
Copyright

by

Alan Mark Dunn

2014

The Dissertation Committee for Alan Mark Dunn

certifies that this is the approved version of the following dissertation:

Private Environments for Programs

Committee:

Emmett Witchel, Supervisor

Mathieu Baudet

Warren A. Hunt Jr.

Vitaly Shmatikov

Brent Waters

Private Environments for Programs

by

Alan Mark Dunn, B.S.; B.S.; M.A.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2014

To everyone

Acknowledgments

I’d like to thank Emmett Witchel for encouraging my interest in computer systems

and for teaching me how to be a researcher. I’ve had many wonderful collaborators

here at UT Austin and abroad that I want to thank for sharing their knowledge and

experience with me: Owen Hofmann, Suman Jana, Jon Katz, Sangman Kim, Mike

Lee, David Molnar, Alex Moshchuk, Don Porter, Indrajit Roy, Vitaly Shmatikov,

Mark Silberstein, Helen Wang, Brent Waters, and Yuanzhong Xu. If I left anyone

out, know that my memory fails only because of the sheer number of people I have

to thank, not the magnitude of your contribution, so please excuse the omission.

Finally, I want to thank my parents and brothers; I could not have done this without

their support and encouragement.

Alan Mark Dunn

The University of Texas at Austin

August 2014

v

Private Environments for Programs

Alan Mark Dunn, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Emmett Witchel

Commodity computer systems today do not provide system support for privacy.

As a result, given the creation of new leak opportunities by ever-increasing software

complexity, leaks of private data are inevitable.

This thesis presents Suliban and Lacuna, two systems that allow programs

to execute privately on commodity hardware. These systems demonstrate different

points in a design space wherein stronger privacy guarantees can be traded for

greater system usability.

Suliban uses trusted computing technology to run computation-only code

privately; we refer to this protection as “cloaking”. In particular, Suliban can

run malicious computations in a way that is resistant to analysis. Suliban uses

the Trusted Platform Module and processor late launch to create an execution en-

vironment entirely disjoint from normal system software. Suliban uses a remote

attestation protocol to demonstrate to a malware distribution platform that the

environment has been correctly created before the environment is allowed to receive

vi

a malicious payload. Suliban’s execution outside of standard system software al-

lows it to resist attackers with privileged operating system access and those that

can perform some forms of physical attack. However, Suliban cannot access system

services, and requires extra case-by-case measures to get outside information like

the date or host file contents. Nonetheless, we demonstrate that Suliban can run

computations that would be useful in real malware. In building Suliban, we uncover

which defenses are most effective against it and highlight current problems with the

use of the Trusted Platform Module.

Lacuna instead aims at achieving forensic deniability, which guarantees

that an attacker that gains full control of a system after a computation has finished

cannot learn answers to even binary questions (with a few exceptions) about the

computation. This relaxation of Suliban’s guarantees allows Lacuna to run full-

featured programs concurrently with non-private programs on a system. Lacuna’s

key primitive is the ephemeral channel, which allows programs to use peripherals

while maintaining forensic deniability. This thesis extends the original Lacuna work

by investigating how Linux kernel statistics leak private session information and how

to mitigate these leaks.

vii

Contents

Acknowledgments v

Abstract vi

Chapter 1 Introduction 1

Chapter 2 Related work 5

2.1 Motivation for private environments for computation 5

2.1.1 Lifetime of sensitive data . 5

2.1.2 Data remanence . 6

2.2 Determining program secrets . 6

2.2.1 Malware analysis . 6

2.2.2 Side-channel attacks . 6

2.2.3 Physical attacks . 7

2.3 Protecting program secrets . 7

2.3.1 Full-system approaches . 7

2.3.2 Protecting file data . 8

2.3.3 Hardware support . 9

2.3.4 Isolation . 10

2.3.5 Cryptographic techniques . 11

2.3.6 Mitigating side-channel attacks 12

viii

Chapter 3 Cloaking malicious computation with trusted computing 13

3.1 Motivation: Cloaking Conficker B . 15

3.2 Threat model . 16

3.3 TPM background . 17

3.3.1 TPM hardware . 17

3.3.2 Managing and protecting TPM storage 18

3.3.3 Initializing the TPM . 21

3.3.4 Platform identity and attestation 22

3.3.5 Using the TPM . 23

3.4 Protocol . 23

3.4.1 Late launch for secure execution 25

3.4.2 The main protocol . 26

3.5 Resilience of the Protocol . 32

3.6 Implementation . 33

3.6.1 Late launch environment establishment 34

3.6.2 Payloads . 35

3.7 Evaluation . 37

3.8 Attack Feasibility . 39

3.9 Defenses . 41

3.9.1 Restricting late launch code 41

3.9.2 TPM manufacturer cooperation 41

3.9.3 Attacks on TPM security . 42

3.9.4 Restricting deployment and use of TPMs 43

3.9.5 Detection of malware that uses TPMs 44

3.10 Applicability to newer hardware . 44

Chapter 4 Achieving forensic deniability with Lacuna 47

4.1 Motivation: Leaks from “private” browsing 48

ix

4.1.1 Graphical data . 49

4.1.2 Audio data . 51

4.1.3 System caches . 52

4.1.4 Network data . 52

4.2 Goals . 53

4.2.1 Threat model and privacy goals 53

4.2.2 Usability goals . 55

4.3 Design . 55

4.3.1 Private process isolation . 56

4.3.2 Ephemeral channels . 56

4.3.3 Side-channel mitigation . 59

4.4 Design of ephemeral channels . 59

4.4.1 Display devices . 59

4.4.2 Audio devices . 60

4.4.3 USB input devices . 60

4.4.4 Network devices . 61

4.5 Implementation . 62

4.5.1 Encrypted ephemeral channels 62

4.5.2 Storage . 63

4.5.3 Ephemeral channels for specific device types 64

4.6 Evaluation . 67

4.6.1 Validating privacy protection 68

4.6.2 Measuring data exposure . 68

4.6.3 Full-system performance . 69

4.6.4 Clean-up time . 70

4.6.5 Switch time . 71

4.6.6 Network performance . 72

x

4.6.7 Audio latency . 74

4.6.8 Swap performance . 75

4.6.9 Scalability . 75

4.7 Study of statistics-based side channels 75

4.7.1 Finding statistics . 77

4.7.2 Classifying statistics . 78

4.7.3 Found statistics . 79

4.7.4 Mitigating statistics-based side-channels 81

4.7.5 Usability effects of leak mitigation 86

Chapter 5 Conclusion 87

Bibliography 88

Vita 101

xi

Chapter 1

Introduction

The complexity of modern computer systems makes it difficult to provide privacy

guarantees for programs that use them. Programs can send data to a variety of

system servers (e.g., the display server) or other applications, write it to disk, send

it across the network, and even keep it in memory for arbitrarily long periods of

time [CPGR05]. Even systems that specifically aim to keep application secrets often

leak information in unexpected ways because they are not comprehensive in scope.

For example, private browsing modes in modern web browsers reveal information

about which sites have been visited by leaving behind indicators of which self-signed

certificates they have encountered [ABJB10], and common desktop applications can

leak the existence of hidden files on a hard disk through saved settings like recently

visited files [CHK+08].

In light of the variety of ways that applications fail to contain their secrets,

many have suggested building support for privacy into systems themselves [CPGR05,

OMRK13, TAB+12]. System support allows programs to avoid making privacy mis-

takes by using a single well-tested implementation of privacy primitives. However,

it is not immediately clear what privacy support systems should provide. There are

many possible notions of privacy that one might want and ensuring that a system

1

protects privacy can have implications for its usability and programmability.

This thesis examines the possibilities for system support for privacy by pre-

senting two systems, Suliban [DHWW11] and Lacuna [DLJ+12], that allow pro-

grams to execute privately on commodity hardware. Suliban uses trusted computing

technology, in particular, the Trusted Platform Module (TPM) and processor late

launch [int14a, int09, amd10], to establish a private environment entirely disjoint

from the operating system (OS) where purely computational programs that do not

require OS services can run. Lacuna, on the other hand, uses virtualization and

OS modifications to provide privacy for full-featured programs that run within an

OS. Suliban and Lacuna help to illustrate the full spectrum of the tradeoff between

privacy guarantees and usability; Suliban provides strong privacy guarantees for

limited sets of programs, while Lacuna allows a wide variety of programs to run

with a more limited (yet still useful) notion of privacy.

Suliban allows computation-only code to run in a minimal environment where

it will be the only code running on the system at that time. Suliban uses processor

late launch to ensure the proper setup of an environment protected from snooping

by concurrent code and corruption by system devices.

Note that Suliban was designed with additional security guarantees in mind:

Suliban was designed to allow malware to thwart analysis on platforms that the

malware writer does not control. As a result, it is not enough that certain code can

be run in a private manner with Suliban; it is necessary to ensure that certain code

can only be run when its privacy is guaranteed. Suliban uses the TPM to ensure

that code that needs privacy is restricted to systems where privacy is guaranteed.

Lacuna is a system that can run full-featured applications in “private ses-

sions” that protect application secrets. These private sessions can run concurrently

with other programs on the system. Lacuna provides forensic deniability, which

is the property that no traces of application secrets are left behind after application

2

termination.

The main technical challenge in running private applications within a host

OS that can be later examined for traces is letting private applications use system

devices. To use system devices, private applications need to transfer sensitive data

to and from system devices in a way that does not leave traces in the OS that can

be read by an attacker at a later point. One of Lacuna’s key technical contributions

to allow transfer of sensitive data to and from devices is an abstraction called the

ephemeral channel. Lacuna’s ephemeral channels allow private applications to

privately use a wide variety of system devices, like user input devices, graphics cards,

network devices, and sound cards, while still allowing non-private applications to

use those devices as normal.

The contrast between Suliban and Lacuna can be seen by comparing their

usability and resistance against various attack types. Suliban is only capable of

running computational code, and only in an environment that is separate from the

host OS and monopolizes control of a host during execution. Lacuna, on the other

hand, can run full-featured applications, and can be used concurrently with non-

private applications.

The two systems also have differing attack resistance; Suliban was designed

to be more attack resistant, while Lacuna instead is still useful in a threat model

where many attacks against Suliban are out of scope. In particular, in Lacuna,

nothing prevents malicious code from being run concurrently with private programs.

Concurrently running malicious code has an easier time of extracting information

via side-channel attacks, which involve determining program secrets unwittingly

reflected in publicly available information. For example, it is possible for a mali-

cious process to determine the web access patterns of a browser merely by being

able to sample the amount of memory that the browser occupies over time [JS12].

Side-channel attacks often will not work without the ability to run malicious code

3

concurrently with code being attacked.

Despite the fact that Lacuna’s forensic deniability is a weakening of the

privacy guarantees provided by Suliban, it is still a useful privacy guarantee. The

insights that forensic deniability is a useful privacy guarantee and that it is easier

to build usable privacy systems that provide this guarantee than it is to build those

that provide stronger guarantees are contributions of work on Lacuna.

Outline This thesis proceeds by describing related work motivating privacy pro-

tection and techniques both for attacking and protecting program privacy.

The thesis continues on to describe Suliban (§3) and Lacuna (§4) each in

turn. These chapters flesh out what the privacy guarantees provided by Suliban and

Lacuna entail by developing detailed examples of applications that are protected by

each.

The chapter on Suliban describes a protocol in terms of network messages,

cryptographic functions, and TPM operations to accomplish Suliban’s security goals.

It provides enough background on the TPM and processor late launch to be en-

tirely self-contained. It also includes an extensive analysis of possible subversions of

Suliban and why they fail.

The chapter on Lacuna describes novel attacks that when paired with desired

usability constraints motivate forensic deniability as a privacy goal. It describes and

evaluates a prototype system that achieves forensic deniability for a wide variety of

applications. The design of Lacuna makes it potentially vulnerable to a limited

form of side-channel attack from statistics that the Linux kernel keeps, and the

chapter empirically demonstrates that these leaks are not severe and can largely be

mitigated.

Finally, we summarize the content of the thesis and describe some ways in

which its results will impact the design of future privacy-enhancing systems.

4

Chapter 2

Related work

Related work for this thesis includes studies that show the degree to which programs

currently leak secrets, techniques for determining program secrets, and techniques

for protecting program secrets.

2.1 Motivation for private environments for computa-

tion

2.1.1 Lifetime of sensitive data

Copies of sensitive data can remain in memory buffers, file storage, database sys-

tems, crash reports, etc. long after they are no longer needed by the applica-

tion [Vie01, GPCR04, CPG+04, SML07, BHS03], or leak through accidentally dis-

closed kernel memory [HX07, OR11]. To reduce the lifetime of sensitive data, Chow

et al. proposed secure deallocation of memory buffers [CPGR05]. Chow et al.

focus on reducing average data lifetime, whereas forensic deniability requires mini-

mizing worst-case data lifetime. A position paper [KAMC11] identifies the problem

of worst-case data lifetime and suggests using information flow and replay to solve

it.

5

2.1.2 Data remanence

There has been much work on data remanence in RAM, magnetic, and solid-state

memory [Gut96, Gut01, HSH+08], as well as secure deletion techniques focusing on

flash memory [LYH+10, LSWK11, SW10, WGSS11, RCB12]. Lacuna ensures that

program secrets are in well-defined places in memory (program address spaces) or are

on storage encrypted with keys that are in well-defined places in memory (structures

we created in the kernel), so all program secrets can be made irrecoverable with no

writes to storage. Lacuna also does not store data beyond program execution, and

so does not need techniques to securely erase from storage.

2.2 Determining program secrets

2.2.1 Malware analysis

If an application binary is available for direct analysis or can be run, then prior work

in malware analysis can determine much about it. All such binaries are susceptible

to static analysis [HcCS09, PCJD07, CJ03], dynamic analysis [BHL+08, YSE+07,

KHKK10], hybrids [CSK+10, KCK+09], network filtering [aKK04, SEVS04], and

network traffic analysis [CPKS09]. These techniques are strong motivation to ensure

that programs for which privacy is required cannot be observed while executing and

leave no traces of their state. All code contained in initial VM images used with

Lacuna is available to an attacker, but the forensic deniability threat model excludes

observation of code while it is running.

2.2.2 Side-channel attacks

Several prior works have shown how different pieces of accounting information stored

in the proc filesystem in Linux and other variants of UNIX can be exploited by

concurrently running malicious processes to learn private information from other

6

victim processes [JS12, QM12, ZW09, ZDH+13]. Additionally, analysis of other

forms of seemingly innocuous information available during program execution, like

the inter-packet timing of network traffic [SWT01] and the speed of operations that

affect system caches [OST06, ZJRR12], can reveal program secrets.

2.2.3 Physical attacks

There are a number of physical attacks against trusted computing hardware that are

relevant to Suliban’s privacy properties. Suliban is not able to prevent all possible

physical attacks, like physically deconstructing a TPM to retrieve its secrets [Tar10].

Nonetheless, other prior attacks against the TPM like a manual reset to change PCR

values have been mitigated in hardware, and others like LPC bus snooping [Kau07]

are important for manufacturers to mitigate in the future to prevent unsophisticated

attacks against trusted computing hardware. Manufacturers have significant incen-

tive to defeat these attacks because they compromise the TPM’s guarantee that

is currently its most commercially important: preventing data leakage from laptop

theft.

There are other possible physical attacks that do not directly target the

TPM, like data recovery from RAM by moving it to a new platform [HSH+08]. For

Suliban, one would have to do this while a cloaked computation is in progress, which

can be made difficult by keeping cloaked computations short in duration.

2.3 Protecting program secrets

2.3.1 Full-system approaches

PrivExec [OMRK13] adds OS-level support to create private process groups wherein

processes can only communicate with each other and file and swap data are en-

crypted with a per-process group key. PrivExec does not prevent leaks through the

7

OS or any non-storage I/O channels. Additionally, the threat model described in

PrivExec allows a concurrent unprivileged attacker, which leaves the system vulner-

able to side-channel attacks. By contrast, Lacuna’s concept of forensic deniability

is a strong guarantee with a well-motivated threat model.

CleanOS [TAB+12] helps mobile applications protect their secrets from fu-

ture compromise by encrypting sensitive data on the phone when applications are

idle. It does not prevent leaks through the OS and I/O channels.

2.3.2 Protecting file data

Boneh and Lipton observed that data can be “cryptographically erased” by en-

crypting it first and then erasing the key [BL96]. Many cryptographic file systems

use encryption to (1) protect the data after the computer has been compromised,

and/or (2) delete the data by erasing the key [Bla94, ZBS98, efs, PBH+05, Per05].

Recently, encrypted file systems have been proposed for secure deletion of flash

memory [LYH+10, LSWK11, RCB12]. Encrypted file systems that derive encryp-

tion keys from user passwords are not coercion-resistant. ZIA relies on a hardware

token to provide the decryption key when the token is in physical proximity to the

machine [CN04].

In contrast to block storage-level encryption, filesystem-level encryption does

not provide forensic deniability. For example, early versions of the encrypted file

system in ChromeOS on a Cr-48 laptop were based on eCryptfs [ecr] which reveals

sizes of individual objects, allowing easy identification of many visited websites in the

encrypted browser cache using standard fingerprinting techniques based on HTML

object sizes [SSW+02, Dan10].

Provos observed that application data stored in memory may leak out via OS

swap and proposed encrypting memory pages when they are swapped out [Pro00].

Lacuna uses a similar idea for implementing encrypted swap.

8

Steganographic and deniable file systems aim to hide the existence of certain

files [MK99, PTZ03, GAB10]. This is a stronger privacy property than forensic

deniability. Czeskis et al. showed that the OS and applications can unintentionally

reveal the existence of hidden files [CHK+08]. Deniable file systems can be used in

combination with Lacuna for stronger privacy protection.

2.3.3 Hardware support

The TPM can be used in a variety of contexts to provide security guarantees beyond

that of most general-purpose processors. For instance, it can be used to protect en-

cryption keys from unauthorized access, as in Microsoft’s BitLocker software [bit09],

or to attest that the computer platform was initialized in some known state, as in the

OSLO boot loader [Kau07]. Flicker [MPP+08] uses TPM late launch functionality

to provide code attestation for pieces of code that are instantiated by, and return

to, a potentially untrusted operating system. Bumpy [MPR09] uses late launch to

protect sensitive input from potentially untrusted system software. Suliban uses the

same functionality, adding encryption to conceal code payloads.

Since the time that the original research on Suliban was performed, other

hardware has emerged that also tries to provide assurance of code isolation and

integrity. The TPM 2.0 specification [Tru13] is a significant change to the way

TPMs operate. Additionally, Intel’s future Software Guard Extensions (SGX) [int13,

MAB+13, AGJS13] will provide processor-based mechanisms for isolating code and

attesting its initial state to a remote platform. However, we show that even hardware

that differs significantly from TPM 1.2 can likely be used for malware cloaking in

Section 3.10.

The goal of DRM is to restrict users’ control over digital content. Some DRM

systems encrypt application data which may reduce its lifetime, but any resulting

deniability is incidental. For example, high-bandwidth digital content protection

9

(HDCP) is a cryptographic protocol that prevents content from being displayed on

unauthorized devices, but the content is still exposed to the X server and GPU device

drivers. DRM is controversial [Fel], and we believe that solutions for protecting user

privacy should not be based on proprietary DRM technologies.

