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Molecular dynamics (MD) provides an atomically detailed description of the 

dynamics of a system of atoms. It is a useful tool to understand how protein function 

arises from the dynamics of the atoms of the protein and of its environment. When the 

MD model is accurate, analyzing a MD trajectory unveils features of the proteins that are 

not available from a single snapshot or a static structure. When the sampling of the 

accessible configurations is accurate, we can employ statistical mechanics (SM) to 

connect the trajectory generated by MD to experimentally measurable kinetic and 

thermodynamic quantities that are related to function.  

In this dissertation I describe three applications of MD and SM in the field of 

biochemistry. First, I discuss the theory of alchemical methods to compute free energy 

differences. In these methods a fragment of a system is computationally modified by 

removing its interactions with the environment and creating the interactions of the 

environment with the new species. This theory provides a numerical scheme to efficiently 

compute protein-ligand affinity, solvation free energies, and the effect of mutations on 

protein structure. I investigated the theory and stability of the numerical algorithm.  

The second research topic that I discuss considers a model of the dynamics of a 

set of coarse variables. The dynamics in coarse space is modeled by the Smoluchowski 

equation. To employ this description it is necessary to have the correct potential of mean 
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force and diffusion tensor in the space of coarse variables. I describe a new method that I 

developed to extract the diffusion tensor from a MD simulation. 

Finally, I employed MD simulations to explain at a microscopic level the 

stereospecificity of the enzyme ketoreductase. To do so, I ran multiple simulations of the 

enzyme bound with the correct ligand and its enantiomer in a reactive configuration. The 

simulations showed that the enzyme retained the correct stereoisomer closer to the 

reactive configuration, and highlighted which interactions are responsible for the 

specificity. These weak physical interactions enhance binding with the correct ligand 

even prior to the steps of chemical modification. 
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Chapter 1:  Introduction1 

Proteins, nucleic acids, carbohydrates, lipids and all the other building blocks of 

life are made up of atoms. The description of the dynamics of these atoms provides the 

ultimate understanding of how biological macromolecules perform their function.1 The 

dynamics of the atoms follow the laws of physics. In problems of biological relevance, 

the number of atoms that one needs to follow to describe the dynamics of 

macromolecules exceeds the capacity of the human brain alone, and demands 

computational aid. 

Molecular dynamics (MD)2 is a computational method whose aim is the 

description of the structure and dynamics of macromolecules at an atomic level. 

Frequently, a MD simulation begins with the experimentally known structure of a 

macromolecule and with an energy function that defines the interactions between the 

different components of the system. The classical equations of motion are then solved 

numerically to yield a trajectory, i.e. coordinates of the macromolecule as a function of 

time. MD is the only experimental or theoretical tool capable of producing such a 

comprehensive atomic-level description of the dynamics of a macromolecule.  

Once the MD trajectory is known, we need to find a way to extract information 

that can be compared to experimental measurements. To do so, we need a theoretical tool 

that connects the dynamics of the atoms to macroscopic, measurable quantities. The 

theory aimed at this task is called statistical mechanics (SM).3 Given the proper 

theoretical framework, the comparison with experiments provides a tool to check the 

                                                
1 Part of the material of this paragraph is taken from a work published in collaboration with my advisor, 
Prof. Elber, who supervised the work. Reproduced in part with permission from J. Chem. Theory Comput., 
2012, 8 (9), pp 3022–3033. Copyright 2012 American Chemical Society. 
http://pubs.acs.org/doi/abs/10.1021/ct3003817 
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accuracy of the numerical calculation and, if the accuracy is sufficient, a valuable tool to 

highlight the microscopic reasons of the macroscopic behavior. 

Despite its usefulness, a number of shortcomings affect the description provided 

by MD. First of all, MD is a method based on classical grounds, i.e. the dynamics is 

obtained as a numerical solution of classical equations of motion (Newton’s law), and it 

exploits a classical energy function (among which is OPLS,4 the one that was used in all 

my simulations). The classical nature of MD is necessarily inaccurate whenever there are 

chemical reactions, or electronic wave function re-arrangements. Many efforts have been 

made to introduce some quantum mechanics in MD, but I will not discuss them, as the 

work that I have done belongs entirely to the world of classical physical chemistry. 

Secondly, even if we believe the classical description of macromolecular dynamics, the 

limited capability of computers does not allow us to follow protein dynamics for time 

spans relevant in biology, and sometimes not even to gather enough statistics to get 

converged averages to compare with experiments. A number of methods have been 

introduced to enhance the sampling,5 or to provide indirect, but computationally efficient, 

methods of calculating correct free energy differences.6 I will discuss one of such 

techniques. Whenever the force field is accurate enough to give a reasonable description 

of the dynamics, just a few nanoseconds of simulation can unveil features of a 

macromolecule. This is true even if the simulations did not converge in the true sense of 

the ergodic hypothesis. These features are hard to capture from static pictures obtained 

with experimental methods (X-ray scattering and NMR mostly).7  

The amount of information that MD provides is often too large to be intelligible. 

We need a way to coarse such a fine description into its essential features by minimizing 

the amount of relevant information lost. To do that, we need a theory that extracts these 

features and provide us with a dynamics in a smaller dimensionality.8  
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In the introduction of my dissertation, I describe a few of the many ways in which 

MD and SM are necessary in the field of biochemistry, paying particular attention to 

those fields in which, during the course of my studies, I have tried to contribute. 

ALCHEMICAL METHODS 

Protein-ligand non-covalent binding is a central problem in biochemistry. Enzyme 

function and signaling are among the processes that occur via the interaction of proteins 

and small molecules. Drug discovery is of course a related problem. 

Binding is a dynamical process. The lock-and-key scheme, in which the ligand 

fits in a pre-existing cavity in the protein, needs to be integrated with a more dynamical 

picture.9 The ligand induces modification of the structure of the protein by triggering the 

adjustment of the amino acids around the binding pocket (induced fit), or by selectively 

binding one of the many conformations that a protein explores in solution (conformation 

selection).10 The adjustment of the structure of the binding pocket to accommodate the 

ligand is hard to predict. With a polar ligand, hydrogen bonds between the protein and the 

ligand may form in the binding pocket. This helps to compensate the de-solvation free 

energy, but comes at the price that the amino acids in the binding pocket lose 

conformational flexibility. This is the so-called enthalpy/entropy compensation.11 On the 

other hand, when a hydrophobic ligand is bound, there is evidence of an opposite 

phenomenon: free energy reduction might arise from an increased backbone flexibility of 

the protein (which increases the entropy).11-12 Answering these questions may facilitate 

the lead phase of drug discovery.13  

MD holds the promise to provide this dynamical picture. For example, a study of 

acetylcholinesterase showed that the catalytic triad is formed exclusively in the presence 

of the ligand, an example of induced fit.14 The dynamics of the protein might show 
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features of the binding site that are not visible from crystal structures. For instance, MD 

simulation showed a trench in the binding pocket of HIV Integrase that was not available 

from static structures. This trench was later used as a drug target.7 

Even though the idea of “mimicking” a real experiment with a MD simulation is 

extremely appealing, biological phenomena, such as protein-ligand binding, happen on 

time scales that are not accessible to routine MD simulations. Only recently, and just 

using the fastest architecture available (the special-purpose machine Anton15), it was 

possible to observe the entire process of ligand binding.16 Two different ligands were 

shown to bind to Src kinase with X-ray structure accuracy. In doing so, they wandered 

around the protein for multiple microseconds before finally finding the correct binding 

pocket. While searching for the binding site, the ligands were trapped at other sites on the 

protein. This holds the promise of becoming a powerful method to identify new allosteric 

sites of proteins. On the other hand, the length of the process makes it impossible to 

conduct routine MD simulations to see the binding event. Even more difficult is gathering 

sufficient statistics to draw conclusions on rates and free energy of the process that could 

be compared with experiments. If we want to do so, another approach has to be found. 

An intriguing feature of MD for the computations of free energy differences is 

that we can modify the nature of the components of the system. This is the idea behind 

alchemical methods in MD.17 Instead of simulating multiple binding and unbinding 

events, it is more convenient to make the ligand disappear from water and appear in the 

binding pocket. To study the free energy difference between two ligands in a protein, we 

can directly mutate one into the other.  

Even though these calculations do not follow the experimental thermodynamic 

pathways, we can extract from them the correct free energy difference by using 

alternative routes. Indeed we can present alchemical and physical processes together in a 
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complete thermodynamic cycle.6 Exploiting the fact that the free energy is a state 

function, the physical free energy difference is then obtained as a linear combination of 

the difference of the alchemical free energies. The computation of alchemical 

transformations is less expensive than the straightforward simulation of the experimental 

processes.  

In alchemical processes, a molecule (or a fragment of a molecule) is mutated into 

another one, or decoupled from the environment, by modifying the interactions of the 

atoms of the mutated species. This modification can be performed according to two 

protocols: single or dual topology.18 In the single topology protocol the geometry of the 

molecule is progressively changed into the new moiety. In a dual topology protocol the 

native and mutant molecules coexists. The interactions of the native moiety are 

progressively annihilated, while the interactions of the mutant moiety are turned on. In 

my work I mainly used a dual topology approach, so I will only discuss that. In a dual 

topology approach the alchemical modification is performed by multiplying the 

interactions by a switching parameter (or order parameter). Along the transformation, the 

switching parameter changes from 0 to 1 for the new fragment, and from 1 to 0 for the 

old fragment that needs to be substituted.  

Alchemical methods were proven to be useful in many fields of biochemistry, 

studying the effect of point mutations on protein stability,19 of protein-ligand binding,20 to 

compute solvation free energies,21 and particularly in the context of drug discovery.13, 22  

 

To improve the efficiency and accuracy of the alchemical calculations, many of 

methodological studies were performed. During my PhD, I wrote a code for computing 

alchemical substitution that is part of the MOIL23 and MOIL-OPT24 MD packages. While 

writing these codes I faced a number of questions. Often the answer was found in the 
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literature, sometimes I tried to give my contribution addressing problems whose solution 

I could not find. 

The main questions that I faced were the following: 

1. What protocol should I use to change the switching parameter? 

2. What is the most accurate and efficient alchemical pathway? 

Regarding the first question, there are multiple methods to carry out an alchemical 

MD simulation. The alchemical transformation can be performed modifying the 

switching parameter infinitely slowly, so performing equilibrium simulations. The results 

of the simulations performed with different values of the switching parameter can be 

combined using different techniques (Thermodynamic Integration,25 Free Energy 

Perturbation,26 and Bennett’s Acceptance Ratio27). It is possible to drive the system from 

the native to the mutant state using a predefined time-dependent protocol for switching 

between thermodynamic states. This requires the Jarzinski equality28 to get free energy 

differences from non-equilibrium trajectories. The switching parameter can be modified 

according to a dynamical scheme.29 A potential can be defined for the switching 

parameter, and according to that potential the alchemical state is dynamically changed.  

During my PhD I did not explore non-equilibrium calculations, or dynamics of 

the switching parameter. The code that I wrote instead is suited to perform equilibrium 

simulations.30 I tried to explore different ways of combining the results, and I found out 

that, in agreement with what suggested in the literature,31 Bennett Acceptance Ratio is the 

most efficient among these methods. 

Regarding the choice of the alchemical pathway, the first question to address is 

what is the minimal number of interactions that we need to create/annihilate to get an 

accurate result? Particularly, should we remove the interactions within the mutated 

molecule (self-interactions) to get correct results? Can we keep some of the interactions 
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between the alchemically annihilated/created fragments and the environment (external 

interactions)? The idea is that, if some interactions are such that their contribution to the 

free energy difference cancels out within the thermodynamic cycle, we do not need to 

create/annihilate them, but we can keep them as they are. Keeping interactions simplifies 

the alchemical pathway. 

In the multitude of applications of alchemical methods the idea of retaining the 

self-interactions of the substituted entity has been used inconsistently. Whenever an 

entire molecule is decoupled from the environment all the self-interactions are retained. 

This is the common practice to compute the standard free energy of binding of a ligand to 

an enzyme 32 or to compute the solvation free energy of a solute. 33 A different approach 

is followed when only a molecular fragment of a larger scaffold is modified to create a 

new, mutant molecule starting from the original, native chemical species. Such an 

approach was used to compute, for instance, relative binding free energy between two 

ligands,20a, 34 or the change in stability of a protein conformation upon a mutation of a 

residue.19b-d In all these relative free energy calculations the retention of the self-

interactions of the fragments has been vigorously debated. Different authors reported 

significant19b, 35 or negligible19c contribution from the self-interactions of fragments. 

Keeping the self-interactions is equivalent to a change in the “end-state” from atomic to 

molecular ideal gas.36 It was suggested that retaining the bonded self-interactions does not 

affect relative free energy differences 36 and a proof of this assertion followed.37 A 

general proof that did not distinguish between bonded and non-bonded interactions was 

provided as well.38 In the dissertation, I revisit the problem, and I provide a simple and 

general proof that all the self-interactions can be retained without affecting the relative 

free energy difference in the context of a thermodynamic cycle.  
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The annihilation/creation of the external non-bonded interactions is required to 

compute the proper free energy difference. However, it is not necessary to 

annihilate/create all the external bonded interactions connecting a fragment to a scaffold. 

Since in the initial (final) state the mutant (native) fragment is decoupled from the rest of 

the environment, it is possible to fix its external degrees of freedom to the scaffold 

without affecting the internal degrees of freedom of the scaffold or of the fragment. In 

this way, at most six bonded interactions constraining the six external degrees of freedom 

are retained throughout the simulation. All the other external bonded interactions are 

annihilated/created in the MD simulation. This concept was introduced as the Virtual 

Bond Algorithm (VBA), 39 which was proposed in the context of protein-ligand binding, 

and is exact. Six bonded interactions between the protein and the ligand are added to 

restrain the overall motions of the ligand and then the non-bonded external interactions 

are removed during the alchemical substitution. The same VBA interactions may be 

retained in the process of substituting a fragment bonded to a scaffold.  

 

Once the list of interactions to create/annihilate is provided, there is a second 

question to address: what is the best way to perform this annihilation/creation of 

interactions? As long as the initial and final states are correct, the protocol does not affect 

the correctness of the result. On the other hand, the stability of the numerical method can 

change significantly. The straightforward approach is to multiply the interactions to 

remove (create) by a linear function of the switching parameter that is equal to one (zero) 

at the beginning of the alchemical substitution, and zero (one) at the end. We can also use 

a quadratic protocol, or any other power, or even a different function. For instance, when 

the free energy is computed using Themodynamic Integration, it was noted that the 

numerical accuracy of the integration was enhanced if the van der Waals interactions 
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were created/annihilated using a switching parameter to the fourth power or higher.40 It is 

also possible that the functional form of some of the terms in the potential energy 

function introduces issues when annihilated/created. This can be fixed by modifying the 

functional form during the alchemical substitution. For instance, it was observed that the 

simulation is more stable if the van der Waals interactions were created/removed as soft-

core interactions.40 Again, as long as they keep the correct functional form in the end 

states, no further adjustment is needed to obtain the exact free energy difference. It is also 

known that to enhance the stability of the simulation the electrostatic interactions should 

be removed before and created after the van der Waals interactions are established.41 This 

order of creation/annihilation avoids overlaps of particles with the same charges, and 

consequent numerical instability.  

While testing the code, I observed that the creation/annihilation of other terms in 

the energy function created numerical instabilities. When alchemically removed, 

configurations can be found with bond-angles and torsions leading to singular energy and 

discontinuous forces. To avoid this, I proposed to modify the angular functional form 

from a bond-angle in polar coordinates, to an extra bond in Cartesian space (the so-called 

Urey-Bradley potential).30 The creation/removal of these bonds was numerically more 

convenient when performed using a quadratic switching parameter. I also proposed to 

remove (create) torsions before (after) the angular potential, as this avoided numerical 

instability associated with the torsional functional form.30 

The details of the study on alchemical substitutions are in Chapter 2. 

EXTRACTING DIFFUSION TENSOR FROM MD SIMULATIONS 

Many experimental techniques follow the time evolution of few microscopic 

quantities to investigate kinetic and thermodynamic properties of biopolymers. 
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Techniques such as FRET42 or force spectroscopy43 can be used to monitor in time the 

end-to-end distance of proteins or nucleic acids. The information extracted from these 

techniques can be used to study the free energy and kinetics of folding,42-44 and the 

dynamics of the protein in the unfolded state.45 Let’s refer to quantities such as the end-

to-end distance as coarse variables. So, these experiments follow the time evolution of 

one coarse variable. In theoretical studies, together with this coarse variable of interest, 

we can consider a few more. More detailed (but still reduced) description can help 

understanding what are the interactions affecting the dynamics of the measured coarse 

variable. For instance, the dynamics of an unfolded polymer is affected by two types of 

general interactions that are sometimes modeled by effective frictional forces: one force 

is a result of interaction with the solvent, and another force is called internal.45a, 46 

Experimentally this is studied by following the end-to-end distance of the polymer at 

different concentrations of a viscogen (such as glycerol) to modify the solvent viscosity. 

In a simulation study, we follow many more degrees of freedom using atomically detailed 

simulations. However it is useful to reduce the comprehensive representation to include 

only a few coarse variables to have a better understanding of the problem and compare to 

the experimental measurement. Therefore, other than the end-to-end distance, some other 

coarse variable describing interactions within the polymer and between the polymer and 

the solvent can be modeled theoretically.   

The starting point of such a theoretical study is the development of a model for 

the dynamics in the space of coarse variables. Ideally, such model will employ an exact 

projection of the entire dynamics onto a few degrees of freedom.8 Exact projection 

theories are the Generalized Langevin Equation (GLE),8a which describes the dynamics 

of the coarse variables, and the Generalized Master Equation (GME), 47 which describes 

the evolution of probability density in coarse space. In the GLE, the variables of interest 
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evolve according to a potential of mean force (free energy). The other degrees of freedom 

behave as a “bath” able to exchange energy with the system in a balanced way (i.e. 

following the fluctuation-dissipation theorem48). Their contribution appears in a random 

noise term and in the friction kernel, which is proportional to the autocorrelation function 

of this random noise. To describe the dynamics of the system with a Langevin equation 

we need to know the friction kernel. Extracting the exact friction kernel is a hard task, 

because it involves the solution of a set of equations of motion that are evolved according 

to the so-called orthogonal dynamics. There are a few possible ways to extract the 

friction kernel. One way is to assume that the orthogonal dynamics is fast compared to 

the relevant degrees of freedom. In this case the friction kernel can be obtained from the 

integral of the force-force autocorrelation function.46 Furthermore, if we assume that the 

friction kernel decays to zero on a time scale that is much shorter than the time scale for 

the dynamics in the relevant coordinates, a static friction can be obtained as the time 

integral of the force-force autocorrelation function.49 So it becomes a time-independent, 

space-dependent friction tensor. This is the so-called Markovian approximation.46 

Another possibility is to make use of the velocity autocorrelation function (VACF). The 

time derivative of the VACF is equal to the time convolution of the VACF with the 

friction kernel. This equation can be solved in Laplace space, by assuming a simple 

functional form (delta function and exponential decay, which is physically sound) for the 

friction kernel.48 Again, it is possible to get a static friction from the Markovian 

approximation as before.50 Recently another interesting solution was found for the case of 

the linear generalized Langevin equation.51 A new equation was proposed describing the 

exact projected dynamics. This equation can be solved once the entire MD trajectory is at 

hand. Once the projected dynamics is known, it is also possible to derive the friction 

kernel.52  
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Here we consider a different route based on the GME. In the GME the time 

evolution of the probability density in coarse space depends on the transition probabilities 

per unit time (rates) between positions in coarse space. The transition probability per unit 

time is a complicated function of the orthogonal dynamics.47 One possible way to obtain 

from MD the information needed to formulate the GME is to use Milestoning.53 

Milestoning is a method to map atomically detailed dynamics to a set of coarse variables 

of interest. The coarse variable space is partitioned into cells, whose separators are 

defined milestones. MD trajectories are computed between different milestones. The 

probability of going from one milestone to another is estimated, and the time in which 

this transition happens is recorded. Milestoning can also be considered an analysis tool of 

one long simulation, which can be divided into individual transitions between milestones. 

The Milestoning equations provide a non-Markovian description of the dynamics in 

coarse space, which was shown to be equivalent to the GME.53a While it is already known 

how to extract important thermodynamic information (the free energy at the 

milestones53b) and kinetic information (mean first passage time53b), a method to extract 

from Milestoning the friction kernel was not available. The friction kernel does not 

appear explicitly in the GME, so the connection between the transition rates per unit time 

and the friction kernel is not straightforward. During my PhD, I developed a method to 

extract the diffusion tensor, which is related to the friction tensor, for the case in which 

the dynamics in coarse space is Markovian. In this case the GME becomes the Master 

Equation (ME). To derive the diffusion tensor, I exploited the so-called Kramers-Moyal 

(KM) expansion.54 KM expansion provides a method to derive the Fokker-Planck (FP) 

equation54a from the ME. The FP equation is a differential equation that described the 

time evolution of the probability density in coarse space as a function of a potential of 

mean force and a coordinate-dependent diffusion tensor. The Einstein relationship states 
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the connection between diffusion and friction tensor,55 so computing one is equivalent to 

computing the other. To derive the FP equation from the ME, KM exploits an expansion 

of the transition probability per unit time (i.e. the rates) in the ME. The truncation of this 

expansion at the second order yields the FP equation. This truncation is exact in the case 

in which the underlying dynamics in coarse space is overdamped.56 In this case, the 

diffusion tensor is exactly described by a function of the rates in the ME. In the 

Milestoning language, with the rates provided by the Milestoning analysis53b it is possible 

to compute the space-dependent diffusion tensor on each milestone.  

Other methods are available to determine the space-dependent diffusion tensor 

from MD simulations. One possibility57 is to compute the zero time limit of the average 

of the position autocorrelation function, which gives the diffusion in the overdamped 
limit: D q*( ) = lim

t→0
[q(t)− q(0)]2 | q(0) = q* / t . If the dynamics is overdamped, the 

space dependent diffusion coefficient in q*  can be obtained computing the first passage 

time of going from q*  to q ' and backwards.58 If instead one assumes a Langevin 

equation for the variable of interest, it is possible to obtain the local diffusion coefficient 

from the integral of the velocity autocorrelation function,59 or from the integral of the 

position autocorrelation function.60 Hummer60 proposed a method that shares some 

similarities with the one that I worked on. He started from the ME as well, and derived 

the rates of transiting between different states in the system with a Bayesian approach. 

This means that the probability of the trajectory given the rates was computed using MD 

simulations, and the Bayes’ rule was used to determine the rates from the trajectory. This 

was done with a uniform prior. In this case the approach corresponds to maximizing the 

likelihood function. The optimization can be done with different priors to enhance the 

smoothness of the estimate of the space-dependent diffusion.  A similar Bayesian 

approach with uniform prior was used to derive a formula for the rates in a Markovian 
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formulation of Milestoning that is analogous to the one that I use.61 Hummer derives the 

rates using the assumption of detailed balance.62 This approach does not necessarily hold 

in Milestoning, where the system can be simulated in steady state flux conditions, or 

when non-equilibrium methods are used.63 The formula that we used is not affected by 

this assumption and it is therefore more general.  

Others have used Bayesian inference to determine the diffusion tensor. The 

likelihood used was not the probability of the trajectory given the rates, but the 

probability of the displacement in the space of coarse variables assuming an overdamped 

dynamics.64 Others have adapted the method to the case of simulations performed using 

the adaptive biasing force technique (ABF), which enhances the sampling by allowing to 

cross high free energy barriers,17 so to have a better sampling in coarse space and 

improve the estimate of the diffusion tensor.63 This method was recently used in 

biological applications. It was used to study the permeability of a lipid bilayer,65 which is 

a function of the diffusivity across the membrane. Another study considered a small 

solute permeation through a lipid bilayer using ABF.66 In this case a two-dimensional 

reaction coordinate was used: the position and the orientation of the permeant were 

considered simultaneously. Interestingly, a similar application in Milestoning was already 

performed, where the Milestoning equations were used to describe the permeation of a 

small peptide molecule (NATA, N-acetyl-L-tryptophanamide) across a biological 

membrane.67 Using Milestoning it is possible to follow events on time scales (millisecond 

or more) that are not accessible by straightforward MD simulations. This is done by 

combining multiple independent short MD trajectories that can run simultaneously. Since 

the method that I developed to extract the diffusion tensor is based on Milestoning, it 

fully benefits from all the numerical advantages of the Milestoning method. Finally, 

Milestoning in principle is equivalent to GME, not ME. Working in the framework of 
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Milestoning holds the promise to be able to extend our method to a non-Markovian case, 

if an equivalent of the KM expansion for the GME will be derived. 

The details of the study on the method to extract the diffusion equation with 

Milestoning are described in Chapter 3. 

ENZYME SPECIFICITY 

Understanding how enzymes catalyze reactions is a fundamental problem in 

biochemistry. A typical reaction is described by the following series of steps (see scheme 

1 in 68): 

1. The enzyme weakly binds the substrate in the open conformation; 

2. The enzyme undergoes a conformational transition from the open to the 

closed state (induced fit), tightening the binding; 

3. The chemical reaction is carried out; 

4. The product is released to solution. 

The cellular milieu contains a large number of potential substrates for the enzyme. 

It is therefore important that the enzyme is specific to the correct substrate. The 

specificity of an enzyme can be measured as the second order rate constant for substrate 

binding, multiplied by the probability of forming the product once the complex is formed 

(this is a definition of kcat/KM).68  

One could think that enzymes show their specificity in the binding step, by 

selecting the ligand that properly fits the binding pocket, or in the chemistry step, by the 

alignment of the reactive amino acids. But there are also examples in which the 

conformational transition selects the proper ligand.68 Overall, it is reasonable to believe 

that any of the steps discussed before can carry a contribution to the specificity.68  
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The microscopic reasons for specificity may go beyond the static fitting of the 

ligand in the binding pocket. Therefore, MD holds the promise of a more comprehensive 

understanding of the atomically detailed mechanism of specificity. The main limitation of 

MD in this case is its classical nature. It is difficult with classical simulations to describe 

the chemical step, since specific functional form for the Born-Oppenheimer energy 

surface must be developed. In typical simulations of biological molecules the potential 

used in MD simulations retains specific bonded topology. Within the limitations of these 

approximations, MD can shed light on the microscopic reasons for specificity. To do so, 

a possible approach is to run simulations of the enzyme with the correct and incorrect 

substrate, and to look at the differences in structure of the binding site, and at the free 

energy of the two complexes. Using an approach of this type, it was argued that the 

specificity of lactate dehydrogenase for the pro-R compared to the pro-S hydrogen of the 

nicotinamide ring of NADH was due to favorable electrostatic interactions of the 

carboxamide group of the NADH ring when the pro-R hydrogen faces the pyruvate.69 For 

a DNA polymerase, a successful comparison of kinetic data from MD simulations and 

experiments for the complex with the correct and an incorrect (mismatch) nucleotide lead 

to microscopic insights on role of induced fit in selecting the correct substrate.70 Of 

course, alchemical methods can be of used as well, both to compute the free energy 

difference of binding between two ligands, or between two protein sequences, if a less-

specific mutant is known, as in the case of cytochrome P450.71 

In my PhD, I studied the case of the enzyme ketoreductase (KR). This enzyme is 

part of polyketide synthase (PK). PKs are large multi-domain, multi-functional enzymes 

that generate polyketides, complex secondary metabolite. These molecules are involved 

in multiple functions in the cell, among which anti-bacterial functions.72 The enzyme is 

composed of multiple subunits, some of which are involved in the extension of the 
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growing polyketide, others instead process the intermediate by modifying its chemical 

structure.72 The polyketide is bound to a large prosthetic group (18Å) of a domain of PK 

called acyl carrier protein (ACP). ACP carries the intermediate between the different 

components of the enzyme. The structure of the PK at different stages of the 

growth/processing of an intermediate was recently resolved by cryo-EM,73 highlighting 

the large displacements undergone by ACP.  

