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Novel integral-equation methods for efficiently solving electromagnetic problems 

that involve more than a single length scale of interest in complex backgrounds are 

presented. Such multi-scale electromagnetic problems arise because of the interplay of two 

distinct factors: the structure under study and the background medium. Both can contain 

material properties (wavelengths/skin depths) and geometrical features at different length 

scales, which gives rise to four types of multi-scale problems: (1) two-scale, (2) multi-scale 

structure, (3) multi-scale background, and (4) multi-scale-squared problems, where a 

single-scale structure resides in a different single-scale background, a multi-scale structure 

resides in a single-scale background, a single-scale structure resides in a multi-scale 

background, and a multi-scale structure resides in a multi-scale background, respectively. 

Electromagnetic problems can be further categorized in terms of the relative values of the 

length scales that characterize the structure and the background medium as (a) high-

frequency, (b) low-frequency, and (c) mixed-frequency problems, where the 

wavelengths/skin depths in the background medium, the structure’s geometrical features 
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or internal wavelengths/skin depths, and a combination of these three factors dictate the 

field variations on/in the structure, respectively.   

This dissertation presents several problems arising from geophysical exploration 

and microwave chemistry that demonstrate the different types of multi-scale problems 

encountered in electromagnetic analysis and the computational challenges they pose. It also 

presents novel frequency-domain integral-equation methods for solving these multi-scale 

problems. These methods avoid meshing the background medium and finding fields in an 

extended computational domain outside the structure, thereby resolving important 

complications encountered in type 3 and 4 multi-scale problems that limit alternative 

methods. Nevertheless, they have been of limited practical use because of their high 

computational costs and because most of the existing ‘fast integral-equation algorithms’ 

are not applicable to complex Green function kernels. This dissertation introduces novel 

FFT, multigrid, and FFT-truncated multigrid algorithms that reduce the computational 

costs of frequency-domain integral-equation methods for complex backgrounds and enable 

the solution of unprecedented type 3 and 4 multi-scale problems. The proposed algorithms 

are formulated in detail, their computational costs are analyzed theoretically, and their 

features are demonstrated by solving benchmark and challenging multi-scale problems. 
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Chapter I:  Introduction 

Efficient analysis of electromagnetic scattering, radiation, and propagation in 

complex backgrounds is important for many engineering applications. Consider three 

examples from geophysics, microwave engineering, and microwave chemistry: (i) To 

interpret marine controlled source electromagnetic measurements when exploring 

hydrocarbon reservoirs, the effects of oil/gas and various isotropic/uniaxial layered 

background media (sea, soil, rock, etc.) on extremely low-frequency electromagnetic 

waves must be evaluated [1],[2]. (ii) To design on-chip and on-package antennas, the 

electromagnetic interactions between integrated antennas, silicon substrate, interconnect 

layers, and other circuitry must be evaluated at GHz frequencies [3]. (iii) To predict the 

outcome of microwave-assisted chemistry experiments, the energy absorbed by various 

materials (solutions, thin films, containers, rotors, etc.) in a rectangular microwave reactor 

must be calculated [4]. As the complexity of such applications and the realism of their 

computer models continue to increase, conventional numerical algorithms and the 

simulators they drive become ineffective even though the raw computational power they 

can access continues to scale up. This is mainly a reflection of the “tyranny of scales” that 

plagues all fields of computational science and engineering [5]: Few conventional 

algorithms are efficient and robust enough for computations involving more than a single 

length scale of interest. As can be seen in the three examples above, multi-scale problems, 

where important field variations are observed in the domain of analysis at multiple time or 

length scales, are often encountered in electromagnetics. While multi-time-scale problems 

can often be avoided by time-harmonic/frequency-domain analysis, multi-length-scale 

problems remain a challenge and are the focus of this dissertation. 
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1.1 MULTI-LENGTH-SCALE PROBLEMS IN ELECTROMAGNETIC ANALYSIS 

Multi-length-scale, henceforth referred to as multi-scale, electromagnetic problems 

arise because of two distinct reasons: (i) The structure under study can contain material 

properties (permittivity/conductivity/permeability)—equivalently, “internal” field 

wavelengths/skin depths—or geometrical features at different length scales, e.g., installed 

antennas (electrically small structures installed on electrically large platforms), electronic 

packaging (connecting small chips to large boards), biological systems (inhomogeneous 

tissues), and through-casing borehole resistivity measurements (large conductivity 

contrast) give rise to such structures. (ii) The background medium can consist of material 

properties—equivalently, “external” field wavelengths/skin depths— or geometrical 

features at multiple length scales; e.g., each layer of earth or a packaging substrate can be 

characterized by a different length scale. The interplay of these two factors can give rise to 

Single-Scale Problems, where a structure characterized by a single length scale (a single-

scale structure) resides in a background characterized by a similar single length scale (a 

similar single-scale background), or four types of multi-scale problems: Type 1 multi-scale 

problems (two-scale), where a single-scale structure resides in a different single-scale 

background; type 2 multi-scale problems (multi-scale structure), where a multi-scale 

structure resides in a single-scale background; type 3 multi-scale problems (multi-scale 

background), where a single-scale structure resides in a multi-scale background; and type 

4 multi-scale problems (multi-scale-squared), where a multi-scale structure resides in a 

multi-scale background. Note that only the first two types of multi-scale problems exist in 

single-scale backgrounds (e.g., free-space, homogeneous medium, or a rectangular cavity 
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filled with a homogeneous material), whereas all four types are encountered in multi-scale 

backgrounds (e.g., layered media).  

Multi-scale electromagnetic problems can be further categorized based on the 

relative values of the length scales that characterize the structure and the background 

medium; specifically, by using the high-, low-, and mixed-frequency nomenclature. In the 

high-frequency simulation regime, the field variations on/in the structure are dictated by 

the wavelengths/skin depths in the background medium; typically, these lengths are much 

smaller than the geometrical features of the structure and comparable to the internal field 

wavelengths/skin depths (if the structure is penetrable). In the low-frequency simulation 

regime, the field variations on/in the structure are dictated by the geometrical features or 

internal wavelengths/skin depths (for penetrable structures); typically, these lengths are 

much smaller than the wavelengths/skin depths in the background medium. In the mixed-

frequency simulation regime, the field variations on/in the structure are dictated by a 

combination of background and internal wavelengths/skin depths and geometrical features; 

typically, the characteristic lengths at different parts of the structure are dictated by 

different factors. In the high-frequency regime, generally type 1 and 3 multi-scale problems 

are solved because the structure does not constrain the field variation and associated 

discretization lengths. In the low-frequency regime, all four types of multi-scale problems 

are encountered; however, certain simplifications are available because all lengths are 

smaller than the background wavelengths/skin depths. The mixed-frequency regime 

necessarily gives rise to type 2 and 4 multi-scale problems; moreover, these are typically 

more challenging than those in the low-frequency regime because the lengths of interest 

are both sub- and multi-wavelength/skin depth. As a result, multi-scale electromagnetic 
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problems can be organized into eight categories as shown in Table 1.1. This dissertation 

proposes novel methods to address the challenges inherent in all eight categories of multi-

scale electromagnetic analysis in complex backgrounds. 
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Table 1.1: Multi-scale problem categorization 
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1.2 INTEGRAL EQUATION METHODS 

While a large variety of frequency- or time-domain, integral- or differential-

equation based techniques can be used for electromagnetic analysis, frequency-domain 

surface and volume integral equation (SIE and VIE) solvers offer some of the most 

promising approaches for multi-scale problems, especially of types 3 and 4. This is because 

they only find unknown currents on/fields in the structure of interest (they never discretize 

the background medium), do not impose artificial/approximate mesh termination 

conditions (they analytically enforce the radiation condition), avoid multi-time-scale 

difficulties, and directly/exactly model dispersive material properties. 

SIE solvers are especially useful at microwave frequencies, where most metals can 

be modeled as perfect electrically conducting (PEC) structures. The PEC approximation 

reduces computational costs significantly as integral equations can be formulated in terms 

of only the tangential electric current on PEC surfaces [13],[14]. When the PEC 

approximation is not valid, e.g., at lower frequencies or when there are dielectric materials, 

SIE solvers can still be used effectively for piecewise homogeneous structures by 

formulating integral equations in terms of tangential electric and magnetic fields on 

interface surfaces [15]-[18]. As the inhomogeneity of a given size structure increases, 

however, SIE solvers are no longer cost effective compared to VIE solvers (the area of the 

interface surfaces converges to the structure volume). Indeed, for continuously 

inhomogeneous structures, the spatial dimension of the problem can no longer be reduced 

by one [19] and integral equations must be formulated in terms of the electromagnetic 

fields inside penetrable volumes [20],[21]. SIE and VIE solvers use the well-known 

method-of-moments (MOM) procedure: The unknown surface currents on/volume fields 
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in the structure of interest are discretized by N  sub-domain basis functions with unknown 

coefficients; to find these coefficients, the integral equations are weighted by N  testing 

functions and converted into a linear system of equations. Although the MOM procedure 

is applicable to all length scales of interest in principle, it suffers from two limitations for 

multi-scale analysis: Low-frequency breakdown and high computational complexity.  

On the one hand, the MOM basis/testing function choice depends on the frequency 

regime of the simulation: (i) In the high-frequency regime, divergence-conforming mixed-

order functions such as the Rao-Wilton-Glisson (RWG) [22] and Schaubert-Wilton-

Glisson (SWG) [23] functions can be used successfully. (ii) In the low-frequency regime, 

integral-equation kernels break down when RWG/SWG edge lengths are 10-5-10-4 of the 

wavelength/skin depth in the background medium due to the imbalance between vector 

and scalar potential contributions and the limitations of finite precision arithmetic [24]. 

This is especially true for electric-field SIEs, for which loop-tree [25], loop-star [26], loop-

charge [27], Calderon-preconditioning based Buffa-Christiansen [28],[29], hierarchical 

functions [8],[30],[31], and novel formulations based on the separation of current and 

charge unknown [32]-[34] have been proposed to combat the low-frequency breakdown; 

VIEs appear to be immune to it [35]. (iii) In the mixed-frequency regime, a seamless 

transition is required from RWG/SWG functions in some parts of the structure to those that 

avoid the low-frequency breakdown in other parts; various methods have been recently 

proposed to achieve this transition, e.g., [30],[31], and [36].  

On the other hand, the classical MOM has high computational costs: It requires 

2( )O N  operations/memory space to form/store a dense linear system of equations and   

2( )O N  operations per iteration to solve this system using an iterative solver. Note that 
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even though the MOM complexity expressions are the same for structures residing in free 

space, layered-medium, and rectangular-cavity backgrounds, the matrix fill times are 

orders of magnitude higher for the latter two due to the cost of Sommerfeld integrals and 

slowly converging triple infinite series needed to evaluate the more complicated Green 

functions. The MOM computational costs can be reduced by using various classes of fast 

algorithms, e.g., fast multipole method [37], low-rank approximation [38], FFT [39],[40], 

and multigrid based algorithms [41]-[44]. For a large variety of single-scale structures 

residing in free space (type 1a and 1b multi-scale problems), these algorithms have been 

shown to reduce the MOM costs to ( )O N  operations/memory space within logarithmic 

factors. In contrast, when the structures contain important features at multiple length scales 

or reside in layered-medium/rectangular-cavity backgrounds (type 2-4 multi-scale 

problems), the majority of fast algorithms break down/lose efficiency and must be modified 

[45]-[56] to reduce the MOM computational complexity. 

1.3 ORGANIZATION OF THE DISSERTATION 

Novel FFT- and multigrid-based algorithms are proposed in this dissertation to 

reduce the MOM computational complexity for multi-scale analysis in complex 

backgrounds, i.e., planar-layered medium and rectangular-cavity backgrounds. Note that, 

although it is an important and active area of inquiry, this dissertation is not focused on the 

low-frequency breakdown problem of SIEs. Instead, this problem is avoided by using SIE 

solvers only for PEC structures in the high-frequency regime (when edge lengths are >10-

3 of the relevant wavelength/skin depth) and VIE solvers otherwise; in other words, SIE 

formulations will be used only for type 1a and 3a multi-scale problems and VIE ones for 
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all types. The algorithms presented in this dissertation are expected to be applicable when 

alternative basis/testing functions are used to avoid low-frequency breakdown (as long as 

they are sub-domain functions).  

The rest of the dissertation is organized as follows. Chapter II applies the adaptive 

integral method (AIM) for efficient analysis of scattering from arbitrarily meshed single-

scale structures in homogeneous background (type 1a and 1b multi-scale problems). 

Chapter III extends the AIM scheme for fast analysis of electromagnetic scattering from 

single-scale structures in rectangular-cavity background (type 1a and 1b multi-scale 

problems). Chapter IV presents the multigrid method and combines it with the FFT-based 

methods to enable the fast simulation of multi-scale structures in homogeneous background 

(type 2a and 2b multi-scale problems). Chapter V extends the AIM for fast analysis of 

scattering from single-scale structures in a planar-layered medium background (type 3a 

and 3b multi-scale problems). Chapter VI shows the application of the developed methods 

to various problems in geophysics, microwave-assisted material synthesis, and microwave 

circuits. Chapter VII concludes this dissertation and discusses future research avenues. 

  



10 

 

Chapter II:  Adaptive Integral Method for Homogeneous Background 

This Chapter presents the adaptive integral method (AIM) for solving scattering 

from electrically large single-scale structures in homogeneous backgrounds (type 1a and 

1b multi-scale problems). Section 2.1 describes the volume electric field integral equation 

for analyzing electromagnetic scattering from anisotropic volumes located in an 

unbounded homogeneous medium and its MOM solution. Section 2.2 details the AIM 

scheme and its computational complexity. The method is presented for the volume integral 

equation, but it is also applicable to surface integral equations as shown in Chapter V. The 

accuracy and efficiency of AIM for the volume electric field integral equation are verified 

numerically in Section 2.3. 

2.1 VOLUME ELECTRIC FIELD INTEGRAL EQUATION AND MOM 

Consider the scattering of a time-harmonic electric field incE  from an arbitrarily 

shaped 3-D non-magnetic single-scale object embedded in an unbounded isotropic 

homogeneous background ( j te w  time variation is assumed and suppressed in this 

dissertation). The object volume is denoted by V  and the material properties in this 

anomalous volume are represented by the complex permittivity tensor 

V V V
/ jw= +ε ε σ , where 

V
ε  denotes permittivity and 

V
σ  is conductivity,  i.e., the 

material is allowed to be anisotropic, lossy, and inhomogeneous. The complex permittivity 

and permeability of the homogeneous background are denoted as 
b b b

/ je e s w= +  and 

0
m  (Fig. 2.1(a)). The complex permittivity tensors are given as 
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(a)        (b) 

Figure 2.1:  (a) An aniosotropic 3-D dielectric object in a homogeneous medium. (b) The 
auxiliary AIM grid points and three of the basis functions defined on 
tetrahedral elements. 
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To construct the volume electric-field integral equation (VEFIE), the total electric 

field in the anomalous volume is expressed in terms of the “conduction-current corrected 

electric flux density” [57] D : 

 inc sca

V
( ) ( ) [ ( ) ( )] for V= ⋅ + ÎD r r E r E r r ε  (2.1.2) 

Rearranging (2.1.2) and expressing the scattered field in mixed-potential form in terms of 

D  yields the VEFIE: 

 

1inc

V
2

0

b

( ) ( ) ( )

( , )[ ( ) ( )]

( , ) [ ( ) ( )]

V

V

g dv

g dv

w m

e

-
= ⋅
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 ¢ ¢ ¢ ¢ ¢-  ⋅ ⋅
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
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χ
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 (2.1.3) 

V

b b 0
( , , )e s m

V 0V
( , , )s mε

incE



12 

 

where ¢r  and r  are the source and observer position vectors, ( , )g ¢ =r r

b| | / 4 | |e g p¢- - ¢-r r r r  is the homogeneous Green function, 
b 0 b
jg w m e=   is the 

complex propagation constant in the background, and χ  denotes the generalized 

“contrast ratio” tensor [23]: 

 

xx xy xz

1yx yy yz
b V

zx zy zz

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

c c c

c c c e

c c c

-

é ù
ê ú
ê ú= = - ⋅ê ú
ê ú
ê úë û

r r r

r r r r I I r

r r r

 χ ε  (2.1.4) 

where I  is an identity tensor. 

The VEFIE is converted to a system of linear equations using the standard MOM 

procedure: First, V  is meshed with tetrahedral elements that have a total of N  

triangular faces; and D  is expanded using N  sub-domain basis functions V V

1
, ,

N
b b  

 V

1

( ) [ ] ( )
N

n
n

n
=

@åD r I b r  (2.1.5) 

Here, I  is the vector of unknown coefficients and the basis functions are chosen to be 

SWG functions [23], which are of three types: Each SWG function V

n
b  is associated with 

the nth triangular face and is non-zero over either (i) one tetrahedron facing the boundary 

of V , or (ii) two tetrahedra with different contrast ratios, or (iii) two tetrahedra with the 

same contrast ratio. The (piecewise constant) permittivity and contrast ratio tensor 

throughout the support of V

n
b  is denoted as 

V,n
ε  and 

n
χ , respectively. When (2.1.5) is 

substituted in (2.1.3), the divergence operation in the last term must be evaluated carefully 

because the contrast ratio is a tensor. Using dyadic notation, the result is expressed as 

 
xx yy zz

V V V[ ] [ ]
3

n n n
n n nn n

c c c+ +
¢ ¢ ¢ ⋅ ⋅ =  ⋅ +  ⋅ ⋅b b bχ χ  (2.1.6) 
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where the first term represents a piecewise-constant volume charge density and the second 

term denotes a surface charge density at the triangular faces caused by the discontinuity of 

n
χ . Because 

n
¢ ⋅ χ  is a vector that can point in arbitrary directions, surface charges can 

exist on all faces in the support of V

n
b  for all three types of SWG functions. In contrast, 

surface charges exist only on one face in the isotropic case. Next, (2.1.3) is tested by the 

symmetric testing scheme [58] to decrease the AIM anter/interpolation costs, i.e., 

V V

m mm
= ⋅t bχ  for 1, ,m N=  . This MOM procedure yields the matrix equation 

 inc( )+ =Z D I V  (2.1.7) 

The entries of the N N´  impedance matrix Z , the Gram matrix D , and the tested 

incident field vector incV  are given as 
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m n g dv dv

g dv dv
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m n dv

m dv

w m

e

e
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¢ ¢+  ⋅  ⋅ ⋅
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D t b
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



χ

χ

χ

ε

 (2.1.8) 

for 1 ,m n N£ £ . The calculation of the impedance matrix (matrix fill time), the memory 

required for storing it (memory cost), and the solution of (2.1.7) (matrix solve time) are 

the main computational costs of the above MOM procedure. The matrix fill time and 

memory cost scale as 2( )O N  and the matrix solve time scales as it 2( )O N N  if an 

iterative solver that converges in itN  iterations is used. The computational costs of MOM 
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can be reduced by exploiting the convolution form of homogeneous Green functions as 

detailed next for AIM. 

2.2 AIM 

The proposed AIM scheme is formulated by enclosing V  with an auxiliary 3-D 

regular grid with 3D 3D,x 3D,y 3D,zN N N N=  nodes, where 3D,{x,y,z}N  denote the number of 

points in the three Cartesian directions (Fig. 2.1(b)). The MOM matrix is then 

approximated as corr FFT» +Z Z Z , where corrZ  is a “pre-corrected” matrix [40] and 

FFTZ  is given as 

 

†
x,V x,V

,V† ,V
FFT 2 y,V y,V

0
z,V z,V b

w m
e

 
é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú= - +ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê úë ûë û ë û

G 0 0
G

Z 0 G 0

0 0 G


Λ Λ
Λ Λ

Λ Λ

Λ Λ

 (2.2.1) 

Here, the matrices {x,y,z, },VΛ  represent anterpolation [41] from the primary mesh to the 

auxiliary grid. The anterpolation coefficients are also found by matching the multipole 

moments of V

n
M  points on the auxiliary grid to those of the functions, Vˆ ( )

nn
⋅ ⋅x bχ , 

Vˆ ( )
nn

⋅ ⋅y bχ , Vˆ ( )
nn

⋅ ⋅z bχ , and V( )
nn

⋅ ⋅ bχ  and stored in {x,y,z, },VΛ , respectively. 

These are 3DN N´  sparse complex matrices. The transpose matrices {x,y,z, },V†Λ  

represent interpolation from the auxiliary grid to the primary mesh. The matrix G  

represents propagation from sources to observers on the auxiliary grid; it is a dense 

3D 3DN N´  3-level block-Toeplitz matrix whose entries are  

 [ , ] ( , )
u v

u v g=G r r  (2.2.2) 

for nodes u v¹  on the auxiliary grid; [ , ]u uG  is set to 0 since it is singular when 

.
u v
=r r   
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The pre-corrected matrix corrZ  ensures the accuracy of the proposed method by 

using the original impedance matrix entries to replace the most inaccurate entries in the 

approximation. Let corrN  denotes the number of non-zero entries in corrZ . The value of 

corrN  depends on the size of the correction region, which is controlled by the integer g  

and the minimum “grid distance” [39] between the functions V

m
t  and V

n
f  defined as  

      VV

,
x y z

ˆ ˆ ˆ( , ) ( , ) ( , )
dist [ , ] min max( , , )

m n

u v u v u v

u M v M
m n¢

Î Î

ê úê ú ê ú⋅ ⋅ ⋅ê úê ú ê ú= ê úê ú ê úD D Dê ú ê úê úë û ë ûë û

x R r r y R r r z R r r
 (2.2.3) 

where 
x,y,z

D  denote the auxiliary grid spacing in the three Cartesian directions, ê ú⋅ê úë û  

denotes the greatest integer less than or equal to its argument, and R  is the vector pointing 

to 
u
r  from 

v
r . The entries of the pre-corrected matrix, which is a sparse N N´  matrix, 

are 

 
FFT VV

corr
[ , ] [ , ], if dist [ , ]

[ , ]
0, else

m n m n m n
m n

g¢ìï - <ïï= íïïïî

Z Z
Z  (2.2.4) 

for 1 ,m n N£ £ . VVdist [ , ]m n g¢ <  also indicates that two SWG functions V

m
t  and 

V

n
b  are considered to be near each other. corrN N  for single-scale structures 

[39],[48],[59] in type 1a and 1b multi-scale problems. 

Because the propagation matrix in (2.2.1) has a 3-level block-Toeplitz structure, 

it can be efficiently multiplied with vectors using 3-D FFTs [52],[53],[59]-[62]. For 

example, consider the calculation of x,VG IΛ : first, a 3-D array of size 

3D,x 3D,y 3D,z 3D(2 1) (2 1) (2 1) 8N N N N- ´ - ´ -   is constructed by re-organizing and 

zero-padding the x,VIΛ  vector; the 3-D FFT of this array is computed; and the result is 

stored in FFT xI . Second, FFT xI  is multiplied element-by-element with FFTG , which is 

the 3-D FFT of an identical-sized array constructed from the unique entries of G . Third, 
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the inverse 3-D FFT of the array resulting from this multiplication is found; and last, 3DN  

entries are extracted and re-organized to yield the desired vector x,VG IΛ . At each iteration, 

4 FFTs (for the different current components), 4 element-by-element multiplications, and 

4 inverse FFTs must be computed. These operations can be executed one current/field 

component at a time; thus, only 2 arrays of size 3D8N  are needed (one for the pre-

computed FFT for G  and one for FFT {x,y,z, },VI  or the result of the element-by-element 

multiplication).  

The above AIM algorithm requires 3D( )O N N+  operations and bytes to compute 

and store the unique entries of anter/interpolation matrices, the pre-corrected matrix, and 

the propagation matrices; it also requires 3D 3D( log )O N N N+  operations to multiply 

them at each iteration. 

2.3 NUMERICAL RESULTS 

In this section, the accuracy and efficiency of the AIM is demonstrated. First, the 

computational complexity of AIM is validated by analyzing the power absorbed by a steak 

model in free space. Then, the AIM scheme is validated by modeling resistivity 

measurements in a deviated borehole and comparing results to the MOM solution and an 

independent reference [63]. In all the simulations in this dissertation, a diagonal 

preconditioner is used and the iterative solver is terminated when the relative residual error 

is less than 410- . Unless specified, third-order moment matching V( 4 4 4)
n
M = ´ ´  is 

used for all basis and 2g = . All the results in this section are obtained on the cluster using 

an MPI-based parallel implementation of the method [64],[65]. The observed timing and 

memory requirements of the implementation are ‘serialized,’ i.e., the parallelization effects 
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are minimized by using the minimum number of processes dictated by memory 

requirements and by reporting only the total computation times (number of processes times 

the wall-clock time) and total memory requirements [18]. 

