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Cell cultures provide researchers the opportunity to observe cell behavior in 

response to specific, well-defined environmental cues, leading to insights that enable 

better engineering design for tissue culture and other biomedical applications. Chemical 

and electrical stimuli have been successfully applied to cultured cells to approximate 

aspects of the dynamic conditions experienced in vivo. However, in vitro topographical 

cues have mostly been limited to static substrates that do not subject cells to the dynamic 

conditions they experience in vivo when tissue remodels during development and wound 

healing. Delivering dynamic topographical cues to cultured cells can answer long-

standing questions about mechanisms of cell morphology changes. Such capabilities 

could also facilitate engineering of wound-healing matrices and nerve guidance conduits 

by promoting migration of cells and providing directional guidance to cellular processes. 

This dissertation describes the development of approaches for introducing in situ 

topographical cues to cell cultures and inducing responses such as neurite guidance and 

cell alignment. Both strategies undertaken in this work make use of multiphoton-

promoted photochemistry to print and manipulate three-dimensional microscopic protein 
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hydrogel structures. In one approach, a technique referred to as micro-3D printing, 

topographical guidance cues are printed in the proximity of cultured cells to guide the 

growth of cellular processes. By translating a tightly-focused pulsed laser beam through a 

printing reagent solution flooding cultured cells, features are printed that provide physical 

guidance to extending neurites from NG108-15 cells, a neuronal model cell type. In 

another approach, an innovative technique known as micro-3D imprinting is developed 

for producing micrometer-scale depressions on the surfaces of photoresponsive protein 

hydrogels. The impact of various experimental parameters on topographical feature 

dimensions is characterized. Micro-3D imprinting is used to introduce dynamic 

topographical changes on a cell culture substrate, demonstrating that NIH-3T3 cells, a 

fibroblast cell model, alter their morphology and alignment in response to the 

introduction of a grooved surface topography. This set of approaches introduces new 

tools to the repertoire of cell biologists for exploring the behavior of cells growing in a 

spatio-temporally dynamic environment, opening possibilities for studies of cellular 

behavior in conditions that may better reflect environments cells experience in vivo. 
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Chapter 1: Introduction and Literature Review 

1.1 RECREATING THE CELLULAR ENVIRONMENT 

In vitro cell and tissue culture arose in an attempt to understand the functions of 

biological cells in a systematic manner. Cells are capable of undertaking a variety of 

behaviors such as changing morphology, migration, differentiation, and apoptosis. Cells 

in vivo are difficult to observe because the opacity of tissues makes it challenging to 

observe deeper tissues without surgical intervention. In addition, environmental 

conditions in the body – such as temperature, chemical concentrations, and topography – 

are in constant flux and difficult to measure. Moreover, samples are heterogeneous, 

making it difficult to draw generalized conclusions about the behavior of any given cell 

type.  

A common strategy in cell biology is to extract cells from the in vivo environment 

and keep them viable in vitro to enable experimental observations in a controlled 

environment. In the late 19
th

 century, Leo Loeb first suggested the possibility of keeping 

cells alive outside the body [1]. An early successful strategy for growing cells in vitro 

was to plate an organ fragment as a tissue explant. Cells migrated onto the substrate from 

the tissue and could be observed individually rather than as part of a heterogeneous 

aggregate. In 1907, Harrison maintained a culture of explanted frog embryonic cells in a 

lymph clot for a few weeks [2]. By the mid-20
th

 century, the development of physical and 

enzymatic disaggregation techniques allowed cells to be dispersed from a tissue sample 

and plated as individual cells [3,4]. This helped in the establishment of cell lines with a 

consistent genetic makeup. Important milestones were the L-strain mouse fibroblast line 

in 1948 [5] and the human HeLa cell line in 1952 [6]. These genetically homogeneous 



 2 

cells responded consistently to environmental conditions, allowing more conclusive 

experimental observations. 

Other important developments involved the standardization of culturing media. 

The earliest tissue cultures were maintained in isotonic solutions, lymph clots, blood 

plasma, and mixtures thereof. Animal blood serum (plasma without clotting factors) 

provided cells a wide range of nutrients and chemical factors they need to thrive. 

However, these sera had batch-to-batch variations in their levels of biological 

components (e.g. hormones and growth factors), causing cells to grow at different rates. 

The sera could also contain infectious contaminants because of their animal origins. The 

need for consistency drove the development of chemically-defined media, such as 

Eagle’s minimal essential medium, which are widely used today [7–9]. Such media often 

need to be supplemented with small amounts of sera to provide the full complement of 

nutrients and carrier proteins needed by particular cell lines, but improved 

characterization of sera components is allowing the development of entirely synthetic 

complete media for many cell types [10].  

Adherent cells, which comprise the majority of cell types, require a suitable 

substrate for healthy growth. The earliest cell cultures were grown on glass petri dishes, 

which required rigorous cleaning to minimize contamination of cell cultures, and 

biological coatings such as collagen to enhance attachment [11]. The development of 

plastics in the mid-20
th

 century proved a boon for cell biologists who quickly adopted 

commercially manufactured disposable polystyrene as the preferred cell culture surface 

(Cooper 1961; Ryan 2008). While polystyrene itself is a poor substrate for cell adhesion, 

processes such as gas plasma treatment produce a surface that supports a wide variety of 

cell types [12]. Coating the surface with polypeptides or glycoproteins can also improve 

cell adhesion [13].   
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Cell biologists made these efforts to standardize cell culture conditions for a 

reason: if genetically similar cells are cultured in consistent conditions, one can minimize 

misleading variations in cellular behaviors. This renders any experimental effects easier 

to recognize. In some instances, small variations in environmental conditions can induce 

profound changes in cell behavior.  

Cells interact with the environment in a number of distinct ways. These 

interactions may be in several forms: (i) chemical factors, which are dissolved in the 

extracellular media, bind to receptors on the cell membrane, and invoke intracellular 

signals; (ii) cell-cell interactions, in which receptors on one cell recognize molecules on 

another cell; and (iii) cell-matrix interactions, in which cell receptors recognize molecular 

motifs on the ECM. Cells can also detect the shape and stiffness of their substrate based 

on tensions experienced within their cytoskeletons. Furthermore, cells are capable of 

responding to extracellular and intracellular bioelectric stimuli. All these stimuli provide 

environmental information to the interior of the cell. The cell may respond with changes 

ranging from simple modulations in cell shape to alterations in gene expression. Inside 

the body, cells constantly receive these signals from secreted factors in the interstitial 

fluid, contact with adjacent cells, contact with the interstitial matrix, and mechanical 

tensions produced by growth, development and organism movement. Researchers have 

made major efforts to model these influences in the in vitro environment. 

It is easy to dose a population of cells with a chemical factor, but targeting a 

single cultured cell, or part of a cell, with is a greater technical challenge. The traditional 

method has been to deliver the agent via a pipette tip or drawn capillary positioned close 

to the cell of interest, but it is difficult because diffusion typically results in shallow 

concentration gradients, and it is difficult to selectively target a site on a single cell. Patch 

clamping allows more precise (generally internal) dosing but risks damaging the cell. 
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Even the gentlest handling exerts stress on the cell membrane, and this may act as a 

stimulus itself. Photolytic cleavage, the release of “caged” chemical agents by light, can 

deliver reagents with high spatiotemporal resolution, although preparation of photolytic 

agents can be difficult [14]. An advance in cell dosing technology developed by the Shear 

lab uses a microfluidic device consisting of two vertically stacked flow chambers, with 

cells adherent to one face of a membrane that also functions as a barrier between flow 

cells. Ablation of a pore in the membrane using a focused laser light allows a narrow 

stream of dosing reagent from the lower chamber to flow into the upper cell chamber. 

Changing the direction of fluid flow in the upper chamber allows the stream to be 

precisely steered toward cells of interest  and multiple cells can be dosed with different 

reagents in arbitrary patterns [14]. This technique has been successfully used to examine 

the chemotaxis of HL-60 leukemia cells with subcellular resolutions [15]. 

Electrical signals, both dynamic and steady-state, are known to influence cell 

division, migration and differentiation [16]. Transmembrane potentials and ion channel 

currents have been extensively studied using intracellular microelectrodes and patch 

clamp electrodes [17]. Spatial voltage gradients in the extracellular and intracellular 

spaces have attracted recent research attention. The application of electric fields to cell 

cultures has been used to direct axon extension [18,19] and fibroblast migration [20].  

Cell adhesion and morphology is influenced by the chemistry of the surface to 

which cells adhere. Within organisms, these surfaces may be other cells or ECM. In in 

vitro environments, adhering surfaces are generally glass or polystyrene which may be 

chemically functionalized or coated with substances that promote cell adhesion. In the 

1960s, systematic studies explored how surface characteristics affect cell cultures. 

Researchers soon realized that surface adhesivity, topography, and stiffness all have 
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distinct effects, and careful attempts must be made to isolate and distinguish these 

influences.  

The varying affinities of cells for different surfaces have been exploited by 

researchers to produce micropatterned surfaces on which cells favor the chemistry of 

some regions over others Early efforts in micropatterning used metal or polymer 

deposition to modulate the native hydrophilicity and/or hydrophobicity of surfaces, and 

hence their cell adhesive properties [21–26]. Cell surface receptors bind to biological 

molecules such as polypeptides, glycoproteins and their derived peptide, so cell culture 

surfaces bearing these molecules were developed via self-assembled monolayers or 

chemical immobilization [26,27]. 

In the mid-1980s, biological micropatterning research was driven by basic 

research into cell function and applied research into devices such as biosensors, 

prosthetics, and biological computers, on which electrically active cells needed to be 

spatially distributed into circuits [28]. In product of this intersection of biology and 

engineering, microfabrication techniques developed in the semiconductor fields were 

used to functionalize cell-adherent surfaces in diverse and high-resolution micropatterns 

[24,26]. These techniques include photolithography, microstamping, microfluidic 

patterning, and stenciling [29,30].  

The Shear lab, in collaboration with the lab of Dr. Christine Schmidt, has 

patterned soft protein hydrogels with biological molecules using multiphoton 

photochemistry. Protein matrix structures are fabricated via multiphoton lithography 

(micro-3D printing), and then photochemically functionalized with biotin. Via a 

neutravidin linker, a wide variety of biotinylated bioactive molecules can be tethered to 

the printed structures, thereby providing a combination of physical, mechanical, and 

chemical cues to cells cultured on the printed structures [31]. 
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In general, two-dimensional cell culture surfaces are poor models for the three-

dimensional environments that cells experience in native milieus [32]. Where an in vivo 

cell may contact a number of cells and/or extracellular matrix (ECM) in several directions 

simultaneously, a cell in a conventional monolayer culture environment typically 

experiences a substrate on the ventral side, a fluid environment on the dorsal side, and 

possibly some cells in lateral directions. Cells may also grow over each other, producing 

multilayer cultures. Many cells display different behaviors depending on the 

dimensionality of their environment.  

Researchers have made several attempts to culture cells in conditions that better 

model their three-dimensional in vivo environment. A technique known as histoculture, in 

which intact tissue fragments are supported on collagen gels in growth media, maintains 

cells in their in vivo structural arrangements and has enjoyed clinical success as a drug 

response assay [33]. In 1979, researchers successfully cultured disaggregated cells that 

were embedded in collagen and other biologically-based gels [34]. Since then, cell 

functions observed in three-dimensional environments have been shown in a number of 

cases to better reproduce those that occur in vivo, and depending on chemical and other 

properties, to support development of defined differentiation states. [35]. For example, 

the Shear lab and the Schmidt lab have developed a three-dimensional cell culture 

substrate for angiogenesis. A photocrosslinkable fibronectin conjugate is incorporated 

into a three-dimensional hyaluronic acid hydrogel network. Endothelial cells cultured 

within these hydrogels display proliferation and migration, and attain an angiogenic 

phenotype [36]. 

More recently, researchers have increasingly focused on the dynamic nature of in 

vivo conditions. Cell morphology, migration and other properties can be time variant and 

observations often must be made in real time to capture transient features [30,37,38]. For 
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instance, cell-level changes can be monitored through various time-lapse microscopy 

modalities. In some cases, fluorescent markers are used in combination with dynamic 

imaging methods to track the presence, localization and configuration of molecular 

species over a variety of relevant time scales.  

There have been fewer studies that subject cells to dynamic cues to invoke 

behavioral responses. The technological challenges of creating dynamic environments 

have only recently been overcome through the development of stimuli-responsive 

materials. Many “smart” polymers undergo physical transitions at different temperatures, 

and these properties have been exploited to prepare surfaces that transition between cell 

adhesive and non-adhesive conditions [39]. Shape-memory polymers are being used to 

develop substrates that change their topography in response to temperature changes [40–

42]. Other substrates transition in response to photochemistry [43], electrochemistry [44], 

‘click’ chemistry [45], and applied forces [46]. 

1.2 THE BEHAVIOR OF CELLS ON SURFACES 

Paul Weiss’ experiments in the 1920s drew attention to the fact that adherent 

cells, particularly fibroblasts, tend to grow aligned to fibrin filaments in a plasma clot 

culture [47]. Cells were also shown to align with collagen bundles inside a fish scale, to 

glass streaked with lipids, and to glass scored with fine lines [48,49].  

 Certain behaviors occur in a wide range of cell types, often produced by very 

similar mechanisms. Adherent cells thrive when attached to a substrate, and are generally 

rounded in suspension but flatten and spread out on flat surfaces. They may be stationary 

or motile, and their paths on isotropic surfaces can appear random or be directionally 

persistent [50]. On surfaces that are anisotropic with respect to adhesion, chemistry, 

biological activity, topography or mechanical properties, the cells display preferences for 
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some surfaces over others. These preferences manifest as changes in cell shape (stellate 

versus bipolar or spindle, shown in Figure 1.1) or speed of movement. 

 

Figure 1.1: Common morphologies of NIH-3T3 fibroblast cells. Stellate on left and 

bipolar or spindle on right. 

 Some cells, particularly fibroblastic cells, display a behavior known as contact 

inhibition [51]. If the leading edges of cells encounter each other during the course of 

movement, both undergo a temporary cessation of motility. The cells either remain 

stationary or change direction and move apart. Proliferation also slows down or ceases. 

Contact inhibition prevents cells in vivo from overgrowing. This behavior is a hallmark of 

well-functioning cells and its absence often indicates abnormality and pathology [52]. 
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 Fibroblasts have long served as a model to elucidate the mechanisms of cellular 

behavior [48]. They are prolific inside the body, forming an important component of 

connective tissue and secreting the ECM proteins that comprise the stroma of animal 

tissues. Chick embryonic fibroblasts have historically been a popular experimental cell 

type, as chick embryos were a readily available source of animal tissue before the advent 

of commercial cell culture. Fibroblasts display easily observed changes in shape and 

migration patterns under different circumstances.  

 Other cells also display characteristic responses to surface effects. Neuronal cells 

extend processes called neurites to establish connections with other cells, and the 

direction of neurite growth can be guided using surface cues. Progenitor cells such as 

mesenchymal stem cells differentiate into various cell types when plated on different 

surfaces [53].  

The work in this dissertation focuses on the response of neuronal and fibroblastic 

cells to topographical cues. Since morphology and motility are influenced by the same 

cellular machinery, the mechanisms of both behaviors are detailed in the next section. 

1.3 MECHANISMS OF CELL MOTILITY AND RESPONSE TO TOPOGRAPHY 

In the first half of the twentieth century, cell biology underwent a transition in 

approach from a descriptive science to a mechanistic one. Paul Weiss was a vocal 

proponent of considering the cell as a complex entity that interacted with its environment 

and modified its behavior in response to specific conditions [48]. He paid particular 

attention to fibroblasts, which display a distinct range of morphologies in response to 

substrate conditions. Notably, fibroblasts become elongated and narrow when plated 

upon surfaces with certain anisotropies. Weiss called this morphological response 

“contact guidance” and made some of the earliest attempts to explain the mechanism of 
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this behavior. He attributed the shapes of cells to the outcome of competition between 

two opposing sets of forces experienced by the cells. Cohesion, viscoelasticity, surface 

tension, and contractile fibrous networks would minimize the surface area of the cell and 

draw it into a sphere, while adhesive forces at cell margins, inertia, and radial contractile 

forces would pull the cell outward [49]. In light of later studies, this was a remarkably 

good prediction although the cytoskeletal and adhesive forces turned out to have an 

overwhelmingly stronger effect than the viscoelasticity of the cytoplasm or the surface 

tension in the cell membrane. 

1961 was an important year in which many experts presented reviews of current 

knowledge on cell motility behavior and attempted to fit observations into theories.  

Abercrombie summarized the contemporary understanding of fibroblast locomotory 

behavior and proposed a framework of hypotheses about its mechanisms [51]: 

1. The fibroblast bears a ruffled membrane which is its main locomotory organ. 

2. An isolated fibroblast on a plane surface moves randomly. 

3. Multiple ruffled membranes on one cell compete with one another to 

determine the direction of cell movement. 

4. Ruffled membranes can be inhibited by the environment’s heterogeneities, 

leading to phenomena such as contact guidance and contact inhibition. 

5. Cells form adhesions with one another. 

In the same year, Ambrose observed fibroblasts with interference and surface-

contact microscopy and implicated “contractile fibrils lying just within the cytoplasm and 

parallel to the cell surface” in the locomotory undulations of the ruffled membrane [54]. 

Ingram made a similar suggestion in 1969 after examining a side view of moving 

fibroblasts, using an ingenious culture chamber that allowed microscope imaging parallel 

to the cell culture surface [55]. Over the next decade, evidence accumulated to support 
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the theory that intracellular machinery, coupled to adhesion sites on the cell surface, 

drives cell morphology and movement. Several other theories fell by the wayside for lack 

of evidence, such as Weiss’ belief that cells migrate by following tracks of 

macromolecular exudates [49] and Carter’s theory that cells are passive entities whose 

movement is driven by thermodynamics [56]. 

A major milestone in the understanding of cell movement was reached in 1970 

with a series of five papers presented by Abercrombie, et al. [51,57–60]. The researchers 

described the motion of the ruffled membrane, now termed the “lamellipodium”, as a 

cycle of protrusions and withdrawals. The overall movement of a cell occurs when an 

amount of cellular material is thrust forward in the form of lamellipodia, and pulls the 

remaining cell body forward. Electron microscopy of the cell revealed small clusters of 

material connecting the cell to the substrate, and longitudinal filaments within the 

cytoplasm. This was the first indication that adhesion sites attach the cell to the substrate, 

providing traction, and that cytoskeletal stress fibers contract to pull a cell forward [61]. 

Cell movement was thus shown to be an active cell-driven process and not the product of 

passive physical interactions between the cell and substrate. An illustration of the leading 

edge is shown in Figure 1.2 [62].  
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Figure 1.2: Leading edge of a cell. Important features such as the lamellipodia, lamella, 

actin stress fibers, and adhesions are labelled. Used with permission from 

MBInfo: www.mechanobio.info; Mechanobiology Institute, National 

University of Singapore. 

The nature of the contractile cytoskeletal stress fibers was identified as actin, a 

protein known to be involved in intracellular contraction, when Lazarides and Weber in 

1974 showed that the fibers could be visualized via fluorescent actin-antibodies [63].  

The filopodia, spike-like projections on the surfaces of cells, were observed by 

Albrecht-Buehler in 1976 on fibroblasts probing the substrate around the cell [22]. When 
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they identify favorable surfaces, the lamellopodia extend into that region. The 

observations suggested that filopodia have a substrate exploring function, and this finding 

brought the field closer to a mechanism for cell movement. 

 By the mid-1980s, the mechanism of cell motility was broadly established as 

follows:  

1. Filopodia probe the substrate around the cell and identify regions on the substrate 

favorable to the cell.  

2. Lamellopodia thrust forward and form focal adhesions to the favorable substrate.  

3. The cytoskeleton contracts, dragging the cell body in the direction of the 

lamellopodia.  

4. Older focal adhesions pass underneath the cell until they become part of the rear 

edge of the membrane.  

5. Finally the adhesions in the rear detach and the membrane is pulled toward the 

cell body.  

On planar surfaces, the individual motile steps comprise a random walk. On 

surfaces that promote cellular alignment, the cells take on a bipolar morphology. 

 One particular feature of cell behavior that has attracted considerable interest is 

contact guidance, or “topographical response” as the contemporary convention describes 

it [64]. Many cells, particularly fibroblasts, tend to change their shape in response to 

topographical anisotropies; the mechanisms that underlie this behavior have motivated 

significant research interest. It is important to emphasize that the term “contact guidance” 

specifically excludes the effects of substrate chemistry and the alignment effects seen in 

high density cultures as a result of contact inhibition [65]. Relevant surface topography 

can vary from the nanoscale to the microscale. It can influence cell adhesion strength, cell 

orientation, cell movement, activation of cellular machinery, and gene expression.  
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Mechanisms that control orientation are of particular interest in the context of this 

dissertation. Several mechanisms have previously been proposed to explain why cells 

plated on a grooved substrate develop bipolar morphology in a direction parallel to 

grooves. At the most fundamental level, cells react to topography by preferentially 

extending and adhering to the substrate in certain directions over others. A key question 

is: what drives this selective preference? 

Dunn and Heath observed that cells growing on smooth glass cylinders tend to 

preferentially extend along the axial direction of the cylinder, and this effect is more 

pronounced on cylinders with smaller diameters [65,66]. They hypothesized that cells 

limit their extension in directions of high curvature in order to minimize the bending of 

the cytoskeleton, but this theory is contradicted by the alignment of cells on grooves with 

pitches shorter than the length-scale of cells [67]. O’Hara and Buck suggested that cell 

alignment is an outcome of the asymmetric formation of adhesions in configurations 

geometrically favored by the underlying topography [68]. Curtis and Wilkinson proposed 

that topographical features between adhesion sites may produce tensions in the cell 

membrane, which are detected by stretch receptors and transduced into the intracellular 

signaling systems [64]. These stretch receptors would also be activated if the cell 

attempted to extend along the circumference of a narrow cylinder.   

Evidence to support or disprove these theories was provided by the tremendous 

advances in molecular biology techniques developed in the 1980s and 1990s. Techniques 

such as immunohistochemistry, fluorescence-tagging, genome manipulation, and various 

advancements in live cell imaging (such as total internal reflectance microscopy and 

differential interference contrast microscopy) helped researchers identify subcellular 

structures such as actin bundles, microtubules, and focal adhesions.  Knowledge of these 
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structures, and their locations and functions, helped develop the widely-accepted cell 

motility models of the present day. 

