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Turbulent boundary layers approximating those found on the NASA Orion Multi-

Purpose Crew Vehicle (MPCV) thermal protection system during atmospheric reentry

from the International Space Station have been studied by direct numerical simulation,

with the ultimate goal of reducing aerothermodynamic heating prediction uncertainty.

Simulations were performed using a new, well-verified, openly available Fourier/B-

spline pseudospectral code called Suzerain equipped with a “slow growth” spatiotem-

poral homogenization approximation recently developed by Topalian et al.

A first study aimed to reduce turbulence-driven heating prediction uncertainty

by providing high-quality data suitable for calibrating Reynolds-averaged Navier–Stokes

turbulence models to address the atypical boundary layer characteristics found in such

reentry problems. The two data sets generated were Ma ≈ 0.9 and 1.15 homogenized

boundary layers with Reθ ≈ 382 and 531, respectively. Edge-to-wall temperature ra-

tios, Te/Tw, were close to 4.15 and wall blowing velocities, v+w = vw/uτ, were about

8× 10−3. The favorable pressure gradients had Pohlhausen parameters between 25
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and 42. Skin frictions coefficients around 6×10−3 and Nusselt numbers under 22 were

observed. Near-wall vorticity fluctuations show qualitatively different profiles than

observed by Spalart [J. Fluid Mech. 187 (1988)] or Guarini et al. [J. Fluid Mech. 414

(2000)]. Small or negative displacement effects are evident. Uncertainty estimates and

Favre-averaged equation budgets are provided.

A second study aimed to reduce transition-driven uncertainty by determining

where on the thermal protection system surface the boundary layer could sustain tur-

bulence. Local boundary layer conditions were extracted from a laminar flow solution

over the MPCV which included the bow shock, aerothermochemistry, heat shield sur-

face curvature, and ablation. That information, as a function of leeward distance from

the stagnation point, was approximated by Reθ , Mae, p∗e,ξ =
δ
ρeu2

e

∂pe
∂ξ , v+w , and Te/Tw

along with perfect gas assumptions. Homogenized turbulent boundary layers were

initialized at those local conditions and evolved until either stationarity, implying the

conditions could sustain turbulence, or relaminarization, implying the conditions could

not. Fully turbulent fields relaminarized subject to conditions 4.134 m and 3.199 m

leeward of the stagnation point. However, different initial conditions produced long-

lived fluctuations at leeward position 2.299 m. Locations more than 1.389 m leeward

of the stagnation point are predicted to sustain turbulence in this scenario.
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Chapter 1

Introduction

1.1 Motivation

A vehicle reentering Earth’s atmosphere requires a thermal protection system

(TPS) to mitigate aerothermodynamic heating. Gauging reentry heat load is critical

to mission success. Undersizing a TPS at best destroys expensive equipment and at

worst causes loss of life. Oversizing a TPS increases vehicle weight and fuel costs and

therefore reduces available payload. Decision makers need these heating predictions

with quantified uncertainty so they may balance reliability requirements against cost

constraints.

Turbulence and laminar-turbulent transition enter critically into this balance.

Turbulence in the fluid boundary layer around a vehicle intensifies heating because

turbulent mixing enhances momentum, energy, and chemical species transport to the

TPS. Recent coupled multiphysics studies by Bauman et al. [8] and Stogner et al. [154]

showed that ablative TPS predictions are highly sensitive to uncertainty in turbulence

model calibration parameters. Further, while low-turbulence freestream conditions al-

low at least the stagnation point region within the flow to be laminar, prediction efforts

often assume these boundary layers are fully turbulent. Both incorrectly applying tur-

bulence models to laminar regions and neglecting the downstream laminar-turbulent
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transition processes add markedly to heat load uncertainty. Transition models may be

employed to relax this assumption by accounting for transitional flow. However, the

extreme sensitivity of transition phenomena to the upstream environment (see, for

example, Fedorov [43]) brings with those models another uncertainty penalty.

1.2 Objectives

This work aims to reduce turbulence- and transition-driven uncertainty in aero-

thermodynamic heating predictions for blunt-bodied reentry vehicles in two ways. The

first way will reduce the uncertainty entering through the turbulence model calibra-

tion parameters. The second way will reduce the uncertainty arising from incorrectly

treating laminar regions as fully turbulent.

First, we aim to use direct numerical simulation (DNS) of the compressible

Navier–Stokes equations to generate high-quality supersonic boundary layer data for

turbulence model calibration. DNS was selected because the technique produces data

uncertainties limited only by the available computing resources. We have designed

and implemented a new, well-verified Fourier/B-spline pseudospectral DNS code called

Suzerain employing “slow growth,” a spatiotemporal boundary layer homogenization

approach by Topalian et al. [163, 165, 166], to efficiently generate turbulence statistics

with accurately quantified uncertainties. The code is used to create a rich database of

compressible turbulence statistics for use by the reentry community. In addition to the

long-lived, public datasets we generate, our modern DNS code can serve others as a

robust, extensible platform for computational turbulence research.
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Second, we aim to detect which regions of an ablative thermal protection

system on a blunt-bodied vehicle can sustain turbulence. Given the strength of the

favorable pressure gradients found in these flows, it is reasonable to expect that a

contiguous region extending some distance radially from the stagnation point sim-

ply cannot maintain turbulence. Rather than taking the classical transition modeling

approach and seeking where laminar-turbulent transition occurs, this study instead

aims to map where turbulence cannot survive. The spatiotemporal boundary layer

DNS code is reused to parametrically explore pointwise flow conditions found within

simulations like those of Bauman et al. [8]. Fully turbulent fields are initialized and

evolved at local conditions taken from such simulations. We say the conditions cannot

sustain turbulence if the field relaminarizes. By exploring this parameter space, we

aim to discover where turbulence models might not be employed when engineering

practitioners simulate these reentry flows.

1.3 Outline

This work is organized as follows:

Chapter 2 provides background on the uncertainties arising from applying

turbulence models within reentry applications, how calibration data impacts these un-

certainties, and evaluates potential sources for obtaining that data. It further discusses

uncertainties arising from transition phenomena and proposes a concrete scenario for

study based on the Orion MPCV.

Chapter 3 summarizes the mathematical models required to pursue the aims of

3



the thesis. Chapter 4 details the computational techniques used to apply these models

while Chapter 5 describes their software implementation.

Chapter 6 presents new direct numerical simulations of spatiotemporally ho-

mogenized turbulent boundary layers with features similar to those found on the

Orion MPCV thermal protection system. It investigates the character of the turbu-

lence, presents Favre-averaged equation budgets, and communicates the information

necessary to use the data for turbulence model calibration.

Chapter 7 detects turbulence-sustaining regions on the Orion MPCV using

spatiotemporally homogenized boundary layers. The study methodology is discussed

followed by a collection of results corresponding to locations on the MPCV thermal

protection system.

Finally, Chapter 8 summarizes the conclusions of this thesis and presents rec-

ommendations for future work.

1.4 Contributions

This work has made the following contributions:

1. Creation of a well-verified, openly available pseudospectral code for the direct nu-

merical simulation (DNS) of sub- through supersonic turbulent boundary layers

using “slow growth” homogenization techniques.

2. Generation and characterization of metadata-rich DNS data, with well-quantified

sampling uncertainty, for sub- and supersonic spatiotemporally homogenized tur-
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bulent boundary layers on cold, transpiring walls and subject to strong favorable

pressure gradients.

3. Design of a novel DNS experiment to determine where on a vehicle surface turbu-

lence can be sustained without requiring the flight environment to be sufficiently

well-understood that transition modeling can be reliably applied.

4. Application of this novel DNS experiment to conditions from the NASA Orion

Multi-Purpose Crew Vehicle ablative thermal protection system during atmo-

spheric reentry from the International Space Station.
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Chapter 2

Background

This chapter provides the background material necessary to link the motivation

from Section 1.1 with the numerical studies in Chapter 6 and Chapter 7. The first four

sections cover state-of-the-art turbulence model prediction for blunt-bodied reentry

vehicles and, in particular, the dearth of suitable model calibration data. In Section 2.5,

homogenization approaches are then seen to remedy that shortcoming leading to

the study in Chapter 6. Next, the shortcomings of transition prediction are described

in Section 2.6 along with a novel idea for bounding transition-related uncertainty

based on relaminarization arguments. Both empirical parameters and rigorous stability

bounds are shown to be inadequate for applying this idea in Sections 2.6 and 2.7.

However, homogenization is again applicable as discussed in Section 2.8 prompting

the study in Chapter 7. Finally, to provide a concrete setting for both aforementioned

studies, data from NASA Orion Multi-Purpose Crew Vehicle simulations is presented

in Section 2.9
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2.1 The Impact of Turbulence
on Aerothermodynamic Heating Predictions

In 2006, Roy and Blottner [132] summarized state-of-the-art aerodynamic pre-

dictions in hypersonics:

Accurate aerodynamic prediction is critical for the design and optimiza-

tion of hypersonic vehicles. Turbulence modeling remains a major source

of uncertainty in the computational prediction of aerodynamic forces and

heating for these systems. . . . While some [one- and two-equation] turbu-

lence models do provide reasonable predictions for the surface pressure,

the predictions for surface heat flux are generally poor, and often in error

by a factor of four or more. . . .

In the same year, Wilcox [176, §5.7]made the more subdued comment that supersonic

model predictions involving surface heat transfer “often show nontrivial discrepancies

from measured values.”

On a reentry vehicle, thermal protection material selection is controlled by pre-

dicted heat flux, surface pressure, and shear stress while material thickness is governed

primarily by the total integrated heat load across a flight trajectory [178]. Potentially

large errors in surface heat transfer predictions, like those delivered by current turbu-

lence models, necessitate more conservative designs and can add significant vehicle

mass penalties. Broad uncertainty bounds can often be as important as the nominal

aeroheating value predicted from a designer or risk assessor’s perspective [117].
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Figure 2.1: The Entry Heating Phase during atmospheric reentry is a complex multi-
physics problem with uncertainties in system response predictions arising from many
causes. In particular, aerothermodynamic heating and any associated ablative thermal
protection system response predictions are highly sensitive to turbulence model pa-
rameters. Top and lower-left images courtesy of NASA. Lower right image reproduced
from Stogner et al. [154].
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As part of The University of Texas at Austin’s Center for Predictive Engineer-

ing and Computational Sciences’1 larger investigation into verification, validation, and

uncertainty quantification, Bauman et al. [8] and Stogner et al. [154] performed cou-

pled multiphysics simulations of the blunt-bodied Orion Multi-Purpose Crew Vehicle

(MPCV), then called the Crew Exploration Vehicle (CEV), undergoing peak heating

during return from the International Space Station. The upper portion of Figure 2.1

shows this entry heating phase amongst the many other flight regimes in which the

MPCV must operate while the lower left portion depicts the multi-physics nature of

the reentry environment. The lower right portion of Figure 2.1 reproduces the finding

by Bauman et al. and Stogner et al. that the surface heat flux and associated ther-

mal protection system ablation rate showed more sensitivity to the uncertainties from

turbulence models than to any other physics model they employed.

2.2 Data Requirements for Bayesian
Calibration of Turbulence Models

Turbulence modeling is a rich discipline built on theoretical results derived

from first principles, physical intuition obtained from precise measurements, and, by

necessity, judicious curve fitting [24, 36, 124, 176]. All practically useful turbulence

models contain imperfectly known free parameters which must be calibrated via some

statistical inference procedure. For example, least squares approaches can be used to

determine parameters by minimizing the discrepancy between model predictions and

some relevant reference observations, also known as calibration data.

1http://pecos.ices.utexas.edu/
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Recently, Bayesian techniques for turbulence model calibration have been in-

troduced by Cheung et al. [25] and expounded upon by Oliver and Moser [112, 113].

Following Bayesian philosophy, the turbulence model parameters, θ , are assigned a

joint prior probability density function (PDF) characterizing prior knowledge about

the parameters’ uncertain, “true” values. During calibration, this prior PDF, pprior(θ ), is

merged with a likelihood distribution depending on new data, d, to obtain a posterior

PDF, ppost (θ |d), via Bayes’ theorem:

ppost(θ |d)∝ L(d|θ ) pprior(θ ) . (2.1)

The likelihood function, L(d|θ ), gauges the probability that the model with parame-

ters θ is consistent with the data d. In effect, the posterior PDF captures the updated

state of model parameter knowledge obtained by incorporating the calibration data.

Measurement uncertainty in the calibration data is accounted for in the likeli-

hood function. By Bayes’ theorem, larger measurement uncertainties cause the calibra-

tion data to less strongly influence the posterior PDF which, in turn, causes less certain

turbulence model predictions. While smaller uncertainties are therefore desirable, it is

far more important that the calibration data have accurately quantified uncertainties.

Indeed, inaccuracies poison the posterior PDF. For these reasons, we say calibration

data is “high quality” if, firstly, it is accompanied by accurately quantified measurement

uncertainties and, secondly, if those uncertainties are small.

Additionally, “high quality” calibration data must satisfy Settles and Dodson’s

long-established assessment criteria listed in Table 2.1. The preceding discussion mo-

tivates and sharpens their requirements regarding well-defined error bounds. Three of
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the other criteria are paraphrased briefly as they will be important in the sequel:

• Realistic test conditions. More application-like but comparatively rare data are

preferred. For example, in the context of reentry vehicles with ablative heat

shields, data collected from experiments with non-adiabatic walls are preferred.

• Simplicity. Experimental geometries must be sufficiently simple that they may

be modeled without enormous difficulty.

• Well-defined boundary conditions. All incoming conditions, especially the state

and “fluctuating character” of the incoming boundary layer, must be carefully

documented.

Comprehensive criterion descriptions appear in Settles and Dodson [144].

Assuming a predictive model can be validated in a given context [104, 109,

110], it is the scarcity of high-quality calibration data that dominates predictive un-

certainty. Because the present work is intended to reduce the uncertainty of aerother-

modynamic heating predictions on blunt-bodied reentry vehicles, and because these

predictions are sensitive to turbulence model parameters, we seek relevant high-quality

turbulence model calibration data.

2.3 High-Quality Calibration Data
from the Experimental Literature

We seek high-quality experimental data, as defined in Section 2.2, for super-

sonic turbulent boundary layers experiencing favorable pressure gradients that are

11



Table 2.1: While “. . . looking for those few experimental studies of unimpeachable
quality. . . ” in the super- and hypersonics literature, Settles and Dodson [143, 144,
145, 146] set forth these criteria for assessing the utility of data sets to the testing and
validation of turbulence models.

Necessary criteria

1. Baseline applicability

2. Simplicity

3. Specific applicability

4. Well-defined boundary conditions

5. Well-defined error bounds

6. Consistency

7. Adequate documentation

8. Adequate spatial resolution

Desirable criteria

1. Turbulent data

2. Realistic test conditions

3. Non-intrusive instrumentation

4. Redundant measurements

5. Flow structure and physics
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attached to cold walls possessing either flat or convex geometries. Following earlier

data compilations by Fernholz and Finley [45, 46] and Fernholz et al. [47], Settles

and Dodson [144] surveyed the 1962–1993 literature to find experimental data from

Ma ≥ 3 attached turbulent boundary layer flows in nonzero pressure gradients. Of

the entire corpus then-indexed by the AIAA Aerospace Database, only nine experimen-

tal data sets satisfied their necessary criteria listed in Table 2.1. Of those nine, only

the work of Lewis et al. [92] included a favorable pressure gradient. That study used

adiabatic wall conditions,2 only implicitly reported its error bounds [45, p. 7201-A-1],

and provided no fluctuating quantity measurements. Settles and Dodson concluded

that both additional nonintrusive fluctuating flow field measurements and data from

pressure gradient flows having prescribed wall temperatures would be valuable.

Since 1993, experimentalists have generated extensive, nonintrusive fluctuat-

ing data from flows with a variety of pressure gradient conditions [e.g. 3, 12, 13, 38–

40, 54, 55, 85, 95, 96]. Explicitly stated, well-characterized error bounds commonly

accompany these more recent measurements. However, adiabatic wall conditions con-

tinue to overwhelmingly dominate the literature and experimental data from constant-

temperature, cold wall flows remains comparatively quite rare. That is, Settles and

Dodson’s realistic test conditions criterion, discussed in Section 2.2, remains largely un-

fulfilled in the current literature. Regardless of the wall conditions, obtaining near-wall

data also remains a challenge and limits the utility of experimental measurements for

compressible turbulence model development.

2Subsequent favorable pressure gradient experiments by the same authors employed constant-
temperature, cold walls [58]. Though extant, this data was not assessed by Settles and Dodson [144]
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In generally accepted frameworks for predictive simulation, high-quality data

is unequivocally required for model validation [2, 4, 5].3 The currently available ex-

perimental data sets pertinent to the scenario of interest are, at best, sufficient for

turbulence model validation [132]. Calibration is fundamentally different from valida-

tion in that the data consumed need not be drawn from the system of interest or some

approximate facsimile thereof — anything traceable that a practitioner deems infor-

mative to a particular model may be used, provided that the consequential model can

be validated. To make the strongest possible statement, within the above frameworks,

about a model’s validity requires assessing it against data not used during calibration.

For these reasons, the present work espouses the view that the scant, high-quality

experimental data available should be reserved for validation alone.

2.4 High-Quality Calibration Data
from the Computational Literature

Direct numerical simulation (DNS) is a high-fidelity computational technique

in which the full spatiotemporal scales of turbulence are resolved numerically. When

performed carefully, DNS accurately captures the dynamics of turbulent flows per-

mitting unfettered measurement of experimentally inaccessible quantities. However,

because of the need to resolve fine dissipative processes, DNS’ computational expense

grows like Re4 where Re is an appropriate Reynolds number. This explosive scaling

places high Reynolds number flow regimes out of reach of DNS for the foreseeable

3As defined by Moser et al. [104], “. . . validation [determines] whether a mathematical model is a
sufficient representation of reality . . . for predicting specified [quantities of interest] to inform a specific
decision.”
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future.

Fortunately, turbulent boundary layers on blunt-bodied reentry vehicles of-

ten have Reynolds numbers low enough to be accessible by compressible DNS tech-

niques on current high-performance computing platforms. Here, the Reynolds number

based on the momentum thickness, Reθ , is the pertinent one. Bauman et al. [8] found

Reθ ≈ 400–700 in their heat shield simulations. For comparison, Komminaho and Skote

[78] reported incompressible DNS results for that same Reθ range in 2002. Though

compressible DNS is markedly more expensive than its incompressible counterpart,

computing hardware has improved by more than an order of magnitude in the interim.

Turbulent boundary layers are more challenging to simulate than streamwise-

homogeneous channel flows because they evolve as they progress downstream. If the

streamwise direction is treated with aperiodic numerics, some form of turbulent inflow

condition is required. One common approach is tripping a laminar profile to cause

the flow to transition inside the computational domain [180]. Another approach is

providing an approximately realistic turbulent profile via generation [e.g. 97], some

auxiliary computation, or by “recycling” rescaled turbulent profiles from elsewhere

within the computation [147]. Employing highly efficient, streamwise-periodic numer-

ics innately forces recycling. Any chosen technique brings with it complexity and the

danger of introducing unintended and undesirable time- and length-scales through the

streamwise boundary treatment.

In 2010, Schlatter and Örlü [137] assessed zero-pressure-gradient, incompress-

ible, low-Re turbulent boundary layer simulations [48, 74, 75, 78, 135, 136, 147, 150,

179] with the goal of quantifying the variability of reported results. Schlatter and Örlü
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found “. . . surprisingly inconsistent predictions for quantities as basic as the friction co-

efficient, shape factor, and fluctuation maxima. . . ” despite the fact that all authors used

“reliable numerical methods with sufficiently high resolutions.” They concluded that

the discrepancies arose from differences in inflow Reynolds number and turbulence

generation, the amount of settling length the flow was permitted before it was deemed

to have reached its final turbulent state, and the selection of computational domain

dimensions and boundary conditions. In short, computational shortcuts anticipated to

be benign were demonstrably not so in subtle ways.

It is reasonable to expect that DNS data sets for compressible boundary layers,

with their additional thermodynamic complexity and greater computational expense,

possess inconsistencies of at least the same severity as their incompressible counter-

parts. The straightforward consequence is that using spatially evolving compressible

boundary layer DNS as a high-quality calibration data source requires great care with

respect to Settles and Dodson’s criteria for simplicity and well-defined boundary con-

ditions discussed in Section 2.2. Addressing these concerns in the context of a given

data set certainly is possible but is sufficiently difficult4 that finding a less complicated

class of calibration data is worthwhile.

4Confirming that, for example, an inflow-tripping or inflow-rescaling procedure has not aphysically
perturbed spatially evolving DNS results seemingly necessitates performing an auxiliary study checking
that reported statistics, to reported uncertainties, are insensitive to the inflow treatment. Performing
such studies incurs computational expense of same order as the original DNS.
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2.5 Recent Developments in Homogenization
of Turbulent Boundary Layers

To reduce computational expense and avoid the need for inflow boundary condi-

tions, Spalart [150] pioneered the simulation of spatially homogenized boundary layers.

In his approach, additional assumptions are introduced to homogenize the boundary

layer in the streamwise direction thus permitting the use of periodic boundary condi-

tions. Using 1988 computing hardware, Spalart simulated incompressible boundary

layers at Reθ up to 1410 which remain among the few widely accepted DNS-derived

data sets in the zero-pressure-gradient turbulent boundary layer literature [64, 179].

Guarini [59] extended Spalart’s work to spatially homogenized compressible boundary

layers, again achieving considerable expense reduction. From the perspective of the

current work, homogenization permits better adherence to Settles and Dodson’s cri-

teria for simplicity and well-defined boundary conditions because it removes the subtle

inflow boundary condition.

Beyond introducing periodicity, the Spalart [150] and Guarini [59] spatial ho-

mogenizations add additional “slow growth” forcing terms to the residual of governing

equations. These terms must be Reynolds-averaged and accounted for during the cali-

bration of the one- and two-equation turbulence models typically used in super- and

hypersonic applications. However, taking the Reynolds average of these spatial slow

growth forcing terms causes new, unclosed turbulence correlations to appear which sub-

sequently must be closed through a modeling ansatz beyond that required to develop

the off-the-shelf turbulence models. This is undesirable.

Motivated by Rayleigh’s problem, in 2011 Topalian et al. [163] sidestepped the
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Figure 2.2: Rayleigh’s problem.

appearance of these unclosed terms by instead homogenizing a temporally evolving

boundary layer. This classical problem, depicted in Figure 2.2, concerns the behavior

of a fluid in a semi-infinite domain bounded below by a no-slip wall. At time t = 0 the

wall impulsively is started with some constant velocity. The resulting boundary layer

grows upward as time progresses but is statistically homogeneous in the streamwise

and spanwise directions.

The temporal homogenization approach, to recant from Topalian et al. [166]

employing Spalart-like notation, begins by manipulating the evolution of a conserved

flow quantity φ = φ[x , y, z, t] governed by some nonlinear spatial operator N accord-

ing to

∂φ

∂ t
+ N[φ] = 0. (2.2)

The quantity φ = φ̄ + φ′ is decomposed into its mean and zero-mean fluctuating

components, respectively. Defining ARMS to be proportional to the root-mean-squared

fluctuation φRMS,

φ = φ̄ + ARMS φ
′

ARMS
= φ̄ + ARMSφ′p (2.3)
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where φ′p now captures periodic fluctuating behavior. One introduces a fast time t f = t

and a slow time ts = εt where ε� 1 and assumes φ̄ and ARMS vary only with y and

ts while φ′p does not vary with ts. This is intuitively sensible in Rayleigh’s problem as

φ̄ and ARMS should depend on the slowly evolving boundary layer thickness and the

distance from the wall but not on the field’s instantaneous state. That is,

φ[x , y, z, t] = φ̄[y, ts] + ARMS[y, ts]φ
′
p[x , y, z, t f ] (2.4)

which yields, after some manipulation,

∂φ

∂ t f
+ N[φ] = −ε∂φ

∂ ts
= −ε∂φ̄

∂ ts
−
Ç
ε

φRMS

∂φRMS

∂ ts

å
φ′. (2.5)

As alluded to previously, taking the expectation of (2.5) does not produce derivatives

of mean fast-fluctuating quantities with respect to slow time. Consequently, the data

produced can be used directly for calibration of Reynolds-average turbulence models

under the additional mild assumption that modeled quantities, like the turbulent kinetic

energy, can also be decomposed analogously to (2.4). The final right hand side in (2.5)

is the general form of such temporal slow growth forcing.

Additional work is necessary to completely determine that forcing and render

it in a computable form. Topalian et al. [166] invoked tensor consistency and self-

similarity arguments to permit DNS of a fixed slow time instant in a zero-pressure-

gradient temporal boundary layer. This homogenization ultimately adds conserved-

quantity forcing terms

Sρ = Sρ,t , Sρui
= ρSui ,t + uiSρ,t , SρE = ρSE,t + ESρ,t (2.6a)
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to the fast-time mass, momentum, and total energy equations, respectively. The asso-

ciated specific-quantity forcing terms are

Sρ,t = y grt0
(∆)

Ç
ρ

ρ̄

∂ ρ̄

∂ y

å
(2.6b)

Sui ,t = y grt0
(∆)

Ö
∂ũi

∂ y
+

u′′i√flu′′k u′′k

∂
√flu′′k u′′k
∂ y

è
(2.6c)

SE,t = y grt0
(∆)

Ñ
∂ Ẽ
∂ y
+

E′′»‡E′′E′′ ∂»‡E′′E′′∂ y

é
. (2.6d)

Here, y is the wall-normal distance and E is the specific total energy. Tildes denote

density-weighted, Favre averages and double primes denote Favre fluctuations. To

close the model one must supply a temporal growth rate parameter, grt0
(∆), which

controls the momentum thickness θ achieved at stationarity.

Recently, Topalian et al. augmented their temporal model (2.6) with spatial ho-

mogenization terms to model the fast evolution of a homogenized flow defect relative

to some prescribed, spatially developing inviscid base flow [165]. With an appropriate

inviscid base flow construction, they achieved favorable pressure-gradient-like condi-

tions. The construction of this new “spatiotemporal” model is technical and has yet to

be published— a self-contained summary appears in Section 3.3 while a full derivation

is presented in Section A.3.

The homogenized boundary layers obtained by Spalart, Guarini, and Topalian

et al. differ from their physically real, spatially evolving brethren and produce some-

what different turbulent statistics. For instance, clearly the former produce statistically

stationary one-dimensional profiles while the latter produces a two-dimensional pro-

file. Nevertheless, homogenized boundary layer DNS data is expected to beneficially
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inform turbulence model calibration efforts because, relative to the current state of

super- and hypersonic aerodynamic predictions discussed in Section 2.1, it adequately

resembles truth data. In summary, the present work pursues homogenization because

it provides a reproducible, cost-effective way to produce high-quality calibration data

for turbulence models.

2.6 The Impact of Transition on
Aerothermodynamic Heating Predictions

Provided the freestream impinging on a blunt-bodied reentry vehicle has low

enough turbulence, the flow in some neighborhood of the stagnation point will be lam-

inar because the mean flow velocity must approach zero there. As favorable pressure

gradients and convex surfaces are well-known to stabilize flows [see, e.g., 3, 96, 162],

the laminar region will extend radially outward some distance from the stagnation

point. Discerning, with well-quantified uncertainty, when the flow becomes turbulent

is difficult as laminar-to-turbulent transition processes are highly sensitive to many

environmental details that defy robust characterization [43]. Indeed, even experimen-

tal data exhibits considerable intra-facility, observation-to-observation variability as

shown in Figure 2.3. Contributing and compounding in-flight factors that must be

weighed include freestream perturbation levels, magnification of perturbations as they

pass through the bow shock, chemically reacting ablation products outgassing into the

hot flow, and surface roughness due to ablator fibrosity and possibly spallation.

Engineering estimates of these factors, when inserted into state-of-the-art tran-

sition models, can incur too much uncertainty for engineering use as Hollis et al. [63]
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Figure 2.3: Transition onset values of Reθ (above) and Reθ/Mae (below) reproduced
from Hollis et al. [63]. Labels LaRC and AEDC denote the NASA Langley Research
Center 20-Inch Mach 6 Tunnel and the Arnold Engineering Development Center Hy-
pervelocity Wind Tunnel Number 9.
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implied in 2008:

“Because of the challenges associated with analysis of all the possible tran-

sition mechanisms, it is the defined policy of the [Orion MPCV] program to

make a conservative assumption that the vehicle will experience turbulent

flow throughout its trajectory.”

However, using a fully turbulent assumption also impacts aerothermodynamic heating

prediction uncertainty for two reasons. First, given the high probability of a laminar

region near the stagnation point, the range of feasible predictions must encompass

both globally turbulent and globally laminar behavior. The difference between these

two behaviors in the context of the Orion MPCV is depicted in Figure 2.4. Second,

again assuming a laminar region exists, all fully turbulent boundary layer calculations

see incorrect upstream conditions.

Aerothermodynamic heating prediction uncertainty would be decreased if one

could reliably use laminar predictions in demonstrably laminar regions and turbulent

predictions everywhere else without incurring the unacceptably large penalty associ-

ated with transition models. Near-stagnation point laminar prediction bounds would

be tighter and uncertainty in downstream turbulent predictions would improve as

those calculations would subsume more physically correct upstream information.

One useful bound on the laminar region would be to assume that if local condi-

tions can at all sustain turbulence, the flow is locally turbulent. This bound is reasonable

because flight environments contain many perturbation sources— any one of which

could individually cause transition. The bound is conservative because, when used
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Figure 2.4: Normalized ablator recession rate difference between fully laminar and
fully turbulent simulations, (ṁturbulent − ṁlaminar)/max (ṁturbulent), for Orion MPCV at
peak heating conditions from International Space Station return trajectory. Data, which
includes aerothermochemistry and ablation, courtesy of P. T. Bauman.

for prediction, turbulent heating is applied as far upstream as turbulence-enhanced

momentum and energy transport to the heat shield can occur.

Rather than asking where small disturbances induce turbulence, as transition

modeling does, the proposed bound determines where exceedingly large disturbances

are damped, as relaminarization studies do [9, 11, 68, 69, 105–107, 139, 159]. Un-

fortunately, in their 2008 review of a wealth of experimental relaminarization data,

Cal and Castillo [22] concluded, as had Sreenivasan [152] before them, that while

nondimensional parameters [e.g. 86] could estimate when a flow might revert from
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turbulent to a “quasi-laminar” state, such parameters were not predictive. Given the

pragmatic value of finding a predictive bound, it is worthwhile to investigate analytic

results regarding the stability of compressible fluids to large disturbances with the pos-

sibility that these might help rigorously characterize turbulence-sustaining behavior.

2.7 The Stability of Compressible Flows
to Arbitrary Disturbances

The onset of turbulence in a transitional flow is triggered by the nonlinear

growth of small disturbances in the flow field. The short-time analysis of the rate of

growth of such disturbances is the realm of hydrodynamic linear stability theory. In

incompressible viscous flows, this process is governed by the Orr–Sommerfeld equa-

tion. Linear stability theory extends to compressible, viscous fluids in unbounded do-

mains [98] and can be used as a transition-prediction mechanism [127]. However, this

theory is not useful for studying relaminarization because the discrepancies between

a fully turbulent flow and a steady laminar flow are in no sense small.

