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Charged particle accelerators often have strict requirements on the

beam energy, and timing to calibrate, or control background processes. Longi-

tudinal Phase Space Tomography is a technique developed in 1987 to visualize

the time, and energy coordinates of a beam. With non-invasive detectors, the

beam can be visualized at any point during operation of a synchrotron. With

the progress of computing power over the last 27 years, it is now possible to

compute tomographic reconstructions in real time accelerator operations for

many bunches around the accelerator ring. This thesis describes a real-time,

multi-bunch tomography system developed and implemented in Fermilab’s

Main Injector and Recycler Rings, and a study of bunch growth when crossing

transition. Implications of these studies for high intensity operation of the

Fermilab accelerators are presented.
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Chapter 1

Introduction

For the past 100 years or so increasingly higher energy particles have

allowed physicists to probe the universe at ever finer scales. The de Broglie

wavelength of a particle is inversely proportional to its momentum, thus the

higher the energy of a particle the shorter the wavelength and the smaller the

features that can be resolved when using that particle as a probe.

Interactions involving higher energies also have more energy to create

massive particles. But high energy particles must come from somewhere. Cos-

mic rays can have energies above 1020 eV, but these are incredibly rare, the

flux of particles above 1020 eV is less than 1 km−2century−1 [11]. Because of

the rarity, and unpredictability of cosmic rays, they are not an ideal source of

high energy particles for studying the properties of fundamental interactions

with any precision.

Particle accelerators are machines used to create more intense beams of

particles under the control of experimenters, but at much lower energies than

cosmic rays. Fig. 1.1a shows the history of particle accelerator beam energy on

a log scale. As old technologies reach the limits and level off, new technologies

have reliably stepped in to maintain the steady increase in beam energy. The

1



highest energy accelerator is currently the Large Hadron Collider at CERN,

which can produces colliding proton beams of 4 TeV per proton each with

plans to increase the energy to 7 TeV per proton. But the peak number of

particles available for interactions, measured by a quantity called luminosity,

is 1034 cm−2s−1, or on the order of 1053 km−2century−1 in units comparable to

the highest energy cosmic rays flux. Also notice in fig. 1.1a that even as one

technology levels off, new machines are still being built with that technology.

Energy is not the only consideration. The same greater intensity, and control

that makes accelerators more desireable than cosmic rays in some cases, can

also make more established technologies more desireable.

To observe a very rare process it is also necessary to observe many

events. Fig. 1.1b shows the luminosity of various colliders versus the center of

mass energy. While the relationship here appears mostly flat, the LHC, not

yet built when this plot was made, shows an increase in both luminosity and

center-of-mass energy to increase the physics reach through more interactions.

Increasingly, researchers are pushing for higher power machines with

more current at more modest energies (still several GeV). High power beams

allow researchers to obtain very precise measurements (e.g. muon g-2 mea-

surements), observe very rare processes (e.g. flavor violating muon to electron

decays), or to provide intense beams of secondary particles which are used as

probes (e.g. spallation neutron sources).

The challenges to pushing the limits of energy and intensity are differ-

ent, but both must often be addressed. To understand these limits requires a

2



(a) Energy vs. Year (b) Luminosity vs. CM Energy

Figure 1.1: The evolution of particle accelerators. The Livingston plot in
(a) shows the exponential increase in beam energy over time, including the
technology used to achieve that energy. But even as an old technology reaches
its limits in energy, new machines of the same kind are still built. (b) shows the
luminosity, a measure of beam intensity, vs. center-of-mass energy in colliders.
Luminosity doesn’t increase at nearly the rate that energy does, but it is an
important parameter for extending the physics reach of an accelerator. These
plots were taken from [31]
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basic understanding of the components of a particle accelerator.

1.1 Particle Accelerators

Particles accelerators utilize the Lorentz force to manipulate charged

particles. Electric fields in the direction of motion impart energy to and

accelerate particles, and magnetic fields steer particles onto desired orbits.

The various ways of arranging these two functions leads to the vast array of

modern particle accelerator types, from linear accelerators, to radio-frequency

quadrupoles, and circular machines including: synchrotron, cyclotrons, mi-

crotrons, etc.

Many modern high energy accelerators, and all of the accelerators I

will discuss in this document, are synchrotrons. Fig. 1.2 shows a simplified

model of a synchrotron. A gap with an applied voltage, indicated as a dashed

rectangle at the bottom of the image, provides an electric field in the direction

indicated by the arrows on the three trajectories indicated by the black, red,

and blue lines. The energy gained by a particle as it traverses this gap is

equal to the charge of the particle, qe, times the voltage across the gap, V.

Because this voltage is limited by the breakdown voltage of the materials

used, the particle must traverse the gap many times to see an appreciable

gain in energy. In this model only a single gap is used, but because of the

magnetic fields perpendicular to the particle trajectories in the gray regions,

the particles complete circular orbits and encounter the gap many times. One

complete orbit, from cavity-to-cavity, is called a revolution.

4



For the field inside the gap to accelerate particles, it must oscillate in

time as any closed loop integral in a static electric field results in zero increase

in energy for a charged particle. The sinusoidal voltage will switch signs during

half of the cycle, meaning particles that enter the gap at the wrong time will

lose energy. This imposes a condition on the synchronization of the arrival

time, or phase, of the particle at the gap providing the sinusoidal voltage.

Hence the name synchrotron. Because the revolution period is normally in

the radio-frequency range, the gap, which is physically realized as a resonant

cavity, is called an RF cavity.

There will always be small errors from the ideal energy, and phase,

with a distribution of values represented in a bunch of particles. How this

manifests at the cavity is shown in fig. 1.3. Because the bending provided by

the magnets in fig. 1.2 is dependent on momentum, an energy difference leads

to a different revolution period. Different revolution periods mean that the

phase of a particle with respect to the ideal particle changes over many turns.

Properly phased, the RF cavity provides a restoring force to off momentum

particles which leads to simple harmonic motion about the ideal energy and

phase. This motion is called synchrotron oscillation, and the period of this

motion is many machine revolutions.

For small errors relative to the synchronous phase and energy, the de-

viations in phase and energy are bounded and the motion is said to be stable.

For larger errors the period of this motion increases, eventually stability is lost

altogether and the motion is unbounded. The mathematical details of this

5



Figure 1.2: This image demonstrates the basic components of a synchrotron
with respect to longitudinal dynamics. The grey blocks represent bending
dipole magnets, with a magnetic field pointing into the page. Positive particles
travel in the direction indicated by the arrows. The region between the dipoles
is called a straight section. In the lower straight is a radio frequency cavity.
The voltage that imparts energy to the three particles shown. The central
trajectory is the design, or synchronous, particle. In a synchrotron the dipole
field will increase as the synchronous particle gains energy so that the black
path holds a fixed position. The blue particle has a lower momentum than
the black particle, so the magnetic field produces a smaller radius. The red
particle has a higher momentum, and a larger radius. The revolution period, τ
of a particle is the time it takes to travel the complete path shown. A particle’s
path length, and velocity depend on its momentum relative to the sychronous
particle.

6



Figure 1.3: The vertical axis represents energy, and the horizontal axis is phase
relative to the synchronous, or design particle, in black. Three particles from
fig. 1.2 encounter the RF cavity on several revolutions. The cavity voltage
scaled by the particle charge, qe, is indicated in gray. The particles first en-
counter the cavity in phase. Off-energy particles accrue phase on the next
turn arriving out of phase relative to the synchronous particle, each now re-
ceives a voltage kick. Phased properly, this voltage decreases the energy of
high energy particle(blue) that tends to arrive early, and increases the energy
of low energy particle(red) that tends to arrive late. This motion about the
synchronous point(black) is harmonic. This schematic exaggerates the step
size for illustration.
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process will be provided in ch. 2.

This stable motion, when viewed in the plane spanned by the time and

energy coordinates which is known as longitudinal phase space, or just phase

space, manifests as circular motion about the stable point, the coordinates of

the synchronous particle.

Because the revolution frequency of the particle depends on its path

length, the magnetic fields are implicated in the synchronicity condition when

the design particle is accelerated, that is its energy changes from turn to turn.

The bending radius of a charged particle in a magnetic field perpendicular to

the velocity vector is given by eqn. 1.1.

r =
p

qB
(1.1)

Where r is the bending radius, p the momentum of the charged particle, q its

charge in units of the electron charge, and B the strength of the magnetic field

in Tesla, and the radius points inward along the vector q(~v × ~B). This means

that as momentum increases, either the field must increase, or the machine

radius will increase. 1 It also means that particles near the synchronous energy

1At high enough energies there is an additional constraint imposed by radiative energy
loss due to the radial acceleration produced by the bending magnets, called synchrotron
radiation. The power radiated scales ∝ γ4, where γ is the Lorentz factor of the particle
which is much higher for light particles of a given energy. Because of this scaling synchrotron
radiation is more problematic in lepton accelerators (e+, or e−). When this energy loss over a
single revolution exceeds the energy that can be supplied to the particle via the accelerating
gap, the only solution is to make the machine larger, or to get rid of radial acceleration
altogether with a linear accelerator.

8



will have slightly different path lengths.

The relationship between energy and revolution time exhibits a subtlety

shown in fig. 1.4. The image demonstrates how velocity, and momentum,

though related, must be considered separately when calculating the time it

takes to traverse a length of the machine that includes bending magnets. At

low energies particles with different momenta have different velocities. This

difference in velocity dominates the time required to traverse a bending arc.

At high energies the velocity of all particles approaches the speed of light.

When this is the case the time to traverse a bending arc is dominated by the

path length, which is proportional to the momentum alone.

The small differences in time to traverse a particular element are not

important, only the total difference in revolution period of the particles is

important, because this affects the phase of particles when they encounter the

RF cavity.

There is a critical energy where the relationship between revolution pe-

riod and energy relative to the synchronous particle changes, known as tran-

sition. At transition the frequency of all the particles is the same, and the

oscillatory synchrotron motion facilitated by the RF cavity stops. This leads

to problems with beam stability. The problems associated with transition will

be discussed in detail in ch. 2.

At very high particle densities in the accelerator particles experience

coulomb interactions that push the bunch apart. This is referred to as the

9



(a) v � c (b) v ≈ c

Figure 1.4: A magnetic field bends particles onto circular orbits. Panel (a)
shows a snapshot of three positively charged particles with with velocities
much less than the speed of light, and different momenta at the moment that
the design particle has traversed half the bending magnet. The red, low energy
particle has a smaller bending radius, but is also traveling more slowly so it
lags behind the design particle. The opposite is true of the blue, high energy
particle. Panel (b) shows the same scenario, but now the particles are very
relativistic. Because the velocity of the particles is approximately the same,
only the difference in path length contributes to the difference in transit time.
Now the high energy particle takes longer to traverse the magnet. For a
path parameterized according to azimuthal position around the ring, the high
energy particle seems to move more slowly. The energy where this relationship
changes is called the transition energy.
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space-charge effect, or more generally a collective effect. Due to Lorentz con-

traction the electric field lines form a delta function in time pointing perpen-

dicular to the direction of motion and the space-charge force does not effect

the longitudinal distribution in the ultra-relativistic limit.

The term collective effects also includes the interactions of the coloumb

fields of particles with conducting beam pipe, and other beamline elements.

A variety of effects must be considered, the finite resistance, and the fre-

quency dependent skin-depth of the wall, geometric discontinuities, resonant

structures that may be excited by the passing beam. A high intensity bunch of

protons may liberate electrons, which then accelerate towards a passing bunch,

and continue accelerating toward the beam pipe when the bunch passes. With

enough energy the electron can strike the pipe liberating more electrons. This

process can lead to an electron cloud that interacts with the primary bunch

and perturbing the motion. These kinds of interactions are numerous and

represent an active field of study, as each new fix allows higher intensities, and

more problems arise.

Collective effects are proportional to the intensity of the beam, or the

beam current, and perturb the beam motion derived under the assumption of

non-interacting particles. It is important to understand the collective effects

in a high intensity machine to control the beam motion and maintain stable

orbits.

11



1.2 The Importance of the Longitudinal Distribution

Stability means that excursions from the synchronous phase and en-

ergy are bounded. Collective effects are problematic because they perturb

the potential provided RF cavity, eventually threatening stability. Particles

which are unstable in phase simply lap the synchronous particle, much like a

pendulum accruing phase by rotating about its axis. This is problematic for

experiments that require particular beam structure. For instance, the planned

mu2e experiment requires pulses of beam separated by long windows with-

out beam during which background processes decay. Beam that strays into

the clean window reduces the sensitivity of the experiment. Practically, this

can be problematic because particles wind up in the portions of the ring nor-

mally left empty in order for extraction magnets to ramp up without spraying

beam throughout the tunnel and causing activation of beamline elements, or

radiation damage to sensitive components.

Particles that deviate in energy will also deviate in the transverse di-

mension when passing through magnets, as the two off-energy particles in

fig. 1.2 indicate. If this deviation is large enough the particle will strike some

physical restriction, an aperture restriction, either a magnet, or the beam pipe,

or sometimes an intentional restriction called a collimator. Unstable motion

in the energy coordinate also leads to beam loss on accelerator elements.

Unbounded deviations in energy are not acceptable in a machine de-

signed to accelerate particles to a particular energy. Experiments often require

small, known energy spreads to calibrate, or avoid backgrounds. Losses reduce
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the amount of beam that reaches an experiment, and activate nearby equip-

ment that can be safety hazards for technicians who have to repair machines,

and damage equipment, or heating up superconducting elements that can lead

to more down time, and further reducing beam to experiments.

1.3 Acceleration Through Multiple Rings

Fig. 1.5 shows the accelerator complex at Fermilab, and table 1.1 gives

the size and energy range of each machine. Useful beam is extracted from

many points in the complex depending on the particular operational mode.

Reaching the final beam energy in the multi-GeV range requires several

machines each with a specific purpose. Moving beam into or out of a machine

is called injection or extraction respectively, each operation has an associated

injection, or extraction energy.

At low energies when the beam is not very relativistic collective effects

are particularly problematic, and the velocity is changing rapidly. At higher

energies, the velocity of the particle changes little, asymptotically approaching

the speed of light. The momentum is changing however, which makes altering

particle trajectories with a magnet more difficult, so higher energy machines

are larger. At higher energies particles lost through collisions with the beam

pipe, or other beam line elements deposit more energy. In addition, the sat-

uration of magnet steel places a practical limitation, about a factor of 20, on

the ratio of extraction energy to injection energy of a single machine [28].

13



Main Injector
& 

Recycler

Neutrino Beam

Test Beam Protons

Accumulator
& Debuncher

Booster

Linac

Tevatron

Figure 1.5: The machines in the Fermilab accelerator complex listed in tab 1.1
are shown. Machines currently used are outlined in red, machines that are not
currently used are in blue. The red dashed lines indicate transfer lines between
machines, and the orange dashed lines transfer lines to experiment halls. Beam
starts at the source at the beginning of the Linac, proceeds to the Booster,
then to the Recycler where it is slip-stacked to double intensity, and finally to
the Main Injector which provides beam to neutrino experiments and the test
beam area. The Accumulator and Debuncher rings are currently unused, but
may be repurposed for 8GeV proton beam to supply muon experiments in the
future.

14



Machine Kinetic Energy Circum[m]
RFQ 35-750keV -
Linac 750kV-400MeV -
Booster 400MeV-8GeV 474.2
Recycler 8GeV 3319.4
Main Injector 8-120GeV 3319.4
Accumulator 8GeV 474.0
Debuncher 8GeV 505.3

Table 1.1: Energy range and size of machines in the Fermilab complex.

Starting at the source, hydrogen gas is fed into a device called a mag-

netron that produces H− ions. These ions are sent to the radio frequency

quadrupole, which accelerates the beam of H− ions from 35 keV to 750 keV

kinetic energy. From the RFQ beam is passed to the linear accelerator(linac).

The linac accelerates H− ions from 750 keV to 400 MeV. The linac supplies

protons to the neutron therapy center, a test facility, or the next accelerator,

the Booster. This transfer from one machine to another is called injection.

Upon injection from the linac to the Booster the H− ions are passed through

a thin foil, called a stripping foil, to remove both electrons, producing a beam

of positively charged protons.

The remaining machines in the accelerator chain are synchrotrons like

the simple model discussed above. The strength of the Booster’s electromag-

nets ramp as part of a resonant circuit, meaning beam can only be accelerated

at a rate equal to the natural frequency of the circuit(15 Hz). The duty factor

of the Booster is limited to 7/15 cycles per second because of protons lost

on beamline elements causing activation. After accelerating beam from 400
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MeV to 8 GeV, the Booster can extract protons to an experiment hall, to the

Recycler, or to the Main Injector.

The Recycler is a permanent magnet synchrotron. Because the magnet

strength can’t change it only operates at a beam energy of 8 GeV. The Recycler

is mainly used to perform manipulations of the beam to increase intensity

before sending it off to the Main Injector. In the future the Recycler may also

provide beam to several muon experiments at Fermilab.

With a final energy of 120GeV/proton, the Main Injector is currently

the highest energy synchrotron at Fermilab, it can accept beam either directly

from the Booster, or Recycler at 8 GeV. The Main Injector magnets are not

part of a resonant circuit, meaning the strength of the magnets can be pro-

grammed throughout the cycle. Because the magnet strength is variable, the

Main Injector, like the Booster, can accelerate beam. Main Injector protons

are either sent to the neutrino production beam line where they strike a target

to produce a beam of secondary particles that decay into neutrinos used for

several experiments, or extracted to other experimental areas. 2

1.4 Longitudinal Diagnostics

One of the main tools used at Fermilab to non-destructively access

information about the longitudinal distribution of particles in the beam is

2The CERN complex is similar but starts with a beam of protons, which are accelerated
through a linac, the Proton Synchrotron Booster, the Proton Synchrotron, the Super Proton
Synchrotron, and finally the Large Hadron Collider.
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called a resistive wall current monitor(RWCM). A schematic of an RWCM

is shown in fig. 1.6. An RWCM is an insert that replaces a small length

of beam pipe with a non-conducting piece of ceramic. Resistors electrically

connected to the beam pipe span the gap created by the ceramic. As a bunch

of charged particles travels down the beam pipe the field generated by the

bunch terminates at the conducting wall. The induced image charge follows

the bunch creating an image current. When this current encounters the gap it

is shunted through the resistors. By measuring the voltage across the resistors

as a function of time, the total charge in the beam is deduced.

The resistive wall current monitor provides an impoverished view of the

phase space. The theory of longitudinal phase space is developed with many

references to the 2-D distribution in phase space, but the diagnostics usually

available only provide a 1-D view of the phase space. A lot of information can

be inferred from these 1-D projections if many projections are taken over time.

Often this involves applying specific analysis techniques that require their own

interpretation. A method known as longitudinal phase space tomography was

first described by G. Jackson at Fermi National Accelerator Laboratory in

1987 [23], and further refined by S.Hancock et. al at CERN in 1998 [20].

Tomographic reconstruction is a non-destructive technique that allows

the recreation of the 2-D distribution of particles energy, and phase relative

to the synchronous particle at a particular machine revolution from measure-

ments of the 1-D projections taken at over many subsequent revolutions. The

reconstruction process converts a series of traces of the beam that contain use-

17



Figure 1.6: This image shows a cutaway of a beam pipe with a resistive wall
current monitor installed. The particle bunch is shown in red propagating
to the right. The gray band in the pipe wall represents the non-conducting
ceramic insert. Two resistors of known resistance Ω are shown spanning the
ceramic insert. The image current induced on the conducting pipe wall by
the passing bunch is shown on top of the pipe. This current will be shunted
through the resistors, a measurement of the voltage across the resistors as a
function of time provides a measurement of the linear charge density of the
bunch.

18



ful information into an intuitive view that anyone trained in accelerator physics

will recognize immediately. The method is computationally intensive and, to

date, the system at Fermilab is the first real-time, multi-bunch reconstruction

system. Future increases in computing power will only make tomography more

appealing as a non-destructive view into phase space.

Tomographic reconstruction provides measurements of the details of the

energy coordinate, normally limited to a measurement of the centroid alone,

as well as the area of phase space occupied by the particles in a bunch, an

important quantity known as emittance, with fewer assumptions than other

methods. Providing operators the ability to tune the beam phase, and energy,

and identify errors in either coordinate when injecting from one machine to

another quickly and intuitively has already proven useful during the commis-

sioning of Fermilab’s Main Injector, and Recycler in the Fall of 2013 after a

year-long shutdown.

1.5 Organization of This Document

Chapter 2 describes longitudinal particle dynamics in a synchrotron.

The stable, harmonic oscillation of particles about the design energy is derived,

and the conditions required for stability are discussed. I will go into detail

regarding the consequence of the phase slip indicated in fig. 1.4, a phenomenon

known as transition which has implications for beam stability, and diffusion of

the bunch of particles. Finally, I will mention some error conditions that arise

when beam is transferred from one machine to another.
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Chapter 3 deals with 2-D longitudinal phase space tomography, the

technique that is the focus of this document. The algorithm used to reconstruct

2-D distributions of phase space from 1-D data is presented. I discuss the

physical quantities that can be extracted from tomographic reconstructions,

and some operational uses of the system implemented at Fermilab.

Chapter 4 is a demonstration of longitudinal tomography at Fermilab.

In this chapter I describe the design of an experiment to measure the growth

of particle distributions in phase space, described by a quantity known as

emittance. Emittance is an important quantity measurements of which are

either destructive, or require several approximations that limit the analysis

that can be done. Chapter 5 presents the results of that experiment.

Chapter 6 will summarize the main points of the dissertation, and dis-

cuss the future applications of tomography. Useful extensions of the work

presented here, and the challenges facing implementation will be discussed.
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Chapter 2

Longitudinal Beam Dynamics

The motion of a particle beam in an accelerator can be divided into

longitudinal, and transverse dynamics. Longitudinal beam dynamics describes

particle motion in the direction of acceleration, and transverse dynamics de-

scribes motion along the two axes perpendicular to the direction of acceler-

ation. Each of the three spatial axes can ordinarily be treated as uncoupled

from the remaining two, and we will not consider any case otherwise.

The highest energy particle accelerators are synchrotrons, complex cir-

cular machines that use magnetic fields and radio frequency cavities synchro-

nized to the revolution of charged particles to provide acceleration. The sim-

plest model of a synchrotron, for the purpose of longitudinal dynamics, consists

of dipole magnets, which provide the bending field necessary for a curved or-

bit, and a radio frequency cavity which imparts energy to the particles. This

simple model is shown in fig. 1.2.

The black trajectory in fig. 1.2 is known as the design orbit, or design

trajectory, followed by the design, or synchronous, particle. To first order,

this path should be unchanged as the synchronous particle gains energy, the

magnetic field ramping up so that the bending radius remains constant, and
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the frequency of the RF cavity tuned to keep pace as the particle’s velocity

increases and the revolution period decreases. A red, and blue trajectory

indicate particles with lower, and higher momenta respectively. Notice that

the difference in momenta produces different bending radii. This orbit length

difference combined with the different velocities of the off-momentum particles

means the revolution times of off-momenta particles are different from that of

the synchronous particle.

Fig. 1.3 shows how the high, and low momentum particles sometimes

gain, and sometimes lose energy, depending on when they encounter the cavity,

oscillating stably about the design values when the phase of the cavity is set

properly relative to the synchronous particle. This energy oscillation also

manifests as an oscillation in phase relative to the design particle, as a low

energy particle takes more time to complete a revolution, and a high energy

particle takes less time. For small deviations in energy this oscillation is simple

harmonic motion, with a period much longer than a single revolution around

the machine.