2.3.4 Isolation

Lampson [Lam09] discusses the idea of two separate systems, only one of which

ever sees sensitive data (that one is red, the other green). Several systems switch

between “secure” and regular modes [SWZS12, Moh11, BWLP09, VPQP09]. They

do not provide forensic deniability for the red system and often require all activity

on the green system to cease when the red one is active. Pausing the green system

can disrupt network connections, e.g., to a cloud music service. Lacuna supports

concurrent, finely interleaved private and non-private activities.

Xoar [CNZ+11] and Qubes [qub] break up the Xen control VM into security

domains to minimize its attack surface and enforce the principle of least privilege;

Qubes also facilitates partitioning of user applications. These systems provide an

implementation of an inferior VM [PJ10] (aka disposable VM) that isolates un-

trusted programs in a fast-booting,1 unprivileged, copy-on-write domain. Although

not designed for minimizing data lifetime per se, these systems could be Lacuna’s

underlying virtualization mechanism instead of QEMU. Lacuna’s ephemeral chan-

nels can support private sessions regardless whether the underlying hypervisor is

monolithic or compartmentalized.

Tahoma [CHGL06] and the Illinois Browser OS [TMK10] increase the security

of Web applications using a combination of hypervisors and OS abstractions. They

do not limit data lifetime within the host system.

Systems with multi-level security (MLS) and, in general, mandatory access

14-5 seconds, per http://theinvisiblethings.blogspot.com/2010/10/qubes-alpha-3.html

10

http://theinvisiblethings.blogspot.com/2010/10/qubes-alpha-3.html

control (MAC) can control information flow to prevent information from disclosure.

Some MAC systems separate trusted and untrusted keyboard input [KZB+90] as

Lacuna does. We are not aware of any MAC, MLS, or more modern (e.g., [MAF+11,

KAMC11, YMC07]) system that provides deniability against an attacker who com-

promises the system after a private session is over.

2.3.5 Cryptographic techniques

Prior work has examined using cryptographic techniques to accomplish similar goals

to Suliban’s payloads. Using cryptography for data exfiltration was suggested by

Young and Yung [YY04]. Bethencourt, Song, and Waters [BSW08] showed how

using singly homomorphic encryption one could do cryptographic exfiltration. How-

ever, the techniques were limited to a single keyword search from a list of known

keywords and the use of cryptography significantly slowed down the exfiltration

process. Using fully homomorphic encryption [Gen09] we could achieve expressive

exfiltration, however, the process would be too slow to be viable in practice.

Additionally, one area of cryptographic research has examined the ability

to obfuscate programs. Intuitively, the goal of program obfuscation is to take

programs and produce “obfuscated versions” that behave like a black box; an obfus-

cated version of a program computes the same function as the original, and no more

should be learnable from the obfuscated version of a program than from observing

the input/output behavior of the original program. Program obfuscation accom-

plishes a similar function to Suliban, and cryptographically obfuscated programs

would not suffer from some of Suliban’s limitations like necessitating a per-infected

platform communication with a remote malware distribution platform. Despite ini-

tial negative results [BGI+12], that show a general obfuscator for all programs is

impossible, recent work [GGH+13, BGK+14] shows that a general obfuscator is pos-

sible in limited attacker models. It may be possible to obfuscate significant classes

11

of program without these attacker restrictions. Suliban can also be viewed as a way

of experimenting with program obfuscation while program obfuscation algorithms

are still impractical.

2.3.6 Mitigating side-channel attacks

One class of mitigations to side-channel attacks is to degrade the information avail-

able to the attacker. As timing information is critical to most side-channel at-

tacks, a number of papers propose degrading timing information available to an

OS [MDS12, VDS11]. Lacuna’s mitigations also degrade information available to

an attacker, but mostly involve either not collecting information when possible or

changing information exactly at private session termination. When information is

changed exactly at private session termination, Lacuna does not affect measure-

ment differences in the period after a private session, unlike perturbing a system

time source. Prior work has also proposed giving false data to applications that

demand readings but can operate (potentially with reduced functionality but at a

level acceptable to a user) without accurate data [BRSS11, HHJ+11].

Another class of mitigations is to instead change systems to cause programs

to not leave information that can be used for side-channel attacks. This can be done

at the application level, e.g., by designing timing-channel resistant cryptographic

primitives [OST06], or at the system level, e.g., by giving applications a way to get

locked cache lines [KPMR12].

12

Chapter 3

Cloaking malicious computation

with trusted computing

The TPM is a piece of hardware deployed in commodity computer systems to im-

prove system security by tracking platform state and tying the availability of secrets

to this platform state. The TPM’s low cost and potential to provide greater control

over program secrets have led to it becoming widespread; over 350 million deployed

computers have TPM hardware [wav10]. Despite the intention of the TPM to im-

prove computer security, Suliban1 was designed to show that careful use of the TPM

can actually harm computer security by helping malware to resist analysis.

Suliban can take a computation-only piece of code (one that does not access

system services), and run it in an environment that is shielded from analysis (we

refer to this protection as “cloaking”). As we will see, preventing analysis of small

computation-only pieces of code is sufficient to severely impair malware analysts’

ability to stop real-world attacks.

Suliban occupies a unique space among both attacks related to the TPM (and

late launch) and program obfuscation techniques. Every other TPM-related attack

1This system is named after the owners of one of the first cloaking devices in Star Trek.

13

is centered around trying to compromise TPM security properties. By contrast, we

aim to show that due to the way use of TPM capabilities is authorized in practice

that we can engineer an attack that uses TPM security properties. In turn, the

TPM’s security properties give the attack resilience to a wide variety of well-known

malware analysis techniques (for reference, a number of classes of these techniques

are listed in §2.2.1).

While the idea of using the TPM to cloak malware computation is concep-

tually straightforward, existing TPM protocols do not suffice and must be adapted

to the task of malware distribution. We clarify the capabilities of and countermea-

sures for this threat. Cloaking does not make malware all-powerful, and engineering

malware to take advantage cloaking is a design challenge. A cloaked computation

runs without OS support, so it cannot make a system call or easily use devices like

a NIC for network communication.

This work makes the following contributions:

• It specifies a protocol that runs on current TPM implementations that allows

a malware developer to execute code in an environment that is guaranteed not

to be externally observable, e.g., by a malware analyst. Our protocol adapts

TPM-based remote attestation for use by a malware distribution platform.

• It presents the model of cloaked execution and measures the implementation of

a malware distribution protocol that uses the TPM to cloak its computation.

• It describes experiences using TPMs in practice that highlight security issues

in their use and deployment.

• It provides several real-world use cases for TPM-based malware cloaking, and

describes how to adapt malware to use TPM cloaking for those cases. These

include: worm command and control, selective data exfiltration, and a DDoS

timebomb.

14

• It discusses various defenses against our attacks and their tradeoffs with secu-

rity and usability.

3.1 Motivation: Cloaking Conficker B

To see how cloaking can affect efforts to combat malware, it is helpful to consider an

example. We will discuss Conficker B, one variant of a worm that was widespread

in the late 2000s. The worm has an infection stage, where a process on the host is

exploited and the process downloads command and control code. Then the infection

code runs a rendezvous protocol to download and execute signed binary updates.

Engineers halted the propagation of Conficker B by reverse engineering the ren-

dezvous protocol and preventing the registration of domain names where Conficker

was going to look for updates [PSY09, Naz09].

Conficker’s domain name generation mechanism works by scraping websites

to find the current date (in UTC). It then uses the date to seed a random number

generator. Conficker generates a list of 250 domains, each of which is a randomly

chosen sequence of lowercase letters and top-level domain. Conficker visits each of

these domains in sequence, trying to download updates.

Defeating Conficker requires learning in advance the rendezvous domain

names it will generate. The sequence of domain names can be determined in two

ways: directly analyzing the domain name generation code, or running the do-

main name generation implementation with inputs that will generate future domain

names.

Cloaking the domain name generation code in Conficker helps to eliminate

both of these attacks. Firstly, if the domain name generation code is cloaked, then

the binary itself cannot be examined, and the code’s behavior as it runs cannot

be analyzed. Additionally, cloaking the domain name generation code provides

integrity; once the domain name generation code has obtained the date, an analyst

15

cannot change this value in memory to a future value before the algorithm runs.

Cloaked computation alone does not fully prevent attacks on Conficker be-

cause an analyst can modify the information that Conficker receives to calculate

the date. However, other measures can be combined with cloaked computation to

prevent running Conficker with future date values. Malware can obtain digitally

signed timestamps that it can then verify with a key included in the binary. Pack-

age repositories for common Linux distributions provide descriptions of repository

contents that are signed, include the date, and are updated daily. (See http://us.

archive.ubuntu.com/ubuntu/dists/lucid-updates/Release for Ubuntu Linux,

which has an accompanying “.gpg” signature file.) Package data is mirrored at

many locations worldwide and is critical for the integrity of package distribution2,

so taking it offline or forging timestamps would be both difficult and a security risk.

Cloaked computation thus provides a key component to making Conficker

more resistant to analysis. Using cloaked computation for domain name generation

is also likely to be more widely applicable as Conficker is not alone in its use of

domain name generation for rendezvous points. The Mebroot rootkit [KF08] and

Kraken botnet [kra08] both use similar techniques to contact their command and

control servers.

3.2 Threat model

Having motivated the need to protect a small computational portion of a piece of

malware, we describe more generally the setting where Suliban is useful and the

type of attacker it is meant to protect against.

We consider an attacker who wishes to infect machines with malware. His

goal is to make a portion of this malware unobservable to any analyst (e.g., white-

2Although individual packages are signed, without signed release metadata a user may not know
whether there is a pending update for a package.

16

http://us.archive.ubuntu.com/ubuntu/dists/lucid-updates/Release
http://us.archive.ubuntu.com/ubuntu/dists/lucid-updates/Release

hat security researcher, or IT professional) except for its input and output behavior.

We assume the attacker will have the following capabilities on compromised

machines:

• Kernel-level privilege. We assume our attack has full access to the OS

address space. Late launch computation is privileged and can only be started

by code that runs at the OS privilege level.

• Authorization for TPM capabilities. We further assume our attack can

authorize the TPM commands in our protocol. TPM commands are autho-

rized usingAuthData, which are 160-bit secrets that will be described further

in Section 3.3. We revisit this assumption in Section 3.8.

An analyst will see all non-blackbox behavior of the attacker’s cloaked com-

putation. In our model, the analyst is allowed full access to systems that run our

malware. We assume that all network traffic is visible, and that the analyst will

attempt to exploit any attack protocol weaknesses. In particular, an analyst might

run a honeypot that is intended to be infected so that he can observe and analyze

the malware. We assume the analyst is neither able to mount physical attacks on

the TPM itself nor is able to compromise the TPM public key infrastructure (i.e.,

the analyst cannot break the cryptosystems that the TPM uses).

3.3 TPM background

It is necessary to understand some background about the TPM before one can

comprehend protocols that use it.

3.3.1 TPM hardware

TPMs are usually found in x86 PCs as small integrated circuits on motherboards

that connect to the low pin count (LPC) bus and ultimately the southbridge of the

17

PC chipset. TPMs are built to meet certain standards put forth by the Trusted

Computing Group (TCG). Each TPM contains an RSA (public-key) cryptogra-

phy unit and platform configuration registers (PCRs) that maintain cryptographic

hashes (called measurements by the TCG) of code and data that has run on the

platform. TPMs are standardized by the Trusted Computing Group, and Suliban

was designed to use version 1.2 TPMs [Tru07].

The goal of the TPM is to provide security-critical functions like secure stor-

age and attestation of platform state and identity. Each TPM is shipped with a

public encryption key pair, called the Endorsement Key (EK), that is accom-

panied by a certificate from the manufacturer. This key is used for critical TPM

management tasks, like “taking ownership” of the TPM, which is a form of initial-

ization. During initialization the TPM creates a secret, tpmProof , that is used to

protect keypairs it creates.

The TPM 1.2 specification requires PC TPMs to have at least 24 PCRs. Our

protocol concerns only PCRs numbered in the range 16–23 (the “dynamic” PCRs),

which are used by the TPM’s late launch mechanism. PCRs cannot be set directly,

they can only be extended with new values. Extending a PCR causes it to depend

on its previous value and the extending value in a way that is not easily reversible by

further extend operations. PCR state can establish what software has been run on

the machine since boot, including the BIOS, hypervisor (if present) and operating

system.

3.3.2 Managing and protecting TPM storage

The TPM was designed with very little persistent storage to reduce cost. The PC

TPM specification only mandates 1,280 bytes of non-volatile RAM (NVRAM), so

most data that the TPM uses must be stored elsewhere, like in main memory or

on disk. When we refer to an object as stored in the TPM, we mean an object

18

stored externally to the TPM that is encrypted with a key managed by the TPM. By

contrast, data stored in locations physically internal to the TPM is stored internal

to the TPM.

AuthData controls TPM capabilities, which are the ability to read, write,

and use objects stored in the TPM and execute TPM commands. Each AuthData

value is a 160-bit secret, and knowledge of the AuthData for a particular capa-

bility is demonstrated by using it as a key for calculating a hash-based message

authentication code (HMAC) of the input arguments to the TPM command.

Public signature and encryption key pairs created by a TPM are stored as

key blobs only usable with a particular TPM. The contents of a key blob are shown

in Figure 3.1. A hash of the public portion of a key blob (PubBlob in the figure)

is stored in the private portion (PrivBlob in the figure), along with tpmProof

(mentioned above); tpmProof is an AuthData value randomly generated by the

TPM and stored internally to the TPM when someone takes ownership. tpmProof

protects the key blob from forgery by adversaries and even the TPM manufacturer:

Firstly, without knowing tpmProof an adversary cannot form a new key blob with a

keypair it knows. Secondly, the TPM uses non-malleable encryption [DDN00], which

means it is cryptographically hard for an adversary to form a new ciphertext from a

given ciphertext such that the plaintexts are related (e.g., to mutate the private part

of a blob containing tpmProof to contain a different secret key, making it appear

as though a key were generated by the TPM when an attacker has access to the

secret portion).3

In addition, a TPM user can use the PCRs to restrict use of TPM-generated

keypairs to particular pieces of software that are identified via a hash of their code

and initial data. For example, the TPM can configure a key blob so that it can

3The TPM can produce migratable keys that can be moved to other TPMs and work somewhat
differently. However, the details of these keys are beyond the scope of this work and any potential
protocol flaws induced by these keys can be eliminated by examining TPM key certifications to find
these keys and exclude them.

19

Concatenation of A and B A ||B

Bit repetition - j bits of value i ij
Public/private keypair for
asymmetric encryption named name

(PKname, SKname)
≡ (PK,SK)name

Encryption of data with a public key Enc(PK, data)

Signing of data with a signing key Sign(SK, data)

Symmetric key K (no P or S at front)

Symmetric encryption of data EncSym(K, data)

One-way hash (SHA-1) of data H(data)

Table 3.1: Notation for TPM data and computations.

Blob((PK,SK)ex) ≡ PubBlob((PK,SK)ex) ||

Enc(PKparent,PrivBlob((PK,SK)ex))

PubBlob((PK,SK)ex) ≡ PKex ||PCR values

PrivBlob((PK,SK)ex) ≡ SKex ||H(PubBlob((PK,SK)ex) || tpmProof

Figure 3.1: Contents of TPM key blob for an example public/private key pair named ex

that is stored in the key hierarchy under a key named parent. For our purposes the parent
key of most key blobs is the SRK. (Note that the PCR values themselves are not really
stored in the key blob. Rather the blob contains a bitmask of the PCRs whose values must
be verified and a digest of the PCR values, which equivalently allow a program to check
whether a key is constrained to use with known PCR values and the TPM to check whether
current PCR values satisfy key constraints.)

only be used when the PCRs have certain values (and therefore only when certain

software is running).

TPM key storage is a key hierarchy: a single-rooted tree whose root is the

Storage Root Key (SRK), and is created upon the take ownership operation

described below. The private part of the SRK is stored internal to the TPM and

never present in main memory, even in encrypted form. Since the public part of

the SRK encrypts the private part of descendant keys (and so on), all keys in the

hierarchy are described as “stored in the TPM,” even though all of them, except the

SRK, are stored in main memory. Using the private part of any key in the hierarchy

20

Figure 3.2: The part of the TPM key hierarchy relevant to our attack. The TPM box
illustrates key material stored internal to the TPM, which is only the endorsement
key (EK) and storage root key (SRK). Part (a) shows the conceptual key hierarchy,
while part (b) shows how the secret keys of children are encrypted by the public
keys of their parents so keys can be safely stored in memory. More detail on key
formats is found in Figure 3.1.

requires using the TPM to access the private SRK to decrypt private keys while

descending the hierarchy.

It is cryptographically hard to use private keys for any of the keypairs stored

in the TPM apart from using TPM capabilities: obtaining the private key for one key

would entail decrypting the private portion of a key blob, which without breaking

TPM cryptographic schemes requires the private key of the parent, and so on, up

to the SRK, which is special in that its private key is never stored externally to the

TPM (even in encrypted form). A TPM key hierarchy is illustrated in Figure 3.2.

3.3.3 Initializing the TPM

To begin using a TPM, the user (or administrator) must first take ownership of it.

Taking ownership of the TPM establishes three important AuthData values: the

21

owner AuthData value, which is needed to set TPM policy, the SRK AuthData

value, which is needed to use the SRK, and tpmProof . tpmProof is generated

internal to the TPM and stored in NVRAM. It is never present in unencrypted

form outside the TPM.

3.3.4 Platform identity and attestation

TPMs provide the ability to attest parts of their state, that is, they provide cryp-

tographic proofs of the contents of TPM state that are verifiable by remote parties.

Most important for this work is the ability to attest that a key in a TPM hierarchy

is stored in a particular TPM and has particular constraints on its usage. This is

accomplished by having the TPM produce a signature on that key with a key that

is known to be stored in the TPM.

While a TPM’s EK is a key that is stored in the TPM, a user desiring privacy

cannot directly use her platform’s EK for attestation. (EKs are linked to specific

platforms, and additionally multiple EK uses can be correlated.) Instead, she can

generate Attestation Identity Keys (AIKs) that serve as proxies for the EK.

However, something must associate an AIK with the EK.

A trusted privacy certificate authority (Privacy CA) is supposed to provide

certificates to third parties that an AIK corresponds to an EK of a legitimate TPM.

While prototype Privacy CA code exists [Fin09], Privacy CAs appear to be unused

in practice. In our attack, the malware distributor acts as a Privacy CA and only

trusts AIKs that it certifies.

We emphasize that our proposed attack does not require or benefit from

the anonymity guarantees provided by a Privacy CA. However, the TPM does not

permit a user to directly sign an arbitrary TPM-generated public key with the EK,

so our attack must use an intermediate AIK.

22

3.3.5 Using the TPM

Typical uses of the TPM are to manipulate the key hierarchy, to obtain signed

certificates of authenticity of TPM data, and to modify PCRs to describe platform

state as it changes. Keys are created in the key hierarchy by “loading” a parent

key and commanding the TPM to generate a key below that parent, resulting in a

new key blob. Loading a key entails passing a key blob to the TPM to obtain a key

handle, which is an integer index into the currently loaded keys. Only loaded keys

can be used for further TPM commands. Loading a key requires loading all keys

above it in the hierarchy, so loading any key in the key hierarchy requires loading

the SRK.