KR is a processing domain of PK. KR binds to an intermediate and reduces the β-

keto oxygen in a reaction that involves the oxidation of the coenzyme NADPH. Different 

KRs yield hydroxyl groups with different spatial arrangements; the A-type generates L 

hydroxyl groups, the B-type D hydroxyl groups. The work presented here is on an A-

type. A-type KRs are divided in two groups: A1 enzymes, which stereoselectively reduce 

polyketide intermediates with D-α substituent, and A2 enzymes, which reduce only the 

stereoisomer (L orientation of the α substituent). The question that we want to address is: 

what are the microscopic reasons for the stereospecificity of the A1 enzyme? A number 

of experimental studies on mutants of the A1 enzyme give interesting hints. It was found 

that the stereospecificity is lost upon mutation of glutamine to histidine at position -3 

from the reactive tyrosine (this glutamine is numbered 368 in the simulations).74 It was 

also found that a second mutation from glycine to threonine at position -12 from the 

reactive tyrosine switches completely the stereospecificity.75 Upon this mutation, a 

tryptophan that is considered responsible for the proper alignment of the ligand in the 

binding pocket was found significantly displaced.75 

In the simulations that I carried out, I studied an A1 enzyme (molecule B from 

PDB structure 3MJS). To form the ternary complex (A1, NADPH, and substrate) the 

substrate 2-methyl-3-oxopentanoate-S-N acetyl cysteamine was added to the binary 

complex (A1 with NADPH) taken from the crystal structure. From now on the substrate 
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will be addressed as diketide (dk). The ligand has a chiral center at the α-carbon. The α-

methyl substituent can be found in two optically distinguishable orientations, defining 

two enantiomers of the ligand, dkD and dkL. The A1 enzyme is stereospecific for the D 

enantiomer.  

The MD simulations of the complexes A1-dkD and A1-dkL have to overcome a 

number of challenges. First of all, the force field for the dk and NADPH ligands was not 

available, so it was generated combining force fields of similar chemical species and 

filling the gaps with quantum mechanical simulations. The force field was not tested 

against experimental measurements, therefore the simulations of the A1-dk complexes 

are a test of the accuracy of the force field. Secondly, the A1 enzyme is very large (475 

amino acids), which makes the simulations slow, and so it is computationally challenging 

to relax the slow modes of the enzyme. Third, as mentioned before, only the binary and 

not the ternary structures were available. Finally, and maybe more importantly, the ligand 

is extremely flexible, and the binding cleft from the crystal structure is not tight enough 

to allow for a single binding configuration. For these reasons it was not possible to 

perform a quantitative study. Nevertheless, from the set of simulations that were 

performed it is clear that the correct ligand (dkD) is retained closer to the reactive 

configuration compared to the incorrect ligand (dkL). Also, it was found that the 

glutamine 368 has an important role in the specificity. The simulations showed that Q368 

tends to obstacle the reactive alignment of the ligand by offering a hydrogen bond to the 

ligand that competes with the reactive one. This competition is much more significant in 

the incorrect complex, while in the correct complex the D-α-methyl substituent seems to 

displace Q368 away from the reaction site. Interestingly, the experiment mentioned 

before showed that a mutation of this glutamine to histidine reduces dramatically the 

stereospecificity of the enzyme.75 The details of this study are in Chapter. 4. 
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Chapter 2:  Free Energy Calculation: Thermodynamic Cycles  

INTRODUCTION 

In this chapter2 I discuss a code that I developed to perform alchemical free 

energy calculations.17 The code is now part of the MOIL23 and MOIL-OPT24 software 

packages.  

There is an extensive literature on methods for alchemical calculation.17, 41 The 

theoretical foundation of the method was developed long ago.25-26 The numerical 

implementation became popular in more recent years, particularly within the context of 

Thermodynamic Cycles.6 Even in their early more straightforward numerical 

implementations, alchemical simulations shed light on problems such as the effect of 

point mutations on protein stability,19 protein-ligand binding,20 and make it possible to 

compute solvation free energies.21 Alchemical free energy calculations have then become 

popular, particularly in the context of drug discovery.13, 22 Many methodological studies 

have also been carried out. These studies highlighted the pitfalls of a straightforward 

implementation of the theoretical procedures,36-40 making the alchemical methods more 

accurate. 

In what follows, I describe the theory of alchemical free energy calculations, I use 

some of the major results that improve the accuracy of the numerical implementation, and 

I describe what has been my contribution to the field. Most of the results discussed in this 

chapter have been published.30 Some of the most recent (and unpublished) developments 

are discussed as well. 

                                                
2 Part of the material of this chapter is taken from a work published in collaboration with my advisor, 
Prof.Elber, who supervised the work. Reproduced in part with permission from J. Chem. Theory Comput., 
2012, 8 (9), pp 3022–3033. Copyright 2012 American Chemical Society. 
http://pubs.acs.org/doi/abs/10.1021/ct3003817 
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THEORY 

Free Energy Differences 

We consider the free energy difference between two physical systems, A and B. 

These two systems share a certain number of particles, which we call P, as in “protein”. 

Some particles exist exclusively in the system A, and we call them N, as in “native”. 

Other particles exist exclusively in the system B, and we will refer to them as M, as in 

“mutant”. The systems A and B have two different Hamiltonians: 

 
HA P,N( ) = K P,N( ) +U P( ) +U N( ) +U P,N( )
HB P,M( ) = K P,M( ) +U P( ) +U M( ) +U P,M( )

  (2.1) 

Here K is the kinetic energy and U the potential energy. The term U X( )  includes 

interactions within X (self-interactions), and U X,Y( )  only interactions between X and Y 

(external interactions). The phase space volume element is dΓ   (e.g. 

dΓPN = dΠPdQPdΠNdQN  were ΠX  denotes momentum, and QX  coordinate vectors of 

atoms of species X). The volume element of coordinate space is dΓ '  (e.g. 

dΓ 'PN = dQPdQN ). Finally, we denote the number of X particles as NX , where X can 

 be any combination of P, M and N. The desired free energy difference ΔFA,B  is given by 
ΔFA,B = FB − FA =

= −β−1 ln

1
CPMh

3NPM

1
CPNh

3NPN

dΓPM exp −β K P,M( ) +U P( ) +U P,M( ) +U M( )⎡⎣ ⎤⎦{ }∫
dΓPN exp −β K P,N( ) +U P( ) +U P,N( ) +U N( )⎡⎣ ⎤⎦{ }∫

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (2.2) 

The coefficients CPM ad CPN are corrections for permutation of identical particles,3 

and h  is the Planck constant. Note that the number of particles of the two states can be 

different. The free energies are functions of the temperature, the volume, and the number 

of particles (e.g. NPN  or NPM ). We can then integrate the momenta and obtain: 
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ΔFA,B = FB − FA =

= −β−1 ln CPN

CPM

2πmi

h2βi∈M
∏
2πmi

h2βi∈N
∏

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

3
2

dΓ 'PM exp −β U P( ) +U P,M( ) +U M( )⎡⎣ ⎤⎦{ }∫
dΓ 'PN exp −β U P( ) +U P,N( ) +U N( )⎡⎣ ⎤⎦{ }∫

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (2.3) 

This equation represents the free energy difference between the two physical 

systems A and B. A result very close to this one can be obtained using alchemical 

methods.  

In an alchemical process a molecule, or a small part of it, is “mutated” into 

another by modifying its external and self-interactions.  Such a “mutation” is usually 

performed according to two protocols:18 a “single topology” protocol, in which the 

geometry of the native molecule/moiety is progressively changed into the geometry of the 

mutant, and a “dual topology”, in which the two molecules/moieties coexist. Along the 

substitution pathway the interactions of the native part are gradually annihilated while 

those of the mutant are growing to their full strength. 

We follow a dual topology approach. In this case, the two Hamiltonians presented 

in Eq.(2.1) are mixed into a single Hamiltonian, which is function of the coordinates of 

all the species P, M, N, and a switching parameter (or order parameter) λ  : 

 
H P,M ,N;λ( ) = K P,M ,N( ) +U P( ) +
+ 1− λ( ) U P,N( ) +U N( )⎡⎣ ⎤⎦ + λ U P,M( ) +U M( )⎡⎣ ⎤⎦

  (2.4) 

The order parameter λ varies between 0 and 1. When the order parameter is equal 

to 0, the Hamiltonian in Eq.(2.4) describes a system equivalent to system A (P and N 

particles) plus NM  ideal gas particles. When the order parameter is equal to 1, the system 

described by Eq.(2.4) is system B (P and M particles) plus NN  ideal gas particles. When 

the order parameter is 0 < λ < 1  the system is a mix of the initial and final state, whose 

free energy is: 
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 f λ( ) = −β−1 ln dΓP,N ,M exp −βH P,M ,N;λ( ){ }∫ = −β−1 lnQ λ( )   (2.5) 

The free energy difference computed upon switching the order parameter from 0 

to 1 is: 

 

f λ = 1( )− f λ = 0( ) = Δf =

= −β−1 ln
dΓP,N ,M exp −β K P,M ,N( ) +U P( ) +U P,M( ) +U M( )⎡⎣ ⎤⎦{ }∫
dΓP,N ,M exp −β K P,M ,N( ) +U P( ) +U P,N( ) +U N( )⎡⎣ ⎤⎦{ }∫

  (2.6) 

The integration over the momenta yields the same free energy contribution in the 

initial and final states, and cancels out. In the initial (final) state the M (N) particles do 

not interact with any other particle, so each of their configuration integrals is the volume 

V : 

 

 Δf = −β−1 lnV
NN

V NM
− β−1 ln

dΓ 'P,M exp −β U P( ) +U P,M( ) +U M( )( )⎡⎣ ⎤⎦∫
dΓ 'P,N exp −β U P( ) +U P,N( ) +U N( )( )⎡⎣ ⎤⎦∫

  (2.7) 

The alchemical Hamiltonian preserves the number of particles of the reactant and 

the product. The difference between the alchemical free energy difference and the free 

energy of mutations (in which the number of particles changes) is summarized in the 

formula below 

  

 ΔFA,B = Δf − β−1 ln CPN

CPM

2πmi

h2β
V
2
3

i∈M
∏
2πmi

h2β
V
2
3

i∈N
∏

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

3
2⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= Δf − ΔFcorr   (2.8) 

Computing a single free energy difference between the native and the mutant 

using alchemical pathway requires the calculation of ΔFcorr . 
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Thermodynamic Cycles 

Alchemical methods are often used in thermodynamic cycles (TC)6 to compare an 

experimental measurement to an equivalent quantity that can be computed but is not 

accessible to direct experimental measurements. As an example, we refer to Figure 1. 

 

Figure 1: An example of a thermodynamic cycle for a conformational transition in a 
protein and a protein mutant. The black shapes represent the protein in two 
conformations (the square and the circle). The green triangle and the red 
hexagon represent native and mutant residues, respectively. The blue 
background represents solution. The horizontal arrows indicate 
conformation transitions. The vertical arrows indicate mutations. This cycle 
compares experimentally measured free energy differences (those that are 
related to the conformation transitions ΔFN-conf and ΔFM-conf) to computed free 
energy differences (the mutations, ΔF1-mut and ΔF2-mut). 
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The two different black shapes correspond to two different conformations of the 

protein, P1 and P2. The green triangle is a native residue N, and the red hexagon 

represents a mutant residue M. The free energy differences associated with transitions 

between the four states of the system are of conformation transitions (horizontal arrows), 

and of mutations of one residue (vertical arrows).  

We are interested in the relative stability of the two conformational states (P1 and 

P2) for the two mutants (PN and PM), i.e.: 
 ΔΔFexp = ΔFN-conf − ΔFM-conf   (2.9) 

which is measured experimentally. The computation of the transition between the 

two conformations may be long and the convergence of free energy difference by such 

simulation may be difficult to obtain and/or expensive. For a complete TC the free energy 

change is zero, i.e. ΔFN-conf + ΔF2-mut − ΔFM-conf − ΔF1-mut = 0 , which we exploit to write 

 ΔFexp ≡ ΔFN-conf − ΔFM-conf = ΔF1-mut − ΔF2-mut ≡ ΔΔFmut   (2.10) 

We can therefore compute ΔΔFmut  instead of ΔΔFexp , which is less costly, since it 

does not require waiting for multiple conformational transitions, which might happen on 

time scales not accessible to MD.  

The free energy differences of mutation computed by alchemical methods (see 

Eq. (2.7)) are: 

 
Δf1-mut = −β−1 lnV

NN

V NM
− β−1 ln

dΓ 'P,M ΘP1 exp −β U P( ) +U P,M( ) +U M( )( )⎡⎣ ⎤⎦∫
dΓ 'P,N ΘP1 exp −β U P( ) +U P,N( ) +U N( )( )⎡⎣ ⎤⎦∫

Δf2-mut = −β−1 lnV
NN

V NM
− β−1 ln

dΓ 'P,M ΘP2 exp −β U P( ) +U P,M( ) +U M( )( )⎡⎣ ⎤⎦∫
dΓ 'P,N ΘP2 exp −β U P( ) +U P,N( ) +U N( )( )⎡⎣ ⎤⎦∫

  (2.11) 

where ΘX  is a Heaviside function which is equal to one if the coordinate vector 

belongs to conformation X, and it is zero otherwise. To adjust the free energy differences 
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of the dual topology to the free energy of mutation the correction must be added to each 

of these terms (Eq.(2.8)). We have  

 
ΔF1-mut = Δf1-mut − ΔFcorr
ΔF2-mut = Δf2-mut − ΔFcorr

  (2.12) 

The correction to the free energy differences is independent of the protein 

conformation. Therefore, the relative free energy difference computed by alchemical 

methods (ΔΔfmut ) is the same as the actual relative free energy (ΔΔFmut ): 

 ΔΔFmut = ΔF1-mut − ΔF2-mut = Δf1-mut − ΔFcorr − Δf2-mut + ΔFcorr = ΔΔfmut   (2.13) 

The elimination of the correction terms suggests that the end points of the 

calculations can be manipulated to our advantage (as first suggested in 36a) to minimize 

the cost of the calculations. As long as they cancel out the correct relative free energy 

difference is obtained. 

Retaining all the self-interactions 

We illustrate an alchemical pathway that retains the self-interactions of the 

substituted fragment and provides the correct relative free energy difference. This 

pathway avoids the scaling of the self-interactions by the order parameter λ in the 

interpolating Hamiltonian, and therefore suggests a shorter, more efficient path of 

mutation: 

 
H ' P,M ,N;λ( ) = K P,M ,N( ) +U P( ) + 1− λ( )U P,N( ) +
+λU P,M( ) +U N( ) +U M( )

  (2.14) 

If λ=0 the system described by the Hamiltonian is composed by particles P and N, 

and by a molecule M in the ideal gas state. When λ=1, the P and M particles make the 

mutant protein, while N is a molecule in ideal gas state. 

The free energy difference between the initial and final state computed using this 

Hamiltonian is: 
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 Δf ' = −β−1 ln
dΓ 'P,M ,N exp −β U P( ) +U P,M( ) +U M( ) +U N( )⎡⎣ ⎤⎦{ }∫
dΓ 'P,M ,N exp −β U P( ) +U P,N( ) +U M( ) +U N( )⎡⎣ ⎤⎦{ }∫

  (2.15) 

The key observation is that the N particles in the numerator and M particles in the 

denominator do not interact with the protein or the solution; therefore their contribution 

to the free energy difference can be isolated: 

 

Δf ' = −β−1 ln
dΓ 'P,M exp −β U P( ) +U P,M( ) +U M( )⎡⎣ ⎤⎦{ }∫
dΓ 'P,N exp −β U P( ) +U P,N( ) +U M( )⎡⎣ ⎤⎦{ }∫

+

−β−1 ln
dQN exp −βU N( )⎡⎣ ⎤⎦∫
dQM exp −βU M( )⎡⎣ ⎤⎦∫

  (2.16) 

The deviation of this free energy difference and the one obtained with alchemical 

methods that scale the self-interactions (Eq.(2.7)) is: 

 Δf = Δf '+ β−1 ln
V NM dQN exp(−βU N( ))∫
V NN dQM exp(−βU M( ))∫

  (2.17) 

Similar to our previous argument about the difference between ΔF  and Δf , the 

difference in Eq.(2.17) is independent of the protein conformations and we therefore have 

 ΔΔfmut = Δf1-mut − Δf2-mut = Δf1-mut
' − Δf2-mut

' = ΔΔf 'mut   (2.18) 
 

This proves that the ΔΔF computed along this pathway that avoids the 

annihilation/creation of self-interactions of the substituted fragment is exact. This proof is 

similar to the one reported in37, where only the bonded interactions are scaled. Our 

algorithm is more general; all the interactions involving only M or N particles are left “as 

are”. This may be useful since the gas phase molecule will have more restricted 

conformational space that can be sampled more efficiently. There is also another general 

proof, which is different from the one that I just presented.38 
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Scaling the P-N(M) Bonded Interactions 

The path discussed in the previous section requires that all the external 

interactions (e.g. interactions involving P, and N or M particles) are annihilated/created to 

bring the system to the correct end-states. If the annihilated chemical group is decoupled 

from the rest of the environment, it explores the whole simulation box, which makes 

statistical convergence difficult.36a A solution is to restrain the overall relative translations 

and rotations of the fragment with respect to the scaffold. An algorithm capable of doing 

this was presented for free energy calculation of binding of a ligand to an enzyme, and is 

called Virtual Bond Algorithm (VBA). 39 
 

According to VBA, it is possible to retain a few bonded P-N(M) interactions by 

“cross linking” the six external degrees of freedom of the annihilated particles to the P 

atoms. If there are no interactions between the annihilated particles (say M) and the P 

atoms, the partition function of the overall system is: 

 Z P,M( ) = Z P( )Z M( ) = Z P( )Zint M( )8π 2V   (2.19) 

In the right hand side of Eq.(2.19) the partition function of the M 

molecule/fragment Z M( )   is separated into the partition function of its internal degrees 

of freedom Zint(M), and the partition function of its external degrees of freedom, which is 

8π 2V .38  

The VBA algorithm makes it possible to find a transformation of coordinates such 

that we can isolate the six external degrees of freedom of the M species and restrain them 

to the P particles. This yields: 

 Z ' P,M( ) = Z P( )Zint M( )ZP-M   (2.20) 

Here, ZP-M  is the “cross linking” partition function, i.e. the partition function of 

the six restraints on the external degrees of freedom of the M molecule/fragment that 
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restrain its relative distance and orientation with respect to the P molecule/scaffold. It is 

important to highlight that ZP-M  does not depend on the coordinates of the P 

molecule/scaffold. The free energies of the system with the free M molecule/fragment 

(Eq.(2.19)) and the one with the “cross linked” M molecule/fragment (Eq.(2.20)) are 

different. Their difference is: 

 ΔFP−M = −β−1 lnZ ' P,M( ) + β−1 lnZ P,M( ) = −β−1 ln ZP−M

8π 2V
  (2.21) 

Since the six restraints in ZP−M  are independent, ZP−M  can be written as the 

product of six one-dimensional integrals. These integrals may be solved analytically or 

numerically, but no further MD simulations are required. 

According to VBA, it is possible to retain one bond, two angles and three 

torsions, chosen in such a way that they involve 3 P particles, and 3 M or N particles.39 

Since we often have more bonded interactions between P, and M or N particles, we still 

have to deal with the alchemical annihilation/creation of a few bonded interactions. In the 

next section we propose a route to remove such interactions avoiding problems due to the 

periodicity of angle and improper torsion terms.  

In a thermodynamic cycle these cross-linking restraints do not affect the relative 

free energy difference, i.e. ΔΔF  computed with a cross-linked system is identical to 

ΔΔF computed without the cross-linking interactions. To illustrate this, let us refer to 

Figure 1. The restraining potential appears only in the two mutations (vertical arrows). In 

the first mutation (right vertical arrow), the simulation is run with the cross-links “on” for 

both the mutant and the native fragments. To correct for this bias we need to add the free 

energy contribution of restraining the mutant to the protein (ΔFP−M ) and remove the free 

energy difference of restraining the native ( −ΔFP−N ). In the second mutation (left vertical 

arrow), the simulations are run again with the cross-links “on” for both the mutant and 
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the native. However, in this case we remove the free energy contribution of restraining 

the mutant ( −ΔFP−M ), and add the free energy difference of restraining the native (ΔFP−N

). The restraining partition function is decoupled from the P partition function (see Eq. 

(2.20)), therefore it is not affected by the conformation of the protein, and the 

contribution to the relative free energy difference due to the cross-linking is 0. 

A similar argument is reported elsewhere, 37 where the authors did not use VBA, 

but consider examples to explain which bonded interactions between P-M(N) may be 

retained without introducing “spurious correlations” within the protein. The conclusions 

that they drew are analogous to VBA.  

ALCHEMICAL METHODS IN MD 

There are multiple techniques to compute alchemical free energy differences.17, 41 

Some methods are based upon equilibrium calculations, i.e. the switching parameter is 

changed infinitely slowly along the reaction, allowing the system to relax and sample 

equilibrium configurations at every value of the switching parameter. An example of 

these methods is the so-called multiconfiguration76 Thermodynamic Integration (TI),25 

which is among those that I will discuss in this section. Some other methods instead are 

non-equilibrium techniques, in which the switching parameter is changed in time 

following a protocol that leads the system from the initial A state to the final B state.77 

These methods make use of Jarzynski equality28 to recover the correct free energy 

difference from non-equilibrium trajectories. I will not discuss these techniques further, 

because the code that I implemented is based on equilibrium calculations. Other methods 

are based upon infinitely fast transitions between different values of the switching 

parameter from an initial to a final state. This means that an equilibrium simulation is 

carried out in the initial state and/or in the final state. The configurations sampled in the 
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initial state are then used to compute the energy of the initial and final state, and the same 

is done with the configurations sampled in the final state. These initial and final states are 

not necessarily the A and B states, but can also be a series of intermediates. I will discuss 

two methods of this type: Free Energy Perturbation (FEP)26 and Bennett Acceptance 

Ratio (BAR).27 Finally, other methods introduce a dynamics on the switching parameter 

that does not follow a special pre-defined protocol, but changes in time according to a 

dynamics that is coupled with the configurations of the system.29 This method was not 

implemented in the code, so I will not discuss it. 

Thermodynamic Integration (TI) 

Thermodynamic integration was introduced by Kirkwood25 as a method to 

compute the chemical potential. Given an alchemical free energy that depends on λ , like 

the one in Eq.(2.5), we differentiate it with respect to the order parameter λ  to get: 

 df λ( )
dλ

=
dΓP,M ,N

∂H P,M ,N;λ( )
∂λ

e−βH P,M ,N ;λ( )∫
dΓP,M ,Ne

−βH P,M ,N ;λ( )∫
= ∂H P,M ,N;λ( )

∂λ λ

  (2.22) 

Upon integration of Eq.(2.22) over the switching parameter from 0 to 1, we get 

the free energy difference of Eq.(2.6): 

 Δf = f λ = 1( ) − f λ = 0( ) = dλ ∂H λ( )
∂λ

λ0

1

∫   (2.23) 

In MD we can run multiple simulations at a fixed value of the switching 

parameter, and compute the average of the derivative of the Hamiltonian with respect to 

λ  (the so-called multiconfigurational thermodynamic integration76). Using a numerical 

integration scheme, such as the trapezoidal rule, we get the desired free energy 

difference.  
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Free Energy Perturbation (FEP) 

FEP was derived by Zwanzig26 as the starting point of a perturbation expansion on 

the free energy. It is another exact method, and it is derived from the alchemical free 

energy difference (2.6). We can manipulate the integrand at the numerator of this free 

energy difference in the following way: 

 Δf =
dΓP,M ,N e−βH P,M ,N ;λ=0( )eβH P,M ,N ;λ=0( )⎡⎣ ⎤⎦e

−βH P,M ,N ;λ=1( )∫
dΓP,M ,Ne

−βH P,M ,N ;λ=0( )∫
  

Note that the term in brackets is equal to 1. This equation can be rewritten as an 

average of the exponent of the difference between the Hamiltonians 

ΔH P,M ,N( ) = H P,M ,N;λ = 1( ) − H P,M ,N;λ = 0( ) : 

 Δf =
dΓP,M ,Ne

−βΔH P,M ,N( )e−βH P,M ,N ;λ=0( )∫
dΓP,M ,Ne

−βH P,M ,N ;λ=0( )∫
= e−βΔH

λ=0
  (2.24) 

In MD, this means that we can run the simulation at the initial value of λ , sample 

the configurations and average the exponential of the difference of the Hamiltonians. It is 

possible to divide this calculation into multiple steps: instead of changing the order 

parameter from 0 to 1 in one calculation we can perform a series of small changes of the 

order parameter and then combine them to get the final result. This can be numerically 

advantageous, since when the difference between the two Hamiltonians is very large the 

weight of the point (the exponential of the difference in energy expressed in kBT) has a 

very broad distribution and so it is hard to converge.17 

Bennett Acceptance Ratio (BAR) 

BAR27 is based upon the idea of generating an estimator of the free energy that 

minimizes the statistical error given a sample of independent configurations. The idea is 

to use a weighting function w Γ( )  whose value does not influence the free energy, but it 

is chosen in such a way that the statistical error for the free energy calculation is 
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minimized. The starting point is the free energy difference in Eq.(2.6), which can be 

rewritten as: 

 Δf = −β −1 lnQ1
Q0

= −β −1 ln
Q1 dΓwe−β H1+H0[ ]∫
Q0 dΓwe−β H1+H0[ ]∫

= −β −1 ln
we−βH1

0

we−βH0
1

  (2.25) 

To make the notation simpler I removed from the integrand function the explicit 

dependence on phase space, and the subscripts indicating the types of particles (all the 

particles P, M and N are included in the integration). Furthermore, the subscript to the 

partition function, the Hamiltonian and the average symbols is the value of the switching 

parameter. Note that in Eq.(2.25) the free energy is independent of the function w .  On 

the other hand, the weighting function affects the variance. To understand why, let’s 

consider the statistical error of a function f x, y( )  depending on two independent 

variables (i.e. with zero covariance), x and y , each of which is subject to statistical error. 