Cells are now understood to adhere to surfaces in the following manner. Newly 

plated adherent cells are round and inactive, apart from some filopodia that probe the 

environment (Figure 1.3(a)). When these projections detect a surface coated with ECM 

ligands, they form initial attachments with the substrate and the cell starts to spread. The 

cell body flattens as actin filaments in the central region of the cell are disassembled. Cell 

spreading proceeds through a fast continuous phase as actin filaments reassemble in the 

periphery where the lamellipodia are located around the cell margin (Figure 1.3 (b)). At 

the boundary between the lamellipodia and cell body is a region called the lamella, which 

contains a relatively stable branched actin network. The lamellipodia contain a more 

dynamic network of branched actin filaments which extends and spreads the lamellipodia 

over a larger surface area. The assembly of the actin network determines the rate of cell 

spreading and it is continuous, so cells spread uniformly on flat, isotropic surfaces. On 

anisotropic surfaces, actin assembly is discontinuous and inactive in large sections of the 

cell margin, leading to asymmetric spreading. The continuous spreading phase is 

followed by a slow contractile phase in which the edge of the cell extends and withdraws 

in a cyclic manner while testing the rigidity of the substrate [69,70] (Figure 1.3 (c) and 

(d)).  
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Figure 1.3: Spreading of a cell on a substrate. From initial rounded shape (a) to fast, 

continuous phase (b), that transitions (c) to a slow contractile phase (d), and 

finally a fully spread state (e). The establishment of leading and training 

edges gives the cell polarity (f). Image used with permission from Elsevier 

[71]. 

As cells reach their fully spread state (Figure 1.3 (e)), the lamellipodia develop 

stable adhesions called focal complexes on their ventral sides. The focal complexes grow 

up to a few hundred nanometers in diameter through the assembly of several hundred 

types of small proteins including integrins, which are transmembrane receptors coupled 

to the actin cytoskeleton [71]. Eventually the cell spreads fully and establishes a polarity 

(Figure 1.3 (f)), i.e. it develops at least one leading edge as well as trailing edges. 

Lamellipodia extend because their dynamic branched actin network is continually 

polymerizing at the ends, and thrusting the cell membrane forward. As the lamellipodium 

thrusts forward, the network itself undergoes a relative backward motion known as 

retrograde actin flow. The retrograde actin flow applies stress to the stationary nascent 

adhesions and encourages them to develop into mature focal adhesions (FA). Meanwhile, 

the ventral cell membrane, anchored to the underlying substrate via focal complexes, is 

stationary relative to the lamellipodium so by the time the FA completely mature they are 

under the lamella. Further forward movement of the cell brings the aging FA toward the 

rear of the cell, while new FA develop at the leading edge. 
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The interplay of FA, actin microfilament bundles, and microtubules control the 

contractility and motility of the cell. In addition to the branched actin network in the 

lamellipodia and lamella, there are other actin filaments that organize into bundles in 

response to the maturation of focal adhesions. These actin bundles are coupled to the 

intracellular domains of FA and apply stress forces to the latter when myosin II motor 

proteins drive contraction of the actin cytoskeleton.  

FA have the interesting property of growing in size when they experience applied 

tension, and disassembling when the tension is removed. As they grow in size, they 

couple to yet more actin filaments, thereby increasing the stress they experience. Because 

of this feed-forward mechanism, the FA could grow large enough to impair cell motility 

and induce excessive contractility of the cell. Microtubules play a regulatory role by 

disrupting the unchecked growth of FA, and interrupting the feed-forward loop [64].  

One advantage of the cell’s contractile machinery is that it allows the cell to “test” 

the rigidity of the underlying substrate. As the actin cytoskeleton contracts, FA, anchored 

to the extracellular substrates, resist movement and transmit tension to the actin bundles. 

These tensions are integrated and lead to the release of signaling molecules that act on 

downstream effectors and ultimately reorganize the cytoskeleton. If the surface is 

appropriately rigid, the signals direct the actin stress bundles to undergo polymerization 

and extend the cell further. The cell binds to the new region, probes yet further with its 

leading lamellipodia, and the process continues cyclically.  

The forward thrust of the leading edge and the contractility of the actin 

cytoskeleton are important parts of the cell motility machinery. Adhesion to a new 

surface followed by contraction leads the bulk of the cell body to translocate in the 

direction of the leading edge. However, the trailing edge of the cell needs to detach from 
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its adhered surface and retract toward the cell body in order for the cell to complete its 

movement. 

The cytoskeletal contraction stresses FA on both the leading and trailing edges, in 

essence creating a “tug-of-war” between the two ends of the cell, with the cell body being 

pulled toward the “victor” while the “loser” detaches from the surface. The leading edge 

generally wins this competition because its FA are stronger. The trailing edge is attached 

to the substrate by aging FA, which are weaker because of a breakdown of adhesive 

components [72]. 

 The shape of a cell, during motility and otherwise, arises from an interplay 

between the cytoskeleton, the adhesion sites, and the cell membrane as it stretches 

between them. The filamentous actin cytoskeleton undergoes rearrangement driven by 

actin polymerization dynamics in response to signaling molecules generated by 

environmental cues. This cellular machinery is implicated in the response of cells to 

underlying topography, such as grooved substrates. 

 Many cells, particularly fibroblasts, respond to grooved topographies by 

elongating and developing a bipolar morphology. The complete set of mechanisms has 

not been elucidated but it appears that filopodia, the finger-like projections that sense 

cells’ surroundings, are more likely to form parallel to grooves because the perpendicular 

configuration is subject to unfavorable stress. The bias in filopodia formation propagates 

to biases in leading edge advancement, cytoskeletal rearrangement, and movement. These 

influences collectively shape the cell into a bipolar spindle [53,73], with a very narrow 

lamellipodium [74] . 

 Efforts in cell motility research has shifted in the direction of a complete 

identification of cellular components and their interactions, thermodynamics, kinetics, 

and mechanical characteristics [72]. The hope is that by modeling the molecular 
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machinery completely, researchers will be able to model the mechanisms of cell motility 

on a molecular level and thereby learn to predict and control the migration of cells. 

However, the computational demands of these models have increased as the number of 

identified molecules has burgeoned. Focal adhesions alone are comprised of over 150 

distinct molecules [69]. Identifying their functions is yet more time-consuming because it 

often involves observing cell responses after the molecule of interest is disrupted by 

drugs or gene modification. The process is complicated by the fact that many molecules 

act in concert to function effectively, and cells have evolved many redundancies to 

compensate for natural mutations. Where cell biologists began with observations on cell 

behavior and sought mechanisms to explain them, we are now at a point where we have a 

plethora of “mechanisms in search of functions” [64]. 

 Many computational models of cell migration focus on the scale of individual 

cells or cell populations. A large number of models for 2D migration have been 

developed over the past twenty years [75]. More recently, models are being developed to 

capture cell behavior in 3D environments to reproduce in vivo conditions more closely 

[76]. Several important distinctions have been found between cell behavior in 2D and 3D 

cultures, for instance there is controversy over whether FA develop in 3D environments 

of if they are artifacts of culturing cells on a 2D surface [77]. 

Many aspects of cell morphology and motility have been elucidated by varying 

characteristics of the culture surface and observing how cells react. The next section 

describes these surface modifications and their effects. 

1.4 MANIPULATING SURFACE TOPOGRAPHY 

The oriented growth of cells on grooved substrata was observed early on the 

history of cell culture [78], and investigations into this phenomenon have driven many 
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discoveries in the area of cell behavior and motility. Many researchers theorized that 

grooved areas provided cells a different degree of adhesivity versus ungrooved areas, 

perhaps because the groove-carving process exposed adhesive sites within the bulk of the 

substrate. But adhesivity did not explain why, in a similar phenomenon, cells growing on 

a glass cylinder preferred to orient parallel to the axis instead of the circumference [79]. 

Rovensky et. al. [80] responded by molding grooved substrates out of polymers, thereby 

eliminating differences in chemistry between the carved and uncarved surfaces. They 

noted that cells plated on the substrate migrated out of the grooves and onto the plateaus 

between grooves, and this trend increased with groove depth. The researchers concluded 

that cells migrated away from grooves not because of chemistry-related adhesive effects 

or microstructural heterogeneity, but because of the latters’ geometric configuration. 

 Dunn and Heath also attempted to distinguish between chemical and physical 

effects, and plated fibroblasts on cylindrical glass fibers of different radii [66]. The cells 

aligned parallel to the longitudinal axis, particularly on the fibers of small radii. The 

researchers concluded that substrate shape can influence cell alignment in the absence of 

chemical heterogeneity, and hence topographically-induced contact guidance is a distinct 

phenomenon from adhesion-induced alignment [65]. 

Grooved substrates were initially produced by mechanically scoring lines through 

a rigid metal or plastic sheet [80]. These grooves had poor reproducibility and researchers 

could not vary parameters such as depth, width and shape independently [81,82]. During 

the 1980s, many techniques originally developed in the semiconductor industry were 

adapted to create cell surface topographies [83]. These include micromachining, ion 

milling and photolithography [81,83,84]. Improved control allowed researchers to 

explore a wider range of topographies, such as pillars, pits and tunnels, but variations on 

the groove pattern remain the most popular [74].  
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With better control over groove dimensions, researchers found that the minimum 

dimensions that cells respond to can be as shallow as 75 nm and narrow as 100 nm [73], 

but different cell types display different sensitivities. Cells orient to grooves increasingly 

with groove depth. With narrower grooves, cells span several grooves at a time, adhering 

mostly to the plateaus between the grooves. If grooves are much wider than cells, 

oriented behavior decreases, although cells may align to one edge [74]. Topographies of 

pits and posts have been shown to affect cell spreading, but these responses have not been 

as extensively studied as groove responses [53]. Cell responses to these influences are 

probabilistic rather than deterministic. 

Examining cellular structures provides clues to how the cells interact with these 

features. Microtubules are the earliest structures to align with grooves. The actin 

cytoskeleton remodels so that filaments are parallel to grooves, and focal adhesions align 

along the edges of grooves and plateaus [85,86].  

Neurite guidance is a special case of contact guidance that occurs in neuronal 

cells. Neurites are projections extending from the bodies of neuronal cell types, such as 

neurons and neuroblastoma-glioma cells, and they can mature into axons and dendrites 

which play an important role in cell-cell communication by transmitting electro-chemical 

signals from one cell to another via synapses. At their ends, neurites possess a 

pathfinding structure known as a growth cone, illustrated in Figure 1.3 [87]. This 

complex structure contains many molecular components such as receptors and adhesion 

molecules to interact with the environment, and a cytoskeleton that drives the growth 

cone to probe the surroundings and pull the cell body forward. There are also signaling 

molecules that integrate signals from the environment, modulate the forces on the 

cytoskeleton, and influence gene expression [88]. Much of the cellular machinery in the 

neurites is similar to the cell motility machinery for fibroblasts described earlier.  
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Figure 1.4: Growth cone of a neuronal cell. It contains many structures also found in the 

leading edges of cells, such as the lamellipodia, actin stress bundles, and 

microtubules. Used with permission from MBInfo: www.mechanobio.info; 

Mechanobiology Institute, National University of Singapore. 

Neurons are capable of connecting via synapses to form networks. 

Electrochemical signals between cells produce a functional circuit capable of signal 

transduction [89]. An electrical signal travels from a cell body down one neurite, and 

converts to a chemical signal that crosses the synapse (an intercellular junction), and in 

turn may lead to a change in the membrane potential of the second cell. If the second cell 

is a neuron, post-synaptic processing determines whether it further propagates the signal. 

Networks of these cells and synapses are capable of complex computational activities in, 
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for instance, the central nervous system where they perform functions such as balance 

maintenance and cognition [90].  

Understanding the connectivity patterns and the resulting functions of nervous 

system networks is an important goal in neuroscience, with applications including the 

repair of damaged nerves, the formation of brain-computer interfaces and the creation of 

biosensors. Such goals are difficult to accomplish using brain tissue slices because the 

dense arrangement of neurons and synapses limits the resolution at which the networks 

can be probed. There have been attempts to recreate two-dimensional cell networks in 

culture at resolutions that facilitate examination with current technology, but without the 

developmental cues available in intact tissue, cells extend neurites and form synapses in 

an unguided and random manner. Neurite guidance usually involves the use of chemical 

and/or physical cues to direct the growth of neurites. Neurite guidance technologies allow 

researchers to culture networks of neurite-producing cells with experimentally-imposed 

connectivity patterns that drastically reduce the network complexity, enabling studies on 

electrochemical signal processing [91,92]. 

Neurite guidance in cell cultures has been demonstrated by the application of 

diffusible neurotropic factors. Early techniques used micropipettes to deliver factors into 

culture media near the growth cone of interest [93]. Since factors delivered in this manner 

dissipate quickly in the bulk media, microfluidic chambers were developed for the 

establishment of stable gradients of soluble guidance cues [94]. 

Several neurite guidance techniques work by modifying the neurite growth 

substrates by modifying them so that at least two types of surfaces are presented to cells. 

The favorable surfaces are often presented as “pathways” for neurite growth, surrounded 

by unfavorable surfaces. Neurites respond by extending on the favorable surface while 

avoiding the unfavored one. Surface modification may be chemical, involving 
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immobilized micropatterns of proteins [95], biopolymers [96,97], or genes [98]. 

Chemical patterning is achieved by a variety of techniques including photolithography 

(using photoresist to protect or expose selected surfaces for modification) [99], 

microcontact printing (in which an elastomeric stamp is used to print chemicals onto a 

surface) [100], and microfluidic deposition (in which chemicals flowing through a 

microfluidic device are deposited at precise locations) [101]. Surface modification may 

also be topographical. Neurites follow grooves that are etched into the growth substrate 

by laser ablation or photolithography [74,102,103], or molded onto the substrate by soft-

lithography methods [104]. Another technique uses tunable hydrogels to present neurites 

with surfaces of varying stiffness, some more favored by neurites than others [105]. 

Although such immobilized chemical and physical patterns are effective for manipulating 

cells, neuronal or otherwise, that are cultured upon them, they are limited because they 

typically cannot be introduced to a growing culture or modified after initial fabrication.  

Crosslinked protein structures can create a three-dimensional pattern that provides 

contact guidance to neurites at a resolution down to ~250 nm in three dimensions [106]. 

These structures can also be functionalized with a range of molecules to provide chemical 

guidance cues. Previous work in the Shear lab has demonstrated neurite guidance by 

dynamically building topographical features on the growth substrate in situ using micro-

3D printing [107].  

The mechanical properties of the substrate also affect cell behavior. Cells sense 

the rigidity of the underlying substrate through the force exerted on focal adhesions 

during cytoskeleton contraction. If the focal adhesions are bound to a soft and flexible 

surface, the substrate yields under the contractility force and the net force on the focal 

adhesions is lower than it would be on a rigid, unyielding surface.  
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Compared to chemical and topographical influences, studies of mechanical 

influences on cells have a relatively recent history. Because of technological limitations, 

it wasn’t until the 1980s that flexible cell substrates could be reproducibly prepared and 

characterized [65]. Since then, substrate rigidity has been shown to affect a wide range of 

cellular properties including morphology, spreading, focal adhesion formation, 

proliferation, apoptosis, gene expression and differentiation [108]. Substrate materials 

preferred for these applications have mechanical properties that can be controlled without 

substantially changing the surface chemistry. In 1997, Pelham and Wang successfully 

prepared a substrate on which biological and mechanical properties could be 

independently controlled, using polyacrylamide gels coated with collagen, and they 

showed that NIH3T3 and other cells are less likely to spread and migrate on compliant 

surfaces than on hard surfaces [109]. Improved cytocompatibility is seen with 

poly(ethylene glycol)-based hydrogels [108]. 

Accumulating evidence suggested that cells are likely to respond if their 

membranes experience strong mechanical tension. Applied force can expose cryptic 

peptide sequences, open mechanosensitive ion channels, and stimulate the strengthening 

of receptor-ligand interactions [110]. In 1999, Mooney et al. demonstrated that smooth 

muscle cells plated on an elastic substrate, when subjected to cyclic strain, aligned 

parallel to the axis of stretching and the resulting tissue grew stronger [111]. In the same 

year, Sznadjer et al. showed that the activity of Na
+
-K

+
-ATPase increased in alveolar 

cells under cyclic stretching [112]. Cheng et al. evoked an electrical response from a 

single sensory nerve by indenting the elastomeric substrate [113]. 

More recently, attention is being directed toward capturing the dynamic behaviors 

of the in vivo environment and replicating them in vitro. The body is not a static system, 

and at any given time cells experience changes in topography, chemistry, temperature, 
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and mechanical tension. Static in vitro environments fail to expose cells to these dynamic 

cues and this is one reason that cells do not behave as they do in vivo. “Smart”, or 

stimuli-responsive, systems can provide the dynamic conditions needed to reconstruct in 

vivo conditions. These have been applied to 3-D cultures [114], topography [40–42], or 

microfluidic systems [115]. 

One method to introduce dynamic topographies to cell culture is to create 

substrates from shape-memory polymers. These materials are cast in a 

thermodynamically stable shape, and then molded into another temporary shape. A 

switch, such as a temperature change, can trigger a reversion to the original permanent 

shape, which the material “remembers” via its molecular configuration. Substrates made 

with poly-(ɛ-caprolactone) have been used to provide fibroblasts and human 

mesenchymal stem cells with an initially grooved substrate that switches to a flat 

substrate. Cells change their morphology from aligned and bipolar to stellate [40,41]. 

Another strategy is to selectively erode parts of the substrate. Tibbitt et al. 

demonstrated that two-photon excitation could be used to selectively degrade a PEG 

hydrogel substrate and thereby disrupt cell-substrate adhesion [116]. 

 

1.5 MULTIPHOTON PHOTOCHEMISTRY OF PROTEINS 

To create topographically dynamic surfaces for culturing cells, the Shear lab uses 

an additive manufacturing technique called micro-3D printing. This technique exploits 

non-linear multiphoton excitation to achieve localized photocrosslinking of reagents by 

focusing a pulsed laser beam to produce a high photon flux. This high photon flux occurs 

in a small region because the light intensity of the focused laser beam approximately 

follows a Gaussian distribution; it drops off laterally as 1/exp[-2r
2
/r0

2
], where r/r0 is the 

normalized distance from the optical axis, and axially as 1/(1 + z
2
/zR

2
) where z/zR is the 
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distance from the focal plane normalized by the Rayleigh length [117]. As the rate of 

two-photon absorption is proportional to the square of the incident light intensity, the 

excitation of photosensitizers and initiation of photocrosslinking is limited to a prolate 

spheroid volume element (“voxel”) on the order of a femtoliter in size. By translating the 

voxel through the reagent one can crosslink regions of one, two, or three dimensions, 

thereby building up structures of arbitrary shape. The feature resolution can be as small as 

a few hundred nanometers and structures can be tens or hundreds of microns in size 

[118]. At the end of the process, the unreacted reagent is washed away, leaving behind 

the intact printed structures as shown in Figure 1.4. 

 

Figure 1.5: Schematic of micro-3D printing. Printing reagent is applied to a glass cover 

slip (left). A pulsed laser beam is focused into the reagent and translated to 

photocrosslink the reagent into a solid (center). The reagent is rinsed away, 

leaving a printed structure anchored to the glass (right). 

 

The reagents used in micro-3D printing are monomers or macromolecules with 

photoreactive moieties. A photoinitiator or photosensitizer is often included to start the 

photoreaction or improve photoreaction efficiency. A solvent may be necessary to bring 
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the reacting molecules into liquid or gel phase. Early developments of this technology 

took place in the late 1990s, using photopolymerizable resins, and monomers and 

oligomers with acrylate groups [119]. More recently, the Campagnola and Shear groups 

have achieved micro-3D printing with reagents consisting of proteins and 

photosensitizers [106,120–122]. 

The Shear lab introduced mask-based multiphoton photolithography by scanning 

the laser beam in a raster pattern via a galvo-mirror device and selectively passing it 

through a transparency mask [118]. This technique was extended to dynamic masks by 

introducing a computer-controlled digital mirror device (DMD) at the mask plane [123]. 

A rich variety of microarchitectures have been produced using this technique, particularly 

cellular microenvironments that are difficult or impossible to produce with other 

techniques. The technique also has the advantage of rapid prototyping, resulting in a 

shorter experimental cycle.  

Multiphoton excitation is a non-linear optical phenomenon first theorized by 

Maria Goeppert-Mayer in 1931 [124], and experimentally demonstrated by Kaiser and 

Garrett in 1961 following the invention of the laser [125]. It is well-established in the 

field of fluorescence imaging because of its ability to photoexcite molecules with high 

spatial and temporal resolution [126]. At higher energy levels, it can be used to initiate 

photochemical reactions such as the crosslinking of proteins [106]. 

In the simplest case of two-photon absorption, a molecule with transition energy k 

between two states interacts with a photon of energy k/2 and enters a virtual state that 

persists for times of ~10
-15

 s. If a second photon of k/2 energy interacts with it during this 

period, then both photons may be absorbed and the molecule transitions to the excited 

state. Because this phenomenon is non-linear, the rate of absorption is ideally 

proportional to the square of light intensity. Although this phenomenon is seen very 
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rarely in nature because the necessary intensities are difficult to reach without quantum 

saturation or photobleaching, it can be induced readily in the lab by creating conditions in 

which multiple photons have a high probability of interacting with the same molecule 

within femtosecond timescales. This is commonly achieved by using low-duty-cycle 

pulsed lasers with high peak powers and pico- or femto-second pulse durations, focused 

through high numerical aperture objectives into small voxels. This produces a small 

region with a high photon flux where multiphoton absorption can take place [127]. Low 

average power lowers the total energy deposited in the system, and decreases cell damage 

in biological samples. Multiphoton excitation affords the advantages of reactions 

confined to a small voxel, reduced out-of-plane bleaching of photosensitizers, and greater 

penetration depth through the use of near-IR wavelengths [106].  

After absorbing multiple photons, the excited photosensitizer can undergo 

intersystem crossing and enter a long-lived excited triplet state. When it relaxes to the 

ground state, the released energy can be transferred to an acceptor molecule that further 

undergoes a reaction [128,129]. Figure 1.1 depicts this process in a Jablonski diagram, 

where the acceptor molecule is molecular oxygen. 

The photochemistry of multiphoton-excited reactions has not been explored as 

thoroughly as that of single-photon reactions. The selection rules for single- and 

multiphoton reactions are not the same and there is no guarantee that a molecule that 

absorbs a single photon will absorb two photons of half that energy. Therefore the 

multiphoton excitation spectra of molecules must be ascertained independently of their 

single photon absorbance spectra. The efficiency of two-photon absorbance of a molecule 

is quantified by the two-photon cross-section of that species. This value is given in units 

of Goeppert-Mayers (GM, equivalent to 10
−50

 cm
4
 s photon

−1
).  
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Figure 1.6: Jablonski diagram depicting single and two-photon absorption, and transfer of 

energy to produce singlet oxygen. 

Photosensitizers, after excitation, can proceed through two reaction pathways 

referred to as either Type I or Type II. In a Type I reaction, the photosensitizers react with 

another molecule to produce free radicals. These radicals can react further with molecular 

oxygen to generate singlet oxygen and other reactive oxygen species. In a Type II 

reaction, shown in Figure 1.5, the photosensitizer transfers its energy directly to 

molecular oxygen, generating singlet oxygen [130]. In both pathways, the reactive 

oxygen species initiate photoreactions such as photocrosslinking.  

 Three photosensitizers are particularly relevant to this dissertation, flavin adenine 

dinucleotide, rose bengal and eosin yellow. Flavin adenine dinucleotide (FAD) is a 
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biomolecule related to riboflavin (vitamin B2). It is an enzyme cofactor involved in 

several metabolic processes and can be used as a photosensitizer in the presence of living 

tissue because of its low biological toxicity [107]. The two-photon cross-section at 740 

nm is 0.08 GM. Rose bengal (RB) is a fluorescein-related synthetic dye first developed in 

the 19
th

 for dyeing wool [131]. The earliest biological uses were as histological stains and 

intravenous assays, and it came to be used as a photosensitizer for photodynamic cancer 

therapies in the late 20
th

 century. Eosin yellow (“eosin”) is also a fluorescein analog used 

in histology as well as the cosmetics industry. It has lower cytotoxicity than rose bengal. 