PCRs can be modified by the TPM as platform state changes. They can

only be set to specific values by platform reset and late launch, and are modified

in software by extension. A PCR with value PCR extended by a 160-bit value val

is set to value Extend(PCR, val) ≡ H(PCR || val). The dynamic PCRs are set to

all 1s on platform boot. Late launch sets the dynamic PCRs to all 0s and then

extends PCR 18 with the hash of the state of the program run in the late launch

environment. Thus the TPM can restrict access to keys to a particular program.

Our malware protocol uses this ability to prevent analyst use of a payload decryption

key.

3.4 Protocol

We now describe an architecture and protocol for launching a TPM-cloaked attack.

An overview of the protocol is pictured in Figure 3.3.

Our protocol runs between an Infection Program, which is malware on the

attacked host, and aMalware Distribution Platform, which is software executed

on hardware that is remote to the attacked host. The goal of the protocol is for the

23

Figure 3.3: The overall flow of the attack is 1) Infecting a system with malware
capable of kernel-level exploitation to coordinate the attack 2) Establishing a le-
gitimate TPM-generated key usable only by the Infection Payload Loader in late
launch via a multistep protocol with a Malware Distribution Platform 3) Deliver-
ing a payload that can be decrypted using the TPM-generated key 4) Using a late
launch environment to decrypt the payload with the TPM-generated key, and run-
ning it with inputs passed into memory by local malware 5) Retrieving output from
payload, potentially repeating step 4 with new inputs. Boxes with “TPM” indicate
parts of the protocol that use the TPM.

24

Infection Program to generate a key. The Infection Program attests to the Malware

Distribution Platform that TPM-based protection ensures only it can access data

encrypted with the key. The Malware Distribution Platform verifies the attestation,

and then sends an encrypted program to the Infection Program. The Infection

Program decrypts and executes this payload. This protocol enables long-lived and

pernicious malware, for example, turning a computer into a botnet member. The

Infection Program can suspend the OS (and all other software) through use of

processor late launch capabilities to ensure unobservability when necessary, like

when the malicious payload is decrypted and executing.

3.4.1 Late launch for secure execution

The Infection Program has a module called the Infection Payload Loader that is

responsible for decrypting and running an encrypted payload. The Infection Payload

Loader runs in late launch to prevent an analyst from observing the decrypted

payload and its execution. At the same time, we need to ensure that only the

Infection Payload Loader can decrypt the encrypted payload. That means that the

late launch process has to indicate somehow that the Infection Payload Loader is

running in a way that is tied to the ability to use a cryptographic key.

On Intel x86 platforms4, late launch is implemented with an instruction

GETSEC[SENTER] (often referred to as SENTER). This instruction ensures that control

is securely transferred to a block of code in memory and that the contents of this

block of code are noted for later comparison.

Specifically, with Intel’s late launch mechanism, the user configures a data

structure describing the code to be launched (a Measured Launch Environ-

ment (MLE) in Intel parlance) and uses GETSEC[SENTER] to transfer control to an

Intel-provided code module called SINIT that initiates the late launch. In order to

4AMD’s implementation of late launch is similar.

25

securely transfer control to a block of code, it is necessary to ensure that the code

remains intact. Code used in late launch is protected both from other cores on the

system and from platform devices that can independently write into physical mem-

ory through Direct Memory Access (DMA). The former is accomplished by forcibly

halting all but one core that will be used to run the code in late launch. (The halted

cores can be restarted in the late launch environment if desired.) Protection from

devices is ensured by placing the code in a chipset-defined DMA-protected region;

the late launch process will refuse to execute if the code is not in such a region.

Once code integrity is ensured, SINIT extends the contents of the code into PCR

18. As previously discussed, this means that the ability to use TPM keys can be

made contingent on the late launch of a specific program by key constraints. SINIT

itself is loaded into internal processor memory and integrity-checked via a public-

key signature after loading, thus SINIT will itself properly act to protect the late

launched code.

This means that the goal of the protocol is to encrypt a payload binary with

a key that is known to be stored in a TPM and whose private portion can only

be used when PCR 18 is H(Infection Payload Loader). An encrypted payload can

be passed to the Infection Payload Loader in memory, and the Infection Payload

Loader will be able to use the TPM to decrypt the payload and run it.

3.4.2 The main protocol

We now describe how the Infection Program and Malware Distribution Platform

cooperate to run malware securely. The protocol uses a number of TPM operations

that are described in Table 3.2. In the description of the protocol, we will elide

lower-level TPM operations like TPM OIAP and TPM OSAP that are used to establish

sessions in which TPM commands can be executed. The correctness of the protocol

is not affected by these commands because they control only how one authorizes

26

key blob =
TPM CreateWrapKey(parent key handle,

PCR constraints)

Generate new key with PCR con-
straints under the parent key in hier-
archy. The resultant key may be used
for encryption and decryption, but not
signing.

key handle = TPM LoadKey2(key blob) Load a key for further use.
key blob = TPM MakeIdentity() Generate an identity key under SRK

that may be used for signing, but not
encryption and decryption.

sym key =
TPM ActivateIdentity(identity key handle,

CA response)

Verify that asymmetric CA response
part corresponds to identity key. If
agreement, decrypt response and re-
trieve enclosed symmetric key.

(certificate, signature) =
TPM CertifyKey(certifying key handle,

key handle)

Produce certificate of key contents.
Sign certificate with certifying key.

value = TPM NV ReadValue(index) Retrieve data from TPM NVRAM.

Table 3.2: Additional functions in the main protocol. Keywords that are in fixed-
width font that begin with TPM are TPM commands defined in the TPM 1.2 spec-
ification.

TPM commands and integrity of responses from the TPM. For the former, we

are assuming that we can authorize TPM commands (by knowing the appropriate

AuthData). For the latter, while it is possible for an adversary to fake responses

from the TPM while the infected platform is not in late launch, as we will see, this

cannot compromise the protocol because the part of the protocol outside late launch

results in data that are cryptographically verifiable. Once the infected platform is

in late launch, the analyst has no further software control over it. The protocol is

shown in full in Figure 3.4.

Conceptually, there are four phases of the protocol as will be described below.

However, Figure 3.4 follows the actual protocol implementation, which combines

pieces of some of the phases for ease of implementation.

1. The Infection Program and Malware Distribution Platform establish an AIK

belonging to a legitimate TPM

27

Infection Keygen: Generate binding key that Malware Distribution Platform will
eventually use to encrypt malicious payload, AIK that certifies it, and request for Malware
Distribution Platform to test AIK legitimacy

1. Create binding keypair (PK,SK)bind under the SRK with
TPM CreateWrapKey(SRK, PCR18 = Extend(0160, H(Infection Payload Loader)))
(requires SRK AuthData), store in memory

2. Create identity key (PK,SK)AIK under SRK in memory as Blob((PK,SK)AIK)
with TPM MakeIdentity (requires owner AuthData)

3. Retrieve EK certificate CEK = PKEK || Sign(SKmanufacturer, H(PKEK)), which
certifies that the TPM with that EK is legitimate (requires owner AuthData to
obtain from NVRAM with TPM NV ReadValue from EK index or needs to be on disk
already)

4. Send Mreq ≡ PubBlob((PK,SK)AIK) ||CEK to Malware Distribution Platform as a
request to link AIK and EK

Malware Distribution Platform Certificate Handler: Give Infected Platform
credential only decryptable by legitimate TPM

1. Receive Mreq

2. Verify Sign(SKmanufacturer, H(PKEK)) with manufacturer CA public key
3. Generate hash Haik cert ≡ H(PubBlob((PK,SK)AIK))
4. Sign Haik cert with SKmalware, a private key known only to the Malware

Distribution Platform whose corresponding public key is known to all, to form
Sign(SKmalware, Haik cert). Sign(SKmalware, Haik cert) is a credential of AIK
legitimacy.

5. Form
Mreq resp ≡ Enc(PKEK ,K2 ||Haik cert) ||EncSym(K2, Sign(SKmalware, Haik cert)).
Mreq resp contains the credential in a way such that it can only be extracted by a
TPM with private EK SKEK when the credential was created for an AIK stored in
that TPM.

6. Send Mreq resp to Infected Platform

Infection Proof: Decrypt credential, assemble certificate chain from manufacturer
certified EK to binding key (including credential)

1. Receive Mreq resp

2. Load AIK (PK,SK)AIK and binding key (PK,SK)bind with TPM LoadKey2

3. Use TPM ActivateIdentity, which decrypts Enc(PKEK ,K2 ||Haik cert) and
retrieves K2 after comparing Haik cert to that calculated from loaded AIK located in
internal TPM RAM. If comparison fails, abort. (requires owner AuthData)

Figure 3.4: The cloaked malware protocol.

28

Infection Proof (continued):

4. Symmetric decrypt EncSym(K2, Sign(SKmalware, Haik cert)) to retrieve
Sign(SKmalware, Haik cert)

5. Certify (PK,SK)bind with TPM CertifyKey to produce
Sign(SKAIK , H(PCRs(PubBlob((PK,SK)bind))) ||H(PKbind)) ≡
Sign(SKAIK , Hbind cert)

6. Send Mproof ≡ Sign(SKmalware, Haik cert) ||PubBlob((PK,SK)AIK) ||
Sign(SKAIK , Hbind cert) ||PubBlob((PK,SK)bind), all the evidence needed to verify
legitimacy of binding key, to Malware Distribution Platform

Malware Distribution Platform Payload Delivery: Verify certificate chain, respond
with encrypted malicious payload if successful

1. Receive Mproof

2. Verify signatures of Haik cert by SKmalware using PKmalware, of Hbind cert using
PKAIK . Check that Hbind cert corresponds to the binding key by comparing hash of
public key, PCRs to PubBlob((PK,SK)bind). Use PubBlob((PK,SK)bind) to
determine if binding key has a proper constraint for PCR18. Abort if verification
fails or binding key improperly constrained.

3. Hash and sign the payload with SKmalware to form Sign(SKmalware, H(payload))
(only needs to be done once per payload)

4. Let Mpayload plaintext ≡ payload ||Sign(SKmalware, H(payload)). Form
Mpayload ≡ EncSym(K3,Mpayload plaintext) ||Enc(PKbind,K3), a message encrypted
with a symmetric key which itself is encrypted with an asymmetric key (often called
a hybrid encryption).

5. Send Mpayload to Infected Platform

Infection Payload Execute: Use late launch to set PCRs to allow use of binding key for
decryption and to prevent OS from accessing this key during use

1. Receive Mpayload

2. Late launch with MLE ≡ Infection Payload Loader

Infection Hidden Execute: Infection Payload Loader decrypts and executes the
payload in the late launch environment.

1. Load (PK,SK)bind with TPM LoadKey2

2. Use TPM Unbind to recover K3. This operation can succeed (and only in this
program) because in Infection Hidden Execute,
PCR18 = Extend(0160, H(Infection Payload Loader)). Then use K3 to decrypt
Mpayload plaintext = payload ||Sign(SKmalware, H(payload)).

3. Verify signature Sign(SKmalware, H(payload)) with PKmalware. Abort if
verification fails.

4. Execute payload

5. Scrub payload from memory and extend random value into PCR18, then exit late
launch

Figure 3.4 (continued): The cloaked malware protocol.

29

TPMs can be programmed to release credentials that show their authenticity:

CEK = PKEK || Sign(SKmanufacturer,H(PKEK))

The Malware Distribution Platform can check the validity of the signature on

PKEK . If it is valid, then the manufacturer certifies that PKEK is the EK

for a legitimate TPM.

A request to the Privacy CA (here the Malware Distribution Platform) to link

an AIK to an EK is then of the form

Mreq = CEK ||PubBlob((PK,SK)AIK).

Define Haik cert ≡ H(PubBlob((PK,SK)AIK)).

The Malware Distribution Platform responds to this request with

Enc(PKEK ,Sign(SKmalware,Haik cert) ||Haik cert).

Messages of the form Enc(PKEK , cred || hash) can be given to a TPM with

public EK PKEK , which will decrypt them internally and release cred if and

only if hash is the hash of the public blob for some AIK generated with that

TPM. Thus if the cred values are chosen such that they are known only to

the Malware Distribution Platform, the release of cred for such a message

indicates that hash was a valid hash of an AIK public blob.

The Infection Program sends the Malware Distribution Platform’s response to

the TPM, retrieving a value cred if the step succeeds. The Infection Program

sends this back to the Malware Distribution Platform, which considers the

AIK as linked to EK if it receives cred.

30

2. Infection Program generates binding key that is restricted to use during late

launch of Infection Payload Loader

The Infection Program uses the Infected Platform’s TPM to generate a bind-

ing key that is restricted to use in the late launch environment (via a constraint

PCR 18 = H(0160 ||H(Infection Payload Loader))) and a certification under

the AIK that the binding key is stored in the TPM and has the PCR con-

straint. The Infection Program sends the resultant key, PKbinding (as part

of PubBlob((PK,SK)binding)) and certification to the Malware Distribution

Platform.

The Malware Distribution Platform can verify the signature with the AIK

and then has PKbinding where it knows decryption with SKbinding can only be

performed in the late launch environment.

3. Malware Distribution Platform produces payload

The Malware Distribution Platform can now create encrypted payloads to run

in the late launch environment. However, it is important that the Malware

Distribution Platform limit the programs that can be run in the late launch

environment, or else an analyst could equally well run programs in the late

launch environment with her access to PKbinding. Such a program could use

the late launch environment’s access to SKbinding to decrypt other payloads.

As a result, payloads are signed with SKmalware prior to encryption with

PKbinding. PKmalware is part of the Infection Payload Loader itself.

4. Infection Program runs payload via Infection Payload Loader

The Infection Program late launches into the Infection Payload Loader, passing

an encrypted payload P through memory.

The Infection Payload Loader works as follows:

(a) Use TPM to decrypt payload P with binding key.

31

(b) Verify signature on decrypted payload using PKmalware, if verification

fails, abort.

(c) Transfer control to decrypted payload. Decrypted payload can output

result R in memory.

(d) Erase code and data for decrypted payload. Extend random value into

PCR 18. Return R.

3.5 Resilience of the Protocol

We now discuss how the main protocol resists a variety of forms of attack. Using

the protocol with particular payloads may require further measures to resist attacks

beyond the initial protocol.

The first phase of the protocol guarantees that the EK is from a legitimate

TPM, due to the manufacturer certificate, assuming that the manufacturer has

not signed invalid EKs. The validity of the EK guarantees that the receipt of

Sign(SKmalware,Haik) in turn guarantees that PKAIK in Mreq is the public key for

an AIK stored in the same TPM as EK. Note that an AIK and EK accepted in

this phase may be from a TPM that is not on a machine infected with the Infection

Program due to tampering by an analyst. Since the AIK is stored in the TPM, its

private portion is inaccessible to analysts.

The signature by the AIK on the public portion of the binding key and its

PCR constraints ensures that the binding key is stored in the TPM where the AIK

was generated. Since the signature covers the PCR constraints of the binding key,

the binding key can only be used when PCR 18 has the value that would be achieved

by late launching with the Infection Payload Loader.

Finally, when a platform late launches into the Infection Payload Loader,

PCR 18 is set to the correct value to use the binding key. At no other point is

this true: PCR 18 begins on TPM reset with value 1160, and on late launch of

32

binary program is set to H(0160 ||H(program)). To get extend PCR 18 to have

the value achieved with late launch of the Infection Payload Loader after a different

program is late launched instead involves finding the preimage for a hash function

value that the attacker does not control. Late launch protects the integrity of the

Infection Payload Loader, which in turn securely loads only Malware Distribution

Platform-signed payloads to prevent analyst use of the binding key via analyst-

provided payloads and attacks that might reveal payload secrets through program

modification (i.e., modifying a decrypted payload in memory via concurrently run-

ning software). Additionally, the value of PCR 18 is extended after the payload

runs, so when control is returned to the host OS, decryption cannot be performed

with the binding key.

3.6 Implementation

We implemented a prototype of our attack, both of our protocol to decrypt and

execute payloads in late launch, and sample attack payloads. We now describe each

of these pieces in turn.

The prototype implementation consists of five programs (described in Ta-

ble 3.3) for the key establishment protocol, the Infection Payload Loader, payload

programs, and supporting code to connect the pieces. The key establishment portion

is about 3,600 lines of C, the Infection Payload Loader is another 550 lines of C. We

did not send data across a network as would be required for real operation, but in-

stead communicated data between programs via files. Since network use only occurs

with access to the full facilities of an OS, implementation of network capabilities

would be straightforward. The payloads were about 50 lines apiece with an extra 75

line supporting DSA routine, which was necessary for verifying Ubuntu’s repository

manifests. All code size measurements are as measured by SLOCCount [Whe01].

33

Program Purpose Correspondence to Protocol
tpm genkey Generates the binding key and outputs

key blob to a file.
Infection Keygen step 1

aik gen Generates an AIK and accompanying
certification request. Outputs key blob
and request to files.

Infection Keygen steps 2–4

tpm certify Certifies the binding key under the
AIK.

Infection Proof step 5

infected Two modes: proof which generates
a proof of authenticity to convince
the Malware Distribution Platform to
distribute an encrypted payload and
payload which loads the binding key
and decrypts the payload.

proof: Infection Proof steps
1–4 and 6, payload: Infection
Hidden Execute

platform Two modes: req which handles a re-
quest from the Infected Platform and
returns an encrypted credential and
proof which validates a proof of au-
thenticity from the Infected Platform

req: Malware Distribution
Platform Certificate Han-
dler, proof: Malware Dis-
tribution Platform Payload
Delivery

Table 3.3: Programs that comprise the implementation outside of the payloads and
their functions.

3.6.1 Late launch environment establishment

We modified code from the Flicker [MPP+08] (v0.2) distribution to implement our

late launch capabilities. Flicker provides a kernel module that allows a small self-

contained program, known as a Piece of Application Logic (PAL), to be started

in late launch with a desired set of parameters as inputs in physical memory. The

kernel module accepts a PAL and parameters through a sysfs filesystem interface

in Linux, then saves processor context before performing a late launch, running

the PAL in late launch, and then restoring the processor context after the PAL

completes. Output from PALs is available through the filesystem interface when

processor context is restored.

We implemented the Infection Payload Loader as a PAL, which takes the

encrypted and signed payload, the symmetric key used to encrypt the payload en-

34

crypted with the binding key, and the binding key blob as parameters. We used

the PolarSSL5 embedded cryptographic library for all our cryptographic primitives

(AES encryption, RSA encryption and signing, SHA-1 hashing and SHA-1 HMACs).

3.6.2 Payloads

We implemented payloads for three example attacks. Here we describe the payloads

in detail.

Domain generation The domain generation payload provides key functionality

for a secure command and control scheme, in which malware generates time-based

domain names unpredictable to an analyst. As input, the payload takes the con-

tents of a package release manifest for the Ubuntu distribution, and its associated

signature. The payload verifies the signature against a public key within itself. If

the signature verifies correctly, the payload extracts the date contained in the man-

ifest. The payload outputs an HMAC of the date with a secret key contained in the

encrypted payload.

Assuming an analyst is unable to provide correctly signed package manifests

for future dates, this payload provides a secure random value unpredictable to an

analyst, but generatable in advance by the payload’s author (because the author

knows the secret HMAC key). Such a random value can be used as a seed in a

domain generation scheme similar to that of the Conficker worm (as described in

§3.1).

