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Settlement is arguably the last stage of high mortality in the life cycle of many 

marine fish species with a bipartite life cycle, making the number of larvae that settle 

successfully to a benthic habitat a reasonable determinant of future population size.  

Habitat selection during settlement is likely an active process, however, much of what we 

know about settlement behavior comes from studies in coral reef ecosystems.  This 

collection of studies examined the ability of estuarine-dependent fish larvae (red drum, 

Sciaenops ocellatus) to locate settlement sites based on information received from their 

senses, with a focus on the different spatial scales over which larval sensory systems 

operate.  During the pelagic phase, red drum are exposed to elevated sound levels in the 

tidal inlets.  This noise caused larvae to reduce their activity in the form of fewer turns, 

less time spent swimming, and a lower overall mean speed compared with silent controls.  

As red drum approached settlement size, but not at earlier stages, they responded to 

olfactory cues associated with seagrass beds, their primary settlement habitat.  Activity 

increased in the presence of lignin, a compound associated with the cell walls of vascular 

plants.  Also, settlement-size larvae spent more time in water masses taken from seagrass 
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beds compared to control sea water, implying a preference for olfactory cues associated 

with estuaries.  While settlement and post-settlement-size larvae positioned themselves 

near the benthos regardless of water column height or substrate color, pre-settlement 

larvae moved away from yellow and green (associated with the estuary) but not black 

(associated with a deep water column) benthic colors.  Additionally, red drum larvae 

settled to seagrass and sand at a smaller size than they did to oyster shells, and they 

delayed settlement when a suitable benthic habitat was not available.  These findings can 

be interpreted as evidence for an estuarine-dependent species taking advantage of cues 

available to multiple sensory systems in order to actively locate settlement habitats. 
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Chapter 1: General Introduction 

 
Dispersal is a process that has considerable impacts on both evolution and 

ecology (Johnson & Gaines 1990, Bilton et al. 2001).  It dictates not only where an 

individual can recruit, but also influences the processes involved after arrival (Nathan & 

Muller-Landau 2000).  Dispersal sometimes occurs before maturity, which is termed 

‘natal dispersal.’  Natal dispersal, as defined by Howard (1960), is “the permanent 

movement an individual makes from its birthsite to the place where it reproduces or 

would have reproduced had it survived and found a mate.”  While disadvantages include 

predation, failure to locate a suitable habitat, and the inability to locate a mate, natal 

dispersal persists in many kingdoms of life (Stenseth & Lidicker 1992, Bilton et al. 

2001).  Plants and fungi produce seeds and spores, respectively, to be passively carried 

away by animals, wind, or water (Howe & Smallwood 1982).  Birds, on the other hand, 

may actively leave their natal site to follow prey, subsequently breeding up to thousands 

of kilometers from where they hatched (as reviewed in Greenwood & Harvey 1982). 

These transfers have many advantages, including finding new resources, avoiding 

inbreeding, decreasing competition, leaving unfavorable conditions, increasing genetic 

diversity, decreasing chances of extinction, and filling vacant niches (Stenseth & Lidicker 

1992, Bilton et al. 2001).    

Natal dispersal is much more widespread in the marine environment than on land, 

especially in organisms with complex life histories (Nielsen 1998, Bonhomme & Planes 

2000).  The complex life histories of most marine animals consist of an offshore pelagic 
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larval phase followed by an inshore benthos-associated juvenile and adult phase.  These 

complex life histories evolve when the niches vary significantly with life stage, and in 

order to maximize the benefits gained from each niche, different body plans and genetic 

traits are necessary (e.g., Werner 1988, Ebenman 1992).  In the marine environment, 

predators, prey, and habitat in the open water environment differs greatly from those in 

demersal habitats, and marine organisms exploit these differences by shifting 

environments (Barrera-Oro 2002, Lopes et al. 2006, Radabaugh et al. 2013).  While this 

strategy is most pronounced in species that undergo a metamorphosis, a process that 

decouples the genetic correlation between life stages, less drastic versions are common 

among species that move from offshore to inshore habitats (Ebenman 1992).  Dispersal 

and settlement can shape density-dependent and density-independent processes in marine 

populations, influencing post-settlement survival and recruitment to the adult populations 

(Wahle & Steneck 1992, Pile et al. 1996, Gutiérrez 1998).  

Larvae of demersal species eventually outgrow the ability to exploit water-column 

resources and must leave the pelagic environment (Werner 1988).  At this point they are 

able to take up a benthic residence and are referred to as “competent” to settle.  During 

this transitional period, a larva must encounter a suitable habitat during its settlement 

window or it will not recruit successfully.  While both the pelagic and demersal phases 

have been widely studied across many species, much less is known about the transition 

between them, in particular, the drivers that influence settlement behavior.  Physical 

transport most likely plays a large role in dispersal and settlement; however, passive 
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dispersal models have been inadequate for explaining settlement patterns in a variety of 

ecosystems (Cowen et al. 2000, Brown et al. 2005, Gallego et al. 2007).  

For fishes, the early life stages are arguably the most critical periods in the life 

cycle.  With a mean mortality rate of 21.3% d-1, less than 0.1% of all marine fish eggs 

spawned typically survive through the pelagic larval phase (Houde 1989, Houde 2002).  

Mortality risks decrease significantly during development; therefore, events that occur 

during the larval phase can result in order-of-magnitude variations in adult population 

sizes (Cowan & Shaw 2002).   

In addition to high mortality rates, early life is characterized by rapid 

improvements in swimming capacity.  Though starting life as planktonic organisms, by 

the end of the pelagic period many fish species are considered nektonic, capable of 

controlling their position in the water column.  They can swim faster than ambient water 

currents and can sustain these speeds for many hours to days at a time (Stobutzki & 

Bellwood 1994, Leis & Carson-Ewart 1997, Fisher et al. 2000).  Coral reef fish families 

exhibit a 25-fold difference in sustained swimming abilities, but some individuals can 

swim for more than 288 h, covering up to 140 km without resting (Stobutzki & Bellwood 

1997).  This represents swimming speeds equivalent to 3 to 4 body lengths s-1 for 

acanthurids and >10 body lengths s-1 for lutjanids (Stobutzki & Bellwood 1997).  

Subtropical and temperate species can also be strong swimmers, but not every species is 

capable of swimming faster than prevailing currents by the time of settlement (Jenkins & 

Welsford 2002, Clark et al. 2005, Faria et al. 2009).  
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Larvae also develop more elaborate and functional sensory systems through 

ontogeny.  Eyes are functional before first feeding, with cone photoreceptors being 

present at hatching or shortly thereafter (Blaxter & Staines 1970, Blaxter 1975, Higgs & 

Fuiman 1996), and acuity (resolution) increasing over time (Shand 1993, Pankhurst 1994, 

Lara 2001).  Rod photoreceptors appear later to provide for vision in low light. 

Superficial and lateral line neuromasts are also added gradually during early life, 

increasing sensitivity to water movement, and the addition of accessory structures (e.g., 

auditory bullae and swim bladder projections) aid in hearing (Blaxter & Batty 1985, 

Harvey et al. 1992, Higgs & Fuiman 1996, Poling & Fuiman 1998, Diaz et al. 2003, 

Higgs et al. 2003, Webb et al. 2012).  The development of the olfactory system has been 

less well-described, but newly hatched cod (Gadus morhua) larvae exhibit a behavioral 

response to arginine, indicating a capacity to detect olfactory cues (Døving et al. 1994, 

Lara 2008).  

These sensory systems operate on different spatial scales.  For example, auditory 

signals can be detected from greater distances than visual cues (Kingsford et al. 2002). 

Because of this, researchers suggest that larvae use multiple cues and different sensory 

modalities, either simultaneously or in an order based on spatial transmission, to find 

settlement habitat (Kingsford et al. 2002, Huijbers et al. 2012).  Based on the areas over 

which sensory signals operate, sensory system improvements during development, as 

well as changing habitat requirements, it is likely that larval responses to cues will vary 

both spatially and temporally.  When combining dispersal information with what is 

known about development of sensory and locomotor systems, many researchers agree 
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that fish are not passively transported to coastal environments, and instead actively select 

benthic habitats to settle (Montgomery et al. 2001, Kingsford et al. 2002).  

The role of sensory systems in settlement is most studied in coral reef ecosystems.  

Locating suitable habitat may depend on vision, mechanoreception, hearing, and 

olfaction; their role in habitat selection, however, is not well understood (Kingsford et al. 

2002).  Behavioral studies on settlement in reef fishes are becoming more common, 

however these findings may not translate to other systems.  The coral reef ecosystem has 

been characterized as oases of productivity surrounded by an unproductive, desert-like 

ocean (Alongi 1997).  The long distances over which sound and olfactory plumes are 

carried, coupled with predictable environmental conditions, such as tides, currents, and 

oligotrophic waters for light transmission, can facilitate transmission of information that 

is vital for settlement.  Settlement in other marine systems  ̶  those with higher turbidity, 

shallower depths, or unpredictable environments ̶ could be operating through 

fundamentally different processes.  

In the Gulf of Mexico, 95% of commercially- and 85% of recreationally-fished 

landings (by weight) use estuaries during part of their life cycle (Environmental 

Protection Agency 2004).  Estuaries are highly productive coastal environments with at 

least intermittent connection to the ocean, forming a link between freshwater ecosystems 

and the marine environment.  They are comprised of a variety of habitats (e.g., seagrass 

beds, marshes, and oyster beds), which play a critical role in the life cycles of many 

marine organisms.  These habitats serve as nursery grounds for fishes and invertebrates 

by providing food and refuge until they are ready to move to their adult habitats (Boesch 
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& Turner 1984, Beck et al. 2001, Gillanders et al. 2003).  Unlike coral reefs, which 

generally experience stable environmental conditions, subtropical estuaries are subject to 

dramatic shifts in salinity, temperature, and turbidity.  These unpredictable conditions 

could result in unreliable settlement cues for fishes in search of nursery habitats.     

Red drum (Sciaenops ocellatus) is a particularly appealing species for studying 

the settlement process in estuarine fishes.  It is a common sport fish and top predator in 

the Gulf of Mexico and Western Atlantic waters from North Carolina to Florida 

contributing $1.9 billion per year to the recreational fishing industry, and providing over 

15,000 jobs in the state of Texas alone (National Marine Fisheries Service 2012).  Red 

drum spawn offshore or along the coast during late summer and early fall, and eggs and 

young larvae spend approximately three weeks in open water and tidal inlets before 

reaching bay and estuarine nursery habitats (Holt et al. 1983, Rooker et al. 1998).  New 

estuarine arrivals are most commonly found around seagrass beds; in areas where 

seagrass is not available, larvae associate with marsh-edge habitats and shallow 

unvegetated areas (Stunz et al. 2002a).  Juvenile and adult red drum distribution has been 

well studied, but it is not known whether distributional patterns are the result of to habitat 

choice or post-settlement processes, including differential mortality or inter- and 

intraspecific competition (Fencil 2009, Nakayama et al. 2009). 

The overall objective of this research was to understand settlement behavior in an 

estuarine-dependent fish.  Experiments were designed to determine both the role that 

larval sensory systems play in settlement at different ontogenetic stages and whether red 

drum larvae actively choose specific habitats upon arrival in the estuaries.  Since 
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settlement is a critical stage in the life cycle of a demersal marine fish, it is hoped that 

this study will lead to a better understanding of recruitment variability in estuarine fishes, 

and red drum populations, in particular.  It will also help elucidate the conditions 

necessary for larvae to find settlement sites, which could have important implications for 

management of nursery habitat.  This project was designed to study the transition from 

the spawning to the nursery grounds, with each chapter moving to a progressively smaller 

spatial scale.  The second chapter focuses on the effects of anthropogenic noise in larval 

foraging behavior during the pelagic phase.   The third chapter addresses the chemical 

cues that red drum might use to locate settlement sites.  The influence of water depth and 

benthic color on settlement are in the subject of the fourth chapter.  The final chapter 

determines whether red drum have a preference for benthic substrata, and determines the 

size at settlement both in the laboratory and the field.  The guiding hypotheses were that 

larval red drum rely on a variety of sensory systems to locate settlement sites, that these 

sensory systems operate at different spatial scales, and the ability and decision to respond 

to settlement cues changes through ontogeny.   
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Chapter 2: Effects of acoustic noise on activity of larval and juvenile red 

drum (Sciaenops ocellatus) 

ABSTRACT 

Anthropogenic noise in the marine environment is increasing in expanse and 

intensity due to a surge in human activities, including construction, oil and gas drilling, 

military operations, and shipping and boating traffic.  For many species in the Gulf of 

Mexico, eggs and young larvae travel through tidal inlets from offshore to the bays and, 

in the process, are exposed to a large amount of anthropogenic noise, especially from 

shipping traffic.  To assess the effects of anthropogenic noise on larval fish behavior, the 

auditory thresholds of red drum (Sciaenops ocellatus) larvae were determined, then the 

behavioral response (mean swimming speed, number of stops, turns, and amount of time 

swimming) to five sound treatments (a 500-Hz pure sine tone at four amplitudes and a 

white noise treatment) was examined.  Larvae decreased their activity when the sound 

was on compared to silent controls and spent slightly less time swimming, which resulted 

in a slower mean speed.  Routine swimming was intermittent and the duration of pauses 

increased when in the presence of sound.  As noise amplitude increased, mean speed 

decreased but there was no change in the number of turns, pauses, or activity.  Despite 

these changes in routine behavior in response to noise, search area was not significantly 

affected because of the antagonistic effects of speed and turning rate.  
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INTRODUCTION 

Early life stages are of particular importance to populations as a dispersive 

opportunity for most coastal species, and early life survival depends, in part, on larvae 

correctly interpreting and responding to important sensory cues in the environment.  

Human activities, which are especially common in coastal areas, add sensory cues that 

may interfere with an organism’s perception or interpretation of natural cues and disrupt 

critical activities in early life. Sensory capabilities (Kingsford et al. 2002) and swimming 

performance (Leis 2006, Faria et al. 2009), which enable effective responses, improve 

rapidly during early life.  At hatching, at least some species of marine fishes possess the 

morphology to perceive auditory, visual, hydrodynamic, temperature, pressure, and near-

field vibrational cues, and they exhibit behavioral responses to some of these types of 

cues.  By the time of settlement, most fish larvae have the ability to respond to chemical, 

celestial, and auditory cues, as well (Kingsford et al. 2002 and citations therein).  Hearing 

and its effects on behavior in young fishes are not well understood, but auditory 

thresholds and startle responses to sound have been characterized in some species less 

than 10 mm in length (Ishioka et al. 1987, Fuiman et al. 1999, Wright et al. 2009).  Most 

information on larval hearing has been gathered from morphological studies, and the 

pattern of auditory development tends to be highly conserved across fish species (Fuiman 

et al. 2004).  

Anthropogenic noise in the marine environment has been increasing in expanse 

and intensity due to a surge in activities ranging from construction, oil and gas drilling, 

military operations, and shipping and boating traffic (Andrew et al. 2002).  Shipping 
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alone increased ambient noise levels by up to 12 dB re 1µPa in certain regions from 1958 

to 1975, and the gross tonnage of vessels in the world has doubled since then (Ross 1976, 

Hildebrand 2009).  Additionally, air guns produce sound at 260 dB re 1µPa, and small 

outboard boats produce 160 dB re 1µPa at 1 m from the source (Hildebrand 2009), both 

of which include frequencies within the hearing range of fishes (reviewed in Popper & 

Hastings 2009).  

The effects of increasing noise pollution on marine organisms are beginning to 

receive attention, but most studies have focused on marine mammals (Hastings 2008).  

Results from studies on fishes have been mixed, ranging from lethal to undetectable 

(Popper & Hastings 2009, Slabbekoorn et al. 2010).  For example, hearing thresholds of 

broad whitefish (Coregonus nasus) were not affected after exposure to seismic devices, 

but mortality was reported in coho salmon (Oncorhynchus kisutch) exposed to pile-

driving sounds (Popper et al. 2005, Ruggerone et al. 2008).  Sublethal physiological 

effects of anthropogenic noise include temporary (Scholik & Yan 2002) and permanent 

(Caiger et al. 2012) shifts in hearing capacity, as well as increases in cortisol levels 

(Smith et al. 2004) and heart rates (Simpson et al. 2005b) and reduced larval growth rate.  

The few behavioral studies on fishes have had mixed results as well.  Some found that 

boat noise affected orientation (Jung & Swearer 2011), schooling behavior (Sarà et al. 

2007), and time spent in shelters (Picciulin et al. 2010), while others did not see effects 

on swimming activity (Wardle et al. 2001).  Lined seahorses (Hippocampus erectus) 

become more variable in their behavior and distressed (as indicated by clicking) due to 
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chronic exposure to loud noises (Anderson et al. 2011).  The effects of sounds on the 

behavior of estuarine fish larvae have not been studied. 

Red drum (Sciaenops ocellatus) are a common estuarine-dependent fish in the 

Gulf of Mexico that spawn offshore or along the coast during the fall (Beckman 1988, 

Hoese & Moore 1998).  In Texas, red drum eggs and young larvae travel through the 

seven major tidal inlets that connect the Gulf of Mexico with 11 port districts inshore.  

Shipping activity in these inlets exceeds 550 million tons of cargo and 500,000 cruise 

ship passengers each year (www.texasports.org).  From 250 m away, the underwater 

amplitude can reach 10 – 20 dB re 1µPa above background levels when a boat or ship 

passes through the inlet, with the majority of frequencies falling below 2 kHz (personal 

observation).  Eggs and young larvae are therefore exposed to potentially adverse 

acoustic conditions.  This study examines the effects of anthropogenic sound on the 

swimming behavior of red drum larvae to sound in order to understand the ecological 

consequences of a changing underwater sound environment.   

 

METHODS 

The goal of this study was to test the effects of anthropogenic noise on larval red 

drum behavior by addressing the following questions: (1) Does anthropogenic noise 

affect larval behavior? (2) If so, what is the sound level (amplitude) that elicits a change 

in behavior? (3) Does this behavioral change coincide with the hearing thresholds of 

larvae?  This was accomplished in two experiments.  First, foraging-related behavioral 
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responses to relevant anthropogenic sound levels were compared against behavior under 

control sound levels.  To place the effects on foraging-related behavior in an ecological 

context, the reactive distance to prey was quantified through the larval stage and used to 

calculate the consequences of sound on foraging rate.  Then, hearing thresholds of larvae 

were determined using the auditory evoked potential (AEP) to confirm that the larvae are 

capable of hearing the sound levels they would be exposed to in nature.   