A number of biologically relevant materials have been developed using micro-3D 

printing, particularly in the class of materials known as hydrogels. Hydrogels are three-

dimensional cross-linked hydrophilic polymer networks that are hydrated in aqueous 

solutions, and can have bulk properties ranging from very soft to very stiff. Edible jelly is 

a quintessential example of a material in this class.  Hydrogels produced in our lab have 

been composed of poly(ethylene glycol) as well as proteins.  

 A wide range of proteins have been used as reagents for micro-3D printing, 

including bovine serum albumin (BSA), gelatin, apo-myoglobin and enzymes including 

alkaline phosphatase and cytochrome C [121,132,133]. Several amino acid residues are 

able to participate in photochemical reactions and form both intramolecular and 

intermolecular crosslinks. If there are enough intermolecular crosslinks between proteins 

in an aqueous environment, they can form hydrogels. Although the mechanisms have not 

been completely characterized, there is evidence that photo-oxidizable amino acid 

residues such as histidine (His), tryptophan (Trp), and tyrosine (Tyr) react with singlet 

oxygen to form species that react with other residues to form covalent crosslinks. 

Furthermore, lysine (Lys) is readily attacked by other residues that have been activated. 

The likelihood of a residue’s participation in photochemistry is influenced by its location 
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relative to the surface of the protein tertiary structure and by whether it is feasibly 

oriented relative to the target [134,135]. The mechanisms implicated in crosslinking 

reactions of proteins in the presence of photosensitizers include the Type I and Type II 

mechanisms described above, as well as pathways in which the photosensitizer extracts a 

hydrogen atom from an amino acid residue, allowing the residue to participate directly in 

crosslinking [106]. 

 The two proteins used in this dissertation research, bovine serum albumin (BSA) 

and acid-hydrolyzed type-I porcine gelatin (“gelatin”) are both readily photocrosslinked. 

In fact, BSA can act as its own photosensitizer, although reaction efficiency is improved 

if an exogenous photosensitizer is added to the system. BSA is a compact globular 

protein of 66.5 kDa, shaped as a prolate obloid of dimensions 140 × 40 × 40 Å [136]. Of 

its 583 amino acid residues, 101 (16.6%) are the residues involved in photocrosslinking 

listed above [137]. Over a third of the residues are hydrophobic, but the protein is water 

soluble as the hydrophobic residues are tucked within the core of the globule, with 

hydrophilic residues on the surface. The isoelectric point in water at 25°C is 4.7, so in 

neutral buffers, BSA bears a net negative charge [138].  

 Gelatin is derived from the denaturation and partial hydrolysis of collagen, which 

is the most abundant structural protein in animals. There are several related proteins in 

the collagen family, but the most relevant to this work is type-I collagen, which 

structurally consists of three polypeptides twisted into left-handed helices, coiled into a 

triple-helix. The helices are arranged in parallel to form long fibrils [139]. The 

polypeptides are nearly identical in structure and consist of repeating motifs of glycine-

proline-X or glycine-X-hydroxyproline, where X is another amino acid residue [140]. 

The small glycine residue facilitates the tight packing of fibrils, while the proline and 

hydroxyproline stabilize the triple helix. 
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Although, collagen itself is not water soluble, various gelatin variants are highly 

soluble. Gelatins are industrially derived by extracting collagen from the skin, bones, and 

hooves of livestock and hydrolyzing it under acidic (Type A gelatin) or alkaline (Type B 

gelatin) conditions. The process unravels the individual collagen polypeptide strands and 

breaks them down into fragments which vary in size. The distribution of fragment sizes 

depends on the temperature, pH, and time of the process as well as the source of the 

collagen. Type A gelatin, of most interest to us, has an isoelectric point of 7.5-9.2, so in 

neutral buffers it is mildly cationic. 

 Gelatin is used in the food industry for its ability to thermally set into a hydrogel 

at room temperature. Indeed, the word “gel” derives from this well-known property of 

gelatin [141]. Above its melting point, gelatin polypeptides dissociate and disperse 

through the aqueous media. As the temperature decreases, the polypeptide molecules 

reassemble into triple helices with other polypeptides in a process called renaturation. 

Each polypeptide coils with multiple others, forming physical crosslinks that transform 

the solution into a solid network [140]. The more crosslinks in a network, the stiffer the 

gel will be. Since longer polypeptides form more crosslinks than shorter ones, the extent 

of hydrolysis of the original collagen determines how stiff the gel can be. For this reason, 

commercially available gelatin is often rated by its Bloom number, a measure of the 

strength of gelatin gelled according to a defined protocol [142]. The Bloom number 

reflects the average molecular weight of the polypeptides. 

 Since gelatin is irregularly fragmented collagen, it isn’t possible to know how 

many photocrosslinkable residues each polypeptide bears. However an analysis of the 

amino acid composition reveals that histidine, lysine, tryptophan and tyrosine comprise 

3.7% of bovine type I collagen polypeptides [143]. This is much lower than in BSA. 
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Photocrosslinked gelatin gels tend to be softer than photocrosslinked BSA gels, and the 

low availability of photocrosslinkable residues is probably a major reason. 

Since photocrosslinking of these proteins takes place in a small voxel, the laser 

beam that initiates the reaction must be scanned in a manner that ensures the voxels 

overlap. The overlap ensures that each new line or layer of printed material is connected 

with previously printed material. To achieve overlap, the step-size between printed lines 

and layers must be smaller than the width of the voxel.  The lateral and axial dimensions 

of the voxel are determined by a number of factors. The numerical aperture (NA) of the 

focusing objective influences the size and shape of the voxel by redistributing the light 

energy. A higher NA corresponds to a lower diffraction limit and narrower point spread 

function, and produces a more compact voxel [144]. The voxel size also depends on the 

light intensity threshold required to initiate photocrosslinking, which further depends on 

the two-photon cross-section of the photosensitizer, the efficiency of reaction initiation, 

and the dwell-time of the laser beam. The number of involved parameters makes it 

difficult to determine the voxel length and width using theoretical calculations [117]. 

Thus experimental means were used to determine step sizes for the laser scans to produce 

solid structures produced with voxels that overlapped substantially. 

 This dissertation describes the micro-3D printing of structures that serve as 

cellular microenvironments. The reagents used for micro-3D printing are aqueous 

solutions of the proteins BSA and gelatin, with rose bengal or eosin yellow added as 

photosensitizers. Specific reagent compositions will be discussed in later chapters. 

1.6 PROTECTING CELLS FROM PHOTOCHEMICAL EFFECTS 

The reactive products such as singlet oxygen and free radicals that are generated 

by photoreactions are necessary to induce crosslinking, but they can also be damaging to 



 35 

cells. If photoreactions are performed in close proximity to living cells, there may be 

injurious effects on the cells. Reactive molecules can modify the cell membrane, proteins, 

and nucleic acids with short- and long-term repercussions on the viability and behavior of 

cells [145]. Furthermore, micro-3D printing reagents such as some photosensitizers can 

have direct toxic effects on cells [146]. These effects can lead to necrosis in the short 

term, apoptosis over the course of hours, or other changes to cell behavior.  

With the correct dosage, targeted delivery, and appropriate photoexcitation, 

phototoxic effects can be harnessed for therapeutic applications such as photodynamic 

therapy. But when maintaining cell health is the goal, there are strategies for minimizing 

phototoxicity when performing micro-3D printing. One is a careful selection of reagents 

to ensure biocompatibility. Proteins such as BSA and gelatin are of biological origin and 

non-toxic at the selected concentrations. Some photosensitizers, such as flavin adenine 

dinucleotide, are biological molecules and cells display a tolerance for them at 

concentrations (on the order of 10 mM) that would be toxic if a synthetic photosensitizer 

such as rose bengal were used [107].  

There are many biological antioxidants, such as ascorbate, α-tocopherol and 

lycopene, which quench or neutralize free radicals. Adding appropriate amounts of these 

antioxidants to the system can terminate reactive molecules before they have a chance to 

damage cells [147].  

Photosensitizers can damage cells through in a number of ways. Firstly, the 

photosensitizer molecules may be endocytosed by cells, bringing them into closer 

proximity with intracellular organelles where photoexcitation can break down compounds 

or crosslink proteins [148]. Secondly, extracellular photosensitizers and reactive 

molecules in an excited state can diffuse toward cells and cause damage extracellularly.  
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Thirdly, photosensitizers in some cases may be toxic without light excitation. These 

problems can be avoided by conjugating the photosensitizer to larger molecules [149]. 

As reactive molecules diffuse toward cells, they undergo Brownian motion while 

colliding with solvent, reagent, and other molecules along the way. Each collision 

increases the likelihood that the reactive molecule will be neutralized before it reaches the 

cell, so by increasing the distance between the photoreaction site and cells, the likelihood 

of cell damage is reduced. A further option is to use bulk fluid flow to direct diffusing 

molecules away from a cell of interest. This possibility is explored in Chapter 2. 

1.7 CONCLUSION AND CHAPTER SUMMARY 

This chapter has been an introduction to the broad field of cell behavior in 

response to in vitro environments. In particular, it has explored the literature on cellular 

response to topographical influences, and discussed the applicability of multiphoton 

micro-3D printing to this field. The importance of studying cell behavior in dynamic 

environmental conditions has also been considered. 

Chapter 2 describes a method to introduce topographical guidance cues to a 

culture of neuronal cells, with the aim of guiding neurites toward target sites. Micro-3D 

printing is performed proximally to living cells, while measures are taken to minimize 

cytotoxic effects. Results from these experiments are presented and further challenges are 

discussed. Chapter 3 introduces multiphoton imprinting, a technique that allows 

modulation of the surface topography of a micro-3D printed material. Several reaction 

parameters are explored and their effects on imprinting are characterized. Chapter 4 

describes how topographical changes introduced onto a cell substrate by multiphoton 

imprinting influences the behavior of cells. Chapter 5 explores future directions into 

which this work may be extended. 
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Chapter 2: Micro-3D printing under laminar flow and in the presence 

of cells  

2.1 INTRODUCTION 

Neuronal cells produce long, narrow, and often branching structures called 

neurites that, under the right circumstances, can participate in cell-cell communication. 

Researchers are interested in controlling the extension and directional growth of neurites 

for better control over cellular communication. Technologies that enable this would 

facilitate a number of applications, including nerve regeneration, and the development of 

neuronal networks and neuroelectronic interfaces. They could be used for analyte 

sensing, neurostimulation, and the development of in vitro biological computers [1,2].  

A distal tip of an extending neurite contains a specialized structure called a 

growth cone. The growth cone has lamellipodia and filipodia that probe the environment 

around the cell through membrane receptors present on their surface that can sense 

chemical and physical cues in the environment. These environmental signals are 

processed within the growth cone, and trigger second-messenger signaling pathways that 

lead to cytoskeletal changes ultimately that influence the direction of neurite extension. 

My work on printing in situ topographical guidance cues in a cell culture was 

initially motivated by my interest in neurite guidance. My goal was to direct the growth 

of neurites to specific target sites on other cell bodies and neurites. I planned to select 

neurites within a culture of neuronal cells, and then print walls to guide the extending 

neurites toward arbitrarily chosen target sites. Laminar flow would be used to direct 

phototoxic molecules generated by printing away from cells. A secondary goal was to 

measure the strength of any synapses that formed between the neurites and their targets.  

The goal of micro-3D printing walls in the presence of living cells was based on 

preliminary results previously demonstrated in the Shear lab. Neurite guidance had been 
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achieved in a culture of mouse neuroblastoma x rat glioma hybrid (NG108-15) cells and 

primary neurons by printing lines using multiphoton excitation, after temporarily 

replacing the cell culture media with a printing reagent [3]. This chapter seeks to extend 

these preliminary results into a validated method for in situ printing, and use it for 

targeted synaptogenesis.  

2.2 METHODS 

Formulation of printing reagent 

 The reagent solution contains bovine serum albumin (BSA) at a 

concentration shown in previous studies to produce robust micro-3D printed structures 

[3]. Flavin adenine dinucleotide (FAD) was selected as the photosensitizers because of its 

biocompatibility. The solution was buffered in HBS to maintain a near-neutral pH. The 

printing reagent solvent was based on a HEPES-buffered saline solution (HBS) consisting 

of 135 mM NaCl, 2 mM MgCl2, 10 mM D-glucose, 5 mM KCl, 2 mM CaCl2, and 10 mM 

HEPES adjusted to pH 7.4 (all obtained from Thermo Fisher Scientific, Waltham, MA. 

The photosensitizer FAD (F6625, Sigma, St Louis MO) was incorporated at 

concentrations of 1-5 mM, and dissolved using a rotating mixer overnight. Into this 

solvent, BSA (BAH64-0100, Equitech-Bio, Kerrville TX) was dissolved to a 

concentration of 300 mg/mL via centrifugation (which produces a more homogenous 

solution than vortexing). When the reagent was to be used in the presence of cells, it 

was first sterilized using a 0.22 µm PES syringe-driven filter unit (Millex-GP, Merck 

Millipore Ltd., Cork, Ireland). 

Micro-3D printing directed by nanopositioner 

Micro-3D printing was based on a method described previously [4]. A beam from 

a Q-switched frequency-doubled (532 nm) diode-pumped Nd:YAG laser (NG10320-110; 
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JDS Uniphase, San Jose, CA) was expanded to a diameter of 6 mm to overfill the back 

aperture of an objective (Nikon CFI S Plan Fluor ELWD 40X, 0.6 NA, Nikon 

Instruments, Melville, NY), mounted on an inverted microscope (TE-2000, Nikon 

Instruments, Melville, NY). The fabrication voxel was initially focused in the focal plane 

of the printing surface, which was a glass coverslip in contact with the reagent, to 

perform printing as depicted in Fig 2.1. In a closed vessel such as a flow chamber, top-

down printing (from the “ceiling” of the vessel) allows each layer to be printed by a laser 

beam that has not been attenuated by passing through other printed layers. Alternatively, 

bottom-up printing (from the vessel “floor”) may be performed when open vessels such 

as petri dishes are used. A piezo-nanopositioner (E-710, Physik Instrumente, Germany) 

translated the printing surface relative to the fabrication voxel, producing extended 

microstructures anchored to the printing surface. Translation along the xy-plane was used 

to print each layer of a microstructure. Individual lines of arbitrary length were printed 

separated by 0.5 µm lateral increments to produce a solid layer. Translation along the z-

axis and printing more layers built up the microstructure in three dimensions. The layers 

were printed 0.5 µm apart to produce a solid wall. These step sizes were experimentally 

found to produce robust structures, indicating that the voxel for this set of parameters was 

over 0.5 µm wide at the beam waist and over 0.5 µm long in the axial direction 
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Figure 2.1: An exploded-view diagram showing the individual printed lines that comprise 

a micro-3D printed wall. The glass substrate anchoring the wall is at the top, 

and printing is performed starting from the lower surface of the glass in a top-

down fashion. Individual lines are printed by stepping the voxel 0.5 µm 

laterally and vertically. 

 The highest peak power produced by this laser was ~7 kW and average power 

output was > 25 mW, with a pulse energy of ~3.5 µJ and pulse width ~600 ps. The 

repetition rate of the laser was ~7.65 kHz. As a result of attenuation from average laser 

powers at the (overfilled) back aperture of the objective were typically 7-12 mW. 

Design of flow system 

A flow cell (30 mm × 2.5 mm × 0.15 mm) consisting of a SecureSeal™ spacer 

and polycarbonate backing (#440889B, Grace BioLabs, Bend OR) was adhered to a 
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printing surface consisting of a clean glass slide (Fisher Scientific, Hampton, NH) drilled 

with inlet holes. This created a flow chamber in which the glass formed the ceiling of the 

chamber. Printing reagent solution was circulated through the flow chamber using a 

syringe pump (53130, Stoetling Co., Wood Dale, IL) at flow rates ranging from 0.1 to 30 

µL/min. C-flex tubing (1/32"ID x 3/32"OD, Cole-Parmer, Vernon Hills, IL) carried 

reagent from the 3 mL syringe (BD, Franklin Lakes, NJ) to the flow cell via silicone 

connectors (Grace BioLabs, Bend, OR). A schematic diagram of the flow system is 

depicted in Figure 2.2. 

 

 

Figure 2.2: A schematic of the printing setup. A syringe pump delivers reagent solution 

into the flow chamber. An Nd:YAG laser beam is focused on the printing 

surface of the flow cell. A nanopositioner translates the flow cell relative to 

the focused laser beam. 
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Cell toxicity studies 

 A chambered coverslip with 8 wells (Nunc Lab-Tek II, Thermo Scientific, 

Waltham MA) was coated with poly-D-lysine hydrobromide (PDL) (MP Biomedicals, 

Santa Ana, CA). A 1 mg/mL PDL solution in water was added to each well and incubated 

at room temperature for 90 minutes. The wells were then rinsed thoroughly with sterile 

deionized water and air-dried in sterile conditions.  

NG108-15 cells were seeded into each well at a calculated concentration of 

~10,000 cells/cm
2
. Each well had an area of 0.7 cm

2
 and contained complete media, 

comprised of Dulbecco’s Modification of Eagle’s Medium (DMEM; Cellgro, Herndon, 

VA) with 10% fetal bovine serum (FBS; Hyclone, Logan, UT). The day after seeding 

(Day 1), the cells were imaged over an area of ~3 mm
2
 in each well. On Day 2, 0.3 mL of 

media was removed from each well and replaced with 0.3 mL of reagent solution. 

Reagent solutions were prepared with the following concentrations of FAD: 0 mM, 6.66 

mM, 10 mM, and 13.33 mM. When these solutions were added to the wells, the media 

already in the wells diluted the FAD to the following concentrations: 0 mM, 5 mM, 7.5 

mM, and 10 mM.  

Cells were kept in reagent solution for 1 hour at room temperature in a cell culture 

hood. This time-period was selected to match the expected length of one experiment. 

Then one-third of the reagent solution was removed from each well and replaced with the 

same volume of media gently to minimize detachment of cells. After waiting 10 minutes 

to allow the solutions to diffuse together, another 0.3 mL was removed and replaced by 

media. This step was repeated 2 times until the color of fluid in the wells appeared similar 

to the color of media without any added reagent. The gradual fluid exchange prevented 

the cells from being exposed to air and drying. The wells were then kept in an incubator 

overnight.  
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On Day 3, the cells were again imaged over an area of ~3 mm
2
 in each well and 

the numbers of healthy and unhealthy cells were manually counted. Unhealthy cells were 

recognized by their granular (uneven boundaries and grainy cytoplasm) and/or vacuolar 

(containing one or more large vacuoles) morphologies. Morphological assessment was 

used in lieu of live/dead stains to assess viability because unhealthy cells had a tendency 

to detach from their substrate before they accepted dead-cell stains. 

Printing in presence of cells 

Chambered cover slips with 8 wells were coated with PDL by incubating in a 1 

mg/mL PDL solution for 90 min. The wells were rinsed with sterile deionized water and 

dried. Wells were seeded with NG108-15 cells at a density of ~10,000 cells/cm
2
 and 

maintained in differentiation media, consisting of DMEM with 1% FBS, in an incubator 

at 37°C with a humidified 5% CO2 atmosphere. On Day 2 after seeding, the media was 

removed and replaced with reagent solution in thirds, as described in the cell toxicity 

section above. (FAD 5-7 mM, BSA 300 mg, HBS 1mL).  

Using an Nd:YAG laser (532 nm) that was expanded to fill the back aperture of 

the 40X objective, several micro-walls were printed in the vicinity of the cultured cells. 

The reagent solution was replaced with differentiation media and the culture 

returned to the incubator. The culture was returned to the microscope at intervals for 

brightfield imaging to monitor interactions of cultured cells with the fabricated micro-

walls. 

Scanning electron microscopy 

 Micro-3D printed structures were prepared for scanning electron microscopy by 

fixation for 20 minutes in a solution of 5% gluteraldehyde (Ted Pella, Redding, CA) in 

HBS, followed by serial dehydration in deionized water, 50% ethanol, 100% ethanol, a 
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50:50 ethanol-methanol solution, and 100% methanol. Specimens were finally air dried 

for one day, attached to a pin stub mount (Ted Pella, Redding, CA) with a PELCO carbon 

conductive tab (Ted Pella, Redding, CA) and silver paint and stored in a desiccator at 

room temperature for at least 2 days. Mounted specimens were sputter coated to a 

nominal thickness of 5 nm with platinum/palladium using a Cressington 208 Bench Top 

Sputter Coater (Cressington Scientific, Watford, UK). 

Scanning electron microscopy (SEM) was performed using a Zeiss Supra 40 VP 

Field Emission Scanning Electron Microscope (Carl Zeiss Microscopy, Thordwood, NY). 

Mounted specimens were imaged using a secondary electron detector at an EHT voltage 

of 5.0-7.0 kV and working distance of 10-25 mm, with the specimen stage tilted at angles 

in the range 20°-60°. Heights of printed structures were calculated using trigonometry. 

2.3 RESULTS AND DISCUSSION 

The primary goal of the work presented in this chapter was to print protein-based 

microstructures through multiphoton photocrosslinking in an environment where one can 

control the residence time of photoreaction-generated molecules and thereby prevent 

damage to cells.  

Multiphoton induced photocrosslinking reactions take place in close proximity to 

the laser focal point, and can produce reactive high-energy molecules such as singlet 

oxygen and photosensitizer fragment radicals [5,6]. As these reactive compounds diffuse 

from the focal region to surrounding areas, these species may damage cultured cells. The 

hypothesis I set out to evaluate was that convective flow that opposes the diffusion of 

cytotoxic molecules toward cells can serve as a means to protect cells from these species. 

To this end, a platform was developed for printing protein microstructures within 

a flow chamber. The reagent solution provided the material for microstructure printing, 
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and was flowed in a manner to convect reactive species away from cellular sites of 

interest. Such flow reduces the dwell time of reagent within the multiphoton laser voxel, 

reducing the efficiency of photoreaction for a given set of fabrication conditions. It was  

critical to carefully identify useful reaction parameters (e.g. average laser powers, 

concentrations of protein, concentrations of photosensitizer) to form the most robust 

structures possible (i.e. capable of forming robust barriers with defined geometries 

throughout experimental duration) while still minimizing the residence time of reactive 

molecules. A flow cell of 30 mm length × 2.5 mm width × 0.15 mm height was used for 

this application. A linear velocity flow map, shown in Figure 2.3, was calculated for a 

volumetric flow rate of 30 µL/min using the linear velocity (v) distribution equation, 

shown in Equation 2.1, for laminar flow through a rectangular channel [7].  

 

 

 

Equation 2.1 
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Figure 2.3: Linear flow velocity map generated by MATLAB using the velocity 

distribution equation for laminar flow through a rectangular channel. In the 

equation, y and z are the distances from the center of the channel in the 

horizontal and vertical directions respectively.  Q is the volumetric flow rate 

and H and W are the height and width of the channel respectively. In this 

example, Q, W, and H are set to 30 µL/min, 2500 µm and 150 µm 

respectively. 