As turbulence can be a self-sustaining process, it is reasonable to assume tur-

bulent discrepancies from a laminar base flow are somehow pathologically large. Ser-

rin [142] proved sufficient conditions for the nonlinear stability of an incompressible

viscous fluid in a bounded region to arbitrarily large disturbances using the energy

method. Suppose one has a base incompressible velocity field v obeying

∂v
∂ t
+∇ · v ⊗ v = − 1

ρ
∇p+ ν∆v + f p, v ∈ Ω, (2.7a)

v = v0 v ∈ ∂Ω (2.7b)
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for some prescribed boundary value v0 where both density ρ and kinematic viscosity ν

are constant. The pressure p, obtainable from ∆p = −ρ tr
Ä∇v∇vT

ä
, instantaneously

maintains v as solenoidal. Given another admissible v′ one may form the perturbation

u= v′ − v which evolves locally according to

∂u
∂ t
=
∂v′

∂ t
− ∂v
∂ t

u ∈ Ω, (2.8a)

u= 0 u ∈ ∂Ω. (2.8b)

Taking the scalar product of u with ∂ u/∂ t, employing smoothness, using incompressibil-

ity, and simplifying yields the pointwise evolution of the perturbation energy E = u2/2,

∂E
∂ t
= (u · D · u− ν∇u :∇u) +∇ ·

Ç
p− p′

ρ
u+ ν∇E − Ev′

å
. (2.9)

Here, D = 1
2

Ä∇v +∇vT
ä

represents the rate of strain tensor for the base flow. By the

Reynolds transport theorem, the global perturbation energy may be written

d
dt

∫

Ω
E =

∫

Ω

∂E
∂ t
+
∫

∂Ω
Ev · n̂. (2.10)

Using the divergence theorem and that u= 0 =⇒ E = 0 on ∂Ω, gives the Reynolds–Orr

energy equation,

d
dt

∫

Ω
E =

∫

Ω
(u · D · u− ν∇u :∇u) . (2.11)

Nondimensionalizing,

d
dt

∫

Ω
E =

∫

Ω

Ä
u · D · u−Re−1∇u :∇u

ä
(2.12)

where Re = v0l0/ν0 is the Reynolds number. The viscous term always promotes stability

but its success in doing so depends on the relative magnitude of the interaction between

the perturbations and the base flow rate of strain.
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Serrin [142] observed that the base flow v is stable under arbitrary disturbances

as t → ∞ whenever the right hand side of (2.12) is strictly negative for arbitrary,

nonvanishing vectors u. Notice any relevant hysteresis has been implicitly addressed.

Using analytical estimates relying on the boundedness of Ω, Serrin characterized crit-

ical Reynolds numbers below which various bounded geometries with steady base

flows must be stable to arbitrary disturbances. Joseph [71, 72] extended these results

to incompressible flows with heat transfer while Dudis and Davis [34, 35] analyzed

boundary layers achieving weaker results due to the unbounded nature of that par-

ticular domain. Davis and Kerczek [30] demonstrated those weaker results could be

made equivalently strong provided

λ(t; D(t) , Re) =max

∫
Ω

Ä
u · D · u−Re−1∇u :∇u

ä
∫
Ω E

(2.13)

is well-defined. The maximum is taken over the space of sufficiently smooth, divergence-

free vector functions satisfying the homogeneous boundary conditions and behaving

appropriately in directions in which the domain is unbounded. In particular, the space

must permit progressing from (2.9) to (2.12). Davis and Kerczek reformulated the

maximization problem (2.13) using the equivalent Euler–Lagrange equations to nu-

merically obtain critical Reynolds numbers below which oscillatory Stokes layers must

be asymptotically stable. Estimates for exterior domains not relying on numerical so-

lutions can be found in Galdi and Rionero [51], Maremonti [101].

In problems where thermodynamic properties vary, the identity analogous

to (2.12) additionally must incorporate property perturbation energies. For example,

Joseph chose E = u2 + Pr T 2 when studying buoyancy problems characterized by a
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Prandtl number Pr in which temperature perturbations T were present. The predictive

quality of the resulting estimates depends strongly on such choices and good selections

are by no means obvious [52]. Galdi and Padula [53] set forth an abstract frame-

work providing guidance on energy identity selection techniques producing promising

estimates.

Working within this framework, Padula [116] cataloged extensive stability

proofs for barotropic and polytropic compressible viscous fluids.5 The latter class is

therein proved asymptotically stable when bounded by rigid boundaries provided the

initial temperature gradient is sufficiently small [116, theorem 2.4.20]. Padula conjec-

tured that this proof may be extended to the boundary layer [116, page 207] similarly

to how she obtained boundary layer results for isothermal fluids [116, §§2.4.1–2, §4].

Any such proof of the asymptotic stability of a compressible viscous boundary

layer to arbitrary disturbances, whether or not it is extended from the work of Padula,

must simultaneously address several issues. First, the space chosen must permit ex-

act pointwise perturbation evolution equations like (2.9) to be converted to global

statements like (2.12) despite the unbounded nature of the domain. Second, these

global evolution statements for perturbation energies ρ2, u2, T 2, etc. must be com-

bined into a single, appropriately weighted identity. Third, the evolution of that single

identity must either be bounded using a host of analytical estimates or a maximization

problem resembling (2.13) must be solved numerically. Finally, for the proof to be

practically useful to those studying relaminarization, the provably stable region within

5An exemplary, earlier appearance of the barotropic results [115] is recommended as an introduction.
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the parameter space consisting of Re, Pr, etc. must be reasonably sharp relative to the

“true bounds” one could hypothetically observe in engineered systems like the Orion

MPCV. Though no currently known asymptotic stability estimate applies to the present

work, energy method concepts and, in particular, interpreting turbulence as a large,

self-sustaining perturbation will be important to the discussion in Chapter 7.

2.8 Bounding Turbulence-Sustaining Regions
via Homogenized Simulation

Absent practical, analytical methods for characterizing turbulence-sustaining

regions at the experimentally inaccessible flight conditions of interest, simulation is

a logical tool to exploit. Studying the relaminarization of spatially evolving boundary

layers is subject to the issues raised in Section 2.4. However, the spatiotemporal ho-

mogenization approach by Topalian et al. [165], mentioned in Section 2.5, does permit

numerically investigating this class of flows while avoiding reproducibility problems

and excessive computational cost. The present work pursues this approach.

A homogenized relaminarization study takes as its input the steady flow field

experienced by the vehicle’s thermal protection system during peak heating from some

reentry trajectory. This “full system” of interest should be computed with the maximum

possible fidelity [77, 108, 177] in all respects save for assuming fully laminar conditions.

Fully turbulent, homogenized flow fields are prepared at local conditions taken from

those laminar full system computations. The local conditions are said to be unable to

sustain turbulence if the field relaminarizes. The parameter space of local conditions

is searched by traversing the two-dimensional surface of the full system simulation.
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Starting from just upstream of the heat shield’s edge, the relaminarization tests are

repeated at local conditions taken closer and closer to the stagnation point until the

edge of the turbulence-sustaining region is detected.

By using laminar full system conditions as “upstream” input, the present study

aims to answer where on a mixed laminar-turbulent heat shield the local flow con-

ditions can sustain turbulence. That is, this approach enjoys independence from the

uncertainties associated with turbulence modeling. A different question is, can the en-

tire thermal protection system surface be turbulent? That question could be addressed

partially by taking as input the local conditions from assumed-turbulent computations

of the full thermal protection system. However, such work would carry appreciably

greater uncertainty because the required full system simulations would employ turbu-

lence models.

Two issues merit immediate attention. First, the purely temporal forcing terms

from (2.6) and their spatiotemporal brethren to be relayed in Section 3.3 are formally

ill-defined in the laminar limit because both
√flu′′k u′′k and

»‡E′′E′′ must eventually vanish

there. However, when subject to relaminarizing conditions, turbulent flows tend to-

wards a “quasi-laminar” state [152] in which nontrivial streamwise fluctuations persist

though turbulent production becomes nearly zero [22]. Second, the extent to which

relaminarization processes in a homogenized boundary layer reflect those in a spa-

tially evolving boundary layer is admittedly unknown. That said, for predicting the

initial onset of relaminarization, the homogenized treatment is likely more conserva-

tive than the spatially evolving flow because disturbances cannot exit a homogenized

simulation’s periodic domain.
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The concrete scenario investigated for its turbulence-sustaining region is taken

from Orion MPCV thermal protection system simulations discussed in the following

section. To keep the calculations tractable, in the current work aerothermochemistry

is neglected and the ablative conditions are emulated by wall transpiration. Convex

surface curvature, which has a stabilizing impact [13], is also neglected as it cannot

be accommodated by the spatiotemporal homogenization. The parameter space of

local conditions, to be detailed in Section 2.9, consists of the Reynolds number based

on momentum thickness, the Mach number, the pressure gradient strength, the wall

transpiration rate, and the coldness of the wall relative to the boundary layer edge.

2.9 Peak Heating Conditions on the
Orion Multi-Purpose Crew Vehicle

The NASA Orion6 Multi-Purpose Crew Vehicle (MPCV) concept was recom-

mended by NASA’s Exploration Systems Architecture Study in 2005 under the earlier

Crew Exploration Vehicle (CEV) moniker [1, §5]. Configurations of this vehicle are

intended to transport a crew of four-to-six during International Space Station, Lunar,

and Mars mission scenarios. Its roughly 5-meter-diameter, Avcoat-based, ablative heat

shield uses sacrificial epoxy novolac resin in a fiberglass honeycomb matrix to with-

stand temperatures of roughly 3,600 K [73] while limiting the thermal exposure of the

protected components to only 450 K [1, §5.3.1.3.7]. Figure 2.5 provides a sense of scale

for this heat shield while Figure 2.6 depicts one possible orientation relative to oncom-

ing flow. An unmanned, heavily instrumented reentry as part of NASA’s Exploration

Flight Test-1 is currently planned to occur during December 2014 [118].

6http://www.nasa.gov/orion/
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Figure 2.5: Scale comparison for the Orion MPCV TPS. Image courtesy of NASA.
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Figure 2.6: The velocity magnitude on the symmetry plane for a fully laminar Orion
MPCV TPS simulation performed by P. T. Bauman.
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Bauman et al. [8] performed coupled multiphysics simulations of the Orion

MPCV geometry undergoing peak heating during return from the International Space

Station at a 19° angle of attack. A fully turbulent assumption, implemented through use

of the Baldwin–Lomax model, was applied over the entire thermal protection system

(TPS) surface. Local turbulent boundary layer conditions, taken from the colored sym-

metry plane in Figure 2.6, appear in Table 2.2. This boundary layer data has several pe-

culiar features. The wall is quite cold compared with the freestream (Te/Tw ≈ 3.5) caus-

ing large thermodynamic state (ρe/ρw ≈ 0.23) and property changes (µe/µw ≈ 2.8)

across the layer. The shape factor (δ∗/θ ≈ 0.85) has a small value only possible in

flows with significant density variations. The magnitude of the negative-valued Clauser

parameter β [26] indicates that a very strong favorable pressure gradient is present as

magnitudes like 0.1 are considered strong [96, 148]. The momentum Reynolds num-

bers Reθ are modest with the flow accelerating from the subsonic into the supersonic

regime. The present work cannot precisely match these flow characteristics because

aerothermochemistry is neglected. Holding the edge Mach number constant, Table 2.3

maps the data onto an ideal air equation of state as is appropriate for the governing

equations to be presented in Section 3.1.

Bauman additionally performed fully laminar simulations of the same scenario

using the FIN-S hypersonic flow solver [77]. Post-processing along the symmetry plane

from Figure 2.6 produced the reduced data depicted in Figure 2.7. The horizontal

axis measures the distance leeward from the stagnation point taken along the MPCV’s

curved heat shield. The local surface curvature is seen to be small and constant across a

large portion of this symmetry plane. The stagnation condition, located at the abscissa
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Table 2.2: Reacting boundary layer conditions at five representative locations within
fully turbulent Orion MPCV TPS simulations by Bauman et al. [8]. Dimensional quan-
tities use MKS units. Data reduction by O. Sahni and V. Topalian.

Location label 1 2 3 4 5

δ 6.95e-02 7.60e-02 8.71e-02 8.93e-02 9.19e-02

δ∗ 7.70e-03 8.37e-03 1.02e-02 1.02e-02 1.04e-02

θ 9.49e-03 1.03e-02 1.16e-02 1.18e-02 1.20e-02

Tw 1665 1656 1646 1636 1634

Te 5851 5772 5701 5647 5604

ρw 0.0148 0.0133 0.0123 0.0115 0.0109

ρe 0.0033 0.0031 0.0029 0.0027 0.0026

pe 8507 7664 7066 6621 6317∣∣∣ dp
dξ

∣∣∣
e

2059 2089 2112 2171 2345

µw 5.83e-05 5.81e-05 5.79e-05 5.77e-05 5.76e-05

µe 1.64e-04 1.62e-04 1.60e-04 1.59e-04 1.58e-04

ae 1987 1967 1949 1937 1928

τw 26.72 29.38 31.13 32.26 34.89

Mae 0.88 0.99 1.09 1.15 1.19

Reθ =
ρeueθ
µe

338 380 441 449 455

β = δ∗
τw

(
∂ p
∂ ξ

)
e

-0.59 -0.60 -0.69 -0.68 -0.70

Table 2.3: Translation of selected data, holding Mae constant, from Table 2.2 to γ= 1.4
ideal air obeying Sutherland viscosity law. Reduction by O. Sahni and V. Topalian.

Location label 1 2 3 4 5

Mae 0.88 0.99 1.09 1.15 1.19

Reθ =
ρeueθ
µe

391 440 511 520 526

β = δ∗
τw

(
∂ p
∂ ξ

)
e

-0.81 -0.81 -0.93 -0.92 -0.94
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origin, is evident in the behavior of the momentum Reynolds number, Reθ , and the

edge Mach number, Mae. When measured by the outgassing velocity normalized by

viscous units, v+w , the ablator becomes more active as one approaches the stagnation

point. Strong thermodynamic property variations occur because the ablator maintains

a cold surface relative to the freestream and because of active aerothermochemistry.

The former effect appears in the ratio of the edge-to-wall temperature, Te/Tw, and is

the predominant driver between the edge-to-wall viscosity ratio, µe/µw, causing the

difference between the two Reθ curves. The lower curve, momentum Reynolds number

based on edge viscosity, is what has been discussed thus far and what the current

work predominantly uses. Notice that absent cold wall effects these Reθ are well into

the range where relaminarization is expected [150, §3.2]. Temperature differences

in conjunction with chemical reactions cause wall-to-edge differences in the ratio of

specific heats, γ, and in the Prandtl number, Pr.

The strength of the favorable pressure gradient from this fully laminar data

has been quantified using a variety of parameters in Figure 2.8. The nondimensional

quantities are the Clauser parameter β [26], Launder’s acceleration parameter K [86],

the Pohlhausen parameter Ks [122], similarity parameter Λ [22], parameter Λn [107],

and a new invention p∗e,ξ. The figure caption shows their definitions with ξ denoting

the streamwise direction and e and w being edge and wall values, respectively. Here, δ∗

is the displacement thickness, τw the wall shear stress, δ the boundary layer thickness,

and ν the kinematic viscosity. Though physical truth would produce smooth curves

in Figure 2.8, numerical artifacts are apparent despite care during the data reduction

process. They arise because the grid refinement strategies used to produce the source
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Figure 2.7: Reacting boundary layer conditions from the symmetry plane on a fully
laminar Orion MPCV TPS simulation performed by P. T. Bauman.
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data did not target these parameters. All quantities shown become problematic near the

stagnation point. The curves for Ks andΛ are particularly noisy due to their dependence

on functions of δ.

Choosing one pressure gradient parameter to match for a turbulence-sustaining

study based on this Orion MPCV data is not entirely straightforward. Clearly Ks and Λ

are not suitable based on their numerical issues. K shows no errant behavior but its

definition uses the streamwise velocity derivative making it more of an acceleration pa-

rameter than a pressure gradient parameter. Quantities β and Λn depend on τw which

cannot be matched a priori due to its dependence on turbulent behavior. Clauser’s β

is also problematic because δ∗ behaves atypically in the flows of interest, as will be

shown in Chapter 6.

These concerns motivated defining the new parameter

p∗e,ξ =
δ

ρeu2
e

∂pe

∂ξ
. (2.14)

It nondimensionalizes the pressure gradient magnitude using freestream kinetic energy,

like K , but scaled using the boundary layer thickness δ to avoid difficulties associated

with τw and δ∗. Figure 2.8 shows that this new parameter qualitatively captures the

same trends as β , K , andΛn while being more robust numerically. Moreover, in Topalian

et al.’s class of homogenization models the growth rate grt0
(∆) can be used to control

δ independently of Reθ . Hence, given some target thickness, one can design an inviscid

base flow, as is done in Appendix C, in order to have a homogenized direct numerical

simulation easily match p∗e,ξ a priori. Consequently, the present work uses parame-

ter (2.14) for scenario-matching purposes and compares it against other measures of

pressure gradient strength in Chapter 6.
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Figure 2.8: Pressure gradient conditions from the symmetry plane on a fully laminar
Orion MPCV TPS simulation performed by P. T. Bauman.
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Chapter 3

Mathematical Models

This chapter summarizes the nondimensional mathematical models used in

the present work. First the governing Navier–Stokes are shown. Reynolds and Favre

averaging is briefly defined followed by the form of the Favre-averaged Navier–Stokes

equations used. Lastly, the spatiotemporal homogenization forcing terms due to [165]

are presented. One can find the underlying derivations in Appendix A.

3.1 The Governing Navier–Stokes Equations

The flow physics are modeled using the unsteady, three-dimensional, com-

pressible Navier–Stokes equations. These continuum equations arise from applying

conservation of mass, momentum, and energy to a Newtonian, perfect gas. The model

assumes that the first viscosity µ obeys a power law in temperature T , the other vis-

cosity λ is a constant multiple of µ, heat conduction through the gas obeys Fourier’s

law, and momentum and thermal diffusivity are related by a constant Prandtl number.

For simplicity, aerothermochemical effects are neglected.
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The governing equations may be written in nondimensional form as

∂

∂ t
ρ =−∇ ·ρu+Sρ (3.1a)

∂

∂ t
ρu=−∇ · (u⊗ρu)− 1

Ma2∇p+
1

Re
∇ ·τ+ f +Sρu (3.1b)

∂

∂ t
ρE =−∇ ·ρEu+

1
Re Pr (γ− 1)

∇ ·µ∇T

−∇ · pu+
Ma2

Re
∇ ·τu+Ma2 f · u+ qb +SρE (3.1c)

along with the constitutive relationships

p = (γ− 1)
(
ρE − Ma2

2
ρu2

)
T = γ

p
ρ

a =
p

T h=
T
γ− 1

(3.1d)

µ= Tβ λ=
Å
α− 2

3

ã
µ τ= µ

Ä∇u+∇uT
ä
+λ (∇ · u) I (3.1e)

where the nondimensional free parameters

Re =
ρ0u0l0
µ0

Ma =
u0

a0
Pr =

µ0Cp

κ0
(3.1f)

are the Reynolds, Mach, and Prandtl numbers, respectively. Other free parameters

include the ratio of specific heats γ and the viscosity power law exponent β . The

von Kármán relationship for the Knudsen number becomes

Kn =
Ma
Re

 
γπ

2
(3.2)

where the present continuum assumptions are justified when Kn� 1. The nondimen-

sionalization requires some dimensional reference density ρ0, length l0, velocity u0,

and temperature T0. Other references quantities are defined as follows:

t0 =
l0
u0

a0 =
»
γRT0 p0 = ρ0a2

0 E0, H0, h0 = a2
0 (3.3a)

µ0,λ0 = µ(T0) τ0 =
µ0u0

l0
f0 =

ρ0u0

t0
q0 =

ρ0a2
0

t0
(3.3b)
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Sρ0
=
ρ0

t0
Sρu0

=
ρ0u0

t0
SρE0

=
ρ0E0

t0
. (3.3c)

The terms f and qb accommodate problem-specific momentum and total energy forcing.

When employed, boundary layer homogenization is accomplished through slow growth

terms Sρ, Sρu, and SρE which take forms similar to the right hand side of (2.5).

The bulk viscosity,

µB = λ+
2
3
µ, (3.4)

and the deviatoric component of the strain rate tensor,

S = ε − 1
3

tr (ε) I =
1
2

Ä∇u+∇uT
ä− 1

3
(∇ · u) I , (3.5)

alternatively may be used to write τ as

τ= 2µS +µB (∇ · u) I . (3.6)

The final free parameter α then controls the bulk viscosity according to

µB = αµ. (3.7)

Setting α= 0 recovers Stokes’ hypothesis. The kinematic and bulk kinematic viscosities

ν=
µ

ρ
νB =

µB

ρ
(3.8)

will be used at times to simplify notation. This completes the description of the model

which is said to be “closed” because knowing ρ, u, and E permits advancing that state

in time.
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3.2 The Favre-Averaged Navier–Stokes Equations

As turbulence is chaotic, reporting a statistical description of its behavior is

essential. With only additional modest mathematical assumptions, the above instanta-

neous model may be manipulated to describe the evolution of mean quantities. Nota-

tionally, the expectation or “Reynolds average” of a generic flow variable q is written q̄.

The density-weighted expectation or “Favre average” is defined by

q̃ = ρq/ρ̄. (3.9)

Fluctuations about the mean and the density-weighted mean are denoted

q′ ≡ q− q̄, q′′ ≡ q− q̃, (3.10)

respectively. Reynolds averaging commutes with differentiation under mild smoothness

assumptions. Here the common convention that taking Favre fluctuations, (·)′′, has

higher precedence than differentiation,∇ (·), has been adopted. Additional background

on these two averaging approaches can be found in Section A.2.1.

Assuming that all required expectations are finite and that Reynolds averaging

commutes with differentiation whenever necessary, the model of Section 3.1 gives rise
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to the unsteady Favre-averaged Navier–Stokes (FANS) equations:

∂

∂ t
ρ̄ =−∇ · ρ̄ũ+Sρ (3.11a)

∂

∂ t
ρ̄ũ=−∇ · (ũ⊗ ρ̄ũ)− 1

Ma2∇p̄+∇ ·
Ç
τ̄

Re
− ρ̄‚�u′′ ⊗ u′′

å
+ f̄ +Sρu (3.11b)

∂

∂ t
ρ̄ Ẽ =−∇ · ρ̄H̃ũ+Ma2∇ ·

ÇÇ
τ̄

Re
− ρ̄‚�u′′ ⊗ u′′

å
ũ− 1

2
ρ̄
‡
u′′2u′′ +

τu′′

Re

å
+

1
γ− 1

∇ ·
Ñ
µ̄fi∇T + ρ̄‰�

ν′′ (∇T )′′

RePr
− ρ̄‡T ′′u′′é

+Ma2
Ä

f̄ · ũ+ f · u′′ä+ q̄b +SρE (3.11c)

∂

∂ t
ρ̄k =−∇ · ρ̄kũ− ρ̄‚�u′′ ⊗ u′′ :∇ũ− ρ̄ε

Re
+∇ ·

Ç
−1

2
ρ̄
‡
u′′2u′′ +

τu′′

Re

å
+

1
Ma2

Ç
p̄∇ · u′′ + p′∇ · u′′ − 1

γ
∇ · ρ̄‡T ′′u′′å+ f · u′′ +Sρu · u′′. (3.11d)

The equations are augmented by the following nondimensional relationships:

p̄ =
ρ̄ T̃
γ

ρ̄ν̃= µ̄= Tβ k =
1
2
fi
u′′2 ρ̄ε= τ :∇u′′ (3.11e)

Ẽ =
T̃

γ (γ− 1)
+Ma2

Å1
2

ũ2 + k
ã

H̃ = Ẽ +
T̃
γ

h̃=
T̃
γ− 1

(3.11f)

S̃ =
1
2

Å
∇̃u+ ∇̃u

T
ã
− 1

3

Äfl∇ · uä I (3.11g)

τ̄= 2µ̄S̃ + 2ρ̄flν′′S′′ +αµ̄fl∇ · uI +αρ̄Â�
ν′′ (∇ · u)′′I . (3.11h)

Beyond references (3.3), this nondimensionalization additionally selects:

k0 = u2
0 ε0 =

u2
0

t0
. (3.12)
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Several correlations affect the evolution of mean quantities: the Reynolds stress,

−ρ̄‚�u′′ ⊗ u′′; the Reynolds heat flux, ρ̄flh′′u′′ = ρ̄‡T ′′u′′/ (γ− 1); turbulent production,

−ρ̄‚�u′′ ⊗ u′′ :∇ũ; turbulent dissipation, ρ̄ε/Re; turbulent transport, −1
2 ρ̄
‡u′′2u′′; turbu-

lent work, τu′′/Re; and the two forcing-velocity correlations, f · u′′ and Sρu · u′′. The

Reynolds stress and heat flux augment the viscous stress and heat flux, respectively.

The production term generates the turbulent kinetic energy density k from the inter-

action of fluctuations with mean gradients while the dissipation term destroys k. The

turbulent transport and work terms represent transport of the k and viscous stress

work due to turbulent velocity fluctuations, respectively. The commonly encountered

pressure–velocity correlation, p′u′′, does not appear in the k equation because an exact

ideal gas relationship for the turbulent mass flux discussed by Lele [91, p. 216],

u′′ =
‡T ′′u′′

T̃
− p′u′′

p̄
, (3.13)

has been used to eliminate it.

The FANS equations may be expressed equivalently using only Reynolds averag-

ing and therefore are often called the compressible Reynolds-averaged Navier–Stokes

(RANS) equations. Notice that no new constitutive assumptions have been employed

to produce this FANS formulation— caveat integrability and smoothness requirements

they are as exact a description of flow physics as the governing Navier–Stokes equa-

tions. Several common simplifications, none of which has been made above, along

with the correlations they implicitly neglect are documented in Appendix A.2.2.

The FANS equations are “unclosed” because knowing ρ̄, ũ, Ẽ, and k does not
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permit advancing that state in time. Advancing a solution requires:

ρ̄ ũ Ẽ µ̄ f̄ q̄b k ε u′′ sym
Ä∇̃u

ä
f · u′′ τu′′ p′∇ · u′′ −‚�u′′ ⊗ u′′ − 1

2
‡
u′′2u′′

‡T ′′u′′ flν′′S′′ Â�
ν′′ (∇ · u)′′ ‰�

ν′′ (∇T )′′

Sρ Sρu SρE Sρu · u′′.

In many circumstances, the mean state is known a priori to be independent of time

and of a lower spatial dimensionality than the instantaneous state.

Experimentally obtained estimates of the reduced set of these quantities re-

quired to “close” a particular problem are referred to as “statistics” in the turbulence

community. For example, channel flows are characterized by statistics varying only in

the wall-normal direction. Spatially evolving boundary layers possess statistics that vary

in both the streamwise and wall-normal direction. Homogenization, as summarized in

the following section, trades the boundary layer’s streamwise statistical evolution for a

dependence on a collection of auxiliary closure assumptions and modeling parameters.

3.3 Spatiotemporal Homogenization
Permitting an Inviscid Base Flow

Topalian et al. [165] recently postulated a spatiotemporal homogenization

formulation for simulating the fast evolution of a homogenized flow defect relative to
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some prescribed, spatially developing inviscid base flow. This section states the forcing

terms in sufficient detail to reproduce the simulation results in the present work. The

construction of this spatiotemporal model appears in Section A.3 for completeness.

The nondimensional, conserved spatiotemporal forcing entering into (3.1) is

Sρ = Sρ,x t , Sρui
= ρSui ,x t + uiSρ,x t , SρE = ρSE,x t + ESρ,x t (3.15a)

where, fixing a temporal growth rate grt0
(∆), the primitive constituents are:

Sρ,x t = ũ (ρ)x0
+ρ (ũ)x0

(3.15b)

Sui ,x t = ũ (ũi)x0
+
δi x (p̄)x0

Ma2ρ̄
+ u′′i


−grt0

Ä
AA

u

ä
+

y grt0
(∆)

√flu′′k u′′k

∂
√flu′′k u′′k
∂ y


 (3.15c)

SE,x t = ũ
Ä
Ẽ
ä

x0
+

p̄
ρ̄
(ũ)x0

+
ũ
ρ̄
(p̄)x0

+ E′′

−grt0

Ä
AA

E

ä
+

y grt0
(∆)»‡E′′E′′ ∂»‡E′′E′′∂ y


 . (3.15d)

These terms are considerably more complex than their temporal predecessors (2.6).

Subscripts t0 and x0 indicate forcing arising from temporal or spatial homogenization,

respectively. The former terms are gathered inside brackets in (3.15). Topalian et al.

modeled the latter terms as

(ρ)x0
=
ρ

ρ̄

Ç
−∂ρI

∂x0
− ρ̄D grx0

Ä
ρ̄A

D

ä
+ y grx0

(∆)
∂ρ̄D

∂ y

å
(3.16a)

(ũi)x0
= −∂ui,I

∂x0
− ũi,D grx0

(
ũA

i,D

)
+ y grx0

(∆)
∂ũi,D

∂ y
(3.16b)

(p̄)x0
= − ∂pI

∂x0
− p̄D grx0

Ä
p̄A

D

ä
+ y grx0

(∆)
∂ p̄D

∂ y
(3.16c)Ä

Ẽ
ä

x0
= −∂EI

∂x0
− ẼD grx0

Ä
ẼA

D

ä
+ y grx0

(∆)
∂ ẼD

∂ y
(3.16d)

which must be computed against a base flow satisfying the steady Euler equations.

That is, in conjunction with the instantaneous Favre-averaged state, pointwise inviscid
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data

ρI(y) ρuI(y) ρvI(y) ρEI(y) pI(y)

∂

∂ y
ρI(y)

∂

∂ y
ρuI(y)

∂

∂ y
ρvI(y)

∂

∂ y
ρEI(y)

∂

∂ y
pI(y)

∂

∂x
ρI(y)

∂

∂x
ρuI(y)

∂

∂x
ρvI(y)

∂

∂x
ρEI(y)

∂

∂x
pI(y)

(3.17)

must be specified to define the mean primitive viscous flow defects

ρ̄D = ρ̄ −ρI ũi,D = ũi − ui,I ẼD = Ẽ − EI p̄D = p̄− pI (3.18)

entering into (3.16). Nonzero streamwise derivatives in the inviscid base flow data,

for example pI entering into (3.16c), are what permit the model to impose pressure-

gradient-like conditions while retaining streamwise periodicity in the fast time solution.

A semi-analytical procedure to generate the base flow data (3.17) necessary for the

present work is the subject of Appendix C.

