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Contemporary cognitive theory recognizes several dissociable learning systems 

that are critical in understanding different patterns of performance. Rule Based learning is 

mediated predominantly by the frontal lobe and is available to conscious control. Here 

executive function and working memory develop verbalizable rules guided by corrective 

feedback. Procedural learning is based on integrating non-verbal information from 

multiple sources and is predominantly mediated by the striatum. Here habitual stimulus-

response associations develop using corrective feedback. Perceptual Representation 

learning is based on passive familiarity predominantly mediated by the visual cortex.  

Here learning is not guided by on conscious evaluations or feedback. Age-related deficits 

in learning have been well documented, however dissociable learning systems 

approaches demonstrated the greatest declines occur in feedback-driven learning.  

In the face of declines, older adults maintain several well-persevered aspects of 

cognition. For example, older adults sometimes show enhanced processing of positive 

emotionally arousing stimuli, but this positivity bias reverses when cognitive control 

resources are limited becoming a negativity bias. Unlike previous work that explores 
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emotional stimuli directly, the goal of Chapters 1 and 2 is to use emotional feedback to 

improve learning outcomes.   

In addition, older adults have a performance advantage over younger adults in 

perceptual representation learning in the absence of feedback. This suggests that the 

processes that underlie this mode of learning are relatively intact, however it is unclear 

what these processes are and how they contribute to performance. The dissociable 

memory systems that underlie rule based and perceptual representation learning 

demonstrate asymmetric age-related declines that may be driving these differences. 

Chapter 3 explores age-related changes processes during learning. 

Chapter 3 also highlights a younger adult deficit in perceptual representation 

learning. Generating rules depends on narrow attention to features, and perceptual 

representations depend on broad attention to the whole stimulus. Task-irrelevant 

emotional primes influence the scope of attention where negative arousal narrows and 

positive arousal broadens, which likely affects rule based and perceptual representation 

learning systems differently. Chapter 4 explores how task-irrelevant emotional primes 

influence attention and interact with learning system to enhance performance in younger 

adults. 
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OVERVIEW AND BACKGROUND 

The demographics of the world are changing at a rapid pace and people across the 

United States are living and working longer than ever before.  In 2011 the oldest baby 

boomers started turning 65 and today over 40 million people in the United States are over 

the age of 65 (Jacobsen, Kent, Lee, & Mather, 2011).  This number is slated to more than 

double over the next 35 years representing 20% of the population in the United States.  

This increase in longevity places increased economic pressure on our population, which 

is already being seen as we push back the age of retirement (Reno & Veghte, 2010).  Late 

life participation in the workplace comes with an increased need to learn new skills as we 

age; however our ability to learn new things shows many declines across the lifespan, 

though other aspects remain intact or improve.  

 

 

Figure 1. United States’ older adult demographic history from 1950 projected through 
2050. 
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Age-related deficits in learning have been well documented and older adults who 

lack the ability to participate in lifelong learning are becoming increasingly 

disadvantaged. Though multiple learning systems shows declines across the lifespan, a 

dissociable learning systems approach has demonstrated that these declines are not 

unitary and tend to affect feedback-driven processes to a greater degree than learning in 

the absence of feedback.  Despite the declines in learning that occur across the lifespan, 

both younger adults and older adults report strong emotional experiences and these 

experiences have been shown to influence concurrent cognitive processes (Bechara & 

Damasio, 2005; Carstensen & Mikels, 2005; Fredrickson & Branigan, 2005).  It is still an 

open question whether the cognitive changes that result from affective processing can be 

harnessed to improve learning outcomes within different learning systems and how these 

processes are affected by age.  My dissertation research aims to bridge the dissociable 

learning systems literature and emotion literature improving our understanding of best 

practices to optimize learning across the lifespan. 

 

DISSOCIABLE LEARNING SYSTEMS APPROACH TO LEARNING 

Contemporary cognitive theory recognizes several dissociable learning systems 

(Ashby & Maddox, 2005; 2010; Ashby, Alfonso-Reese, Turken, & Waldron, 1998; 

Beevers, 2005) which have been demonstrated behaviorally (Filoteo, Lauritzen, & 

Maddox, 2010), functionally (Zeithamova, Maddox, & Schnyer, 2008), and in patient 

populations (Ashby, Noble, Filoteo, Waldron, & Ell, 2003; Bozoki, Grossman, & Smith, 
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2006; Schnyer et al., 2009). This dissociable learning systems approach has been critical 

in explaining mixed findings in the category learning literature over the last 20 years 

(Ashby et al., 1998; Ashby & Maddox, 2005; 2010; J. D. Smith & Minda, 1998). Rule 

Based tasks are hypothesis driven, utilize feedback, include category structures that are 

verbalizable and are best learned using executive resources and logic. Here the prefrontal 

cortex, anterior cingulate, head of the caudate, and the medial temporal lobe mediate 

learning. For example, in disc golf accuracy increases if you know that short distance 

throws are more accurate with a thick disc and long distance throws are more accurate 

with a thin disc. Procedural learning, on the other hand, is mediated by the striatum, 

visual cortex, and dopaminergic cortico-striatal loops.  Here learning is accomplished 

through repeated exposure to stimuli and habitual stimulus-response associations. This 

includes category structures that are not easily verbalized, such as integrating information 

from non-verbal mathematical relationships using feedback, and occur at a predecisional 

level (Ashby et al., 1998; Beevers, 2005; Filoteo et al., 2010; Maddox & Ashby, 2004; 

Poldrack & Foerde, 2008; Poldrack & Packard, 2003; Schnyer et al., 2009). For example, 

in disc golf verbal rules are little help in knowing how to move your body to throw a disc 

to a desired location.  Instead, you need to become familiar with the proper technique 

through repeated attempts over time. Perceptual Representation Learning, though also 

non-verbal, depends on familiarity with a group. Here learning is mediated by the visual 

cortex and occurs with repeated exposures to stimuli distorted from one exemplar without 

feedback (Ashby & O'Brien, 2005; Reber, Stark, & Squire, 1998; Zeithamova et al., 

2008).  For example, as you play disc golf you may familiarize yourself with a set of 
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discs from a particular brand.  If you later find an unmarked disc on the course perceptual 

representations guide whether you classify the disc as a member of the known brand or if 

it belongs to an unknown brand. Thus, when studying learning it is important to 

distinguish between these systems and consider which psychological processes support 

each task (Ashby et al., 1998; Head, Kennedy, Rodrigue, & Raz, 2009).  

RULE-BASED CATEGORY LEARNING WITH FEEDBACK ACROSS THE LIFESPAN  

Age-related performance deficits are seen across a multitude of cognitive domains 

including inductive reasoning, spatial orientation, perceptual speed, numeric ability, 

verbal ability, and memory (Schaie, 1996). In the realm of learning, age-related deficits 

in rule-based processing are well documented. Older adults often have particular trouble 

learning tasks that rely on executive function and cognitive control mechanisms (Braver 

& Barch, 2002; Park et al., 2002; however see Verhaeghen, 2011; 2011; Verhaeghen & 

Cerella, 2002; Verhaeghen, Steitz, Sliwinski, & Cerella, 2003). These include many 

forms of rule-based category learning (Maddox, Chandrasekaran, Smayda, & Yi, 2013; 

Maddox, Pacheco, Reeves, Zhu, & Schnyer, 2010), as well as tasks that require set 

shifting such as the classic Wisconsin Card Sorting Task (Gorlick et al., 2013; Gunning-

Dixon & Raz, 2003; Head et al., 2009; MacPherson, Phillips, & Sala, 2002).  

Evidence from anatomical studies suggests that dopaminergic and volumetric 

declines in the prefrontal cortex may hinder older adults’ performance during rule-based 

tasks (Bãckman et al., 2000; Gunning-Dixon & Raz, 2003). The prefrontal cortex, which 

shows the greatest volume declines in white and gray matter with age (Raz, 2005; Raz, 
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Williamson, Gunning-Dixon, Head, & Acker, 2000), has been linked with impairments in 

working memory and executive function (MacPherson et al., 2002). These cognitive 

abilities are important for rule-based learning, where flexibility and maintenance of 

contingencies in working memory is critical to optimize performance (Filoteo et al., 

2010; Gunning-Dixon & Raz, 2003; Schnyer et al., 2009). In support of this hypothesis, 

rule-based learning deficits have been induced in younger adults using behavioral 

manipulations that tax frontal systems such as a dual tasks that limit working memory 

resources (Filoteo et al., 2010; Maddox et al., 2011; Maddox, Love, Glass, & Filoteo, 

2008). 

PROCEDURAL CATEGORY LEARNING WITH FEEDBACK ACROSS THE LIFESPAN  

Age-related deficits are also seen in procedural non-verbalizable tasks that include 

feedback processing during learning (Glass, Chotibut, Pacheco, Schnyer, & Maddox, 

2012; J. H. Howard, Howard, Dennis, Yankovich, & Vaidya, 2004; Maddox et al., 2010; 

2013; Simon, Vaidya, Howard, & Howard, 2012).  Here feedback is critical in facilitating 

the integration of mathematical relationships in the striatum over time. For example, age-

related deficits are seen during a procedural categorization task where non-verbal 

mathematical information about binary features is learned slowly over time with 

corrective feedback.  Here older adults use simple suboptimal strategies or when they do 

use appropriate strategies they use them inconsistently which is related to poor 

performance.  These declines could also be influenced by changes in dopamine and the 

way the striatum processes feedback across the lifespan (Mell, 2009; Mell et al., 2005). 
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AGE-RELATED CHANGES IN FEEDBACK PROCESSING 

Research has shown that older adults respond to reward and punishment 

differently than younger adults and these differences may depend on the processes 

underlying learning (Eppinger & Kray, 2011; Eppinger, Schuck, Nystrom, & Cohen, 

2013; Guitart-Masip et al., 2013; Lighthall, Gorlick, Schoeke, Frank, & Mather, 2013; 

Mell et al., 2005; Pietschmann, Endrass, Czerwon, & Kathmann, 2011; Samanez-Larkin, 

Hollon, Carstensen, & Knutson, 2008; Samanez-Larkin, Levens, Perry, Dougherty, & 

Knutson, 2012; Simon, Howard, & Howard, 2010).  During rule-based tasks, older adults 

have demonstrated a greater sensitivity to the anticipation of rewards than punishment 

(Samanez-Larkin et al., 2007).  For example, while trying to explicitly respond to the 

presence of a target associated with monetary gains or monetary losses, older adults 

demonstrate reduced neural activation and subjective affective response while 

anticipating monetary losses and intact neural activation and subjective affective response 

while anticipating monetary gains relative to younger adults. While this study suggests 

that older adults are processing positive monetary feedback differently than negative 

monetary feedback, it is unclear how anticipatory biases affect learning outcomes in older 

adults.   

During procedural learning, on the other hand, older adults have been shown to be 

better at avoiding negative outcomes than approaching positive outcomes (Lighthall et 

al., 2013). Here participants completed a striatally-mediated probabilistic learning task in 

which they had to learn which symbol, in three symbol pairs, was more likely to yield 

positive feedback and which predicted negative feedback (Frank, 2004). Feedback 
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presented after each choice was either “correct” in green or “error” in red.  Older adults 

were better at learning to avoid negative feedback than approach positive feedback. 

These findings support results from other tasks indicating that procedural learning given 

negative feedback is better preserved in older adults (Marschner et al., 2005; Mell et al., 

2005; Pietschmann et al., 2011; Simon et al., 2010). It is possible that these age-related 

differences in the effectiveness of feedback processing interact with learning processes as 

well as the cognitive demands of the task to influence learning outcomes.  

OLDER ADULTS, EMOTION, AND COGNITION 

Despite well-documented learning deficits associated with normal aging, older 

adults’ affective processing is generally well preserved (Leclerc & Kensinger, 2008; M. 

Mather, 2012). Older adults continue to have strong emotional experiences and report 

enhanced emotional well-being when compared with younger adults (Carstensen, 

Pasupathi, Mayr, & Nesselroade, 2000). Interestingly, whether older adults process 

positive or negative emotional information more effectively can differ as a function of 

available cognitive control resources. Specifically, when cognitive control resources are 

available, older adults show enhanced processing of positive emotional information 

(Knight et al., 2007; M. Mather & Carstensen, 2005; Petrican, Moscovitch, & 

Schimmack, 2008), an age difference known as the ‘positivity effect’ (M. Mather & 

Carstensen, 2005). Although the positivity effect is not always observed (Murphy & 

Isaacowitz, 2008), it is frequently seen in the domains of choice (M. Mather, Knight, & 

McCaffrey, 2005), attention (Isaacowitz, Wadlinger, Goren, & Wilson, 2006; M. Mather 
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& Carstensen, 2003), and memory (Grady, Hongwanishkul, Keightley, Lee, & Hasher, 

2007). For instance, when shown positive, negative, and neutral pictures, older adults 

recall more positive pictures and fewer negative pictures than younger adults (Charles, 

Mather, & Carstensen, 2003). 

Mather and colleagues argue that older adults’ positivity bias is the result of goal-

directed processes and thus depend on cognitive control and executive function 

(Isaacowitz, Toner, & Neupert, 2009; Knight et al., 2007; Kryla-Lighthall & Mather, 

2009; M. Mather & Carstensen, 2005; Nashiro, Sakaki, Nga, & Mather, 2012; Petrican et 

al., 2008). Reduced cognitive control resources should attenuate the positivity effect in 

attention and memory. Mather and Knight (2005) tested this hypothesis by having older 

adults view pictures under full attention conditions, or with a secondary task that divided 

attention limiting cognitive control and working memory resources. In the full attention 

condition, older adults recalled more positive than negative pictures, whereas younger 

adults recalled more negative than positive pictures. This is consistent with a positivity 

effect. However, in the divided attention condition there was a significant reversal of this 

effect where both groups recalled more negative pictures than positive pictures.  

Chapter 1 & Chapter 2: Emotional Biases, Feedback, and Category Learning 

 Much of the research to date has examined emotional biases for stimuli with 

inherent emotional content.  It is unclear whether these biases in processing emotional 

stimuli would generalize to learning outcomes when the stimuli of interest are devoid of 

emotion and emotional feedback is provided to guide learning.  Further, age-related 

changes in the efficacy of reward and punishment feedback within rule-based and 
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procedural learning systems suggest that the valence of emotional feedback may play an 

even larger role during learning.  

Mather and colleagues suggest that emotional biases depend on cognitive control 

resources, however it is also possible that the increased difficulty, represented by overall 

accuracy, of the task is driving these effects.  If cognitive control resources are 

responsible for effortful emotional biases in older adults, we expect the cognitive control 

demands of the task to interact with valenced emotional feedback processing biases to 

influence learning outcomes. During a simple rule-based task that places low load on 

cognitive control, we expect to see a positivity bias where positive emotional feedback 

improves performance relative to negative emotional feedback.  However, we predict a 

significant reversal of these effects during a complex rule-based task that places high load 

on cognitive control resources. However, this does not inform how effortful emotion 

regulation influences automatic feedback processing during learning.   

Procedural learning is an ideal paradigm to test whether an effortful focus on 

emotional feedback can improve automatic learning. Since cognitive control is available 

during procedural learning, we may predict that older adults may perform better with 

positive emotional feedback relative to negative emotional feedback.  However, previous 

research exploring ways to attenuate cognitive deficits have demonstrated that 

interventions are most effective when they are aligned with the processes that underlie 

learning (Cooper & Gorlick, Under Review). Thus, if an automatic learning deficit is not 

responsive to changes in effortful feedback processing, we predict that older adults will 

maintain a deficit in the procedural task regardless of the social component of the 
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feedback.  To test these effects, Chapter 1 and Chapter 2 examine how the valence of 

emotional and logical feedback interact with task-related limitations on cognitive control 

and task-related difficulty within rule-based and procedural learning systems. 

LEARNING PERCEPTUAL REPRESENTATIONS ACROSS THE LIFESPAN  

Though age-related deficits are seen across automatic tasks with feedback, this 

deficit reverses to become an age-related advantage in perceptual representation 

learning in the absence of feedback. For example, Maddox and colleagues recently 

examined rule-based and perceptual representation learning in older adults and found an 

age-related deficit in rule-based learning when prototype distortions form two categories 

which are learned using verbalizable hypotheses and corrective feedback, but an age-

related advantage in a perceptual version of the task where familiarity-based learning 

occurs without feedback through passive training on a single category distortion (Glass et 

al., 2012). As feedback is not involved, one possibility is that age-related changes in 

memory processes are driving these effects (Ashby & Maddox, 1993; Reber et al., 1998; 

J. D. Smith & Minda, 1998; 2002).  In line with this idea, it has been demonstrated that 

category learning is facilitated by dissociable memory processes where rule-based tasks 

are supported by declarative working memory (i.e. recollection) and perceptual tasks are 

supported by a non-declarative familiarity (Ashby & O'Brien, 2005). 
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AGE-RELATED CHANGES IN MEMORY PROCESSES: RECALL AND FAMILIARITY 

Numerous researchers have argued that memory is rooted in two dissociable 

processes - recall and familiarity (Mandler, 1980; Rolls, 2000; Yonelinas, 1997; 

Yonelinas & Jacoby, 2012). Recall is distinct from familiarity as individuals experience 

vivid, detailed retrospective information about events that occurred.  Such strong 

evidence that an event has occurred is endorsed with high certainty and prior research has 

shown that developing such memories depends on working memory which is mediated 

by the prefrontal cortex and recollection which depends on the integrity of the 

hippocampus (Fortin, Wright, & Eichenbaum, 2004; Rolls, 2000; Yonelinas et al., 2002). 