Using the propagation error formula, the variance of f x, y( )  is3: 

 
σ 2 f( ) = ∂ f

∂x
⎛
⎝⎜

⎞
⎠⎟
2

σ 2 x( ) + ∂ f
∂y

⎛
⎝⎜

⎞
⎠⎟

2

σ 2 y( ) =

∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟
2 x2 − x 2

nx
+ ∂ f

∂y
⎛
⎝⎜

⎞
⎠⎟

2 y2 − y 2

ny

  (2.26) 

Here, we defined nx  and ny  to be the number of independent configurations 

sampled for the variables x and y , respectively. Let’s consider that the ensemble 

                                                
3 The error propagation formula comes from a Taylor expansion 
f x, y( ) ≈ f x0, y0( ) + ∂x f x − x0( ) + ∂y f y − y0( ) . If we consider that the initial point is not 

affected by the average, and that the varialbes x and y  are independent (so their covariance is zero) then 

we get f − f( )2 = ∂x f( )2 x − x( )2 + ∂y f( )2 y − y( )2 . If we then recall that the error 

on the average of an observable is equal to the observable divided by the number of measurements (central 
limit theorem) we divide each side by the number of measurements and get the propagation of error for the 
average. Eq.(2.26) is thus justified, but note that in this equation the number of measurements may be 
different for x  and y .  
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averages are performed over a set of n0  and n1  independent configurations.  Using 

Eq.(2.26) the statistical error associated with the estimate of Δf  from Eq.(2.25) is: 

 

 σ 2 βΔf( ) =
w2e−2βH0

1
− we−βH0

2

1

n1 we
−βH0

2

1

+
w2e−2βH1

0
− we−βH1

2

0

n0 we−βH1
2

0

  (2.27) 

This equation can be reorganized with some algebra to yield: 

 σ 2 βΔf( ) =
dΓw2 Q1

n1
e−βH0 + Q0

n0
e−βH1

⎡
⎣⎢

⎤
⎦⎥
e−β H1+H0( )∫

dΓwe−β H1+H0( )∫⎡⎣ ⎤
⎦
2 − 1

n1
− 1
n0

  (2.28) 

The goal here is to choose the function w  that minimizes this variance. To do 

that, we look for the stationary point of the numerator of Eq.(2.28), while keeping its 

denominator fixed using a Lagrange multiplier (this prevents us from finding solutions in 

which the denominator goes to zero or infinity). This means that we will look for the 

stationary point by setting to zero the functional derivative:4 

 δw dΓw2 Q1
n1
e−βH0 + Q0

n0
e−βH1

⎡

⎣⎢
⎤

⎦⎥
e−β H1+H0( )∫ + µ dΓwe−β H1+H0( )∫ −C⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭
= 0   (2.29) 

                                                
4 Note the following. We seek the minimum of a function f x, y, z( )  with the constraint that 

g x, y, z( ) = C . Let’s suppose that such minimum exists and is at the point x0, y0, z0( ) . Let’s define a 

curve  
r t( )  lying on the plane g x, y, z( ) = C , and passing through x0, y0, z0( ) . The gradient of 

g x, y, z( )  on the plane is orthogonal to the tangent to the curve  d
r t( ) / dt  by definition. Since the curve 

 
r t( )  passes on the minimum x0, y0, z0( ) , we have that  df / dt = ∇ r f ⋅d

r / dt = 0  at the minimum, 

so in that point f x, y, z( )  is perpendicular to the tangent of the line  
r t( )  and parallel to the gradient of 

g x, y, z( ) , so  ∇ r f x, y, z( ) = µ∇ r g x, y, z( ) .  This is the equation for the Lagrange multipliers. If the 

function that we wanted to maximize on the plane g x, y, z( ) = C  is 

h x, y, z( ) = f x, y, z( ) / g x, y, z( ) , the maximum on the plane would be the same as before, and 
following the same procedure we would find  

 dh / dt = 1/ g∇ r f ⋅d
r / dt − f / g2∇ r g ⋅d

r / dt . By definition, on the constrained plane 

 ∇ r g ⋅d
r / dt = 0 , so the equation for the Lagrange multiplier is exactly the same. This explains why we 

can find a stationary point of Eq.(2.28) using Eq.(2.29).    
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This is true for any variation if: 

 w = µ 1
Q1
n1
e−βH0 + Q0

n0
e−βH1

  (2.30) 

The constant µ  is irrelevant for the free energy estimate because it cancels out in 

Eq.(2.25), therefore it will be neglected. If we plug back Eq.(2.30) into Eq.(2.25) we get: 

 

 

βΔf = ln

e−βH0
Q1
n1
e−βH0 + Q0

n0
e−βH1

1

e−βH1
Q1
n1
e−βH0 + Q0

n0
e−βH1

0

= ln

n1
Q1

1

1+ Q0

n0
n1
Q1
e−β H1−H0( )

1

n0
Q0

1

1+ Q1
n1
n0
Q0

e−β−β H0−H1( )

0

=

lnQ0

n0

n1
Q1

+ ln

1

1+ e
−β H1−H0−β

−1 lnQ0
n0

n1
Q1

⎛
⎝⎜

⎞
⎠⎟

1

1

1+ e
−β H0−H1+β

−1 lnQ0
n0

n1
Q1

⎛
⎝⎜

⎞
⎠⎟

0

  

Now, if we define: 

 C = −β −1 lnQ1n0
Q0n1

= Δf − β ln n0
n1

  (2.31) 

 we end up with the following pair of equations: 

 
Δf = C − β ln

1
1+ e−β H1−H0−C( )

1

1
1+ eβ H1−H0−C( )

0

C = Δf + β ln n1
n0

  (2.32) 
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These two equations can be used iteratively to get the correct free energy 

difference. One can start from a guess for C , used the sample data to get the free energy 

difference, then update C and re-iterate until convergence. 

As FEP, also BAR can be performed for small changes of the switching 

parameter, then the results may be combined to get the overall free energy difference.  

 Comparison between TI, FEP and BAR 

The efficiency of the three methods that I just discussed was extensively studied 

in the past.31 Without the intent of being exhaustive on the topic, in this paragraph I 

discuss some of the observations that I made studying running simulations. These 

observations are in agreement with some of the conclusions of this previous study.31   

Among the three methods, the least efficient seems to be FEP. The average of the 

exponent of the difference in the energies (see Eq.(2.24)) is difficult to converge.  

TI seems to have good convergence properties. The main difficulties with TI are: 

1. The need of computing the derivative of the Hamiltonian with respect to 

the order parameter. Even though it can be done analytically it requires 

extra calculations compared to methods that require only energies. 

2. The numerical integration in Eq.(2.23) may present difficulties if the 

function has regions of large curvature. 

To mitigate the second difficulty, λ  path is chosen that flattens these high 

curvature regions (see the discussion on how to remove angular potentials) or integrable 

singularities (see the discussion on how to deal with Lennard-Jones interactions40). 

On the other hand TI does not require significant post-processing, which is an 

advantage.  
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Inspired by the success of BAR,31 I decided to test its efficiency against TI. As a 

test of the efficiency I used TI and BAR to estimate the free energy difference using a 

different sets of intermediates (see the end of the results section). BAR does not change 

its accuracy when the number of intermediates is reduced, while the accuracy of TI 

rapidly decreases (see Figure 12).  

ALCHEMICAL PATHWAY 

In the Theory section we described a Hamiltonian for the alchemical substitution 

that depends linearly on λ (see Eq.(2.4) and Eq.(2.14)). This is the most straightforward 

choice, but not necessarily the best one from a numerical perspective. Indeed, there are a 

number of numerical issues that are encountered when some interactions are 

progressively created/annihilated. Here, we discuss how to solve them. 

Bonded Interactions:  

While we retain (of course) all the internal covalent interactions in N and M, 

some of the external covalent interactions need to be annihilated/created. The annihilation 

of some of these bonded interaction terms is problematic. In particular, we found that the 

creation/annihilation of bond-angles and torsions can introduce numerical instabilities, 

and therefore needs to be treated somehow differently.  

Bond-Angles 

First of all, to explain what is the problem that occurs when a regular bond-angle 

is removed, let’s consider the angle θ  between three particles i,  j  and k . The bond –

angle potential restraining this angle around its equilibrium value θeq  is: 

 Uang θ( ) = kang θ −θeq( )2   (2.33) 
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where kang  is the spring stiffness. In MD, we define the angle θMD  from the 

Cartesian coordinates of the three particles i,  j  and k using the definition of scalar 

product: 

 
 
θMD = arccos

rij ⋅
rjk

rijrjk

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= arccos cos θ( )⎡⎣ ⎤⎦   (2.34) 

where the vectors  
rij and  

rjk  connect particle j  to the other two particles. This 

means that the bond-angle potential that we are actually using is slightly different from 

the one in Eq.(2.33): 
 Uang θMD( ) = kang θMD −θeq( )2 = kang arccos cos θ( )⎡⎣ ⎤⎦ −θeq{ }2   (2.35) 

The inverse function arccosine is defined in the set 0,π[ ] . Therefore, only in this 

set are the potentials in Eq.(2.33) and in Eq.(2.35) the same. Figure 1 shows the bond-

angle potential (Eq.(2.33)) in blue and the one that we use in MD (Eq.(2.35)) in red.   

 

Figure 2: Expected bond-angle potential (blue, see Eq.(2.33)) and bond-angle potential 
computed in MD (red, see Eq.(2.35)). The equilibrium value (θ0 = 1.941) 
and the spring constant ( kang = 80kcal/mol ) are those for the N-Cα-C 
backbone angle in OPLS-AAL force field.4 

�
⇥

4

0
⇥

4

⇥

2

3 ⇥

4

⇥
⇤⇤MD

100

200

300

400

500

600

U�⇤⇥U�⇤MD⇥



 38 

It is clear that if the angle θ	  exits	  the	  range	   0,π[ ] 	  in a MD simulation, we will 

encounter numerical problems due to inconsistency between the potential and the force. 

The derivative of the potential in Eq.(2.33) is: 

 
dUang θ( )

dθ
= 2kang θ −θeq( )   (2.36) 

while the derivative of the bond-angle potential computed in MD is: 

 
dUang θ( )

dθ
θ=θMD

= 2kang θMD −θeq( ) = 2kang arccos cos θ( )⎡⎣ ⎤⎦ −θeq{ }   (2.37) 

In Figure 3 we show the difference between these two derivatives: 

 

 

Figure 3: Derivative of the expected bond-angle potential (blue, see Eq.(2.33)) and of the 
bond-angle potential computed in MD (red, see Eq.(2.35)). The equilibrium 
value (θ0 = 1.941) and the spring constant ( kang = 80kcal/mol ) are those for 
the N-Cα-C backbone angle in OPLS-AAL force field.4 
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energy) calculation is inconsistent with the forces governing the time evolution (and so 

the sampling) of configurations. 

In a regular MD simulation at 300K, the spring constant is stiff enough to restrain 

the fluctuations of the angle within the range of a few of degrees. The problem just 

highlighted is never encountered, since the energy of the configurations θ = 0  and θ = π  

is too high to be sampled. 

In an alchemical substitution, the bond-angle potential is multiplied by the 

switching parameter λ. The effective spring constant is then weakened, and the lower the 

value of λ the larger is the angular space that is sampled. Eventually, the energy barrier to 

reach the configurations θ<0 and θ>π will be so low that such configurations may 

actually be sampled. Therefore, we need to find a way to restrain the angle between three 

particles such that if annihilated by alchemical methods it does not introduce the 

numerical instability associated with the configurations θ<0 and θ>π. 

The solution that we propose is to use Urey-Bradley bonds to restrain the angle 

near the equilibrium value for all those angles that are going to be annihilated/created 

along the alchemical pathway (e.g. the angles that connect the P with M or N parts of the 

system). Removal of the Urey-Bradley bond is simpler. Given the three particles above i, 

j and k, the Urey-Bradley bond restrains the fluctuations of θ around the equilibrium 

angle by adding a spring in Cartesian space between particles i and k: 
 UUB rik( ) = kUB rik − rik ,eq( )2   (2.38) 

Here, of course 
 rik = rjk

2 + rij
2 − 2rjkrij cos θ( )   (2.39) 

The two parameters rik , eq  and θeq  are chosen such that the minimum of the 

potential corresponds to the equilibrium position according to bond-angle potential and 

the small fluctuations around the minimum are the same. Therefore, we obtain: 
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 rik , eq = rjk , eq
2 + rij , eq

2 − 2rjk , eqrij , eq cos θeq( )   (2.40) 

 kUB =
1+ 2

r2
ij , eqr

2
jk , eq

rij , eq
2 + rjk , eq

2 cos θeq( )
r2
ij , eqr

2
jk , eq

rij , eq
2 + rjk , eq

2 sin2 θeq( )
kang   (2.41) 

The choice of the alchemical pathway to annihilate/create the Urey-Bradley bonds 

(as for any other potential) is arbitrary, provided that the end states are correct. Therefore, 

we select a scheme (a particular λ-scaling) such that the free energy difference is 

computed numerically with higher accuracy. For this purpose, we consider a “toy” 

problem in which we can evaluate the free energy “almost” analytically. We compute the 

free energy difference due to the annihilation of a Urey-Bradley bond for a triatomic 

molecule. The alchemical potential of such simple system is given by two chemical 

bonds and a Urey-Bradley bond scaled by the switching parameter. The exponent of λ , 

the parameter α, is the target for optimization: 
 U r,r ',rUB;λ( ) = k r − req( )2

+ k ' r '− r 'eq( )2
+ λαkUB rUB − rUB, eq( )2

  (2.42) 

The configurational partition function for this potential is:78 
 Z N ,V ,T ;λ( ) = 8π 2V r2r '2 sin θ( )exp −βU r,r ',rUB;λ( )⎡⎣ ⎤⎦dr dr 'dθ∫   (2.43) 

Here, we changed the coordinates to a polar system and integrated the external 

degrees of freedom. Let us make the assumption that the spring constants for the 

chemical bonds are so stiff that in the Jacobian in Eq.(2.43) and in the Urey-Bradley bond 

the bond lengths r and r’ can be substituted by their equilibrium values. This yields: 

 Z N ,V ,T ;λ( ) = 8π 2Vreq
2 r 'eq

2 2π
kβ

2π
k 'β

sin θ( )exp −βλα rUB − rUB, eq( )2⎡
⎣⎢

⎤
⎦⎥dθ∫   (2.44) 

Let us further assume that k=k’, req=r’eq and that θeq=0. In this case the Urey-

Bradley potential is (see Eq.(2.38) -(2.41)): 
 UUB θ( ) = 2kUBreq2 1− cos θ( )⎡⎣ ⎤⎦   (2.45) 
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The free energy difference computed by TI is: 

 

∂F
∂λ

= ∂U
∂λ λ

= 2αλα−1kUBreq
2
sin θ( ) 1− cos θ( )⎡⎣ ⎤⎦exp −2βλαkUBreq

2 1− cos θ( )⎡⎣ ⎤⎦{ }dθ∫
sin θ( )exp −2βλαkUBreq

2 1− cos θ( )⎡⎣ ⎤⎦{ }dθ∫
  (2.46) 

The integral can be solved numerically as a function of λ using Mathematica.79 

With α=1 we get the blue line in Figure 4, with α=2 the red line.  

 

Figure 4: The derivative of the alchemical free energy with respect to λ (Eq. (2.46)) is 
reported. In blue we show α=1, and in red α=2. The rest of the parameters 
are: req=1Å, kUB=75 kcal/mol/	  Å2	  and	  β=0.6	  kcal/mol.	  
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bond-angle potential is used. This inconsistency introduces a correction to the free energy 

(the difference between the UB and the usual harmonic angular terms) that we need to 

compute explicitly. This correction can be computed exactly, as shown in Appendix A. In 

the numerical example that I used here, the contribution to the free energy of the cycle 

turned out to be negligible. 

Torsions 

Given four particles (say, i, j, k and l), the torsion potential restrains the dihedral 

angle φ between the plane identified by the particles i, j and k and the plane identified by 

the particles j, k and l (see Figure 5). The functional form used in molecular mechanics 

force fields is periodic in the angle and does not suffer the same problems as the angular 

potential. On the other hand, if the weakening of the angular interaction allows particle l 

to collapse on the line that connects particle j to particle k, the plane identified by the 

particles j, k and l is not defined, and so the dihedral angle itself is not defined. To avoid 

this issue it is enough to remove torsions and improper torsions before the angles. 
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Figure 5 An example of torsion dihedral φ is reported 

Van der Waals Interactions 

The creation and the annihilation of particles with a finite Van der Waals radius 

present (integrable) singularities.40 Such singularities are removed if the Van der Waals 

interactions are created/annihilated with scaling parameter λα , with α ≥ 4 .40 Moreover, 

the use of a soft core Lennard Jones potential avoids hard clashes during the 

creation/annihilation of interactions between particles.40 The potential used is then: 

 λ 4U r( ) = 4ελ 4 σ 12

r6 +α LJ 1− λ( )2σ 6⎡⎣ ⎤⎦
2 −

σ 6

r6 +α LJ 1− λ( )2σ 6⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (2.47) 

It is clear that for λ = 0  this potential disappears, for λ = 1  we recover the usual 

Lennard Jones potential (in this way the correct end-state is recovered), for 0 < λ < 1  the 

hard core is softened, i.e. there is no divergence in r = 0 . The larger is the value of α LJ  

the softer is the potential. In the numerical example discussed in the next section we used 
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α LJ = 0.3 , in agreement with what was used in the original work where this issue was 

presented and solved.40 

To avoid the collapse of particles with opposite charges to the same point in space 

while the Van der Waals repulsion between them is reduced, the free energy calculation 

is conducted in two steps: in the first step the electrostatic interactions of the N particles 

are turned off, while the Van der Waals interactions of the M particles are created. In the 

second step the Van der Waals interactions of the N particles are removed, while the 

electrostatic interactions of the M particles are turned on.41 For this reason, we break the 

free	  energy	  calculation	  into	  two	  parts:	  MutationPHase1 (MPH1) and MutationPHase2 

(MPH2). In MPH1 we remove electrostatic interactions, torsions and improper torsions 

between P and N particles and create Van der Waals interactions and angles between P 

and M particles. In	  MPH2	  we	  do	  the	  opposite.	  We	  remove	  Van	  der	  Waals	  interactions	  

and	  angles	  between	  P	  and	  N	  particles	  and	  create	  electrostatic	  interactions,	  torsions	  

and	   improper	   torsions	   between	   P	   and	  M	   particles.	   Note	   that	  we	   do	   not	   create	   or	  

remove	  the	  bond	  between	  particles	  P	  and	  M,	  or	  the	  bond	  between	  P	  and	  N.	  Note	  also	  

that	   all	   the	   self-‐interactions,	   bonded	   and	   non-‐bonded,	   are	   never	   created	   nor	  

annihilated.	  	  

The	  arguments	  presented	  so	  far	  are	  summarized	  in	  the	  following	  two	  tables,	  

which	  define	  the	  alchemical	  pathway	  used	  in	  the	  numerical	  illustration. 
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 MPH1 
 scaling correction 
 P-P P-M P-N M-M N-N P-P P-M P-N M-M N-N 
Vdw 1 λ4 1 1 1  Soft 

core    

Ele 1 0 (1-λ) 1 1      
Bond 1 1 1 1 1      
Angle 1 λ2 1 1 1  Urey-

Bradley     

Tors 1 0 (1-λ)2 1 1      
ImpT 1 0 (1-λ)2 1 1      

Table 1 The alchemical pathway for the first phase of the mutation. The angular and Van 
der Waals interactions between P and M particles are created, while 
torsions, improper torsions and electrostatic interactions between P and N 
are progressively switched off. The right hand side of the table reports the 
corrections to the regular OPLS-AAL 4 potential that were used. Notice that 
the self-interactions, as well as the bonds, are never scaled (see details in the 
text). 

 MPH2 
 scaling correction 
 P-P P-M P-N M-M N-N P-P P-M P-N M-M N-N 
Vdw 1 1 (1-λ)4 1 1   Soft 

core   

Ele 1 λ 0 1 1      
Bond 1 1 1 1 1      
Angle 1 1 (1-λ)2 1 1   Urey-

Bradley    

Tors 1 λ2 0 1 1      
ImpT 1 λ2 0 1 1      

Table 2 The alchemical pathway for the second phase of the mutation. The torsions, 
improper torsions and electrostatic interactions between P and M particles 
are created, while angular and Van der Waals interactions between P and N 
are progressively switched off. The right hand side of the table reports the 
corrections to the regular OPLS-AAL 4 potential that were used. Notice that 
the self-interactions, as well as the bonds, are never scaled (see details in the 
text). 
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Electrostatic Interactions 

To ensure accurate estimates of the electrostatic interaction we use Particle Mesh 

Ewald.80 The drawback of this method with respect to the alchemical substitution is that 

the reciprocal space contribution to the energy cannot be separated into the specific 

contributions of each pair of interacting particles because the reciprocal space energy of a 

particle cannot be separated into single pairwise contributions. Therefore, it is not 

possible to selectively annihilate/create some interactions involving a particle, while 

keeping the others fixed.  

Recall the PME theory.80 We define  
n  as the lattice vectors, and C i, j( )  are 

interaction parameters for pair of particles. A potential energy which is the sum of the 

interactions of all the pair of particles with the exception of self (as the prime in the 

summation symbol below reminds us) is: 

 
 

E r1,...,
rN( ) = 1

2
'

n
∑ C i, j( )

ri −
rj +
n
p

j
∑

i
∑   (2.48) 

the PME methodology is applicable if we can write (see Appendix of 80): 

 C i, j( ) = ±C i( )C j( )   (2.49)                                             

If we want to retain the “self” electrostatic interactions, we cannot use Eq.(2.49). 

Indeed, let us suppose that particle i is a M particle, then we have: 

 C i, j( ) =

λ
qiqj
4πε0

j ∈P

0 j ∈N
qiqj
4πε0

j ∈M

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

  (2.50) 

where qi are charges and ε0 is the dielectric constant.	  Since the P particles interact 

according to the usual Coulomb law ( qiqj / 4πε0 , without λ ) and the N particles may 

carry a charge different from zero, we cannot write Eq.(2.50) as Eq.(2.49), i.e. the 
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functional form of the potential cannot be reduced to individual properties of the 

particles, but depends on the pair of interacting particles. 

To solve this problem we compute the reciprocal space energy term between 

selected types of particles and scale the interactions with the proper switching parameter. 

A linear combination of the terms obtained in this way gives us the desired overall energy 

dependence on the switching parameter (i.e. the “self interactions” are not scaled). 

The recipe is summarized in the two following tables that explain how to carry 

out the Ewald sums for MPH1 and MPH2.  
 

MPH1 
#  Type of particle 

interacting 
Scaling Result 

1 P λ λU(P) 
2 P N (1-λ) (1-λ)[U(P)+U(P,N)+U(N)] 
3 M 1 U(M) 
4 N λ λU(N) 

OVERALL: U(P) + (1-λ)U(P,N) + U(N) + U(M) 

Table 3 The numerical recipe to properly scale only the reciprocal space external 
molecular electrostatic interactions computed by Ewald sums in MPH1. The 
reciprocal space is computed four times: first only with the electrostatic 
interactions between the P particles turned on and scaled by λ. Then the 
electrostatic interactions between P and N particles are turned on and the 
result is scaled by 1-λ. Then only the M particles are interacting and the 
result is not scaled. Finally, only the N particles are interacting, and the 
result is scaled by λ. The sum of these four contributions is shown at the 
bottom of the table. The self-interactions are not scaled. The external 
interactions are instead scaled by 1-λ. 
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MPH2 
#  Type of particle 

interacting 
Scaling Result 

1 P (1-λ) (1-λ)U(P) 
2 P M λ λ[U(P)+U(P,M)+U(M)] 
3 M (1-λ) (1-λ)U(M) 
4  N 1 U(N) 

OVERALL: U(P) + λU(P,M) + U(M) + U(N) 

Table 4 The numerical recipe to properly scale only the reciprocal space external 
molecular electrostatic interactions computed by Ewald sums in MPH2. The 
reciprocal space is computed four times: first only with the electrostatic 
interactions between the P particles turned on and scaled by 1-λ. Then the 
electrostatic interactions between P and M particles are turned on and the 
result is scaled by λ. Then only the M particles are interacting and the result 
is scaled by λ. Finally, only the N particles are interacting, and the result is 
not scaled. The sum of these four contributions is shown at the bottom of the 
table. The self- interactions are not scaled. The external interactions are 
instead scaled by λ. 

This solution has two major disadvantages. First, using PME four times per 

integration step is an expensive procedure. Second, the final state of the decoupled 

fragments is not a fragment, but an infinite periodic lattice of the fragment, which in 

theory interacts with all the copies of the system. This is a problem if simulations in 

vacuum are needed to close the Thermodynamic Cycle: instead of just sampling the 

conformations of the decoupled fragment in vacuum, one has to take into account the 

interactions with the copies as well. An illustration of this issue can be found in Figure 6, 

in which the fully coupled particles are represented by filled circles, while the decoupled 

particles are represented by circles filled with a pattern of dots (blue represents the P 

particles, green the N particles, and red the M particles). 
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Figure 6: Pictorial illustration of the alchemical scheme for electrostatic interactions. The 
different quadrants represent multiple copies of the system due to periodic 
boundary conditions. The blue circle represents the set of P particles, the red 
circle the M particles and the green circle the N particles. A fully colored 
circle represents a species (P, M or N) that has all its interactions with the 
other copies and the other species “on”. When the coloring of the circle is 
instead dotted, that means that the species (M or N) is interacting only with 
particles of the same species. In MPH1 the system at the beginning of the 
simulations is characterized by fully interacting P (blue) and N (green) 
particles, while the M particles (red, dotted) only see each other. At the end 
of MPH1, also the green particles (now green and dotted) are decoupled 
from the system and interact only with N particles. This is also the starting 
point for MPH2. During MPH2, the M particles (red, dotted) are 
progressively coupled to the system and the end state has P (blue) and M 
(red) particles fully interacting, while the N particles (green, dotted) only see 
each other. 
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While this is not wrong in principle, an end state made of one fragment, and not a 

lattice of fragments, would be more intuitive.  

The calculations presented in the Results section use the recipe hereby introduced 

to account for the Ewald sums. A new solution was implemented in the latest version of 

MOIL (MOIL-OPT24), which was aimed at solving this problem. An illustration of this 

new solution is left at the end of this chapter. 

NUMERICAL EXAMPLE 
 

We study an alchemical substitution that retains all the self-interactions. The 

difference in hydration free energies of ILE and GLN side chain analogs is computed. 

The cycle that we consider is presented in Figure 7. 

 

Figure 7 The thermodynamic cycle that we used in these calculations. The horizontal 
arrows represent free energy differences upon mutation of the solute (ILE 
side chain analog and GLN side chain analog). The vertical arrows represent 
the solvation process, i.e. the solute is brought from vacuum into solution. 
For each free energy calculation the colored circles highlight which atoms 
are considered P (black), N (blue) or M (red).  
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ΔFI-Q,solv is the free energy difference of mutating ILE to GLN side chain analog in 

solution, while ΔFI-Q,vac is the same quantity computed in vacuum (gas phase). ΔFI,solv and 

ΔFQ,solv are the free energy differences of inserting ILE and GLN side chain analogs into 

water from gas phase, respectively.  

The free energy difference of the complete cycle is: 

 

 

dF =∫ ΔFI−Q,solv − ΔFQ,solv − ΔFI−Q + ΔFI ,solv =

= −β−1 ln
Qsolv,Q

Qsolv,I

QsolvQQ

Qsolv,Q

QI

QQ

Qsolv,I

QsolvQI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

  (2.51) 

as it should be. The numerical task and test is to reproduce the zero in 

simulations.  

Mutations 

To compute the free energy differences ΔFI-Q,solv  and ΔFI-Q we used the system 

shown in Figure 8. 

 

Figure 8 The alchemical intermediate that was used. The black methyl group is shared 
between the two side chain analogs. The blue atoms are the rest of the ILE 
side chain analog. The red atoms are the remaining of the GLN side chain 
analog. While the black atoms interact with all the other atoms, blue and red 
particles do not interact with each other.  
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The black methyl group is considered the P part of the system, i.e. the part that 

interacts with both mutants during the alchemical calculation. The blue atoms are the 

native N, i.e. the ILE side chain without its methyl group that is considered P. The red 

atoms are the mutant M, i.e. the GLN side chain analog without the methyl group which 

is part of P. To illustrate our procedure, the simulations are performed while retaining the 

full strength of the self-interactions. More details about the simulations follow. 

Solvation 

To compute the free energy difference of the two side chains in solution and in 

gas phase the non-bonded interactions between the side chain analog and the solvent 

around it are turned off.33 Following the nomenclature introduced in the previous 

sections, we consider water as P molecules, the side chain analog (ILE or GLN) as M 

particles. No N particles are involved in this simulation.  

Simulation details 

The OPLS-AAL force field4 was used with a modification on the charges of the 

Cβ of the residues analogs.33 Also, the Lennard-Jones parameters for polar hydrogens 

belonging to the solutes were set to σ=0.3Å	   and	   ε=0.0498kcal/mol. All the systems 

were solvated in a periodic cubic box of volume 34.45Å3 with 1355 TIP3P water 

molecules81 at 300K. The size of the water box was chosen in such a way to have an 

average water density at corners of the box near 0.998g/cm3 with the ILE sidechain 

analog solvated in the center of the water box. The rationale of this choice is that at the 

corners of the box we are far enough from the solute to be in “bulk”. 