2.3.1 Computational Complexity 

The computational complexity of the AIM scheme is verified by analyzing 

scattering from a homogeneous steak model of size 30.1 0.1 0.01 m´ ´  with properties 

of muscle 
V 0 V

( 52.729 , 1.7388 S/m)e e s= =  [66],[67] in free space. Increasingly 

larger simulations are performed at 2.45 GHz by repeatedly doubling the volume mesh 

density: the average tetrahedron edge length is varied approximately from 
V

/ 1.7d  to 

V
/ 14.7d , where 

V
d  is the skin depth in the steak model. This procedure is similar to the 

one in [64],[65] except the sphere is replaced by a parallelepiped. The steak model is 

centered at (0.225 m, 0.21 m,0.175 m)  and is excited by an impressed unit electric 

Hertzian dipole that is located at (0.1 m, 0.21 m,0.175 m)  and points in the 

ˆ ˆ ˆ( ) / 3+ +x y z  direction. The accuracy of the simulations are quantified by computing 

the time-average absorbed power density and finding the L1 relative error norm [68] 

 

ref ref

V

L1 ref ref*
V

0.5 | ( ) ( ) ( ) ( ) |

0.5 ( ) ( )

P V

V

dv

err
dv

s

s

* *⋅ - ⋅

=
⋅

òòò

òòò

E r E r E r E r

E r E r
 (2.3.1) 

The MOM solution of the same problem is used as reference when feasible; otherwise, a 

more accurate AIM solution is used (fifth order moments are matched and 3g = ). The 

AIM parameters are chosen to minimize the computational costs subject to the constraint 

that 
L1

1%Perr > ; these parameters are detailed in Table 2.1. The total time-average power 
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absorbed by the steak model—the denominator in (2.3.1)—that is calculated using the 

finest mesh are about 28.3 10 W´  in the free space. 

The observed computational costs of AIM simulations are shown in Figs. 2.2(a)-

(c). The curves that are fitted to the observed data in Fig. 2.2 are in line with the complexity 

expressions in Section 2.2, where the matrix fill time, memory cost, and matrix solve time 

per iteration of the AIM scale as ( )O N , ( )O N , and ( log )O N N  for single-scale 3-D 

dielectric structures ( 3DN N ), respectively. AIM outperforms MOM in all the 

performance metrics for N  greater than ~3500. The number of iterations itN  varied 

from 241 to 439. 

 

Table 2.1: Parameters for analyzing scattering from a steak model in free space 

Average edge 
length N  3DN  Reference L1

(%)Perr  

V
/ 1.7d  1168 30 30 7´ ´  MOM/AIM 0.15/0.15 

V
/ 3.7d  10 048 54 54 9´ ´  MOM/AIM 0.35/0.35 

V
/ 7.3d  77 002 105 105 14´ ´ MOM/AIM 0.57/0.57 

V
/ 14.7d  585 236 224 224 25´ ´  AIM 0.32 
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(a) 

 

(b) 

Figure 2.2:  AIM for a steak model in free space as the mesh density of the steak is 
increased. (a) Matrix fill time. (b) Memory requirement. (c) Average solution 
time per iteration. 
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(c) 

Figure 2.2:  Continued. 

 

2.3.2 Borehole Resistivity Measurements 

Here, all permittivity values are set to the free-space permittivity 
0
e , and the AIM 

grid spacing is given below.  

The borehole is modeled as a 45  tilted circular cylinder of 2 m  length and 

20.01  mp  cross-sectional area. The formation conductivity is set to 
b

0.01 S/ms =  and 

two values of borehole conductivity are considered: 
V

0.1 S/ms =  (case b1) and 

V
1.25 S/ms =  (case b2). The transmitter is modeled as a 10 kHz unit magnetic Hertzian 

dipole oriented along the axis and located 0.3 m away from the end. The receiver is 

modeled as a small circular loop on the cylinder whose center is 5 cm 1.4 md£ £  away 

from the transmitter.  
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The voltage detected with this measurement away from the one detected in free 

space is fs
0 RX RX
ˆ [ ( ) ( )] 0.01U jwm pD = - ⋅ - ´d H r H r  [63], where d̂  is the unit vector 

along the cylinder axis, inc sca= +H H H  is the total magnetic field, 
RX
r  denotes the 

center of the receiver loop, 0fs 3

0 0
ˆ (1 ) / (2 )dd d j dgg p wm-⋅ = +d H , and 

0
g  is the 

propagation constant in free space.  

To solve the VEFIE, the borehole volume is discretized using tetrahedra with 

approximately 3.96 cm average edge length and the auxiliary grid spacing is approximately 

3 cm in all three Cartesian directions in both cases (b1) and (b2). The length and radius of 

borehole are much smaller compare to the skin depth 
b
d  in the background medium 

(about 
b
/ 25d  and 

b
/ 500d ). Therefore, this example is a type 1b multi-scale problem. 

The {average edge length, grid spacing} are approximately 
min min

{ / 402, / 531}d d  for 

case (b1) and 
min min

{ / 114, / 150}d d  for case (b2), where 
min
d  is the minimum skin 

depth in the anomalous volume and the background medium; hence, 20 729N =  and 

3D 72 12 12N = ´ ´ . These unusually small mesh lengths are caused by the small cross-

section of the borehole geometry.  

Normalized voltages calculated with AIM are compared to MOM results, and those 

calculated and in [63] in Fig. 2.3. Good agreement is observed in both case (b1) and (b2), 

validating the method. For MOM, both cases required approximately 42.9 10´  seconds 

for filling the matrices, 8.0 GB memory, and 4.7 seconds per iteration. For AIM, both 

cases required approximately 38.9 10´  seconds for filling the matrices, 1.6 GB memory, 

and 1 second per iteration as the same mesh using AIM parameters. The iterative 
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Figure 2.3:  Normalized voltage detected relative to that detected in free space. The 
receiver is moved to different distances d from the transmitter. 

 

solver converged in it 42N =  iterations in case (b1) and it 18N =  iterations in case 

(b2) for both AIM and MOM. 

2.4 SUMMARY 

This Chapter presented the AIM; the scheme was shown to be effective for solving 

scattering from large single-scale structures in a homogeneous background both in the 

high- and low-frequency regime of analysis (type 1a and 1b multi-scale problems). 

Numerical results validated the computational complexity of the method and demonstrated 

remarkable speedup and memory reduction compared to the MOM solution.   
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Chapter III:  Adaptive Integral Method for Rectangular Cavities 

Rectangular cavities are widely employed in microwave power and 

electromagnetic compatibility/interference applications. These applications require the 

analysis of scattering and radiation from arbitrarily shaped 3-D structures composed of 

perfect electrically conducting (PEC) surfaces and penetrable volumes located in such 

cavities. These problems are also categorized as type 1 multiscale problems; nonetheless, 

the more complex background medium (the rectangular cavity) necessitates modifications 

to algorithms that are efficient for type 1 multiscale problems when the background is a 

homogeneous medium. This Chapter extends the AIM presented in Chapter II for 

rectangular cavities. Section 3.1 describes the surface-volume electric field integral 

equation for analyzing electromagnetic scattering from structures located in a rectangular-

cavity background. Section 3.2 details the corresponding rectangular-cavity Green 

functions. Sections 3.3-3.5 detail its MOM solution, the AIM extension and its 

computational complexity. The accuracy and efficiency of the extended AIM are verified 

by the numerical results in Section 3.6. 

3.1 SURFACE-VOLUME ELECTRIC FIELD INTEGRAL EQUATION  

Consider the scattering of a time-harmonic incident electric field incE  by an 

arbitrarily shaped 3-D structure in a rectangular cavity of size 
x y z
d d d´ ´  (Fig. 3.1(a)). 

The structure is assumed to be composed of a perfect electrically conducting (PEC) surface 

S  and a non-magnetic volume V  with permittivity 
V
e  and conductivity 

V
s . The 

cavity is assumed to reside in the first octant, have a corner at the origin, have PEC walls, 

and be filled by an equivalent homogeneous non-magnetic material with permeability 
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(a)      (b) 

Figure 3.1:  Scattering from an arbitrarily shaped 3-D structure in a rectangular cavity. (a) 
Geometry. (b) Side view showing the auxiliary grid points and some 
triangular surface and tetrahedral volume elements.  

 

0
m , permittivity 

cav
e , and conductivity 

cav
s ; this background material can be used to 

generalize the model, e.g., to approximate losses on finite conductivity walls or leakage 

from apertures [69]. The scattered field is expressed in mixed potential form as 
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where { , }¢r r  denotes the {observer, source} position, xx yy

cav cavcav
ˆˆ ˆˆ{ g g= +g xx yy  

zz

cav
ˆ̂ , }g gf+zz  denotes the {tensor, scalar} rectangular-cavity Green function, S V{ , }J J  

denotes the induced {surface, volume} current density, and { , }v vf¢ ¢A  denotes the 

contribution of v ¢J  to the {magnetic vector, electric scalar} potential. The integrals in 

(3.1.1) and throughout this Chapter represent either surface or volume integration 
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depending on whether the source is a surface or a volume current density. The surface-

volume electric-field integral equation (SV-EFIE) is formulated by enforcing the tangential 

boundary condition on S  and relating the total electric field to the volume current density 

in V  as 

 
inc sca

inc sca V

V cav

ˆ ˆ( ) ( ) [ ( ) ( )] 0 for 

( ) ( ) ( ) ( ) for 

S

j Vw e e

ìï ´ ´ + = Îïïí é ùï - + = Îï ë ûïî

n r n r E r E r r

E r E r J r r 
 (3.1.2) 

where n̂  is the unit vector normal to the PEC surface, 
V V V

/ je e s w= + , and 

cav cav cav
/ je e s w= + . 

3.2 RECTANGULAR-CAVITY GREEN FUNCTIONS 

By applying the method of images, each of the four scalar rectangular-cavity Green 

functions xx,yy,zz,

cav
g f  can be expressed as a triple infinite series of homogeneous (free space) 

Green functions; each term in these series represent the interaction between the observer 

and either the source or one of the images of the source. To enable the FFT operations 

described in Section 3.4, each of these series is organized into eight sub-series of 

homogeneous Green functions as [70] 

 
x y z x y z

x y z

{xx,yy,zz, } {x,y,z, }

cav
{T,H} {T,H} {T,H}

( , ) ( , )
i i i i i i

i i i

g B gf f

Î Î Î

¢ ¢= å å år r r r  (3.2.1) 

Here, the coefficients 
x y z

{x,y,z, }

i i i
B f  are either 1 or -1. The signs follow from image theory and 

ensure that zero electric fields are produced tangential to the cavity walls; they are given 

as 

 x y z x y z x y z x y z

x y z

{2 , 2 , 2 , }
{x,y,z, } 1

i i i i i i i i i i i iq q q q q q q q q q q q

i i i
B f + + + + + + + +

= -  (3.2.2) 
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where the constants 
T

0q =  and 
H

0q = . In (3.2.1), the functions 
x y zi i i
g  depend on 

either x x ¢-  or x x ¢+ , either y y¢-  or y y ¢+ , and either z z ¢-  or z z ¢+ . These 

dependences are indicated by using the subscript T or H: Throughout this Chapter and the 

dissertation, the first, second, and third subscript T (H) used with a function/matrix 

indicates that the function/matrix is in convolution/Toeplitz (correlation/Hankel) form in 

the x , y , and z  direction, respectively. For example, 
THT

( , )g ¢ =r r

THT
( , , )g x x y y z z¢ ¢ ¢- + -  is in convolution, correlation, and convolution form in the x

, y , and z  direction, respectively. 

Each of the eight sub-series in (3.2.1), denoted by 
x y zi i i
g , represents the sum of the 

homogeneous Green functions due to one of the eight sources in a “basic cell” and its 

translations [70]. Specifically, the basic cell is formed by the source at ¢r  and its seven 

images that are closest to the origin; these sources are translated by even multiples of the 

cavity size in each direction. Thus, the sub-series corresponding to the source located at 

yx zˆ ˆ ˆ( 1) ( 1) ( 1)
ii i
qq q

x y z¢ ¢ ¢- + - + -x y x  in the basic cell and its translations can be expressed 

as (for 
x,y,z

{T,H}i Î ) 
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cav
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x y z
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R

i i i p p p
p p p

i i i

e
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-
¥ ¥ ¥

=-¥ =-¥ =-¥

¢ = å å år r  (3.2.3) 

where 
cav 0 cav

jg w m e=   is the complex propagation constant in the cavity, the 

wavelength in the cavity is defined as 
cav cav

2 / Im( )l p g= , x y z x y z

x y z x y z

p p p p p p

i i i i i i
R = R  is the 

distance from the observer to one of the translations of the source, and 
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is the vector pointing from one of the translations of the source to the observer. Notice that 

000

TTT
R  is 0 and 

TTT
g  is singular if ¢=r r ; in contrast, the other seven sub-series become 

singular only if ¢=r r  and r  is on the boundary of the cavity. When ¢=r r , there is 

at most one singular term in each of the eight sub-series; indeed, there are a total of one, 

two, four, or eight singular terms in the series (3.2.3) when ¢=r r  and r  is inside the 

cavity, on a wall, on an edge, or at a corner, respectively. It should be noted that 

x y z
, , {0,1}p p p Î  if x y z

x y z
0

p p p

i i i
R = , i.e., the sources closest to the observer are in the basic 

cell or its first translations. More generally, 
x y z
, , {0,1}p p p Î  whenever the smallest 

x y z

x y z

p p p

i i i
R  is obtained in (3.2.3). Thus, each sub-series can be divided into nonsingular and 

potentially singular terms as 
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where 

 x,y,z x,y,z

x,y,z

{0}          if T

{0,1}        if H
i i
s

i

ìï =ï= íï =ïî
 (3.2.6) 

The triple infinite sub-series in (3.2.3) converges slowly, especially when the 

operating frequency is close to a cavity resonance [71]. To reduce the cost of computing 

the Green functions, two methods are adopted here: (i) Ewald acceleration [72]-[77]. First, 



28 

 

each of the eight Green function components 
x y zi i i
g  is expressed as a sum of two fast 

converging triple-infinite series by applying the Ewald identity [75] to each term in the 

summation in (3.2.3), dividing the resulting integral into two sub-integrals using a splitting 

parameter E , and using Jacobi’s imaginary transformation [70]. Truncating these two 

series to 3(2 1)P +  terms, each Green function component is approximated as 

x y z x y z

E

i i i i i i
g g» , where 
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Here, x y z yx z

x y z x x y y z z
[ ( 1) ] / [ ( 1) ] / [ ( 1) ] /

ii i
qq qp p p

i i i
x x p d y y p d z z p dp p p¢ ¢ ¢W = - - + - - + - - ; 

thus, the two series can be interpreted as a weighted combination of truncated image and 

modal series. In (3.2.7), erfc  denotes the complementary error function that decays as 

2erfc( ) exp(- )/x x x  for large arguments and x y z 2 2

x x y y
( / ) ( / )

p p p
p d p dp pD = +

2 2

z z cav
( / )p dp g+ + ; i.e., both series exhibit faster than Gaussian decay with respect to 

x y
,p p , and 

z
p . The different convergence ratios of the two series can be balanced by 

choosing 
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2 2 2
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 (3.2.8) 

This choice minimizes the truncation error in (3.2.7) for any given P [78],[79] when the 

electrical size of the cavity is moderate. It causes cancellation between the image and modal 

series in (3.2.7), however, when implemented in finite precision arithmetic; the 
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cancellation becomes catastrophic when the cavity is electrically large. To reduce these 

cancellation errors, E  must be chosen differently than the value in (3.2.8) but (in infinite 

precision arithmetic) this results in either a less accurate Green function value for a given 

P  or a more expensive Green function computation (larger value of P ) for a given error 

level. In other words, when the cavity is electrically large, E  and P  are dictated not 

just by the truncation errors in the series in (3.2.7) but also the cancellation of significant 

digits. In Section 3.6, E  is set to (3.2.8) for small cavities but is set to larger values when 

the minimum cavity side length is more than about 
cav

2l ; optimal values of E  and P  

for a prescribed error level can be found as in [78]-[80]. It is important to observe that, just 

like in (3.2.3), there are potentially singular terms in (3.2.7): 

 

x y z
cav

x y z

x y z

x y z x y zx y z
x y z

x zy x y z

,ps cavRe{ erfc( )}
24

p p p

i i i

i i i

R

p p pE

i i i i i ip p p
p s p sp s i i i

e
g R E

ER

g
g

p

-

Î ÎÎ

= -å å å  (3.2.9) 

(ii) Spatial interpolation [54],[55]. Eight different 3-D tables are constructed to interpolate 

the Green functions; one for each sub-series 
x y z

E

i i i
g  in (3.2.7). As mentioned above, each 

sub-series may contain a singular term depending on source and observer location; thus, 

interpolating the functions 
x y z

E

i i i
g  directly from their samples would not be accurate and 

only the nonsingular portions 
x y z x y z

,psE E

i i i i i i
g g-  are interpolated instead; i.e., each table is 

filled by sampling the nonsingular portion of one sub-series in the interval of either 

min max max min
x x x x x x¢- £ - £ -  or 

min max
2 2x x x x¢£ + £ , either 

min max max min
y y y y y y¢- £ - £ -  or 

min max
2 2y y y y¢£ + £ , and either 

min max
z z z z ¢- £ -

max min
z z£ -  or 

min max
2 2z z z z¢£ + £ . Here, 

max
x , 

max
y , and 

max
z  (

min
x ,

min
y , and 

min
z ) denote the maximum (minimum) coordinate of the structure of 

interest in the x , y , and z  direction, respectively. In this Chapter, these intervals are 
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uniformly sampled and 3-D Lagrange interpolation is used. Central interpolation is 

employed whenever possible but when both the source and observer are close to the cavity 

walls, backward or forward interpolation has to be utilized; this is similar to the 

interpolation of layered-medium Green functions when the source and observer are close 

to layer interfaces [54],[55]. Once the nonsingular portions are interpolated, the results are 

combined with the potentially singular terms to obtain the desired function values. In short, 

Ewald acceleration speeds up the evaluation of each series, while interpolation reduces the 

number of series to be evaluated. The accuracy and efficiency of this approach is 

investigated numerically in Section 3.6.1. 

3.3 MOM 

The SV-EFIE is solved using the standard MOM procedure: First, S  and V  are 

meshed with triangles that have SN  inner edges and tetrahedra that have VN  triangular 

faces, 
V
e  in each tetrahedron is assumed constant, SN  RWG [22] functions S

S S

1
, ,

N
f f  

and VN  SWG [23] functions V

V V

1
, ,

N
f f  are defined, and the unknown current densities 

are expanded as 
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where the basis functions are 
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In (3.3.2), 
cav

1 /
n n

c e e= -    is the complex contrast ratio [23] and 
n
e  denotes the 

(piecewise constant) permittivity in the support of V

n
f . Next, (3.3.1) is substituted in 
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(3.1.2), the S-EFIE is tested with the functions S

S S

1
, ,

N
t t , and the V-EFIE is tested with 

the functions V

V V

1
, ,

N
t t , where 
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This yields the linear system of equations 
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v ¢I  is the unknown coefficient sub-vector. The entries of the tested incident field sub-

vector inc,vV , and the impedance sub-matrix vv ¢Z  are 
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for , {S,V}v v ¢ Î , {1, , }vn N ¢Î  , and {1, , }vm NÎ  . The entries of the Gram matrix 

are 

 VV V V[ , ] ( ) ( ) ( ) / ( )
m m n n

m n drc e= ⋅òD r f r f r r  (3.3.6) 

for V, {1, , }m n NÎ  . In (3.3.5), the contribution of each basis function v
n

¢b  to the 

potentials are  
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By employing the methods described in Section 3.2 to approximate the Green 

functions and by evaluating the integrals of potentially singular terms in (3.2.7) just as in 
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free space, e.g., by singularity extraction [24], the matrix fill times for structures in 

rectangular cavities can be reduced to values that are comparable to those for the same 

structures in free space as shown in Section 2.1. Despite this reduction, the MOM 

procedure is limited to relatively simple structures and small-scale problems due to its high 

memory and time requirements. In order to solve more complicated rectangular cavity 

problems given a fixed computational budget, a fast algorithm that exploits the 

convolution/correlation form of rectangular-cavity Green functions is presented next. 

3.4 AIM 

The proposed algorithm is an extension of AIM in Chapter II. Similar to 

implementations for homogeneous background, the proposed algorithm is also formulated 

by enclosing the structure of interest with an auxiliary 3-D regular grid composed of 3DN  

nodes. All grid nodes are constrained to be inside or on the cavity walls (Fig. 3.1(b)), i.e., 

when the structure is touching one or more cavity walls, the auxiliary grid points cannot be 

placed outside the cavity but can coincide with the walls. The MOM sub-matrices are then 

approximated as (for , {S,V}v v ¢ Î ) 
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where corr,vv ¢Z  is a pre-corrected sub-matrix and 
x y z

FFT,vv
i i i

¢Z  can be expressed as  
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In (3.4.2), the sub-matrices ,l vΛ  represent “anterpolation” of currents from basis 

functions to point sources on the auxiliary grid and the transpose matrices , †( )l vΛ  

represent interpolation of fields from point observers on the auxiliary grid to the testing 

functions. Each column n  of the x, y, z,, ,v v vΛ Λ Λ  and ,vfΛ  sub-matrix is filled by 

matching the multipole moments of v

n
M  points to those of the functions ˆ v

n
⋅x t , ˆ v

n
⋅y t , 

ˆ v

n
⋅z t  and v

n
⋅ t , respectively. As a result, the ,SlΛ  matrices are real sparse matrices of 

size 3D SN N´  and ,VlΛ  matrices are complex sparse matrices of size 3D VN N´ . The 

coefficients x,y,z,ft  are 
0 0 0
, ,j j jwm wm wm  and 

cav
1 / jwe  respectively. The 

propagation matrices 
x y zi i i
G  are dense 3D 3DN N´  matrices that store Green function 

values from one of the eight sub-series, i.e., 3D1 ,u u N¢£ £  

 x y z

x y z

x y z

min0            if ( , ) 0
[ , ]

( , ) else                  
i i i u u

i i i
i i i u u

R
u u

g
¢

¢

ìï =ïï¢ = íïïïî

r r
G

r r
 (3.4.3) 

where { , }
u v
r r  denotes the position of the {observer, source} point on the auxiliary grid 

and x y z

x y z x y z

min ( , ) min ( , )
p p p

i i i u u i i i u u
R ¢ ¢=r r R r r . In (3.4.3), the singular terms in the sub-series are 

replaced with zeros; in other words, the Green functions are “softened” [41]. As a result, 

the diagonal of 
TTT
G  is zero; in contrast, only some diagonal entries of the other seven 

propagation matrices are zero; these correspond to grid points that reside on the cavity 

walls, edges, or corners. 