The two parameters

grt0
(∆) =

Ç
− ε
∆

∂∆

∂ ts

å∣∣∣∣∣
ts=t0

grx0
(∆) =

Ç
− ε
∆

∂∆

∂xs

å∣∣∣∣∣
xs=x0

(3.19)

represent the growth rate of a characteristic length scale∆ at some fixed slow time t0 or

some fixed slow location x0 for small homogenization parameter ε. In practice, grt0
(∆)

is a constant supplied to target some desired boundary layer thickness with ε indirectly

fixed. The inviscid base flow streamwise velocity controls the second parameter per

grx0
(∆) =

grt0
(∆)

uI ,w
(3.20)

where the subscript w denotes wall data taken from y = 0. The wall reference is chosen

as no freestream limit exists for flows experiencing nonzero pressure gradients.
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Expressions (3.16) include constants governing the growth rates for the ampli-

tude of the mean flow defect, denoted grx0

Ä
qA

D

ä
for q ∈ ¶ρ̄, ũ, ṽ, w̃, Ẽ, p̄

©
. In scenarios

with an isothermal wall, known boundary state in conjunction with the inviscid base

flow (3.17) informs these quantities. By definition,

grx0

Ä
qA

D

ä
=

1
qA

D

∂qA
D

∂xs

∣∣∣∣∣
xs=x0

=
1

qw − qI ,w

Ç
∂qw

∂xs
− ∂qI ,w

∂xs

å∣∣∣∣∣
xs=x0

. (3.21)

For convenience, (∂q/∂xs)|xs=x0
is henceforth abbreviated as ∂q/∂xs. From (3.1d),

uniform wall temperature Tw, and the isobaric assumption ∂ p̄/∂ y ≈ 0,

ρ̄w =
γp̄w

Tw
≈ γpI ,w

Tw
. (3.22)

Taking the slow spatial derivative under these assumptions,

∂ρ̄w

∂xs
≈ γ

T̄w

∂pI ,w

∂xs
. (3.23)

Therefore,

grx0
(ρ̄D)≈

1
γpI ,w

Tw
−ρI ,w

Ç
γ

Tw

∂pI ,w

∂xs
− ∂ρI ,w

∂xs

å
=

Tw
∂ρI ,w
∂xs
− γ ∂pI ,w

∂xs

TwρI ,w − γpI ,w
. (3.24)

Consider the wall-normal momentum growth rate at a no-slip wall,

grx0

Ä
ρvA

D

ä
=

∂
∂xs
ρv I ,w

ρv I ,w
. (3.25)

Any nonzero wall blowing velocity vw has been neglected because mimicking (3.24),

grx0

Ä
ρvA

D

ä
rejected

≈ 1
ρv I ,w − γpI ,w

Tw
vw

Ç
∂

∂xs
ρv I ,w −

γvw

Tw

∂

∂xs
pI ,w

å
(3.26)

=
Tw

∂
∂xs
ρv I ,w − γvw

∂
∂xs

pI ,w

Twρv I ,w − γvwpI ,w
,
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behaves oddly on two accounts. First, from it one recovers (3.24) whenever the base

flow is designed with transpiration as then both vI ,w = vw 6= 0 and ∂vI ,w
∂xs
= 0 hold.

Second, whenever vI ,w = 0 its limiting vw→ 0 behavior is broken in the sense that one

recovers
(
∂pI ,w
∂xs

)
/pI ,w for any vw 6= 0 but not when vw = 0. Consequently, the velocity

growth rates also ignore blowing and are:

grx0

Ä
ũA

D

ä
=

1
uI ,w

∂uI ,w

∂xs
grx0

Ä
ṽA

D

ä
=

1
vI ,w

∂vI ,w

∂xs
grx0

Ä
w̃A

D

ä
=

1
wI ,w

∂wI ,w

∂xs
. (3.27)

The specific energy mean defect growth rate is

grx0

Ä
ẼA

D

ä
=

∂EI ,w
∂xs

EI ,w − Ew
(3.28)

where wall blowing is now neither problematic nor neglected so (3.1d) fixes

Ew =
Tw

γ (γ− 1)
+

Ma2

2
v2

w. (3.29)

Finally, whenever growth rates are uninformed or ill-defined according to these argu-

ments, they are taken to be zero. Therefore,

grx0

Ä
p̄A

D

ä
= 0, grt0

Ä
AA

u

ä
= 0, grt0

Ä
AA

E

ä
= 0. (3.30)

Other cases necessitating this final clause include the thermodynamic growth rates

when
∣∣∣1− Tw/TI ,w

∣∣∣ < 1% and the wall-normal and spanwise velocity rates when the

base flow at the wall is trivial in those directions.
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Chapter 4

Computational Techniques

This chapter reviews the computational techniques used to solve the governing

equations presented in the previous chapter for the geometries of interest.

4.1 Numerical Discretization

The target geometries are channels and flat plates with coordinates as depicted

in Figure 4.1. The former geometry requires nearly a proper subset of the capabilities

necessary to solve the latter and is used for validation purposes in Chapter 5. The

flat plate geometry is the subject of Chapters 6 and 7. The streamwise and spanwise

directions are formally infinite which is emulated using periodicity in these directions

in conjunction with a sufficiently large domain.

A mixed Fourier–Galerkin/B-spline collocation spatial discretization is com-
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Figure 4.1: The channel (left) and flat plate (right) geometries.
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bined with a low-storage, semi-implicit third-order Runge–Kutta scheme. The spatial

discretization yields excellent spectral resolution [82], has long been proven for super-

sonic, spatially homogenized boundary layer simulations [60], and provides a natural,

scalable parallel domain decomposition on high-performance computing environments.

The temporal discretization, used repeatedly at large scale [e.g. 65] since its introduc-

tion [151], mitigates the potentially severe acoustic and diffusive stability limits present

in our problems of interest. Nondimensional density ρ, momentum m= ρu, and total

energy e = ρE were used as state variables.

4.1.1 Fourier/B-Spline Spatial Discretization

Mimicking the governing equations in Section 3.1, consider the abstract con-

tinuous system

∂u
∂ t
=L u+N (u) (4.1)

on the spatial domain
î− Lx

2 , Lx
2

ó×[0, L y]×
î− Lz

2 , Lz
2

ó
. The operatorsL andN are linear

and nonlinear, respectively. To discretize this system, introduce its finite dimensional

analog

∂uh

∂ t
=L uh +N Ä

uh
ä
+ Rh (4.2)

where the continuous field u = u(x , y, z, t) has been replaced by the discrete field

uh = uh(x , y, z, t) with Nx × Ny × Nz degrees of freedom, and Rh is the discretization

error. Fourier expansions are selected for the periodic x and z directions while a B-
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spline expansion is adopted for the aperiodic y direction. That is,

uh(x , y, z, t) =
Ny−1∑

l=0

Nx
2 −1∑

m=− Nx
2

Nz
2 −1∑

n=− Nz
2

ûlmn(t)Bl(y) e
i 2πm

Lx
x ei 2πn

Lz
z

=
∑

l

∑

m

∑

n
ûlmn(t)Bl(y) e

ikm x eiknz (4.3)

where km = 2πm/Lx , kn = 2πn/Lz, and Bl(y) are a B-spline basis for some order and

knot selection.

Applying the method of weighted residuals, a mixed Galerkin/collocation ap-

proach (often called a “pseudospectral” technique) is chosen that employs the L2 inner

product and test “functions” like δ(y − yl ′)eikm′ x eikn′z where l ′, m′, and n′ range over

the same values as l, m, and n, respectively. The fixed collocation points yl ′ depend on

the B-spline basis details. Three orthogonality results are

∫ L y

0
ϕ(y)δ(y − yl ′) dy = ϕ(yl ′) (4.4a)
∫ Lx

2

− Lx
2

eikm x e−ikm′ x dx = Lxδmm′ (4.4b)

∫ Lz
2

− Lz
2

eiknze−ikn′z dz = Lzδnn′ (4.4c)

where the inner product’s conjugate operation is accounted for by introducing a nega-

tive sign into the latter two exponentials. The weighted residual is forced to be zero

in the sense that

∫ L y

0

∫ Lx
2

− Lx
2

∫ Lz
2

− Lz
2

Rh(x , y, z)δ(y − yl ′)e
−ikm′ x e−ikn′z dz dx dy = 0 (4.5)

holds for all l ′, m′, and n′. Inserting (4.3) into (4.2), testing with the test functions,

52



applying (4.5), and simplifying

Lx Lz

∑

l

Bl(yl ′)
∂

∂ t
ûlmn(t)

= Lx LzL
(∑

l

Bl(yl ′) ûlmn(t)
)

+
∫ Lx

2

− Lx
2

∫ Lz
2

− Lz
2

N
(∑

m

∑

n

(∑

l

Bl(yl ′) ûlmn(t)
)

eikm x eiknz

) Ä
e−ikm′ x e−ikn′z

ä
dz d x .

(4.6)

Approximating the two integrals by discrete sums and dividing by Lx and Lz,

∑

l

Bl(yl ′)
∂

∂ t
ûlmn(t)

≈L
(∑

l

Bl(yl ′) ûlmn(t)
)

+
1

Nx Nz

∑

m′

∑

n′
N
(∑

m

∑

n

(∑

l

Bl(yl ′) ûlmn(t)
)

eikm xm′ eiknzn′

)Ä
e−ikm′ xm e−ikn′zn

ä
(4.7)

where xm′ = Lx m′/Nx and zn′ = Lzn′/Nz. The quadrature error in this approximation

can be controlled by increasing the number of quadrature points [15]. Here 3Nx/2

and 3Nz/2 quadrature points were used in x and z, which eliminates quadrature error

when N is quadratic [23]. This approach has been found to reduce quadrature error

to acceptable levels for the compressible Navier–Stokes equations [21].

Result (4.7) represents Nx × Nz time-dependent systems containing Ny equa-

tions coupled in the x and z directions only through discrete Fourier transforms and

the requirements of the L andN operators. Its left hand side has a time-independent

mass matrix arising from the B-spline basis and collocation point choices. The mass

matrix is retained on the same side as the time derivative in anticipation of the time
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discretization scheme. The constant factor (Nx Nz)
−1 also will be accommodated during

time advance.

4.1.2 Semi-Implicit, Low-Storage Temporal Discretization

Time is advanced via the low-storage, semi-implicit scheme from Spalart, Moser,

and Rogers [151, Appendix A] extended following Yang [181]. The “SMR91” scheme

advances the system

Mut = Lu+χN(u, t) (4.8)

from u (t) to u (t +∆t). Here L and N are a linear and nonlinear operator, respectively,

distinct from but related to the preceding section’s L and N . Both operators take the

state to an isomorphic, non-state representation from which the state can be recovered

by the action of the linear “mass matrix” M . The constant χ permits scaling N during

time advance; it will later be used to apply the factor (Nx Nz)
−1 from (4.7). The scheme

treats χM−1N with third-order accuracy and M−1 L with second-order accuracy.

Each substep i ∈ {1,2, 3} possesses the form

(M −∆tβi L)u
i+1 = (M +∆tαi L)u

i

+∆tγiχN
Ä
ui, tn +ηi∆t

ä
+∆tζi−1χN

Ä
ui−1, tn +ηi−1∆t

ä
(4.9)

and uses the following substep-specific coefficients:

α1,α2,α3 =
ß29

96
,− 3

40
,
1
6

™
β1,β2,β3 =

ß 37
160

,
5
24

,
1
6

™
γ1,γ2,γ3 =

ß 8
15

,
5

12
,
3
4

™
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ζ0,ζ1,ζ2 =
ß

0,−17
60

,− 5
12

™
η0,η1,η2,η3 =

{
0, 0,

8
15

,
2
3

}
.

As shown, L is time-independent throughout each interval [t, t +∆t) but N is permit-

ted to vary in time.

The scheme (4.9) requires implementations of u 7→ N (u), u 7→ (M +ϕL)u,

and u 7→ (M +ϕL)−1 u for a given M and some arbitrary scalar ϕ. To require only two

storage locations a and b, the N (u) and (M +ϕL)−1 implementations must operate

in-place while (M +ϕL) must operate out-of-place. Two issues bear attention. First,

the step size ∆t needs to be dynamically computable based on a stability criterion

accessible only during the first nonlinear operator application. Second, memory usage

can be reduced by applying N against only one storage location, say b, so that only

one location requires auxiliary padding for quadrature. Taken together, (M +ϕL) also

must support in-place application and therefore storage a and b should support a swap

operation, a↔ b.

In conclusion, time is advanced by one full step per Algorithm 1. Using (4.9) to

advance state ûlmn(t) per (4.7) finally unites the spatial and temporal operator notion

used in this and the preceding subsection:

Mu
∣∣∣
mn
=
∑

l

Bl(yl ′) ûlmn (4.10a)

Lu|mn =L
(∑

l

Bl(yl ′) ûlmn

)
(4.10b)

N(u)|mn =
1

Nx Nz︸ ︷︷ ︸
χ

∑

m′

∑

n′
N
(∑

m

∑

n

(∑

l

Bl(yl ′) ûlmn

)
eikm xm′ eiknzn′

) Ä
e−ikm′ xm e−ikn′zn

ä
.

(4.10c)
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Algorithm 1 Perform the three-step, low-storage time advance described in §4.1.2

Require: Storage a = u (tn) = u0; storage b content undefined
b← a
b← N (b, tn)
Compute ∆t from a = u0 and b = N

Ä
u0, tn

ä
a← (M +∆tα1 L) a
a←∆tγ1χ b+ a
a← (M −∆tβ1 L)−1 a

Ensure: Storage a = u1; storage b = N
Ä
u0, tn

ä
b← (M +∆tα2 L) a+∆tζ1χ b
a↔ b
b← N (b, tn +η2∆t)
a←∆tγ2χ b+ a
a← (M −∆tβ2 L)−1 a

Ensure: Storage a = u2; storage b = N
Ä
u1, tn +η2∆t

ä
b← (M +∆tα3 L) a+∆tζ2χ b
a↔ b
b← N (b, tn +η3∆t)
a←∆tγ3χ b+ a
a← (M −∆tβ3 L)−1 a

Ensure: Storage a = u (t +∆t) = u3; storage b = N
Ä
u2, tn +η3∆t

ä
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Time advancement occurs in “coefficient” or “wave” space but nonlinear terms

must be computed at “collocation points” or in “physical” space. The parallel commu-

nication and on-node computation cost required to convert state data from wave space

to physical space or vice versa can be high. Consequently, many of the following nu-

merical choices were made to maximize both the amount of simulation time advanced

per Runge–Kutta step and to maintain as much numerical resolution as possible.

4.1.3 Discrete B-Spline Operators

Discrete operators for differentiation in the wall-normal direction map B-spline

coefficients to derivatives at wall-normal collocation points. That is,

D( j)u
∣∣∣
mn
=
∑

l

B( j)l (yl ′) ûlmn (4.11)

where the banded matrix D( j) is wavenumber independent. D(0) is the “mass matrix”

M = D(0). (4.12)

Similar to, but different from, the approaches discussed by Kwok et al. [82, §2.1.3], the

present work uses the Greville abscissae, also called the Marsden–Schoenberg points, as

its collocation points [10, 70]. Selecting these abscissae automatically avoids the near-

wall stability problems empirically circumvented by Kwok et al. [82, §4.4]. Boundary

treatments for B-spline collocation operators use the property that the jth derivative

of the function at the first (last) collocation point depends only on the first (last) j + 1

B-spline coefficients.

For some uniform B-spline order k and wall-normal number of degrees of

freedom Ny , Ny − k + 2 breakpoint locations must be specified. Here k = 4 denotes
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a piecewise cubic basis. For the channel geometry, a two-sided hyperbolic tangent

function [172] stretches these breakpoints via f2 : [0, 1]→ [0,1]:

f2(y) =
1
2

Ç
1+

tanh ((y − 1/2)δ)
tanh (δ/2)

å
. (4.13)

For the flat plate, a one-sided hyperbolic tangent stretching function [172] is applied

per f1 : [0,1]→ [0,1]:

f1(y) = 1+
tanh ((y − 1)δ)

tanh (δ)
. (4.14)

Here δ ≥ 0 is an adjustable stretching parameter where setting δ = 0 recovers uniform

spacing. Values like 1≤ δ ≤ 3 are used in practice. After mapping uniform points on

[0,1] to stretched points on [0, 1] using f2 or f1, a further affine transformation is then

used to map the breakpoints onto
î
0, L y

ó
. These breakpoint locations on

î
0, L y

ó
fix

the collocation points and consequently the collocation-based discrete operators D( j)

through the definition of the Greville abscissae applied for order k.

Unlike Fourier-based derivatives, with B-splines applying D(1)D(1) gives a re-

sult that differs significantly from applying D(2) because repeated first differentiation

severely abates high frequency modes [82, Figures 2–3]. Second derivatives enter

(3.1) only through terms ∇·τ, ∇·τu, and ∇·µ∇T . These first and second derivative

applications are computed wholly separately to discretely obtain the most physically

consistent dissipation of high-frequency content at a given spatial resolution. This de-

cision comes with additional implementation complexity, see Table 4.1, but this choice

eliminated any need to add aphysical discrete filtering which is often used to prevent

the catastrophic buildup of spurious numerical noise.
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Table 4.1: Communications overhead inherent to computing quantities without re-
peated first differentiation. Overhead measured relative to transforming a single scalar
field from wave space to physical space. A check (Ø) indicates that a quantity is re-
quired to compute terms in the leftmost column. A bullet (•) indicates the quantity is
required but it can be computed from other required quantities. Total costs for each
term are summarized in the rightmost column.

1 3 1 6 3 1 6 9 3 3 1 3 1

ρ ∇ρ ∆ρ ∇∇ρ m ∇ ·m sym (∇m) ∇m ∆m ∇∇ ·m e ∇e ∆e

∇ · m
ρ Ø Ø Ø Ø 8

∇m
ρ Ø Ø Ø Ø 16

sym
(
∇m
ρ

)
Ø Ø Ø Ø 13

∆m
ρ Ø Ø Ø Ø Ø Ø 20

∇∇ · m
ρ Ø Ø Ø Ø • Ø Ø 25

p, T , µ, λ Ø Ø Ø 5

∇p, ∇T , ∇µ, ∇λ Ø Ø Ø Ø Ø Ø 20

∆p Ø Ø Ø Ø Ø Ø Ø 21

∆T Ø Ø Ø Ø Ø Ø Ø Ø Ø 25

τ Ø Ø Ø • Ø Ø 14

sym
(
∇m
ρ

)
∇µ Ø Ø Ø • Ø Ø Ø 20

µ∆m
ρ Ø Ø Ø Ø Ø Ø Ø 21

(µ+λ)∇∇ · m
ρ Ø Ø Ø Ø • Ø Ø Ø 26(

∇ · m
ρ

)
∇λ Ø Ø Ø • Ø Ø Ø 20

∇ ·τ Ø Ø • Ø Ø • • Ø Ø Ø Ø Ø 32

m
ρ · (∇ ·τ) Ø Ø • Ø Ø • • Ø Ø Ø Ø Ø 32

tr
(
τT∇m

ρ

)
Ø Ø Ø • • Ø Ø 20

∇ ·τm
ρ Ø Ø • Ø Ø • • Ø Ø Ø Ø Ø 32

∇µ · ∇T Ø Ø Ø Ø Ø Ø 20

µ∆T Ø Ø Ø Ø Ø Ø Ø Ø Ø 25

∇ ·µ∇T Ø Ø Ø Ø Ø Ø Ø Ø Ø 25
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4.1.4 Time Step Stability Criteria

The step size∆t used in the SMR91 scheme is limited by both a convective and

a diffusive stability criterion. The time step is taken to be the largest stable time step

possible according to both restrictions. As both criteria are approximate, the resulting

∆t is further multiplied by a safety factor less than one. Safety factors 0.70–0.77 are

often used [151, 171]. Efforts to improve stability estimates for a given discretiza-

tion are worthwhile because even small increases in time step size can translate into

appreciable compute savings over the course of a long simulation.

4.1.4.1 Convective Stability Limit from Scalar Analysis

The convective criterion uses the maximum imaginary eigenvalue magnitude

from the Euler equations as a surrogate for the more complicated Navier–Stokes sys-

tem. Both Kwok [81, Equation 2.39] and Guarini [59, Equations 4.20–21] derived the

stability result

∆t ≤ |λI∆t|max

(|ux |+ a)λ(1)x +
(∣∣∣uy

∣∣∣+ a
)
λ(1)y + (|uz|+ a)λ(1)z

(4.15)

where a is the local acoustic velocity, ux denotes the velocity in the x direction, λ(1)x

represents the maximum imaginary eigenvalue magnitude of the first derivative oper-

ator in the x direction, etc. In the two Fourier directions these eigenvalues are exactly

known:

λ(1)x =
πNx

Lx
=
π

∆x
, λ(1)z =

πNz

Lz
=
π

∆z
. (4.16)
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For the B-spline operator M−1D(1) which maps function coefficients to first derivative

coefficients, one may similarly estimate

λ(1)y =
π

C (1)∆y
(4.17)

where the definition of ∆y and C (1) are for now deferred. Analogously to the Fourier

case, for a periodic, uniform B-spline basis, C (1) would be one. The maximum pure

imaginary eigenvalue magnitude, |λI∆t|max, is a feature of the chosen time-stepping

method. For the SMR91 scheme,

|λI∆t|max =
p

3. (4.18)

For nondimensional formulations in which an explicit Mach number, Ma =

u0/a0 appears, one must provide the velocities and the sound speed both nondimen-

sionalized using u0. Expressions like |u| + a/Ma are appropriate for this context, as

can be seen by finding the eigenvalues of the Euler equations in such a nondimension-

alization. Using an A-stable scheme, like the implicit portion of SMR91, to compute

acoustic terms effectively sets the sound speed to zero when computing this convective

criterion.

Returning to Equation (4.17), both Guarini and Kwok used the breakpoint

separation for∆y and set C (1) = 1. When Venugopal used a nearly identical convective

criterion to (4.15), he found using C (1) = 1 to be overly conservative for aperiodic

D(1) built from nonuniform breakpoints. Venugopal [171, §3.2] presented a linearized

analysis taking into account the inhomogeneous nature of his wall-normal direction. He

determined that the wall-normal imaginary eigenvalue magnitude dropped by nearly
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an order of magnitude after taking into account the inhomogeneity. He concluded that,

taking ∆y to be the breakpoint separation, C (1) = 4 was feasible [171, Equation 3.29].

The present choice of ∆y and C (1) is discussed after the diffusive stability limit.

4.1.4.2 Diffusive Stability Limit from Scalar Analysis

The diffusive criterion uses the maximum real eigenvalue magnitude from

a model diffusion equation as a surrogate for the more complicated Navier–Stokes

system. Both Kwok [81, Equation 2.40] and Guarini [59, Equations 4.29–30] derived

the stability result

∆t ≤ |λR∆ t|max

max
(∣∣∣γ(ν−ν0)

RePr
∣∣∣ ,
∣∣∣ν−ν0

Re
∣∣∣ ,
∣∣∣νB−νB0

Re
∣∣∣
) (
λ(2)x +λ(2)y +λ(2)z

) (4.19)

where a bulk kinematic viscosity has been added to their results. As in the convective

criterion, in the Fourier direction these eigenvalues are exactly known and we introduce

C (2) in the wall-normal B-spline direction:

λ(2)x =
Ç
πNx

Lx

å2

=
π2

∆x2
, λ(2)y =

Ç
π

C (2)∆y

å2

, λ(2)z =
Ç
πNz

Lz

å2

=
π2

∆z2
. (4.20)

Here M−1D(2) is the B-spline operator of interest, which maps function coefficients

to second derivative coefficients. Again, the definition of ∆y and C (2) are for now

deferred. The maximum pure real eigenvalue magnitude, |λR∆t|max, is a feature of the

chosen time-stepping method. For the SMR91 scheme,

|λR∆t|max ≈ 2.512. (4.21)

Using an A-stable scheme, like the implicit portion of SMR91, to compute linearized

viscous terms allows subtracting the linearization reference kinematic viscosities ν0 and
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νB0 when computing this diffusive criterion. The absolute values within the maximum

operations account for the possibility that ν < ν0.

Returning to Equation (4.20), both Guarini and Kwok used the breakpoint

separation for∆y and set C (2) = 1. Venugopal used a nearly identical diffusive criterion

[171, Equation 3.15]. His analysis determined that the diffusive stability criterion was

not overly conservative for an aperiodic B-spline discretization. The present choices

for ∆y and C (2) are discussed next.

4.1.4.3 Empirical Limits for Inhomogeneous B-Spline Operators

Employing stability estimates (4.15) and (4.19) requires information about the

wall-normal discrete operator eigenvalue magnitudes. By Equations (4.17) and (4.20)

this is equivalent to estimating both C (1) and C (2). Per Section 4.1.3, our operators are a

function of three parameters: the piecewise polynomial order k where k = 4 indicates

piecewise cubic B-splines, the hyperbolic tangent stretching parameter δ ≥ 0, and the

wall-normal number of degrees of freedom Ny ≥ k.

Using numerically obtained eigenvalue magnitudes λ(1) = λ(1)y

Ä
k,δ, Ny

ä
and

λ(2) = λ(2)y

Ä
k,δ, Ny

ä
from a large collection of discrete operators, exact C (1) and C (2)

values were computed. The results are shown in Figure 4.2. The minimum grid spacing

∆y was measured using either adjacent breakpoints or adjacent collocation points

to permit a comparison. Considering only breakpoint-based results for k = 8, one

can see how Venugopal [171] probably chose C (1) = 4 and C (2) = 1 as discussed in

Section 4.1.4.1 and Section 4.1.4.2. However, it is striking just how nonuniversal those

choices are. Evidently, neither a breakpoint-based nor a collocation point-based ∆y
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Figure 4.2: Exact values of C (1) and C (2) computed per Equations (4.17) and (4.20)
for roughly 32,500 combinations of k, δ, and Ny . Above, two-sided stretching was
performed on breakpoints per (4.13). Below, one-sided stretching was performed
per (4.14). In both figures, the leftmost four “triangles” correspond to k = 4 while
δ was varied slowly and Ny varied quickly. Moving rightward, the next “triangles” are
for k = 5, then k = 6, etc.
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inherently captures the maximum eigenvalue magnitudes as k, δ, and Ny vary— some

nonlinear combination of the complete set of grid parameters is necessary.

Hereafter, unlike Guarini, Kwok, and Venugopal, we take ∆y to be the spac-

ing between adjacent collocation points. Performing Levenberg–Marquardt nonlinear

regression against the vast majority of the empirical data in Figure 4.2 shows good

agreement with curve fits like the following

C (i)approx

Ä
k,δ, Ny

ä≈ ak+ bδ̂+
cp
k
+ kd+eδ̂

Ñ
1+

(
f k

Ny − k+ 1

)gk+hδ̂
é

, (4.22a)

δ̂ = (1+δ)i tanhδ. (4.22b)

The data from “nearly spectral” discrete operators, defined as when Ny ≤ 5k, proved

difficult to fit and was omitted. Such cases look like outliers in Figure 4.2 and are not

operationally important as the present work does not use a spectral wall-normal basis.

When using two-sided stretching per (4.13), one collection of constants a–i permits

fitting the retained C (1) observations for k = 5 through 11 to within relative errors of

[-2.55%, 1.76%]. Another collection permits fitting retained C (2) observations to within

[-11.3%, 17.1%]. While those results are encouraging for the generality of the chosen

functional forms, they are less than satisfactory for production use. More precise, k-

specific, coefficients for two-sided stretching appear in Table 4.2 and Table 4.4 while

coefficients for one-sided stretching appear in Table 4.3 and Table 4.5.

Unfortunately, using either C (1)approx or C (2)approx directly proved to be overly ag-

gressive as measured using a collection of contrived test problems known a priori to

be either convectively or diffusively limited. Scaling these by a single safety factor
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was problematic as no unique value allowed pushing up against both criteria simul-

taneously. Against the same test problems, however, using approximations like the

square root of C (i)approx did permit using a uniform safety factor across a variety of test

conditions.

In summary, the present work takes nearly the square root of a conservative

estimate of C (i)approx. That is,

C (1) =

Ñ
C (1)approx

1− (negative relative error percentage)/100

é33/64

(4.23)

C (2) =

Ñ
C (2)approx

1− (negative relative error percentage)/100

é27/64

(4.24)

where the fit-specific, negative-valued lower error bounds appear in the rightmost

column of the coefficient tables. Adjusting to the empirical fits’ lower bounds gives

slightly more conservative λ(i)y estimates. These values of C (i) are plugged into Equa-

tions (4.17) and (4.20) with those results feeding into Equations (4.15) and (4.19).

These estimates were designed for use with safety factors like 0.72 whenever Ny > 5k,

which will be revisited in Section 5.3.
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4.1.5 Implicitly Treated Linearized Terms

Within the confines of (4.9), any implicit terms must be expressed as a linear

operator acting only on conserved density ρ, momentum m = ρu, and total energy

e = ρE. Precious little of the spatial Navier–Stokes operator from Section 3.1 is linear

in this sense— we must carve it up [21].

The goal is to separate relevant terms into an explicitly treated nonlinear por-

tion plus a linear contribution satisfying these implicit operator restrictions. A hypo-

thetical example is

ρ−1∆m=
Ä
ρ−1 − ¶ρ−1

©
0

ä
∆m

+
¶
ρ−1

©
0
∆m (4.25)

where
¶
ρ−1

©
0

denotes the term ρ−1 evaluated at some reference state. The exam-

ple sets a useful convention wherein the final line(s) of each expansion contains the

linearized, implicit-ready portion. An explicit-only operator is recovered whenever

reference values are taken to be zero.

The spatial discretization chosen in Section 4.1.1 does not permit linearization

reference quantities to vary in the x or z directions because doing so would spoil the

orthogonality conditions permitting decoupled, wavenumber-by-wavenumber implicit

solves in (4.10). Either a one-dimensional, y-varying profile or a constant reference

value is possible. A constant reference value, which should be chosen from the wall as

grid spacing is smallest there, would have smaller runtime overhead but would provide

smaller time step gains. The present work employs the former, a one-dimensional

reference state profile across the wall-normal direction, as it was expected to permit
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larger stable time steps when nontrivial thermodynamic property differences occur in

the inhomogeneous direction.

Implicit operator implementation details become more complicated when “off

diagonal” state derivatives are treated implicitly. By “off diagonal” we mean derivatives

of conserved state appearing in equations other than their own. For example, the

term ∇ ·m in (3.1a) or derivatives of the wall-normal momentum appearing in the

streamwise portion of (3.1b). In contrast, an “on diagonal” example is the divergence

of total energy appearing within (3.1c). Handling off-diagonal terms implicitly is better

from the perspective of taking the largest possible time step while maintaining stability

at fixed communication cost but it incurs both an associated programming and runtime

overhead.