The cutoff distance was 10Å for Van der Waals interactions and 14Å for 

electrostatic forces. These real space cutoff distances gave very good energy conservation 

throughout the simulation on a 2ns test case conducted in the NVE ensemble. Particle 
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Meshed Ewald (PME)80 was used in all simulations with a grid of 64x64x64. PME was 

used also in the simulations carried out in vacuum. The use of PME in the entire cycle 

includes interactions between molecules in different periodic cells. The straightforward 

choice of using a finite cutoff for the electrostatic calculations in vacuum introduces a 

systematic error (results not shown). Indeed, the use of PME in all the parts of the 

Thermodynamic Cycle is necessary to ensure consistency if the scheme for PME is the 

one presented in Table 3 and Table 4. The contributions of the Van der Waals 

interactions between particles that are beyond the cutoff distance are not considered 

explicitly in this simulation. Other authors have introduced an analytical correction for 

the free energy of solvation of small molecules.33 The solvent around each of the 

alchemically substituted particles of the solute is assumed homogeneous and isotropic. 

Moreover, the pair correlation function between the alchemically substituted solute and 

the solvent particles is assumed independent of λ and is equal to 1 (the cutoff is large 

enough that there are no correlations). The formula that was used is the following:33, 82 

 ΔFLRC = 4π ρO dri,Ori,O
2 UVdW ri,O( )

rc

∞

∫
i∈M
∑ − 4π ρO dri,Ori,O

2 UVdW ri,O( )
rc

∞

∫
i∈N
∑   (2.52) 

 

Here, the density ρO  is the number density of oxygen in water molecules. The 

Van der Waals interactions considered are only between solute and oxygen, according to 

the TIP3P water model.  

The results for this correction are reported in Table 6 

Table 6, together with all the other results. This correction is not affecting the 

overall free energy cycle. In Figure 7, we notice that each correction is added (at the end 

of the solvation simulation for ILE, and at the end of the mutation for GLN) and then 



 54 

removed (at the beginning of the mutation simulation for ILE and the end of the solvation 

simulation for GLN) per each solute. The net effect is zero.   

In the two mutations, the geometric center of the P particles was restrained to the 

center of the box by a harmonic potential with spring constant k = 1kcal/mol . In the two 

solvated calculations, the geometric center of the analog was restrained to the center of 

the box by a harmonic potential with the same spring constant k. In both of the cases, the 

free energy contribution from this harmonic potential restrains an external degree of 

freedom, so it is separable. Since the two spring constants are the same, the free energy of 

the system is not affected by the choice of the subset of particles to restrain. Therefore, 

there is no overall contribution from this constraint to the total free energy difference.  

The solvated simulations were performed in the NVT ensemble by rescaling the 

velocities at every time step to maintain the temperature of the thermal bath.83 The 

vacuum simulations were performed in the NVT ensemble using a Langevin thermostat82 

to enhance coupling between different degrees of freedom and ergodicity.  

The calculation of the free energy difference was performed using TI in the 

“multiconfiguration” approach76. The numbers of intermediates λ values at which the free 

energy differences were sampled and computed are listed in the following table. They 

were chosen to allow a better description of the regions in dF/dλ characterized by a larger 

curvature. 
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 MPH1 MPH2 Total simulation time  
ΔFI-Q,solv 33 33 132ns 
ΔFI-Q,vac 33 33 132ns 
ΔFI,solv 35 23 116ns 
ΔFQ,solv 35 23 116ns 

Table 5 The number of λ points used in the evaluation of the free energy differences of 
Figure 7 for each of the mutation phases MPH1 and MPH2. The last column 
shows the total simulation time for each stage in the cycle.  

 

For the solvated simulations, at each λ value two equilibrations of 100ps were 

performed: one with the solute frozen and the other with the solute free to move. Then a 

2ns long sampling of configurations was carried out for each λ value. For the simulations 

carried out in vacuum, we sampled configurations for 2ns using Langevin dynamics with 

friction coefficient γ=60/ps. One configuration per picosecond was used to compute the 

average and the variance of dH/dλ. The configurations sampled in this way may be 

correlated. To account for this correlation we computed the variance of dH/dλ using the 

following formula:82, 84 

 σ 2 dH
dλ T

⎛
⎝⎜

⎞
⎠⎟
= 2
T

dτ 1− τ
T

⎛
⎝⎜

⎞
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∫
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  (2.53) 

In this equation, the symbol “<…>T” refers to a time average over the sampled 

configurations carried out for all the length of the simulation T. The argument of the 

integral contains the correlation function of dH/dλ. The correlation function decays to 0 

within the first few picoseconds (see Figure 9). Therefore, it was computed for 20ps and 

then set to 0 to avoid integration over a noisy tail that may introduce unphysical 

contributions to the integral. The integral in Eq.(2.53) was evaluated using the trapezoidal 

rule. Example of correlation functions are reported in Figure 9.  
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Figure 9: Correlation function of dH/dλ as a function of time (in ps). On the left the 
figure reports calculations at λ=0.5 of the MPH1 (red) and MPH2 (green) 
phases of the mutation from ILE side chain analog to GLN sidechain analog 
in solution. In the same figure the MPH1 (blue) and MPH2 (pink) phases of 
the same mutations in vacuum are reported. The figure on the right reports 
the calculations at  λ=0.5 of the MPH1 (red) and MPH2 (green) of the 
solvation of ILE side chain. In the same figure the MPH1 (blue) and the 
MPH2 (pink) phases of the solvation of GLN side chain analog are also 
reported.  

 

The variance of the integral was estimated from the variances of each point of 

dF/dλ using the propagation formula. 

Results 

The profiles for dF/dλ as a function of λ are reported in Fig. 5. 
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Figure 10: dF/dλ profiles (in kcal/mol) as a function of λ of both of the phases MPH1 and 
MPH2 of the free energy differences of each part of the cycle of Figure 7. 
On the left the MPH1 phase is reported, on the right the MPH2. From top to 
bottom there are: mutation from ILE to GLN in solution, mutation from ILE 
to GLN in vacuum, solvation of ILE and solvation of GLN. The error bars 
are shown in all figures.  

  



 59 

In Table 6A the results are reported for each part of the calculation. 

 
(A) 

 
 TOTAL MPH1 MPH2 LRC 
ΔFI-Q,solv -14.073±0.066 -16.218±0.050 2.199±0.043 -0.051 

ΔFI-Q,vac -2.847±0.068 -10.931±0.047 8.084±0.049  

ΔFI,solv 2.891±0.050 3.379±0.050 -0.0075±0.0019 -0.481 

ΔFQ,solv -8.354±0.054 1.858±0.047 -9.680±0.027 -0.532 
 
(B) 
 
 Total33 Vdw33 Ele33 LRC33 
ΔFI-Q,solv     

ΔFI-Q,vac     

ΔFI,solv 2.73±0.03 3.10±0.03 -0.01±0.001 -0.37 
ΔFQ,solv -8.40±0.04 1.80±0.03 -9.79±0.02 -0.41 

 
(C) 
 
 Experiment33, 85 
ΔFI-

Q,solv 
 

ΔFI-

Q,vac 
 

ΔFI,solv 2.15 
ΔFQ,solv -9.38 
 
 

Table 6 
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Table 6: The results of the free energy calculations and the statistical errors (all the values 
are in kcal/mol). (A) The values reported are the result of our simulations. 
The second column reports the total, the third the free energy difference in 
MPH1, the fourth the free energy difference in MPH2, the fifth the long-
range correction (LRC). (B) This table shows the values for the calculation 
of the solvation free energy of the same side chain analogs that we 
considered as reported in ref.33 The second column is total, the third the 
value of the solvation related only with creation of Van der Waals 
interactions between the solute and the solvent with the electrostatic 
interactions off (analogous to our MPH1), the fourth column reports the free 
energy contribution associated with creation of electrostatic interactions 
when the Van der Waals are already fully coupled (analogous to our 
MPH2). The last column is the long-range correcion (LRC). The protocol 
used to carry out these calculations in ref. 33 is significantly different from 
ours. The authors in ref. 33 carried out NPT simulations and their cutoff 
scheme is different from ours (no Ewald, group-based and tapered 
interactions). This is reflected mostly in the LRC term, which is, of course, 
dependent on the scheme used for the Van der Waals cutoff. (B) 
Experimental results for the solvation free energies of the two side chain 
analogs.85 These results were used as a comparison with the simulations in 
ref.33 
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In the second column of Table 6A we report the total of the free energy 

calculation. The total is then broken in three parts: the result for the first phase (MPH1, 

third column), the result for second phase (MPH2, fourth column) and the Long Range 

Correction (LRC, fifth column) approximately correcting for the finite Van der Waals 

cutoff used in simulations. 

In a previous computation of the solvation of side chain analogs,33 the authors 

computed the solvation free energies of these two side chain analogs. The free energy 

calculation reported by them33 was performed following an alchemical pathway similar to 

ours: i.e. splitting the decoupling in two steps. First the Van der Waals interactions are 

turned on, while the electrostatic interactions are kept off. Secondly, the electrostatic 

interactions are created, while keeping the Van der Waals interactions at their full 

strength. The first step is analogous to our MPH1, and it is reported in the third column of 

Table 6B. The second step is analogous to our MPH2, and it is reported in the fourth 

column of Table 6B. Our results are very close to those reported in ref.33 This is 

particularly interesting since we used a significantly different sampling protocol. First, 

they sampled from the NPT ensemble, while we sampled configurations from the NVT 

ensemble. Second, they did not use Ewald sum to compute long-range electrostatics. 

They adopt a neutral group based, finite cutoff distance for both electrostatics and Van 

der Waals interactions. The different cutoff scheme for Van der Waals interactions results 

in a significant difference between our long-range Van der Waals corrections (fifth 

column in Table 6A) and theirs (fifth column in Table 6B). Overall, our agreement with 

the simulations previously reported (second column of Table 6B)33 and the experimental 

results to which they compare with33, 85 (Table 6C) are in the expected range. 
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The expected result for the free energy difference over the cycle is, of course, 

0kcal/mol. The free energy computed numerically over the complete cycle is: 
 ΔFI−Q,solv − ΔFQ,solv − ΔFI−Q,vac + ΔFI ,solv = 0.02 ± 0.12( )kcal/mol   (2.54) 

The correction for the angular term over the cycle is negligible (see Appendix A), 

therefore our final result is: 
 

 
dF∫ = 0.02 ± 0.12( )kcal/mol   (2.55) 

To show that the result is converged I report the cumulative running average of 

the cycle for the last 1ns of simulation in Figure 5. 
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Figure 11: Running free energy as a function of time of the last 1ns of simulation. The 
black thick line reports free energy, the black thin lines report the error bar, 
which is shown only for one point out of ten. The light blue the expected 
value.  

 

The numerical result is consistent with the analytical prediction of zero and is 

well within the statistical error bars. This calculation illustrates numerically the use of a 

thermodynamic cycle that retains the full strength of all the self-interactions.  

Here, simulations at constant volume were carried out, while the experiment was 

done at constant pressure. The focus in the present investigation is to show that the 

complete cycle yields a free energy change of zero, not comparison to experiment, which 
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may also depend on the force field. Indeed the deviations of the calculations performed at 

constant pressure33 from experiments are comparable to those reported here.  

Influence of the size of the system 

A possible dependence of the accuracy on the size of the periodic system was 

discovered while running the simulations in a smaller water box. The result of the cycle 

in this smaller box (29.35Å size) turned out to be different from zero and of the order of 

0.2 ± 0.1kcal/mol . Further analysis is needed to detect the observed “small-size” effect, 

and was not yet carried out.  

TI vs BAR 

To test efficiency of BAR compared to TI, I analyzed the data of the MPH1 part 

of the mutation from ILE to GLN side chain analog in water. To test the efficiency, I 

measured the free energy difference as a function of the number of intermediate λ  values 

used in the calculation. The largest number of intermediates corresponded to the whole 

set. Then, keeping the first and the last, I removed every other intermediate λ  value, and 

I repeated this procedure three times. The results are in the following figure 
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Figure 12: Value of the free energy difference measure for the MPH1 part of the ILE to 
GLN mutation in water as a function of the number of intermediate states 
used. In red the results for BAR are reported, in green the results for TI.  

The value of the estimated free energy difference for TI (green) and BAR (red) is 

reported here. When the number of intermediates is decreased, the value of the free 

energy computed with BAR does not change significantly, while the value computed 

with TI rapidly looses accuracy. This is an evidence that, in agreement with ref.,31 BAR 

gives a more efficient estimation of the free energy difference. 
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A NEW APPROACH FOR PME 

A Faster Scheme 

As I stated before in the discussion of the alchemical pathway used in the 

simulations presented so far, the scheme used for PME calculation (see Table 3 and Table 

4) had a number of issues. First of all, we needed to perform the Ewald calculations 4 

times per time step. Secondly the end states (a periodic lattice of the decoupled fragment, 

see Figure 6) do not sound very intuitive. To attempt to solve these issues, I devised a 

different PME scheme for the new version of the alchemical code in the latest issue of the 

MOIL code, named MOIL-OPT.24 First, the alchemical code in MOIL-OPT works with 

the RESPA86 scheme implemented in MOIL-OPT. RESPA allows the computation of the 

long-range interactions only once every few steps, typically 4 in MOIL-OPT. In this way, 

at least the reciprocal-space part of the code, which turns out to be the most time 

consuming, is performed once every 4 steps. This helps particularly with the alchemical 

code, which requires multiple calls per time step.  

Secondly, I devised a different scheme for the calculation of the electrostatic 

interactions, which is described in the following Tables. 
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Table 7: New scheme for electrostatic calculations in alchemical simulations, MPH1 
stage of the alchemical substitution. Only 3 steps are now required, and only 
the first two involve a PME calculation, the last is a direct electrostatic 
calculation employing Coulomb law and involving only a few particles. 

 
MPH2 

Step #1 Ewald YES (1-‐λ)UEW(P) 
Step #2 Ewald YES 	  λ[UEW(P)+UEW(M)+UEW(P,M)] 
Step #3 NO Ewald (1-‐λ)UCOU(M)+UCOU(N) 
TOTAL UEW(P)	  +	  λUEW(P,M)	  +	  λUEW(M)	  +	  (1-‐λ)UCOU(M)+UCOU(N)	  

Table 8: New scheme for electrostatic calculations in alchemical simulations, MPH2 
stage of the alchemical substitution. Only 3 steps are now required, and only 
the first two involve a PME calculation, the last is a direct electrostatic 
calculation employing Coulomb law and involving only a few particles. 

This new scheme requires only two calls of the PME routine, so it is much faster 

then before. It also requires a third step in which the electrostatic interactions involving 

exclusively the already decoupled fragment (M in MPH1, N in MPH2), and the fragment 

in the process of being annihilated (N in MPH1) or created (M in MPH2) are computed 

employing the standard Coulomb law instead of using PME. This makes this third step 

extremely fast. Also, it changes the end-states for the decoupled fragment, as pictorially 

illustrated in the next figure. 

MPH1 
Step #1 Ewald YES (1-‐λ)[UEW(P)+UEW(N)+UEW(P,N)] 
Step #2 Ewald YES λUEW(P) 
Step #3 NO Ewald λUCOU(N)+UCOU(M)	  
TOTAL UEW(P)	  +	  (1-‐λ)UEW(P,N)	  +	  (1-‐λ)UEW(N)	  +	  	  λUCOU(N)+UCOU(M)	  
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Figure 13: Pictorial illustration of the new scheme for electrostatic calculations in 
alchemical simulations. The different quadrants represent multiple copies of 
the system due to periodic boundary conditions. The blue circle represents 
the set of P particles, the red circle the M particles, and the green circle the 
N particles. A fully colored circle represents a species (P, M or N) that has 
all its interactions with the other copies and the other species “on”. When 
the coloring of the circle is instead dotted, that means that the species (M or 
N) is interacting only with particles of the same species. In MPH1 the 
system at the beginning of the simulations is characterized by fully 
interacting P (blue) and N (green) particles, while the M particles (red, 
dotted) only see each other, and exclusively in the main copy of the system. 
At the end of MPH1, also the N particles (now green and dotted) are 
decoupled from the system and interact only with N particles, and only in 
the main copy of the system. This is also the starting point for MPH2. 
During MPH2, the M particles (red, dotted) are progressively coupled to the 
system and the end state has P (blue) and M (red) particles fully interacting, 
while the N particles (green, dotted) only see each other in the central copy. 

The free energies for the solvation of ILEA and GLNA computed with this new 

algorithm are reported in the next table. 
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 PREVIOUS 
TOTAL 

 (Table 6 

Table 6) 

TOTAL MPH1 MPH2 LRC 

ΔFI,solv 2.891±0.050 3.019±0.056 3.512±0.056 -0.0118±0.0022 -0.481 

ΔFQ,solv -8.354±0.054 -8.108±0.063 2.138±0.054 -9.714±0.032 -0.532 

Table 9: Results for the solvation of ILEA and GLNA with the new scheme for PME (all 
the numbers are given in kcal/mol). In the first column the data from Table 6 
is reported. The second column shows the total obtained with the new 
method. The third and fourth columns are the results of the MPH1 and 
MPH2 stages of the calculation. The last column reports the long-range 
correction (see Eq.(2.52)). 

The results are not identical but very close (the differences in the totals are below 

0.25kcal/mol).  
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Chapter 3: Derivation of The Smoluchovski Equation From MD using 
Milestoning 

In this chapter5 I discuss a method to derive the potential of mean force and the 

diffusion tensor in the space of coarse variables from MD data using Milestoning.53 The 

Milestoning analysis of a MD trajectory yields a model in which the dynamics in coarse 

space is described as transitions between milestones. Once the positions of these 

milestones have been chosen, the Milestoning analysis yields the rate constants for 

transition between nearby milestones. The determination of the rates provides a Master 

Equation.  

From the Master equation, we extract the potential of mean force and the 

diffusion tensor that appear in the Smoluchowski equation.54a This extraction follows the 

Kramers-Moyal expansion of the Master Equation.54 This expansion is exact if the 

dynamics in the space of coarse variables can be described by Brownian equations of 

motion.  

I used these expressions and extracted the potential of mean force and the 

diffusion tensor from a Milestoning analysis of three model systems.  

FROM THE MASTER EQUATION TO THE FOKKER-PLANCK EQUATION 

Consider an N -dimensional vector  
x  of N  coarse variables of interest. We 

assume that the time evolution of  
x  is Markovian and that it can be described by an 

overdamped equation  

  d
x = a x( )dt + 2b̂ x( )d


W t( )   (3.1) 

                                                
5 The work in this chapter was carried with my advisor Dr.Elber, who supervised the project. 
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where  

W t( )  is a vector of N  independent Wiener processes,87 i.e. Wi t( ) = 0  

and Wi t( )−Wi s( )⎡⎣ ⎤⎦ Wj t( )−Wj s( )⎡⎣ ⎤⎦ = δ ij t − s( )  with t > s  , δ ij  the usual Kronecker 

delta, and the product  b̂
x( )d

W t( )  should be integrated according to Ito calculus.56  

The probability of finding the system in position  
x  at time t  is  p

x,t( ) . The time 

evolution of the probability is described by a master equation: 

 
 

∂p x,t( )
∂t

= dy W x | y( ) p y,t( )−W y | x( ) p x,t( )⎡⎣ ⎤⎦∫   (3.2) 

The function  W
y | x( )  is the transition probability per unit time, and expresses the 

rate at which the system goes from state  
x  to state  

y . It is always non-negative, and it is 

connected to the conditional probability by 88 
 

 
p y,t +τ | x,t( ) = 1− D 0( ) x( )τ⎡⎣ ⎤⎦δ

x − y( ) +τW y | x( ) +O τ 2( )   (3.3) 

where 
 

 
D 0( ) x( ) = dx 'W x ' | x( )∫   (3.4) 

Here, we also assumed that the system is time homogeneous, so the rate does not 

depend on the absolute time t . If we expand  W
x | y( )  following the Kramers-Moyal 

(KM)54b, 54c technique, we obtain the following partial differential equation (see Appendix 

B): 

 
 

∂p x,t( )
∂t

= ⋅⋅⋅ (−1)n ∂n

∂xk1 ⋅⋅⋅ ∂xkn
Dk1⋅⋅⋅kn
(n) x( ) p x,t( )

kn=1

N

∑
k1=1

N

∑
n=1

∞

∑   (3.5) 

where  Dk1...kn
(n) x( )   are the KM coefficients: 

 
 
Dk1⋅⋅⋅kn
(n) x( ) = 1

n!
dy∫ yk1 − xk1( ) ⋅⋅⋅ ykn − xkn( )W y | x( )   (3.6) 

Note that for the n -th KM coefficient there are n  indexes ki , each of which runs 

from 1  to N . This means that the first KM coefficient is a vector of size N , the second 

is a matrix of size NxN etc. 

In general, this expansion cannot be truncated, but in some special cases it can be 

terminated at the second order. Pawula’s theorem54a, 54c states that if any of the KM 



 72 

coefficients of order higher than the second is equal to zero, then all the coefficients but 

the first and the second must be equal to zero. With this truncation we obtain the Fokker-

Plank equation: 

 
 

∂p x,t( )
∂t

= − ∂
∂xk1

Dk1
1( ) x( ) p x,t( )

k1=1

N

∑ + ∂2

∂xk1 ∂xk2
Dk1k2

2( ) x( ) p x,t( )
k2=1

N

∑
k1=1

N

∑   (3.7) 

The vector of the first order KM coefficients is defined 

 

 


A x( ) =

D1
(1) x( )
.
.
.

DN
(1) x( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

  (3.8) 

and the matrix of the second order KM coefficients is 

 

 

D̂ x( ) =

D1,1
(2) x( ) D1,2

(2) x( ) . . . D1,N
(2) x( )

D2,1
(2) x( ) D2,2

(2) x( ) . . . D2,N
(2) x( )

. . . . . .

. . . . . .

. . . . . .
DN ,1
(2) x( ) . . . . DN ,N

(2) x( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  (3.9) 

TheN -dimensional Fokker-Plank equation becomes  

 
 

∂p x,t( )
∂t

= −

∇⋅

A x( ) p x,t( )⎡⎣ ⎤⎦ +


∇

∇T : D̂ x( ) p x,t( )⎡⎣ ⎤⎦   (3.10) 

The vector 

A x( ) is associated with the drift of the probability distribution, while 

the matrix D̂
x( )with its spread (diffusion). 

We require that the diffusion matrix D̂
x( ) , other than being symmetric (see 

definition in equation (3.6)), is positive definite. In this case, there exists a symmetric 

matrix  b̂
x( )  such that: 

 
 
Dij
x( ) = bik

x( )bjk
x( )

k=1

N

∑   (3.11) 
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If the time evolution of the N  variables of interest is given by Eq.(3.1), it is 

possible to show that only the first two KM coefficients are different from zero 54a, 56 (see 

Appendix C). Therefore the truncation of the Master Equation expansion at the second 

order is exact, and equation (3.10) describes the evolution of the probability distribution, 

with  
a x( ) =


A x( )  and where the relationship between  b̂

x( )  and  D̂
x( )  is given in (3.11). 

Following a statistical mechanical recipe for a system in contact with a thermal 

reservoir, the equilibrium probability distribution of the N variables of interest is given 

by: 

 
 

peq
x( ) = e−βU

x( )

e−βU
x( ) dx∫

  (3.12) 

where  U
x( )  is the potential of mean force (averaged over the degrees of freedom 

that are not described by the N  variables of interest), and β = 1/ kBT , with T  

temperature and kB  the Boltzmann constant. The Fokker-Planck equation that meets 

these conditions is: 

 

 

∂p x,t( )
∂t

= − ∂
∂xi

−β Dij
x( ) ∂
∂x j

U x( )
j=1

N

∑ + ∂
∂x j

Dij
x( )

j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
p x,t( )

i=1

N

∑

+ ∂2

∂xi ∂x jj=1

N

∑ Dij
x( ) p x,t( )

i=1

N

∑
  (3.13) 

Using the KM coefficients (3.6), we can compute 

 
 
Dij
x( ) = 1

2
dx ' x 'i− xi( )∫ x ' j− x j( )W x ' | x( )   (3.14) 

 
 

βDij
x( )Fj

x( )
j=1

N

∑ + ∂
∂x j

Dij
x( )

j=1

N

∑ = dx ' x 'i− xi( )W x ' | x( )∫   (3.15) 

So far, the only assumption that we made is that the dynamics of the variables of 

interest is overdamped. 
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 MILESTONING AND THE KRAMERS-MOYAL COEFFICIENTS 

The Milestoning equations53 describe the dynamics in the space of coarse 

variables using three quantities. The first quantity is pα t( ) , the probability of being at 

milestone α  at time t . The second quantity is the flux across milestone α  at time t , 

qα t( ) , which is the probability of crossing that milestone exactly at time t . Finally, we 

consider the kernel Kαβ t( ) , which defines the probability that a trajectory that crosses 

milestone α  then crosses milestone β  exactly after time t . These three quantities can be 

arranged in the two defining equations for Milestoning: 

 pα t( ) = qα t '( ) 1− Kαβ τ( )dτ
0

t−t '

∫
β
∑

⎡

⎣
⎢

⎤

⎦
⎥dt '

0

t

∫   (3.16)  

 qα t( ) = pα 0( )δ t − ε( ) + qβ t '( )Kβα t − t '( )dt '
0

t

∫
β
∑   (3.17)   

Equation (3.16) states that the probability that at time t  milestone α  was the last 

milestone to be crossed is equal to the probability of crossing milestone α  at some 

previous time t ' , multiplied by the probability of staying in α for the remaining time 

t − t '  (the term is square brackets). Equation (3.17) instead states that the probability of 

crossing milestone α  at time t is equal to the probability of crossing some other 

milestone β  at an earlier time t ' , multiplied the probability of crossing milestone α

exactly after t − t ' from the previous crossing. The initial condition has to be considered 

as well, stating that is possible to have a crossing at time 0 if a trajectory starts from 

milestone α . Note also that, the conservation of probability imposes that: 

 Kαβ t( )dt
0

∞

∫
β
∑ = 1   (3.18) 

which means that a trajectory starting at milestone α  at time 0 has to go 

somewhere. 
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To solve these equations we employ a few properties of the Laplace transforms 

that I describe here. Given a function F t( ) , its Laplace transform is defined as: 

 
 

F u( ) = e−utF t( )dt
0

∞

∫   (3.19)  

The Laplace transform of a derivative of a function can be readily obtained 

integrating by parts: 

 
 
e−ut d

dt
F t( )

0

∞

∫ = −F 0( ) + u F u( )   (3.20) 

Given another function G t( ) , the convolution of this function with F t( )  is 

defined as: 

 
 
F G t( ) = F t '( )G t − t '( )dt '

0

t

∫   (3.21) 

The Laplace transform of this convolution can be obtained with an appropriate 

change of variables. Indeed we have: 

 
 
e−utF G t( )dt

0

∞

∫ = dt  e−ut F t '( )G t − t '( )dt '
0

t

∫
0

∞

∫   (3.22)  

The change of variables is pictorially represented in Figure 14. 
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Figure 14 Pictorial illustration of the change of variables used to compute the Laplace 
transform of a convolution (see Eq.(3.24)) and of an integral (see Eq.(3.25)). 
(A) The integration is performed on the plane marked by the blue dashed 
lines. The variable t  goes from 0 to infinity, while the variable t '  goes from 
0 to t , as highlighted by the direction of the dashed blued lines. (B) The 
same integration domain as in (A), but in this case it is spanned in a 
different way.  The variable t '  goes from 0 to infinity, while the variable t  
goes from t ' to infinity, as highlighted by the direction of the dashed red 
lines. 