The phase-energy plane depicted in the simplified fig. 1.3 is used to de-

scribe longitudinal motion, and is called the longitudinal phase space. Fig. 2.1

shows the realistic trajectories of particles in this phase space. Notice that the

axes are slightly different, where energy is actually given as ∆E, the deviation

of the energy from the synchronous value. This is standard convention, and

only done for convenience in calculation. 1

1For those familiar with the phase space of a pendulum in classical mechanics, this image
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Figure 2.1: The central blue dot represents the energy and phase of the syn-
chronous particle. The vertical axis is the energy deviation from the energy
of the synchronous particle, ∆E. The horizontal axis represents the phase
relative to the sine wave in the RF cavity depicted in fig. 1.2, φ. The time
evolution of particles with energies and phases different from the synchronous
value are shown as the paths surrounding the synchronous particle. Each point
on a given curve represents the same particle on subsequent machine revolu-
tions. A special trajectory, called the separatrix, that separates the regions of
stable and unstable motion is indicated in red. The φ-∆E plane is called the
longitudinal phase space.
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This chapter is dedicated to deriving the equations of motion governing

the energy and phase of particles in a synchrotron, and exploring the features

of such motion. One point in particular will occupy much of the discussion. A

special moment in the cycle called transition. When the synchronous particle’s

energy is equal to the transition energy the increased velocity of a higher energy

particle will be cancelled perfectly by the increased path length it experiences,

similarly for slower particles. The revolution period becomes independent of

momentum and stability is threatened. If the machine manages to make it

past this energy, the relationship between relative momentum and revolution

frequency will be reversed. Slower particles will seem to complete a revolu-

tion more quickly than faster particles. This change in dynamics can lead to

unwanted diffusion of the beam.

2.1 Longitudinal Motion of Particles

Consider a charged particle of charge q, and energy E. Its momentum is

p/c = βE, where β = v/c is the velocity in units of the speed of light. In order

to create a circular orbit a magnetic field of strength B is applied, as in fig. 1.2.

When it encounters the magnetic field the particle travels in an arc with a

radius, r = p/qB. If enough magnets are provided the particle completes a

should look familiar. The axes in the case of a pendulum would be angle, and angular
velocity, or potential and kinetic energy. The trajectories then represent lines of constant
energy. The limit of stable motion, indicated in red, would demarcate the energy above
which the pendulum rotates about its axis in one direction. The sharp edges of this region
at ∆E = 0 would represent the unstable fixed point, where the pendulum is precariously
balanced pointing upward.
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full revolution and returns to its starting point. 2 The time it takes a particle to

complete one revolution is called the revolution period, τ . In this simple model

the full path length for a single revolution is C = 2πr + 2L = 2(πp/qB + L),

where L is the length of the straight section. Because of the bending magnets

the path length is momentum dependent.

Now that the particle is traveling on a circular orbit, it will encounter

the gap indicated at the bottom of the fig. 1.2 many times, once every τ

seconds. Each time it passes the cavity is a chance to impart more energy to

the particle. The gap is actually a resonant radio frequency(RF) cavity driven

at the fundamental mode that has the main component of its electric field

aligned parallel to the motion of the particles. The time dependent electric

field is given by E(t) = E sin(ωrf t), where ωrf is the resonant frequency of

the cavity. This electric field provides a time-dependent accelerating kick to

particles passing through the cavity. For the purposes of this analysis the RF

cavity is modeled as a thin gap of length g, meaning E is static during the

particle’s transit of the cavity, and the voltage across the gap is V (t) = E(t)×g.

A particle of charge q that encounters the cavity at time t gains an energy of

qV (t) in units of electron-Volts, eV . ( In reality there may be several cavities

located around the circumference of the machine, but the analysis does not

change significanly.)

2In this model there are two regions of magnetic field, called dipoles, that create the
bending field for the circular orbit. The extent of the dipoles in this example is sufficient
for a complete orbit. A real synchrotron may have many magnets each providing a much
smaller portion of the arc.
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It is helpful to give the arrival time of a particle in terms of phase

relative to the RF oscillation, φ = ωrf t. Any particle that arrives with a phase

φ = 0, π, 2π... will receive no energy from the cavity. In order to provide

acceleration, sin φ must not be 0.

For acceleration the cavity must also provide coherent kicks to the

particle from turn to turn. To do this the RF cavity must maintain a controlled

phase relative to the arrival time of the particle every revolution period, τ . This

relationship can be written:

h =
τ

Trf

=
ωrf

2π
τ (2.1)

Where h is a positive integer called the harmonic number and represents

the number of RF periods, Trf , per particle revolution, τ . This condition

states that the particle’s revolution period and the period of the cavity must

be synchronized so that the particle sees the same phase from turn to turn.

This synchronicity condition defines a synchronous particle, also called

the design particle. This is a conceptual particle that arrives at the cavity

once every h oscillations of the RF cavity at the appropriate time, and with

the appropriate energy. It is the black particle on the central orbit in fig. 1.2.

All values describing the synchronous particle are given the subscript s. The

phase φs, or velocity, βs for instance. If the cavity imparts energy to the

particle, its velocity will increase and τ will change, if I wish to maintain the

relationship stated here, the RF frequency must also change. The magnetic
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field will have to change if the particle is to maintain a constant orbit. The

synchronous particle is an abstraction used to synchronize these changes to

the systems of the accelerator.

Ultimately, the goal of acceleration is to produce more energetic parti-

cles. On each revolution the RF cavity can, in principle, provide an energy kick

in the range ±qV depending on the arrival time of the synchronous particle. In

order to keep proper accounting of the energy, we also need to know the arrival

time of the particle, or it’s phase since we’re actually interested in the relative

timing between the particle arrival and the field in the RF cavity. As a matter

of convention, and convenience the synchronous particle always has the correct

energy, Es which we will use as the origin of our energy coordinate. The coor-

dinate then is the deviation from this value, ∆E = E−Es. (For those keeping

score, (φ, ∆E) is not a canonically conjugate pair, (∆t, ∆E) = (ωrf (φ−φs), E)

is however. I’ll have more to say about this later.)

These two variables are all we need to describe the longitudinal motion

of the beam. The (φ, ∆E) plane, fig. 2.1, defines the longitudinal phase space,

which I’ll often call simply phase space. Phase accrues as the particles traverse

their orbits, but the energy coordinate is only modified once per revolution, at

the cavity. This means we can index the coordinates and keep track of discrete

values at each turn, n.

In reality the accelerator handles more than one particle at a time, so

we need to consider what happens to particles that deviate in phase or energy

from the synchronous values. This is hinted at in fig. 1.2.
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A particle with the synchronous energy (and charge) will experience the

same bending radius as the synchronous particle, and have the same velocity,

therefore it will traverse the ring in the same amount of time, and its phase

is unaffected from turn to turn. If it enters the cavity with a different phase,

however, it will receive a different kick than the synchronous particle and the

energy will be different on the next revolution. Phase errors lead to energy

errors.

A particle with the synchronous phase, but different energy will experi-

ence the same bending field but have different bending radius, and a different

velocity, so in general it will complete a revolution in a different amount of

time. As a result it will slip in phase over a turn and receive a different kick

on subsequent turns. Energy errors lead to phase errors.

2.1.1 Longitudinal Stability

I’ve asserted that the relationship between phase and energy, stated

here qualitatively, can lead to stable motion about the design energy, but I

have yet to establish the conditions needed to obtain stability.

To say particle motion is stable means the particle with phase and

energy initially near the synchronous particle should stay near the synchronous

particle for all time. This is evident for the particles within the central region

of fig. 2.1, bounded by thick red line called the separatrix. The two things that

have not been quantified in the simple argument at the end of the last section

are the amount of phase accrued over a single turn by a particle deviating
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from the synchronous energy, and the energy difference accrued over a single

turn by a particle deviating from the synchronous phase.

The difference in energy accrued on a single revolution for a particle

with a phase different from the synchronous value is easy to calculate: ∆E =

qV sin φ − qV sin φs. For a particle with an energy error the phase accrued

relative to the synchronous particle is a little more involved. It is given by

δφ = (2πh)× (δτ/τs). What we need to quantify is the fractional difference in

revolution period between a particle and the synchronous particle, δτ/τs. The

revolution time of the synchronous particle is just the path length, C, divided

by the velocity.

τs = v/C (2.2)

Obviously the velocity depends on momentum, but because of the bending

field so does the path length. To first order in momentum deviation, the

fractional deviation in τ is calculated as follows:

δτ

τs

=
δC

Cs

− δv

vs

=

(
1

γ2
t

− 1

γ2
s

)
δp

ps

(2.3)

Where γs is the relativistic Lorentz factor, and γt is the proportionality between

the path length deviation and momentum deviation, which must be calculated

for the machine under consideration. There may actually be higher order

dependences on δp/p, but generally the momentum deviations are so small

that they can be ignored. An important point here is that depending on
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the value of γt, and the particle energy, represented by γs, the relationship

between revolution period and momentum can change. This means faster

particles will have longer revolution periods when γs > γt, appearing to move

more slowly than lower energy particles. And when γs = γt the revolution

period is independent of momentum.

Generalizing, the term (1/γ2
t − 1/γ2

s ) is often written as the single pa-

rameter η, called the slip factor. Rearranging eqn. 2.3 gives a definition for

η.

η =
dτ/τs

δp/ps

(2.4)

What η really tells us is how much of a time difference accrues for a

particle given some deviation from the synchronous energy. Which is what we

set out to calculate. There is one more matter of convention to discuss.

Because the momentum deviation δp/p is typically small, it is standard

to expand η in power series about δp/p as in eqn. 2.5

η = η0 + η1δp/ps + η2(δp/ps)
2 + ... + ηnO((δp/ps)

n) (2.5)

When written this way, it is obvious that (1/γ2
t −1/γ2

s ) is just the lowest order

term in the expansion, η0. Unless explicitly stated, η = η0. Keep in mind

that η depends on γs, and changes throughout the cycle, changing sign as γs

crosses γt. This is known as crossing transition.
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I mentioned that γt is a relates the change in path length and change

in momentum, this proportionality may itself have higher order terms. In

general, fractional change in path length for a given momentum devaition is

given by the momentum compaction in eqn. 2.6.

C

Cs

= 1 + α0δp/ps(1 + α1δp/ps + O((δp/ps)
2) (2.6)

The lowest order term is related to γt, with γt = 1/
√

α0. The higher order

terms of η are often written in terms these values,

η0 = α0 −
1

γ2
s

η1 = α0α1 − η0α0 +
3

2

β2
s

γ2
s

(2.7)

These values are important for determining emittance growth near transition,

where higher order terms of η become important.

With η defined I can quantify the difference in phase accrued on the

(n+1)th turn by particles with energies deviating from the synchronous value.

Together with the energy difference accrued for particles with phase errors the

difference equations 2.8 describe the motion of particles in the longitudinal

phase space from turn to turn.

∆En+1 = ∆En + qV (sin φn − sin φs)

φn+1 = φn + 2πhη
∆En+1

β2Es

(2.8)
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Where I’ve replaced δp/ps with 1/β2
s × ∆E/Es. A separate (φ, ∆E) pair

describes the position of each particle. As simple as these equations seem,

they are very powerful. The discrete particles indicated in fig. 2.1 were tracked

using these equations. In order to understand the system analytically, though,

we will develop a differential approximation. If we assume the changes in φ

and ∆E are small over a single turn we can write the change in energy and

phase per turn as differentials.

d∆E

dn
= qV (sin φ− sin φs)

dφ

dn
= ωrfτη

∆E

β2Es

(2.9)

Taking the derivative of the equation for φ, we can obtain a second order

equation in φ alone:

d2φ

dn2
− ωrfτηqV

β2Es

(sin φ− sin φs) = 0 (2.10)

Extending the single turn difference equation in this way allows us

to analyze two important phenomena over many turns: harmonic oscillator

behavior of particles relative to synchronous particle, and contours in phase

space defining stable particles which can orbit the accelerator. The following

discussion of these two effects will address the question of stability.
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2.1.2 Harmonic Oscillator Approximation

Near the synchronous particle the RF cavity sine wave can be linearized,

and a linear restoring force implies simple harmonic motion. In analogy with

a simple harmonic oscillator, we should also expect an unstable fixed point.

Because we control the phase of the restoring force in the RF cavity, we must

make sure that the accelerator produces stable motion.

Considering small deviations around the synchronous phase allows us

to write a linear form of the differential equation in terms of δφ = φs − φ.

Under this approximation sin φ− sin φs ≈ δφ cos φ and eqn. 2.10 becomes:

d2δφ

dn2
+ (2πνs)

2δφ = 0 (2.11)

The equation of a simple harmonic oscillator with a natural frequency 2πνs

in units of [rad/machine revolution]. νs is called the synchrotron tune and

gives the number of phase space oscillations per machine revolution, and is

always less than one. The tune is just a frequency, but because the equations

of motion are given with respect to machine revolutions, instead of time, the

natural frequency is also in terms of machine revolutions. The expression for

νs is:

νs =

√
−ωrfτsηqV cos φs

β2
sEs

(2.12)

The synchrotron tune can also be expressed as a synchrotron frequency, Ωs,

in units of Hz,
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Ωs = 2π
νs

τs

= 2π

√
−ωrfηqV cos φs

β2
sEs

τs (2.13)

It is well known that the frequency of a harmonic oscillator must be

real in order to have stable motion. In the expression for νs only η and cos φs

can change sign, all the remaining parameters must be positive. Thus, the

condition −η cos φs > 0 must be maintained for stable motion.

Let γt be a given parameter, so we have no control over η at a particular

energy. The sign of η is determined by the value of γs, or where we are in the

acceleration cycle. φs is completely arbitrary though, and the values that lead

to stable motion depend on η. Below transition η < 0 and −π/2 < φs <

π/2, and above transition η < 0 and π/2 < φs < 3π/2 satisfy the stability

requirement.

Additionally, in the tracking eqn. 2.8 the sign of sin φs determines

whether the synchronous particle is gaining or losing energy. If the phase is

0 or π, depending on the sign of η, the synchronous particle receives no kick

and the beam is said to be stationary.

A harmonic oscillator has constant total energy exchanging potential

for kinetic as the system oscillates. In this case, it is action that is conserved.

In the next section I will derive curves of constant action in the phase space,

and use these to examine the limits of stability.
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2.1.3 Particles Outside the Harmonic Oscillator Region

Particles only exhibit simple harmonic motion when the deviation from

the synchronous particle is small. This is indicated in fig. 2.1 by the parti-

cle immediately orbiting the synchronous particle.The remaining particles that

are within the separatrix will still exhibit oscillatory motion, but the frequency

becomes dependent on action. The non-linearity in the focusing potential pro-

vided by the RF cavity creates this action dependence. Beyond the separatrix,

motion is no longer stable. Because this nonlinearity is a feature of the system,

not an error or perturbation, we need to consider it if we want to understand

the full stability region.

We can start from eqn. 2.10 and produce an integral of the motion. i.e.

there is a conserved term implied by the equations. This will be the phase

space action I mentioned in the last section.

∫ (
d2φ

dn2
− ωrfτηqV

β2Es

(sin φ− sin φs)

)
dφ

dn
dn =

∫
dn (2.14)

1

2

(
dφ

dn

)2

+
ωrfτηqV

β2Es

(cos φ− φ sin φs) = C (2.15)

From eqn. 2.9 we can write this in terms of only ∆E and φ

1

2
∆E2 +

β2EsqV

2πhη
(cos φ + φ sin φs) = C (2.16)
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This isn’t strictly an action, though we could derive a Hamiltonian and con-

vert into action-angle coordinates, I will refer to this constant as the action.

Analogous to the pendulum, over time the particle swaps kinetic for potential

energies, while maintaining a constant total value follows curves of constant

action in the phase space. A special trajectory called the separatrix marks

the boundary between stable and unstable motion. Fig. 2.2 shows contours of

constant action for several values of φs.
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(a) φs = 0 (b) φs = π/12

(c) φs = π/6 (d) φs = π/4

Figure 2.2: Contours of constant action in the ∆E - φ longitudinal phase space as described by eqn. 2.16
for several values of φs. The regions enclosed by the red lines indicate buckets, the portion of phase
space where motion is stable. A machine with harmonic number h will have h such stable buckets. The
buckets shrink as φs deviates from the stationary bucket (φs = 0). Particles outside of the bucket accrue
phase indefinitely, but remain within a small range of energies when φs = 0, and stream away from the
synchronous energy otherwise.
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In the case of a stationary bucket, φs = 0, even the unstable region is

only unstable in phase, returning to the same relative position every 2πh rad.

This is analogous to a pendulum with enough energy to rotate fully around

its axis. In the case of accelerating buckets, the unstable beam diverges in

both energy and phase. In a real machine a large energy deviation will mean

a large deviation in radial position, and eventually the particle will be lost on

the beam pipe, or a magnet aperture.

The entire stable region represents an RF bucket. A bucket doesn’t

necessarily contain particles, it is a phase space region defined by the RF

system, and machine parameters. When a bucket does contain particles the

particles contained in the bucket are called a bunch.

The bucket height is an important number representing the maximum

energy deviation from the synchronous value that can still undergo stable

synchrotron motion. Because particles with energy deviations have different

radii than the synchronous particle, and the beam pipe containing the particles

is finite, an energy deviation that is too large can lead to beam being lost.

Assuming that all of the beam is in the stable region, the bucket height must

remain smaller than the aperture of the machine, which is the maximum energy

deviation that can be physically accommodated.

Using eqn. 2.16 the phase space contour for the separatrix is determined

by setting φ equal to one of the turning points, where ∆E = 0. This gives the

action on the separatrix. The maximum energy deviation, the bucket height,

is obtained when φ = φs, minimizing sin φs. This is given in eqn. 2.17.
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∆EMAX = 2

√
β2EsqV

2πω2
rfh|η|

∣∣∣∣cos φs −
π − 2φs

2
sin φs

∣∣∣∣ (2.17)

Another important measure is the bucket area, A, the total area of

phase space enclosed by the separatrix. When I discuss ensembles of particles

I will discuss how to calculate the phase space area the beam occupies, which

should be less than the area that the bucket occupies to ensure that all particles

are executing stable motion in the longitudinal phase space. The bucket area

can be found by integrating the area under the separatrix. The integral here

can be solved exactly for the stationary bucket, φs = 0 or π, or numerically

otherwise.

A = 16

√
β2EsqsV

2πω2
0h|η|

α(φs) (2.18)

Where the factor α(φs) is the ratio of the area of the bucket with φs to the

stationary bucket, eqn. 2.19.

α(φs) =
1

4
√

2

∫ π−φs

φl

√
sgn(−η)[cos (π − φs)− cos φ + (π − φs − φ) sin φs] dφ

(2.19)

and the limits of integration are the turning points, φl, and π − φs. φl is the

solution to the equation, cos φl + φl sin φs = − cos φs + (π − φs) sin φs, which

usually has to be solved numerically.

Each panel of fig. 2.2 depicts the same rectangular phase space area,

notice that as φs increases the stable area inclosed by the separatrix, given
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by eqn. 2.18, decreases. Because of this the bucket area is important during

the operation of a particle accelerator to ensure that all of the particles are

contained within the stability region, especially when transferring particles

between machines, or when accelerating a bunch of particles.

So far we’ve only discussed single particle dynamics, though I’ve alluded

to the multi-particle bunches we will actually accelerate. The next section dis-

cusses the behavior of ensembles of particles within a bucket, and one measure

used to characterize the ensemble.

2.1.4 Ensembles and Emittance

We don’t accelerate particles one at a time, the ensemble of particles

that occupy a particular bucket in the phase space is known as a bunch. The

particles of a bunch are not necessarily confined to the linear region of the

phase space very near the synchronous particle. As I showed in the last section,

particles far from the synchronous particle in phase space, but still within the

separatrix, have lower synchrotron frequencies. This change in frequency with

increasing action causes the bunch to shear when many particles are present,

but only if the bunch occupies a large enough spread in action.

A full treatment of the evolution of ensembles requires the Vlasov equa-

tion (which reduces to the collisionless Boltzmann equation when neglecting

self forces) [9]. Tracking is much easier when only single particle dynamics are

considered and for much of what we will cover, bunch self-forces, and beam-

environment interactions, known as collective effects, are not necessary. But I
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will discuss some collective effects later.

For a bunch of particles the emittance, ε, is often used as a measure

of how diffuse the bunch is in phase space. Emittance is the average action

of all the particles in a bunch, sometimes referred to as the phase space area

occupied by the bunch. Fig. 2.3 shows how this second description can be

misleading. The left panel shows a contrived bunch generated from a rect-

angular distribution. Because the actions spanned by this distribution in the

given machine do not match the contours the distribution distorts over time

filamenting to eventually fill the contour indicated in the right panel. The

emittance is often written ε68% (RMS emittance), or ε95%, which indicates the

action such that 68%, or 95% of the particles in a bunch have an action less

than that value. The emittance of a bunch should be less than the bucket

area, eqn. 2.18, if all of the particles are to remain within the stable region

defined by the separatrix.

The units of action, and therefore emittance, are energy × time, which

seems to be at odds with the φ, and ∆E coordinates I’ve been using. Until

now these coordinates have sufficed because they are intuitive, but technically

they do not form a canonically conjugate pair. In order to properly measure

emittance, φ should be replaced with δt = ωrf (φ−φs) (Some authors may use

(φ,W = ∆E/ωrf ), (φ, δ = ∆p/p0), which are equivalent).

Because this system is conservative, as long as changes to the system

are adiabatic the action of any particle should be the same, and the emittance

of a bunch should be preserved. Dissipative effects including noise in the RF
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(a) (b)

Figure 2.3: Evolution of a particle distribution in phase space. Panel (a)
shows a simulated distribution of particles in φ-∆E phase space generated to
lie within a rectangular region, and a histogram representing the projection
of the distribution onto the φ axis. This projection is eqiuvalent to the signal
that would be seen by an RWCM. Naively the area of the gray rectangle could
be called the phase space area, or emittance, of the distribution. Panel (b)
shows the same distribution tracked over many turns using eqn. 2.8. Because
of the action dependent synchrotron frequency the bunch has filamented to
fill the red area, which is larger than the initial rectangle. The emittance can
be defined as the average action of the particles. The emittance of a bunch
depends on the machine parameters defining the contours in the phase space.
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system, beam scattering off of residual gas, or with other particles in the bunch

can lead to emittance growth.

Non-adiabatic changes in machine parameters can also cause emittance

growth. Transferring beam from one machine to another, and crossing tran-

sition are two examples of non-adiabatic changes that in machine parameters

that I will discuss later in this chapter.

Because the stable area in phase space is limited, and beam losses occur

for beam outside of the bucket, as discussed in the last section, the emittance

growth throughout the acceleration cycle must be controlled.

2.2 Particle Stability During Acceleration

When φs 6= 0 (or π above transition) the synchronous particle receives

an energy kick each turn. All of the analysis thus far is unaffected by accel-

erating beam as long as the change from turn to turn is small, but the shape

of the stability region changes. The bucket shape as a function of φs is shown

in fig. 2.2. Notice in the figure that as φs increases the bucket area, width,

and height all decrease. One unstable fixed point disappears and the buckets

become asymmetric. Most dramatic of all is that the particles outside the sta-

ble region do not simple accrue phase indefinitely remaining at approximately

the same energy. Now the particles outside the bucket stream away in the

phase space. When far enough away in energy the particles will be lost as

their radius decreases until they cannot be contained in the beam pipe.
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When discussing the conditions for stability I mentioned that η, the

phase slip factor, changes sign at a particular energy called the transition

energy. Once we begin accelerating beam, it is necessary to understand some-

thing about transition, particularly if the machine in question accelerates

through an energy range that includes transition. Not all machines cross

transition, but transition will be important in later chapters.

2.2.1 Collective Effects

Until now I’ve ignored the fact that the particles in an accelerator are

charged, except for their interaction with the accelerating cavity. In reality,

particles interact with one another, and with the environment through their

electromagnetic fields. By environment I mean all the elements needed to ac-

tually realize an accelerator, the resistive, conducting beam pipe that allows

vacuum to be maintained, diagnostics, vacuum valves, and other disconti-

nuities that interrupt the beam pipe. These interactions, and the dynamic

consequences are referred to as collective effects.