The implicit treatment of the linearized viscous terms begins by expanding

three mixed-order, nonlinear contributions to (3.1) and using the symmetry of τ:

∇ ·τ= 2 sym
Ç
∇m
ρ

å
∇µ+µ∆m

ρ
+ (µ+λ)∇∇ · m

ρ
+
Ç
∇ · m
ρ

å
∇λ (4.26)

∇ ·τm
ρ
=

m
ρ
· (∇ ·τ) + tr

Ç
τT∇m

ρ

å
(4.27)

∇ ·µ∇T =∇µ · ∇T +µ∆T. (4.28)

Only the second-order terms where a linear operator acts on conserved state,

µ∆
m
ρ

(µ+λ)∇∇ · m
ρ

m
ρ
·µ∆m

ρ

m
ρ
· (µ+λ)∇∇ · m

ρ
µ∆T,

are linearized. That is, their derivatives are expanded using the chain rule until they

can be expressed as operations on ρ, m, or e. Any nonlinear coefficient scaling a second-

order term is linearized about a reference quantity like (4.25) to produce implicit-ready

72



results. To provide two concrete examples, the leftmost candidate generates

µ∆
m
ρ
= 2µρ−2

î
ρ−1m (∇ρ)2 − (∇m)∇ρó

+
Ä
µρ−1 − ¶µρ−1

©
0

ä
∆m− Äµρ−2m− ¶µρ−2m

©
0

ä
∆ρ

+
¶
µρ−1

©
0
∆m− ¶µρ−2m

©
0
∆ρ (4.29)

while the rightmost one produces a monstrosity due to the nonlinear constitutive

relations,

µ∆T =− 2γµρ−2∇ρ · Ä∇p−ρ−1p∇ρä
− γ (γ− 1)Ma2µρ−2

î
tr
Ä∇mT∇m

ä−ρ−1
î
2∇mTm · ∇ρ −ρ−1m2 (∇ρ)2óó

+ γ (γ− 1)
Ä
µρ−1 − ¶µρ−1

©
0

ä
∆e− γ (γ− 1)Ma2

Ä
µρ−2m− ¶µρ−2m

©
0

ä ·∆m

+ γ
Ä
µρ−2 ((γ− 1) e− 2p)− ¶µρ−2 ((γ− 1) e− 2p)

©
0

ä
∆ρ

+ γ (γ− 1)
¶
µρ−1

©
0
∆e− γ (γ− 1)Ma2

¶
µρ−2m

©
0
·∆m

+ γ
¶
µρ−2 ((γ− 1) e− 2p)

©
0
∆ρ. (4.30)

The implicit treatment of acoustics focuses on first-order, pressure-like terms

in the momentum and energy equations. These terms give rise to the acoustic charac-

teristics traveling at speeds u±a in the inviscid limit of the hyperbolic Euler equations.

They are fundamentally an off-diagonal phenomenon requiring off-diagonal implicit

treatment. The pressure gradient term in (3.1b) yields

∇p = (γ− 1)Ma2
Å1

2

Ä
m2ρ−2 − ¶m2ρ−2

©
0

ä∇ρ −∇mT
Ä
ρ−1m− ¶ρ−1m

©
0

äã
+ (γ− 1)∇e+

γ− 1
2

Ma2
¶

m2ρ−2
©

0
∇ρ − (γ− 1)Ma2∇mT

¶
ρ−1m

©
0
. (4.31)
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The total energy convection and pressure work contributions, ∇ · (e+ p) m
ρ , in (3.1c)

are likewise manipulated.

Once the complete off-diagonal linearized acoustic terms are computed implic-

itly, the incremental cost to similarly treat the convective term from Equation (3.1b)

is small. The linearization is

∇ ·
Ç

m
ρ
⊗m

å
= (∇m+ I∇ ·m) Äρ−1m− ¶ρ−1m

©
0

ä
− Äρ−1m⊗ρ−1m− ¶ρ−1m⊗ρ−1m

©
0

ä∇ρ
+ (∇m+ I∇ ·m)¶ρ−1m

©
0
− ¶ρ−1m⊗ρ−1m

©
0
∇ρ. (4.32)

Implicitly treating mean convection in all equations replaces ux , uy , and uz in crite-

rion (4.15) with |ux − ux0|,
∣∣∣uy − uy0

∣∣∣, and |uz − uz0|, similar to the appearance of ν−ν0

in (4.19). While such large time steps should not be taken in time-accurate simulations

because the temporal discretization error would adversely impact turbulent dynamics,

these time steps can greatly accelerate time-inaccurate simulations advancing across

uninteresting transients in flows with sufficiently low Re. For example, changing Re,

Pr, or Ma often causes a lengthy transient in the total energy in the domain. Time-

inaccurate simulation may be used until this total energy is again stationary. Of course,

time-accurate calculations must then be performed until the turbulent dynamics be-

come stationary prior to collecting statistics.

In summary, this work treats implicitly all terms identified as candidates in the

preceding discussion. In the full context of (3.1), the complete implicit-ready linearized
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operator is

∂ρ

∂ t
= −∇ ·m (4.33a)

∂m
∂ t
= . . .+

←→
cu⊗u∇ρ − (∇m+ I∇ ·m)−→cu − γ− 1

2
cu2∇ρ

+ (γ− 1)∇mT−→cu − γ− 1
Ma2 ∇e

−Re−1−→cνu∆ρ −Re−1
Å
α+

1
3

ã
(∇∇ρ)−→cνu

+Re−1cν∆m+Re−1
Å
α+

1
3

ã
cν∇∇ ·m+ . . . (4.33b)

∂e
∂ t
= . . .−−→ce

∇ρ · ~∇ρ − ce
∇·m∇ ·m− γ

−→
cu · ∇e+

γ

RePr (γ− 1)
ce
∆ρ
∆ρ

− γMa2

RePr
−→
cνu ·∆m+

γ

RePr
cν∆e

+
Ma2

Re

Å
−cνu2

∆ρ −
Å
α+

1
3

ã
tr
Å
∇∇ρT←−→cνu⊗u

ãã
+

Ma2

Re

Å
+
−→
cνu ·∆m+

Å
α+

1
3

ã−→
cνu · ∇∇ ·m

ã
+ . . . (4.33c)

where some reference values have physically motivated superscripts

−→
cu =

¶
ρ−1m

©
0
=

Ö
cux

cuy

cuz

è
cu2
=
¶

m2ρ−2
©

0

cν =
¶
ρ−1µ

©
0

−→
cνu =

¶
ρ−2µm

©
0
=

Ö
cνux

cνuy

cνuz

è
cνu2
=
¶
ρ−3µm2

©
0

←→
cu⊗u =

¶
ρ−1m⊗ρ−1m

©
0
=

Ö
cux ux cux uy cux uz

cux uy cuy uy cuy uz

cux uz cuy uz cuzuz

è
←−→
cνu⊗u =

¶
ρ−3µm⊗m

©
0
=

Ö
cνux ux cνux uy cνux uz

cνux uy cνuy uy cνuy uz

cνux uz cνuy uz cνuzuz

è
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while the remaining reference values

−→
ce
∇ρ =

¶
mρ−2 ((γ− 2) e− 2p)

©
0
=

Ü
cex∇ρ
c

ey
∇ρ

cez∇ρ

ê
ce
∇·m =

¶
ρ−1 (e+ p)

©
0

ce
∆ρ
=
¶
µρ−2 ((γ− 1) e− 2p)

©
0

have superscripts indicating the relevant equation and subscripts indicating the associ-

ated term. An investigation of the effectiveness of this linearized operator at mitigating

convective and diffusive restrictions on stable time sizes is delayed until Section 5.4.

4.1.6 Implementation of the Discrete Linear Operator

Following Algorithm 1 in light of (4.7), operator M+ϕL must be implemented

for arbitrary ϕ, km, and kn. L is the discrete form of the linear terms summarized in

the previous section. Notice for any reference value c• left-multiplying by the diagonal

matrix

C• =




c•|y=0 0
...

0 c•|y=L


 (4.34)

scales linear operators in a way that accommodates wall-normal variations in reference

quantities. For example, applying CνD(2) rather than D(2) scales the result at collocation

point y = yl by cν|y=yl
.

Switching to a blocked matrix representation employing five scalar conserved

state fields, the complete, implicit-ready discrete operator M + ϕL is shown in Fig-

ure 4.3. The representation chosen highlights how the full operator is built from dis-

crete operators applied to individual state fields. For simulations with no mean velocity
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in the spanwise direction, the reference coefficient matrices Cuz and Cνuz may be taken

as zero to reduce the required linear algebra. If desired, the density equation and

density terms in the other equations may be treated fully explicitly to reduce operator

assembly and factorization overhead. Previous work by Guarini [59] did not treat den-

sity implicitly. Implicit density treatment reduces by one the number of scalar fields that

must be converted from physical space to wave space during each substep in problems,

like channel flows, with relatively simple forcing. Finally, implicitly handling only the

wall-normal directions may be accomplished by setting km and kn to zero. Doing so

results in a wavenumber independent operator requiring factorization only once per

Runge–Kutta substep.

The discretized implicit operator M +ϕL depicted in Figure 4.3 is a blocked

square matrix with banded submatrices (BSMBSM). Matrix A is a “BSMBSM” when

A=

Ü
B0,0 · · · B0,S−1

...
. . .

...
BS−1,0 · · · BS−1,S−1

ê
where every Bi, j is an n by n banded submatrix containing kl subdiagonals and ku

superdiagonals. The convention is henceforth adopted that that lowercase fixed-width

identifiers indicate submatrix details while uppercase ones indicate global details for A.

The structure of a BSMBSM is defined completely by the parameters S, n, kl, and ku.

The number of rows and columns is N= Sn.

Applying A from individually contiguous, banded submatrices Bi, j is both conve-

nient and efficient. For example, banded matrix accumulation operations and boundary

condition imposition are simple in such a storage format. However, using individually

contiguous, banded submatrices is highly inefficient for solving linear equations.
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With appropriate renumbering of A, solving linear equations can be done effi-

ciently. The zero-indexed permutation vector

q(i) = (i mod S)n+ bi/Sc

may always be used to convert a BSMBSM into a globally banded N by N matrix with

minimum bandwidth. More concretely, the permutation matrix P uniquely defined by

vector q causes PAPT to have KL= S (kl+ 1)−1 subdiagonals and KU= S (ku+ 1)−1

superdiagonals summing to overall bandwidth KL+ 1+ KU= S (kl+ ku+ 2)− 1. The

reverse permutation vector has a simple closed form

q−1(i) = (i mod n)S + bi/nc.

With Ai, j in hand, the banded renumbering can be formed using the relationships

A|i, j = PAPT
∣∣∣
q−1(i),q−1( j)

, PAPT
∣∣∣
i, j
= A|q(i),q( j) . (4.35)

This renumbering is factorizable in order

N (KL+ 1+ KU)2 = Sn (S (kl+ ku+ 2)− 1)2 (4.36)

floating point operations to find LU = PAPT. Schulz et al. [140] showed that modern

many-core architectures excel at performing many such conveniently parallel factor-

izations. The linear equation AX = B, which is equivalent to LU PX = PB, then has the

solution

X = A−1B = PT (LU)−1 PB

where inversion has been used as a notational convenience representing triangular

back substitution.
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The efficiency of this BSMBSM linear solution procedure, including whether it

makes the wavenumber-dependent or wavenumber-independent variant of Figure 4.3

more advantageous, will be quantified in Section 5.4.

4.2 Boundary Conditions

This section discusses the required continuous boundary conditions for the

problems of interest and how they are mapped into a discrete form.

4.2.1 Isothermal Walls with and without Transpiration

An isothermal boundary requires specifying a constant temperature Tw. Both

no-slip and transpiring walls are of interest. The former possess constant wall velocities

uw = vw = ww = 0 while the later permit nonzero-but-constant velocities. A transpiring

wall condition is achieved by setting vw 6= 0. One thermodynamic quantity must be

allowed to vary for such boundary conditions to be well-posed [123]. Allowing ρ

to vary is simplest given the present use of density, momentum, and total energy to

represent system state. Using ∂tu = ∂t v = ∂t w = 0, smoothness, and the constitutive

assumptions yields four scalar constraints relating the evolution of momentum and
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total energy to the evolution of density:

∂t (ρu)w = uw∂tρw +ρw∂tuw = uw∂tρw (4.37a)

∂t (ρv)w = vw∂tρw +ρw∂t vw = vw∂tρw (4.37b)

∂t (ρu)w = uw∂tρw +ρw∂tuw = uw∂tρw (4.37c)

∂t (ρE)w = Ew∂tρw +ρw∂t Ew = Ew∂tρw

=
(

Tw

γ (γ− 1)
+

Ma2

2

Ä
u2

w + v2
w +w2

w

ä)
∂tρ. (4.37d)

The above evolution conditions are strongly enforced by modifying the first and/or

last several rows of the linear implicit operator, shown in Figure 4.3, using the way B-

spline basis support limits the number of nonzero coefficients at the wall, as discussed

in Section 4.1.3

4.2.2 Nonreflecting Freestream Boundary Conditions

When simulating problems on semi-infinite domains, such as flat plates, nonre-

flecting freestream boundary conditions are necessary. Without these, acoustic waves

generated by the flow cannot leave the domain. The trapped acoustics then accumulate

causing an aphysical partition of energy and corrupting the simulated statistics.

Following Engquist and Majda [42], Giles [56, 57] developed localized, ap-

proximate two-dimensional, unsteady nonreflecting boundary conditions for the Euler

equations. Giles’ boundary conditions are adopted over the “locally one-dimensional

inviscid” relations of Poinsot and Lele [123] because other codes with similar numerics

have successfully employed Giles’ conditions for our problems of interest. While Rowley

and Colonius [130] present higher order techniques expected to perform better than
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Giles’ approach, what they describe is considerably more complex to implement. Saxer

and Giles [134] extended the technique to three dimensions for transonic axial flow

turbomachinery computations. Guarini [59] summarizes the Cartesian extension of

Giles’ approach to three spatial dimensions without reproducing the associated analysis.

Medida [102] lucidly catalogs the intermediate results necessary in three dimensions.

Baum et al. [7] provides useful test cases as well as examples of correct boundary

condition behavior.

4.2.2.1 The Abstract Approach

Giles’ approach is now reviewed following Guarini’s presentation with the

goal of setting notation suitable for presenting and manipulating Medida’s results for

nonreflecting x boundaries in three-dimensional, Cartesian coordinates. For complete

details, especially motivations and proofs, the work of Giles, Medida, and Guarini

should be consulted in that respective order.

For the state vector

U = {ρ, u, v, w, p} (4.38a)

the Euler equations, using the ideal gas equation of state

ρa2 = γp, (4.38b)

can be written as follows:

∂

∂ t
U + A

∂

∂x
U + B

∂

∂ y
U + C

∂

∂z
U = 0 (4.38c)
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A=




u ρ 0 0 0
0 u 0 0 1

ρ

0 0 u 0 0
0 0 0 u 0
0 γp 0 0 u




B =




v 0 ρ 0 0
0 v 0 0 0
0 0 v 0 1

ρ

0 0 0 v 0
0 0 γp 0 v




C =




w 0 0 ρ 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1

ρ

0 0 0 γp w




.

(4.38d)

This system of equations identically describes the behavior of an analogous U∗ when-

ever all of

U∗ =
{
ρ

ρ0
,

u
u0

,
v
u0

,
w
u0

,
p
ρ0u2

0

}
t0 =

l0
u0

a0 = u0 (4.39)

hold. Therefore, all dimensional results obtained for U remain unchanged in the setting

of U∗.

Consider perturbations

δU = {δρ,δu,δv,δw,δp}

taken about some steady, uniform reference state Ū so that

U = Ū +δU .

The short-time perturbation evolution is governed by the linearized Euler equations

∂

∂ t
δU + Ā

∂

∂x
δU + B̄

∂

∂ y
δU + C̄

∂

∂z
δU = 0 (4.40)

where matrices Ā, B̄, and C̄ are evaluated at Ū . This linearized system satisfies the

prerequisites for Giles’ analysis. Assuming a solution of the form

δU = ei(kx x+ky y+kzz−ωt)δÛR (4.41)
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and substituting into the linearized equations produces

i
Ä−ωI + kx Ā+ ky B̄ + kz C̄

ä
δÛR = 0 (4.42)

which has nontrivial solutions only if the dispersion relation

det
Ä−ωI + kx Ā+ ky B̄ + kz C̄

ä
= 0 (4.43)

holds. Defining λx = kx/ω, λy = ky/ω, and λz/ω, the dispersion relation can be

equivalently expressed as

det
Ä−I +λx Ā+λy B̄ +λz C̄

ä
= 0. (4.44)

Assuming Ā is invertible and applying − ÄiωĀ
ä−1

to Equation (4.42), one findsÄ
Ā−1 −λx I −λy Ā−1B̄ −λzĀ

−1C̄
ä
δÛR = 0. (4.45)

This is an eigenvalue problem in λx where δÛR is the eigenvector and a solution to the

right null space problem. The signs of the associated eigenvalues, determined using

the magnitude of ū relative to ā, are required to determine how many characteristics

are entering or exiting through the boundary. The left null space problem,

V L
Ä
Ā−1 −λx I −λy Ā−1B̄ −λzĀ

−1C̄
ä
= 0, (4.46)

naturally gives rise to the associated left null vector V L.

Giles, following Engquist and Majda, used several orthogonality properties to

build the exact, nonreflecting boundary conditions

V L
n δU = 0 (4.47)
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for each V L
n = V L

Ä
kxn

ä
corresponding to either incoming or outgoing waves. This

exact condition is approximated using a Taylor series in λy and λz for reasons of

computational tractability. Truncating the series is equivalent to assuming waves have

a small angle of incidence to the boundary. To first order,

V L
n

∣∣∣
λy ,λz=0

δU +λy
dV L

n

dλy

∣∣∣∣∣∣
λy ,λz=0

δU +λz
dV L

n

dλz

∣∣∣∣∣
λy ,λz=0

δU ≈ 0. (4.48)

As noted by Engquist and Majda [42] and later expounded upon by Trefethen and

Halpern [167], only particular higher-order series truncations of this form lead to well-

posedness. Moreover, the straightforward application of even this first order approxi-

mation requires either ad hoc [56, 102] or systematic [130] modification to produce

well-behaved inflow constraints. Multiplying by−iω, Fourier transforming in both time

and space, and using that Ū and therefore V L
n are both steady and uniform yields

∂

∂ t
V LδU ≈ dV L

dλy

∂

∂ y
δU +

dV L

dλz

∂

∂z
δU (4.49)

where the λy ,λz = 0 and subscript n are now suppressed. Inserting V L−1V L,

∂

∂ t
V LδU ≈ dV L

dλy
V L−1 ∂

∂ y
V LδU +

dV L

dλz
V L−1 ∂

∂z
V LδU . (4.50)

Defining characteristic variables using the action of V L,

δC = V LδU , (4.51)

allows writing a more compact form

∂

∂ t
δC ≈ BG ∂

∂ y
δC + CG ∂

∂z
δC (4.52)
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employing the notation

BG =
dV L

dλy
V L−1 CG =

dV L

dλz
V L−1 (4.53)

where the superscript G is meant to suggest “Giles”.

Condition (4.52) intermingles the constraints for inflow and outflow conditions.

Only the incoming characteristics should be evolved. Which waves are incoming may

be determined by comparing the magnitude of ū relative to ā. Care must be taken to

account for the choices made in representing V L and to correctly treat left versus right

boundaries. Notationally, it will later be convenient to have a projection

PG : δC → δC (4.54)

such that

PG ∂

∂ t
δC ≈ PGBG ∂

∂ y
δC + PGCG ∂

∂z
δC (4.55)

imposes conditions on only incoming characteristics. In contrast, applying

I − PG : δC → δC (4.56)

recovers the outgoing characteristics not constrained by the boundary condition For

some Ū possessing an agreed upon relationship between ū and ā, specifying V L, PG,

BG, and CG concretely states a Giles-like nonreflecting x boundary condition for the

Euler equations.

4.2.2.2 Subsonic Inflow and Outflow Conditions

In Section 5.8 of his thesis, Medida presents two such concrete nonreflecting

boundary condition specifications for subsonic inflows and outflows where 0 < ū <

86



ā. Medida’s Equations (5.78) and (5.79) specify the transformations to and from

characteristic variables:

V L =




−ā2 0 0 0 1

0 0 ρ̄ā 0 0

0 0 0 ρ̄ā 0

0 ρ̄ā 0 0 1

0 −ρ̄ā 0 0 1




V L−1 =




− 1
ā2 0 0 1

2ā2
1

2ā2

0 0 0 1
2ρ̄ā − 1

2ρ̄ā

0 1
ρ̄ā 0 0 0

0 0 1
ρ̄ā 0 0

0 0 0 1
2

1
2




. (4.57)

For this V L, the characteristics δC travel at speeds [ū, ū, ū, ū+ ā, ū− ā]. Direct compu-

tation shows

det V L = −2ρ̄3ā5

and so V L is always nonsingular for a realizable reference state. Using the outward

normal n with value −1 or 1 at a left or right boundary, respectively,

PG =




n




ū 0 0 0 0
0 ū 0 0 0
0 0 ū 0 0
0 0 0 ū+ ā 0
0 0 0 0 ū− ā



< 0




(4.58)

specifies the appropriate projection operator if comparisons are deemed to indicate

1 if true and 0 if false. Medida’s Equations (5.82) and (5.83) provide conditions for

which reflection coefficients were not reported:

BG =




0 0 0 0 0

0 v̄ 0 ā+ū
2

ā−ū
2

0 0 v̄ 0 0

0 m− 0 v̄ 0

0 m+ 0 0 v̄




CG =




0 0 0 0 0

0 w̄ 0 0 0

0 0 w̄ ā+ū
2

ā−ū
2

0 0 m− w̄ 0

0 0 m+ 0 w̄




(4.59a)
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m− =





ā−ū
2 if nū< 0

ū otherwise
m+ =





ā+ū
2 if nū< 0

ū otherwise
. (4.59b)

The constants m− and m+ arise from the modifications Giles chose, which both Me-

dida and Guarini reproduced, to obtain well-posed inflow conditions. The form of

these constants follows from Medida’s Equation (5.84) and is similar to Guarini’s Equa-

tion (4.86).

We assume, but have not verified, reflection analysis like that presented in

Giles [56, §3.7.4] extends to Medida’s (4.59). At the inflow, an outgoing pressure wave

would then produce no reflected entropy or vorticity waves and would generate a

fourth-order pressure reflection. At the outflow, an outgoing entropy or vorticity wave

would then produce no reflection while an outgoing pressure wave would generate a

second order reflection.

4.2.2.3 Application to the Present Equations

In Section 4.3 of his thesis, Guarini [59] proved the linear structure of the

Euler equations admits a straightforward translation of Giles’ boundary conditions to

another set of state variables V with steady, uniform reference state V̄ and therefore

perturbations

δV = V − V̄. (4.60)

The corresponding coordinate transformation Jacobian matrix is

S =
∂U
∂V

.
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In this new setting, Guarini rewrote the exact nonreflecting conditions (4.47) asÄ
V LS

ä
δV = 0 (4.61)

which causes the approximate condition (4.49) to become

V LS
∂

∂ t
δV ≈ dV L

dλy
S
∂

∂ y
δV +

dV L

dλz
S
∂

∂z
δV. (4.62)

Using notation from the compact representation (4.55),

PGV LS
∂

∂ t
δV ≈ PGBGV LS

∂

∂ y
δV + PGCGV LS

∂

∂z
δV (4.63)

is the simplest form for applying Medida’s x boundary condition matrices to alternative

state variables.

The particular coordinate transformation required maps the nondimensional

primitive state U∗ satisfying requirements (4.39) to the conserved state V ∗ nondimen-

sionalized per Section 3.1:

V ∗ =
{
ρ

ρ0
,
ρu
ρ0u0

,
ρv
ρ0u0

,
ρw
ρ0u0

,
ρE
ρ0a2

0

}
= {ρ∗, ρ∗u∗, ρ∗v∗, ρ∗w∗, ρ∗E∗} (4.64a)

a∗ =
a
a0

Ma =
u0

a0
t0 =

l0
u0

. (4.64b)

Observing several relationships between U∗ and V ∗ with care to distinguish between

u0 and a0:

ρ

ρ0
= ρ∗

u
u0
=

ρu
ρ0u0
ρ
ρ0

=
ρ∗u∗

ρ∗
v
u0
=
ρ∗v∗

ρ∗
w
u0
=
ρ∗w∗

ρ∗
(4.65)
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p
ρ0u2

0

=
γ− 1
ρ0u2

0

ρE +
1− γ

2ρ0u2
0ρ

Ä
(ρu)2 + (ρv)2 + (ρw)2

ä
=
γ− 1
Ma2 ρ

∗E∗ +
1− γ
2ρ∗

Ä
(ρ∗u∗)2 + (ρ∗v∗)2 + (ρ∗w∗)2

ä
. (4.66)

aids computing the Jacobian matrix evaluated at some V̄ ∗,

S =




1 0 0 0 0

− ū∗
ρ̄∗

1
ρ̄∗ 0 0 0

− v̄∗
ρ̄∗ 0 1

ρ̄∗ 0 0

− w̄∗
ρ̄∗ 0 0 1

ρ̄∗ 0
γ−1

2

Ä
ū∗2 + v̄∗2 + w̄∗2

ä
(1− γ) ū∗ (1− γ) v̄∗ (1− γ) w̄∗ γ−1

Ma2




. (4.67)

As expected, the transformation is nonsingular for realizable fields because

det S =
γ− 1

Ma2ρ̄∗3
.

The inverse is

S−1 =




1 0 0 0 0
ū∗ ρ̄∗ 0 0 0
v̄∗ 0 ρ̄∗ 0 0
w̄∗ 0 0 ρ̄∗ 0

Ma2

2

Ä
ū∗2 + v̄∗2 + w̄∗2

ä
Ma2ρ̄∗ū∗ Ma2ρ̄∗ v̄∗ Ma2ρ̄∗w̄∗ Ma2

γ−1




. (4.68)

Medida’s matrices V L, BG, and CG derived for U remain valid for nondimensional U∗

possessing sound speed a/u0. When reusing these matrices for V ∗ every sound speed

must be scaled by 1/Ma because

ā
u0
=

a0ā∗

u0
=

ā∗

Ma
.

The correctness of this intuitive find-and-replace operation has been verified using

Mathematica® to reproduce Medida’s results in this particular nondimensional context.
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Thus far nonreflecting x boundary conditions in physical space have been

presented. The present work requires rotating these results to handle nonreflecting

y boundaries per Figure 4.1 followed by transforming the constraints into coefficient

space. Defining

x ′ = z y ′ = x z′ = y

induces the relationships:

u= v′ v = w′ w= u′

∂

∂x
=
∂

∂ y ′
∂

∂ y
=
∂

∂z′
∂

∂z
=
∂

∂x ′
.

The perturbed state vector entries may be reordered more conventionally by defining

RY and δV ′ per

δV =




δρ
δρu
δρv
δρw
δρE



=




δρ
δρv′

δρw′

δρu′

δρE



= RYδV ′ =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1







δρ
δρu′

δρv′

δρw′

δρE




. (4.69)

Substituting these details into Equation (4.63) produces the desired nonreflecting y

boundary condition,î
PGV LS

ó∣∣∣
ū=v̄′,v̄=w̄′,w̄=ū′

RY ∂

∂ t
δV ′ ≈ î

PGCGV LS
ó∣∣∣

ū=v̄′,v̄=w̄′,w̄=ū′
RY ∂

∂x ′
δV ′

+
î
PGBGV LS

ó∣∣∣
ū=v̄′,v̄=w̄′,w̄=ū′

RY ∂

∂z′
δV ′. (4.70)

Suppressing the primes and the matrix evaluation details,î
PGV LS

ó
RY ∂

∂ t
δV ≈ îPGCGV LS

ó
RY ∂

∂x
δV +

î
PGBGV LS

ó
RY ∂

∂z
δV. (4.71)
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Replacing δV by V − V̄ per (4.60) and recalling that by assumption ∂
∂ t V̄ = ∂

∂x V̄ =

∂
∂z V̄ = 0, î

PGV LS
ó
RY ∂

∂ t
V ≈ îPGCGV LS

ó
RY ∂

∂x
V +

î
PGBGV LS

ó
RY ∂

∂z
V. (4.72)

Transforming to Fourier space gives a linear condition almost suitable for implicit

advance per Section 4.1.2,î
PGV LS

ó
RY ∂

∂ t
V̂ ≈ −ikx

î
PGCGV LS

ó
RY V̂ − ikz

î
PGBGV LS

ó
RY V̂. (4.73)

Notice that when kx = kz = 0 the relevant mean characteristics are held constant

in time. The previous evolution equation is a pointwise condition suitable when V̂

contains pointwise state (for example, collocation point values). When another repre-

sentation is chosen for state, one should useî
PGV LS

ó
RY M

∂

∂ t
V̂ ≈ −ikx

î
PGCGV LS

ó
RY MV̂ − ikz

î
PGBGV LS

ó
RY MV̂ (4.74)

where time-invariant M maps state to non-state. However, the distinction is somewhat

blurred for B-spline boundary collocation points and boundary coefficients because the

boundary value for a B-spline basis expansion is nothing but the boundary coefficient.

While Equation (4.74) constrains incoming characteristics, it does not evolve

the remainder of the solution in accordance with the interior of the simulation domain.

Returning to the time discretization, Equation (4.8) evolves coefficients V̂ per

M
∂

∂ t
V̂ = LV̂ +χN(V̂ ) (4.75)

where both L and N map state (i.e. coefficients) to a non-state representation (i.e.

collocation point values) and M state to non-state. At the nonreflecting y boundary,
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projecting the evolution into characteristic space yieldsî
V LS

ó
RY M

∂

∂ t
V̂ =

î
V LS

ó
RY
Ä
LV̂ +χN(V̂ )

ä
. (4.76)

Updating only the unconstrained characteristics using the previously defined PG,î
I − PG

ó î
V LS

ó
RY M

∂

∂ t
V̂ =

î
I − PG

ó î
V LS

ó
RY
Ä
LV̂ +χN(V̂ )

ä
. (4.77)

Adding Equation (4.74) and collecting like terms,î
V LS

ó
RY M

∂

∂ t
V̂ ≈ îI − PG

ó î
V LS

ó
RY
Ä
LV̂ +χN(V̂ )

ä
− Äikx

î
PGCG

ó
+ ikz

î
PGBG

óä î
V LS

ó
RY MV̂. (4.78)

Moving the nonsingular characteristic projection to the right hand side,

M
∂

∂ t
V̂ ≈ RY −1 îV LS

ó−1 î
I − PG

ó î
V LS

ó
RY
Ä
LV̂ +χN(V̂ )

ä
− RY −1 îV LS

ó−1 Ä
ikx

î
PGCG

ó
+ ikz

î
PGBG

óä î
V LS

ó
RY MV̂, (4.79)

a boundary evolution equation matching the form (4.75) is recovered. Auxiliary defi-

nitions could improve the result’s brevity but they obfuscate the physics.

4.2.2.4 Enforcement in the Explicit or Implicit Operator

Two different nonreflecting boundary enforcement approaches were desired.

The first approach imposed the above conditions through the nonlinear, explicit oper-

ator for software implementation debugging purposes. The second approach applied

the conditions through the linear implicit operator for production use. In the latter

case, implicit treatment of the derivatives in the nonreflecting condition is warranted
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whenever the streamwise and spanwise directions are handled linearly implicitly per

Section 4.1.5. Otherwise acoustics traveling in those grid directions limit stable time

step choices thus defeating the implementation efforts from Section 4.1.6.

Rearranging (4.79) for the first case, one obtains

M
∂

∂ t
V̂ ≈

LG
E︷ ︸︸ ︷

RY −1 îV LS
ó−1 î

I − PG
ó î

V LS
ó
RY L V̂

+χ RY −1 îV LS
ó−1

Å
χ−1(−ikx[PG CG]−ikz[PG BG])[V LS]RY MV̂

+[I−PG][V LS]RY N(V̂ )

ã
︸ ︷︷ ︸

N G
E (V̂)

. (4.80)

Evidently, Giles’ conditions can be fit into the framework in Section 4.1.2 by modifying

the action of any existing global operators L and N to obtain the boundary-specific LG
I

and N G
I behavior described by Equation (4.80). The required CG-, BG-, and PG-related

matrices may be computed only once for this V̄ and then cached for repeated use.

Conveniently, N G
E

Ä
V̂
ä

can be obtained from N
Ä
V̂
ä

using only information available in

Fourier space assuming that reference state V̄ has already been gathered.