Familiarity, on the other hand, is experienced as enhanced perceptual fluency with events 

that have occurred often without the presence of specific details. These processes do not 

seem to depend on the prefrontal cortex and hippocampal integrity and instead are 

mediated by other medial temporal lobe structures, the striatum, and the visual cortex 

(Fortin et al., 2004; Rolls, 2000; Vilberg & Rugg, 2007; Yonelinas et al., 2002). Recall 

and familiarity often work in parallel to support memory however our ability to utilize 

these two processes changes with age.  

Older adults demonstrate neural declines that have been linked with differences in 

the way memories are retrieved including degradation of the hippocampus and prefrontal 

cortex (Raz, 2005; Raz et al., 2000; Rosenzweig & Barnes, 2003).  Research indicates 

that these declines may not uniformly affect the processes that support memory.  Older 

adults tend to demonstrate impairments in recall while familiarity-based processing is left 

relatively intact (Kahana, Howard, Zaromb, & Wingfield, 2002; Light, Patterson, Chung, 
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& Healy, 2004; Naveh-Benjamin, 2000). In one such study, participants were presented 

with pairs of words during study (Light et al., 2004). During test, words were presented 

with either intact pairs or rearranged pairs. Here older adults demonstrate increased hits 

when pairs were intact and increased false alarms when pairs were rearranged. However 

younger adults’ false alarms remained constant across intact and rearranged pairs 

suggesting that strong vivid recollections of what occurred at study support performance.  

Thus, when memory depends on familiarity, older adults can perform as well as younger 

adults. However, when recognition depends on vivid recollections, older adults are 

impaired.   

A memory framework that incorporates both recall and familiarity might provide 

insights into the age-related differences seen during category learning under different 

training conditions (Glass et al., 2012). In prototype distortion learning paradigms, the 

nature of the training can be manipulated such that learning under one training regimen is 

best supported by recall and learning under another training regimen is best supported by 

familiarity (Ashby et al., 1998; Bozoki et al., 2006; Gorlick & Maddox, 2013; 

Zeithamova et al., 2008). During prototype learning, participants are asked to categorize 

exemplars that have been distorted from one or two distinct prototypes. A critical 

distinction lies between perceptual representation-based A-not A (AN) prototype training, 

where participants become passively familiar with exemplars distorted from a single (A) 

prototype without corrective feedback, and rule-based A-B (AB) prototype training, 

where participants are trained on exemplars distorted from two distinct prototypes (A and 

B) with corrective feedback.  Neuroimaging in younger adults indicates that AN learning 
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is supported by a largely automatic visual network that uses perceptual fluency to drive 

familiarity judgments (Ashby & O'Brien, 2005; Reber et al., 1998). AB learning, on the 

other hand, is largely supported by a prefrontal network that recalls and compares 

features in working memory to establish verbal rules for category membership 

(Zeithamova et al., 2008).   

Though familiarity-based judgments support learning in the AN task, there is 

evidence that younger adults utilize both recall and familiarity during AN learning as 

hippocampal activity is present during correct trials in both the AB and AN tasks in 

younger adults (Zeithamova et al., 2008).  This suggests that younger adults use 

recollective processes to some extent in both tasks. As familiarity and recall are 

differentially affected by aging, it is unclear how older adults are utilizing recall and 

familiarity during AB and AN learning and how these processes contribute to 

performance, but previous research can provide some hints (Glass et al., 2012). 

In prior work, we examined prototype distortion category learning in older adults 

and found an age-related deficit in AB learning, but an age-related advantage in AN 

learning (Glass et al., 2012).  Computational prototype models indicate that these 

learning differences are due to age-related changes in attention and discrimination during 

test. Older adults broaden attention to the stimulus as a whole which has been shown to 

best support learning in the AN task (Gorlick & Maddox, 2013). In Chapter 3 we 

examine whether age-related changes in the contributions of recollection and familiarity 

may provide a mechanism for this interaction.  Here computational models and receiver 

operating characteristic curves are used to examine the dissociable contributions of 
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memory on performance. We predict that older adults will demonstrate greater familiarity 

than younger adults during the perceptual AN task enhancing performance and older 

adults will demonstrate reduced recall during the rule-based AB task relative to younger 

adults impairing performance. 

YOUNGER ADULTS, EMOTION AND ATTENTION IN DISSOCIABLE LEARNING SYSTEMS 

The results from Glass et al 2012 are intriguing and draw attention to perceptual 

learning deficits that can be seen in younger adults. Though younger adult learning is 

generally better than that of older adults, there is room for improvement. As discussed 

above, younger adults tend to show unbiased enhancements of emotional information 

processing relative to neutral information that may be leveraged to improve learning 

outcomes. For example, during a simple slideshow of emotional images, younger adults 

remember emotional images more than neutral images with no significant differences 

between positive and negatively valenced items (Charles et al., 2003). Interestingly, in 

complex environments the effects of emotional arousal are less consistent with emotional 

arousal sometimes accentuating and sometimes attenuating cognitive and perceptual 

processing (Anderson, 2005; Kensinger, 2009; M. Mather, Gorlick, & Nesmith, 2009; 

Steblay, 1992). This could be due to differences in perceived priority maps when there 

are multiple features in the environment (Ikkai & Curtis, 2011; T. Lee, Itti, & Mather, 

2012). Biased competition theory suggests that bottom-up features such as automatically 

prioritized contrast differences and top-down goal-relevant information held in working 

memory are used together to enhance attention for priority targets amid distractors (Beck 
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& Kastner, 2009; T. Lee et al., 2012). For example, when searching for a friend’s face in 

a crowd, a region of the brain known as the fusiform face area automatically detects the 

contrast differences that make up each face giving them high priority against the 

background (Kanwisher, McDermott, & Chun, 1997).  In addition the friend’s facial 

features are stored in working memory and reciprocal projections to the visual cortex 

enhance similar features perceived in the environment (Ranganath & D’Esposito, 2005).  

PRIORITY MAPS, EMOTION AND ATTENTION 

Mather and colleagues expand upon biased-competition priority maps under 

Arousal-Biased Competition theory (ABC) where arousal enhances ongoing competitive 

attentional processes between stimuli (T. Lee et al., 2012; M. Mather & Sutherland, 

2011). In general, high priority stimuli receive more attentional resources at the expense 

of low priority stimuli and arousal further exaggerates this attentional polarity. Under this 

view, attentional priority is not limited to the source of arousal and influences concurrent 

bottom-up and top-down processes. For example, arousing sounds played before high and 

low contrast letters led to enhanced perception of high priority high contrast letters and 

decreased perception of low priority low contrast letters compared to controls (M. Mather 

& Sutherland, 2011).  Another study presented participants with instructions to a) 

“remember the location of words” or b) “remember the order of words” presented in a list 

(A. P. Smith, 1982). Arousing sounds played before word presentation selectively 

enhanced memory for goal-relevant word features compared to controls. Those asked to 

remember the order demonstrated better memory for the order and worse memory for the 
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location than controls. This pattern reversed in the word location condition. Together this 

demonstrates how arousal exaggerates arousal-irrelevant attentional competition for both 

bottom-up perceptual biases and top-down goal-directed biases.  

VALENCE EFFECTS ON ATTENTIONAL SCOPE 

Mather and colleagues acknowledge that ABC may require modification to 

account for other factors such as valence (M. Mather & Sutherland, 2011). While 

emotional arousal in general has been shown to exaggerate priority maps, other research 

has shown that positive and negative valence influence the scope of attention in different 

ways. Research has demonstrated that positive arousal broadened the scope of attention, 

cognition, and action while negative arousal narrowed these aspects (Fredrickson, 2004; 

Fredrickson & Branigan, 2005; however see Gable & Harmon-Jones, 2008; 2008). 

Supporting this idea, the Weapon Focus Effect has demonstrated that those involved in an 

altercation remember the weapon but struggle to identify the face of the perpetrator 

(Steblay, 1992). On the other hand, Isen and colleagues demonstrated that those in a good 

mood applied a broad definition to sort words into groups compared to controls (e.g., 

sorting the word “camel” into the group “vehicle”) (Isen & Daubman, 1984). Thus, while 

attention for high-priority items is enhanced, it is possible that the scope of this attention 

is valence-dependent.   

 The scope of attention likely has different effects on performance within rule-

based and perceptual representation learning systems. The perceptual system is supported 

by automatic fluency and depends on broad attentional scope to develop a global 
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representation. In contrast, the rule-based system is supported by hypotheses and 

feedback, which depends on narrow attentional scope to target concrete feature 

dimensions while generating verbal rules. Thus, we predict that if negative arousal 

narrows attentional scope performance would improve in a rule-based task and if positive 

arousal broadens attentional scope performance would improve in a perceptual 

representation task.  In Chapter 4 we test these effects by including task-irrelevant 

positive, negative, or neutral emotional primes before stimulus presentation within rule-

based and perceptual representation category learning tasks. Computational models are 

used to examine the effects of emotional arousal on attentional scope and subsequent 

performance. 

SUMMARY OF CURRENT WORK 

Arousal affects a wide array of cognitive processes, yet most cognitive research is 

conducted with low-arousal paradigms leaving a critical gap in our understanding of 

learning. In addition, though emotional experience is well preserved across the lifespan it 

is clear that the effects of these emotions on cognition change.  It is still an open question 

whether the cognitive changes that result from affective processing can be harnessed to 

develop learning interventions within dissociable systems and how these processes are 

influenced by age. My dissertation research aims to bridge the dissociable system 

literature and arousal literature improving our understanding of best practices to optimize 

performance across the lifespan. 
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Chapter 1: Attenuating Age-Related Rule-Based Learning Deficits 

(Gorlick, Giguère, Glass, Nix, Mather, and Maddox, 2013, Emotion) 

 Older adults demonstrate robust deficits in rule-based tasks that depend on 

feedback processing to facilitate learning, however emotional processing is left relatively 

intact.  Interestingly, older adults often demonstrate enhanced processing of positive 

emotional information relative to negative emotional information (M. Mather & 

Carstensen, 2005).  However, this “positivity bias” reverses to become a negativity bias 

as cognitive control demands increase (Kryla-Lighthall & Mather, 2009).  It is possible 

that these emotional biases can be leveraged to improve learning outcomes across the 

lifespan with attention to task demands.  

In this chapter we examine whether intact emotional processing in older adults 

can be used to attenuate well-established age-related learning deficits in rule-based 

processing. Because of the prevalence of rule-based learning and set shifting in everyday 

life, it would be highly advantageous to develop task-specific feedback training protocols 

that enhance these forms of learning in older adults. To test this question, we use 

emotional feedback (Experiment 1) in the form of happy or angry faces as feedback or 

logical feedback (Experiment 2) in the form of gains in points or losses in points as 

feedback during learning. We also examine how the task demands on cognitive control 

interact with feedback to influence learning outcomes.   

During learning participants complete rule-based set shifting task that was 

modeled after the classic Wisconsin Card Sort Task (WCST; Heaton, 1993; 1993). The 
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WCST is ideal to test our hypothesis as older adults demonstrate reliable deficits in set 

shifting (Rhodes, 2004). In the WCST participants are asked to categorize exemplars into 

one of four categories that differ on three dimensions.  At first participants are naive to 

the categorization rule (sort by one of the three dimensions) and learn the category 

structure through corrective feedback over time.  Importantly, after 10 consecutive 

correct responses the rule changes to another dimension without informing the 

participant.  Thus, cognitive control resources are needed to disengage from the old rule 

and switch to the new rule.  This paradigm provided information about initial concept 

formation as well as the ability to shift set to a new rule.  In addition, the task allowed us 

to examine age and emotional feedback effects separately for initial rule learning and 

following a rule switch (i.e., set shifting).  

In our version of the task, we manipulated the cognitive-control demands 

associated with the learning task directly by manipulating the number of stimulus 

dimensions and the number of categories, thus creating a low and a high cognitive control 

load version of the task (see Method for details). We predicted an interaction between the 

valence of the face feedback (happy vs. angry) and the cognitive-control demands of the 

task (low vs. high) on age-based differences in performance. In the low-load version of 

the task, we predicted that older adults would have enough cognitive-control resources 

available to enhance positive emotional feedback processing in the happy-face-feedback 

condition, thus attenuating age-related learning deficits, whereas age-related deficits 

would be observed in the angry-face-feedback condition. On the other hand, in the high 

load version of the task, we predicted that older adults would not have enough cognitive 
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control resources available to enhance positive emotional feedback processing. Instead, 

they would show enhanced negative emotional feedback processing, thus attenuating age-

related learning deficits in the angry-face-feedback condition, whereas age-related 

deficits would be observed in the happy-face-feedback condition. We expect age-related 

deficits across conditions in the logical feedback condition as seen in prior work 

examining rule-based tasks (Experiment 2). 

EXPERIMENT 1 

Experiment 1 examined age-related changes in rule learning and set shifting as a 

function of the valence of emotional face feedback (happy vs. angry), as well as that of 

the cognitive load demands of the task (low vs. high).  

METHOD 

Participants 

Thirty older adults (Age: MOldLow= 66.87; RangeOldLow= 60-79) and 37 younger 

adults (Age: MYoungLow= 21.74; RangeYoungLow= 18-35) participated in the low-cognitive-

load condition, and 36 older adults (Age: MOldHigh= 66.67; RangeOldHigh= 60-82) and 40 

younger adults (Age: MYoungHigh= 20.08; RangeYoungHigh= 18-26) participated in the high-

cognitive-load condition for monetary compensation. Older adults were given a large 

battery of neuropsychological tests during a prescreening session including the Wechsler 

Adult Intelligence Scale-Fourth (Wechsler, 1997), Stroop test (Stroop, 1935), Wisconsin 

Card Sorting Test (Heaton, 1993), Trail-making test (Corrigan, 1987), and Wechsler 
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Memory Scale (WMS-IV). All results were normalized for age using standardized 

procedures and converted to Z-scores. Participants that scored more than 2 standard 

deviations below the mean for memory, executive function, and attention were excluded 

from the study. No age differences emerged on the WAIS vocabulary sub-test. Subjective 

ratings of stress and health were also taken before completing the task, and no age 

differences emerged. Age, years of education, and scaled WAIS Vocabulary scores are 

displayed in Table 1. 

Table 1: Chapter 1 Experiment 1 participant demographic information. 

   Mean Age Vocabulary Z Education 
Face Low Cognitive Load Younger 21.74 0.50 13.74 
    Older 66.87 1.41 17.70 
  High Cognitive Load Younger 20.08 0.69 13.74 
    Older 66.67 1.17 17.33 

*Vocabulary Z is the average Z score on the WAIS Vocabulary measure of intelligence.  
Education is years of education where a bachelors degree = 16 years. 

 
Materials and Procedure 

Participants in the low-cognitive-load condition completed a simple rule-learning 

task, with four stimuli constructed from a factorial combination of two binary-valued 

dimensions. On each of the 64 trials, participants were presented with one of the four 

stimuli and asked to categorize it into one of two categories. Unbeknownst to the 

participant, only one of the two stimulus dimensions was relevant to the categorization 

rule; along that dimension, each binary value was associated with one of the two 

categories. Participants were asked to pretend that they were ecologists, and that their 

task was to protect the environment by sorting cattails, frogs, ducks, or dragonflies into 
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native and foreign species using trial-by-trial feedback (see upper panel of Figure 2). 

Different surface features were used for the happy-face-feedback and angry-face-

feedback conditions, and were selected randomly from the four possible stimuli sets 

(cattails, frogs, ducks, or dragonflies). Once participants correctly categorized ten 

consecutive stimuli, the rule changed without their knowledge and the irrelevant 

dimension became relevant. Following the 64th trial, an exit screen provided information 

about whether the participant had reached their goal or not (defined below). 

Participants in the high-cognitive-load condition completed a complex rule-

learning task with 64 stimuli constructed from the factorial combination of three stimulus 

dimensions, with four possible values for each dimension. On each of 128 trials, 

participants were presented with one of the 64 stimuli and asked to categorize it into one 

of four categories. Unbeknownst to the participant, only one of the three stimulus 

dimensions was relevant; along that dimension, each of the four possible values was 

associated with one of the four categories. Participants were either told that they had to 

sort dogs by breed or outfits by designer (see lower panel of Figure 2). Each participant 

was randomly assigned to a cover story (breed or designer) and a feedback condition 

(happy or angry). Once participants correctly categorized ten consecutive stimuli the rule 

changed (without their knowledge) and one of the two irrelevant dimensions was now 

relevant. Following the 128th trial, an exit screen provided information about whether the 

participant reached their goal or not (defined below).  