The beam current is defined as the charge per unit time. For a 2-D

phase space distribution is written as Ψ(φ, ∆E), the linear charge density, λ(φ)

is given by eqn. 2.20.

λ(φ) = qeN

∫
Ψ(φ, ∆E) d∆E (2.20)

Where qe is the charge of a single particle, and N is the number of particles

in the bunch. The beam current I is the charge per unit time. As the particle
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bunch traverses the machine, the beam current interacts with the environment.

This interaction causes a modification of the energy if the perturbation

to the dynamics described by eqn. 2.8 is significant the stability of the beam

can be threatened, and the beam may be lost. The effect of this energy

modification can be included by adding a term to the energy equation in

eqn. 2.8 to get eqn. 2.21.

∆En+1 = ∆En + qV (sin φn − sin φs) + δEZ(φn) (2.21)

Where δEZ represents the energy modification for the particle under consider-

ation. In general this contribution will change from turn to turn as the bunch

evolves.

The energy loss due to some interaction is calculated by writing down

the electric field on the bunch, and integrating over a single turn. This gives

a voltage, which can be multiplied by the charge of the particle analogously

to the voltage provided by the RF cavity. This voltage is then written as the

product of the beam current and an impedance. Considering only longitudinal

dynamics only fields directed azimuthally need to be considered, the presence

of transverse field components also affects beam dynamics, but only transverse

dynamics which I do not consider here.

The impedance can be reactive, or resistive. Resistive impedances cause

net power dissipation, and reactive impedances do not, but they do distort

the contours of constant action. The beam current is also often decomposed
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into frequency components via a Fourier decomposition. The dependence of a

reactive impedance on frequency characterizes the impedance as inductive or

capacitive.

As an example, a common consideration is the space-charge field, the

field of the bunch acting on itself.Because of boundary conditions on Maxwell’s

equations there is also a component that depends on the beam pipe. When the

bunch is long compared to the beam pipe radius, the azimuthal component of

the field due to the bunch, and the conducting wall only is given by, 3

Esc ≈
qeg0h

2

4πε0γ2
sR

2
s

∂λ

∂φ
+ Ew (2.22)

Where Rs is the radius of the machine, and g0 is a geometry factor related

to the beam radius, a, and the pipe radius, b. For a cylindrical pipe g0 =

1 + 2 ln(b/a), and for a rectangular pipe of full width, w, and full height, h,

g0 = 1 + 2 ln
(

2h
πa

tanh(πw
2h

)
)

[39], [29]. Ew is an additional contribution from

the wall, which is often modeled as having a reactive coupling denoted by the

impedance, L.

Ew ≈ −
qeh2ω2

sL

2πRs

∂λ

∂φ
(2.23)

Integrating the complete space-charge field around the circumference of the

3This discussion is only an overview to orient the reader to the idea of an impedance as
it applies to a particle accelerator. For a more detailed discussion and derivations of these
quantities see [9], and [30] or for specific applications near transition [39].
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accelerator gives the voltage (which is the energy loss term for the space charge

in eqn. 2.21), which can be written,

V (φ) ≈ 2πqeh2

τs

∂λ

∂φ

(
g0Z0

2β2
sγ

2
s

− 2πL

τs

)
(2.24)

Where Z0 = 1/(ε0c). Notice that the voltage depends on the derivative of the

charge distribution, meaning a perfectly uniform longitudinal distribution has

no longitudinal space-charge.

This voltage can also be expressed as the product of the beam current

and the space-charge impedance per revolution harmonic, Z||/n

|Z||/n| = i

(
g0Z0

2β2
sγ

2
s

− 2πL

τs

)
(2.25)

Because this particular effect is out of phase with the bunch, it is classi-

fied as reactive. This means the space-charge force does not dissipate energy.

Resistive impedances will dissipate energy. The distortions in phase space,

or energy dissipiation due to either type of impedance can lead to instabil-

ity through perturbation to the dynamics described in the beginning of this

chapter.

2.2.2 Transition Crossing

There are certain regimes where collective effects become particularly

troublesome. This section describes transition crossing in more detail, and
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specifically discusses how collective effects lead to bunch diffusion when cross-

ing transition.

The first thing I did when writing down the equations of motion was

to quantify the amount of phase slippage for off-momentum particles with

the parameter η, eqns. 2.4, and 2.5. I pointed out that the slip-factor, η, is

dependent on energy, and changes sign as the synchronous energy accelerates

through the transition energy. Fig. 2.4 illustrates how particles slip relative

to one another when the restoring force provided by the RF cavity is absent,

both above and below transition, and the effect on particle motion when the

proper restoring force is applied.

The change in sign of η causes the direction of the slippage shown in

fig. 2.4 to change above transition. The reason for this is the difference in the

way velocity and path length change with a change in momentum, see fig. 1.4.

Below transition the velocity of a particle dominates its phase slippage, mean-

ing higher momentum, faster particles traverse the ring more quickly and reach

the RF cavity earlier. Above transition the velocity is effectively saturated,

asymptotically approaching the speed of light, at which point the change in

path length due momentum dependence of the bending radius dominates the

difference in revolution time relative to the synchronous partilce, meaning

higher momentum particles, with larger bending radii, traverse the machine

more slowly, and arrive at the RF cavity later than the synchronous particle.

(In both cases the opposite is true for lower momentum particles.)
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(a) (b)

(c) (d)

Figure 2.4: Panels (a) and (b) show particle trajectories in the longitudinal phase space in the absence
of a restoring force. When the synchronous energy is below the transition energy the off-momentum
particle’s phase slip is dominated by the increase(or decrease) in velocity. Meaning higher momentum,
faster, particles arrive earlier on subsequent turns. After transition, the increase(or decrease) in path
length due to increasing bending radius dominates, causing higher momentum particles to arrive later on
each subsequent turn. Because of this the potential that provides the restoring force must be shifted in
phase by π − 2φs when the energy crosses the transition energy to maintain the same acceleration rate.
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This change in relative slippage means that the slope of the restoring

potential must change in order to maintain stability. This is evident from

eqn. 2.12, and is also indicated in fig. 2.4. In order to change direction, the

phase slip must pass through zero, which occurs at transition. When the

synchronous energy equals the transition energy revolution frequency is inde-

pendent of momentum. Because of this the oscillatory synchrotron motion

demonstrated in the beginning of this chapter stops. This can also be seen in

eqn. 2.12, since νs ∝
√

η.

As a matter of convention when discussing transition, the moment of

transition is usually taken as time t = 0. Times approaching transition are

negative, and times exiting transition are positive. In addition, the acceler-

ation rate, the change in the Lorentz factor with time, γ̇s is taken to be a

constant value. Near transition γs can be expressed as a function of time,

γs(t) = γt + γ̇st (2.26)

Which gives γs(0) = γt as expected. The acceleration rate, γ̇s, is just the

change in energy of the synchronous particle per revolution, divided by the

time to complete one revolution, and the particle mass.

γ̇s =
qeV sin φs

mτs

(2.27)

Given this expression for γs(t) near transition, it is also useful to have an

expression for η0 near transition. Using eqns. 2.4, and 2.26 and expanding

around t = 0 gives,
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η0(t) =
1

γ2
t

− 1

(γt + γ̇st)2
≈ 2γ̇s

γ3
t

t (2.28)

This section laid out the terms, and approximations used when dis-

cussing transition. Transition is taken as the t = 0. The acceleration rate is

taken to be constant, this is almost always true at least in some neighborhood

of transition. The slip factor is then determined by this rate, and is propor-

tional to the time from transition. In addition to the assumptions made about

the operating parameters of the synchrotron, a treatment of collective effects

requires some assumptions about the bunch shape, since the energy difference

is dependent on the bunch current.

2.2.3 A Bunch Model

The next few sections involve some calculations of emittance growth

that require a bunch distribution to evaluate. Because the non-linear shearing

is only applicable for large bunches, and difficult to evaluate, I will restrict

these analytical considerations to the linear region near the synchronous par-

ticle, with motion described by eqn. 2.11. This can be derived from the Hamil-

tonian in eqn. 2.29, which is needed to specify a 2-D distribution in the phase

space.

H =
2πhη0

Esβ2
s

∆E2

2
− qeV cos φsδ

φ2

2
(2.29)

When the distribution given by eqn. 2.30 is integrated according to eqn. 2.20
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the result is the linear charge distribution in eqn. 2.31, which is parabolic in

δφ. The benefits of a parabolic distribution are: bunches are often gaussian,

and appropriately normalized a parabolic approximates a gaussian distribution

near the mean, and the space-charge voltage, proportional to ∂λ/∂φ, is linear.

Ψ(φ, ∆E) =

{
3

4πHmax

√
1−H(φ, ∆E)/Hmax H < Hmax

0 otherwise
(2.30)

Where Hmax is the maximum action of the distribution given in terms of the

bunch half width in φ, δ̂φ, Hmax = −qeV cos φsδ̂φ
2
/2.

λp(φ) =

{
3qeN

4δ̂φ

(
1− δφ2

δ̂φ
2

)
|φ| ≤ φ̂

0 otherwise
(2.31)

Where q, e, N are the particle charge state, electron charge, and number of

particles in the bunch respectively.

One of the questions I address in later measurements is whether the

emittance growth functions derived under this approximation are applicable

for more realistic beam distributions in Fermilab’s Main Injector, which are

often quite different from gaussian because of some RF manipulations detailed

in ch. 4.

2.2.4 The Non-Adiabtic Regime

To maintain the phase space area of a distribution parameters defining

phase space contours should be changed adiabatically. That is the fractional
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change in the synchrotron frequency, Ωs in eqn. 2.13, caused by the changing

parameter should be small relative to the synchrotron frequency or,

1

Ω2
s

dΩs

dt
� 1 (2.32)

For a constant acceleration near transition, it is reasonable to assume

that only η is changing, in which case the adiabatic condition becomes,

1

Ωsη0

dη0

dt
� 1 (2.33)

For any rate of change of η, while η is near 0 on either side of transition

there will be some time during which this condition is not satisfied, and motion

is non-adiabatic. This is called the non-adiabatic time. 4 Using eqns. 2.33

and 2.28 the non-adiabatic time can be calculated,

Tna =

(
πEsβsγ

3
t τs

eV |cos φs|γ̇s2πh

)1/3

(2.34)

Because η is going to 0, the motion in φ slows down eventually stopping

altogether, but the motion in ∆E continues. This leads to the bunch becoming

narrower in φ, and taller in ∆E. The height of the bunch depends on how long

the beam remains in the region where motion in φ is negligible, characterized

by the non-adiabatic time. The width in φ, and height in ∆E, of a parabolic

distribution dimension at the moment of transition crossing are given by:

4The non-adiabatic time is sometimes called the characteristic time for non-adiabtic
motion and is denoted by Tc
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σ̂φ(ε) = 0.52

√
2πhε

TnaqeV | cos φs|

σ̂δ(ε) = 0.71
1

τsEsβ2
s

√
2πhTnaqeV |cos φs|ε

(2.35)

Notice that the bunch widths depend on Tna, and the emittance, ε. A full

derivation of these quantities involves a detailed treatment of the envelope

function for bunches near transition, which I do not cover here. A full treat-

ment is given in [39].

If there are no higher order terms in η, this process is reversible and

there will be no emittance growth. But non-linear terms of η change the

effectiveness of the focusing potential near transition and lead to emittance

growth.

Because each higher order of η in eqn. 2.5 depends on another factor

of δp/ps, which is much less than one, each subsequent term is important on a

shorter timescale, and is thus less important unless the acceleration is halted

near transition. I will only consider the first non-linear term here.

Fig. 2.5 shows the phase space when only the first non-linear term

of the slip-factor, η1 acts on particles. Notice how the trajectories form a

parabola around the synchronous particle because the non-linear term adds

an extra factor of δp/ps. Because η1 provides the same slip on either side of

the synchronous energy, only the momenta above or below the synchronous

value will experience a restoring force during the time this non-linear term

dominates. And the opposite side will be stable after transition. This leads to
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asymmetric tails that increase the bunch area. This is called a single particle

effect, because it happens regardless of the number of particles in the bunch.

Whether the momenta above, or below receive a restoring force above or below

transition depends on the sign of η1.

Because of the spread in the bunch the second order term, η1, affects

the high momentum tail of the bunch when the product of the momentum

and the non-linear term are greater than the first order term, given by the

non-linear condition in eqn. 2.36

|η1δp/ps| ≥ |η0| (2.36)

Using the values of of η0, η1 given in eqn. 2.7, the maximum spread in mo-

mentum given by eqn. 2.35, and the condition in eqn. 2.36 a non-linear time

can be computed, during which the second order term dominates the motion.

Tnl =
|(α1 + 3/2β2

s )|σ̂δγt

2γ̇s

(2.37)

Where α1 is the first non-linear term of the momentum compaction factor dis-

cussed earlier in this chapter, and introduced in eqn. 2.6. This non-linear time

characterizes the time during which unfocused particle trajectories resemble

fig. 2.5, rather than those in the upper plots of fig. 2.4.

The selective defocusing due to the momentum spread of the bunch

leads to a chromatic mismatch when the first order term of η once again

dominates. Defocusing occurs for both the high and low energy tails, but on
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Figure 2.5: Particle trajectories in the longitudinal phase space in the absence
of a restoring force when only the first non-linear term is present, and positive.
Particles above and below the synchronous energy slip in the same direction
and the restoring potential provided by the RF cavity is only effective on the
high momentum particles. When the phase of the RF changes at transition,
the first non-linear term does not change sign so the RF cavity then focuses
only the low momentum particles. This selective defocusing creates tails in
momentum that increase the bunch area in proportion to the time it takes to
accelerate half the bunch across transition.
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opposite sides of transition. Where each momentum tail is defocused depends

on the sign of η1. Fig. 2.5 depicts a positive η1, which would defocus the high

momentum particles before transition, and the low momentum particles after

transition. The particles that are defocused will lie on different action contours

when the first order term once again becomes dominant, this leads to emittance

growth when crossing transition. Because these tails are a consequence of the

momentum spread of the bunch through Tnl, this effect is called a chromatic

mismatch.

The amount of emittance growth is limited by the ratio of the time

during which motion is non-adiabatic, and the time during which the non-

linear term dominates. There are two cases for the emittance growth given in

eqn. 2.38 [39].

∆ε

ε
≈

{
0.76Tnl

Tc
Tnl � Tc

e
4
3

“
Tnl
Tc

”3/2

− 1 Tnl � Tc

(2.38)

Where ∆ε/ε is the fractional emittance growth, the difference in final and

initial, over the initial value. 5 When the non-linear effects are present outside

of the non-adiabatic regime, the growth is exponential relative to the ratio

of characteristic times. Usually, though Tnl > Tc, and the growth is only

linear (Tnl > Tc also indicates roughly that the beam is below the microwave

5What constitutes the ’initial’ and ’final’ emittance though? Because the growth here is
caused by the non-adiabatic, and non-linear motions of the particles, the initial, and final
emittances should be measured at times far away from transition compared to the longer of
the non-adiabatic, or non-linear times.
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instability threshold). This growth is known as a single particle effect, because

the only consideration is the dynamics of single particles.

Because of the bunch narrowing I described, the current of the bunch

increases, reaching a maximum value at transition. The minimum width of

a parabolic bunch is given in eqn. 2.35. This increase in current means the

bunches couple to the machine through the impedance discussed in sec. 2.2.1.

2.2.5 Collective Effects at Transition

In sec. 2.2.1 I discussed effects caused by the fields of the charged par-

ticles in the bunch. The interaction of these fields was characterized by the

longitudinal impedance, Z||. Because of non-adiabatic motion the bunch nar-

rows approaching transition, and the peak current increases. This means that

for a given impedance, collective effects become worse at transition.

In the previous section, I discussed how the first non-linear term of η

created an asymmetry in the particle motion that counteracted the focusing

potential, and how this perturbation does not change sign with the phase shift

induced upon crossing transition. A similar factor leads to emittance growth

when collective effects are considered.

Fig. 2.6 shows an example of how the space charge voltage modifies

the focusing potential provided by the RF cavity. The voltage induced by

the beam current coupling to the impedance adds a perturbation the focusing

potential provided by the RF cavity. Panel (a) shows the linear charge density

of a gaussian bunch, and its derivative, which is proportional to the space
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charge impedance given in eqn. 2.25. The beam current times the impedance

gives the perturbing voltage, which is linear near the synchronous value for

this distribution.

Panels (c), and (d) show how the voltage induced by the space charge

impedance perturbs the nominal potential provided by the RF cavity, below

and above transition respectively. A phase space contour for the nominal po-

tential , and the perturbed potential which is slightly distorted are indicated.

In the linear region this perturbation mimics a change in the voltage of the RF

cavity. Outside of the region where the perturbation, and the nominal poten-

tial are linear the effect will be more complicated but sill represents a distortion

of the phase space contours. Panel (b) isolates the contours indicated in panels

(c) and (d) to emphasize the difference before and after transition. Because

the perturbation doesn’t change when the nominal potential does, a bunch

initially filling the contour before transition will be mismatched relative to the

same contour after transition. This leads to emittance growth.
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(a) (b)

(c) (d)

Figure 2.6: Growth across transition due to the space-charge impedance. (a) A gaussian linear charge
distribution, λ(φ), (solid) and its derivative (dashed), which is proportional to the space-charge impedance,
eqn. 2.25. (c), and (d) show the focusing potential provided by the RF cavity with the appropriate phase
shift (solid), below and above transition, the space-charge voltage (dashed), and the potential resulting
from the sum of the two, (dotted, in color). The phase space contour of the unperturbed potential is shown
as a gray disk, and a perturbed contour as a dotted circle. (b) Shows how the perturbed potentials do not
match before and after transition. A bunch which initially fills the blue area will spread out in the phase
space causing emittance growth.
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This example is just used to illustrate how an impedance, which is not

controllable, perturbs the bunch shape differently on either side of transition,

causing emittance growth. There are actually several mechanisms that lead

emittance growth in this way, each characterized by an impedance.

There are also impedances associated with strong resonances, typically

from higher order modes in cavities or resonant structures in the beamline.

I do not consider those modes here. Impedances which are not due to sharp

resonances are called broadband, and act over a range of frequencies.

Because the voltage induced on the bunch is the beam current times the

impedance, to give values for the emittance growth, it is necessary to assume

a beam model and provide current measurements. In the case of a parabolic

bunch, the peak current is given as,

Î =
3πhNbqe

2τsσ̂φ(ε)
(2.39)

Where Nb is the number of particles in the bunch, this number may have some

correlation to the emittance, ε. σ̂φ is the minimum bunch width, given in

eqn. 2.35, which depends on the initial emittance.

The fractional emittance growth due to a broadband reactive impedance

is,

∆ε

ε
≈

hÎ(ε)|Z||/n|
3V | cos φs|σ̂φ(ε)2

(2.40)
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And the fractional emittance growth due to a broadband resistive impedance

is,

∆ε

ε
≈ Î(ε)R√

6V | cos φs|σ̂φ(ε)
(2.41)

Where R is the value of the resistive impedance.

Both of these expressions depend on ε through the peak current, if

there is a correlation between bunch intensity and emittance, and through the

bunch width.

2.3 Simulation of Injection Errors

I stated in ch. 1 that any high energy particle accelerator complex

will employ a series of machines to reach the final desired energy. Transfer-

ring beam from one machine to another can be thought of as a non-adiabatic

change in parameters since a single turn is the smallest time interval typically

considered. Thus the transfer of beam from one machine to another can lead

to emittance growth, and losses.

I discuss two types of errors here, offset errors, and matching errors.

Sometimes called dipole and quadrupole errors.

2.3.1 Dipole errors

Fig. 2.7 illustrates the mechanism leading to dipole errors. Transferring

beam from one machine to another can be thought of as changing all the
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machine parameters in a single turn. If the only parameters to change are the

synchronous energy, or phase, the distribution of particles is suddenly offset

from the bucket center. This offset in the phase space is called a dipole error,

since an offset charge has a dipole moment. If the error were large compared to

the bunch size some particles may fall into the non-overlapping region between

the red and gray separatrices, these particles would be lost.

Fig. 2.8 shows the time evolution of the dipole error created in fig. 2.7.

Because the central moment of the beam is now at a larger action, the emit-

tance has increased. Because the particles nearer the separatrix have lower

rotation frequencies in the phase space the bunch also begins to distort over

time. In the final panel of fig. 2.8, after much time as elapsed, the bunch is

much longer than it initially was, and has a larger energy spread. If special

care was taken to ensure either a short bunch, or a small energy spread the

dipole error has undone the effort.

However, a dipole error is not necessarily problematic if the available

stable phase space is ample compared to the bunch size, and the precise struc-

ture of the beam is not important. But for some machines or experiments

phase space may be at a premium, or the structure may be important. For ex-

ample, a light source, or Free Electron Laser might have strict requirements on

the longitudinal structure of the beam in order to provide optimal light yield.

Or beam from multiple bunches may be combined into a single bucket, which

I will discuss in a later chapter. In this case the phase space area occupied by

the bunch needs to be controlled to ensure no beam is lost.
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(a) (b)

(c)

Figure 2.7: Beam transfer between machines exhibiting a dipole error. (a)
shows the phase space coordinates of a bunch of particles centered in the region
of stability. (b) shows the same bunch of particles upon transfer to a different
machine. Because this transfer occurs in one turn, the distribution does not
evolve significanly between machines. In this case the RF systems are out
of phase, and the synchronous energy is not the same in both machines. The
contours showing the stable area for each machine overlap, but not completely.
The distribution is not centered relative on the synchronous particle in the new
machine. (c) removes the separatrix from the first machine to make clear how
a dipole error results from the beam transfer when the synchronous energy and
phase are not matched between machines. Fig. 2.8 shows the time evolution
this dipole error.
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A dipole error can sometimes be intentional. Because beam subject

to a dipole error diffuses and fills up more of the phase space, increasing the

bunch length, the particle density is lower. When coulomb interactions of

particles with one another, or the surrounding beam pipe become an issue this

decreased charge density can help prevent certain instabilities.
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Figure 2.8: These frames show the time evolution of the φ-∆E phase space coordinates of the distribution
of particles from fig. 2.7 using typical Main Injector parameters for tracking. The histogram included at
the bottom of each frame shows the projection of the distribution onto the φ axis. This histogram is
equivalent to the signal that would be seen by an RWCM. Time t = 0 represents the moment of injection,
notice the error in φ, and ∆E. Because particles of different action have different frequencies in the phase
space the distribution does not move coherently about the center, but shears with increasing time. The
final frame is much later, illustrating how the bunch filaments due to the dipole injection error.
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2.3.2 Quadrupole errors

Fig. 2.9 illustrates another error that occurs during beam transfer, a

bucket shape mismatch, also called a quadrupole error. A quadrupole error

occurs when the contours of the first machine do not have the same aspect ratio

as the those in the second machine. In fig. 2.9 the gray contours illustrate the

bucket of the initial machine. The separatrix is shown, but so is the contour

indicating the maximum action represented in the distribution. When the

synchronous energy, and phase are aligned between the machines, but one of

the parameters defining the bucket height in eqn. 2.17 has an error, the voltage

for instance, the aspect ratio of the buckets will be different. When the new

values are established the bunch will not fill the new contour. This is called a

bunch mismatch, or a quadrupole error.

Fig. 2.10 shows the time evolution of the quadrupole error depicted in

fig. 2.9. The distribution appears to tumble in the phase space as the particles

at higher actions take longer to complete a phase space revolution than the

particles near the center of the bucket. A RWCM will only have access to

the projections of this motion on the time axis, also shown in fig. 2.10. In

projection the bunch seems to breathe, the width of the projection expanding

and contracting as the bunch tumbles. The final frame in fig. 2.10 shows the

distribution after many rotations in the phase space, the beam has filamented

to fill a much larger area than it initially did.