Figure 14A represents the previous integral, in which t '  varies between 0 and t , 

which in turn goes from 0 to infinity. The area covered with blue dashed lines represent 

the area where the integral is performed. The direction of the lines indicates the 

“direction” of the integration. The same area can be covered in a different way, as in Fig. 
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B. In Figure 14B t '  spans the range from 0 to infinity, while t  goes from t '  to infinity. If 

we apply this transformation of variables to Eq. (3.22) we get: 

 dt  e−ut F t '( )G t − t '( )dt '
0

t

∫
0

∞

∫ = dt ' e−utF t '( )G t − t '( )dt
t '

∞

∫
0

∞

∫   (3.23) 

If we now define τ = t − t ' , change the variables in the second integral and 

substitute in the exponent t  with t '+ τ , it is readily shown that: 

 
 
e−utF G t( )dt

0

∞

∫ = F u( ) G u( )   (3.24) 

The Laplace transform of the integral of a function can be obtained with exactly 

the same transformation of variables: 

 
 
dt  e−ut dt 'F t '( )

0

t

∫
0

∞

∫ = dt 'F t '( ) dt
t '

∞

∫  e−ut = 1
u0

∞

∫ dt 'F t '( )e−ut '
0

∞

∫ =
F u( )
u

  (3.25) 

Using these properties, we can readily carry out the Laplace transforms of 

Eq.(3.16) and Eq.(3.17): 

 
 
upα u( ) = qα u( ) 1− Kαβ u( )

β
∑⎡

⎣
⎢

⎤

⎦
⎥   (3.26) 

 
 
qα u( ) = pα 0( ) + qβ u( ) Kβα u( )

β
∑   (3.27) 

Using Eq.(3.26) and Eq.(3.27) it is possible to derive thermodynamic information, 

such as the stationary probability of being on each milestone,53b and kinetic information, 

such as the mean first passage time to go from a milestone to another one.53b Here, these 

equations will be used to establish the connection between the Milestoning formalism, 

the Generalized Master Equation (GME),53a the Master Equation (ME),53b and to show 

what formula with should use to derive the rates in the ME from Milestoning.53b 

To do so, we start by a simple manipulation of the Eq.(3.26): 

 
upα u( ) = qα u( ) − qα u( ) Kαβ u( )

β
∑ = pα 0( ) + qβ u( ) Kβα u( )

β
∑ − qα u( ) Kαβ u( )

β
∑   
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where we used Eq.(3.27) to remove the first  qα u( ) . We can now use Eq.(3.26) to 

get rid of the flux and have an expression for the probability alone: 

 

 

upα u( ) − pα 0( ) = pβ u( ) u Kβα u( )
1− Kβγ u( )

γ
∑β

∑ − pα u( ) u Kαβ u( )
1− Kαγ u( )

γ
∑β

∑   (3.28) 

Now, the GME is: 

 dpα t( )
dt

= dt 'Wβα t − t '( ) pβ t '( )
0

t

∫
β
∑ − dt 'Wαβ t − t '( ) pα t '( )

0

t

∫
β
∑   (3.29) 

The Laplace transform of the GME is: 
 

 
upα u( ) − pα 0( ) = pβ u( ) Wβα u( )

β
∑ − pα u( ) Wαβ u( )

β
∑   (3.30)  

The two equations (3.28) and (3.30) describe the same quantity, the Laplace 

transform of the probability pα t( ) . Therefore, comparing the two, we arrive to the 

following: 

 

 

Wαβ u( ) = u Kαβ u( )
1− Kαγ u( )

γ
∑

  (3.31)  

This equation provides the connection between the transition probability per unit 

time and the Milestoning kernel.  

In the case in which the system is Markovian, the GME becomes the ME: 

 dpα t( )
dt

= Wβα pβ t( )
β
∑ − Wαβ pα t( )

β
∑   (3.32) 

This equation is exactly the same as the one in Eq.(3.2), with the only difference 

that now the state space is discrete instead of being continuous. 

The ME can be derived from the GME if  
 Wαβ t( ) =Wαβδ t( )   (3.33) 

This means that the system has no memory of where it was before, and the 

probability of transiting is not affected by the past. This is an approximation. On the other 
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hand, if we chose properlyWαβ  we get two important properties from the Markov model. 

First of all, it preserves the equilibrium distribution obtained with Milestoning.53b 

Secondly, it preserves the first moment of the first passage time distribution (i.e. the 

mean first passage time) but not higher moments.89 The choice that guarantees this is: 

 Wαβ = Wαβ t( )dt
0

∞

∫   (3.34) 

From the definition of Laplace transform (Eq.(3.19)), it is readily seen that: 

 
 
Wαβ = Wαβ t( )dt

0

∞

∫ = Wαβ 0( )   (3.35) 

We can now use Eq.(3.31) to get: 

 

 

Wαβ 0( ) = lim
u→0

u Kαβ u( )
1− Kαγ u( )

γ
∑

  (3.36) 

Recalling the definition of Laplace transform (3.19), we can rewrite the 

denominator of Eq.(3.36) as: 

 
 
1− Kαβ u( )

β
∑ = 1− e−ut

0

∞

∫ Kαβ t( )dt
β
∑   (3.37) 

Since we are looking at limit for vanishing u , we can expand the exponent in the 

integral and, recalling Eq.(3.18) we get: 

 1− 1− ut +O u2( )⎡⎣ ⎤⎦
0

∞

∫ Kαβ t( )dt
β
∑ = u t

0

∞

∫ Kαβ t( )dt
β
∑ +O u2( )   (3.38)  

If we plug this result back in the denominator of Eq.(3.36), in the limit for 

vanishing u  we get: 

 Wαβ =
Kαβ t( )dt

0

∞

∫

tKαβ t( )dt
0

∞

∫
β
∑

  (3.39) 
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We are now left with the interpretation of this result. The numerator is the 

probability of going from milestone α  to milestone β  at any time. Let’s call it p α ,β( ) . 

The denominator is the probability that the transition from milestone α  to any milestone 

β  happens exactly after a time t  from the moment that milestone α  was crossed, times 

that time t , integrated on time. This is the average residence time on milestone α , and 
let’s call it τ α( ) .  Interestingly, this formula was also derived starting from a 

Markovian system using a maximum likelihood argument.61  

How can we practically compute the KM coefficients from a MD simulation? 

What we need is a way of estimating the rates W  from the trajectories obtained in MD. 

To do so, we use Milestoning.53 We divide our space using milestones, as illustrated in 

Figure 15 
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Figure 15: The trajectory crosses milestones in the x  direction (red, green and blue 
vertical lines). Every time that the trajectory crosses a milestone it belongs 
to that milestone (i.e. it is labeled with the specific color in the figure) until 
it crosses the next, or the previous milestone. 

 

Here we divided a two dimensional system in NMS  milestones defined by lines 

parallel to the y -axis. The milestones are denoted by Greek letters in sequence, from 1  to 

NMS  and are used to label fragments of a trajectory. Every time a trajectory crosses a 

milestone it is assigned to that milestone until it crosses another milestone. In this way, 

the trajectory is coarse grained to hops between a series of milestones. Instead of 
x t( ), y t( )( )  - the full coordinate set as a function of time - we have 

x"

y"
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α tα ≤ t < tβ( ),β tβ ≤ t < tγ( ),γ tγ ≤ t( ),...  where tν  is the time in which ν  was crossed by 

the trajectory x t( ), y t( )( ) . Alternatively, we can run multiple trajectories starting from 

each milestone and terminate them when they cross a neighboring milestone. Both 

approaches give us the kinetic information that we need, namely the local transition 

probabilities and local transition time between nearby milestones. 

We record the average amount of time that it takes for a trajectory to leave 
milestone α 	  as τ α( )  and the probability of going from milestones α  to milestone β  

as p α ,β( ) . Therefore, following Eq. (3.39), the rate of going from milestone α  to 

milestone β  is: 53b 

 k α;β( ) = p α ,β( )
τ α( )   (3.40) 

Once we extract the rate coefficients, we can calculate the force and the space-

dependent diffusion using Eq. (3.14) and (3.15). The KM coefficients that we need are: 

 βD x( )F x( ) + d
dx
D x( ) = dx ' x '− x( )W x ' | x( )∫   (3.41) 

 D x( ) = 1
2

dx ' x '− x( )2∫ W x ' | x( )   (3.42) 

Using the coarse and discrete description provided with Milestoning data, we 

obtain the rate coefficients between nearby milestones. This means that we should 
substitute in equations (3.41) and (3.42) W x ' | x( )  with W β |α( ) =W x ' = xβ | x = xα( )  , 

where xα  and xβ  are the position in space of milestone α   and β  , respectively. Since 

we only have transitions between neighboring milestones, W β |α( ) is: 

 W β |α( ) = k α;α +1( )δ x '− xα + Δ x( )⎡⎣ ⎤⎦ + k α;α −1( )δ x '− xα − Δ x( )⎡⎣ ⎤⎦  

 (3.43) 

where the rate coefficients k  are given by (3.40), and Δ x  is the distance between 

two milestones. If we plug this expression in (3.41) and (3.42) we get: 
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 βD α( )F α( ) + dD α( )
dx

= Δ x k α;α +1( )− k α;α −1( )⎡⎣ ⎤⎦   (3.44) 

 D α( ) = Δ x
2

2
k α;α +1( ) + k α;α −1( )⎡⎣ ⎤⎦   (3.45) 

The derivative in space of the diffusion coefficient may be approximated 

numerically, for instance by 

 dD α( )
dx

≈
D α +1( )− D α −1( )

2Δ x

  (3.46) 

The one-dimensional case is the simplest one. Often though, we need to account 

for multiple coarse variables. These variables may not be independent, and the analysis of 

their correlation is of interest. Let’s consider a two-dimensional case, where the two 

coarse variables are x, y( ) . We need to compute the following KM coefficients: 

 
βDxx x, y( )Fx x, y( ) + βDxy x, y( )Fy x, y( ) + ∂

∂x
Dxx x, y( ) + ∂

∂y
Dyx x, y( )

= dx 'dy ' x '− x( )W x ', y ' | x, y( )∫
  (3.47) 

 Dxx x, y( ) = 1
2

dx 'dy ' x '− x( )2W x ', y ' | x, y( )∫   (3.48) 

 
βDyx x, y( )Fx x, y( ) + βDyy x, y( )Fy x, y( ) + ∂

∂x
Dxy x, y( ) + ∂

∂y
Dyy x, y( )

= dx 'dy ' y '− y( )W x ', y ' | x, y( )∫
  (3.49) 

 Dyy x, y( ) = 1
2

dx 'dy ' y '− y( )2W x ', y ' | x, y( )∫   (3.50) 

 Dxy x, y( ) = 1
2

dx 'dy ' x '− x( ) y '− y( )W x ', y ' | x, y( )∫   (3.51) 

 

The KM coefficients in equations (3.47)-(3.51) can be classified in three types. 

The first two (equations (3.47)-(3.48)) are integrals of the transition rate W x ', y ' | x, y( )  

multiplied by powers of x '− x( )  and are called case (a). The next two (equations (3.49)-

(3.50)) involve instead powers of y '− y( )  and are called case (b). Finally, the last one 

(equation (3.51)) is an integral of the product x '− x( ) y '− y( )  and is called case (c). 
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To simplify these integrals, we use sets of milestones with different orientations. 

The first two integrals are simplified if the transitions that we count happen between 

milestones with fixed distance projected on the x-axis, i.e. x '− x( ) = ±Δ x . Similar 

simplified equations (3.49)-(3.50) are obtained if the sets of milestones are with a fixed 
distance along the y-axis, i.e. y '− y( ) = ±Δ y . A related reasoning is not possible for the 

last KM equation (3.51), for which we need a slightly more complicated equation. 

We proceed to explain each of these three different cases. 

To compute the KM integrals in equations (3.47)-(3.48), we discretize the 

trajectory shown in Figure 15 as illustrated in Figure 16: 
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Figure 16: milestones for case (a). All the milestones are parallel to the y -axis, but in 
contrast to the one-dimensional case (Figure 15), they are not lines. Instead 
they are segments whose ends are rhomboidal arrows. The transition 
between different segments is a jump between two milestones. 

 

Each of the NMSX  milestones of Figure 15 is now divided into NMSY  milestones 

(represented in Figure 16 by continuous, dashed and dotted lines) of size Δ y . The idea of 

partitioning the milestones in this way is of Hawk and Makarov.90 The NMSY milestones 

are labeled with increasing integers, from 1  toNMSY , from bottom to top. We need two 

indices to identify a milestone: one for the position in x  (the color in Figure 16, in what 

follows identified with a Greek letter and the subscript x ) and one for the position in y  

x"

y"
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(the styles of the lines in Figure 16, in what follows identified with a Greek letter and the 
subscript y ). So, a milestone will be identified by the vector 

 

α = α x ,α y( ) . Note that each 

milestone has 3NMSY −1  neighbors. Following Fig. 2, each milestone is defined as the set 

of points x, y( )  that are such that x = xα x
,  yα y

−
Δ y

2
≤ y < yα y

+
Δ y

2
⎧
⎨
⎩

⎫
⎬
⎭

. The Milestoning 

analysis of the trajectory gives us the rate of going from any point at milestone  

α  to any 

point at milestone  

β . Since the milestones that are accessible from milestone  


α  are those 

belonging to the set βx ,βy( )  α x −1≤ βx ≤α x +1 and βx ,βy( ) ≠ α x ,α y( ){ } , the transition 

probability per unit time obtained with Milestoning  W
1( ) x ', y '( ) | x, y( )∈ α⎡⎣ ⎤⎦  is 

 

 

W 1( ) x ', y '( ) | x, y( )∈ α⎡⎣ ⎤⎦ =

k α x ,α y;α x +1,βy( )δ x '− xα x
+ Δ x( )⎡⎣ ⎤⎦ϒβy

y '( ){
βy=1

NMSY

∑

+k α x ,α y;α x −1,βy( )δ x '− xα x
− Δ x( )⎡⎣ ⎤⎦ϒβy

y '( )

+k α x ,α y;α x ,βy( )δ x '− xα x( )ϒβy
y '( ) 1−δα y ,βy

⎡⎣ ⎤⎦}

 (3.52) 

where ϒβy
y '( )  is the following function 

 ϒβy
y( ) =

1
Δ y

if   yβy −
1
2
Δ y ≤ y < yβy +

1
2
Δ y  

0 otherwise

⎧

⎨
⎪

⎩
⎪

  (3.53) 

Note that we labeled the transition probability per unit time 
 
W 1( ) β | α( )with the 

suffix 1( )  to highlight that this rate was obtained with the milestones in Figure 16. If we 

plug equation (3.52) in equations (3.47)-(3.48) we get: 

 
βD 1( )

xx α x ,α y( )F 1( )
x α x ,α y( ) + βD 1( )

xy α x ,α y( )F 1( )
y α x ,α y( ) + ∂D 1( )

xx α x ,α y( )
∂x

+
∂D 1( )

xy α x ,α y( )
∂y

= Δ x k α x ,α y;α x +1,βy( )− k α x ,α y;α x −1,βy( )⎡⎣ ⎤⎦
βy=1

NMSY

∑
  (3.54) 

 D 1( )
xx α x ,α y( ) = 12 Δ x

2 k α x ,α y;α x +1,βy( ) + k α x ,α y;α x −1,βy( )⎡⎣ ⎤⎦
βy=1

NMSY

∑   (3.55) 
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A similar strategy can be devised to compute the KM coefficients in equations 

(3.49)-(3.50), and the same trajectory is re-analyzed with a new set of milestones parallel 

to the x  axis as in Figure 17 

 

Figure 17 Same trajectory as Figure 15 and Figure 16, but this time discretized to show 
transitions between milestones parallel to the x -axis. As in Figure 16, the 
milestones are segments whose ends are represented as rhomboidal arrows. 

 

In this case, there are NMSY milestones parallel to the x -axis, separated by Δ y . 

Each of these milestones is then divided into NMSX  milestones of size Δ x . A milestone 

 

α = α x ,α y( )  is identified by the set of points x, y( )  such that 

x"

y"
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xα x
− Δ x

2
≤ x < xα x

+ Δ x

2
,  y = yα y

⎧
⎨
⎩

⎫
⎬
⎭

. As before, the 3NMSX −1milestones that are neighbor 

to milestone  

α  are those belonging to the set 

βx ,βy( )  α y −1≤ βy ≤α y +1 and βx ,βy( ) ≠ α x ,α y( ){ } . We can now define the transition 

probability per unit time, obtained with a Milestoning analysis performed according to 
Figure 17,  W

2( ) x ', y '( ) | x, y( )∈ α⎡⎣ ⎤⎦ , which is: 

 

 

W 2( ) x ', y '( ) | x, y( )∈ α⎡⎣ ⎤⎦ = k α x ,α y;βx ,α y +1( )δ y '− yα y
+ Δ y( )⎡

⎣
⎤
⎦ϒβx

x '( ){
βx=1

NMSX

∑

+k α x ,α y;βx ,α y −1( )δ y '− yα y
− Δ y( )⎡

⎣
⎤
⎦ϒβx

x '( )

+k α x ,α y;βx ,α y( )δ y '− yα y( )ϒβx
x '( ) 1−δα x ,βx

⎡⎣ ⎤⎦}
         

(3.56) 
 

where ϒβx
x '( ) is defined 

 ϒβx
x( ) =

1
Δ x

if   xβx −
1
2
Δ x ≤ x < xβx +

1
2
Δ x  

0 otherwise

⎧

⎨
⎪

⎩
⎪

  (3.57) 

If we plug equation (3.56) in equations (3.49)-(3.50) we get: 

βDyx
2( ) α x ,α y( )Fx 2( ) α x ,α y( ) + βDyy

2( ) α x ,α y( )Fy 2( ) α x ,α y( ) + ∂Dyx
2( ) α x ,α y( )
∂x

+
∂Dyy

2( ) α x ,α y( )
∂y

= Δ y k α x ,α y;βx ,α y +1( )− k α x ,α y;βx ,α y −1( )⎡⎣ ⎤⎦
βx=1

NMSX

∑
 (3.58) 

 Dyy
2( ) α x ,α y( ) = 12 Δ y

2 k α x ,α y;βx ,α y +1( ) + k α x ,α y;βx ,α y −1( )⎡⎣ ⎤⎦
βx=1

NMSX

∑   (3.59) 

  

We are left with the last case: the calculation of the KM coefficient in equation 
(3.51). To do so, we plug

 
W 1( ) β | α( )  in (3.51). With more algebra than before, and 

remembering that in the y  direction the milestones are labeled with rising integers from 

bottom to top, we obtain: 
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D 1( )
xy α x ,α y( ) = 12 βy −α y( )Δ yΔ x k α x ,α y;α x +1,βy( )− k α x ,α y;α x −1,βy( )⎡⎣ ⎤⎦

βy=1

NMSY

∑  (3.60) 

Note that, the integrand of equation (3.51), x '− x( ) y '− y( ) , is substituted with the 

spacing between two milestones in the x  directionΔ x , and the spacing between the 

center of milestone βx ,βy( )  and milestone α x ,α y( ) , which is βy −α y( )Δ y (see Figure 

18). 

 

Figure 18 The same milestone scheme as in Figure 16. The starting milestone is labeled 
with a green dot. The other milestones are reported together with their 
distance on x  and y  from the initial milestone.  

 

The derivation assumes that the discretization of spatial coordinates provide an 

accurate representation of the continuum limit.  

x"

y"

(%Δx","Δy)" (Δx","Δy)"

(Δx","2Δy)"

(%Δx","2Δy)"

(%Δx","Δy)"

(%Δx",2Δy)"

(%Δx","0)"

(Δx","%2Δy)"

(Δx","%Δy)"

(Δx","0)"

(0","2Δy)"

(0","Δy)"

(0","%2Δy)"

(0","%Δy)"
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If the size of the milestones and the distance between two milestones is “small 

enough”, the discretization of the transition probability per unit time should introduce 

only a small error. Intuitively, the “smallness” of the discretization step should depend on 

the curvature of the underlying force and space-dependent diffusion. Since those are not 

known, it may not be easy to establish a-priori a good spacing for the milestones. 

However, some experimentation and exploratory simulations of the system are likely to 

solve this problem. Perhaps more significant is the scale frustration. The particle 

simulations require significant separation between the milestones to obtain reliable 

transition dynamics. The estimate of the derivative for the Smoluchowski Eq. is optimal 

when the distance between the milestones is as small as possible. 

 

A numerical illustration to test the reliability of the method is provided in the next 

section. 
 

NUMERICAL ILLUSTRATION 

As an illustration of the algorithm presented in the previous section, we run a test 

case for which we know the exact answer. We follow the steps below: 

1. Choose a functional form for the potential  U
x( )  and the matrix  b̂

x( )  or 

  D̂
x( ) ;  

2. Run a Brownian dynamics simulation using Ermak and McCammon 

formula91 that follows the Euler-Maruyama algorithm:92 

  
xn+1 =

xn + β D̂
xn( ) ⋅ F xn( )dt +


∇⋅ D̂ xn( )dt + 2dtb̂ xn( ) ⋅ N 0,1( )   (3.61) 



 91 

where  

N 0,1( )   is a vector of independent random numbers sampled from 

a Gaussian distribution of average 0   and variance 1 , and 

 

F x( ) = −


∇U x( )   is the force; 

3. Perform a Milestoning analysis to compute the rate coefficients from the 

time traces; 

4. Use the KM expansion to extract  

FKM

x( )  and  D̂KM
x( ) . 

5. Compare the input force vector and diffusion tensor with the results 

generated by our analysis. 

 

We first consider a one-dimensional test case. We chose the example used in 60 

where the force is βF x( ) = −cos 2x( )  and the diffusion constant is

D x( ) = 0.2 + 0.1sin(x)[ ]rad2 /ps . We divide the system into 24 milestones. We run 

Nα = 30000 trajectories starting from each milestone α  and terminate when the 

following or previous milestone is reached. The results for the potential and the diffusion 

are reported in Figure 19 and Figure 20.  
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Figure 19 Force used for the 1D test case. The red line shows the input force, the blue 
dots and the green squares are the results of simulations carried out with 
time step 0.0001ps and 0.00001ps, respectively. The time scale and units 
were adopted from 60. The error bars were computed propagating the 
statistical error on the rates (3.62) to the expression for the force. The errors 
are smaller than the size of the symbols. 
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Figure 20 Diffusion coefficient used in the 1D test case. The red line shows the input 
space-dependent diffusion coefficient, the blue dots and the green squares 
are the results of simulations carried out with time step 0.0001ps and 
0.00001ps, respectively. The time scale and units were adopted from 60. The 
error bars were computed propagating the statistical error on the rates (3.62) 
to the expression for the diffusion. The errors are smaller than the size of the 
symbols. 

 

The statistical error bars are smaller than the size of the dots in the plot. The 

statistical error for the evaluation of the rate constant is computed as: 

 σ 2 k α ,β( )⎡⎣ ⎤⎦ =
k2 α ,β( )
Nαβ

p α ,β( ) 1− p α ,β( )⎡⎣ ⎤⎦
p α ,β( )2

+
τα
2 − τα

2

τα
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (3.62) 
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where Nαβ  is the number of trajectories that start from milestone α  and reach 

milestone β  before any other milestone. 

In equation (3.62) we assumed that p α ,β( ) is binomial. The errors are then 

propagated to the diffusion and the force. A normal distribution of the errors was 

assumed in an earlier study93 which is an approximation to the expression derived here. 

The force is recovered with high accuracy for both of the time steps used (Figure 

19), while the space-dependent diffusion shows some dependence on the time step 

(Figure 20). Nevertheless, the algorithm reproduces the expected space-dependent 

diffusion equation well. 

 

We also simulated two different 2D models. In these cases, we ran one long 

trajectory of 1011  steps with a time step of 10−5τ  (τ  is an arbitrary unit of time), saving 

the configurations every 10  steps. The analysis was then performed using 11  milestones 

per side that were used to truncate the long trajectory to the desired fragments and to 

estimate the rate coefficients. In both cases, the length of the periodic box was of 2.2λ (

λ  is an arbitrary unit of length). In the first case, the following 2D potential and 2D 

diffusion tensor were used 

 
βU x, y( ) =U0 cos

2π
L

x − L
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
sin 2π

L
y − L

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

D̂ x, y( ) = D0 + D1 cos
2π
L

x − L
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

  (3.63)  

Here, the off-diagonal terms of the diffusion tensor are equal to zero, and the 

diagonal ones are equal. The parameters U0 , D0  and D1  were set equal to 0.5 ,	  

0.03λ 2 /τ 	  and 0.01λ 2 /τ . The results are reported in Figure 21-Figure 25. The statistical 

errors are derived from the rate coefficients (Eq. (3.62)). An error was also added in the 
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estimate of the off-diagonal term of the diffusion tensor, where the term x '− x( ) y '− y( )  in 

Eq. (3.51) is approximated as βy −α y( )Δ yΔ x , as in Eq. (3.60). While the contribution 

coming from the displacement in x is exact, the displacement in y lies in the interval 
βy −α y −1( )Δ y , βy −α y +1( )Δ y⎡⎣ ⎤⎦ . The resulting error was computed as if the distribution 

of distances is uniform, and it found to be Δ y / 2( )2 / 3Nαβ . 
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Figure 21 
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Figure 21: Force in the x  direction. (A) The thin meshed surface represents the force 
given in input, the thicker lines interpolate the values computed at the 11x11 
milestones. (B-E) Different cross-sections of the 3D plot. The red line is the 
expected profile, the green points are the result of the simulation. (B) The 
force as a function of x  with y = −0.6 . (C) The force as a function of x  
with y = 0.6 . (D) The force as a function of y  with x = −0.6 . (E) The force 
as a function of y  with x = 0.6 . 
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Figure 22 Force in the y  direction. (A) The thin meshed surface represents the force 
given in input, the thicker lines interpolate the values computed at the 11x11 
milestones (B-C) Different cross-sections of the 3D plot. The red line is the 
expected profile, the green points are the result of the simulation. (B) The 
force as a function of x  with y = 0.0 . (C) The force as a function of y  with 
x = 0.0 .  
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Figure 23 Diffusion tensor, xx  component. (A) The thin meshed surface represents the 
function given in input, the thicker lines interpolate the values computed at 
the 11x11 milestones. (B) A cross-section corresponding to y = 0.0  is 
shown. The red line is the exact result, the green dots are the result for the 
simulation. 
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Figure 24 Diffusion tensor, yy component. (A) The thin meshed surface represents the 
function given in input, the thicker lines interpolate the values computed at 
the 11x11 milestones. (B) A cross section corresponding to y = 0.0  is 
shown. The red line is the exact result, the green dots are the result for the 
simulation. 
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Figure 25 Diffusion tensor, xy  component. (A) The lines interpolate the values computed 
at the 11x11 milestones. The expected result is 0 .  (B) A cross-section 
corresponding to y = 0.0  is shown. The red line is the exact result, the green 
dots are the result for the simulation. Note that the deviations from zero are 
an order of magnitude smaller than sizes of other elements of the diffusion 
tensor. 
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Figure 21 and Figure 22 show a comparison between the forces inserted in input 

and the output of the analysis carried out according to the previous section. The statistical 

errors are roughly of the size of the dots. The overall χ 2  is equal to 1.64 for Fx α ,β( )  

and 0.99 for Fy α ,β( ) . Figure 23-Figure 25 show the different components of the 

diffusion tensor. The results are less noisy than those in Figure 21. However the 

simulated space-dependent diffusion coefficient is slightly under-estimated, resulting in a 

χ 2 of around 10 for the diagonal terms and 3 for the off diagonal term. The reasons for 

this possible discrepancy are discussed in the end of this section. The shapes are 

recovered quite well, and the off-diagonal term, which was expected to be zero, is found 

to be more than an order of magnitude smaller than the diagonal terms. 

In the second 2D test case, we used the same potential as in the first case (eq. 