Emotional face feedback was used in all conditions of Experiment 1. Participants 

in the low and high load conditions completed the task under happy-face-feedback 
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conditions and under angry-face-feedback conditions. Task order (happy face vs. angry-

face-feedback condition) was counterbalanced. On each trial in the happy-face-feedback 

condition, a correct response was followed by the presentation of a face with a large 

smile and an incorrect response was followed by a face with a small smile (see Figure 2 

for examples). In the angry-face-feedback condition, a correct response was followed by 

the presentation of a face with a small frown and an incorrect response was followed by a 

face with a large frown (see Figure 2 for examples). In addition to trial by trial feedback, 

each condition had a global goal. This goal consisted of a face displayed on the right side 

of the screen that morphed from a neutral face to an emotional face. In the happy-face-

feedback condition, the goal was to make the girl very happy. In the angry-face-feedback 

condition, the goal was to avoid making the girl very angry. The goal was attained if 80% 

of the responses were correct. The experiment was performed on PC computers using 

Flash software.   
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Figure 2. Chapter 1 Experiment 1: Procedure 

Screen shots from the happy and angry-face-feedback conditions from the low cognitive 
load and the high-cognitive-load conditions. 
 

RESULTS 

We examined three learning measures: overall accuracy, the number of trials 

needed to obtain 10 consecutive correct responses when learning the first rule (trials to 

first rule), and the number of trials needed to obtain 10 consecutive correct responses 

when learning the second rule (trials to second rule). Each measure taps into a different 

aspect of learning. Accuracy provides a global measure of learning, the number of trials 

to learn the first rule provides a measure of initial rule learning, and the number of trials 

to learn the second rule provides a measure of set shifting. Table 2 includes the means 

and standard errors for all conditions. 
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Overall accuracy was calculated for each participant and a 2 (age) X 2 (valence) 

X 2 (cognitive load) mixed ANOVA was conducted (Figure 3.1). There was a main effect 

of age, F(1,139)= 8.61, p=.004, η2=0.06, with younger adults performing more accurately 

than older adults (MOlder=.79, MYounger=.83), and a main effect of task load, F(1,139)= 

12.37, p=.001, η2=0.08, with superior performance in the low cognitive load task relative 

to the high cognitive load task (MLow=.83, MHigh=.79). These effects were qualified by a 

significant three-way age X valence X cognitive load interaction, F(1,139)= 8.23, p=.004, 

η2=0.06, and no other significant effects.  

To decompose the three-way interaction, we conducted age x valence ANOVAs 

separately for the low- and high-cognitive-load conditions. In the low-cognitive-load 

condition, the only significant effect was a main effect of age, F(1,65)= 7.91, p=.007, 

η2=0.11, with younger adults performing more accurately than older adults (MOlder=.81, 

MYounger=.86). Although the interaction was not significant, we did predict a priori that the 

age-related learning deficit should be attenuated in the happy-face-feedback condition 

relative to the angry-face-feedback condition. The effect of age was significant for both 

happy t(65)= 2.34, p=0.02, and angry face feedback, t(65)= 2.23, p=0.03. 

In the high-cognitive-load condition, there were no main effects of age or valence, 

but there was an age x valence interaction, F(1,74)= 11.93, p=.001, η2=0.14. Older adults 

performed as well as younger adults in the angry-face-feedback condition, t(74)= 0.89, 

p=0.38, ns, (MOlder=0.80, MYounger=0.78), but older adults performed significantly worse 

than younger adults in the happy-face-feedback condition, t(74)= 3.44, p=.001, 

(MOlder=0.74, MYounger=.83). In addition, older adults were significantly more accurate with 
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angry face feedback than with happy face feedback, t(35)= 2.77, p=.009, whereas 

younger adults were significantly less accurate with angry face feedback compared to 

happy face feedback, t(39)= 2.14, p=.04. 

Trials to First Rule 

The number of trials needed to learn the first rule was calculated for each 

participant and a 2 (age) X 2 (valence) X 2 (cognitive load) mixed ANOVA was 

conducted (Figure 3.2). There was a significant main effect of cognitive load, F(1,139)= 

8.57, p=.004, η2=0.06, with participants taking longer to learn the first rule in the high-

cognitive-load condition (MLow=15.6; MHigh=20.6). There were no main effects of age or 

valence and no two-way interactions, however, there was a significant age x valence x 

cognitive load interaction, F(1,139)= 5.84, p=.02, η2=0.04.  

To decompose the three-way interaction we conducted age x valence ANOVAs 

separately for the low- and high-cognitive-load conditions. In the low-cognitive-load 

condition there were no main effects and no interaction. Again we examined age effects 

separately in the happy- and angry-face-feedback conditions because of our a priori 

predictions. Older adults performed as well as younger adults in the happy-face-feedback 

condition, t(65)= 0.18, p=.86, ns, (MOlder=15.67, MYounger=15.30), but took marginally 

more trials than younger adults in the angry-face-feedback condition, t(65)= 1.79, p=.08, 

ns, (MOlder=17.07, MYounger=14.22).  

In the high-cognitive-load condition, there was no main effect of age or valence. 

However, there was a significant age x valence interaction, F(1,74)= 5.25, p=.03, 

η2=0.07. Older adults performed as well as younger adults in the angry-face-feedback 
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condition, t(74)= 0.30, p=.76, ns, (MOlder= 20.9; MYounger=22.3) but older adults took 

significantly longer to learn the first rule than younger adults in the happy-face-feedback 

condition, t(74)= 3.39, p=.001, (MOlder=24.8; MYounger=14.5). In addition, older adults 

showed no significant difference between the number of trials needed to learn the first 

rule given angry face feedback compared to happy face feedback, whereas younger adults 

took significantly more trials to learn the first rule given angry face feedback compared to 

happy face feedback, t(39)= -2.11, p=.04. 

Trials to Second Rule 

The number of trials needed to learn the second rule was calculated for each 

participant and a 2 (age) X 2 (valence) X 2 (cognitive load) mixed ANOVA was 

conducted (Figure 3.3). There was a significant main effect of age, F(1,139)= 6.54, 

p=.01, η2=0.05, with older adults taking more trials to learn the second rule than younger 

adults (MOlder=22.57; MYounger=18.06). A valence X cognitive load interaction, F(1,139)= 

5.71, p=.02, η2=0.04 also emerged suggesting fewer trials are needed for second rule 

learning with happy face feedback in the low-cognitive-load condition, but fewer trials 

are needed for second rule learning with angry face feedback in the high-cognitive-load 

condition. 

Although the three-way interaction was not significant, we decided to explore the 

pattern of age effects to provide some insights onto the nature of set shifting 

performance. Although potentially informative, these results should be interpreted with 

caution. In the low-cognitive-load condition, a significant age-deficit emerged in the 
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happy-face-feedback condition, t(65)= 3.55, p=.001, (MOlder=23.40; MYounger=15.43), and 

in the angry-face-feedback condition, t(65)= 2.09, p=.04, (MOlder=24.27; MYounger=18.60).  

On the other hand, a different pattern emerged in the high-cognitive-load 

condition. Older adults took marginally more trials than younger adults to learn the 

second rule in the happy-face-feedback condition, t(74)= 1.60, p=.11, ns, (MOlder=26.58; 

MYounger=19.53), and were as fast as younger adults to learn the second rule in the angry-

face-feedback condition, t(74)= .80, p=.42, ns, (MOlder=16.03; MYounger=18.70).  
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Figure 3. Chapter 1 Experiment 1: Results 

Experiment 1: 1) Proportion correct for older and younger adults for the happy- and 
angry-face-feedback conditions under low cognitive load and high cognitive load, 2) 
Number of trials to learn the first rule for older and younger adults for the happy- and 
angry-face-feedback conditions under low cognitive load and high cognitive load, 3) 
Number of trials to learn the second rule for older and younger adults for the happy- and 
angry-face-feedback conditions under low cognitive load and high cognitive load.  
Standard error bars are included. 
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EXPERIMENT 1 DISCUSSION 

This study examined age-related changes in rule learning and set shifting as a 

function of the valence of emotional face feedback (happy vs. angry) in low and high 

cognitive load learning tasks. Previous research suggests that older adults use cognitive 

control resources to process positive emotional information more deeply than negative 

emotional information (Knight et al., 2007; M. Mather et al., 2005; Petrican et al., 2008).  

However, when cognitive control resources are limited these effects can disappear or, at 

times, reverse. These biases likely influence the salience of feedback during learning.  

Thus, we predicted a systematic interaction between age, valence of the feedback and 

task cognitive load where happy face feedback attenuates age-related learning deficits 

under low-cognitive-load conditions, and angry face feedback attenuates age-related 

learning deficits under high-cognitive-load conditions.  

For the measures of initial and overall rule learning we found support for the 

predicted three-way interaction. Under low load conditions we predicted that happy face 

feedback would attenuate age-related deficits relative to angry face feedback. We found 

some support for this prediction in initial learning with no significant difference between 

younger adults and older adults in the number of trials needed to learn the first rule in the 

happy-face-feedback condition, and an age-deficit where older adults took 2.85 more 

trials than younger adults in the angry-face-feedback condition. For overall learning, the 

age-related deficit was 4% in the happy-face-feedback condition and 5% in the angry-
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face-feedback condition yielding only a 1% difference across feedback conditions. Under 

high load conditions we predicted that angry face feedback would attenuate age-related 

deficits relative to happy face feedback. This prediction was supported.  For initial 

learning we found no significant difference between younger adults and older adults in 

the number of trials needed to learn the first rule in the angry-face-feedback condition, 

however we found an age-related deficit where older adults took 10.30 more trials than 

younger adults in the happy-face-feedback condition. Analogously, for overall learning, 

older adults were as accurate as younger adults in the angry-face-feedback condition and 

the age-related deficit was 9% in the happy-face-feedback condition. Thus, age-related 

deficits in initial and overall rule learning were attenuated when the cognitive load was 

high and angry face feedback was used.  

Interestingly, the initial learning benefit observed for older adults in the low-

cognitive-load condition with happy face feedback was attenuated significantly once the 

second rule was introduced and set shifting was required. In fact, the age-related set-

shifting deficit was larger in the happy-face-feedback condition (7.97 trials) than in the 

angry-face-feedback condition (5.67 trials). Thus, it appears that the modest initial 

learning for older adults with happy face feedback came at the cost of reduced flexibility 

in processing making it more difficult to shift set.  

However, in the high-cognitive-load condition older adults were as fast to shift set 

as younger adults in the angry-face-feedback condition (yielding a 2.67 trial set shifting 

advantage) whereas older adults were marginally slower to shift set than younger adults 

in the happy-face-feedback condition (yielding a 7.05 trial set shifting deficit). Thus, the 
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age-related performance advantage under high-cognitive-load conditions with angry face 

feedback was large and robust across all three measures of learning. 

Although we predicted that the highly emotional nature of the face feedback is 

what led to the complex pattern of age-related deficits and performance advantages, it is 

possible that these effects also hold with less emotional feedback in the form of points 

gained and points lost. Experiment 2 addresses this possibility directly. 

EXPERIMENT 2 

Experiment 1 revealed a systematic interaction between age, valence of the 

emotional face feedback, and cognitive load associated with solving the task. When task 

demands on cognitive control are low, happy face feedback attenuates deficits in overall 

learning, initial rule learning and, to a lesser extent, set shifting.  However, during a 

complex task that places high demands on cognitive control, angry face feedback 

attenuates these age-related learning deficits. It is still unclear whether this complex 

three-way interaction generalizes to all valenced feedback or only applies to emotional 

face feedback.  

One study comparing brain activation in younger adults receiving social face 

feedback vs. monetary feedback found that monetary feedback recruits a wide range of 

brain regions including the medial orbitofrontal cortex (OFC), striatum, superior frontal 

gyrus, medial temporal lobe, and insula and social feedback activated a smaller neural 

network mostly consisting of the medial orbitofrontal cortex (Lin, Adolphs, & Rangel, 

2012).  In addition to feedback processing, the OFC has been implicated in neural 
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functions that are important for set shifting such as reversal learning (Fellows, 2003). 

Furthermore, recent research indicates that the OFC is more involved in updating 

emotional associations than non-emotional associations (Nashiro et al., 2012; Sakaki, 

Niki, & Mather, 2011b). This suggests that social and monetary feedback act through 

overlapping but separate neural networks, however it is unclear whether these differences 

affect set-shifting learning outcomes. 

One study suggests that monetary feedback shows similar processing biases as 

those seen with face feedback in a rule-based task in older adults. Samanez-Larkin and 

colleagues found that older and younger adults show similar patterns of brain activation 

while anticipating monetary gain, however older adults show less brain activation while 

anticipating monetary loss (Samanez-Larkin et al., 2007).  While this study suggests that 

older adults are processing positive monetary feedback differently than negative 

monetary feedback, it is unclear if the anticipatory biases affect learning outcomes in 

older adults.  Experiment 2 examines whether the performance interaction observed in 

Experiment 1 holds when highly emotional face feedback is replaced with less emotional 

point feedback.  

To determine whether the emotional aspect of the face feedback was critical, 

Experiment 2 serves as a replication of Experiment 1, but with the emotional face 

feedback replaced with less emotional point feedback.  

METHODS 

Participants 



 34 

Thirty-one older adults (Age: MOldLow= 67.35; RangeOldLow= 61-78) and 34 younger 

adults (Age: MYoungLow= 21.88; RangeYoungLow= 18-35) participated in the low cognitive 

load task and 31 older adults (Age: MOldHigh= 66.74; RangeOldHigh= 60-79) and 30 younger 

adults (Age: MYoungHigh= 20.55; RangeYoungHigh= 18-26) participated in the high cognitive 

load task for monetary compensation (Table 2). Older adults were given the same battery 

of neuropsychological tests described in Experiment 1 and the same exclusion criteria 

were applied. In addition, younger and older adults were administered the WAIS 

vocabulary sub-test (Wechsler, 1997) and no age group differences emerged. Subjective 

ratings of stress and health were also taken before completing the task, and no age 

differences emerged. 

Table 2: Chapter 1 Experiment 2 participant demographic information. 

   Mean Age Vocabulary Z Education 
Point Low Cognitive Load Younger 21.88 0.43 13.84 
    Older 67.35 1.34 17.97 
  High Cognitive Load Younger 20.55 0.99 13.83 
    Older 66.74 1.33 18.48 

*Vocabulary Z is the average Z score on the WAIS Vocabulary measure of intelligence.  
Education is years of education where a bachelors degree = 16 years. 
 
Materials and Procedure 

The materials and procedures were identical to Experiment 1, except that highly 

emotionally face feedback was replaced with less emotional point feedback (Figure 4). In 

the “point gain” feedback condition, a correct response was followed by a display of +3 

points and an incorrect response was followed by a display of +1 point. In the point-loss-

feedback condition, a correct response was followed by a display of -1 point and an 
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incorrect response was followed by a display of -3 points. In the point-gain-feedback 

condition, the goal was to fill the point meter to the top, whereas in the point-loss-

feedback condition, the goal was to avoid letting the point meter drop to the bottom. 

Their goal was attained if participants achieved 80% accuracy.  As in Experiment 1, task 

order was counterbalanced and surface features were randomly assigned. The experiment 

was performed on PC computers using Flash software.  

 

 

Figure 4. Chapter 1 Experiment 2: Procedure 

Screen shots from the point-gain- and point-loss-feedback conditions from the low-
cognitive-load and high-cognitive-load conditions. 

 

RESULTS 

Following the procedures outlined in Experiment 1, we examined overall 

accuracy, trials to learn the first rule, and trials to learn the second rule. 
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Accuracy 

Overall accuracy was calculated for each participant and a 2 (age) X 2 (valence) 

X 2 (cognitive load) mixed ANOVA was conducted (see Figure 5.1). There was a 

significant main effect of age, F(1,122)= 15.71, p<.001, η2=0.11, with older adults 

performing worse than younger adults (MOlder=.80; MYounger=.85), and a significant main 

effect of cognitive load, F(1,122)= 4.35, p=.04, η2=0.03, with participants being more 

accurate in the low-cognitive-load condition than in the high-cognitive-load condition 

(MLow=.84; MHigh=.81). No other effects reached significance.  

Trials to First Rule 

The number of trials needed to learn the first rule was calculated for each 

participant and a 2 (age) X 2 (valence) X 2 (cognitive load) mixed ANOVA was 

conducted (see Figure 4.2). There was a significant main effect of age, F(1,122)= 17.74, 

p<.001, η2=0.13,with older adults taking more trials to learn the first rule than younger 

adults (MOlder=19.1; MYounger=14.2). No other effects reached significance.  