The Q-switched Nd:YAG laser was previously demonstrated by the Shear lab to 

be a low-cost alternative to expensive mode-locked femtosecond lasers for printing 

protein-based microstructures [4]. A nanopositioner provided precise control in moving 

the sample stage relative to the stationary voxel, with a working space of 300 

micrometers in three axes and a maximum travel speed of 200 µm/s. The stage 

movements were controlled with custom written LabView software that allowed printing 

of walls parallel to either the x- or y-axis. 

I used NG108-15 cells as my model cell type for this application. NG108-15 cells 

readily proliferate in media supplemented with FBS. In conditions of reduced serum or 

elevated cyclic-adenosine monophosphate, they cease to proliferate and instead take on a 

neuronal phenotype, extending neurites and demonstrating electrical activity [8]. They 
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are also capable of forming cholinergic synapses with myocytes [9]. Another option is to 

use primary neurons, but the Shear lab has previously observed greater sensitivity of 

primary cells to photosensitizer toxicity.  NG108-15 cells have an advantage by being 

more resistant to harsh environmental conditions, and thus a better choice for preliminary 

studies. Primary neurons would be a natural next step for continued studies once toxicity 

in the system has been minimized. 

Effect of flow rate on wall height 

Under non-flow conditions, photoreaction-generated compounds diffuse from the 

reaction voxel uniformly in all directions. To prevent reactive compounds from reaching 

a site of interest at toxic concentrations, the linear velocity of fluid (vf) opposing this 

diffusion can be set to be greater than the drift velocity (vd) of reactive molecules toward 

the site. During diffusion, individual molecules undergo Brownian motion. Consequently, 

molecules move toward the cells in a distribution of drift velocities (vd 1…n). Any vf 

selected to oppose the diffusion can only prevent a fraction of the molecules from 

reaching the cell, with higher velocities opposing a larger fraction of molecules. 

Matching vf to the mean vd,  is a reasonable first approximation.  

 Based on these conditions, a theoretical treatment allows the estimation of an 

appropriate vf for the system. The average distance x traveled by the diffusing molecules 

in a time interval t is characterized by the root-mean-square of all displacements r 

undertaken by the molecules in one dimension in the same time.  The mean-square 

displacement <r
2
> is related to t by Equation (2), where D is the diffusion coefficient 

[10]. 

 

(1) 
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The average drift velocity vd of a molecule moving from the voxel to the site of 

interest is equal to the distance x from the voxel to the site, divided by the time t taken to 

cover that distance. It is expressed in terms of t in Equation (3) and in terms of <r
2
> in 

Equation (4). 

 

(2) 

 

(3) 

The average drift velocity of a molecule is non-linearly related to the distance it 

must cover. As the molecule encounters more collisions along the longer path, it takes 

more time to cover each unit distance. Hence when the distance from the voxel to the site 

of interest is large, the average drift velocity is low and a lower flow velocity is needed to 

oppose the diffusion of the reactive molecule. 

The diffusion coefficient, D, of reactive molecules in the solvent can be estimated 

as follows. The smallest reactive compounds generated by multiphoton excitation are 

singlet oxygen, peroxides and hydroxyl radicals, with molecular weights close to that of 

molecular oxygen. I approximated their diffusion coefficients with the diffusion 

coefficient of molecular oxygen, which is 2.1×10
-5

 cm
2
/sec in water at 25°C [11]. 

However the reagent is an aqueous solution of BSA at a concentration of 300 mg/mL (at 

37°C). The viscosity of this solution (measured by Ostwald viscometer) is ~7 cP, while 

the viscosity of water is 0.9 cP. The Stokes-Einstein equation relates the diffusion 

coefficient of a spherical particle in a fluid with the viscosity of the fluid, as seen in 
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Equation (5), where kB is Boltzmann’s constant, T is ambient temperature, η is the 

viscosity of a fluid, and R is the radius of a spherical particle diffusing through the fluid.  

[7]. 

 

(4) 

If reactive molecules are treated as “spherical particles”, the diffusion coefficient 

of a molecule through fluid is inversely proportional to the viscosity of the fluid. As the 

viscosity of reagent solution is about ten-fold greater than water, the diffusion 

coefficients of the reactive molecules will be approximately an order-of-magnitude 

smaller than the value given above. I therefore estimate the diffusion coefficient of 

reactive molecules through reagent solution is on the order of ~10
-6

 cm
2
/s, or ~100 µm

2
/s. 

Based on Equation (4) and this estimated diffusion coefficient, Table 2.1 

summarizes the average drift velocity of a small reactive molecule diffusing across a 

range of distances in the reagent, and the fluid flow velocity needed to oppose the 

diffusion of at least half the molecules of that size.  

 

 

 

Quantity Range of Values 

Ave distance from voxel to site of interest  

(x) = √<r
2
> 

1 µm 10 µm 100 µm 

Average drift velocity (vd)  

= Required opposing flow velocity (vf)  

=  2D/√<r
2
> 

200 µm/s 20 µm/s 2 µm/s 

Table 2.1: Linear flow velocity required to oppose diffusion of small reactive molecules, 

for various distances x between voxel and site of interest. Diffusion 

coefficient D is assumed to be 100 µm
2
/s.  
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The required volumetric flow rates are calculated as follows. To divert reactive 

molecules when printing a wall 1 µm from a site of interest, diffusion should to be 

opposed by a fluid with linear velocity (vf) of 200 µm/sec. Given a flow chamber that is 

0.15 mm tall and 2.5 mm wide, calculations presented in Figure 2.3 show that velocities 

up to 2000 µm/sec can be achieved in the center of the channel with a volumetric flow 

rate of 30 µL/min. Printing takes place within 10 µm of the glass surface and the linear 

velocity in this region is ~500 µm/sec, which is higher than the flow velocities needed to 

oppose diffusion.  The system should be able to flush many reactive molecules away 

from cellular sites of interest, and experimental results can be used to determine if 

adjustments  to the linear velocity are needed. 

To demonstrate that structures can be printed in flowing reagent, I micro-3D 

printed walls of various heights in a flow chamber. Toward this end, a reagent with the 

protein composition described in the methods section and containing 7 mM FAD was 

circulated through the flow chamber at a range of volumetric flow rates. The average 

laser power at the objective back aperture was set to 9.3 mW. Walls were printed along 

the central axis of the flow chamber, and were spaced several tens of micrometers apart 

so non-linearity of flow caused by the presence of one wall would have a low impact on 

laminar flow around the next wall. Each wall was positioned with its length perpendicular 

to the flow direction, with a length of 100 µm and thickness 2.5 µm (6 lines, spaced 0.5 

µm apart). The walls were printed to be 1, 3, and 5 layers tall, with each layer spaced by 

0.5 µm along the vertical axis. 

 After the walls were printed, the samples were rinsed to remove reagent and 

prepared for SEM. Measured wall heights are presented in Figure 2.4. The SEM sample 
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preparation process can shrink protein-based materials, and the measurements may 

understate the heights of the fully hydrated walls. 

 

Figure 2.4: Plot showing the heights of walls produced when the volumetric flow rate was 

varied from 0-30 µL/min. Walls printed with 1 (), 3 (), and 5() layers 

are compared. n = 3, error bar indicates standard deviation. 

 A few features in the plot in Figure 2.4 are notable: (1) Under non-flow 

conditions, the walls printed with 1, 3, and 5 layers are 3.5 µm, 6 µm and 8 µm tall 

respectively; (2) As the reagent flow rate increases, the printed walls shorten in height;  

and (3) At flow rates higher than 10 µL/min, the 5-layer walls maintain a height of ~4 µm 

(with a slight decrease at the highest velocities). 
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 The first feature is easily explained by the addition of material contributed by 

each printed layer. The second feature indicates that as the reagent spends less time 

within the reaction voxel, less material is printed and incorporated into the wall. The 

decrease in residence may also produce poorly crosslinked material that is easily 

detached from the walls. This is borne out by the observation that small fragments of 

newly printed material are seen breaking off the walls and flowing down the reagent 

stream during brightfield imaging. The third feature suggests that up to flow rates of 20 

µL/min, there is a minimum height that 5-layer walls will reach. This may be because the 

linear velocity closer to the printing surface is slower and less disruptive to the printing 

process. 

 As estimated earlier, a volumetric flow rate of 30 µL/min would suffice to divert 

more than half of the reactive molecules away from cellular sites of interest. At such a 

flow rate, 4 µm tall walls can be built by printing 5 layers. SEM images of 5-layer walls, 

printed in non-flow and 30 µL/min flow conditions, are shown in Figures 2.5.  
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Figure 2.5: SEM images of walls. These were 5 layers tall, printed with reagent 

undergoing no flow (left) and 30 µL/min flow (right). Edges of walls 

detached from glass surface during sample preparation for SEM imaging. 

Scale bars = 20 µm 

Effect of photosensitizer concentration on cell viability 

 The concentration of the photosensitizer in reagent affects the efficiency of the 

multiphoton photocrosslinking reaction induced by the Nd:YAG laser. Many proteins, 

including BSA, can be photocrosslinked without added photosensitizers, but the addition 

of photosensitizers increases crosslinking efficiency under the conditions used in these 

studies.  

FAD is highly water-soluble and can dissolve in aqueous solutions at 

concentrations greater than 20 mM. It is fortuitously a photosensitizer with relatively low 

toxicity, serving as a good reagent for micro-3D printing in the vicinity of cells. To 

determine the concentration range of FAD which can be used with minimal cellular 

toxicity, a cytotoxicity assay was performed. 
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Initially, a conventional cell viability assay was attempted with C12-resazurin and 

SYTOX Green (Molecular Probes, Eugene, OR) staining live and dead cells respectively. 

However, the NG108-15 cells were observed to detach from their substrates when in ill-

health, even before apoptosis or necrosis occurred. This fact made the use of cell viability 

stains ineffectual in determining the fraction of cells that survive a given treatment. 

Instead, I performed a count of cells one day before and one day after exposure to reagent 

solution. Cells were classified as normal, vacuolar (containing visible vacuoles), and 

granular (a shriveled and grainy appearance) based on their morphology. The presence of 

vacuoles and granularity in NG108-15 cells is a sign of cell damage [12]. Figure 2.6 

shows examples of normal, vacuolar and granular cells.  
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Figure 2.6:  NG108-15 cells exposed to reagent solution containing 7.5 mM FAD for 1 

hour. Normal morphology is indicated with green arrows (), vacuolar 

morphology indicated with yellow arrows (), and granular morphology 

indicated with red arrows(). Scale bar, 100 µm. 

The number of morphologically “normal” cells in each well, before (nB) and after 

(nA) exposure to reagent solution, were counted over an area of 3 mm
2
 and the “fraction 

of normal cells remaining” (nA/nB) was calculated for each well. Since each FAD 

concentration was tested in duplicate, the average fraction was calculated for each 

concentration. Figure 2.7 shows the fraction of normal cells remaining after cells are 

exposed to reagent solutions containing difference concentrations of FAD. 
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Figure 2.7: Plot showing the fraction of cells displaying normal morphology after 

exposure to different FAD concentrations. Cells were incubated in reagent 

solution for one hour at room temperature. 2 replicates for each concentration. 

Error bars indicate SD. 

Based on these results, most cells exposed to 2.5 mM FAD remained healthy but 

concentrations greater than or equal to 7.5 mM resulted in cell damage in at least 50% of 

cells. The reagent solution must, therefore, be formulated with a concentration lower than 

this threshold. 

Effect of photosensitizer concentration on printing 

 While high FAD concentrations are unfavorable for cell health, they increase 

reaction efficiency. With high photosensitizer levels, crosslinking density improves and 
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printed structures maintain a robust shape. If the photoreaction occurs in a translating 

voxel, higher photosensitizer concentrations facilitate more reactions within a shorter 

laser dwell-time, so that structures can be printed relatively faster. All of these reasons 

favor the use of higher FAD concentrations. 

To determine an optimum FAD concentration range that would minimize 

cytotoxicity while producing robust structures, a series of wall structures were micro-3D 

printed in a flow chamber with reagents containing 2 mM, 4 mM, and 7 mM FAD.  

Lower FAD concentrations required higher peak intensities to initiate 

crosslinking, but the selection of laser power is constrained by two conditions. If the 

power is too low, the printing reaction will not initiate. If the power is too high, there will 

be cavitation explosions (explained in the next section). The range of usable powers 

varies with the FAD concentration in the reagent, so there is no one laser power that 

would print in all three FAD concentrations. In an attempt at consistency, I used the 

lowest power that appeared to initiate crosslinking at each FAD concentration. The 

average laser powers corresponding to these FAD concentrations (2 mM, 4 mM, and 7 

mM ) were set to 11 mW, 9.5 mW, and 6 mW at the objective back aperture respectively. 

Volumetric flow rates ranged from 0 to 30 µL/min and each wall was fabricated to be 5 

layers tall. The resulting wall heights were determined using SEM. The plot in Figure 2.8 

summarizes the findings.  
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Figure 2.8: Plot showing the heights of walls produced when the volumetric flow rate 

varies from 0-30 µL/min. Walls printed with reagents containing 2 mM(), 4 

mM (), and 7 mM () FAD are compared. n = 3, scale bar indicates SD. 

 The plot in figure 2.8 follows the general trend shown in Figure 2.4, in 

which the maximum heights of walls decrease with increasing flow rates. However, there 

is an unexpected feature. The walls produced by the 7mM reagent under non-flow 

conditions are unexpectedly low. This discrepancy can be explained by the difficulty of 

selecting an appropriate laser power for each FAD concentration. . While I used the 

lowest power that appeared to initiate crosslinking at each FAD concentration, the 

selection was based on visual assessment it is quite likely that the reaction efficiencies for 

each combination of laser power and FAD concentration were not comparable to each 
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other, and that the 6mW and 7 mM FAD combination was inefficient at crosslinking 

compared to the other combinations.   

These observations highlight the importance of laser power selection when 

printing. The next section explores the usable laser powers for reagents with different 

FAD concentrations. 

Effect of laser power on printing 

Although lower FAD concentrations make printing less efficient, this effect can 

be mitigated by increasing laser power so that the crosslinking density remains similar. 

However, as the laser power increases, there is a higher incidence of cavitation 

explosions. This is a phenomenon in which the laser energy causes localized overheating 

that produces a small pocket or cavity of vapor within the fluid [13]. When the cavity 

collapses, it triggers a shock wave that destroys printed structures and injures cells within 

several tens of microns of the explosion site. Avoiding these cavitation explosions is 

necessary for the integrity of printed structures and the well-being of cells. 
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Figure 2.9: Brightfield microscope images of walls, 5 layers tall, printed under non-flow 

conditions. Wall on left (a) was printed with 3.5 mM FAD reagent with 7 

mW laser power. Wall in center (b) was printed with 3.5 mM FAD reagent 

with 8 mW laser power. The circles are the sites of cavitation explosions. 

Wall on right (c) was printed with 7 mM FAD reagent with 5 mW laser 

power.  All laser powers measured at objective back-aperture. Scale bar = 10 

µm. 

Figure 2.9 shows how different laser powers affect printing when two different 

reagent solutions are used. In (a) and (b), lines were printed using reagent containing 3.5 

mM FAD. The power in (a) was 7 mW and produced poor walls. The power in (b) was 8 

mW and produced cavitation explosions. The range of powers capable of producing 

robust lines without explosions was very narrow, and possibly non-existent. In contrast, 

the line in (c) was printed with reagent containing 7 mM FAD, at a power of 5 mW. The 
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line was thick and substantial, and no explosions occurred during printing. These lines 

were all printed in no-flow conditions. 

Figures 2.10 and 2.11 summarize the effects of printing with different powers and 

FAD concentrations. 

 

Figure 2.10: Parameter space showing combinations of average laser powers and FAD 

concentrations that produce well-formed structures (pink region) and poorly-

formed structures (white region). Dashed boundary indicates that transition 

is gradual, not sharp. 
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Figure 2.11: Parameter space showing combinations of average laser powers and FAD 

reagent concentrations that print without generating cavitation explosions 

(blue region) and with cavitation explosions (white region). Dashed 

boundary indicates that transition is gradual, not sharp. 

 

 Figure 2.10 shows that within the parameter space of average laser powers and 

FAD concentrations, there are combinations of powers and concentrations that produce 

well-formed structures with thick lines, and poorly-formed structures with thin lines. 

Higher FAD concentration reagents need lower levels of power to print well-formed 

structures. Figure 2.11 shows that within the same parameter space, there are 
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combinations of powers and concentrations that avert the occurrence of explosions. At 

higher FAD concentrations, higher powers can be used without triggering explosions. 

Summary of conditions 

Cell toxicity effects placed a ceiling on usable FAD concentrations. On the other 

hand, the need to avoid cavitation explosions places a limit on maximum laser powers, 

and higher FAD concentrations are needed to produce robust structures at lower laser 

powers. The entire parameter space of FAD concentrations and average laser powers is 

summarized in Figure 2.12. 
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Figure 2.12: Parameter space showing combinations of average laser powers and FAD 

reagent concentrations that produce well-formed structures without 

cavitation explosions (purple region, where pink and blue regions overlap) 

in no-flow conditions. The graph also shows the region where FAD reagent 

concentrations have low cytotoxicity (yellow region). The optimum 

parameter space (outlined in green) contains power and concentration 

specification that may enable printing in the vicinity of cells. Dashed 

boundary indicates that transition is gradual, not sharp. 

Within this parameter space, there was a small window in which FAD caused 

low-to-moderate toxicity, and enable printing of fairly robust structures in no-flow 

conditions without triggering cavitation explosions. This window limited the usable FAD 

concentrations to the 5-7 mM range. The optimal laser power for printing at these 

concentrations was 5-7 mW. These conditions were tested in the next section. 
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Effect of printing walls in vicinity of cells 

While I was optimizing experimental conditions that would print robust walls 

while preserving cell health, I also attempted printing walls within cultures of NG108-15 

cells. I began by fabricating walls in non-flow conditions. I cultured cells as described in 

the methods section, and then differentiated them with low serum media for two days to 

express a neuronal phenotype. Media was replaced with reagent solution for the 1-2 hours 

it took to print walls around cells. Then the reagent was replaced with media and the cells 

were returned to the incubator. 

 During the exchange of fluids, it was noticed that many cells detached from the 

culture surface and were subsequently washed away. Since many of the cells had formed 

cell-cell adhesions, a few detached cells would tug on other cells attached to the surface 

and pull them off as well, until entire sheets of cells were disrupted.  

Several attempts were made to enhance the attachment of cells to the glass 

surface. In case cell damage was affecting cell adhesion, the cells’ exposure time to FAD 

was limited. Illumination was restricted to red light to minimize photodamage. In case 

low serum levels were disrupting cell adhesion, cells were instead differentiated with 

cyclic-AMP in complete media [8]. These attempts did not appreciably improve cell 

adhesion. 

One strategy that reduced disruption to cells after printing was to replace the 

reagent solution with media by one-third of its volume at a time.  The cells were most 

fragile at the end of the printing sessions because they had been exposed to FAD, room 

temperature conditions, and photoreactive molecules. Rinsing the reagent vigorously 

produced turbulence that detached cells from the surface. By replacing the fluid in small 

increments, the reagent was diluted out without dramatically dropping the fluid level in 
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the well, which minimized their disruption. After the cells were returned to the incubator 

in fresh media, they generally were observed to stabilize. 

 During the printing session, cells were examined carefully to identify distinct 

neurites that were extending toward an area clear of cells. Walls parallel to the x- or y-

axis were printed with the goal of blocking the extending neurite and deflect its growth in 

another direction. After rinsing the reagent, the cells were kept in the incubator and 

monitored over the next few days. 

 In many cases, the neurites did not encounter the target walls. Although the 

neurites continued to grow, the cell bodies also moved relative to the printed walls. 

Consequently, the neurites grew in directions that did not lead them to encounter a wall, 

as shown in Figure 2.13. A wall was printed in the path of an extending neurite at a 

distance of ~40 µm, but two days later the neurite was growing in a direction that avoided 

the wall entirely. It is possible that the neurite encountered the wall at some point but 

move away before the image was taken. This highlights the importance of temperature-

controlled imaging chambers that would enable live-cell imaging. 
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Figure 2.13: A 5-layer wall was printed in the path of an extending neuron. Two days 

later, the neurite had shifted and avoided the wall entirely. Scale bar 20 µm 

 NG108-15 are not classified as motile cells, but because of their relatively weak 

cell-surface adhesions and their stronger cell-cell adhesions they have a tendency to drift 

from their positions under environmental influences such as fluid flow or movement of 

adjacent cells. Several attempts were made (described above) to improve cell-surface 

adhesion but none were able to stop cell body drift. One technique did reduce cell drift 

somewhat. When I printed single lines (not walls) in the vicinity of cells of interest, cells 

were less likely to drift over them although they could still rotate in place and move 

neurites away from target walls. Figure 2.14 shows an example of this phenomenon. 
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Figure 2.14: A cell extends a neurite (red arrow) that is blocked by a 5-layer wall (left 

panel). One day later, the neurite encountered and was deflected by the wall 

(right panel). Fine printed lines (white arrows) in the area around the cells 

may have kept the cells from drifting too far from their initial position. Scale 

bar 50 µm. 

 Although there were individual instances where a neurite encountered a wall and 

changed its direction of growth, these instances comprised a small fraction of all attempts 

to deflect neurites. It seemed even less likely for neurites to extend after deflection to 

contact a desired target cell, which was one of the primary goals of this project. In all, 

these results indicated that printed walls in this particular set-up will not readily be 

developed into a reproducible means to guide NG108-15 neurites. 
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2.4 CHALLENGES 

 A few changes to the experimental setup likely would have improved the outcome 

of these studies. Neuronal cells are distressed by changes in temperature and pH, and 

measures could be taken to stabilize these. Cells experienced large variations in 

temperature from 19°C on the microscope stage to 37°C in the incubator. A temperature-

controlled environmental chamber on the microscope stage would have maintained the 

cells at a constant 37°C throughout a procedure. An environmental chamber would also 

permit time-lapse imaging of the cell culture, yielding more insights into movement of 

cells and interaction of neurites with walls.  In addition, the cell culture media DMEM is 

a carbonate-based media which requires a 5% CO2 concentration in air to maintain a 

neutral pH. Under atmospheric conditions, with a 0.04% CO2 concentration, the media 

experiences a pH increase by 2 points over 24 hours. Using a non-carbonate-buffered 

media would help keep the cells at a neutral pH.  

 While these modifications would improve cell health and possibly enhance 

neurite stability, other conditions continued to pose a problem. Although fabrication was 

conducted in a parameter space that provided the best outcome in terms of cell health and 

fabrication, it was difficult to fabricate robust structures using FAD at concentrations that 

didn’t cause moderately toxic effects in a measurable portion of cells. Fabrication under 

flow may lower phototoxic effects, but it would not affect non-photogenerated 

cytotoxicity from FAD. Furthermore, observations by other members of the Shear lab 

indicated that at high concentrations, BSA and other proteins may be toxic to cells. It 

would be far preferable to have an experimental system in which cells did not have to be 

incubated in potentially cytotoxic or phototoxic reagents. 