(3.63)) but a different diffusion tensor. In particular, we decided to test a case in which 

the off-diagonal terms of the diffusion tensor were of the same order of magnitude as the 

diagonal terms. We used a b̂ x, y( )  tensor with the following components: 

 

bxx x, y( ) = D0 + D1 sin
2π
L

x − L
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

byy x, y( ) = D0 + D1 sin
2π
L

y − L
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

bxy x, y( ) = byx x, y( ) = α 0D0 +α1D1 sin
2π
L

x − L
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  (3.64) 

with the parameters α 0 , α1 , D0  and D1  set equal to 0.25, 0.125, 0.03λ 2 /τ and 

0.01λ 2 /τ . The diffusion tensor D̂ x, y( )  is obtained from b̂ x, y( )  as in eq. (3.11). The 

results are reported in the following figures. 
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Figure 26 Force in the x  direction for the second 2D test case. (A) The thin meshed 
surface represents the force given in input, the thicker lines interpolate the 
values computed at the 11x11 milestones. (B-E) Different cross-sections of 
the 3D plot. The red line is the expected profile, the green points are the 
result of the simulation. (B) The force as a function of x  with y = −0.6 . (C) 
The force as a function of x  with y = 0.6 (D) The force as a function of y  
with x = −0.6 . (E) The force as a function of y  with x = 0.6 .  
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Figure 27 Force in the y  direction for the second 2D test case. (A) The thin meshed 
surface represents the force given in input, the thicker lines interpolate the 
values computed at the center of the 11x11 milestones (B-C) Different 
cross-sections of the 3D plot. The red line is the expected profile, the green 
points are the result of the simulation. (B) The force as a function of x  with 
y = 0.0 . (C) The force as a function of y  with x = −0.6 .  
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Figure 28 Diffusion tensor for the second 2D test case, xx  component. (A) The thin 
meshed surface represents the function given in input, the thicker lines 
interpolate the values computed at the 11x11 milestones. (B) A cross-section 
corresponding to y = 0.0  is shown. The red line is the exact result, the green 
dots are the result for the simulation. 
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Figure 29 Diffusion tensor for the second 2D test case, yy  component. (A) The thin 
meshed surface represents the function given in input, the thicker lines 
interpolate the values computed at the 11x11 milestones. (B) A cross-section 
corresponding to x = 0.0  is shown. The red line is the exact result, the green 
dots are the result for the simulation. 
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Figure 30 Diffusion tensor for the second test case, xy  component. (A) The thin meshed 
surface represents the function given in input, the thicker lines interpolate 
the values computed at the 11x11 milestones. (B-E) Four cross-sections of 
the 2D surface: (B) cross-section corresponding to y = −0.6 ; (C) cross-
section corresponding to y = 0.6 ; (D) cross-section corresponding to 
x = −0.6 ; (E) cross-section corresponding to x = 0.6 . The red line is the 
exact result, the green dots are the result for the simulation. 
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Figure 26 and Figure 27 show the two components of the force vector. The 

expected value is the same as in Figure 21 and Figure 22, the recovery of the two-

dimensional surface is noisier, but the results are again within the statistical error ( χ 2 of 

0.34 and 0.36 for the two components of the force). Figure 28-Figure 30 show the 

different components of the diffusion tensor. The shape of each of the elements of the 

diffusion tensor is recovered even though, as highlighted from the one-dimensional 

sections of the two-dimensional surfaces (Figure 28B, Figure 29B, and Figure 30B-E), 

there is a slight underestimate of the maxima and overestimate of the minima, which 

exceeds the statistical error ( χ 2  of around 10-20). As shown in the one-dimensional test 

case, the accuracy of the integrator used, and the choice of the time-step, might account, 

at least partially, to this small discrepancy. To test this hypothesis, we evaluated and 

reported in Figure 31 the dependence of the error in the evaluation of Dxx x, y( ) at 

x = −0.6  and y = 0.0 from  

1. The size of the milestone in the y  direction, Δ y   (Figure 31A); 

2. The distance between two milestones in the x  direction, Δ x   (Figure 

31B); 

3. The time step (Figure 31B). 
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Figure 31 Analysis of the numerical errors in the calculations of the diffusion tensor. The 
green lines are the exact results. (A) The red squares are computed for 
distances between two milestones Δ x = 0.2  and variable size Δ y of a 
milestone. (B) The blue dots are simulations carried out with Δ x = 0.2 and 
Δ y = 0.2 using the time steps reported on the x -axis, while the red squares 
were obtained from simulations performed after changing the spacing 
between milestones to Δ x = 0.01 . 
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exception of the first and second point in Figure 31A, that were obtained from 3⋅104  and 

105 runs, respectively.  
The dependence on the size of the milestone Δ y is weak, as we can see from Fig. 

17A. On the other hand, Δ y  is expected to affect more significantly the estimation of the 

off-diagonal terms of the diffusion tensor. If we use the spacing between milestones and 

the size of the milestones used in Figure 21-Figure 30, reducing the time step does not 

give a significant improvement (Figure 31B, blue dots). To improve the results we 

reduced of the spacing between the milestones Δ x and a reduced of the time step (Figure 

31B, red squares). Hence, it is possible to obtain highly accurate results if significantly 

larger computational resources are used. 
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Chapter 4: The Stereospecificity of the Enzyme Ketoreductase6 

The study of the enzymatic reactions is a prime goal of biochemistry. Many 

enzymes perform their functions by finding the correct substrate and modifying its 

chemical structure. Typically, this occurs in a number of steps.68 First of all the substrate 

is weakly bound to the enzyme. Then the enzyme undergoes a conformation transition 

that strengthens the binding and prepares the chemistry step (induced fit). Then the 

chemical processing takes place, in which bonds may be broken and new ones may be 

formed, and the products are formed. Finally, the enzyme releases the product. 

A key question here is: how does the enzyme find the proper substrate? In the 

cellular milieu there are many candidate substrates, but to perform its function properly 

the enzyme has to be specific for one of them. How does this specificity occur? In 

principle every step of the mechanism for enzyme reaction is involved. The size of the 

binding site in the open configuration of the enzyme forbids the binding of large 

substrates. The position of the reactive amino acids selects a particular geometry of the 

ligand. Interestingly, also the dynamics of the enzyme once bound to the ligand might 

affect the specificity. Experimental findings,68 and results from MD simulations70 have 

shown that DNA polymerase changes its structure from the open to the close 

conformation only if the matching nucleic acid is bound. 

Here, I performed a number of MD simulations of the enzyme ketoreductase 

(KR), which is a domain of the polyketidase (PK), a large molecular factory that 

produces the secondary metabolites polyketides.72 The enzyme reduces the β-keto oxygen 

of the substrate, with the help of NADPH.72 The ligand might presents itself to the protein 

                                                
6 The work presented in this chapter has been done under the supervision of my advisor Prof. Elber and in 
collaboration with Prof. Keatinge-Clay. I gratefully acknowledge the contribution of Dr. Jianting Zheng, 
who provided the PDB files of the ternary A1-dkD complex, and Dr. Yue Shi, who carried out the quantum 
mechanical calculations that were necessary to develop the force field for the ligands.  
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in two different optical isomers: the one in which the α-methyl substituent has a D 

orientation, and the one with the L orientation. In a racemic mixture, the A1 KR is 

capable of selecting and reducing the D optical isomer, while no product corresponding 

to the L optical isomer is formed.72, 74 How does the enzyme distinguish these two 

ligands? Mutations in the binding pocket of the enzyme have shown that a glutamine is 

necessary for the specificity, because if mutated in histidine the enzyme looses its 

stereospecificity.74 Upon one further mutation in the binding pocket, from glycine to 

threonine, the stereospecificity is inverted.75 

The MD simulations that I carried out show the atomistic reason of the role in 

stereospecificity of this glutamine. Furthermore, other relevant interactions for the correct 

alignment of the ligand in the binding pocket are highlighted.  

MODELING THE SUBSTRATES INTO THE BINDING SITE 

The crystal structure for the A1 ketoreductase74 (molecule B from PDB 3MJS) 

was used as the starting structure in the preparation of the simulations. The structure was 

determined without the substrate, while the coordinates of the co-factor NADPH were 

resolved. The substrate used for the simulations is 2-methyl-3-oxopentanoate-S-N acetyl 

cysteamine, which from now on will be called diketide (dk). The enzyme is stereospecifc 

for the D isomer, dkD, while it does not form products with the stereoisomer, dkL. The 

dkD ligand was modeled into the binding pocket. In the first step of the modeling it was 

docked into the protein binding site. In Figure 32 we sketch the positions of the critical 

protein groups (tyrosine 371) that participate in the reaction, or that are considered 

important for the alignment of the substrate in the reactive configurations (tryptophan 

363). We also show the spatial position of the NADPH. Note that the numbering of the 
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amino acids is presented here as the numbering that is produced by the MD package 

MOIL,23 which was used to generate the initial structure and geometry.  
 

 
 

Figure 32 Mechanism of the enzyme.72 The ligands are shown together with two amino 
acids involved in the reactions. The Y371 donates a hydrogen to the ligand. 
The W363 is considered important for the correct alignment of the ligand in 
the binding pocket.75 

 

The amino acid Y371 is directly involved in the chemical reaction. It donates the 

hydrogen of the hydroxyl group of the tyrosine side chain to the β-carbonyl oxygen	  of	  

dk.	   The	   NADPH	   is	   part	   of	   the	   reaction	   as	   well.	   It	   is	   oxidized,	   and	   donates	   an	  

hydrogen	  of	  the	  nicotinamide	  ring	  to	  the	  β-‐carbon	  of	  the	  dkD.	  The	  hydrogen	  of	  the	  

nicotinamide	  ring	  is	  bound	  to	  a	  prochiral	  carbon,	  and	  the	  hydrogen	  that	  is	  donated	  

to	   the	   ligand	   is	   the	   pro-‐S	   hydrogen.	   Another	   interaction	   that	   is	   believed	   to	   be	  

important	   for	   the	   correct	   alignment	   of	   the	   ligand	   in	   the	   binding	   pocket	   is	   the	  

hydrogen	   bond	   of	   the	   dkD	   amide	   carbonyl	   group	   and	   the	   side	   chain	   nitrogen	   of	  

W363.	  This	  interaction,	  proposed	  by	  early	  biochemical	  insight,75	  helped	  in	  the	  initial	  

modeling	  of	  the	  correct	  dkD	  ligand	  into	  the	  binding	  pocket.	  The incorrect enantiomer, 

dkL, was obtained by inverting the methyl group of the α substituent with the hydrogen 
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at the α carbon. The structures obtained so far were the starting point for all the 

simulations that followed. Below we use the name E0 (experimental 0) to denote these 

initial structures.7 The E0 structure is shown in Figure 33A. 

 

Figure 33 (A) The E0 ternary structure. The protein is shown in cartoon mode, the 
ligands, W363, and Y371 are drawn in stick mode. The atoms of the protein 
and the NADPH are determined by X-ray crystallography, and are taken 
from molecule B of PDB 3MJS. The dk was modeled in the binding pocket. 
(B) The solvated A1 enzyme. The sodium ions are shown in blue. 

SETUP AND LIST OF SIMULATIONS THAT WERE CONDUCTED 
 

We ran 4 different sets of simulations: 

                                                
7 The pdb file of the E0 structure was provided to me by Dr. Jianting Zheng, whose contribution is 
gratefully acknowledged. 
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1. One 20ns simulation for each of the complexes A1-dkD and A1-dkL, 

which we refer to as L1. 

2. A set of 20 shorter simulations of the complexes A1-dkD and A1-dkL, 

each of 1ns; we refer to those as S1; 

3. A longer simulation of both complexes of 50ns each, which we will refer 

to as L2; 

4. A set of 20 short simulations of both complexes, each of 800ps; we will 

refer to those as S2. 

Besides the lengths, the differences between L1, S1, and L2, S2 are in the choice 

of the initial condition for the simulations.  

We started the L1 and S1 simulation from the E0 structures. These structures 

include experimentally determined positions of the protein atoms and of the modeled 

coordinates of the substrate. We optimize the coordinates of the substrate as follows. We 

restrained the positions of all the atoms resolved by X-ray crystallography (i.e. protein 

and NADPH) by attaching a stiff spring to their starting position. We added the penalty 
function U tether = (1 / 2)k xi − x0i( )t xi − x0i( )

i
∑  where xi  is the current 3D position vector 

of the atom and x0i  is the three-dimensional coordinate vector of the “tether” atom in the 

E0 structure. The force constant was chosen to be highly stiff and of 100 kcal/mol/Å2. 

The dk ligand, on the other hand, was left unrestrained, so that the algorithm could 

modify its position in space and its internal structure following the minimization of the 

energy of the interactions with the X-ray resolved atoms and within the substrate. Hence 

we adjust the modeled structure but the experimentally determined coordinates are 

remained roughly unchanged. We call these new structures M1 (minimized 1).  
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Simulations L2 and S2 also started from the structures E0 as well, but we ran a 

different energy minimization procedure. As before, we restrained the atoms resolved by 

the crystal structures. At variance with the construction of M1, we added two more 

distance restraints on the dk ligand to better mimic the reactive configuration (Figure 32). 

One constrained distance is between the β-carbonyl oxygen and the reactive hydrogen of 

Y371, the other distance is between the β-carbonyl carbon and the pro-S hydrogen of 

NADPH. These restraints were modeled as springs with equilibrium distance of 2Å and 

spring stiffness of 10 kcal/mol Å2. After the minimization of the energy of interaction, we 

equilibrate the system for 10ps at 10K allowing only the ligand to move, but keeping the 

restraints on the reactive distances. The structures obtained in this way are called M2 

(minimized 2). 

In all the simulation sets, the system was solvated in a 97.5 Å3 box water 

molecules (see Figure 33B). The size of the box was chosen to ensure that in the 8 

corners of the box the density of water was close to the expected one for the A1-dkD 

enzyme-ligand complex (0.988 g/cm3 for A1-dkD complex in the L1 setup computed 

over 1ns simulation; the number slightly larger then the expected one for the water model 

used, TIP3, which has density 0.982 g/cm3 81 at 298K and 1atm). The box was filled with 

roughly 28540 water molecules, with a variation between the 8 different initial structures 

(four simulation sets, two complexes each) of less then 10 water molecules. Twenty-

seven sodium ions were added to ensure the neutrality of the simulation box. The 

solvated M1 and M2 structures are addressed as SolvM1 and SolvM2.  

The configurations from which the production runs were started were generated 

following slightly different heating and equilibration protocols.  

For L1, we first relaxed the structure SolvM1 by heating it from 10K to 300K in 

20ps, we then run 1ns of equilibration before sampling the initial structure for this run.	  
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For S1, we decided to look at the immediate response of the protein to the ligand starting 

from a configuration close to the X-ray structure. We were concerned that some of our 

conclusions may be affected by inaccuracies in the force field that brings us to an 

equilibrium conformation which is not sufficiently close to the coordinates from 

crystallography.  Therefore, as for L1, we relaxed the structure SolvM1 by increasing the 

temperature from 10K to 300K in 20ps, and that was the initial structure for the 20 short 

runs in S1. 

For L2, we relaxed the structures SolvM2 by heating them from 10K to 300K in 

100ps while keeping the restraints on the reactive distances. The structure obtained in this 

way was our initial structure. 

For S2, we took the initial structure of L2 and we ran other 2ns at 300K keeping 

the restraints. Out of these 2ns of simulation, we selected 20 configurations per complex 

to start the short runs of S2. 

All the simulations were carried out using the MD software MOIL-OPT,24 

adopting similar setups. The Particle Mesh Ewald (PME)80 algorithm was used to account 

for the long-range electrostatic interactions. The cutoff for van der Waals interactions and 

for the real space part of PME was set to 9.5Å. The PME tolerance was set to 10-9, and 

the PME grid to 1003. A spring was attached to the geometric center of the enzyme to 

restrain its center of mass translation. The SHAKE algorithm94 in its MATRIX form95 

was used to constrain bonds and angles in the water molecules. All the bonds in the 

enzyme and ligands were also constrained using matrix shake96 in L1/S1, while in L2/S2 

only the light atoms were constrained with shake.  

A “temperature rescaling” thermostat was used to run the simulations in the NVT 

ensemble.83 The time step was 1fs. We used the RESPA algorithm,86 which	  allowed us to	  
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compute the long-range part of PME (i.e. the reciprocal space part of the calculation) 

once every four steps.  

The force field that we used for the protein was the all atom version of OPLS.4 

For the water molecules the TIP3 force field was adopted.81 We could not find a force 

field for the ligands, therefore we generated one using OPLS energy terms of similar 

chemical species for bonded energy terms and van der Waals interactions. We computed 

the partial charge distribution, and the missing terms for the torsion potential performing 

some quantum mechanical calculations.8 

The L1 and L2 simulations were carried out using the optimized version of the 

MOIL code,24 parallelized to run on GPUs and multiple CPUs (three or four in our 

simulations) at the same time. The many short simulations (S1 and S2) were run on 

CPUs, and parallelized to work on three threads.  

The different initial structures affect our analysis significantly. The results 

highlight different aspects of the process of specificity, but at the same time show the 

common feature that the correct ligand is a preferred initial binder compared to the 

incorrect one. 

EVIDENCES FROM THE LONG SIMULATIONS L1/L2 

The L1/L2 simulations for both of the complexes show that the force field that we 

used is accurate enough to keep the correct ligand (dkD) closer to the reactive 

configuration. 

In Figure 34 and Figure 35 we show the “reactive” distances Y371-dk and 

NADPH-dk as a function of time. 

                                                
8 The quantum mechanical calculations were performed by Dr. Yue Shi, whose contribution is gratefully 
acknowledged. 
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Figure 34 Distance between Y371 side-chain hydroxyl hydrogen and dk β-carbonyl 
oxygen (Y371-dk). The red line shows A1-dkD for L2 simulations, the blue 
line A1-dkL for L2, the orange line A1-dkD for L1, and the green line A1-
dkL for L1. 
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Figure 35 Reactive distance between pro-S hydrogen of NADPH and the dk β-carbonyl 
carbon (NADPH-dk). The red line shows A1-dkD for L2 simulations, the 
blue line A1-dkL for L2, the orange line A1-dkD for L1, and the green line 
A1-dkL for L1.  
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stage, the NADPH-dk distance for the A1-dkL complex (blue, Figure 35) starts to drift 

away from the reactive configuration, while the NADPH-dk distance for the A1-dkD 

complex (red, Figure 35), after an initial drift, goes back to roughly 6 Å. In the last 10ns 

of the L2 simulations, the Y-dk distance (Figure 34) for A1-dkD (red) and A1-dkL (blue) 

tends to stay at around 6 Å, with A1-dkD showing smaller fluctuations than A1-dkL.  

Since the Y-dk and NADPH-dk distances in the L1 trajectories are more 

stationary, properties averaged over the simulations are more likely to be converged. We 

consider first the average displacement of the correct and incorrect ligand from their 

initial structure. To do so, we align all the structures sampled in the L1 simulations to the 

initial structure (as initial structures we used the structures obtained after energy 

minimization - SolvM1 and the SolvM2 configurations - for the L1 and L2 simulation 

sets, respectively). To do so, the Kabsch algorithm97 is used to align the Cα carbons of all 

the protein residues.9 We then measure the average distance of the dk ligand from the 

initial one using the following formula for the average RMSD: 
	  

 RMSdk = 1
T

1
Ndk

xt − x0( )2 + yt − y0( )2 + zt − z0( )2
i∈dk

Ndk

∑
t=1

T

∑   (4.1) 

	  

where the subscript of x , y , and z  refers to the number of the sampled 

configuration. The starting configuration is labeled “0”, the total number of 

configurations is T , Ndk is the number of atoms belonging to dk. The index t  runs from 

1 to T . The result is that the average displacement for the dkD ligand in the binding 

pocket from the initial structure is 2.09Å, while the RMSD of dkL is 4.19Å. This 

                                                
9 In what follows, all the structural alignments are performed by aligning the Cα	  carbons	  of	  all	  the	  protein	  
residues,	  unless	  otherwise	  stated. 
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suggests that the correct enantiomer stays closer to the initial configuration compared to 

the incorrect substrate, as it should. 

We also examined the number of configurations that are reactive, i.e. structures in 

which the Y-dk and NADPH-dk distances are simultaneously below 4 Å. There are 46 

such configurations for the A1-dkD complex, spanning the whole length of the 

simulation (the first reactive structure is observed after around 0.25ns, the last after 

19.97ns). There are only 4 reactive configurations found for A1-dkL, all in the first 

0.554ns.  

In conclusion, the L1 and L2 simulations show that the A1 enzyme is able to 

recognize dkD as a preferential ligand at the level of weak physical interactions. They 

also show that the system setup of L1 generates trajectories that tend to drift from the 

initial structure less than those generated with the L2 setup, suggesting initial structures 

for the L2 simulations carry significant internal strain. This might be due to the restrain 

on the reactive hydrogen bonds that were added in the generation of the initial 

configurations for L2/S2. Instead of facilitating the generation of an initial structure close 

to the reactive configuration, these restrains may have introduced some strain that is 

reflected in a more mobile ligand. On the other hand, it is still remarkable that the correct 

ligand dkD finds its way back to a configuration much closer to the reactive structure 

compared to dkL. 

In both L1 and L2, when the ligand abandons the reactive configuration, it moves 

away within the first few nanoseconds (L2 for A1-dkD, L1 and L2 for A1-dkL). In the L2 

simulation of the A1-dkD complex the substrate returns to a configuration close to the 

reactive one. In the other cases, during the rest of the simulation dk does not get close 

again to a reactive configuration. A different simulation strategy may be in place if we 
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want to understand the behavior of the complex in the neighborhood of the reactive 

configuration. Such a strategy is described in the next section. 

 

EVIDENCES FROM THE SHORT SIMULATIONS SETS: S1 
	  

Twenty S1 trajectories are generated starting from SolvM1 configuration with 

different initial velocities. The initial configuration for the S1 simulation set is not 

equilibrated, so the configurations tend to drift rapidly from the initial structure. 

Nevertheless, it is interesting to look at the average displacement of the ligand (see eq. 

(4.1)) and at the number of reactive configurations found. The data is reported in Table 

10.  
	  

	   dkD	   dkL	  
	   <RMS>	   #	  React	  Conf	   <RMS>	   #	  React	  Conf	  
A1	   2.07Å 3957 2.51Å 1163 

Table 10 Average displacement from the initial structure (see definition in Eq.(4.1)) and 
number of reactive configurations (i.e. instances in which NADPH-dk 
distance and Y371-dk distance are simultaneously below 4Å) for A1-dkD 
and A1-dkL complexes in the S1 simulation set. 

The A1-dkD has more reactive configuration and the ligand moves less from the 

initial condition. The short simulations set S1 reproduces this qualitative feature of the L1 

simulation set. Why is the dkL ligand moving more than the dkD ligand? The incorrect 

ligand may abandon the reactive configuration because of three different types of 

movement: 

1. A rigid body displacement of the ligand out of the binding pocket; 

2. A rigid body rotation of the ligand in the binding pocket; 

3. A distortion of the internal degrees of freedom. 
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Figure 36 shows: 

A. the distribution of the center of mass displacement in the binding pocket 

for dkD (red) and dkL (blue) with respect to the initial position; 

B. the distribution of the angles of rigid body rotation for dkD (red) and dkL 

(blue) respect to the initial position; 

C. the “end-to-end” distance of the ligand, i.e. the distance between the initial 

and final methyl group for dkD in the A1 enzyme (red), for dkL in the A1 

enzyme (blue), and for dkD and dkL in solution (green and gold, 

respectively). 
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(A)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (B)	  

	  
	  
(C)	  

	  

Figure 36 
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Figure 36: Different types of movement of the ligand in the binding pocket. (A) 
Displacement of the center of mass of the ligand; (B) rigid body rotation; 
(C) change of the internal degrees of freedom, measured as the end to end 
distance, i.e. the distance between the methyl carbon C1 and the methyl 
carbon C10 (see Figure 37 for the naming of the atoms). In red we show the 
distribution for dkD, in blue for dkL. In (C) the green and gold histograms 
report the distribution of end-to-end distances in solution for dkD (green) 
and dkL (gold). The rigid body displacements were computed aligning all 
the trajectory configurations to the initial structure. The atoms used for the 
alignment were those belonging to the residues around the binding pocket 
(residues A313-A317, W363-Y371, W397-M405, P409-Q418, and E451-
A459). The translation is defined as the distance from the center of mass of 
the ligand in the initial configuration. The overall rotation was computed by 
aligning the ligand (already rotated to account for the changes in the 
position of the binding pocket) with the ligand in the initial configuration. 
From the rotation matrix Ω̂  we extracted the rotation angle as 

arccos 1
2
Trace Ω̂( ) −1⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

. There was no control on the rotation axis, 

which may change in different configurations. 

  



 127 

 

From Figure 36A,B, it is clear that the overall translations and rotations are 

similar for the correct and incorrect substrates; indeed it even seems that the correct 

ligand undergoes a larger motion than the incorrect one. 

The sharply peaked distribution of the end-to-end distance of the correct substrate 

in Figure 36C illustrates that dkD is held stretched by the enzyme. In contrast the dkL 

ligand has a much broader distribution of distances that resembles the distribution of end-

to-end distance of both the enantiomers in solution. This clearly suggests that the 

incorrect ligand is unable to “hook” to the protein with specific interactions.  
	  

The Reactive Configuration 
	  

The significant sample of short trajectories allows us to examine how the enzyme 

in the crystal structure responds to the two ligands (dkD and dkL) placed in a reactive 

configuration. Recall that we define a reactive configuration by only two distance 

constraints between the ligand, the protein and NADH (one with the β-carbon C3 and one 

with the β-carbonyl oxygen O3, see Figure 37 for the name of the atoms). It is not clear if 

these restraints are sufficient to uniquely define the structure of the bound complex. We 

therefore examine below additional degrees of freedom.  
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Figure 37 A schematic drawing of the diketide substrate with explicit atom names.  

We consider the dihedral angles of the ligand that include only carbon or nitrogen 

atoms (the main chain). A histogram of the distribution of these dihedral angles in the 

trajectories (with bin size 30 degrees, so 12 bins from -180 to 180) was computed. Let’s 

call piα  the frequency of times the dihedral α   is found in the i -th bin. Then, to measure 

the spread of the distribution, we use the “entropy”10 Sα   
	  

 Sα = − piα ln piα
i=1

12

∑   (4.2) 

                                                
10 Since it is not an equilibrium calculation, we do not mean to give to this “entropy” a thermodynamic 
meaning but rather information context. To remind this to the reader, we will call this quantity S “entropy”, 
with quotation marks. 

C1#
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This function is positive definite, and maximal when the distribution is uniform 

(so, when the information is minimal and the spread maximal). The larger is the value of 

the function, the least informative, or the more spread, is the distribution.  

In Table 11 we report the values of the “entropies” measured on the whole set of 

configurations, only on the reactive configurations, and in a 50ns simulation of the two 

enantiomers in water. The calculations were conducted for both ligands A1-dkD and A1-

dkL. 