Trials to Second Rule 

The number of trials needed to learn the second rule was calculated for each 

participant and a 2 (age) X 2 (valence) X 2 (cognitive load) mixed ANOVA was 

conducted (see Figure 4.3). There was a significant main effect of age, F(1,122)= 12.98, 

p<.001, η2=0.1, with older adults taking more trials to learn the second rule than younger 

adults (MOlder=20.2; MYounger=15.7), and a significant main effect of cognitive load, 

F(1,122)= 5.87, p=.02, η2=0.05, with participants taking more trials to learn the second 
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rule in the high-cognitive-load condition than in the low-cognitive-load condition 

(Mlow=19.5; Mhigh=16.4). No other effects reached significance.  
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Figure 5. Chapter 1; Experiment 2: Results 

1) Proportion correct for older and younger adults for the gain- and loss-point-feedback 
conditions under low cognitive load and high cognitive load, 2) Number of trials to learn 
the first rule for older and younger adults for the gain- and loss-point-feedback 
conditions under low cognitive load and high cognitive load, 3) Number of trials to learn 
the second rule for older and younger adults for the gain- and loss-point-feedback 
conditions under low cognitive load and high cognitive load.  Standard error bars are 
included. 
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EXPERIMENT 2 DISCUSSION 

This study repeated the format of Experiment 1, but replaced emotional face 

feedback with logical point feedback. Older adults showed the learning deficits 

classically seen in set shifting paradigms. Older adults were less accurate, needed more 

trials to learn the initial rule, and needed more trials to learn the second rule relative to 

younger adults. This pattern contrasts with the three-way age x valence x cognitive load 

interaction observed in Experiment 1 where highly emotional stimuli attenuated learning 

deficits. The results from Experiment 2 are important because they demonstrate that the 

valence manipulation (positive feedback vs. negative feedback) in isolation was not 

sufficient to attenuate age-related deficits in a rule-based task. Successful learning 

depended on the emotional content of the feedback (happy faces vs. angry faces) and age-

related deficits are still seen with less emotional feedback (point gain vs. point loss). 

DISCUSSION 

The overriding aim of this chapter was to see if well-established rule learning and 

set-shifting deficits observed in normal aging could be attenuated by incorporating 

emotional faces as feedback. Previous research suggests that older adults enhance 

emotional information using effortful cognitive-control-based processing, but that the 

valence of these enhancements changes as a function of the cognitive control resources 

available (Kryla-Lighthall & Mather, 2009). When cognitive control resources are readily 
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available, positive emotional information is processed more deeply, whereas when 

cognitive control resources are less readily available, negative emotional information is 

processed more deeply (Knight et al., 2007). We hypothesized that if highly emotional 

information in the form of happy faces or angry faces was used as feedback, enhanced 

processing of emotional information might be exploited to bootstrap learning in older 

adults. We predicted that happy face feedback would attenuate age-related learning 

deficits when the task placed minimal load on cognitive control resources, whereas angry 

face feedback would attenuate age-related learning deficits when the task placed a high 

load on cognitive-control resources. 

The results from Experiment 1 supported our predictions. Under low-cognitive-

load conditions older adults performed as well as younger adults in the happy-face-

feedback condition and showed a large initial rule learning deficit in the angry-face-

feedback condition. This pattern showed a significant reversal under high-cognitive-load 

conditions where older adults performed as well as younger adults in the angry-face-

feedback condition, but showed a large initial rule-learning deficit in the happy-face-

feedback condition. Unfortunately, any benefit in initial rule learning that older adults 

enjoyed with happy face feedback under low-cognitive-load conditions came at a cost in 

reduced flexibility once the rule switched. Specifically, under low-cognitive-load 

conditions older adults showed a set-shifting deficit relative to younger adults in both the 

happy-face and angry-face-feedback conditions. On the other hand, the benefit in initial 

rule learning that older adults enjoyed with angry face feedback under high-cognitive-

load conditions was also present once the rule switched. Specifically, under high-
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cognitive-load conditions older adults performed as well as younger adults in the angry-

face-feedback condition, despite the presence of a modest set-shifting deficit in the 

happy-face-feedback condition. 

Experiment 2 repeated Experiment 1’s procedure examining rule-based learning, 

however, the emotional face feedback was replaced by less emotional point feedback. We 

predicted that point feedback would not be processed more deeply by older adults than 

younger adults and thus would yield across-the-board age-related deficits that are 

classically seen in rule-based tasks. As predicted, age-related deficits emerged for the low 

and high-cognitive-load conditions when the feedback came in the form of points gained 

or points lost.  

Taken together, these data suggest that age-related rule learning deficits are more 

flexible then once thought.  These deficits can be attenuated if the appropriate feedback is 

paired with the task demands on cognitive load to optimize the speed of initial learning 

and the flexibility needed to efficiently shift set. The current study suggests that angry 

face feedback optimizes rule learning when the task is complex and places a strong 

demand on cognitive control resources, whereas happy face feedback optimizes rule 

learning when the task is simpler and places less demand on cognitive control resources.  

 Nashiro and colleagues examined the differential effects of happy and angry face 

feedback on older and younger adults’ learning in a task with low cognitive load that 

required initial rule learning and rule switching (Nashiro, Mather, & Gorlick, 2011). As 

predicted, older adults made more errors in the angry-face-feedback condition than 

younger adults, but this deficit was attenuated with happy face feedback. Importantly, 
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Nashiro et al. only examined an overall measure of performance, the number of errors 

made across the task, which obscures differential learning effects across phases of 

learning. The present study helps fill this critical gap in our understanding of the effects 

of age and feedback on initial learning and set shifting. Data from the current study 

suggests that the attenuated age deficit for happy face feedback in Nashiro et al. is most 

likely due to effects on initial learning and not on set shifting. Future work should explore 

this more fully. 

Rule Learning and Set Shifting 

In the current study we found an interesting dissociation between initial rule 

learning and set shifting for older and younger adults under low and high-cognitive-load 

conditions. Under low-cognitive-load conditions, we found that the age-related initial 

rule-learning deficit tended to be attenuated with happy face feedback, but that this came 

at a cost of even larger set-shifting deficits. On the other hand, under high-cognitive-load 

conditions, we found that the age-related initial rule-learning and set-shifting deficits 

were attenuated with angry face feedback. 

The nature of the feedback may be partially responsible for the dissociation 

between initial rule learning and set shifting. Error feedback is critical when determining 

if a strategy is not working and a rule shift is needed. In the happy face condition, errors 

are presented as a small smile and in the angry face condition errors are presented as a 

large frown. This may make angry face errors easier to interpret because the change in 

emotion is larger and the emotional component of the feedback (negative) aligns with the 

feedback (error). This asymmetry in the emotional component with feedback would not 
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affect initial rule learning as drastically, because both correct and error feedback can be 

used to maintain rules.  

In the low-cognitive-load condition, older adults process happy face feedback 

more deeply than angry face feedback. This helps initial rule learning where large smiles 

are used to guide selection of the first rule; however, small smiles indicating errors are 

not salient enough to elicit a rule shift.  Angry face feedback is ineffective in both initial 

rule learning and set shifting because it is processed shallowly.  In the high-cognitive-

load condition, negative feedback is processed more deeply than positive feedback.  

Happy face feedback is ineffective in both initial rule learning and set shifting because it 

is processed more shallowly.  Angry face feedback is processed more deeply, which 

allows older adults to learn the initial rule and determine when to shift set through errors 

indicated with large frowns. This explanation is admittedly speculative but deserves 

further investigation. 

Individual Differences 

Given the importance of the cognitive load manipulation in the current findings, it 

is worth exploring the possibility that individual differences in executive functioning 

across older adults might affect the pattern of results. Previous research suggests that 

older adults’ executive function interacts with emotional processing (Isaacowitz et al., 

2009; M. Mather & Carstensen, 2005; Petrican et al., 2008). Because of our relatively 

small sample sizes and the fact that we did not collect measures of executive function in 

our younger adult sample, we deem these analyses exploratory. Even so, some interesting 

patterns emerged. We utilized the popular Stroop interference task as our measure of 
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executive function (Stroop, 1935) and performed a median-split on Stroop interference z-

scores and classifying older adults as high or low on executive functioning. Performance 

means for each condition are displayed in Table 3. 

Table 3. Chapter 1 older adult performance grouped by low and high executive function.  

 Task Load Feedback Older Good EF Older Poor EF 
Accuracy Rate High Happy Face 0.78 (0.02) 0.69 (0.02) 
    Angry Face 0.82 (0.02) 0.79 (0.03) 
    Point Gain 0.8 (0.02) 0.76 (0.02) 
    Point Loss 0.8 (0.02) 0.79 (0.02) 
  Low Happy Face 0.84 (0.02) 0.8 (0.03) 
    Angry Face 0.81 (0.03) 0.79 (0.03) 
    Point Gain 0.83 (0.02) 0.83 (0.02) 
    Point Loss 0.82 (0.02) 0.79 (0.02) 
Initial Rule 
Learning High Happy Face 24.3 (2.53) 25.5 (2.83) 

    Angry Face 21.3 (3.47) 20.38 (3.88) 
    Point Gain 22.92 (2.66) 19.72 (2.26) 
    Point Loss 22.23 (2.87) 21.89 (2.44) 
  Low Happy Face 14.5 (2.83) 17 (3.03) 
    Angry Face 16.81 (3.88) 17.36 (4.15) 
    Point Gain 16.31 (2.39) 16.87 (2.47) 
    Point Loss 18.81 (2.59) 14.8 (2.67) 
Set Shifting High Happy Face 19.15 (3.28) 35.88 (3.67) 
    Angry Face 13.95 (2.90) 18.63 (3.25) 
    Point Gain 15 (2.46) 19.28 (2.09) 
    Point Loss 16 (3.13) 21.28 (2.66) 
  Low Happy Face 19.25 (3.67) 28.14 (3.92) 
    Angry Face 22 (3.25) 26.86 (3.47) 
    Point Gain 20.56 (2.22) 24 (2.29) 
    Point Loss 20.5 (2.83) 23.8 (2.92) 

Summary statistics for older adults grouped by poor or good executive function (EF) 
measured using the Stroop task. Standard errors in parentheses. 
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Experiment 1 utilized emotional face feedback to attenuate learning differences. 

An examination of Table 3 suggests that when executive function is good and the 

cognitive load is low, happy face feedback may attenuate the age-related initial rule-

learning deficit. However, under high-cognitive-load conditions, good executive function 

had little effect on initial rule learning. With respect to set shifting, high functioning older 

adults showed faster set shifting than low functioning older adults in all four conditions. 

Experiment 2 utilized less emotional point feedback and the results were more 

straightforward. As suggested by an examination of Table 3, in general high functioning 

older adults showed faster initial rule learning and set shifting than low functioning older 

adults, but high functioning older adults never performed at an equivalent or better level 

than younger adults. 

 Taken together these data suggest that good executive function plays a different 

role in positive versus negative emotional information processing biases. In the low-load 

condition, those with good executive function show emotional biases where happy face 

feedback leads to age-related advantages in initial rule formation, as well as an 

attenuation of the set-shifting deficit.  However, older adults with poor executive function 

are worse than younger adults in initial rule formation and set shifting across valence.  

We do not see this interaction in the high-cognitive-load condition where negative 

emotional information is more salient.  Here, older adults show performance advantages 

given angry face feedback regardless of their level of executive function.  This lends 



 46 

support to the idea that emotional biases for positive emotional feedback were driven by 

executive processes however negative emotional feedback biases were not.   

Although the results presented in this study are compelling, there are a number of 

limitations that are worth noting. First, given the importance of cognitive-control 

demands and resources in the present work, a more detailed examination of individual 

differences in cognitive control processing and resources is in order. The preliminary 

analyses presented above are suggestive, but a larger sample size is needed before 

definitive conclusions can be drawn.  In addition, though the Stroop task taps executive 

function it also relies on attentional resources. It would be informative for future work to 

look for convergent evidence across several measures of executive function. Second, 

measures of affect and mood should be included in future work. We collected subjective 

ratings of stress and health and found no age differences. Even so, affect and mood may 

have differed across age groups and conditions. Although it is difficult to imagine how 

these might account for the systematic interaction observed in the present study, these 

measures might still be informative. In fact, it would be interesting to see how the 

different feedback conditions change affect and mood throughout the course of learning. 

These ratings could provide insights as to whether these effects are due to age differences 

in emotion regulation strategies or differences in the processing of emotional information.  

Conclusions 

This chapter reports the results from two experiments that examined the effects of 

highly emotional face feedback on in initial rule learning and set shifting using tasks that 

involve a low or a high cognitive load. When the task placed minimal load on cognitive 
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control resources, we found that happy face feedback tended to attenuate age-related 

initial rule learning deficit, but that this advantage came with a cost once the rule 

switched. Under the same cognitive load conditions, we also found that angry face 

feedback led to large age-related initial rule learning and set shifting deficits. However, 

when the task placed a heavy load on cognitive control resources, we found that angry 

face feedback attenuated an age-related deficits in initial rule learning and set shifting, 

whereas happy face feedback led to age-related initial rule-learning and set-shifting 

deficits. When the highly emotional face feedback was replaced with less emotional point 

feedback, we found age-related performance deficits across the board. 
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Chapter 2: Age-Related Biases in Emotional Processing and Dissociable 

Feedback-Driven Learning Systems (In Preparation) 

Chapter 1 provides important insights into how emotionally-valenced feedback 

can reduce age-related deficits in rule learning, however it provides no insights into how 

emotional feedback could reduce age-related deficits in procedural learning. Chapter 2 

aims to bridge this gap in our understanding by examining how the valence of socially 

salient feedback (happy, angry) affects procedural learning in older adults. Older adults 

demonstrate general deficits when learning is supported by procedurally processes that 

learn nonverbal mathematical relationships through corrective feedback. This type of task 

is commonly referred to as an information integration category structure (Ashby & 

Maddox, 2010).  Here accuracy is maximized if information from two or more stimuli 

dimensions is integrated at an automatic predecisional stage.   

In Chapter 1 we put forward the hypothesis that cognitive control resources are 

used to effortfully enhance positive emotional information processing. During procedural 

information integration tasks learning is difficult and incremental, however it done 

automatically through striatal processes placing few demands on effortful cognitive 

control. Thus, the processes that govern emotion regulation are available to deeply 

process happy feedback. Though it is possible that this effortful positivity bias will 

improve procedural learning outcomes, learning critically depends on automatic feedback 

processing. In fact, effortful feedback processing has can impair automatic procedural 

category learning.  For example, when cognitive control resources are limited during 
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feedback processing through experimental manipulations we see improved information 

integration learning and impaired rule-based learning in younger adults (Filoteo et al., 

2010).  

Thus, we had two competing predictions about the way emotional feedback would 

influence procedural learning.  On the one hand, cognitive control is available during 

procedural learning and we might predict that happy feedback improves performance. 

However another possibility is that older adults’ effortful bias towards positive emotional 

stimuli will not help during a task supported by automatic feedback processing. To 

examine this question we asked participants to categorize complex 4 dimensional items 

that vary on 2 features.  In this task the rule determining category membership can be 

manipulated to assess either the effortful rule-based or automatic procedural learning 

systems.  This provides an ideal paradigm to compare age-related benefits from effortful 

emotional feedback processing broadly in dissociable automatic and effortful learning 

systems.  

If emotional biases broadly affect effortful and automatic feedback processing, we 

expect to see an age-related advantage in the information integration task given positive 

emotional feedback and an age-related impairment with negative emotional feedback. 

This would be in line with other work that has demonstrated a positivity bias when 

cognitive control resources are available (Knight et al., 2007; Kryla-Lighthall & Mather, 

2009). However, if effortful emotional biases are not helpful in a task supported by 

automatic feedback processing, we expect to see no effect of social feedback in 

attenuating age-related learning deficits during procedural learning. In the rule-based task 
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we expect to replicate findings from Chapter 1 where older adults have better 

performance with negative emotional feedback in a task that places high demands on 

cognitive control. 

In addition to our primary research question, we also were interested in how 

important the social salience of the feedback was in driving any effects. To test this 

question we ran a logical points condition on a small sample of individuals.  We predict a 

main effect of age across tasks where older adults are less successful at learning than 

younger adults. 

METHOD 

Participants 

Younger adults 18-35 and older adults age 60-90 were recruited to participate in 

this study and given monetary compensation or course credit (Table 4; N=29 older adult 

demographic information not currently available in the logical condition). Within each 

social (emotional, logical) x strategy (rule-based, procedural) condition valence 

conditions were compared (positive, negative) between age group and no significant 

differences in age, years of education, or verbal intelligence as measured by the WAIS 

vocabulary emerged. Older adults were given a large battery of neuropsychological tests 

during a prescreening session including the Wechsler Adult Intelligence Scale-Fourth 

(Wechsler, 1997), Stroop test (Stroop, 1935), Wisconsin Card Sorting Test (Heaton, 

1993), Trail-making test (Corrigan, 1987), and Wechsler Memory Scale (WMS-IV). All 

results were normalized for age using standardized procedures and converted to Z-scores. 
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Participants that scored more than 2 standard deviations below the mean for memory, 

executive function, and attention were excluded from the study.  