Data exfiltration It is useful for malware to search through data on a host and

exfiltrate it. Stuxnet and Aurora are examples of high profile attacks that exfiltrate

information [MRHM10]. If malware exfiltrated all data that it found, this would

use more network resources and make the malware more detectable. As a result, it

5https://polarssl.org/

35

https://polarssl.org/

makes sense for malware to exfiltrate only data it finds interesting, perhaps through

use of regular expressions for matching patterns in data or through targeting certain

filenames. However, knowing what data the malware is exfiltrating provides clues

as to its goals and potentially its authors. Thus it is useful for malware to be able

to obscure which data it is exfiltrating.

We demonstrate that malware cloaking can be used to perform selective

data exfiltration with obscured output. The contents of files can be presented to

our data exfiltration payload, which searches for sensitive data (we looked for credit

card numbers), and returns results in encrypted form. To avoid analysis by cor-

relating input with the presence or absence of output, the payload generates some

output regardless of whether sensitive data is present in the file. A program without

cloaked computation could use cryptographic techniques [YY04, BSW08, Gen09] to

keep search criteria secret while being observed in memory, but their performance

currently makes them impractical.

Timebomb A common malware objective is to attack a target at a certain point in

time. Keeping the time and target secret until the attack prevents countermeasures

to reduce the attack’s impact. A cloaked computation can securely check the day

(as in the domain generation case), and only make the target known on launch

day. A number of high-profile malware-based DDoS attacks have had their impacts

lessened by detection of their targets in advance (e.g., MyDoom’s targeting of www.

sco.com [myd04], Storm’s targeting of www.microsoft.com [Pos07], and Blaster’s

targeting of windowsupdate.com [KP03]).

We implement a cloaked payload that provides functionality necessary for a

timed DDoS attack that keeps the target and time secret until the attack begins.

Like the domain generation payload, it uses signed package release manifests to

establish an authenticated current timestamp. Once the payload has verified the

signature on the manifest, it extracts the date. If the resultant date is later than a

36

www.sco.com
www.sco.com
www.microsoft.com
windowsupdate.com

value encoded in the encrypted payload, it releases the time-sensitive information as

output. This payload outputs a secret AES key contained in the encrypted payload.

The key can be used to decode a file providing further instructions, such as the

DDoS target, or a list of commands.

3.7 Evaluation

We tested our implementation on a Dell Optiplex 780 with a quad-core 2.66 GHz

Intel Core 2 CPU with 4 GB of RAM running Linux 2.6.30.5. We used a ST

Microelectronics ST19NP18 TPM, which provides the TCG v1.2 TPM API. Elapsed

wallclock times for protocol phases are indicated in Table 3.4. We used 2048-bit RSA

encryption and 128-bit AES encryption. The malicious payloads varied in size from

2.5 KB for the largest payload (which was the command and control payload) to

0.5 KB for the smallest (which was the text search payload).

The main performance bottleneck is TPM operations, especially key gener-

ation. We verified that the significant and variable duration of key generation was

directly due to underlying TPM operations. The current performance, one minute

per machine infection, allows rapid propagation of malware (hosts can be compro-

mised concurrently).

Performance is most important for operations on the Malware Distribution

Platform, which may have to service many clients in rapid succession, and in the final

payload decryption, as it occurs in late launch with the operating system suspended.

The payload decryption must occur per payload execution, which in our motivating

scenarios will be at least daily. The slowest operation on the Malware Distribution

Platform can handle tens of clients per second with no optimization whatsoever.

We provide several numbers that characterize late launch payload perfor-

mance. The MLE setup phase of the Flicker kernel module involves allocation of

memory to hold an MLE and configures MLE-related structures like page tables

37

Costs for infecting a machine

Action Time (s)

Infected Platform generates AIK and AIK to EK linking request 31.6 ± 17.9

Malware Distribution Platform processes linking request 0.07 ± 0

Infected Platform retrieves AIK credential 6.0± 0.010

Infected Platform generates binding key 19.4 ± 11.2

Infected Platform certifies binding key 5.9± 0.012

Malware Distribution Platform verifies binding key 0.04 ± 0

Total 63.1 ± 22.2

Per-payload execution statistics

Action Time (s)

MLE setup 1.05 ± 0.01

Time to decrypt payload 3.07 ± 0.01

Command and Control 0.008 ± 0

DDoS Timebomb 0.008 ± 0

Text Search 0.004 ± 0

Time system appears frozen 3.22

Total MLE execution time 4.27

Table 3.4: Performance of different phases. Error bars are standard deviations
of sample sets. A standard deviation of “0” indicates less than 1 ms. Statistics
for the protocol up to late launch were calculated from 10 protocol cycles run one
immediately after the other, while late launch payload statistics were calculated
from 10 other runs per payload, one immediately after the other.

used by SINIT to measure the MLE. The Flicker module then launches the MLE,

which in our case contains the Infection Payload Loader PAL. This PAL first de-

crypts the payload, which occupies most MLE execution time for our experiments.

The payload runs, the MLE exits, and the kernel module restores prior system state.

The late launch environment execution can be as long as 3.2 s, which is

long enough that an alert user might notice the system freeze (since the late launch

environment suspends the OS) and become suspicious. Then again, performance

variability is a hallmark of best-effort operating systems like Linux and Windows.

The rootkit control program can use heuristics to launch the payload when the

38

platform is idle or the user is not physically present.

Payload decryption performance is largely based on the speed of asymmetric

decryption operations performed by the TPM. The use of TPM key blobs here in-

volves two asymmetric decryption operations, one to allow use of the private portion

of the key blob (which is stored in encrypted form), and one to use this private key

for decrypting an encrypted symmetric key. Symmetric AES decryption took less

than 1% of total payload decryption time in all cases, and is unlikely to become

more costly even with significant increases in payload size: We found that a 90 KB

AES decryption with OpenSSL (36× larger than our largest payload), took only 650

microseconds.

3.8 Attack Feasibility

Our attack is contingent on being able to acquire the proper AuthData: SRK Au-

thData, and owner AuthData. The ability for malware to obtain access to these

AuthData has two aspects: the way that AuthData are entered into the system,

and the degree of usage of the different AuthData values.

AuthData only need to be used to calculate HMAC values authorizing com-

mands, so they do not need to be present on a machine where they are being used

to authorize TPM commands. However, in practice, AuthData seems to be entered

into systems where it is used. TrouSerS, the standard suite of software for TPM

management for Linux, asks users for a password locally on a TPM-containing ma-

chine which is converted into AuthData. While Windows 7 does not allow the user

to store owner AuthData locally, it is typically stored on removable media (i.e., a

USB stick) that is inserted into the system when necessary.

The use of a TPM key requires the loading of all keys above it in the hierarchy,

the use of any TPM key requires use of SRK AuthData. As a result, the SRK

AuthData is likely to be used during most operations that involve the TPM. On the

39

other hand, owner AuthData is mainly used for important management operations,

like taking ownership of the TPM. Thus there are likely to be fewer opportunities

to obtain owner AuthData. Nonetheless, poor data handling practices can lead to

AuthData being resident in a system for periods far beyond its use. We used a

virtualized Windows 7 instance to measure the amount of time owner AuthData

remains resident in a system after use in a system control panel, and saw that on

an idle system the data can remain resident for days.

Our attack also depends on the ability to prove to a remote platform that

a TPM is legitimate based on the certification of its EK by the TPM manufac-

turer. We believe that this is reasonable given that it is also required for securing

normal TPM operation. Nonetheless, in practice, we encountered problems that in-

dicate that TPM users may not be verifying the legitimacy of their TPMs. Firstly,

we experienced difficulties in retrieving TPM EK certificates from TPM NVRAM.

Reads of the appropriate location in NVRAM would consistently experience errors

for reads of greater than or equal to 863 bytes. This behavior was consistent across

multiple TPMs of the same model. The inability to perform reads of greater than

or equal to 863 bytes was problematic because the TPM EK certificate was larger

than this size. We were able to recover the TPM EK certificate by instead using

overlapping reads of smaller size. Secondly, the certificate chain between the TPM

EK certificate and any publicly verifiable certificate was not immediately available.

It took months of correspondence with the TPM manufacturer for them to produce

the appropriate certificate chain6. While the difficulty of obtaining a certificate

chain to verify TPM EK authenticity may vary by manufacturer (e.g., Infineon’s

intermediate certificates are online7), in any case it appears that in practice there

may be obstacles to verifying the legitimacy of TPM EKs. However, as long as it

is possible to verify the legitimacy of some TPM EKs our attack can still be used.

6Personal communication. November 3, 2010 through April 9, 2011.
7http://www.infineon.com/tpm

40

http://www.infineon.com/tpm

Manufacturers also have incentive to fix EK certificate verification for normal TPM

operation.

3.9 Defenses

While there are a number of possible defenses against using the TPM to cloak mal-

ware, none is without difficulties or downsides. Many possible defenses undermine

the security guarantees that trusted computing is supposed to provide.

3.9.1 Restricting late launch code

One possibility would be to restrict the code that can be used in late launch. For

example, a system could implement a security layer to trap on SENTER instructions8.

Restricting access to the hardware TPM is one of the best approaches to defending

against our attack, but such a defense is not trivial. Setup and maintenance of this

approach may be difficult for a home or small business user. Use of a security layer

is more plausible in an enterprise or cloud computing environment. In that setting,

the complexity centers on policy to check whether an MLE is permitted to execute

in late launch. The most straightforward methods are whitelisting or signing MLEs.

These raise additional policy issues about what software state to hash or sign, how

to revoke hashes or keys, and how to handle software updates. Any such system

must also log failed attempts and delay or ban abusive users.

3.9.2 TPM manufacturer cooperation

A malware analyst could defeat our attack with the cooperation of TPM manufac-

turers. Our attack uses keys certified to be TPM-controlled to distinguish commu-

nication with a legitimate TPM from an analyst forging responses from a TPM. A

8The security layer would need to operate despite compromise of the system by kernel-level
malware. This could be accomplished with a lightweight hypervisor.

41

TPM manufacturer cooperating with analysts and certifying illegitimate EKs would

defeat our attack, by allowing the analyst to create a software-controlled environ-

ment that mimics a late launch environment but that she can observe. However, any

leak of a certificate for a non-TPM EK would undermine the security of all TPMs

(or at least all TPMs of a given manufacturer). Malware analysis often occurs with

the cooperation of government, academic, and commercial institutions, which raises

the probability of a leak.

Alternately, a manufacturer might selectively decrypt data encrypted with

a TPM’s public EK on-line upon request. Such a service would compromise the

Privacy CA protocol at the point where the Privacy CA encrypts a credential with

the EK for a target TPM-containing platform. The EK decryption service would al-

low an analyst to obtain a credential for a forged (non-TPM-generated) AIK. This

is less dangerous than the previous situation, as now only parties that trust the

Privacy CA (in our case the Malware Distribution Platform) could be mislead by

the forged AIK. However, this approach also places additional requirements on the

manufacturer, in that it must respond to requests for decryption once per Malware

Distribution Platform, rather than once per analyst. Additionally, the EK decryp-

tion service has potential for abuse by an analyst if legitimate Privacy CAs are

deployed.

3.9.3 Attacks on TPM security

Cloaking malware with the TPM relies on the security of TPM primitives. A com-

promise of one or more of these primitives could lead to the ability to decrypt or

read an encrypted payload. For instance, the exclusive access of late launch code

to system DRAM is what prevents access to decrypted malicious payloads. A vul-

nerability in the signed code module that implements the late launch mechanism

(and enables this exclusive access) could allow an analyst to read a decrypted pay-

42

load [WRT09].

Physical access to a TPM permits other attacks. Some TPM uses are vul-

nerable to a reset of the TPM without resetting the entire system, by grounding a

pin on the LPC bus [Kau07]. Late launch, as used by our malware, is not vulnerable

to this attack. LPC bus messages can be eavesdropped or modified [KSP05], reveal-

ing sensitive TPM information. In addition, sophisticated physical deconstruction

of a TPM can expose protected secrets [Tar10]. While TPMs are not specified to

be resistant to physical attack, the tamper-resistant nature of TPM chips indicates

that physical attacks are taken seriously. It is likely that physical attacks will be

mitigated in future TPM revisions.

One potential analysis tool is a cold boot attack [HSH+08] in which memory

is extracted from the machine during operation and read on a different machine. In

practice the effectiveness of cold boot attacks will be tempered by keeping malicious

computations short in duration, as it is only necessary to have malicious payloads

decrypted while they are executing. Additionally, it may be possible to decrypt

payloads in multiple stages, so only part of the payload is decrypted in memory at

any one time. Memory capture is a serious concern for data privacy in legitimate

TPM-based secure computations as well. It is important for future trusted com-

puting solutions to address this issue, and the addition of mechanisms that defend

against cold boot attacks would increase the difficulty of avoiding our attack.

3.9.4 Restricting deployment and use of TPMs

As discussed in Section 3.8, our attack requires that malware know SRK and owner

AuthData values for the TPM. The danger of malware using TPM functionality

could be mitigated by careful control of AuthData. Owner AuthData could be

used only remotely to a TPM-containing platform. While an IT administrator

might understand this restriction and properly implement it, comprehension and

43

implementation would be more difficult for average users.

Malware could initialize a previously uninitialized TPM, thereby generating

the initial AuthData. For our test machines, TPM initialization is protected by

a single BIOS prompt that can be presented on reboot at the request of system

software. To prevent an inexperienced user from initializing a TPM at the behest

of malicious software, manufacturers could require a more involved initialization

process. The BIOS could require the user to manually enter settings to enable system

software to assert physical presence, rather than presenting a single prompt. More

drastically, a user could be required to perform some out-of-band authentication

(such as calling a computer manufacturer) to initialize the TPM. However, all of

these security features inhibit TPM usability.

3.9.5 Detection of malware that uses TPMs

Traffic analysis is a common malware detection technique. Malware that uses the

TPM will cause usage patterns that might be anomalous and therefore could come

to the attention of alert administrators. Detecting anomalous usage patterns is a

generally difficult problem, and if TPM use becomes more common it could make

cloaked malware’s TPM use yet more difficult to detect.

3.10 Applicability to newer hardware

Since the time that the original research on Suliban was performed, other hardware

has emerged that also tries to provide assurance of code isolation and integrity. In-

tel’s future Software Guard Extensions (SGX) [int13] will provide processor-based

mechanisms for isolating code and attesting its initial state to a remote platform.

SGX’s core concept is that of the enclave, wherein a known code and data im-

age (with a particular hash) can be encrypted and integrity protected, and stored

back into memory. At that point, the code can be run such that any modifications

44

it makes to its data are only stored in encrypted and integrity protected form in

main memory. SGX tracks entrance to and exit from enclaves, even by non-code-

generated means (e.g., interrupt handling), and restricts access to enclave secrets

(e.g., code and data) appropriately. Note that any discussion about SGX is some-

what speculative as SGX is not yet deployed. All discussion here is based on Intel

documentation and research papers.

Although SGX uses different mechanisms, it has a similar capacity to the

TPM in combination with processor late launch to cloak malware. SGX does not

directly provide a mechanism for generating encryption keypairs where the private

key’s access is restricted. Initial enclave code and data are also entirely visible, so

private keys cannot be put into initial enclave data. However, enclaves are free to

generate their own keypairs, and SGX provides a method to attest that arbitrary

data came from a particular enclave. In more detail, to establish a keypair where

only a particular enclave has access to the private key, the enclave can take the

following steps:

• The enclave runs a keypair generation algorithm. This algorithm requires ran-

domness, which must be obtained from a source that an attacker cannot access

or modify. For example, for the cloaked malware threat model, a processor-

based randomness mechanism like Intel’s RDRAND is appropriate as an attacker

would not be able to influence the outcome.

• The enclave hashes the public key and requests that the hash be cryptograph-

ically bound to the identity of the enclave via a EREPORT processor instruction.

EREPORT allows an enclave to send integrity-protected data to another enclave.

Here the enclave selects as its target a special enclave called the quoting en-

clave, which holds platform-wide credentials for remote attestation.

• The quoting enclave uses the Enhanced Privacy ID scheme to create a form

of signature on the public key hash that binds the hash to the identity of the

45

enclave. This signature only allows a verifier to determine that the public

key hash came from some instantiation of the enclave on an SGX-enabled

platform, but not which platform in particular. A remote platform can then

verify this signature and know that the accompanying public key can be used

to send data privately to some instance of an enclave.

By use of restricted access public keys, a remote platform can put code that only it

knows into an enclave and execute it.

However, there are some differences between the security guarantees provided

by the TPM with late launch and SGX. Using late launch to keep secrets relies on

the secrecy of regions of platform RAM, which as discussed in Section 3.9, may

not be true for attackers with some form of physical access, either to snoop the

memory bus or to remove the RAM of the platform at precise times. Our protocol

also relies on the secrecy of information transmitted across the platform LPC bus,

which may also not be the case for a sophisticated physical attacker. SGX protects

against attackers with the ability to snoop the memory bus or take a platform’s

RAM chips at a precise time since enclave data and code in RAM are encrypted.

However, unlike late launch, launching an enclave does not halt other processors on

the system, so enclave code is potentially vulnerable to concurrent monitoring of its

memory access patterns.

46

Chapter 4

Achieving forensic deniability

with Lacuna

Many programs, even when using special modes meant to improve user privacy

like web browsers’ “private browsing” modes, leave evidence of user actions. The

problem is that modern computer systems do not provide system-level support for

privacy; as a program interacts with the OS and other applications, private data

leaks into the rest of the system with no way to remove it.

Lacuna provides users with the ability to run a program in a “private session”

that ensures that no traces from the program are left behind after the program has

terminated. We consider an attacker who can observe all system state after a private

session ends. Lacuna’s guarantee, which we call forensic deniability, is that the

attacker cannot figure out which program was used or recover information about

actions taken in the program.

While prior work exists on erasing sensitive user data from a system, it

does not apply a systematic approach to catch all traces. Work on secure memory

deallocation [CPGR05] assumes that memory with sensitive data is deallocated,

while we find examples to the contrary wherein long-lived servers (including the OS)

47

retain user secrets (§4.1). Furthermore, the PaX patch, a common implementation of

secure deallocation for Linux [pax], does not apply it pervasively and leaves sensitive

data, such network packets, in memory.

This work makes the following contributions:

• It describes multiple novel attacks wherein application secrets are recovered

after application termination. These attacks are not prevented by methods in

the literature for reducing data lifetime, and hence show new techniques are

required.

• It introduces forensic deniability as a useful and achievable privacy guarantee.

We argue that with forensic deniability as a privacy goal it is easier to obtain

greater system usability.

• It details the design and implementation of Lacuna, a system that provides

forensic deniability for a wide variety of applications. It identifies privacy of

peripheral I/O as a key challenge to providing forensic deniability and shows

how an abstraction it introduces, the ephemeral channel, solves this prob-

lem.

• It empirically evaluates the degree to which Lacuna meets its privacy and

usability goals.

4.1 Motivation: Leaks from “private” browsing

As a motivating example, consider a user that wants to browse a protest website that

is restricted by the government and contains a variety of different types of media.

Figure 4.1 shows an example of such a website, which contains an audio player,

pictures, and accompanying text. A user may want to be able to view this website

in a way such that an attacker cannot determine the website contents (which may

48

Figure 4.1: A protest website with audio player, pictures, and text.

reveal sensitive aspects of the protest movement) and cannot even determine that

the user has visited the website (which may be illegal to view).

We modeled a user’s interaction with this website on a Linux desktop system

and looked for ways in which information about this interaction leaks into the rest

of the system. We used both private browsing mode and the PaX patch to test

the limits of current systems. While our experiments were performed on a Linux

system, we expect similar results on other OSes.