The pre-corrected sub-matrices are sparse matrices whose entries are given in 

(3.4.5). corrN  also denotes the total number of non-zero entries in the four corr,vv ¢Z  sub-

matrices. The value of corrN  is also controlled by the integer g  and the minimum “grid 

distance” [39] between the functions v

m
t  and v

n

¢b  as defined in Section 2.2: 
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where 
x,y,z

D  denote the auxiliary grid spacing in the three Cartesian directions and ê ú⋅ê úë û  

denotes the greatest integer less than or equal to its argument. Each of the eight sub-series 

in the corr,vv ¢Z  expression in (3.4.5) can have a different number of non-zero entries, i.e., 

each non-zero entry in corr,vv ¢Z  can be a combination of one, two, four, or eight terms: If 

corr, [ , ]vv m n¢Z  is not zero then 
TTT

dist [ , ]vv m n¢  and one, three, or seven other distances are 

less than g  depending on whether the corresponding testing and basis functions are near 

a wall, edge, or corner of the cavity. Therefore, different from the algorithms in Chapters 

II and V, where the pre-corrected matrix replaces the interaction between basis-testing 

functions computed from auxiliary grid with the original impedance matrix entry, the 

corr,vv ¢Z  matrix in (3.4.1) replaces only part of the contribution from the auxiliary grid with 

part of original impedance matrix entry. For example, when the structure of interest is away 

from the cavity walls, only one term is used, i.e., only FFT,

TTT

vv ¢Z  term is corrected, because 

the contributions from the other seven terms are accurately approximated by the seven 

x y z

FFT,vv

i i i

¢Z  matrices. 

x y z x y z x y z
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Unlike for structures in homogeneous background in Chapter II, where the AIM 

propagation matrices have a 3-level block-Toeplitz structure, the AIM propagation 



35 

 

matrices in (3.4.3) have a TTT, TTH, THT, THH, HTT, HTH, HHT, or HHH structure. It 

was shown in the previous Chapter that 
TTT
G  matrix can be efficiently multiplied with 

vectors using 3-D FFTs. Here, a similar approach is used to multiply the other seven types 

of propagation matrices with vectors. That is, block-anti-diagonal permutation matrices 

x y zi i i
Q  are used to convert the Hankel blocks to Toeplitz ones; specifically, a total of seven 

different 
x y zi i i
Q  matrices are used, e.g., 

HHH
Q  is a (3-level) block-anti-diagonal 

permutation matrix and 
HTH
Q  is an block-anti-diagonal-block-diagonal-block-anti-

diagonal permutation matrix. These permutation matrices reduce the multiplications 

between the propagation matrices and vectors to multiplying TTT matrices with reordered 

vectors. For example, consider the multiplication of 
HHH
G  with the (anterpolated) vector 

I : 1

HHH HHH HHH HHH
( )( )-=G I G Q Q I . Here, 1

HHH

-Q I  reorders the vector I  and 
HHH HHH
G Q  

is a TTT matrix; thus, the matrix 
HHH HHH
G Q  and the vector 1

HHH

-Q I  can be multiplied in 

three stages by (i) forming two 3-D arrays, which contain the unique entries of the matrix 

and zero-padded version of the vector, and computing their 3-D FFTs, (ii) multiplying the 

resulting arrays element by element, and (iii) computing the inverse 3-D FFT of the 

resulting array. This is just like the procedure for computing 
TTT
G I ; indeed, the 3-D FFTs 

needed while computing 
TTT
G I  can be recycled because the 3-D FFT of the array formed 

from 1

HHH

-Q I  is simply a reordered version of the 3-D FFT of the array formed from I  

multiplied element-by-element with a phase shift [54],[55]. In short, if the 3-D FFT of the 

eight propagation matrices 
x y zi i i
G  are pre-computed and stored before the iterative 

solution, then at each iteration the 
x y zi i i
G I  multiplication can be computed with no 

additional FFTs after computing 
TTT
G I .  
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If the above correction and propagation procedures are used, the matrix fill time, 

memory cost, and matrix solve time of the proposed AIM scale as corr 3D( )O N N+ , 

corr 3D( )O N N+ , and corr 3D 3D( log )O N N N+  per iteration, respectively. If the structure 

of interest consists of (i) only a PEC surface, 3DN  is N  if the surface is quasi-planar 

and 3D 1.5N N  if it is a 3-D surface because 3DN  is proportional to the volume 

enclosing the structure and SN N=  is proportional to the area of the structure; (ii) only 

a dielectric volume, 3DN  is N  because both 3DN  and VN N=  are proportional 

to the volume of the structure [39],[40][54],[55]; and (iii) both a PEC surface and a 

dielectric volume, 3D 1.5N N N-  depending on the number of surface and volume 

unknowns. For single-scale problems, where the mesh lengths do not vary significantly 

over the structure, corrN N  [59]. Note that for structures away from the cavity walls, 

AIM reduces the MOM matrix fill time more significantly than other cases because only 

one of the eight Green function sub-series is evaluated when computing the impedance 

matrix contribution to the corr,vv ¢Z  matrices in (3.4.1); in contrast, all eight sub-series must 

be computed when filling the impedance sub-matrices vv ¢Z  in MOM. 

3.5 COMPARISON TO FREE SPACE 

Next, the proposed method is contrasted to the classical AIM for analyzing 

scattering from 3-D structures in homogeneous background. In the following it is assumed 

that all AIM parameters are the same whether the structure resides in free space or a 

rectangular cavity; this assumption is supported by the results in Section 3.6.2. In this case, 

the matrix fill time of the proposed method would be comparable to that in the free-space 

case if the Ewald acceleration and interpolation can successfully reduce the Green function 
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computation costs; the memory requirement and matrix solution costs are contrasted to the 

free-space case next.  

In free space, the AIM procedure can be expressed as corr, FFT,

free

vv vv vv¢ ¢ ¢= +Z Z Z  

(for , {S,V}v v ¢ Î ), where both matrices are formed by using the free-space Green 

function, e.g., 

 

†
SS SV ,S ,S

FFT FFT 000
VS VV ,V ,VTTT

{x,y,z, }FFT FFT

l l l

l l l
l jf

t

wtÎ

é ù é ù é ù
ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

å
Z Z 0 0

G
Z Z 0 0

Λ Λ

Λ Λ
 (3.5.1) 

Unlike in (3.4.2), there are not eight but only one propagation matrix 000

TTT
G , whose entries 

are the 
x y z

0p p p= = =  term in the 
TTT
g  sub-series, i.e., the free-space Green 

function. To multiply the FFTZ  matrix, four FFTs, four element-by-element 

multiplications, and four inverse FFTs (one for each {x,y,z, }l Î  ) are computed at each 

iteration as in Section 2.2. These four computations can be performed one at a time by 

using only two arrays of size 3D8N : One for storing the pre-computed FFT of the array 

formed from 000

TTT
G  and one for storing the result of the FFT of the zero-padded arrays, 

the element-by-element multiplication, and the inverse FFTs.  

In a rectangular cavity, a straightforward implementation of the AIM procedure 

would be to compute the stages for each of the eight sub-series and for each {x,y,z, }l Î   

one at a time. In this case, multiplying the 
x y z

FFT,vv

i i i

¢Z  matrices in (3.4.1) would require 

thirty-two FFTs, element-by-element multiplications, and inverse FFTs to be computed at 

each iteration, which can be performed by storing nine arrays of size 3D8N  (eight for 

pre-computed and one for on-the-fly FFTs). A better approach is to minimize the FFTs and 

inverse FFTs by recycling the FFTs of the zero-padded arrays [54],[55] and by combining 

the eight sub-series before the inverse FFT step, i.e., changing the order of summations in 
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(3.4.1) and (3.4.2). This requires four FFTs, thirty-two element-by-element 

multiplications, and four inverse FFTs at each iteration, which can be performed by storing 

eleven arrays of size 3D8N . Because FFT and inverse FFT costs scale as 3D 3DlogN N  

while multiplication cost scales as 3DN , the AIM cost per iteration should become 

comparable to free-space case for large enough problems. The AIM memory requirement, 

however, would increase from corr 3D16N N+  to corr 3D88N N+ . Typically, 

corr 3DN N  for quasi-planar PEC surfaces and dielectric volumes while corrN  can be 

comparable or (for large problems) much smaller than 3DN  for 3-D surfaces; thus, the 

AIM memory requirement would be 1 to 3.5 times that in the free-space case depending 

on the shape of the structure and the number of surface and volume unknowns. 

3.6 NUMERICAL RESULTS 

This section presents several numerical results to demonstrate the performance of 

the proposed method. First, the accuracy of the rectangular-cavity Green function 

computation described in Section 3.2 is quantified. Next, the computational complexity of 

AIM is validated by analyzing the power absorbed by a steak model in a rectangular cavity. 

Then various problems are solved and the results are compared to independent references. 

In all simulations, the AIM parameters (except the grid spacings), the preconditioner, and 

the iterative solver tolerance are the same as those described in Section 2.3. The proposed 

method is parallelized using an MPI-based implementation of the algorithm as in Chapter 

II and all simulations are performed on the Lonestar cluster. The reported timing and 

memory data were “serialized” as described in Section 2.3. 
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3.6.1 Green Function Accuracy 

The accuracy of the Green function computations is investigated by using the 

relative error norm 
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 (3.6.1) 

This error is computed using 3101  source/observer points distributed uniformly in an air-

filled rectangular cavity, i.e., 
cav
e  is equal to the free-space permittivity 

0
e . Three 

different cavities, which are also employed in Sections 3.6.2 and 3.6.3, are simulated. 

These cavities are of size 31 1 1 m´ ´ , 312.5 8.5 6 m´ ´ , and 30.45 0.42 0.35 m´ ´ ; 

they are operated at  425 MHz , 82 MHz , and 2.45 GHz ; and the minimum cavity 

side length is about 
cav

1.64l , 
cav

1.42l , 
cav

2.86l , respectively.  

 

  
(a) (b) 

Figure 3.2:  Interpolation error vs. the sampling interval size for three different 
interpolation orders when 9P = . (a) Cavity 1. (b) Cavity 2. (c) Cavity 3.  
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(c) 

Figure 3.2:  Continued. 

 

First, the accuracy of the 3-D spatial interpolation is quantified by using the error 

norm in (3.6.1). Here, 
x y z

,refE

i i i
g  is directly computed using (3.2.7) with 10P =  and E  

is set as in (3.2.8) even for the largest cavity; to keep enough effective digits in this case, 

quadruple precision arithmetic is employed. The 
x y z

E

i i i
g  values are interpolated from a table 

that stores samples as detailed in Section 3.2; these samples are computed by fixing P  to 

9 and setting E  is as in (3.2.8) when the minimum cavity side length is smaller than 

cav
2l  and to 1.5 times the value in (3.2.8) otherwise [80]. The error is calculated for 

different interpolation orders and sampling intervals D . Here, D  are slightly different 

in the three Cartesian coordinates for cavity 2 and 3 because they are rectangular, but the 

difference are only about 1%  and thus have negligible effect on the results in Fig. 3.2. 

The resulting data are plotted in Figs. 3.2(a)-(c) for the three cavities; Fig. 3.2 shows that 

all interpolation errors converge according to the polynomial order of the interpolant, that 

they can be very different for different cavities/frequencies, and that for these three cavities, 
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the interpolation errors are less than 310-  error level when about 20 samples per 

wavelength and 5th order interpolation are used. Based on these results, P  is set to 9, E  

is either set according to (3.2.8) or—if the minimum cavity dimension is larger than 
cav

2l

—set 1.5 times the value in (3.2.8) when filling the interpolation table in all the following 

simulations. In addition, 5th order Lagrange interpolation with approximately 20 samples 

per 
cav

l  is used to interpolate the Green functions.  

Next, the accuracy of the resulting Green function computations is demonstrated in 

Fig. 3.3 by comparing zz
cav
g , which includes all eight sub-series, to an independent 

reference [71]. Here, the z-directed Hertzian dipole is located at 0.25x y z L= = =  and 

the observation points are distributed along the diagonal of the cavity. The results in Fig. 

3.3 show good agreement with those in [71]. 

 

 

Figure 3.3:  One of the Green function components along the cavity diagonal when 
9P =  and 5th order interpolation is used with 20 samples per wavelength. 
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3.6.2 Computational Complexity 

The computational complexity of the proposed scheme is verified by analyzing 

scattering from a homogeneous steak model in cavity 3. The procedure is the same as in 

Section 2.3.1 except the steak is centered in the middle of a rectangular cavity. All the AIM 

parameters for the cavity and free space simulations are the same and detailed in Table 3.1, 

which shows that the errors in the cavity and free space simulations are similar when the 

same AIM parameters are used. The total time-average power absorbed by the steak models 

are about 41.4 10 W´  and 28.3 10 W´  in the cavity and free space, respectively. 
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Table 3.1: Parameters for analyzing scattering from a steak model in free space and in a 
rectangular cavity 

Average edge 
length 

N  3DN  Reference 
L1

(%)Perr  

Cavity Free space

/ 1.7d  1168 30 30 7´ ´  MOM/AIM 0.16/0.17 0.15/0.15 

/ 3.7d  10 048 54 54 9´ ´  MOM/AIM 0.53/0.51 0.35/0.35 

/ 7.3d  77 002 105 105 14´ ´ MOM/AIM 0.75/0.72 0.57/0.57 

/ 14.7d  585 236 224 224 25´ ´  AIM 0.32 0.32 
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(a) 

 

(b) 

Figure 3.4:  AIM vs. MOM for a steak model in cavity 3 as the mesh density of the steak 
is increased. (a) Matrix fill time. (b) Memory requirement. (c) Average 
solution time per iteration. 
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(c) 

Figure 3.4:  Continued. 

 

The observed computational costs of AIM and MOM simulations are shown in 

Figs. 3.4(a)-(c); the costs of AIM simulations when the background is free space are also 

shown. The curves that are fitted to the observed data in Fig. 3.4 are in line with the 

complexity expressions in Section 3.4. Fig. 3.4(a) shows that AIM outperforms MOM in 

the matrix fill time requirement starting at 100N » ; this is about 10 times better than the 

typical crossover point in free space. As described in Section 3.4, this is because the 

scattering volume is away from all cavity walls and the AIM near-zone correction is 

required only for the 
TTT
G  term. In other words, when the background medium is 

modified from free space to a rectangular cavity, the matrix-fill times of AIM simulations 

increase not as much as those of MOM simulations. In fact, the AIM matrix-fill times for 

cavity simulations are about 3.5 times those for free-space simulations. Note that the time 

needed to fill the interpolation table is included in the matrix fill time and is negligible. 
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Figs. 3.4(b)-(c) show that AIM outperforms MOM in memory and matrix solution time for 

3500N » , which is comparable to the method’s performance for layered media [54],[55]. 

The AIM memory and matrix solution time requirements for cavity simulations are about 

1.2 and 1.5 times those for free-space simulations, respectively; both the memory and solve 

time requirements are in line with the predictions from the analysis in Section 3.5. The 

number of iterations itN  varied from 316 to 532. 

3.6.3 Validation 

Next, the viability of the proposed scheme for solving scattering problems is 

demonstrated by analyzing two scenarios: Wire antennas in a square cavity [69] and plate 

stirrers in a reverberation chamber [81]. 

In the first scenario, three z  directed thin wires are located in cavity 1, which is 

filled with a lossy material such that 
cav 0
e e=  and 4

cav
1.0 10 S/ms -= ´ . The first, 

second, and third wire is 0.22 m, 0.2 m, and 0.2 m long and is centered at 

(0.2 m,0.5 m,0.3 m) , (0.2 m,0.5 m,0.81 m) , and (0.2 m,0.9 m,0.5 m) , respectively. 

The first wire is excited in the center by a 1V delta-gap source at 425 MHz. The wires are 

modeled as flat strips with width equal to 4 times the wire radius of 1.0 mm in the xoz  

plane [82]. They are discretized using triangles with 3.83 mm (around 
cav

/ 184l ) average 

edge length resulting in 397N =  RWG functions. The unusually small average edge 

lengths here and in the following simulation are caused by the small widths of the strips. 

The AIM auxiliary grid spacing is chosen as 3.53 cm  (about 
cav

/ 20l ) in each 

Cartesian direction, which yields 3D 21 15 24N = ´ ´ . The scattered electric field scaE  

is calculated on an observation line from (0.3 m,0.9 m,0.05 m)  to 
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(0.3 m,0.9 m,0.95 m) . The results found from AIM and MOM simulations are compared 

to a reference MOM solution using the thin wire EFIE [69] in Fig. 3.5. The MOM and AIM 

results agree well but are slightly different from the reference mainly because the thin wires 

are modeled as strips here. The AIM (MOM) simulation required approximately 653.7 

(868.9) seconds to fill the matrices, 59.0 (45.0) MB of memory, and 27.5 10-´  

3(1.7 10 )-´  seconds per iteration; the iterative solution converged in 71 (79) iterations. 

In the second scenario, a plate stirrer that is 8 m long in x  direction and 0.8 m 

wide in the y  direction is placed in cavity 2, which is filled with 
cav 0
e e=  and 

6

cav
2.2 10 S/ms -= ´ . The center of the stirrer is located at (6.25 m,6.6 m,4.25 m)  

and the cavity is excited by a Hertzian dipole with a magnitude of 3  at 82 MHz, which 

is located at (10.5 m,2 m,1.6 m) and points in the ˆ ˆ ˆ( ) / 3- + +x y z  direction. The 

surface of the stirrer is discretized using triangles with 0.18 m (roughly 
cav

/ 20l ) average 

edge length resulting in 617N =  RWG functions. The auxiliary grid spacing is 0.18 m 

(around 
cav

/ 20l ) in all three directions and 3D 48 9 4N = ´ ´ . The magnitude of total 

electric fields on the observation line from (2 m,1 m,3 m)  to (2 m,7.5 m,3 m)  are 

calculated with the proposed AIM and compared to independent results in Fig. 3.6. The 

reference results in [81] are obtained by separately modeling the stirrer using MOM and 

cavity using the discrete singular convolution method and coupling these two methods 

using boundary conditions. This AIM (MOM) simulation required approximately 442.2 

(112.8) seconds for filling the matrices, 51.0 (47.0) MB memory, and 22.0 10-´  
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Figure 3.5:  Electric field in cavity 1 loaded with thin three wire antennas. 

 

Figure 3.6:  Electric field in cavity 2 loaded with a single plate stirrer. 

 

( 33.6 10-´ ) seconds per iteration; the iterative solution converged in 69 (69) iterations. 
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3.7 SUMMARY 

This Chapter presented an FFT-accelerated integral-equation method for efficient 

analysis of scattering from 3-D single-scale structures composed of PEC surfaces and lossy 

dielectric volumes with irregular geometries in a rectangular cavity. The proposed method 

decomposes rectangular-cavity Green function components into eight terms that are in 

convolution or correlation form in the three Cartesian directions and accelerates the MOM 

procedure by exploiting the form of these components using FFTs. The proposed AIM for 

rectangular cavity problems was contrasted in detail to its counterpart for free space 

problems. The results show that the matrix fill time can be about 3.5 times larger for 

structures away from cavity walls compared to free space simulations by using 

interpolation and Ewald method to accelerate the evaluation of rectangular-cavity Green 

functions; the matrix fill time is expected to be at most about 30 times for structures 

touching all six cavity walls compared to free space simulations. The memory and the 

matrix solve time (per iteration) requirement of the method are approximately 1.2 and 1.5 

times for rectangular cavity simulations compared to the corresponding requirement for 

free space simulations. Similar to the AIM scheme in Chapter II, the proposed extension 

of AIM can accurately and efficiently solve type 1a and 1b multi-scale problems in a 

rectangular-cavity background when the structures under study only contain a single length 

scale.  
  



50 

 

Chapter IV:  FFT-Truncated Multilevel Interpolation Method for 

Homogeneous Backgrounds 

This Chapter presents an FFT-truncated multilevel interpolation method (FFT-

MLIM) for analyzing scattering from multi-scale structures in homogeneous backgrounds 

(type 2 multi-scale problems). Section 4.1 presents the proposed FFT-MLIM algorithm, 

which is a “box centric” oct-tree implementation of the multigrid method truncated by “grid 

centric” FFTs. Section 4.2 presents numerical results evaluating the accuracy and 

efficiency of the FFT-MLIM. 

4.1 FORMULATION 

Consider scattering from a multi-scale 3-D PEC-dielectric structure as shown in 

Fig. 4.1. First, volume and surface integral equations are formulated as in Section 3.1 and 

solved using the MOM procedure as in Section 3.3. Then, the FFT-MLIM algorithm is 

formulated.  
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(a)      (b) 

Figure 4.1:  Scattering from an arbitrarily shaped penetrable multi-scale structure. (a) 
Geometry and excitation. (b) The multi-scale mesh. 

4.1.1 FFT-MLIM Algorithm 

A truncated oct-tree is constructed as follows (Fig. 4.2): First, a level-0 box that has 

side length d  is used to enclose V . Then, at each level l  ( 0, ,l L=  ), the non-

empty/dense boxes (parent boxes) are divided into 8 equally sized (children) boxes down 

to level L ; thus, there are 8l
l

NB £  boxes of side length / 2l
l
d d=  at level l . The 

primary mesh of the structure is considered level 1L +  of the tree. Next, each level l  is 

classified as a “high-frequency (HF) level” or a “low-frequency (LF) level” according to 

the ratio of the side lengths of the boxes at that level and the pertinent wavelength/skin 

depth. The oct-tree is truncated at the “truncation (T) level” T  which is defined as the 

low-frequency level that is highest in the hierarchy (has the smallest l ). For example, in 

Fig. 4.2(b), level 0 to level 2 are categorized as HF levels, levels 3 and 4 are LF levels, and 

level 3 is the T level. 
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After the truncated oct-tree is constructed, each non-empty box is assigned a unique 

id 
l
b  (1

l l
b NB£ £ ), a parent id ( )

l
PB b , children ids ( )

l
CB b , a far interaction list 

( )
l

FIL b , and near interaction list ( )
l

NIL b . Note that boxes at level L  do not have 

children boxes; instead, ( )
l

CB b  is the set of basis functions on the primary mesh whose 

center of support are inside box 
L
b . The near and far interaction lists are constructed as 

follows: At each level 1l +  ( 1, , 1l T L= - - ), if the center to center distance 

between box A and box B is less than (larger than) a preset buffer number multiplied by 

1l
d

+  and if the distance between their parent boxes at level l  is less than a preset buffer 

number multiplied by 
l
d , then box B is in ( )NIL A  ( ( )FIL A ) and box A is in ( )NIL B  (

( )FIL B ) [87]. Boxes at a given level that are not in the far interaction lists of each other 

do not interact at that level. The far interactions are computed via auxiliary grids and FFTs 

at all levels, while the near interactions are computed only at level L  directly between 

the basis in source and observer boxes. 
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(a) 

 

 

(b) 

Figure 4.2:  Multilevel division of a 3-D structure. (a) Illustration of the level-0 (left) and 
level-3 boxes (right). (b) The corresponding 4-level oct-tree. Only 2 of the 8 
child boxes at each level are shown. 
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To traverse the oct-tree, auxiliary regular grids are introduced at each box and 

Lagrange anter/interpolation is used similar to [42],[43],[88]. For LF levels, the number of 

grid points per box can be fixed and the grid spacing can be proportionally larger for higher 

levels (smaller l ); whereas for HF levels, the grid spacing must be fixed (to a fraction of 

the wavelength/skin depth) and the number of grid points per box must increase 

proportionally for higher levels to maintain accuracy. Therefore, 3P  grid points are 

assigned to all the boxes from level L  to level T . In the literature, the 3P  grid points 

are always located in/on the box as shown in Fig. 4.3(a) [42],[43],[88]. This leads to a 

significant loss of accuracy when basis/testing functions are at the boundaries of the boxes 

because it involves extrapolation operations. For example, both basis functions in Fig. 

4.3(a) are anter/interpolated using the same 34  grids; but close to half of the top-left basis 

function resides outside the box (even though its center of support is inside it). To maintain 

accuracy, an alternative scheme is proposed [89], where the grid points extend beyond the 

boxes and not all of the 3P  points are used for anter/interpolation, i.e., a sub-domain/sub-

box anter/interpolation that uses only 3M  grid points is proposed ( M P£ ). For 

example, in Fig. 4.3(b), one more grid point is added in all directions ( 6P = ) and the 

basis functions are still anter/interpolated onto 34  grids ( 4M = ): The top-left and 

bottom-right basis functions are anter/interpolated using the grid points inside the red and 

blue dotted squares, respectively. This approach yields a pure anter/interpolation scheme 

that improves the accuracy by avoiding extrapolation errors but it increases the cost of 

interaction between boxes as P  is larger. 

 



55 

 

   

(a)      (b) 

Figure 4.3:  Anter/interpolation schemes for traversing the oct-tree. (a) Typical inaccurate 
and cheap scheme that involves   points in/on the box (b) Proposed more 
accurate and expensive scheme that involves   points that extend beyond the 
box. 

 

At each MOM iteration, the proposed FFT-MLIM algorithm executes a four-step 

procedure: Upward pass, FFT truncation, downward pass, and NIL computation. In the 

following, {x,y,z, } {x,y,z, }

, ,
/

l ll b l b

 I V  are 3 1P ´  vectors that represent the corresponding 

components of the current/potential on the grid of box 
l
b  at level , ,l T L=  .  