Notice in fig. 2.10 that even in this extreme case the bunch rotates

almost rigidly, for the first synchrotron period or so, only filamenting over
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(a) (b)

(c)

Figure 2.9: Beam transfer between machines exhibiting a quadrupole error.
(a) shows the phase space coordinates of a bunch of particles centered in the
region of stability. The phase space contour containing the particles is also
indicated. (b) shows the same bunch of particles upon transfer to a different
machine. In this case the bunch shapes are mismatched, the voltage of the
first machine is double the voltage in the second. The distribution is centered,
the synchronous phase and energy are the same, but beam does not conform
to the contours of the second bucket. (c) removes the separatrix from the first
machine to make more clear how a quadrupole error results from the beam
transfer when the bucket shapes are mismatched. Fig. 2.10 shows the time
evolution of this quadrupole error.
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many turns. This can be used to match beam in some cases. If the first

machine has a high voltage, as in this example, the voltage can be turned

down a quarter of a synchrotron period before the beam transfer. This will

induce a rotation in the bunch, compare the first and third times in fig. 2.10.

If the beam is transferred after a quarter of a synchrotron period, the aspect

ratio has changed. This may help matching, and reduce the overall emittance

growth due to filamentation.
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Figure 2.10: The time evolution of the phase space coordinates of the distribution of particles from fig. 2.9
using typical parameters from the Main Injector for tracking. The histogram included at the bottom of
each frame shows the projection of the distribution onto the φ axis. This histogram is equivalent to the
signal that would be seen by an RWCM. Time t = 0 represents the moment of injection, there is no error
in φ, and ∆E, but the distribution shape is mismatched relative to the contours. Because particles of
different action have different frequencies in the phase space the distribution shears with increasing time.
The final frame is much later, illustrating how the bunch filaments due to the quadrupole injection error.
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2.4 Summary of Longitudinal Beam Dynamics

This chapter gave a brief introduction to longitudinal beam dynamics.

Only the details relevant to the rest of this document were presented, but there

is a wealth of existing knowledge, and active research regarding longitudinal

dynamics, transition crossing, and instabilities. To the interested reader I

recommend the following texts, [12], [27], and [9].

In order to discuss particle acceleration, I described a simple model of a

synchrotron. Bending magnets provide the fields needed to circulate energetic

particles of a given momentum at a given radius. A radio frequency cavity

provides a time varying field that is synchronized with the revolution of a

particle known as the synchronous particle.

When the RF cavity is properly phased, there is a spread in time, and

energy for which particles will remain close to the synchronous particle. This

shape stable region in phase space, called a bucket, was derived, and it’s behav-

ior under normal operating conditions described. Because of this stability it is

possible to accelerate ensembles of particles. Under ideal conditions the phase

space area occupied by an ensemble in units of [eV · sec], called the emittance,

remains constant. In the case of errors, or dissipative effects the emittance

increases. Increases in emittance can lead to beam loss, and distortion of the

energy, and time profiles of the bunch.

The special point known as transition occurs when the slip-factor changes

sign. This means that relative to the synchronous particle, higher energy par-
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ticles actually traverse the ring more slowly, because the contribution to rev-

olution frequency from increased path length becomes more important than

the smaller increase in velocity. Transition is a dangerous time when many

of the assumptions used to derive the longitudinal equations of motion break-

down. The change in parameters becomes non-adiabatic, non-linear terms

begin to contribute significantly to the phase space motion, a characteristic

bunch narrowing increases the beam’s coupling with the environment. All of

these considerations can cause emittance growth and must be evaluated when

designing a machine that will cross transition.

In order to reach increasingly higher energies it is usually necessary to

transfer beam between machines. This transfer can be thought of as a non-

adiabatic change in parameters. In order to prevent emittance growth it is

necessary to match the incoming beam and the machine. Dipole errors arise

from the bunch being injected with a coherent error in either energy or phase.

A shape mismatch, also called a quadrupole error, occurs when the parameters

defining the phase space contours do not match, such that the incoming bunch

is distorted in aspect relative to the contours of the new machine. Both of these

errors lead to emittance growth through filamentation.

A detailed knowledge of the distribution of particles in the longitudinal

phase space is necessary for the efficient operation of a machine, and the

transfer of particles between machines. In order to control beam losses, and

the longitudinal properties of the beam we need intuitive, precise diagnostics.

Tools that allow the operators of a machine to quickly diagnose problems
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and extract quantities of interest will allow physicists and engineers to push

to ever higher beam power in the face of increasingly stringent operational

tolerances. The next chapter will introduce the theory of longitudinal phase

space tomography, which allows the longitudinal phase space to be visualized

as presented in this chapter.
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Chapter 3

Tomography

Tomography is the process of building an image of an object from slices,

or projections, of the object. Such an image is called a tomogram. Using many

angularly separated projections along one dimension tomography enables re-

construction of an image in two dimensions. The tomogram itself is simply a

recasting of existing data into a more meaningful coordinate system.

The most widely known examples of tomography are in medicine, where

1-D information obtained non-invasively can be used to reconstruct 2-D images

of the inside of a patient. In an x-ray CT scanner, shown in fig. 3.1, x-rays

are emitted on one side of the body and the transmitted x-rays recorded on a

detector on the opposing side. The attenuation of the x-rays gives information

about the total density along the rays from emitter to detector plane. The

opposing detector/emitter system rotates around about a point located in the

body providing many 1-D attenuation curves of one 2-D slice at various angles

to reconstruct that slice in 2-D, shown in fig. 3.1. Many 2-D images can be

obtained at small displacements along the rotation axis and then stacked to

build up a 3-D image, also shown.

There are many technologies used to achieve the same end, Positron
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Emission Tomography(PET), for example, uses detectors placed around the

patient to reconstruct the origin of pairs of gamma rays produced by e+-

e− annihilations from radioactive isotopes injected into a patient. Selective

absorption of the particular radioactive element used allows the reconstruction

of the location of certain cell types.

The earliest mathematical statement of the problem was in 1917 by

Radon [32], who described an integral transform between a function in x,y

to a function of distance along an axis of projection x′ and the projection

angle θ. To reconstruct a distribution requires two pieces of information:

projections at many angles, and knowledge of the transformation that governs

the evolution of the distribution between angular acquisitions, which may be

a spatial rotation or some more complicated dynamics. As long as these two

conditions are met, the technology used to realize the reconstruction is largely

irrelevant, although details in implementation might change.

Fig. 3.2 depicts a schematic of a tomographic reconstruction setup. An

object is located at the center of a ring of detectors. (Alternatively the image

could represent one detector which can be swiveled around the object, keeping

track of the angle used for each acquisition.) Each detector only records a

1-D trace of the object along a local horizotnal axis. This information may

be the attenuation of x-rays in a medical scan, or some other measure of the

total density along a line through an object. The information from all of the

detectors is combined in a process known as backprojection. The resulting

guess is then compared to the data and iteratively refined until projections of
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(a) Scanner (b) Reconstruction

Figure 3.1: An x-ray CT scanner used to see inside a patient, and the resulting
images. X-rays are emitted from one of the flat planes surrounding the patient
in (a) and travel through the body. The transmitted rays are detected on the
opposite side of the body. This is repeated at many angles relative to the
patient. Tomographic reconstruction uses these 1-D transmission profiles to
reconstruct 2-D images of the body like those in (b). A 3-D image of the body
can even be constructed by stacking many 2-D images.
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the guess agree with the original data to a predefined level of precision.

In the previous chapter I showed that an ensemble of particles in an

accelerator undergo oscillatory motion about a fixed point, tumbling within

the 2-D phase space. Using standard accelerator diagnostics projections of

the ensemble can be obtained over many machine revolutions, sampling the

distribution at various angles as it tumbles. This provides the raw input for a

tomographic reconstruction algorithm, with the 2-D φ-∆E phase space distri-

bution playing the role of the patient. As a technique for particle accelerators

the method was first described, and implemented at Fermi National Acceler-

ator Labortory by G.Jackson [24], [23]. The method was further developed at

CERN in the 1990’s by Hancock et al. [20], [22]. It has been used by Angoletta,

Findlay, and Hancock in LEIR to make an independent measurement of the

accelerating cavity voltage [18], a parameter normally difficult to accurately

obtain.

Modern computing power is such that data acquisition, reconstruction,

and analysis can be done in the control room in real-time for very large sets

of data. This opens up diagnostic possibilities not previously available. Par-

ticularly the ability to view many bunches at once.

In this chapter I will describe the theory of longitudinal phase space

tomography, and how it is used to extract physics quantities of interest from

data, and identify errors in machine operation. In chs. 4 and 5 I will show

how one can use a multi-bunch, real-time tomographic reconstruction system

to make meaningful measurements of machine parameters.
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(a) Take Data (b) Initial Guess

(c) Final Guess

Figure 3.2: Panel (a) shows an initially unknown object in a gray box. Pro-
jections of the objected are measured at various angles. Panel (b) shows the
naive back projections of the data onto the area being scanned, constructive
interference provides an initial guess at the object. The detectors in panel (b)
show the original data in black, and the data resulting from the guess in red.
The error between these two is then back projected to correct the guess. Panel
(c) shows the result of many iterations. The data can be obtained by a single
detector which is allowed to rotate between acquisitions, or a detector at each
location. This image based on an image by S.Hancock [17].
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3.1 Theory of 2-D Phase Space Tomography

Traces like those shown in fig. 3.3 represent a standard view of lon-

gitudinal phase space available in the control room. As the beam traverses

the accelerator it induces image currents on the conducting beam pipe. A

device called a resistive wall current monitor is used to measure these image

currents [13], [38]. 1 The measured image currents represent a projection of

the φ-∆E phase space onto the φ axis. Each horizontal trace in fig. 3.3 is the

measured beam current of a single bunch on a single turn. The axis going

into the page, labelled in ms, gives the time of the revolution that a particular

trace was acquired. Because of the oscillatory motion described in ch. 2 the

subsequent projections represent the 2-D phase space distribution at different

angles, this can be seen in the evolution of the traces with time.

The measurements taken with the resistive wall current monitor are

non-destructive, and over many turns acquire the angular views of the phase

space, similar to those presented in fig. 3.2, needed to reconstruct the 2-D

distribution of particles in φ-∆E phase space. In the simple example depicted

in fig. 3.2 the angular position of each detector is known. Since the object de-

picted in the figure exists in real space, the transformation needed to combine

the angular information is simply a rotation around the center of the object.

In an accelerator this rotation is provided by the longitudinal dynamics de-

1A small length of the beam pipe is replaced with a non-conducting ceramaic gap to
interrupt the image current. The gap is spanned by resistors of known value. The image
currents are shunted through these resistors and measured.
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rived in ch. 2 that cause the distribution to tumble over many turns. This

means that in addition to the data acquired a model of the machine must be

used to reconstruct the 2-D distribution.

Fig. 3.4 is the tomographic reconstruction made from all of the data in

fig. 3.3, but the image only shows the distribution at the moment of the first,

red trace. In this case there are two distinct tadpole shaped distributions that

will circle one another, clockwise, following the equations of motion derived in

ch. 2. The image shows that these distinct beamlets occupying the stable area

of the phase space were initially separated in energy. This was the result of

a scheme to increase beam intensity employed at Fermilab called slip-stacking

that I will discuss in detail in ch. 4.

There are many techniques for solving tomographic reconstruction prob-

lems and recreating images such as 3.4 from data such as 3.3. I employ an

algebraic reconstruction technique (ART), which is an iterative algorithm,

meaning a solution is built up from an initially crude guess through successive

refinement. ART was originally developed for use in tomographic reconstruc-

tion by Gordon, et. al. in 1970 [16], but is similar to a method for solving

linear systems of equations developed by Kaczmarz in the 1937 [25].

A single iteration can be summed up in a few simple steps that provide

a convincing argument for the method before we add any mathematical justi-

fication. Fig. 3.5 details a single iteration of the ART algorithm in the case of

longitudinal phase space.
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Figure 3.3: Each 1-D horizontal trace represents a measurement of current
induced by a passing bunch of charged particle on the beam pipe at fixed
location in the accelerator as a function of time, or phase. This is eqiuvalent
to the projections shown beneath the phase space distributions in figs. 2.8,
and 2.10. The synchronous phase is placed at the origin of the horizontal axis.
The time axis going into the page, marked in ms, represents the time of the
revolution on which the trace was taken. This is equivalent to the individual
frames in figs. 2.8, and 2.10. This set of traces is more difficult to interpret
than the 2-D distributions shown in those figures.
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Figure 3.4: The 2-D time-∆E, (time = ωrf (φ − φs) phase space is depicted,
showing a reconstruction of the distribution that produced the traces in panel
fig. 3.3. The distribution is shown at the moment the first, red trace was taken.
To produce this reconstruction from the traces also requires a model of the
machine dynamics, provided by eqn. 2.8. The separatrix bounding the area of
stable motion in phase space is indicated with a gray line. A reconstruction
like this provides a view of the phase space that is easier to interpret than the
raw traces for someone familiar with the standard treatment of longitudinal
dynamics presented in ch. 2.
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The actual distribution is located in the upper left of the image. You

can see the question mark tumbling in the 2-D phase space, this is the dis-

tribution I wish to reconstruct from the projections immediately below the

2-D phase space. These projections represent the data that would be read out

from the resistive wall current monitor, like the traces shown in fig. 3.3.

The iterative reconstruction process starts with a crude guess at the

2-D distribution. The guess may contain prior knowledge, but this isn’t re-

quired. A uniform distribution, gaussian, or an empty phase space are all valid

initial guesses. In fig. 3.5 the phase space has been divided into pixels each

representing a small area of the phase space contained within the stable region,

indicated by the separatrices that should by now be familiar from ch. 2. The

only restriction placed on the guess at this point is that it must lie within the

stable region, and must represent the same integrated charge as the data.

The initial guess is indicated in the top three left images. The guess is

just the total charge divided evenly amongst the bins, some statistical noise

is obvious in this image. The three frames in the top row represent the guess

distribution tracked using eqn. 2.8. Immediately below the frames representing

the guess at various angles are the projections of the guess at those angles.

The projections are roughly parabolic because of the initial uniform guess, and

the shape of the separatrix.

The next row shows the errors between the data frames and guess

projections. Where the guess overestimates the data the errors are negative,

and where the guess underestimates the data the errors are positive. The
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errors are then back-projected, meaning each bin, or sample, in the 1-D traces

is distributed evenly over all the pixels that are able to contribute to that bin.

Notice in the image that the backprojection only distributes the bin over pixels

lying within the separatrix.

The backprojected errors must then be reoriented to the same angle

so that the reoriented errors can then be added to the initial guess to refine

it. The same tracking equations used to propagate the guess can be used to

reorient the backprojections, but now the equations must be used to track

backward in time. Exactly how this is achieved will be discussed later in the

chapter.

Once the guess has been corrected with the reoriented errors an iter-

ation is complete. The refined guess can be taken as the answer, or used as

the initial guess for the next iteration to create a better guess. Typically some

measure of convergence is used to determine when iteration should halt. I use

the ’discrepancy’ discussed in [15] and used by Hancock et al.2 The discrep-

ancy is defined as the root mean square of the errors, it gives a measure of the

agreement between the 1-D data, and the data that would be produced by the

2-D guess.

2The best measure of convergence is a complicated mathematical issue taken up in inverse
problem theory, and is beyond the scope of this document. See [37].
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Figure 3.5
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Figure 3.5: This image shows how an iterative algorithm is used to reconstruct a longitudinal phase space
distribution at one moment in time. Row (c) is the actual distribution in φ - ∆E phase space, initially
unknown, with the stable area enclosed in red. Each subsequent column in (c) shows the distribution
tracked over a quarter of a phase space rotation. Row (d) is the projection of each frame onto the φ
axis, this is the input data. Row (a) represents a guess at the object in row (c), also tracked. Initially
this guess is very bad, here it is a uniform distribution. Row (b) is the projection of row (a) onto the φ
axis. Row (e) is the error projection, or the difference between the data (d) and the projections of the
initial guess (b). Because the projections represent a loss of information, we assume each projection was
the result of a distribution with the same profile in φ, but evenly distributed over ∆E, this is called a
backprojection. Row (f) represents the backprojection of the errors onto the phase space. In order to
combine this information the backprojections must be reoriented, or tracked backward in time. (In the
case of a rigid body, this would simply be a rotation by −θ.) Row (g) is the sum of the elements in row
(f), this is the first correction to the guess, and the end of the first iteration. From here row (g) is either
fed back into row (a) and another iteration performed, or row (g) is taken as the answer. After many
iterations the solution should converge on something similar to the original distribution.
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The only remaining question is how the rotational operation, and it’s

inverse are carried out. Because we can’t write the coordinate transformation

of the phase space analytically, we rely on discretized approximations known

as maps. There will be a separate map from the initial time t = 0 to each turn

t = nτs, where nτs are multiples of the revolution time of the synchronous

particle. The process used to build part of one map is outlined in fig. 3.6.

The phase space in fig. 3.6 should look familiar, but it has been dis-

cretized into pixels. From each pixel, i0 (where the subscript denotes turn

number) some number of test particles are launched, shown in blue in the

image. These particles are tracked using the difference equations from ch. 2.

Because of the action dependent frequencies, the test particles, indicated in

red, spread out. By tallying the number of particles launched from pixel i0

that now occupy each pixel jn, and normalizing by the number launched from

i0 one creates a map of probabilities that pixel i0 contributes to pixel jn. This

is shown as the background color of the final pixels in the second frame of the

figure. The third frame just removes the test particles, indicating pixel i0 in

blue. This allows the propagation of a weight in pixel i0 to the nth machine

revolution. This takes care of the rotation, but to compare to data a guess

must also be projected onto the φ axis, which is all the detector has access

to. This is indicated by the histogram in the last frame of the figure. This

operation must be carried out for every pixel in the image, and every turn in

order to have a useable set of maps.

Similar maps must also be made in reverse from turn n to turn 0 by re-
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versing the phase space rotation. These maps are used for the backprojection,

and reorientation of the data, and error traces from fig. 3.5.

Once all the maps have been calculated, they can be used with simple

matrix multiplication to transform a distribution between frames. The dis-

cretization of the phase space should not cover any more than a single bucket,

since outside of this area the motion is no longer rotational, and does not

provide useful information. It is possible attempt to reconstruct the beam

outside of the separatrix, and the algorithm may still converge, but it is effec-

tively meaningless. It is also possible to reconstruct more than one bucket at

a time, but the maps become large, and repetitive since the dynamics within

each bucket are identical. It is better to split the data into bucket sized frames

and reconstruct each bucket separately, this also allows multiple buckets to be

reconstructed concurrently.

The presentation so far has been heavily geometrical, which is useful

for gaining intuition, but once the maps have been obtained tomographic re-

construction reduces to an inverse, linear algebra problem.

The forward problem is to determine the data that would be generated

by a particular distribution given some equations of motion. We seek the in-

verse, that is given data and equations of motion, what distribution generated

the data? We wish to solve eqn. 3.1 for the model, m.

d = G m (3.1)
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(a) (b)

(c) (d)

Figure 3.6: These images show the 2-D φ-∆E phase space discretized into
pixels. Panel (a) shows test particles, in blue, launched from a pixel and
tracked over several turns. The final positions of the test particles are indicated
in red. In panel (b) the red particles are binned, supplying weights for each
pixel. In panel (c) the counting operation is complete. The rotation of the
blue pixel over n turns has been discretized, and can be used to transform a
discrete image of the phase space. In panel (d) the weights have been projected
onto the φ axis. The inverse of the map must also be calculated in order to
backproject the errors, as in fig. 3.5.This allows the guess in fig. 3.5, to be
rotated in the phase space, and then projected so it can be compared to the
data.
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Where d is the data, m is the 2-D distribution and G represents the

transformation that takes the distribution from t = 0 to the data. G comprises

both the time evolution of the distribution and the projection operation. All

of the physics of the system is contained in G.

The data will be discretized by the sampling procedure, and because of

the map making, so will m, though this isn’t strictly required by the theory of

inverse problems. But the discretization of m, and d, do not need to share any

particular relation as long as the maps, G have the appropriate dimensions.

The answer can be of arbitrary dimension. 3

The ART method discussed qualitatively earlier can be written as:

mq+1
i = max

[
0, mq

i + G−1
i,j (dj −Gj,im

q
i )

]
(3.2)

Where m is still the 2-D distribution, d, the 1-D data, and G, G−1 rep-

resent the forward and backward mapping/projection operations. The sub-

scripts i,j indicate pixel, and data sample respectively, and the superscript

q iteration number. The max operator ensures that no negative values creep

into the distribution. There are many variants on this basic formula that allow

negative values in the distribution during intermediate steps, or only update

3As with measuring convergence, the optimal discretization is a complicated problem
without an established answer. Most sources suggest a heuristic approach to determining
the discretization for a particular problem. e.g. Tarantola [37]. We undertook studies to
determine a good discretization and found that the number of pixels in each direction should
be at least the number of samples in a frame nf , and that depending on the application
a multiple of nf can be used. The effectiveness of a particular discretization is tied to the
number of test particles launched per pixel.
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a pixel with an error value if the error is larger than some bound, etc. These

variations are detailed in a tutorial on ART by R. Gordon [15]. After each

iteration the distribution should be renormalized, or else the projections will

quickly become larger than the data and the error term will grow without

bound.

Aside from providing a roadmap for implementing a tomographic re-

construction algorithm, casting this problem in terms of inverse problems lets

us say a few things about the solutions we obtain. From inverse problem the-

ory we know that the problem is likely ill-posed, violating the unique solution

condition. This is the same as saying the inverse problem is underdetermined.

Because the system we are studying is physical, we assume there is a solution,

though certain un-modeled effects can lead to data that is not consistent with

any physical distribution. In practice, ART algorithms are extremely tolerant

of this sort of error and will still converge, though they may begin to diverge if

reconstruction is not halted. This is one reason to use a convergence criterion

instead of a fixed number of iterations, the other being speed if convergence is

reached quickly.

Additionally, in creating the maps we must have measurements for all

of the parameters that appear in eqn. 2.8, the amplitude of the cavity voltage,

the slip factor(η), harmonic number, and the synchronous energy, and phase.

Treating tomography as an inverse problem, these parameters can be probed

as well as the 2-D distribution [37]. The problem is then: given a set of data,

what 2-D particle distribution and machine parameters are the most likely
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solution?

Of all the numbers in the tracking equations, RF Voltage is the most

difficult number to pin down precisely, so let us take this as an example. We

can reconstruct the same data many times, scanning the parameter space of

voltage near the expected value with each new reconstruction. The value of

voltage that minimizes the discrepancy, meaning the data are reproduced with

the smallest error, can be interpreted as a measurement of the voltage [18].

Any realization of a tomographic reconstruction algorithm will have to

make many design choices. How many particles should be launched from each

pixel? What is the optimal number of frames to use? How should the phase

space be discretized? I’ve alluded to some of these questions throughout this

section, for a discussion of some of these questions see appendix A.

3.2 Deriving Physics Quantities Using Tomography

The previous chapter introduced several errors, and quantities of in-

terest to the evolution of a particle beam in longitudinal phase space. This

section will show how a tomogram is used to extract the quantities of interest,

and identify errors in machine operation. I will start with emittance and then

move onto injection errors, beam halo, energy spread, and collective effects.