Table 4. Chapter 2 participant demographic information. 

Sample size (N), Age in years, years of education (Bachelor’s = 16), and WAIS 
Vocabulary Z-Scores for A) the emotional-face-feedback conditions and B) the logical-
point-feedback conditions.   
A 

       
    

N Age Education Vocabulary 

Emotional 
Information 
Integration Positive Younger 42 21.1 (3.36) 14.1 (1.64) 0.93 (0.97) 

      Older 48 69.36 (5.61) 16.94 (2.94) 0.93 (0.88) 
    Negative Younger 48 21.4 (3.64) 14.12 (1.77) 0.89 (0.8) 
      Older 45 69.41 (6.85) 16.91 (2.37) 0.95 (0.82) 
  Rule-Based Positive Younger 28 22.29 (4.09) 14.86 (1.88) 0.57 (0.98) 
      Older 27 66.74 (5.89) 17.26 (2.25) 1.18 (0.74) 
    Negative Younger 28 22.07 (3.91) 14.75 (1.73) 0.54 (0.99) 
      Older 27 66.93 (5.75) 17.52 (2.24) 1.17 (0.74) 
B 

       
    

N Age Education Vocabulary 

Logical 
Information 
Integration Positive Younger 14 24.43 (4.5) 15.36 (2.02) 0.92 (0.94) 

      Older 20 69.08 (7.02) 16.77 (1.59) 1 (0.84) 
    Negative Younger 14 23.86 (4.8) 15.14 (2.21) 1.07 (0.88) 
      Older 26 68.41 (6.98) 16.59 (3.14) 0.77 (0.99) 
  Rule-Based Positive Younger 12 21.92 (3.37) 14.83 (1.85) 0.72 (0.78) 
      Older 15 71.5 (8.4) 17 (1.51) 0.58 (0.85) 
    Negative Younger 8 22.12 (3.72) 14.75 (1.83) 0.79 (0.85) 
      Older 19 69 (7.6) 15.62 (2.57) 0.59 (0.85) 
*Standard deviations in parentheses. 
 
Materials 

In this task participants categorized binary four dimensional stimuli into two 

categories either using a verbal rule-based structure or a mathematical information 
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integration structure (Grimm, Markman, Maddox, & Baldwin, 2008). The information 

integration category structure is determined using a mathematical formula that makes it 

difficult to verbalize the category structure. First, one stimulus dimension was made 

irrelevant. Then for each remaining stimulus dimension, the possible properties of each 

stimulus were given a value of 1 or -1. Each category structure was created by the 

following mathematical formula (where the three relevant stimulus dimensions are 

randomly selected and assigned to X, Y, and Z): If X+Y+Z > 0; then Category A; else 

Category B.  A unidimensional rule-based category structure was also included to 

replicate findings from Chapter 1 in a novel task with high cognitive load. Here category 

members were determined by randomly choosing one of the four binary dimensions as 

the verbalizable rule.    
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Figure 6. Chapter 2 Stimuli and Procedure 

1) Example stimuli with their category membership for the complex rule-based (left) and 
information integration (right) tasks. 2) Screen captures for the emotional (top) and 
logical (bottom) categorization tasks.  Within each of these condition the valence of the 
feedback was either positive (left; happy face or point gains) or negative (right; angry 
face or point losses). 
 
Procedure 

 Emotional Feedback Task 

1

2
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Feedback valence (positive, negative) and supporting strategy (information 

integration, rule-based) was manipulated between subjects (Figure 6.1, upper panel).  In 

the positive emotional feedback condition, participants are trying to make a face as happy 

as possible.  Each correct response increases happiness and each incorrect response 

returns the faces’ mood to neutral.  After 10 consecutive correct responses the face 

reaches it’s goal level of happiness and the task is complete.  In the negative emotional 

feedback condition, participants must avoid making a face angry.  Each correct response 

reduces anger and each incorrect response returns the faces’ mood to the maximum 

amount of anger.  After 10 consecutive correct responses the face is as neutral as it’s goal 

and the task is complete.  This measure is akin to the “Trials to First Rule” measure seen 

in Chapter 1. We selected colored photographs a model expressing happy and angry 

emotions from a validated set{Tottenham:2009ec}. The same female Caucasian model 

was used for both the happy- and angry-face-feedback conditions. A spectrum of 

emotional intensity was creating using Yale’s MorphAge software, which has been 

created specifically for the purpose of morphing one face image into another. This allows 

us to create a controlled spectrum of emotion from highly arousing faces to neutral faces 

in steps of 10.  

Logical Feedback Task 

The logical points condition was similar to the emotion condition described 

above, however here feedback is devoid of social content (Figure 6.2, lower panel).  

Feedback valence (positive, negative) and supporting strategy (information integration, 

rule-based) was manipulated between subjects. In the positive-point-feedback condition 
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participants’ goal was to earn 10 points to achieve their goal.  Each correct response 

increased their points by 1 and each incorrect answer dropped their total points back to 0. 

After 10 consecutive correct responses the point meter is full and the task is complete.  In 

the negative-point-feedback condition participants’ initial goal is to earn 5 points to each 

their goal.  Each correct response increased their points by 1 and each, however incorrect 

answer dropped their total points back to 0 and their goal increases by 1. Thus, in the 

negative point feedback condition participants avoid extending their goal.  They reach 

their dynamic goal the point meter is full and the task is complete in both tasks.  While 

this manipulation is a good way to examine losses in this task, it makes it harder to 

compare trials to criteria across valence conditions.  Thus, for comparative purposes we 

adjusted the “trials to reach the goal” in the losses condition to the number of trials 

needed for 10 consecutive correct responses or trials until the goal was reached, which 

ever comes first. 

RESULTS 

Information Integration with Emotional Feedback 

 Trials to Criterion 

Within the emotion condition, the number of trials needed to achieve 10 

consecutive correct responses was calculated for each participant and a 2 age X 2 valence 

mixed ANOVA was conducted (Figure 7.1). There was a significant main effect of age, 

F(1,106)= 10.54, p<.001, η2=0.06, with older adults taking more trials to learn the rule 
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than younger adults (MOlder= 97.47 (43.38); MYounger= 72.24 (37.51)). There were no other 

significant effects. 

Trials to Criterion: Influence of Strategy Use within the Information Integration 

Task 

Though we instantiated a mathematical rule to assign category membership in the 

information integration task, it is possible to successfully reach 10 consecutive correct 

responses with a rule-based strategy.  To look at more fine-grained measures of 

performance with strategy use in mind, we grouped individuals by those that could have 

reached the goal by using a unidimensional rule (any of 8 possible unidimensional rules 

as seen in the rule-based condition) and those that needed to use an information 

integration strategy for success during the last 10 trials (Figure 7.2). When participants 

used the information integration strategy, older adults show global deficits in both the 

happy-face-feedback, t(47)=3.66, p<0.001, condition and the angry-face-feedback 

condition, t(40)=2.36, p=0.02.  However, when participants used the rule-based strategy, 

older adults show marginal deficits in the happy-face-feedback condition, t(39)=1.85, 

p=0.07, but not the angry-face-feedback condition, t(49)=0.42, p=0.68, ns.  Rule-based 

findings replicate those seen in the high-cognitive-load condition of Chapter 1 where 

negative emotional feedback improves learning outcomes in older adults. 

Rule Based with Emotional Feedback 

Trials to Criterion 

The number of trials needed to learn the rule was calculated for each participant 

and a 2 age X 2 valence mixed ANOVA was conducted (see Figure 4.2). There was a 
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significant main effect of age, F(1,106)= 4.10, p<.05, η2=0.04, with older adults taking 

more trials to learn the rule than younger adults (MOlder=34.71 (25.02); MYounger=25.89 

(25.61)). This was qualified by a significant age x valence interaction, F(1,106)= 8.22, 

p<.01, η2=0.07, where older adults demonstrated a deficit with positive emotional 

feedback (MOlder=46.11 (43.94); MYounger=19.89 (12.67)), t(88)=3.09, p<0.001, and learned 

as quickly as younger adults given negative emotional feedback (MOlder=23.62 (17.36); 

MYounger=28.14 (28.11)), t(91)=1.57, p=0.12. These findings replicate those seen in the 

high-cognitive-load condition of Chapter 1 where negative emotional feedback improves 

learning outcomes in older adults. 

Information Integration with Logical Feedback 

 Trials to Criterion 

Within the logical condition, the number of trials needed to achieve 10 

consecutive correct responses (adjusted for the losses condition) was calculated for each 

participant and a 2 age X 2 valence mixed ANOVA was conducted (Figure 7.3). There 

was a significant main effect of age, F(1,69)= 8.36, p=.01, η2=0.11, with older adults 

taking more trials to learn the first rule than younger adults (MOlder= 97.47 (50.41); 

MYounger= 49.75 (34.15)). There were no other significant effects. 

Rule-Based with Logical Feedback 

 Trials to Criterion 

Within the logical condition, the number of trials needed to achieve 10 

consecutive correct responses (adjusted for the losses condition) was calculated for each 

participant and a 2 age X 2 valence mixed ANOVA was conducted (Figure 7.3). There 
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was a significant main effect of age, F(1,50)= 9.32, p<.001, η2=0.16, with older adults 

taking more trials to learn the first rule than younger adults (MOlder= 54.94 (54.94); 

MYounger= 22.93 (13.48)). There were no other significant effects.  
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Figure 7. Chapter 2: Results 

The number of trials needed to learn the rule for older and younger adults in 1) the rule-
based and information integration tasks in the happy- and angry-face-feedback 
conditions strategy (II = information integration structure and RB = unidimensional 
structure) 2) within the information integration condition by strategy (II-II = information 
integration strategy and II-UD = unidimensional strategy) and 3) the rule-based and 
information integration tasks in the happy- and angry-face-feedback conditions (II = 
information integration structure and RB = unidimensional structure). Standard error 
bars are included. 
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DISCUSSION 

  This chapter examined whether age-related deficits in automatic procedural 

learning could be attenuated using emotional faces as feedback, an intervention that has 

been successful in effortful rule-based tasks (Gorlick et al., 2013). Previous research has 

demonstrated that older adults use cognitive-control to effortfully attend to positive 

emotional information more than negative emotional information, however this positivity 

bias depends on whether cognitive control resources available and reverses to become a 

negativity bias in the absence of these resources (Kryla-Lighthall & Mather, 2009). We 

had two predictions on the applications of effortful emotional biases in an automatic 

procedural task where cognitive control resources are available. One prediction is that 

available cognitive control resources would attend to happy-face-feedback attenuating the 

age-related learning deficit in older adults.  However, another possibility is that effortful 

emotional biases will not be effective in a task that is best supported by automatic 

feedback processing.  In a complex effortful rule-based task, on the other hand, we 

predicted enhanced performance with negative-face-feedback relative to positive-face 

feedback as seen in Chapter 1. 

 The results of this study support the prediction that effortful emotional biases are 

ineffective at attenuating automatic procedural learning deficits in older adults.  These 

persistent deficits are in stark contrast to age-related enhancements in rule-based learning 

using negative emotional feedback, which replicate prior findings.  Importantly, though 

we see global deficits in the information integration task, it is clear that strategy use is an 

important factor in determining learning outcomes.  Grouping participants by those using 
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a rule-based strategy versus those that are using an information integration strategy 

during the procedural task demonstrated important insights. Those older adults that used 

an information integration strategy in the procedural task maintained deficits, however 

those that used a rule-based strategy demonstrate the same interaction between valence 

and age seen in the rule-based task where negative-face-feedback improves complex 

effortful learning. These findings highlight the robustness of age-related biases for 

negative-emotional-feedback when learning a complex effortful rule-based task.  These 

results also demonstrate the importance of considering strategy use regardless in addition 

to task manipulations to develop a complete understanding of the factors driving 

performance in dissociable learning systems. Future work would be good to incorporate 

tasks where latent strategic differences can be better revealed using formal computational 

models (Ashby, 1992; 2014; Ashby & Waldron, 1999; Maddox, Filoteo, & Lauritzen, 

2007).  This could be achieved using stimuli with continuous feature dimensions where 

decision-bound models can be applied.  

Adding to evidence from Chapter 1, Chapter 2 also finds that the social 

component of feedback is critical in driving the effects of valenced feedback in 

attenuating learning deficits. 

A sample that completed a logical-point-feedback version of the task with gains and 

losses demonstrated deficits classically seen in both rule-based and procedural tasks.  

This provides further support for the importance of socially relevant feedback in reducing 

learning difficulties in older adults. 
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Learning Perceptual Representations without Feedback:  Age 

Differences, Memory Processes, and Emotional Influences 

Chapters 1 and 2 explored the relationship between emotional feedback 

processing and performance within rule-based and procedural systems, however learning 

can occur in the absence of feedback using an automatic occipital system that builds 

perceptual representations (Ashby & Maddox, 2005; Ashby & O'Brien, 2005).  For 

example, one perceptual representation task trains participants passively on exemplars 

distorted from a single prototypical exemplar with no corrective feedback.  At test, 

participants state whether they believe novel exemplars are a members of the trained 

category or not.  This kind of learning is supported by automatic perceptual 

representations of the trained category. Prototype learning is a nice paradigm to compare 

automatic perceptual representation-based learning to effortful rule-based learning. 

During rule-based prototype learning, exemplars distorted from two prototypes are 

presented during training and participants actively sort these exemplars into category A 

or category B with corrective feedback.  In this way, learning rule-based distortions from 

two prototypes is similar to other rule-based strategies such as set-shifting (Chapter 1) 

and unidimensional categorization (Chapter 2) which use hypothesis testing processes to 

guide performance. 

Importantly, perceptual representation learning outcomes improve across 

adulthood. Maddox and colleagues have demonstrated that older adults show well 

established rule-based learning deficits in the prototype learning paradigm, however there 
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is a significant reversal in the perceptual representation task where older adults 

demonstrate an advantage over younger adults (Glass et al., 2012). In the next two 

chapters we explore the processes that underlie this age by learning system interaction 

(Chapter 3) and explore ways to push younger adults towards better learning outcomes 

using emotional oddballs to prime attention (Chapter 4). 
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Chapter 3: Age Differences in the Contributions of Recall and 

Familiarity during Category Learning (Gorlick, Schnyer Abdul-Razzak 

& Maddox, Under Review) 

Age-related deficits in learning are the focus of much research, however it is 

important to note cases where older adults’ performance is enhanced relative to younger 

adults.  One area of enhanced cognition is seen when learning perceptual representations 

of distorted exemplars. Perceptual representations are developed in the absence of 

feedback learning without feedback as seen in Chapters 1 and 2.  Instead, learning is 

supported by developing perceptual familiarity with representatives from one category 

over time (Ashby & O'Brien, 2005; Reber et al., 1998). On the other hand, learning 

distortions of two prototypes with corrective feedback involves recalling previously seen 

exemplars for comparisons while generating hypotheses and is similar to rule-based 

learning strategies discussed in Chapters 1 and 2.  Not surprisingly, older adults 

demonstrate age-related deficits in rule-based learning, however older adults demonstrate 

age-related advantages in a perceptual representation learning (Glass et al., 2012). This 

may be due to age-related changes in the memory processes that underlie learning within 

these systems; recall and familiarity. 

The goal of this chapter is to explore how age-related changes in memory 

processes such as recall (vivid representations of past events) and familiarity (perceptual 

fluency with stimuli) contribute to rule-based learning with corrective feedback and 

perceptual representation learning without feedback and whether they provide insights 
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into age-related performance differences.  After training, participants were asked to 

categorize exemplars and rate how confident they were in their responses. Confidence 

ratings were used to generate ROC curves where the shape of the curve provides 

information about the use of recall and familiarity during test.  

METHOD 

Participants 

Participants from the Austin community and students of the University of Texas 

were recruited from alumni mailings, fliers, and newspaper ads. After excluding those 

that scored below 50% accuracy during the final test block, 29 older adults (Mage=67.7) 

and 28 younger adults (Mage=22.3) were included in the AB task and 31 older adults 

(Mage=68.3) and 31 younger adults (Mage=21.5) were included in the AN task for payment 

or class credit. Older adults were administered a battery of neuropsychological tests 

(assessing attention, verbal memory, visual memory, speed, and executive function) in 

order to determine whether they were functioning within the normal range for their age. 

The neuropsychological battery includes the Wisconsin Card Sorting Test (Heaton, 

1993),  Wechsler Adult Intelligence Scale-Fourth Edition (Wechsler, 1981) Stroop test 

(Stroop, 1935),Trail-making test (Corrigan, 1987), and Wechsler Memory Scale (WMS-

IV). All results were normalized for age using standardized procedures and converted to 

Z-scores. Neuropsychological tests were broken down into three subgroups of cognitive 

function.  1) Attention: Digit Span, Letter Number Sequencing, 2) Memory: CVLT, 

WMS-III Logical Memory, and 3) Speed/Executive Function: Stroop, Trails A and B, 
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FAS, WCST. Older adults scoring 2 SD below the mean on one or more tests from each 

of these subgroups were excluded. Age groups were well matched between conditions on 

age, years of education, and gender (Table 5). 