Upward pass: This is implemented in three stages. (i) The currents on the primary 

mesh are anterpolated onto the grids of corresponding boxes at level L . i.e., 

 {x,y,z, } {x,y,z, }

, ,
( )

[ ]
L

L

L b L n
n CB b

n 

Î

= åI IΛ  (4.1.1) 

where {x,y,z, } {x,y,z, },S {x,y,z, },V

, , ,
[ ]

L n L n L n
jw  =Λ Λ Λ  is a 3 2P ´  matrix. {x,y,z, },S

,L n

Λ  store the 

3 1P ´  anterpolation coefficient for Sˆ
n

⋅x b , Sˆ
n

⋅y b , Sˆ
n

⋅z b , S
n

 ⋅ b  as in Section 3.4, and 

{x,y,z, },V

,L n

Λ  store those for Vˆ
n n

c⋅x b , Vˆ
n n

c⋅y b , Vˆ
n n

c⋅z b , and V( )
n n

c ⋅ b  as in Section 

3.4, respectively. (ii) For all the non-empty boxes at level 1, 2, ,l L L T= - -  , the 

currents on their children boxes at level 1l +  are anterpolated onto their grids, i.e., 
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1 1

1

{x,y,z, } {x,y,z, }
, 1, 1,

( )
l l l

l l

l b l b l b
b CB b

+ +

+

 
+ +

Î

= åI IΛ   (4.1.2) 

for 1, ,
l l
b NB=   and 1, 2, ,l L L T= - -  , where 

11, ll b ++Λ  is a 3 3P P´  matrix, 

each column of which stores 3M  anterpolation coefficients. The anterpolation 

coefficients for different current components between the parent and children boxes are the 

same. (iii) For each box 
l
b¢  at level 1, 2, , 1l L L T= - - + , the fields are propagated 

to all the non-empty boxes in the FIL of that box using FFTs [43], i.e., 

 {x,y,z, } {x,y,z, } {x,y,z, }

, , , ,
, ( )

l l l ll b l b b l b l l
b FIL b  

¢ ¢
¢= " ÎV G I  (4.1.3) 

Here, {x,y,z, }

, ,l ll b b


¢G  are the corresponding Green function propagators between box 

l
b¢  and 

box 
l
b  and {x,y,z, }

, ll b

V  are 3 1P ´  arrays. This multiplication is computed using FFTs. 

FFT truncation: To implement the FFT truncation at level T , a global grid with 

3D 3D,x 3D,y 3D,zN N N N=  grids is introduced; this grid is the union of the grids of all boxes 

at level T . A four-stage procedure similar to AIM/pFFT is followed: First, the currents 

{x,y,z, }

g

I  on the global grids are obtained by combining the currents on the (overlapping) 

grids of all non-empty boxes at level T  as 

 {x,y,z, } {x,y,z, }

, ,
1

T

T T

T

NB

g T b T b
b

 

=

= åI S I  (4.1.4) 

where each 
, TT b
S  is an 3D 3N P´  selection (sub)matrix that has one non-zero entry per 

column equal to one. Second, the fields of these combined currents are propagated onto the 

same global grid using FFTs. Similar to (4.1.3), this step can expressed as 

 {x,y,z, } {x,y,z, } {x,y,z, }

g g g

  =V G I  (4.1.5) 
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where {x,y,z, }

g

G , {x,y,z, }

g

I , and {x,y,z, }

g

V  are Green function, current, and field arrays of 

size 3DN . Third, the fields are assigned (copied) to the grids of non-empty boxes at level 

T  from the global grid, i.e.,  

 {x,y,z, } † {x,y,z, }

, ,T TT b T b g

 =V S V  (4.1.6) 

The contributions from near-zones to these fields should be corrected similar to AIM; 

however, this is achieved by a “post-correction” and not a pre-correction operation. Fourth, 

for each box at level T , (inaccurate) fields are propagated to all the non-empty boxes in 

its NIL using FFTs, which are subtracted from the assigned fields as 

 {x,y,z, } {x,y,z, } {x,y,z, } {x,y,z, }

, , , , ,
, ( )

T T T T TT b T b T b b T b T T
b NIL b   

¢ ¢
¢= - " ÎV V G I  (4.1.7) 

These four-stages can be described as “combine, propagate, assign, and post-correct”. 

Downward pass: In this step, the oct-tree is traversed from level T  to 1L + . (i) 

For each non-empty box 
l
b  at level l  ( 1, ,l T L= +  ), the fields on its grid points are 

found by interpolating those on their parent boxes grid points and adding them to those 

propagated from the boxes in their FIL (found during the upward pass) : 

 
1

{x,y,z, } {x,y,z, } † {x,y,z, }

, , , 1,l l l ll b l b l b l b -

  
-

= +V V VΛ  (4.1.8) 

Similarly, the fields on the primary mesh are interpolated from those on the grids of boxes 

at level L .  

 far †

, ,
{x,y,z, }

[ ] , ( )
l Ll b L b L

m m CB bu u

nÎ 

= " ÎåV VΛ  (4.1.9) 

NIL Computation: For each non-empty box at level L , the currents on the (basis) 

functions assigned to it are propagated directly onto the (testing) functions assigned to the 

boxes in its NIL. For each non-empty source box 
L
b¢ , this can be formulated as 
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 near

( )

[ ] [ , ] [ ], ( ) and ( )
L

L L L
n CB b

m m n n m CB b b NIL b
¢Î

¢= " Î ÎåV Z I  (4.1.10) 

From above 4 steps, the impedance matrix-vector product at each iteration can be 

approximated as near far= » +V ZI V V , where nearV  is above and farV  can be 

expressed recursively as 

 

far †

1
{x,y,z, }

{x,y,z, } {x,y,z, }† {x,y,z, } {x,y,z, } {x,y,z, }

1 1 2 1 1

{x,y,z, } {x,y,z, }† {x,y,z, } {x,y,z, } {x,y,z, }

1 1 2 1 1

{x,y,z, } {x,y
1 1

( )

( )

( )

L L L L

L L L L L

l l l l l

T T

u u u u

u
-

Î 
    

- - - - -

    
- - - - -


+ +

= +

= +

= +

=

åV Z G I

Z Z G

Z Z G

Z

Λ Λ

Λ Λ

Λ Λ

Λ




,z, }† {x,y,z, } {x,y,z, } {x,y,z, }

1 1
{x,y,z, } {x,y,z, }† † {x,y,z, } {x,y,z, } {x,y,z, }

( )

( )
T T T

T T T g T T L

   
+ +

    

+

= -

Z G

Z S G S G

Λ

Λ Λ

 (4.1.11) 

4.1.2 Computational Complexity 

The matrix fill time, memory cost, and matrix solve time of the FFT-MLIM 

algorithm are detailed next. Upward pass: Anterpolation from basis functions onto the grids 

of boxes at level L  require 3( )O NM  operations at each iteration and 3( )O NM  

memory. At each level l  ( 1, ,l T L= +  ), the anterpolation and propagation between 

boxes in FIL require 6( )
l

O NBP  and 3 3( log )
l l

O NFNBP P  operations per iteration, 

respectively, where 
l

NF  is the average number of box in FIL of each box. Storing the 

current and field in all the boxes requires 3( )
l

O NBP  storage. (ii) FFT Truncation: At level 

T , the combine and assigns stages require negligible number of operations. The 

propagation and correction require 3D 3D( log )O N N  and 3 3( log )
T T

O NN NB P P  

operations per iteration, respectively, where 
T

NN  is the average number of box in NIL 

of each box. The memory cost is 3D 3( )
T

O N NB P+ . (iii) Downward pass: The 
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interpolation costs are identical to the anterpolation costs, i.e., they require a total of 

3( )O NM  operations per iteration and 3( )O NM  memory. (iv) NIL computation: This 

requires near( )O N  operations per iteration and near( )O N  memory, where nearN  is the 

total number of basis pairs in NIL. 

 In total, the anter/interpolation matrices, current/field matrices, the NIL 

computation matrix, and the propagation matrices (dominated by the global grid at level 

T ) have ( )O N , ( )O N , near( )O N , and 3D( )O N  unique entries, respectively. 

Multiplying these matrices with the necessary vector requires ( )O N , ( )O N , near( )O N , 

and 3D 3D( log )O N N  operations at each iteration, respectively. Thus, the matrix fill time, 

memory cost, and matrix solve time per iteration of the proposed FFT-MLIM scale as 

near 3D( )O N N+ , near 3D( )O N N+ , and near 3D 3D( log )O N N N+ .  Because of the 

multilevel oct-tree structure, unlike the AIM algorithms in Chapters II, III, and V, this 

algorithm guarantees that nearN N  even for multi-scale structures. 

4.2 NUMERICAL RESULTS 

This section presents numerical results to compare the computational costs of AIM 

and FFT-MLIM in the high-, low-, and mixed-frequency regimes and validate the accuracy 

of the proposed method. In all simulations, the preconditioner, and the iterative solver 

tolerance are the same as those described in Section 2.3. All the FFT-MLIM results in this 

section are obtained using a serial implementation of the method while the AIM results are 

obtained using an MPI-based parallel implementation of the method. The reported timing 

and memory data for AIM were “serialized” as described in Section 2.3. 
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4.2.1 Computational Complexity 

To compare the methods in the high-frequency regime, scattering from a PEC plate 

is analyzed as its size is increased from 
0 0

l l´  to 
0 0

64 64l l´  while keeping the 

surface mesh density constant (average edge length of the mesh is 
0
/ 10l ), where 

0
l  is 

the wavelength in free space. To compare them in the low-frequency regime, scattering 

from a 
0 0

l l´  PEC plate is analyzed as the average edge length of the mesh is decreased 

from 
0
/ 10l  to 

0
/ 640l  while keeping the plate size constant. To compare them in the 

mixed-frequency regime, scattering from a 2 2´  square array of 
0 0

l l´  PEC plates is 

analyzed as the average edge length of the mesh is decreased from 
0
/ 10l  to 

0
/ 320l  

while keeping the array spacing (
0

10l  in each direction) and plate sizes constant. Note 

that the high- and low-frequency simulations examine the performance of the methods for 

single-scale structures. The mixed-frequency simulations shows their performance for 

multi-scale structures as the plate array has large distance between cells (much larger than 

0
l ) and has detailed mesh in the unit cell (much smaller than 

0
l ). All the plates are on the 

xoy plane and are illuminated by an x̂ -polarized plane wave propagating toward the ẑ-  

direction. The accuracy of the simulations are quantified by computing errqq , the relative 

root-mean-square error in the VV-polarized bistatic radar cross section. For reference, the 

MOM solution of the same problem is used; when this is not feasible, a more accurate AIM 

solution is used. The AIM and FFT-MLIM parameters are chosen to minimize the 

computational costs subject to the constraint that 1%.err qq <  

The computational requirements of FFT-MLIM, AIM, and MOM are contrasted in 

Figs. 4.4-4.6 for the different simulation regimes. Overall, the observed data and the curves 

that are fitted to them in Fig. 4.4-4.6 agree well with the asymptotical trends described in 
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Section 4.1.2. The high- and low-frequency simulations are employed to examine the 

performance of FFT-MLIM for single-scale structures. The mixed-frequency example 

shows its performance for multi-scale structure as the plate array has the distance between 

cells (much larger than 
0

l ) and meanwhile the unit cell has detailed mesh (much less than 

0
l ). From Fig. 4.4, the cost of FFT-MLIM is slightly higher than that of pFFT/AIM in 

high-frequency regime. In low-frequency regime, the matrix fill time and memory scale as 

( )O N  for both FFT-MLIM and pFFT/AIM, but FFT-MLIM has a larger constant in front 

of N . In Fig. 4.5(c), the matrix solve time of FFT-MLIM and pFFT/AIM scales as ( )O N  

and ( log )O N N  ( 3DN N ), but FFT-MLIM only outperforms pFFT/AIM beyond 

610N = . Therefore, pFFT/AIM is a better choice for single-scale structures. In Fig. 4.6, 

the pFFT/AIM becomes less efficient due to the large empty space between cells while 

FFT-MLIM is not affected, and it outperforms pFFT/AIM after 410N = . And the matrix 

solve time per iteration of FFT-MLIM is dominant by ( )O N  as the number of unknown 

is increased by making the mesh density denser. If the number of unknown is increased by 

enlarging the structures, it will scale as ( )O N . Thus, FFT-MLIM is a better alternative for 

analyzing multi-scale problems. 
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(a)        (b) 

 

(c) 

Figure 4.4:  Computational costs for plates in high-frequency regime as the size is 
increased and mesh density is fixed. (a) Matrix fill time. (b) Memory 
requirement. (c) Time per iteration. 
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(a)        (b) 

 

(c) 

Figure 4.5:  Computational costs for plates in low-frequency regime as the mesh is refined 
and the size is fixed. (a) Matrix fill time. (b) Memory requirement. (c) Time 
per iteration. 
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(a)        (b) 

 

(c) 

Figure 4.6:  Computational costs for the plate array in mixed-frequency regime as the 
array size is fixed and mesh is refined. (a) Matrix fill time. (b) Memory 
requirement. (c) Time per iteration. 
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4.2.2 Validation 

Next, the accuracy of the proposed scheme for solving inhomogeneous penetrable 

problems is demonstrated by analyzing scattering from a 3-D five-period dielectric slab 

(type 1a problem) [90]. The five-period dielectric slab is shown in Fig. 4.7(a), where 

0
9.0 /h k=  (

0
k  is the wave number in free space ), /1.713d h= , 6L d= , 

1 2
0.5d d d= = , 

1 0
1.44e e= , and 

2 0
2.56e e= , The dielectric slab is excited by a plane 

wave incident from inc 45q =   and inc 0f =  . The volume of the dielectric slab is 

discretized using tetrahedrons with ~
0
/ 8.1l  average edge length; this yields, 

324 290N = . A 5-level oct tree is constructed and truncated in level 4. The RCS patterns 

calculated with FFT-MLIM are compared to those calculated by a reference pFFT [90] in 

Fig. 4.7(b); the results are essentially identical. This simulation required 41.7 10´  

seconds for filling the matrices, 4.7 GB memory, 29.3 10´  seconds per iteration, and 

it 140N =  iterations. 
  



66 

 

 
(a) 

 
(b) 

Figure 4.7:  Scattering problem involving a five-period dielectric slab in free space. (a) 
Geometry. (b) Copolarized bistatic RCS patterns in the 0f =   cut. 
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4.3 SUMMARY 

This Chapter presented a FFT-truncated multilevel interpolation method for the 

analysis of multi-scale structures in homogeneous backgrounds. Numerical results for 

single- and multi-scale PEC structures show that FFT-MLIM performance is comparable 

to but slightly worse than that of AIM for single-scale structures but outperforms the latter 

for multi-scale structures. While the presentation is constrained to homogeneous 

backgrounds in this Chapter, FFT-MLIM can be extended to type 2 multi-scale problems 

in rectangular cavities as is done for AIM in Chapter III or type 4 multi-scale problems in 

layered backgrounds as is done for AIM in Chapter V. 
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Chapter V: Adaptive Integral Method for Layered Media 

This Chapter presents an extended AIM scheme that is efficient for solving single-

scale structures in multi-scale backgrounds (type 3a and 3b multi-scale problems). Section 

5.1 details the AIM extension for the structures embedded in a single layer of a uniaxial 

planar-layered medium and validates the mehtod. Section 5.2 further extends the scheme 

for structures embedded in multiple layers of a planar-layered medium and verifies the 

method’s accuracy and efficiency. The methods are formulated for surface integral 

equations for brevity but are also applicable to volume integral equations as demonstrated 

by numerical results in Sections 5.1.5.2 and 6.1.2. 

5.1 SINGLE LAYER EXTENSION OF AIM FOR LAYERED MEDIA 

This section formulates the surface combined-field integral equation, its classical 

MOM solution, and the proposed AIM acceleration for structures embedded in a single 

layer of a uniaxial planar-layered medium. 

5.1.1 Surface Combined-Field Integral Equation 

Consider an arbitrarily shaped 3-D PEC surface S  embedded in layer k  of a 

uniaxial medium that is stratified into K  planar layers in the ẑ  direction. A time-

harmonic electromagnetic field inc inc{ , }E H  is incident on the structure. The upper 

boundary, complex permittivity tensor, and permeability of each layer 1, ,k K=   is 

denoted with 
k
z , 

k
ε , and 

k
m , respectively (Fig. 5.1(a)). The complex permittivity tensors 

is given as  
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(a) 

 

(b) 

Figure 5.1:  Scattering problem involving an arbitrarily shaped 3-D structure residing in 
one layer of a planar-layered medium. (a) Geometry and excitation definition. 
(b) The auxiliary grid points and the set of points assigned to two of the RWG 
basis functions. 
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Here, t t t /
k k k

je e s w= +  and 
k

b  denote the horizontal component and the ratio of the 

vertical to horizontal component of the complex relative permittivity of layer k , 

respectively. The scattered fields sca sca{ , }E H  are expressed in mixed potential form as 

[13]: 

sca

0

0

sca

0

( ) ( ) ( ) [ ( , ) ( , )] ( )

( , ) ( )

1
( ) ( ) ( , ) ( )

S

S

S

j j ds

g ds
j

ds

f

w f wm

we

m

¢ ¢ ¢ ¢= - - =- + ⋅

 ¢ ¢ ¢ ¢+  ⋅

¢ ¢ ¢= ´ = ´ ⋅

òò

òò

òò

E r A r r g r r p r r J r

r r J r

H r A r g r r J r

    (5.1.2) 

where A  and f  denote the magnetic vector and electric scalar potentials due to the 

surface current density J , xx yy zx zy zzˆˆ ˆˆ ˆˆ ˆˆ ˆˆg g g g g= + + + +g xx yy zx zy zz  and gf  are 

dyadic and scalar Green functions, and ˆ ˆzrr= +r z  and ˆ ˆzr r¢ ¢ ¢= +r z  denote 

observer and source points, respectively. Because the scalar potentials of point charges 

associated with horizontal and vertical dipoles are generally different in layered media, the 

mixed potential formulation requires the dyadic correction factor 

xz yz zzˆˆ ˆˆ ˆˆp g p= + +p xz yz zz . All Green function and correction factor components can be 

calculated using Sommerfeld integrals and transmission line theory [91], e.g.,  

xx xx xx

00

1
( , ) (| |, , ) ( , , ) ( | |)

2
g g z z g k z z J k k dkr r r rp

¥
¢ ¢ ¢ ¢ ¢= - = -òr r          (5.1.3) 

where xxg  is a spectral domain Green function, 
0
J  is the zeroth order Bessel function 

of the first kind, and kr  is the Fourier transform variable.  

The surface combined-field integral equation (SCFIE) is obtained by enforcing the 

tangential boundary conditions on S  and linearly combining the resulting equations as 

 ˆ ˆ ˆ( ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( )k ka a h a h- ´ ´ + - ´ = -n r n r E r n r H r J r  (5.1.4) 
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Here, n̂  is the outward directed unit vector normal to S , kh  is the intrinsic impedance 

of thk  layer, and 0 1a£ £ .  

5.1.2 MOM 

To find J , the electromagnetic fields in (5.1.4) are expressed as a sum of incident 

and scattered fields, (5.1.2) is substituted in, and the SCFIE is converted to a system of 

linear equations using the standard MOM procedure: The surface is discretized into 

triangular patches; the current density is expanded using N  basis functions S S
1
, ,

N
b b : 

 S

1

( ) [ ] ( )
N

n
n

n
=

@åJ r I b r  (5.1.5) 

where I  are the coefficients to be found and the basis functions are chosen to be RWG 

[22] functions. (5.1.4) is tested with N  linearly independent functions S S
1
, ,

N
t t ; here, 

the Galerkin testing is employed, i.e., S S
m m
=t b  for 1, ,m N=  . This MOM procedure 

yields the matrix equation 

 inc=ZI V  (5.1.6) 

Here, the entries of impedance matrix Z  and the tested incident field vector incV  are 

given by 

 

S S

0

S S

0
S S

inc S inc S inc

[ , ] ( ) [ ( , ) ( , )] ( )

( ) ( , ) ( )

ˆ(1 ) ( ) ( ) ( , ) ( )

ˆ[ ] ( ) ( ) (1 ) ( ) ( ) ( )

m n

S S

m n

S S

m n

S S

m m

m n j ds ds

g ds ds
j

ds ds

m ds

f

k

k

wm a

a
we

a h

a a h

¢ ¢ ¢ ¢= ⋅ + ⋅

¢ ¢ ¢ ¢+  ⋅  ⋅

¢ ¢ ¢+ - ´ ⋅´ ⋅

= ⋅ + - ⋅ ´

òò òò

òò òò

òò òò

Z t r g r r p r r b r

t r r r b r

n r t r g r r b r

V t r E r t r n r H r
S

òò

 (5.1.7) 
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for 1 ,m n N£ £ . The calculation of the impedance matrix (matrix fill time), the memory 

required for storing it (memory cost), and the solution of (5.1.6) (matrix solve time) are 

the main computational costs of the above MOM procedure. The matrix fill time and 

memory cost scale as 2( )O N  and the matrix solve time scales as it 2( )O N N  if an 

iterative solver that converges in itN  iterations is used.  

The matrix fill time for structures in layered media is significantly larger than for 

those in free space because of the time-consuming Sommerfeld integrals needed for the 

2( )O N  Green function evaluations in (5.1.7). Various methods exist for reducing this 

setup cost [52],[92]-[94]; here, the following are adopted: (i) Interpolation [52]: The 

number of Sommerfeld integrals can be reduced significantly by interpolating the Green 

function and correction factor components from tables that store their samples. 

Specifically, each component in (5.1.7), i.e., xx,yy,zx,zy,zzg  and xz,yz,zzp , is decomposed 

into functions of z z ¢-  and z z ¢+ , e.g., 

 xx xx xx

TTT TTH
(| |, , ) (| |, ) (| |, )g z z g z z g z z¢ ¢ ¢ ¢ ¢ ¢- = - - + - +       (5.1.8) 

The samples of the convolution and correlation terms are stored in two two dimensional 

(2-D) tables; thus, each table stores 
h

N Nr  samples found by uniformly sampling the 

interval 
max

0 | | L¢£ - £   and either 
min max max min
z z z z z z¢- £ - £ -  or 

min
2z z z ¢£ + £

max
2z , where 

max
L  and 

max min
( )z z  denote the maximum radial 

distance and the largest (smallest) height on S , respectively. The components are 

interpolated from their samples using 2-D Lagrange interpolation; typically, ~10 samples 

per minimum wavelength are needed in each dimension of the table for interpolation errors 

on the order of 310-  (see Section 5.1.5.1). This implies that for surfaces devoid of 

geometrical details only 
h

N N Nr   or 1/2N  Sommerfeld integrals must be 
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computed to fill the tables when S  is a 3-D or a quasi-planar (when 
max max min
L z z-

) surface, respectively. (ii) Singularity subtraction [92]: The computation of each 

Sommerfeld integral is accelerated by extracting an asymptotic term in the spectral domain 

found by letting kr  ¥ ; by computing the remaining integral via adaptive numerical 

integration; and by adding back the closed-form expression for the extracted term in the 

spatial domain; e.g., 

 
xx xx xx

ana TTT,num
xx

TTH,num

(| |, , ) (| |, , ) (| |, )

(| |, )

g z z g z z g z z

g z z

¢ ¢ ¢ ¢ ¢ ¢- = - + - -
¢ ¢+ - +

     
 

 (5.1.9) 

where xx
ana
g  denotes the part extracted from the Green function, which is computed using 

a closed-form analytical expression, and xx xx

TTT,num TTH,num
g g+  denotes the remaining part, 

which is computed using numerical integrals and interpolation. Here, the numerical 

integrals are computed using a 4-leg integration path in the first quadrant of the kr  plane: 

The first leg is along the imaginary axis; it starts at origin and has length 3
0

5 10 k-´ , where 

0
k  is the wave number in free space. The second leg is parallel to the real axis in the 1st 

quadrant; it extends beyond where all poles and branch points can possibly appear, 

specifically to 
,max

1.2kr , where ,max 1
max( )

k kk K
kr w e m

£ £
=  [92], The third leg is parallel to 

the imaginary axis (returns to the real axis), and the last leg is along the real axis (extends 

to infinity). Unlike the methods in [93],[94], this subtraction approach speeds up the 

evaluation of Sommerfeld integrals without introducing approximation errors. Because the 

terms that are added back have closed-form expressions and can be computed quickly, they 

are not interpolated to preserve the accuracy of Green functions; i.e., interpolation is used 

only for the results of the numerical integration before the extracted terms are added back. 