Reshuffling (4.79) for the second case, one can cast the boundary condition

primarily as a modification of the linear operator L:

M
∂

∂ t
V̂ ≈

LG
I︷ ︸︸ ︷

RY −1 îV LS
ó−1

Å
(−ikx[PG CG]−ikz[PG BG])[V LS]RY M

+[I−PG][V LS]RY L

ã
V̂

+χ RY −1 îV LS
ó−1 î

I − PG
ó î

V LS
ó
RY N(V̂ )

︸ ︷︷ ︸
N G

I (V̂)

. (4.81)

N G
I (V̂ ) can be found from a straightforward, wavenumber-independent linear trans-

formation of N(V̂ ). Accumulating product
Ä
M +ϕLG

I

ä
V̂ out-of-place in an L-agnostic
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way can be done by first accumulating (M +ϕL) V̂ and subsequently adjusting the

boundary action:Ä
M +ϕLG

I

ä− (M +ϕL)
∣∣∣
boundary

= −iϕkx RY −1 îV LS
ó−1 î

PGCG
ó î

V LS
ó
RY M

− iϕkz RY −1 îV LS
ó−1 î

PGBG
ó î

V LS
ó
RY M

− ϕ RY −1 îV LS
ó−1 î

PG
ó î

V LS
ó
RY L. (4.82)

To illustrate L-agnostic
Ä
M +ϕLG

I

ä
assembly, suppose the state coefficients at the non-

reflecting boundary are interleaved at the bottom of vector V̂ per (4.35). Then one

can partition (4.82) as

M +ϕLG
I =

ñ
M00 M01

0 M11

ô
+ϕ

ñ
L0

L1

ô
︸ ︷︷ ︸

M+ϕL

−ϕ
ñ
0 0
0 C

ôñ
L0

L1

ô
︸ ︷︷ ︸

L

+ϕ
ñ
0 0
0 −ikxA− ikzB

ôñ
M00 M01

0 M11

ô
︸ ︷︷ ︸

M

(4.83)

using rectangular M01, L0 and L1. Here, the
[
PGCG]-,

[
PGBG]-, and

[
PG]-dependent

Giles dense matrix products mapping collocation points to collocation points have

been abbreviated to A, B, and C , respectively. As M11 = I holds for collocation-based

B-spline operators,

M +ϕLG
I =

ñ
M00 M01

0 I

ô
+ϕ

ñ
I 0
0 I − C

ôñ
L0

L1

ô
+ϕ

ñ
0 0
0 −ikxA− ikzB

ô
=
ñ

I 0
0 I − C

ô
(M +ϕL) +

ñ
0 0
0 C − iϕkxA− iϕkzB

ô
. (4.84)

The above form can be straightforwardly used in software routines for banded operator

application and assembly.
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When only the wall-normal direction is treated implicitly, simplifying Figure 4.3

to its wavenumber-independent form, the wavenumber-dependent terms above may

be collected into the explicit operator producing a hybrid between (4.80) and (4.81).

In that circumstance, the operator modification (4.84) remains intact with the kx and

kz terms simply omitted. Surprisingly, splitting this higher order boundary treatment

between the implicit linear and explicit nonlinear operators empirically behaved, over

long simulation times, in an ill-posed manner on problems for which the implementa-

tions of both (4.80) and (4.81) remained stable. Caveat human error being responsible

for this unexpected observation, it is conjectured that splitting the boundary treatment

introduces sufficient numerical noise that the well-posedness modifications in (4.59)

somehow break down.1 Regardless of the root cause, the lower order treatment (4.81)

always taking kx = kz = 0 is applied when only the wall-normal direction is handled

implicitly.

4.2.2.5 Impact of Homogenization and Viscosity

Testing has shown inviscid, nonreflecting subsonic inflow and outflow condi-

tions, as formulated above, to behave as expected. The impact homogenization and

viscous effects have on the application of these boundary conditions is now considered.

Temporal slow growth models add homogenization forcing (2.6) to the gov-

1A coding error was certainly possible but believed to be unlikely because the relevant code execution
paths are wholly shared with the fully implicit and fully explicit treatments. The conjecture is based solely
on the effort Rowley and Colonius [130] dedicate to the subtleness of such well-posedness corrections.
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erning equations. These terms have the form

−y grt0
(∆)

∂

∂ y
ρq = grt0

(∆)ρq− ∂

∂ y

Ä
y grt0

(∆)ρq
ä

(4.85)

for each scalar q with grt0
(∆) being constant. As just demonstrated, such terms may

be split into a reaction term and a conserved flux. Relative to the Euler equations, this

additional conserved flux modifies the inviscid eigensystem to make the wall-normal

eigenvalues v̄ and v̄ ± ā become v̄ − y grt0
(∆) and (v̄ ± ā)− y grt0

(∆). Consequently,

only subsonic inflow conditions are necessary to simulate temporally homogenized

boundary layers as −y grt0
(∆) typically dominates v̄ at the y = L y boundary given a

reasonable wall-normal domain extent. Identical wall-normal modifications empirically

were found to be adequate when employing the spatiotemporal formulation from

Section 3.3.

Poinsot and Lele [123] suggest two additional viscous conditions be supplied

when Euler-derived conditions are applied to the Navier–Stokes equations. These in-

volve disabling viscous stress and heat flux terms at the boundary.2 While testing has

shown viscous subsonic inflows to be stable without this further treatment, viscous

subsonic outflows were not. The simplest way to enforce all of Poinsot and Lele’s rec-

ommendations is to make the entire X − Z computational plane at the nonreflecting

boundary be inviscid. At y = L y the nonlinear pointwise computations use 1/Re = 0

and the viscous linearization references from Section 4.1.5 (cν,
−→
cνu, etc.) are set to

zero.

2Interestingly, though he applied their two shear conditions, Guarini [59] either did not enforce or
did not report enforcing Poinsot and Lele’s recommended heat flux condition.
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4.3 Accounting for Uncertainty in Computed Statistics

Providing uncertainty estimates in reported results is essential whenever exper-

imentally or numerically obtained flow statistics are taken as truth data. Assuming the

absence of coding errors, the application of adequate numerical resolution to a well-

posed problem, and the correct determination of stationary conditions in an ergodic

simulation, uncertainties in DNS can arise from two sources. First, approximately solv-

ing the continuous Navier–Stokes equations with a computer introduces discretization

errors. Second, sampling flow quantities over a finite duration introduces finite sam-

pling errors. Oliver et al. [114] set forth Bayesian Richardson extrapolation as a means

to disentangle these two sources of error when finite sampling uncertainty could be

quantified. That work confirmed for some quantities of interest the notion that well-

resolved DNS discretization errors are small relative to DNS sampling errors. Therefore,

in this dissertation, finite sampling errors will be reported while discretization error is

neglected.

Calculation of finite sampling errors in a statistically stationary DNS is compli-

cated by the fact that the samples possess an a priori unknown temporal autocorrelation

structure. As any well-defined numerical experiment must cause the autocorrelation to

ultimately decay to zero, many authors downsample instantaneous measurements until

the retained samples are independent. However, increasing the number of independent

samples is computationally expensive in DNS.

As part of the present work, an automated technique using information-theoretic

autoregressive model estimation [14, 17–19, 125, 126, 173] in conjunction with ef-

fective sample sizes [168] to extract more information from a fixed amount of auto-
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correlated data was developed. The method was benchmarked, found favorable, and

published in Oliver et al. [114]. An open source, header-only C++ reference imple-

mentation is available.3 Convenient wrappers for GNU Octave [37] and Python [33]

were also provided to facilitate adoption by the DNS community. This autoregressive

technique will be used to estimate finite sampling errors for the Reynolds-averaged

quantities reported in Chapters 5–7.

Uncertainty propagation into derived quantities computed from directly sam-

pled data (and its associated finite sampling uncertainty estimates) is performed using

Taylor series methods [29, 79]. To recall, consider one observation ~d of some deter-

ministic truth ~x obscured by bias error ~β as well as measurement error ~ε. That is,

~d = ~x − ~β − ~ε (4.86)

Assume ~β is relatively small and independent of ~ε. Assume also that ~ε∼N (~0,Σ) for

some known or estimable covariance matrix Σ containing scalar components σi j. The

variances on the diagonal of Σ are produced from finite sampling error estimates com-

puted by the autoregressive technique. To ensure Σ is positive definite, off-diagonal

covariances are estimated by scaling empirical correlation coefficients by the two as-

sociated diagonal entries.

Given some physically relevant functional f = f (~x), computing the quantities

E [ f (~x)] and var f (~x) is of interest. Expanding f about ~d up to kth order and evaluating

3http://rhysu.github.com/ar/
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at the unknown truth ~x ,

f (~x)≈ ∑

|α|≤k

Ä
~x − ~däα (Dα f )

Ä
~d
ä

α!
. (4.87)

Choosing k = 2, expanding the above multi-index, and using the definition of ~d,

f (~x)≈ f
Ä
~d
ä
+
∑

i

(x i − di)∂x i
f
Ä
~d
ä
+

1
2

∑

i, j
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Ä
x j − d j

ä(
∂x i
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f
) Ä
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ä

= f
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~d
ä
+
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i
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Ä
∂x i

f
ä Ä
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ä
+
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2

∑
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Ä
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∂x i
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f
) Ä
~d
ä
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(4.88)

Taking the expectation, assuming E [βi]
Ä
∂x i

f
ä Ä
~d
ä

is negligible, and dropping terms

containing E
î
βiβ j

ó
yields the second-order result

E [ f (~x)]≈ f
Ä
~d
ä
+

1
2

∑

i, j

σi j

(
∂x i
∂x j

f
) Ä
~d
ä

≈ f
Ä
~d
ä
+

1
2

∑

i

σii

Ä
∂x i
∂x i

f
ä Ä
~d
ä
+
∑

i< j

σi j

(
∂x i
∂x j

f
) Ä
~d
ä

. (4.89)

The k = 2 result (4.89) is the lowest-order approximation that corrects forΣ. Revisiting

expansion (4.88) but now retaining only up to the k = 1 terms,

f (~x)≈ f
Ä
~d
ä
+
∑

i

(βi + εi)
Ä
∂x i

f
ä Ä
~d
ä

. (4.90)

Squaring and expanding products of sums,

f 2 (~x)≈ f 2
Ä
~d
ä
+
∑

i

β2
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(4.91)
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Averaging and again neglecting E [βi]
Ä
∂x i

f
ä Ä
~d
ä

and terms involving E
î
βiβ j

ó
gives

E
î
f 2 (~x)

ó≈ f 2
Ä
~d
ä
+
∑

i

σii

Ä
∂x i

f
ä2 Ä~dä+ 2

∑

i< j

σi j

Ä
∂x i

f
ä Ä
~d
ä(
∂x j

f
) Ä
~d
ä

. (4.92)

Subtracting the square of the expectation of (4.90), neglecting the same quantities,

from E
î
f 2 (~x)

ó
one arrives at the first-order result

var f (~x)≈∑
i

σii

Ä
∂x i

f
ä2 Ä~dä+ 2

∑

i< j

σi j

Ä
∂x i

f
ä Ä
~d
ä(
∂x j

f
) Ä
~d
ä

. (4.93)

As expected, having neglected bias error contributions, the approximation (4.93) to

var f (~x) is controlled wholly by the functional form of f as well as the measurement

error covariances σi j.

While these general uncertainty propagation formulas are simple, their ap-

plication is tedious and error prone. A small application employing the open source,

Python-based symbolic toolkit SymPy [158] was created to automate deriving these

expressions. That application is packaged with the software to be discussed in the next

chapter.
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Chapter 5

Software Implementation

The computational techniques from Chapter 4 were implemented within a new

spectral simulation framework called Suzerain.1 Performing direct numerical simula-

tions for perfect gases modeled per Chapter 3 was the motivating first application for

the framework. The coevolving framework and application logic, along with supporting-

but-independent subcomponents, was written primarily in C99/C++03 over the course

of six years. Altogether they measure in excess of 100K lines of code. The source code2

and development process3 are both available openly to encourage reuse, reproducibility,

and collaboration.

The software was developed to be demonstrably correct, to be decomposable

and extensible, and to serve others as a long-lived computational tool. Indeed, a second

Suzerain-based application targeting chemically reacting flows was designed and built

by Victor Topalian, Todd A. Oliver, Nicholas Malaya, and Robert D. Moser during the

past two years to produce the simulations reported in Topalian et al. [164, 165, 166].

Independent software subcomponents created during this dissertation have been em-

1The name was chosen to suggest that applications built using Suzerain would be granted internal
autonomy but would have their external affairs fairly rigidly controlled— in software industry parlance,
the framework aspires to be a domain-specific application container.

2http://github.com/RhysU/suzerain
3http://red.ices.utexas.edu/projects/suzerain
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ployed by Lee and Moser [88], Lee et al. [89, 90], Malaya et al. [100], and Oliver et al.

[114].

This chapter first covers the design and verification of the software in the

context of the first, nondimensional perfect gas application. “Suzerain” will be used

to refer to only that framework/application combination without ambiguity as no

further discussion of the second, reacting application by Topalian et al. appears in this

document. Next, the combination is validated against supersonic channel results by

Coleman et al. [27] and Huang et al. [67] yielding important conclusions with respect

to the B-spline stability estimates from Section 4.1.4.3. Performance and scalability

are then assessed, including the effectiveness of the implicit treatment described in

Section 4.1.5. All in all, Suzerain is well-suited to perform the simulation campaigns

that are the subjects of the following two chapters.

5.1 Design

The high-level design of Suzerain is depicted in Figure 5.1. Best-of-breed third

party libraries were used when it was advantageous to do so. Computing one Runge–

Kutta substep per (4.9) transforms state from wave space to physical space and trans-

forms residuals back using P3DFFT [121]. These parallel transposes, depicted in Fig-

ure 5.2, provide the natural domain decomposition which arises from the Fourier/B-

spline spatial discretization (4.7). The communication and computation characteristics

of those operations are crucial for scalability.
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Figure 5.1: Architecture for the spectral simulation framework Suzerain
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Figure 5.2: A pencil decomposition maps O(N 2) data to O(N 3) MPI ranks using two
MPI_Alltoall-like global communication phases depicted with red arrows. Each
color represents the data owned by a single rank in each configuration.
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B-spline operators were formed using the GNU Scientific Library (GSL) [37].4

The banded implicit solves in Algorithm 1 required custom compute kernels to assemble

rescaled B-spline operators into large-bandwidth, complex-valued BSMBSMs per Sec-

tion 4.1.6. Factorization and back-substitution are provided by the Intel® Math Kernel

Library (MKL).5 Custom banded matrix-vector product kernels were prepared because

compiler-unrolled loops are appreciably faster than general-purpose MKL routines at

small bandwidths [89].6 In physical space, pointwise Navier–Stokes-related computa-

tions used Eigen [61] to simplify expressing complicated expansions like (4.31) and

to facilitate accessing vectorized intrinsics for performance. When applied, the slow

growth forcing discussed in Sections 2.5 and 3.3 is accomplished using largo, a stan-

dalone Fortran 90/C99 library developed by Victor Topalian which is distributed with

Suzerain.

The GRVY Toolkit [119] was used for continuous performance monitoring

while extensions atop Apache log4cxx [160] provided rich, MPI-aware logging of both

application lifecycle events as well as the temporal evolution of statistical quantities

of interest.7 Input and output of HDF5-based [161] data files was performed using

4The author is a committer for the GSL project.
5By default, implicit solves employ a robust, LAPACK-like driver. The user may also choose the vanilla

GBTRF/GBTRS pair for speed, the more expensive GBSVX driver to monitor operator conditioning, or a
custom banded driver routine inspired by Langou et al. [84]’s DGESIRSV permitting mixed precision
operation and/or exploiting approximate factorizations. While this last option provided verifiably correct
results, reusing the (kn, km)-dependent operator (see Figure 4.3) factorization along with iterative
refinement to avoid nearby (k′n, k′m) factorizations was not found to be superior to invoking GBTRF for
every (kn, km) on the problems considered in this document.

6Note the matrix-vector product bandwidths are significantly smaller than that factorization problem
bandwidths as discussed in Section 4.1.6.

7The author is a committer for both the GRVY Toolkit and Apache log4cxx projects.
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the ESIO library [120], written as part of the current work and also openly available.8

Operational considerations like automated batch job output management and reactive

tear down in the event of job time expiration or queue-system-related interruption

were implemented to permit long simulations to run virtually unattended.

Absent from Figure 5.1 are the pervasive computational science toolkits PETSc [6]

and Trilinos [62]. During Suzerain’s early design they were investigated but six years

ago it was unclear how to fit the techniques from Chapter 4 into them. Three years

ago, having learned more, it became apparent that doing so was possible. However,

at that time, the basic features either toolkit would have provided had already been

long ago implemented within Suzerain making porting a considerable effort without

immediately obvious benefits. No port occurred.

In hindsight, not adopting a common toolkit into Suzerain’s design was subopti-

mal. Gaining access to off-the-shelf, adaptive temporal schemes would have permitted

taking full advantage of the increased stability provided by the wavenumber-dependent,

linearly implicit operator implementation in the streamwise and spanwise directions

without concerns as to whether or not doing so adversely impacts accurately capturing

turbulent dynamics (see page 74 and, below, Section 5.3). It certainly would have

largely rendered the work behind Section 4.1.4.3 unnecessary as classical CFL stabil-

ity estimates would yield conservative initial guesses from which an adaptive scheme

could ramp up the time step to a maximally efficient value given well-quantified accu-

racy requirements. If found prohibitively expensive for production calculations, adap-

8http://github.com/RhysU/ESIO
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tive schemes could be applied during simulation “spin-up” followed by nonadaptive

time advance using spin-up-informed time step choices. Reactive stability restrictions

arising from spatiotemporal forcing would have been seamlessly handled rather than

requiring the step size safety factors listed in Chapter 6. Finally, and most importantly,

skeletally incorporating a ubiquitous toolkit could increase the likelihood and speed

of future Suzerain adoption by PETSc- or Trilinos-savvy developers thus facilitating

collaboration and providing better research returns for the time invested in the code.

5.2 Testing and Verification

Automated testing and code verification are essential as Suzerain is used to

produce data for model calibration. Unit tests ensure lower level routines behave as

expected while a collection of higher-level tests verify their proper integration. MPI-

parallel system tests check first for correct operation and second, wherever applicable,

for agreement with serial computations. Serial/parallel consistency tests include the

full application lifecycle involving loading restart state, advancing time, computing

statistics, and storing state back to disk. Gold solutions, which are known-correct results

calculated by earlier code revisions, permit detecting when changes like implementing

optimizations or switching compiler versions unintentionally influence results. The

full test suite was run daily on a Buildbot continuous integration server [174] against

both the GNU and Intel® compilers. At present, automated line and function coverage

exceeds 80%.

To verify that Suzerain correctly implemented Equations (3.1), the method

of manufactured solutions (MMS) was employed. The MMS adds to the governing
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Figure 5.3: Convergence behavior against a steady problem solved using each available
Navier–Stokes operator implementation. The wall-normal resolution — piecewise-
septic B-splines atop uniform breakpoints with 12, 24, 36, 48, 72, 96, 144, and 192
collocation points — governs the asymptotic order. The three sample estimate (5.1)
finds k0 > 7.34 across h= 48, h/s = 72, and h/t = 96 for all scalars. Labels Qρ and Qρu

indicate measured pointwise error in the floating point computations implementing
manufactured forcing [170]. Beyond 96 collocation points that forcing error reduces
empirical convergence rates. For reference, label ε marks machine epsilon.

equations new source terms such that the exact – manufactured – solution is known a

priori [99, 129, 153]. New manufactured solutions were created to fully test all terms

in compressible Navier–Stokes formulations like the present one [170]. The particular

solution instantiation appropriate for the current nondimensionalization is recorded

in Appendix B.

After the manufactured solution was constructed, three-sample observed or-

der of accuracy studies were conducted [128, 131]. Assuming an approximation A(h)

shows an h-dependent truncation error compared to an exact value A, viz. A− A(h) =

a0hk0 + a1hk1 + · · · , gives rise to the classical Richardson extrapolation procedure. Ne-
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Figure 5.4: Convergence behavior against a transient problem over 0.25 time units
solved using each available Navier–Stokes operator implementation. The same spatial
resolutions from Figure 5.3 were reused to force temporal refinement to be driven by
stability concerns per Section 4.1.4. When fully explicit (left), stable time steps are
small enough that pre-asymptotic, almost-spatial orders are recovered (k0 > 6.45).
Wall-normal implicitness (center) exhibits k0 > 3.6 for Ny ≥ 48 while advancing
linearly implicitly in three directions (right) shows k0 > 2.1 for Ny > 72. Notice
significant differences in step sizes occurring across the three implementations.

glecting O(hk1) contributions, one can estimate the leading error order k0 by numeri-

cally solving

A=
tk0A

Ä
h
t

ä− A(h)
tk0 − 1

+O(hk1) =
sk0A

Ä
h
s

ä− A(h)
sk0 − 1

+O(hk1) (5.1)

given three approximations A(h), A(h/s), and A(h/t) to A. The L2 norm of the abso-

lute error in each scalar field was selected here. On steady problems, the wall-normal

B-spline discretization error generally dominates that arising from the spectral stream-

wise and spanwise Fourier basis truncation as displayed in Figure 5.3. On transient

problems, the linearly implicit temporal treatment can reduce the asymptotic conver-
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gence rate to as low as second order as demonstrated in Figure 5.4.

Two important code features were not verified via manufactured solutions.

Both features are, of course, believed to be formulated and implemented correctly but

that belief is not based upon Figures 5.3 or 5.4. The first feature was the nonreflect-

ing boundary treatment discussed in Section 4.2.2. The related matrix-manipulating

logic (4.84) was exercised by automated tests. A variety of two- and three-dimensional

test problems, like the one depicted in Figure 5.5, were used to assess proper boundary

condition enforcement within the larger temporal advancement scheme per (4.80)

and (4.81). The second feature was the data exchange between the main solver in

Suzerain and the pointwise homogenized forcing computations coded in Topalian’s

largo library. The homogenization-agnostic data hand off between largo and Suzerain

was subjected to intensive code review followed by capturing results in gold solution

files to defend against regression. Topalian provided automated, pointwise verification

of the computations inside largo.

5.3 Validation on Isothermal Channel Problems

To validate Suzerain, including its uncertainty and post-processing capabilities,

a collection of sub- through supersonic, low Reynolds number isothermal channels was

simulated [169]. The collection followed computations by Coleman et al. [27] which

were further investigated by Huang et al. [67] to permit direct comparison with their

results. A wide range of Mach numbers was simulated to permit investigating, later in

this chapter, the efficiency of the linear-implicit treatment documented in Section 4.1.5.

The data is openly archived as described in Appendix D.
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Figure 5.5: The temporal evolution of mean pressure across the streamwise and span-
wise directions as a function of wall-normal distance is depicted during a nonreflecting
boundary condition test. At t = 0 the wall temperature is instantaneously dropped
causing a pressure pulse to travel towards the upper boundary which it exits before
t = 5. An acceptable reflection is seen traveling back towards the wall which it reaches
around t = 8. The effectiveness of the approximately nonreflecting boundary can be
contrasted with the subsequent pressure reflection from the isothermal wall which is
faint but visible at y = 5/4 when t = 10.
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In channel flows a fluid is driven between two flat plates separated by a fixed

distance as shown in Figure 4.1. The incompressible [31, 32, 65, 66, 76, 147] and com-

pressible [27, 49, 50, 67, 87, 93, 103, 141] versions of this problem are well-studied.

Half the plate separation distance is taken as reference length l0 so that nondimen-

sionally L y = 2. No slip, isothermal conditions are enforced at the upper and lower

boundaries. Unlike the classical plane Poiseuille flow in which a constant pressure

gradient drives the fluid, in Coleman-like channels the bulk streamwise momentum,
∫
ρu dy, is constrained using a spatially uniform, time-varying body force f . The instan-

taneous bulk density is similarly fixed. In contrast, the total energy is not constrained so

that the problem becomes energetically stationary only when the mean work done by

f is balanced by the average heat transfer through the walls. To simplify comparison,

the grid resolutions and domain size closely follow Coleman et al. [27] who found

them to be adequate. The domain is small relative to more recent channels appearing

in the literature.

The channels simulated, including resolution details and various quantities of

interest, are reported in Table 5.1. In the table, wall and centerline quantities have

subscripts w and c. Superscript + denotes normalization by the viscous length scale

δν = µw/ρw/uτ or the friction velocity uτ =
»
τw/ρw where the wall shear stress

τw =
Ä
µ∂yu

ä
w
. The friction Reynolds number Reτ and friction Mach number Maτ are

given by yc/δν and uτ/aw. Superscript ∗ marks scaling by semi-local units using either

u∗
τ
=
»
τw/ρ or δ∗

ν
= ν/u∗

τ
[67, 103]. The nondimensional heat flux is denoted by

Bq [16]. The column “flow throughs” conveys the time over which the data ensemble

was collected, divided by the time required for the bulk flow to traverse the streamwise
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Table 5.1: Isothermal channel simulations performed with Suzerain v0.1.6.34-r45407.
For all cases, ρ = 1, ρu = 1, Tw = 1, Pr = µCp/κ = 0.7, α = 0 for µB = αµ,
µ/µ0 = (T/T0)

β , and γ = Cp/Cv = 1.4. Extents were Lx = 4π, L y = 2, Lz = 4π/3
employing Nx = 192 and Nz = 168 Fourier modes and a piecewise-septic B-spline
basis with Ny collocation points stretched per the hyperbolic tangent parameter “tanh”
following (4.13). By definition, Re= ρu

Ä
L y/2

ä
/µw, Ma= ū/aw. Simulations by Kim,

Moin, and Moser [76] and Coleman, Kim, and Moser [27] are shown for comparison.

Case Re Ma β Ny tanh Reτ ∆x+ y+1 y+10 ∆z+
Flow

throughs

c03k01 3000 0.1 2/3 128 2.25 191 12.5 0.22 11.9 5.0 15.6
c03k05 3000 0.5 2/3 128 2.25 194 12.7 0.22 12.1 5.1 15.7
c03k15 3000 1.5 2/3 128 2.25 222 14.6 0.26 13.8 5.8 11.9
c03k30 3000 3.0 2/3 128 2.25 297 19.4 0.34 18.5 7.8 15.5

c05k01 5000 0.1 2/3 144 2.50 298 19.5 0.26 14.2 7.8 11.1
c05k05 5000 0.5 2/3 144 2.50 303 19.8 0.26 14.4 7.9 11.6
c05k15 5000 1.5 2/3 144 2.50 349 22.8 0.31 16.6 9.1 13.2
c05k30 5000 3.0 2/3 144 2.50 480 31.4 0.42 22.8 12.6 12.9

KMM87 2800 0 0 129 180 12 0.05 5.4 7 12.4
CKM95a 3000 1.5 0.7 119 222 17 0.1 8 10 ≥ 11.9
CKM95b 4880 3.0 0.7 119 451 39 0.2 17 24 ≥ 11.9

Case Mac Maτ Rec y∗c −Bq ρw ρc Tc µc

c03k01 0.116 0.006 3481 190 0.0003 1.002 0.9999 1.002 1.001
c03k05 0.570 0.031 3387 185 0.0062 1.040 0.9973 1.043 1.028
c03k15 1.497 0.081 2772 151 0.0496 1.365 0.9780 1.391 1.246
c03k30 2.240 0.119 1765 94 0.1486 2.494 0.9278 2.666 1.923

c05k01 0.115 0.006 5752 297 0.0002 1.002 0.9999 1.002 1.001
c05k05 0.566 0.029 5606 288 0.0058 1.041 0.9979 1.042 1.028
c05k15 1.477 0.077 4585 238 0.0464 1.366 0.9835 1.385 1.242
c05k30 2.202 0.116 2974 157 0.1436 2.486 0.9500 2.598 1.890

KMM87 0 0 3300 180 0 1 1 1 1
CKM95a 1.502 0.082 2760 151 0.049 1.355 0.980 1.378 1.252
CKM95b 2.225 0.116 2872 150 0.137 2.388 0.952 2.490 1.894
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extent of the domain. Linearly implicit operators were used in all three directions.

A direct comparison between the present results and those by Coleman et al.

[27] can be made from the Re = 3000, Ma = 1.5 cases c03k15 and CKM95a, which

are highlighted in Table 5.1. Aside from differences in the numerics,9 in the upper

half of the table the only appreciable parameter differences between these two cases

are the wall normal resolution (∆y+10 of 13.8 vs 8) and the viscosity power law expo-

nent (β of 2/3 versus 0.7). One-dimensional Fourier spectra at y ≈ 0.04 and y ≈ 1

(not shown) compare favorably indicating the former difference is benign. The latter

difference was deliberate as it produces data mildly more appropriate for high tem-

perature environments as demonstrated by Figure A.1. In the lower half of the table,

discrepancies between these two particular simulations range from 0.43% (Rec) to

1.3% (Maτ). Minor disagreement is expected per the noted parameter differences but

additional root causes are further explored below. Though nominally possible, another

comparison between rows c05k30 and CKM95b is not valid as the c05k30 hyperbolic

tangent stretching parameter was too small causing insufficient near-wall resolution

as assessed by spectra (not shown).

Based on techniques from Section 4.3, mean primitive quantity and Favre-

averaged Reynolds stress profiles along with pointwise uncertainty estimates appear

for simulation c03k15 in Figure 5.6. The autoregressive technique by Oliver et al.

[114] was used to estimate pointwise sampling error at each wall-normal collocation

point based on 383 instantaneous averages over the two Fourier directions. In the

9Coleman et al. used a Fourier-Legendre spatial discretization and a third-order, four-substep tem-
poral scheme by Buell [21].
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upper right of the figure, uncertainties normalized by mean velocity ū, temperature

T̄ , and viscosity µ̄ are higher near the wall due to both turbulent fluctuations and the

fact that the mean values take minima there. The largest normalized uncertainties

in mean density ρ̄ are slightly offset from the other peaks because the mean value

increases as one approaches the wall. Uncertainty in ū is appreciably larger than that

for the thermodynamic quantities consistent with their relative root-mean-squared

magnitudes [27, Figures 10 and 18]. We were unable to locate a published uncertainty

estimate by Coleman or his collaborators for the CKM95a simulation data against

which to compare. Uncertainty in near-wall ū and centerline ū are roughly 6 and

1.5 times larger, respectively, than analogous incompressible results from Oliver et al.

[114] when both are scaled by the inverse root of the number of flow throughs in the

ensemble. This difference will be addressed in more detail below.

In the lower right of the figure, sampling errors have been propagated into the

derived, Favre-averaged quantities via the Taylor series method (4.93). Uncertainty in

the density-weighted Reynolds stresses is approximately an order of magnitude higher

than was found for quantities like ū. The stresses are partially less certain because

their calculation takes as input higher order moments which are inherently less well-

known given a finite sampling window. A second factor contributing to uncertainty

in the stresses is that the definition of flu′′i u′′j involves scaling by ρ̄−1 which magnifies

uncertainty when applying the Taylor expansion (4.93).