Table 5. Chapter 3 participant demographic information. 

  
Age Years of Education Gender 

AB Older 66.62 (5.08) 18 (2.14) F=15; M=14 
  Younger 22.71 (5.54) 14.14 (2.06) F=13; M=15 
AN Older 67.9 (4.97) 17.26 (2.28) F=15; M=16 
  Younger 21.61 (3.63) 14.27 (2.01) F=19; M=12 
* Education is years of education where a bachelors degree = 16 years.  Standard 
Deviations are in parentheses. 

 
Materials 

Cartoon animals constructed from 10 binary features such as head orientation (up 

or forward), body color (grey or yellow), and tail (thin or thick) served as stimuli from a 

total of 210 = 1024 possible stimuli (Figure 8.1). One stimulus was selected at random to 

represent the A prototype for each participant. The B (N) prototype has the opposite 

value on each binary dimension. The prototype was distorted on one to four randomly 

selected features to create the category stimuli. Stimuli that differed from the prototype 

on five features were ambiguous and not included. 

Procedure 

We used a 2 training (AB, AN) between-participant design. Training consisted of 

20 trials followed by a test phase with 42 novel items including the prototypes, and equal 

numbers of A and B items. Each participant completed 3 blocks of 20 training and 42 test 

trials.  
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 On each training trial an exemplar was presented (Figure 8.2). During AB 

prototype learning, participants were shown 10 A and 10 B stimuli in a random order, 

and corrective feedback was given after the participant responded category A or category 

B. This type of training is supported by the frontally-mediated hypothesis testing system.  

Within each category, 2 learning stimuli differed from the category prototype on 1 

feature, 3 differed on 2 features, 3 differed on 3 features and 2 differed on 4 features. 

Across all 10 stimuli within each category, the category typical features were presented 7 

or 8 times and the opposite category typical features were presented 2 or 3 times. During 

AN prototype learning, participants viewed 20 A stimuli in a random order and a 

keystroke advanced to the next stimulus with no corrective feedback. This form of 

training has been shown to be supported by perceptual fluency.  Five stimuli differed 

from the category A prototype on 1, 2, 3, and 4 features.  

In both the AB and AN tasks, a 42-trial test phase followed learning that included 

both prototypes and 5 stimuli that differed from each prototype on 1, 2, 3 and 4 features. 

On each test trial, the participant was prompted to give an A or B (N) response with no 

corrective feedback. After each response, the participant was also asked, “How confident 

are you?” in the accuracy of their response to measure explicit metacognitive awareness.  

Confidence was measured using a 4-point scale (“Not sure”, “25% sure”, “ 75% sure”, or 

“100% sure”).   



 68 

 

Figure 8. Chapter 3 Stimuli and Procedure  

1) Category exemplars and their membership for each distance from prototype A. 2) 
Participants completed 3 blocks of 20 learning trials and 42 test trials.  Training differed 
for the rule-based AB task with corrective feedback and perceptual representation-based 
AN tasks without corrective feedback to assess the contribution of recall and familiarity 
to performance.  Test was identical for AB and AN tasks.  No corrective feedback was 
given and participants were asked, “How confident are you?” after each response to 
assess receiver operating characteristics which represent memory processes. 
 

1

2
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RESULTS 

Because our interest is in post-training category recognition, we focused the 

following analysis on the final test block.  

Performance 

Proportion correct was calculated for each participant and a 2 Training (AB, AN) 

X 2 Age (younger, older) ANOVA was conducted (Figure 2.1).  There was no main 

effect of Age, F(1,115) = .004, p= .94, however there was a main effect of Training, 

F(1,115) = 12.27, p < .001, η2=.10, where particiants were more accurate in the AB task 

(M =.74) than the AN task (M =.68). This was qualified by a significant Training X Age 

interaction, F(1,115) = 8.70, p< .004, η2=.07. To decompose the effects of Age on AB 

and AN accuracy, we conducted independent sample t-tests within each training 

conidtion. In the AB task, older adults demonstrated significantly impaired performance 

relative to younger adults, (Myounger=.77, Molder=.72 ), t(55)= 2.28, p=.03. In the AN task 

older adults demonstrated maringally enhanced performance relative to younger adults 

(Myounger=.65, Molder=.71), t(60)= 1.91, p=.067. Thus, our results replicate prior work 

examining performance in this prototype learning task (Glass et al., 2012) and indicates 

that performance depends on age. Older adults outperform younger adults when training 

is based on repeated passive exposure to members of one category (AN) and younger 

adults outperform older adults when training is based on active participant categorization 

of both members of category A and category B with corrective feedback (AB). 

Dissociable Recognition Systems 
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When examining recognition performance, accuracy rates alone do not do a good 

job of representing what is known about category membership. For example, if a 

participant always responds that exemplars are members of category A, they will have 

perfect accuracy for members of category A, but no ability to distinguish category A 

from category B.  The relationship between the hit rate and false alarm rate contains 

information about the sensitivity of the system, or the ability to determine what was seen 

and what was not accounting for this kind of response bias (Table 6).   
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Table 6. Chapter 3 hits, false alarms and sensitivity. 

Hits, false alarms and sensitivity (behavioral d’) for the AB task (trained with feedback; 
mean category A and category B (AB)) and the AN task (separate category A (trained 
without feedback; AN-A) and category N (untrained; AN-N)) for older and younger 
adults at each confidence threshold.   

    
Thresholds 

 
   

c2 (Liberal) c3 c4 (Conservative) 
AB Sensitivity Older 0.49 (1.49) 0.51 (1.5) 0.33 (1.21) 
    Younger -0.14 (1.65) 0.82 (1.44) 1 (1.36) 

  
False 
Alarms Older 0.78 (0.3) 0.36 (0.35) 0.14 (0.24) 

    Younger 0.88 (0.21) 0.57 (0.4) 0.19 (0.33) 
  Hits Older 0.86 (0.28) 0.47 (0.38) 0.19 (0.27) 
    Younger 0.95 (0.08) 0.75 (0.29) 0.36 (0.36) 
AN-A Sensitivity Older 0.4 (1.32) 1.26 (1.92) 1.05 (1.74) 
    Younger 0.1 (2.05) 0.6 (2.09) 0.73 (1.86) 

  
False 
Alarms Older 0.78 (0.36) 0.39 (0.43) 0.12 (0.31) 

    Younger 0.76 (0.35) 0.43 (0.39) 0.12 (0.24) 
  Hits Older 0.87 (0.3) 0.63 (0.39) 0.26 (0.36) 
    Younger 0.87 (0.25) 0.62 (0.33) 0.21 (0.29) 
AN-N Sensitivity Older -0.28 (1.29) -0.07 (1.65) -0.4 (1.53) 
    Younger 0.15 (1.71) 0.71 (2.08) 0.14 (1.85) 

  
False 
Alarms Older 0.85 (0.31) 0.5 (0.43) 0.17 (0.33) 

    Younger 0.8 (0.28) 0.46 (0.4) 0.19 (0.32) 
  Hits Older 0.81 (0.33) 0.46 (0.44) 0.12 (0.27) 
    Younger 0.84 (0.28) 0.5 (0.38) 0.21 (0.31) 
*bold items are significant at p<.05, italicized are marginal at p<.1; standard deviations 
are in parentheses. 
 

When examining performance, accuracy rates alone do not do a good job of 

representing what is known about category membership. For example, if a participant 

always responds that exemplars are members of category A, they will have perfect 

accuracy for members of category A, but no ability to distinguish category A from 
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category B.  The relationship between the hit rate and false alarm rate contains 

information about the sensitivity of the system, or the ability to determine what was seen 

and what was not accounting for this kind of response bias (Table 5). Measuring hits and 

false alarms at different confidence intervals can be used to generate receiver operating 

characteristic (ROC) curves that provide insights onto the relevant memory processes 

underlying category learning (Figure 9.2). Signal detection theory makes a distinction 

between recall (linear with an intercept greater than 0) from familiarity (symmetrical 

curvilinear) using ROC curves. These curves represent the combined contributions of 

these processes when remembering category membership.  Generally younger adults use 

a combination of recall and familiarity processes during recognition tests which generates 

asymmetrical curves with larger sensitivity (behavioral d’) as confidence increases 

(Davachi & Wagner, 2002; Fortin et al., 2004).  
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Figure 9. Chapter 3: Behavioral Results and Model Predictions 

1) Proportion correct for younger and older adults for the rule-based AB task with 
corrective feedback and perceptual representation-based AN task without corrective 
feedback.  Standard error bars included.  2) Predicted ROC curves for linear recall (left; 
R), quadratic familiarity (center; d’), and recognition which incorporates both recall and 
familiarity (right).  3) Observed ROC curves for the AB (corrective feedback comparing 
both categories during training; left), for AN-A (passively viewed without feedback 
during training; center), and AN-N (untrained; right) across three confidence thresholds.  
4) ROC curves for the mean best fit model parameters for the AB (corrective feedback 
comparing both categories during training; left), for AN-A (passively viewed without 
feedback during training; center), and AN-N (untrained; right). 
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To examine whether older and younger adults use different underlying 

psychological processes when reflecting on category membership at test, ROC curves 

were generated and sensitivity (behavioral d’) was examined (Figure 9.3; Table 2).  In the 

AN task, members of category “N”, or the untrained category, behave like “new” items 

that lack familiarity as described in signal detection theory. Thus, we do not expect as 

much familiarity with the untrained “N” category that wasn’t explicitly trained. However, 

in the AB task both category A and category B were trained and prototypes were 

randomly assigned to features. Thus, here we examine sensitivity (behavioral d’) at each 

certainly threshold (c2, c3, c4) for each age group (Younger, Older) and training condition 

(AB, AN-A, AN-N).  Here the certainty thresholds are determined using confidence 

ratings.  At the most liberal confidence threshold (c2) hit rates are calculated by counting 

any correct response with confidence of 25% sure or higher as a hit (25% sure, 75% sure, 

100% sure) and any correct response with confidence of “Not Sure” as a miss.  At the 

most conservative threshold (c4) hit rates are calculated by counting any correct response 

with confidence of 100% sure as a hit and any correct response with confidence of 75% 

sure or lower as a miss (Not Sure, 25% sure, 75% sure).  The c3, confidence threshold 

was intermediate to c2 and c4. 

A visual inspection of the data indicates age differences in the psychological 

processes involved in the AB task, but not the AN task.  In the AB task, older adults’ 

ROC curves tend to be shifted to the left and younger adult to the right.  There is a similar 

level of response bias in both curves as the range is about the same for older adults and 
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younger adults. This indicates that older adults are more conservative and younger adults 

are more liberal with their response bias. 

In the AN task, ROC curves appear roughly symmetrical for category A with the 

largest d’ at an intermediate threshold whereas the ROC curves are flat for category N.  

In the AB task, on the other hand, curves have different shapes in older and younger adult 

groups where younger adult curves appear asymmetrical and older adult curves appear 

symmetrical. Younger adults demonstrate greater discriminability for more conservative 

response bias than older adults in the AB task (Figure 9.3, AB).  This is indicative of 

strong vivid information about category membership in combination with familiarly as 

seen in Fortin et al 2004 and as predicted by a dual process model of recognition memory 

(Fortin et al., 2004; Yonelinas, 1997; Yonelinas & Jacoby, 2012). 

Formal Comparisons of ROC Curves 

Repeated measures ANOVA can be used to formally test whether behavioral 

sensitivity scores represent differently shaped curves (M. W. Howard, Bessette-Symons, 

Zhang, & Hoyer, 2006; Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996). 

Significant interactions indicate that the ROC curves are different shapes and thus 

represent different underlying contributions of recall and familiarity.  For the following 

analyses we excluded N=2 older adults that did not have false alarms for category N and 

sensitivity could not be measured. 

There is a significant main effect of threshold (c2 – liberal threshold, c3 – 

moderate threshold, c4 – conservative threshold), F(2, 346) = 5.55, p=.004, where 

sensitivity is larger at c3 than c2, t(178)= 3.19, p=.002, ns, and c4 than c2  t(178)= 2.09, 
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p=.03, ns, and no difference emerged between c3 and c4, t(178)= 1.15, p=.24, ns, (Mc2 = 

.13, SDc2 = 1.3; Mc3 = .62, SDc3 = 1.32; Mc4 =.49, SDc4 = 1.18).  There is also a significant 

main effect of training, F(2, 173) = 4.92, p=.008, where sensitivity is higher in the AN-A 

than the AN-N training condition, t(364) = 3.41, p<.01, and the AB training condition 

than the AN-N training condition, t(355) = 2.69, p=.007, but there were no significant 

differences between the AN-A and AB conditions, t(349) = 1.01, p=.31, ns, (MAB = .50 , 

SDAB = .93; MA = .68, SDA = 1.27; MN =.04, SDN = 1.25). This main effect is qualified by 

a Training x Age interaction, F(2, 173) = 2.19, p=.056 and no other significant effects. To 

decompose these effects, Age X Threshold mixed effects ANOVAs were conducted 

within Training conditions for sensitivity.   

In the AB training condition, there is no significant effect of Age F(1, 55) = .21, 

p=.64, ns, a marginal main effect of Threshold, F(2, 110) = 2.74, p=.09, and a significant 

interaction between Age and Threshold, F(2, 110) = 3.53, p=.03. Independent sample t-

tests indicate that younger adults have higher sensitivity at the most conservative c4 

threshold than older adults, t(55) = 1.95, p = .056.  No other significant differences 

emerged (Table 5). 

In the trained category for the AN task (AN-A), there is a significant effect of 

Threshold, F(2, 116) = 3.17, p=.05, and no other significant effects. Collapsing across 

Age, paired t-tests indicate that sensitivity is significantly larger for c3 than c2, t(59) = 

2.19, p=.03, and c4 than c2, t(59) = 2.12, p=.04)  However, there are no significant 

differences in sensitivity between c3 and c4, t(59) = .12, p=.90. 
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In the untrained category for the AN task (AN-N), there is a marginal main effect 

of Age, F(2, 120) = 3.55, p=.06, and no other significant effects.  Collapsing across 

thresholds, younger adults have higher sensitivity than older adults, t(92) = 2.29, p=.02, 

MOlder = -.25, SDOlder = .96; MYounger= .33, SDYounger = 1.43. In addition, single sample t-tests 

indicate that neither younger adults, t(92) = 1.72, p=.09, nor older adults, t(92) = 1.63, 

p=.11, ns, were significantly different than 0 (guessing). 

Thus, these analyses indicate that the processes underlying category recognition, 

as represented by the shape of the ROC curves, is different for younger and older adults 

for the AB task, but not the AN task.  In the AB task, there is an interaction between age 

group and threshold suggesting different underlying processes.  In the AN task there is a 

main effect of Threshold for category A but no interaction in either category.  This 

suggests that younger adults and older adults are using the same psychological processes 

during AN learning. 

Computational Modeling  

Though this measure of sensitivity (behavioral d’) indicates that older and 

younger adults are using different strategies to recognize category membership in the AB 

task, it does not address the dissociable contributions of recall and familiarity that 

underlie these differences. Yonelinas and colleagues propose a Threshold Dual Process 

memory model that underlies recognition memory (Yonelinas, 1997; Yonelinas et al., 

1996).  Here recall and familiarity are both used to guide category recognition, not 

sensitivity alone as described by signal detection theory.  This concept can be seen in 

Figure 9.2 where familiarity-based judgments have a quadratic curve (d’), recall-based 
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judgments are linear (R), and recognition memory is a combination of these two 

processes. 

ℎ𝑖𝑡𝑠 = 𝑅  + (1− 𝑅)(𝑝 ℎ𝑖𝑡 > 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒) 

𝑓𝑎𝑙𝑠𝑒  𝑎𝑙𝑎𝑟𝑚𝑠 = 𝑝 𝑓𝑎𝑙𝑠𝑒  𝑎𝑙𝑎𝑟𝑚 >   𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

It is possible to model ROC curves within individuals for each training group to 

determine the dissociable contributions of R and d’ to the path of the curve (M. W. 

Howard et al., 2006). Here R and d’ are fit as free parameters.  For each iteration of R and 

d’ an ROC curve is generated and confidence thresholds are moved along the ROC 

curves until the lowest χ2 between the observed response distribution and the model 

predictions is found.  Thus, there are 5 free parameters in the model; three confidence 

intervals (0 < c2 < c3 < c4 < 1), one recall parameter (0 < R < 1), and one familiarity 

parameter (0 < d’ < 3.2). ROC curve fits give insights into the unique contributions of 

recall (R) and familiarity (d’) to category recognition.   