I’ve also mentioned several times throughout this chapter that tomograms al-

low the experimenter to apply intuition to machine commissioning problems

for which a dedicated analysis has not been developed, a short section will be

devoted to an example of this.
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3.2.1 Emittance

Emittance is an important measure of the beam density in phase space,

defined in ch. 2. Standard methods of measuring the beam emittance are de-

structive, or involve measuring the time spread of the beam, and then making

assumptions about the beam equilibrium to say something about the energy

spread, which is normally difficult to measure [1]. With tomography, it is

not necessary to make any assumptions about the beam distribution, since an

arbitrary distribution can be reconstructed.

Once a 2-D beam distribution has been obtained calculating emittance

is simple. Fig. 3.7 shows a view of a reconstruction with curves of constant

action overlaid to demonstrate how emittance is measured. At each pixel

the action is calculated, and binned according to the annuli defined by the

constant action contours. Below the reconstruction is a plot of the distribution

of particles as a function of action. The bins in the lower plot can be summed

until the appropriate fraction of the beam has been reached, and the emittance

read off of the horizontal axis.

3.2.2 Injection Errors

Using tomography it is easy to resolve injection errors like those de-

picted in figs. 2.8, and 2.10. Those were contrived examples for the sake of

illustration, fig. 3.8 shows the reconstruction of an actual phase error the Re-

cycler ring, which receives beam from the Booster. In this case, the first row is

data acquired at injection and subsequent rows represent approximately 100ms
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(a) Reconstruction

(b) Distribution

Figure 3.7: Plot (a) shows the φ-∆E phase space reconstruction of a bunch in
grayscale, with contours of constant action indicated in color. The colors of the
contours correspond to the bars in plot (b), which represents the distribution
function of the beam as a function of the action binned according to the annuli
in the upper image. The horizontal axis is normalized to the maximum action
in the image, multiplying by the bucket area gives the emittance in eV · sec.
The emittance is the area enclosing x%. Commonly used values of x are:
68%(rms), 95%, or 99%. These contours are indicated in both panels.
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steps. The emittance growth from filamentation that occurs over many turns

is obvious. The input data, reconstruction projections, and reconstruction of

the phase space are all shown.

At injection the beam centroid is offset by about a sixth of a bucket

width, ≈ 3ns. This dipole error is intentional. As I mentioned in ch. 2,

collective effects depend on the charge density. In this case, collective effects

were causing uncontrolled emittance blow-up, and unacceptable beam losses

during Recycler commissioning. A small phase error was introduced to allow

the beam to filament, increasing the spread of the beam in the φ coordinate,

and reducing the space charge effects. Ultimately this created a lower final

emittance, with a more controlled beam shape.

Fig. 3.9 shows the input data, reconstruction projections, and recon-

structions of beam under the same operating conditions as depicted in fig. 3.8.

In this image however, another source of error is contributing a dipole error in

energy. Notice that the reconstruction in column (a) shows the bunch centroid

low in the energy coordinate by about a third of the bucket height. This error

was caused by a temperature fluctuation in the power supplies that maintain

the extraction energy of the Booster beam. This additional error causes more

filamentation than desired. Tomography allows this sort of error to be easily

discovered and corrected.

Tomography is also able to resolve injection errors even after filamen-

tation has occurred. Fig. 3.10 shows just such an error. In this example

tomography was being used online in the Main Injector during commissioning.
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Figure 3.8: The three columns of this image represent the input data, the
profiles created by the tomography algorithm, and the reconstructed 2-D phase
space distribution of the sum of all bunches in a Booster batch in the Recycler.
Starting from the top of the image each row of frames represents a step of about
100 ms. Each frame is from a different Booster batch under the same operating
conditions. Notice the offset in phase in the first frame. This intentional
phase error causes filamentation meant to mitigate collective effects, which
were leading to uncontrolled emittance blow-up in the Recycler.
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(a) Phase Offset Plus Energy Error (b) Energy Error Corrected

Figure 3.9: Column (a) shows the input signal, reconstructed profiles, and
2-D phase space reconstruction of the same intentional phase offset indicated
in fig. 3.8 with an addition energy error caused by a temperature fluctuation
in Booster magnet power supplies. The error in this case causes the injected
bunch to have a lower energy than the design energy of the Recycler. Recon-
structions make tuning easy, as it is obvious what the problem is at a glance.
This allows the machine to run reliably in a configuration like the one shown
here, where specific problems are alleviated with precise tuning. Column (b)
shows the same data, but with the error corrected.
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The beam was passing from the Booster, to the Recycler, and then to the

Main Injector, a common mode of operation. The figure shows the resistive

wall current monitor data in the upper right. The phase space reconstruc-

tion is in the lower left. Above and to the right of the reconstruction are the

projections of the reconstruction onto the time, and energy axes.

Even though the bunch appears to be centered in the Main Injector

according to the data from the resistive wall current monitor, and the pro-

jections, the tomographic reconstruction shows a spiral shape indicative of

filamentation. Eventually this was tracked to a Booster setting that was not

changed when operation switched from Booster-Main Injector to, Booster-

Recycler-Main Injector. The beam was injected into the Recycler with an

error, where it filamented before being transferred to the Main Injector. The

problem in this case did not destroy the beam, but the emittance increase seen

in the Main Injector could become problematic with increasing intensity, and

would be much more difficult to track down without the 2-D reconstruction.
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(a) Phase Space (b) Energy Profile

(c) Time Profile (d) Data

Figure 3.10: The presence of a dipole error in the Recycler is seen at the moment of injection to the Main
Injector. (a) shows the 2-D phase space reconstruction of the data in (d). (b), and (c) to the show the
projections of (a) onto the energy and time axes respectively. The hollow shape in (a) is a signature of the
dipole error in the Recycler that has filemented before being transferred to the Main Injector.
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Typically when beam is transferred from the Booster to the Main In-

jector or Recycler, the buckets will not be matched, as in panel (a) of fig. 3.11.

This quadrupole error, like the simulated error depicted in fig. 2.10, is corrected

via bunch rotation. Bunch rotation is the term used to describe a phase space

manipulation that corrects the quadrupole mismatch of the upright distribu-

tion from panel (a) of fig. 3.11 by lowering the RF cavity voltage in the Booster

for a short period in order extract beam that more closely matches the con-

tours of the Main Injector. There are alternate schemes to acheive a similar

result [41], [2]. Tomography could be useful in examining the effect of these

schemes on beam quality.

3.2.3 Energy Spread

The plots shown in fig. 3.12 demonstrate how tomography provides

energy spread measurements. The image depicts several plots of beam that has

been slip-stacked, which is a particular method of increasing beam intensity

used in Fermilab’s Recycler. Slip-stacking involves ’stacking’ beam in the

energy coordinate of longitudinal phase space out of phase. Because of the

slip factor, η, defined in eqn. 2.4, and the energy difference, the two bunches

eventually slip into phase. At this point they are recaptured. The two bunches

with an energy spread can be seen in the reconstruction in the lower left of

fig. 3.12 separated in energy. The resistive wall current monitor data is shown

in the upper right. The projections of the reconstruction onto the φ and ∆E

axes are shown histograms above and to the right of the reconstruction.
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(a) Quadrupole Mismatch

(b) Mismatch Corrected

Figure 3.11: Panel (a) show the 2-D reconstruction of φ-∆E phase space for
a bunch subject to a quadrupole mismatch upon transfer from the FNAL
Booster into the Main Injector, and panel (b) the correction. The signature of
quadrupole mismatch in an image like this is a distorted aspect ratio relative
to the shape of RF bucket contours. After many revolutions, the mismatched
beam in panel (a) would filament to fill nearly the entire stable bucket. Because
the reconstructions depict bunches at injection, the filamentation has not yet
occurred.
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Energy spread is typically a difficult measurement to make, similar

assumptions must be made as in the measurement of emittance. That is

one must assume that the bunch is in equilibrium, or gaussian in order to

calculate an energy spread from a time spread. A large energy spread can lead

to losses if the spread exceeds the momentum aperture, it may signal a problem

somewhere in the accelerator chain. Energy spread can also be problematic

during slip stacking. If the tails of either bunch exceed the limits of the larger

recapture bucket, losses can occur during acceleration. In fig. 3.12, not only is

it easy to extract the energy separation of the two slip-stacked bunches, but

also the energy spread of each bunch separately.

3.2.4 Beam Halo

Beam halo is diffuse beam that accumulates, for whatever reason, around

the primary beam core. Fig. 3.12 also exhibits some beam halo. Notice in the

reconstruction, that both the primary distributions of charge have a small ac-

cumulation of charge to their left that appears to separated from the main

bunches. This can be seen as a shoulder in the upper left plot of the time pro-

jection. The exact shape of this halo is difficult to determine from projections

alone, but is obvious in the reconstruction.

In this particular case, the halo is likely due to the Booster bunch rota-

tion described in the last section, but this is not certain. Halo can be due to RF

noise, intra-beam scattering, or power supply ripple among other things. Halo

can cause small, but noticeable losses if it escapes the region of stable motion
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in the phase space. In some experiments, the time structure of the beam can

be relevant, halo contributes to the tails in both time and energy, oscillating

between the two due to synchrotron motion. If the detector can resolve halo,

profiles are enough to the prove existence of halo, but only tomography will

provide detailed distribution of halo, which may be operationally relevant, or

may provide insight into the cause. The existence of artifacts in reconstruc-

tions, typically near the edges of a distribution, means that one should be

careful when assessing halo. Multiple reconstructions can be done of the same

beam pulse changing reconstruction parameters, or using frames slightly ad-

vanced in time. Generally artifacts will not persist the same way actual beam

will. This is a well known technique [14].

3.2.5 Collective Effects

Often the particles are treated as non-interacting, point-like particles

that simply follow the constant action contours derived in ch. 2. The charge

is only relevant as it couples particles to the electric field provided by the

RF cavity. Collective effects are all other interactions that a particle bunch

experiences as a result of the charge of the particles. This includes self-forces,

the interaction of bunch particles with one another, and interactions with the

beam pipe, and beam line elements. These interactions can cause instabilities

in the beam that blow-up emittance, or in extreme cases cause complete loss

of the beam. Fig. 3.13 shows the evolution of a train of bunches subject to

collective effects in the Main Injector. Each row of the image represents a train
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(a) Phase Space (b) Energy Profile

(c) Time Profile (d) Data

Figure 3.12: Reconstruction of slip-stacked beam demonstrating energy spread
measurements, and beam halo. (a) shows the 2-D phase space reconstruction
of the data in (d), the detailed structure of the slip-stacked beam can be seen.
(b) to the right shows the projection onto the energy axis, which provides a
measure of the energy spread of each beam separately, and the energy separa-
tion between beams. (c) shows the time profile of the beam at the moment of
the reconstruction.
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of ten bunches in the Main Injector the rows are taken at 89ms intervals. From

the very first interval it is obvious that the bunches are not simply tumbling

in the phase space, as predicted by the tracking equations from ch. 2 as there

is some evolution of the bunch shape. As time advances the emittance blows

up noticeably.

The exact cause of this instability is not known, but it was observed

while the feedback system that is meant to control such longitudinal instabil-

ities was active. The phase space structure of the beam may provide future

experimenters some hints as to what is going on.

Collective effects are not included in the tracking equations we used to

build the maps, so the questions naturally arise: can bunches subject to effects

not included in the tracking be reconstructed? how do those effects manifest

in reconstructions?

There are two cases to consider regarding whether a bunch subject to

collective effects can be reconstructed. If the collective effect is due to some

particular set of conditions that can be modified, or that disappear after some

point in the cycle, it may be possible to see the effect of the interaction on the

beam after the interaction is no longer important.

If the reconstruction is done while the interaction is important, there

may still be some hope of obtaining reconstructions. If the growth rate of the

instability present is shorter than the one half synchrotron period needed to

reconstruct the longitudinal phase space, it is likely that the effect cannot be
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reconstructed with any accuracy. In order determine if the image produced

by the tomography algorithm is reliable the following procedure can be used.

First, more frames of data should be taken than needed, at least a full syn-

chrotron period. The data can be reconstructed at a frame near one half a

synchrotron period. This reconstruction can be done with either the frames

preceding the frame to be reconstructed, or the frames after the frame to be

reconstructed. If there are dynamics present changing on a timescale faster

than half a synchrotron period, there should be a significant difference between

the two reconstructions of the same frame.

One type of collective effect, called coupled bunch modes, are due to

wakefields, the electric fields excited by passing bunches that then decay away

but may influence trailing bunches. The fields can excite modes in the machine

resonant with the bunch spacing, and the synchrotron motion. This leads to

the excitation of azimuthal modes which impose an n-fold symmetry on the

beam distribution, where n is the order of the instability. Because of this sym-

metry, the projections of the beam will show a structure that repeats n times

per synchrotron period. This repetitive structure looks like a symmetry to the

reconstruction algorithm. Because the effect is not included, it is likely that

measurements taken from tomograms influenced by collective effects will have

certain errors, though qualitatively the instability is obvious. These can either

be investigated offline in more detail including space charge in the tracking,

or with more application specific tools. There are many fantastic references

discussing collective effects in more detail, see [9], and [33].
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Figure 3.13: Each row shows the φ-∆E phase space reconstruction for the same 10 bunches in the Main
Injector at a different time, indicated on the right. The axes are labelled on the bottom row since all
images have the same range. As time progresses the bunches distort, and emittance grows because of an
instability in the Main Injector that is controlled with a damper system. Without the damper the beam
would be lost completely. The limits of stability for each bucket are drawn in gray. The dynamics driving
this instability are not included in the tracking equations, but the phase space can still be reconsrtucted
if the instability grows on a timescale longer than ≈ half a synchrotron period, the time required to make
a full rotation in the phase space.
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Other times the collective effect may be present, but not have such a

clearly defined signature. Fig. 3.14 shows five buckets of beam in the Main In-

jector. These buckets were created when beam that was bunched by a 53MHz

RF system (rougly 20ns bucket width), was coalesced with a 2.5MHz RF sys-

tem (roughly 400 ns bucket width). The first reconstructed bunch shows the

expected behavior. The bunch is diffuse and evenly distributed through the

portion of the bucket that it occupies. Some striations left over from the orig-

inal beam structure can be seen, but these appear to be perturbations to the

main distribution. The bunches trailing the first bunch become increasingly

distorted, showing large spiral arms. The spiral shape evident in the trailing

bunches indicates that a wakefield from the leading bunches is probably to

blame since the effect gets worse along the bunch train. Additionally, beam is

only supposed to occupy four buckets here. The instability has caused beam

to leak into the fifth bucket trailing the bunch train. If the fifth bucket were

assumed empty this beam could be kicked out of the machine by extraction

kickers and represent serious losses.

Tomography allows experimenters to visualize effects like this without

first developing formal metrics to quantify things like the spiraling shown. It

indicates that there is a problem, and as in the case presented in fig. ??, allows

experimenters to quickly test solutions and decide on effectiveness without

lengthy data analysis normally required of longitudinal problems.
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(a) Data

(b) Reconstruction Projections

(c) 2-D Reconstruction

Figure 3.14
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Figure 3.14: Row (a) shows traces from the wall current monitor of five bunches in the Main Injector. The
horizontal axis is position around the ring, and the vertical axis represents discrete machine revolutions.
Row (b) shows the same information but as the projections of the distribution found through tomographic
reconstruction. Notice that some of the detail is lost. Row (c) represents the longitudinal phase space
reconstructions of row (a). This data was taken during a study of beam bunching for the planned g-2
experiment. Only 4 of the buckets should be occupied, beam loading, or RF phase error created beam loss
leading to particles in the 5th bucket. This represents decreased efficiency of the accelerator complex as
some beam intended for the experiment will not be utilized. This could also be problematic with respect
to losses if kicker timing assumes an empty fifth bucket. Some wakefield effects are obvious in the spiraling
pattern in the last 4 bunches. Notice how evenly distributed the beam occupying the first bunch is. Each
bunch should contain roughly the same number of particles and a similar distribution. An error such as
this would be difficult to detect without tomography.
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3.3 Some Comments on Implementation

The tomography algorithm discussed here was implemented in a pro-

gram called Tomography and Related Diagnostics in Synchrotrons, (TARDIS).

All of the images shown were produced using TARDIS, either in offline mode,

or online during machine operation.

TARDIS allows for real-time, multi-bunch reconstruction of longitudi-

nal phase space using the ART algorithm; several variants are implemented.

TARDIS handles all pre-processing, plotting, and post-processing analysis. It

allows data to be saved for further analysis offline. The user interface is de-

signed to be simple to use and interpret for anyone with a basic knowledge of

longitudinal beam dynamics.

In addition to the simple, almost single button, operation mode that

defines most of the day-to-day use of TARDIS at Fermilab, experts can inter-

face with almost every aspect of the program to undertake novel studies. All

configurations can be saved so the expert can set the system for a particular

use case and recall all the relevant parameters in the future in order to provide

easy access to useful measurements.

3.4 Summary

In this chapter I’ve shown how a standard 1-D diagnostic, and knowl-

edge of longitudinal dynamics can be combined to recreate a 2-D image of a

charge distribution via a tomographic reconstruction algorithm.
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I also outlined some of the physics quantities that can be measured

using the resultant image, and some of the common machine errors that can

be easily spotted.

With only the 1-D information a dedicated analysis would have to be

done searching for each error condition. The 2-D analysis allows the exper-

imenter to focus analysis on only the features that seem worthwhile, and in

some cases diagnose problems that would slip through a standard analysis.

Certain assumptions can be relaxed with respect to similar measurements by

other techniques, so the experimenter needs less facility with this particular

method to interpret those measurements.

In addition to measures of standard quantities like emittance, or in-

jection mismatch, bunch structure can be investigated in more detail. Some

beam manipulations are sensitive to the detailed momentum distribution, e.g.

slow-extraction to switch yard at Fermilab. Consistent features can be seen

and their causes diagnosed significantly speeding up troubleshooting, or more

in depth studies.

In the following chapters I will introduce the Fermi National Accelera-

tor Laboratory complex, specific operational concerns, and an experiment to

measure transition growth carried out with the newly commissioned tomogra-

phy system.
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Chapter 4

Design of an Experiment to Measure

Emittance Growth Across Transition

Proposed experiments at the intensity frontier, such as those at Fermi-

lab, will require more protons on target with more stringent timing and energy

spread requirements in order to precisely measure rare phenomena. In addi-

tion to the beam quality specifications of particular experiments, beam must

meet certain requirements to operate the accelerators safely. At higher inten-

sities beam losses must be lower to reduce component damage, environmental

irradiation, and maintain a safe environment for workers. These may not seem

like scientific concerns, but they all affect beam operations, and down time,

which ultimately impact the experiments carried out with particle beams.

Problems with the longitudinal dynamics of the beam can lead to losses

through instabilities, injection errors, and other unforseen causes of emittance

growth. The ability to quickly isolate and solve problems is crucial. Problems

arising from intensity dependent effects cannot be induced below a certain

threshold and so present a particular challenge in terms of finding solutions

during operation.

In this chapter I will present the design of an experiment to probe
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longitudinal emittance growth across transition. Because the measurements

were performed at Fermilab, I will discuss the Fermilab accelerator complex,

and a particular method for doubling beam intensity used at Fermilab called

slip-stacking. This study shows that in the simple case of single batch beam

the analytical growth predicitons given in ch. 2 are consistent with the ob-

served growth. A fit to the the growth determines the longitudinal broadband

impedance, and first non-linear momentum compaction. The numbers found

are consistent with the growth observed for slip-stacked beam, but there is

additional growth not accounted for by this model.

I will discuss the sources of error, and the precision attainable when

measuring emittance growth with tomography. Ch. 5 will present the results

of this experiment, and implications for future operation.

4.1 Fermilab Accelerator Complex

The machines in the Fermilab complex are detailed in table 1.1, the

physical layout of the site is shown in fig. 1.5. A brief overview of the whole

facility was given in ch. 1. Here I will focus on the Main Injector, and Recycler.

The Main Injector and Recycler are housed in the same tunnel and each

have a circumference 7 times the Booster circumference, with the same 53MHz

fundamental RF frequency, and thus the same bucket spacing of ≈ 19ns. 1

1There is actually a slight difference in the operating radii of the Recycler and Main
Injector, which means the Booster energy needs to be adjusted to inject into one machine
or the other.
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Both machines can accommodate 6 Booster batches in series. Space must be

left to allow injection/extraction kickers time to ramp up and kick the beam.

The Recycler is a permanent magnet machine, which means the bending

field cannot be changed so it is only used for beam storage and RF manip-

ulations at 8GeV, not acceleration. In the future the Recycler RF will be

modified to help prepare beam for the planned muon experiments which will

use a 2.5MHz RF system in conjunction with the Accumulator, and Debuncher

rings to deliver beam to precision muon experiments.

The Booster represents an intensity limitation at Fermilab. Because

space-charge effects are worse at lower energies, only so much beam can be

injected into the Booster at 400 MeV before the beam becomes unstable. To

increase the intensity of beam delivered to neutrino experiments the Recy-

cler performs a process called slip-stacking [8], [4]. Figs. 4.1 shows the entire

process from above a synchrotron, in real-space, and fig. 4.2 shows the same

process in longitudinal phase space, but only depicts a few bunches.

First, 6 Booster injected in series around the Recycler ring. These can

be diverted from the central orbit by slightly decreasing the beam energy.

At the same bending strength the radius will also decrease. Then another 6

batches are injected on the design orbit. A separate RF system is used for each

set of 6 batches, operating with two slightly different frequencies. Because of

the slightly different energies, the two collections of batches will accrue phase

difference. Once the two beams are in phase a much larger RF voltage can

be applied, with a synchronous particle on the design orbit that lies between
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the two slip-stacked batches. This RF system now captures two bunches per

bucket. The phase space reconstruction of a bunch shortly after slip-stacking

is shown in fig. 3.4. The energy separated bunches are obvious above and

below the synchronous point at (φ = 0, ∆E = 0). Slip-stacked beam is still at

8 GeV and is extracted to the Main Injector for acceleration.

The Main Injector uses electromagnets, and accelerates 8 GeV beam to

120 GeV for use in neutrino experiments, or at the fixed target test area, known

as switch yard. The Main Injector has a transition gamma of γt = 21.6, which

means it must pass through transition to accelerate from 8 GeV injection, to

120 GeV extraction energy. Crossing transition necessarily involves emittance

growth when dealing with intense beams. Though transition is well understood

in general, it has not been studied in detail experimentally in the Main Injector.

The Accumulator and Debuncher share a tunnel, and are both currently

unused. In the future they may be used to prepare beam for precision muon

experiments. Historically these machines were used to accumulate and prepare

anti-protons for use in the Tevatron using a process similar to slip-stacking.

Currently the tomography system TARDIS is only available in the Main

Injector and Recycler, which means we can study beam at any point during

the Recycler or Main Injector cycles, from injection to extraction. The Booster

can also be probed by examining beam in either the Recycler or Main Injector

immediately upon injection. Longitudinal phase space tomography can be used

in all of the synchrotrons at Fermilab, but the Accumulator and Debuncher

are not currently in operation, and the Booster lacks the triggering hardware
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(a) Inject (b) Decelerate

(c) Slip (d) Recapture

Figure 4.1: A schematic view of slip-stacking in the Main Injector or Recycler
to double beam intensity. (a) Six batches of Booster beam, each 84 bunches,
are injected into the machine at the design energy. (b) The first six batches
are accelerated to an energy slightly lower than the design energy, decreasing
the orbit radius. (c) Six more batches are injected, but with an energy slightly
higher than the design energy, thus a larger orbit radius. The two fills have
slightly different revolution frequencies. (d) The two fills circulate long enough
for the batches to slip in phase until they are azimuthally aligned. A 1MV RF
is then turned on to capture two bunches per bucket. Fig. 3.4 shows the same
process in longitudinal phase space.
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Figure 4.2
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Figure 4.2: Longitudinal phase space of two Booster batches during slip-
stacking, corresponding to the panels shown in 4.1. The top image shows
the first injection on the central orbit. Five batches are injected in series on
this orbit, and then decelerated to a smaller orbit, in the second panel. The
third panel shows the second set of injections at an energy higher than the
central orbit. The two sets of injections are initially out of phase, but they slip
relative to one another. When the batches are aligned a stronger RF voltage
is applied, such that two bunches are confined to a single bucket.
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necessary to commission TARDIS.