In this Chapter, all the layered-medium Green functions are computed using the procedure 
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described in this section. Although these methods render the matrix fill time for structures 

in layered media comparable to that for structures in free space; to solve large-scale 

problems, they should be combined with fast algorithms that reduce the MOM 

computational complexity. FFT-based algorithms achieve this reduction by further 

exploiting the convolution/correlation form of Green functions as detailed next for AIM. 

5.1.3 AIM 

Similar to the AIM schemes in Chapters II and III, the AIM extension is also 

formulated by enclosing S  with an auxiliary 3-D regular grid with 

3D 3D,x 3D,y 3D,zN N N N=  nodes; importantly, all nodes of the auxiliary grid are constrained 

to be in layer k  to enable a Toeplitz-Hankel decomposition of the AIM matrices in the 

stratification direction (Fig. 5.1(b)). Similar to the classical AIM for structures in free 

space, the impedance matrix is approximated as corr FFT» +Z Z Z , where corrZ  is a “pre-

corrected” matrix [40] and the FFTZ  matrix can be expressed as 

†
x,S xx xz x,S

FFT y,S yy yz y,S ,S† ,S

0
z,S zx zy zz zz z,S 0

†
x,S zx zy yy zz

y,S xx zx zy zz

z,S

(1 )
y y z y

z x x x

j
j

f

k

a
wm a

we

a h

 

é ù é ù é ù
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      (5.1.10) 

Here, ¶  represents derivative with respect to the variable in its subscript, the matrices 

{x,y,z, },SΛ  represent anterpolation from basis functions on the primary mesh to point 

sources on the auxiliary grid, the matrices G  and P  represent “propagation” from 

sources to observers on the auxiliary grid, and the transpose matrices {x,y,z, },S†Λ  and 
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{x,y,z, },S†Γ  represent interpolation from point observers on the auxiliary grid to testing 

functions on the primary mesh. Each column n  of {x,y,z, },SΛ  and {x,y,z, },SΓ , which are 

sparse real matrices of size 3DN N´ , store weighting coefficients found by matching 

multipole moments of S

n
M  points on the auxiliary grid to those of the functions Sˆ

n
⋅x b , 

Sˆ
n

⋅y b , Sˆ
n

⋅z b , S
n

 ⋅ b , Sˆ ˆ
n

⋅ ´x n b , Sˆ ˆ
n

⋅ ´y n b , and Sˆ ˆ
n

⋅ ´z n b , respectively [39],[95] 

(testing functions are the same as basis functions). In this Chapter, the S

n
M  grid points are 

chosen to be symmetrical around the center of mass of S
n
b  whenever possible; the set of 

grid points are unsymmetrical along the z  direction when S
n
b  is close to or on the layer 

interfaces because the auxiliary grid is confined to a single layer (Fig. 5.1(b)). The 

unsymmetrical choice of points does not affect the accuracy of the method significantly as 

demonstrated in Section 5.1.5 and in [96]. In (5.1.10), the entries of the propagation 

matrices, which are dense 3D 3DN N´  matrices, are 

 
xx,yy,zx,zy,zz, xx,yy,zx,zy,zz,

xz,yz,zz xz,yz,zz

[ , ] ( , )

[ , ] ( , )
u v

u v

u v g

u v g

f f=

=

G r r

P r r
 (5.1.11) 

for nodes u v¹  on the auxiliary grid; the Toeplitz part of [ , ]u uG  and [ , ]u uP  are set 

to 0 since they are singular when 
u v
=r r ; the Hankel part of [ , ]u uG  and [ , ]u uP  are set 

to 0 only when 
u
r  is located on the layer interface. The entries of the pre-corrected matrix, 

which is a sparse N N´  matrix, are 

 
FFT SS

corr
[ , ] [ , ],  if dist [ , ]

[ , ]
0, else

m n m n m n
m n

g¢ìï - <ïï= íïïïî

Z Z
Z  (5.1.12) 

for 1 ,m n N£ £ . SSdist [ , ]m n¢  also denotes the minimum “grid distance” between the 

functions S
m
t  and S

n
b  as defined in Section 2.2. corrN N  for single-scale structures 

[39],[48],[59] in type 3a and 3b multi-scale problems. 
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Unlike for structures in free space, where the AIM propagation matrices have a 3-

level block-Toeplitz structure, the propagation matrices in (5.1.10) have only a 2-level 

block-Toeplitz structure because layered-medium Green functions are not translationally 

invariant in the stratification direction. To be able to use 3-D FFTs, each Green function 

and correction factor component is split into a term that is in convolution form in all 

directions and one that is in convolution form in x  and y  directions and correlation 

form in the z  direction [52],[53],[59]-[62]; e.g., xxg  is expressed as in (5.1.8). 

Consequently, each propagation matrix can be split into a 3-level block-Toeplitz and a 

Hankel-2-level block-Toeplitz matrix; e.g., xx xx xx

TTT TTH
= +G G G . Both types of matrices 

can be efficiently multiplied with vectors using 3-D FFTs as described in Section 3.4. For 

example, consider the calculation of xx x,S xx x,S xx x,S

TTT TTH
= +G I G I G IΛ Λ Λ : For the former 

multiplication, first, a 3-D array of size 3D,x 3D,y(2 1) (2 1)N N- ´ - 3D,z 3D(2 1) 8N N´ -   

is constructed by re-organizing and zero-padding the x,SIΛ  vector; the 3-D FFT of this 

array is computed; and the result is stored in FFT x,SI . Second, FFT x,SI  is multiplied 

element-by-element with FFT xx

TTT
G , which is the 3-D FFT of an identical-sized array 

constructed from the unique entries of xx

TTT
G . Third, the inverse 3-D FFT of the array 

resulting from this multiplication is found; and last, 3DN  entries are extracted and re-

organized to yield the desired vector xx x,S

TTT
G IΛ . For the latter multiplication, it should be 

observed that Hankel blocks can be converted to Toeplitz ones by using a block anti-

diagonal permutation matrix 
TTH
Q ; i.e., xx x,S xx 1 x,S

TTH TTH TTH TTH
( )( )-=G I G Q Q IΛ Λ , where 

1 x,S

TTH

-Q IΛ  simply reorders the vector x,SIΛ  and xx

TTH TTH
G Q  is a 3-level block-Toeplitz 

matrix that can be multiplied with the reordered vector as before. The number of operations 

needed for this multiplication can be reduced significantly by recycling the FFTs found for 
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the former multiplication [59]-[62]. That is, xx x,S

TTH
G IΛ  can be computed by multiplying 

FFT x,SI  element-by-element with FFT xx

TTH
G —the 3-D FFT of an array constructed from 

the unique entries of xx

TTH TTH
G Q , which is multiplied with a phase shift term to account for 

the reordering—inverse FFTing the resulting array, and extracting 3DN  entries. This 

implies that if FFT xx

TTT
G  and FFT xx

TTH
G  are pre-computed before the iterative solution, as 

is typical, then computing xx x,SG IΛ  requires no extra FFTs and a negligible number of 

extra operations compared to computing xx x,S

TTT
G IΛ . 

The anterpolation/interpolation matrices, the pre-corrected matrix, and the 

propagation matrices have ( )O N , corr( )O N , and 3D( )O N  unique entries and can be 

multiplied with a vector in ( )O N , corr( )O N , and 3D 3D( log )O N N  operations, 

respectively. Thus, the matrix fill time, memory cost, and matrix solve time of the proposed 

AIM scale as corr 3D( )O N N+ , corr 3D( )O N N+ , and it corr 3D 3D( [ log ])O N N N N+  in 

general and as ( )O N , 1.5( )O N , and it 1.5( )O N N  for single-scale 3-D PEC structures, 

respectively. 

5.1.4 Comparison to Free Space 

Next, the proposed 3-D AIM for structures in layered media is contrasted to the 

classical 3-D AIM for structures in free space. In the following cost analysis, it is assumed 

that the AIM implementations attempt to minimize the computation time rather than 

memory use; e.g., the FFTs of the arrays constructed from the propagation matrices are 

assumed to be pre-computed and stored rather than re-computed at each iteration.  

For structures in free space, (5.1.10) is simplified as 
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Notice that there is only a single propagation matrix G , whose entries are given in terms 

of the free-space Green function as in (5.1.11). At each iteration, 4 FFTs (for the different 

current components), 4 element-by-element multiplications, and 4 inverse FFTs must be 

computed for the EFIE contribution. These operations can be executed one current/field 

component at a time; thus, only 2 arrays of size 3D8N  are needed (one for the pre-

computed FFT for G  and one for FFT {x,y,z, },SI  or the result of the element-by-element 

multiplication). Similarly, 3 FFTs, 6 element-by-element multiplications, and 3 inverse 

FFTs must be computed for the MFIE contribution. This requires 7 arrays of size 3D8N  

(three for the pre-computed FFTs for ,
x y

¶ ¶G G , and 
z

¶ G ; three for FFT {x,y,z},SI , and one 

for the result of element-by-element multiplications). In total, 4 FFTs, 10 element-by-

element multiplications, and 7 inverse FFTs must be computed for the CFIE at each 

iteration. This requires 8 arrays of size 3D8N . The computational cost of the CFIE can 

be reduced by employing numerical differentiation to calculate the MFIE contribution 

[95],[97]; this approach reduces the number of element-by-element multiplications and 

inverse FFTs to 4 and requires 5 arrays of size 3D8N .   

For structures in layered media, there are 15 different propagation matrices in 

(5.1.10) ( xx yy=G G  and zz zz+G P  is stored as one matrix); each of these are 

decomposed into Toeplitz and Hankel terms that are stored and multiplied separately to 
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utilize 3-D FFTs (note FFT zx,zy FFT xz,yz

TTT TTT
=G P  and FFT zx,zy FFT xz,yz

TTH TTH
= -G P  when the 

structure confined in a single layer). At each iteration, at least 4 FFTs (for the different 

current components), 16 element-by-element multiplications (8 for Toeplitz and 8 for 

Hankel terms), and 4 inverse FFTs must be computed for the EFIE contribution. Because 

of the off-diagonal terms in (5.1.10), these operations cannot be executed one current/field 

component at a time without increasing the number of FFTs; instead, the FFTs for the 

Cartesian current components are computed once and stored; thus, 16 arrays of size 

3D8N  are needed (10 for the pre-computed FFTs for the Toeplitz and Hankel 

propagation matrices; 4 for FFT {x,y,z, },SI ; 1 for reordering FFT {x,y,z, },SI , and 1 for inverse 

FFTs of field components;). Similarly, 3 FFTs, 16 element-by-element multiplications, and 

3 inverse FFTs must be computed for the MFIE contribution. This requires 21 arrays of 

size 3D8N  (16 for the pre-computed FFTs for propagation matrices; 3 for FFT {x,y,z},SI ; 

1 for reordering FFT {x,y,z},SI ; and 1 for inverse FFTs of field components). In total, 4 FFTs, 

32 element-by-element multiplications, and 7 inverse FFTs must be computed for the CFIE 

at each iteration. This requires 32 arrays of size 3D8N . Although using numerical 

differentiation to calculate the MFIE contribution increases the number of inverse FFTs 

from 7 to 9, it also reduces both the number of element-by-element multiplications and the 

number of arrays to be stored from 32 to 18. In the following, the more accurate analytical 

differentiation is employed to calculate the MFIE contribution whenever possible; for 

larger 3DN , numerical differentiation is utilized. 

In short, when solving the CFIE, AIM should require ~3.6 times the memory (18 

instead of 5 arrays of size 3DN ) and ~1.6 times the number of operations at each iteration 
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(13 instead of 8 forward and inverse FFTs) for large-scale structures in layered media as 

compared to the same structures in free space. 

5.1.5 Numerical Results  

This section presents several numerical results to demonstrate the performance of 

the proposed method. First, the accuracy of the Green function interpolation scheme is 

confirmed. Second, the AIM computational complexity is validated by analyzing scattering 

from PEC spheres in the top layer of a two-layer medium. Third, and last, various scattering 

problems are solved and compared to independent reference results. In all simulations, the 

AIM parameters (except the grid spacings), the preconditioner, and the iterative solver 

tolerance are the same as those described in Section 2.3. The proposed method is 

parallelized using an MPI-based implementation of the algorithm as in Chapter II and all 

simulations are performed on the Ranger cluster. The reported timing and memory data 

were “serialized” as described in Section 2.3. 

5.1.5.1 Interpolation Error 

A procedure similar to the one in [98] is used to confirm the accuracy of the spatial 

interpolation scheme detailed in Section 5.1.2. The interpolated Green functions are 

compared to those found by direct numerical integration for an isotropic two-layer medium 

whose top half is free space ( t

2 0
e e= ,

2
1b = ) and bottom half is a dielectric with 

permittivity t

1 0
4e e=  and 

1
1b = . The interpolation error is quantified by computing the 

maximum relative error 

 
xx xx xx
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for a 3

1
l -m3 cubic region whose top surface is 

1
l -m below the interface; here, 

1
l  is the 

wavelength in the bottom layer at 300 MHz. In (5.1.14), xx

num
g  is found directly via 

adaptive integration of the Sommerfeld integral, xx

TTT,num
ĝ  and xx

TTH,num
ĝ  are found by 2-

D Lagrange interpolation, and the maximum is computed over 3101  source/observer 

points uniformly distributed in the cubic region (the points are separated by 
1

0.01l  in 

each direction). Fig. 5.2 plots the error versus the sample spacing for different interpolation 

orders; here, the sampling interval D  is the same in the r  and z  directions, central 

interpolation is used wherever possible, and forward or backward interpolation is used 

otherwise (e.g., for ¢- < D   or 
max

2z z z ¢-D < + ). Fig. 5.2 shows that the error 

convergence is of polynomial order and that ~0.1% worst-case error can be obtained when 

~10 samples per wavelength and fifth order interpolation are used. Similar plots were 

obtained for the other Green function and correction factor components but are not shown 

here for brevity. Accordingly, in all the following simulations, 10 samples per wavelength 

and fifth order interpolation are used when evaluating Green fucntions. Note that even 



82 

 

 

Figure 5.2:  Green function interpolation error. 

 

though double-precision arithmetic is used, the error is bounded by 810-  in Fig. 5.2; this 

is because the samples found from direct numerical integration had only about 8 correct 

digits (due to numerical cancellation errors). 

5.1.5.2 Computational Complexity 

Next, the computational complexity of the proposed scheme is verified for {surface, 

volume} integral equation by analyzing scattering from a series of progressively larger 

{PEC, dielectric} spheres.  

For surface integral equation, increasingly larger simulations are performed at 300 

MHz by repeatedly doubling the sphere radius (from 0.5 m to 16 m) and keeping the surface 
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mesh density constant (average triangle edge length is ~
0
/ 9l ). This procedure is identical 

to the one in [64],[65] except the spheres are located not in free space but in the isotropic 

two-layer medium described in Section 5.1.5.1 (the bottoms of all spheres are located 0.5 

m above the interface). As in [65], the spheres are illuminated by an x  polarized plane 

wave propagating toward z-  direction and the accuracy of the simulations are quantified 

by computing errqq , the relative root-mean-square error in the VV-polarized bistatic RCS. 

For reference, the MOM solution of the same problem is used; when this is not feasible, a 

more accurate AIM solution is used (fifth order moments are matched S[ 6 6 6]
n
M = ´ ´ , 

3g = , and the MFIE terms are computed via analytical differentiation). The AIM 

parameters are chosen to minimize the computational costs subject to the constraint that 

0.5%errqq < ; these parameters and the observed errors are detailed in Table 5.1. It is 

found that the parameters for the layered-medium simulations are only slightly more costly 

than those for the free-space ones; e.g., for the 16 m radius sphere, 3D 3256N =  when it is 

in free-space and 3D 3288N =  when it is in the two-layer medium (compare Table 5.1 to 

Table 2 in [65]). Note that to minimize the computational costs, the MFIE contributions 

are found by numerical differentiation when the sphere radius is more than 2 m and by 

analytical differentiation otherwise. 

The computational requirements of AIM and MOM are contrasted in Figs. 5.3(a)-

(c). The figures also compare layered-medium and free-space simulations on the same 

computer using the AIM parameters and the code developed in [65] for the free-space case. 

Overall, the observed data and the curves that are fitted to them in Fig. 5.3 agree well with 

the asymptotical trends described in Section 5.1.3. Several interesting features of the 

proposed method are evident in the plots. Fig. 5.3(a) shows that although the AIM matrix 
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fill time scales as ( )O N  for both layered-medium and free-space simulations, matrix fill 

operations for layered medium simulations are only ~30 times slower than those for the 

corresponding free-space ones. This is because the evaluation of Green functions (and not 

numerical integrations) dominates the matrix fill time in layered media. Indeed, the 2-D 

interpolations, whose cost scales as ( )O N , dominate other operations, including filling the 

tables until 610N  . Nevertheless, filling the tables, i.e., evaluating N  Sommerfeld 

integrals, requires 1.5( )O N  operations and will dominate the matrix fill time for 610N >  

[Fig. 5.3(a)]. This is because the spectral-domain integrands oscillate faster with respect to 

kr  as the structure becomes larger and 
max
L  increases (e.g., see the Bessel function in 

(5.1.3)); indeed, the cost of numerical integrations appear to scale proportionally with 

| |¢-  . The table fill time can be reduced by using approximate methods [93],[94] or 

amortized across different excitations and structures. Figs. 5.3(b)-(c) show that the AIM 

memory requirement and solution time per iteration asymptotically scales as 1.5( )O N  and 

1.5( log )O N N  but the ( )O N  memory costs and operations associated with the pre-

correction and interpolation matrices are dominant until 510N  . As expected from 

Section 5.1.4, the memory requirements and (per iteration) solution times for layered-

medium simulations are ~4 and ~2 times those for free-space simulations, respectively. For 

all simulations, only it 20 50N = -  iterations were needed for convergence and itN  was 

insensitive to the sphere size because of the well-conditioned SCFIE formulation. 
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Table 5.1: Parameters for analyzing scattering from PEC spheres above half-space 

Radius (m) N  3DN g Reference (%)err qq  

0.5 684 39  2 MOM/AIM 0.09/0.09 

1 3384 318  2 MOM/AIM 0.17/0.14 

2 10 947 336  2 MOM/AIM 0.46/0.38 

4 44 595 380  3 MOM/AIM 0.35/0.34 

8 179 130 3144 3 AIM 0.30 

16 742 059 3288 3 AIM 0.26 
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(a) 

 

(b) 

Figure 5.3:  AIM vs. MOM for a PEC sphere in a two-layer medium as the sphere radius 
is increased. (a) Matrix fill time. (b) Memory requirement. (c) Average 
solution time per iteration. 
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(c) 

Figure 5.3:  Continued. 
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/ 10d , where 

min
1.01 kmd »  denotes the minimum skin depth in the object or 

background medium. This procedure is identical to the previous one except the sphere is 
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e= Iε , xx yy

V V
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V
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1
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2
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Hertzian dipole located at ( , , ) (0,0,50) mx y z = . All background media are assumed to be 

non-magnetic and t

k
e  of all layers k  are set to 1. The electromagnetic properties of the 

layers are given as t

1
1 S/ms = , t

2
10 / 3 S/ms = , t 6

3
10 S/ms -= , 

1
1 / 3b = , and 

2 3
1b b= = . In each simulation, the top of the sphere is located 1 km below the sea floor-

water interface and its center is aligned with the Hertzian dipole. After each simulation, a 

post-processing step is performed to find the electric field at 40 401  receiver points 

uniformly distributed on the sea floor –10 km to 10 km in x  and y  directions. The 

accuracy of the solution is quantified by computing xxerr , the relative root-mean-square 

error in the x -component of the electric field at the receiver locations. The MOM and a 

more-accurate AIM solution (fourth order moments are matched and 3g = ) of the same 

problem are used as reference in Table 5.2, which lists the AIM parameters that were used, 

the number of iterations needed for convergence, and the observed errors. Table 5.2 shows 

that the errors with respect to the MOM solution are similar to those with respect to the 

more-accurate AIM solution; hence, the latter can be used to estimate the error when the 

MOM solution is infeasible. The corresponding AIM and MOM computational costs are 

contrasted in Fig. 5.4. Similar to the surface integral equation, the observed data and the 

curves that are fitted to them agree well with the expected asymptotical trends described in 

Section 5.1.3, where the matrix fill time, memory cost, and matrix solve time per iteration 

of the proposed AIM scale as ( )O N , ( )O N , and ( log )O N N  for single-scale 3-D 

dielectric structures, respectively. AIM outperforms MOM in all the performance metrics 

for N  greater than ~5000. 
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Table 5.2: Parameters for uniaxial spheres in a three-layer medium 

Radius (km) N  3DN g Reference # of iteration xx(%)err  

0.2 849 314  2 MOM/AIM 33/34 0.21/0.01 

0.4 6364 321  2 MOM/AIM 36/36 0.09/0.06 

0.8 49 128 340  2 MOM/AIM 46/46 0.06/0.02 

1.6 375 949 372  2 AIM 63 0.04 
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(a) 

 

(b) 

Figure 5.4:  AIM vs. MOM for a uniaxial sphere as the sphere radius is increased. (a) 
Matrix fill time. (b) Memory requirement. (c) Average solution time per 
iteration. 
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(c) 

Figure 5.4:  Continued. 

5.1.5.3 Validation 

Next, the viability of the proposed scheme for scattering analysis is demonstrated 

by analyzing scattering from two 3-D PEC structures: An unexploded ordnance (UXO) 

model [13] and a cylinder [99]. In the following simulations, the AIM parameters are set 

as follows: Third order moments are matched, 3g = , and the SMFIE terms are computed 

using numerical differentiation. All background media are assumed to be isotropic and 
k

b  

of all layers k  are set to 1. 

The UXO model, which is a hemisphere capped cylinder, is 153 cm long and has a 

diameter of 40.6 cm; its axis lies in the yoz  plane and is tilted 75  with respect to the 

vertical axis. Its top is located 30.4 cm below the interface of a two-layer dielectric medium, 

where t

1
3.47 0.31je = -  (Yuma soil with 5% water content), t
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1e = , and the interface 
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is at 
1

0z = . The UXO is excited by a 500-MHz plane wave incident from inc 60q =   

and inc 0f =  . The surface of the UXO is discretized using triangles with 
1
/ 10.5l  

average edge length and the auxiliary grid spacing is 
1
/ 10l  in all three directions, 

where 
1

l  is the wavelength in the bottom layer; hence, 7617N =  and 

3D 20 48 47N = ´ ´ . The RCS patterns calculated with 3-D AIM are compared to those 

calculated by a reference high order MOM [13] in Fig. 5.5; the results are essentially 

identical. This simulation required 41.4 10´  seconds for filling the matrices (

22.9 10´  seconds for filling the tables), 310 MB memory, 18.8 seconds per iteration, 

and it=36N  iterations. 

 

  

Figure 5.5:  V-polarized bistatic RCS of the UXO in a two-layer medium in the 50q =   
cut at 500 MHz. 
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The cylinder is 3 m long, has a radius of 0.5 m, and its bottom is located 0.2 m 

above the top interface of a three-layer dielectric medium, where t

1
6.5 0.6je = - , 

t

2
2.56e = , t

3
1e = , and the interfaces are at 

1
0z =  and 

2
0.3 mz = . The cylinder is 

excited by a 600-MHz plane wave incident from inc 60q =   and inc 0f =  . The surface 

of the cylinder is discretized using triangles with 
0
/ 7.4l  average edge length and the 

auxiliary grid spacing is 
0
/ 10l  in all three directions, where 

0
l  is the wavelength 

in free space; hence, 10 800N =  and 3D 30 30 70N = ´ ´ . The RCS patterns calculated 

with the proposed 3-D AIM are compared to those calculated by the classical MOM and a 

reference fast inhomogeneous plane wave algorithm (FIPWA) accelerated MOM [99] in 

Fig. 5.6. The patterns are visually identical. This simulation required 41.1 10´  seconds 

for filling the matrices ( 31.8 10´  seconds for filling the tables), 565 MB memory, 19.6 

seconds per iteration, and it 74N =  iterations. 
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Figure 5.6:  Copolarized bistatic RCS patterns of the cylinder in a three-layer medium in 
the 60q =   cut at 600 MHz. 