4.1.1 Graphical data

Multiple levels of system software retain portions of what is displayed on the screen

during program execution. We examined the source code for a recent version of the

Linux graphics stack and found the information leaks described below. We used

X.org X server 1.10.6 (referred to as X below), Nouveau open-source NVIDIA GPU

DRI2 module 0.0.16, kernel module 1.0.0, and Linux 3.3.0 with the PaX patch.

The X server allocates memory1 as part of the EXA acceleration layer, a

1exaPrepareAccessReg mixed() allocates memory for each pixel on the screen (file
exa/exa migration mixed.c, line 203). The pointer to the memory is stored in the Client data
structure for X’s own X client and referenced from the global array of pointers to the Client data
structures for all active X clients.

49

standard part of the modern X server architecture used by many open-source GPU

drivers. EXA accelerates 2D graphics operations performed during screen updates

when application windows are moved or their visibility changes. EXA uses memory

allocated by the X server as a cache—for example, to cache the bitmap representa-

tion of window contents when part of the window is obscured. When an occluding

window is relocated, the exposed part of the screen is recovered by fetching the

bitmap from the EXA cache instead of redrawing the entire application window

(assuming that the window’s contents are unchanged). The cache is not invalidated

when an application terminates, and is kept allocated until the last X client ter-

minates. Typically, the last X client is an X window manager whose termination

coincides with the termination of the X server itself.

The EXA subsystem cache contains desktop contents only for certain win-

dow managers that employ 2D acceleration, such as TWM and FVMW2. We also

recovered window bitmaps from an X server without any window manager. With

Xfce 4 and the Gnome/Unity environments, however, this memory buffer contains

only a static desktop wallpaper image. Furthermore, we observed this leak when

using the open-source Nouveau graphics driver deployed by all major Linux distri-

butions, but not with the proprietary NVIDIA driver because the latter does not

use the EXA cache.

Window contents of terminated applications can also be retrieved from kernel

memory in a way that does not depend on X’s user-space behavior. We examined

the TTM module, which is a memory manager for the Direct Rendering Manager

(DRM)2 subsystem used by most modern open-source GPU drivers in Linux. The

TTM module manages a DMA memory pool for transferring data between the host

and GPU memories3. Scanning the pages in this memory pool reveals bitmaps

rendered on the screen by previously terminated applications, including a QEMU

2http://dri.freedesktop.org/wiki/DRM
3See drivers/gpu/drm/ttm/ttm page alloc dma.c in the Linux kernel source.

50

http://dri.freedesktop.org/wiki/DRM

Virtual Machine (VM) and VNC (used for remote access to graphical desktops).

This technique works for the Gnome/Unity environment (the current Ubuntu

default) and likely works for all window managers because all of them can work with

a graphics driver using the TTM module. The lifetime of data recovered this way is

measured in hours if the system is idle, but is sensitive to the churn rate of windows

on the desktop and applications’ behavior. For example, the display contents of

a terminated VM remain in memory almost intact after running various desktop

applications, such as terminal emulators and word processors, that do relatively

little image rendering. Only about half of the contents remain after invoking a new

VM instance, but some remnants survive all the way until the DMA memory pool

is cleared as a result of the X server’s termination or virtual console switch.

We also found a similar leak with the proprietary NVIDIA driver when dis-

playing static images outside the QEMU VM. Its lifetime was limited to about 10

minutes. Without the driver’s source code, however, we are unable to identify the

exact reasons for the leak.

4.1.2 Audio data

Most popular Linux distributions use the PulseAudio server, which provides a uni-

form interface for advanced audio functions like mixing and resampling. We ex-

amined PulseAudio 1.1 in the following. PulseAudio uses shared memory seg-

ments of at most 64 MB to communicate with applications. These segments are

allocated when applications create “PulseAudio streams” by calling pa simple new

and pa stream new. If an application crashes or exits without freeing its segment

via pa simple free or pa stream free4, its audio output remains in PulseAudio’s

memory. PulseAudio lazily garbage-collects segments whose owners have exited, but

only when a new shared segment is mapped.

4See src/pulse/stream.c and src/pulse/simple.c in the PulseAudio source.

51

Sound streams recovered from PulseAudio shared segments after the appli-

cation terminated are noisy because the PulseAudio client library stores memory

management metadata inline with stream contents in the same segment.5 Nev-

ertheless, we were able to recover up to six seconds of audio generated by Skype

(sufficient to reveal sensitive information about the conversation and its partici-

pants) and the mplayer music player. In general, duration of the recovered audio

depends on the sampling rates of the application and any input files.

4.1.3 System caches

Not all system memory caches are explicitly freed when no longer in use, thus

secure deallocation is not sufficient for forensic deniability. For example, PaX leaves

file data read from disk in the system buffer cache because those pages are not

freed on program exit. Buffer cache pages compromise forensic deniability even

for programs inside a VM. We ran LibreOffice in an Ubuntu 11.10 guest VM on a

host without LibreOffice installed, then shut down the VM and dumped the host’s

physical memory. Examination of the memory image revealed symbol names from

the libi18nisolang1gcc3.so library, disclosing (with the help of apt-file) that

LibreOffice had run.

4.1.4 Network data

Contrary to the advice from [CPGR05], PaX does not clean sk buff structures

which store network packets. In general, PaX does not appear to eagerly erase any

kmem cache memory at all, which can completely compromise forensic deniability.

For example, we visited websites with Google Chrome in private mode running inside

a VM with NAT-mode networking on a PaX-enabled host. After closing Chrome

and shutting down the VM, a physical memory dump revealed complete packets

5See src/pulsecore/memblock.c in the PulseAudio source.

52

with IP, TCP, and HTTP headers.

4.2 Goals

We see that typical applications can leak a lot of information into the rest of the

system. Here we formulate a set of sensible goals for our system, Lacuna, that aims

to prevent application information from leaking to an adversary.

4.2.1 Threat model and privacy goals

We would like to be able to ensure that application traces are unavailable even to a

strong adversary. It is unlikely that we can defend against an attacker with concur-

rent OS-level access to the system on which private applications are run, because

such an attacker can observe the memory of applications that we would like to keep

private. Prior work [OST06, JS12] shows that even with less unprivileged access, an

attacker with concurrent access to a system (i.e., running as some user-level process)

can determine a significant amount of information about other processes running on

the system. This prior work generally makes use of side-channels, which are pub-

lic information that correlates with program activity, like cache activity or process

memory footprint.

It is difficult to defeat side-channels since they originate from a variety of

different sources of information that often appear innocuous. Rather than trying

to eliminate a long list of side-channels and producing a system whose guarantees

could be easily undone by a new side-channel, we opt instead for a threat model

that does not allow an attacker to exploit most side-channels. One aspect common

to most side-channels is that they involve measurement of a system over time while

target code is running. Instead, we consider an adversary that only gains access to a

system after a target private program has terminated. We refer to the ability to the

ability to prevent such an adversary from learning information about the private

53

program’s execution as forensic deniability. We use the term forensic deniability

because with this guarantee a user can maintain plausible deniability of her actions

in a private program in the face of a forensic examination of her system after the

program has terminated.

Lacuna aims to prevent an attacker from learning even one bit of information

about the execution of a private program, that is, the attacker should not be able

to answer even yes-or-no questions about the execution. However, there are a few

caveats to this guarantee. Firstly, Lacuna does not aim to make it impossible for the

attacker to tell that Lacuna was used. Secondly, for reasons that will become clearer

in Section 4.3, Lacuna will not prevent an attacker from knowing which peripherals

were used by a private program. Finally, Lacuna does not prevent against the use of

non-public hardware APIs to learn information. For example, if a network card has

an interface known to the attacker to dump the complete contents of the past 1000

packets sent through it, then Lacuna will not prevent leaks through this interface.

Forensic deniability must be coercion-resistant: the user herself should not

be able to recover any evidence from her private sessions. Lacuna does not persist

secrets from one private session to another (e.g., a program in a Lacuna private

session cannot save encrypted state to be reused during its next invocation). The

attacker controls the host, and if a secret is kept by the user instead—e.g., as a

password or in a hardware device—she can be coerced to open the persistent state.

Data leaks due to network traffic analyzed by an adversary are out of scope for

Lacuna. It is worth noting that an adversary may not have access to an application’s

network traffic, as would be the case for malware infecting a user’s machine after

the application terminates. Users may need to use Lacuna in combination with

techniques to hinder network traffic analysis, like Tor6, depending on their privacy

goals.

6http://www.torproject.org

54

http://www.torproject.org

4.2.2 Usability goals

In order for Lacuna to be useful, it is insufficient to have it just meet certain pri-

vacy goals. We have a number of usability goals in mind as well to minimize the

inconvenience of using Lacuna on a system:

• Support simultaneous private and non-private applications

Users should not have to interrupt their normal tasks to use private applica-

tions.

• Support a wide variety of applications

Users should be able to run applications of their choosing privately, not merely

specific applications like a web browser.

• Incur performance cost only for private applications

Non-private applications will run exactly as before, with any system modifica-

tions only affecting private sessions. We refer to this as ensuring that privacy

is “pay as you go”.

• Incur low performance cost even for private applications

If the performance impact of Lacuna is too great, then users may well opt to

not use Lacuna to improve usability at the expense of privacy.

4.3 Design

The key challenge for Lacuna is to be able to use system services while ensuring

that application secrets are not leaked in the process. First, we use virtualization

as a way of isolating a private application from the rest of the system. However,

private applications still need to be able to use system devices for display, storage,

and other needs. Lacuna makes use of an abstraction called ephemeral channels to

55

provide private applications access to devices while ensuring that application secrets

are not leaked.

4.3.1 Private process isolation

Modern applications often consist of a number of OS processes that communicate via

OS Inter-Process Communication (IPC) mechanisms. These communications can

contain application secrets, and so cannot be allowed to pass through complicated

paths in the host OS or system services that can cause them to persist. As a result,

Lacuna uses virtualization as a way of containing IPC: private applications are put

into VMs using a hosted hypervisor (also called a Type II hypervisor), and all of

their IPC is contained in guest VMs. A VM runs in the host OS as just another

process, and then the in-memory state of the entire VM becomes easy to erase.

4.3.2 Ephemeral channels

Applications in private sessions cannot be completely cut off from the host while

maintaining functionality. Private applications still need to use system peripherals

to store files, display graphics, and so on.

There are two types of devices that Lacuna needs to support. First, storage

devices are different than all others because storage devices do not interpret the

data that they store . As a result, we can encrypt data bound for a storage device

before it leaves a VM and decrypt it whenever it is requested by the VM again.

Ensuring private access to storage devices is thus relatively straightforward, so we

defer discussion of this class of devices to Section 4.5.

By contrast, devices that are not storage devices need to interpret the data

that they are sent. For example, data sent to a graphics card needs to be interpreted

by the graphics card to produce the proper image on the screen. As a result, the

strategy we outlined for storage devices does not work here. Ephemeral channels

56

are meant to help with this type of device.

Ephemeral channels help ensure that there are no data left behind from pe-

ripheral paths that are readable by an attacker. One way of ensuring no data are

left behind that are readable by an attacker is to leave no traces of sensitive data

behind in the first place (outside of the private VM that can be erased). This can be

accomplished any time that a guest can take full control over a system peripheral.

Lacuna gives VMs control of system peripherals via peripheral component inter-

connect (PCI) device assignment. PCI device assignment requires an IOMMU to

prevent a buggy VM from corrupting host memory with bad device requests.

Guest control of a device is sensible for some cases, like input peripherals,

which do not need to be shared by multiple applications at the same time. However,

for most cases, guest control of a device prevents multiplexing of the device by the

system. Here, hardware virtualization support allows guest control of a device while

still allowing the system to multiplex it. The goal of hardware virtualization support

is to create several different hardware interfaces to a device that can be controlled

by different drivers (e.g., one by a host driver, and others by drivers in guest OSes)

at the same time, and where interactions are resolved in hardware. For example,

a network interface card (NIC) with hardware virtualization support can present

separate hardware NIC interfaces to different VMs and the packets sent by each VM

are enqueued for transmission over some set of physical interfaces. In particular,

Single Root I/O Virtualization (SR-IOV) technology allows a PCI device to

appear as multiple PCI devices in hardware. When a guest controls leakage of

private data by taking direct control of hardware, we refer to this as a hardware

ephemeral channel. For hardware ephemeral channels, no host code manipulates

sensitive data, so there is no opportunity for data leaks.

Unfortunately, not all classes of device have hardware virtualization support

available, and hardware virtualization support is often restricted to high-end server

57

Figure 4.2: Overview of ephemeral channels. Sensitive data flow is shown for both
types of channels. Hardware ephemeral channels connect guest system software
directly to hardware, while encrypted ephemeral channels connect guest system
software to small software proxies on the host or peripheral device. Black boxes
represent unencrypted data, white boxes encrypted data.

components. As a result, it is important to be able to protect data even when

hardware virtualization support is unavailable. We accomplish this with encrypted

ephemeral channels. For an output channel, sensitive data is encrypted right

before it leaves the hypervisor. We modify host device drivers to add a small proxy

that decrypts data right before it is used by the target device. Input channels are

similar, with encryption happening first in the proxy, followed by decryption in

the hypervisor. Encryption keys for encrypted ephemeral channels are destroyed

upon application exit, leaving all traces cryptographically erased, making them

cryptographically hard to read [BL96]. Figure 4.2 shows an overview of the operation

of the different types of ephemeral channel.

58

4.3.3 Side-channel mitigation

We cannot claim that Lacuna prevents all information leaks via side-channels. How-

ever, adopting forensic deniability as a privacy goal means that many side-channel

attacks are prevented by construction as they require access to information acquired

at a variety of times during program operation. Despite this, it is possible that the

host system state available to an attacker after a private program runs contains in-

formation that inadvertently reveals some aspects of the private program’s behavior.

A significant class of system state that is available to an attacker is statistics that are

collected by the host OS of a machine running Lacuna. In Section 4.7, we perform

an empirical analysis of OS statistics in Linux. We discuss the few relevant statistics

that we find and implement mitigations for any potential leaks we discover.

4.4 Design of ephemeral channels

Here we discuss design aspects of ephemeral channels for particular classes of device.

The design of an encrypted ephemeral channel encompasses exactly what data needs

to be encrypted, and where the endpoints of the encrypted ephemeral channel are

to be placed. For hardware ephemeral channels, design includes specifying what

hardware will be controlled by a guest.

4.4.1 Display devices

Display devices do not have hardware virtualization support, and so need to be ac-

commodated by an encrypted ephemeral channel. A natural unit of data to encrypt

for display devices is a frame of data before it is to be drawn: VMMs often make

graphical data available in a virtual framebuffer within the hypervisor that is then

forwarded to the graphics card7. However, it is less clear where the data should

7Since graphical data is first rendered in the hypervisor, Lacuna does not support graphics
acceleration in VMs.

59

be decrypted; we do not want to decrypt data before it reaches caches in Linux

graphics driver code, and some graphics drivers are closed-source and thus difficult

to modify. Here we opt to support a method where it seems most likely that traces

of decrypted graphics data will not escape: we use programmable graphics card sup-

port, often called GPGPU support, and decrypt graphics data on the graphics card

itself. GPU memory, including where decryption occurs, is exclusively owned by the

GPU and is not directly addressable from the CPU. After decryption, data can be

directly rendered onto the screen via an OpenGL shader. Decryption on the GPU

also allows easy multiplexing of the display with other programs, as the GPU can

combine decrypted sensitive graphics data with that from non-private applications.

4.4.2 Audio devices

Lacuna encrypts the audio sent to virtual sound hardware in guest VMs. Lacuna

multiplexes private application and non-private application audio via a new software

mixer written into the host kernel that decrypts private application audio and mixes

it into the non-private application audio. The result is sent to the host sound

hardware.

4.4.3 USB input devices

Lacuna supports a wide variety of USB input devices, including keyboards and mice,

which are critical for interaction with a system. Lacuna supports both hardware

and encrypted ephemeral channels for USB devices as they have different advantages

and disadvantages. Since for many types of input device input only needs to be sent

to one application at a time, it is possible to create a hardware ephemeral channel in

which the USB controllers (which are PCI devices) for these input devices become

controlled by the guest VM. However, safe device assignment requires an IOMMU.

Furthermore, if an input device is connected to a USB hub, then all the devices

60

on the hub would have to be assigned to the guest at the same time. Thus it is

useful to also have encrypted ephemeral channels for USB devices in case hardware

ephemeral channels cannot be used due to the above restrictions.

Encrypted ephemeral channels for USB devices work by switching the driver

on the host that processes USB data to one which passes through data into the

hypervisor. Unlike hardware ephemeral channels, a particular USB device, rather

than a USB host controller which may be responsible for multiple USB ports, may

be switched. When data are bound for the hypervisor, contents of USB Request

Buffers (URBs) are encrypted as they leave the generic portion of the host USB

driver (the portion that is not specific to the USB host controller and thus also the

USB protocol version) and decrypted when they enter the private VM. Modifying

only the generic portion of the host USB driver minimizes host code modifications.

Both types of ephemeral channel allow the destination of USB data to be toggled

back and forth between a private VM and the host at will.

4.4.4 Network devices

Network support is important for both usability and privacy. Some attacks that are

within scope for Lacuna (e.g., malware infecting the host after the private session is

over) do not control the network, but can learn private information from IP headers

leaked by the VM.

Lacuna creates an ephemeral channel from the host NIC driver to the VMM

where it delivers the packet to the virtual network card. This channel can be based

on either encryption, or SR-IOV hardware. Encrypted ephemeral channels connect

to the host in layer 2: each VM outputs Ethernet packets via a software TAP device,

which connects to the NIC via a software bridge. Packet contents and headers for

layer 3 (IP) and above are encrypted while they pass through the host. Hardware

ephemeral channels based on SR-IOV network cards give a VM direct control over a

61

virtual network PCI device in the card hardware that multiplexes a single network

connection.

To minimize the changes to specific device drivers, we encapsulate most rou-

tines for MAC registration and encryption/decryption in a generic, device-independent

kernel module. This module checks whether a MAC address belongs to some VM

and encrypts or decrypts a packet when needed.

4.5 Implementation

We implement Lacuna with the QEMU-KVM hypervisor. Our implementation is

based on the Linux 3.0.0 kernel and QEMU 0.15.1. We ported the PaX kernel

patch option CONFIG PAX MEMORY SANITIZE to zero out pages of application data

(e.g., pages from the memory of a private VM) as they are freed. The code for our

implementation is available online at https://github.com/ut-osa/lacuna.

4.5.1 Encrypted ephemeral channels

To implement encrypted ephemeral channels, the kernel and programmable devices

maintain cryptographic contexts, one for each direction of each device’s logical

communication channel (input from the device or output to the device). The Lacuna

prototype provides kernel and GPU implementations. For symmetric encryption,

kernel cryptographic contexts use the Linux kernel’s cryptographic routines, while

GPU contexts use our own implementation of AES. To establish a shared secret key

for each context, Lacuna uses the key exchange portion of TLS 1.1. We ported the

relevant parts of the PolarSSL8 cryptographic library (SHA1, MD5, multi-precision

integer support) to run in the kernel.

These contexts are managed from userspace via our libprivcrypt library.