Another challenge in these studies was the selection of an appropriate model cell 

line for this application. NG108-15 is a hardy cell line, but it has mostly been used in 
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electrophysiology and neuronal function studies [14]. It has not been extensively 

validated as a model for neurite guidance studies and may not be suitable for 

topographical neurite guidance studies. This realization led to an examination of the 

literature for other cell types that may be better models for my application. PC12 cells 

have been used as model for neuron polarization and neurite guidance [15–17]. They can 

also form synapse-like structures with each other [15], but there is no evidence that these 

structures are capable of synaptic communication. In fact, to date there are no well-

characterized cell lines capable of forming synapses with their own cell type. Studies in 

the literature on neurite guidance and synaptogenesis rely on hippocampal and cortical 

neurons from rodent brain tissue explants [18–20], but these cells are highly sensitive to 

environmental conditions, particularly the presence of photosensitizers. 

At this point, I felt it was important to reflect on the project as a whole and 

consider whether topographical guidance of neurites for synaptogenesis is a viable goal. 

A revisit of the literature showed a number of reasons why the avenue of in situ printing 

of walls to guide neurites for synaptogenesis would be challenging.  

In the literature, the majority of neurite guidance studies use chemical cues, both 

diffusible and immobilized, to direct the directional growth of neurites [21]. Diffusible 

cues, in particular, can be targeted to reflect the actual morphology and distribution of 

cells, which generally cannot be predicted a priori. Topographical neurite guidance has 

been demonstrated through surfaces with sub-micron features such as ridges, posts or pits 

[22], but these effects are relatively minor and can primarily be observed statistically on a 

large population of cells. There are relatively few studies that demonstrate small numbers 

of neurons being directed to connect with each other via topographical cues [23–25]. The 

disparity in the number of publications using chemical versus topographical cues to guide 

neurites may reflect a greater technological challenge in achieving the latter. 
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2.5 CONCLUSION 

The work presented in this chapter details a number of interesting findings about 

micro-3D printing in cell culture. To print robust walls without incurring the risk of 

cavitation explosion, the photosensitizer concentration needs to be increased but at 

excessive concentrations it can be cytotoxic. Phototoxicity may be reduced by fabricating 

walls under laminar flow, but this will not remove cytotoxic effects. Additionally, there is 

a dearth of cell lines that would serve as a good model for the targeted neurite guidance 

studies that were a primary goal of this project. Because of these challenges, I decided to 

consider alternative experimental goals. 

At its core, my interest is in researching the influence of topographical cues on 

cell behavior. While topographical neurite guidance may be difficult to achieve, there are 

other cellular responses to topography that may be more feasible to study. One of the 

most extensively studied cell behaviors is the alignment of certain cells, particularly 

fibroblasts, to topographical anisotropy. Fibroblasts undergo morphological changes 

when they grow on fibrous or grooved surfaces, taking on a long and narrow bipolar 

shape instead of the spread-out and stellate shape they generally adopt on flat surfaces. 

This behavior has been studied since the early 20
th

 century and there is a considerable 

volume of literature that explores its nuances and mechanisms [26]. Additionally, there is 

an established mouse embryonic fibroblast cell line (NIH-3T3) that has been extensively 

characterized [27] and used as a model for topographical response studies [28,29], and 

might serve as a better model for a new method to study cellular responses to dynamic 

topographies.  

In addition to selecting a new cell line for my studies, I also re-evaluated my 

micro-3D printing setup. As described earlier in this chapter, the setup consisted of a 

stationary laser beam focused on a printing surface that was translated in three 
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dimensions with a nanopositioner-controlled stage. Although the nanopositioner could be 

programmed to move the stage through any path in three dimensions, each path had to be 

programmed individually, which could take hours to days depending on the path’s 

complexity. This limits the versatility of this system for creating more complex 

topographies in future studies. The stage was also limited to a maximum linear velocity 

of 200 µm/s. The resolution of printed structures would be improved by increasing the 

linear velocity of the printed voxel, resulting in structures with more structural integrity.  

Over the past few years, the Shear lab has developed another micro-3D printing 

configuration that uses scanning mirrors to translate the laser beam in a fast-moving 

raster pattern. Coupled with a dynamic mask, this setup prints structures more quickly 

and in a more versatile range of shapes than the nanopositioner-based setup [30,31]. As a 

result, I redesigned my printing setup to take advantage of these innovations. This 

redesign had a few experimental consequences. Because the scanning mirrors translated 

the laser beam at a maximum linear velocity of 68,000 µm/s, the system needed a laser 

with a higher repetition rate than the Q-switched Nd:YAG laser offered. A mode-locked, 

femtosecond pulsed titanium:sapphire laser was used in its place, which was tuned to a 

light output of wavelength 740 nm, compared with the 532 nm wavelength of the 

Nd:YAG laser. When using 740 nm light to excite FAD via two-photon absorption, this 

species is less effective as a photosensitizer, making it necessary to identify an alternate 

approach. Although these changes require the re-optimization of experimental 

parameters, the advantage of a faster and more versatile printing setup makes the tradeoff 

worthwhile. 

The use of the new setup also enabled a new technique, called imprinting, which 

offered the advantage of altering the topographical environment of cells without 

incubating the cells in potentially cytotoxic or phototoxic reagents. As will be discussed 
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in the next chapter, cells in an imprinting experiment are plated on a substrate which is 

loaded with photosensitizer. Cells are only exposed to the low levels of photosensitizer 

molecules that diffuse out of the substrate into a large volume of cell culture media.  

The change in experimental direction has proven to be fruitful. In the next 

chapters, I describe the use of dynamic mask-based micro-3D printing and imprinting to 

successfully introduce topographical changes into a culture of fibroblast cells and 

influence their behavior. 
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 Chapter 3:  Multiphoton 3D-imprinting of hydrogels 

3.1 INTRODUCTION 

The hydrogel is a class of materials consisting of an extended three-dimensional 

network of hydrophilic polymer chains that are dispersed as a colloid in an aqueous 

medium. The high water content makes the material soft and deformable, while the three-

dimensional network structure helps the bulk material retain its shape. Hydrogels can be 

synthesized from naturally-occurring substances such as alginate and gelatin, as well as 

from synthetic precursors such as acrylate, methacrylate and acrylamide monomers [1]. 

Hydrogels are often favored for biomedical applications because their water content and 

mechanical properties are similar to that of biological tissue [2]. For example, there is 

presently a developed market for the clinical use of hydrogels as contact lenses and 

wound dressings. Extensive research is being conducted for tissue engineering and 

controlled drug delivery, and these applications are beginning to reach clinical fruition. 

Within the broad area of hydrogels, stimuli-responsive hydrogels are a 

particularly interesting category. These are materials whose properties, such as their 

crosslinking density, stiffness, hydrophilicity, and degradation rate, can be varied through 

the application of stimuli. Such stimuli could be exposure to light, pressure, or electricity, 

or changes in temperature, pH, or concentration of certain molecules [3]. Light has 

particular advantages over other stimuli as it can be delivered from a remote source and 

allows control over the spatiotemporal resolution of stimulation [2]. Photoresponsive 

hydrogels have been used in cell culture applications as two-dimensional surfaces and as 

three-dimensional matrices that encapsulate cells. Light stimulus has been used to release 

bioactive molecules, create chemical patterns, and vary local adhesion and stiffness [2]. 

A serendipitous observation in the Shear lab led to the use of light stimulation to 

introduce topographical changes to hydrogel surfaces. The Shear lab uses multiphoton 
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excitation to chemically functionalize micro-3D printed materials by placing them in a 

solution of bioactive molecules functionalized with a photoreactive moiety, and scanning 

the material with a focused, pulsed laser beam. The high photon flux in the voxel locally 

photocrosslinks the molecule of interest to the material. Lab members Eric Ritschdorff 

and Jodi Connell noted that at high laser powers, the surface of the scanned material 

appeared to “collapse” relative to the adjacent unscanned material. While this 

phenomenon was undesirable in the context of chemical patterning, it had potentially 

interesting applications of its own. When material was printed in the form of a flat 

uniform pad, selective scanning produced a topographical relief pattern on the pad 

surface, such as the one shown in Figure 3.1. This phenomenon was dubbed “imprinting”.  

While the mechanism behind this phenomenon was not fully understood, it was 

theorized that when material is first printed, it is only partially crosslinked. That is, it 

retains a population of crosslinkable residues. When the pad is scanned again, a fraction 

of these residues undergo crosslinking within the gel, leading to localized contraction of 

the gel that propagates to the surface of the material. This produces topographical 

changes on the surface. 
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Figure 3.1: A micro-3D printed tile imprinted with a pattern of Arabic numerals, with an 

unimprinted tile in the background. Scale bar is 10 µm. 

 

The imprinting phenomenon suggests a number of interesting applications. In 

biological environments, imprinting can introduce topographical changes to cell 

substrates, an application that is developed further in Chapter 4. There are distinct 

advantages of the use of imprinting in creating topographically varied surfaces when 

compared with other lithographic techniques (discussed in Chapter 1 and Chapter 2). The 

small voxel allows for fine control over the resolution of topographical changes in both 

the x-y plane (affecting the size of the imprinted pattern) and the z-direction (affecting 

the depth of imprinting). Temporal control over laser-scanning allows real-time 

imprinting, so the final pattern can be adapted on the fly to the spatial arrangement of 
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cells rather than established at the beginning of the design cycle. A number of 

parameters, including laser power, photosensitizer concentration, number of scans, and 

location of scan, can be adjusted to control the final dimensions of the imprint. 

This chapter explores the effects of many of these parameters on the imprinting 

process. First, the laser rig used for micro-3D printing and imprinting is detailed and the 

micro-3D printing of standardized hydrogel tiles is described. Next, there is an 

exploration of how depth of imprinting is affected by variations in the scanning process. 

Finally, there is an examination of the loading and retention of photosensitizers in 

the printed material. The consistency of photosensitizer concentration and imprinting 

over the course of a 24 hour experiment is tested. By characterizing the imprinting 

parameters, a foundation is laid to develop applications where precise control of surface 

topography allows manipulation of micron-scale systems, including cellular 

microenvironments. 

Further work on micro-3D imprinting, complementary to the work presented in 

this dissertation, has been conducted by Eric Ritschdorff, Jodi Connell, and Derek 

Hernandez. These studies were unpublished at the time of writing this dissertation, and 

the interested reader is encouraged to contact the Shear lab for details. 

 

3.2 METHODS 

Design and construction of a micro-3D-printing rig 

The light source was a mode-locked titanium-sapphire (Ti:S) laser (Model 900 

Mira, Coherent Inc., Santa Clara, CA) tuned to 740 nm. It produced ~150 fs pulses with a 

pulse repetition rate of 76 MHz. The beam was shuttered using an in-house constructed 

solenoid shutter (Magnetic Sensor Systems, Van Nuys, CA). The beam was scanned in a 
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raster pattern using a small-beam-diameter scanning galvo mirror system (Thor Labs, 

Newton, NJ).  

A series of lenses and mirrors (Thor Labs, Newton, NJ) were used to expand the 

laser beam and the scan area, as shown in Figure 3.2. The laser beam and scan area were 

focused and collimated in conjugate planes. The first lens (L1; focal length 60 mm) 

collimated the scan area while focusing the laser beam. The second lens (L2, focal length 

150 mm) and third lens (L3, focal length 250 mm) expanded the laser beam and scan 

area, eventually focusing the beam onto a digital mirror device (DMD) from a repurposed 

digital projector (BenQ MP510 DLP Projector, BenQ, Costa Mesa, CA). The DMD had a 

pixel resolution of 800 by 600. It acted as a dynamic mask, displaying a super video 

graphics array (SVGA) image that selectively reflected or deflected portions of the raster 

scan. The masked scan pattern was then focused by the fourth lens (L4; focal length 300 

mm), reflected off a dichroic filter, and focused through a high-power objective (60X, 1.4 

NA, Nikon Instruments, Melville, NY) on an inverted microscope (TE-2000; Nikon 

Instruments, Melville, NY) onto a printing surface. To enable three-dimensional printing, 

the surface was translated vertically using a piezo-controlled nanopositioner (E-710, 

Physik Instrumente, Auburn, MA). 
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Figure 3.2: Schematic showing the arrangement of optical components that focus the 

laser beam and boundary of the laser scan area. The laser beam is scanned at 

the galvo mirrors, focused by lens L1, collimated by L2, focused by L3, and 

collimated by L4. The scan area is collimated by L1, focused at L2, 

collimated at L3, and focused at L4. The DMD mirror masks the scan area, 

and the dichoric mirror reflects the beam up to the objective, which focuses it 

onto the printing surface. 

The repurposed digital projector was modified for this application as follows. The 

external casing was cut open, and the lens array in front of the DMD chip was removed to 

expose the chip to air. The projector lamp was removed and its circuit was closed with a 

jumper. This set of modifications is effective for converting the BenQ MP510 DLP 

Projector into a dynamic mask unit for the printing rig. Repurposing of other projector 

models may require different modifications. 
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Software control of rig components 

The software for controlling and coordinating all instrument components of the 

micro-3D-printing rig was written using the LabView 2011 Professional Development 

System (National Instruments, Austin, TX).  

The software was used to control the following instruments: 

 The solenoid shutter was opened and closed to transmit or block the laser beam as 

needed. 

 The scanning galvo mirror system was activated to scan the laser beam in a raster 

pattern. The scan angle and scan frequency were set using the software. 

 The DMD chip image display was changed as needed so that the appropriate digital 

mask was used for each raster scan. The masks were binary JPEG files measuring 800 

by 600 pixels. The mirror angles of the DMD chip tend to skew and rotate the raster 

scan, producing a distorted printed image. To rectify this distortion, the software 

applied a reverse skew and rotation transformation to the mask image files. 

 The microscope stage translated the printing surface vertically in user defined steps 

that were coordinated with each raster scan and mask display. 

Control signals were delivered to the solenoid shutter and scanning galvo mirror 

system through a PCI Digital Acquisition (DAQ) card (PCI-MIO-16XE-50; National 

Instruments, Austin, TX). The digital mirror device was controlled via a Super Video 

Graphics Array (SVGA) input. The nanopositioner was controlled via a General Purpose 

Interface Bus (GPIB) input (PCI-GPIB; National Instruments, Austin, TX). 

Formulation of printing reagent solutions 

Two formulations of the printing reagent solution were used for the experiments 

detailed in this dissertation. The formulation used for most experiments (referred to as 

low-gel) was based on a photosensitizer solution of 15 mM rose bengal (RB) in 
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phosphate-buffered saline (PBS). To each 1 mL of this solution, 300 mg of bovine serum 

albumin (BSA) and 100 mg of type A porcine gelatin (gelatin) were added. The other 

formulation (referred to as hi-gel) consisted of a 9 mM RB solution in PBS, with 250 mg 

of gelatin and 25 mg of BSA added to each 1 mL of RB solution.  

Each formulation was prepared by first adding the BSA to the RB solution in a 

1.5 mL Eppendorf vial, mixing them on a vortexer, then heating the mixture to 60°C in 

an oven to dissolve. The gelatin was then added to the solution, vortexed to disperse it 

within the solution, and the final mixture was heated to 60°C to completely dissolve the 

gelatin.  

The reagent solutions were plated on an ink-marked glass-bottom well (Mattek, 

Ashland, MA) for printing. The low-gel solution was applied to the glass with a transfer 

pipette while in the molten state. The hi-gel solution was too viscous for this method. 

Instead it was plated in the gel state– a small volume of the gel at room temperature was 

placed on the glass-bottom well and then melted at 60°C to spread onto the glass. Both 

types of solutions were cooled to a gel at room temperature and covered with a small 

volume of water to maintain hydration during printing.  

Micro-3D-printing of the hydrogel tile 

To maintain focus on the characterization of the imprinting process, I used a 

standardized printing protocol to produce structures. The glass-bottom well containing 

printing reagent solution was placed on the stage of the inverted microscope that formed 

part of the micro-3D-printing rig. The upper surface of the glass served as the printing 

surface. The laser beam was set to an average power of 35 mW at the objective back 

aperture and focused onto the printing surface. The beam was scanned in a raster pattern 

and masked to produce a square printing area measuring 70 µm by 70 µm. The scan along 
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the fast axis consisted of a triangle wave with amplitude of 2 V and frequency of 200 Hz. 

The scan along the slow axis was also a triangle wave, with amplitude of 1.5 V and 

frequency of 0.1 Hz at an offset of 270°.  These settings produced a velocity of 68,000 

µm/s on the fast axis and 25 µm/s on the slow axis. The voxel was translated to a height 

H0 = 10 µm above the glass surface using the nanopositioner, and then stepped downward 

one micrometer increments. The 1 µm step size was experimentally determined to 

produce solid structures through sufficient overlap of voxels in adjacent printed layers. 

The laser beam was scanned through the 70 µm by 70 µm printing area once per step 

until the printed structure was anchored to the glass surface. The gel consistency of the 

printing reagent at room temperature helped maintain the shape of the printed structure 

until it was anchored. The laser-scanned region was covalently photocrosslinked into a 

solid structure, while the unscanned region was melted and rinsed away using PBS 

warmed to 60°C. The remaining structure had lateral dimensions of 70 µm by 70 µm, and 

a nominal height of 10 µm, and is referred to as a “tile”. While the nominal height of the 

tile was set by the total distance that the printing voxel was translated along the optical 

axis into the solution to print the top layer of the tile, the actual height of the tile could 

vary for a number of reasons. For one, the voxel itself is elongated along the optical axis. 

If the waist of the voxel is focused 10 µm above the glass, the highest point of the voxel 

may extend above it by a micron or more, depending on the light intensity and the 

photoreaction efficiency of the reagent solution. Printed structures are also known to 

undergo swelling when the reagent solution is rinsed away, increasing the height by 

approximately a micron. 

The printed tile was stored overnight in a 50% ethanol solution, which extracted 

much of the RB photosensitizer. The next day, the ethanol solution was replaced with a 5 

mM solution of the biocompatible photosensitizer eosin Y in PBS. The printed tile was 



 97 

loaded with eosin overnight and then stored in the same solution. It was transferred to 

PBS immediately before use.  

Imprinting pattern into tile surface 

The glass-bottom well containing the printed tile structure was emptied of the 

eosin-loading solution and filled with PBS to keep the tile hydration. The well was placed 

on the stage of the micro-3D-printing rig, and the voxel was focused on the glass surface 

at the bottom of the printed tile. A mask was selected in a pattern corresponding to the 

desired imprinting pattern. In this chapter, each tile was imprinted uniformly so the mask 

was a flat square corresponding to the size of the tile. Uniform imprinting changed the 

height of the tile as the entire material contracted and pulled the surfaces downward. 

The voxel was moved to a height H0 above the glass surface (Figure 3.3 (a)), then 

stepped downward one micrometer at a time  (Figure 3.3 (b)) until the voxel was within 

at least 3 µm of the glass (Figure 3.3 (c)). Each plane during this downward sequence was 

raster scanned by the laser focus in a pattern set by the imprinting mask, maintaining a 

fast axis velocity of 68,000 µm/s and slow axis velocity of 25 µm/s. For imprinting done 

with multiple scans, the voxel was again returned to height H0 and the procedure was 

repeated one or more times as indicated. The structure was stored in PBS until further use 

to maintain hydration. 
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Figure 3.3: A schematic of the imprinting process. The laser beam voxel, scanned in a 

raster pattern, is positioned at H0 (a). It is stepped down 1 µm at a time (b) 

until it is below the glass surface. The tile structure is imprinted layer-by-

layer as the laser beam passes through it. Dark orange represents unimprinted 

material and light orange represents imprinted material, which has undergone 

a change in height. 
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Measurement of the height of a tile 

Although tiles were printed with a nominal height of 10 µm, they needed to be 

measured to confirm the actual heights after removing the reagent solution. Variations 

between the nominal heights and actual heights may arise from material swelling, from 

imperfect focusing of the voxel on the glass, and from the portions of the printing voxel 

extending above the top plane. Additionally, the surface patterns and/or heights of 

structures needed to be determined after imprinting. Negative-space confocal imaging 

was used to measure the heights of these tiles. The region around the printed tiles was 

flooded with a fluorescent dye, and the space occupied by the printed tile was 

distinguished by its much lower fluorescence signal. The fluorescent dye was a 35-40 

mg/mL solution of fluorescein isothiocyanate conjugated to dextran molecules of 

molecular weight 2 MDa (FITC-dextran; FD2000, Sigma Aldrich, St. Louis, MO). It had 

an excitation wavelength maximum at 490 nm and emission maximum at 520 nm. The 

large tethered dextran molecules prevented the fluorescein from penetrating the printed 

tiles, thus providing a high fluorescence signal contrast between the tiles and the 

surrounding region. 

The PBS was removed from the glass-bottom wells containing printed tiles and 

quickly replaced with the dye to prevent dehydration. The tiles and their surrounding 

regions were imaged on a confocal microscope (SP2 AOBS; Leica Microsysrems, 

Buffalo Grove, IL) using a 63X (HCX APO, 1.4NA) oil objective. The samples were 

excited with a 488 nm Argon laser. Emitted light was collected in the range 496nm - 

675nm. Longer wavelength emission was excluded to avoid collecting light emitted from 

eosin in the structures. PMT gain was set to 480 V to maximize contrast between the 

structures and the FITC-dextran dye. The pinhole size was 20.0 µm (0.17 airy disk), and 
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the laser scan rate was 400 Hz. Voxel dimensions were 465 nm ✕ 465 nm ✕ 115 nm. 

Images were captured in the form of stack files. 

Orthogonal projections of the images were computed using the imaging software 

FIJI [4], and tile dimensions were obtained from pixel measurements. The measured 

heights of structures without imprinting were denoted Hi, and the heights of imprinted 

structures were denoted Hf. 

Measurement of photosensitizer concentration in tile 

The concentration of eosin in the printed tile was calculated from Beers’ law after 

measuring the relative transmittance of light passing through the tile. As the small size of 

the tile made standard UV/Vis spectrophotometers an unsuitable instrument for 

measuring relative transmittance, these measurements were made on an inverted 

microscope (Axiovert 135; Zeiss Microscopy, Thornwood, NY). Near monochromatic 

light was obtained by filtering full spectrum light from a tungsten-halogen lamp through a 

530 nm bandpass filter (FB530-10; ThorLabs, Newton, NJ). The condenser diaphragm of 

the microscope was closed to minimize variation in light path lengths. A 10X objective 

(UPlanFl 10X/0.3 NA; Olympus America, Center Valley, PA) collected light that passed 

through printed tiles and the surrounding regions. Brightfield images of 16-bit depth were 

collected with a scientific-grade complementary metal oxide semiconductor (CMOS) 

(ORCA-Flash2.8; Hamamatsu Photonics, Bridgewater, NJ) camera controlled by 

HCImage Live software (Hamamatsu). Pixel intensities were measured from images of 

both printed tiles and surrounding regions without printed structures. 