We fit computational models of ROC curves separately for the two categories 

within the AB and AN task for each individual.  The model provided a good fit to the 

data (Mχ2 = 1.37, SDχ2 = 3.43). As the category labels are arbitrary in the AB task 

(randomly assigned prototypes for A and B for each participant) and both are trained 

equally, mean parameter estimates for the two categories are taken for each individual. 

The AB training condition was also examined by modeling both categories together and 

the pattern of results was consistent with the reported findings. In the AN task category A 

was trained through repeated exposure to exemplars and category N was not. Thus, we 
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included AN categories (AN-A, AN-N) separately for analysis for each individual 

(Figure 9.4). 

Computational Modeling Results 

To examine the contribution of familiarity to category recognition, a 2 Age 

(younger, older) x 3 Training (AB, AN-A, AN-N) ANOVA was conducted on the d’ 

parameter (Figure 10).  There was a significant main effect of Training, F(2, 170) = 4.97, 

p=.008, which was qualified by a significant Age x Training interaction F(2, 170) = 6.50, 

p=.002. Independent sample t-tests were conducted to decompose the effects of the 

interaction.  In the AB training condition, younger adults have significantly higher d’ 

than younger adults, t(54)=2.44, p=.02, (MYoungerAB = .95, SDYoungerAB =.79, MOlderAB =.53 

SDOlderAB = .44).  However, in the AN-A training condition older adults have significantly 

higher d’ than younger adults, t(58) = 2.07, p=.04, (MYoungerAN-A = .61, SDYoungerAN-A =.93, 

MOlderAN-A =1.61 SDOlderAN-A = 1.31), and older adults have marginally higher d’ than 

younger adults in the AN-N training condition, t(58) = 1.42, p=.06, (MYoungerAN-N = .60, 

SDYoungerAN-N =.89, MOlderAN-N =.22 SDOlderAN-N = .57). 

To determine whether familiarity was related to better performance, the d’ 

parameter was correlated with performance for each training condition.  There was a 

significant relationship between d’ and performance in the AB training condition, r2 = 

.10, p=.02, the AN-A training condition, r2 = .10, p=.02, and the AN-N training 

condition, r2 = .19, p<.001. 

 To examine the contribution of recall to category recognition, a 2 Age (younger, 

older) x 3 Training (AB, AN-A, AN-N) ANOVA was conducted on the R parameter 
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(Figure 10).  There was a significant interaction between Age and Training, F(2, 170) = 

3.45, p=.03. Independent sample t-tests were conducted to decompose the effects of the 

interaction. In the AB training condition, younger adults have significantly higher R than 

younger adults, t(54)=3.21, p=.002, (MYoungerAB = .22, SDYoungerAB =.27, MOlderAB =.05 

SDOlderAB = .09).  However, in the AN-A training condition, t(58) = .77, p=.43, ns, 

(MYoungerAN-A = .10, SDYoungerAN-A =.23, MOlder =.15 SDOlder AN-A = .31), and the AN-N training 

condition, t(58) = 1.27, p=.20, ns, (MYoungerAN-N = .11, SDYoungerAN-N =.24, MOlderAN-N =.04 

SDOlderAN-N = .19), there where no significant age-related differences in R. 

 To determine whether recall was related to better performance, the R parameter 

was correlated with performance for each training condition.  There was a significant 

relationship between R and performance in the AB training condition, r2 = .13, p=.006, 

but not the AN-A training condition, p=.42, ns, nor the AN-N training condition, p= .09, 

ns.  
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Figure 10. Chapter 3: Computational Modeling Results 

Computational modeling results for dissociable memory processes of 1) familiarity as d’ 
and 2) recall as R for each training condition.  Results are grouped by the type of 
category training where AB represents the mean of the model fits for category A and 
category B which were both trained with corrective feedback.  AN-A represents the 
category presented during training without corrective feedback.  AB represents the 
category not presented during training.  Standard error bars included. 
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DISCUSSION 

Some aspects of learning and memory show declines across adulthood while 

others are left relatively intact (Glass et al., 2012; M. W. Howard et al., 2006; Light et al., 

2004; Maddox et al., 2010; Park et al., 2002; Salthouse, 2004; Verhaeghen et al., 2003; 

Verhaeghen & Cerella, 2002), however little research has examined how these 

differences interact within dissociable learning systems.  Prior work from our lab found 

that older adults have poor learning relative to younger adults when training consists of 

comparing category A to category B with corrective feedback (Chapters 1 and 2), 

however, this finding does not generalize to an automatic perceptual representation task 

where older adults demonstrated better learning than younger adults (Glass et al., 2012).   

We hypothesize that this age by system interaction may be due to age-related 

changes in the dissociable processes that underlie memory - recall and familiarity. In 

prior work, younger adults’ memory has been shown to be supported by two dissociable 

types of retrieval – one that depends on vivid impressions of specific experiences (recall) 

and another that provides a sense of perceptual fluency (familiarity) (Davachi & Wagner, 

2002; Yonelinas et al., 1996). It has been suggested that age related declines in 

recognition do not affect these processes uniformly with greater declines in recall while 

familiarity is left relatively intact (Light et al., 2004). These changes in recognition likely 

affect learning outcomes differently depending on training demands.  

In this Chapter we examined how age-related changes in recall and familiarity 

influence new category learning as a function of different training conditions where rule-

based learning depends on declarative memory (recall; AB) and verbal rules and 
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perceptual representation learning without feedback depends on fluency (familiarity; 

AN). An examination of the behavioral ROC curves indicates that older adults and 

younger adults are using different psychological processes during the AB task and similar 

psychological processes during the AN task. Computational models indicate that younger 

adults have significantly higher recall (R) in the AB task than older adults and 

successfully use this process to correctly recognize category members.  This age 

difference in recall was not seen in either category A or N of the AN task. In addition, 

older adults revealed greater familiarity (d’) for the passively trained category of the AN 

task than younger adults and successfully use this process to correctly recognize category 

members. Importantly, in the AB task both R and d' are significantly correlated with 

overall performance across groups.  However, in the AN task d' for both category A and 

N is correlated with overall performance and R is not. Further, a visual inspection of the 

ROC curves generated by the model’s best fitting parameters support highlight these 

distinctive characteristics of the curve and match the pattern seen in the behavioral data 

(Figure 9.4). 

Glass and colleagues suggested that age-related performance differences in AB 

and AN learning may be due to differences in strategy selection or due to greater declines 

in the declarative memory system than the procedural memory system (Glass et al., 2012; 

Poldrack & Foerde, 2008). In line with several other studies (Filoteo et al., 2010; Maddox 

et al., 2008), the data reported here suggests that age-related changes in the contributions 

of dissociable recall and familiarity processes are, to some extent, responsible for age-

related changes in category learning performance within these systems.  Further, these 
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data contribute to growing evidence against single-system hypotheses where only a single 

declarative memory process underlies learning.  However, it is unclear how the strategic 

differences mentioned by Glass et al. are related to reported differences in in the 

contributions of recall and familiarity.  Future work should examine whether strategy is 

interacting with the contributions of memory processes to affect learning outcomes. 

These findings are important in a number of ways.  These data lend support to 

findings from prior work that indicate these tasks are driven by two dissociable systems 

and links these differences to specific components of memory (Bozoki et al., 2006; 

Gorlick & Maddox, 2013; Maddox et al., 2011; Zeithamova et al., 2008).  It is worth 

noting that both recall and familiarity aid performance during rule-based AB prototype 

learning and only familiarity aids performance during perceptual representation-based 

AN learning in the absence of feedback.  Thus, though dissociable, these processes work 

in parallel to aid performance in the AB task.  In addition, these results align with 

multiple studies that suggest that older adults have poor memory accuracy due to 

impairments in recall and good memory accuracy due to intact familiarity (M. W. 

Howard et al., 2006; Light et al., 2004).  By using multiple types of prototype category 

training within the same paradigm we were able to demonstrate that the relationship 

between memory processes and performance is complex where the outcomes depend on 

training.  These results suggest that an older adult bias towards familiarity based 

processing may help guide best practices for life-long learning.  Learning P performance 

in older adults is best when training is supported by perceptual fluency in the absence of 

feedback.  
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Chapter 4: Emotional Priming in Rule-Based and Perceptual 

Representation-Based Learning (Gorlick & Maddox, 2013, PLOS ONE) 

Chapter 3 demonstrated how recall, or narrow attention to specific features, and 

familiarity, or global perceptual representations, influence rule-based category learning 

and perceptual representation-based category learning. Interestingly, younger adults 

demonstrated a learning deficit relative to older adults in the perceptual representation-

based system. This finding highlights the fact that learning deficits are not limited to 

older adults.  However, we may be able to use a different set of emotional biases seen in 

younger adults to change attention and thus improve performance. 

 Attentional scope is likely critical in when considering the effectiveness of recall 

and familiarity during learning. During rule-based tasks, narrow attention to specific 

features is needed to test hypotheses based on recollections of prior exemplars.  During 

perceptual representation tasks, broad attention to the stimulus as a whole is needed to 

create a global perceptual representation of the stimulus thus developing 

familiarity(Ashby & O'Brien, 2005). Prior work examining younger adults has 

demonstrated that emotional arousal influences the scope of attention (Fredrickson & 

Branigan, 2005), however little work has been done to determine how exhilarating or 

threatening conditions that are independent of learning influence changes in attentional 

scope and subsequent task performance.  

The goal of this research is to investigate how task-irrelevant positively and 

negatively emotionally-arousing primes affect performance during rule-based learning 
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and perceptual representation-based learning (Ashby & Maddox, 2010; Zeithamova et al., 

2008) and focus on younger adults where the influence of emotional primes is best 

understood. During training we presented either a positively or a negatively arousing 

emotional prime before each stimulus. During test participants are asked to categorize 

novel stimuli without primes and accuracy is examined.  In addition, computational 

models provide insights into arousal’s effects on attention during test. 

Positive emotional primes have been shown to broaden attention, thus we predict 

that attention will be evenly distributed across features. On the other hand, negative 

emotional primes have been shown to narrow attention, thus we predict that focus would 

be limited to a small number of features. Importantly, these predictions apply to both 

perceptual representation (AN) and rule-based (AB) learning tasks, but are predicted to 

have very different effects. Specifically, in the rule-based AB task, we predict that 

negative emotional primes will narrow attention for features from category A and 

category B, an ideal scope for verbalizable rule development yielding high accuracy. 

Positive emotional primes will broaden attentional focus for category A and category B 

making it difficult to develop concrete rules yielding low accuracy. However, in the 

perceptual representation-based AN task, we predict that positive emotional primes will 

broaden attention facilitating global perceptual fluency with category A thus yielding 

high accuracy. Negative emotional primes will narrow attention creating a weak global 

perceptual-representation of category A yielding low accuracy. Thus, we predict an 

interaction between task (AB, AN) and valence of primes (positive, negative), where 
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negative arousal enhances performance in the rule-based AB task and positive arousal 

enhances performance in the perceptual representation-based AN task. 

METHOD 

Participants 

One hundred forty five undergraduates age 18-35 participated in the AB condition 

(nNegArs= 34, nPos= 37, nNegCont= 37, nPosCont= 37) and 145 undergraduates age 18-35 

participated in the AN condition (nNegArs= 40,  nPos= 32, nNegCont= 35, nPosCont= 38) from the 

University of Texas at Austin community participated for class credit.  Participants were 

excluded if performance was less than 40% or if 90% or more of their responses were of 

one category type. The University of Texas at Austin Internal Review Board approved 

the procedures of this study and written consent was obtained for all participants. 

Materials 

Twenty prime images were presented during training that were taken from 20 

yoked images of positive/neutral scenes and 20 yoked images of negative/neutral scenes. 

Images were a subset of those used in Mather & Nesmith (M. Mather & Nesmith, 2008) 

and were matched on arousal and similarity. Matched images were taken from the 

International Affective Picture System (Lang, Bradley, & Cuthbert, 2005) and outside 

sources on the internet to best match on appearance, complexity, content, and focus of 

interest while manipulating arousal. Mather and colleagues validated matched images 

with several raters.  Yoked images that were rated as at least 1.5 points apart in arousal 

on a scale from 1 (low arousal) to 9 (high arousal) and similar to each other with at least a 



 88 

5.3 rating on a scale of 1 (not at all similar) to 9 (extremely similar). 

Cartoon animals constructed from 10 binary features such as head orientation (up 

or forward), body color (grey or yellow), and tail (thin or thick) served as stimuli from a 

total of 210 = 1024 possible stimuli (Figure 11.1). For each participant one stimulus was 

selected at random to represent the A prototype. The B (or anti) prototype has the 

opposite value on each feature. Category stimuli were derived by distorting the prototype 

on one to four randomly selected features. Exemplars that differ from the prototype on 

five features were not used as they are ambiguous.  
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Figure 11.  Chapter 4 Stimuli and Procedure 

1) Category Structure. 2) Participants completed 2 blocks of 20 training trials and 42 test 
trials (including prototypes and antiprototypes). In this study we presented 
emotional/neutral emotional prime images 500 ms before stimuli presentation during 
training to induce a positive or negative mood. 

 
Procedure 

We used a 4 emotional prime (negative-arousing, negative-control, positive-

arousing, positive-control) X 2 task (AB, AN) between-participant design. Training was 

1

2
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manipulated between tasks and consisted of 20 trials followed by a test phase with 42 

novel stimuli including the prototype and the antiprototype, and equal numbers of A and 

B items. On each training trial, an emotional or neutral prime was presented for 800ms, 

followed by a fixation cross for 500ms before the stimulus is presented (Figure 11.2). 

Each participant completed 2 blocks of 20 training and 42 test trials.  

 During AB prototype training, participants were shown 10 A and 10 B items in a 

random order, generated a response and were given corrective feedback. Within each 

category, 2 training stimuli differed from the category prototype on 1 feature, 3 differed 

on 2 features, 3 differed on 3 features and 2 differed on 4 features. Across all 10 stimuli 

within each category, the category typical features were presented 7 or 8 times and the 

opposite category typical features were presented 2 or 3 times. During AN prototype 

training, participants were shown 20 A items in a random order with a keystroke required 

to advance to the next item. Five items differed from the category A prototype on 1, 2, 3, 

and 4 features.  

In both the AB and AN tasks, a 42-trial test phase followed training that included 

each prototype and 5 stimuli that differed from each prototype on 1, 2, 3 and 4 features. 

On each test trial, 2 seconds after stimulus onset, the participant was prompted to give an 

A or B (not A) response with no corrective feedback.  

RESULTS 

We were most interested in the effect of emotional primes on stable performance 

and focused our analysis on the 42-trial final test block (including 40 novel examples and 
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2 prototypes). We expected and found no performance differences between the positive- 

and negative-control conditions for the AB task [MNegControl = .65, MPosControl = .67, 

t(72)<1.0, p = .47] and for the AN task [MNegControl = .64, MPosControl = .61, t(71)<1.0, p = 

.47]. Therefore, in the following analyses we collapsed across positive and negative 

control groups within the AB and AN task and refer to them as the “control” group.  

Overall Test Accuracy 

Proportion correct was calculated for each participant and a 2 task (AB, AN) X 3 

emotional prime (negative, control, positive) ANOVA was conducted. There was no 

main effect of task, F(1, 284) = 2.16, p= .14, η2 = .008, or emotional prime, F(2, 284) = 

.274, p = .76, η2 = .002. However, there was a significant two-way interaction, F(2, 284) 

= 5.770, p = .003, η2 = .04 (Figure 12.1).  

To decompose the effects of emotional prime valence on AB and AN accuracy, 

we conducted independent sample t-tests between the negative and positive prime 

conditions within each task. In the AB task, accuracy was higher in the negative prime 

condition (MNeg= .68) than the positive prime condition (MPos= .59), t(69) = 2.37, p = 

.021, η2 = .08. However, in the AN task, accuracy was higher in the positive prime 

condition (MPos= .67) than the negative prime condition (MNeg= .58), t(70) = 2.30, p = 

.024, η2 = .07. This indicates that task performance depends on the valence of emotional 

primes with negative primes enhancing AB task performance and positive primes 

enhancing AN task performance. Performance in the control condition fell between the 

positive and negative conditions for both tasks and there was no statistical difference, 
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t(145) = 1.43, p = .154, η2 = .014, ns, between the control prime conditions in the AB and 

AN task (MAB=.66, MAN=.62) suggesting that the tasks are of equivalent difficulty. 

Prototype Accuracy 

Prototype accuracy was calculated for each participant. In the AB condition the 

average accuracy for the A and B prototypes was calculated and in the AN condition 

accuracy for the A prototype was calculated. A 2 task (AB, AN) X 3 emotional prime 

(negative, control, positive) ANOVA was conducted on prototype accuracy. There was 

no main effect of task, F(1, 284) = 2.27, p=.13, η2 = .008, or emotional prime, F(2, 284) = 

.84, p = .43, η2 = .006. However, there was a significant two-way interaction, F(2, 284) = 

5.503, p = .005, η2 = .04 (Figure 12.2). Post-hoc analyses suggested that prototype 

accuracy was marginally higher in the negative prime condition (MNeg= .84) than the 

positive prime condition (MPos= .69), t(69) = 1.84, p = .07, for AB learning, but was 

higher in the positive prime condition (MPos= .87) than the negative prime condition 

(MNeg= .62), t(70) = 2.46, p = .016, for AN learning. This indicates that prototype 

accuracy in each task depends on the valence of emotional primes.  