4.2 Emittance Growth at Transition Crossing

Currently losses are acceptable for operation in the Main Injector, but

future upgrades will require a better understanding of loss mechanisms in order

to keep running at higher intensities. Losses at lower energies, before accelera-

tion, are always preferred since the same number of protons lost result in lower

deposited energy and lower activation of the tunnel and beamline elements,

affecting both machine reliablity, and safety. For this reason emittance growth

induced during the acceleration cycle needs to be well understood.

Ch. 2 discussed longitudinal emittance growth crossing transition, de-

fined as: (εA − εB)/εB. Where εB, and εA are the emittance before, and

after transition. Though emittance growth is inevitable for high intensity

beam crossing transition, growth does not necessarily mean beam loss. An

understanding of the driving contribution to emittance growth is critical in

determining what steps will minimize emittance growth. For instance, growth

driven by an instability may require more powerful hardware for the longi-

tudinal damper system, growth driven by non-linear terms of the slip-factor

may require some modification of the magnets used to focus the beam trans-

versely that determine the slip-factor. Any growth would be ameliorated by a

higher rate of acceleration crossing transition, but this may not be the most

cost-effective, or simplest solution. It could be that some minor operational

considerations previously unimportant could improve performance.
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The study presented in ch. 5 uses the recently installed tomography

system to look at emittance growth crossing transition as a function of input

emittance. The expressions for emittance growth as a function of emittance

written explicitly in eqns. 2.38, 2.40, and 2.41 are combined in the single

eqn. 4.1 used to fit the observed emittance growth. The three fit parameters

unique to each growth mechanism are: α1, |Z||/n|, and R. Each is explained in

detail in ch. 2.

∆ε

ε
(ε) =

∆ε

ε
(ε; α1)SingleParticle +

∆ε

ε
(ε; |Z||/n|)Reactive +

∆ε

ε
(ε; R)Resistive (4.1)

By measuring the emittance on either side of transition, I am able to

calculate the emittnace growth without reconstructing the beam very near to

transition, where tomography becomes increasingly difficult due to the lack of

phase space rotation, rapidly changing machine parameters, and increasingly

distruptive collective effects. Under normal circumstances emittance should

not grow once transition has been crossed, as long as the measurements are

taken far enough from the time where non-linear, non-adiabatic dynamics

dominate. A meausrement of emittance growth should indicate the dominant

source of emittance growth when crossing transition.

Tomographic reconstruction is particularly well-suited to this problem

because it is not necessary to wait for bunches to equilibrate, or filament,

before making a measurement. This allows the measurement to be made very

close to transition in an attempt to minimize the effect of any other emittance
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growth that may be present during the acceleration cycle due to noise in the

RF phase or voltage, or magnet power supplies, etc.

Shown in fig. 4.3 before, and after transition crossing, single batch beam

typically satifies all the assumptions used to derive the growth equations in

sec. 2.2.2. The bunches are mostly confined to the linear region, and approxi-

mately gaussian. Because of this the single batch beam is used to measure the

fit parameters in eqn. 4.1.

Slip-stacked beam fills more of the bucket than single batch beam, and

is initially concentrated in two clumps. Fig. 3.4 shows slip-stacked beam near

the moment of recapture. The two distinct clumps are dispersed somewhat

during acceleration but do not filament completely by the time the beam

crosses transition, resembling fig. 4.4 before and after transition. The growth

of these bunches across transition is compared to the prediction based on the

values measured in the slip-stacked case.

There is no machine knob for emittance, though there are techniques to

increase emittance in a controlled way, such as the intentional filamentation

shown in 3.8. In this study the natural variation of emittance in the Main

Injector provides the only variation in input emittance. There is a batch-to-

batch variation of the mean emittance, as well as variation within a batch.

The exact cause of this inter-batch variation is not teased out here, but will

be discussed in ch. 5. But if the emittance variation is a consequence of dy-

namics in the Main Injector, the same dynamics may affect emittance growth

at transition crossing.
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(a) Below Transition (b) Above Transition

Figure 4.3: A representative bunch from the single batch configuration recon-
structed above and below transition. The bunches are properly scaled in φ
and ∆E, and a common color scale is used to indicate charge density across
images. The εrms growth across transition (∆ε/ε) is ≈ 32% for this bunch.
Notice that the charge distribution is relatively smooth, confined to the cen-
tral, linear portion of the bucket, and nearly gaussian compared to the bunch
shown in 4.4.
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(a) Below Transition (b) Above Transition

Figure 4.4: A representative bunch from the slip-stacked configuration is re-
constructed above and below transition. The bunches properly scaled relative
to one another, and a common color scale is used to indicate charge density
across images. The εrms growth across transtiion(∆ε/ε) is ≈ 75% for this
bunch. Notice how much more of the bucket the distribution occupies below
transtion, and how irregular the distribution is. This bunch is neither gaussian,
nor confined to the central, linear portion of the bucket.
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As a note, voltage is a knob we have control over, even if it is one of

the main sources error, and a good case could be made to study transition

growth under various voltage configurations crossing transition. Expressing

the equations for emittance growth, 2.38, 2.40, and 2.41 in terms of voltage

for a constant emittance would allow some differentiation in effects, and offer

additional insight. This has been done in Fermilab’s Main Ring in the past [26],

but I did not explicitly probe the voltage in this study.

4.3 Predicted Growth and Precision

Table 4.1 gives the parameters necessary to estimate emittance growth

in the Main Injector crossing transition indicating single batch, or slip-stacked

values as appropriate. The values at the top of the table are input parameters,

and the values at the bottom are calculated. Precise values of the frequency,

for instance, depend on the exact time in the acceleration cycle since this

value varies to maintain synchronicity with the particle bunches. The ramp

files used to control the machine are available, and were used for reconstruction

purposes, this process will be discussed in ch. 5.

For both single batch, and slip-stacked cases Tna > Tnl, defined in

eqns. 2.34, 2.37, which means the single particle contribution to the growth

given by eqn. 2.38 is simply, ≈ 0.76 Tnl/Tna, and the beam is below the mi-

crowave instability threshold.

The values |Z||/n|, R, and α1, the broadband reactive impedance,

broadband resistive impedance, and first non-linear term of the momentum
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Parameter Value Single(Slip)
h 588
fs[MHz] ≈53
N/Bunch 5.9E9(4.8E10)
γt 21.6
|Z||/n| [Ω] ≈ 13
α1 0.996
V[MV] ≈ 3.3(3.6)
φs[rad] ≈ 0.83(0.74)
Tna[msec] 1.88(1.76)
Tnl[msec] 0.37(0.72)

Table 4.1: Values used to predict emittance growth.

compaction (related to the slip-factor), used to estimate growth are design

values and estimates taken from [30], [7], and [40]. These values will be esti-

mated from the fit obtained to the growth measurements. 2

Histograms showing the input emittance for the combined data in the

single batch, and slip-stacked cases are shown in figs. 4.5, and 4.6. The variance

of a gaussian fit for each case is ≈ 0.009 eV · sec, and ≈ 0.02 eV · sec for single

batch and slip-stacked beam respectively. 3

Given the relationship to input emittance from eqns. 2.40, and 2.38,

2Measuring the values, |Z||/n|, R, and α1 independently, and calibrating the growth
model would allow for online monitoring of the sources of emittance growth. And using
emittance growth across transition may be a viable way to tune the various RF parameters
for minimal growth. Once calibrated, changes in the fit parameters would signal something
amiss. Using this analysis during operation may be beneficial for machine tuning.

3The single batch beam seems to be bi-modal. Becuase this data was taken parasitically
during normal beam operation, this probably represents some normal tuning of the Booster,
which is supplying beam to the Main Injector. These plots are only used to estimate the
range of growth that should be observed, so the bi-modal distirbution is not problematic.
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Single Batch Mechanism Mean Growth Range
Reactive 18% ±5%
Single Particle 14% ±5%
Resistive ≈ 0 ≈ 0

Slip-Stacked
Reactive 12% ±5%
Single Particle 20% ±3%
Resistive ≈ 0 ≈ 0

Table 4.2: Growth predictions

table 4.2 gives the growth prediction for the mean input emittance in the

single batch, and slip-stacked cases, as well as the range of growth given the

spread measured in the histograms 4.5, and 4.6.

Fig. 4.7 shows the growth predicted by eqns. 2.38, 2.40, and 2.41 using

the values estimated in tab. 4.2, and curves produced a ±50% change in each

of the fit parameters. The black dashed lines represents the reactive term,

to which the growth is most sensitive, the red lines the single particle term,

and the blue lines the resistive term, barely distinguishable from the nominal

value. This insensitivity to the resitive growth manifests as a very large error

on the measurement of the parameter, and is due to the suppression of this

effect by a factor of h, and one over the bunch width relative to the reactive

growth.

Becuase this study is done parasitically, one reasonable possibility to

consider is a correlation between emittance and bunch charge. This is not

problematic, but we need to understand what effect such a correlation would

have on the observed growth. The single particle growth, eqn. 2.38 depends
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Figure 4.5: Initial ε68% of 693 bunches used to probe emittance growth across
transition. The spread represents the natural emittance variation seen in the
Main Injector under similar operating conditions, including the inter-batch
variation shown in fig. 4.3. The emittance spread seen here correlates with
bunch position in a batch and is likely caused in the early part of the Main
Inejctor cycle, but may also come from the Booster. This variation allows us
to probe the dependence of emittance growth on input emittance.
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Figure 4.6: Initial ε68% of 728 bunches used to probe emittance growth across
transition with slip-stacked beam. The spread represents the natural emit-
tance variation seen in the Main Injector under similar operating conditions,
including the inter-batch variation shown in fig. 4.4. The emittance spread
seen here correlates with bunch position in a batch and is likely caused in the
early part of the Main Inejctor cycle, but may also come from the Booster.
This variation allows us to probe the dependence of emittance growth on input
emittance.
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Figure 4.7: Predictions for the single batch emittance growth. The solid black
curve indicates the nominal prediction. Growth is also indicated for each
parameter independently varied by ± 50% of the value given in table 4.1 as
dashed lines. The first non-linar momentum compaction (α1, red), and reactive
impedance (|Z||/n|, black) terms dominate. The resistive(R, blue) curves are
hardly distinguishable from the nominal growth.
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only on emittance so would be unaffected. But the growth due to broadband

impedance, eqns. 2.40, and 2.41 is proportional to bunch charge (through the

beam current). Fig. 4.8 shows how a linear charge correlation would effect

the slope of the emittance growth as a function of emittance using the fit

parameters estimated in tab. 4.1. The blue, and red lines show the growth for

bunches with 6% more, and less charge than the nominal value for single batch

beam in the Main Injector. The line that connects the two is the observed

growth for a postive linear correlation of charge with emittance over the full

range of input emittance values in fig. 4.5.

Because the growth is a combination of single particle, and impedance

effects we can’t correct the growth measurements without knowing the value

of the single particle fit parameter, the first non-linear momentum compaction,

but we can correct the fitting functions by giving the beam current in eqns. 2.40,

and 2.41 as a function of emittance.

4.4 Sources of Error

A schematic of the RWCM used in the Reycler and Main Injector is

shown in fig. 1.6. As defined in eqn. 2.20, the beam current measured by the

RWCM is the projection of the 2-D phase space distribution onto the φ, or

time, axis. Fig. 3.3 shows many beam current measurements taken with the

RWCM over successive turns. These 1-D measurements of the φ−∆E phase

space distirbution are then used to recreate the full 2-D distribution shown in

fig 3.4.
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Figure 4.8: The effect of a linear correlation between charge and emittance
on observed emittance growth. The blue, and red lines represent emittance
growth for bunch charges ±6% from the nominal value for single batch beam
taken from tab 4.1. The blue line has increased growth because of a larger
bunch charge. The line connecting the two includes a linear correlation be-
tween charge and emittance. The decrease in the slope becuase of this correla-
tion mimics an increase in the single particle effect. The opposite correlation
would resemble an increased impedance.
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The design considerations for this RWCM are described in detail in [13].

The RWCM shows a flat frequency response from 3kHz − 4GHz. This is on

par with the 4GHz analog bandwidth of the scope used for acquisition. This

means we should not expect to resolve features below ≈ 250ps.

The frequency response of the Main Injector type RWCM has been

well characterized in [5]. The frequency response is then converted to a time

domain response function and this response is deconvolved from the data. A

single turn of the data shown in fig. 3.3 before(dashed line), and after(solid

line) the frequency response correction is shown in fig. 4.9. The traces in

fig. 3.3 have been processed in this way.

The RF frequency in the Main Injector and Recycler rings is about

53MHz, giving a bucket spacing of roughly 19 nsec, or 76 samples at 4GHz.

The bucket height changes throughout the cycle, for this study the bucket

height below transition is about 57MeV, and above transition is about 132MeV.

If we assume the same discretization in both coordinates, a reasonable assump-

tion, we have energy resolution of ≈ 0.75 MeV, and ≈ 1.75 MeV. This equates

to a pixel area of 0.0002 eV · sec, and 0.0005 eV · sec which we can interpret

as the resolution of the detector in phase space area. (The question of reso-

lution is a difficult one that was mentioned briefly in ch. 3 with resepect to

image discretization. The resolution here is also not a property of the detector,

since it depends on the bucket height. In fact, it is probably variable over the

bucket, and also connected to the number, and spacing of frames in the data.)

Although there may be several pixels at the same action, we can estimate the
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Figure 4.9: The normalized wall current data from a single bunch, on a single
turn. The dashed line indicates the raw trace, and the solid line the trace
corrected for the frequency response of the RWCM.
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emittance measurement has a resolution of a similar order of magnitude.

For bunches of initial emittance ≈ 0.05 eV · sec, and ≈ 0.25 eV · sec for

single batch, and slip-stacked beam respectively this means we should be able

to resolve emittance on the order of a percent in either case. This should be

taken as the maximum precision of the detector hardware. Other sources of

error will degrade the precision.

Random errors due to electronics noise, or jitter in the acquisition trig-

ger, are difficult to evaluate becuase of the nature of the reconstruction al-

gorithm. In place of trying to provide an analytic expression of the error in

the final image, it is more useful to employ a technique that uses real data to

estimate the errors on a particular physical quanitiy, here the emittance.

The procedure is illustrated in fig. 4.10. Twice as many frames as

necessary are used, or one full synchrotron period. The frame exactly halfway

through the set, indicated by a white line, is reconstructed with only the first

half of the data, and then independently with only the second half.

Fig. 4.11 shows histograms of the error between the emittance take

from two such reconstructions for all bunches in the single batch data set,

both above and below transition. The emittance from the reconstruction done

using the first half of the dataset is taken to be the ’real’ value, and the

error is always the percent difference of the emittance measured from the

reconstruction done with the second half of the dataset for consistency. This

percentage was calculated for each bunch in the data set, and then binned to
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Figure 4.10: An illustration of the procedure used to determine the error on
emittance measurements due to random errors in the data. A full synchrotron
period of data is used. The phase space distribution is reconstructed twice at
the same turn, indicated by a white line. Once using the first half synchrotron
period, and again using the second half. The emittance is measured for each
reconstruction and compared.
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find the variance of the errors.

To reconstruct the 2-D phase space distribution, we must know all the

parameters in eqn. 2.8: Es, β, ωrf , τ , φs, and Vrf . The energy, RF frequency,

and η are very well known, to within a percent. Because τ is related to ωrf

through h, it is also known. This only leaves the RF voltage and phase. These

are more difficult to pin down. The RF voltage is notoriously difficult, and

tomographic reconstruction has actually been used to make a measurement

of the voltage in the LEIR ring at CERN [18]. The RF cavity is subject to

beam loading, several cavities are usually used, so an effective voltage must be

calcualted, often the read-out is not calibrated, etc. These are not typically

issues when running, because the programmed value is an approximate voltage,

and a feedback system varies φs to maintain the proper momentum for the

precisely known bending field. As a result the value of the RF voltage is

among the largest sources of error.

The uncertainty in voltage is ≈ 10%. A similar method as used for the

random errors can be used to calculate an uncertainty in the emittance due to

the uncertainty in the voltage. By reconstructing with the nominal voltage,

and a range of voltages within the uncertainty, the spread in emittance values

is used to give an estimate on the emittance. For the measurments presented in

this study, this adds approximately 2% error on the emittance measurements.

Because φs and the voltage are related through the acceleration rate, which is

known well, I take this 2% error to cover errors in either voltage or φs. From

table 4.2, we should be able to resolve the expected growth, which should have

138



(a) Below Transition

(b) Above Transition

Figure 4.11: The errors for single batch beam below and above transition
obtained using the method described in fig. 4.10. The percent error is the dif-
ference between the emittance measured from the two reconstructions divided
by measurement from the reconstruction using the first half of the data. The
results for the slip-stacked beam were similar.
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a range of approximately 15− 20% over the input emittances.

Adding the two contributions in quadrature, the total error from the

uncertainty in voltage, and the random contributions is 7%, rounded to the

nearest percent. Becuase these procedures are so approximate I don’t feel that

a more precise measure of the error is justified.

4.5 Summary

Transition is an unavoidable source of emittance growth. Even though

losses during and after transition in the Main Injector are not problematic

now, they may become problematic in the future at higher intensities. It is

important to understand the leading cause of emittance growth when crossing

transition to plan for future increases in intensity. Usually, instability is the

main concern, but at very high intensities, either peak intensity, or high repe-

tition rate, small losses can affect machine performance. Becuase of this it is

not enough to establish thresholds for instability, but to understand precisely

what affect transition crossing has on the beam.

This chapter presented the design of a study that was carried in Fer-

milab’s Main Injector to understand emittance growth induced by transition

crossing using the newly comissioned tomography system. The precision of

the emittance measurements was evaluated and determined to be good enough

that a meaningful study of the dependence of emittance growth on emittance

can be probed parasitically, using only the natural cycle-to-cycle, and inter-

batch variation in emittance. This measurement will provide critical machine
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parameters necessary for evaluating the transition crossing. The next chapter

presents the results of this study.
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Chapter 5

Measurement of Emittance Growth Across

Transition

This chapter presents a study done in Fermilab’s Main Injector to deter-

mine the dominant emittance growth mechanism across transition as discussed

in ch. 2, and to compare the predications made by the analytical formulas given

to measurements of single batch, and slip-stacked beam.

The newly commissioned tomography system TARDIS is used to re-

construct bunches above and below transition during the same injection, and

provide emittance measurements. The measurement is done bunch-by-bunch

allowing the relationship between input emittance and emittance growth to

be probed using the natural emittance variation present during normal opera-

tion. Over many pulses the emittance spread shows a variance of ≈ 10− 20%

under the same operating conditions, some of this results from batch-to-batch

variation, and some from inter-batch variation.

I will present the results of emittance growth measurements for two

beam configurations in the Main Injector: single batch, and slip-stacked. Sin-

gle batch means that each Main Injector bucket contains the beam from a

single Booster bucket. This situation is close to ideal, since each bunch is a
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single, nearly gaussian distribution near the center of the bucket similar to

what was used to derive emittance growth predictions in ch. 2. Under nor-

mal Booster operating intensities I show emittance growth across transition is

dominated by space charge growth, and that the single batch configuration is

consistent with the theory presented in ch. 2. The slip-stacked configuration

shows a deviation from the expected growth, but this is not unreasonable.

Possible causes of this discreapncy, and methods for determining the validity

of each cause are discussed at the end of this chapter.

5.1 Measurement of Emiitance Growth

In order to measure growth on a bunch-by-bunch basis, each dataset

should contain a nearly symmetric window in time around transition. The

emittance growth derived in sec. 2.2.2 occurs within a small window around

transition. Becuase emittance measurements taken via tomographic recon-

structions don’t require that beam filament, the measurements can be made

anywhere sufficiently far from transition that no more emittance growth is oc-

curing. I use ±60msec, ≈ ±30×Tc. This is sufficiently far from transition that

the non-adiabatic effects, and the bunch narrowing can effectively be ignored.

Fig. 5.1 shows the peak current for a single bunch as a function of revolution.

The peak near the center represents transition, where the bunch has narrowed.

Out near ±60msec the peak current is relatively flat, indicating that the beam

width is changing slowly, if at all, relative to the sharp peak within ≈ ±10msec

of transition.
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Moving too far from transition risks conflating other effects that may

lead to emittance growth. For instance, slip-stacked beam resembles two fish

swimming tail-to-tail when initially recaptured, fig. 3.4, but has diffused such

that the initial bunches are hardly recognizable by the time the measurement

begins, fig 4.4. Without a measurement of the emittance at injection, I cannot

determine if this is simple filamentation, or if there is emittance growth. If

there is emittance growth, whatever is causing it may affect the results of the

transition growth measurement.

Tomographic reconstruction of data requires several machine parame-

ters, RF frequency and voltage, slip-factor, harmonic number, and synchronous

phase and energy, to create the maps necessary for the backprojections. The

programmed ramp values are available to obtain relevant parameters, but must

be synchronized with the data. Limits on the memory of the digitizer mean

the data acquisition starts in media res, with respect to the ramp. We need

some reference point to orient to the ramp timing. Dynamics at transition

provide such a reference point.

As discussed in detail in ch. 2 a bunch narrows approaching transition

as η approaches 0, widening on either side of transition. This moment of peak

beam current provides a fixed point we can use to orient the data relative to

the ramp. The same figure, 5.1, I used to determine how far from transition

constitutes ’far enough’ is used to orient the data to the specified ramp file.

Time t = 0 is transition, a convention established in ch. 2.

Once an approximate frame has been found for transition, the pro-
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Figure 5.1: Peak current of a bunch is plotted as a function of time from transi-
tion. As mentioned in Ch. 2, the bunch width is minimal at transition(t = 0),
increasing on either side. This bunch narrowing means the peak current is
maximal at transition. This high current means that coupling to machine
impedances can become problematic. This point is used to orient the data rel-
ative to the programmed ramp. Before transition some oscillation can be seen
in the peak current, this is likely due to the breathing motion of a quadrupole
mode. The integrated charge remains the same, but the peak current oscillates
as the bunch expands and contracts in the time coordinate.
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grammed ramp values can be interpolated to determine the necessary param-

eters. Bunches are spaced 2π radians apart in phase, or 1/frf seconds, and

the sample rate is known. These two pieces of information are used to further

refine the timing.

Starting from some position near the first bunch, it is necessary to

define a new bunch every 1/frf seconds. If the frequency is correct, the bunch

centroids should be consistently spaced, even if they are not precisely centered.

Any slope in the bunch centroid position across a batch indicates a frequency

error which should be corrected. It is important to note here that centroid

doesn’t mean the centroid of a single frame, but the centroid of the synchrotron

motion over many turns.

With the reconstruction parameters established for the data at ≈ 30×

Tnl each bunch can be reconstructed. Figs. 4.3, and 4.4 show typical recon-

structed bunches for single batch, and slip-stacked beam respectively. The

bucket size, shape and orientation change across transition. The change in

size comes from ramping the voltage, done to minimize losses, and the change

in η as transition is crossed. The bucket appears flipped about the vertical axis

because of the necessary phase shift induced at transition crossing, detailed in

ch. 2. In addition to the required phase shift, the phase above transition is

not exactly π−2φsBelow, but is determined by the voltage in order to maintain

the programmed acceleration rate.

Once the bunches have been reconstructed, extracting emittance mea-

surements is simple. Ch. 3 details the process for obtaining an emittance mea-
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surement from a tomographic reconstruction. Figure 5.2 shows the normalized

distritbution of particles as a function of action in the bunches presented in

fig. 4.3, and 4.4 both above and below transition. The growth in emittance

is easier to see when the data is presented this way, but recasting the data in

this way is not necessary to do the measurement.