The molar absorptivity of the eosin in the printed structures was needed to 

calculate approximate concentrations of the dye remaining in tiles at different times. A 

series of hi-gel solutions was prepared containing eosin concentrations less than or equal 
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to 10 mM. These gels were sandwiched between pairs of coverslips separated by 30 µm 

glass beads. Gel sandwiches were imaged on the inverted microscope through the 530 nm 

filter, and relative transmittance measurements were obtained from pixel intensity values 

of images captured by the CMOS camera. Although the absorbance was measured away 

from the absorbance peak of eosin at 517 nm, a calibration curve confirmed that 

absorbance at 530 nm varies linearly with concentration. Using the Beer-Lambert law, 

the molar absorptivity coefficient was calculated to be 33,000 (M cm)
-1

 at 530 nm. This 

value was verified using protein-free eosin solutions measured using a cuvette-based UV-

Vis spectrophotometer (8453 UV-Vis; Agilent Technologies, Santa Clara, CA).  

Diffusion of photosensitizer from tile 

To measure diffusion of eosin out of printed tiles, the tiles were removed from 5 

mM eosin solution and placed in Liebovitz-15 media containing 1% bovine calf serum, 

then maintained at 37°C in a non-CO2 incubator. The media and temperature conditions 

were selected to match cell culture conditions that will be relevant in Chapter 4. At 

several time points, the concentration of eosin in the tiles was measured using the method 

described previously.  

Imaging via Scanning Electron Microscopy 

 Selected structures were fixed using a 5% solution of gluteraldehyde (Ted Pella, 

Redding, CA) in PBS for one hour, then rinsed with deionized water to remove buffer 

salts. Structures were serially dehydrated in 50% ethanol and twice in 100% ethanol, then 

dried in a carbon dioxide critical point dryer (Samdri 790 CPD; Tousimis, Rockville, 

MD) in which liquid carbon dioxide was exchanged five times. The dried structures were 

mounted on SEM pin stubs, sputter coated to a nominal thickness 8 nm of platinum-

palladium, and imaged in a field emission-scanning electron microscope (Supra 40 VP, 
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Zeiss Microscopy, Thornwood, NY) using the secondary electron detector. The extra 

high tension (EHT) was set at 5.0 kV and the working distance was 16.0 mm. 

 

3.3 RESULTS 

 The purpose of the work presented in this chapter was to develop the imprinting 

phenomenon observed in the Shear lab into a method for introducing topographical 

variations to the surfaces of protein-based hydrogel structures. During preliminary 

studies, it was observed that a wide range of parameters influence the extent of imprinting 

that a structure experiences when scanned with a laser. Imprinting is affected by the 

qualities of the structure material, which in turn depend on the printing process. The 

composition of the reagent solution, the power and dwell-time of the laser, and the step-

size of the voxel translation all affect the crosslinking density and the stiffness of the 

printed material. The laser power, dwell-time and step-size, also determine the extent of 

imprinting, as does photosensitizer concentration. 

The materials developed in this section fall in the class of protein hydrogels. 

Proteins were used as precursors for the printed structures because of their demonstrated 

utility in micro-3D printing [5–8]. The selected proteins, BSA and gelatin, have been 

shown to make good precursors for biologically relevant hydrogels because of their 

biocompatible nature, particularly their similarity to proteins in blood sera and ECM [9]. 

The resulting printed structures have both high water content and flexibility. The amount 

of each protein can be varied to produce structures with different properties. For this 

project, BSA was used to provide structural support and stiffness while gelatin lowered 

the gelation temperature of the reagent solution, permitting top-down printing of 

structures. Gelatin may also contribute collagen-like moieties to facilitate cell adhesion. 
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Of the two formulations used in this project, the structures printed with hi-gel 

solution were softer and more easily distorted than structures from low-gel solution. One 

reason is that the hi-gel formulation has a lower total protein concentration (275 mg/mL) 

than the low-gel formulation (400 mg/mL), as higher protein content makes for denser 

and stiffer material. Secondly, BSA has more crosslinking residues than gelatin, as 

discussed previously in Chapter 1. Structures containing more BSA can potentially 

contain more covalent crosslinks, leading to a stiffer material. At elevated temperatures 

(e.g. those suited for cell culture, around 37°C) hi-gel structures can become even softer 

as physical crosslinks (intertwined collagen-like triple helices) between gelatin strands 

denature. Figure 3.4 shows a hi-gel structure deforming under the contractile force of a 

cell adhered to it. Because it produces structures more suited for the applications in 

Chapter 4, the low-gel formulation is the primary focus of the characterization performed 

in this chapter. 
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Figure 3.4: Hi-gel material distorted under applied force. A hi-gel micro-3D printed tile 

was imprinted with parallel grooves. A fibroblast that was adhered to the cell 

applied contractile forces that were strong enough to distort the material at 

37°C, as indicated by the arrow. Scale bar is 20 µm. 

The other important component of the reagent solution, the photosensitizer, was 

selected based on crosslinking efficiency and biocompatibility. Rose bengal is a more 

efficient photosensitizer than eosin and sensitizes more photocrosslinking reactions. 

However, it is also more cytotoxic. To print robust structures that maintain their shape 

over time, I used rose bengal as the photosensitizer for the printing reagent solution. I 

then rinsed out the rose bengal and reloaded the material with eosin. This yielded a more 

biocompatible imprinting material that could be used for the cell studies detailed in 

Chapter 4. 
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Dimensions of printed structures 

The dimensions of micro-3D printed tile structures were measured using negative 

space confocal imaging. These tiles were formulated with low-gel printing reagent and 

their nominal heights, as determined by the set-point of the printing voxel above the glass 

printing surface, were 10 µm. The nominal length and width of each tile, as determined 

by the raster scan mask, were 70 µm each. A total of 18 tiles were printed in three 

different wells. Table 3.1 summarizes the averaged length, width, and height 

measurements of the tiles. 

 

Dimension Mean (µm) Standard Deviation (µm) 

Height 10.5 0.4 

Length 69.4 1.2 

Width 70.7 1.0 

Table 3.1: The dimensions of micro-3D printed tile structures were measured. The mean 

and standard deviation are shown. Sample size n = 18. 

The resolution of the confocal image is 0.115 µm in the z-axis, and 0.465 µm in 

the x- and y-axes. The standard deviation arises from measurement noise, which is three 

pixels in magnitude in all three dimensions (0.345 µm on the z-axis and 1.395 µm on the 

x- and y-axes).  

Effect of imprinting on tile height as the number of scans varies 

Imprinting a structure by scanning multiple times produced deeper patterns than a 

single scan. To quantify these effects, a series of tiles were printed and then imprinted by 

scanning with a laser beam layer by layer through their entire height. Different tiles were 
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scanned once, twice, or three times. A total of 3 tiles were subjected to each scanning 

pattern.  

To ensure the entire height of the tile was scanned, the initial position of the voxel 

(H0) was placed at 15 µm, which was higher than the heights of the tiles. After 

imprinting, the heights of these tiles were compared, as shown in Figure 3.5.  

 

 

Figure 3.5: Number of imprinting scans. The mean and standard deviation of tile heights 

(µm) are shown, after scanning once, twice, or three times through the entire 

structure. ∆z represents change in height produced by the last scan. n = 3. 

The first scan through the tile produces the most dramatic change in height, from 

an average of 9.4 µm to 6.8 µm, a change of 30% from the original height. The second 



 107 

scan produces a smaller height change, from 6.8 µm to 5.2 µm, a change of 24% from the 

first scan. A t-test (assuming unequal variances) was performed to compare the mean 

heights after the second and third scans.  The null hypothesis, that the two sets of heights 

had the same mean, could not be rejected as the p-value was 0.61. Thus, it was concluded 

that the third scan doesn’t change the height further by a significant amount 

The effects of scanning multiple times can be explained by considering that 

within each tile, there is a finite population of crosslinkable amino acid residues available 

to undergo photocrosslinking during imprinting. The first imprinting scan induces a 

reaction in a large fraction of them, producing covalent bonds that contract the material 

and reduce the tile height. The second imprinting scan crosslinks a large fraction of the 

remaining residues, further reducing the tile height. By the third scan, the number of 

available residues is so small that crosslinking does not contract the material 

significantly. Therefore the height does not change further. 

Effect of imprinting on tile height as the scan height varies 

There may be circumstances in which one would like to imprint a structure while 

minimizing the exposure of the structure surface to the scanning laser. This may be 

necessary if the surface of the structure is being used as a substrate for cell growth. It may 

also be needed if the surface has been functionalized with chemistry that is susceptible to 

photo-damage. In these cases, imprinting can be achieved by placing the voxel at a height 

H0 that is lower than the maximum height of the structure, and then scanning downward 

layer by layer until the glass level is reached. By scanning through a fraction of the full 

height of structure, the localized contraction necessary for imprinting can be attained 

while leaving the top surface of the structure unexposed. Here, H0 is referred to as “scan 

height”. To quantify the effect of varying the scan height, a series of tiles were printed 
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and then imprinted starting from scan heights of 8 µm, 10 µm, 12 µm, and 14 µm. Each 

tile was scanned twice, from the scan height down to the glass level. A total of 6 tiles 

were subjected to each scanning pattern. The results are displayed in Figure 3.6.  

 

 

Figure 3.6: Imprinting scan height. The mean and standard deviation of tile heights are 

shown after being scanned twice through different scan heights (indicated by 

horizontal red bars). Dark blue indicates unscanned portions of tiles. Light 

blue indicates scanned portions. n = 6. 

When the scan height (H0) is less than the initial height (Hi) of the tile, as in the 

case of 8 µm scan height, the imprinted tile consists of a contracted section at the bottom 

(light blue in Figure 3.6) and an uncontracted section at the top (dark blue in Figure 3.6). 

The heights of both these sections contribute to the final height of the structure, Hf. 
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On the other hand, when the scan height (H0) is more than the initial height (Hi) of 

the tile, as in the case of 10 µm, 12 µm and 14 µm scan heights, the entire structure is 

scanned. As a result, the final height (Hf) reflects the fact that the entire tile structure 

underwent contraction.   

Photosensitizer concentration in printed tiles 

 The presence of photosensitizer in the structure appears to be necessary for 

imprinting, as it enables the photocrosslinking reactions that are responsible for 

contracting the material. However, the photosensitizer used for imprinting in this work, 

eosin, is water-soluble. Since printed hydrogel structures are kept in aqueous solution to 

prevent dehydration damage, the photosensitizers can diffuse out of the structures by 

dissolving in the aqueous solution. If the photosensitizer levels are depleted too much, 

imprinting can be affected. 

 To achieve reproducible imprinting, it was important to maintain photosensitizer 

concentrations in the pad at levels that induce a sufficient amount of photocrosslinking 

reactions. To ensure that photosensitizer levels were consistent, a reliable method for 

measuring the photosensitizer concentration was needed. Since eosin has an easily 

detectable absorbance peak of 517 nm and a high molar absorptivity, spectrophotometry 

was used for concentration measurements.  

 It wasn’t possible to use conventional UV-Vis spectrophotometers, which use 

micro-well plates or cuvettes to hold samples, as the printed gel tiles were too small. 

Instead, an inverted microscope was used to image the tiles under near-monochromatic 

light. The relative intensity of light transmitted through the pad was taken from pixel 

intensity measurements from images captured by a CMOS camera, and the Beer-Lambert 

Law was used to calculate the concentration of eosin in the tile.  
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 The Beer-Lambert law relates the attenuation of light to properties of materials 

through which it passes, such as concentration and path length. It can be expressed in the 

form of Equation (1), where I0 is the intensity (power per unit area) of the incident light, I 

is the intensity of the transmitted light, c is the concentration of the light-attenuating 

material, l is the path length of light passing through the material, and ɛ is the molar 

absorption coefficient, a constant of proportionality that is specific to the material. 

  

 

(5) 

 

For the Beer-Lambert law to be valid, there are certain conditions that need to be 

upheld in the system being measured. The molecules in the material must interact with 

light independently of each other. The material must be homogeneous and not scatter 

light and the incident light must consist of parallel rays that traverse the same path length 

through the material. Finally, the light must be either monochromatic,or at the least have 

a bandwidth narrow enough that absorbance does not vary across it [10].  

 In this setup, these conditions were met as follows. The sample was illuminated 

with light from a microscope condenser, with the condenser diaphragm minimized so that 

light rays were limited to a small range of path lengths. The light was made 

monochromatic using a 530 nm filter with a bandwidth of 10 nm. Although this 

wavelength deviated slightly from the wavelength of maximum absorbance for eosin 

(λmax = 517 nm), a measured absorbance vs. concentration curve showed that it followed 

the Beer-Lambert law. As the tile was thin and optically clear, the assumption was made 

that it did not scatter or interact with light. 
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 The intensity ratio of incident (I0) to transmitted light (I) was inferred from 

measured pixel intensities in an image of the illuminated sample captured with a CMOS 

camera. This ratio (I/I0) was taken as equal to the ratio of pixel intensities on the sample 

vs. the surrounding area. Here, the eosin-loaded gel was the material absorbing the 

incident light. The light passed through a path length (l) equal to 10 µm, the thickness of 

the tile.  The light detected by the CMOS camera had been attenuated by the eosin in the 

material. The light passing through a surrounding region would not undergo the same 

attenuation before being detected by the CMOS camera. In an analogy with a 

conventional spectrophotometry measurement, the surrounding region was the 

“reference” and the loaded tile was the “sample”. One caveat: a true “reference” would 

consist of a printed tile that had been completely depleted of eosin. Such tiles were found 

to have the same pixel intensity as the surrounding area without printed tiles so for 

convenience, areas surrounding loaded tiles were treated as sample references. 

 The molar absorption coefficient (ɛ) for eosin at 530 nm was experimentally 

found to be 33,000 (M cm)
-1

 using the “sandwich method” described in the Methods 

section. The plot of absorbance vs. concentration-times-path length used to find ɛ is 

shown in Figure 3.7. Using the path length, molar absorption coefficient and intensity 

ratio, the concentration of eosin loaded in the printed material was calculated. 
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Figure 3.7: Calculation of molar absorption coefficient of eosin in hi-BSA tile. The slope 

of this linear regression shows that the molar absorption coefficient was 

0.0033 (mM µm)
-1

 or 33,000 (M cm)
-1

. 

 The concentration of eosin was measured in structures that had been loaded with 

the photosensitizer by equilibration in a 5 mM eosin solution overnight. Immediately 

after removal from the loading solution, the material had an eosin concentration of 33 ± 2 

mM, which was much higher than the loading solution concentration. The distribution 

ratio of eosin between the protein gel phase and aqueous phase was calculated to be 6.6. 

The high distribution ratio is supported by literature that documents the high affinity 

between BSA proteins and xanthene dyes such as eosin and rose bengal [11,12]. 
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To assess how long eosin is retained in structures when kept in aqueous media, 

loaded tiles were incubated in L-15 media at 37°C. The concentration of eosin in the tiles 

was measured at various time intervals and plotted. Figure 3.8 plots the change in 

concentration in three samples over 24 hours. 

 

Figure 3.8: The concentration of eosin in the loaded tile structure plotted against time for 

24 hrs. The symbols, and  represent replicates while  represents their 

average. Error bars represent the standard deviation of measurement. 

Over 24 hours, the eosin concentration of a second set of tiles decreased from an 

initial value of 33 mM to 23 mM, and the release rate decreased with concentration. The 

change in concentration in another set of samples over 9 days is shown in Figure 3.9. 
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Figure 3.9: The concentration of eosin in the loaded tile structure plotted against time for 

9 days. The symbols, and  represent replicates while  represents their 

average. Error bars represent the standard deviation of measurement. 

Over 9 days, the concentration decreased from 22 mM to 13 mM in an initial 

burst over 2 days followed by a slower change during the next 7 days. Toward the end, 

the concentration reached a near-steady state at a non-zero concentration. The two 

distinct trends – the initial concentration dependent release rate and the later constant 

release rate – suggest that the eosin was released from the material by at least two distinct 

mechanisms, denoted Mechanism 1 and Mechanism 2 respectively.  

The eosin concentration curves in Figure 3.8 and 3.9 are not directly comparable 

because of the different initial concentrations. (This variation in eosin loading 
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concentration possibly stemmed from small variations in BSA content when printing 

reagents were mixed). However, when presented as fractional concentration curves 

(relative to their respective initial concentrations) they can be concatenated as shown in 

Figure 3.10. This fractional concentration curve was used to project the data from Figure 

3.8 over 9 days, also shown in Figure 3.10 via the right-hand axis.  

 

 

Figure 3.10: Plot of the concentration of eosin in structures over 9 days, presented as a 

fraction of initial concentration (left axis) and as total concentration (right 

axis). The  markers indicate the phase where Mechanism 1 dominates, and 

the  markers indicate the phase where Mechanism 2 dominates. The total 

concentration values in the latter phases were estimated from the fractional 

concentrations. The segmented linear regression shows how concentration 

varies linearly with time over the observed period when Mechanism 2 

dominates. 
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The red markers indicate data that was measured during the first 24 hours of eosin 

release. This part of the curve also corresponds to the phase when Mechanism 1 

dominates over Mechanism 2. The green markers indicate data that was estimated from 

fractional concentration data over 9 days. This part of the curve corresponds to the phase 

when Mechanism 2 dominates. 

The concentration change from Mechanism 2, when modeled as a linear 

relationship with time using a simple linear regression, yields an R
2
 value of 0.86. In 

other words the release rate is constant at 0.49 mM/day (5.8 ✕ 10
-6

 mM/sec) and 

independent of the concentration of eosin. This indicates that the release of eosin from the 

material by Mechanism 2 follows zero-order release kinetics over the time-scale of 

interest. The release of eosin by Mechanism 1 can be calculated by subtracting the 

contribution of Mechanism 2 from the total concentration data.  This produces an 

adjusted concentration curve in which the concentration decreases from 9 mM to 0 mM, 

instead of 33 mM to 20 mM.  

A semi-empirical equation can be used to assess the eosin release behavior from 

the structure via Mechanism 1. The Ritger-Peppas Power Law is used to determine the 

diffusional exponent (n), a parameter that is indicative of the transport mechanism [13]. A 

diffusional exponent n of 0.50 indicates Fickian diffusion, i.e. following Fick’s laws of 

diffusion. A diffusional exponent of 1 indicates zero-order i.e. concentration independent 

diffusion. An exponent between these limits displays characteristics between these two 

limits, and is described as non-Fickian.  

If Mt is the total amount of eosin that has diffused out of the structures via 

Mechanism 1 by time t, and M∞ is the amount released after infinite time, the data can be 

fit to Equation (2). 
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(6) 

 

When the log of fractional release (Mt / M∞) was plotted versus the log of time (t), 

the diffusional exponent was determined to be 0.696 from the slope. This indicates a non-

Fickian release behavior, although the character is more Fickian than zero-order. An 

attempt can be made to model the release of eosin from the tiles using Fick’s second law 

of diffusion, Equation (3).  

 

 

(7) 

 

 The model assumes a constant diffusion coefficient D for eosin diffusing out of 

the material, a plane sheet of thickness l. The material has an initial uniform eosin 

concentration C(x, t=0) = C0, in which one surface is impermeable (anchored to glass, so 

 C(x=0)/ x = 0) and the other surface is held at a constant eosin concentration of c(x=l) 

= CS. The aqueous media around the printed structures can be treated as a “perfect sink” 

for eosin, as the media volume is 10
8
 times the volume of the structures. I am also making 

the assumption that eosin diffusing out of the structure immediately dissipates instead of 

accumulating in the vicinity of the pad. This assumption is facile because the aqueous 

media was not well-mixed, but it simplifies the calculation enough to allow an analytical 

solution. The solution to the differential equation of diffusion with the initial and 

boundary conditions listed above is given in Equation (4) [14]. 

 

 

(8) 
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Equation (4) can be expressed in terms of fractional release, as shown in Equation 

(5). At short time-scales (Mt / M∞ < 0.60), the approximation in Equation (6) can be used 

[13]. 

 

 

(9) 

 

 

(10) 

 

When the Mt / M∞ data below 0.60 is plotted versus t
1/2

, the diffusion coefficient 

D for Mechanism 1 is found to be 2.7✕ 10
-12

 cm
2
/sec. As shown before, Mechanism 2 

shows zero-order release behavior with a diffusion rate of 5.8 ✕ 10
-6

 mM/sec. 

Mechanism 1 displays some concentration dependence, which is probably because it 

represents eosin that was dissolved in the bulk fluid of the hydrogel and diffused out to 

the surrounding media. The remaining eosin was more strongly bound to the structures, 

and the slower diffusion in Mechanism 2 likely indicates electrostatic and hydrophobic 

interactions with the BSA in the material [11,12]. 

This analysis provides an understanding of the diffusion kinetics of eosin from 

printed structures, and gives insight into the timescales over which there remains a usable 

reservoir of photosensitizer for imprinting. Knowledge of these timescales is critical 

when planning experiments that last several hours or days. The analysis also provides a 

model for the use of these printed materials as controlled release devices for delivery of 

bioactive molecules into a cellular microenvironment from the substrate. This opens the 

door to possible future applications in tissue engineering. 
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Effects of photosensitizer concentration on imprinting 

Since the eosin level in micro-3D printed structures decreases over time, and 

eosin concentration influences the crosslinking efficiency during a photochemical 

reaction, it is important to determine whether imprinting effects will remain consistent 

over the course of a multi-hour experiment. Here I incubated eosin-loaded tile structures 

in L-15 media at 37°C to mimic the cell culture conditions discussed in Chapter 4. At 

several time points over the course of 24 hours, I recorded the concentration of eosin in 

the tiles and scanned the tiles to observe imprinting effects at these eosin concentrations. 

Each tile was imprinted over its entire area by scanning twice from a scan height 

of 12 µm. The concentration of eosin in each tile was measured immediately before 

imprinting. The post-imprinting height was measured from each tile and subtracted from 

the 10.5 µm average height of unimprinted tiles. Finally, a regression analysis was 

performed to test whether there was any correlation between concentration and change in 

height from imprinting during the first 24 hours of incubation. The results of the analysis 

are shown in Figure 3.11. 
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Figure 3.11: A linear regression plot of the concentration of eosin in tiles structures 

versus height change caused by imprinting. Number of measurements (n) is 

18. 

Linear regression showed that the slope of the regression line (β1) was 0.0668 

µm/mM, suggesting a correlation between height change and eosin concentration. A 

higher concentration correlates with a smaller height change, which is counterintuitive to 

the proposition that higher concentrations of eosin lead to stronger imprinting. However, 

there is a high variance to the data, as indicated by the small R
2
 value of 0.2. The large 

residual sum-of-squares (Res SS = 3.33) compared with the small regression sum-of-

squares (Reg SS = 0.83) shows that the data is a poor fit to the regression line, and the 

correlation should be viewed with skepticism.  
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A t-test for simple linear regression can be applied to the data to test the 

significant of the correlation. The null hypothesis H0: β1 = 0 proposes that there is no 

relationship between the concentration and imprinted height change. The t-statistic for the 

data was found to be 2.00 and the resulting p-value was 0.06, just above the 0.05 

threshold that is used to consider a relationship statistically significant. The hypothesis 

cannot be rejected and the possibility exists that there is no relationship between eosin 

concentration and height change. It would be more informative to speak in terms of 

confidence intervals. The data suggests that one can be 95% confident that the slope β1 

falls between -0.0039 and 0.1376, and conclude that there is little to no significant 

association between concentration and height change within the first 24 hours after 

loading structures with eosin. 