5.2 MULTILAYER EXTENSION OF AIM FOR LAYERED MEDIA 

This section first formulates the AIM extension for the structures embedded in 
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numerical results.  
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properties of the algorithm, it is assumed that the structure is composed of K  arbitrarily 
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1
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K
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k
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as in Section 5.1.1 by setting 1a =  and solved using the MOM procedure as in Section 

5.1.2, which yields the dense linear system of equations 

 

inc

11,1 1, 1, 1

inc
,1 , ,

inc
,1 , ,

k K

k k k k K k k

K K k K K K K

é ùé ù é ù
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú = ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê ú
ê úê ú ê úë û ë û ë û

VZ Z Z I

Z Z Z I V

Z Z Z I V

 
   

 
    

 

 (5.2.1) 

Here, the inc

k
V  sub-vector accounts for the incident field on 

k
S  and the 

kk ¢
Z  sub-matrix 

accounts for the field scattered onto 
k
S  by the current on 

k
S ¢ ; their entries are the same 

as in (5.1.7) by setting 1a = . The MOM computational complexity is reduced by using 

the following extension of AIM. 
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(a)                (b) 

Figure 5.7:  Scattering from a 3-D structure composed of K  disjoint surfaces that reside 
in different layers of a stratified medium with K  layers. (a) Geometry and 
excitation definition. (b) The auxiliary 2-D and 3-D grid points. 
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their neighbors in the horizontal plane (red crosses in Fig. 5.7(b)); these nodes are located 

at the interface of layers k K-  and 1k K- + . To be able to calculate the inter-layer 

interactions with FFTs, the node spacing of all 2-D and 3-D auxiliary grids are constrained 

to be identical in the transverse directions, i.e., 3D 3D

1, , 1, ,
{ , } { , }

K K
x y x yD D = D D   and 

2D 2D

1, ,2 1 1, ,2 1
{ , } { , }

K K K K
x y x y+ - + -D D = D D  . 

Similar to the classical AIM for structures in free space, the auxiliary grids are used 

to approximate each impedance sub-matrix as corr FFT

, , ,k k k k k k¢ ¢ ¢» +Z Z Z , where corr

,k k ¢
Z  is a “pre-

corrected” matrix that insures the accuracy of the method by replacing the contribution 

from the FFT
.k k ¢Z  matrix with that from the 

,k k ¢Z  matrix when the basis and testing 

functions are near each other (the size of correction region is defined by the parameter g

). The FFT
.k k ¢Z  matrices represent anterpolation (mesh-to-grid), propagation (grid-to-grid), 

and interpolation (grid-to-mesh) operations; they are formulated next.  

The propagation step is divided into two parts (the intra-layer and inter-layer 

interactions) based on whether basis and testing functions are in the same layer. The intra-

layer interactions between basis and testing functions in each layer k  are approximated 

by the FFT
.k k ¢Z  matrix. These interactions are calculated by the AIM procedure 

(anterpolation to, propagation on, and interpolation from only the 3-D regular grid k ) 

described in the previous section; thus, the matrix can be expressed as 

 

† x,S
x,S xx xz 0

, , y,S
y,S yy yz 0
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Intra-Layer Propagation Step: In (5.2.2), the xx,yy,zx,zy,zz,

,k k

f
¢G  and xz,yz,zz

,k k ¢
P  are 

dense 3D 3D
k k
N N´  matrices that represent propagation from sources on auxiliary grid k  

to observers on the same auxiliary grid. As detailed in the previous section, these 

propagation matrices can be expressed as the sum of a three-level block-Toeplitz and a 

Hankel-two-level-block Toeplitz matrix, which can be multiplied with a size 3D
k
N  vector 

in 3D 3D( log )
k k

O N N  operations by using 3-D FFTs. This decomposition is not applicable, 

however, if the sources and observers are in different layers. 

The inter-layer interactions between basis functions in layer k ¢  and testing 

functions in layer k k ¢¹  are approximated by the FFT
.k k ¢Z  matrix. In the proposed 

scheme, these interactions are calculated by using not only the 3-D grids k  and k ¢  but 

also all 2-D grids that reside between them, i.e. in the expression, 
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 (5.2.3) 

the matrix 3D,3D

,k k ¢
G  is replaced by 

 

1
3D,2D 2D,2D 2D,3D

, 1 , 1 ,
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, 2
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 (5.2.4) 

As shown in the above expression, neither the anterpolation nor the interpolation stages of 

the AIM scheme are varied in the proposed scheme. Instead, the propagation stage is now 

performed in three steps for inter-layer interactions. 



99 

 

Inter-Layer Propagation Step 1: The 3-D grid to 2-D grid propagation matrix 

2D,3D

,K k k¢ ¢+
G  ( 2D,3D

1,K k k¢ ¢+ -
G ) is used to find the samples of the tangential electric and magnetic 

fields (only , , ,
x y x y
E E H H ) on the upper (lower) interface of layer k ¢  due to four 

components of sources ( x,S y,S z,S ,S, , ,
k k k k


¢ ¢ ¢ ¢Λ Λ Λ Λ ) on the 3-D grid in that layer based on (5.1.2)

; this propagation matrix is given as  
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 (5.2.5) 

where j K k ¢= +  ( 1j K k ¢= + - ). Here, 
, ,x y z

¶  represents the partial derivative with 

respect to , ,x y z , respectively. The first two rows of 2D,3D

,j k ¢
G  store the propagators that 

are used to computed the samples of 
x
E  and 

y
E  while the last two rows of 2D,3D

,j k ¢
G  

store the propagators that are used to computed the samples of 
x
H  and 

y
H . 

Inter-Layer Propagation Step 2: The electric and magnetic field samples on the 

interface are converted to equivalent magnetic and electric current sources by calculating 

their cross-product with the ẑ  vector if k k ¢>  and ˆ-z  vector if k k ¢< . Then, the 

samples of the fields on the next interface above or below are found by using a 2-D grid to 

2-D grid propagation matrix. In (5.2.3), the 2D,2D

1,K k K k¢ ¢+ + +
G  matrix includes the effect of the 

cross product as well as the propagation and is given as  
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 (5.2.6) 

where i K k ¢= +  and 1j K k ¢= + + . The expression for 2D,2D

2, 1K k K k¢ ¢+ - + -
G  is found by 

setting 2i K k ¢= + -  and 1j K k ¢= + -  in (5.2.6) and multiplying the right-hand 

side with -1. Here, {EM,EJ,HM,HJ},uv

,j i
G  are the propagators that compute the u -directed 

electric or magnetic field on the 2-D grid j  due to a v -directed electric or magnetic 

dipoles located on the 2-D grid i . Different from the propagators in (5.2.2) and (5.2.5), 

{EM,EJ,HM,HJ},uv

,j i
G  store dyadic rather than mixed-potential layered-medium Green functions 

as only the dipole current samples are known on the interface. The expressions for dyadic 

layered-medium Green functions can be found in [91],[101]. 

Inter-Layer Propagation Step 3: The step 2 is repeated until all the layers between 

the source and observer grid are traversed. Once the electric and magnetic field samples 

are found on the interface below (above) layer k , the vector and scalar potentials on the 

3-D grid in layer k  are found by using the 2-D grid to 3-D grid propagation matrix 

3D,2D

, 1k K k+ -
G , which is given as 

 

EM,xy EM,xx xx

, , ,
EM,yy EM,yx yy

, , ,
EM,zy EM,zx zy zx3D,2D
, , , ,,

yy zx

, ,
zy xx
, ,

k j k j k j

k j k j k j

k j k j k j k jk j

y k j z k j

z k j x k j

é ù-ê ú
ê ú- -ê ú
ê ú- -= ê ú
ê úæ ö æ öê ú-¶ ¶÷ ÷ç ç÷ ÷ê úç ç÷ ÷ç ç÷ ÷ê úç ç-¶ +¶÷ ÷ç çè ø è øê úë û

G G 0 G

G G G 0

G G G GG

G G
0 0

G G

 (5.2.7) 

where 1j K k= + - . The expression for 3D,2D

,k K k+
G  is found by setting j K k= +  in 

(5.2.7) and multiplying the right-hand side with -1. The first two columns of 3D,2D

,k j
G  store 
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the propagators that are used to compute the tested vector and scalar potential due to 

tangential magnetic currents while the last two columns of 3D,2D

,k j
G  store the propagators 

that are used to computed the tested vector and scalar potential due to tangential electric 

current. 

Because layered-medium Green functions are translationally invariant in the 

transverse directions, all the matrices in (5.2.5)-(5.2.7) are (two level) block-Toeplitz 

matrices and can be efficiently multiplied with vectors using 2-D FFTs. For example, 

consider the calculation of xx x,S

,K k k k k¢ ¢ ¢ ¢+
G IΛ : After the anterpolation step is performed and the 

x,S
k k¢ ¢IΛ  vector is found, first, 3D,z

k
N ¢  different 2-D arrays of size xy

,K k k
N ¢ ¢+

 are constructed 

by re-organizing and zero-padding the x,S
k k¢ ¢IΛ  vector, where 

xy 3D,x 2D,x 3D,y 2D,y

,
( 1)( 1)

K k k k K k k K k
N N N N N¢ ¢ ¢ ¢ ¢ ¢+ + +

= + - + - . Second, the 2-D FFTs of 3D,z
k
N ¢  

other arrays of the same size that are constructed from the unique entries of xx

,K k k¢ ¢+
G  are 

computed. Third, these are multiplied element by element and added to form one 2-D array. 

Fourth, the inverse 2-D FFTs of the array resulting from this multiplication is found and 

2D
K k
N ¢+

 entries are extracted and re-organized as part of the desired vector xx x,S

,K k k k k¢ ¢ ¢ ¢+
G IΛ . 

The intra-layer interactions are computed efficiently by performing an upward and a 

downward pass as follows: 

Upward Pass: Starting at layer 1k ¢ = , (i) anterpolate from the triangular mesh of 

k
S ¢  to the 3-D grid k ¢ ; (ii) propagate from the 3-D grid k ¢  to the 2-D grid K k ¢+  at 

the upper boundary of the layer if it exists (if k K¢ < )  (inter-layer propagation step 1); 

(iii) if the 2-D grid 1K k ¢+ -  at the lower boundary of the layer exists (if 1k ¢ > ) then 

also propagate from this 2-D grid to the 2-D grid K k ¢+  at the upper boundary of the 

layer if it exists (if k K¢ < ) (inter-layer propagation step 2) and to the 3-D grid k ¢  
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(inter-layer propagation step 3); (iv) interpolate from the 3-D grid k ¢  onto the triangular 

mesh of 
k
S ¢  if it received any information from the layers below it during the upward 

pass (if 1k ¢ > ). Then, increase k ¢  by 1 and repeat these four steps if k K¢ £ . 

Downward Pass: Starting at layer k K¢ = , (i) anterpolate from the triangular 

mesh of 
k
S ¢  to the 3-D grid k ¢ ; (ii) propagate from the 3-D grid k ¢  to itself (intra-layer 

propagation step) and to the 2-D grid 1K k ¢+ -  at the lower boundary of the layer if it 

exists (if 1k ¢ > ) (inter-layer propagation step 1); (iii) if the 2-D grid K k ¢+  at the 

upper boundary of the layer exists (if k K¢ < ) then also propagate from this 2-D grid to 

the 2-D grid 1K k ¢+ -  at the lower boundary of the layer if it exists (if 1k ¢ > ) (inter-

layer propagation step 2) and to the 3-D grid k ¢  (inter-layer propagation step 3); (iv) 

interpolate from the 3-D grid k ¢  on to the triangular mesh of 
k
S ¢ . Decrease k ¢  by 1 and 

repeat these four steps if 1k¢ ³ . 

At each iteration, the dominant costs of the algorithm are the steps (ii) and (iii) of 

the upward and downward pass. Step (ii) of upward pass requires 
1 3D,z xy xy

, ,1
( log )

K

k K k k K k kk
O N N N

-

¢ ¢ ¢ ¢ ¢+ +¢=å  operations and step (iii) of upward pass requires 
1 xy xy 3D,z xy xy

, 1 , 1 , 1 , 12
( log log )

K

K k K k K k K k k k K k k K kk
O N N N N N

-

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ + - + + - + - + -¢=
+å  operations. Step 

(ii) of downward pass requires 3D 3D

1
( log

K

k kk
O N N¢ ¢¢=å

3D,z xy xy
1, 1,2

log )
K

k K k k K k kk
N N N¢ ¢ ¢ ¢ ¢+ - + -¢=

+å  operations and step (iii) of downward pass requires 
1 1xy xy 3D,z xy xy

1, 1, , ,2 1
( log log

K K

K k K k K k K k k k K k k K kk k
O N N N N N

- -

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢+ - + + - + + +¢ ¢= =
+å å  operations. If 

the size of all the 2-D grids on the interfaces and the transverse size of all the 3-D grids 

inside each layer are comparable, then all these steps require approximately the same 

number of operations.  
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5.2.2 Numerical Results 

This section presents numerical results that demonstrate the performance of the 

proposed method. In all simulations, the AIM parameters (except the grid spacings), the 

preconditioner, and the iterative solver tolerance are the same as those described in Section 

2.3. All the results in this section are obtained on the Stampede cluster using a serial 

implementation of the method. The viability of the proposed scheme for scattering analysis 

is demonstrated by analyzing the scattering from four PEC spheres located in a four-layer 

dielectric medium and from a half-buried UXO in a half space.  

5.2.2.1 Validation 

First, all the spheres have the same radius of 0.5 m and their centers are located at 

(0 m, 0 m, 0.6 m)- , (0 m, 0 m, 0.6 m) , (0 m, 0 m, 1.8 m) , and (0 m, 0 m, 3.0 m) . 

The three interfaces of the four-layer dielectric medium are at 
1

0z = , 
2

1.2 mz = , and 

3
2.4 mz =  and the permittivity of layers are t

1
6 0.6je = - , t

2
4e = , t

3
2.5 0.3je = -

, and t
4

1e = . The spheres are excited by a unit electric Hertzian dipole at 300 MHz. The 

dipole is located at ( 1 m, 0 m, 1.6 m)-  and pointing in the ˆ ˆ ˆ( ) / 3+ +x y z  direction. 

The spheres surfaces are discretized using triangles with 
min

/ 6.4l  average edge 

length and the auxiliary grid spacing is 
min

/ 6l  in all three directions, where 
min

l  is 

the minimum wavelength in all the layers; hence, 11 064N =  and 

3D 3D 3D 3D
1 2 3 4

20 20 18N N N N= = = = ´ ´ . The 2-D auxiliary grid is chosen to be a 

square about 
min min

5 5l l´  at each interface and resulting 2D 2D 2D
5 6 7

31 31N N N= = = ´

. The scattered electric field sca
x
E  is calculated on an observation line from 

( 2 m, 1 m, 0.6 m)-  to (2 m, 1 m, 0.6 m) . The results found from the proposed 
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extension of AIM are compared to those calculated by the MOM and another version of 

AIM that only employs 2-D FFTs to speedup the intra- and inter-layer interactions [51] in 

Fig. 5.8; the results from three methods are essentially identical. The simulation costs of 

two AIMs and MOM are compared in Table 5.3. As expected, the proposed AIM has a 

clear advantage over MOM as well as its counterpart that only uses 2-D FFTs. 
 
 

Table 5.3: Computational costs of the different methods for spheres  

11 064N =  Matrix fill time (s) Memory (MB)
Matrix solve time 
per iteration (s) 

MOM 55.48 10´  1126 1.33 

AIM (2-D FFT) 52.07 10´  1536 2.36 

AIM (Proposed) 41.67 10´  382 0.57 
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Figure 5.8:  Scattering from four PEC spheres residing in four different layers. The 
scattered electric field is observed along the dashed line shown in the inset 
figure. 

 

Next, the UXO model is the same as that in the second example of Section 5.1.5.3 

except that its axis is tilted 30  with respect to the vertical axis and the UXO penetrates 

the interface of a two-layer dielectric medium (its top located 57.5 cm above the interface), 

where t
1

3.47 0.31je = -  (Yuma soil with 5% water content), t
2

1e = , and the interface 

is at 
1

0z = . The UXO is excited by a 500-MHz plane wave incident from inc 60q =   and 

inc 0f =  . The surface of the UXO is discretized using triangles with 
min

/ 10.5l  

average edge length and the auxiliary grid spacing is 
min

/ 7l  in all three directions; 

hence, 7848N = , 3D
1

14 21 20N = ´ ´ , and 3D
2

14 20 18N = ´ ´ . The 2-D auxiliary 

grid is chosen to be a square about 
min min

4 4l l´  at each interface and resulting 
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2D
3

29 28N = ´ . The RCS patterns calculated with the proposed AIM are compared to 

those calculated by a reference high order MOM [13] and another version of 2-D FFT AIM 

in Fig. 5.9. The simulation costs of two AIMs and MOM are compared in Tables 5.4 and 

it 417N = . Fig. 5.9 validates the proposed AIM can also be applied to structures expanded 

in multiple layers. 

 

 

Table 5.4: Computational costs of the different methods for half buried UXO in Yuma 
soil with 5% water content 

7848  Matrix fill time (s) Memory (MB)
Matrix solve time 
per iteration (s) 

MOM 43.37 10´  1229 0.63 

AIM (2-D FFT) 39.45 10´  390 0.55 

AIM (Proposed) 41.04 10´  296 0.35 
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Figure 5.9:  Bistatic RCS from half buried UXO residing in 5% water content Yuma soil 
with different water content. 

5.3 SUMMARY 

This Chapter presented an extension of AIM for fast analysis of scattering from 3-

D structures located in multiple layers of a planar-layered medium. The proposed scheme 

accelerates the iterative MOM solution by employing 3-D auxiliary regular grids, each of 

which encloses the parts of the structure in a different layer, and 2-D auxiliary regular grids, 

each of which is located at a different interface of the layered medium. The auxiliary grids 

are used to execute the standard four-stage AIM procedure (anterpolation, propagation, 

interpolation, and correction) but the propagation stage of the procedure is divided into 

intra-layer and inter-layer components. Only the 3-D grids and both 3-D and 2-D grids are 

used for intra- and inter-layer propagation stages, respectively. Numerical results validated 

the accuracy and efficiency of the proposed method. The proposed extension of AIM is 
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best suited for solving type 1a, 1b, 3a, and 3b multi-scale problems in a planar-layered 

medium background, i.e., for single-scale structures. The combination of the AIM 

extension described in this Chapter and the FFT-MLIM method in Chapter IV is expected 

to be the most suitable method for solving type 4a and 4b multi-scale problems. 
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Chapter VI Complex Scattering Applications 

This Chapter presents extensive numerical results to demonstrate the capabilities of 

the methods developed in Chapters II-V. The methods are used to solve different types of 

multi-scale problems encountered in geophysics, microwave-assisted material synthesis, 

and microstrip circuits. 

6.1 GEOPHYSICAL EXPLORATION 

In this section, the AIM for homogeneous and layered-medium backgrounds is 

employed to solve scattering problems in geophysics including remote sensing, controlled-

source electromagnetic (CSEM) surveys, and well logging. 

6.1.1 Remote Sensing 

First, the AIM is applied to solve a type 1a multi-scale problem where the electromagnetic 

scattering from a large-scale underground bunker model is calculated and compared to the 

independent result. The bunker model is a 5 5 2´ ´  m3 rectangular box and its top is 

located 2.5 m below the interface of a two-layer isotropic dielectric medium, where 

t
1

3.3 0.3je = - , t
2

1e = , and the interface is at 
1

0z = . The bunker is excited by a 900-

MHz plane wave incident from inc 60q =   and inc 90f =-  . The surface of the bunker is 

discretized using triangles with 
1
/ 10.1l  average edge length and the auxiliary grid 

spacing is 
1
/ 10l  in all three directions; hence, 1 067 850N = , and 3D =N

240 240 96´ ´ . The RCS patterns calculated with the AIM are compared to those 

calculated with a reference fast inhomogeneous plane wave algorithm (FIPWA) 

accelerated MOM [99] in Fig. 6.1. All results agree well except when  
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Figure 6.1:  Bistatic RCS of the bunker in a two-layer medium in the 60q =   cut at 900 
MHz. The reference results were available only down to -100 dBsm. 

 

the RCS is less than -85dB; the difference is likely due to the fact the reference results used 

a less accurate iterative solution with 310tol -=  [99]. This simulation required 

61.8 10´  seconds for filling the matrices ( 41.1 10´ seconds for filling the tables), 72.5 

GB memory, 36.8 10´  seconds per iteration, and it 36N =  iterations. 

Next, the AIM is applied to solve a type 3a multi-scale problem where the 

electromagnetic scattering from a large-scale half buried UXO model is calculated and 

compared to the independent result. The same scattering problem as that in the second 

example of Section 5.2.2.1 is solved except that the UXO is now half buried in the Yuma 

soil with 20% water content, where t
1

21.45 1.92je = - , t
2

1e = . The surface of the 

UXO is discretized using triangles with ~
min

/ 10.5l  average edge length and the auxiliary 
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grid spacing is ~
min

/ 7l  in all three directions; hence, 31 392N = , 

3D
1

25 48 45N = ´ ´ , and 3D
2

25 45 40N = ´ ´ . The 2-D auxiliary grid is chosen to be a 

square about 
min min

9 9l l´  at each interface and resulting 2D
3

66 66N = ´ . The RCS 

patterns calculated with the proposed AIM are also compared to those calculated by a 

reference high order MOM [13] and another version of 2-D FFT AIM in Fig. 6.2. The 

simulation costs of two AIMs and MOM are compared in Table 6.1 and it 4592N = . 

  

 

Table 6.1: Computational costs of the different methods for half buried UXO in Yuma 
soil with 20% water content 

31 392  Matrix fill time (s) Memory (GB)
Matrix solve time 
per iteration (s) 

MOM 55.97 10´  18.0 11.01 

AIM (2-D FFT) 49.31 10´  4.2 8.64 

AIM (Proposed) 44.80 10´  1.3 3.21 
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Figure 6.2:  Bistatic RCS from half buried UXO residing in 20% water content Yuma soil 
with different water content. 

6.1.2 CSEM 

In this section, the capability of AIM is demonstrated by analyzing scattering for 

two CSEM examples (type 3a multi-scale problem): (i) An isotropic reservoir in a three-

layer uniaxial medium and (ii) an anisotropic reservoir in a three-layer isotropic medium. 

In both cases, the results are compared to independent references that model the reservoirs 

as 2-D objects (infinitely long in the y  direction). The finite length of the reservoirs in 

the below 3-D models were found by repeatedly increasing their lengths from very small 

values until the fields observed in the center cut showed no variation. 

The isotropic reservoir is 3 km wide in x  direction, 15 km long in y  direction, 

and has a height of 0.1 km in z  direction; Its permittivity and conductivity are set to 

0V
e= Iε  and xx yy zz

V V V
0.01 S/ms s s= = = . The background is identical to the one in 
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the second example in Section 5.1.5.2. The center of the reservoir is at 

( , , ) (3.5,0, 1.05) kmx y z = - and the receivers are located on the sea floor at horizontal 

distances varying from 1 to 10 km from the transmitter in x  direction. The reservoir is 

discretized with 72 430N =  SWG functions (average tetrahedron edge length 

min
/ 8.9d ) and 3D 70 320 6N = ´ ´ . The x  component of the electric field calculated 

by the AIM is compared to the one in [1] in Fig. 6.3. Here, the iterative solver required 23 

iterations to converge; the simulation required 55.99 10´  seconds to fill the matrices, 

~3.0 GB of memory, and 11.06 10´  seconds per iteration. Fig. 6.3 shows good 

agreement with reference. 
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(a) 

 

(b) 

Figure 6.3:  The x  component of the electric field as a function of the transmitter-
receiver distance. (a) Magnitude. (b) Phase. 
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The anisotropic reservoir is 6 km wide in x  direction, 12 km long in y  

direction, and has a height of 0.1 km in z  direction; Two anisotropy values are modeled: 

In the first case (R1), 
0V
e= Iε  and xx yy

V V
0.02 S/ms s= = , and zz 3

V
2 10 S/ms -= ´ ; 

in the second case (R2), 
0V
e= Iε , xx zz

V V
0.02 S/ms s= = , and yy 3

V
2 10 S/ms -= ´ . 