We modified the QEMU VMM to use libprivcrypt. On initialization, the VMM

8http://www.polarssl.org

62

https://github.com/ut-osa/lacuna
http://www.polarssl.org

creates cryptographic contexts in the kernel and GPU and establishes shared param-

eters (algorithm, IV, secret key), allowing it to encrypt data destined to these con-

texts and decrypt data originating from them. To encrypt and decrypt, libprivcrypt

uses libgcrypt9 or ported kernel code and Intel’s AES-NI hardware encryption sup-

port.

When a private session terminates, even abnormally (i.e., from SIGKILL or

crash), all cryptographic contexts associated with it are zeroed, including those on

the GPU. This, along with zeroing of the VMM’s memory, ensures that all data

that has passed through the ephemeral channels is cryptographically erased.

4.5.2 Storage

Lacuna stores writes to storage separately from the initial VM image. There are two

uses of storage to accommodate: writes to storage devices, and portions of private

applications that are swapped to disk. Writes to storage are put into a diffs file

where they are encrypted. The diffs file is used in combination with the initial VM

image to construct the proper values for sector reads from the VM virtual block

device.

Lacuna supports swapping of portions of private applications to disk. A new

flag CLONE PRIVATE is added to the clone system call. When this flag is set, the

kernel allocates a private swap context, generates a random key, and protects the

swap contents for that kernel thread. When an anonymous page is evicted from

memory, the kernel checks the virtual memory segment metadata (VMA in Linux)

to see whether the page is part of a private process. If so, the kernel allocates a

scratch page to hold the encrypted data and allocates an entry in a radix tree to

track the private swap context. The tree is indexed by the kernel’s swap entry so that

it can find the context on swap-in. Our implementation reuses much of the existing

9http://www.gnu.org/software/libgcrypt/

63

http://www.gnu.org/software/libgcrypt/

swap code path. To help distinguish private pages during normal swap cache clean

up, we add an additional bit in the radix tree to indicate when a particular entry

may be removed and which entries to purge during process cleanup.

Writes to storage are not the only storage operations to leave changes to

system state. Reads from the initial VM image file cause portions of that file to

be read into the host OS buffer cache. Portions of the VM image file in the host

OS buffer cache must be cleared or they would reveal what portions of the image

file were read, indicating which files on disk were used. However, we avoid a global

performance hit for all applications by clearing only the portion of the buffer cache

associated with the VM image file of the private application. We accomplish this

with a flag O PRIVATE that is passed to open when the VM image file is opened.

Note that the techniques for privately writing and reading from storage are

all pay as you go; they do not hurt performance of non-private applications. Only

writes from private applications are encrypted, and only cached data from reads in

private applications is purged on application shutdown.

4.5.3 Ephemeral channels for specific device types

Display devices For display ephemeral channels, the VMM polls the frame buffer,

and, upon each update, encrypts the buffer contents and transfers the encrypted

data to GPU memory. Lacuna then invokes its CUDA routine10 to decrypt the

guest’s frame buffer in the GPU, maps it onto an OpenGL texture, and renders it

on the host’s screen with an OpenGL shader. The implementation consists of 10

LOC in the QEMU UI module and SDL library, and an additional QEMU-linked

library for rendering encrypted frame buffers, with 691 LOC of CPU code for GPU

management and 725 lines of GPU decryption and rendering code.

10While our implementation uses CUDA and is compatible only with NVIDIA GPUs, similar
functionality can be also implemented for AMD GPUs using OpenCL [ope].

64

Audio Lacuna provides output and input audio channels for each VM and a small

(approximately 550 LOC) software mixer that directly interacts with the audio

hardware’s DMA buffer (§4.4.2). We modified the widely used Intel HD-Audio

driver to work with the mixer, changing fewer than 50 lines of code. Note that

“Intel HD-Audio” refers to an audio standard rather than specific hardware, so this

driver works for both Intel and non-Intel controller chips.11

Lacuna can send sound input to multiple VMs. For output (playback), the

host kernel keeps a separate buffer for each VM to write raw encrypted audio.

Linux’s audio drivers provide a callback to update the pointers indicating where the

hardware should fetch the samples from or where the application (e.g., PulseAudio)

should write the samples. Our mixer takes advantage of this mechanism: upon

pointer updates, samples in each encrypted output buffer are decrypted, copied to

the DMA buffer between the old and new application pointers, and then zeroed in

the encrypted output buffer. The DMA buffer is erased when the VM terminates.

USB Lacuna’s encrypted ephemeral channel support for USB encrypts data in

USB Report Buffers (URBs) as they are passed to system software from hardware

control. Packets destined for the guest and the host may be interspersed, so Lacuna

tracks which URBs it should encrypt by associating cryptographic contexts with

USB device endpoints. An endpoint is one side of a logical channel between a device

and the host controller; communication between a single device and the controller

involves multiple endpoints.

We added 118 lines to the usbcore driver to encrypt URBs associated with

cryptographic contexts as they are returned from hardware-specific host controller

drivers. These URBs are decrypted in the VMM’s virtual USB host controller

before they are passed on to the guest USB subsystem. Our prototype has been

tested only with USB 1.1 and 2.0 devices, but should work with USB 3.0. It does

11http://www.kernel.org/doc/Documentation/sound/alsa/HD-Audio.txt

65

http://www.kernel.org/doc/Documentation/sound/alsa/HD-Audio.txt

not support USB mass storage devices and less common USB device classes (such

as USB audio), but adding this support should require a reasonably small effort

because our mechanism is largely agnostic to the contents of URBs.

When the user moves her mouse over a private VM’s display and presses

“Left-Control+Left-Alt”, Lacuna engages a user-level USB driver, devio, to redirect

the keyboard and mouse ports to the VMM.12 The title bar of the VMM window

indicates whether the keyboard and mouse input are redirected through ephemeral

channels. When they are not redirected, the Lacuna VMM refuses input to avoid

accidental leaks.

The same key combination toggles control of the keyboard and mouse back

to the host. The VMM’s virtual hardware detects the key combination by under-

standing the position of modifier key status in data packets common to USB HID

devices. With a hardware ephemeral USB channel, detecting the combination re-

quires guest OS modification (119 LOC). With hardware channels, errors that freeze

the guest currently leave no way of restoring input to the host, but we believe that

this limitation is not intrinsic to our architecture (e.g., the host could run a guest

watchdog).

Network Lacuna VMs are networked in layer 2, and entire layer 3 packets are

encrypted. Each VM is assigned its own MAC address controlled by our privnet

module, which uses cryptographic contexts to do encryption in Intel’s e1000e driver

with 30 lines of glue code.

Outgoing packets are encrypted by the VMM. The host kernel places them

in an sk buff, the Linux network packet data structure. The driver maps each sk -

buff to a DMA address for the NIC to fetch; right before it tells the NIC to fetch,

it queries privnet whether the packets in the transmit queue come from a Lacuna

12The unmodified QEMU already uses this key combination for acquiring exclusive control of the
keyboard, but it takes events from the X server and does not provide forensic deniability.

66

VM, and, if so, decrypts them in place. The driver zeroes sk buffs on receipt of a

“transmission complete” interrupt. Because decryption takes place right before the

packets are written into hardware buffers, packets from a VM cannot be received

by the host (and vice versa) at a local address.

For incoming packets, as soon as the driver receives the interrupt informing

it that packets are transferred from the NIC to the kernel via DMA, it encrypts the

packets destined for the Lacuna VMs. Encryption is done in place and overwrites

the original packets. Decryption takes place in the VMM.

Although the layer 2 (Ethernet) header is not encrypted, its EtherType, an

indicator of the layer 3 protocol it is encapsulating, is modified to prevent a checksum

failure: a constant is added to it so that the resulting value is not recognized by the

Linux kernel during encryption, and subtracted again during decryption. As a side

benefit, this bypasses host IP packet processing, improving performance (§4.6.6).

While Lacuna currently reveals layer 2 packet headers, it could likely be

modified to hide this information. The current implementation allows Linux’s bridge

code to be used without modification. Layer 2 address information is more important

for mobile devices, wherein it can potentially reveal location information [ZDH+13].

4.6 Evaluation

We evaluate both the privacy properties and performance of Lacuna. We run all

benchmarks except switch latency on a Dell Studio XPS 8100 with a dual-core 3.2

GHz Intel Core i5 CPU, 12 GB of RAM, an NVIDIA GeForce GTX 470, and an

Intel Gigabit CT PCI-E NIC, running Ubuntu 10.04 desktop edition. The swap

partition is on a 7200 RPM, 250GB hard drive with an 8MB cache. Switch latency

to and from the private environment is benchmarked on a Lenovo T510 with a

dual-core 2.67 GHz Core i7 CPU and 8GB of RAM, running Ubuntu 12.04 desktop

edition. The Lenovo has a Microsoft USB keyboard (vendor/device ID 045e:0730)

67

and mouse (vendor/device ID 045e:00cb), as well as an IOMMU, which is required

for the PCI assignment-based ephemeral channel. Both machines have AES-NI and

use it for all AES encryption except where indicated. The guest VM runs Ubuntu

10.04 desktop edition, with 2 GB RAM and the Linux 3.0.0 kernel.

4.6.1 Validating privacy protection

Following the methodology of prior work [CPGR05], we inject 8-byte “tokens” into

the display, audio, USB, network, and swap subsystems, then examine physical

RAM for these tokens afterwards. Without Lacuna (but with QEMU and PaX),

the tokens are present after the applications exit. With Lacuna, no tokens are

found after the private session terminates. This experiment is not sufficient to

prove forensic deniability, but it demonstrates that Lacuna plugs at least the known

leaks.

One subtlety occurred with the video driver. We use the Nouveau open-

source driver for the test without the display ephemeral channel and the NVIDIA

proprietary driver for the test with the channel, because the NVIDIA driver is

required for CUDA execution. To inject tokens, we run a program that displays a

static bitmap inside a VM. With the ephemeral channel, no tokens from the bitmap

are found after VM termination. Without the channel, we detect the tokens13 after

the VM termination—but not if we use the proprietary driver. This driver does leak

data from other applications, but not from QEMU. Without the driver source code,

we are unable to identify the causes for this observed behavior.

4.6.2 Measuring data exposure

To estimate the potential exposure of private-session data, Table 4.1 shows the size

of driver code that handles it unencrypted. The graphics data is not exposed at all

13The tokens are slightly modified due to the display format conversion in QEMU, which adds a
zero after every third byte.

68

Subsystem LOC

Graphics 0 (725 CUDA)

Sound 200 (out), 108 (in)

USB 414

Network 208

Table 4.1: Lines of code (LOC) external to QEMU that handle unencrypted data.
Line counts were determined by manual examination of data paths from interrupt
handler to encryption using SLOCCount [Whe01].

Video Browser LibreOffice

QEMU 32.2 ± 7.4 25.9 ± 1.3 8.1 ± 1.2

Lacuna 49.7±0.3
(∆17.5)

46.2±1.5
(∆20.3)

21.1±0.6
(∆13.0)

Table 4.2: CPU utilization (%) for benchmarks with encrypted network, video,
and sound channels. The performance of all benchmarks on Lacuna is identical to
unmodified QEMU. The increase in CPU utilization is marked with ∆. Averages
are calculated over 5 trials with standard deviations as shown.

because it is encrypted by the VMM, which then transfers it directly to the GPU

memory and invokes the Lacuna implementation of the CUDA decryption and GL

rendering routines on the GPU (implemented in 725 lines of code).

4.6.3 Full-system performance

We measure the overhead of Lacuna on a number of full-system tasks: watching a 854

× 480 video with mplayer across the network, browsing the Alexa top 20 websites,

and using LibreOffice, a full-featured office suite, to create a document with 2,994

characters and 32 images. We sample CPU utilization at 1 second intervals. To

avoid the effects of VM boot and to capture application activity, we omit the first

15 samples and report an average of the remaining samples.

The execution times of the video and LibreOffice benchmarks on Lacuna are

within 1% of base QEMU. The performance of the browser benchmark varies due

69

to network conditions, but there is no difference in average execution time. The dis-

play—redrawn upon every contents change at the maximum rate of 63 frames/s—is

not perceptibly sluggish in any of the benchmarks when using the encrypted GPU

channel. Table 4.2 shows the CPU utilization of the workloads running on Lacuna

and on unmodified QEMU.

4.6.4 Clean-up time

The clean-up after a private VM terminates is comprised of five concurrent tasks:

Clear VM memory Lacuna uses PaX to zero VM memory when the VM process

exits and frees its address space. To measure the worst-case window of vulnerability,

we run a program in the VM that allocates all 2 GB of available VM memory, then

send the VMM a signal to terminate it and measure the time between signal delivery

and process exit. Linux does not optimize process exit, often rescheduling a process

during its death. In 10 trials, unmodified Linux required 2.1 ± 0.1 s to terminate a

VM. The worst case we measured for Lacuna (USB passthrough mode with keyboard

and mouse) is 2.5± 0.2 s.

Clear buffered disk image The Lacuna VMM opens disk image files with a

privacy flag so that the kernel can securely deallocate all buffer cache pages for those

files when the VMM exits without affecting the page cache contents for concurrent,

non-private programs. Only clean pages need to be deallocated and zeroed because

a private Lacuna session does not persist the modified disk image. This operation

takes 0.111 ± 0.002 s in our video benchmark.

Clear swap cache memory Lacuna securely deallocates freed swap cache pages.

A benchmark program allocates 12 GB of memory to force the system to swap,

writing out an average of 677.8± 33.4 MB to the swap partition. However, because

70

the swap cache is used only for transient pages (those that have not completely

swapped out or swapped in), the average number of memory pages remaining in

the swap cache at program termination is only 50 or so (200KB). Clearing this data

takes only 68.9 ± 44.6 µs.

Clear kernel stacks Lacuna zeroes the VMM’s kernel stack, and also notifies

and waits for each CPU to zero their interrupt and exception stacks. In our video

benchmark, this takes 15.8 ± 1.15 µs.

Clear GPU memory Lacuna has a GPUmemory scrubber which uses the CUDA

API to allocate all available GPU memory and overwrites it with zeros. A similar

GPU memory scrubbing technique is used in NCSA clusters.14 Our scrubber zeroed

1.5GB of GPU memory in 0.170 ± 0.005 s.

4.6.5 Switch time

Table 4.3 shows how long it takes to switch into a private session and how the switch

time depends on the number of devices and type of the ephemeral channel(s).

A significant portion of the switch time when using encrypted USB passthrough

results from disabling the peripheral USB drivers (0.8 ± 0.1 s for keyboard alone,

1.0 ± 0.2 s for keyboard and mouse) to allow devio to take control. This time is

affected by the number of USB devices that must be disconnected. Interestingly, it

is also affected by the complexity of the USB device: keyboards with media keys

often show up as two devices on the same interface, which necessitates disconnecting

two instances of the peripheral driver.

We noticed an interaction between the guest USB drivers and QEMU that

significantly affects switch time. Linux’s USB drivers perform two device resets

during device initialization. These resets in the guest are particularly costly be-

14http://www.ncsa.illinois.edu/AboutUs/Directorates/ISL/software.html

71

http://www.ncsa.illinois.edu/AboutUs/Directorates/ISL/software.html

Channel type Switch time (s)

USB passthrough

keyboard only 1.4± 0.2

keyboard + mouse 2.3± 0.2

PCI assignment

keyboard only 2.4± 0.2

keyboard + mouse 3.8± 0.2

Table 4.3: Switch time for different numbers of peripherals and ephemeral channel
types (averages over 5 trials).

cause each results in QEMU performing an unnecessary (since QEMU has already

performed a reset) unbinding of the devio driver and the reattachment of the de-

vice’s initial usbhid driver. Eliminating QEMU’s action upon these resets cuts this

component of switch time by two thirds.

4.6.6 Network performance

We benchmark network performance between a private VM and a gateway connected

by a switch: netperf and ping results are in Table 4.6, scp and netcat in Table 4.4.

There are several types of netperf tests. TCP STREAM uses bulk transfer to

measure throughput, the other types measure latency. TCP RR (Request/Response)

tests the TCP request/respond rate, not including connection establishment. TCP CC

(Connect/Close) measures how fast the pair of systems can open and close a con-

nection. TCP CRR (Connect/Request/Response) combines a connection with a re-

quest/response transaction. Ping measures round-trip time.

Neither latency, nor throughput is significantly affected when using AES-NI,

except for a dip in throughput for receiving 300 byte packets. For small packets,

performance with AES-NI encryption is slightly better than without encryption be-

cause encrypted packets bypass some host processing (since they appear to be of an

unknown packet type). To verify this explanation, we did an additional experiment

72

File size
Transfer time (s)

scp
Ephemeral + netcat
AES-NI Software

400MB 8.41 4.28 8.92

800MB 14.96 8.55 17.50

Table 4.4: netcat and scp test results.

No encryption AES-NI PCI assignment

CPU util (%) 27.7±2.7 36.0±1.6 14.7±4.2

Table 4.5: CPU utilization for TAP networking without encryption, with encryp-
tion, and using PCI assignment when transferring an 800MB file via netcat. The
throughput is 794±3 Mbps for all runs.

where we changed the EtherType of each packet without encrypting the content. We

measured over 120Mbps throughput when sending 30-byte packets, which is about

a 40% improvement. Software encryption achieves roughly half the throughput of

AES-NI.

We also compare the file transfer time for netcat using an encrypted ephemeral

channel and scp without using ephemeral channels (Table 4.4). File transfer with

AES-NI encryption is twice as fast as software-only scp. These results also validate

that our software encryption performance is comparable to scp.

Table 4.5 shows the measurements of CPU utilization when transferring an

800MB file using no encryption, AES-NI, and PCI assignment. This benchmark

was run on a quad-core 3.6 GHz Dell OptiPlex 980 with 8 GB of RAM and an Intel

Gigabit ET NIC.

While all methods have nearly identical throughput, PCI assignment signif-

icantly lowers CPU utilization.

73

Test type
Netperf throughput (Mbps)

TCP STREAM send TCP STREAM recv
Packet size 1400 300 30 1400 300 30

QEMU 788 516 86 827 829 226
Lacuna 769 419 89 819 820 231
HW encryption 2% 19% -4% 1% 1% -2%
Lacuna 373 242 54 373 370 168
SW encryption 53% 53% 37% 55% 55% 26%

Test type
Netperf latency−1 (Trans./s) Ping

TCP RR TCP CC TCP CRR Round-trip time (ms)
Packet size 1 1 1 1400 300 30

QEMU 5452 2530 2260 0.327 0.251 0.237
Lacuna 5312 2487 2180 0.366 0.253 0.219
HW encryption 3% 2% 4% 12% 1% -8%
Lacuna 5206 2264 2029 0.408 0.277 0.244
SW encryption 5% 11% 10% 25% 10% 0.3%

Table 4.6: Netperf and ping test results for unmodified QEMU and Lacuna with
hardware-assisted (HW) AES-NI encryption and software (SW) encryption. Re-
ductions in performance are shown as percentages, where negative values indicate
better performance than QEMU.

4.6.7 Audio latency

To measure output latency from the VM to the sound DMA buffer, we sent a known

sequence through the sound channel and measured host timestamps for send and

receive. The results are in Table 4.7, showing that the latency of the encrypted

ephemeral audio channel is smaller than that of PulseAudio.

Latency (ms)

Ephemeral channel 23.5 ± 8.6

PulseAudio 57.5 ± 11.3

Table 4.7: Audio latency comparison (averages over 10 trials).

There are counterbalancing effects at play here. The encrypted channel in-

curs additional computational overhead, but bypasses PulseAudio mixing and short-

74

ens the path from the VM to host audio DMA buffer.