 

3.4 CONCLUSIONS 

The studies presented in this chapter contribute toward a feasible method to 

imprint topographical features to the surfaces of protein hydrogels. By varying the 

number of scans and scan heights of a laser voxel through a tile structure, topographical 

features with height differences of over 3 µm can be introduced. Although the 

photosensitizer eosin can diffuse out of the structures, the change in concentration over 

the first 24 hours after loading with eosin does not significantly affect the imprinting 

depth.  

Certain improvements can be made to the system to increase its versatility. The 

diffusion of photosensitizer from the structures can be prevented by covalently 

conjugating the photosensitizer to the protein material. The surface of the material can be 

functionalized through the photochemical conjugation of bioactive molecules. The 
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stiffness of the material can be varied by changing the composition of the printing reagent 

solution and the printing laser parameters.  

Moreover, this technique allows precise control over the specific time and 

location at which imprinting is performed. When coupled with the imprinting technology, 

the printed material functions as a photoresponsive hydrogel surface that is capable of 

undergoing dynamic topographical changes. Such a surface can be used for a tremendous 

range of applications, particularly for the study of topographical guidance in cell cultures. 

New topographical cues can be presented to cells at any point in their history by 

imprinting the substrate they grow on. Potential areas for study include the polarization 

and alignment of cells to grooves and the differentiation of stem cells, as well as cell 

migration and pathfinding behaviors. Alignment of cells to grooves is discussed in 

Chapter 4. 
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Chapter 4:  Cellular response to dynamic topographical changes 

induced by micro-3D-imprinting 

4.1 INTRODUCTION 

Chapter 1 discussed how subjecting cells to various environmental cues can 

uncover important information about their behavior. In particular, dynamic cellular 

microenvironments are used in attempts to replicate the complex spatio-temporal milieu 

that cells experience in vivo. An important field of research is the development of 

dynamic two-dimensional cell substrates, which reveal how cells respond when the 

surfaces they grow on undergo changes. These can be changes in topographical features 

or mechanical stiffness, or the introduction or removal of chemical cues.  

In recent years, there have been many interesting developments in creating 

dynamic substrates. The most versatile methods use an external trigger to induce changes 

at specific time points, allowing observation of how cells respond to such changes at 

specific points in their life-cycle. The triggers can be in the form of chemical reactions, 

electrical stimulation, mechanical deformation, temperature changes, or light exposure. 

Recent developments in click-chemistry techniques permit the non-toxic, and nearly 

instantaneous, chemical functionalization of surfaces with bioactive molecules such as 

Arg-Gly-Asp (RGD). This enables researchers to control cell adhesion dynamically on 

demand [1]. Electroresponsive materials can be used to trigger cell detachment by using 

an electric current, delivered through gold electrodes, to desorb a self-assembled 

monolayer of cell antibodies [2]. Mechanoresponsive materials have been used to 

increase adhesivity by exposing RGD-containing peptides upon stretching [3], detach 

biofilms by destabilizing surface topographies through electrical stimulation [4], and 

align cells by magnetically-induced wrinkling of the substrate [5]. Thermoresponsive 

smart polymers have been used to align cells to parallel grooves [6–8] and differentiate 
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stem cells [9]. Photoresponsive materials have been used for the controlled detachment of 

cells from substrates through multiphoton photodegradation of hydrogels [10]. 

Three of the studies cited above use thermoresponsive shape-memory polymers, 

such as polycaprolactone, to change cell morphology [6–8]. There is a great diversity in 

groove dimensions used in these experiments, from 5 µm trough width and 0.3 µm depth 

[6] to 100 µm width and 15 µm width [7]. The substrates transitioned from grooved to 

flat substrates over 1-2 hours in some cases [6,8], and over 19 hours in others [7]. The 

cell types used were mouse embryonic fibroblasts and human mesenchymal stem cells, 

both of which exhibit a detectable response to substrate topographies. The cells took 12-

30 hours to fully change from aligned to stellate morphologies.  Although these surfaces 

succeed in altering the topography of cell substrates dynamically, they display certain 

shortcomings. Thermoresponsivity, by definition, requires the substrate to undergo a 

temperature-induced transition to trigger the topography change. Consequently, the cells 

growing on the substrate often spend long periods of time at temperatures that were not 

optimal for cell culture. Furthermore, the topography changes took place over the course 

of hours, which is much slower than the time course of extracellular matrix remodeling in 

the body [11].  In addition, the thermoresponsive substrates are produced by casting a 

polymer material, such as polycaprolactone, into premade molds. Thus, each time a 

substrate pattern requires modification, a new mold has to be manufactured. Because of 

this, features cannot be made in response to cell morphology and orientation, which is 

unknown at the outset of an experiment. It also adds a long turn-around time into the 

experimental cycle, and dimensional parameters cannot be modified on-the-fly.  

The imprinting technique developed in Chapter 3 has many advantages over 

thermoresponsive methods. Photoresponsive protein hydrogels can be imprinted with 

well-defined patterns using a laser raster scan and a digital mask, thereby avoiding 
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temperature conditions that could disrupt cell cultures. New imprinting patterns can be 

generated in a matter of minutes, resulting in a short experimental cycle. Moreover, the 

protein hydrogel material is soft and has high water content, making it a better substitute 

for the extracellular matrix than a material like polycaprolactone. 

With these advantages, this imprinting technique is a highly attractive tool for 

introducing dynamic topographical changes to a cell substrate with minimal disturbance 

of the cell culture. It facilitates in vitro studies that endeavor to mimic the in vivo 

topographical changes that arise through extracellular matrix remodeling. 

In this chapter I present a novel approach for invoking dynamic topographical 

responses in cultured cells. A large micro-3D printed pad is used as a substrate for cell 

culture. Once cells have adhered and spread on this flat substrate, grooves are imprinted 

on the surface. The cellular response to this change in topography is observed and 

analyzed. 

  

4.2 METHODS 

Micro 3D-printing a substrate for cell culture 

Low-gelatin reagent solution was prepared by dissolving 300 mg of BSA and 100 

mg of gelatin in 1 mL of 15 mM rose bengal. This solution was melted and mixed at a 

temperature of 60°C, then applied by transfer pipette to an ink-marked glass-bottom well 

(Mattek, Ashland, MA). When the solution cooled to a gel, a small amount of water was 

applied to keep it hydrated while printing.  

The printing of material proceeded as described in the methods section of Chapter 

3. The glass-bottom well was placed on the stage of the inverted microscope of the 

micro-3D-printing rig. The average laser power used for printing was 35 mW at the 
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objective back aperture, and the beam was focused through a 60X objective (Plan Apo, 

Nikon Instruments, Melville, NY), and raster-scanned at a velocity of 68,000 µm/s in the 

fast axis and 25 µm/s in the slow axis. A mask was projected on the digital micromirror 

device (DMD) to produce a tile of desired shape. In most experiments, the mask 

produced a square “tile”. In a few experiments, a “shell”-shaped mask was used.  The 

voxel was translated to a height H0 = 10 µm above the glass surface, and then stepped 

downward one micrometer at a time. The laser beam was scanned through the printing 

area once per step until the printed structure was anchored to the glass surface. The 

nominal size of the printed tile structure was 70 µm (x) by 70 µm (y) in area, and 10 µm 

in height. After the tile was printed, the sample was translated manually in the x and y 

dimensions, and more tiles were printed so that an extended pad of material measuring at 

least 500 µm by 400 µm was printed. Adjacent tiles were overlapped by up to 10 µm to 

produce a continuous pad without gaps that exposed the underlying glass. However, the 

seams between pads were not topographically flat. They manifested as single grooves of 

~1 µm depth, and had the potential to act as topographical guidance cues for cells. To 

decouple the topographical influence of imprinted grooves from these seams, attempts 

were made to orient the grooves in directions that did not coincide with the orientations 

of these seams. The shell-shaped tiles was one such attempt (shown in Figure 4.6). The 

most successful strategy was to orient the grooves at 45° to tile seams, and this was used 

for most experiments. 

The pad was rinsed in 50% ethanol to extract residual rose bengal, which is 

cytotoxic, and then reloaded in 5 mM eosin.  
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Construction of temperature-controlled imaging chamber 

As cell cultures grow optimally at physiological temperatures, a temperature-

controlled chamber was constructed in-house to enclose the microscope stage (TE 2000, 

Nikon Instruments, Melville, NY) for long-term cell observation. The chamber was 

constructed out of 6.3 mm plexiglass with dimensions 28 cm by 18.5 cm by 10 cm. A 

window was cut into the chamber roof and fitted with an optical flat for illumination from 

the microscope condenser. A heating element and fan unit were extracted from a 

dismantled heat gun (Westward 4FWK1; W. W. Grainger, Lake Forest, IL) and used to 

direct warmed air through 3.8 cm diameter polyethylene tubing (Pool and Spa Hose, 

Home Depot, Austin TX) into the chamber through a port at the chamber front. A similar 

length of tubing carried air from the rear of the chamber back to the heating element 

housing. The tubing and the floor of the chamber were insulated with pipe insulation tape 

(Armaflex, Armacell, Mebane, NC). A thermocouple located at the heated-air entry port 

delivered temperature information to a proportional-integral-derivative (PID) controller 

(E5GN, Omron, Hoffman Estates, IL) which switched the heating element on or off to 

maintain a 37±1 °C temperature within the chamber. 

Cell culture 

NIH3T3 fibroblast cells were obtained as frozen samples, the first as a much-

appreciated gift from the lab of Dr. Stanislav Emilianov, and the second from ATCC 

(CRL-1658 , Mannasas, VA). Cells from both sources were used between passage 7 and 

passage 20 after the cells were thawed. Cells were grown in complete media consisting of 

Dulbecco’s Modified Eagle’s Medium (DMEM; High glucose, with L-glutamine and 

sodium pyruvate; Hyclone, Thermo Fisher Scientific, Waltham, MA) with 10% bovine 

calf serum (Hyclone, Thermo Fisher Scientific, Waltham, MA). For observation under a 

microscope, the cells were plated in plating media, comprised of Leibovitz’s L-15 
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medium (Hyclone, Thermo Fisher Scientific, Waltham, MA) with 1% bovine calf serum 

and 1% penicillin-streptomycin (GIBCO, Grand Island, NY). If cells were being plated 

on a printed pad, they were deposited at a high density in a small volume (~150 µL) of 

plating media and incubated at 37°C in the microscope imaging chamber for 2-4 hours 

until the cells adhered to the pad. This small volume was necessary to minimize fluid 

movement that caused the cells to drift off the pad before they adhered. Vacuum grease 

was used to seal the well lid to the dish to minimize evaporation. 

 Cell adhesion was monitored visually through a 10X objective (Plan Apo, Nikon 

Instruments, Melville, NY) until approximately 50 cells adhered over a 500 µm by 400 

µm area. Then the well was filled with plating media and the un-adhered excess cells 

drifted off the pad, leaving cells plated at a density of ~5,000 cells/cm
2
. Imaging was 

performed using illumination through a far-red longpass filter, which minimized 

photosensitizer excitation.  

Imprinting grooves into substrate 

The printing of material proceeded as described in the methods section of Chapter 

3. For the imprinting of control grooves, the glass-bottom wells containing the printed 

pads were emptied of the eosin loading solution and filled with Phosphate buffered saline 

(PBS; GIBCO, Grand Island, NY). Eosin was used as a biocompatible photosensitizer. 

The well was placed on the stage of the micro-3D-printing instrument, and the voxel was 

focused through a 60X objective (Plan Apo, Nikon Instruments, Melville, NY) on the 

glass surface at the bottom of the printed tile. A mask was selected in a pattern that 

imprinted long parallel grooves into the pad. Three variations of groove patterns were 

imprinted: 3 µm ridges and 4 µm troughs with a 7 µm pitch [3+4], 5 µm ridges and 10 
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µm troughs with 15 µm pitch [5+10], and 5 µm ridges and 15 µm troughs with 20 µm 

pitch [5+15] (see Figure 4.1). 

The voxel was moved to a height H0 above the glass surface, then stepped down 

one micrometer at a time until the voxel was well within the glass. Each plane was raster 

scanned with the laser through the imprinting mask, with a fast axis velocity of 68,000 

µm/s and slow axis velocity of 25 µm/s. For imprinting done using multiple scans, the 

voxel was again returned to height H0 and the procedure was repeated one or more times 

as indicated. Each structure was stored in PBS until further use to maintain hydration. 

For the imprinting of dynamic grooves, a similar procedure was followed with the 

following differences. The well was plated with cells in plating media. Once the cells 

adhered and spread on the substrate in a stellate morphology, approximately 4 hours after 

plating, imprinting was performed as described above. Then, the cells were observed over 

24 hours and timelapse images were captured at 5 min intervals. 

Cell toxicity assessment 

A cell viability test was performed to examine whether NIH3T3 cells could 

withstand exposure to a scanned laser beam. Cells in plating media were seeded on an 

ink-marked, 8-well chambered coverglass (Nunc® Lab-Tek®, Sigma Aldrich, St. Louis, 

MO). After incubating for one day at 37°C in a humidity-controlled incubator (at 

atmospheric air composition), the wells were placed on the stage of the printing rig. A 

laser beam with average power of at 35 mW at the objective back aperture was focused 

through a 60X objective and raster scanned through the cells three times over an area of 

700 µm by 300 µm. The cells were incubated for another 8 hours, then stained with 

calcein AM and ethidium homodimer (Molecular Probes, Eugene, OR). Fluorescent 
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images were taken via tetramethylrhodamine isothiocyanate (TRITC) and fluorescein 

isothiocyanate (FITC) filter sets to identify living and dead cells. 

Measuring depth of imprinted grooves 

A set of tiles was printed according to the standard protocol. Grooves were 

imprinting using a mask that produced grooves of styles [3+4], [5+10], and [5+15]. Scan 

heights were 8 µm, 10 µm, 12 µm, and 14 µm. Negative-space confocal imaging was 

used to measure the dimensions of these grooves. Here, the region around the imprinted 

tiles was flooded with a highly concentrated fluorescent dye, and the space occupied by 

the printed tile was distinguished by its much lower fluorescence signal. The fluorescent 

dye was a 35-40 mg/mL solution of fluorescein isothiocyanate conjugated to a 2 MDa  

molecular weight dextran molecule (FITC-dextran; FD2000, Sigma Aldrich, St. Louis, 

MO). It had an excitation wavelength maximum at 490 nm and maximum emission at 

520 nm. The large tethered dextran molecules prevented the fluorescein from penetrating 

the printed tiles, thus providing a high fluorescence signal contrast between the tiles and 

the surrounding region. These were imaged using a confocal microscope (SP2 AOBS; 

Leica Microsystems, Buffalo Grove, IL) using a 63X (HCX APO, 1.4NA) oil objective. 

The samples were excited with a 488 nm Argon laser. Emitted light was collected in the 

range 496nm - 675nm. Higher wavelengths were excluded to avoid collecting light 

emitted from eosin in the structures. Photomultiplier tube (PMT) gain was set to 480 V to 

maximize contrast between the structures and the FITC-dextran dye. The pinhole size 

was 20.0 µm (0.17 airy disks), and the laser scan rate was 400 Hz. Voxel dimensions 

were 465 nm (x) ✕ 465 nm (y) ✕ 115 nm (z). Images were captured in the form of stack 

files. 
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Orthogonal projections of the images were computed using the imaging software 

FIJI [12], and the structure heights at the plateaus and troughs were obtained from pixel 

measurements. The groove depths were calculated by taking the difference in height 

between plateaus and troughs. 

Quantifying cell alignment to grooves 

Timelapse images of cells were captured every 5 minutes over 24 hours with an 

inverted microscope in brightfield mode using a scientific charge-coupled device (CCD) 

camera (CoolSNAP fx, Photometrics, Tuscon, AZ). A shutter (VS25, Uniblitz, Rochester, 

NY) was used to limit illumination to 200 ms every 5 minutes while each image was 

taken. From the full ~289 frames of images, 11-14 frames were extracted for analysis of 

each experimental run.   

Although imprinting a single 70 µm by 70 µm area takes only two minutes, 

coverage of the entire experimental area can take up to 2 hours. For each dynamic 

imprinting sample, the midpoint of the imprinting time was calculated and ascribed the 

time-point t = 0. For each control surface, including pre-imprinted grooves (positive 

control) and unimprinted flat surfaces (negative controls), the time-point t = 0 was 

ascribed to the time when cells began to adhere to the pad. For each experimental 

category and positive control, 4 or 5 cells on each of 3 samples were selected and tracked 

from the beginning to the end of the experiment. For the negative control, 12 cells were 

tracked. Each cell was measured from leading edge to trailing edge, and the angle it made 

with respect to the direction of the grooves was recorded from -90° to 90°, with 0° 

indicating that the cell was parallel to the grooves. In the case of the negative control, an 

arbitrary direction was selected to compare cell angles against. The cell alignment angles 

were plotted versus time. 
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Imaging of actin cytoskeleton 

The actin filaments comprising the cytoskeletons of cells were imaged by staining 

with Alexa 488-phalloidin. After cells were cultured in a glass-bottom well, the media 

was gently removed with a transfer pipette. The cells were fixed in a 3.4% solution of 

formaldehyde (Macron Fine Chemicals, Center Valley, PA) in Cytoskeleton Buffer [13] 

for 20 min. Next, the cell membranes were permeabilized by replacing the formaldehyde 

solution with a 0.5% solution of Triton X-100 (Sigma, St. Louis, MO) in PBS, and 

incubating on ice for 10 min. The permeabilizing solution was removed and the cells 

gently rinsed. Non-specific binding sites in the cell were blocked by incubating the cells 

in antibody diluting solution (Abdil) [13] for 10 min. Then, the cells were incubated in an 

actin-staining solution of Alexa Fluor® 488 Phalloidin (Molecular Probes, Eugene, OR) 

for 20 min. After rinsing in PBS, they were incubated in a 5 µg/mL solution of 4',6-

diamidino-2-phenylindole (DAPI; Molecular Probes, Eugene, OR). Finally, the DAPI 

solution was rinsed away, and the cells were kept in PBS for a few hours until imaging. 

Cells were imaged using a confocal microscope (SP2 AOBS; Leica 

Microsystems, Buffalo Grove, IL) using a 63X (HCX APO, 1.4NA) oil objective. The 

samples were excited with 405 nm and 488 nm argon lasers. Emitted light was collected 

in the ranges 409 nm – 483 nm (for DAPI), 494 nm – 515 nm (for Alexa Fluor® 488), 

and 616 nm – 834 nm (for eosin), via three PMT channels. A fourth channel collected 

transmitted light. PMT gain was set to 680 V, 504 V, 512 V, and 192 V for each channel 

respectively. The pinhole size was 114.6 µm (1.00 airy disks), and the laser scan rate was 

400 Hz. Voxel dimensions were 465 nm ✕ 465 nm ✕ 115 nm. Images were captured in 

the form of z-stack files. 

Stack slices from the top to the bottom of the cells were extracted into a substack, 

to isolate fluorescence images of actin from extraneous signals in other slices. A z-
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projection was taken of these images using the sum algorithm in FIJI [12], and the 

brightness and contrast of the final image was adjusted for maximum clarity of the actin 

filaments. 

 

4.3 RESULTS AND DISCUSSION 

 The purpose of this work was to develop a method for delivering dynamic 

topographical cues to cells and observe changes in their behavior. Particular effort was 

made to minimize other perturbations to the cells, such as temperature fluctuations and 

photo-damage. This goal was pursued by first preparing a large cell culture substrate 

through micro-3D printing. Mouse embryonic fibroblast (NIH3T3) cells were plated on 

this substrate, letting them adhere and flatten into a stellate morphology. Once the cells 

were established on the substrate, the substrate was imprinted with a pattern of parallel 

grooves. The cells responded to these new topographical cues by changing their shape 

from stellate to bipolar, and aligning parallel to the grooves.  

 Individual fibroblast cells are generally 10-50 µm in size and migrate over areas 

several times larger than the cell size over the course of a day. A single printed tile of 70 

µm by 70 µm would be too small to accommodate and observe these cells. Therefore, a 

large pad was built by printing several tiles together over a large area, at least 500 µm by 

400 µm. The edges of the tiles were slightly overlapped to form a continuous material. 

The mask for the printed tile is shown in Figure 4.1 (a). 

On these large pads, approximately half the area was imprinted with grooves 

before any cells were plated, using masks of the style shown in Figure 4.1 (b) and (c). 

These grooves served as a positive control, to confirm that static topographical cues could 

induce bipolar morphologies in cells that are plated on them. On the other half area of the 
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pads, grooves were imprinted after cells were plated, adhered, and spread on the flat 

surface. These grooves presented dynamic topographical cues to the cells. Both control 

and dynamic grooves were oriented at 45° from the seams of the tiles that comprised the 

pads. This was to ensure that any topographical influence of the seams could be 

distinguished from the influence of the grooves. Each set of grooves was defined by the 

groove widths (the widths of ridges and troughs respectively) and the scan height used for 

imprinting grooves to a particular depth. Figure 4.1 shows a schematic of an imprinted 

pad with these dimensions indicated. 

 

Figure 4.1: Schematic of imprinted pad and masks. Diagram (top) indicates trough width, 

ridge width, and depth of grooves. Masks projected on the DMD (bottom) are 

used to print 70 µm by 70 µm tiles (a), [5+15] grooves (b), and [3+4] grooves 

(c). 
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Since dynamic grooves were produced by scanning the cell substrate with a high-

peak-power laser, it was important to select experimental conditions to minimize cell 

damage. The replacement of rose bengal with eosin was intended to minimize 

cytotoxicity by using a more cell-compatible photosensitizer. At one point, the addition 

of eosin to the cell culture media was considered as a means to prevent the diffusion of 

photosensitizers from the cell substrate. However, eosin concentrations high enough to 

eliminate diffusion were toxic to cells and this option was rejected. Efforts were also 

made to imprint with a laser scan height that avoided exposing cells to the laser voxel. 

Viability of cells after laser exposure 

 Phototoxicity, or damage to cells caused by exposure to light energy, is a well-

recorded phenomenon. In fact, it is the basis for photodynamic therapy [14], a treatment 

for a range of pathologies including cancer. Photodynamic therapy involves localizing 

photosensitizers to living cells and exciting them with light of appropriate wavelengths in 

the presence of oxygen. The formation of reactive oxygen species causes injury to 

proximal cells, eventually leading to cell death. Since the imprinting process brings living 

cells, photosensitizers, and high levels of light energy in close proximity, it is necessary 

to consider the possibility that cells may be damaged by the imprinting process. 

 However, in the experiments performed in this chapter, significant levels of cell 

death were not observed when the cell substrate was scanned. Few cells in an experiment, 

if any, proceeded to undergo apoptosis or necrosis in the ~20 hours following scanning. 