 

Larval care 

For the behavioral experiments, three batches of red drum eggs were collected 

from adult broodstock maintained at the University of Texas Fisheries and Mariculture 

Laboratory (FAML) in Port Aransas, TX and from the Texas Parks and Wildlife 

Department’s Marine Development Center in Corpus Christi, TX.  Fish spawned in the 

evenings and on the morning following a spawn, eggs were collected and transported by 

automobile to the rearing facility at FAML in a covered 15-l bucket filled with 5 l of sea 

water.  Each spawn was divided into two subsamples of approximately 5,000 viable 

(floating) eggs (5 ml) each and placed into a 150-l fiberglass conical tank filled halfway 

with sea water.  Temperature was maintained at 27°C and water was provided with a 

continuous supply of oxygen through an airstone.  The photoperiod was 12:12 light:dark.  

Salinity was 35 ppt when the eggs were released in the tanks to match the broodstock 

water, and lowered to 27 ppt over the course of two weeks by adding deionized water.  

Eggs hatched approximately 24 h after fertilization, and feeding began the following day.  

For the first 10 d post-hatching, larvae were fed approximately 400,000 Brachionus sp. 
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rotifers per tank enriched for 45 min with Algamac 3000 (Aquafauna Biomarine, Inc. 

Hawthorne, CA).  On days 11 and 12, approximately 10,000 1-day-old Artemia sp. 

nauplii were added to the diet, and from day 13 onward, each tank was provided with 

approximately 60,000, 2-day-old Artemia nauplii enriched overnight with Algamac 3000.  

Each day, 5 l of water were drained from the bottom of the tank and new water was 

added.  After 3 weeks in the conical tanks, larvae were transferred to a 500-gallon 

cylindrical tank with sand, rocks, oyster shells, and artificial seagrass.  This move 

simulated the transition from the tidal inlets to the seagrass habitats experienced by wild 

red drum.  For every experiment, each larva was tested once, sacrificed with an overdose 

of tricaine methansulfonate (MS-222) (Western Chemical Inc., Ferndale, WA), 

photographed under a dissecting microscope, and measured (standard length, SL) with 

ImageJ Analysis (National Institutes of Health, Bethesda, MD).  

For the auditory evoked potential and feeding studies, larval rearing protocols 

were the same, except for the following adjustments.  Until the day of testing, larvae were 

held in 150-l conical tanks filled with sea water and kept at 27°C and 35 ppt.  The diet 

was enriched with Algamac 3050 (Aquafauna Biomarine, Inc. Hawthorne, CA), and 

Artemia sp. were enriched and fed to the larvae twice per day instead of once. 

 

Behavioral responses to acoustic stimulus  

The effects of sound on spontaneous behavior traits that can be interpreted as 

relevant to foraging were examined.  Those variables included:  (1) activity (percentage 

of time spent swimming), (2) mean speed, (3) number of turns taken, and (4) number of 
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pauses.  Position within the testing chamber when the sound was on was also evaluated.  

Because sound pressure levels (SPL) varied at different locations within the chamber, 

recording the fish’s position allowed finer resolution of the sound level it experienced.  

Three comparisons of behavior were made:  (1) sound on vs. sound off, (2) between 

different sound levels, and (3) between individuals within specific treatments. 

The effects of a 500-Hz tone at four amplitudes (low, medium, medium-high and 

high) and ‘white noise,’ which consisted of the frequency bands 0.1 to 1.0 kHz played at 

the same amplitude as the high treatment for the 500-Hz tone, were tested on red drum 

over a range of sizes.  These treatments were chosen because (1) most hearing generalists 

can hear in the frequency range of 100 to <2000 Hz (Popper & Fay 1993), and (2) larval 

red drum responded to a 500-Hz tone in previous experiments (Fuiman et al. 1999). 

Experiments were conducted in a 40 × 40 × 12.2 cm (length × width × height) 

acrylic tank which was filled with water and left to de-gas for 4 d (Fig. 2.1).  An 

underwater speaker was suspended at the air/water interface on two aluminum planks 

(5.6 cm wide, 13.2 cm apart) resting on the top of the tank.  One of two testing chambers 

was placed inside the tank. The small testing chamber (for individuals ≤ 21 days old) was 

thin plastic and 7.9 × 7.9 × 14 cm (length × width × height).  The large testing chamber 

(for individuals > 21 days old) was glass and 10.4 × 10.4 × 10.4 cm.  The large chamber 

was placed on a 2.5-cm tall acrylic stand to make the water level inside the testing 

chamber the same as that the tank.  A mirror (30.5 × 30.5 cm) was placed above the 

acrylic tank at a 45° angle to allow the camera to record both a lateral and overhead view 

of the fish in the testing chamber.  
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While not an issue for the ‘white noise’ treatment, the continuous tones used in 

the experiments produced a standing wave within the tank so that sound pressure levels 

varied in different parts of the testing chambers.  It was therefore necessary to create an 

acoustic map of SPLs within the testing chambers.  The SPLs within the testing chambers 

were measured for the four 500-Hz tone amplitudes at 27 equally spaced points in the 

small chamber and 64 equally spaced points in the large chamber. The receiving 

hydrophone was connected to a charge amplifier that both conditioned (low pass filter = 

100 Hz, high pass filter = 1kHz) and amplified (30 dB gain) the received signal.  The 

received signal was then analyzed by an oscilloscope (Teledyne LeCroy Waveace 112, 

Thousand Oaks, CA).  The oscilloscope provided the root-mean-square (RMS, defined as 

the square root of the mean squared sound pressure level over time, Popper & Hastings 

2009) voltage for each of the points as the mean of 64 individual waveforms.  The final 

SPL was obtained as: 

SPL = Mh – G + 20 log V 

where Mh is the free field voltage sensitivity of a hydrophone (dB re 1 V/µPa), G is the 

gain on the charge amplifier (dB), and V is the RMS voltage from the oscilloscope (Au & 

Hastings 2008).  The sound measurements were then used to derive a continuous 3-

dimensional sound field within each testing chamber.  Since the measurements were 

taken 1.25 cm away from the chamber walls and floor, a 3-dimensional Kriging model 

was used to estimate a continuous sound field between the point measurements 

(interpolation) and up to the walls of the tank (extrapolation). A variogram analysis was 

used to estimate the spatial structure of the sound field within each tank.  For each sound 
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level in each chamber, the spatial autocorrelation was quantified and accounted for by 

plotting semivariance over distance within each chamber, and a semivariance model was 

fitted for each (e.g. spherical, Gaussian, etc.).  The semivariance model was then used to 

estimate the range (distance on x-axis where the model stabilizes), sill (y-value at which 

the model stabilizes), and nugget (y-intercept) for each sound level, and these estimates 

were used as input to an ordinary Kriging model using the “gstat” package (Pebesma 

2004) in R (R 2.12.2, The R Foundation for Statistical Computing, http://www.R-

project.org).  The advantage of using a 3-dimensional Kriging model over deterministic 

spatial interpolation methods is that the Kriging model takes into account the spatial 

orientation of the measurements, and correlation between them, and it has the ability to 

make accurate predictions beyond the sampling area.  The 3-dimensional Kriging resulted 

in high accuracy models for each sound level in each tank and were used to obtain 

continuous sound estimates for the 3-dimensional positions of the fish, as well as 

visualizing the sound field of the entire tank (Fig. 2.2, Paraview 3.0, Kitware, Inc., 

http://www.paraview.org).   

Experiments were conducted between February 7 and July 25, 2011 using larvae 

from three spawns.  There were four testing chambers of each size, which allowed for up 

to eight fish to acclimate to the testing chamber at any given time.  The testing chambers 

were filled with sea water at 27°C and 27 ppt, and all bubbles were removed with a 

pipette.  An individual larva was transferred from the rearing tank to the testing chamber 

and allowed to acclimate for 1 – 2 h in a 27°C water bath.  After acclimation, the testing 

chamber was transferred from the water bath to the testing tank.  A Casio High Speed 
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EXILIM HS EX-FH25 video camera (Casio Computer Company, Ltd., Tokyo, Japan) 

was placed 1 m from the testing chamber to record behavior.  Once the testing chamber 

was placed in the acrylic tank, the larva was left to acclimate for 5 min.  After 5 min, the 

video camera was turned on, and either no sound was introduced (control), or one of the 

five sound treatments was applied. The larva was exposed to this treatment for 2.5 min 

after which the sound was terminated (if the initial treatment was a sound) or one of the 

five sound treatments was introduced (if the initial treatment was no sound).  The larva’s 

behavior was recorded for an additional 2.5 min.  This time period was chosen in order to 

study the reaction larvae would have to a boat passing through the inlet.  Small watercraft 

are at least 10 dB re 1 µPa louder than background levels for 2 – 3 min (measured from 

250 m away at the closest point, personal observation). 

The video recordings were converted to stacks of images using QuickTime Pro 

(Apple Inc., Cupertino, CA) and filtered from an original 30 frames s-1 to 3 frames s-1 by 

saving only every 10th frame.  The fish position in each image was tracked manually 

using ImageJ software.  From these tracks, mean speed (cm s-1), number of turns (defined 

as a change in direction of at least 15°), number of pauses (≥ 5 s of no swimming), and 

activity (percentage of time spent swimming [time that was not considered a pause]) were 

calculated for fish in all treatments.  For individuals in the four 500-Hz tone treatments, 

the median sound pressure level each fish experienced while the sound was on was also 

quantified by comparing their track swam to the Kriging model results. 

 

Reactive distance measurements 
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Reactive distance of red drum (5.4 - 24 mm SL) to the first successful capture of 

an Artemia nauplius was measured in order to assess the maximum distance larvae will 

travel to attack prey in the absence of a sound stimulus.  These measurements were 

combined with the swimming paths traveled in the horizontal plane to estimate foraging 

rate under various experimental conditions. 

Experiments took place between August 8 and 21, 2013, and 61 individuals were 

tested.  The day before the experiment, red drum larvae were transferred from the rearing 

tanks into individual 200 × 80 mm (diameter × height) black glass bowls filled with 500 

ml sea water.  This allowed for the fish to acclimate to the experiment room while 

withholding food for 24 h.  Room temperature was controlled to maintain water 

temperature between 27 – 28°C. 

On the day of testing, an individual larva was transferred from the bowl to a 10 × 

10 × 10 cm glass testing chamber filled with 250 ml of sterilized sea water.  After at least 

20 min of acclimation, the chamber was placed in the testing arena.  The arena was 

comprised of the testing chamber situated on a black background with a mirror (30.5 × 

30.5 cm) angled 45° above the chamber for an overhead view.  The chamber was 

illuminated with both 8 overhead fluorescent light bulbs (32 Watt Ecolux fluorescent 

bulbs, General Electric Company, Fairfield, CT) and 150-Watt halogen illuminator 

(Model 180, Dolan-Jenner Industries, Boxborough, MA).  A Casio High Speed EXILIM 

HS EX-FH25 video camera faced the mirror to record larval behavior from above.  

Recording began and then Artemia nauplii were pipetted at a concentration of 

approximately 25 ml-1 into the container on the opposite side of the chamber from the 
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larva, resulting in a mean Artemia concentration in the testing chamber of 0.1 ml-1.  The 

fish was recorded for an additional 4.5 min.  

 Each video recording was converted into a stack of images using QuickTime Pro.  

These images were imported into ImageJ and the image immediately before the start of 

the fish’s attack on the Artemia was identified.  Reactive distance (distance between the 

tip of the fish’s head and the Artemia immediately prior to the start of the attack, in cm) 

and the reactive angle (the angle between the longitudinal axis of the fish’s body and the 

line between the fish’s snout and the prey, 0-180°) were measured using ImageJ. 

The X-Y coordinates with the sound on and the sound off (from the overhead 

view of the behavioral response to acoustic stimulus experiment) of each individual were 

then plotted (using “ggplot” in the R statistical package, R 3.0.2), and the mean reactive 

distance was superimposed along the entire path to represent the potential foraging area 

and potential foraging rate during the experiment (Wickham 2009).  This area was then 

measured using ImageJ.    

 

Statistics 

All statistics were performed with the R statistical package (R 3.0.2).  Differences 

in sound pressure levels within each tank were calculated for the four tone treatments 

using a Kruskal-Wallis test for both the small and large tank.  Post-hoc tests were 

performed using the Multiple Comparisons Kruskal-Wallis Test (kruskalmc) in the 

“pgirmess” package (Giraudoux 2013).   
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The overall design of the behavioral responses to acoustic stimulus experiment 

allowed for testing of three hypotheses:  (1) that larvae behave differently with the sound 

on vs. off, (2) that larvae behave differently to different SPLs, and (3) that larvae behave 

differently to finer differences in SPL, as the SPL varies with location within a chamber.  

For the first comparison, a linear mixed effects ANOVA model (“lme4” package of R) 

was used to analyze the relationship between the order of treatment (sound first or sound 

second) and whether behavior differed when the sound was on or off (Bates et al. 2014).  

The fixed effects were order and sound treatment (on/off), with an interaction term, and 

the random effect was the individual fish.  Homoscedasticity and normality were verified 

with visual inspections of residuals, and transformations were applied when assumptions 

were not met.  Likelihood ratio tests of the full model with each effect were compared 

against each model without the effect to obtain P-values.  This was performed first on the 

white noise treatment (to determine if anthropogenic noise had an effect on behavior), 

and then on all five treatments (white noise and the 500-Hz tone at four separate 

amplitudes) combined.  The linear model confidence intervals were also compared to 

determine if size affected the number of turns, pauses, mean speed, and activity 

differently with the sound on vs. off.   

Analysis of covariance (ANCOVA) was used for the second set of comparisons, 

with sound treatment (low, medium, medium-high, high, and noise) as the main effect 

and fish size as the covariate.  Normality and equality of variance were verified by visual 

inspection and a Fligner test (“car” package in R), and when assumptions were not met, 

data were transformed (Fox & Weisberg 2011).  Most larvae swam constantly (100% 
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activity); therefore a normal distribution could not be achieved for the activity data.  

Instead, individuals were sorted by size within each treatment and mean activity level and 

mean size were computed for each group of five fish.  The last group (largest fish) ranged 

from 4 – 7 individuals depending on number left over.  The glht (general linear 

hypotheses) test in the “multcomp” package was used for post-hoc comparisons among 

treatments when appropriate (Hothorn et al. 2008).   

Simple linear regression was used to determine the effect of size on the median 

sound amplitude the fish experienced (based on position in the chamber).  For dependent 

variables that were significantly affected by size (ANCOVA), linear regression was used 

to determine if median sound amplitude encountered (independent variable) had an effect 

on the dependent variable.  Assumptions were tested by visual inspection of the data and 

transformed when necessary (cubed, log-transformed, or square-root transformed). 

Linear regression was used to determine if size had an effect on reactive distance 

to prey, and if there was an interaction between reactive distance and reactive angle.  

Normality was checked visually.  Differences in foraging rate (X-Y area covered with the 

sound on vs. off) were determined with a Student’s paired t-test.   

 

Auditory threshold  

Auditory thresholds of S. ocellatus larvae (15 – 25.5 mm SL) from three separate 

batches of eggs (separate spawning events) were measured as the auditory evoked 

potential following the methods of Higgs et al. (2003).  Experiments took place August 

22—24, 2013 at FAML.  All tests were conducted in a 110 × 25 cm (length × diameter) 
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PVC pipe sound chamber positioned horizontally, with a 100 × 15 cm (length × width) 

opening at the top.  A UW30 underwater speaker (Lubell Labs, Inc. Columbus, OH) was 

positioned at the left end of the tank and a fish holder (ring stand holding a plastic pipette 

connected perpendicularly to a microscope slide covered in inert clay) was positioned 

100 cm away, completely submerged in water.  Water depth was 17 cm and temperature 

was maintained at 25°C.   

An individual fish was placed onto the clay and surrounded with a small rectangle 

of mesh that was clipped to the platform to keep the larva in place.  This mesh was loose 

enough to allow for opercular movements while maintaining the fish in position for 

electrode placement.  One dead fish was tested as a control reference for background 

level comparisons on the software-generated responses.  A computer running SigGen and 

BioSig software (Tucker-Davis Technologies, TDT, Gainesville, FL) interfaced with a 

TDT system evoked potential workstation presented the stimulus and recorded resultant 

responses.  The stimulus was a tone burst lasting 10 ms at 100, 200, 300, 400, 500, 600, 

700 or 800 Hz and presented to the fish through the underwater speaker.  The intensity of 

each output was calibrated using a hydrophone connected to an amplifier and 

oscilloscope each day before the start of experiments to maintain consistent output levels 

across each frequency.  Each fish was exposed to a stepwise sound intensity change at 5-

dB increments until a minimum AEP response (threshold, defined as the lowest sound 

level a clear response could be seen, Higgs et al. 2003) was observed for a given 

frequency.  A trained observer did this detection visually, as visual and statistical 
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detection methods are equally reliable in threshold estimation (Mann et al. 2001, Brittan-

Powell & Dooling 2004).  

Two stainless steel electrodes (Rochester Electromedical Inc., Tampa, FL) were 

covered in clear nail polish except for the tip and placed subcutaneously in an individual 

larva on the dorsum anterior to the operculum to measure AEP.  The reference electrode 

was placed in the nasal region on the dorsal side of the fish.  The stimulus was presented 

200 times at each amplitude, with half of the presentations at 90 degrees phase and half at 

270 degrees phase.  The responses were averaged to cancel out the effects of the 

stimulus, leaving only the AEP for analysis.  

 

RESULTS 

Behavioral response to acoustic stimulus 

Sound amplitude (mean of the 27 positions measured in each chamber) varied 

significantly among the four treatments (P < 0.05) in the small chamber, except that the 

medium-high level was not significantly different from the medium or the high level (Fig. 

2.3a).  In the large tank, all treatments were different from each other (P < 0.05), except 

that the medium-high and high levels were not different (Fig. 2.3b).  Each sound level in 

the small tank was different from the corresponding level in the large tank (P < 0.01).   

Larvae in the noise treatment took 0.3 more stops (P < 0.05) and swam 0.27 cm s-

1 less (P = 0.05) when the sound was introduced after the control.  This results in 40.5 cm 

less distance covered over the course of the trial than in treatments when the sound was 
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introduced second.  No other effects were significant on any of the variables.  For all of 

the treatments combined, there were some significant changes in routine swimming 

behavior when the sound was on relative to when the sound was off.  Specifically, fish 

made 15.7 fewer turns on average and spent 4.5% less time actively swimming when the 

sound was on (P < 0.01).  Fish swam an average of 0.15 cm s-1 slower with the sound on, 

which translates to 22.5 cm less distance traveled over the trial (P < 0.01).  No other 

effects were statistically significant. 