 
	  
	   A1-‐dkD	   A1-‐dkL	   dkD	   dkL	  
	   all	   reactive	   all	   reactive	   	   	  
10	  C1-‐C2-‐C3-‐C4	   1.94	   1.51	   2.16	   2.18	   2.11	   2.11	  
13	  C2-‐C3-‐C4-‐C5	   1.82	   1.26	   2.10	   2.10	   1.86	   1.87	  
14	  C2-‐C3-‐C4-‐C6	   1.81	   1.26	   2.10	   2.08	   1.88	   1.88	  
19	  C3-‐C4-‐C6-‐S	   1.84	   0.97	   1.54	   1.36	   2.12	   2.13	  
23	  C5-‐C4-‐C6-‐S	   1.85	   0.99	   1.55	   1.34	   2.11	   2.12	  
28	  C4-‐C6-‐S-‐C7	   0.71	   0.71	   0.72	   0.72	   0.71	   0.71	  
30	  C6-‐S-‐C7-‐C8	   1.59	   0.60	   1.63	   1.59	   1.89	   1.91	  
33	  S-‐C7-‐C8-‐N	   1.05	   0.84	   1.23	   1.19	   1.45	   1.48	  
42	  C7-‐C8-‐N-‐C9	   1.23	   0.58	   1.27	   1.31	   0.92	   1.02	  
45	  C8-‐N-‐C9-‐C10	   0.70	   0.67	   0.68	   0.68	   0.70	   0.70	  
TOTAL	  	   14.54	   9.39	   14.98	   14.55	   15.75	   15.93	  
	  

Table 11 “Entropies” of the different torsions in the diketide. The torsions are reported in 
the first column. The second and third column show the “entropy” of the 
torsions for the A1-dkD complex in all the configurations (second) and in 
the reactive configurations (third). The fourth and fifth columns show the 
“entropies” of the torsions for the A1-dkL complex. The fourth column 
shows the result for all the configurations, the fifth for the reactive 
configurations. The sixth column has the “entropies” of the torsions for the 
dkD ligand in water, the seventh for the dkL ligand in water. 
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In the A1-dkD complex, the reactive configurations are always characterized by a 

reduction of the “entropy” S. This happens also with torsions 33 and 42, which are far 

away from the atoms whose positions is used to define the reactive configuration. This is 

not the case for A1-dkL: the “entropy” S in the reactive configurations is smaller for 

some dihedrals, though larger for others. The selection of a specific reactive 

configuration and locking into a particular configuration seem to be properties of only the 

correct complex, A1-dkD. Also, the sum of the “entropies”11 of the dkL ligand is larger 

than for the dkD, in agreement with what we stated before: the internal degrees of 

freedom of the incorrect ligand are looser. The last two columns show the “entropy” of 

all the torsions for the two stereoisomers of the ligand in water solution. Note that, in the 

case of the dkD molecules, with the exception of torsion 42, all the dihedrals in water 

have larger “entropy”. For the dkL molecule instead, the “entropy” in the binding site is 

larger than in water for dihedral 10, 13, 14, 28 (almost the same), and 42. The flexibility 

of the α and β carbon region of the dkL ligand in the binding pocket suggests highly 

unfavorable interactions with protein groups around the reactive site. 

A pictorial representation of this difference is given in Figure 38. First, we show 

ten dkD ligands randomly selected from reactive configurations, and then aligned (Figure 

38A). Then we show ten structures taken randomly from the whole sample of structures 

(Figure 38B). Clearly, imposing the two conditions on the β-carbonyl carbon and oxygen 

reduces the configurations available throughout the ligand. The same conditions do not 

reduce significantly the flexibility of the dkL ligand in reactive configurations (Figure 

38C): the superposition of the randomly chosen structures shows poor structure selection 

                                                
11 The sum of the “entropies” corresponds to the total “entropy” under the assumption that all the torsions 
are independent. This is, of course, false. Nevertheless, it is a simple representation of the overall flexibility 
of the ligand. 
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for the incorrect enantiomer, making Figure 38C similar to the sample of ten structure 

from the whole simulations of A1-dkL shown in Figure 38D. 
	  

	  
	  

A	   	   	   	   	   	   B	  

	  
	  
	  
C	   	   	   	   	   	   D	  

	  
	  
	  

Figure 38 Superposition of ten structures of the dk randomly selected among the 
following sets of structures: (A) dkD in reactive state, (B) dkD in any 
enzyme-ligand configuration, (C) dkL in reactive state, (D) dkL in any 
enzyme-ligand configuration. 
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A typical reactive configuration obtained from our simulation for the A1-dkD 

complex is shown in Figure 39.  
	  

	  

Figure 39 A reactive configuration for the A1-dkD complex. Only the ligand (dkD), the 
reactive tyrosine (Y371), and the NADPH are shown. In dashed lines the 
NADPH-dk and Y371-dk distances are shown. 

	  
	  

In Figure 39 we show a snapshot from the trajectory of a reactive configuration of 

Y371 together with the NADPH and with dkD. The typical reactive configuration is 

characterized by a rotation of the non-reactive β-carbonyl away from Y371. At the same 

1.8$Å$ 3.5$Å$

Y371$

NADPH$
dkD$
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time, the sulfur (in orange) is moved towards the reactive oxygen. As shown in Figure 

38A, this feature seems to be common to many reactive configurations, while this is not 

true in general (see Figure 38B). 

The vicinity of the sulfur to the β-carbonyl oxygen in the reactive configuration 

might play a role in facilitating the reaction catalyzed by the enzyme. Indeed, the vicinity 

of two strongly electronegative atoms may assist the transfer of a proton from Y371 to 

the β-carbonyl oxygen, and reduce the electrostatic repulsion. The repulsive energy 

between the sulfur and the reactive oxygen is shown in Figure 40, where the red 

histogram shows the distribution of interaction energies (electrostatic and van der Waals) 

in all the configurations found, the green for the non-reactive configurations and the blue 

for the reactive. Clearly, in the reactive configurations there is a strong repulsion between 

the sulfur and the β-carbonyl oxygen.  
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Figure 40 Distribution of energies of interaction (van der Waals and electrostatic) 
between the sulfur of the ligand S and the β-carbonyl oxygen O3 (for 
nomenclature see Figure 37) for the A1-dkD complex. In red we report the 
distribution for all the configurations, in green the distribution for the non-
reactive ones, and in blue the distribution for the reactive configurations.  

	  

At this stage, the role played by the repulsion between the sulfur and the β-

carbonyl oxygen in facilitating the reaction is suggestive. Quantum mechanical 

calculations could further assist in determining whether the interactions include higher 

order terms such as polarization and charge transfer. Moreover, extensive sampling will 

be required to learn about thermodynamics and kinetics of the process. It has been 
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pointed out in many circumstances how important is the role of electrostatic interactions 

in the catalytic power of enzyme.98  
	  

Microscopic Reasons For Specificity  
	  

So far, we illustrate by analyses of trajectory data that formation of weakly bound 

protein-ligand complex is favorable for the correct ligand. In particular we showed that 

more reactive configurations are found, and that they are characterized by a specific 

geometry (Figure 38) that fits the desired protein function (Figure 39). We did not discuss 

the microscopic interactions responsible for the selection of the proper enantiomer; a 

topic which is addressed in the present section. 

 

We start by looking at NADPH and Y371, which are both involved in the 

reaction. We ask “Is their behavior significantly different for the correct and incorrect 

binding cases?” It seems that it is not. NADPH is strongly bound for both the correct and 

the incorrect complex (average RMSD of 1.03Å and 1.02Å, respectively). The same is 

true for the reactive tyrosine Y371 (average RMSD of 0.91Å and 0.92Å, respectively). 

There is a strong hydrogen bond between the 2’ hydroxyl group of the ribose ring of 

NADPH and Y371 side-chain oxygen (see Figure 41), which holds in position the 

tyrosine ring. This is regardless of the chirality of the substrate. 
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Figure 41 dkD ligand, NADPH and reactive tyrosine Y371 shown together as in Figure 
39, but from a different angle. The hydrogen bond between the 2’ hydroxyl 
group and Y371 side-chain oxygen is shown in dashed lines. The carbons in 
the ribose ring of NADPH are numbered. 

The distributions of the hydrogen bond distance for the correct (red) and incorrect 

(blue) enzyme-ligand pairs are shown in Figure 42. 
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Figure 42 Distribution of the hydrogen bond distance between the NADPH 2’ hydroxyl 
hydrogen and Y371 side-chain oxygen (atoms connected with a dashed line 
in Figure 41) for A1-dkD (red) and A1-dkL (blue). 

The hydrogen bond between the amide carbonyl group of the ligand and the side-

chain of W363 is considered important for properly aligning the ligand in the binding 

pocket (see Figure 43).  
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Figure 43 dkD ligand, tyrosine Y371, NADPH, and tryptophan W363 are displayed in a 
reactive configuration. The hydrogen bond between the dk oxygen O9 ( see  
Figure 37 for the nomenclature) and the side-chain of W363 is shown as a 
black dashed line.  

Figure 44 shows that this hydrogen bond is tighter in the case of the correct 

complex (A1-dkD, red histogram Figure 44A) than with the wrong one (A1-dkL, red 

histogram Figure 44B).  
  

dkD$

Y371$

NADPH$

W363$

1.77Å$



 139 

 
	  
(A)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (B)	  

	  

Figure 44 Distribution of distances between W363 side-chain and the O9 oxygen of the 
dk ligand (see Figure 37 for nomenclature and the dashed black line in 
Figure 43) for A1-dkD complex (A) and A1-dkL complex (B). The red 
histograms show the distribution of distances in all configurations. The 
green histograms show the distribution of distances for non-reactive 
configurations, and the blue ones the distribution for reactive configurations. 

To explore the role of the α-methyl substituent, we looked at what is the amino 

acid whose center of mass is closer to the α-methyl substituent at every instant of time. 

The data for the A1-dkD complex for reactive (green) and non-reactive (red) 

configurations is shown in Figure 45, together with the two distributions for A1-dkL 

complex: in orange the one for reactive configurations, and in blue the one for non-

reactive configurations.  
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Figure 45 Histogram of the number of times the center of mass of the amino acid listed 
on the x-axis is the closest to the α-methyl substituent. Red: A1-dkD 
complex, non-reactive configurations. Green: A1-dkD complex, reactive 
configurations. Blue: A1-dkL complex, non-reactive configurations. 
Orange: A1-dkL complex, reactive configurations. 

	  

In Figure 46 and Figure 47, the amino acids discussed in Figure 45 are colored as 

the highest bar in Figure 45. So, V411 is reported in red, A360, Q368, and Y371 are 

green, M405 is blue and G398 and A406 are orange. 

For A1-dkD, the non-reactive configurations are peaked on the V411 amino acid 

(red, see Figure 46B), which is on the lid helix (see Figure 33A, the lid helix is the helix 

on the opposite side of the binding pocket with respect to the Y371). The reactive 
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configurations are instead peaked on Q368 and Y371 (green, see Figure 46A), which are 

on the opposite side of the binding pocket. We observe from Figure 45 that the non-

reactive configurations (red) have a large population also for the Q368 and Y371 amino 

acids, indicating that the sets of configurations, reactive and non-reactive, are not 

dramatically different. Note also that in non-reactive configurations the oxygen of the β-

carbonyl group of dkD is pointing towards the glutamine 368, as shown by the dashed 

black line in Figure 46B. 
	  
A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  B	  

	  

Figure 46 (A) A1-dkD complex, reactive configuration. All the amino acids discussed in 
Figure 45 are shown. Note that the D-α-methyl substituent (highlighted in a 
black circle) is close to the green amino acids, particularly very close to 
Q368. The dashed line shows that the reactive oxygen of dkD is aligned 
with the reactive hydrogen of Y371. (B) A1-dkD complex, non-reactive 
configuration. In this case the D-α-methyl substituent (highlighted in a black 
circle) is close to the red amino acid, V411. The dashed line shows that the 
reactive oxygen of the β-carbonyl of dk points towards the glutamine 368. 

	  

For A1-dkL instead (see Figure 47), the non-reactive configurations (blue, see 

Figure 45) are peaked close to the M405 amino acid (reported in blue in Figure 47B), 

which is buried in the binding pocket, away from the cleft, close to the NADPH (non 
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displayed in Figure 47 for clarity, but it would be under Y371, on the right side of M405). 

The reactive configurations (orange, see Figure 45) are peaked near G398 (reported in 

orange in Figure 47A), which is still away from the cleft, but on the opposite side with 

respect to the NADPH, closer to W363 (not reported on Figure 47 for clarity, but it would 

be close to A360, on its left). Note that, as in Figure 46B, also in this case for non-

reactive configurations the oxygen of the β-carbonyl group of dkL is pointing towards the 

glutamine 368, shown with the dashed lines. 
	  
A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  B	  

	  
	  

Figure 47 (A) A1-dkL complex, reactive configuration. All the amino acids discussed in 
Figure 45 are here shown. Note that the L-α-methyl substituent (highlighted 
in a black circle) is close to the orange amino acids, G398 and A406. (B) 
A1-dkL complex, non-reactive configuration. In this case the L-α-methyl 
substituent (highlighted in a black circle) is close to the blue amino acid, 
M405. Note that the dashed line shows that the reactive oxygen of the β-
carbonyl of dk points towards the glutamine 368. 

	  

This analysis suggests the presence of two different modes in the binding pocket 

for the β-carbonyl of the ligand: a reactive one, where it binds with the hydroxyl group of 

Y371 (Figure 46A and Figure 47A, dashed lines), and a non-reactive one, where it moves 
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closer to the side chain of Q368 (Figure 46B and Figure 47B, dashed lines). To further 

assess this conjecture, we plot a two dimensional histogram. On the x-axis there is the 

distance between the ligand O3 β-carbonyl oxygen and the Q368 side-chain nitrogen (the 

distance highlighted in dashed lines in Figure 46B and Figure 47B, let’s refer to it as 

Q368-dk). On the y-axis there is the distance between the same dk oxygen O3 and the 

hydrogen of the hydroxyl group of Y371 (the distance highlighted in dashed lines in 

Figure 46A and Figure 47A, which we will refer to as Y371-dk, as we did in the previous 

paragraphs).  

In Figure 48A the result is shown for the A1-dkD complex, in Figure 48B for the 

A1-dkL complex. 
	  
A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  B	  

	  

Figure 48 Two-dimensional probability density of critical distances. (A) A1-dkD 
complex, two-dimensional histogram. The horizontal axis is the distance 
between the nitrogen on the side-chain of Q368 and the dk reactive oxygen 
O3 (Q368-dk). The vertical axis is the Y371-dk distance. The probability 
density is color-coded. The circles highlight the two possible contacts. The 
red circle corresponds to the region where the oxygen is in contact with 
Q368 (see Figure 46B, dashed lines), the blue corresponds to the reactive 
hydrogen bond between Y371 and the β-carbonyl oxygen (see Figure 46A, 
dashed lines) (B) A1-dkL, same figure. The red region corresponds to the 
bond highlighted with a dashed line in Figure 47B; the blue region to the 
one highlighted with a dash line in Figure 47A. 
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Figure 48A has two clear peaks, one corresponding to a hydrogen bond between 

the reactive oxygen of dkD and the reactive hydrogen of Y371 (in a blue circle), and 

another in which instead the reactive carbonyl is closer to Q368 side-chain (in a red 

circle). In Figure 48B we notice that the first of the two peaks is significantly weaker 

(blue circle), while the second is more pronounced (red circle). This suggests that 

glutamine Q368 is able to “fish out” the reactive carbonyl from its reactive configuration 

more efficiently in the A1-dkL enzyme than in the A1-dkD.  

 

What is the role of the α-methyl substituent in this different behavior? Figure 46A 

shows that the D-α-methyl substituent in a reactive configuration places itself between 

the reactive carbonyl and Q368, while in a non-reactive configuration (Figure 46B) it 

rotates away from Q368, facilitating the interaction between the reactive carbonyl of the 

ligand and the amide group of Q368 side-chain. In the A1-dkL complex (Figure 47) the 

L-α-methyl substituent is oriented towards the inside of the cleft and is unable to perturb 

the interaction between the reactive carbonyl and Q368. These features are common to a 

significant number of reactive configurations, as we can illustrate looking at the 

histogram of the following order parameter: 

 T = d dkO3,  dkC5( ) + d dkC5, Q368( ) − d Q368, dkO3( )   (4.3) 

where d a,b( )  is the distance between a   and b , dkO3 is the reactive oxygen of 

the ligand, dkC5 is the α-methyl substituent carbon and Q368 is the position of the 

nitrogen of the glutamine residue. There are three possibilities, as illustrated in Figure 49: 

A. The triangle with vertexes dkO3, dkC5, and the nitrogen of Q368 becomes 

close to a line segment with dkC5 lying between dkO3 and the nitrogen of 

Q368. In this case T ≈ 0 ;  
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B. The three atoms form a triangle; the further away dkC5 is from the 

segment connecting dkO3 and Q368, the larger is T , 

C. dkC5 is close to the line identified by dkC5 and Q368, but outside of the 

line segment connecting dkO3 and Q368; in this case T  is positive and 

roughly twice as large as the distance between dkC5 and the closest other 

atom.  

	  

Figure 49 Three pictorial illustrations of the size of the parameter T in three different 
cases. In red the dkO3 is reported, in blue the dkC5, and in green Q368. The 
orange thick line represents the parameter T , as introduced in Eq.(4.3). (A) 
The case in which the three atoms almost lie on the same line, with dkC5 
between dkO3 and Q368. The parameter T  is close to zero. (B) When the 
triangle is formed, T is large. (C) If the three atoms almost lie on the same 
line, but with dkC5 outside of the segment connecting dkO3 and Q368, then 
the parameter T is large.  
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In Figure 50A T is shown for the A1-dkD complex for all the configurations 

(red), for the non-reactive configurations (green), and for the reactive configurations 

(blue). The same color code holds for Figure 50B, where T  is shown for the complex 

A1-dkL. 
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Figure 50 (A) Parameter T (see equation (4.3) for the definition) for A1-dkD complex. In 
red the distribution for all the configurations is reported, in green the 
distribution for the non-reactive and in blue for the reactive ones. (B) Same 
as (A) but for the complex A1-dkL. 

	  

Figure 50 shows that the distribution of T has a peak for small values with the 

A1-dkD complex in the reactive state (Figure 50A, blue), suggesting that indeed the 

dkC5 places itself between dkO3 and Q368, keeping them away and reducing the 

probability that Q368 will interact with the reactive carbonyl. This is not true for the A1-

dkL complex (Figure 50B). 

 

Experiments have shown a drastic reduction of specificity upon mutation of Q368 

with histidine,74 an amino acid that cannot form a strong bond with the β-carbonyl group. 
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The MD simulations suggest the reason of the importance of this amino acid for the 

stereospecificity of the A1 enzyme. 
	  

EVIDENCES FROM THE SHORT SIMULATIONS SETS: S2 
	  

We showed that in the long simulations L1 and L2, the initial structure used for 

simulations L2 is further away from the bound state. Indeed, in L2 (Figure 34 and Figure 

35, red and blue lines) we observe significant movement of the ligand, which is not seen 

in the L1 simulation (Figure 34 and Figure 35, green and orange). The short simulation 

set S2 starts from a configuration (solvM2) similar to one of the L2 simulations. Hence, it 

is in a configuration that is further away from the bound state. Nevertheless, it is 

instructive to see what is happening to the ligand in these simulations.  

 

First we examine the perturbation of Q368 interaction to the reactive 

configurations of the ligand. Figure 51 is the same as Figure 48 but for the S2 simulation 

set. 
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Figure 51 (A) A1-dkD complex, S2 simulation set, two-dimensional histogram. On the x-
axis the Q368-dk distance is shown. On the y-axis the Y371-dk distance is 
shown. The probability is color-coded. The blue circle corresponds to the 
reactive hydrogen bond between Y371 and the β-carbonyl oxygen (see 
dashed line in Figure 46A for the S1 simulations set) (B) A1-dkL, same 
figure. In this case the blue region corresponds to the interaction highlighted 
with a dash line in Figure 47A for the S1 simulation set. 

	  

As expected, the peak corresponding to the Y371-dk hydrogen bond formed 

(circled in blue in Figure 51) is larger than for the S1 simulation set (Figure 48). This is 

because in the generation of the starting configuration we imposed the restraint on the 

distance Y371-dk. 

 

Clearly there is no sign of strong interaction between the ligand and the Q368, as 

highlighted by the fact that the region circled in red in Figure 48 is missing in Figure 51. 

To understand why this is the case, we looked at the changes in the structure of the 

enzyme around Q368, and compared them with sets L1, L2, and S1. In Figure 52 we 

show the average RMSD (see eq.(4.1)) of some amino acids near Y371, and the diketide 

for both A1-dkD and A1-dkL complex (Figure 52A and Figure 52B, respectively). In red 
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we show the results for the L1 simulation set, in green for the S1, in blue for the L2 and 

in orange for the S2. 
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Figure 52 (A) RMSD (see eq(4.1)) of some amino acids around Y371 for the complex 
A1-dkD. As highlighted in the key, in red it is shown the result of the L1 
simulation, in green for the S1, in blue for L2, and in orange for S2. As a 
reference initial structure we used the M1 structure for L1 and S1 simulation 
sets, and the M2 structure for the L2 and S2 simulation sets. (B) Same as 
(A) but for the A1-dkL complex. 

	  

For the A1-dkD complex (Figure 52A), the S2 simulation set (orange) shows the 

largest displacements from the initial structure. The L2 simulation set (blue) is 

consistently second. This observation suggests that the restraint between the ligand and 

Y371 in the generation of the initial structure M2 added strain that is released by 

distorting the structure. In the case of the A1-dkL complex (Figure 52B), the picture is 

different. The long simulations (L1 in red, L2 in blue) deviate the most from the initial 

structure, as expected. On the other hand, if we look at the average displacement of the 

ligand, we note that in the S2 simulation set (orange), even though it is the shortest set of 

simulation, the dkL ligand moves away from the initial position much more than in the 
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S1 simulation set (green), almost as much as in the L1 (red), where rarely reactive 

configurations are found.  

In both cases it seems that the M2 initial structure has generated some strain in the 

protein. This is released in the dkD case with a displacement of the amino acids from the 

initial structure that is larger than the RMSD of the same amino acids in the L1/S1 

simulation sets. In the A1-dkL, the strain is released by displacing the ligand away from 

the reactive configuration.  

What is happening in the A1-dkL enzyme then? What interactions with the ligand 

are looser than in the A1-dkD complex, so to justify the excess average RMSD of the 

ligand? 

There is a network of interactions that position properly the Y371 side-chain to 

form the hydrogen bond with the β-carbonyl group of the ligand. In Figure 53 we 

highlight in black and red two of them: in black we show the hydrogen bond between the 

2’ hydroxyl group of the NADPH ribose ring (see Figure 41 for nomenclature) and the 

hydroxyl group of the side-chain of Y371; in red we show the interaction between the 

side-chains of S358 and Y371. The configuration reported here is one of the 3957 

reactive configurations for the A1-dkD complex of the S1 set of simulations.  
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Figure 53 A reactive configuration for the A1-dkD complex during the S1 set of 
simulations. A black dashed line denotes a hydrogen bond between the 2’ 
hydroxyl group of the ribose ring of NADPH (see Figure 41 for 
nomenclature) and the side-chain of Y371. A red dotted line illustrates the 
interaction between S358 side-chain hydroxyl group and Y371. The distance 
is between the serine’s hydrogen and the tyrosine’s oxygen. 

	  

This pattern can be replaced by others in which the hydroxyl group of Y371 

rotates to point towards either the serine (Figure 54A) or to the 2’ oxygen of NADPH 

(Figure 54B).  
  

dkD$ NADPH$

Y371$

S358$

1.65Å&
3.31Å&
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Figure 54 (A) A configuration of the complex A1-dkL extracted from the S2 simulations 
in which the hydroxyl group of Y371 side-chain points towards the oxygen 
of S358 serine instead of towards the reactive β-carbonyl group. The dashed 
black line highlights this interaction. (B) A configuration of the complex 
A1-dkL extracted from the S2 simulations in which the hydroxyl group of 
Y371 side-chain, instead of pointing towards the reactive β-carbonyl group, 
points towards the 2’ oxygen of NADPH ribose ring (see Figure 41 for 
nomenclature). The dashed black line highlights this interaction. 

	  	  

Of course, the occurrence of these configurations reduces the probability of being 

in a reactive conformation, and weakens an attractive interaction between the ligand and 

the enzyme. Figure 55 shows the distribution of configurations as a function of the 

distances between the oxygen of the side-chain of S358 and the hydrogen of Y371 side-

chain (x-axis), and the distance between the same hydrogen of Y371 and the 2’ hydrogen 

of NADPH ribose ring (y-axis). In the S1 simulation (Figure 55A-B), the hydroxyl group 

of Y371 side-chain rarely, and almost exclusively for the A1-dkL complex (Figure 55B), 

forms a hydrogen bond with S358 (highlighted by a red circle). In the S2 simulation set 

(Figure 55C-D), there is a very strong peak for S358-Y371 hydrogen bond for A1-dkL 

(Figure 55D, red circle). 
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Figure 55 Two-dimensional distribution of distances between the reactive hydrogen of 
Y371 and the oxygen of S358 side-chain (horizontal) (see dashed line in 
Figure 54A), The vertical direction is the reactive β-carbonyl oxygen of the 
ligand. (A) A1-dkD complex, S1 simulation set. (B) A1-dkL complex, S1 
simulation set. (C) A1-dkD complex, S2 simulation set. (D) A1-dkL 
complex, S2 simulation set. In a blue circle all the regions showing 
abundance of configurations with the reactive hydrogen bond formed are 
highlighted. In a red circle, we highlight the regions with abundance of 
configurations showing a strong interaction between S358 and Y371. 
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In Figure 56, we show the probability that Y371 forms an hydrogen bond with the 

β-carbonyl group of the ligand (regions highlighted in a blue circle), and the probability 

of having the same hydroxyl of Y371 rotating towards the NADPH and forming an 

hydrogen bond with the 2’ oxygen of the ribose ring as in Figure 54B (regions 

highlighted in a red circle). The non-reactive hydrogen bond with NADPH is rarely 

formed during the S1 simulation set (Figure 56A-B), much more commonly during the 

S2 simulation set, and both for A1-dkD (Figure 56C) and A1-dkL (Figure 56D). 
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Figure 56 Two-dimensional distribution of distances between the reactive hydrogen of 
Y371 and, on the x-axis the 2’ oxygen of NADPH ribose ring (see dashed 
line in Figure 54B), on the y-axis the reactive β-carbonyl oxygen of the 
ligand. (A) A1-dkD complex, S1 simulation set. (B) A1-dkL complex, S1 
simulation set. (C) A1-dkD complex, S2 simulation set. (D) A1-dkL 
complex, S2 simulation set. In a blue circle all the regions showing 
abundance of configurations with the reactive hydrogen bond formed are 
highlighted. In a red circle, we highlight the regions with abundance of 
configurations showing the hydrogen bond between Y371 and NADPH. 

The last two figures showed that in the S2 simulation set the ligand often 

abandons the reactive configuration because the hydroxyl group of Y371 rotates towards 
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a neighbor polar oxygen and forms a hydrogen bond with it. The same mechanism was 

possible, but is less frequent within the S1 simulation set.  
	  
	  

ANALYSIS OF THE DYNAMICS OF THE D AND L DIKETIDES IN VACUUM,  AQUEOUS 
SOLUTION, AND IN THE BINDING POCKET 
	  

The diketide undergoes different fluctuation in different environments. We 

compare 100ns simulation carried out in vacuum using a Langevin dynamics algorithm99 

at 300K with 50ns carried out in solution. We also compare the fluctuations of the ligand 

with the S1 simulation set, to estimate the effect of the binding pocket on the dynamics of 

the diketide. In Figure 57A, we report the distributions of end-to-end distances of the dkD 

ligand in water (red), vacuum (green) and in the binding pocket (blue). In Figure 57B the 

same color code is adopted for dkL. 
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Figure 57 End-to-end distance of (A) dkD and (B) dkL in the binding pocket of A1 (blue, 
data taken from the S1 simulation set), in water (red) and in vacuum (green). 
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As we noted in Figure 36C, in the binding pocket (blue) the ligand tends to stay 

more stretched, particularly the dkD ligand. In aqueous solution (red) the distribution is 

wider, and in vacuum (green) the diketide tends to have a more collapsed structure. 