For a quantitative assessment of cell survival after scanning, cells plated on glass were 

scanned three times with the laser voxel focused on the plane of cell adhesion, and a 

fluorescence assay for cell viability was performed. This assay could not be performed on 

cells plated on printed pads because the eosin loaded in the pads fluoresced strongly over 
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wavelengths emitted by commonly available viability assay dyes. However, other 

experimental conditions were kept similar to those in imprinting experiments. 8 hours 

after scanning, the cell count was 94% ± 1pp of its pre-scanned value. The cells were next 

stained with calcein AM (an indicator of intracellular esterase activity) and ethidium 

dimers (a nucleic acid stain indicating permeable cell membranes). As Figure 4.2 shows, 

the majority of cells remained vital after scanning.  

 

Figure 4.2: Viability assay of laser-scanned cells. After scanning with a laser, most cells 

remain viable. Green indicates intracellular esterase activity (live cells) and 

red indicates a damaged cell membrane (dead cells).  

 Cells plated on eosin-loaded pads also demonstrated similar cell-counts after 

scanning with a laser. Although viability assays using fluorescent dyes could not be 
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performed on cells plated on pads, brightfield microscopy observations showed that 

scanned cells continued to migrate and demonstrate other behaviors of healthy cells. This 

implies that damaged caused to these cells by laser-scanning was minimal.  

The absence of major cell damage is surprising, but can be explained by a number 

of factors. Firstly, although cells were growing on pads that were loaded with 

photosensitizer, the eosin was not taken up by the cells. This places the cells at a distance 

(tens to hundreds of nanometers) from the excited photosensitizers. Reactive oxygen 

species have to diffuse out of the 3D-printed protein hydrogel before they can damage 

cells, and in the process they can be quenched by the amino acids in the hydrogel or by 

vitamins in the cell culture media. It appears that reactive oxygen species do not diffuse 

to the cells in large enough amounts to cause major damage.  

Imprinting grooves of desired dimensions 

 The literature on topographical response shows many instances of cells, 

particularly fibroblasts, aligning parallel to grooves when plated on a grooved substrate 

[15]. Such grooves can be imprinted on printed protein hydrogel by scanning the material 

with a laser as detailed in Chapter 3. The widths of groove ridges and trenches are 

controlled by designing masks that are projected on the DMD chip, as shown in Figure 

4.1 (a-c). White areas of the mask reflect the scanned laser beam and imprint the 

corresponding area on the printed material. Black areas deflect the beam and leave the 

corresponding area on the material unimprinted.  

The depths of grooves are controlled by varying the scan height and number of 

scans, two parameters whose effects on tile heights were summarized in Figures 3.5 and 

3.6. The effects of scan parameters on groove depths were assessed by imprinting 70 µm 

by 70 µm tiles with grooves measuring 5µm wide at the ridges and 15µm wide at the 
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troughs [5+15]. The number of scans was 2 in all cases. As shown in chapter 3, a single 

scan would not imprint deeply enough whereas a third scan would not provide any 

advantage over two scans. The scan height parameter was varied from 8 µm to 14 µm. 

Confocal images were taken of the space excluded by the tiles by flooding it with 

fluorescent dye. Orthogonal views of the tiles are shown in Figure 4.3. The groove depth 

was measured as the difference between heights at the ridge and trough. A bar graph 

summarizing these measurements is shown in Figure 4.4. 

 

 

Figure 4.3: Orthogonal view of grooved tiles. Negative space confocal image of tiles 

imprinted with grooves from scan heights 8 µm (a), 10 µm (b), 12 µm (c) and 

14 µm (d). High fluorescence in regions beneath troughs is an artifact of 

excitation light scattered by imprinted material. Scale bar is 10 µm. 
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Figure 4.4: Plot of groove depths produced by imprinting [5+15] grooves from various 

scan heights. Error bars indicate standard deviation. 6 replicates were 

measured for each scan height. 

 The height changes produced by the groove mask are much smaller than those 

produced by the flat square mask, shown in Figure 3.6. When the flat square mask was 

used, the tile imprinted from a scan height of 8 µm was reduced by ~2µm. Tiles imprinted 

from 10 µm, 12 µm, and 14 µm were reduced by ~3 µm each. When the grooved mask 

was used, the heights were reduced by 0.8 µm, 1.8 µm, 1.8 µm, and 2.8 µm respectively. 

This disparity is because the printed material has a non-zero shear modulus. The 

groove mask places imprinted and unimprinted regions in close proximity with each 

other. When imprinted regions contract and pull toward the underlying glass surface, they 
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experience shear stress from surrounding unimprinted regions. This force opposes the 

downward motion of the imprinted surface and reduces the overall height reduction of the 

imprinted region. 

It is interesting to note that imprinting from a 14 µm scan height induces a larger 

height change than imprinting from 10 or 12 µm, even though the nominal height of the 

tile is 10 µm. This apparent paradox can be explained by considering the elongated shape 

of the laser voxel, which introduces uncertainty in focusing the laser beam on the glass 

plane. During printing it can increase tile height by up to a micron.  Material swelling can 

increase height by a further micron. During imprinting, even when the voxel focused 14 

µm above the glass plane, the lowest point of the imprinting voxel can overlap with the 

highest point of the printed pad. Thus the voxel can overlap with the printed material 

even when positioned 14 µm above the glass plane. 

Based on these measurements, a scan height of 12 µm was selected for imprinting 

grooves. It provides a groove depth of ~2 µm with a small standard deviation. Moreover, 

compared to a scan height of 14 µm, it reduces the scanning of the laser through cells 

plated on the pad surface. 

Effects of groove widths on cell alignment 

 Before testing whether cells can align to dynamic grooves, it is necessary to 

confirm their ability to align to control grooves. The ability of cells to align is closely 

linked to the dimensions of the grooves on which they are plated, such as the widths of 

the ridges and the troughs. In this study, cell alignment was tested on grooves of several 

widths and the effects of three sets of widths are discussed.  

 Initially, alignment was observed using the NIH3T3 cells obtained from the 

Emilianov lab on grooves with 3 µm ridge width and 4 µm trough width (designated 
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[3+4]). The cells aligned readily to control grooves, as seen in Figure 4.5 (a), although 

they did not align to dynamic grooves. (Here, the grooves were imprinted parallel to 

seams between pads. At the time of this experiment, attempts had not been made to 

decouple the topographical influence of imprinted grooves from seams.) 

 

Figure 4.5: Cell alignment on various groove widths. Cells are plated on grooves 

previously imprinted on micro-3D-printed pads. Groove styles are [3+4] (a), 

[5+10] (b), and [5+15] (c). Scale bar is 70 um. 

In contrast, the NIH3T3 cells obtained from ATCC did not align to control 

grooves of these dimensions. Although the cells in both batches were ostensibly the same 

type, the different provenances of the batches suggest that they are likely to have notable 

phenotype differences, such as varying sensitivity to topographical features of different 
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dimensions. The groove dimensions need to be calibrated for each cell batch to ensure 

alignment. 

Fortunately, the rapid turnaround time for imprinting masks meant that new 

groove dimensions could be tested quickly. In the first trial, the groove ridges and troughs 

were both widened to 5 µm (designated [5+5]). A close examination of a cell plated on 

these grooves revealed an interesting behavior: the leading edge of the cell extended on a 

ridge and elongated parallel to the grooves. However, the leading edge was wider than 

the pitch of the grooves and, as it probed the surroundings of the cell, it spanned the 

adjacent trough and made contact with the next ridge. It then began to spread over the 

ridges and took on a stellate morphology. The cell’s movement is shown in the montage 

in Figure 4.6. This sequence of events indicates that when a cell can span multiple ridges, 

it treats the surface as continuous. Widening the groove troughs could prevent the cells’ 

leading edges from spanning multiple ridges, thereby confining them to a single narrow 

surface on which to extend. 
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Figure 4.6: A montage of a cell migrating over a grooved surface. The leading edge of the 

cell probes its surroundings, initially crawling along a ridge and eventually 

branching across multiple ridges. Groove configuration [5+5], and scan 

height 12 µm. Scale bar is 50 µm. 

To test this theory, troughs were widened to 10 µm (groove configuration [5+10]). 

In the first trial, cells aligned intermittently (Figure 4.5b). However, when the troughs 

were widened further to 15 µm (groove configuration [5+15]) the cells distinctly aligned 

to the grooves (Figure 4.5c). The alignment of cells to control grooves with 

configurations [5+10] and [5+15] is compared in Figure 4.7 with that of cells that were 

plated on a flat surface. The angle of alignment is measured between a cell (specifically, a 

line segment drawn from the leading to trailing edge of the cell) and the grooves on its 

substrate. 
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Figure 4.7: The angles of alignment of cells plotted versus time. Cells were plated on 3 

types of substrates: unimprinted (a; red), imprinted with [5+10] grooves (b; 

blue), and imprinted with [5+15] grooves (c; green). Scan height is 12 µm. 

The brightfield microscope images show examples of cells growing on such 

substrates. Scale bar is 70 µm. 
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In Figure 4.7 (a), we see that cells plated on a flat substrate without imprinted 

grooves tend to orient randomly. In Figure 4.7 (b), plotted angles started to cluster around 

the 0° mean, indicating that cells plated on [5+10] grooves showed some tendency toward 

alignment. However, the alignment was far more dramatic on [5+15] grooves. This 

suggests that 15 µm troughs were wide enough that cells could not easily span them. The 

cells instead extended in the direction of the grooves. Based on these results, the [5+15] 

groove configuration was used for testing cell response to dynamic grooves. 

Cell alignment to dynamic grooves 

In previous sections, it was shown that cells aligned very well to grooves on 

substrates that were imprinted before cells were plated on them. The optimum groove 

dimensions were found to be 5 µm ridge width and 15 µm trough width, indicated by 

[5+15], and 2 µm depth produced by imprinting from a scan height of 12 µm. The next 

step was to see if cells would align when their flat substrate was dynamically transformed 

into grooves of these dimensions (i.e. if they would align to dynamic grooves).  Printed 

pads were plated with NIH3T3 cells. Approximately 6 hours after plating, the substrate 

was imprinted with the grooves described above. Observations over the course of 24 

hours showed that cells, initially in a stellate shape with random angular orientations, 

became bipolar with their long axes oriented parallel to the imprinted grooves. Figure 4.9 

shows a montage of cells aligning to control and dynamic grooves over time.  

Alignment data from 3 replicates was pooled together and plotted versus time in 

Figure 4.8. The zero time-point indicates the midpoint of the imprinting process, which 

was performed section-by-section and took 2 hours to cover the entire experimental area. 

Negative values (red) indicate time before grooves were imprinted, and positive values 

(green) indicate time after imprinting.  
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Figure 4.8: A plot of angle of alignment of cells versus time on imprinted grooves. The 

substrate was imprinted with [5+15] grooves 6 hours after plating. Imprinting 

took 2 hours with the midpoint occurring at time = 0 hr. Red points indicate 

measurements taken before the midpoint of imprinting, and green points 

indicate measurements taken after. Data is compiled from14 cells tracked 

over 3 experiments. 

Comparing the plot with the negative and positive controls plotted in Figure 4.7 

(a) and Figure 4.7 (c) respectively, it is clear that cell alignment follows a distribution 

similar to negative control cells before imprinting. After imprinting, the cells follow the 

trend demonstrated by the positive control and gradually align to the grooves.  By 8 hours 

after imprinting, 79% of the cells are aligned within ±20° of the grooves. By comparison, 

on the positive control surface 87% of cells were aligned within ±20° of the grooves. In 
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contrast, on the negative control surface, 8.3% were aligned within ±20° (and 25% were 

aligned within ±30°).  

An F-test for equality of two variances was performed on the alignment angles of 

cells at the 8 hour point, between cells on the dynamic surface and the positive control 

surface. The null hypothesis was the alignment angles of cells on the two surfaces were 

equal, and assumed the angles were distributed normally around the mean, i.e. the 

orientation of the grooves. The F-value was found to be 0.145. At a significance level of 

0.05, the one-tail critical value of the F-distribution is 0.399. As the F-value was lower 

than the critical value, the null hypothesis could not be rejected. The variances of the cell 

alignment angles on both surfaces can be considered equal. 
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Figure 4.9: A montage showing alignment of cells to grooves. In each image dynamic 

grooves are to the left and control grooves are to the right. The time points 

(hh:mm) for the images are -2:45 (a), -0:15 (b), 1:15 (c), 4:15 (d), 8:15 (e), 

14:15 (f). Scale bar is 150 µm. 
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In Figure 4.10, the alignment of 5 cells on both control and dynamic grooved 

surfaces are tracked using a line plot of alignment angle versus time.  

 

Figure 4.10: Line graphs tracking the alignment angles of individual cells. Each color 

represents a single cell on control grooves (a) and dynamic grooves (a). 

On control grooved surfaces in Figure 4.10 (a), the cells started aligning to the 

grooves shortly after plating. For the first 1-2 hours, as the cells formed adhesions to the 

substrate and developed leading edges, their orientation was random. Shortly thereafter, 

one leading edge per cell started to favor extension along the grooves and pulled the cell 

body into alignment with the grooves. Cells with an initial polarity furthest from the 

groove orientation took the longest time to align. However, once cells were aligned 

parallel to the grooves, they kept their new orientation. 

On dynamic grooved surfaces, the cells were originally oriented randomly when 

they were plated on a flat surface. While the substrate topography was flat, the cells 

displayed a stellate morphology. Each cell produced multiple leading edges that mutually 

competed to polarize the cell. Once the grooves were imprinted, however, cells aligned 

parallel to them. 
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Based on these results, it can be concluded that the imprinting of grooves to 

dynamically change the topography of a cell substrate can induce cell alignment to the 

grooves. The time course of cell morphology change is 8 hours compared with the 12-24 

hour responses on shape-memory polymer substrates reported in the literature [6–8]. 

Whereas the alignment in the shape-memory studies was rate-limited by the shape 

recovery of the substrate, here the imprinting process took 2 minutes per tile. 

Consequently, the alignment rate was limited by the time-course of cell mechanisms. 

Actin cytoskeleton of aligned cells 

As previously discussed in Chapter 1, there is evidence in the literature that when 

cells align to grooved substrates, their actin cytoskeleton is also seen to align parallel to 

the grooves [16,17]. Figure 4.11 shows cells aligned to control and dynamic grooves. 
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Figure 4.11: Fluorescence image of cells aligned to grooves. Dynamic grooves are to the 

left of yellow line, control grooves are to the right. Cells are stained to 

reveal the location of actin (green) and the location of cell nuclei (blue). The 

red portion indicates the location of the underlying grooves. Ridges (dark 

red) and troughs (medium red) extend underneath the entire material. The 

bright red lines are the seams at which printed tiles were overlapped to form 

a continuous cell substrate. Scale bar 70 µm. 

It is worth noting that the micro-3D printed substrate attenuates the excitation 

laser of the confocal microscope, particularly under the trough of the control grooves, so 

the cells did not fluoresce uniformly. Nevertheless, the confocal image clearly shows 

actin-stained cells aligned closely with the ridges of the grooves. Alignment is stronger 

on the control grooves, which reflects the trend seen in the plots in Figures 4.7 and 4.8.  
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Migration of cells onto grooved substrates 

While cell observations continued on the [5+15] grooves, an unexpected 

behavioral trend was seen shortly after imprinting. On both the dynamic and control 

grooves, cells migrated onto the printed substrate from the surrounding glass surface. 

These cells maintained alignment parallel to the grooves. The change in density of cells 

aligned to the grooves is plotted in Figure 4.12. 

 

 

Figure 4.12: Plots showing the number of cells aligned to grooves. Control grooves are 

on the left and dynamic grooves are on the right. Cells were plated at t = 0. 

Each marker follows the cell count on one sample. The size of each sample 

area was ~5,000 µm
2
. 

This behavior is unexpected because there are no indications in the literature that 

aligned cells attract more cells, nor is the substrate releasing any chemoattractants that 

might promote cell migration. It is more likely that the rapid migration of cells onto the 

substrate is a consequence of the cell plating method used at the beginning of the 

experiment. To compensate for the large number of cells that drift off the substrate before 

adhering, cells were plated into the culture well at a very high density, estimated to be 

20,000 cells/cm
2
. Cells have a tendency to migrate, and they are equally likely to migrate 
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off the pad as onto the pad. However, the higher cell density outside the pad results in a 

net average movement onto the pad.  

This observation suggests ways to encourage migration of cells onto a 

topographically complex surface in tissue culture applications. If groove dimensions are 

optimized for a particular cell type, an increase in cell density in the vicinity of the 

substrate can encourage movement of cells onto the substrate. 

 

4.3 CONCLUSION 

 This chapter demonstrates an approach for dynamically imprinting micro-3D 

printed cell substrates with grooves of desired dimensions. There studies confirm that 

cells remain viable after their substrates are scanned by a laser during imprinting in situ. 

Here, this strategy shows that dynamic grooves are capable of directing cell alignment 

over a time period of 8 hours. 

 The results presented in this chapter confirm those of previous studies that 

showed cells responding to dynamic topographical changes. Whereas prior studies have 

shown cells responding to substrates that transitioned from grooved to flat topography, 

this approach demonstrates that changes from flat to grooved topographies are also 

capable of inducing morphological changes in cells. Furthermore, this method avoids the 

temperature perturbations that cells on shape-memory polymer substrates were subjected 

to [6–8]. 

 This approach, and its ability to induce cell behaviors that cannot be observed 

under other circumstances, has implications for basic research into cell topographical 

response studies. The results of such studies can be applied to tissue culture research to 

develop superior grafts and wound-healing scaffolds.   
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Chapter 5:  Conclusion and Future Directions 

5.1 CONCLUSION 

This dissertation describes my efforts to introduce dynamic topographies into cell 

cultures for the purpose of assessing cellular responses. In Chapter 1, I provided 

background on cellular responses to environmental conditions. I described the historical 

efforts to understand the mechanisms of cell behavior pertaining to morphology and 

motility, followed by a summary of the present-day understanding of these mechanisms. I 

discussed research efforts to understand how cells interacted with various surfaces, and 

how surface topographies elicited interesting cellular responses. I also discussed the 

photochemistry involved in micro-3D printing, and how phototoxicity in cells could be 

minimized during the imprinting process. 

In Chapter 2 I discussed my attempts to micro-3D print wall-like structures in 

neuronal cell cultures to guide neurite extension. I described the development of a flow 

chamber to enable micro-3D printing in laminar flow, such that reactive photogenerated 

molecular species could be convected away from proximal cells. I optimized a printing 

reagent for this application, ensuring that robust walls could be printed under laminar 

flow. However, I encountered challenges with the cell culture, and this necessitated a 

change in experimental direction. 

In Chapter 3, I developed the technique of imprinting to elicit topographical 

changes in a micro-3D printed material. I explored how heights of printed tiles could be 

changed by imprinting, and how parameters such as scan height and number of scans 

influenced the ultimate height change. I also confirmed that although photosensitizer 

levels in the material varied over 24 hours, the imprinted height change did not vary 

significantly. 
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In the fourth chapter, I applied the imprinting technique from Chapter 3 to create 

cell culture substrates with dynamic topographies that transitioned from flat to grooved. 

After confirming that the imprinting process did not damage proximal cells, I determined 

the optimal dimensions for groove alignment. Next, I demonstrated that when cell 

substrates switch from flat to grooved, the cells growing on them switch from stellate to 

bipolar morphology and align parallel to the grooves. 

 

5.2 FUTURE DIRECTIONS 

There are several interesting questions raised by these results, suggesting avenues 

for follow-up research. Characterization of mechanical properties of printed structures 

would be useful in matching the material to potential applications. For instance, cell 

motility behavior is linked to the stiffness of their substrates. By tuning the elastic 

modulus of the material, one can observe how stiffness affects alignment response time 

and other cellular behaviors. The shear modulus of the material can impact the extent to 

which imprinting scans affect the surface topography. Examining the correlation between 

the material’s shear modulus and topographical height change can help in modeling the 

imprinting process and in development of imprinting protocols that generate 

topographical patterns of desired dimensions.  

While this dissertation demonstrated that cells align to grooves that appear on 

their culture substrate, it would be interesting to see if cells lose their alignment upon the 

disappearance of grooves. In other words, would cells transition from a bipolar to stellate 

morphology if their substrate shifts from a grooved topography to a flat topography? It 

would also be interesting to observe alignment to dynamic grooves after cells are first 

maintained on flat substrate topography for several hours or a day. It would indicate 
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whether morphological changes are easier or more difficult to induce if intracellular 

machinery has more time to mature after cells are plated. 

One limitation of the method developed in this dissertation was that the cell 

substrate was printed tile-by-tile to form a pad of dimensions 500 µm by 400 µm. A 

substrate of this size only had room for 10-20 cells, which limited the statistical power of 

each experiment. A proposed method to prepare a substrate with a larger surface area is 

to mold the reagent onto a glass surface and use single-photon illumination to crosslink 

the gel. The material could then be imprinted using the pulsed laser beam as described. 

While grooved substrates are the basis of the classic assay for topographical 

response in cells, other substrate shapes also evoke interesting responses. It would be a 

simple matter to develop dynamic substrates with various topographies by creating new 

masks for the laser raster scan. One potentially interesting application is the fabrication of 

arrays of microneedles or posts for culturing cells. Such arrays have been used for a 

decade to study the mechanical forces that cells exert on their substrates [1]. The arrays 

can mimic continuous surfaces of various stiffness: taller needles, which deflect more 

than short needles under similar applied forces, are interpreted by cells as more compliant 

substrates. Imprinting could dynamically change a compliant substrate of tall needles into 

a stiff substrate of short needles, evoking behavioral responses in cells cultured on the 

surface. Substrate topographies can also induce cells to migrate slowly and persistently (a 

trait associated with cells in 3D cultures) rather than fast and randomly (as they do in 2D 

cultures) [2]. Rapid prototyping through micro-3D printing and dynamic topography 

changes through imprinting can create a suite of versatile topographies for modeling 

cellular behavior. 

Recent innovations in microscopy are making it easier to track the movement of 

subcellular structures in real time. Many of these structures play important roles during 
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cell migration and topographical response. Some of these structures, such as 

microtubules[3] and focal adhesions [4], are easy to image individually and have been 

modelled in some detail. Others, such as actin filaments, are much more challenging to 

observe and details of their mechanisms are open to debate [5]. Coupling dynamic 

substrate technologies, such as imprinting, to cutting-edge imaging techniques such as 

fluorescent speckle microscopy [6] and super-resolution microscopy [7] can provide 

insight into the kinetics of these subcellular structures. 

 While the technologies developed in this dissertation can be deployed for many 

applications, it is equally intriguing to consider ways in which the micro-3D printed and 

imprintable material can be made more tunable. At present, the micro-3D printed 

structures are composed of native bovine serum albumin and unmodified gelatin. While 

these proteins produced structures that respond to imprinting, it may be possible to 

develop materials with finely tuned properties such as elastic and shear moduli, density, 

water content, cell adhesivity, and optical transparency at various wavelengths. Such 

materials could be made of synthetic polymers or rationally designed proteins [8]. 

Photosensitizers may be incorporated into the backbone of the polymer to avoid the need 

to add exogenous photosensitizers [9,10]. Prepared substrates may be functionalized with 

biologically relevant molecules, either immobilized on the surface or loaded into the 

material to enable controlled release of diffusible factors [11,12]. 

It is hoped that research presented in this dissertation will lay the groundwork for 

future work in the development of dynamic cellular environments, and inspire a deeper 

understanding and appreciation of cell behavior. 
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