Antiprototype Accuracy 

Antiprototype accuracy was examined in the AN task only since both prototypes 

were trained in the AB condition and category labels are arbitrary.  We conducted a one-

way ANOVA examining priming condition (positive, control, negative) within the AN 

task (Figure 12.3).  There was a main effect of prime, F(2, 142) = 3.09, p = .05, η2 = .04, 

T-tests between the negative and positive prime conditions indicated that accuracy was 

higher in the positive prime condition (MPos= .75) than the negative prime condition 
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(MNeg=.48), t(70) = 2.43, p = .018, η2= .08. Together, these results indicate that 

prototypes and antiprototype accuracy depends on the valence of emotional primes and 

training where negative primes improve accuracy in the AB task and positive primes 

improve accuracy in the AN task.   
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Figure 12.  Chapter 4: Behavioral Results 

1) Proportion correct for negative, control, and positive emotional prime conditions 
during test for the AB task and the AN task. 2) Proportion prototypes correct for 
negative, control, and positive emotional prime conditions during test for the AB task and 
the AN task. 3) Proportion antiprototypes correct for negative, control, and positive 
emotional prime conditions during test for the AN task. Standard error bars included. 
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Computational Models 

The accuracy based analyses support our prediction that positive emotionally-

valenced arousal will improve perceptual representation-based AN learning, whereas 

negative emotionally-valenced arousal will improve rule-based AB learning. However, 

these analyses provide no information regarding our prediction that the locus of these 

effects is in emotional arousal’s influence on attentional scope. Specifically, we 

hypothesized that AN learning requires broad attentional focus and thus will be enhanced 

by positive emotional arousal, whereas AB learning requires narrow attentional focus and 

thus will be enhanced by negative emotional arousal. To test these predictions we turn to 

computational modeling techniques. We applied simple prototype models to each 

individual’s data (Ashby & Maddox, 1993; Posner & Keele, 1968; J. D. Smith & Minda, 

1998).  

The model assumes that on each trial, the participant calculates the attention-

weighted Euclidean distance between the current stimulus ( ) and the prototype for the 

categories (  for category A, and  for category B(N)). The attention weights stretch 

and shrink the perceptual space along each stimulus dimension with larger attention 

weights stretching the space (increasing dimension-level discriminability). The (city 

block) distance between  and  is calculated as: 

   (1) 

x

PA PB

x PA

dxPA = wi∑ (xi − PAi )
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where  represents the attention-weight associated with dimension . The attention 

weights are constrained to sum to 1, yielding 9 free  parameters. The stimulus’ binary 

value for dimension  is denoted by , and prototype A’s binary value for dimension  

is denoted by .  is calculated on each trial using the same method. The predicted 

probability of responding A to a stimulus, , is calculated as: 

   (2) 

where  ( is calculated in Eq. 1). The  parameter represents the perceptual 

sensitivity of the system, and is the 10th free parameter. Larger values of  stretch the 

perceptual space uniformly leading to greater overall discriminability across stimuli. For 

each participant, we fit the model to 42 test items from the test block using maximum 

likelihood procedures.  

Attentional Focus 

We predict that positive emotional primes broaden attention whereas negative 

emotional primes narrow attention. As a test of this hypothesis we identified the 

dimension with the maximum attention weight ( ; Figure 13.2). A large  implies 

narrow attention and a small  implies broad attention. We conducted a 2 task (AB, 

AN) X 3 emotional prime (negative, control, positive) ANOVA on the  values and 

found no main effect of task and no interaction. As predicted, there was a main effect of 

wi i
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i xi i

PAi PB

P(A | x)

P(A | x) = ηiA
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emotional prime, F(2, 284)= 7.036, p = .001, η2= .047, where negative primes were 

associated with larger  (MNeg= .57) and positive primes were associated with smaller 

(MPos= .46) values. This indicates that negative emotional primes narrow attention 

while positive primes broaden attention. 

In addition to looking at maximal attentional weight, we examined attentional 

scope by calculating the number of dimensions needed to capture ninety-five percent of 

the attentional weights ( ). Here smaller values indicate that fewer dimensions are 

attended to and thus attention is narrow. We conducted a 2 task (AB, AN) X 3 emotional 

prime (negative, control, positive) ANOVA on the number of dimensions needed to 

capture 95% of attentional weights and found no main effect of task and no interaction. 

However, as seen with maximal attentional weights, there was a main effect of emotional 

prime, F(2, 284)= 3.93, p = .02, η2= .03, where negative primes were associated with 

smaller  (MNeg= 3.3) and positive primes were associated with larger  values 

(MPos= 3.7). This indicates the effects of emotion on attentional scope are robust to 

multiple measures of attention. 

Perceptual Discriminability 

We also predict that narrow attention facilitates AB learning whereas broad 

attention facilitates AN learning thus leads to increased perceptual discriminability. As a 

test of this hypothesis we conducted a 2 task (AB, AN) X 3 emotional prime (negative, 

control, positive) ANOVA on the perceptual discriminability ( ) values (Figure 13.1) 
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and found a main effect of task, F(1, 284) = 8.299, p=.004, η2 = .028, no main effect of 

emotional prime, F(2, 284) = .429, p = .65, η2= .003, and an interaction F(2, 284) = 

6.628, p = .002, η2 = .05. In support of our prediction, post hoc analyses revealed that 

perceptual discriminability was higher in the negative prime condition (MNeg=9.03) than 

the positive prime condition (MPos=4.48), t(69) = 2.26, p = .027, η2= .07 for the AB task, 

but was higher in the positive prime condition (MPos=2.78) than the negative prime 

condition (MNeg=5.44), t(70) = 2.24, p = .028, η2= .07 for the AN task. 
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Figure 13. Chapter 4: Computational Modeling Results 

1) Perceptual discriminability parameter estimates ( ) X emotional primes (negative, 
positive, neutral) for the AB task and the AN task. 2) Maximum dimension weight 
parameter ( ) estimates X emotional primes (negative, positive, neutral) for the AB 
task and the AN task. Standard error bars included. 
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broad attention facilitates AN learning, we correlated AB and AN accuracy with the 

maximum attentional weight ( ) and perceptual discriminability ( ) parameter 

values. A larger maximum attentional weight ( ) was associated with increased 

performance in the AB task, r2 = .23, F(1,143) = 8.03, p = .005, but not the AN task, r2 = 

-.06, F(1,143) = .045, p =.50, ns. In addition, increased perceptual discriminability ( ) 

was associated with increased performance in both the AB task, r2 = .63, F(1,143) = 

95.50, p < .001, and the AN task, r2 = .48, F(1,143) = 41.92, p < .001. Thus, focused 

attention was associated with improved accuracy in the AB task only, whereas greater 

discriminability was associated with improved accuracy both the AB and AN tasks.  

DISCUSSION 

The current study represents the first to examine arousal’s effects on learning in 

dissociable perceptual representation-based and rule-based prototype learning systems. 

The Arousal-Biased Competition theory (ABC) states that arousal exaggerates ongoing 

competitive attentional processes between high- and low-priority stimuli (M. Mather & 

Sutherland, 2009; 2011). High-priority items are given more attentional resources at the 

expense of low-priority items, but no strong claims are made regarding the effects of 

valence on attention. Fredrickson and colleagues have demonstrated that positively-

valenced arousal broadens the scope of attention whereas negatively-valenced attention 

narrows the scope of attention (Fredrickson, 2004; Fredrickson & Branigan, 2005). 

However, Gable and Harmon-Jones argue that high approach-motived positive arousal 

narrows attention as seen under negative arousal (Gable & Harmon-Jones, 2008; 
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Harmon-Jones & Gable, 2009). Thus, while attention for high-priority items is enhanced, 

it is unclear whether scope of this attention is valence-dependent.   

The overriding aim of this study was to determine how positive and negative 

emotionally arousing primes affect attentional resources and performance in dissociable 

prototype learning systems – one mediated by declarative memory and rule-based 

processing and another mediated by perceptual fluency. Prior research suggests that 

negative emotional primes narrow attention, which should facilitate targeting features for 

verbalizable rules, while positive emotional primes broaden attention, which should 

facilitate a strong perceptual representation. Though the effects of priming on cognition 

are subtle, which is often reflected in modest effect sizes (Sakaki, Gorlick, & Mather, 

2011a), the predicted interaction between valence and system is an important one. 

Prototype distortion learning is an ideal paradigm to test this hypothesis because 

computational models are available that provide estimates of attentional scope.  

Performance 

We hypothesized that the valence of emotional primes (positive, negative) affects 

attentional scope during training and therefore interacts with the system that mediates 

learning in each task (AB, AN). The results supported our predictions. In the AB task, 

negative emotional primes improved overall and prototype accuracy relative to positive 

emotional primes, whereas in the AN task positive emotional primes improved overall, 

prototype, and antiprototype accuracy relative to negative emotional primes.  

Attention 
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Mather and colleagues suggest that priority items seen after high-arousal primes 

benefit from enhanced attentional resources regardless of valence in their theory of 

Arousal Biased Competition (M. Mather & Sutherland, 2011). Our computational 

modeling data indicates that this relationship is more complex and the valence of 

emotional primes affects the scope of enhanced attention. In the negative emotional 

prime condition, greater attentional weight was placed on one stimulus dimension 

compared to the positive emotional prime condition regardless of task suggesting that 

negative emotional primes narrow and positive emotional primes broaden attentional 

scope for subsequent stimuli. 

Perceptual Discriminability 

Perceptual discriminability ( ) depends on both the valence of the emotional 

prime (negative, positive) and the task (AB, AN) and tracks performance. In the AB task 

those in the negative emotional prime condition were more sensitive to differences 

between exemplars than those in the positive emotional prime condition. There is a 

significant reversal of this pattern in the AN task. This indicates that global 

discriminability helps in both the perceptual representations that aid familiarity 

judgments during the AN task and declarative memory processes that aid in verbalizable 

rule formation in the AB task. Modeling results fit with results from Chapter 3 indicating 

that recall is important during rule-based learning but not perceptual representation-based 

learning and familiarity is important for both tasks. 

Stimulus Dimensionality 

c
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The present research examined AB and AN prototype category learning using 

cartoon stimuli composed of 10 binary value features. Previous research examining these 

learning systems has looked at the categorization of high-dimensional stimuli such as 

random Posner dot patterns (Posner & Keele, 1968; Reber et al., 1998; J. D. Smith & 

Minda, 2002) or low-dimensional stimuli such as Gabors (Ell, Cosley, & McCoy, 2011; 

Maddox, Ashby, & Bohil, 2003; Nadler, Rabi, & Minda, 2010). One question that this 

raises is whether the current findings would generalize to these other types of stimuli. 

Much of the work utilizing dot patterns examined AN category learning. Reber et al. 

(1998) looked at functional activation during test after participants were trained on 

distortions from one Posner dot pattern prototype. This task is analogous to our AN task 

as both examine stimuli with high number of features (patterns of 9 dots in the Posner 

task) that are distorted from one prototype.  Both Reber et al (1998) and Zeithamova et al 

(2008) found changes in activation in the posterior occipital cortex suggesting an 

overlapping neural network. Thus, we predict that the effects of emotional primes on AN 

learning would generalize to performance during the Posner dot pattern task.  

Predictions for Gabor patch stimuli are less clear. In fact, the results from one 

study using Gabor patch stimuli appear counter to what we observed. Nadler et al (2012) 

found that induced positive mood improved learning in a rule-based task where 

participants categorized Gabor patches by one dimension (Nadler et al., 2010). Improved 

performance is attributed to increased prefrontal dopamine enhancements to cognitive 

flexibility, which aids in rule development (Ashby, Isen, & Turken, 1999). Though 

positive affect helps rule acquisition in this case, it is likely that the relative importance of 
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cognitive flexibility and attentional scope differ as a function of the dimensionality of the 

stimuli. High dimensional stimuli require narrow attentional scope in order to select 

salient features during rule development. Gabor patches are simple stimuli that only vary 

on two dimensions (frequency and orientation) and attentional scope is not as important 

in determining learning outcomes. Thus, it is possible that stimulus dimensionality is an 

important factor that interacts with learning system and mood in determining learning 

outcomes.  Future work should better address these conflicting findings by manipulating 

the number of stimulus feature dimensions and comparing emotionally valenced priming 

effects directly with mood induction effects. 

Conclusions 

These data suggest that the valence of task-irrelevant emotional arousal is a 

critical factor in determining learning outcomes in younger adults. Negative emotional 

primes narrow attentional scope optimizing rule-based learning that depends on targeting 

features to test verbalizable rules. Positive emotional primes broaden attentional scope 

optimizing perceptual-representation learning that depends on fluency with a group of 

stimuli.  
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Final Remarks and Future Directions  

 Together this work highlights how important a dissociable learning systems 

approach is in understanding the influence of emotion, memory, and feedback processing 

on learning outcomes across adulthood. I have reviewed evidence demonstrating that 

emotional biases can attenuate age-related deficits in rule-based set shifting, but only 

positive emotional feedback for a task with low cognitive load and negative emotional 

feedback for a task with high cognitive load (Chapter 1).  Critically, the social salience of 

the feedback was important in improving performance outcomes. These effortful 

emotional feedback biases successfully attenuated effortful learning deficits, however 

these benefits did not generalize to procedural learning deficits (Chapter 2). This may be 

due to differences in the way feedback is processed where automatic learning benefits 

from automatic feedback processing and effortful emotional biases are an ineffective 

intervention.  In addition, I provided evidence that age differences in the contributions of 

dissociable memory processes are, at least in part, driving an older adult advantage seen 

in perceptual representation-based learning (Chapter 3).  Though younger adults 

demonstrated deficits in perceptual representation-based learning relative to older adults, 

emotional stimuli could be leveraged to alter attention attenuating this deficit.  Here the 

valence of task-irrelevant emotional primes determined the scope of enhanced attention.  

Positive primes broadened attentional scope facilitating perceptual fluency and negative 

primes narrowed attentional scope facilitating hypothesis testing (Chapter 4).  

Future Directions 
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Emotional factors interact with task demands as well as learning system learning 

system to influence performance outcomes in Chapters 1, 2, and 4, however it is still 

unclear how changes in performance are influenced by one’s mood. Though the current 

dissertation focuses on the influence of emotional stimuli on cognitive and performance 

outcomes it does not consider how this is mediated by altered mood. Other research has 

found that those in a depressive mood are more sensitive to loss than gain (Maddox, 

Gorlick, Worthy, & Beevers, 2012).  Further, depressive symptoms have been shown to 

interact with dissociable systems where those with elevated depressive symptoms tend to 

process automatic decision-making tasks better than effortful decision-making tasks 

(Beevers et al., 2012).  Future work would do well to examine whether these depressive 

effects on decision-making generalize to dissociable learning across the lifespan.  In 

addition, depressive symptoms often manifest as an increased attention for negative 

emotional items and additional work could examining valenced emotional feedback 

processing could uncover ways to attenuate deficits. 

Chapters 1 and 2 demonstrate how age-related biases in emotional feedback 

processing can be used to improve learning. It is well established that older adults report 

increased well-being relative to younger adults when the resources are available. The 

SAVI model, or Strength and Vulnerability Integration model, suggests that age-related 

changes in the effectiveness of emotion regulation may be due to strategic changes 

(Charles, 2010).  Here lifespan experience dealing with negative events leads to enhanced 

strategies for coping with exposure to negative stimuli. However, this does not account 

for the greater socio-emotional framework where younger adults that are coming to the 
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end of an era also experience positive emotional biases (Carstensen, 2006).  For example, 

when individuals come to the end of their senior year they experience "senior-itis" or an 

increased desire to be with friends and a decreased desire to acquire knowledge.  Thus, 

while there is evidence that temporal horizons impact emotional biases, it is possible that 

superior emotion regulation strategies are also strengthened.  Future work should 

examine whether age differences in emotion regulation influence emotional feedback 

processing. 

 Though tasks are designed to be supported by rule-based, procedural, or 

perceptual representation-based systems, it is possible that some participants are using a 

different strategy.  Chapters 3 and 4 demonstrate the power of computational models in 

uncovering latent psychological processes. Future studies should incorporate 

computational models to gain insights into strategy use. Category learning tasks with 

stimuli that have continuous feature dimensions are ideal for examining strategy use 

(Ashby, 1992; 2014; Ashby & Waldron, 1999; Maddox, Filoteo, & Lauritzen, 2007).  

Here decision bound models provide valuable insights into the underlying methods 

participants are using to solve the task. 
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