The background is the same as before except the air layer is lossless and the sea-floor is 

isotropic, i.e., 
1

1b = . The center of the reservoir is at ( , , ) (0, 0, 1.05) kmx y z = - ; and 

the receivers are located on the sea floor from 10 kmx =-  to 10 kmx =  at 

0 my = . The reservoir is discretized with 116 262N =  SWG functions (average 

tetrahedron edge length 
min

/ 9.0d ) and 3D 135 256 6N = ´ ´ . The x -component of the 

observed electric field calculated with the AIM scheme is compared to the one in [100] in 

Fig. 6.4. The simulation required 59.93 10´  seconds to fill the matrices, ~4.7 GB to store 

the matrices, and 11.79 10´  seconds per iteration in both cases, but the iterative solver 

converged in it 81N =  iterations in the first case and it 129N =  iterations in the second 

case; this is because of the different object anisotropy in the two cases that results in 

different MOM matrix entries and matrix conditioning. Fig. 6.4 shows good agreement 

with reference. 
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(a) 

 

(b) 

Figure 6.4:  The x  component of the electric field as a function of the transmitter-
receiver distance. (a) Magnitude. (b) Phase. 
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6.1.3 Detection and Appraisal of Hydro-Fractures 

Next, multi-component open-hole horizontal borehole resistivity measurements of 

3-D hydro-fractures are modeled by AIM and the impact of various parameters on the 

detection and appraisal of the fractures are investigated. 

The borehole is modeled as two 50-m long concentric cylinders. The {inner, outer} 

cylinder has a radius of {5.7, 10.7} cm [103],[104] and represents the {mandrel, mud} 

regions; the conductivities of mandrel, mud, and background are set to 410 S/m- , 

1 S/m , 1 / 3 S/m , respectively [103],[104]. It is assumed that the fractures are filled 

with an electrically conductive proppant to increase their effective conductivity, denoted 

by 
eff

s , which is a parameter to be investigated. All fractures are modeled as a 5-mm thick 

layer [103],[104] of arbitrary cross sectional area A  and dip angle j  (Fig. 6.5), which 

are also parameters of interest. In the following, for the sake of brevity, the fracture areas 

are specified by including the small area where the borehole intersects the fracture, e.g., in 

Fig. 6.5, the area is specified as 29 mA p  instead of 2 2(9 2 0.107 ) mA p= - ´ . In all 

cases, the center of the fracture intersects the borehole axis at 0y = , which is 35 m away 

from one end and 15 m away from the other end of the borehole (Fig. 6.5). 

The logging tool is assumed to consist of one transmitter and two receivers located 

at a distance 
1
d  and 

2
d  away from the transmitter. Two types of tools are considered: 

1 2
{ , }d d  is {1.2, 1.5} m  for the “short spacing” and {18, 19.2} m  for the “long 

spacing” measurements [103],[104]. In both cases, the transmitter is modeled as an 

arbitrarily-oriented unit impressed magnetic Hertzian dipole located on the borehole axis. 

In this two-receiver configuration, the contribution of the incident field to the detected  
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(a) 

 

(b) 

Figure 6.5:  Model of an open-hole horizontal borehole resistivity measurement. (a) 
Mandrel, mud, and fracture dimensions. (b) Two views of the tetrahedral 
mesh for the circle-shaped fracture of area 29 mA p  and dip 45j =  . 

 

signal, which contains no information about the anomalous volume, is reduced by linearly 

combining the voltages detected by the two receivers [105],[106]. By modeling the 

receivers as identical small loops around the mandrel, this combination is expressed as  

 
3

uv 2 v v 1
0 RX2 RX1 3

2

ˆIm{ 0.057 [ ( ) ( ) ]}
d

U j
d

wm pD = - ⋅ -u H r H r  (6.1.1) 

Here, uvUD  denotes the detected signal and the superscript { , }u v  designates the 

{receiver, transmitter} orientation. Only the imaginary part is used as it is dominant (Fig. 
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2.3). To identify whether a fracture is detectable, the relative signal strength 

uv uv yy
frac bore bore

( ) /U U UD -D D  is used as the figure of merit; here, uv uv
frac bore

{ , }U UD D  is 

detected by the u-directed receivers due to the v-directed source when the fracture is 

{present, absent} and yy
bore
UD  is detected in the axially co-polarized measurements when 

the fracture is absent. To account for the noise and measurement uncertainties in the 

logging instrument, a fracture is considered detectable by the measurement only if the 

maximum relative signal strength uv uv yy
frac bore bore

max(| | / )U U UD -D D  is larger than 2% 

and a fracture is considered differentiable from a reference one if their relative signal 

strengths differ by more than 2%.  

In the following simulations, the tetrahedra discretizing the borehole volume have 

an average edge length of approximately 8 cm ; this mesh, which is limited by the 

borehole cross-section (Fig. 6.5(b)), gives rise to 51.1 10´  unknowns in the borehole. 

The fracture meshes are irregular (Fig. 6.5(b)) because the fracture thickness (5 mm ) is 

much smaller than its cross-sectional dimensions, which range from 0.2 m  to 

430 m , and because a much higher mesh density is used near the borehole compared to 

a few skin depths away from it: depending on the fracture size, the average edge length is 

in the range 0.1 0.3 m-  near the borehole and 0.5 2 m-  away from it. When the 

fracture is small, the mesh density on the borehole and fracture are comparable, thus, this 

is still a type 1b multi-scale problem. When the fracture size keeps increasing, this example 

becomes a type 2b multi-scale problem eventually because the mesh density on the 

borehole and fracture can be in multiple length scales. The FFT-MLIM, whose 

performance is less sensitive to the shape of the scattering volume, are expected to be more 

efficient than AIM when simulating the largest fractures. Nevertheless, AIM efficiency 
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was found to be satisfactory for the following analysis. The number of unknowns in the 

fractures range from 410  for the smallest fracture to 53.6 10´  for the largest one. 

The auxiliary grid spacing ranges from 0.15 m to 1.5 m; thus, 3DN  ranges from 

243 243 7´ ´  to 224 224 315´ ´ . 

6.1.3.1 Frequency and Conductivity Contrast 

First, the importance of the frequency of operation and effective conductivity of the 

fracture are investigated. Figs. 6.6(a)-(b) and Figs. 6.7(a)-(b) present the relative signal 

strength as a function of the center of the receivers for the short and the long spacing 

measurements, respectively. Data are shown for a small and a large circular fracture; the 

{small, large} fracture has an area of 4 2{0.36 , 2.3 10 } mA p p´  and the auxiliary grid 

spacing was chosen as {0.15, 1.0} m , which resulted in a total of 

5 5{1.2 10 , 3.2 10 }N ´ ´  unknowns and 3D {243 243 12, 224 224 315}N = ´ ´ ´ ´  

grid point. The {small, large} circular fracture simulations required approximately 

4 5{9.1 10 , 1.1 10 }´ ´  seconds for filling the matrices, {13, 34} GB of memory, and {15, 

239} seconds per iteration. The number of iterations varied slightly with tool position (51 

positions are simulated); on average, the iterative solver converged in {20, 22} iterations 

for the short and {20, 25} iterations for the long spacing tool. Fig. 6.6(c) and Fig. 6.7(c) 

present the maximum relative signal strength detected by the tool as a function of the 

fracture area.  

Results are plotted for three operating frequencies in Fig. 6.6, where the effective 

conductivity of the fractures were set to 
eff

{10, 100} S/ms =  for the {short, long} 

spacing measurements. A higher effective conductivity had to be used in the long-spacing 
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measurements to achieve signal strengths comparable to the short-spacing ones; this is 

because the detected signals were weakened by the larger distance the incident fields travel 

from the transmitter to the fracture and the scattered fields from the fracture to the receivers 

(for the same center position of the receivers). 
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(a)      (b) 

 

 (c) 

Figure 6.6:  Sensitivity of borehole resistivity measurements to the operating frequency 
for circular fractures. (a) Short spacing measurements. (b) Long spacing 
measurements. (c) Peak signal detected. The effective conductivities of the 
fractures are set to {10, 100} S/m  for {short, long} spacing measurements. 
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(a)      (b) 

 

(c) 

Figure 6.7:  Sensitivity of borehole resistivity measurements to the fracture’s effective 
conductivity for circular fractures. (a) Short spacing measurements. (b) Long 
spacing measurements. (c) Peak signal detected. The operating frequency is 
100 Hz and the signals are normalized by 

eff eff
{ / 10, / 100}s s  for {short, 

long} spacing measurements in all three plots; although they appear 
comparable in the figures because of this normalization, the signals for 

eff
100 S/ms =  are actually about 10 times larger than those for 

eff
10 S/ms =  and the peak signal values in the short spacing measurements 

are actually about 8 times larger than those in the long spacing ones. 
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Fig. 6.6(a) shows that there are three different detection regimes as the logging tool 

passes through the fracture: (i) The signal becomes larger as the tool approaches the 

fracture and peaks when the transmitter and the first receiver is in front of the fracture and 

the second receiver is behind it, i.e., when the center of the receivers is close to 0y = . 

(ii) The signal becomes negative for smaller and constant for larger fractures when the 

transmitter is in front of the fracture and both receivers are behind it. (iii) The signal 

vanishes rapidly as the transmitter moves behind the fracture. The first two regimes and 

especially the signal spike can be used to identify the location and size of the fracture. Fig. 

6.6(a) also shows that signals are larger than 2% in a wider range of tool positions for the 

large fracture, i.e., the tool can detect the small fracture only when the center of the 

receivers is at most 0.5 m ahead of the fracture but can detect the large fracture when the 

center is up to 1 m ahead and 1.5 m behind the fracture. Fig. 6.6(b) shows similar results 

(the third regime is not shown) with two key differences: the spikes in long spacing 

measurements are smoother and the signal is more frequency dependent. Both Figs. 6.6(a) 

and 6.6(b) indicate that the strength of the signal spike depends on the fracture area; this 

dependence is quantified in Fig. 6.6(c), where it is clear that the peak signal strength 

increases with fracture area and converges to a constant for both types of measurements. 

Fig. 6.6(c) shows that short spacing measurements can detect smaller fractures while long 

spacing measurements can differentiate larger fractures: Short spacing measurements can 

detect fractures as small as 21 mA   and can distinguish fractures only until 

210 mA   for all three frequencies. Long spacing measurements cannot detect fractures 

smaller than 210 mA   but can distinguish fractures until 21000 mA   at 10 and 100 

Hz; whereas the smallest fracture they can detect is 21 mA   and the largest one they 
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can distinguish is 2300 mA   at 1 kHz. Thus, in this frequency range, the detection 

range is observed to be independent of the operating frequency for the short spacing 

measurements and depend moderately on frequency for long spacing measurements. This 

is because the distances between the transmitter, receivers, and fracture are very small 

compared to the penetration depth in the formation for the short spacing measurements; it 

implies that the incident field from the transmitter is frequency independent, the impedance 

matrix entries are proportional to the frequency, the unknown coefficients are inversely 

proportional to the frequency, the unknown induced current is frequency independent, and 

the field scattered to the receivers is frequency independent. The distances become 

comparable to the penetration depth in the formation for the long spacing measurements 

and the results begin to exhibit frequency dependence. Specifically, in the short spacing 

measurement, where the distance from the {transmitter, receiver} to any point on the 

largest fracture that can be differentiated ( 210 mA = ) is less than max {4.7, 3.6}R »  m, 

i.e., max

b
Rg » {0.17, 0.13}  at 1 kHz, where 

b
g  is the complex propagation constant; 

thus, all distances are small enough such that the results are frequency independent. By 

contrast, in the long spacing measurement, the distance from the {transmitter, receiver} to 

the largest fracture that can be differentiated ( 21000 mA = ) is less than 

max {30.4, 19}R »  m, i.e., max

b
{1.1, 0.69}Rg »  at 1 kHz; thus, the distances become 

large enough in terms of the background penetration depth that the results begin to exhibit 

frequency dependency. 

Results are plotted for three effective conductivities in Fig. 6.7; here, the operating 

frequency is 100 Hz and the signals are divided by 
eff eff

{ / 10, / 100}s s  for {short, long} 

spacing measurements to show them clearly in the same plot. Fig. 6.7(a) shows that the 
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signals have the same shape as in Fig. 6.6(a) and that the shape is independent of 
eff

s . Fig. 

6.7(a) indicates that when 
eff

10 S/ms ³ , the signal strength is proportional to the 

fracture’s effective conductivity—note the normalization with 
eff

s . This proportionality 

is because the scattered magnetic field from the fracture scales with 
eff

s  when 
eff b

s s . 

When 
eff

1 S/ms = , the signal is very weak: it is within 0.5% of the borehole only case 

for the largest fracture. The signal is not smooth because the significant digits in the 

scattered magnetic field computed by the proposed method are cancelled when yy
frac
UD  

and yy
bore
UD  are calculated; in other words, the computational errors become visible. 

These errors can be reduced by increasing the computational costs, e.g., by refining the 

borehole mesh or using high-order basis functions. Similar conclusions can be drawn from 

Fig. 6.7(b) for the long spacing measurements except that the signals are weaker (about 8 

times at the peak) compared to the short spacing measurements—it is important to note the 

factor of 10 difference in scaling between Fig. 6.7(a) and Fig. 6.7(b). The cancellation 

when computing yy
frac
UD  and yy

bore
UD  is less severe for the long spacing measurement 

and thus the computational errors are not visible in Fig. 6.7(b) even though the signals are 

weaker than in Fig. 6.7(a). Fig. 6.7(c) shows that the detection range of the both 

measurements depends strongly on fracture’s effective conductivity: For short spacing 

measurements, when 
eff

1 S/ms = , none of the fractures are detectable; when 

eff
10 S/ms = , fractures as small as 21 mA   can be detected and as large as 

210 mA   can be distinguished; when 
eff

100 S/ms = , the minimum detectable area is 

20.1 mA   (by extrapolating data in Fig. 6.7(c)) and the maximum area that can be 

distinguished is as large as 2100 mA  . For long spacing measurements, when 
eff

1s =  

or 10 S/m , none of the fractures are detectable; when 
eff

100 S/ms = , fractures larger 
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than 210 mA   can detected and fractures as large as 21000 mA   can be 

distinguished.  

To summarize: short spacing measurements can detect and distinguish circular 

fractures whose areas are in the range 21 10 mA -  at 100 Hz when 
eff

10 S/ms =

While increasing the frequency does not improve the results, increasing the effective 

conductivity of the fracture strengthens the signal and increases the range, e.g., to 

20.1 100 mA -  for 
eff

100 S/ms = . In contrast, long spacing measurements can 

detect and distinguish larger fractures, e.g., in the range 210 1000 mA -  at 100 Hz 

when 
eff

100 S/ms = , but the signals are weaker. Although increasing the frequency 

helps somewhat to strengthen the signal for the long spacing measurements, it also reduces 

the maximum area that can be distinguished, e.g., the range becomes 21 300 mA -  at 

1 kHz (
eff

100 S/ms = ). Based on the results in Figs. 6.6-6.7, the operating frequency is 

set to 100 Hz  and 
eff

s  is set as {10, 100} S/m  for {short, long} spacing 

measurements in the simulations in Sections 6.1.3.2-6.1.3.4. 

6.1.3.2 Geometrical Properties: Shape 

Next, the importance of the cross-section shape of the fracture is investigated. Fig. 

6.8 shows the simulation results for small and large fractures with three different cross-

section shapes: circle, square, and ellipse with major axis in the x direction and aspect ratio 

8. The square and elliptical fractures in Figs. 6.8(a)-(d) have the same areas as the circular 

ones. The auxiliary grid spacing for the {small, large} fracture was chosen as 

{0.15, 1.0} m  for the square fractures, which resulted in a total of 

5 5{1.2 10 , 3.1 10 }N ´ ´  unknowns and 3D {243 243 12, 196 196 280}N = ´ ´ ´ ´  



128 

 

grid points; it was chosen as {0.15, 1.5} m  for the elliptical fracture, which resulted in 

5 5{1.2 10 , 4.3 10 }N ´ ´  unknowns and 3D {243 243 7, 420 420 75}N = ´ ´ ´ ´  

grid points. As a result, matrix fill time, memory requirement, time per iteration, and 

average numbers of iteration for the square and elliptical fractures were comparable to 

those of the circular fracture of the same area. Figs. 6.8(e)-(f) describe the maximum 

relative signal strength as a function of the areas of the different shaped fractures. 

Figs. 6.8(a), 6.8(c), and 6.8(e) show that the area rather than the cross-section shape 

of the fractures determines the signals in the axially co-polarized (yy-oriented) 

measurements; indeed, the signals for the axially symmetric (circle/square) fractures are 

practically identical if their areas are the same and differ less than 2% from the signals for 

the axially asymmetric (ellipse) fracture. This is because the fields induced in the fractures 

near the borehole (the strongest fields) are similar for all fracture shapes. Clearly, axially 

co-polarized measurements cannot distinguish the fracture shape at any size. 

Figs. 6.8(b), 6.8(d), and 6.8(f) show that the signals in the transverse co-polarized 

(xx-oriented) measurements are also determined by the area but are more sensitive to the 

shape of the fracture. Fig. 6.8(b) shows that the signals in the xx-oriented short spacing 

measurements have similar shapes but are mostly negative and have larger magnitude 

compared to the signals in the yy-oriented short spacing measurements of Fig. 6.8(a). Fig. 

6.8(d) shows that the signals in the long spacing measurements are much stronger (about 7 

times at the peak) and have sharper peaks in the xx-orientation compared to those in the yy-

orientation in Fig. 6.8(c). Fig. 6.8(f) shows that the transverse co-polarized measurements 

cannot discern axially symmetric fractures but can distinguish axially symmetric fractures 

from asymmetric ones up to a certain fracture size. The {short, long} spacing 
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measurements can distinguish axial asymmetry in the range 2{1 10, 1 1000} mA - -

—note the factor of 10 scaling for the long spacing measurements in Fig. 6.8(f). 

 

    
(a)      (b) 

     
(c)      (d) 

Figure 6.8:  Sensitivity of co-polarized borehole resistivity measurements to fracture 
shape at 100 Hz. Left column: yy-oriented measurements. Right column: xx-
oriented measurements. Top row: Short spacing measurements. Middle row: 
Long spacing measurements. Bottom row: Peak signal detected. The effective 
conductivities of the fractures are set to {10, 100} S/m  for {short, long} 
spacing measurements. 
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(e)      (f) 

Figure 6.8:  Continued. 

 

To summarize: Co-polarized measurements, whether they are oriented parallel or 

transverse to the borehole axis, cannot differentiate axially symmetric fractures from each 

other. The transverse co-polarized measurements can discern axially asymmetric fractures 

from symmetric ones, e.g., the {short, long} spacing measurements can distinguish 

elliptical fractures with aspect ratio of 8 from axially symmetric fractures if their areas are 

in the range 2{1 10, 1 1000} mA - - . 

6.1.3.3 Geometrical Properties: Dip 

Next, the effects of the fracture dip are investigated. Fig. 6.9 describes the 

simulation results for a small and a large circular fracture with three different dips (

0 , 15 , 60   ) in the xoy  plane; fractures with different dips in Figs. 6.9(a)-(d) have the 

same areas as those in Section 6.1.3.1. Because the fractures get closer to the borehole as 

dip angle increases, a larger number of elements was used as j  increased. This resulted 
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in slightly larger N  (up to 1.3 times) for the same area fracture when it is tilted and also 

led to more non-zero entries in corrZ ; thus, tilted fractures required up to approximately 2-

3 times larger matrix fill time and memory space. The time per iteration and the average 

numbers of iteration were comparable to those of the untilted fractures. Figs. 6.9(e)-(f) 

describes the maximum relative signal strength as a function of the fracture area.  

Figs. 6.9(a) and 6.9(c) show that the signals in the axially co-polarized (yy-oriented) 

measurements become weaker when the dip angle increases. This behavior is correlated to 

the projection of the tilted fracture onto the xoz  plane, which also becomes smaller as the 

dip angle increases. Moreover, the shape of signals for the small dip angle is similar to 

those for the untilted fractures, but the shape changes for the larger dip angle. Fig. 6.9(e) 

shows that the detection range for the 15  dipping fractures is essentially the same as that 

for the untilted fractures whereas the 60  dipping fractures {short, long} spacing 

measurements can only detect fractures larger than 2{10, 1000} mA   and not 

distinguish them from larger fractures. Moreover, the short and long spacing measurements 

cannot discern untilted fractures from 15  tilted ones but can differentiate them from 60  

tilted fractures whenever they can detect them. 

Figs. 6.9(b) and 6.9(d) show that the signals in the cross-polarized (xy-oriented) 

measurements for dipping fractures also have three different regimes as the logging tool 

passes through the fracture but the third regime is more complicated as the signals do not 

vanish monotonically. Fig. 6.9(b) shows that the detected signals in the short spacing 

measurements depend on dip angle: They are almost zero for untilted fractures and have 

stronger spikes as the angle increases. Fig. 6.9(d) shows similar signals for the long spacing 

measurements (the third regime is not shown) except the spikes are smoother. Fig. 6.9(f) 
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indicates that the detection range of cross-polarized measurements increases with the dip 

angle: When 15j =  , the {short, long} spacing measurements can detect fractures larger 

than 2{10, 100} mA   but not distinguish them from bigger fractures; when 60j =  , 

they can detect fractures larger than 2{1, 100} mA   and distinguish them until 

2{10, 1000} mA  . By comparing the first row of Fig. 6.9 to the second row, it becomes 

clear that xy-oriented measurements are more sensitive to dip angle in the xoz  plane 

compared to co-polarized measurements; this behavior is because the x-directed magnetic 

field is strongly correlated to the projected area of the fracture on the yoz  plane and 

because the incident field does not include the cross component. Similarly, zy-oriented 

measurements can be used to detect the dip angle of the fractures in the yoz  plane. 

To summarize: Axially co-polarized measurements are rather insensitive to the 

dipping angle: They can be used to detect fractures with large dip angles but cannot 

distinguish the areas of dipping fractures. Cross-polarized measurements can detect the dip 

with respect to the borehole axis whether the fracture is small or large. The larger the dip 

angle, the more sensitive the cross-polarized measurements, e.g., {short, long} spacing 

measurements can detect 15  dipping fractures that are larger than 2{10, 100} mA   

but cannot distinguish them, while the same measurements can detect and distinguish 60  

dipping fractures in the range 2{1 10, 100 1000} mA - - . Therefore, cross-polarized 

measurements are more suitable to assess fracture dip. 
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(a)      (b) 

 

(c)      (d) 

Figure 6.9:  Sensitivity of co-polarized borehole resistivity measurements to the dip of 
circular fractures at 100 Hz. Left column: yy-oriented measurements. Right 
column: xx-oriented measurements. Top row: Short spacing measurements. 
Middle row: Long spacing measurements. Bottom row: Peak signal detected. 
The effective conductivities of the fractures are set to {10, 100} S/m  for 
{short, long} spacing measurements. 

 

-3 -2 -1 0 1 2 3
-2

0

2

4

6

8

10

12

A~2.3104

A~0.36

Center of receivers (m)

(
U

fr
ac

yy
-

U
b

o
re

yy
)/


U
b

o
re

yy
 (

%
)

 

 

=0o

=15o

=60o
j

j

j

j

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

6

8

10

A~2.3104

A~0.36

Center of receivers (m)

(
U

fr
ac

xy
-

U
b

o
re

xy
)/


U
b

o
re

yy
 (

%
)

 

 

=0o

=15o

=60o
j

j
j

j

-6 -4 -2 0 2 4 6
-2

0

2

4

6

8

10

12

14

A~2.3104

A~0.36

Center of receivers (m)

(
U

fr
ac

yy
-

U
b

o
re

yy
)/


U
b

o
re

yy
 (

%
)

 

 

=0o

=15o

=60o
j

j

j

j

-6 -4 -2 0 2 4 6
-2

0

2

4

6

8

10

A~2.3104

A~0.36

Center of receivers (m)

(
U

fr
ac

xy
-

U
b

o
re

xy
)/


U
b

o
re

yy
 (

%
)

 

 

=0o

=15o

=60o
j

j
j

j



134 

 

 

(e)      (f) 

Figure 6.9:  Continued. 
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(a) 

 

(b) 

Figure 6.10: 3-D net-shaped hydro-fracture. (a) Different views of the tetrahedral mesh. 
(b) Side view of the geometry drawn to scale (major branches: black; 
intermediate branches: blue; minor branches: red). 

