

estimated discharge CO2 volume as functions of dielectric thickness from 300 to 1000 
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m, and the ratio of the estimated discharge volume to the total volume of the gas in the 

discharge hole. The results showed that the estimated discharge volume increased linearly 

with dielectric thickness, whereas the estimated discharge gas volume to total volume 

varied between 86% and 92%. The maximum ratio was observed as 91.6%  at a dielectric 

thickness of 300 m and the minimum was observed as 86.6% at a dielectric thickness of 

700 m. 

 

Figure D.5. Estimated discharge gas volume as a function of dielectric thickness of the 

MHCD plasma reactor at an applied voltage of 10 kV with aluminum electrodes and mica 

as the dielectric material. 

D.3 MODELING SUMMARY 

A numerical study was performed on the electric field in a MHCD plasma reactor 

prior to discharge in order to assist the design of the reactor for higher CO2 dissociation. 

The effects of dielectric materials, applied voltage, discharge hole diameter and dielectric 

thickness on the electric field, discharge volume and power requirement were 

investigated through a three-dimensional finite element model. Based on the electric field 
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distribution and the breakdown electric field values of the gas and the dielectric material, 

operating voltage ranges were identified for each analyzed case. For each operating 

voltage range, discharge CO2 volume and power requirement of the reactor were 

calculated. Based on the obtained results the following conclusions can be made: 

 Dielectric material choice affected the operating voltage range of MHCD 

plasma reactor, as different dielectric materials showed different 

maximum electric fields in the dielectric. Mica had the largest operating 

range, whereas acrylic showed the highest electric field in the gas phase. 

 Electric field in the gas phase and in the dielectric material increased 

linearly with applied voltage. However, electric field in the dielectric 

material was independent of the dielectric material. 

 Estimated discharge gas volume increased with increasing applied voltage 

for all the dielectric materials. A MHCD reactor with mica as dielectric 

material could discharge up to 93% of CO2 in the reactor at 10 kV. 

 Power requirement increased quadratically with increasing applied 

voltage. Mica showed the highest power requirement which was two 

orders of magnitude higher than the power requirement of alumina. 

 The estimated discharge volume increased with increasing hole size and 

dielectric thickness. However, the ratio of estimated discharge volume to 

the total volume of the gas showed the highest value as 93% at a discharge 

hole diameter of 400 m and a dielectric thickness of 150 m. This ratio 

was lower for the reactor with thicker dielectric layer. 

Although the results of this model overestimated the experimental results, they 

were able to capture the trends of the experimental results. 
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