Fish size and sound treatment both affected the number of turns with the sound on 

(P < 0.001, Fig. 2.4).  The number of turns increased as fish size increased, and the 

number of turns was greater in the white noise treatment compared to the four tone 

treatments (P < 0.01 except for medium-high vs. noise; P = 0.06).  Fish size also affected 

the number of pauses and mean speed (P < 0.001, Figs. 2.5 and 2.6), with a decrease in 

pauses and an increase in speed with increasing size.  The size effect on the number of 

turns, pauses, mean speed, and activity when the sound was off was compared with 

confidence intervals for the linear regressions, and the effect of fish size was not different 

with the sound on vs. the sound off.  No other effects were significant (P > 0.05, Fig. 

2.7).  

The number of turns, number of pauses, and mean speed changed with sound 

amplitude in the medium and medium-high treatments.  For those two levels, the number 

of turns decreased with an increase in sound amplitude encountered within the testing 

chamber (slope = -5.67, P < 0.05, R2 = 0.17; slope = -5.28, P < 0.01, R2 = 0.21, 

respectively, Fig. 2.8). The number of pauses increased as median sound amplitude 
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encountered increased (medium slope = 0.9, P < 0.05, R2 = 0.13; medium-high slope = 

0.12, P < 0.01, R2 = 0.20, Fig. 2.9).  Mean speed decreased with increasing sound 

amplitude encountered (medium slope = -0.15, P < 0.001, R2 = 0.38; medium-high slope 

= -0.12, P < 0.001, R2 = 0.36, respectively, Fig. 2.10).  Visual inspection of the data (b, c, 

and d in Figs 2.8-2.10) suggested that the slopes for number of turns, pauses, and speed 

were the same across the three loudest tones.  Combining these three treatments 

(medium, medium-high, and high) for each variable, the significant effect of median 

amplitude encountered on mean speed remained (slope = -0.10, P < 0.01, R2 = 0.09, Fig. 

2.11), but the relationships between median amplitude encountered and number of turns 

or pauses were not significant (P > 0.05).  

 

Reactive distance 

Reactive distance to prey was measured for all fish that reacted to the Artemia (46 

of 61 individuals).  Reactive distance ranged from 0.09 to 3.43 cm, with a mean ± SD of 

1.21 ± 0.83 cm.  There was no significant change in reactive distance with fish size (P > 

0.05).  Reactive angle ranged from 4.0 – 150.5°, and reactive distance did not vary with 

reactive angle (P > 0.05, Fig. 2.12).  There were no differences in the horizontal search 

area covered with the sound vs. off, with the mean ± SD foraging rate covering 0.19 ± 

0.13 cm s-1 (P > 0.05).  

 

Auditory thresholds 
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An audiogram was composed based on AEP responses of 44 fish ranging in size 

from 15 to 25.5 mm SL. Auditory thresholds increased from (mean ± SD) 114.0 ± 2.08 to 

150.0 ± 2.24 dB re 1µPa over the frequency range of 100 to 600 Hz (Fig. 2.13).  The 

mean ± SD threshold at 500 Hz for a larval red drum was 147.9 ± 4.0 dB re 1µPa (n = 12) 

and the minimum threshold at that frequency was 145 dB re 1µPa. 

 

DISCUSSION 

 According to the audiograms, red drum larvae were capable of hearing the sound 

in the behavioral assays.  They changed their behavior in the presence of anthropogenic 

noise and 500 Hz tones.  They stopped more and had a slower mean swimming speed 

when the noise stimulus was presented second, but not first.  It is possible that in this 

treatment, the effects of sound exposure continue even after the stimulus has ceased, 

causing no change in behavior up to 2.5 minutes after the sound was turned off.  Plasma 

cortisol levels of red drum can remain elevated for hours after a stressful event 

(Robertson et al. 1988), so it is likely that they would not resume routine behavior after 

sound exposure as well.  While red drum larvae might acclimate to anthropogenic noise 

over time both in the laboratory and the wild, this suggests that initials reactions to 

anthropogenic noise in the environment, such as a boat passing through an inlet, are 

quantifiable.   

Fish at any size tested turned less, had a lower mean speed, and spent less time 

swimming when the sound was on.  The same results were also observed within each 
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tank for the medium and medium-high amplitude treatments:  larvae that spent more time 

in the louder portion of the tank turned less, stopped more, and swam slower.  The 

absence of such effects on behavior in the low treatment may have been due to 

insufficient spatial variation in amplitude, or the sound amplitude might have been below 

the auditory threshold for those individuals.  The high treatment, on the other hand, might 

have been loud enough throughout the tank to have caused the same behavioral response 

regardless of a fish’s position.   

Fish turned more, stopped less, and swam faster with increasing size, but the 

amount of time spent swimming (activity) remained constant, whether the sound was on 

or off.  Similar increases in routine and critical swimming speeds with increasing size 

have been reported in previous studies of red drum (Fuiman et al. 1999, Faria et al. 2009).  

Whether the sound was on at all had a greater influence on larval behavior than the SPL 

to which the fish was exposed.  

Larval red drum hearing sensitivity was greatest (lowest threshold) at 100-200 Hz 

and decreased as frequency increased.  This pattern is common among fish species, 

however these thresholds for larvae were higher than thresholds for wild red drum of later 

developmental stages (larger sizes, 205 – 555 mm SL, Horodysky et al. 2008).  This 

could be due to hatchery conditions, size differences, experimental differences, or a 

combination of these.  Hatcheries can be up to 50 dB re 1μPa louder than a wild setting, 

and chronic exposure to noise can increase the auditory threshold of fishes (Bart et al. 

2001, Wysocki & Ladich 2005).  In a direct comparison between wild and hatchery-

reared fish, wild juvenile snapper (Pagrus auratus) had a lower auditory threshold than 



 28 

snapper reared under aquaculture conditions (Caiger et al. 2012).  However, the sound 

amplitudes in our hatchery tanks (~100 dB re 1μPa) were lower than many natural 

environments.  Literature reports on differences in thresholds with size range from no 

change (Higgs et al. 2003) to a decrease with increasing size (Kenyon 1996, Wright et al. 

2005).  Discrepancies may be due to species-specific hearing specializations, but there 

have not been enough studies to draw conclusions (Higgs et al. 2003).  It is most likely 

that the differences between studies are due to differences in experimental procedures, 

and many researchers warn that comparing audiograms across studies should be done 

with caution (Popper et al. 1973, Higgs et al. 2003, Wright et al. 2005).  

When compared with behavioral assays, audiograms generally underestimate a 

fish’s sensitivity by 10 – 30 dB re 1μPa (Gorga et al. 1988, Kenyon et al. 1998).  This is 

because the electrode, while place subcutaneously on the fish, does not directly touch the 

central nervous system, and thus, does not detect the lowest threshold responses to the 

stimulus.  At 500 Hz, the minimum AEP threshold was 145 dB re 1μPa, therefore the 

actual threshold for the fish used in the experiments was 115 – 135 dB re 1μPa.  This 

indicates that the fish were able to hear the sound treatments in all tanks except possibly 

the low treatment, where maximum tank values were 125.3 and 127.3 dB re 1μPa for the 

small and large tank, respectively.  Consequently, the low treatments might effectively 

serve as a no-sound control.  The sound pressure levels in this experiment were 

comparable to reported anthropogenic levels in the wild.  In previous studies, SPL ranged 

from 109 – 127 dB re 1μ Pa < 20 m from the sound source, but exceeded 200 dB re 1μPa 

close to pile driving activities (Anonymous 2001; Tougaard et al. 2009a, 2009b).  In this 



 29 

study, background field measurements were approximately 120 dB re 1μPa, and a 

minimum of 250 m from boat traffic resulted in a 20 dB re 1μPa increase in amplitude 

(personal observation). 

Reactive distances measured in this study differ from those on larval maroon 

anemonefish (Premnas biaculeatus, Job & Bellwood 1996) by approximately one order 

of magnitude (1.21 cm vs 2.8 mm in red drum vs. anemonefish, Job & Bellwood 1996).  

While the anemonefish were younger, reactive distance was measured on competent 

(settlement-size) larvae of both species.  These differences could either be due to 

interspecific variations in behavior or visual morphology, or differences in the 

experimental design (e.g. Job & Bellwood [1996] used rotifers at a concentration of 120 

ml-1, while we used a concentration of 0.1 Artemia ml-1).  The reactive distance did not 

change with larval size for red drum, but Job & Bellwood (1996) did find a change with 

size for the anemonefish (from 1.7 mm on 3 d post-hatching to 2.8 mm on 10 d post-

hatching). 

The lack of differences in the calculated foraging rate (based on routine 

swimming speed and reactive distance measurements) with the sound on vs. off despite 

significant differences in routine behavior were likely due to the decrease in the number 

of turns with the sound on counteracting the decrease in the mean speed over the same 

period.  Foraging rate is defined by the amount of new area searched per unit of time and 

is a function of swimming speed distance traveled, reactive distance, and the number of 

turns taken (more turning increases the amount of overlap in the search field and reduces 

the volume searched), which affect the probability of encountering a prey item (Fuiman 
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& Magurran 1994).  If larvae respond to sound with fewer turns (less overlap in search 

volume) and slower speed, these two changes can negate each other, resulting in little 

effect on foraging rate.  It is possible, however, that there were changes in the vertical 

component of routine behavior in response to sound, which we did not quantify when 

measuring reactive distance.  It is also possible that sound could affect foraging in 

behaviors other than encounter rates.  For example, feeding frequencies of Mediterranean 

damselfish (Chromis chromis) decreased in the presence of boat traffic (Bracciali et al. 

2012).  

While the rate at which red drum larvae encounter prey on the horizontal plane 

was calculated to be unaffected by sound, there were significant effects of sound on 

routine behavior.  These results could influence survival in ways other than affecting 

foraging ability.  Anthropogenic noise could interfere with the ability to locate nursery 

habitats and complete settlement, which could have implications for recruitment.  Many 

fish species are attracted to sounds associated with potential settlement habitats (e.g. 

Simpson et al. 2004, 2005a; Leis & Lockett 2005) since sound, especially low 

frequencies, is a reliable long distance cue for navigation and communication (Bass & 

McKibben 2003).  The composition of natural ocean noise at frequencies between 50 and 

5000 Hz is primarily biologically-generated and within the hearing range of most fishes 

(100 – 1000 Hz for most species, Cato 1992, Fay & Popper 1999).  Unique coastal 

habitats, even within a few kilometers of each other, have particular acoustic signatures, 

which could be important for orientation towards specific habitats (Radford et al. 2010).  

Literature reports on the effects of anthropogenic sound on orientation and settlement of 
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larval fishes are mixed.  Jung & Swearer (2011) found that boat noise might not alter 

recruitment patterns in temperate reef fish, yet Holles et al. (2013) found that boat noise 

affects directionality of the cardinalfish Apogon doryssa.  More studies are needed to 

fully understand the implications of anthropogenic noise on navigation and settlement.   

  This study demonstrates that short-term exposure to anthropogenic sounds at 

ecologically relevant amplitudes alters larval fish behavior in subtle ways.  Larvae swim 

less at all tested sizes in the presence of noise, and though this might not have significant 

effects on prey encounter rates, it could affect pelagic larval duration, thus affecting 

overall growth and survival.  These results are some of the first fine-scale analyses on 

behavioral changes with regard to anthropogenic noise, and while additional studies are 

warranted, they shed light on potential survival outcomes in larval fishes. 
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Fig. 2.1.  Schematic diagram (lateral view) of behavioral testing tank (large testing 
chamber).  See text for details. 
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Fig. 2.2.  Continuous 3-dimensional sound field for the 500-Hz tone in the large testing 
chamber for the (a) low, (b) medium, (c) medium-high, and (d) high 
treatments.  Speaker is positioned at the top left of each chamber, and the 
camera is positioned facing from the right.  See text for details. 
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Fig. 2.3.  Sound levels for four tone treatments in the (a) small testing chamber and (b) 
large testing chamber.  Letters above each box indicate significant 
differences (P < 0.05) between treatments.  Sound level in the small 
chamber was significantly different from that in the large chamber for all 
treatments.  Median amplitude and the first and third quartiles represented 
by the box, whiskers are 1.5 times the interquartile range, and closed circles 
represent outliers.   
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Fig. 2.4.  Effect of (a) fish size and (b) sound amplitude on number of turns during 
routine swimming.  Closed circles represent individuals in the white noise 
treatment; open circles represent individuals in the 500-Hz tone treatment.  
In (b), median number of turns and first and third quartiles are represented 
by the box; whiskers are 1.5 times the interquartile range. 
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Fig. 2.5.  Effect of (a) fish size and (b) sound amplitude on number of pauses during 
routine swimming.  In (b), median number of stops and first and third 
quartiles are represented by the box, whiskers are 1.5 times the interquartile 
range, and closed circles represent outliers. 
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Fig. 2.6.  Effect of (a) fish size and (b) sound amplitude on mean speed during routine 
swimming.  In (b), median mean speed and first and third quartiles are 
represented by the box, whiskers are 1.5 times the interquartile range, and 
closed circles represent outliers. 
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Fig. 2.7.  Effect of (a) fish size and (b) sound amplitude on activity during routine 
swimming. In (b), median average activity and first and third quartiles are 
represented by the box, whiskers are 1.5 times the interquartile range. 
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Fig. 2.8.  Effect of median sound amplitude experienced on number of turns at four sound 
amplitude levels.  Significant effects occurred at the medium (b, P < 0.05) 
and medium-high (c, P < 0.01) sound amplitude levels. Slopes are linear 
regressions and shaded region show 95% confidence interval. 
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Fig. 2.9.  Effect of median sound amplitude experienced on number of pauses at four 
sound amplitude levels.  Significant effects occurred at the medium (b, P < 
0.05) and medium-high (c, P < 0.01) sound amplitude levels. Slopes are 
linear regressions and shaded region show 95% confidence interval. 
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Fig. 2.10.  Effect of median sound amplitude experienced on mean speed at four sound 
amplitude levels.  Significant effects occurred at the medium (b, P < 0.001) 
and medium-high (c, P < 0.001) sound amplitude levels. Slopes are linear 
regressions and shaded region show 95% confidence interval. 
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Fig. 2.11.  (a) Number of turns and (b) number of stops did not change over median 
amplitude experienced when the medium (l), medium-high (p), and high 
(n) were combined (P > 0.05), but the (c) mean speed decreased with an 
increase in median amplitude (P < 0.01).  Slope is a linear regression and the 
shaded region is the 95% confidence interval. 
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 Fig. 2.12.  Reactive distance as a function of the reactive angle for red drum larvae 
successfully capturing Artemia prey.  
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Fig. 2.13.  Audiogram for red drum (n = 44) ranging from 15 to 25.5 mm SL.  Closed 
circles indicate mean values with SE error bars.  Dashed lines represent the 
maximum and minimum thresholds for each frequency tested.  The mean 
threshold for red drum at 500 Hz is147.9 dB re 1μPa ±1.14 SE, n = 12. 
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Chapter 3: Settlement-size larval red drum (Sciaenops ocellatus) 

respond to estuarine chemical cues 

 

ABSTRACT 

Planktonic larvae combine directed swimming and functional sensory systems to 

locate benthic habitats.  Some adult marine fishes use chemical cues for orientation to 

specific habitats, but olfactory function for estuarine fish larvae has received little 

research attention.  This laboratory study quantified behavioral responses of red drum 

(Sciaenops ocellatus) larvae to estuarine chemical cues to examine the role of water 

chemistry as an orientation cue for locating or remaining in settlement habitat.  

Spontaneous activity (kinesis) was measured for pre-settlement-size larvae exposed to 

artificial sea water (as a negative control) and one of six treatments (sterilized sea water, 

sea water from a channel at ebb tide, sea water from a channel at flood tide, sea water 

from seagrass habitat, tannic acid dissolved in sterilized sea water, or lignin dissolved in 

sterilized sea water).  Larvae that reached a size of competency to settle (approximately 

10 mm standard length) swam faster when exposed to lignin dissolved in sterilized sea 

water than in other treatments; smaller larvae showed now response.  Olfactory 

preference (taxis) was tested using a paired choice experiment. Competent larvae 

preferred water from seagrass beds to artificial sea water.  The observed chemokinesis 

and chemotaxis in response to lignin dissolved in sterilized sea water and sea water from 
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a seagrass bed demonstrate that red drum larvae can distinguish and respond to different 

water masses and suggest that chemical stimuli from seagrass settlement habitat aid in 

orientation and movement to, or retention in suitable settlement sites.  

 

INTRODUCTION 

Fish use chemical cues for communication, foraging, mating, predator detection, 

avoidance, and navigation (Døving et al. 1994, Hubbard et al. 2003, Belanger et al. 2004, 

Gerlach et al. 2007, Dixson et al. 2012).  They respond to olfactory cues that range from 

simple amino acids to complex mixtures of biologically- and environmentally-produced 

molecules, and are sensitive to these compounds at different concentrations (Døving et al. 

1994, Gerlach et al. 2007).  For example, Atlantic salmon (Salmo salar) respond to 

testosterone concentrations in sea water as low as 10-14 mol-1, but much higher 

concentrations of alcohols (Moore & Scott 1991, Hara 1994).  In general, responses such 

as turning rate and speed can strengthen with increasing concentration of a cue (Døving 

et al. 1994). 

Responses to chemical cues vary among species, chemical compounds, time, and 

space.  Some chemical cues elicit an innate response (Arvedlund et al. 1999, Miller-Sims 

et al. 2011, Dixson et al. 2012) and others are learned over time (Odling-Smee & 

Braithwaite 2003).  Certain species can distinguish a specific coral reef or a host 

anemone based on learning or imprinting, and others innately respond to chemical alarm 

cues from confamilial species (Arvedlund et al. 1999, Arvedlund & Kavanagh 2009, 

Miller-Sims et al. 2011, Mitchell et al. 2012).  Since olfactory imprinting is common in 
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marine fishes (e.g. Hasler & Scholz 1983, Arvedlund et al. 1999) and chemosensory 

morphology develops early, olfaction likely functions early in life (Døving et al. 1994, 

Kingsford et al. 2002, Lara 2008).  However, there have been few studies of the 

development of the olfactory system and chemically mediated behavioral responses in 

these organisms.  