A third factor contributing to relatively higher uncertainties in the Reynolds

stress was an operational error. It was discovered because the a posteriori uncertainty

estimates showed larger-than-anticipated asymmetries about the channel centerline
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though mean values did not. Given the solver verification results in Figure 5.3 and

Figure 5.4, an error in the implementation of the post-processing logic initially was

suspected but no symmetry-breaking issues were uncovered there. On careful review,

all new simulations in Table 5.1 showed evidence of infrequent, mild near-wall tem-

poral instability though they used the empirical B-spline operator stability estimates

with the safety factor of 0.72. The problem was diagnosed from temporal traces of the

instantaneous global minimum of the streamwise momentum— a simulation monitor-

ing feature not yet implemented when the empirical stability estimates were created.

Channel flows exhibit small, pointwise-negative velocities near the wall and it is ex-

actly these locations where linear-implicitness about the instantaneous mean state, as

described in Section 4.1.5, is most subject to stability problems when time steps are too

large. Implicit treatment in only the wall-normal direction also showed, under review,

the same symptom indicating that the operator stability estimates from Section 4.1.4.3

were too aggressive for the safety factor 0.72.

Marginal temporal instability was manifest in asymmetric uncertainty estimates

because independent, short-duration instability events occurred infrequently enough

near each wall that over O(10) flow throughs in a small domain their impact was

not distributed evenly between the upper and lower halves of the channel. As a conse-

quence of this mistake, figures in the present section do not merge the upper and lower

portions of the channel as is commonly done. Not merging data across the centerline

accounts for a factor of 1.5 increase in ū uncertainty relative to aforementioned scaled

results by Oliver et al. [114]. The remaining threefold increase in near-wall ū uncer-

tainty relative to their work is at least partially due to these infrequent events. That
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−ρ̄ε/Re

−∇ · ρ̄ũ′′2u′′/2
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to (3.11d) are a factor of 25 times smaller than maximum production. [60].

said, it is also partially attributed to the growth in root-mean-squared u fluctuations

as the Mach number increases. The same time step size mistake certainly contributes

to the disagreement between cases c03k15 and CKM95a found in Table 5.1 and the

jaggedness of the near-wall uncertainty curves in the upper right of Figure 5.6.

Term-by-term budgets for the turbulent kinetic energy (3.11d) in Figure 5.7

support the conclusion that time discretization errors are appreciable in simulation

c03k15. Qualitatively, all terms show expected trends. However, relative to Huang

et al. [67, Figure 16a], approximately 5% too much turbulent dissipation, ρ̄ε/Re, is
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present at the wall along with a counterbalancing increase in turbulent work. Cole-

man and Sandberg [28] linked increased dissipation with temporal inaccuracy when

Runge–Kutta schemes are used. Other terms are similarly affected. For example, peak

production −ρ̄‚�u′′ ⊗ u′′ :∇ũ is roughly 10% lower than Huang et al. reported. However,

Suzerain’s post-processing logic and the overall budget balance are sound because the

pointwise turbulent kinetic energy equation residual, is appropriately small.

5.4 Performance and Scalability

This section first discusses the efficiency of three available Navier–Stokes oper-

ator implementations, briefly compares Suzerain’s performance against a highly tuned

incompressible channel code, and lastly examines Suzerain’s scalability on production

homogenized boundary layer simulations. All performance measurements were made

on the Lonestar4 supercomputer at the Texas Advanced Computing Center (TACC) as

it will be the resource used for production simulations in subsequent chapters. Each

compute node on Lonestar contains 2 hex-core Intel® Xeon® 5680 3.33 GHz processors

and 24 GB of DDR3-1333 MHz memory. Every core was used as a separate MPI rank

as Suzerain presently is not OpenMP-enabled. Compute nodes are interconnected in

a fat-tree topology using Mellanox® InfiniBand™ switches running at quad data rates

of 40 Gbits/second. Compilation was performed with version 11.1 20101201 of the

Intel® compilers at optimization level 3 with host-specific extensions enabled.

The efficiency of the fully explicit, linearly implicit in the wall-normal direction,

and linearly implicit in three directions operators were benchmarked and are reported

in Table 5.2. Efficiency was measured as the amount of wall time required to advance
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Table 5.2: Normalized wall time to advance simulation one nondimensional time unit
using each of the available Navier–Stokes operator implementations. Cases, defined in
Table 5.1, were executed with Suzerain v0.1.6.34-r45407 using 12 nodes of Lonestar4.

Case
Linearly implicit

XYZ
Linearly implicit

Wall-normal Fully explicit

c03k01 1.0 11.0 49.5
c03k05 1.0 2.9 10.3
c03k15 1.0 1.3 3.7
c03k30 1.0 1.4 2.0

c05k01 1.0 8.7 48.7
c05k05 1.0 2.5 10.4
c05k15 1.0 1.7 4.4
c05k30 1.0 1.3 2.3

one nondimensional time unit because that physics-oriented metric directly translates

into the expense of acquiring converged turbulence statistics. Another metric, wall

time per time step, will be presented later alongside scalability results. Centerline

Mach numbers across the eight cases considered vary by nearly a factor of twenty. This

broad range permits assessing efficiency for widely varying acoustic-versus-convective

restrictions as well as significant differences in thermodynamic property fluctuation

magnitudes.

On the eight cases examined, linear implicitness in three directions produced

time to solution speedups of 1.3–11x relative to treating only the wall-normal direction

implicitly. The speedup improved as the Mach number decreased because the more

implicit operator mitigates streamwise and spanwise acoustic stability concerns that

would otherwise dominate at those conditions. The measurable speedup in higher

speed channels is perhaps counterintuitive as the more implicit implementation re-
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quires matrix assembly and factorization for every (km, kn) wavenumber pair while the

second fastest does not. Though factorization has a much higher asymptotic complexity

than assembly, at this resolution the former takes only twice the wall time of the latter.

Factorization of the assembled matrices, here possessing bandwidth 69, has a favor-

able memory access pattern in contrast with the assembly kernels and consequently

performs comparatively well despite the larger number of floating point operations it

requires.

The above conclusions are what prompted selecting implicitness in three di-

rections for the isothermal channel simulations discussed in the prior section. Note

that though less aggressive time step safety factors than 0.72 were in that section

concluded to be required, safety factor reductions impact both available implicit treat-

ments fairly equitably and therefore do not grossly upset their relative efficiencies.

Some simulations performed as part of the next two chapters will use only wall-normal

implicitness because they were not limited by streamwise or spanwise stability thus

making wavenumber-dependent linear algebra detrimental to time-to-solution effi-

ciency. In summary, having both types of implicitness available in Suzerain as equally

viable options permits the code to effectively address the wide range of flow conditions

studied.

To assess the performance of Suzerain as a direct numerical simulation frame-

work, we compared it against the highly optimized channel code PoongBack [89, 90],

written by Myoungkyu Lee. PoongBack is a comparatively monolithic Fortran code for

solving the incompressible Navier–Stokes equations. Like Suzerain, PoongBack uses

a Fourier–Galerkin/B-spline collocation spatial representation in conjunction with a
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three-stage, low-storage semi-implicit advance. The Kim et al. [76] Navier–Stokes for-

mulation advances two scalar state variables in time requiring three wave-to-physical

parallel Fourier transforms and five physical-to-wave transforms per time step. Every

(km, kn) wavenumber pair requires multiple linear solves but the operators do not cou-

ple multiple equations and require relatively uncomplicated matrix assembly to form.

Unlike Suzerain, PoongBack uses wholly custom linear algebra routines, wholly custom,

quadrature-aware parallel Fourier transforms built atop FFTW 3.3’s MPI capabilities,

and hybrid MPI/OpenMP parallelism. The comparison is apt because many of Lee’s im-

provements could be adopted by Suzerain if performance improvements are required

for future work.

Mimicking the resolution from our simulation c03k01, Lee performed an Reτ =

180 simulation on 12 nodes of Lonestar4 using 6 OpenMP threads per processor. Poong-

Back took 0.1299 seconds to complete one Runge–Kutta step. The timing of high-level

tasks from our c03k01 case were collected and then scaled by the frequency with which

they are required to advance the Kim et al. [76] formulation. For example, the wall time

P3DFFT required to transform 30+ scalar fields from wave space to physical space was

scaled to reflect PoongBack only needing to perform that task for three fields. Physical

space nonlinear product costs were scaled by the ratio of the number of scalar equa-

tions involved, a conservative choice because the incompressible system of equations is

considerably less complex than the compressible one. Scaling for linear algebra tasks,

including matrix-vector products, matrix assembly, back substitution, and factorization,

reflected both the relative number of tasks performed during one substep as well as

relative code-to-code operation costs arising from differences in equation coupling. For
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example, factorization costs were scaled by 6/53 as, per wavenumber pair, PoongBack

performs six single-equation factorizations while Suzerain performs one monolithic

factorization with a leading-order, S-dependent cubic complexity (4.36).

After rescaling, each hypothetical Suzerain time step solving the incompressible

Kim et al. formulation required 0.629 seconds representing a 4.8x slowdown relative

to PoongBack. About 30% of the hypothetical wall time per time step would be spent

on parallel transposes with the vast majority of the remainder consumed by banded al-

gebraic operations. Less conservative estimates of the nonlinear product costs incurred

in physical space bring the hypothetical slowdown as low as 4×. The hypothetical

slowdown is larger than hoped but reasonable— Lee took in excess of a year to pro-

duce PoongBack with much of that time spent crafting and tuning formulation-specific

banded algebraic logic to which he attributes an overall speedup of 2× (personal com-

munication).

Suzerain’s strong scalability as well as timings for the three available Navier–

Stokes operator implementations are shown in Figure 5.8. The problem size studied,

which could run on as few as 24 MPI ranks, corresponds to the production grid to

appear in Chapter 6. The state is only 168 million real-valued degrees of freedom

(1.3 GB) but each full Runge–Kutta step required P3DFFT to transmit and fast Fourier

transform 69 GB of information. Scalability from 24 to 48 ranks was not good but

from 48 to 384 ranks operator-specific parallel efficiencies exceeded 93.3%. Within

this sweet spot, advancing linear implicitly in one or three directions took 107–110%

or 152–155% of the wall time of a fully explicit time step, respectively.

At 768 and 1536 ranks, job-to-job measurements of the wall seconds per time
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step became highly variable. We attribute the behavior either to such batch jobs often

executing on compute nodes separated widely on Lonestar4’s fat-tree interconnect or

to some other intermittent network issue. Though some variability was always present

at these rank counts, atop an unchanged Suzerain binary it became dramatically worse

after a Lonestar4 system maintenance on 27 May 2014. The better jobs measured

after that date exhibited coefficients of variation between 2–4% for the time it took

P3DFFT to transform a single scalar field while the worse jobs exceeded 500%. P3DFFT

scalability problems on Lonestar4 at 768 and 1536 ranks was also observed by Lee

et al. [89] though they encountered nothing so severe. Despite these issues and due to

time-to-solution considerations, production simulations were executed on 768 ranks
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because, when provided with a favorable network fragment, job efficiency moving from

384 to 768 ranks could approach 100%. Figure 5.8 includes laggard production jobs

that, when detected, were manually stopped to conserve compute resources.
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Chapter 6

Characteristics of the Homogenized Boundary Layers at
Atmospheric Reentry-like Conditions

To reduce turbulence-driven uncertainty in aerothermodynamic heating pre-

dictions for blunt-bodied reentry vehicles, new direct numerical simulations of spa-

tiotemporally homogenized boundary layers were performed to address the need for

high-quality turbulence model calibration data identified in Chapter 2. In this chapter,

the characteristics of these new homogenized boundary layer simulations are examined.

The chapter additionally provides enough information so that a prediction-oriented

practitioner may assess this new data’s merit towards inclusion in some calibration pro-

cess. The simulations will be described and analyzed, which includes simulation details

(Section 6.1), notes on the observed integral boundary layer thicknesses (Section 6.2),

turbulence statistics (Section 6.3), and Favre-averaged equation budgets (Section 6.4).

For a more in-depth investigation of the homogenization see Topalian et al.

[165]. Also note that homogenization-related forcing terms from that reference must

be incorporated when calibrating a turbulence model using the present results. The

terms are not, however, required for subsequent use of a calibrated model.
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6.1 Simulation Details

Two cold-wall boundary layers were simulated at conditions representative of

flow over the Orion MPCV thermal protection system at peak heating during vehicle

reentry from the International Space Station. Additional background on the reentry

conditions can be found in Section 2.9. The two scenarios of interest were constructed

by taking conditions found 3.199 meters and 4.134 meters leeward of the stagnation

point in Figures 2.7 and 2.8 and then increasing the momentum Reynolds numbers Reθ

to match similar flow speeds in Table 2.3 as measured by the edge Mach numbers Mae.

That is, the scenarios combined Reθ and Mae from fully turbulent conditions with fully

laminar edge-to-wall temperature ratios Te/Tw, wall blowing velocities v+w , and pressure

gradient strengths p∗e,ξ. Relative to drawing from only the fully turbulent conditions

in Tables 2.2 and 2.3, these hybrid conditions produced larger Te/Tw and somewhat

milder favorable pressure gradients. The choice of these conditions was motivated by

the work to be presented in Chapter 7. Though the resulting hybrid scenarios strictly

speaking appear nowhere in the fully turbulent simulations by Bauman et al. [8] or

Stogner et al. [154], the two scenarios meet Settles and Dodson [143]’s realistic test

conditions criterion, discussed in Section 2.2, and are therefore suitable for turbulence

model calibration targeting this predictive context.

One direct numerical simulation was performed at each scenario of interest.

The coordinate system is depicted in Figure 4.1. Tables 6.1–6.4 document the two sce-

narios, for reproducibility distinguishing between code input parameters and a posteri-

ori observations. These tables will be discussed in more detail below. The calculations

used the Navier–Stokes formulation from Section 3.1 equipped with the “slow growth”
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Table 6.1: Homogenized boundary layer simulations performed by Suzerain v0.1.6.34-
r45407 intended for turbulence model calibration. For all cases, Pr = µCp/κ = 0.7,
α = 0 in µB = αµ, β = 2/3 in µ/µ0 = (T/T0)

β , and γ = Cp/Cv = 1.4. Extents were
Lx/l0 = 10, L y/l0 = 2.5, Lz/l0 = 3 employing a piecewise-quintic B-spline basis with
Ny collocation points stretched per the hyperbolic tangent parameter “tanh” follow-
ing (4.14). Grid spacings are normalized by δν = µw/ρw/uτ where uτ =

»
τw/ρw

and τw =
Ä
µ∂yu

ä
w
. The distance between the isothermal wall and the first and tenth

collocation point is written y+1 and y+10, respectively.

Code inputs

Case Re Ma Nx Ny Nz tanh ∆x+ y+1 y+10 ∆z+ Turnovers

t3.199 2400 0.8985 512 256 256 2.25 13.9 0.14 6.1 8.4 6.4
t4.134 3250 1.1522 512 256 256 2.35 19.0 0.17 7.2 11.4 6.9

Table 6.2: Input parameters and resulting homogenized boundary layer conditions.
Re99 and Ma99 computed from conditions at δ99. To properly account for a nonuniform
base flow, Reθ is defined per (6.8). Wall blowing velocity v+w = vw/uτ.

Code inputs

Case grt0
(∆) Tw/T0 vw/u0 δ99/l0 Re99 Reθ Ma99 T99/Tw v+w

t3.199 0.0135 0.2346 2.30e−4 1.001 2468 382 0.9041 4.128 8.52e−3
t4.134 0.0200 0.2333 1.90e−4 1.002 3346 531 1.1523 4.201 7.18e−3

Table 6.3: Pressure gradient strengths for the simulated boundary layers. The inviscid
base flow was constructed per Appendix C using inputs δ/l0 = 1, γ, Mae = Ma from
Table 6.1 and p∗e,ξ. Observations of p∗99,ξ, Launder’s acceleration parameter K [86], the
Pohlhausen parameter Ks, and parameter Λn [107] are shown evaluated as defined in
Figure 2.8 taking δ99 to be the boundary layer edge.

Code input

Case p∗e,ξ p∗99,ξ K ,µ= µ99 K ,µ= µw Ks Λn

t3.199 −0.01019 −0.010 25 4.176e−6 1.623e−6 25.44 3.345
t4.134 −0.01234 −0.012 33 3.734e−6 1.434e−6 41.81 4.113
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Table 6.4: Edge versus wall conditions in the simulated boundary layers. Friction
quantities Reτ = δ99/δν, Maτ = uτ/aw = uτ/

√
Tw, and c f = 2τw/

Ä
ρ99u2

99

ä
. Nondi-

mensional heat flux Bq = −µw

Ä
∂y T

ä
w
/ (PrρwuτTw) [16] and local Nusselt number

Nu99 = δ99

Ä
∂y T

ä
w
/
(
T99 − Tw

)
.

Case ρ99/ρw µ99/µw v99/vw Reτ Maτ c f −Bq Nu99

t3.199 0.2427 2.573 − 3.003 714 0.05008 6.128e−3 0.09765 15.59
t4.134 0.2383 2.603 30.95 976 0.06311 5.994e−3 0.1018 21.74

spatiotemporal homogenization of Section 3.3. Favorable pressure gradients were ob-

tained by supplying an inviscid base flow, constructed as described in Appendix C, to

the spatiotemporal model. The continuous equations were discretized following Chap-

ter 4 and implemented in Suzerain as described by Chapter 5. Simulation data has

been archived per Appendix D.

Table 6.1 reports the target Re and Ma based on boundary layer edge condi-

tions for each simulation, along with the domain sizes and numerical resolutions used.

The nondimensional formulation in conjunction with the inviscid base flow design pro-

cedure a priori causes ρ99/ρ0, u99/u0, δ99/l0, and T99/T0 to all be approximately one

so that code inputs Re≈ ρ99u99δ99/µ99 and Ma≈ u99/a99. The slow growth parameter

grt0
(∆) was tuned to obtain δ99/l0 ≈ 1 as an operational convenience. As a result, for

either scenario and for any length L it holds that L/l0 ≈ L/δ99 to within 0.2%. The

streamwise domain extent normalized by the boundary layer thickness was taken 25%

larger than the value of eight employed by Guarini et al. [60] because they reported

their choice was mildly too small. The spanwise extent approximately matches that

used by Spalart [150]. Grid resolution in the streamwise and spanwise directions is

similar to the cold-wall channel simulations by Coleman et al. [27] listed in Table 5.1.
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Figure 6.1: One-dimensional, unnormalized Fourier energy spectra for case t3.199.
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Figure 6.2: One-dimensional, unnormalized Fourier energy spectra for case t4.134.
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Figure 6.3: Two-point correlations for simulation t3.199.
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Figure 6.4: Two-point correlations for simulation t4.134.
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The one-dimensional Fourier spectra, shown for primitive variables in Fig-

ures 6.1 and 6.2, indicate that the present simulations are better resolved in the periodic

directions than those of Coleman et al.. The streamwise spectra at y∗ = y
»
τw/ρ/ν≈ 4

demonstrate that Lx was slightly smaller than required to eliminate artifacts from the

periodic boundary conditions. This is corroborated by the two-point correlations in

Figures 6.3 and 6.4 which show T , u, and ρ not decorrelating fully at x/Lx = 0.5.

However, the streamwise correlations exhibit less coherence than those of Coleman

et al. and Guarini et al. and, like those authors, we anticipate finite domain effects to

have little impact on the results presented here. Aside from the spanwise velocity w,

spanwise coherence far from the wall is smaller than Guarini et al. reported and is

found acceptable. The increase in w correlation as y increases, also observed by Victor

Topalian (personal communication), is thought to be a benign artifact of the homoge-

nization. Given the quality of the spectra, evidently Lz could have been larger without

incurring extra computational expense and without adversely decreasing spanwise

resolution.

In the wall-normal direction for case t3.199, collocation point y+15 ≈ 10.4,

178 points were inside δ99, and ∆y+|y=δ99
≈ 10.7. For case t4.134, y+13 ≈ 10.1,

180 points were inside δ99, and ∆y+|y=δ99
≈ 15.0. To account for the considerable

density and temperature gradients arising from holding wall temperatures fixed, the

wall-normal grid spacings are more appropriately assessed when scaled by semi-local

units [67, 103] which use either u∗
τ
=
»
τw/ρ or δ∗

ν
= ν/u∗

τ
. For simulation t3.199,

collocation point y∗27 ≈ 10.1 and ∆y∗|y=δ99
≈ 1.6. For case t4.134, y∗24 ≈ 10.3 and

∆y∗|y=δ99
≈ 2.2.
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Both simulations used linear implicit time discretization only for operators in-

volving derivatives in the wall-normal direction and, given the lessons learned in Sec-

tion 5.3 regarding the aggressiveness of the eigenvalue estimates from Section 4.1.4.3,

time step safety factors of 0.35 were selected. As measured by time-to-solution, linear

implicitness in three directions was equally but no more performant than the wall-

normal-only variant. The latter was chosen as it used smaller time steps and therefore

was expected to better resolve flow dynamics. The column “turnovers” conveys the

time over which the statistical ensemble was collected divided by δ99/uτ. The ensem-

ble for cases t3.199 and t4.134 includes 764 and 837 instantaneous planar averages

over x and z which were collected in situ from the simulations. Uncertainties were

estimated from the temporal trace of these equispaced samples following procedures

outlined in Section 4.3.

Table 6.2 documents the fixed temporal slow growth rates grt0
(∆), the isother-

mal wall temperatures, and the wall blowing rates. It shows that the homogenization

held δ99 ≈ 1 and that the desired Re99 and Ma99 conditions were produced. The re-

maining columns confirm that simulations t3.199 and t4.134 indeed correspond to

their namesake locations in Figures 2.7 and 2.8 save for possessing Reθ representative

of those found in in Table 2.3.

Table 6.3 characterizes the favorable pressure gradients found in the two sim-

ulations in a variety of ways. The desired inviscid pressure gradient parameter p∗e,ξ,

defined in (2.14), is listed alongside the observed result at δ99 labeled p∗99,ξ. The invis-

cid base flow design procedure from Appendix C produced the target pressure gradient

strength to within 0.6%. Comparing the tabulated values against Figure 2.8, the sim-
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ulated values of Launder’s acceleration parameter K are between the bands shown

calculated from fully laminar Orion MPCV computations. Simulation t3.199 shows rea-

sonable agreement with the expected Pohlhausen parameter Ks from the same figure

while simulation t4.134 is more than 50% too large. However, the Ks values computed

from the MPCV source data are suspect as they possess appreciable numerical arti-

facts. Both simulations produced Λn values roughly a factor of two less than the MPCV

data but the discrepancy is not surprising as the wall shear τw entering into Λn was

not specified a priori. We consider the inviscid base design procedure to be successful

because it closely reproduced the desired condition on p∗99,ξ while yielding pressure

gradients not too dissimilar from the MPCV data when quantified using other metrics.

Table 6.4 conveys several quantities of interest from the simulations. As ex-

pected, the prescribed wall temperatures Tw/T0 produce larger densities and lower

viscosities near the wall. Despite its wall-normal velocity at the edge being positive,

simulation t4.134 uses subsonic inflow boundary conditions because of how the ho-

mogenization causes inputs L y and grt0
(∆) to modify the wall-normal inviscid charac-

teristics as discussed in Section 4.2.2.5. On account of wall injection, friction Reynolds

number Reτ is higher and skin friction c f is lower than might be expected based upon

Reθ and Ma99 [149, 155]. To ease comparing surface heating predictions against the

present results, the nondimensional heat flux Bq and the Nusselt number Nu99 are also

tabulated.
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6.2 A Note on Integral Thicknesses and the Clauser Parameter

The omissions of the displacement thickness δ∗, the momentum thickness θ ,

and the Clauser parameter β [26] from the above tables merit explanation. That ex-

planation requires revisiting the classical definitions of the two thicknesses to properly

account for the presence of the nonuniform inviscid base flows which were used to

enforce nonzero pressure gradients. Along the way, the two related integral thickness

Reynolds numbers accommodating nonuniform base flows will be derived.

As explained in, for example, Kundu et al. [80, §9.2] the displacement thickness

δ∗ is the distance by which the wall would have to be displaced upward in a hypothetical

frictionless flow to maintain the same mass flux as that in the viscous flow. That is, δ∗

is the length satisfying

∫ ∞

0
ρuviscid(y)dy =

∫ ∞

δ∗
ρuinviscid(y)dy. (6.1)

Formally the upper limit may be replaced by any sufficiently large, finite value because

ρuviscid→ ρuinviscid as y →∞. Assuming our domains are large enough,

∫ L y

0
ρuviscid(y)dy =

∫ L y

δ∗
ρuinviscid(y)dy. (6.2)

One can obtain a simplification often taken as a definition [138, Equation 10.95],

δ∗ =
∫ L y

0
1− ρuviscid(y)

ρeue
dy, (6.3)

for the special case of a uniform inviscid flow where ρuinviscid(y) = ρeue. Multiplying by

ρeue/µe, recognizing the displacement Reynolds number Reδ∗ , and formally converting
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Figure 6.5: The inviscid base flow and viscous flow profiles for simulation t4.134

back to the nonuniform inviscid base flow,

Reδ∗ =
ρeueδ

∗

µe
=
ρeue

µe

∫ L y

0
1− ρuviscid(y)

ρeue
dy,

= µ−1
e

∫ L y

0
ρeue −ρuviscid(y)dy,

≈ µ−1
e

∫ L y

0
ρuinviscid(y)−ρuviscid(y)dy. (6.4)

A constant viscosity, here chosen to be µe, should scale the above integral when defining

Reδ∗ . There is no sensible way to incorporate dimensions of inverse viscosity into its

integrand’s left term thus permitting µ−1(y) to multiply the right term.

Mean profiles from simulation t4.134 pictured in Figure 6.5 are the impetus

for recalling the general displacement thickness balance (6.2) as well as its simplifi-

cation (6.3). Progressing from the cold wall at y = 0 to the boundary layer edge at

y = δ99 ≈ 1, the streamwise velocity increases, the density drops considerably, and
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the momentum in the viscous flow exceeds that of the inviscid base flow. Evaluat-

ing integral (6.3) taking ρeue from δ99 produces δ∗/l0 = −0.03923. Interpreting this

negative δ∗ through the usual displacement effect intuition, for simulation t4.134 in-

troducing the cold plate into the inviscid profile increases the mass flow rate because it

significantly increases the near-wall density. Negative δ∗ are reported for exotic flows

but seem uncommon [e.g. 20, 44]. The flow, however, need not be exotic. The zero-

pressure-gradient boundary layer forming on a sufficiently cold, flat plate in laminar air

will exhibit a negative displacement thickness (Truman E. Ellis, personal communica-

tion). Evaluating the right hand integrand for the more correct balance (6.2) behaves

unusually— the shape of the inviscid base flow when y < 0 does not influence the

viscous solution on y ∈ î0, L y

ó
but it impacts δ∗. For this reason, a generalization

of (6.3),

δ∗ =
∫ L y

0
1− ρuviscid(y)

ρuinviscid(y)
dy, (6.5)

is selected as a definition and evaluating it shows δ∗ = −0.03918 in simulation t4.134.

Therefore, Reδ∗ must be negative and indeed evaluating (6.4) finds Reδ∗ = −129. The

Clauser parameter β = δ∗
τw

∂ p
∂ x = 0.1608 is positive in this favorable pressure gradi-

ent flow, contrary to expectations [e.g. 13], because of negative displacement effects.

Simulation t3.199 also exhibits the actual momentum exceeding the inviscid profile mo-

mentum (not shown) but possesses δ∗/l0 = 0.006429, Reδ∗ = 15.8, and β = −0.02148;

β in no way communicates the strength of the pressure gradient as many authors term

0.1 a strong magnitude [96, 148].

Negative displacement effects are not evident in the reacting, fully turbulent

Orion MPCV data from Table 2.2 (δ∗/δ ≈ 0.113) nor do they appear in the fully
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laminar results depicted in Figure 2.8 (β < 0 leeward of the stagnation point). These

effects might not occur because of the higher edge Prandtl numbers in those reacting

simulations (see Pre in Figure 2.7) because as the Prandtl number increases it causes

the thermal boundary layer to grow more slowly relative to the momentum boundary

layer.

The momentum thickness θ quantifies the momentum defect relative to the

inviscid flow after removing displacement effects. That is, θ is the length satisfying

∫ L y

0
ρu2

viscid(y)dy =
∫ L y

θ
ρu2

inviscid(y)dy −
∫ δ∗

0
ρu2

inviscid(y)dy (6.6)

given fixed δ∗ where again the upper limit has been truncated to the domain extent.

The commonly seen degenerate form of the above balance, often taken as a definition

when ρuinviscid(y) = ρeue, is recovered as follows:1

∫ L y

0
ρu2

viscid(y)dy = ρeu
2
e

Ä
L y − θ

ä−ρeu
2
eδ
∗

ρeu
2
eθ = ρeu

2
e L y −

∫ L y

0
ρu2

viscid(y)dy − ue [ρeueδ
∗]

=
∫ L y

0
ρeu

2
e −ρu2

viscid(y)dy − ue

ñ∫ L y

0
ρeue −ρuviscid(y)dy

ô
θ =

∫ L y

0

(
1− ρu2

viscid(y)
ρeu2

e

)
dy −

∫ L y

0

Ç
1− ρuviscid(y)

ρeue

å
dy

=
∫ L y

0

ρuviscid(y)
ρeue

Ç
1− uviscid(y)

ue

å
dy. (6.7)

Unlike the analogous (6.3), only nonnegative values are possible. Multiplying by

1Smits and Dussauge [149, page 214] and Liepmann and Roshko [94, page 324] present result (6.7).
Schlichting and Gersten [138, Equation 10.95] made an error in their definition for θ .
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ρeue/µe and formally converting back to the nonuniform base flow,

Reθ =
ρeueθ

µe
=
ρeue

µe

∫ L y

0

ρuviscid(y)
ρeue

Ç
1− uviscid(y)

ue

å
dy

= µ−1
e

∫ L y

0
ρuviscid(y)

Ç
1− uviscid(y)

ue

å
dy

≈ µ−1
e

∫ L y

0
ρuviscid(y)

Ç
1− uviscid(y)

uinviscid(y)

å
dy. (6.8)

Here, µ(y) could have been incorporated into the integrand, but it was not for consis-

tency with (6.4).

Defining θ via the general balance (6.6) is problematic when negative dis-

placement effects are present because, for consistency, that approach should use δ∗

from (6.2). For this reason, generalizing (6.7) the present work uses

θ =
∫ L y

0

ρuviscid(y)
ρuinviscid(y)

Ç
1− uviscid(y)

uinviscid(y)

å
dy (6.9)

and finds θ = 0.1557 and θ = 0.1611 for simulations t3.199 and t4.134, respectively.

The generalization makes little difference— assuming the base flow was constant

and directly evaluating (6.7) from inviscid values at y = δ99 changes only the final

reported digit in each result. Computed either way, the two spatiotemporal simulations

have momentum thicknesses larger than the reacting, fully turbulent Orion MPCV data

from Table 2.2 (θ/δ ≈ 0.134). The present simulation shape factors H = δ∗/θ of

0.04129 and −0.2432 are well below standard turbulent boundary layer values and

contrast strongly with the fully turbulent MPCV result of H ≈ 0.847 acquired with the

aid of a Baldwin–Lomax model. Momentum Reynolds numbers computed according

to (6.8) appeared in Table 6.2.
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Figure 6.6: Turbulent Mach number Mat =
p

2k/ā and root-mean-squared local Mach
number for simulations t3.199 (dashed) and t4.134 (solid).