4.6.8 Swap performance

Figure 4.3 compares the performance of plain Linux, Lacuna without encrypted

swap, Lacuna with encrypted swap, and dm-crypt-protected swap. In the first three

cases, a non-private process performs similarly to Linux. Our encrypted swap differs

from standard swap in two ways whose effects are shown in the graph: it allocates

a scratch page and bookkeeping for every private page swapped and encrypts the

swapped-out pages.

dm-crypt has particularly bad performance in this microbenchmark. We

verified that our installation of dm-crypt on ext4 adds, on average, 5% overhead

when running file-system benchmarks such as IOzone15.

4.6.9 Scalability

Table 4.8 shows the performance of multiple concurrent Lacuna VMs, all executing

the LibreOffice workload in a private session. The performance overhead of one

VM is negligible, but increases with eight concurrent VMs because the CPU is

overcommitted. Our attempt to run more than eight VMs produced an unexplained

CUDA error. Non-private VMs scale to 24 instances before Linux’s out-of-memory

killer starts killing them.

4.7 Study of statistics-based side channels

In this section we analyze possible side-channel information leaks in Lacuna from

statistics that the Linux kernel collects. Statistics in the host Linux kernel represent

an important class of potential information leak because the kernel collects a wide

variety of statistics about many different subsystems. There is no central API in

15http://www.iozone.org/

75

http://www.iozone.org/

Figure 4.3: Average elapsed time for swap microbenchmarks (lower is better). This
benchmark allocates a buffer using malloc, touches each page in pseudorandom
order, and reads the pages of the buffer in order to check correctness. The numbers
above the bars indicate relative slowdown relative to Linux.

the Linux kernel for statistics collection, so it is not easy to find all of the statis-

tics that are collected. However, many statistics from the Linux kernel are made

available to userspace via a small number of interfaces. Thus, we can cover a sig-

nificant number of statistics by examining only a small number of interfaces. This

section describes the statistics we found and how to mitigate resulting side-channel

leaks. The resulting analysis does not exhaust statistics-based side-channel attacks,

but provides some sense of the possibilities and raises the bar for an attacker by

eliminating many of them. We re-emphasize here that Lacuna’s threat model limits

an attacker’s access to kernel statistics to whatever remains after a private session

terminates.

76

Setup Running Time (s)

1 QEMU VM 189.3 ± 0.1

1 Lacuna VM 190.6 ± 0.1 (1.01×)

8 QEMU VMs 191.6 ± 0.1

8 Lacuna VMs 277.3 ± 1.1 (1.45×)

Table 4.8: Time to complete the LibreOffice workload under contention from other
VMs (averages over 5 trials).

4.7.1 Finding statistics

The Linux kernel provides a number of statistics for the system through the proc16

and sysfs17 filesystems. While some information about what is available through

proc and sysfs can be gleaned by reading documentation, source code analysis has

the power to show more conclusively what can be found through these interfaces.

There is a limited interface provided by the kernel to add entries into proc and

sysfs18. As a result, we can use grep to search the Linux source code for calls to

the interfaces for proc and sysfs.

proc We identified the relevant kernel interface for proc by examining fs/proc/

generic.c and include/linux/proc_fs.h in the Linux kernel source. Using grep

we identified 744 different uses of the proc interface in the kernel source. Note that

some of these instances occur in functions that are themselves called in multiple

functions. One important exception to this interface is the code that provides the

readdir and lookup functions for the root directory of proc19. The readdir and

lookup functions for the root proc directory add per-process statistics into proc.

16See Documentation/filesystems/proc.txt in the Linux kernel source and http://tldp.org/

LDP/Linux-Filesystem-Hierarchy/html/proc.html for some documentation on what is available
in the proc filesystem.

17 Documentation/filesystems/sysfs.txt in the Linux kernel source documents sysfs at a
high level, and Documentation/ABI describes some of the contents.

18Due to the monolithic nature of Linux, it is possible for kernel code to ignore this interface and
put entries into proc and sysfs through some other means, but we found no evidence of this.

19See fs/proc/root.c in the Linux kernel source.

77

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

While there are too many uses of the proc to exhaustively examine every one, we

ensured that we covered every proc directory we found in the associated documen-

tation and every per-process statistic. Beyond this, we focused on entries we believe

to be the most widely applicable, which are those that are not specific to particular

hardware.

sysfs We identified the relevant kernel interface for sysfs by examining include/

linux/sysfs.h and include/linux/kobject.h. Using grep we identified 534 dif-

ferent uses of the sysfs interface in kernel source. We covered every documented

sysfs interface, and again focused on interfaces that are not specific to particular

hardware. Ultimately, in terms of statistics that reveal information, what we found

are also reflected in proc.

4.7.2 Classifying statistics

In this section, we categorize kernel statistics into distinct types to help describe

the statistics we found (§4.7.3) and how we mitigate information leaks from them

(§4.7.4). Statistics that the kernel keeps that reflect behavior during private sessions

can be divided into three categories depending on the scope of data on which they

depend:

• Since boot statistics

The kernel keeps a number of statistics that depend on the complete system

behavior since boot, like the number of interrupts received for particular inter-

rupt vectors. These statistics can provide information about the occurrences

in a private session because they can bound system behavior during that ses-

sion. For example, the number of interrupts received for a device since the

last time a system was booted is an upper bound for the number of interrupts

received for that device during a private session that has occurred since the

78

last system boot. However, if a system has seen a variety of use since last

boot, then these statistics are less reflective of the actions taken in a private

session.

• Private session statistics

Some kernel statistics track actions for exactly the duration of a private session.

For example, the kernel tracks the amount of disk I/O made per-process.

Kernel statistics are often stored with the objects to which they pertain, and

as a result, the kernel often frees memory containing these statistics after a

private session ends. However, since the kernel does not securely deallocate

all memory that it frees, it may be possible to retrieve these statistics after

private session termination.

• Partial private session statistics

It would be possible for the kernel to keep statistics that apply to only part of

a private session. For example, if the kernel kept the average CPU utilization

over a series of two second intervals for the past five minutes, then it would

potentially be possible to build a profile of the CPU use for a program in a

private session over time, which could be identifying.

4.7.3 Found statistics

We now categorize the statistics we found that most directly reveal information

about private sessions by the type of information they reveal. We specify pieces of

paths that should be filled in depending on the context with < and >, for example,

<pid> indicates a particular process’s numerical pid. We refer to paths in the proc

and sysfs filesystems in their default locations below /proc and /sys respectively.

Session duration /proc/uptime is a since boot statistic that reveals the total

amount of time the system has been online, which can both place a limit on the

79

duration of a private session and suggest how long a private session might have

lasted. /proc/loadavg gives a measure of the average load on the system over the

past 1, 5, and 15 minutes. This could be used to try and approximate the length

of a session (since CPU use is likely higher during this period) and in this sense

could be considered a private session statistic. However, the measure provided by

/proc/loadavg is very coarse-grained.

/proc/<pid>/stat contains the time at which process pid was started. This

time is put in a struct task struct which is not zeroed when it is freed.

Session CPU use /proc/loadavg might also be used to estimate the CPU use

of the tail end of actions in a private session, here acting as a partial private session

statistic. Again, this is a very coarse-grained measure and system load could always

be due to other processes besides a private session (though low load does indicate

low load in a private session).

/proc/<pid>/stat contains per-process CPU use information, and /proc/

stat contains per-CPU CPU use information which includes both total CPU use

and a separate statistic for the amount of CPU time spent in a guest VM. Both of

these could be used to obtain the amount of CPU time spent in a guest VM, though

the latter is a since boot statistic that could be perturbed by other non-private VM

use.

Session device use /proc/stat and /proc/interrupts give since boot interrupt

counts for devices. These counts give a coarse-grained view of device use.

For storage devices, /proc/diskstats gives since boot per-disk-partition

I/O, and /proc/<pid>/io provides per-process total I/O to block devices. Similarly,

/sys/block/<drive name>/<drive name><partition number>/stat gives since

boot per-disk-partition I/O. For ext4 filesystems, /sys/fs/ext4/<partition name>

/session_write_kbytes also provides since boot per-disk-partition I/O.

80

Statistic category Modifications made

Duration • Do not record process start times

• Zero system load averages

• Randomize initial system monotonic time

• Randomize initial Time Stamp Counter

CPU use • Zero system load averages

• Zero per-CPU use statistics

• Zero per-process CPU use on process exit

General device use • Zero system interrupt counts

Storage device use • Change per-process accounting code to ignore
private sessions

• Zero system per-partition block I/O statistics

Network device use • Zero freed network interface statistics

• Modify e1000e to clear driver-specific statistics
structure

Table 4.9: Summary of changes made to mitigate information leaks from statistics.

For network devices, /proc/net/dev provides per-interface total I/O, which

provides both since boot total network I/O and due to the fact that a separate TAP

interface is created for each private session could potentially be used to find per-

private session total network I/O. The same statistics are available in sysfs under

/sys/class/net/<interface name>/statistics/<statistic name>.

4.7.4 Mitigating statistics-based side-channels

We now describe mitigations for the side-channels described in Section 4.7.3. We

prototype these mitigations and test that they do not crash the host OS. We found

no error messages in the system log (from system applications or daemons that could

use the modified information) or kernel log that appear to be related to the changes.

Our changes are summarized in Table 4.9.

81

Session duration The uptime from /proc/uptime is calculated from the Linux

kernel’s “monotonic time” value. Monotonic time is defined as zero at system boot

time. Thus to obscure the uptime of the system we need to increase the system’s

monotonic time. The monotonic time is used in a variety of system timers, so in-

creasing it during system operation is not an option. (Empirically, doing so caused

a number of system errors.) Instead, we can set the monotonic time to a random

value on boot, allowing continuity for system timers while obscuring uptime. How-

ever, at the point in the boot process where a random value is required, the Linux

random number generator has not had time to collect any randomness. As a re-

sult, our current implementation only demonstrates that given a source of boot-time

randomness we can obscure the uptime. However, we expect that there are many

possible sources of boot-time randomness, like Intel’s RDRAND instruction or a small

TPM driver (which could be kept small since it needs a very limited set of TPM

functionality).

We take one further step to conceal system uptime: When processes start

in Linux, the monotonic time at which they begin is recorded. We eliminate this

recording, so all processes appear to have begun at monotonic time zero. If we

did not, since many processes begin near system boot (which has a newly-assigned

random monotonic time value), it would be easy to approximate the initial random

value given to the monotonic time. However, eliminating the recording of process

start time can potentially hamper system functionality. It may be possible to create

a compromise solution wherein processes that have start times within a certain range

(a few seconds) of the initial random value are set to zero start time while those

beyond that range keep their real start time. This way, the wide variety of processes

that start on boot would not reveal the true system uptime, while users can still

infer how long ago their processes were started for system management purposes.

While most of our work with Lacuna addresses leaks through system soft-

82

ware, there are counters that directly leak system uptime that it is worth attempting

to mitigate. In particular, Intel x86 CPUs provide the Time Stamp Counter (TSC),

which is a 64-bit value per physical processor that is initialized to zero on system re-

set and counts up at a constant rate while the system is not put to sleep20. However,

the system-accessible TSC value is controllable by setting a register per core that

affects TSC readings from that core. So, similarly to uptime (and with the same

caveat about randomness), the TSC can be randomized on boot. In order to keep

system functionality, we have to keep the per core TSC values close to each other.

Under normal circumstances the per core TSC readings (even for cores on other

processors) stay relatively close to each other; Linux verifies this and will refuse to

use the TSC as a timing source if they do not (so if per-core TSC views do not

stay in sync we can just randomize them all independently without affecting system

functionality). We implement logic that calculates a random TSC increment and

then schedules a task on all cores to read the TSC value and immediately (in the

next instruction) to set that core’s register to the read value plus the increment.

Linux’s TSC sanity test still passed after this modification.

Our TSC randomization does not work on more recent Intel hardware, as

it introduces a new per-core register IA32 TSC ADJUST that tracks changes made to

the TSC. If the per-core view of the TSC is adjusted by a value x, then the value of

this register in also adjusted by x, which means that any TSC adjustment can be

detected.

Additionally, we note that there are other system timers that might reveal

the system uptime. The widespread Advanced Configuration and Power Interface

specification mandates a Power Management Timer that is can be up to 32-bits wide

and counts up at a rate of about 3.6 MHz [acp10]. It appears not to be resettable in

hardware without putting the system to sleep (which would harm system usability).

20In older Intel CPUs the TSC rate is affected by CPU clock scaling [int14b].

83

However, with this size and counting rate, the timer will overflow about every 20

minutes, so it can only provide accurate uptime for sessions less than this length.

Furthermore, while the counter can be 32-bits wide, it is only required to be 24-bits

wide, which would lead to an overflow time of 4.7 seconds, making it unhelpful for

tracking uptime. It seems that future hardware modifications may be necessary to

fully obscure system uptime.

We zero out the running average for /proc/loadavg on private session com-

pletion. The load averages thus reflect nothing about the private session and are

usable during private sessions and far after private sessions.

Process start times from /proc/<pid>/stat are taken care of by the miti-

gations for uptime above.

Session CPU use Our handling of /proc/loadavg has already been discussed.

We zero out the per-CPU usage statistics in /proc/stat, again allowing for-

ward use from the point of zeroing. The implementation is a little more involved

than /proc/loadavg due to needing to clear counters per CPU, but it is still rela-

tively straightforward.

We zero the per-process CPU usage, as is reported by /proc/<pid>/stat

on process exit for private processes (as marked by CLONE PRIVATE discussed in

Section 4.5.2). This allows accounting code to correctly account for non-private

processes while ensuring that statistics are not available for an attacker that can

search through memory. Note that we clear statistics as soon as a process exits

rather than wait for its task struct to be released since the latter involves an

extra delay until the process is reaped.

Session device use We zero out interrupt counts in /proc/stat and /proc/

interrupts.

For storage devices, we modify the per-process accounting code to not collect

84

I/O statistics for private processes. This allows accounting from /proc/<pid>/io to

work for non-private processes. We zero out block statistics used by /proc/diskstats

to allow them to be used going forward from the end of a private session. We de-

termined that the sysfs disk statistics paths all use the same underlying counters

as /proc/diskstats. The sysfs path under ext4 reads and stores the partition

I/O counter on filesystem mount and reads the partition I/O counter again when

the sysfs file is read. Zeroing the partition I/O counter ensures the sysfs file only

reveals the value of the partition I/O counter at filesystem mount (which is entirely

unrelated to private sessions).

For network devices, the source of what is read through /proc/net/dev and

the equivalent sysfs interface are the result of the kernel function dev get stats.

This function can trigger a driver-specific function in some cases. For the TAP de-

vices that are created purely for the duration of a Lacuna session, there is no special

function provided by the TAP driver, so the statistics are stored in the associated

struct net device. We added code that clears the statistics from every freed

struct net device. This should not have any functionality impact as it is an error

to depend on the contents of freed memory, and the freeing of struct net devices

happens only on rare events like the powering down of network interfaces, so the

performance impact is likely to be limited.

The e1000e network driver that Lacuna uses for an encrypted ephemeral

channel does provide its own driver-specific statistics function which retrieves statis-

tics from a driver-internal structure. We modify the e1000e driver so that the

since-boot statistics present from this driver are cleared on private session termina-

tion. We verified that clearing these statistics while the card is running produces

no negative side-effects.

85

4.7.5 Usability effects of leak mitigation

System statistics are presumably collected because they are useful, so any tampering

with these statistics may harm system functionality. While we saw no immediate

errors when implementing mitigation mechanisms, some of the mechanisms we in-

troduced cause incorrect readings of system activity to appear. The goal for any

mitigation mechanisms is to minimize the impact of any errors introduced into sys-

tem statistics while still maintaining forensic deniability.

Since boot statistics are often single counters for the entire system, so chang-

ing these to erase information about private sessions does induce errors in future

readings. However, all of the mitigations that we introduce merely change the val-

ues of these counters at a specific point. From that point onward, the counters are

faithful to future activity. As a result, statistics that measure the difference of coun-

ters over time (e.g., the current rate of disk activity as reported by iostat -d 2)

or gradually become less influenced by past activity (e.g., the system load averages)

will still be useful.

As mentioned in Section 4.7.4, there is less impact to erasing or not collecting

private session statistics once a private session has terminated, as these statistics

tend to pertain to objects that no longer exist on the system (e.g., the QEMU

process for the private session or a TAP interface created for a private session).

86

Chapter 5

Conclusion

We presented two systems, Suliban and Lacuna, that concretely illustrate the trade-

offs that can be made between privacy and usability in systems that protect pro-

gram privacy. Suliban shows the cost of defeating most known techniques for soft-

ware analysis: limiting to computation-only code and delivering platform-specific

encrypted payloads to only platforms that can be proven to protect privacy. In

developing Suliban, we also uncovered important flaws in the way the TPM is cur-

rently used and managed by software whose correction is necessary to maintain

security guarantees in the TPM and future trusted computing equipment. Our

work on Lacuna illustrates new classes of privacy problems inherent in peripheral

use and provides the ephemeral channel abstraction to solve them. Lacuna’s notion

of forensic deniability will be a useful design goal for privacy-enhancing systems

going forward as it has a coherent stance against modern techniques for extracting

program secrets and admits systems with reasonable usability.

87

Bibliography

[ABJB10] Gaurav Aggrawal, Elie Bursztein, Collin Jackson, and Dan Boneh. An

analysis of private browsing modes in modern browsers. In USENIX

Security, 2010.

[acp10] Advanced Configuration and Power Interface Specification, Revision

4.0a, 2010.

[AGJS13] Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R. Scar-

lata. Innovative Technology for CPU Based Attestation and Sealing.

In Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy, 2013.

[aKK04] Hyang ah Kim and Brad Karp. Autograph: Toward Automated, Dis-

tributed Worm Signature Detection. In USENIX Security, 2004.

[amd10] AMD64 Architecture Programmer’s Manual, Volume 2: System Pro-

gramming, 2010.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,

Amit Sahai, Salil Vadhan, and Ke Yang. On the (Im)possibility of

Obfuscating Programs. Journal of the ACM, 59(2), 2012.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and

88

Amit Sahai. Protecting Obfuscation against Algebraic Attacks. In

EUROCRYPT, 2014.

[BHL+08] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn

Song, and Heng Yin. Automatically Identifying Trigger-based Behavior

in Malware. In Botnet Detection. Springer, 2008.

[BHS03] Pete Broadwell, Matt Harren, and Naveen Sastry. Scrash: A system

for generating secure crash information. In USENIX Security, 2003.

[bit09] BitLocker Drive Encryption Step-by-Step Guide for Windows 7, 2009.

http://technet.microsoft.com/en-us/library/dd835565(WS.

10).aspx.

[BL96] Dan Boneh and Richard Lipton. A revocable backup system. In

USENIX Security, 1996.

[Bla94] Matt Blaze. A cryptographic file system for UNIX. In CCS, 1994.

[BRSS11] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman

Sohan. MockDroid: trading privacy for application functionality on

smartphones. In HotMobile, 2011.

[BSW08] John Bethencourt, Dawn Song, and Brent Waters. Analysis-Resistant

Malware. In NDSS, 2008.

[BWLP09] Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash. Pro-

tecting confidential data on personal computers with storage capsules.

In USENIX Security, 2009.

[CHGL06] Richard S. Cox, Jacob Gorm Hansen, Steven D. Gribble, and Henry M.