Fishes commonly use chemical cues for orientation, and many studies suggest 

olfaction may be the most important cue for locating habitats on both large and small 

spatial scales (Baird et al. 1996, Dittman & Quinn 1996, Lecchini et al. 2005).  In 

Japanese red rockfish (Sebastes inermis), olfaction is more important than vision for 

locating specific habitats, and olfaction operates over greater distances than vision in 

certain larvae (Lecchini et al. 2005, Mitamura et al. 2005).  Settlement-size reef fishes are 

capable of discerning different chemical cues associated with benthic habitats, preferring 

water located near islands or reefs over water from the open ocean or other unsuitable 

habitats (Atema et al. 2002, Dixson et al. 2008).  Some species use chemical cues to 

distinguish between their natal habitat and a different vicinity, which contributes to 

retention of larvae in specific sites (Mitamura et al. 2005, Gerlach et al. 2007).  They can 

also use olfaction to determine habitat quality.  Coppock et al. (2013) found that three 

species of reef fishes in Papua New Guinea were attracted to the olfactory cues from live 

coral and actively avoid odors from degraded coral.  In addition to the chemical 

compounds associated with the habitat structure itself (e.g. oyster reefs, seagrass beds, 

coral reefs), many settlers respond to predators, prey, and conspecifics in the area 

(Sweatman 1985, Lecchini et al. 2005, Døving et al. 2006, Lecchini et al. 2007b).  
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 Most research on olfactory settlement cues has been conducted on coral reef 

fishes; much less is known about the chemical cues associated with settlement in other 

environments.  It has been suggested that larvae depend on olfactory cues to locate 

estuaries (Boehlert & Mundy 1988), yet few studies have tested the effects of chemical 

compounds on settlement behavior.  Both Radford et al. (2012) and James et al. (2008) 

found that settlement-stage sparid larvae (Rhabdosargus holubi and Pagrus auratus) 

orient toward water sourced from their typical nursery habitats.  Radford et al. (2012) 

also discovered that larvae preferred water collected from seagrass beds to artificial sea 

water in which seagrass blades had been soaking, suggesting that chemical compounds 

derived from sources other than the seagrass (e.g. conspecifics or prey) are involved in 

attracting the larvae to the seagrass beds. 

 If seagrasses are an important source of chemical information for larvae of other 

species, it is possible that their phenolic compounds, which are aromatic molecules that 

can leach into the environment as a result of structural damage or senescence (reviewed 

by Arnold & Targett 2002), are involved.  Seagrasses contain phenols such as condensed 

tannins and lignins at concentrations ranging from 3 – 11% and <1 – 5% dry mass (DM), 

respectively, and these concentrations can vary greatly across species and over time 

(Arnold & Targett 2002).  These compounds are also produced by emergent vegetation, 

including mangroves and salt marshes, and tannins but not lignins are produced by brown 

algae.  Salt marsh plants (measured as humic substances, Filip & Alberts 1989) and 

mangroves contain even greater concentrations of these compounds than seagrasses 

(mangrove tannin concentrations of 8.8 – 40.8% DM, Basak et al. 1998).  Terrestrial 
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plants also produce phenolic compounds, and when located near rivers and streams, can 

be transported to nearby estuaries as well (Benner & Opsahl 2001).  Collectively, these 

phenolic sources might serve as a coastal signal to larvae searching for estuarine 

settlement sites. 

   Chemoreception might be especially important for finding settlement habitat in 

areas where estuaries do not provide a reliable signal through other physical or 

environmental variables.  For instance, postlarval and juvenile flounder (Pleuronectes 

flesus) prefer water of low salinity (Bos & Thiel 2006), but in regions of the western Gulf 

of Mexico where salinity gradients are not only unstable but sometimes result in reverse 

estuaries, salinity would not be a dependable signal for navigation.  Thus, it is even more 

likely that chemoreception would be important for locating nursery habitats within these 

estuaries.  

The present study tested the hypothesis that larvae of the estuarine dependent fish, 

red drum (Sciaenops ocellatus), use olfactory cues to locate and remain in its preferred 

nursery habitat, seagrass beds, when they are competent to settle. 

 

METHODS 

 The hypothesis was tested in laboratory experiments that measured the responses 

of larvae to a variety of natural olfactory cues through changes in activity (kinesis) or 

preference (taxis).  Environmental flow rates were measured in the field to determine an 

appropriate velocity to use for the taxis experiment.  After analyzing the responses, water 
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samples collected from pre-settlement and settlement habitats were analyzed for specific 

chemical (lignin) concentrations that could serve as a reliable estuarine olfactory cue. 

 

Environmental Flow Rates 

 To determine estuarine flow rates, 20-cm SeaHorse tilt current meters 

(OkeanoLog, Woods Hole, MA) were installed in Redfish Bay near Harbor Island, TX 

(27° 53’N, 97° 7’W).  One tilt current meter was installed above the canopy of a seagrass 

(Thalassia testudinum) bed at a depth of approximately 1 m, and another tilt current 

meter was installed over bare substrate at a similar depth.  The meters were set out at 

1600 hours on September 20, 2012 and retrieved the next day at 13:30.  The tilts from the 

zenith on each of the three planes were converted into horizontal velocity (in cm s-1) with 

MATLAB software (Mathworks, Natick, MA).   

 

Study species 

Red drum inhabit temperate and subtropical waters from the Gulf of Mexico to 

North Carolina in the Western Atlantic (Hoese & Moore 1998).  They spawn offshore or 

along the coast in late summer and fall, and larvae reach the estuaries in approximately 

three weeks (Holt et al. 1983, Rooker et al. 1998).  They become competent to settle at 10 

mm standard length (SL) and newly settled individuals are most commonly found in 

seagrass beds, but will occupy marsh edges or unvegetated bottoms when seagrass is not 

available (Stunz et al. 2002a).  Red drum remain in the estuaries until they reach maturity 
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(three years for males and five years for females), after which they move offshore during 

the spawning season (Pattillo et al. 1997).  

 

Larval Care 

Larvae were raised from eggs released from broodstock maintained at the 

University of Texas Marine Science Institute’s Fisheries and Mariculture Laboratory 

(FAML) in Port Aransas, TX.  On the day following a spawn, approximately 5,000 (5 ml) 

viable (floating) eggs were placed into 150-l conical tanks filled with UV-sterilized sea 

water maintained at 27°C and a salinity of 35 ppt.  An airstone was placed into each tank 

to provide a continuous supply of oxygen.  Larvae were fed approximately 400,000 

rotifers (Brachionus sp.) per day enriched with Algamac 3050 (Aqua-fauna Bio-Marine, 

Hawthorne, CA) for 45 min during days 1 – 11 posthatching (dph).  On days 10 and 11, 

larvae were also fed approximately 10,000 1-day-old Artemia sp. nauplii.  From 12 dph 

until testing, larvae were fed approximately 60,000 2-day-old Artemia sp. nauplii twice 

per day enriched with Algamac 3050.  The hatchery was kept on a 12:12 light:dark cycle. 

Larvae were fed between 0800 and 1000 hours each morning. 

 

Kinesis Experiment 

This experiment measured the activity of pre-settlement-size (4-10 mm standard 

length, SL) red drum larvae exposed to seven different sources of water.  Those sources 

included (1) 73-µm filtered natural sea water collected from a seagrass bed and from a 

tidal inlet on (2) ebb tide and on (3) flood tide, (4) the water source used for rearing 
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larvae (FAML hatchery water), (5) hatchery water mixed with lignin and (6) hatchery 

water mixed with tannic acid, and (7) artificial sea water (Instant Ocean®, Spectrum 

Brands Holdings, Madison, WI).  Artificial sea water and FAML hatchery water were 

used as a negative control and control, respectively.  The seagrass treatment water was 

collected at the seagrass blade/water interface in a Halodule wrightii bed in Redfish Bay, 

and the ebb and flood tide water were collected from the Aransas Pass Ship Channel 

adjacent to the Marine Science Institute.  Hatchery water was treated after being pumped 

in from the Corpus Christi Ship Channel and left in outdoor ponds for 1 – 3 weeks to 

allow for particulates to settle out.  It was then filtered through a pressurized sand filter 

and kept in dark outdoor holding containers for at least one week.  The water was UV-

sterilized before use in the hatchery.  While the chemical composition of the water was 

not tested for this experiment, other olfaction studies have found that processes similar to 

these remove biologically active molecules and create water with a consistent chemical 

composition (Rittschof et al. 1983, Chiussi et al. 2001).  The concentrations of lignin (67 

μg l-1) and tannic acid (148 μg l-1) used in the experiments were calculated from the mean 

dry weight of a T. testudinum blade (0.092 g blade-1; Mumby et al. 1997), the mean 

density of T. testudinum in Redfish Bay (1,698 blade m-2; Rooker et al. 1998), the amount 

of tannin and lignin in a seagrass blade (11% and 5% DW, respectively; Arnold & 

Targett 2002), the average water depth over T. testudinum in Redfish Bay (0.58 m; 

Rooker et al. 1998), and the leaching rate of dissolved organic carbon (DOC) from 

seagrass (0.5% DOC leached day-1, Maie et al. 2006).  These values do not take into 

account degradation (photo- or biogenic), but served as a rough estimate of potential 
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concentrations.  The calculated value for lignin was on the same order of magnitude as 

previous studies on the nearby Nueces River (10.6 μg l-1; Louchouarn et al. 2000).  There 

are no published data on tannin concentrations in sea water for the local area.   

The evening before testing, larvae were transferred from the hatchery to the 

experimental room and kept overnight in individual 600-ml beakers filled with 300 ml of 

hatchery water or artificial sea water (negative control treatment only).  The overnight 

acclimation was to ensure plasma cortisol concentrations (which increase as a stress 

response during transfer) returned to basal levels (Robertson et al. 1988).  The beakers 

were placed in a water bath to maintain water temperatures of 27°C.  For the negative 

control, lignin, and tannic acid treatments, water samples were mixed and stored in glass 

aquaria kept at 27°C with underwater heaters.   On the morning of the experiment, water 

was collected from various field sources and brought back to the laboratory for same-day 

use.  These water samples were also stored in glass aquaria and maintained at 27°C with 

underwater heaters.  On each day of testing, two randomly selected treatments were 

tested.   

Larvae were tested in a 15 × 10 × 35 cm (length × width × height) glass aquarium 

in a window-less room with two 60-W incandescent bulbs placed 60 cm above the tank 

30 cm apart.  This allowed the observer to remain unseen without visual obstructions for 

the fish.  The fish was given 5 min to acclimate to the testing chamber, after which its 

behavior was recorded for 1 min with a Casio High Speed EXILIM HS EX-FH25 video 

camera (Casio Computer Company, Ltd., Tokyo, Japan).  This testing period was chosen 

to both capture the initial reaction to the treatments and represent at least the first hour of 
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settlement behavior as determined by preliminary time period studies on red drum 

settlement.  Every fish was sacrificed with an overdose of tricaine methansulfonate (MS-

222) immediately following the trial and photographed under a dissecting microscope for 

measurement of SL using ImageJ software (U.S. National Institutes of Health, Bethesda, 

MD). 

Video recordings were converted to image stacks with QuickTime Pro (Apple, 

Inc., Cupertino, CA), and two-dimensional swimming behavior was tracked with ImageJ 

software.  The original framing rate of the camera was 30 frames s-1, and the fish were 

tracked using every tenth frame in the stack (three frames s-1).  Mean distance from the 

bottom of the tank (cm) and mean speed (cm s-1) were calculated from the tracking data.    

 

Taxis Experiment 

Two sets of taxis experiments were conducted to test the olfactory preference for 

potential settlement cues in larval red drum.  In one set, the experimental design included 

two size classes (pre-settlement [5 mm SL] and competent [10 mm SL]) and three water 

sources (artificial sea water mixed with 67 µg l-1 lignin, sea water collected from a H. 

wrightii seagrass bed in Redfish Bay and sea water collected from the Aransas Pass Ship 

Channel on flood tide).  In the other set of experiments, competent larvae were tested in 

FAML hatchery water mixed with 67 µg l-1 lignin or prey (Artemia sp. nauplii) + 

artificial sea water.  In all trials, artificial sea water was paired with one of the treatments 

(above) as a negative control.  The water collected from the seagrass bed, the shipping 

channel, and the water with the prey were all filtered through a 73-µm filter before 
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experimentation.  Water collected from all field sources was used within 24 h of 

collection, and all of the other treatments were prepared at least 12 h before trials.   

The experimental setup consisted of a 20 × 4 × 2.5 cm (length × width × height) 

plexiglass Y-maze (modified from Gerlach et al. 2007, for similar diagram see 

supplemental information in Gerlach et al. 2007; Y-maze used in this study had fine mesh 

placed at outflow end) fed by a peristaltic pump and silicone tubing from two 2-l beakers: 

one containing one of the treatments and one with the negative control (artificial sea 

water).  Water flowed at a rate of 90 ml min-1 (linear velocity of 0.167 cm s-1) through the 

chamber, and dye tests were performed at the beginning of each day to ensure smooth 

flow.  A 30.5 × 30.5 cm mirror was placed above the Y-maze at a 45° angle for the 

researcher to observe the fish from above.  Based on the location where laminar flow 

broke down and mixing between the two treatments began, three areas of the Y-maze 

were identified: a ‘no decision’ area (40 cm2) at the downstream end of the maze and 

treatment and control areas (28 cm2 each) at the upstream end on either side of the 

chamber.   

Larvae were transferred from the hatchery to the experimental room on the 

evening before trials and placed into individual 600-ml beakers filled halfway with 

artificial sea water (negative control).  The beakers were maintained at a constant 27°C in 

a water bath.  To test the larvae, an individual was placed into the center of the Y-maze 

and allowed to acclimate for 5 min with both treatments flowing.  The section of the 

maze in which the fish was located (control, treatment, or ‘no decision’) was then 

recorded every 10 s for 2 min, after which the treatment and control supply tubes were 
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each moved to the other arm of the maze (i.e., water sources were reversed).  This switch 

controlled for side bias.  The fish were then given another 5 min to acclimate, followed 

by recording of their position every 10 s for an additional 2 min.  In total, each trial took 

15 min (10 min for acclimation, 4 min for testing, 1 min for switching of tubes) and 

resulted in 24 observations per individual.  Each larva was tested only once and was 

sacrificed with an overdose of MS-222 after the trial.  A photo of each fish was taken 

under a dissecting microscope for size measurements using ImageJ software. 

 

Statistical Analyses 

 Statistical analyses were performed using the R statistical package (R 3.0.2, The 

R Foundation for Statistical Computing, http://www.R-project.org).  Analysis of 

covariance (ANCOVA) was used in the kinesis experiment to test the effects of water 

sample (treatment) on mean swimming speed and mean distance from the bottom of the 

experimental aquarium with SL as a covariate.  Assumptions of the parametric statistical 

methods were tested by graphical representation for normality of residuals and variance 

comparisons.  Tukey contrasts (using the “multcomp” statistical package) were applied 

for post-hoc analyses (Hothorn et al. 2008), and were confirmed by comparing 

confidence intervals of linear regressions against SL for each treatment.   

For each combination of water treatment and size class in the taxis experiment, a 

Pearson’s chi-square test with sequential Bonferroni correction (Rice 1989) was used to 

determine whether the time spent by larvae in the ‘no decision’ section of the Y-maze 

differed from that expected by chance (uniform distribution), based on area.  Since the 
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‘no decision’ area was 41% of the testing chamber, the null expectation was 10 out of a 

possible tally of 24.  If the chi-square test showed that larvae spent less time in the ‘no 

decision’ section than expected, a paired t-test with sequential Bonferroni correction 

(Rice 1989) was used to determine whether there was a difference in the time spent in the 

treatment vs. the control areas.   

A two-factor ANOVA, with size class (pre-settlement and competent) and water 

treatment was used to compare time spent in the treatment area from only those water 

treatments for which both small and large larvae were tested (lignin + artificial sea water, 

seagrass water, and shipping channel water).  Visual inspection of the residuals and 

variances were performed to ensure assumptions were met.  Tukey post-hoc tests were 

performed to identify significant differences among treatments.  

 

Lignin Analysis 

 The concentration of dissolved lignin in water samples collected from seagrass 

beds and the tidal inlet was measured for comparison with the lignin treatment used in the 

experiments.  Water samples (10 – 14 l) were collected from seagrass beds in Redfish 

Bay on November 6, 2012 (the end of the spawning season, when seagrass beds are in 

decline) and July 29, 2013 (immediately preceding red drum spawning, when seagrasses 

have the highest densities and shoot heights, Rooker et al. 1998), and 5 l of water were 

collected from the Aransas Pass Ship Channel at 1100 hours on May 31, 2014 (peak of 

high tide), and kept frozen until lignin analysis.  Samples were filtered through a 0.7-μm 

Whatman® glass fiber filter (Sigma-Aldrich, St. Louis, MO) to remove particulates.  
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Solid-phase extraction (SPE) through octadecyl carbon moieties (C18) (Empore, 3M 

Company, St. Paul, MN) isolated the dissolved organic matter.  Cartridges were 

pretreated with 20 ml of methanol and 10 ml of Milli-Q Plus UV water to activate the 

discs.  Water samples were acidified with 12 N HCl to pH 2 and then pumped through the 

cartridges using a peristaltic pump with silicone tubing connected to an Erlenmeyer flask 

with headspace.  After extraction, the cartridges were rinsed with 7 ml of methanol three 

times, and the methanol elution was stored in the freezer until processing.   

The eluted samples were evaporated to 2 ml in a Hei-VAP rotary evaporator 

(Heidolph Instruments, Schwabach, Germany) and then sparged to dryness with N2 at a 

temperature of 80°C in 6 ml square Teflon vials (Savillex Corp., Eden Prairie, MN).  

Lignin oxidation and phenolic compound extraction followed the procedure of Sun et al. 

(personal communication).  The following were added to the vials containing the dry 

samples: 0.5 g CuO (Fisher Scientific, Fair Lawn, NJ), 0.1 g Fe(NH4)2(SO4)2.6 H2O 

(Acros Organics, Fair Lawn, NJ), 10 mg glucose (Sigma-Aldrich, St. Louis, MO), and 5 

ml 2 N NaOH (8%, w/w, sparged with Ar and sonicated for 30 min to remove O2).  The 

mixture was then sparged for 30 min with Ar and quickly capped to minimize mixing 

with air.  The capped Teflon vials were heated for 3 h in a 150°C oven.  Once cooled, the 

internal standard (ethyl vanillin) was added.     

HCl (12 N) was added to the oxidized samples to bring acidity to pH 2.  The 

samples were put in the dark to let particulates settle out, then they were centrifuged 

(Model 5810 R, Eppendorf International, Hamburg, Germany) and the supernatant was 

saved for further analysis.  The samples were pushed through C18 cartridges (Analtech 
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Inc., Newark, DE) treated with 3 ml methanol and water at a flow rate of 4 - 5 ml min-1.  

The column was dried with N2 for 5 min, and then 2 ml of ethyl acetate was pushed 

through the column to elute the lignin oxidation products.  The ethyl acetate was 

evaporated with N2 while in a 45°C water bath, and then the dried solvent was dissolved 

in 2 ml 10% (v:v) methanol:water and sonicated for 1 min.  The solutions were analyzed 

by a Shimadzu Prominence HPLC (Shimadzu Scientific Instruments, Columbia, MD) in 

an Alltima 5 μm, 250 × 4.6 mm C18 column (Alltech Associates, Inc., Deerfield, IL) at 

room temperature with a 150-μl injection volume.  The separation was performed 

according to methods of Sun et al. (personal communication).  