Next we want to look at the following torsion: O3-C3-C6-O6 (see Figure 37 for 

more details on the structure). C3 and O3 form the reactive β-carbonyl group, C6-O6 is 

the nearby carbonyl group. In Figure 58A the distribution is shown for dkD in water 

(red), vacuum (green), and in A1 (blue). Same color code holds for Figure 58B, where 

the dkL is reported. 
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Figure 58 Distribution of value of the torsion O3-C3-C6-O6 (see Figure 37 for the 
nomenclature) of the D enantiomer (A) and the L enantiomer (B) of the 
diketide. In red we report the results in water, in green those obtained from 
vacuum simulations, and in blue those obtained from the binding pocket.  

	  

The distributions in vacuum and in water are almost specular images of each other 

with respect to 0, as shown in Figure 59 which reports the distribution for dkD in water 

and vacuum (red and green, respectively) and the specular image respect to 0 of the dkL 

in water and in vacuum (blue and orange, respectively).  
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Figure 59 Distribution of value of the torsion O3-C3-C6-O6 (see Figure 37 for the 
nomenclature) of the D enantiomer in water (red), and in vacuum (green), 
and the specular image with respect to zero of the L enantiomer in water 
(blue), and in vacuum (orange). 

	  

This seems reasonable, as the α-mehtyl substituent lies between the two carbonyl 

groups C3-O3 and C6-O6. Interestingly, the maximum of the distribution for the ligand 

in the binding pocket is the same for both dkD and dkL (Figure 58, blue histogram). For 

A1-dkD that peak of the distribution corresponds to the peak in vacuum and water 

(Figure 58A), for dkL this is not the case (Figure 58B). This suggests that in the A1 

enzyme less strain on the reactive region is applied on the dkD ligand, which has a 

distribution of this torsion analogous to the one in water and in vacuum. The dkL ligand 
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instead seems to be more distorted from its fluctuations outside of the binding pocket. 

This might also explain why the A1-dkD complex has a larger number of reactive 

configurations compared to the A1-dkL complex. 
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Appendix A: Free Energy Contribution of Urey-Bradley Potential 

In the thermodynamic cycle that we compute, we remove some ILE sidechain 

analog angular interactions (between P and N particles) and create some GLN sidechain 

analog angular interactions (between P and M particles) in water. Then we do the 

opposite in vacuum. The list of the angles that are substituted (i.e. removed or created) is 

reported in the following Table. 
 
 
Created/annihilated angles in ILE side 
chain analog 

Created/annihilated angles in GLN side 
chain analog 

P N P M 
HS1 CS CI1 HS1 CS CQ1 
HS2 CS CI1 HS2 CS CQ1 
HS3 CS CI1 HS3 CS CQ1 

CS CI1 HI11 CS CQ1 HQ11 
CS CI1 HI12 CS CQ1 HQ12 
CS CI1 CI2 CS CQ1 CQ2 

Table 12 This table reports the list of angles that are removed/created in the mutations in 
Figure 7 (horizontal arrows). These are all the angles that involve P and N 
particles or P and M particles. The name of the atoms involved in these 
angles are reported according to Figure 8.  

 

As already stated, it is convenient to remove/add Urey-Bradley bonds instead of 

regular angular interactions. Clearly, the free energy difference of removing/creating 

Urey-Bradley bonds is different from the free energy difference of removing/creating 

bond angle interactions since the functions are different. According to our protocol as in  

Table 1 and Table 2, we performed the mutation simulations (horizontal arrows in Figure 

7) using a Urey-Bradley bond. In the solvation simulations (vertical arrows in Figure 7) 

the sampling of configurations was performed according to the regular bond-angle 

potential. Therefore, we need to correct for using different functional forms computing 
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explicitly the free energy contribution of the potential change. Potential switches occur at 

the four corners of Figure 7. In the top left corner we change from the regular angular 

potential to the Urey-Bradley potential for all the substituted angles in ILE sidechain 

analog (Table 12). This free energy difference is defined ΔFI ,solv
A→UB . We then reach the top 

right corner with a Urey-Bradley potential for the substituted angles in GLN sidechain 

analog (Table 12), so we need to compute the free energy difference of removing them 
and creating the regular angular potential. We refer to this term as −ΔFQ,solv

A→UB . In the 

bottom right corner of Figure 7 in the text we have regular bond-angle potential, but the 

mutation is performed according to Urey-Bradley terms. Therefore we need to compute 

the free energy difference of substituting the regular bond angle term to Urey-Bradley 

terms for all the substituted angles in GLN sidechain analog in vacuum (Table 12). We 
refer to this term as ΔFQ

A→UB . Finally, in the bottom left corner of Figure 7 all the 

substituted angles in ILE sidechain analog (Table 12) are described according to a Urey-

Bradley potential, but in the solvation we use the regular bond-angle term. The free 

energy difference of performing this substitution in vacuum is −ΔFI
A→UB . Overall, the 

total correction to the cycle due to our inconsistent use of different angle potentials is: 
 

 
dFA→UB∫ = ΔFI , solv

A→UB − ΔFI
A→UB − ΔFQ, solv

A→UB + ΔFQ
A→UB   (A1) 

Each free energy difference in Eq.(A1) was computed using the Bennett 

Acceptance Ratio (BAR) method17, 27. According to this method, the free energy 

difference associated with our change in the force field is computed using the following 

formula: 

 ΔFA→UB = −kBT ln

1
1+ exp β UUB −UA −C( )⎡⎣ ⎤⎦ A

1
1+ exp −β UUB −UA −C( )⎡⎣ ⎤⎦ UB

+C   (A2) 
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Here, UA represents the angular potential for all those angles that are alchemically 

removed (see Table 12), UB is instead the potential for the Urey-Bradley bond that 
substitutes the regular angular potential. The symbol ... A refers to an average performed 

over an ensemble of structures sampled when the angular potential is used. The symbol 
... UB refers to an average performed over an ensemble of structures sampled when the 

Uery-Bradley potential is used. The value of C is determined according to the following 

formula: 

 C = ΔFA→UB + kBT ln
nUB
nA

  (A3) 

where nUB is the number of structures in the sample performed with the Urey-

Bradley bonds, and nA is the number of structures in the sample performed with the 

regular angular potential. The two equations (A2) and (A3) can be used iteratively to 

obtain the value of the free energy difference.  

The computation of the variance of the free energy associated with BAR method 

was performed according to the following formula41: 

 

σ BAR
2 = 1

nAβ
2

1
1+ exp β UUB −UA −C( )⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟

2

A

1
1+ exp β UUB −UA −C( )⎡⎣ ⎤⎦

2

A

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+

1
nUBβ

2

1
1+ exp −β UUB −UA −C( )⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟

2

UB

1
1+ exp −β UUB −UA −C( )⎡⎣ ⎤⎦

2

UB

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (A4) 
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The simulations are carried out using the same systems as those of the alchemical 

substitutions. The solvated simulations were 2ns long, while the simulations of the 

system in vacuum were 10ns long. The results are in the following table: 
 

 
ΔFI,solv

A->UB (0.1421±0.0088)kcal/mol 
ΔFI

A->UB (0.2007±0.0047)kcal/mol 
ΔFQ,solv

A->UB (0.1505±0.0010)kcal/mol 
ΔFQ

A->UAB (0.2038±0.0048)kcal/Mol 

Table 13: The results of the free energy difference upon substitution of the regular 
angular interactions with the Urey-Bradley interactions are reported with 
their errors.   

 

Hence the free energy of changing the potential of the angles between the 

fragment and the molecule from the regular bond angle potential to the Urey-Bradley 

potential is small for each individual term. In the context of a comparison with 

experiment it is one order of magnitude smaller than the expected systematic errors (~1-

2kcal/mol in the case of ligand binding22). In the present context of testing numerical 

accuracy we exploit our knowledge that the entire cycle must be zero. Therefore, we 

consider only the contribution to the entire cycle. According to Eq.(A1) this number is:  

 
dFA→UB∫ = ΔFI , solv

A→UB − ΔFI
A→UB − ΔFQ, solv

A→UB + ΔFQ
A→UB = −0.005 ± 0.011( )kcal/mol  (A5) 

It turns out that this correction due to the changes of the angular potential is 

negligible. 
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Appendix B: Derivation of the Fokker-Planck Equation from the 
Master Equation 

 

A derivation very similar to this one, and two possible other variants, can be 

found in 100. 

We start from the Master equation for a time homogeneous system as in the main 

text: 

  

 
 

∂p x,t( )
∂t

= dy W x | y( ) p y,t( )−W y | x( ) p x,t( )⎡⎣ ⎤⎦∫   (B1) 

Following the idea of the Kramers-Moyal expansion, we can expand  W
y | x( )  in 

a series. To do so, we can use the Fourier transform of  W
x | y( ) : 

 
 
C u, y( ) = dxW x | y( )ei

u⋅ x−y( )∫   (B2) 

If we expand in Taylor series the exponential we obtain: 

 
C u, y( ) = dx

iu ⋅ x − y( )⎡⎣ ⎤⎦
n

n!n=0

∞

∑∫ W x | y( ) = dxW x | y( )∫ + dx
iu ⋅ x − y( )⎡⎣ ⎤⎦

n

n!n=1

∞

∑∫ W x | y( )   

The sum of all the exiting rates from  
y  is 

 
 
γ y( ) = dxW x | y( )∫   (B3) 

therefore, we can write for the Fourier transform: 

 
 
C u, y( ) = γ y( ) + dx

iu ⋅ x − y( )⎡⎣ ⎤⎦
n

n!n=1

∞

∑∫ W x | y( )   (B4) 

We can now transform back  C
u, y( )  into  W

y | x( ) , remembering that the N -

dimensional delta function is 

 
 
δ x − y( ) = 1

2π( )N
due− i

u⋅ x−y( )∫   

we get  
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W x, y( ) = 1
2π( )N

due− i
u⋅ x−y( )C u, y( )∫ = γ y( )δ x − y( ) +

+ 1
2π( )N

due− i
u⋅ x−y( ) dx '∫∫

iu ⋅ x '− y( )⎡⎣ ⎤⎦
n

n!
W x ' | y( )

n=1

∞

∑
     

In the second term of the right hand side of this equation, the scalar product 

should be rewritten in a more convenient way: 

 

1
2π( )N

du∫  e− i
u⋅ x−y( ) dx '∫

iu ⋅ x '− y( )⎡⎣ ⎤⎦
n

n!
W x ' | y( )

n=1

∞

∑ =

= 1
2π( )N

1
n!n=1

∞

∑ du  ∫ e− i
u⋅ x−y( ) dx '∫ iu j x ' j− yj( )

j=1

N

∑⎡
⎣
⎢

⎤

⎦
⎥

n

W x ' | y( ) =

= 1
2π( )N

1
n!n=1

∞

∑ du  ∫ e− i
u⋅ x−y( ) dx '∫ iu j1

x ' j1− yj1( )
j1=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥... iu jn

x ' jn − yjn( )
jn=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥W
x ' | y( ) =

= 1
2π( )N

...
j1=1

N

∑ du  ∫ e
− i u j x j−yj( )

j=1

N

∑
iu j1

...iu jn

1
n!

dx '∫ x ' j1− yj1( )... x ' jn − yjn( )W x ' | y( )
jn=1

N

∑
n=1

∞

∑ =

= 1
2π( )N

...
j1=1

N

∑ du  ∫ e
− i u j x j−yj( )

j=1

N

∑
iu j1

...iu jn
Dj1... jn

n( ) y( )
jn=1

N

∑
n=1

∞

∑
 

Here, we defined the KM coefficient as  

 
 
Dj1⋅⋅⋅ jn
(n) y( ) = 1

n!
dx '∫ x ' j1− yj1( ) ⋅⋅⋅ x ' jn − yjn( )W x ' | y( )    (B5) 

Now we can carry out the integration in  
u  by making use of the following: 

 1
2π( )N

du(iu)n e− iu(x−y)∫ = 1
2π( )N

∂n

∂yn
due− iu(x−y)∫ = ∂n

∂yn
δ (x − y)   

Therefore: 

 

1
2π( )N

...
kn=1

N

∑
k1=1

N

∑
n=1

∞

∑ due− i
u⋅ x−y( )Dk1...kn

(n) y( )iuk1 ⋅⋅⋅ iukn∫ =

= ... Dk1...kn
(n) y( )

kn=1

N

∑
k1=1

N

∑
n=1

∞

∑ ∂
∂yk1

⋅⋅⋅ ∂
∂ykn

⋅δ x − y( )
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This formula can be used to derive the following equation for  W
y | x( )  

 
 
W x | y( ) = γ y( )δ x − y( ) + ⋅⋅⋅ Dk1⋅⋅⋅kn

(n) y( ) ∂n

∂yk1 ⋅⋅⋅ ∂ykn
δ x − y( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪kn=1

N

∑
k1=1

N

∑
n=1

∞

∑   (B6) 

Now, if we substitute (B6) in the Master equation (B1), we get: 

 

 

∂p x,t( )
∂t

= dyδ x − y( )∫ γ y( ) p y,t( ) +

+ ⋅⋅⋅ dyDk1⋅⋅⋅kn
(n) y( ) p y,t( ) ∂n

∂yk1 ⋅⋅⋅ ∂ykn
δ x − y( )∫

kn=1

N

∑
k1=1

N

∑
n=1

∞

∑ − dyW y | x( ) p x,t( )∫
  

Recalling (B3), we get that 
 

 
dyδ x − y( )∫ γ y( ) p y,t( ) = γ x( ) p x,t( ) = dyW y | x( )∫ p x,t( )   

This term cancels out with the last one, and we are left with  

 
 

∂p x,t( )
∂t

= ⋅⋅⋅ dyDk1⋅⋅⋅kn
(n) y( ) p y,t( ) ∂n

∂yk1 ⋅⋅⋅ ∂ykn
δ x − y( )∫

kn=1

N

∑
k1=1

N

∑
n=1

∞

∑   (B7) 

Integrating by parts the delta, and finally integrating the delta away, we obtain our 

final result. 

 
 

∂p x,t( )
∂t

= ⋅⋅⋅ (−1)n ∂n

∂xk1 ⋅⋅⋅ ∂xkn
Dk1⋅⋅⋅kn
(n) x( ) p x,t( )

kn=1

N

∑
k1=1

N

∑
n=1

∞

∑   (B8) 
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Appendix C: Derivation of the Kramers-Moyal Coefficients For 
Overdamped Dynamics 

This derivation is based upon the derivation of the 1-dimensional KM coefficients 

for an overdamped system, which can be found in 56. 

The dynamics in a N  dimensional space of coarse variables is modeled with a set 

of overdamped equations as in (3.1): 

  d
x = a x( )dt + 2b̂ x( )d


W t( )   (C.1) 

Given this dynamics, we want to compute the first and the second KM 

coefficients: 

 

 

Di
1( )

ξ( ) = dx xi −ξi( )W x,t +τ |


ξ ,t( )∫

Dij
2( )

ξ( ) = 12 dx xi −ξi( ) x j −ξ j( )W x,t +τ |


ξ ,t( )∫

  (C.2) 

If we plug the definition of the transition probability per unit time given in Eq. 

(3.3) in the KM coefficients, since the term with the Dirac’s delta cancels out we get: 

 
 
Di

1( )

ξ( ) = lim

τ→0

1
τ

dx xi −ξi( ) p x,t +τ |

ξ ,t( )∫ = lim

τ→0

1
τ
xi t +τ( )− xi t( )   (C.3) 

 

 

Dij
2( )

ξ( ) = lim

τ→0

1
2τ

dx xi −ξi( ) x j −ξ j( ) p x,t +τ | ξ ,t( )∫
= lim

τ→0

1
2τ

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦
  (C.4) 

Note that with the symbol ...  we refer to the averaged over the conditional 

probability of being in  

ξ  at time t .  

To compute these averages, we need to integrate equation (C.1) for a short time τ

. What makes this calculation tricky is the presence of a stochastic term in equation (C.1). 

To integrate the stochastic process we need to follow Ito’s rules of calculus. We recall 

here the few properties87 that we will need to solve equations (C.3)-(C.4): 



 168 

1. Property (a): the stochastic process  
x t( ) it is continuous but not 

differentiable; we also assume that  ai
x t( )⎡⎣ ⎤⎦  and  bij

x t( )⎡⎣ ⎤⎦  are 

continuous. 
2. Property (b): given any function  G

x t( )⎡⎣ ⎤⎦  which is bounded and non-

anticipating, i.e. independent on the Wiener process for s > t , we have: 

 
 

dW t '( )G x t '( )⎡⎣ ⎤⎦
t0

t

∫ = 0   (C.5) 

 The functions  ai
x t( )⎡⎣ ⎤⎦  and  bij

x t( )⎡⎣ ⎤⎦  are non-anticipating. 

3. Property (c): given any arbitrary function of a stochastic process as the one 

in (3.1), that function obeys the following differential equation: 

 

df x t( )⎡⎣ ⎤⎦ = ai
x t( )⎡⎣ ⎤⎦

∂ f x t( )⎡⎣ ⎤⎦
∂xii=1

N

∑ + bik
x t( )⎡⎣ ⎤⎦bjk

x t( )⎡⎣ ⎤⎦
∂2 f x t( )⎡⎣ ⎤⎦
∂xi ∂x jk=1

N

∑
j=1

N

∑
i=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dt

+ 2bij
x t( )⎡⎣ ⎤⎦

∂ f x t( )⎡⎣ ⎤⎦
∂xij=1

N

∑
i=1

N

∑ dWj t( )
  (C.6) 

This last equation is known as Ito’s formula. We will use it in its integrated form: 

 

f x t( )⎡⎣ ⎤⎦ = f x t0( )⎡⎣ ⎤⎦

+ ai
x t '( )⎡⎣ ⎤⎦

∂ f x t '( )⎡⎣ ⎤⎦
∂xii=1

N

∑ + bik
x t '( )⎡⎣ ⎤⎦bjk

x t '( )⎡⎣ ⎤⎦
∂2 f x t '( )⎡⎣ ⎤⎦
∂xi ∂x jk=1

N

∑
j=1

N

∑
i=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dt '

t0

t

∫

+ 2bij
x t '( )⎡⎣ ⎤⎦

∂ f x t '( )⎡⎣ ⎤⎦
∂xij=1

N

∑
i=1

N

∑ dWj t '( )
t0

t

∫

 (C.7) 

The average in the first KM coefficient can be rewritten by integrating equation 

(C.1) over a short time τ , i.e. 

 
 
xi t +τ( )− xi t( ) = dt 'ai

x t '( )⎡⎣ ⎤⎦
t

t+τ

∫ + 2 dWj t '( )bij
x t '( )⎡⎣ ⎤⎦

t

t+τ

∫
j=1

N

∑   

The average of the second integral is zero because of property (b). Therefore, we 

are left with: 
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lim
τ→0

xi t +τ( )− xi t( )
τ

= lim
τ→0

dt 'ai
x t '( )⎡⎣ ⎤⎦

t

t+τ

∫
τ

= lim
τ→0

ai
x t +τ( )⎡⎣ ⎤⎦ = ai

x t( )⎡⎣ ⎤⎦ = ai

ξ( )

  

where in the second step of the derivation we used l’Hôpital’s rule and in the last 

step the continuity property (a). This proves that: 

 
 
Di

1( )

ξ( ) = lim

τ→0

1
τ
xi t +τ( )− xi t( ) = ai


ξ( )   (C.8) 

For the second KM coefficient we need to compute: 

 
xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ = xi t +τ( )x j t +τ( ) − xi t +τ( )x j t( )

− xi t( )x j t +τ( ) + xi t( )x j t( )
= xi t +τ( )x j t +τ( ) − xi t +τ( ) ξ j − x j t +τ( ) ξi + ξiξ j

  

Note that we explicitly used the fact that the average is conducted over a 

conditional probability that  
x t( ) =


ξ . 

Now, from equation (C.8) we have that: 
 

 
xi t +τ( ) = ξi + ai


ξ( )τ +O τ 2( )   

so 

 

 
xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ = xi t +τ( )x j t +τ( ) −ξiξ j − ai


ξ( )ξ jτ − ξia j


ξ( )τ +O τ 2( )   

To evaluate the first average, we use Ito’s formula (C.7) for the function 
xi t +τ( )x j t +τ( ) : 
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xi t +τ( )x j t +τ( ) = xi t( )x j t( )

+ ak
x t '( )⎡⎣ ⎤⎦

∂xi t '( )x j t '( )
∂xkk=1

N

∑ + bkm
x t '( )⎡⎣ ⎤⎦blm

x t '( )⎡⎣ ⎤⎦
∂2 xi t '( )x j t '( )

∂xk ∂xlm=1

N

∑
l=1

N

∑
k=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dt '

t0

t

∫

+ 2 bkl
x t '( )⎡⎣ ⎤⎦

∂xi t '( )x j t '( )
∂xkl=1

N

∑
k=1

N

∑ dWl t '( )
t0

t

∫

  

As before, the last integral is zero because of property (b). Now, carrying out the 

derivatives we get: 

 

 

xi t +τ( )x j t +τ( ) = ξiξ j + ai
x t '( )⎡⎣ ⎤⎦ x j t '( )dt '

t

t+τ

∫ + aj
x t '( )⎡⎣ ⎤⎦ xi t '( )dt '

t

t+τ

∫

+2 bim
x t '( )⎡⎣ ⎤⎦bjm

x t '( )⎡⎣ ⎤⎦
m=1

N

∑ dt '
t

t+τ

∫
  

Therefore, we have: 

 

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ = ai
x t '( )⎡⎣ ⎤⎦ x j t '( )dt '

t

t+τ

∫ + aj
x t '( )⎡⎣ ⎤⎦ xi t '( )dt '

t

t+τ

∫

+2 bim
x t '( )⎡⎣ ⎤⎦bjm

x t '( )⎡⎣ ⎤⎦
m=1

N

∑ dt '
t

t+τ

∫ − ai

ξ( )ξ jτ − ξia j


ξ( )τ +O τ 2( )

  

 

If we divide by τ  and take the limit for τ → 0 , using l’Hopital’s rule and 

property (a) like before, we get: 

 

lim
τ→0

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦
τ

= ai

ξ( )ξ j + ξia j


ξ( )

+2 bim

ξ( )bjm ξ( )

m=1

N

∑ − ai

ξ( )ξ j −ξia j


ξ( )

  

So that, finally, 

 
 
Dij

2( )

ξ( ) = lim

τ→0

1
2τ

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ = bim

ξ( )bjm ξ( )

m=1

N

∑   (C.9) 

Finally, we need to show that the third KM coefficient is zero, i.e. 

 
Dijk

3( )

ξ( ) = lim

τ→0

1
6τ

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ xk t +τ( )− xk t( )⎡⎣ ⎤⎦ = 0  (C.10) 
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Using Pawula’s theorem,54a, 54c this proves that all the other coefficients are zero. 

Let’s rewrite the average in equation (C.10): 
xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ xk t +τ( )− xk t( )⎡⎣ ⎤⎦ = xi t +τ( )x j t +τ( )xk t +τ( )

−ξi x j t +τ( )xk t +τ( ) −ξ j xi t +τ( )xk t +τ( ) −ξk xi t +τ( )x j t +τ( ) +

+ξiξ j xk t +τ( ) + ξiξk x j t +τ( ) + ξ jξk xi t +τ( ) −ξiξ jξk

  

From equation (C.9) we get that 

 

 
xi t +τ( )x j t +τ( ) = xi t +τ( ) ξ j + ξi x j t +τ( ) −ξiξ j + 2 b̂


ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ij
τ +O τ 2( )   

We can use this result to get: 

 

 

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ xk t +τ( )− xk t( )⎡⎣ ⎤⎦ = xi t +τ( )x j t +τ( )xk t +τ( )
− xi t +τ( ) ξ jξk −ξi x j t +τ( ) ξk −ξiξ ji xk t +τ( ) + 2ξiξ jξk

−2τ b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ij
ξk + b̂


ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ik

ξ j + b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ jk

ξi{ }τ +O τ 2( )
  

Similarly to what was done to derive the second KM coefficient, we use equation 

(C.8) to get: 

 

 

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ xk t +τ( )− xk t( )⎡⎣ ⎤⎦ = xi t +τ( )x j t +τ( )xk t +τ( )

−τ ai

ξ( )ξ jξk + ξia j


ξ( )ξk + ξiξ jak


ξ( ){ }−ξiξ jξk

−2τ b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ij
ξk + b̂


ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ik

ξ j + b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ jk

ξi{ }τ +O τ 2( )

  

Now we can rewrite the first average using Ito’s formula (C.7) for the function 
xi t +τ( )x j t +τ( )xk t +τ( ) : 



 172 

 

 

xi t +τ( )x j t +τ( )xk t +τ( ) = xi t( )x j t( )xk t( )

+ al
x t '( )⎡⎣ ⎤⎦

∂xi t '( )x j t '( )xk t '( )
∂xll=1

N

∑ + blm
x t '( )⎡⎣ ⎤⎦bnm

x t '( )⎡⎣ ⎤⎦
∂2 xi t '( )x j t '( )xk t '( )

∂xl ∂xnn=1

N

∑
m=1

N

∑
l=1

N

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dt '

t

t+τ

∫

+ 2 blm
x t '( )⎡⎣ ⎤⎦

∂xi t '( )x j t '( )xk t '( )
∂xlm=1

N

∑
l=1

N

∑ dWm t '( )
t

t+τ

∫

  

Again, the last term is zero because of equation (C.5). Once we carry out the 

derivatives we obtain: 

 

 

xi t +τ( )x j t +τ( )xk t +τ( ) = ξiξ jξk

+ ai
x t '( )⎡⎣ ⎤⎦ x j t '( )xk t '( )dt '

t

t+τ

∫ + xi t '( )aj
x t '( )⎡⎣ ⎤⎦ xk t '( )dt '

t

t+τ

∫ + xi t '( )x j t '( )ak
x t '( )⎡⎣ ⎤⎦dt '

t

t+τ

∫

+2 b̂ x t '( )⎡⎣ ⎤⎦ b̂
T x t '( )⎡⎣ ⎤⎦{ }

ij
xk t '( )dt '

t

t+τ

∫ + 2 b̂ x t '( )⎡⎣ ⎤⎦ b̂
T x t '( )⎡⎣ ⎤⎦{ }

ik
x j t '( )dt '

t

t+τ

∫

+2 b̂ x t '( )⎡⎣ ⎤⎦ b̂
T x t '( )⎡⎣ ⎤⎦{ }

jk
xi t '( )dt '

t

t+τ

∫

  

Therefore, we get: 

 

xi t +τ( )− xi t( )⎡⎣ ⎤⎦ x j t +τ( )− x j t( )⎡⎣ ⎤⎦ xk t +τ( )− xk t( )⎡⎣ ⎤⎦ = ai
x t '( )⎡⎣ ⎤⎦ x j t '( )xk t '( )dt '

t

t+τ

∫ −τai

ξ( )ξ jξk

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+ xi t '( )aj
x t '( )⎡⎣ ⎤⎦ xk t '( )dt '

t

t+τ

∫ −τξia j

ξ( )ξk⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ xi t '( )x j t '( )ak

x t '( )⎡⎣ ⎤⎦dt '
t

t+τ

∫ −τξiξ jak

ξ( )⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+2 b̂ x t '( )⎡⎣ ⎤⎦ b̂
T x t '( )⎡⎣ ⎤⎦{ }

ij
xk t '( )dt '

t

t+τ

∫ −τ b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ij
ξk

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+2 b̂ x t '( )⎡⎣ ⎤⎦ b̂
T x t '( )⎡⎣ ⎤⎦{ }

ik
x j t '( )dt '

t

t+τ

∫ −τ b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ik

ξ j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+2 b̂ x t '( )⎡⎣ ⎤⎦ b̂
T x t '( )⎡⎣ ⎤⎦{ }

jk
xi t '( )dt '

t

t+τ

∫ −τ b̂

ξ( )b̂T ξ( )⎡

⎣
⎤
⎦ jk

ξi
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+O τ 2( )

  

If we divide by τ  and take the limit for τ → 0 , using l’Hopital rule and property 

(a), we can show that each term in curly brackets vanishes, giving as a result that the third 

KM coefficient is zero.  
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