Levy. A Safety-Oriented Platform for Web Applications. In S&P, 2006.

89

http://technet.microsoft.com/en-us/library/dd835565(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd835565(WS.10).aspx

[CHK+08] Alexei Czeskis, David J. St. Hilaire, Karl Koscher, Steven D. Gribble,

Tadayoshi Kohno, and Bruce Schneier. Defeating encrypted and deni-

able file systems: TrueCrypt v5.1a and the case of the tattling OS and

applications. In HotSec, 2008.

[CJ03] Mihai Christodorescu and Somesh Jha. Static Analysis of Executables

to Detect Malicious Patterns. In USENIX Security, 2003.

[CN04] Mark D. Corner and Brian D. Noble. Zero-interaction authentication.

In MOBICOM, 2004.

[CNZ+11] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,

Tim Deegan, Peter Loscocco, and Andrew Warfield. Breaking Up is

Hard to Do: Security and Functionality in a Commodity Hypervisor.

In SOSP, 2011.

[CPG+04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel

Rosenblum. Understanding Data Lifetime via Whole System Simula-

tion. In USENIX Security, 2004.

[CPGR05] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding

Your Garbage: Reducing Data Lifetime Through Secure Deallocation.

In USENIX Security, 2005.

[CPKS09] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn

Song. Dispatcher: Enabling Active Botnet Infiltration Using Auto-

matic Protocol Reverse-engineering. In CCS, 2009.

[CSK+10] Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens

Kolbitsch, Christopher Kruegel, and Stefano Zanero. Identifying Dor-

mant Functionality in Malware Programs. In S&P, 2010.

90

[Dan10] George Danezis. Traffic analysis of the HTTP protocol over

TLS. http://research.microsoft.com/en-us/um/people/gdane/

papers/TLSanon.pdf, 2010.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptog-

raphy. SIAM Journal on Computing, 30(2):391–437, 2000.

[DHWW11] Alan M. Dunn, Owen S. Hofmann, Brent Waters, and Emmett Witchel.

Cloaking Malware with the Trusted Platform Module. In USENIX

Security, 2011.

[DLJ+12] Alan M. Dunn, Michael Z. Lee, Suman Jana, Sangman Kim, Mark

Silberstein, Yuanzhong Xu, Vitaly Shmatikov, and Emmett Witchel.

Eternal Sunshine of the Spotless Machine: Protecting Privacy with

Ephemeral Channels. In OSDI, 2012.

[ecr] eCryptfs. https://launchpad.net/ecryptfs.

[efs] The encrypting file system. http://technet.microsoft.com/en-us/

library/cc700811.aspx.

[Fel] Edward Felten. USACM Policy Statement on

DRM. https://freedom-to-tinker.com/blog/felten/

usacm-policy-statement-drm/.

[Fin09] Hal Finney. PrivacyCA, 2009. http://www.privacyca.com.

[GAB10] Paolo Gasti, Giuseppe Ateniese, and Marina Blanton. Deniable Cloud

Storage: Sharing Files via Public-key Deniability. In WPES, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

STOC, pages 169–178, 2009.

91

http://research.microsoft.com/en-us/um/people/gdane/papers/TLSanon.pdf
http://research.microsoft.com/en-us/um/people/gdane/papers/TLSanon.pdf
https://launchpad.net/ecryptfs
http://technet.microsoft.com/en-us/library/cc700811.aspx
http://technet.microsoft.com/en-us/library/cc700811.aspx
https://freedom-to-tinker.com/blog/felten/usacm-policy-statement-drm/
https://freedom-to-tinker.com/blog/felten/usacm-policy-statement-drm/
http://www.privacyca.com

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-

hai, and Brent Waters. Candidate Indistinguishability Obfuscation and

Functional Encryption for all Circuits. In Foundations of Computer

Science, 2013.

[GPCR04] Tal Garfinkel, Ben Pfaff, Jim Chow, and Mendel Rosenblum. Data

Lifetime is a Systems Problem. In ACM SIGOPS European Workshop,

2004.

[Gut96] Peter Gutmann. Secure deletion of data from magnetic and solid-state

memory. In USENIX Security, 1996.

[Gut01] Peter Gutmann. Data remanence in semiconductor devices. InUSENIX

Security, 2001.

[HcCS09] Xin Hu, Tzi cker Chiueh, and Kang G. Shin. Large-scale Malware

Indexing Using Function-call Graphs. In CCS, 2009.

[HHJ+11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and

David Wetherall. These aren’t the droids you’re looking for: retrofitting

android to protect data from imperious applications. In CCS, 2011.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,

William Paul, Joseph A. Cal, Ariel J. Feldman, and Edward W. Felten.

Lest we remember: Cold boot attacks on encryption keys. In USENIX

Security, 2008.

[HX07] Keith Harrison and Shouhuai Xu. Protecting cryptographic keys from

memory disclosure attacks. In DSN, 2007.

[int09] Intel Trusted Execution Technology (Intel TXT) MLE Developer’s

Guide, 2009.

92

[int13] Software Guard Extensions Programming Reference, 2013.

[int14a] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume

2, 2014.

[int14b] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume

3, 2014.

[JS12] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets from

Process Footprints. In S&P, 2012.

[KAMC11] Jayanthkumar Kannan, Gautam Altekar, Petros Maniatis, and Byung-

Gon Chun. Making programs forget: Enforcing lifetime for sensitive

data. In HotOS, 2011.

[Kau07] Bernhard Kauer. OSLO: Improving the security of trusted computing.

In USENIX Security, 2007.

[KCK+09] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, En-

gin Kirda, Xiaoyong Zhou, and Xiaofeng Wang. Effective and Efficient

Malware Detection at the End Host. In USENIX Security, 2009.

[KF08] Kimmo Kasslin and Elia Florio. Your Computer is Now Stoned

(...Again!). The Rise of the MBR Rootkits, 2008. http://www.

f-secure.com/weblog/archives/Kasslin-Florio-VB2008.pdf.

[KHKK10] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin

Kirda. Inspector Gadget: Automated Extraction of Proprietary Gad-

gets from Malware Binaries. In S&P, 2010.

[KP03] Douglas Knowles and Frederic Perriott. W32.Blaster.Worm,

2003. http://www.symantec.com/security_response/writeup.

jsp?docid=2003-081113-0229-99.

93

http://www.f-secure.com/weblog/archives/Kasslin-Florio-VB2008.pdf
http://www.f-secure.com/weblog/archives/Kasslin-Florio-VB2008.pdf
http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99
http://www.symantec.com/security_response/writeup.jsp?docid=2003-081113-0229-99

[KPMR12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. StealthMem:

System-Level Protection Against Cache-Based Side Channel Attacks

in the Cloud. In USENIX Security, 2012.

[kra08] Owning Kraken Zombies, a Detailed Discussion, 2008.

http://dvlabs.tippingpoint.com/blog/2008/04/28/

owning-kraken-zombies.

[KSP05] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing Trusted

Platform Communication. In ECRYPT Workshop, CRASH CRypto-

graphic Advances in Secure Hardware, 2005.

[KZB+90] Paul A. Karger, Mary Ellen Zurko, Douglas W. Benin, Andrew H.

Mason, and Clifford E. Kahn. A VMM Security Kernel for the VAX

Architecture. In S&P, 1990.

[Lam09] Butler Lampson. Usable security: How to get it. Communications of

the ACM, 52(11), November 2009.

[LSWK11] Byunghee Lee, Kyungho Son, Dongho Won, and Seungjoo Kim. Secure

data deletion for USB flash memory. Journal of Information Science

and Engineering, 2011.

[LYH+10] Jaeheung Lee, Sangho Yi, Junyoung Heo, Hyungbae Park, Sung Y.

Shin, and Yookun Cho. An efficient secure deletion scheme for flash

file systems. Journal of Information Science and Engineering, 2010.

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,

Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. In-

novative Instructions and Software Model for Isolated Execution. In

Proceedings of the 2nd International Workshop on Hardware and Ar-

chitectural Support for Security and Privacy, 2013.

94

http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-kraken-zombies
http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-kraken-zombies

[MAF+11] Petros Maniatis, Devdatta Akhawe, Kevin Fall, Elaine Shi, Stephen

McCamant, and Dawn Song. Do you know where your data are? Secure

data capsules for deployable data protection. In HotOS, 2011.

[MDS12] Robert Martin, John Demme, and Simha Sethumadhavan. TimeWarp:

Rethinking Timekeeping and Performance Monitoring Mechanisms to

Mitigate Side-Channel Attacks. In ISCA, 2012.

[MK99] Andrew D. McDonald and Markus G. Kuhn. StegFS: A steganographic

file system for Linux. In IH, 1999.

[Moh11] Mohammad Mannan and Beom Heyn Kim and Afshar Ganjali and

David Lie. Unicorn: Two-factor attestation for data security. In CCS,

2011.

[MPP+08] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter,

and Hiroshi Isozaki. Flicker: An Execution Infrastructure for TCB

Minimization. In EuroSys, 2008.

[MPR09] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Safe

Passage for Passwords and Other Sensitive Data. In NDSS, 2009.

[MRHM10] Aleksandr Matrosov, Eugene Rodionov, David Harley, and Juraj Mal-

cho. Stuxnet Under the Microscope, 2010. Revision 1.2.

[myd04] MyDoom.C Analysis, 2004. http://www.secureworks.com/

research/threats/mydoom-c/.

[Naz09] Jose Nazario. The Conficker Cabal Announced, 2009. http://asert.

arbornetworks.com/2009/02/the-conficker-cabal-announced/.

[OMRK13] Kaan Onarlioglu, Collin Mulliner, William K. Robertson, and Engin

95

http://www.secureworks.com/research/threats/mydoom-c/
http://www.secureworks.com/research/threats/mydoom-c/
http://asert.arbornetworks.com/2009/02/the-conficker-cabal-announced/
http://asert.arbornetworks.com/2009/02/the-conficker-cabal-announced/

Kirda. Privexec: Private execution as an operating system service. In

S&P, 2013.

[ope] OpenCL - the open standard for parallel programming of heterogeneous

systems. http://www.khronos.org/opencl/.

[OR11] Jon Oberheide and Dan Rosenberg. Stackjacking Your Way

to grsecurity/PaX Bypass. http://jon.oberheide.org/files/

stackjacking-hes11.pdf, 2011.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and

Countermeasures: The Case of AES. In Proceedings of Cryptographers’

Track at the RSA Conference, volume 3860 of Lecture Notes in Com-

puter Science, pages 1–20. Springer, 2006.

[pax] Homepage of the PaX team. http://pax.grsecurity.net.

[PBH+05] Zachary N. J. Peterson, Randal Burns, Joe Herring, Adam Stubbleeld,

and Aviel D. Rubin. Secure deletion for a versioning file system. In

FAST, 2005.

[PCJD07] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya

Debray. A Semantics-based Approach to Malware Detection. In POPL,

2007.

[Per05] Radia Perlman. The Ephemerizer: Making Data Disappear. http://

www.filibeto.org/~aduritz/truetrue/smli_tr-2005-140.pdf,

2005.

[PJ10] Matt Piotrowski and Anthony D. Joseph. Virtics: A system for

privilege separation of legacy desktop applications. Technical Report

UCB/EECS-2010-70, University of California, Berkeley, 2010.

96

http://www.khronos.org/opencl/
http://jon.oberheide.org/files/stackjacking-hes11.pdf
http://jon.oberheide.org/files/stackjacking-hes11.pdf
http://pax.grsecurity.net
http://www.filibeto.org/~aduritz/truetrue/smli_tr-2005-140.pdf
http://www.filibeto.org/~aduritz/truetrue/smli_tr-2005-140.pdf

[Pos07] Andre Post. W32.Storm.Worm, 2007. http://www.symantec.com/

security_response/writeup.jsp?docid=2001-060615-1534-99.

[Pro00] Niels Provos. Encrypting virtual memory. In USENIX Security, 2000.

[PSY09] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An Analysis

of Conficker’s Logic and Rendezvous Points, 2009. http://mtc.sri.

com/Conficker/.

[PTZ03] HweeHwa Pang, Kian-Lee Tan, and Xuan Zhou. StegFS: A stegano-

graphic file system. In ICDE, 2003.

[QM12] Zhiyun Qian and Z. Morley Mao. Off-Path TCP Sequence Number

Inference Attack - How Firewall Middleboxes Reduce Security. In S&P,

2012.

[qub] Qubes. http://qubes-os.org/.

[RCB12] Jeff Reardon, Srdjan Capkun, and David Basin. Data node encrypted

file system: Efficient secure deletion for flash memory. In USENIX

Security, 2012.

[SEVS04] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage.

Automated Worm fingerprinting. In OSDI, 2004.

[SML07] Patrick Stahlberg, Gerome Miklau, and Brian Neil Levine. Threats to

Privacy in the Forensic Analysis of Database Systems. In SIGMOD,

2007.

[SSW+02] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N.

Padmanabhan, and Lili Qiu. Statistical identification of encrypted Web

browsing traffic. In S&P, 2002.

97

http://www.symantec.com/security_response/writeup.jsp?docid=2001-060615-1534-99
http://www.symantec.com/security_response/writeup.jsp?docid=2001-060615-1534-99
http://mtc.sri.com/Conficker/
http://mtc.sri.com/Conficker/
http://qubes-os.org/

[SW10] Steven Swanson and Michael Wei. SAFE: Fast, Verifiable Sanitization

for SSDs. Technical Report cs2011-0963, UCSD, 2010.

[SWT01] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing anal-

ysis of keystrokes and timing attacks on SSH. In USENIX Security,

2001.

[SWZS12] Kun Sun, Jiang Wang, Fengwei Zhang, and Angelos Stavrou. Se-

cureSwitch: BIOS-Assisted Isolation and Switch between Trusted and

Untrusted Commodity OSes. In NDSS, 2012.

[TAB+12] Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana

Geambasu, and Nikhil Sarda. CleanOS: Limiting Mobile Data Expo-

sure with Idle Eviction. In OSDI, 2012.

[Tar10] Christopher Tarnovsky. Hacking the Smartcard Chip. In Black Hat,

2010.

[TMK10] Shuo Tang, Haohui Mai, and Samuel T. King. Trust and protection in

the Illinois browser operating system. In OSDI, 2010.

[Tru07] Trusted Computing Group. TPM Main Specification, Level 2, Version

1.2, 2007.

[Tru13] Trusted Computing Group. Trusted Platform Module Library Specifi-

cation, Family ”2.0”, Level 00, 2013.

[VDS11] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. Eliminat-

ing Fine Grained Timers in Xen. In ACM Cloud Computing Security

Workshop, 2011.

[Vie01] John Viega. Protecting sensitive data in memory. http://www.ibm.

com/developerworks/library/s-data.html?n-s-311, 2001.

98

http://www.ibm.com/developerworks/library/s-data.html?n-s-311
http://www.ibm.com/developerworks/library/s-data.html?n-s-311

[VPQP09] Amit Vasudevan, Bryan Parno, Ning Qu, and Adrian Perrig. Lock-

down: A Safe and Practical Environment for Security Applications.

Technical Report CMU-CyLab-09-011, CMU, 2009.

[wav10] Trusted Computing Whitepaper. Wave Systems Corporation, 2010.

http://www.wave.com/collateral/Trusted_Computing_White_

Paper.pdf.

[WGSS11] Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swan-

son. Reliably erasing data from flash-based solid state drives. In FAST,

2011.

[Whe01] David A. Wheeler. SLOCCount. http://www.dwheeler.com/

sloccount/, 2001.

[WRT09] Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. An-

other Way to Circumvent Intel Trusted Execution Technology. Invisible

Things Lab, 2009.

[YMC07] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox.

TightLip: Keeping applications from spilling the beans. In NSDI, 2007.

[YSE+07] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and En-

gin Kirda. Panorama: Capturing System-wide Information Flow for

Malware Detection and Analysis. In CCS, 2007.

[YY04] Adam Young and Moti Yung. Malicious Cryptography: Exposing

Cryptovirology. Wiley, 2004.

[ZBS98] Erez Zadok, Ion Badulescu, and Alex Shender. Cryptfs: A stackable

vnode level encryption file system. Technical Report CUCS-021-98,

Columbia University, 1998.

99

http://www.wave.com/collateral/Trusted_Computing_White_Paper.pdf
http://www.wave.com/collateral/Trusted_Computing_White_Paper.pdf
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

[ZDH+13] Xiaoyong Zhou, Soteris Demetriou, Dongjing He, Muhammad Naveed,

Xiaorui Pan, XiaoFeng Wang, Carl A. Gunter, and Klara Nahrstedt.

Identity, Location, Disease and More: Inferring Your Secrets from An-

droid Public Resources. In CCS, 2013.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.

Cross-VM side channels and their use to extract private keys. In CCS,

2012.

[ZW09] Kehuan Zhang and XiaoFeng Wang. Peeping Tom in the neighborhood:

Keystroke eavesdropping on multi-user systems. In USENIX Security,

2009.

100

Vita

Alan Mark Dunn graduated from Montgomery Blair High School in Silver Spring,

Maryland in 2001. He graduated from the Massachusetts Institute of Technology in

2005 with B.S. degrees in Physics and Mathematics. He entered a graduate program

in Physics at Duke University, graduating with an M.A. in 2008 before realizing

that Computer Science is the one true way and entering the doctoral program in

the Department of Computer Science at the University of Texas at Austin in 2009.

He received an M.S. in Computer Science in 2012.

Contact email: adunn@cs.utexas.edu

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

101

mailto:adunn@cs.utexas.edu

	Acknowledgments
	Abstract
	Chapter Introduction
	Chapter Related work
	Motivation for private environments for computation
	Lifetime of sensitive data
	Data remanence

	Determining program secrets
	Malware analysis
	Side-channel attacks
	Physical attacks

	Protecting program secrets
	Full-system approaches
	Protecting file data
	Hardware support
	Isolation
	Cryptographic techniques
	Mitigating side-channel attacks

	Chapter Cloaking malicious computation with trusted computing
	Motivation: Cloaking Conficker B
	Threat model
	TPM background
	TPM hardware
	Managing and protecting TPM storage
	Initializing the TPM
	Platform identity and attestation
	Using the TPM

	Protocol
	Late launch for secure execution
	The main protocol

	Resilience of the Protocol
	Implementation
	Late launch environment establishment
	Payloads

	Evaluation
	Attack Feasibility
	Defenses
	Restricting late launch code
	TPM manufacturer cooperation
	Attacks on TPM security
	Restricting deployment and use of TPMs
	Detection of malware that uses TPMs

	Applicability to newer hardware

	Chapter Achieving forensic deniability with Lacuna
	Motivation: Leaks from ``private'' browsing
	Graphical data
	Audio data
	System caches
	Network data

	Goals
	Threat model and privacy goals
	Usability goals

	Design
	Private process isolation
	Ephemeral channels
	Side-channel mitigation

	Design of ephemeral channels
	Display devices
	Audio devices
	USB input devices
	Network devices

	Implementation
	Encrypted ephemeral channels
	Storage
	Ephemeral channels for specific device types

	Evaluation
	Validating privacy protection
	Measuring data exposure
	Full-system performance
	Clean-up time
	Switch time
	Network performance
	Audio latency
	Swap performance
	Scalability

	Study of statistics-based side channels
	Finding statistics
	Classifying statistics
	Found statistics
	Mitigating statistics-based side-channels
	Usability effects of leak mitigation

	Chapter Conclusion
	Bibliography
	Vita