 

RESULTS 

Environmental Flow Rates 

 Water velocity inside the seagrass bed ranged from 0.2 – 15.3 cm s-1, with a mean 

flow of 2.4 ± 0.02 cm s-1. Water velocity over the sandy bottom outside the seagrass bed 

ranged from 0.03 – 23.0 cm s-1, with a mean flow of 6.0 ± 0.06 cm s-1. 

 

Kinesis Experiment 

 Testing was carried out on 193 larvae, with 19 – 43 individuals in each treatment, 

ranging in size from 4 – 10 mm SL.  According to the overall ANCOVA for swimming 

speed, there was a significant size × treatment interaction  (P < 0.01), where swimming 

speed increased more sharply with SL in the lignin treatment compared to a more gradual 
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increase in artificial sea water (P < 0.05).  The rate of increase in speed with SL for lignin 

was also significantly greater than that for flood tide (P < 0.01), ebb tide (P < 0.01), and 

tannic acid treatments (P < 0.05, Fig. 3.1).  For the latter three treatments, the rate of 

increase in speed with SL was not significantly different from zero (P > 0.05).  There was 

also a significant increase in swimming speed with SL for artificial sea water, FAML sea 

water (control), and seagrass water (P < 0.05).  There were no significant effects of water 

treatment on distance from the bottom of the tank (P > 0.05); mean distance from the 

bottom was 14.4 cm (Fig. 3.2). 

 

Taxis Experiment 

The taxis experiment was performed on 171 larvae divided into two size classes 

with 17 – 29 individuals in each trial.  Pre-settlement larvae averaged 4.7 ± 0.5 mm SL 

and competent larvae averaged 11.0 ± 1.2 mm SL, representing extremes of the range 

over which changes in chemokinesis were observed.  

 When all size × treatment combinations (the six used in the ANOVA plus large 

larvae in prey and lignin + FAML hatchery water) were considered, only competent 

larvae in the prey, lignin + artificial sea water, and seagrass treatments spent significantly 

more of the time out of the ‘no decision’ area than expected.  Larvae of both sizes from 

all other treatments spent more time in the ‘no decision’ area than expected (P < 0.0063 

for all treatments).  Based on the positive results in the prey, lignin + artificial sea water, 

and seagrass treatments, preferences were tested.  Time spent in the seagrass treatment 
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was significantly greater than time spent in the negative control (P < 0.0167) but there 

was no preference in prey or lignin + artificial sea water trials (P > 0.05, Table 3.1).   

For the trials that included both small and large larvae (lignin + artificial sea 

water, seagrass water, and channel water), the size × treatment interaction was not 

significant but both size (P < 0.001) and treatment (P < 0.05) had an effect on the amount 

of time spent in the treatment area of the Y-maze (Fig. 3.3).  Competent larvae spent 

more time in the treatment area compared with pre-settlement-size larvae, and larvae 

spent more time in the lignin + artificial sea water treatment than the channel water (6.2 ± 

6.88 vs. 3.5 ± 5.68 out of a potential score of 24, respectively, P < 0.05).   

 

Lignin Analysis 

 The lignin concentration in the Aransas Pass Ship Channel was 1.0 μg lignin l-1, 

1.1μg l-1 in Redfish Bay in 2012 during seagrass decline, and 1.3 μg l-1 in Redfish Bay in 

2013 during the height of seagrass production, assuming 53.1 – 65.6% recovery from the 

HPLC analysis. 

 

DISCUSSION 

Time spent in an environment is regularly used as a proxy for preference (Atema 

et al. 2002, Gerlach et al. 2007, Dixson et al. 2008), so results from the taxis experiment 

indicate that settlement-size red drum larvae prefer the olfactory cues of water from the 

estuary over those of artificial sea water.  Results from both the kinesis and taxis 
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experiments indicate that red drum larvae respond to sea water taken from seagrass beds 

and water to which lignin was added at sizes when larvae are competent to settle.  Faster 

swimming combined with attraction to these water sources would lead competent red 

drum to seagrass beds as they swim towards the chemical source.  In other words, larvae 

should navigate (by either swimming or controlling their water column position to take 

advantage of currents) away from the oceanic environment and toward the estuaries, 

which contain both allochthonous (terrigenous plants) and autochthonous (seagrass and 

marsh plants) sources of lignin (Louchouarn et al. 2000, Mannino & Harvey 2000).  

Pre-settlement larvae did not respond to any of the treatments tested, suggesting 

either that they respond to these cues in ways other than the behavioral traits measured in 

this study, that they perceive the cues but do not or cannot respond to them, or that they 

are incapable of detecting olfactory cues and other sensory cues (i.e., treatments not 

tested) or modalities (i.e., other senses) are important during this life stage.  In the taxis 

experiment, pre-settlement larvae spent significantly more time in the ‘no decision’ area 

of the testing chamber compared with either the negative control or the treatment areas.  

This almost certainly represents a lack of choice by the larvae, since they easily could 

have swum against the slow flow in the Y-maze. That flow (0.167 cm s-1) is well below 

mean water velocities in a seagrass bed or surrounding bare substrate and similar to the 

lowest values measured in those habitats in this study.  The maximum sustainable 

swimming speed (Ucrit) of red drum larvae, even as small as 4 – 5 mm SL, is 

approximately 5 cm s-1 (Faria et al. 2009).  
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Larvae are capable of olfaction at early developmental stages, yet most studies on 

the role of olfaction in settlement have limited their observations to competent larvae 

(e.g., Huijbers et al. 2008, Leis 2010, Dixson 2011).  Both temperate and tropical larvae 

have been shown to respond to chemical cues associated with predators or prey shortly 

after hatching, however the ontogeny of chemically mediated behavior has not been well 

studied (Døving et al. 1994, Dixson et al. 2010).  While the olfactory morphology of red 

drum larvae has not been studied, behavioral and morphological studies on other species 

suggest that it is likely that red drum also have a functional olfactory sense early in 

development (Lara 2008, Dixson 2011).  Results from the present study show that larvae 

do not respond to settlement cues until they are a size at which they are ready to settle 

into a benthic habitat (Lara 2008, Dixson 2011).  It is not clear whether the response is 

innate or learned, since the chemical composition of the control water in which the larvae 

were reared is not known, however red drum larvae responded to estuarine-associated 

olfactory cues immediately prior to settlement, and probably choose not to respond to 

these cue at earlier stages. 

Red drum swimming capabilities improve during ontogeny, with average Ucrit 

values increasing from 1 to > 22.2 cm s-1 for larvae approximately 2.5 – 18 mm SL (Faria 

et al. 2009).  Water velocity in the tidal inlet during the spawning season ranges from 5 – 

100 cm s-1, with a mean velocity of 35 cm s-1 (Faria et al. 2009).  Therefore, it is likely 

that young red drum rely on selective tidal stream transport (STST), and settlement-size 

larvae use a combination of STST and active swimming to control their spatial position 

and navigate towards nursery grounds (Forward et al. 1999, Holt & Holt 2000). 
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Surprisingly, there were no differences in lignin concentration for water samples 

collected from the seagrass beds during the annual height of seagrass, seagrass beds in 

decline, and the tidal inlet.  Levels measured in this study were approximately 10 times 

greater than lignin levels in offshore water in the Gulf of Mexico (90.2 ng l-1), 

comparable to previous measurements in the same tidal inlet (3.2 μg l-1), and 

approximately one order of magnitude less than the nearby Nueces River (10.6 µg l-1, 

Louchouarn et al. 2000).  While the lignin concentration in the shipping channel matches 

previous findings, lignin concentrations in the seagrass bed water were expected to be 

higher than they were.  This expectation was based on calculations, previous studies on 

lignin concentrations in estuaries (Louchouarn et al. 2000, Mannino & Harvey 2000), and 

the difference in the quantities of vascular plant in estuaries compared with offshore 

environments (Arnold & Targett 2002).  Instead, results from this study indicate that the 

entire nearshore environment, including the shipping channel, contains a similar lignin 

signal.  The concentration used in the experiments was 50 times greater than that 

measured in the seagrass beds at the peak of production and 4 – 6.3 times greater than 

riverine values (Louchouarn et al. 2000, Mannino & Harvey 2000).  Caution must be 

used when making comparisons between the concentration of lignin (and tannic acid) 

used in the experiments and the environmental concentrations.  Lignins and tannins are 

groups of related molecules comprised of monomers, dimers, and polymers.  Up to half 

of all phenols in seagrasses can be simple phenolic acids (monomers, Vergeer & Develi 

1997).  Fish olfactory systems are known to be sensitive to small molecules such as 

amino acids (reviewed in Derby & Sorensen 2008), so it is likely that the concentration of 
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phenolic monomers is the relevant reference for larval fishes.  Analytical methods for 

measuring lignins in seawater require lignin polymers to be hydrolyzed into monomers, 

which would result in higher concentrations of monomers than are actually present prior 

to analysis.  Therefore, the concentrations of lignin monomers in the experiment could 

have been of the same magnitude as the actual concentration of lignin monomers in the 

environment.  The most important conclusion is that larvae responded with both 

increased activity and preference to lignin, and further studies are necessary to establish 

the specific lignin monomers to which larvae are responding. 

Larvae demonstrated a strong response to lignin but not tannin in the kinesis 

experiment, despite both substances being produced by nearshore plants.  Both are 

classes of phenolic compounds, with aromatic properties that could act as potential 

olfactory signals (Arnold & Targett 2002).  Lignins and condensed tannins are produced 

by terrestrial and marine vascular plants, but algae do not produce lignins (though lignins 

have been discovered in red algae, Calliarthron cheilosporioides [Martone et al. 2009]).   

Tannins, however, (in the form of phlorotannins) are produced by brown algae (Arnold & 

Targett 2002).  This could make tannins, like salinity, an unreliable cue for settling fishes 

to Gulf of Mexico estuaries.  The Gulf of Mexico contains millions of tons of brown 

algae (Sargassum sp.) that can be found in both nearshore and offshore environments, 

which would not provide a signal gradient towards settlement habitats (Gower & King 

2009).  

Responses to olfactory cues associated with settlement sites have been shown in 

other estuarine-dependent species and in those that settle to seagrass beds, however the 
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studies have been limited to quantifying taxis responses in competent individuals 

(Huijbers et al. 2008, James et al. 2008, Radford et al. 2012).  In laboratory trials, 

settlement-stage sparid larvae (Rhabdosargus holubi) spent more time in estuarine and 

riverine water compared with sea water controls (James et al. 2008).  Radford et al. 

(2012) discovered that larval snapper (Pagrus auratus) prefer water collected from 

seagrass beds but not water in which seagrass had been soaked, suggesting that snapper 

respond to a cue associated with seagrasses other than the seagrass blades (e.g., prey or 

conspecifics).  In the current study, red drum larvae were found to respond to estuarine 

and seagrass cues, but might in fact be responding to contents of the seagrass blades, and 

lignin in particular.   

Results from this study support recent findings that estuarine vegetation might 

produce olfactory cues that competent fish larvae use to locate settlement habitats 

(Huijbers et al. 2008, Radford et al. 2012).  The results from the kinesis and taxis 

experiments (i.e. behavioral responses to lignin and to water from seagrass beds), 

combined with the lignin environmental data, indicate that in addition to being important 

refuge and foraging areas for newly settled individuals, seagrasses and marsh plants 

might be necessary for competent larvae to locate estuaries containing suitable nursery 

habitats.  Seagrasses and marsh plants are ecosystem engineers, providing services such 

as oxygenating surrounding water, stabilizing marine sediments, cycling nutrients, and 

providing nursery habitats for many marine vertebrates and invertebrates (Hemminga & 

Duarte 2000).  Seagrass losses around the globe have risen almost tenfold since the 

1970’s, which can be attributed to factors such as increased sedimentation, nutrient 
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loading, invasive species, physical disturbances, fishing and aquaculture practices, 

disease, algal blooms, and climate change (Orth et al. 2006).  Therefore, even if larvae 

are able to occupy other habitats within an estuary (e.g. oyster reefs or unvegetated 

bottoms), they might not be able to find these habitats if they rely of seagrass- and marsh 

plant-derived olfactory cues for long distance orientation.  If larvae do not successfully 

settle, the chances of recruiting to the adult population are slim. 

This is the first study on the changes in olfactory-related responses to settlement 

cues in a subtropical and temperate estuarine-dependent fish species.  It demonstrates that 

larvae are capable of responding to olfactory cues that emanate from their settlement 

habitat when they are competent to settle, and respond to one particular compound within 

seagrass but not another.  While more research on specific chemical stimuli and 

behavioral responses is necessary, this study draws attention to the potentially necessary 

role of live seagrasses not only in providing nursery habitats for newly settled larvae, but 

in attracting competent larvae toward estuaries prior to settlement. 
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Table 3.1.  Results of the taxis experiment. Mean percentage of time (± SE) in the 
‘treatment’, ‘negative control’, and ‘no decision’ areas of the Y-maze for 
each size class.  (n) represents negative control and (c) represents control. * 
indicates significantly less times spent in the no decision area; † indicates 
significantly more time spent in a treatment area compared with the control. 

 
Treatment Size  Time in  Time in   Time in  
  class  no decision  negative control treatment 
channel small  99.8 ± 2.1  1.5 ± 0.9  0.3 ± 0.3 
lignin (n) small  72.5 ± 8.1  12.5 ± 5.3  15.2 ± 5.7 
seagrass small  86.8 ± 5.9  6.8 ± 4.0  6.4 ± 2.9 
prey  large  36.8 ± 7.0*  27.9 ± 4.9  35.3 ± 5.6 
channel large  53.0 ± 6.0  21.4 ± 3.7  27.0 ± 5.0 
lignin (n) large  40.0 ± 8.0*  22.2 ± 5.4  37.7 ± 6.6 
lignin (c) large  41.1 ± 5.4  27.7 ± 3.2  31.0 ± 4.2 
seagrass large  35.2 ± 5.4*  24.6 ± 3.4  40.8 ± 4.7† 
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Fig. 3.1.  Results from kinesis experiment. Swimming speed for larva spanning a range of 
sizes in (a) flood tide, (b) ebb tide, (c) control, (d) lignin, (e) tannic acid, and 
(f) seagrass water.  Black points and regression line represent treatment, 
gray points and regression line represent artificial sea water (negative 
control).  
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Fig. 3.2.  Results from the kinesis experiment.  Mean distance from the bottom was not 
significantly affected by size, treatment, or the interaction between them 
(ANCOVA, P > 0.05).  Median and the first and third quartiles are 
represented by the box, diamonds are the mean, whiskers are 1.5 times the 
interquartile range. 
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Fig. 3.3.  Results from the taxis experiment.  Preference for treatment (tallies in treatment 
area) was (a) greater for lignin compared with channel water and (b) greater 
for large larvae than small larvae (P < 0.05, ANOVA with Tukey post-hoc 
comparison).  Median and the first and third quartiles are represented by the 
box, diamonds are the mean, whiskers are 1.5 times the interquartile range, 
and closed circles represent outliers. 
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Chapter 4: Depth preference in settling red drum (Sciaenops ocellatus) 

larvae in relation to benthic habitat color and water column depth 

 

ABSTRACT 

A variety of sensory cues could be operating to aid larval fishes in finding benthic 

settlement habitat.  Visual cues are thought to be the most important when adequate light 

is available, even though they are only effective over short distances.  The effects of 

substrate color (black, sand, and green) at two water column heights (85 and 33.3 cm) 

were tested on settlement behavior (distance from bottom and activity) of red drum, 

Sciaenops ocellatus, at pre-settlement, settlement, and post-settlement sizes.  There was 

no effect of substrate color or water column height on mean distance from bottom or 

activity for settlement- and post-settlement-size fish.  Pre-settlement larvae in the deeper 

water column exhibited greater activity (variability in distance from bottom) than those in 

the shallower water column (9.6 ± 7.1 vs. 5.6 ± 4.1 cm, respectively).  Pre-settlement 

larvae were closer to the bottom in the shallower water column compared with the deeper 

water column (18.5 ± 9.1 vs. 44.3 ± 27.6 cm, respectively), since larvae reside close to 

the water surface at this stage.  Larvae over green and sand substrates were closer to the 

bottom in the shallower water column compared to the same color substrate in the deeper 

water column (19.4 ± 9.0 vs. 53.1 ± 27.7 cm over green, and 15.1 ± 9.6 vs. 41.4 ± 26.4 

cm over sand).  However, there was no difference in mean depth over the black substrate 
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for the pre-settlement larvae (21.0 ± 7.9 and 39.1 ± 27.9 cm for shallow and deep, 

respectively).  These results suggest that presettlement-size larvae modify their behavior 

according to benthic visual cues, but are not affected by the same cues after reaching 

settlement size.  Larvae avoid the lighter colors found in shallow estuaries (green and 

sand) at sizes smaller than competency to settle, but do not change their depth in the 

presence of dark bottoms, which they would encounter in an offshore environment.    

 

INTRODUCTION 

The majority of marine fishes spend their egg and larval stages in the pelagic 

environment, and their juvenile and adult stages associated with benthic habitats.  The 

transition between the pelagic and benthic stages is known as settlement – a period that 

can take minutes to weeks depending on the species, habitat requirements, and 

environmental conditions (Victor 1982, 1986; McCormick & Makey 1997; White et al. 

2013).  It is a period of high mortality, leaving new settlers vulnerable to predation and 

starvation (Doherty et al. 2004, Fuiman et al. 2010).  To maximize their chances of 

survival, individuals must seek out or be transported to suitable settlement habitat. 

 Many fishes settle actively, sensing, orienting, and moving towards habitat cues 

by controlling their spatial position through swimming and current selection (Leis & 

Carson-Ewart 1999, Armsworth 2000, Kingsford et al. 2002, Montgomery et al. 2006).  

Most of what we know about the use of cues by larvae is conjecture, but studies over the 

past few decades have begun to resolve some of the signals to which larvae are 
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responding (Kingsford et al. 2002, Dixson et al. 2008, Simpson et al. 2008).  There are 

multiple potential settlement cues available for late-stage larvae, including olfactory, 

auditory (both biogenic and non-biogenic), magnetic, mechanosensory, and visual.  It is 

also likely that these signals do not operate in isolation, but rather simultaneously or 

consecutively (Huijbers et al. 2012).  Cues operate over different spatial scales. For 

example, magnetic and celestial cues may be transmitted over entire ocean basins, while 

particle displacement and acceleration might be detectable over much smaller distances 

(Kingsford et al. 2002).  

Vision operates effectively over the smallest spatial scale.  Even in clear waters, it 

is unlikely that fishes would be able to see objects more than 50 m away (Kingsford et al. 