6.3 Turbulence Statistics

This section reviews a collection of turbulent statistics for the present simula-

tions. Comparisons to other work are included but are limited because, as evidenced

by their shape factors, these two cold-wall spatiotemporally homogenized flows differ

considerably from canonical boundary layers.

Figure 6.6 reports the turbulent Mach number Mat and root-mean-squared

Mach number fluctuations. Turbulence in both simulations should only be weakly af-

fected by compressibility effects because Mat is well below 0.3 [149]. Local shocklets

are not expected and so the smoothness assumptions inherent to the numerical ap-

proach from Chapter 4 are valid. Consistent with Guarini et al. [60], the peak Mat

is slightly offset from the root-mean-square profile because the former includes con-
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tributions from all three velocity components while the latter uses only streamwise

information. On this plot, and on the remainder of the plots in this section using abscissa

y/δ99, simulation t4.134 shows sharper near-wall gradients because its Reθ is larger

than simulation t3.199. Peak magnitudes for simulation t4.134 match a Mae = 1.2

and Reθ = 420 simulation by Topalian et al. [166] employing temporal homogeniza-

tion (2.6) and also targeting Orion MPCV cold, blowing wall conditions. The introduc-

tion of spatial homogenization terms within the model seems to have no impact on

these curves.

Though compressibility is weak, Figure 6.7 shows that for these large T99/Tw

ratios variable density effects are strongest near the wall and they continue throughout

the boundary layer. This is consistent with Pr = 0.7 < 1 and the earlier discussion

of very small or negative displacement effects. Figure 6.8 shows an inner scaling plot

appropriate for compressible boundary layers [24]. In a logarithmic inner region, one

anticipates
√

ρ̄
ρw

∂ ū+

∂ y+ =
1
κy+ which does not appear because of the modest Reθ in these

simulations. A von Kármán constant κ of 0.40 predicts the tangent where a logarithmic

region would be expected at higher Reθ . In accordance with these two plots, semi-local

units primarily will be used in the remainder of the chapter.

Figures 6.9 and 6.10 show nondimensional mean profiles and Reynolds stresses

with the latter in semi-local units. The horizontal axes in the upper and lower images

in the figures align so that one can visually translate from y∗ to y/δ99. Based on

techniques from Section 4.3, uncertainties in the mean profiles are presented in the

upper right of each figure. Qualitatively the uncertainty profiles are similar between

the two simulations though t3.199 shows somewhat higher near-wall and mid-layer
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values and downward trends are more pronounced as y/δ99→ 1 in t4.134. The peak

uncertainties are modestly higher in the higher Reθ case. Importantly, the time step

safety factor used in these simulations did not produce the near-wall jaggedness that

was visible in Figure 5.6 and so the temporal resolution is not suspect. Turning to the

lower half of the figure, the lower Ma99 t3.199 shows a slightly larger maximum
fiu′′2.

Maximum values are higher than those found by Guarini et al. [60, Figure 6] and Cole-

man et al. [27, Figure 18] which is consistent with wall blowing [155]. Uncertainties

in the fluctuating quantities grow as the edge of the boundary layer is approached but

that is attributed to the normalization by the small mean value found there.

Similar uncertainty estimates for over 225 Reynolds averaged scalar quantities

and their wall-normal derivatives were generated from in situ instantaneous averages

taken over the streamwise and spanwise directions. They are not presented in this

document but are available for calibration or modeling purposes per Appendix D.

Figure 6.11 displays root-mean-square vorticity fluctuations near the wall nor-

malized in wall units following Guarini et al. [60]. Semi-local units also caused the

curves to collapse for y+ ¯ 15 in simulations t3.199 and t4.134 but they were less

effective far from the wall (not shown). Neither scaling removed the offset between

the two simulations appearing in the streamwise vorticity. The spanwise maximum at

the wall matches that shown in Guarini et al. [60], reproduced in Figure 6.12. The

streamwise wall value is half what they reported. Qualitatively, the shapes have fewer

curvature changes for y+ < 20, the near-wall local minimum in the streamwise data

is more shallow, and no localized peak appears in the wall-normal fluctuations. These

changes suggest the present simulations have atypical streamwise vortex structures,

145



0.0 0.2 0.4 0.6 0.8 1.0
y/δ99

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

µ

ρ̄

ū
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Figure 6.10: Reynolds-averaged primitive profiles (upper left) and Favre-averaged
Reynolds stresses (lower left) with estimated standard errors as a fraction of mean
(upper right, lower right) for simulation t4.134.
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Figure 6.12: Root-mean-squared vorticity fluctuations from a Ma = 2.5, adiabatic-wall
spatially homogenized boundary layer by Guarini et al. and incompressible results by
Spalart [150]. Reproduced from Guarini et al. [60].
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perhaps as a consequence of wall blowing but the spatiotemporal homogenization may

also play a role.

Figure 6.13 contains the total stress contributions for the streamwise momen-

tum equation. The near-wall maxima are due to wall injection [155] with simulation

t3.199 being slightly higher because of its 18% larger v+w . Topalian et al. [166], using

temporal homogenization (2.6) in a zero-pressure-gradient simulation at Mae = 1.2

and Reθ = 420, observed a blowing-related total stress maximum of roughly 1.2 for

a v+w roughly 2.6x that used in simulation t4.134. In contrast, t4.134 has maximum

1.0175. The reduced maxima, relative to what might be expected if one scaled using

only the blowing velocity, are believed to be a consequence of the pressure gradient.

Figure 6.14 reports the turbulent Prandtl number Prt The data shows perhaps
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unsettling waviness but similar fluctuations were observed by Guarini et al. [60, Figure

14]. However, away from the wall the present Prt > 0.8 differs from their 0.7 result.

Figure 6.15 contrasts root-mean-squared thermodynamic property fluctuations

between the two simulations. Simulation t3.199 unexpectedly has larger maxima than

4.134 for all quantities save pressure. Most striking about these fluctuation magnitudes

is that, unlike t3.199, in t4.134 the pressure and density curves do not decay as fully

outside the boundary layer. A fundamental difference between the inviscid base flow

designs is one cause for this behavioral change. Simulation t3.199 is subsonic and

therefore a favorable pressure gradient is achieved, per Appendix C, with a converging

radial nozzle. Supersonic simulation t4.134 uses a diverging radial nozzle.

The mean wall-normal velocity v̄ for these cases is shown in Figure 6.16. The
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positive v̄ at the wall quickly turns negative in both simulations. For t3.199 it stays

negative thereafter causing ρv to become negative by y/δ99 ≈ 0.9 (not shown). In

t4.134, v̄ changes sign before y∗ = 80 and proceeds to increase throughout the up-

per portions of the domain with an appreciable curvature change at the edge of the

boundary layer. At y = L y the wall-normal velocity is more than 1% of u99 and ρv is

everywhere positive (not shown).

A second potential cause for this lack of decay is the spatiotemporal homoge-

nization, possibly in conjunction with the numerical isothermal wall and/or nonreflect-

ing freestream boundary treatments. It was noticed and subsequently confirmed by

Topalian that, unlike the temporal homogenization (2.6), the spatiotemporal homoge-

nization causes small point-to-point oscillations to appear in the second derivative of

pressure near both the lower and upper boundaries (not shown). This behavior can be

reproduced by time-stepping a stationary one-dimensional laminar solution even in

zero-pressure-gradient cases for which the inviscid base flow terms are inactive. Trans-

ferring such a solution to progressively finer grids will cause the pressure oscillations to

eventually pollute other quantities and the numerical solution to diverge. Notably, only

supersonic problems seem to be so affected. Setting the modeled defect growth rates

(see Section 3.3) to be zero delays but does not prevent the divergence. The issue is

not believed to be related to the implicit treatment as time-stepping with fully explicit

operators also shows the same issue. However, at wall-normal resolutions like that used

for case t4.134 the precursor pressure oscillations remain small and are not thought

to spoil that simulations’ results. Still, they suggest that, while suitable for calibration

purposes and gross behavioral investigations like those pursued in the next chapter,
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the spatiotemporal homogenization and accompanying numerics in their current form

may not be appropriate for some studies of fundamental physics in supersonic flows.

6.4 Favre-Averaged Equation Budgets

The spatiotemporal homogenization by Topalian et al. [165] is sufficiently

new that term-by-term contributions to the averaged governing equations, often called

budgets, have not appeared in the literature. This section presents such budgets, per the

Favre-averaged Navier–Stokes formulation documented in Section 3.2, to help quantify

the impact of this slow growth forcing on mean flow profiles. Simulations t3.199 and

t4.134 are particularly interesting for this purpose because they fully exercise the novel

inviscid base flow capabilities of the homogenization. In addition to characterizing

the impact of the homogenization, this data provides detailed information about the

dynamics of complex boundary layers.

To begin, Figure 6.17 shows the budget for the Favre-averaged density (3.11a).

Though somewhat mundane, its presentation serves three purposes. First, it exhibits

several choices made throughout the remainder of this section. Subsonic simulation

t3.199 appears on the upper half of the image with supersonic case t4.134 below. Both

halves use identical ordinate ranges to communicate term-by-term budgets normalized

by wall units. Semi-local abscissa are chosen so that the two cases collapse permit-

ting comparisons of extrema locations between the upper and lower halves of the

figure. The reader may find Figures 6.9 and 6.10 helpful if converting locations from

y∗ to y/δ99 is desired. A logarithmic scale was selected so that near-wall, edge, and

freestream behaviors of the slow growth formulation can be assessed with one plot.

153



Second, Figure 6.17 demonstrates several qualitative differences between the sub- and

supersonic behavior of the spatiotemporal formulation equipped with a favorable pres-

sure gradient inviscid base flow. The subsonic case shows slow forcing, Sρ, changing

sign inside the boundary layer while the supersonic forcing does not. The boundary

layer edge is quite apparent in the figure and Sρ changes curvature dramatically in

its vicinity. Third, supporting comments in the last section that the supersonic case is

somewhat ill-behaved at the freestream boundary, a kink appears only in the lower

plot near y = L y .

Figures 6.18 and 6.19 show budgets for the two nontrivial scalar components

of the Favre-averaged momentum (3.11b). Figure 6.18 demonstrates that Sρu behaves

similarly to Sρ with regard to sub- versus supersonic conditions. At y∗ ≈ 10 simulation

t4.134 shows a mildly more pronounced slow growth forcing peak and again slight

boundary condition artifacts at the freestream. Slow growth makes an appreciable

contribution to the streamwise momentum balance near the wall. Turning to wall-

normal momentum in Figure 6.19, the homogenization is not active and the subsonic

and supersonic cases are quite similar.

Figure 6.20 breaks apart the Favre-averaged total energy (3.11c). Aside from

anticipated Mach number-related differences in viscous heating, the two simulations

appear similar for y∗ < 40. Above that cutoff, slow growth and convection are much

more active in the supersonic case as a consequence of trends already shown in Fig-

ure 6.16.

Finally, the turbulent kinetic energy (3.11d) appears for simulation t3.199

in Figure 6.21 and for t4.134 in Figure 6.22. The upper half of each figure shows
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terms that strongly impact turbulent kinetic energy ρk. The lower halves contain fine

details that the upper plotting scale would not permit visualizing. The pressure dilata-

tion and Reynolds heat flux appear almost perfectly juxtaposed against one another

because (3.13) was used to eliminate the unclosed correlation p′u′′ from formula-

tion (3.11d). The two terms are also summed in the lower half. As compared against

a peak production of roughly 0.25 reported by Schlatter et al. [136] for a spatially

evolving zero-pressure-gradient case at Reθ = 670, the present peak production is un-

expectedly small given that wall injection tends to energize turbulence [155]. Impor-

tantly, Figures 6.21 and 6.22 demonstrate that the Topalian et al. [165] spatiotemporal

homogenization leaves the near-wall ρk budget largely unaffected. The direct slow

forcing contribution Sρu · u′′ is of the same order of magnitude as the pressure terms

for the present Mach numbers.

That last finding supports the expectation that a turbulence model calibrated

to accurately reproduce data from simulations t3.199 and t4.134 would be suitable

for use in predicting spatially evolving boundary layers with similar characteristics.

Confirming this expectation by calibrating and validating turbulence models is outside

the scope of the current work.
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Chapter 7

Detecting Turbulence-Sustaining Regions on
Blunt-Bodied Reentry Vehicles

To reduce transition-driven uncertainty in aerothermodynamic heating predic-

tions, spatiotemporally homogenized direct numerical simulation (DNS) was used to

bound the turbulence-sustaining region on a blunt-bodied reentry vehicle. This chapter

applies the ideas set forth in Section 2.8 to investigate which regions on the NASA Orion

MPCV thermal protection system cannot sustain turbulence during the peak heating

phase of return from the International Space Station. That particular reentry scenario,

described in Section 2.9, was selected because of the availability of simulation data

by Bauman et al. and because of the upcoming NASA Exploration Flight Test-1 [118].

Though that test will more closely resemble the Orion MPCV returning from Earth’s

moon rather than the International Space Station, it is nevertheless expected to pro-

duce experimental flight data against which our simulation-based predictions might

later be compared. The method is described in Section 7.1. Results and discussion

follow in Sections 7.2 and 7.3.

162



7.1 Method

The method is broken into three sequential phases. First, local conditions on

the Orion MPCV heat shield surface during a fully laminar reentry are quantified

to identify the search space over which the turbulence-sustaining study will proceed.

Second, spatiotemporal DNS are prepared at local conditions representative of the heat

shield edge with the goal of sustaining at least one statistically stationary turbulent

simulation. Third, starting from a stationary simulation, the parameters are adjusted to

incrementally reflect conditions found increasingly closer to the Orion MPCV stagnation

point which are less likely to sustain turbulence. If at this stage the flow relaminarizes,

or at least enters a demonstrably “quasi-laminar” state [152], the turbulence-sustaining

region boundary has been detected. These three phases are elaborated in the remainder

of this section.

In the first phase, an assumed laminar flow field over the Orion MPCV ther-

mal protection system was obtained from a simulation by P. T. Bauman [8, 77]. The

laminar solution captured the bow shock on the vehicle, accommodated the result-

ing high temperature aerothermochemistry, included the curved MPCV geometry as

the flow passed over the thermal protection system, and incorporated a chemically

reacting ablator actively maintaining a cold wall despite the incoming enthalpy flux.

This solution was post-processed to extract local boundary layer quantities of interest

along the thermal protection system symmetry plane, pictured in Figure 2.6, producing

the results already shown in Figures 2.7 and 2.8. Those quantities are the Reynolds

number based on momentum thickness Reθ , the edge Mach number Mae, the favorable

pressure gradient strength as measured by the parameter p∗e,ξ (2.14), the wall blowing
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velocity normalized by the friction velocity v+w = vw/uτ, the coldness of the wall rela-

tive to the boundary layer edge Te/Tw, the Prandtl number Pr, and the ratio of specific

heats γ= Cp/Cv. Out of the many possible pressure gradient parameters that the study

could target, p∗e,ξ was chosen motivated by the needs of the inviscid base flow design

process of Appendix C in conjunction with that procedures’ successful application in

Chapter 6.

At each location on the thermal protection system surface the above quantities

collectively characterize the subset of the peak heating boundary layer physics that

can be captured by the governing equations from Section 3.1. Mapping Bauman’s com-

plex, multiphysics solution onto this comparatively simple Navier–Stokes formulation

crudely approximates high temperature reacting air by a perfect gas. Further, varia-

tions in the Prandtl number and ratio of specific heats are neglected and replaced by

constant air values Pr = 0.7 and γ = 1.4. A power law viscosity was assumed with

exponent β = 2/3 based on fitting high temperature air data as shown in Figure A.1. At

the end of the phase, the entire reentry scenario had been reduced to a single mapping

of the distance leeward from the vehicle’s stagnation point to the five nondimensional

local conditions: Reθ , Mae, Te/Tw, v+w , and p∗e,ξ.

In the second phase, the direct numerical simulation code Suzerain was used

to prepare spatiotemporally homogenized flow fields at several “locations” from the

reentry-specific mapping described above. Only one location at the heat shield edge

was required to proceed to the third phase. However, as multiple independent locations

easily could be made ready simultaneously, four locations roughly quadrisecting the

search space were prepared.
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Table 7.1: Selected reacting boundary layer conditions from the symmetry plane on a
fully laminar Orion MPCV thermal protection system simulation depicted more fully
in Figures 2.7 and 2.8. Column “Location” indicates the number of meters leeward of
the stagnation point where the conditions are found.

Location Reθ Mae Te/Tw v+w p∗e,ξ

4.134 m 223 1.152 4.285 0.007178 −0.01235
3.199 m 225 0.8986 4.262 0.008387 −0.01019
2.299 m 177 0.6597 4.182 0.009765 −0.01269
1.389 m 114 0.4112 4.129 0.01225 −0.01793

Table 7.2: Suzerain v0.1.6.34-r45407 input parameters found to approximately match
local boundary layer conditions at locations in Table 7.1. For all cases, Pr= µCp/κ=
0.7, α= 0 in µB = αµ, β = 2/3 in µ/µ0 = (T/T0)

β , and γ= Cp/Cv = 1.4. Extents were
Lx/l0 = 10, L y/l0 = 2.5, Lz/l0 = 3 employing a piecewise-quintic B-spline basis with
Ny = 192 collocation points. Column “Advance” reports which linear implicit operator
and time step safety factor governed time advance. Refer to Tables 6.1 through 6.3 for
other column definitions.

Location Re Ma tanh grt0
(∆) Tw/T0 vw/u0 p∗e,ξ Advance

4.134 m 1535 1.152 2.2 0.02175 0.2333 1.99e−4 −0.012 34 Y 0.35
3.199 m 1475 0.8985 2.2 0.016 0.2346 2.20e−4 −0.010 19 XYZ 0.2
2.299 m 1100 0.6598 2.0 0.01 0.2391 2.68e−4 −0.012 69 XYZ 0.2
1.389 m 800 0.4113 2.0 0.0035 0.2422 3.68e−4 −0.017 93 XYZ 0.175
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Table 7.1 documents the four selected locations. Locations 3.199 m and 4.134 m

correspond to Reθ = 223 and 225 variants of the scenario conditions found in Chap-

ter 6 simulations t3.199 and t4.134, respectively. Both of these locations were expected

to sustain turbulence based on the Spalart [150, §3.2] finding that his constant vis-

cosity, homogenized sink flow simulations quickly relaminarized below Reθ = 330

because 3.199 m and 4.134 m have appreciably higher momentum Reynolds numbers

when evaluated using wall viscosity (Figure 2.7). Having cases at subsonic and super-

sonic conditions was done to hedge against the possibility of either the spatiotemporal

homogenization or the inviscid base flow design procedure becoming numerically prob-

lematic if the third phase of this study dictated iteratively adjusting a simulation across

Mae = 1.1 Either location 2.299 m or 1.389 m was hypothesized to relaminarize.

At each of those four locations the MPCV-derived data in Table 7.1 furnished

fixed values for only the Suzerain code input parameters Ma ≈ u99/a99, Tw/T0, and p∗e,ξ.

As doing so had proved successful for Chapter 6, boundary layer thickness δ99/l0 = 1

was chosen as a target to be achieved indirectly by adjusting the slow growth rate

grt0
(∆). When that condition is met, the nondimensional formulation in conjunc-

tion with the inviscid base flow design procedure a priori causes ρ99/ρ0, u99/u0,

and T99/T0 to all be nearly one. Appropriate values for the remaining code inputs

Re ≈ ρ99u99δ99/µ99, grt0
(∆), and vw/v0 had to be discovered. An elegant way to dis-

cover suitable settings would be to invert for the appropriate values using a spatiotem-

1Concern about the spatiotemporal homogenization in supersonic circumstances arose based on
observations reported at the end of Section 6.3. Concerns about the base flow procedure stemmed from
the design procedure of Appendix C.6 driving the nozzle radius R to large values as Mae approaches
one from either direction.
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porally equipped turbulence model implementation properly calibrated for the current

context. A less elegant way would be to iteratively seek values with such a tool in lieu of

the more complicated inversion procedure. The inelegant way used in this study was to

perform exploratory simulations to manually acquire the needed values by iteratively

adjusting code input parameters until the desired stationary behavior was obtained.

Table 7.2 reports those parameters. To conserve compute resources, these computa-

tions used coarse streamwise and spanwise resolution (for example, ∆x+ ≈ 30) but

production wall-normal bases with y+1 and y+10 comparable or better than those in

Table 6.1. Final tests to ensure the parameters appearing in Table 7.2 were robust on

near-production grids (for example, ∆x+ ≤ 25 and ∆z+ ≤ 15) yielded unexpected

results which will be conveyed in Section 7.2.1.

For the third phase, the code input parameters shown in Table 7.2 were used

to adjust a fully turbulent field so it matched the target conditions derived from MPCV

data. A known-good turbulence field was required to ensure that the relaminarization

study was seeded with a reasonable approximation of boundary layer physics. More-

over, turbulent conditions are a “large perturbation” with respect to a relaminarized

flow per the energy method ideas discussed in Section 2.7. That adjustment process

is simpler if the initial field already resembles the target flow conditions. Simulations

t3.199 and t4.134 from Chapter 6 were designed to serve exactly that purpose. They

differed from Table 7.1 locations 3.199 m and 4.134 m only in their Reθ magnitudes.

Results starting from these initial conditions will appear in Section 7.2.2.

Though the collapse of turbulent fluctuations and relaminarization can be

a quick process in spatially evolving boundary layers subjected to pressure gradi-
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ents [105] and spatially homogenized boundary layers [150, §3.2], it was uncertain

if that would also be true for the Topalian et al. [165] spatiotemporal homogeniza-

tion or if this slow growth formulation would bring about an extended “quasi-laminar”

state [107, 152] that would prove difficult to identify. An extended relaminarization

process would retard our ability to incrementally move to locations nearer the stagna-

tion point because it would force us to simulate each station for a longer duration to

ensure we did not accidentally pass over the critical location. For this reason, an in situ

capability to assess the strength of the turbulence by monitoring the temporal trace of

relevant quantities was added to Suzerain. Following findings by Cal and Castillo [22],

the code was augmented to frequently output maxima values and locations for absolute

values of Reynolds-averaged and Favre-averaged stress tensor components. Output of

the wall-normal location and value of the peak streamwise- and spanwise-averaged

production term as well as its integrated magnitude was also added. These monitors

permitted early identification of relaminarization precursors.

An insufficiently large computational domain and inadequate spatial resolu-

tion tend to cause turbulent fluctuations to persist. The former introduces artificially

long correlation lengths and the latter does not permit turbulent kinetic energy to be

dissipated properly. Either effect would likely cause the study to incorrectly detect the

turbulence-sustaining region. Plans were laid to repeat the final stages of the detection

process with a larger domain and improved resolution.
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7.2 Results

Two distinct sets of results are presented. The first set of results, found in

Section 7.2.1, conveys the unexpected behavior observed when coarse, fluctuation-

sustaining exploratory simulations were refined to production resolutions. The second

set of results, appearing in Section 7.2.2, investigates relaminarization using fully

turbulent fields from Chapter 6 so that the initial conditions represent boundary layers

like those found on the Orion MPCV.

7.2.1 Results from Refining Coarse Exploratory Simulations

All four coarse simulations performed to discover inputs for Table 7.2 relami-

narized when refined to ∆x+ ≤ 25 and ∆z+ ≤ 15. The relaminarization events were

not cleanly captured— initially they were thought to be merely undesirable drift rel-

ative to target conditions which prompted us to adjust code inputs partway through

each event. After appreciating what had occurred, the process was repeated but, unlike

before, without any adjustments to code inputs once the simulations were underway.

Figure 7.1 on page 174 shows the temporal evolution of the supersonic coarse

location 4.134 m simulation immediately after refinement. The earliest time shown is

when the field was refined to ∆x+ ≈ 18.7 and ∆z+ ≈ 11.2 (Nx = 256 and Nz = 128)

while holding the wall-normal basis constant. As the projection onto a larger Fourier

basis is an exact operation, the refinement does not perturb the flow but it does permit

the solution to populate higher wavenumbers and thereby gain additional dissipative

capability. The upper six subplots in Figure 7.1 show the desired location-specific

conditions as a horizontal dashed line and the actual simulation evolution in blue
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curves. The mean flow in the freestream approximately traverses the streamwise extent

of the domain once every 10 time units because because u99/u0 ≈ 1 and Lx/l0 = 10. For

example, Reθ starts out slightly too high, grows slowly until just before nondimensional

time index 120, and then gradually drops. Proceeding down the subplots, the edge

Mach number is seen to be very close to target while the temperature ratio is low. Wall

blowing v+w , the pressure gradient parameter p∗e,ξ, and the boundary layer thickness all

match the desired values.

The lower three subplots in Figure 7.1 show turbulence diagnostics. The up-

permost of the three is the instantaneous mean turbulent production −ρ̄‚�u′′ ⊗ u′′ :∇ũ

averaged across all spatial directions. It is nondimensionalized by edge state similarly

to Re and Ma defined earlier. Production begins to drop around time 100. The next

subplot down is the pointwise maximum absolute values of each component of the

Favre-averaged stress tensor. To permit visualizing both early- and late-time behavior,

the logarithm of the absolute values are plotted. The data is clipped below 10−8 which

only obscures low magnitude information at late times (t > 240). After t > 120 the

fluctuation magnitudes slowly drop because of the extra dissipation available due to

the increased spatial resolution. As Cal and Castillo [22] reported, the vv and uv curves

decay sharply after the integrated production tails off at t = 180. The final curve is

the skin friction factor which decays to a nearly constant value by t > 300. Basing

δ99 and uτ determinations on the initial boundary layer character, it took roughly 4.2

eddy turnovers2 from the start of the study until relaminarization precursors appear

and another 1.8 turnovers to reach t = 180 where the flow clearly is relaminarizing.

2Computed from (t f − t i)uτ/δ99.
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Figure 7.2 shows the temporal evolution of the coarse location 3.199 m sim-

ulation immediately after refinement to ∆x+ ≈ 18.0 and ∆z+ ≈ 10.8 (Nx = 256 and

Nz = 128). The Reθ dips below target, the Te/Tw is again low, but the other indirectly

controlled parameters in the upper six subplots oscillate about the desired values. Turn-

ing to the lower turbulence diagnostics, the integrated production is quite variable and

shows intermittent periods of decreased production. The maximum density-weighted

stress tensor components show several relaminarization precursor signatures with the

most pronounced at t = 400, t = 800, and t = 1100. These are also seen in the

integrated production and skin friction traces. At each of those times, however, the

fluctuations again kick up and the flow briefly appears turbulent from these plots. The

dwell time between them is 10.2 and 8.7 eddy turnovers which is longer than the

O(6.5) turnover statistical ensembles gathered in Chapter 6. These three diagnostic

subplots show evidence of a characteristic frequency which may be related to the time

scale of the structural interactions responsible for reinvigorating the fluctuations after

each window of decay. From initialization until relaminarization, 36.3 eddy turnovers

passed.

Figure 7.3 shows the evolution of the coarse location 2.299 m simulation after

refinement to∆x+ ≈ 14.1 and∆z+ ≈ 8.5 (Nx = 256 and Nz = 128). The flow does not

relaminarize over the 23.2 turnovers shown though short lulls appear in the production

during which the stress tensor component magnitudes smooth out due to dissipation

and the skin friction decreases. Glancing at the top portion of the figure, however,

reveals that wall blowing is too weak and the favorable pressure gradient too strong

on account of the growth rate parameter not achieving δ99 ≈ 1.
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Figure 7.4 rectifies the target condition mismatch by proceeding with the new

input parameters documented in the figure caption. Those new parameters took three

attempts to discover. The Te/Tw target is still too low and the wall blowing just slightly

too high, but overall the disagreement with all target conditions, in particular the

pressure gradient, was remedied. The production, stress tensor components, and skin

friction continue to show intermittency but location 2.299 m sustained turbulence

for another 23.4 turnovers. It was unclear whether or not the intermittency would

continue indefinitely or if, eventually, 2.299 m would abruptly collapse as did 3.199 m

in Figure 7.2.

Either way, the behavior at 2.199 m appears stationary enough to merit char-

acterizing the flow. Based on an ensemble over the data appearing in Figure 7.4, one-

dimensional Fourier spectra were computed and are presented in Figure 7.6. Compar-

ing against Figure 6.1, the spectra appear reasonable demonstrating that the resolution

is adequate. Turning to the two-point correlations, shown in Figure 7.5, the appear-

ance of appreciable autocorrelation at length scales on the order of the approximately

10δ99 × 2.5δ99 × 3δ99 domain extent indicates the finite domain size chosen strongly

influences this simulation. Long correlations of this sort are not characteristic of fully

developed turbulence, see Figure 6.3, suggesting the flow structures are transitional

or marginally turbulent in nature. Due to these considerable numerical artifacts, the

refinement-generated flow targeting 2.299 m conditions that is shown in Figures 7.3

and 7.4 does not merit further study as an approximation of a turbulent boundary layer.

However, this boundary-layer-like flow is interesting as an example of a self-sustaining,

pathologically large perturbation per ideas discussed in Section 2.7.
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Continuing onward with Figure 7.7, location 1.389 m evolution is pictured after

refinement to ∆x+ ≈ 11.7 and ∆z+ ≈ 7.0 (Nx = 256 and Nz = 128). The simulation

relaminarizes in under 3.6 turnovers. The lack of a longer “turbulent dwell” before

relaminarization is thought due to the 1.389 m conditions being unable to sustain

turbulence, rather than an artifact of the initial field because the long dwell times at

3.199 m and 2.299 m were initialized in a similar manner.
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Figure 7.2: Refinement of exploratory simulation for location 3.199 m.
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Figure 7.3: Refinement of exploratory simulation for location 2.299 m.
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Figure 7.4: Continuation of refinement study for location 2.299 m. Input parameters
adjusted to Re = 1150, grt0

(∆) = 0.01125, and vw/v0 = 2.915e−4 to better achieve
target conditions.
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Figure 7.5: One-dimensional, unnormalized Fourier energy spectra from an ensemble
over the location 2.299 m data appearing in Figure 7.4.
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appearing in Figure 7.4.
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Figure 7.7: Refinement of exploratory simulation for location 1.389 m.
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7.2.2 Results from Fully Turbulent Initial Conditions

Not one of the post-refinement cases from the prior section used an initial field

known to demonstrate salient turbulent boundary layer features. They are, nonetheless,

informative. In particular, Figures 7.1 and 7.2 suggest that conditions 4.134 m and

3.199 m both will relaminarize starting from a proper initial field.

Figures 7.8 and 7.9 on pages 183 and 184 investigate those two locations

using stationary turbulent fields from simulations t4.134 and t3.199, documented in

Chapter 6, as initial conditions. Local conditions from Table 7.2 were achieved by

setting the necessary code inputs for initial fully turbulent fields with resolution 512×
256×256. Because the initial grids, designed for Reθ = 380 and 531 flows, are excessive

for Reθ ≈ 225 they were coarsened as the simulations proceeded. The 4.134 m case

resolution was gradually brought down past 384× 256× 192, past 384× 192× 192,

and finally to 256×192×128 at t ≈ 34 where ∆x+ ≈ 17.2 and∆z+ ≈ 10.3. This case

relaminarized after 10.4 turnovers in contrast to 6 observed in Figure 7.1. The 3.199 m

case was handled similarly but was reduced only as far as 384× 192× 192 at t ≈ 20

where ∆x+ ≈ 13.2 and ∆z+ ≈ 7.9. This case relaminarized after 13.2 turnovers in

contrast to the 36.3 observed in Figure 7.2. Both simulations used resolutions similar to

those in Table 6.1, which were found adequate. Qualitatively both cases show the same

features as the earlier refinement study did at these locations. Namely, the supersonic

case at 4.134 m smoothly dissipated away while the subsonic case at 3.199 m had a

longer dwell time before a relatively quick collapse.