Fig. 5.3 shows the input emittance values for both single batch, and

slip-stacked beam at the time of the ’below transition’ measurement, about 60

msec below transition. The single batch beam shows relatively little variation

in emittance throughout the batch. Most of the emittance variation comes

from batch-to-batch variation. In contrast, the slip-stacked beam shows a

definite correlation of emittance with bunch position in the batch. The exact

cause of the emittance variation in a batch is not known, but is likely due to

wakefields, since the trailing bunches show larger emittance.

Further study could pin down the cause of this variation. First one

would need to establish whether the variation comes from the Booster or the

Main Injector. Acquiring several frames of data at multiple points in the

Main Injector cycle and comparing the emittance would indicate if there is

emittance growth taking place between injection and transition. If the same

trend in emittance is present at injection, however, the variation would be due

to a machine earlier in the acceleration cycle, likely the Booster.

If the variation is being induced by the Main Injector study cycles

could be used to further illuminate the cause of this emittance variation. Spe-

cially prepared batches that contain a large gap between the head and tail of
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(a) Single Batch

(b) Slip-Stacked

Figure 5.2: Normalized distributions of particles in action for the bunches in
figs. 4.3, and 4.4. The solid (dotted) lines indicate below (above) transition.
The curves below transition do not extend as far because the bucket area is
smaller below transition. Growth is much more pronounced in the slip-stacked
case, the distribution widening significantly. In both cases the curve below
transition seems to increase right near the end, this is a consequence of beam
becoming ’stuck’ to the separatrix during reconstruction. This reconstruction
artifact is cut when calculating emittance. See appendix A.
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(a) Single Batch

(b) Slip-Stacked

Figure 5.3: Emittance before transition plotted as a function of bunch position
along the batch. A single example is shown for the single batch, and slip-
stacked cases. Bunch 1 is the leading edge of the batch. Some of the leading
bunches have been cut because they do not contain enough particles. The
batchwide variation is random in the single batch case and small compared,
but the slip-stacked beam shows a correlation between emittance and position,
likely the result of wakefields.
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the batch could indicate the range of the wakefields generating the variation.

Fig. 3.13 showed some evidence that there are instabilities, mostly controlled

by the longitudinal dampers, that increase emittance in the trailing bunches.

This needs to be studied further to make any definitive statements, though.

Fig. 4.8 demonstrates the effect of a charge correlation on emittance

growth, the measured correlation for the single batch, and slip-stacked beam

is shown in fig. 5.4. This data is binned in the same way as the growth data

in terms of initial emittance. The charge in each bin is scaled to the mean

charge, and the result of a linear fit to the data is used as a correction to the

beam current when fitting the growth, as described in the ch. 4.

To obtain this correlation, the total beam current is measured with a

toroid in the Main Injector and reported in the control room as the number

of protons in the machine. This value varies by about 1% from pulse to

pulse, and is used to calibrate the RWCM data. I assume the charge in each

batch is equal. But the charge in each bunch is calculated using the mean

integrated number of digitizer counts over all frames used to reconstruct a

particular bunch. A cut is made at 75% of the mean charge, bunches below

this threshold are discarded. This cut mainly serves to get rid of the leading

and trailing bunches that are affected by kicker magnets.

5.2 Results

Figs. 5.5, and 5.6 are the growth measurements for the single batch,

and slip-stacked beam respectively. The values were binned along the abcissa
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(a) Single Batch

(b) Slip-Stacked

Figure 5.4: Bunch charge plotted as a function of initial emittance. A cut
has been made for bunches with less than 75% of the maximum charge have
been cut, typically the leading and trailing bunches. Charge is binned along
emittance axis using the same binning that is used in the growth measurement.
A linear fit to the correlation is shown. This fit is used to scale the peak
current for initial intensity to correct for varying bunch charge on the slope of
the growth. The correlation is not consistent for the two beam configurations.

151



to reduce statistical uncertainty, and fit using eqn. 4.1.

In both figures, the obvious downward slope indicates that collective

effects are in fact dominating emittance growth across transition. The values

obtained from the fit on the single batch beam are reported in tab. 5.1.

To within the indicated errors the fit parameter for the dominant con-

tribution, |Z||/n| = 18.0±10.5 Ω agrees with the estimate presented in tab. 4.1.

The value of the first non-linear momentum compaction, α1 =−1.6 ±

0.8, is not near the estimate in tab. 5.1. This is not entirely surprising. To my

knowledge the first non-linear momentum compaction has not been directly

measured in the Main Injector. The value of this parameter is determined, in

part, by the sextupole fields that are used to set the chromaticity of the beam

in the transverse dimension, a topic beyond the scope of this document. Since

its design the chromaticity in the Main Injector has been increased to combat

transverse instabilities [34]. There is at least one study indicating that large

chromaticities would yield a value close to −1.5 for a lattice similar to the

Main Inejctor [36]. (According to eqn. 2.38 α1 = −1.5 gives minimal growth

for beams with β ≈ 1.)

The resistive fit parameter is not very informative, but gives a value R =

49.2±60400 Ω. The large error means the growth is relatively insensitive to the

broadband resistance. This was discussed in ch. 4. The resistive component

is highly suppressed compared to the reactive component because of the large

harmonic number of the machine and, an additional factor of the bunch width.
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Figure 5.5: Fractional growth of εrms across transition for single batch beam
plotted as a function of input emittance. 693 bunches were used and the
growth averaged over all bunches within 0.001 eV · sec bins. A fit to eqn. 4.1
is shown as a solid line, with best fit values given in the accompanying text.
The reactive impedance dominates the growth.
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Figure 5.6: Fractional growth of εrms across transition for single batch beam
plotted as a function of input emittance. 728 bunches were used and the growth
averaged over all bunches within 0.005 eV · sec bins. The solid line is a fit to
eqn. 4.1 and is not very good. The dotted line shows the prediction for the
growth using values obtained from the single batch growth fit in fig. 5.5. The
growth deviates significantly from the predictions using the values obtained for
single batch beam. This is discussed at length in the text, in short I attribute
this discrepancy to the violation of several assumptions used in deriving the
growth contributions.
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In fig. 5.6 the growth expected from the slip-stacked configuration using

the paremeters obatined in the single batch fit is shown as a dashed line, and

a fit obtained independently on the slip-stacked data is shown as a solid line.

Obviously, neither of these lines is a good description of data. The independent

fit is included because the growth expected from the values obtained using

the single batch beam don’t describe the data well. It is highly unlikely,

however, that the machine changed significantly between the acquisition of

the two datasets, though some variation is possible if components were fixed

(or broken), or magnets settings were significantly different. (The space charge

impedance has a weak dependence on the transverse beam size, a, that scales

as Log(1/a). This was completely ignored, but even allowing the beam size to

change within reasonable limits would produce only a modest variation in the

impedance [30].)

More likely is the violation of the assumptions that the beam can be

modeled as parabolic, and that it is confined by the linear region of the RF

cavity voltage used to derive the analytical model of growth presented in ch. 2.

5.3 Summary of Findings

Using the values of |Z||/n|, α1, and R as fit parameters the growth due

to mismatches from the non-linear momentum compaction, and broadband

impedance in ch. 2 do a good job of describing the observed emittance growth.

The value of |Z||/n| determined by the fit agrees with the value calculated

in [30]. The fit is insensitive to the resistive growth, so it is reasonable to
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Mechanism Obs.∆ε/ε Parameter Best Fit Val.
Reactive 0.13-0.37 |Z||/n| 18.0± 10.5 Ω

Single Resistive < 10−3 R 49.2± 60400 Ω
Non-Linear < 10−3 α1 −1.6± 0.8
Total 0.13-1.37
Reactive 0.81-1.66 |Z||/n| 73.6± 83.8 Ω

Slip-Stacked Resistive < 10−3 R 45.1± 252000 Ω
Non-Linear < 10−3 α1 −2.8± 2.6
Total 0.81-1.66

Table 5.1: A summary of emittance growth measurements and best-fit param-
eters.

consider this value undetermined with respect to this measurement. The value

of α1 does not agree with the only published value I could obtain, but there

is reason to believe that the number measured is reasonable.

In the case of the slip-stacked beam the same fitting procedure yields

a value of |Z||/n| that is much higher than expected, and appears to be a poor

match for any combination of the fit parameters considered. Using the value

for |Z||/n| obtained in the single batch case, which I expect to satisfy all the

assumptions used in deriving the analytical expressions, predicted growth is

below the observed growth.

There are two interpretation: Either the fit is correct, and something

was changed in the machine between the two measurements that introduced

some other source of emittance growth, or the more likely case that the slip-

stacked beam is exhibiting excess growth due to violation of one of the as-

sumptions necessary for the analytic derivations presented in ch. 2.

Without further study the cause of the deviation between the expected
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and observed growth can’t be pinned down, but there are some hints. The

following list outlines several possibilities for the divergence, the liklihood that

each is responsible for some or all of the observation, and a brief explanation

of the steps needed to evaluate each factor.

1. Violation of linear assumption: The derivations of emittance growth

presented assume a beam contained in the linear portion of the bucket.

This is the case for single batch, but not slip-stacked beam. Beam outside

the linear region will necessarily lead to some emittance growth because

the buckets before and after cannot be matched perfectly, given the

opposite facing tails on either side of transition. This will also likely

complicate the analytical functions for growth derived. This is a very

likely candidate for at least some of the discrepancy seen in the slip-

stacked case. The input distributions obtained here can be used as the

input to simulations of the Main Injector to evaluate the actual emittance

growth on realistic distributions. I have performed some preliminary

simulations which suggest that beam in the non-linear regions of the

bucket can contribute emittance growth of the order needed to explain

this divergence with only linear dynamics, but I have not investigated

the relationship between growth and initial emittance systematically to

date.

2. Violation of parabolic assumption: The derivations also assume that the

bunch is parabolic. This is a resonable approximation when the bunch is
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gaussian, and simplifies calculation. This assumption holds for the single

batch case, but not for the slip-stacked beam. Slip-stacked distributions

tend to contain non-uniform clumps of beam. This seems a less likely

contributor than the non-negligible occupation of the non-linear region

of the bucket. Again simulations could help clear this up, spefically

using the distributions obtained here to evaluate the effect of particular

bunch distribution on emittance growth. This seems less likely, because

the effect witnessed has such a coherent behavior, and bunch shape is

generally quite chaotic. Unless some features of the bunch shape can be

identified that correlate with input emittance (or bunch position, since

earlier bunches tend to have lower emittance), this probably contributes

to the variance at a particular point, rather than a coherent alteration

of the functional relationship.

3. Interaction of growth mechanisms: Each growth mechanism here dis-

torts the bunch in a different way. The reactive impedance squishes, or

stretches the bunch in the phase space. The non-linear momentum com-

paction shears the bunch in one direction in time (the direction depends

on the sign), creating tails. The resistive component creates a depression

in the energy of the bunch proportional to the current. I have assumed

that each of these emittance growth phenomena can be considered in-

dependently, and their contributions simply added together. In the case

that the growth from two of the three is small compared to the remaining

effect, this should be valid, which the single batch case suggests is true.
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However, the interaction of these three distortions is difficult to write an-

alytically, and may cause some of the observed discrepancy. This should

be investigated with a series of studies, and simulations. Because the

single batch case clearly has the reactive impednence as the dominant

effect, and the measurement done in this study suggests that the single

particle growth is minimal, this seems unlikely.

4. Change of machine impedance: The data for the single batch, and slip-

stacked beam were taken at different times. It is possible that the

impedance of the machine increased between the two measurements.

This seems unlikely, as the shape of the emittance growth is not con-

sistent with any of the chromatic effects mentioned here for any realistic

values of the fit parameters, and does not resemble the microwave in-

stability. But a large impedance cannot be completely ruled out as a

contributing factor.

5. Mistuned transition crossing: There may be a phase, or energy, error

present after crossing transition. This is certainly not true in the case

of single batch beam, the signature would be a dipole oscillation that is

not seen. In the slip-stacked case, there is obviously some filatmentation

that could be due to a transition tuning error, see fig. 4.4. This can be

modeled as an injection error. Such an error leads to fractional emittance

growth that has a functional form consistent with the observed discrep-

ancy, but would require an error larger than a bucket in either phase or
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energy to account for the all of the observed growth. The reconstruc-

tions of the after-transition bunches in the slip-stacked case show that

whatever error is present decreases with position in the bunch train.

6. Presence of high-Q resonator: All of the impedances considered here are

broadband, it is possible that there is a high-Q resonator contributing

to emittnace growth. Typically high-Q resonators are RF cavities that

haven’t been correctly shorted, or cavity-like structures. Whatever the

offending element, it would need a mode near some harmonic of the

beam frequency. This seems unlikely as a high-Q resonator would affect

the beam prior to transition, and continue after transition, as well as

affecting the single batch beam. Unless, again something was introduced

into the Main Injector between measurements.

7. Instability near transition: There are slow-growing instabilities that can

form [10], [39] when the beam is left near transition (head-tail, etc.). The

acceleration rate through transition is fast, and the microwave instability

is usually the first candidate for instability near transition. Because the

beam is below the microwave instability threshold, and the characteris-

tics of microwave growth don’t seem to be present, I’ve assumed these

other instabilities are not problematic.

A dedicated set of studies should start simple using single batch, low

intensity beam so that collective effects are negligible. For the same inten-

sity, beam should be intentionally filamented with a phase error to increase
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emittance. The range over which this will still satisfy the assumptions used to

derive emittance growth will be fairly small, but this would allow the exper-

imenter to probe the initial emittance in a more controlled way. If the value

measured here for the first non-linear momentum compaction factor is correct,

the emittance growth should approach zero as the bunch charge is decerased.

If the phase error is increased beyond where the linear assumption

is satisfied, eventually the beam will filament with a hollow center in phase

space, as in fig. 3.8. When this ring is concentrated at the same action as the

two beam distributions captured in slip-stacking, this would represent a clean,

simulated slip-stacked distribution for the purpose of study.

Or low intensity beam could be slip-stacked. If the same emittance

growth behavior as observed in this study is present, then the observed growth

could be attributed to the violation of the linear assumption. If this is not

the case, beam intensity can then be used as an explicit parameter in a more

controlled way to probe the onset of the large divergence between theory and

measurement in the slip-stacked case. In order to assure crossing errors are not

to blame, the phase shift should be tuned for minimum dipole oscillation after

transition. Quadrupole oscillation may still be present due to mismatches.

Simulations could answer three questions: how do the various growth

mechanism affect one another when they are of the same order, what effect does

the bunch distribution have on the growth when it is not parabolic, and how

does the growth scale with input emittance when the beam begins to populate

the non-linear region at an appreciable level. The tomograms obtained for the
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study presented in this paper can be used as input in order to help answer the

latter two questions. Realistic input distributions can be propagated through

simulations and compared to the output distributions, an example of measured

input and output distributions are shown in fig. 4.4. In general, the ability to

simulate realistic distributions obtained through tomographic reconstructions

is one appeal of doing tomographic reconstruction.

An independent measurement of the coupling impedances in the Main

Injector would be helpful regardless of the outcome of this study. In addi-

tion to providing a check on the meaurements here, and suggesting possible

solutions to the problem of steep depedence of growth on input emittance, an

independent calibration could be used as a baseline allowing this method to

be used as diagnostic to monitor the emittance growth over time. Deviations

from historical norms could be used as an indication that transition is tuned

incorrectly, or that there is a problem with the impedance of the machine.

Unless specially designed to avoid transition, sometimes at considerable

effort, some synchrotron in an accelerator chain is likely to cross transition,

and emittance growth will undoubtedly occur. And, because special RF beam

prepration techniques like slip-stacking will continued to be used to overcome

the intensity limitations of low energy machines necessary to reach final beam

energies required by experimenters, it is important to understand the effect

that non-gaussian distributions have on the evolution of particle distributions.

Simulations are helpful, but can only go so far in this regard without some

grounding in experiment. Beams are always becoming more intense, and tol-
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erances on losses more strict, because of this it is critical that we understand

how the beam evolves, and have ways to extract realistic distributions ob-

tained experimentally to refine simulation, and control the beam quickly and

intuitively in the control room. This study showed how tomography, and sim-

ilar diagnostic techniques that use machine modeling, and measurement can

be used to understand particle accelerators.
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Chapter 6

Summary And Outlook

This chapter will briefly review each section of this document, high-

lighting the most important points before discussing the implications of this

work, and the outlook for the future of particle accelerators.

6.1 Longitudinal Dynamics

Ch. 2 introduced longitudinal beam dynamics. The accelerator mod-

eled in fig. 1.2 was used as a minimal example to discuss the synchronous

particle, composed of the radio-frequency cavity used to accelerate particles,

and magnets to steer particles, and the synchronous particle to which all the

accelerator systems are synchronized, and which is the basis of most analysis.

I discussed the effect of small errors in either particle energy or phase relative

to the synchronous particle.

Particles exhibiting small errors in energy take more or less time to

traverse the ring, because of the devaition in velocity, and path length due to

bending magnets. This timing error leads to a phase slip for off-energy particles

relative to the arrival time of the sycnhronous particle. When a sinusoidal

focusing potential is applied with a radio frequency cavity synchronous with
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the revolution frequency of the design particle, the restoring force exerted

reduces the energy error of particles as they slip away in phase. Over many

turns this leads to harmonic motion about the design values of phase, and

energy in the longitudinal phase space. This motion was analyzed, and the

conditions for stability established.

A small natural spread in energy, and timing with respect to the syn-

chronous values is expected. These errors are described by a quantity called

the emittance, often referred to as the phase space area the bunch occupies,

but more accurately described as the average action of the particles in the

distribution. Errors in transferring beam from one machine to another, or

noise on magnets, or RF power supplies can cause the emittance of a bunch

of particles to grow leading to operational problems. Particles that exceed the

stable phase space area are lost either during acceleration, crossing transition,

or upon extraction from the machine.

The electric fields produced by particles in a bunch can perturb longi-

tudinal dynamics through interactions of the particles with one another, and

with the environment. These intensity dependent, collective effects modify the

focusing potential of the RF cavity distorting the trajectories in phase space,

and depend on the actual linear charge distribution. If the perturbation is

large enough beam motion can become unstable and beam is again in danger

of being lost.

As particle accelerators push the limits of beam power into the regime

of many megawatts the tolerance for losses must become increasingly strict.
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Losses near the sensitive superconducting equipment increasingly necessary

for high power accelerators can lead to quenches and affect machine reliability.

Nuclear activation of the equipment in beam enclosures must be kept to a

minimum both because of environmental concerns, and worker safety. The

downtime necessary to fix damaged components, or to allow safe access may

seem like mundane annoyances, but every second an accelerator is offline is a

second that it is not carrying out its mission for science or industry.

Losses are monitored and the accelerator is shut down when thresholds

are exceeded, but this is a coarse control. In addition to direct measures, di-

agnostics used to preciesly tune beam to the optimal conditions, and monitor

operations are crucial in maintaining reliability, and saftey as beam power in-

creases. Some diagnostics provide very precise, and accurate direct, destructive

measures that require no reconstruction. These serve a necessary purpose in

bringing a machine up to its operational state, or in the case of linear acceler-

ators where beam is dumped after every cycle. However, reliable, continuous

operation of high power accelerators benefit from real-time, non-destrutive,

easy to interpret diagnostics that allow operators to quickly identify aberrant

machine behavior.

6.2 Tomographic Reconstruction

In analogy to medical tomography, tomography in particle accelerators

allows for the reconstruction of two-dimensional phase space relying only on

non-destructive measurements of beam projections. The method has histor-
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ically been used with several algorithms, filtered backprojection(FIR), maxi-

mum entropy(MENT), and algebraic reconstruction techniques(ART) to name

a few. Because of the unique non-linear nature of the problem in particle ac-

celerators, algebraic reconstruction techniques tend to work best. They are

fast, robust, and conceptually simple. ART has been applied to longitudi-

nal [23], [20], and transverse [19] dimensions. The work presented here was

mostly concerned with providing an online, real-time, multi-bunch system for

large synchrotrons like Fermilab’s Main Injector, and Recycler Rings.

The method has been expanded to include the space charge contribu-

tion [21] but other energy loss mechanisms have not been included to date.

These could be added to the tracking equations to allow application to rings

such as electron based light sources where radiative energy losses are part of

the design, and normal operation of the machine. The inclusion of space-

charge forces requires that the reconstruction maps be calculated separately

for each bunch, as the energy loss is dependent on the precise structure of the

beam current. This is problematic for real-time systems in large synchrotrons

at present.

For more intense beams space charge considerations become increas-

ingly crucial to acheiving very good reconstructions. In order to properly

include all of the energy loss effects, the impedance of the machine in question

must be known very well. Very intense beams are becoming more common

as new uses are devised for particle beams, and precision experiments are

pursued.
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The tomography algorithm is separable into a map building, and a

recosntruction portion. Leveraging the extensive work put into tracking pro-

grams used at the major accelerator complexes to create the maps, where all

of the beam physics knowledge is needed, so that the tomographic reconstruc-

tion program is not reinventing the wheel is a practical step that would go a

long way toward making tomography available in more machines. There will

certainly be tradeoffs when the program is not built from the ground up to

take all reasonable approximations into account for a particular machine, but

this may be offset by the effort of much more talented computer scientists

working to optimize performance, and the very detailed machine models that

are typically available.

In the future, full 6-D phase space reconstruction should be possible

for the longitudinal, and both trasnverse phase spaces. Such a full 6-D recon-

struction could be used to propagate the distribution measured at one point

in a ring to obtain the 3-D real-space bunch distribution at collider interac-

tion points for calculation of the overlap integral of colliding bunches. This

method may be able to improve luminosity calibration, which represents one

of the largest uncertainties in collider experiments. In the LHC for instance,

the luminosity measurement has an error of 11% [3].

A technical extension of tomography that has not been implemented

yet, but will likely be necessary for full 6-D phase space reconstructions is the

inclusion of coupling. Typically the longitudinal and transverse coordinates

can be treated independently, though not always. In the same way, each of
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the transverse coordinates can be treated independently. This separation of

coordinates is more likely to be violated, as simple angular alignment errors

in magents can couple the motion of particles in two transverse dimensions.

To my knowledge, beam exhibiting coupled motion in the transverse plane has

not been reconstructed to date.

Currently the only way to determine errors in reconstruction is empir-

ically. A bunch must be reconstructed many times while varying parameters

to map out the distortion of the bunch as a function of the parameter under

investigation, or to relate errors in parameters to errors in particular physics

quantities. This is possible offline, but online, or in the case of space charge this

quickly becomes overwhelming. More work to understand how various factors

affect the error in reconstructions, or the development of simpler algorithms

to determine errors would help tomography reach full potential for scientific,

rather than just operational, applications. Without work of this kind, it will

be difficult for the technique to be used by anyone other than experts in the

diagnostic itself for serious studies.

Tomography is an analysis technique applicable regardless of the de-

tector technology used to obtain projections. The RWCM detector technology

used at Fermilab is very good, it is non-destructive, and has a large bandwidth

(3kHz-4GHz) [13], but it was not developed with tomography in mind. The

20ns buckets in the Main Injector and Recycler are near the limits of what can

be reconstructed with the existing RWCM’s. In fact, reconstructing in the

Main Injector during a particular 120GeV mode called resontant extraction
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that uses very short bunches is almost impossible. Because the features of the

very short bunch cannot be resolved nearly all reconstructions occupy on a

few pixels.