2002).  Vision is probably most important for discriminating microhabitats once a larva 

has settled, and it is the dominant sensory system on small spatial scales (McFarland 

1991, Lecchini et al. 2005).  The majority of experiments on the use of vision in habitat 

selection have been on coral reef fishes, which typically experience clear water and a 

variety of substrates in a small area (Lecchini et al. 2007a, McCormick et al. 2010).  In 

contrast, estuarine fishes are often found in turbid systems that have less variety in 

benthic habitat.  Little is know about their visual response to different substrates.  

This study examined the influence of vision on settlement behavior of a 

subtropical and temperate estuarine fish (red drum, Sciaenops ocellatus) using laboratory 

experiments.  The effects of substrate color and water-column depth on mean vertical 

position and activity of S. ocellatus at three early life stages:  pre-settlement, settlement, 

and post-settlement, were tested to determine both the changes in behavior through 
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ontogeny and the effects of habitat characteristics on settlement.  Substrate colors were 

chosen to represent the three general colors red drum larvae would encounter when 

moving from the pelagic environment (black, to represent a dark, deep water control) to 

shallower estuaries: sand (unvegetated) and green (seagrass beds).  In addition to the 

variety of substrate colors, larvae may also settle from a variety of water depths.  Two 

depths (33.3 and 85 cm) were chosen to better understand settlement behavior across 

realistic estuarine depth gradients (Rooker et al. 1998).  It was hypothesized that 

settlement-size larvae would be closer to the bottom over green and yellow substrates 

compared with black.  It was also hypothesized that pre-settlement larvae would be close 

to the surface of the water column regardless of benthic color, and post-settlement larvae 

would be close to the bottom regardless of bottom color.  Activity would be lowest for 

post-settlement larvae compared with pre-settlement- and settlement-size larvae since 

they have taken up a benthic residence.  

 

METHODS 

Study species 

Red drum is a common estuarine fish species that inhabits Western Atlantic 

temperate and subtropical waters.  Off Texas, it spawns in late summer and early fall 

offshore or near tidal inlets, and the eggs and larvae spend approximately three weeks 

offshore and/or in the inlets before reaching the bays and estuaries (Holt et al. 1983).  

Recent arrivals of larvae in the estuary are most commonly associated with seagrass beds, 
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but will associate with salt marsh edges or shallow unvegetated habitat when seagrass is 

not available (Stunz et al. 2002a).  Red drum can first appear in estuaries as small as 4 

mm standard length (SL) and as large as 10 mm SL, although their precise size at 

transition to the benthos cannot be determined from these studies (Holt et al. 1989, 

Rooker et al. 1998).  Red drum stay in estuaries through the juvenile stage, and reach 

maturity at 3 to 5 years (Rooker & Holt 1997, Hoese & Moore 1998).  

 

Larval care 

Red drum eggs were collected from the Texas Parks and Wildlife Department’s 

Marine Development Center in Corpus Christi, TX on September 24, October 2, and 

October 23, 2013 and transported in a covered bucket with 15 l sea water to the 

University of Texas Marine Science Institute’s Fisheries and Mariculture Laboratory for 

rearing.  Approximately 10,000 (10 ml) viable eggs from each collection were divided 

between two 150-l conical tanks (5,000 eggs each) the afternoon after spawning the 

previous evening.  Each tank was filled with 100 l of UV-sterilized sea water, and 

provided a continuous supply of oxygen through an airstone.  Larvae were raised on a 

12:12 light:dark cycle and water was maintained at a salinity of 35 ppt and temperature of 

27°C.  Larvae hatched later that same afternoon.  Larvae were fed once a day between 

0800 and 1000 hours.  For the first 11 days, larvae were fed rotifers (Brachionus sp.; 

approximately 2,667 l-1) enriched for 45 min in the fatty acid supplement Algamac 3050 

(Aqua-fauna Bio-Marine).   On days 10 and 11 posthatching, larvae were also fed 1-day-

old Artemia sp. nauplii at a concentration of approximately 67 l-1.  Twelve days 
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posthatching (dph), larvae were switched to a diet of 2-day-old Artemia sp. nauplii 

(approximately 400 l-1) enriched for 16 h in Algamac 3050.  Larvae were tested at three 

separate size classes:  pre-settlement (4 – 8 cm standard length, SL), settlement (11 – 13 

cm SL) and post-settlement (16 – 21 cm SL).  These sizes were chosen based on the 

experimentally determined settlement size (Chapter 5).   

 

Behavioral Assays 

Most studies on the role of vision in the settlement process consist of binary or 

multi-choice experiments for coral reef fishes in arenas that are less than two meters in 

length (Booth 1992; Lecchini et al. 2005, 2007a; McCormick et al. 2010, Huijbers et al. 

2012).  This is a reasonable scale; Lecchini et al. (2005) discovered that the coral reef fish 

Chromis viridis only responds to substrate less than 75 cm away.  However, for estuarine 

fishes, having multiple habitats within their field of view is less likely, therefore it is 

more appropriate to test the strength of attraction towards one substrate at a time.   

Experiments were conducted to determine the effect of water-column depth and 

substrate color on mean distance from the bottom and activity of young red drum.  On the 

experimental days, larvae were transferred from the conical tanks to the experiment 

room.  They were kept individually in 600-ml beakers filled with 200 ml of sterilized sea 

water and placed in a water bath maintained at 27°C for at least three hours to lower 

stress (cortisol) levels (Robertson et al. 1988) until testing. 

The testing chamber was a cylindrical acrylic tube (25 cm × 95 cm diameter × 

height) filled with sterilized sea water to a depth of either 33.3 or 85 cm.  A 1000-W 
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halogen lamp hung 1.2 m above the top of the tank to mimic natural sunlight intensity 

(approximately 100,000 lux mean intensity, measured with an SM700 Smart Lux Meter 

[Milwaukee Instruments, Rocky Mount, NC] in natural sunlight at sea level) during the 

red drum spawning and settlement period on the Texas coast (August to November).  A 

black (CMYK scale: 72, 66, 74%), olive green (80, 44, 100, 47%), or sand (17, 56, 100, 

3%) colored paper was placed underneath the chamber to mimic different colored 

substrates red drum might encounter in nature (deep bottom, seagrass, and unvegetated 

bottom, respectively).  Five-cm increments were marked on the chamber for determining 

fish depth.  Water temperature was maintained with submersible heaters whenever an 

experiment was not taking place, and experiments ran for 2 h, followed by a half hour 

break to avoid overheating the surface water with the overhead lamps.  These time 

periods were sufficient to maintain the surface water temperature under 30°C.  There 

were two chambers 30 cm apart, which allowed for two fish to be tested at a time (one in 

each tank). 

To test the fish, an individual was transferred from the beaker to the testing 

chamber and allowed to acclimate for 5 min.  Its distance from the bottom was recorded 

every 10 s for 5 min by noting the nearest 5-cm increment on the chamber.  This testing 

period was chosen to capture the initial reaction to the treatments, while representing at 

least the first hour of settlement behavior as determined by preliminary studies on red 

drum settlement.  From these data its mean distance from the bottom was computed.  The 

standard deviation (SD) of its vertical positions over the 5-min period was calculated as a 

measure of activity.  At the end of the 5-min trial the fish were sacrificed with an 
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overdose of tricaine methansulfonate (MS-222).  The SL of pre-settlement fish was 

measured under a dissecting microscope using Image Processing and Analysis in Java 

software (ImageJ, U.S. National Institutes of Health, Bethesda, MD).  The settlement and 

post-settlement fish were measured to the nearest mm using a ruler. 

 

Statistical Analyses 

Statistical analyses were performed in R (R 3.0.2, The R Foundation for 

Statistical Computing, http://www.R-project.org) to determine the effects of color and 

depth on activity and mean distance from the bottom.  The three size classes (pre-

settlement, settlement, and post-settlement) were analyzed separately.  The variances 

were unequal between the two depth treatments and could not be equalized with 

transformations.  Therefore, a nonparametric Kruskal-Wallis one-way ANOVA by rank 

was used to test for overall effects of color and water-column depth, followed by a Mann-

Whitney U-Test to test for pairwise differences among colors within each depth (three 

comparisons within both the shallower and deeper water-columns) and between water-

column depths within each color (1 comparison for each of the 3 colors).  In total, there 

were 11 statistical comparisons, which required a sequential Bonferroni correction (Rice 

1989) to be considered significant. 

 

 

RESULTS 

There were 139 pre-settlement-, 160 settlement-, and 121 post-settlement-size fish 

tested, with 19 to 40 individuals in each treatment.  For pre-settlement fish, mean 
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distance from the bottom ± SD was significantly less in the shallower than the deeper 

water column (18 ± 9 cm vs. 44 ± 28 cm, respectively, Table 4.1).  Substrate color did 

not have an overall effect on mean distance from the bottom (37 ± 27. 31 ± 23, 29 ± 24 

cm for green, black, and sand, respectively), however water-column depth did affect the 

larval distance from the bottom with the green and sand substrate colors but not the black 

substrate (Table 4.2, Fig. 4.1).   

Water-column depth had a significant effect on activity in pre-settlement fish, 

with a mean activity of 5.6 ± 4.1 cm in the shallower water and 9.6 ± 7.1 cm in the deeper 

water, respectively (Table 4.3).  The effect of bottom color on activity was not significant 

and there was no significant effect of color within depth treatments, nor effects of depth 

within color treatments (Table 4.3). 

 Neither water column depth nor substrate color had an effect on mean distance 

from the bottom or activity for settlement-size and post-settlement-size fish (Fig. 4.1, 

Tables 4.1 and 4.3).  The effects of color within depth treatments and the effects of depth 

within color treatments were also not significant for both mean distance from the bottom 

and activity.  Mean distance from the bottom was 8 ± 8 cm and 4 ± 5 cm for the 

settlement- and post-settlement-size fish, respectively.  Mean activity was 5.8 ± 4.1 cm 

and 3.4 ± 4.2 cm for the settlement- and post-settlement–size fish.  
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DISCUSSION 

Water-column depth and benthic color did not affect the position or activity of 

settlement-, or post-settlement-size fish, as they had low activity levels and were closely 

associated with the bottom.  This was predicted for post-settlement fish, however the 

similar behavior in settlement-sized fish was not expected.  The 11 – 13 mm SL range 

was chosen for settlement size because of previous studies on settlement size to a sand 

substrate.  It was discovered that while red drum enter the estuaries at approximately half 

that size (Rooker et al. 1998), they do not move out of the water column until 12 – 13 

mm SL (see Chapter 5).  The fish in the current study displayed less variability around 

their preferred depth than predicted, but the settlement results are consistent with 

previous work (Chapter 5). 

 Pre-settlement larvae were influenced by water-column depth; they occupied a 

position farther from the bottom (closer to the surface) and were more active in the 

deeper water column.  Since pre-settlement larvae are pelagic, it makes sense that they 

would take advantage of the larger volume of water column associated with the deeper 

water.  Their pre-settlement niche also explains the observed patterns in their responses to 

benthic color.  Pre-settlement larvae showed no difference in depth preference when the 

substrate was black (control), the treatment they would most closely be exposed to in 

nature at this stage of life.  However, in the presence of the unvegetated- and seagrass-

associated colors, they moved further from the bottom when the water column allowed it 

(in the deep water treatment).  This implies that they might not be ready for those shallow 

water habitats and avoid associating with them, using benthic color as a cue for 
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positioning themselves in the water column.  It would be interesting to see if there is an 

intermediate size between pre-settlement and settlement where larvae switch from 

avoidance to attraction in the presence of sand and green colors.       

 This study was performed using water that had been filtered to remove suspended 

particles, however estuaries can be more turbid during periods of heavy precipitation, 

winds, or riverine discharge.  During the 2013 red drum spawning season (August 30 – 

November 30), turbidity ranged from 0 – 99 nephelometric turbidity units (NTU) in the 

Aransas Pass Ship Channel (pelagic environment), and from 1 – 188 NTU in Aransas 

Bay (estuarine settlement site) (data collected by the Mission-Aransas National Estuarine 

Research Reserve and obtained from cdmo.baruch.sc.edu).  Effects of turbidity on 

feeding have been studied extensively (Benfield & Minello 1996, Rowe et al. 2003).  For 

example, turbidity of 160 NTU has been shown to reduce growth rates in rainbow trout, 

Oncorhynchus mykiss, without interfering with feeding rates (Herbert & Richards 1963, 

Rowe et al. 2003).  This is because turbidity reduces the size of prey the fish will attack, 

resulting in less total food intake.  Turbidity can affect spatial distribution of adult fishes 

and has an effect on settlement behavior at much lower levels for coral reef fishes.  

Studies found that < 10 NTU resulted in modifications in the habitat choice by 

Pomacentrus moluccensis, and a loss of ability to discern chemosensory habitat cues 

(Roberts et al. 1992, Rowe et al. 2001, Wenger et al. 2011, Wenger & McCormick 2013).  

The role of turbidity in habitat selection by estuarine fishes is still unclear. 

In a study on red drum phototactic behavior, Stearns et al. (1994) found that 

despite turbidity in the local environment, downwelling light levels during midday are 35 
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to 350 times the minimum thresholds required for larval red drum feeding at the bottom 

of Lydia Ann Channel in Port Aransas, Texas (depth = 8 m).  Due to the limitations of 

using artificial lighting in the laboratory, caution should be taken when comparing results 

to natural conditions.  In particular, this study did not attempt to recreate in the laboratory 

a natural angular light distribution, and behavioral responses can be different under those 

conditions (Swift & Forward 1988).  Nevertheless, most of the visible light spectrum is 

available in the local environment at the depths tested in this study (Stearns et al. 1994).  

Red and blue spectral bands are absorbed more rapidly at depths > 1 m compared with 

mid-spectrum wavelengths (green and yellow).  The colors used in the current study 

represent the mid-spectrum levels, which transmit greater distances into the water column 

(Stearns et al. 1994).  The water depths used were both shallow enough for the benthic 

color to be seen from the surface of the water column but deep enough to represent actual 

local estuarine water depths (Stearns et al. 1994, Rooker et al. 1998).  

Larval red drum undergo substantial improvements in the visual system during 

ontogeny (Fuiman & Delbos 1998, Poling & Fuiman 1998).  There is an increase in 

visual acuity (resolution), which can explain the increased responsiveness and decreased 

response latency to predators through development (Fuiman et al. 1999).  Visual acuity is 

still poor in individuals first entering the estuaries, and though it is necessary for 

effectively escaping predators, sufficient improvements do not coincide with the 

movement from offshore to inshore (Poling & Fuiman 1998).  Significant improvements 

in visual resolution do coincide with settlement, when red drum enter the seagrass beds 

(Poling & Fuiman 1998).  Visual sensitivity, which is determined by the lowest 
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detectable light intensity, also improves around the time of settlement (Fuiman & Delbos 

1998, Poling & Fuiman 1998).  Rods appear in the retina around the time larvae enter the 

estuaries, and photoreceptor density increases around settlement size.  These changes to 

the visual system might be necessary when transitioning from well-lit surface waters to 

the poorly-lit seagrass beds, where irradiance can be 10% of the levels found outside of 

the beds (James & Heck 1994).  Prior to this developmental stage, red drum larvae are 

capable of visually mediated responses to prey or habitat, but might not be competent to 

settle. 

Changes to the visual system in relation to settlement have been studied in other 

fishes as well.  Eye development does not differ greatly among species, though the timing 

and rate of change can be correlated with lifestyle (Shand 1997, Lara 2001).  For scarids 

and labrids that bury themselves in the sediment during settlement, rods only begin to 

appear during the burial period (Lara 2001).  In these same fishes, retinal organization 

and increased acuity also coincide with settlement, and this pattern holds true for P. 

moluccensis and Upeneus tragula (Mullidae) as well (Shand 1993, 1994, 1997; Lara 

2001).  For fishes that do not bury themselves in sediment but have a distinct 

metamorphosis, rods first begin appearing during this phase (Blaxter & Staines 1970).  It 

is therefore possible that the ability to see at low light levels (in structured habitat) is a 

factor in competency to settle for many fish species, while color perception is important 

starting at an earlier life stage (in the water column, with higher light intensities). 

This is one of the first studies to combine the influence of benthic color and 

water-column depth on the vertical position and activity of a subtropical and temperate 
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estuarine fish.  While color or depth did not influence behavior for settlement- or post-

settlement-size fish, colors associated with an estuarine habitat did evoke a behavioral 

response in pre-settlement larvae.  Future research could incorporate various turbidity and 

light levels to mimic a more realistic environment and determine the time of day that 

these larvae might be transitioning to the benthos.   
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Table 4.1.  Significance of pairwise tests for differences in mean distance from the 
bottom (cm) as a function of water-column depth and substrate color for 
pre-settlement-, settlement-, and post-settlement-size red drum.  (s), and (d) 
represent shallower and deeper water columns, and (B), (G), and (S) 
represent black, green, and sand substrate colors, respectively.  Bold 
indicates significant difference according to sequential Bonferroni 
correction. 

 
 pre-settlement  settlement postsettlement 
Effect P-value P-value P-value 
depth <0.001 0.091 0.407 

G(s vs. d) <0.001 0.812 0.829 
S(s vs. d) <0.001 0.187 0.553 
B(s vs. d) 0.012 0.150 0.069 

color 0.337 0.318 0.651  
s(G vs. S) 0.155 0.596 0.260 
s(G vs. B) 0.503 0.069 0.509 
s(S vs. B) 0.038 0.508 0.091 
d(G vs. S) 0.093 0.391 0.690 
d(G vs. B) 0.149 0.851 0.286 
d(S vs. B) 0.749 0.395 0.648 
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Table 4.2.  Mean distance from the bottom (cm ± SD) for pre-settlement-, settlement-, 
and post-settlement-size red drum in shallower (s) and deeper (d) water 
columns over green (G), sand (S), and black (B) substrates. 

 
Color       pre-settlement                    settlement                             post-settlement 
      s     d     s     d     s     d 
G          19 ± 9           53 ± 28              7 ± 6              8 ± 7             3 ± 5              3 ± 3 
S           15 ± 10         41 ± 26            10 ± 9                6 ± 7               4 ± 6                 5 ± 6 
B           21 ± 8           39 ± 28            10 ± 6                9 ± 10             2 ± 3                 5 ± 7 
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Table 4.3.  Differences in activity (SD of mean distance from bottom) as a function of 
water-column depth and substrate color for pre-settlement-, settlement-, and 
post-settlement-size red drum.  (s) and (d) represent shallower and deeper 
water columns, and (B), (G), and (S) represent black, green, and sand 
substrate colors, respectively.  Bold indicates significant difference 
according to sequential Bonferroni correction. 

 
   pre-settlement  settlement post-settlement 
Effect           P-value          P-value           P-value 
depth           < 0.001            0.189            0.375 

G(s vs. d)             0.104            0.887            0.760 
S(s vs. d)             0.016            0.549            0.480 
B(s vs. d)             0.082            0.058            0.039 

color              0.080            0.247            0.565  
s(G vs. S)             0.025            0.930            0.243 
s(G vs. B)             0.117            0.018            0.364 
s(S vs. B)             0.422            0.075            0.030 
d(G vs. S)             0.170            0.406            0.968 
d(G vs. B)             0.337            0.714            0.542 
d(S vs. B)             0.823            0.714            0.659 
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Table 4.4.  Mean activity (cm ± SD) for pre-settlement, settlement-, and post-settlement-
size red drum in shallower (s) and deeper (d) water columns over green (G), 
sand (S), and black (B) substrates. 