6.1.3.4 Complex Hydro-Fracture Network 

Finally, borehole resistivity measurements are used to appraise a complicated 

hydro-fracture network (Fig. 6.10). The branches in the network, which are all 5 mm thick, 

are separated into three groups based on their length: major branches are longer than or 

equal to 10 m, intermediate branches are shorter than 10 m but longer than 2 m, and minor 
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branches are shorter than or equal to 2 m (Fig. 6.10(b)). In the following, three cases are 

simulated: Only major branches of the fracture are modeled in case 1. Major and 

intermediate branches are modeled in case 2. All the branches are modeled in case 3. Unlike 

in Sections 6.1.3.1-6.1.3.3, the fracture area is increased by modifying not two but only 

one dimension, the depth of the fracture l ; as a result, even the main branches are axially 

asymmetric and the area of the fractures in the side view in Fig. 6.10(b) are fixed to 0.215 

m2 (case 1), 0.39 m2 (case 2), and 0.5175 m2 (case 3) in all simulations. 

Figs. 6.11(a)-(b) describe the simulation results for a {small, large} fracture depth 

of 
0

{1.4, 122} ml = . For these fractures, the auxiliary grid spacing was chosen as 

{0.2, 0.6} m , which resulted in a total of 4 5{1.3 10 , 4.7 10 }N ´ ´  unknowns and 

3D {189 189 105, 168 168 40}N = ´ ´ ´ ´  for the fractures in case 3. Fractures in the 

remaining two cases have slightly smaller N  but the same 3DN . The {small, large} 

fracture simulations required approximately 5 5{1.3 10 , 5.1 10 }´ ´  seconds for filling the 

matrices, {19, 105} GB of memory, and {51.6, 112.2} seconds per iteration for the 

fractures in case 3; these computational costs were similar for cases 1 and 2. Here, 101 tool 

positions were simulated to appraise the position and size of the fractures; on average, the 

iterative solver converged in {30, 55} for the short and {34, 75} iterations for the long 

spacing measurements in case 3. Average numbers of iteration were {25, 30} for the short 

and {25, 35} for the long spacing measurements in case 1 and {25, 28} for the short and 

{27, 36} for the long spacing measurements in case 2. Fig. 6.11(c) describes the maximum 

relative signal strength as a function of the network depth. 
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(a)      (b) 

 

(c) 

Figure 6.11: Sensitivity of borehole resistivity measurements to the different branches of 
a fracture network at 100 Hz. (a) Short spacing measurements. (b) Long 
spacing measurements. (c) Peak signal detected. The effective conductivities 
of the fractures are set to {10, 100} S/m  for {short, long} spacing 
measurements. 

 

Fig. 6.11 indicates that borehole resistivity measurements can be used to detect and 

appraise complex fracture networks. Figs. 6.11(a)-(b) show that there are two spikes in the 
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measurements because of the two large branches perpendicular to the borehole and the 

shape of each spike is similar to those in Figs. 6.6-6.9. The width of the spike is narrower 

for the short spacing measurements ( 1 m ) than that for the long spacing ones ( 4 m

), i.e., short spacing measurements have a higher resolution; thus, they can differentiate 

fractures closer to each other compared to long spacing measurements. The different 

signals observed for the different cases indicate that the major, intermediate, and minor 

branches all contribute to the shape and magnitude of the signals; the contribution mainly 

depends on the area and position of the branch. Fig. 6.11(c) shows that the peak signal 

strength increases with fracture depth and converges to a constant for all three cases and 

both types of measurements. The {short, long} spacing measurements can detect the 

fracture network if it is deeper than 
0

{1,1} ml   and can distinguish depths until 

0
{3,10} ml  . 

Based on the above observations, the most effective approach for detecting and 

appraising 3-D hydraulic fractures with low-frequency borehole resistivity measurements 

is as follows: First, the short or long spacing cross-polarized component should be 

employed to quantify fracture dip with respect to the borehole axis, i.e., the orientation of 

fracture should be identified. Next, the number and the position of large fracture branches 

intersecting the borehole should be identified with shorter spacing measurements (either 

the axially co-polarized or cross-polarized component based on the fracture dip). Finally, 

longer spacing measurements should be used to assess the fracture area and shape. Higher 

effective conductivity is always preferred for enhancing the sensitivity of borehole 

resistivity measurements. 
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6.1.4 Summary 

This section demonstrated the applicability of the AIM schemes for homogeneous 

and planar-layered medium backgrounds to type 1a, 1b, 2b, and 3a multi-scale problems 

in various geophysical applications including remote sensing, controlled-source 

electromagnetic (CSEM) surveys, and well logging. 

6.2 MICROWAVE-ASSISTED THIN FILM GROWTH 

In this section, the AIM for rectangular-cavity background is employed to model a 

microwave-assisted thin film growth experiment. In the experiment, an indium tin oxide 

(ITO) coated glass substrate is immersed in a liquid solution contained in a quartz vessel. 

The quartz vessel is placed on a rotor that is located in a microwave oven and heated. A 

computer model of the experiment is developed, the electromagnetic scattering analysis is 

performed using the AIM scheme to find the field distribution throughout the model, and 

the energy absorbed by the different parts in the model is extracted. 

6.2.1 Electromagnetic Model 

The electromagnetic model of the experimental setup is shown in Fig. 6.12. Here, 

the microwave oven is modeled as a rectangular cavity with PEC walls. The cavity and 

simulation frequency are the same as those in Section 3.6.2. The rotor (blue region in Fig. 

6.12(a)), parts of which were observed to be made of metal (polytetrafluoroethylene-coated 

aluminum), is modeled as a PEC surface. The quartz vessel (green region in Fig. 6.12(a)) 

and the glass substrate (not shown in Fig. 6.12(a)) are modeled as lossless dielectric 

volumes with relative permittivity of 4 and 6, respectively. The liquid solution (orange 

region in Fig. 6.12(a)) is modeled as a lossy dielectric volume with relative permittivity of 
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12.5 and conductivity of 0.16 S/m . The ITO layer (dark red square in Fig. 6.12(a)) is 

modeled as an infinitesimally thin dielectric sheet because its thickness is 150 nm , 

relative permittivity is 4, and conductivity is ~ 57.5 10 S/m´  (the field penetration depth 

is 11.7 mm  at 2.45 GHz). The geometrical description of the model is as follows: The 

rotor is centered in the middle of the cavity at (22.5 cm, 21 cm, 16 cm) ; it is 24.8 cm 

high; its top and bottom surfaces are formed of two concentric circles with 19.4 cm inner 

and 39.4 cm outer diameters; its 8 vertical metal rods are uniformly spaced identical 

cylinders of 0.9 cm diameter; and the distance from the center of a rod to the one 

diametrically on the opposite side is 29.2 cm. The 1-cm thick quartz vessel is formed of 

two concentric cylinders that have 2.54 cm inner diameter and 4.54 cm outer diameter; its 

outer cylinder is 18.5 cm high and is centered at (22.5 cm, 6.4 cm, 14.15 cm) while its inner 

cylinder is 17.5 cm high and is centered 0.5 cm higher. The liquid solution is a 7 cm high 

cylinder centered at (22.5 cm, 6.4 cm,9.4 cm)  and its diameter is 2.54 cm. The glass 

substrate is a parallelepiped of size 1.3 cm 1.1 mm 1.3 cm´ ´  that is centered at 

(22.5 cm, 6.4 cm, 8.55 cm). The ITO layer is a rectangular surface of size 0.8 cm 0.8 cm´  

that is centered at (22.5 cm, 6.345 cm,8.55 cm) . The positions described here are for one 

specific location of the vessel in the cavity (the one shown in Fig. 6.12(a)); because the 

structure rotates in the cavity over time, other orientations are also simulated in the 

following; the positions of the structures for the different orientations are found by rotating 

all parts of the model around the center of the cavity. 

The current on ITO is expanded in terms of RWG functions and the impedance 

boundary condition is enforced [4]. Consequently, each SWG function that is defined over 

a pair of tetrahedra whose common face is on the ITO layer have to be modified to be two 
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SWG functions defined on a single tetrahedron; this is necessary to allow the discontinuity 

of normal component of the (conduction-current corrected) flux density across the interface 

due to the existence of infinitesimally thin ITO layer. The PEC junctions on the rotor (Fig. 

6.12(b)) are treated in the same way as in [83],[84]. The average edge lengths of surface 

and volume elements are 5.3 mm (close to 
cav

/ 23l ) and 2.8 mm (about 
cav

/ 44l ), 

which result in S 21 003N =  RWG functions and V 77 469N =  SWG functions, 

respectively (Fig. 6.12(b)). In this scenario, the surface and volume meshes are not single-

scale meshes as the mesh density varies significantly in the different parts of the model: 

The mesh close to/on the ITO layer is over-resolved to 0.19 mm (nearly 
cav

/ 650l ) to 

capture the fast field variation, especially close to the edge of ITO layer arising from the 

edge condition [4],[85], while the rest of triangles and tetrahedral in the mesh have average 

edge lengths that are around one tenth of either the wavelength inside dielectric volume or 

cav
l . The significant variation of mesh density leads to a type 2b multi-scale problem. The 

auxiliary grid spacing is 2.0 mm (around 
cav

/ 60l ), 3D 200 200 126N = ´ ´ , and 3g = .  

The precise excitation of the microwave oven was unknown (only the frequency of 

operation and TE excitation mode were known) [4]; here, different excitations are 

investigated to identify which excitation best models the experimental setup. As shown in 

[86], the excitation of a cavity at a non-resonant frequency can be expanded as a summation 

of weighted cavity modes using modal decomposition. Because the weighting function 

decays fast (inversely proportional to the difference between the square of the resonant 

frequency and the square of the operating frequency [86]), the modes whose resonant 

frequencies are close to the operating frequency dominate the excitation. In the following, 

the incident field is chosen as a unit amplitude 
x

TE (3,4,4) , 
y

TE (3, 4, 4) , or 
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x
TE (5,5,0)  mode because the 

x
TE (3,4,4)  and 

y
TE (3, 4, 4)  modes have the closest 

resonant frequency ( 2.445 GHz» ) to the operating frequency of 2.45 GHz and 

x
TE (5,5,0)  has the next closest resonant frequency ( 2.443 GHz» ).  

Once the electromagnetic scattering are solved for various positions of the rotor, 

the microwave energy absorbed at various positions in the cavity must be extracted, i.e., 

the integral 

 3

0
( ) [ ( ) ( )]Re[ ( ) ] Re[ ( ) ]  (Joule/m )

T
j t j t

t t t t
e e e dtw wwe s¢¢= + ⋅òr r r E r E r  (6.2.1) 

must be calculated, where ( )e r  denotes the absorbed energy density per one rotation of 

the rotor, r  is the position of interest on the ITO layer in time-invariant local coordinates 

(with respect to the substrate corner for example), and t
r  is the position in time-varying 

global coordinates (with respect to the cavity corner for example) at time t . This integral 

must be carefully evaluated because the rotation period of the rotor is 20 sT =  while the 

period of the electric fields is 2 / ~40.8 nsp w . Here, it is calculated by dividing the 

integration interval into Q sub-intervals and approximating the energy absorbed in each 

sub-interval as the duration of the sub-interval multiplied by the average rate of energy 

(power) absorbed at the center of that sub-interval: 
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is the absorbed power density at position t
r  averaged over one period of the fields. It is 

accurate to use the average power density to estimate the integral in (6.2.2) only under 

two conditions: (i) The time interval 1q qt t --  is large enough compared to the period of 

the fields 2 /p w  because the energy absorbed from the time-harmonic fields over a 

given interval is within avg/ Pp w  of the value 1 avg( )q qt t P--  and (ii) The time 

interval 1q qt t --  is small enough that the rotor movement does not cause significant 

change in the field distribution and the energy absorption. The results in this section were 

obtained by setting 8Q=  (2.5s intervals or 45o angles of the rotor) as shown in Fig. 

6.12(c). 

The normalized energy densities (dB scale) absorbed by the ITO layer per one 

rotation of the rotor due to different excitations are shown in Figs. 6.12(e)-(g) and 

compared to the experimental result in Fig. 6.12(d). The bright white area in Fig. 6.12(d) 

is the titanium dioxide (TiO2) thin film grown on the transparent ITO substrate due to 

microwave heating. The thicker film close to the edges indicates more energy is absorbed 

by ITO near the edges. Figs. 6.12(e)-(g) show that the 
x

TE (3,4,4)  excitation leads to 

edge effects on all four edges with a smooth transition region; 
y

TE (3, 4, 4)  excitation also 

results in edge effects on all four edges, but the transition region is narrower, especially on 

the top edge; and the 
x

TE (5,5,0)  excitation only produces edge effects on the left and 

right edges. While the experimental result deviates from those obtained by using the last 

two excitations, it agrees well with that obtained by using the first excitation. As a result, 

the 
x

TE (3,4,4)  mode is employed as the excitation to predict the energy density 

absorbed by the different shapes and conductivities of ITO layer and the thin film growth 

in further experiments in this microwave oven. Here, the AIM simulation for each rotor 
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position typically required about 56.7 10´  seconds for filling the matrices, 70 GB of 

memory, 22.1 10´  seconds per iteration, and 13 000  iterations—the large number of 

iterations is caused by the dense surface mesh required to capture the fast field variation 

on the ITO substrate. This scenario could not be simulated with MOM because it required 

too much time and memory. 
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(a)      (b) 

    

(c)      (d) 

   

(e)    (f)    (g) 

Figure 6.12:  Microwave-assisted thin film growth. (a) Computational model of the 
experimental setup. (b) Surface and volume mesh. (c) Eight positions for 
calculating the absorbed energy density. (d) Experimental result showing thin 
film growth is focused at the edges. Computed absorbed energy density on 
the ITO layer per one rotation in the oven due to (e) 

x
TE (3,4,4)  excitation, 

(f) 
y

TE (3, 4, 4)  excitation, and (g) 
x

TE (5,5, 0)  excitation. The absorbed 
energy density is normalized by 1 J/m3 and the color bars are in dB scale. 

Rotor

ITOTop view
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6.2.2 Thin Film Growth for Different Shapes of ITO Layer 

Next, the electromagnetic simulations are further employed to predict the thin-films 

growth for four different shaped ITO layers (square, triangle, circle, and 2 2´  square 

arrays). Fig. 6.13 shows the comparisons between the experimental data and simulated 

normalized energy densities (dB scale) for different shapes of the ITO layer. The simulated 

data (Figs. 6.13(i)-(l)) show that the electromagnetic energy absorption is concentrated at 

the edges of the ITO resulting in thicker TiO2 films in these regions, irrespective of the 

ITO pattern shape. The experimentally observed edge patterns resulting from the 

concentration of the TiO2 films at the ITO edges (Figs. 6.13(e)-(h)) show strong correlation 

to the simulations. 
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Figure 6.13:  Microwave-assisted thin film growth for different shapes of ITO layer. (a)-
(d) ITO layer before microwave heating. (e)-(h) ITO layer after microwave 
heating. (i)-(l) Computed absorbed energy density on the ITO layer per one 
rotation in the oven due to 

x
TE (3,4,4)  excitation. The absorbed energy 

density is normalized by 1 J/m3 and the color bars are in dB scale. 
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6.2.3 Uniformity Improvement of Thin Film 

Finally, the electromagnetic simulations are employed to improve the uniformity 

of thin-film by varying the conductivity and size of the ITO layer (Fig. 6.14). As seen in 

Fig. 6.14(a), the total microwave energy absorbed by the ITO layer first increases as the 

conductivity increases, until a point is reached where the trend reverses. This is because, 

as s  increases, more energy is reflected rather than absorbed by the conducting layer, 

i.e., the electric field magnitude (| |E ) decreases in the ITO layer while s  increases and 

hence the absorbed energy density e , which is the time integral of 2| |s E , and the total 

absorbed energy by the conducting layer decreases. Thus, there exists a range of s  values 

where energy absorption is maximized and, therefore, would be ideal for film growth. The 

experiments show that while films did not grow on insulators like glass, they grow well on 

ITO, which has a reasonably high conductivity 5( 10 S/m)s  . Conversely, if 

conductivity is too high such as for an aluminum substrate 7( 10 S/m)s  , the 

microwave-grown films are more weakly adhered. The electromagnetic simulations further 

indicate that at lower conductivity, the films tend to be more uniform compared to those at 

higher conductivity (insets in Fig. 6.14(a)). Based on the computational predictions that 

lower ITO conductivity can improve film uniformity, TiO2 films were also grown on lower 

conductivity 3( 10 S/m)s   ITO, and the film uniformity was found to be greatly 

improved (Fig. 6.14(c)) in agreement with the simulations. In addition, electromagnetic 

simulations indicate that decreasing the size of ITO layer can also improve film uniformity 

(Fig. 6.14(d)-(f)). 
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Figure 6.14:  Effects of ITO layer conductivity and size on the total absorbed microwave 
energy and on absorption patterns. (a) Total microwave energy absorbed by 
the ITO layer per rotor rotation as the layer conductivity is changed with local 
absorption patterns (insets). Lower conductivity 3( 10 S/m)s   ITO-
coated glass substrate (b) before microwave reaction and (c) after microwave 
reaction. Films grown on lower conductivity ITO layers do not exhibit edge 
patterns and are more uniform than those shown in Fig. 6.13. Absorbed 
energy density per rotor rotation for ITO layer pattern sizes of (d) 

20.8 0.8 cm´ , (e) 20.4 0.4 cm´ , and (f) 20.2 0.2 cm´ . The energy 
densities are normalized by 1 J/m3 and the color bars are in dB scale. 
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6.2.4 Summary 

This section demonstrated the applicability of the AIM scheme for rectangular-

cavity background to type 2b multi-scale problems in the prediction of microwave-assisted 

thin film growth. The AIM scheme is able to tackle multi-scale structure but becomes less 

efficient as the structure involves more length scales. The hybridization of the FFT-MLIM 

and rectangular-cavity Green functions can potentially be a more efficient alternative for 

analyzing microwave-assisted thin film growth. 

6.3 MICROSTRIP CIRCUITS 

Lastly, scattering from a 8 4´  corporate-fed microstrip array [107], whose 

geometry is described in Fig. 6.15(a), is analyzed (a type 3b multi-scale problem). The 

substrate thickness is 1.59 mm and the relative permittivity is t
1

2.2e = . The microstrip 

array is excited by a 2.5 GHz plane wave incident from inc 60q =   and inc 0f =  . The 

surface of the microstrip array is discretized using triangles with 
1
/ 60.5l  average 

edge length and the auxiliary grid spacing is 
1
/ 20l  in all three directions; hence, 

9241N =  and 3D 96 96 2N = ´ ´ . The RCS pattern calculated with the AIM is compared 

to those calculated with MOM and a reference fast multipole algorithm (FMA) accelerated 

MOM [107] in Fig. 6.15(b). All results agree well. The AIM (MOM) simulation required 

32.5 10´  ( ´ 45.7 10 ) seconds to fill the matrices, ~155 MB (~1638 MB) to store the 

matrices, and 11.1 10-´  ( 1.3 ) seconds per iteration to solve the matrix equation, and 

the iterative solver converged in 482 (482) iterations. The number of unknown is moderate, 

but the reduction in computational costs is evident for the microstrip array. 
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(a) 

 
(b) 

Figure 6.15: Scattering from the corporate-fed microstrip array. (a) Top view of the 
geometry. (b) VV-polarized bistatic RCS in the 60q =   cut at 2.5 GHz. 
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Chapter VII Conclusion and Future Work 

This dissertation presented novel FFT and multigrid accelerated frequency-domain 

integral equation solvers for multi-scale electromagnetic analysis in complex backgrounds 

and demonstrated the benefits of the proposed methods for various applications (Table 7.1).  

Table 7.1: Proposed methods for solving multi-scale problems and their applications 

Problem Type Simulation Regime
Proposed 
Solution 
Method 

Sample Applications 

Type 1 
(Two-scale) 

a. High frequency AIM 

Scattering from dielectric 
slab (Section 4.2.2) 

and underground PEC 
bunker (Section 6.1.1) 

b. Low frequency AIM 
Borehole resistivity 

measurements  
(Section 2.3.2) 

Type 2 
(Multi-scale  

structure) 

b. Low frequency 
AIM  

or  
MLIM 

Borehole resistivity 
measurements of 3-D 

hydro-fractures  
(Section 6.1.3) 

c. Mixed frequency
AIM  

or  
FFT-MLIM 

Scattering from plate 
array (Section 4.2.1) 

Microwave-assisted thin 
film growth (Section 6.2)

Type 3 
(Multi-scale  
background) 

a. High frequency AIM 
CSEM measurements  

(Section 6.1.2) 

b. Low frequency AIM 
Scattering from 
microstrip array  

(Section 6.3) 

Type 4 
(Multi-scale squared) 

b. Low frequency 
AIM  

or MLIM 
Future work 

c. Mixed frequency
AIM or  

FFT-MLIM 
Future work 
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Extended AIM schemes were proposed to solve type 1 and 3 multi-scale problems 

that involve single-scale structures in complex backgrounds. The AIM scheme was 

presented first for electrically large anisotropic dielectric structures in a homogeneous 

background (Chapter II). Then, it was extended to more complex scenarios where the 

structures reside in rectangular cavities and planar-layered media. As demonstrated in 

Chapters III and V, the computation time and memory requirement of the proposed 

extensions for these complex backgrounds are comparable to the requirements of AIM for 

the same structures in homogeneous backgrounds. A variety of complex applications––

including remote sensing, CSEM surveys, detection of hydro-fractures with borehole 

resistivity measurements, microwave-assisted thin film growth, and microstrop circuits––

were presented to validate the accuracy and efficiency of the proposed schemes and to 

demonstrate their generality, practicality, and usefulness for complex electromagnetic 

engineering problems. The AIM scheme and its extensions are most effective for single-

scale structures. Though the methods can also be applied to multi-scale structures, in 

general, their efficiency should be expected to decrease as the number of length-scales in 

the analysis increases and the methods should eventually cease to be useful for type 2 and 

4 multi-scale problems. This thesis showed, however, that the efficiency of AIM for multi-

scale structures can be greatly improved by tuning its grid spacing and that AIM and its 

extensions remain effective schemes for many practical type 2 and 4 multi-scale problems. 

For those rare problems where extreme multi-scale structures exist, FFT-MLIM, an FFT-

accelerated oct-tree based algorithm, was proposed as an alternative to solve type 2 and 4 

multi-scale problems. It was shown that FFT-MLIM is less sensitive to the shape of the 

scattering structure. 
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This dissertation opens various potential research avenues that include the 

following: (i) The FFT-MLIM in Chapter IV and the AIM extension for structures residing 

in multiple layers of planar-layered media in Section 5.2 can be parallelized to enhance 

their capabilities to solve larger and more complex multi-scale problems. The efficient 

parallelization of FFT-MLIM is not trivial because of the oct-tree structure of this 

algorithm [108]. Special parallelization schemes similar to those in [109] should be devised 

to enhance the parallel efficiency of the algorithm by minimizing the communications and 

balancing the workload among the processors. Efficient parallelization of the FFT-based 

algorithm in Section 5.2 is complicated by the presence of multiple 2-D and 3-D auxiliary 

grids with varying sizes. (ii) As discussed in Chapter I, the surface electric field integral-

equation suffers from the low-frequency breakdown when RWG edge length is four or five 

orders of magnitude smaller than the wavelength in the background medium. In order to 

enable the fast simulation of surface integral-equation based type 1b and 4b multi-scale 

problems often encountered in analyzing high-density integrated circuits, alternative 

basis/testing functions [25]-[31] should be incorporated into the proposed FFT and 

multigrid accelerated integral equation solvers. (iii) More complex type 4 multi-scale 

problems can be solved by extending FFT-MLIM to rectangular-cavity and layered-

medium backgrounds. 
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