The current limit on precision of reconstructions, and consequently

physics quantities, is the detector bandwidth even though it is large. As to-

mography becomes a more viable real-time diagnostic, dedicated detectors

should be designed to address the particular challenges of tomography: high

bandwidth, non-destructive, accurate reproduction of high frequency features,

turn-by-turn, and bunch-by-bunch capabilities. To date Fermilab’s tomog-

raphy system has not been calibrated using a destructive, direct method of

phase space visualization, but this could greatly improve the quality of the

non-destructive tomography, increasing faith in the precision of measurements.

It should be possible to extend the reconstruction technique used here to

very stable linear machines. 1 The mathematics of reconstruction only requires

that there be some known transformation relating projection data to some

initial 2-D distribution. Varying the phase with which a single pulse encounters

an RF cavity, or a series of RF cavites, over many pulses may provide the

necessary transformation. If the beam distribution is stable from pulse to

pulse it may be possible to reconstruct the 2-D distribution. Much work needs

to be done to determine the limits of such a technique, but the algorithm

would be essentially the same ART technique used here. In this case however,

1In fact some work is ongoing at the FACET facility at SLAC National Laboratory to
do just this.
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it may be more useful to use a destructive, direct technique on a single bunch,

as the required transformation may be so disruptive to normal operations that

it is effectively destructive. Still, the normal destructive methods for imaging

very short bunches can be prohibitively expensive, such as the RF deflecting

cavity, XTCAV [6], used at SLAC to reconstruct the longitudinal phase space

of LCLS beam after the FEL, which requires a full 50 MW power supply

system and costly X-band cavities near the beam dump, far away from the

acclerating stations.

As I showed in this document with measurements near transition, to-

mography can be used to probe dynamics that are not modelled by looking

at regions where the perturbing effects are negiligible to infer the properties

of the machine. The number of situations where this sort of technique can be

employed is certainly limited, but there may be some niche applications for

which it is helpful.

In a similar way, suppose some machine suffers from space-charge ef-

fects, or some unknown instability, but is an intermediate part of an accelerator

chain. Beam could be injected into this machine and allowed to evolve for some

short time, t. After t seconds have elapsed the beam is extracted to another

machine that is not experiencing such problems and the distribution is recon-

structed. By varying the amount of time the beam is allowed to evolve in

the problem machine, the evolution of beam in that machine could be imaged

directly.

Many of the operational benefits of having a real-time, multi-bunch
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system already realized at Fermilab were presented in this document. These

benefits support the argument that longitudinal tomographic reconstruction

should become a part of nearly every circular machine. The necessary diagnos-

tics equipment is relatively modest, and with increases in computing power, a

dedicated personal computer can provide close to real-time images of nearly

every bunch even in large synchrotrons on a time-scale appropriate for machine

tuning.

6.3 The Future of Accelerators

Particle accelerators provide intense, high energy beams of particles.

These machines serve the scientific purposes of giving experimenters access to

regimes of energy and statistics not available from natural sources to probe

fundamental interactions, or create intense beams of radiation. They serve

practical purposes by allowing engineers to precisely control beams of particles

used for everything from welding, to cancer treatment. The job of the accel-

erator scientist is always to push the operational boundaries, increasing the

possibilities for science, and industry. This can take many forms. Sometimes

we push the boundaries of single particle production, where precise knowledge

of the energy and timing of one particle is important for instrument calibra-

tion, but more often we want more particles, confined to smaller regions, at

higher energies, more reliably. The first two goals are often acheived in tan-

dem, creating very intense beams to produce very bright, coherent beams of

radiation, or very precise measurements of rare phenomena. The highest en-
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ergies are currently only being chased at a single machine, the Large Hadron

Collider(LHC), where scientists are uncovering the most fundamental laws of

interaction of the natural world.

To acheive very intense beams at more modest energies than the 4 TeV

of the LHC, but still in the many GeV range, requires accelerator scientists use

many methods to overcome the limitations inherent in the activity of confining

charged particles to small volumes. At low energies the electric force between

particles tends to push them apart, as they traverse the metallic enclosures

they also interact with the environment. The more particles there are the more

strongly these collective effects interact with the beam. These interactions are

usually less problematic at high energies as well. There are many schemes to

increase the amount of beam in a high energy machine, while reducing the

amount of beam in a low-energy machine, for instance the slip-stacking done

at Fermilab.

There is a direct increase in beam intensity that comes from stacking

mulitple beams, but in the case of Fermilab, slip-stacking the Reycler while

Main Injector accelerates is another way to boost average beam power. By

running these operations in parallel, the complex becomes more efficient, al-

lowing more protons to be sent to experiments. It is improvements like this

that will continue to encourage physicists to explore alternative beam delivery

schemes with existing accelerators.

Each experiment has specific requirements, and sometimes it isn’t the

total intensity that needs to be increased, but the peak intensity. In this case,
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two RF systems with different harmonic numbers may be used to capture many

small buckets into one large bucket created by the lower frequency RF. This

allows beam initially distributed in series with respect to time, to be rotated

in the phase space to occupy a small time spread, with a larger energy spread.

This ’coalescing’ is actually the problem tomography was devised to monitor

at Fermilab in 1987 [23].

These schemes, sometimes called RF gymnastics, will only multiply as

experimenters demand more beam, and accelerator scientists are faced with

large existing complexes that still have plenty of operational life. Although

particle accelerator simulation software is a very developed technology it still

needs to be checked against experiment, and beams still need to be monitored

for all the myriad ways that things can go wrong. The non-gaussian, and un-

matched distributions that necessarily arise from techniques like slip-stacking

can’t be treated analytically in terms of simple distributions, and simple mea-

sures of peak current, or emittance. Because of this it is necessary to have

diagnostics that give a clear indication of how beam is evolving, and that

provide realistic particle distributions to check the results of simulations, and

provide distributions for the input to simulations.

Tomography offers the opportunity to view the actual 2-D distributions

generated by these schemes, and to study the way they evolve in machines.

This document presented one study well-suited to tomographic reconstruction

where emittance measurements need to be taken before a beam filaments. This

can be important when a beam spends little time in a particular machine, and
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the researcher cares about the actual phase space distribution of beam.

There is no doubt that going forward acclerators will play a key role

in helping scientists uncover the laws of nature. As the desire for more beam

pushes up against the abilities of existing machines, accelerator physicists will

devise new machines, and new ways to use old machines. Tomography, and

other techniques that blend machine modeling, high-powered computers, and

live data will play a critical role in increasing the potential to do cutting edge

science by providing unprecedented views into the operation of these great

machines.

175



Appendices

176



Appendix A

Errors and Reconstruction Artifacts

In tomographic reconstructions spurious features are called artifacts.

There are many sources of artifacts, each with their own distinguishing fea-

tures. The following is a brief list of artifacts, their causes, and ways to remove

them if available. This section is intended as a brief guide to the qualitative

signatures of various errors, not a comprehensive account of the quantitative

effects of such errors. Typically figuring out the quantitative errors introduced

must be done on a case by case basis, as they can vary with many parameters

and may affect different measurements done using the reconstruction differ-

ently.

There are several ways to identify artifacts. One is to reconstruct an

object several times, using the output of one run with a particular feature re-

moved and observing whether the algorithm converges to an image containing

that feature under subsequent trials [14]. This is similar to starting a fitting

algorithm at a different point to identify whether an extremal is local or global.

Another option is to simulate an object, and the data that object would gen-

erate and then distort the data using a model of the effect under consideration

to see how the object is distorted. This appendix uses the second method for
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all illustrations. For all examples in this appendix the profiles shown in fig. A.1

are used as the baseline matched distribution. This parabolic distirbution is

generated according to the bunch model used in sec. 2.2.3.

The perfectly matched distribution shown should represent a bunch

that is smoothly distributed out to a given radius, notice that there are already

some artifacts present in the reconstructed profiles before we’ve begun to add

error conditions. These are intrinsic to the reconstruction process and manifest

in the reconstruction as non-smooth areas, in particular a cross-hatching and

a soft edge to the distribution are obvious in this reconstruction. These can

be eliminated by increasing the discretization, or the number of test particles

launched per cell, but typically these actions will increase the reconstruction

time and may lead to their own artifacts, so I use this example as a baseline.

A.1 Angular Range

In a rigidly rotating system, a patient in a medical setting for instance,

the data should represent projections taken over π radians. 1 Fig. A.2 shows

several reconstructions of a simple matched distribution with the same angular

resolution, but different angular spans, from 0.2π−2π in terms of synchtrotron

rotations. The range plotted for each of the projections is the same, with the

gray region indicating frames not included for the reconstructions using less

1The projection onto 0 and π radians will provide the same information, but if the angular
steps are such that subsequent rotations provide angular interpolation, more than π radians
may be desireable.
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(a) Input (b) Reconstructed Profiles

(c) Reconstruction

Figure A.1: The model parabolic distribution used to illustrate some common
artifacts. (a) are the input profiles. (b) the baseline reconstructed profiles,
and (c) the reconstructed 2-D distribution. Even before adding any error
conditions some artifacts intrinsic to the reconstruction algorithm are present
in the reconstructed profiles, and 2-D disribution. Note the spurious cross-
hatching, and soft edge on the distribution in (c).
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than a full synchrotron period.

Notice that beyond a half a synchrotron period the reconstruction does

not change. In the reconstructions spanning less than π radians there are large

streaks evident in the reconstruction. If this sort of streaking shows up the

number of turns used for reconstruction should be increased.

Because the synchrotron frequency drops to 0 at the separatrix, the

angular range requirement will never be completely satisfied throughout the

bucket, though the change is relatively slow until just near the separatrix so

in practice there is no problem. Additionally, the beam is often confined to

the central region of the bucket and this effect isn’t noticeable. If the beam

is very near the separatrix, and this is either uncorrectable, or desired, more

turns should be used for the reconstruction.

A.2 Angular Resolution

If the frames of data span the full π radians or more but the angular

separation between frames is too large, the reconstruction may show artifacts

like those in fig. A.3. This can be problematic even if the acquisition is turn-

by-turn if the synchrotron period is very short. The solution to this problem

is to simply add more data. It is highly unlikely that the synchrotron period

will be precisely an integer number of turns, so the additional frames should

provide angular interpolation beyond π radians. In this case the number of

frames should only be increased until the artifact disappears. A more rigorous

condition, time permitting, is to add frames until the discrepancy is minimized.
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(a) 0.1 Ts (b) 0.2 Ts

(c) 0.5 Ts (d) 1.0 Ts

Figure A.2: The effects of insufficient angular range on reconstructions is
shown. Each reconstruction uses some fraction of a single synchrotron period,
Ts, taken at the same rate, one frame per revolution. Notice that beyond
half a synchtrotron period, the additional information does not improve the
reconstruction.
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As soon as adding more frames increase the discrepancy, no more frames should

be added.

A.3 Random Noise

Regardless of the source of random noise in the data, the effect is gener-

ally the same. Noise in the data frames contributes noise to the reconstructed

image. Fig. A.4 shows reconstructions with random noise generated to lie

within a full width of ±10% of the peak signal. Becuase this artifact depends

on the data being distorted, the input data is shown, the data from A.1 is

used as the baseline. The reconstructed profiles, and 2-D phase space are also

shown. Notice how the noise effects the reconstruction most near the edges

of the separatrix. The separatrix is suppressed in the reconstructed image so

that the high intensity pixles near the edge can be seen.

Because an iterative algorithm weights the pixels of the image by the

amount of constructive interferrence, random noise, which should be uncorre-

lated from frame to frame, should be suppressed relative to the actual signal

by a factor on the order of the number of frames of data. Essentially, each

frame is an independent measurement of the distribution. But beacuase the

signal represents a line integral along the energy coordinate of the phase space

which means the far edges of the image suffer more from noise because each

line integral is taken along a smaller number of pixles in the ∆E dimension

becuase of the tapering of the separatrix along the edges.

A cut can be made as a function of action near the separatrix. The
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(a) 1 ◦ (b) 3 ◦

(c) 5 ◦ (d) 10 ◦

(e) 20 ◦ (f) 30 ◦

Figure A.3: The effects of insufficient angular resolution on 2-D φ − ∆E re-
constructions. Each reconstruction uses the same data spanning half a syn-
chrotron period, but fewer frames of the data representing acquisitions at
fewer, more largely spaced angles. The angular spacing of acquisitions is
indicated beneath the reconstruction, relative to a synchrotron period. For
instance, one acquisition at t = 0, and t = Ts/2 would give an angle of 90 ◦.
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reconstructed image with this cut is also shown in fig. A.4. The gray areas

surrounding the main distribution show what has been cut. The remaining

phase space shows some evidence of noise, but the main core of the distribution

is still apparent. This noise can affect emittance measurements in particular.

A.4 Timing Offsets

Timing offsets due to triggering problems can lead to errors in recon-

struction. There are two components to consider, a predictable jitter that

comes from the interaction of the timebase on the scope and the timebase of

the accelerator timing system, and a random jitter.

The non-random component occurs becuase a machine revolution is not

a perfect multiple of the sample spacing on the scope. Over subsequent turns,

the distribution can be seen to shift slightly from turn to turn, but not by

more than a single sample. This error is simulated in fig. A.5. Notice in the

input data how the error resest after a given number of turns. Because the

magnitude of this error is typically small, the effect on recosntructions is also

small, as can be seen in A.5. The bunch exhibits some irregularity around the

edges of the distribution.

To control this error the sampling rate of the scope can be set higher

until error is no longer visible. If setting the sampling rate higher increases the

time to reconstruct, the number of pixels in the reconstruction can be reduced

relative to the number of samples per bunch. This is especially helpful if the

sampling rate is set to a value higher than the analog bandwidth of the scope,
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(a) Input (b) Reconstructed Profiles

(c) Image (d) Image with cut

Figure A.4: The effect of random noise in data on a tomographic reconstruc-
tion. (a) shows the data from fig. A.1 with added noise. (b) shows the re-
constructed profiles. (c) is the initial reconstruced image with high intensity
pixels near the separatrix. In (d) a cut has been applied removing pixles above
an action just inside the separatrix, cut pixles are shown in gray.
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or detector. See sec. A.7 for a discussion of pixel number and reconstruction.

A random jitter, much worse than what is typically observed, is shown

in fig. A.6. Noise was modeled here as a randomly generated timing offset

for each frame in the range of ±200ps and ±400ps full width. Actual jitter

tends to be about 200ps, and only occurs occasionally. Without diagnosing

the source of the random jitter in the electronics this component cannot be

removed. A reconstruction of a simulated, perfectly matched bunch is shown

in fig. A.6, with and without a single frame offset by the 200ps. Even with

these very severe jitter models, the effect is merely to smear the jitter in the

projections, and blur the edges of the distribution in the 2-D reconstruction.

Some halo is also visible around the central bunch distribution. This will not

affect most qualitative assesments, but will introduce a small error in emittance

measurements.

A.5 DC Offset

A DC offset in the data contributes a serious error in the reconstruction.

Part of the preprocessing is to remove any DC offset, but fig. A.7 shows the

effect if one is present. The input data from fig. A.1 with a DC offset equal

to 10% of the peak signal added. The reconstructed profiles, and image are

shown as well. Notice how the same beam near the edges of the bucket appears

as in the case of random noise.

A perfectly uniform projection tends to reconstruct as a halo concen-

trated at the separatrix, in practice this normally manifests as intense beam,
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(a) Input (b) Reconstructed Profiles

(c) Reconstruction

Figure A.5: The effect of mismatch between the scope timebase and the rev-
olution period of the beam. The beam advances in phase by a fraction of a
bin width on each turn becuase the timebase of the scope and the accelerator
trigger are not perfectly matched. This is seen when the number of samples
per bucket is not large enough. The resulting error is not large, but it does
smear the bunch.
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: The effect of random trigger jitter in traces on a tomographic
reconstruction of those traces. Two cases of a severe jitter model are shown.
The left column shows the input data, reconstructed projections, and 2-D
phase space reconstruction for data generated by applying a ±200ps (≈ 1% of
bunch width) on every frame. The right column shows the same information
for a ±400ps jitter. The effect of the jitter is to blur the distribution and
introduce a small amount of halo around the primary distribution.

188



usually much higher than any actual signal, around the edges of the bucket. A

DC offset has a very similar effect to random noise. This is handled with a cut

for pixels above a certain action, in the same was as the random noise case.

Any DC offset present in the data should be removed during preprocessing

though, so this should not be necessary.

A.6 Frequency Dependent Bunch Meausurement Er-
rors

The bandwidth of the RWCM used a Fermilab is about 3kHz− 4GHz,

in addition to this there is a frequency dependent attenuation in the cables

carrying the RWCM monitor from the tunnel to the digitizer [13], [35]. Each

of these errors affects the shape of the traces used for reconstruction, but in

grossly the same way.

The cable attuation can be reduced by using cables with lower attenu-

ation per unit length over a large bandwidth, or reducing the length of cable

between the detector and digitizer. The frequency response of the detector can

also be measured and corrected for. 2 The impulse response of the RWCMs

used at Fermilab in [5]. Fig. 4.9 shows a trace corrected for the detector re-

sponse in a real case. Fig. A.8 shows the convolution of the detector response

with the matched data used throughout this appendix. The shoulder intro-

duced by the high frequency roll off is apparent. In this example, however, the

2This correction process is not perfect. At high enough frequencies the attenuation
means that the signal will be completely lost, obviously a deconvolution can’t restore this
lost information.

189



(a) Input (b) Reconstructed Profiles

(c) Reconstructed Image (d) Image with Cut

Figure A.7: The effect of data with a DC offset on a tomographic reconstruc-
tion. (a), and (b) show the data, with a DC offset equal to 10% of the peak
signal, and a reconstruction respectively. Notice how the spurious points in
(c) gather near the separatrix, which is suppressed to show the intense pixles
around the edges. If this occurs, a cut can be made as a function of action to
suppress the points near the edge, as in (d). The gray area in (d) indicates
where the cut applies. With the cut on (d) the main distribution can be seen,
but what looks like random noise is also present in the image.
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shoulder is larger than usual because of the high frequency content needed to

realize the sharp cut-off of the parabolic distribution at the full-width.

Fig. A.9 shows the input data used to evaluate the effect of detector

response on reconstruction, the data is the trace from A.8 repeatd over many

turns. The figure also shows the reconstructed profiles, and image. Qualita-

tively the effect on the reconstruction is quite small. This is largely due to the

asymmetry in this effect. Becuase the shoulder is much more pronounced on

the trailing edge of the bunch, it is not consistent with the model of longitudi-

nal dynamics. The algorithm attempts to place some of this assymetric beam

near the separatrix, where synchrotron motion is slowest. The effect we’ve

seen many times of intense beam on the separatrix shows up again. Again

a cut can be made for actions larger than some value near, but inside the

sepatatrix. Figure (d) shows the reconstruction after this cut has been made,

the gray region indicates phase space subject to the cut. After the cut there

is some blurring of the distribution around the edges, but the reconstruction

is still quite good. If the detector response is known, a correction should be

attempted.

A.7 Discretization Artifacts

The first step in building the maps used to reconstruct a 2-D image of

the phase space is to chop the phase space into pixels, or discretize it. Because

the maps serve to transform the 1-D data collected at many times into the 2-D

reconstruction, and the maps are constructed as a part of the reconstruction
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process, the number of pixels in the 2-D image is arbitarary. (The dimensions

of the reconstruciton in physical units will typically be limited to a single

bucket width and height.) In ch. 3 I mentioned the difficulty in determining

the optimal discretization of the phase space.

The sample rate used during acquisition sets a lower limit on the num-

ber of pixels in the time dimension equal to the number of samples per bucket,

a number calculated during preprocessing as (sample rate/fRF ). Using fewer

bins would represent a loss of precision. 3 Additionally, the discretization of

the energy dimension is truly arbitrary, though it is sensible to use the same

lower limit as for the time dimension. But what about upper limits?

Adding more bins means more test particles will be launched and maps

will be larger, both increase the processing time. In addition to the increase

in processing time artifacts can arise if the discretization is too fine. These

two considerations mean we would like to set an upper limit as well as a lower

limit, though this limit is less obvious. As a rule of thumb, similar to the rule

for estimating the final digit of precision with any measurement device, the

discretization can be set to twice the lower limit described here. (In TARDIS

this is acheived by setting the number of pixels to -2. Where negative numbers,

-n, indicate that n×(samples per bucket), as determined by preprocessing, will

3This is actually a slight oversimplification. Sometimes the sample rate is set higher than
is justified by the precision of the detector to combat a particular triggering problem en-
countered at Fermilab discussed in sec.A.4. In this case, the lower limit of the discretization
may be resonably set lower than the number of samples per bunch. Other artifacts can arise
if the number of image pixels in φ is not rational with the number of samples per bunch.

192



be used.)

A.8 Centering Error

Another possible error that can cause artifacts is the misidentification

of the center of the synchrotron motion, which can be thought of as a small

timing error. Fig. A.10 shows reconstructions, both the profiles and the phase

space distribution, for several errors. (A negative error means the algorithm

thinks the center is farther to the left of the image than it is.) The top row of

phase space images share a common color range, so camparisons can be made,

as do the profiles on the lower row. Notice how the profiles become wider, and

the bunch shape distorts as the magnitude of the error increases. The effect of

these small timing offsets are not large in terms of most operational concerns,

but they can affect measurements made from the reconstructions, notably

emittance measurements. They may also add a symmetry to the bunch that

resembles a coupled bunch mode. Notice how the tails that develop around

the central bunch can be used to determine which direction the offset is in.

This is not always possible when the distribution is very clumpy, but it can

offer a hint for manual corrections.

Typically finding the center of the synchtron motion is handled by the

preprocessing in TARDIS, but the algorithm occasionally becomes confused,

and one may wish to add an additional timing offset. This can be done in the

configuration menu under ’Tomography’.
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Figure A.8: A single frame of the baseline matched distribution time projection
is convolved with the measured impulse response of the RWCM detector, as
presented in [5]. The high frequency roll of of the detector above about 4GHz
creates a shoulder seen here. This shoulder is more prounced than normal
because of the high frequency content in the parabolic distribution, which
ends abruptly at the full width. Fig. A.9 shows the effect fo this kind of error
on reconstruction.
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(a) Input (b) Reconstructed Profiles

(c) Reconstructed Image (d) Image with Cut

Figure A.9: The effect of detector impulse response on a tomographic recon-
struction of those traces. (a) shows several frames of the trace from A.8 which
provides the input data. (b) shows the projections reconstructed from (a). (c)
and (d) show the 2-D reconstruction, and the 2-D reconstruction with a cut
for action near the separatrix.
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(a) 1 (b) 2

(c) 3 (d) 4

(e) 5

Figure A.10: The effect of discretization on reconstructions of the same data.
For data with 100 samples per bunch, the number below each image is the
multiplier used to decide the number of pixels in the φ, and ∆E dimensions.
The total number of pixels in the image increases with this multiplier squared.
The image becomes much clearer, but takes longer to calculate. The cross-
hatching in the coarser images are artifacts, as are the rings seen in image (e).
The rings are much more apparent in data that is not matched.
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(a) −400ps (b) −200ps

(c) 0ps

(d) +200ps (e) +400ps

Figure A.11: The effect of a misidentified center on reconstruction. Each panel
indicates an error introduced in locating the center of up to ±400ps (≈ 2% of
a bucket), this is equivalent to a timing offset. Each recosntruction shown on
the top shares a common range to allow comparison between reconstructions.
Notice how the projections show an asymmetry that tends to smear in the
direction of the actual center.
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(a) −400ps (b) −200ps

(c) 0ps

(d) +200ps (e) +400ps

Figure A.12: The effect of a misidentified center on reconstruction. Each panel
indicates an error introduced in locating the center of up to ±400ps, this is
equivalent to a timing offset. Each recosntruction shown on the top shares a
common range to allow comparison between reconstructions. Notice how the
bunch shape distorts and the intensity near the center drops. The effect is not
large when looking by eye, but can have an effect on emittance measurements,
increasing emittance as the bunch is spread out to larger action.
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