 
Color pre-settlement settlement post-settlement 
      s     d     s     d     s     d 
G        7.4 ± 4.8      11.5 ± 7.9          5.3 ± 2.9          6.0 ± 4.8          2.8 ± 2.9          2.9 ± 2.5 
S         4.4 ± 2.9        8.2 ± 5.6          5.4 ± 3.7          5.2 ± 5.5         3.6 ± 2.7          4.9 ± 7.1 
B        5.2 ± 4.0        9.3 ± 7.5          7.2 ± 3.4          5.8 ± 4.8         1.8 ± 1.9          4.5 ± 5.6 
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Fig. 4.1.  Mean distance from the bottom and activity of pre-settlement- (a, b), 
settlement- (c, d), and post-settlement-size (e, f) red drum as a function of 
water column depth and color.  Black represents black, dark gray represents 
green, and light gray represents sand substrates.  Median and first and third 
quartiles are represented by the boxes, and whiskers are 1.5 times the 
interquartile range with black points representing extreme points. 
Significance of statistical comparisons is shown in Tables 1 and 3. 
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Chapter 5: Benthic habitat properties can delay settlement in a 

temperate and subtropical estuarine fish (Sciaenops ocellatus) 

 

ABSTRACT 

Settlement is arguably the last stage of high mortality in the life cycle of demersal 

marine fishes, making the number of larvae that successfully settle to a benthic habitat a 

reasonable predictor of future population size.  Habitat selection during settlement is 

likely an active process, however, much of what we know about settlement processes 

comes from research focused exclusively on coral reef ecosystems.  This study used 

laboratory and field experiments to examine the relationship between larval size and 

settlement over various substrates in red drum (Sciaenops ocellatus), a temperate and 

subtropical estuarine-dependent species.  In the laboratory, vertical position was recorded 

every 10 s for larvae spanning a range of sizes (4.3 – 40.0 mm SL) in the presence of 

sand, oyster shells, or seagrass to determine median settlement size.  Median settlement 

size was 12.9 mm SL for seagrass, 15.8 mm SL for sand, and 20.5 mm SL for oyster 

shells.  To determine settlement size in the wild, vertically partitioned field enclosures 

were used to separate and quantify individuals in the water column from those that settled 

into the seagrass.   Larvae in the water column were smaller than larvae in the seagrass 

(9.3 vs. 14.3 mm SL), with a median settlement size of 12.2 mm SL.  Previous studies 

reported that red drum reach nursery habitats at 6 – 8 mm SL, but this study suggests that 
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they do not use the complex habitats at first.  Further, red drum settled at different sizes 

to sand, oyster shells, and seagrass.  These findings are interpreted as evidence for habitat 

preference and active settlement in an estuarine-dependent fish species.   

 

INTRODUCTION 

Many marine organisms have bipartite life histories consisting of a pelagic larval 

phase followed by demersal juvenile and adult phases.  The shift from the pelagic to the 

benthic environment, known as settlement, occurs when an individual outgrows the 

ability to exploit water-column resources, thus changing to a substrate-associated niche 

(Werner 1988).  Settlement is usually the last stage of high mortality in the life cycle, at 

times exceeding 50% within the first 24 hours of association with the benthos (Doherty et 

al. 2004, Fuiman et al. 2010, McCormick & Meekan 2010).  Therefore, success or failure 

around the time of settlement contributes to the order-of-magnitude variations in adult 

population sizes across spatial and temporal scales, which greatly impact fisheries and 

local ecology (Cowan & Shaw 2002). 

Settling individuals first associate with juvenile habitats after transitioning to the 

benthos.  Juvenile habitats include all areas occupied by individuals prior to moving to 

the adult habitat, usually occurring at the onset of reproduction (Beck et al. 2001).  Most 

juveniles associate with nursery grounds (though not all nurseries are benthic) or 

effective juvenile habitats (EJH), which provide shelter from predators and food for 

growth.  Habitats are considered nurseries if they produce more juveniles that recruit to 
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the adult population than a different habitat of the same size that also contain juveniles, 

and EJH are habitats that contribute a greater proportion of individuals to the adult stock 

than the mean level contributed by all juvenile habitats (Beck et al. 2001, Dahlgren et al. 

2006).  While specific habitats may be critical for the survival of some species, it is more 

likely that fishes can use a range of habitats during the juvenile phase (Butler & Jernakoff 

1999, Petrik et al. 1999).  Wetlands (i.e., salt marshes and mangroves) and seagrass beds 

are the most commonly studied nursery habitats, but oyster reefs, rocky substrata, or sand 

flats might be occupied by juveniles as well (Orth et al. 1984, Beck et al. 2001, Neahr et 

al. 2010).  

Settlement is generally considered to be a swift process in order to reduce 

mortality risk (Wilbur 1980, Victor 1982, Bell & Westoby 1986).  Nevertheless, a few 

studies on coral reef fishes have found that the settlement transition can last for several 

weeks (Kaufman et al. 1992, McCormick & Makey 1997, Lecchini et al. 2012, White et 

al. 2013).  These fishes may not have developed juvenile behavior or undergone 

metamorphosis and therefore do not immediately utilize the juvenile habitat and recruit to 

the juvenile population (here, recruitment is defined as the establishment of an individual 

in the juvenile stock, Kaufman et al. 1992). 

Bell & Westoby (1986) suggested that while different environments within 

nursery grounds could result in varying degrees of fitness for inhabitants, an individual 

that is competent to settle should settle onto the first structured substrate it encounters, 

regardless of quality.  According to this ‘settle-and-stay’ hypothesis, rejecting the first 

site would result in an increased risk of predation, since any benthic structure is safer than 
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the water column (Bell & Westoby 1986).  Organisms are expected to seek out more 

suitable microhabitats within the expanse of substrate after initial settlement, even though 

moving across unvegetated areas could also increase predation risk (Bell & Westoby 

1986).  

Aside from the few studies in coral reef fishes, most studies on habitat preference 

during settlement in marine fishes have consisted of observations and collections of 

settled individuals (Lubbers et al. 1990, Gray et al. 1996, Nagelkerken et al. 2000, 

Jenkins & Hamer 2001, Nuraini et al. 2007, Espino et al. 2011).  While these studies are 

useful for understanding recruitment, they cannot explain the factors that influenced 

settlement and the resulting spatial distribution of juveniles.  For example, the 

distribution of juveniles in benthic habitats could be the result of individuals actively 

searching for a specific habitat during the settlement process, or settling randomly 

regardless of habitat, with those in higher quality habitats profiting from greater 

resistance to hydrodynamics (i.e. less likely to be flushed out of the system) or lower 

post-settlement mortality compared to those in surrounding habitats.  The ‘settle-and-

stay” hypothesis predicts a swift transition from the water column to the benthos when an 

individual outgrows its ability to exploit water-column resources.  If a beneficial 

(structured) habitat is available, an individual should settle as soon as it becomes 

ontogenetically competent.  Settling to an inferior habitat (bare substrate) should take 

place only when beneficial habitat is not available, and that would occur at a larger size 

because the fish postpones settlement as long as possible to find beneficial habitat.      
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The main objective of this study was to determine if the settle-and-stay hypothesis 

proposed by Bell and Westoby (1986) applies to a temperate and subtropical estuarine 

fish species, the red drum, Sciaenops ocellatus, as suggested by Stunz et al. (2002b).  The 

vertical distribution of larvae over a range of sizes was tested both in the field and 

laboratory to determine mean size at settlement and settlement behavior over several 

potential nursery substrates.  These findings fill in a critical gap in the understanding of 

marine fish settlement, and have implications for management of estuarine fisheries. 

 

METHODS 

Study species 

Red drum occur in the Gulf of Mexico and Atlantic waters of North America as 

far north as North Carolina (Beckman 1988, Hoese & Moore 1998).  Males reach 

maturity in three years and females in five years, at about 70 cm fork length (Hoese & 

Moore 1998).  In Texas waters, they form spawning aggregations offshore or along the 

coast during the fall.  Eggs and young larvae are brought into estuaries by tidal currents 

(Holt et al. 1983, Holt et al. 1989).  Larvae spend approximately three weeks in the 

pelagic phase before appearing in shallow (0-1.5 m depth) seagrass beds, marsh edges, or 

unvegetated bottoms (at about 7 mm SL; Holt et al. 1983, Stunz et al. 2002a, Pérez-

Domínguez 2004).  They spend the remainder of their subadult phase in these estuaries 

and move offshore as adults in the fall and winter (Pattillo et al. 1997).  

 

Laboratory Study 
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A laboratory experiment was conducted to test the settle-and-stay hypothesis for red 

drum larvae by determining settlement size for each of three substrates (sand, seagrass, 

and oyster shells).  The hypothesis predicts no difference among substrates in size at 

settlement.  Differences in settlement size among the three substrates would indicate 

delayed settlement and the potential for active habitat selection in this species.   

 

Larval Care 

Four batches of eggs were collected from captive adults maintained at the Texas 

Parks and Wildlife Department’s Marine Development Center in Corpus Christi, TX 

(August 19, 29 and September 9, 26 in 2011), and a fifth batch was collected from 

captive adults maintained at the University of Texas Marine Science Institute’s Fisheries 

and Mariculture Laboratory (FAML) in Port Aransas, TX (October 27, 2011).  Spawning 

occurred in the evening and eggs were collected the following morning.  Samples 

collected from the Marine Development Center were transported in a covered bucket with 

15-l sea water to FAML for rearing.  A subsample of approximately 10,000 (10 ml) 

viable (floating) eggs from each spawn was equally divided into two 150-l fiberglass 

conical tanks filled with sea water.  All water for rearing and experimentation was 

maintained at a temperature of 27°C and salinity of 35-40 ppt with a continuous supply of 

oxygen through an airstone.  The photoperiod was 12:12 light:dark.  Larvae hatched the 

same afternoon and were fed rotifers (Brachionus sp.) enriched for 45 min in the fatty 

acid supplement Algamac 3050 (Aqua-fauna Bio-Marine) from 1 day post hatching (dph) 

until 11 dph at a concentration of approximately 2,667 l-1.  At 10 and 11 dph, larvae were 
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also fed 1-day-old Artemia sp. nauplii at a concentration of approximately 67 l-1.  At 12 

dph, the larvae switched to a diet of 2-day-old Artemia sp. nauplii enriched for 16 h in 

Algamac 3050 at a concentration of approximately 400 l-1.  Feeding took place once a day 

between 0800 and 1000 hours.  

 

Experiment procedure 

The afternoon before testing, larvae were transferred from the rearing facilities to 

the experimental laboratory (approximately 20 m) in a covered 15-l bucket filled with sea 

water.  This overnight acclimation was implemented to bring stress (plasma cortisol) 

levels back to basal levels after transfer (Robertson et al. 1988).  The larvae were then put 

into individual 1-l beakers filled with 300 ml of sea water and placed in a water bath to 

maintain constant temperature.  The testing chamber consisted of a glass aquarium 150 × 

31 × 50 cm (length × width × depth) divided into three sections (50 × 31 × 50 cm) by 

sturdy black plastic so that three larvae could be tested at one time.  The chamber was 

filled with filtered sea water (temperature was maintained by two underwater heaters that 

were removed during the experimental procedure).  The bottom of the tank was covered 

by one of three substrate materials:  Halodule wrightii (shoalgrass), Crassostrea virginica 

(Eastern oyster) shells, or sand (control).  H. wrightii and C. virginica reached 14 and 4 

cm into the water column from the sandy bottom of the chamber, respectively.  Three 

sides of each chamber were covered in black plastic and the fourth side was transparent 

glass for surveillance.  Depth was marked by black lines which extended 4 cm from both 

the left and right sides of the tank in 5-cm increments.  The room was dark except for two 
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60-Watt incandescent bulbs placed 60 cm above the tank 30 cm apart to allow for the fish 

to see its surroundings without seeing the observer.  The substrate and water were 

changed every four days and the tank was cleaned three times with fresh water.  Dry sand 

was collected from the local beach in Port Aransas, and the seagrass (including roots, 

rhizomes, and surrounding sediment) and oyster shells were collected from Harbor 

Island, Texas (27° 53’N, 97° 7’W).  The sand and seagrass were used for trials 

immediately following collection, and replaced every four days.  Oyster shells were 

collected at the beginning of the experiment, washed with fresh water three times, and 

dried for two days in the sun.  They were washed and reused after a four-day span.   

Larvae were transferred to the testing chamber by slowly immersing a beaker 

containing an individual into each of the three chambers of the tank.  The fish were 

allowed to acclimate for 5 min, after which their depth was recorded to the nearest 5 cm 

every 10 s for an additional 5 min (31 observations total).  Five minutes was chosen for 

the testing period to capture the intial settlement behavior of the individual as opposed to 

post-settlement behavior and because preliminary trials indicated that there were no 

differences in vertical distribution between 5 min and 1 h.  From these observations the 

median distance from the bottom (cm), the variability between individuals in median 

distance from the bottom, and whether or not they settled were calculated.  After the 

experiment each larva was sacrificed with an overdose of tricaine methansulfonate (MS-

222) and photographed under a dissecting microscope and standard length (SL) was 

measured using Image Processing and Analysis in Java (ImageJ, U.S. National Institutes 

of Health, Bethesda, MD) software. 
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Field Experiment 

A field experiment was conducted off Harbor Island, Texas, to determine the 

mean settlement size of wild red drum to seagrass beds in situ.  Experiments were 

conducted six times during the spawning season, from October 6 to November 18, 2010, 

between 1300 and 1600 hours.  The site is a typical low energy environment with shallow 

water and a flat bottom.  Substrates transition from sand/mud and H. wrightii in shallower 

areas to Thalassia testudinum (turtle grass) in deeper areas.  The study site was chosen 

because it was both easily accessible and had a steady supply of newly recruited red drum 

in previous years (personal observation), which identified it as a suitable settlement 

habitat.  

Red drum larvae were collected from nearby seagrass beds using an epibenthic 

sled (1 × 1 × 20 m; width × height × net length) and then transferred to a 60 × 32 × 25 cm 

(length × width × depth) bucket for sorting.  Ten larvae were placed in a petri dish and 

photographed on shore, and size measurements were taken using ImageJ in the 

laboratory.  These ten larvae were carried to and placed within one of the three small 

field enclosures and left to acclimate for 30 min.    

The small field enclosures were designed to separately sample larvae above and 

below the seagrass canopy.  They were constructed from four vertical 3/4” (1.90 cm) 

diameter × 100 cm long steel rods and three 1/2” (1.27 cm) steel rods bent into circles (92 

cm diameter) positioned at 11, 27, and 91 cm from the bottom to form a cylindrical 
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structure (Fig. 5.1).  Gray mesh with 1.3× 1.1 mm (length × width) openings was attached 

to the lower two steel circles, with excess mesh flaring out of the bottom to minimize 

escape of larvae from below.  Mesh was also fastened to the top iron circle and allowed 

to drape down past the middle circle.  When in the water, the draped mesh was 

temporarily attached to the lower screen to seal the field enclosure.  A rope was sewn into 

a loop at the bottom of the draped screen to act as a drawstring.  These field enclosures 

were placed in H. wrightii beds, where the water depth was 20-45 cm above the seagrass 

canopy.  The drawstring of the enclosure was positioned at the top of the H. wrightii bed, 

at the substrate/water column interface such that the upper half enclosed the water 

column, while the lower half covered the seagrass bed. 

After 30-min acclimation, the temporary attachments on the draped mesh were 

removed, the drawstring was pulled, and a net made of gray mesh was set at the air/water 

interface to catch any fish in the water column that might have escaped from the 

drawstring.  Immediately after the upper water column was enclosed, all larvae found 

within both halves of the enclosure were collected with dip nets, kept separate, and taken 

to shore and photographed (for measurement of SL using ImageJ in the laboratory).  Fish 

that were not recovered from the field enclosure were excluded from the analyses.  

 

Statistical Analyses 

Statistical analyses were performed with the R statistical package (R 3.0.2, The R 

Foundation for Statistical Computing, http://www.R-project.org/).  In the laboratory 

experiment, small fish occupied a position high in the water column and larger fish 
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occupied a position close to the bottom, regardless of substrate type.  Piecewise 

regressions for vertical position (median distance from the bottom, in cm) against SL 

were applied to identify subsets of the data for each treatment to be used for analysis.  To 

do so, the programs “rgl,” “car,” “Cairo,” and “qpcR” were used (Ritz & Spiess 2008, 

Fox & Weisberg 2011, Adler & Murdoch 2012, Urbanek & Horner 2013).  The break 

point between two linear segments of the piecewise regression separated settled larvae 

(SL > break point) from transitioning larvae.  The slope of the line for SL < break point 

represented the rate of change in vertical position relative to size.  Data for transitioning 

individuals were used in an analysis of covariance (ANCOVA, treatment = substrate, 

covariate = size) to test for differences in settlement rate (slope) among the three 

substrates.   

To test for a change in variability in vertical position with size, the residuals from 

the regressions of vertical position on size for each treatment were used.  Because the 

residuals were normally distributed with a mean of zero, their absolute value, which was 

log-transformed to achieve normality (Fuiman 1993), was then used in another 

ANCOVA.   

For both ANCOVAs, parametric assumptions were tested by both graphical 

representation (normality of residuals) and the Fligner-Killeen test for homogeneity of 

variances (P > 0.05).  Tukey contrasts were used for post-hoc analyses of the ANCOVAs 

if the interaction term was not significant.  Differences between slopes of vertical 

position vs. SL were compared using confidence intervals when interaction terms were 

significant.  A logistic regression was applied to the three substrates separately to 
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determine the probability of settlement at a given fish size, where settlement was defined 

when a fish’s median distance from the bottom was ≤ 2 cm above the top of the substrate 

(therefore settlement was defined as < 16 cm for seagrass, < 6 cm for oyster, and < 4 cm 

for sand).  This was performed with the “aod” package (Lesnoff & Lancelot 2012).   

For the field experiment, a Welch’s t-test was used to test for a size difference in 

larvae collected in the water column vs. the seagrass (Ruxton 2006).  A logistic 

regression (with the “aod” package, Lesnoff & Lancelot 2012) was applied to the 

individual fish to determine the probability of settlement for a fish at a given size in the 

field enclosures.  To determine if there was a difference in settlement size for seagrass 

substrate between the laboratory and field experiments, a general linear model was used 

(binary dependent variable = settled, treatment = experimental location, covariate = size).   

 

RESULTS 

Laboratory Experiment 

There were 369 fish tested in the laboratory experiment (98 in seagrass, 132 in 

oyster shells, 138 in sand), with sizes ranging from 4.3 to 40.0 mm SL.  The overall 

piecewise regression models applied to vertical position vs. SL were all significant (P < 

0.001), and the breakpoints in SL for seagrass (R2 = 0.38), oyster shells (R2 = 0.43), and 

sand (R2 = 0.58) were 25.2, 21.6, and 11.3 mm SL, respectively (Fig. 5.2).  

Differences in slopes between substrates indicated that median vertical position in 

the water column decreased faster with SL over sand compared to seagrass and oyster 
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shells for transitioning larvae (P < 0.001, Fig. 5.2).  Variability between individual in 

vertical position generally decreased with increasing SL for the sand and oyster shell 

substrates, but more rapidly over sand (slope -0.10 for sand vs. -0.018 for oyster shells, P 

< 0.01, Fig. 5.3).  Variability in vertical position did not change with size for the seagrass 

treatment (P > 0.05, slope = -0.005).   

Both size and substrate had highly significant effects on whether an individual 

settled (P < 0.001).  The responses of fish in the oyster shell habitat were different from 

those in the sand and seagrass habitats (P < 0.01), however the individuals in the seagrass 

treatment did not exhibit different settlement behavior from those in the sand (P > 0.05, 

Fig. 5.4).  For a fish of 14.3 mm SL (the mean size of the fish tested in this experiment), 

the probability of being settled in the oyster substrate was 0.24, 0.43 on sand, and 0.57 in 

seagrass.  The predicted median sizes at settlement were 20.5 mm SL in oyster shells, 

15.8 mm SL in sand, and 12.9 mm SL in seagrass. 

 

Field Experiment 

Water temperature ranged from 19.4 – 28.2°C (average = 24.5) during the 

sampling period.  There were 273 fish tested in the field experiment, of which 143 

(52.4%) were recovered.  Eighty fish from the water column and 63 fish from the 

seagrass beds were recovered.  Mean size of fish recovered from the water column was 

smaller than those recovered from the seagrass (9.3 ± 2.53 mm SL vs. 14.3 ± 7.39 mm 

SL, P < 0.001, Fig. 5.5).  
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Size had a highly significant effect on settlement (P < 0.001, Fig. 5.5).  For every 

1-mm increase in SL, the odds of settling to the seagrass beds increased by 1.30.  There 

was a 50% probability that a fish 12.2 mm SL would be found in the seagrass beds 

(median size at settlement). 

 

Laboratory and Field Comparison 

Larvae settled to seagrass beds at a similar size in the laboratory and the field (P > 

0.05, Figure 5.6).  Size was the only significant factor in the model (P < 0.001; 

experiment location and the interaction were not significant, P > 0.05).   

DISCUSSION 

Coral reef environments are overwhelmingly represented in studies of settlement 

in fishes (Sale 1980, Victor 1982, Sweatman 1985, Kaufman et al. 1992, Sponaugle & 

Grorud-Covert 2006).  This work represents the first combined laboratory and field study 

of habitat selection during settlement for an estuarine-dependent subtropical and 

temperate species (but see Neuman & Able 1998 for a laboratory study).  These findings 

show that red drum larvae are selective about the habitat to which they settle in that they 

delay settlement and extend their pelagic larval duration in the presence of certain 

(presumably less favorable) benthic conditions.  Explanations for larvae delaying 

settlement include increasing their chances of encountering suitable settlement habitat 

and possibly expanding their geographic range (Victor 1986, Sponaugle & Cowen 1994, 

McCormick 1999, Plaza et al. 2010).  Because of this, dispersal models can be improved 
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by considering delays in settlement depending on habitat substrate present (Lacroix et al. 

2013).  

These results show that larvae transition to different habitats at different 

ontogenetic stages depending on the benthic structure.  If they followed the ‘settle-and-

stay’ hypothesis, they should have settled to oyster shells and seagrass at the same size, 

and to sand at either the same or larger size.  The experimental data do not support this, 

so this hypothesis as the settlement model for red drum can be rejected. 

Settlement behavior of red drum larvae in the presence of a sand substrate 

differed from other substrates in several ways.  Larvae moved closer to the bottom at a 

faster ontogenetic rate over sand, variability among individuals diminished faster with 

size, and the probability of being settled at a given size was higher than for seagrass or 

oyster substrates.  The faster reduction in inter-individual variability demonstrates more 

uniform settlement behavior at larger sizes.  It is possible that the lack of physical 

structure does not allow for variation in vertical position the way that a structured habitat 

does; moving up from a sand substrate increases the vulnerability of larger, more visible 

individuals. 

 Results from the field study support the hypothesis that red drum larvae delay 

settlement.  All individuals had access to suitable habitat, and yet the smaller fish did not 

enter the seagrass beds.  This could have been due to intraspecific competition within the 

enclosures, fear of predators within the structure, or not reaching competency.  In a 

previous study on juvenile red drum, smaller individuals were found around the edges of 

seagrass beds while larger juveniles were located closer to the center (Pérez-Dominguez 
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2004).  The author suggested the edges might be a transient habitat for new settlers, or 

that there is size-selective mortality within the seagrass beds.  The horizontal distribution 

pattern could be influenced by the same factors that impacted the vertical distribution 

patterns we found.  In both studies, red drum sort themselves both horizontally and 

vertically according to size, associating more closely with deeper seagrass as they grow.  

Approximately 50% of the larvae tested in the field were not successfully recaptured.  

This could have been due to escape from the enclosures, predation (either intra- or inter-

specific), or the inability of the researchers to recover all individuals from the seagrass.  

Because the contribution of each of these alternatives is not known, analysis was 

restricted to the individuals that were recovered.    

According to stable isotope analysis, larvae switch from a diet of particulate 

organic matter end-members (pelagic and detrital) to a diet with marsh plants and 

macroalgae end-members (benthic) at around 6-8 mm SL (Herzka et al. 2002).  This 

indicates that larvae change their diet relatively rapidly after entering the estuaries, but 

the experiments in the current study suggests they might not utilize the substrate fully 

until approximately 12.5 mm SL.  This size is associated with rapid changes in eye 

development that allow for vision in the lower light conditions associated with living in a 

shaded benthic habitat (Poling & Fuiman 1998).  These changes include an increase in 

the eye and lens diameter, and increase in the rod photoreceptor density, and a rapid 

increase in the photoreceptor/ganglion summation ratio.  Eye development could then be 

an ontogenetic milestone that needs to be met before red drum larvae can fully exploit 

structured habitats.  
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In this study, larvae moved out of the water column over sand at a faster 

ontogenetic rate than they did over seagrass and oyster shells, and they settled at a 

smaller size to sand than they did to oyster shells.  This could be interpreted as either a 

preference for sand over seagrass and oyster shells, or as behavior to increase security 

because sand does not provide shelter, and thus they cannot venture far from the bottom.  

In contrast, oyster shells and seagrass provide structure that allows individuals to be 

bolder and exposing themselves to a greater risk of predation by occupying a higher 

position in the water column adjacent to the shelter of a structured habitat.  This is 

supported by both their movement to the benthos at a larger size and the greater 

variability in distance from the bottom at the larger sizes.  It is more likely that the larvae 

do not prefer sand, but move to a sandy substrate at a smaller size because it is safer than 

the water column, but not safe enough to allow for variability in vertical position.  The 

lack of structure reduces the boldness an individual could otherwise exhibit, reducing 

risky behavior by moving closer to the bottom (Wilson et al. 1994).  Similar results were 

observed in an in situ study on temperate estuarine fishes in Lake Macquarie, New South 

Wales, Australia (Trnski 2002).  Settlement-size species that settle to unvegetated 

substrates (i.e. Pagrus auratus) swam along the bottom of the water column, while the 

species that settle to seagrass beds (i.e. Acanthopagrus australis, Rhabdosargus sarba, 

and Girella tricuspidata) traveled near the surface of the water column (Trnski 2002).  

These observations were attributed to selective tidal stream transport behavior, with the 

faster surface currents transporting larvae to seagrass beds nearshore.  Previous studies 

indicate that when individuals have a choice of substrate, they are more commonly found 
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in structured habitats (Stunz et al. 2002a).  Mean densities of new recruits are highest in 

seagrass beds compared with oyster shells, marsh beds (Spartina alterniflora), and 

unvegetated bottoms.  When seagrass beds are not available, red drum are most 

commonly found along the marsh edge (Stunz et al. 2002a).  

Larvae settle to oyster shells at a larger size than to either sand or seagrass, which 

indicates that oyster shells are a less favorable settlement habitat.  While both seagrass 

and oyster shells provide structure, larvae delayed settlement longer over oyster shells.  

In the wild, this could be due to the predators and/or prey associated with each habitat, 

the height or complexity of the structure, or possibly the differences in acoustic properties 

(Laegdsgaard & Johnson 2001, Gullstrom et al. 2008, Wilson et al. 2013).  Oyster reefs 

have higher sound pressure levels than surrounding soft-bottom habitats, while sound 

transmission travels shorter distances in seagrass beds compared with bare substrate 

(Wilson et al. 2013, Lillis et al. 2014).  It is possible that new settlers would avoid noisy 

habitats and delay settlement for the opportunity to reside in a quieter habitat.  Though 

predators were not included in this experiment, the oyster shells used in the laboratory 

were completely dried before the trials to remove prey prior to the trials.  The seagrass, 

however, did not go through this process and might have contained some prey. Further 

studies are needed to determine the reasons for delayed settlement over oyster shells. 

In the natural environment, larvae are likely locating these different microhabitats 

using visual, auditory, and chemical cues.  These cues operate on different spatial scales, 

and operate simultaneously to aid larvae in navigating to settlement habitats (reviewed by 

Kingsford et al. 2002).  Estuarine-derived chemical signals, which could combine both 
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terrestrial and marine influences, might act as a cue for larvae to orient towards the coast, 

and position themselves in the water column to take advantage of particular currents 

(Atema et al. 2002, Dixson et al. 2008).  Additionally, specific microhabitats generate 

different acoustic profiles, potentially aiding in navigation towards suitable settlement 

sites (Kennedy et al. 2010, Radford et al. 2010).  On the smallest spatial scales, which 

were the focus of this study, larvae can rely on vision in addition to their other senses to 

select microhabitats (Stearns et al. 1994).  Chemical, auditory, and visual cues from 

conspecifics, prey, predators, as well as abiotic and biotic characteristics of the habitat 

could attract or deter potential settlers (reviewed by Montgomery et al. 2001, Kingsford 

et al. 2002).  

While this research answers fundamental questions about an important period in 

larval fish ecology, it also has implications for fisheries management and conservation.  

Seagrass beds around the world are in decline from natural and anthropogenic effects, 

including those used by red drum (Short & Wyllie-Echeverria 1996).  For instance, 

Galveston Bay in Texas has seen an 80% decrease in seagrass area since the 1970s, 

resulting in a reduction of structurally complex habitats for postsettlement larvae (Adair 

et al. 1994).  Therefore, availability of settlement habitat could limit recruitment.  This 

study shows that red drum larvae prefer seagrass habitat for settlement.  A reduction in 

preferred habitat could increase predation mortality (both by extending the pelagic larval 

duration or increasing susceptiblity over unvegetated bottoms), competition, and reduced 

availability of prey. 
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Fig. 5.1.  Small field enclosure made of four vertical 1.9-cm diameter × 100-cm long 
steel rods and three 1.3-cm steel rods bent into circles (92 cm diameter) 
positioned at 11, 27, and 91 cm from the bottom.  Gray mesh with 1.3× 1.1 
mm (length × width) openings was attached to the bottom two steel circles.  
Mesh was also attached to the top steel circle and draped down, with a rope 
sewn into the bottom to act as a drawstring.  When in the water, (a) the 
draped mesh was temporarily attached to the lower screen to seal the field 
enclosure, and (b) the drawstring was pulled shut to separate larvae in the 
water column from those in the seagrass bed.   
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Fig. 5.2.  Vertical position in the water column as a function of size for three substrates: 
(a) seagrass (n = 98), (b) oyster shells (n = 132), and (c) sand (n = 138).  
Each point represents the median vertical position of 31 measurements made 
during a 5-minute period for an individual fish.  
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Fig. 5.3.  Variability in median vertical position with fish size.  Variability is defined as 
the log(absolute value(residuals from the ANCOVA on median distance 
from the bottom)).  
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Fig. 5.4.  Probability of settlement as a function of size for seagrass, oyster shells, and 
sand.  Median size at settlement (50% probability) is 20.5, 12.9, and 15.8 
mm SL for fish in oyster shells, seagrass, and sand, respectively.  Shading 
represents 95% confidence intervals. 
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Fig. 5.5.  Probability of settlement from the water column to a seagrass bed as a function 
of size (p < 0.001).  Median size at settlement (50% probability) is 12.2 mm 
SL.  Points represent individuals collected from the seagrass bed (settlement 
probability = 1) and the water column (settlement probability = 0). 
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Fig. 5.6.  Probability of settlement from the water column to a seagrass bed as a function 
of size in the laboratory vs. field.    
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Chapter 6: Conclusions 

 

The studies contained in this dissertation serve as the foundation for 

understanding the behavioral response of red drum larvae to settlement cues through 

development.  This is the first comprehensive examination of settlement behavior in a 

temperate and subtropical estuarine-dependent species.  From these experiments we now 

know that red drum are capable of detecting, deciphering, and responding to auditory, 

olfactory, and visual stimuli that promote settlement and survival during their early life 

stages.  They move less when exposed to anthropogenic noise, and this response might 

persist even after the auditory stimulus ceases.  They react to both pure tones and white 

noise at amplitudes that could occur in their pelagic environment.  As shipping and 

human activities continue to expand worldwide, understanding the behavioral responses 

and subsequent impact on survival is becoming more important.  When red drum are 

competent to settle, they increase their activity and swim toward olfactory cues 

associated with their primary nursery habitat.  The research in this dissertation is the first 

to identify a specific class of natural compounds that is associated with the settlement of 

estuarine-dependent fish, and the first to analyze kinesis and taxis behaviors during 

settlement for subtropical/temperate fish.  This work also demonstrates that pelagic larvae 

can use benthic color to position themselves in the water column.  In particular, they 

moved away from colors associated with estuarine habitats when given the opportunity, 

while depth and activity were not influenced by benthic colors or water column depth 
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when larvae reached settlement and post-settlement-sizes.  Lastly, this research is the first 

to discover a delay in settlement of a subtropical and temperature species, counter to the 

expected rapid settlement to structured habitat once a larva reaches competency 

embodied by the settle-and-stay hypothesis.  In reality, larvae settle to sand and seagrass 

at a smaller size than they do to oyster shells, demonstrating habitat preference. 

Studying settlement behavior leads to a better understanding of the factors that 

influence recruitment and adult population size.  In addition to defining habitat 

requirements for maintaining healthy population levels of juvenile fishes, these studies 

help identify specific cues that are likely required to direct larval fish to those suitable 

nursery sites.  This research suggests that drivers associated with locating and selecting 

habitat should not be overlooked when designing habitat and fisheries management plans, 

as population replenishment might not be possible without reliable sensory signals to 

attract settlers.  For example, the results in this dissertation research suggest that a steady 

supply of lignin should flow from estuaries to maximize recruitment.  Lignin is released 

from seagrass beds, emergent vegetation, and terrestrial plant material deposited into 

riverine sources, therefore productive seagrass beds, healthy salt marsh and mangrove 

habitats, and/or a steady supply of freshwater inflow might be necessary for estuarine-

dependent larvae to locate settlement sites.  Also, if managers are considering restoring 

and protecting settlement habitat for red drum, seagrass restoration should be better than 

oyster beds. 

The larvae tested in this dissertation were spawned from broodstock or directly 

collected from the waters surrounding Port Aransas, Texas.  It is unclear from these 
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results whether larvae respond to the same cues in other geographic areas, or whether 

these behaviors are local adaptations.  Red drum in the northern Gulf of Mexico (from 

southern Texas to Tampa, Florida) exhibit a genetic isolation-by-distance effect, with 

geographic neighborhood (subpopulation) size spanning 700 – 900 km (Gold & Turner 

2002).  Within these ranges the available settlement sites range widely.  Along the Texas 

coast, freshwater inflow decreases from north to south (Texas Department of Water 

Resources 1982) and seagrass availability increases from north to south (approximately 

200 hectares in Galveston Bays to 46,000 hectares in Lower Laguna Madre, Dunton et al. 

2010).  While the settlement cues across this region might be different, red drum across 

this range are genetically similar.  It is therefore unlikely that red drum, at least along the 

Texas coast, are locally adapted to respond to different signals.  Similar studies on red 

drum in other regions, including the eastern Gulf of Mexico and the Atlantic Coast, 

would elucidate the extent of local adaptation in settlement behavior across 

subpopulations. 

These results may be applicable to other subtropical or temperate species that 

require estuarine juvenile habitat.  Species that use estuarine habitats other than seagrass, 

such as the water column (e.g., bay anchovy, Anchoa mitchilli; gulf menhaden, 

Brevoortia patronus; scaled sardine, Harengula jaguana) or shell substrates (e.g., 

skilletfish, Gobiesox strumosus; naked goby, Gobiosoma bosc) should be studied to 

understand the sensory cues to which they might be responding (Baltz et al. 1993).  Since 

some signals might change seasonally (e.g., seagrasses proliferate in summer), it would 

be valuable to study the signals needed for species that move into estuaries at times other 
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than the fall (e.g., spot, Leiostomus xanthurus, is most abundant in the winter, and 

southern flounder, Paralichthys lethostigma, immigrate to estuaries in the late winter and 

early spring) (Baltz et al. 1993).  Though less widely studied than olfactory, auditory, or 

visual cues, other orientation stimuli, such as currents (via rheotaxis) or possibly 

geomagnetic fields might aid young fish in locating settlement sites (Kingsford et al. 

2002 and citations therein).  Additionally, environmental variables (e.g., turbidity and 

water flow) can vary both predictably (e.g., diurnal or semidiurnal) and unpredictably, 

and future studies should identify how these kinds of variability can enhance or interfere 

with estuarine cues.  These follow-up studies would clarify the extent to which estuarine 

cues are species- or location-specific, or whether they act as a universal signal for all 

estuarine-dependent fishes.  This will lead to a more comprehensive understanding of 

estuarine fish ecology.  
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