For the studied parametrization of Bauman’s fully laminar Orion MPCV solu-

tion, locations 4.134 m and 3.199 m represent the boundary layer conditions on the
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thermal protection system a priori expected most likely to sustain turbulence. They

possess Reθ within 4.6% of peak 236 (found at 3.762 m), among the highest Ma, Te/Tw

within 0.8% of peak 4.321 (found at 3.983 m), and among the lowest v+w . Given that

expectation, having observed 4.134 m and 3.199 m relaminarize from fully turbulent

initial conditions, and having discovered a field able to sustain nontrivial fluctuations

at 2.299 m, the study was halted.

Despite comments made at the end of Section 7.1, a subsequent confirmation

of the relaminarizations seen in Figures 7.8 and 7.9 at higher resolutions and for larger

box sizes was not performed. Those comments pertained to the need to assess the

sensitivity of the hypothetical edge of the turbulence sustaining region to changes

in discretization. Having observed no such edge, that particular sensitivity became

irrelevant.
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Figure 7.8: Fully turbulent initial condition study for location 4.314 m.
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Figure 7.9: Fully turbulent initial condition study for location 3.199 m.
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7.3 Discussion

Given the Orion MPCV boundary layer characterization in Figures 2.7 and 2.8,

that local conditions at 4.134 m and 3.199 m relaminarized from fully turbulent initial

conditions, as shown in Figures 7.8 and 7.9, suggests no turbulence sustaining region

exists on this particular thermal protection system surface in this particular reentry

scenario according to the present modeling applied per the chosen methodology. Those

two locations possess among the highest Reθ found in the Orion MPCV International

Space Station return scenario combined with weak v+w and p∗e,ξ and were a priori

anticipated to sustain turbulence if any portion of the boundary layer could.

How robust is accepting the possible conclusion that the Orion MPCV is fully

laminar in this scenario with respect to using that information to predict aerother-

modynamic heating? By using turbulent initial conditions in a periodic domain as

a surrogate for a fluctuation-rich flight environment, our methodology attempted to

capture that the reentry vehicle is awash in perturbations from the freestream, from

aerothermochemistry, from ablator outgassing, and from surface roughness. Setting

aside concerns regarding the verisimilitude of the homogenized governing equations,

the robustness of a fully laminar conclusion depends to a large extent on whether or

not the turbulent initial condition surrogate was adequate.

Drawing on the nonlinear stability theory discussed in Section 2.7, turbulent ini-

tial conditions were adopted for the relaminarization study because they are physically

relevant but moreso because they represent large, potentially self-sustaining distur-

bances relative to laminar flows. The discovery of the field able to sustain nontrivial

fluctuations at 2.299 m, pictured in Figure 7.4, demonstrates that turbulent initial con-
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ditions were not the most conservative possible way to emulate a fluctuation-rich flight

environment for the purposes of determining where local conditions can sustain turbu-

lence. Heightened conservatism is appropriate because in-flight perturbations cannot

be characterized well-enough to apply transition models as discussed in Section 2.6.

Consequently, despite relaminarization from turbulent initial conditions at

4.134 m and 3.199 m, the existence of a long-lived, fluctuating field at 2.299 m forces

us to conservatively conclude that the turbulence-sustaining region on the Orion MPCV

extends from the edge of the thermal protection system to at least 2.299 m leeward

of the stagnation point. Having observed location 1.389 m relaminarize from initial

conditions like those that generated the fluctuation-sustaining 2.299 m field, we con-

clude that the turbulence sustaining region does not extend to within 1.389 m leeward

of the stagnation point. That conclusion is predicated on the homogenized governing

equations providing accurate predictions regarding the turbulence-sustaining behavior

of spatially evolving boundary layers which has not been validated in the present work.

Where between locations 1.389 m and 2.299 m is the edge of the turbulence

sustaining region? We suspect it lies closer to 2.299 m but we do not know conclu-

sively. Investigating that interval will require a more sophisticated way than crude

auxiliary simulations to determine the code inputs necessary to incrementally bring

the fluctuation-sustaining 2.299 m field inward towards the stagnation point. Two sug-

gestions were already made in Section 7.1. Calibrating a turbulence model equipped

with spatiotemporal homogenization terms to reproduce statistics from the fluctuation-

sustaining 2.299 m field appears to be a necessary first step towards either suggestion.

One factor contributing to the difficulty of obtaining code parameters to match
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such local conditions was the implicit dependence of v+w on all code inputs. The present

study targeted a constant v+w based on conditions found in Bauman’s fully laminar Orion

MPCV simulation. The metric was selected because it approximated outgassing from

a steady ablative heat shield. As can be seen from the results, the normalized wall

blowing became stronger as simulations relaminarized. A better approach for future

work may be to control vw/u0 to match the local nondimensional heat flux Bq [16]

from MPCV data. Matching the heat flux approximates an ablator able to react to flow

conditions. Care is required, however, to not have the controller mechanism introduce

undesirable time scales into the simulation.

It would be interesting to repeat the Bauman et al. [8] heat shield simulations

with turbulence tripped at 1.389 m and to compare the result with both Figure 2.4

and Table 2.2. That prediction could be contrasted with heating data gathered during

the upcoming NASA Exploration Flight Test-1 [118] in the hope that the simulation

matches evidence of where on the heat shield turbulence-enhanced energy transport

is present. However, a comparison may not be straightforward as that flight test will

use a different reentry trajectory than the peak heating regime studied here.

Finally, if one wanted to limit a relaminarization study to only fully turbulent

initial conditions and possibly find a turbulence-sustaining edge, the higher speed

Exploration Flight Test-1 trajectory may be ideal. Studying a faster trajectory with the

suggested methodology improvements may allow interrogating the physics at the cusp

where turbulence can only barely be sustained.
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Chapter 8

Conclusions

8.1 Summary of the Present Work

Turbulent boundary layers approximating those found on the NASA Orion

Multi-Purpose Crew Vehicle (MPCV) thermal protection system during atmospheric

reentry from the International Space Station have been studied by direct numerical

simulation, with the ultimate goal of reducing aerothermodynamic heating predic-

tion uncertainty. Simulations were performed using a new, well-verified, openly avail-

able Fourier/B-spline pseudospectral code called Suzerain equipped with a recent,

“slow growth” spatiotemporal homogenization approximation developed by Topalian

et al. [165]. A first study aimed to reduce turbulence-driven heating prediction un-

certainty by providing high-quality data suitable for calibrating Reynolds-averaged

Navier–Stokes turbulence models to address the atypical boundary layer characteris-

tics found in such reentry problems. The unique boundary layer data includes strong

favorable pressure gradients, cold isothermal wall conditions, and wall transpiration

effects and has well-quantified uncertainties so that it may best inform turbulence

models. A second study aimed to reduce transition-driven uncertainty by determining

where on the thermal protection system surface the boundary layer could sustain tur-

bulence. This study informs where fully laminar and where fully turbulent assumptions

are appropriate in the reentry scenario without incurring the uncertainties associated
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with transition modeling.

In the first study, the two data sets generated and investigated were a Ma ≈ 0.9

and a Ma ≈ 1.15 spatiotemporally homogenized boundary layer with Reθ ≈ 382 and

Reθ ≈ 531, respectively. Boundary layer edge-to-wall temperature ratios were ap-

proximately 4.15 and wall blowing velocities, measured in plus units, were in the

neighborhood of 8e−3. The favorable pressure gradients, achieved by supplying a sta-

tionary inviscid flow profile to the homogenization approximation, had acceleration

parameters [86] of about 4e−6 and Pohlhausen parameters between 25 and 42. Skin

frictions coefficients around 6e−3 and Nusselt numbers under 22 were observed. Due

to the considerable thermodynamic property gradients, the subsonic simulation had

an unexpectedly small displacement thickness while the supersonic simulation exhib-

ited negative displacement effects. As a consequence, the Clauser parameter [26] was

found misleading for characterizing these pressure gradients. Objective uncertainty

estimates [114] for the data found coefficients of variation of less than 8e−3 for density,

velocity, temperature, and viscosity inside the boundary layer edge and of roughly 10%

for the specific turbulent kinetic energy for statistical ensembles gathered for 6.4–6.9

eddy turnover times. Semi-local scaling [67] collapsed all profiles investigated. The

near-wall vorticity fluctuations show qualitatively different profiles than those from the

incompressible [150] or compressible literature [60]. The turbulent Prandtl number

was above 0.8 inside the boundary layer edge. Root-mean-squared property fluctu-

ations matched expectations for isothermal wall conditions [27] but the supersonic

results show evidence of minor problems in the numerical formulation related to the

spatiotemporal homogenization when Ma > 1. Favre-averaged equation budgets were
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reported and show the regions in which the homogenization approximation directly

impacts the mean flow. In particular, the direct slow growth influence on the total

energy and turbulent kinetic energy equations is small enough that such homogenized

flows can serve as convenient model problems for calibration of models to be used in

spatially evolving boundary layers.

In the second study, local boundary layer conditions were extracted from a lam-

inar flow solution over the Orion MPCV thermal protection system during peak reentry

heating which included shock effects, aerothermochemistry, curvature, and ablation.

That information, as a function of leeward distance from the stagnation point along the

MPCV symmetry plane, was approximated by Reθ , Mae, p∗e,ξ =
δ
ρeu2

e

∂pe
∂ξ , v+w = vw/uτ, and

Te/Tw along with perfect gas assumptions. Homogenized turbulent boundary layers

were initialized at those local conditions and evolved until either stationarity, implying

the conditions could sustain turbulence, or relaminarization, implying the conditions

could not. A computationally convenient periodic domain, which fluctuations cannot

exit, served as a surrogate for a perturbation-rich flight environment. Fully turbulent

fields relaminarized subject to conditions 4.134 m and 3.199 m leeward of the stagna-

tion point. At those two locations, Reθ ≈ 225, Mae > 0.9, and Te/Tw ≈ 4.1 all approach

maxima over the heat shield while p∗e,ξ and v+w become small (see Figures 2.7 and 2.8).

These results suggest that nowhere on the MPCV thermal protection system can sustain

turbulence in this reentry scenario. However, different and somewhat pathological ini-

tial conditions unexpectedly produced a long-lived, fluctuating field at leeward position

2.299 m. No evidence of turbulence-sustaining behavior appeared at leeward position

1.389 m. Accordingly, it was predicted that locations more than 1.389 m leeward of
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the stagnation point can sustain turbulence in this scenario. Relaminarization for the

Topalian et al. [165] homogenized boundary layers showed similar early and late time

behavior as that described by Cal and Castillo [22] for spatially evolving flows.

8.2 Recommendations for Future Work

Regarding the first study, more investigation into the basic character of the

spatiotemporally homogenized boundary layers produced by the Topalian et al. [165]

technique is warranted. With a better understanding of the behavior of the approach on

simpler cases, it would be possible to disentangle the combined influence of homoge-

nization, strong favorable pressure gradients, cold walls, and wall transpiration. Future

simulations might begin from the Reθ ≈ 382 simulation presented here and incremen-

tally eliminate complicating features to produce a sequence of problems approaching

more canonical, better understood flows. Several symptoms of minor problems with

the present numerical formulation of the homogenization for Ma > 1 were raised,

including in one dimension for laminar solutions, suggesting that additional analysis

of the homogenization is worthwhile. Though found usable here, it may be the case

that either straightforward Giles-like nonreflecting boundary conditions [56, 57] or the

chosen isothermal wall enforcement scheme or both are inappropriate. These symp-

toms may also indicate a malady in the model itself. Applying the homogenization

approach to either the low Mach number, variable density or incompressible limits of

the Navier–Stokes equations would be worthwhile. Doing so also may provide insight

regarding the issues observed from the present numerical formulation.

Regarding the second study, it would be interesting to recompute the Orion
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MPCV thermal protection system flow for peak heating during International Space Sta-

tion reentry using our estimate of the edge of the turbulence-sustaining region. From

this mixed laminar/turbulent solution the energy flux to the ablator could be compared

against the fully laminar or fully turbulent results. That computation would also pro-

vide a prediction against which flight data from the upcoming NASA Exploration Flight

Test-1 [118] might be compared. Obtaining a more precise location for the edge of the

turbulence-sustaining region will require methodology improvements. In particular,

a turbulence-model-based procedure to find the code inputs yielding the desired δ99,

Reθ , Mae, p∗e,ξ, v+w , and Te/Tw would permit continuing the present relaminarization

study based on the fluctuation-sustaining conditions found at 2.299 m. The present ad

hoc approach for discovering input parameters, though it produced interesting and use-

ful results, was operationally unsatisfying and its effective application below 2.299 m

would be difficult. The constant wall blowing v+w designed to emulate steady-state

outgassing from the ablator in future studies might better be replaced by a controller-

based mechanism to adjust the wall blowing velocity to achieve nondimensional heat

fluxes Bq [16] extracted from the original laminar flow solution for the reentry scenario.

With such improvements in place, investigating higher-speed reentry trajectories for

the Orion MPCV might simplify characterizing the edge of a turbulence-sustaining

region given fully turbulent initial conditions and also be more fruitful from the per-

spective of improving basic understanding of the physics in these scenarios. Finally,

the validity of the present methodology for detecting turbulence-sustaining regions

might be investigated by comparing its predictions against experimental transition

data gathered from a wind tunnel facility that has been configured to be exceptionally

noisy.
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Appendix A

Derivation of the Mathematical Models

Here the mathematical models summarized in Chapter 3 are derived. While

the first two sections containing the Navier–Stokes and Favre-averaged Navier–Stokes

equations are classical and straightforward, the derivations are provided to document

the few peculiar constitutive choices as well as to unambiguously fix nomenclature.

The third section documents a new spatiotemporal homogenization approximation by

Topalian et al. [165]. Dimensional equations are employed throughout this appendix.

The final dimensional summary in each of the following subsections is nondimension-

alized to arrive at the formulations used in the main body of the dissertation.

A.1 The Governing Equations

A.1.1 Conservation Laws

Consider a time-varying control volume Ω with surface ∂Ω and unit outward

normal n̂. For any scalar, vector, or tensor field quantity T , Leibniz’ theorem states

d
d t

∫

Ω(t)
T (x , t) dV =

∫

Ω

∂

∂ t
T dV +

∫

∂Ω
n̂ ·wT dA=

∫

Ω

∂

∂ t
T +∇ ·wT dV (A.1)

where w is the velocity of ∂Ω. When Ω follows a fixed set of fluid particles, w becomes

the fluid velocity u.
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Since mass M =
∫
Ωρ dV and mass conservation requires d

d t M = 0,

0=
d
d t

M =
d
d t

∫

Ω
ρ dV =

∫

Ω

∂

∂ t
ρ +∇ · uρ dV. (A.2)

Because the result holds for any control volume, locally it must be true that

∂

∂ t
ρ +∇ ·ρu= 0. (A.3)

Separating total force into surface forces and body forces,

∑
F =

∫

∂Ω
fs dA+

∫

Ω
f dV =

∫

∂Ω
σn̂ dA+

∫

Ω
f dV =

∫

Ω
∇ ·σ+ f dV (A.4)

where σ is the Cauchy stress tensor. From linear momentum I =
∫
Ωρu dV and its

conservation d
d t I =

∑
F ,

∫

Ω

∂

∂ t
ρu+∇ · (u⊗ρu) dV =

∫

Ω
∇ ·σ+ f dV. (A.5)

As the control volume may be arbitrary,

∂

∂ t
ρu+∇ · (u⊗ρu) =∇ ·σ+ f . (A.6)

Lastly, separating the pressure p and viscous contributions τ to the Cauchy stress tensor

so that σ = −pI +τ,

∂

∂ t
ρu+∇ · (u⊗ρu) = −∇p+∇ ·τ+ f . (A.7)

The conservation of angular momentum implies σ = σT and therefore τ= τT too.

Combining internal and kinetic energy into an intrinsic density E, energy E is

E =
∫

Ω
ρE dV. (A.8)
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Treating heat input Q as both a surface phenomenon described by an outward heat

flux qs and as a volumetric phenomenon governed by a body heating qb,

Q =
∫

Ω
ρqb dV −

∫

∂Ω
n̂ · qs dA=

∫

Ω
qb −∇ · qs dV. (A.9)

Power input P = F · v accounts for surface stress work and body force work to give

P =
∫

∂Ω
σn̂ · u dA+

∫

Ω
f · u dV =

∫

Ω
∇ ·σu+ f · u dV. (A.10)

Demanding energy conservation d
d tE =Q+ P,

∫

Ω

∂

∂ t
ρE +∇ · uρE dV =

∫

Ω
qb −∇ · qs dV +

∫

Ω
∇ ·σu+ f · u dV. (A.11)

Again, since the control volume was arbitrary,

∂

∂ t
ρE +∇ ·ρEu= −∇ · qs +∇ ·σu+ f · u+ qb. (A.12)

Splitting σ’s pressure and viscous stress contributions into separate terms,

∂

∂ t
ρE +∇ ·ρEu= −∇ · qs −∇ · pu+∇ ·τu+ f · u+ qb. (A.13)

A.1.2 Constitutive Assumptions

Assume the fluid is a thermally and calorically perfect gas governed by

p = ρRT (A.14)

where R is the gas constant. The constant volume Cv specific heat, constant pressure

specific heat Cp, and acoustic velocity a relationships follow:

γ=
Cp

Cv
Cv =

R
γ− 1

Cp =
γR
γ− 1

R= Cp − Cv a2 = γRT. (A.15)
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Also assume Cv and Cp and, therefore, γ are constant. The total (internal and kinetic)

energy density is

E = Cv T +
1
2

u2 =
RT
γ− 1

+
1
2

u2 (A.16)

where the notation u2 = u · u is employed. The total enthalpy density H and (internal)

enthalpy density h are

H = E +
p
ρ
= CpT +

1
2

u2 =
γRT
γ− 1

+
1
2

u2, (A.17)

h= H − 1
2

u2 = CpT =
γRT
γ− 1

. (A.18)

See a gas dynamics reference, for example Liepmann and Roshko [94], for more details.

If one seeks a constitutive law for the viscous stress tensor τ using only ve-

locity information, the principle of material frame indifference implies that uniform

translation (given by velocity u) and solid-body rotation (given by the skew-symmetric

rotation tensor ω = 1
2

Ä∇u−∇uT
ä
) may not influence τ. Considering contributions

only up to the gradient of velocity, extensional strain (dilatation) and shear strain ef-

fects may depend on only the symmetric strain rate tensor ε = 1
2

Ä∇u+∇uT
ä

and its

principal invariants.

Assuming τ is isotropic and depends linearly upon only ε, express it as

τi j = ci jmnεmn

=
Ä
Aδi jδmn + Bδimδ jn + Cδinδ jm

ä
εmn for some A, B, C ∈ R

= Aδi jεmm + Bεi j + Cε ji

= Aδi jεmm + (B + C)ε ji

= 2µεi j +λδi j∇ · u (A.19)
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where µ = 1
2 (B + C) is the dynamic coefficient of viscosity (shear) and λ = A is the

second coefficient of viscosity (dilatational). Reverting to direct notation,

τ= 2µε +λ (∇ · u) I = µ Ä∇u+∇uT
ä
+λ (∇ · u) I . (A.20)

The bulk viscosity µB = λ+
2
3µ and the deviatoric part of the strain rate tensor,

S = ε − 1
3

tr (ε) I =
1
2

Ä∇u+∇uT
ä− 1

3
(∇ · u) I , (A.21)

may be used to write

τ= 2µS +µB (∇ · u) I . (A.22)

The kinematic viscosity and bulk kinematic viscosity

ν=
µ

ρ
νB =

µB

ρ
(A.23)

are often used to simplify notation.

Set the bulk viscosity µB to be a fixed multiple of the dynamic viscosity µ. This

relationship may be written as either

µB = αµ or λ=
Å
α− 2

3

ã
µ (A.24)

where a dimensionless proportionality constant α has been introduced. Stokes’ hy-

pothesis that bulk viscosity is negligible may be recovered by selecting α= 0. Though

Stokes’ hypothesis is valid for most circumstances [41], we choose to separately track

µ and λ terms in the model.
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Figure A.1: Power law fit for air viscosity versus temperature over 100 to 5000 K
using data from Svehla [157]. The least squares fit over this wide range is relatively
insensitive to the chosen references µ0 and T0. For example, selecting T0 = 300K or
4000K causes exponents 0.6639 or 0.6673 to be optimal, respectively. Truncating the
data to eliminate larger T generally produces larger exponents.

Assume that viscosity varies only with temperature according to

µ

µ0
=
Ç

T
T0

åβ
(A.25)

where µ0 and T0 are suitable reference values. This relationship models air well for

temperatures up to several thousand degrees Kelvin [157] as shown in Figure A.1.

Sutherland’s law [156], often recommended for its greater accuracy [149, p. 46], was

avoided because of the greater complexity its use would entail in expressions like

(4.30).
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Neglecting the transport of energy by molecular diffusion and radiative heat

transfer, a linear relation is sought between the surface heat flux qs and the temperature

T . The principle of frame indifference implies only the temperature gradient is relevant

so that

qs = κ · ∇T (A.26)

where κ is a thermal conductivity tensor. Consistent with the assumption that τ is

isotropic, assume κ is isotropic to obtain

qs = −κ∇T (A.27)

where κ is the scalar thermal conductivity. The negative sign has been introduced so

that heat flows from hot to cold when κ > 0.

Assume the Prandtl number Pr = µCp/κ is constant. Because Cp is constant

the ratio µ/κ must be constant. The viscosity and thermal conductivity must either

grow at identical rates or they must grow according to an inverse relationship. The

latter is not observed in practice for this class of fluids, and so further assume

µ

µ0
=
κ

κ0
. (A.28)
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A.1.3 Dimensional Summary

Combining the conservation laws with the above constitutive relations and

assumptions, one arrives at the dimensional equations

∂

∂ t
ρ = −∇ ·ρu+Sρ (A.29a)

∂

∂ t
ρu= −∇ · (u⊗ρu)−∇p+∇ ·τ+ f +Sρu (A.29b)

∂

∂ t
ρE = −∇ ·ρEu+∇ · κ0

µ0
µ∇T −∇ · pu+∇ ·τu+ f · u+ qb +SρE (A.29c)

where the right hand sides make use of

p = (γ− 1)
Å
ρE − 1

2
ρu2

ã
(A.29d)

T =
p
ρR

(A.29e)

µ= µ0

Ç
T
T0

åβ
(A.29f)

λ=
Å
α− 2

3

ã
µ (A.29g)

τ= µ
Ä∇u+∇uT

ä
+λ (∇ · u) I . (A.29h)

Additional, equation-specific terms Sρ, Sρu, and SρE have been added to permit ap-

plying forcing arising from homogenization. Appropriately nondimensionalized, these

equations are nothing but the model given in Section 3.1.

A.2 The Favre-Averaged Navier–Stokes Equations

The material in this section borrows from Oliver [111]. It departs from that

particular document in that it employs the preceding constitutive relationships, avoids
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introducing customary assumptions about the relative importance of unclosed terms,

and accounts for arbitrary slow growth forcing.

A.2.1 Reynolds- and Favre-Averaging Techniques

The Reynolds average is the usual mean of a random variable. Consider a

generic flow variable q. The value, q(x , y, z, t), of this variable at a particular point in

space, (x , y, z), and time, t, is a random variable. Assuming that the probability density

function for q(x , y, z, t) is given by πq(V ; x , y, z, t), the Reynolds average is defined by

q̄(x , y, z, t)≡
∫

Vπq(V ; x , y, z, t)dV. (A.30)

The Favre average is defined as the density-weighted average. Thus, denoting the fluid

density by ρ(x , y, z, t), the Favre average of q(x , y, z, t) is

q̃(x , y, z, t)≡ ρq(x , y, z, t)
ρ̄(x , y, z, t)

. (A.31)

It is assumed that both the Reynolds and Favre averages are well-defined for any

required flow variable, q. That is, the integral on the right-hand side of (A.30) exists

whenever required, and the Reynolds-averaged density, ρ̄, is positive everywhere.

In the following, the flow variables will be decomposed into mean and fluctuat-

ing parts. Specifically, the fluctuations about the mean—denoted by (·)′ and (·)′′ for the

Reynolds and Favre averages, respectively—are defined by the following relationships:

q′ ≡ q− q̄, (A.32)

q′′ ≡ q− q̃. (A.33)
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Using the linearity of the Reynolds average and the fact that q̄ and q̃ are deterministic,

q′ = q− q̄ = q̄− q̄ = 0, (A.34)

q̃′′ =flq− q̃ = q̃− q̃ = 0. (A.35)

Furthermore,

ρq′′ = ρ̄q̃′′ = 0. (A.36)

However, in general,

q′′ = q− q̃ = q̄− q̃ 6= 0 (A.37)

which proves that the Reynolds and Favre averages differ by exactly q′′.

Wherever necessary, realizations of random fields of flow quantities are as-

sumed to be differentiable in both time and space so that Reynolds averaging and

differentiation commute. For example,

∇u=∇ū. (A.38)

This commutativity is used to develop the FANS equations. In contrast, Favre averaging

and differentiation do not, in general, commute:

ρ∇q = ρ∇q

ρ∇̃q+ρ (∇q)′′ = ρ∇q̃+ρ∇q′′

ρ̄∇̃q = ρ̄∇q̃+ρ∇q′′

= ρ̄∇q̃− q′′∇ρ.

Here the common convention that taking Favre fluctuations, (·)′′, has higher prece-

dence than differentiation,∇ (·), has been adopted. Rearranging to better examine the
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difference between ∇̃q and ∇q̃ in terms of mean quantities,

∇̃q−∇q̃ =fl∇q′′ = −q′′∇ρ
ρ̄

=
q̃∇ρ̄
ρ̄
− q∇ρ

ρ̄
. (A.39)

This lack of commutativity is not problematic as it is not required to derive the FANS

equations. It does, however, slightly complicate the mean constitutive relationships.

The fluctuating gradient and the gradient of the fluctuations differ according to

(∇q)′′ −∇q′′ = −fl∇q′′. (A.40)

In some circumstances, the difference between quantities written using a fluctuating

gradient and the gradient of the fluctuations can vanish. One useful example is‰�f ′′ (∇g)′′ =
ρ f ′′ (∇g)′′

ρ̄
=
ρ f ′′

(
∇g ′′ −fl∇g ′′

)

ρ̄
=
ρ f ′′∇g ′′ −ρ f ′′fl∇g ′′

ρ̄
=‚�f ′′∇g ′′.

(A.41)

A.2.2 Derivation of the Favre-Averaged Equations

From (A.29) a lengthy algebraic procedure [111, §2] produces exact equations

governing the evolution of mean conserved quantities ρ̄, ρu= ρ̄ũ, and ρE = ρ̄ Ẽ:

∂

∂ t
ρ̄ =−∇ · ρ̄ũ+Sρ (A.42a)

∂

∂ t
ρ̄ũ=−∇ · (ũ⊗ ρ̄ũ)−∇p̄+∇ ·

Å
τ̄− ρ̄‚�u′′ ⊗ u′′

ã
+ f̄ +Sρu (A.42b)

∂

∂ t
ρ̄ Ẽ =−∇ · ρ̄H̃ũ+∇ ·

ÅÅ
τ̄− ρ̄‚�u′′ ⊗ u′′

ã
ũ− 1

2
ρ̄
‡
u′′2u′′ +τu′′

ã
−∇ ·

(
q̄s + ρ̄

flh′′u′′)+ f̄ · ũ+ f · u′′ + q̄b +SρE. (A.42c)

Several correlations impact the evolution of mean quantities: the Reynolds stress

−ρ̄‚�u′′ ⊗ u′′, the Reynolds heat flux ρ̄flh′′u′′, turbulent transport −1
2 ρ̄
‡u′′2u′′, turbulent
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work τu′′, and the forcing-velocity correlation f · u′′. The Reynolds stress and heat

flux augment the viscous stress and heat flux, respectively. The turbulent transport

and work terms represent transport of the turbulent kinetic energy density k, defined

below, and viscous stress work due to turbulent velocity fluctuations, respectively.

We now turn to perfect gas relations from Section A.1.2. The Reynolds average

of (A.14) gives

p̄ = RρT = ρ̄RT̃ (A.43)

while the Favre average of (A.17) finds both

H̃ = Ẽ + RT̃, h̃=
γRT̃
γ− 1

. (A.44)

The turbulent kinetic energy density,

k =
1
2
fi
u′′2, (A.45)

arises from averaging the total energy given by (A.16):

ρE =
R
γ− 1

ρT +
1
2
ρu2

=
R
γ− 1

ρ
Ä
T̃ + T ′′

ä
+

1
2
ρ
(
ũ+ u′′

)2 (A.46)

ρE =
R
γ− 1

ρ̄ T̃ +
1
2
ρ̄ũ2 +

1
2
ρu′′2 (A.47)

Ẽ =
R
γ− 1

T̃ +
1
2

ũ2 + k. (A.48)

An exact equation may be derived for the evolution of k [111, §5]

∂

∂ t
ρ̄k =−∇ · ρ̄kũ− ρ̄‚�u′′ ⊗ u′′ :∇ũ− ρ̄ε+∇ ·

Å
−1

2
ρ̄
‡
u′′2u′′ +τu′′

ã
− u′′ · ∇p̄−∇ · p′u′′ + p′∇ · u′′ + f · u′′ +Sρu · u′′ (A.49)
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where A : B denotes tr
Ä
ATB

ä
, and the contribution of the slow growth terms has been

tallied. The dissipation rate density ε, which governs the conversion rate from k to

mean internal energy, is defined by

ρ̄ε= τ :∇u′′. (A.50)

Many authors, for example Guarini et al. [60], work with (A.49). However,

a different form the turbulent kinetic energy equation is preferred here. As Lele [91,

page 216] suggests, expanding ρHu using ρH = ρE+p, decomposing the non-density

contributions into their mean and fluctuating contributions, averaging, and then sub-

tracting
Ä
ρ̄H̃ = ρ̄ Ẽ + p̄

ä
ũ proves the general identity

ρ̄‡H ′′u′′ = ρ̄flE′′u′′ + p̄u′′ + p′u′′. (A.51)

Collecting (H − E)′′, introducing perfect gas constitutive relations, and simplifying,

u′′ =
‡T ′′u′′

T̃
− p′u′′

p̄
. (A.52)

Substituting h′′ everywhere for T ′′, noting p̄/h̃= γ−1
γ ρ̄, and differentiating,

p′u′′ =
γ− 1
γ
ρ̄flh′′u′′ − p̄u′′ (A.53)

∇ · p′u′′ = γ− 1
γ
∇ · ρ̄flh′′u′′ − p̄∇ · u′′ − u′′ · ∇p̄. (A.54)

Rearranging the above result to mimic terms within (A.49)

−u′′ · ∇p̄−∇ · p′u′′ = p̄∇ · u′′ − γ− 1
γ
∇ · ρ̄flh′′u′′ (A.55)
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allows trading an occurrence of p′u′′ for the Reynolds heat flux in the k equation:

∂

∂ t
ρ̄k =−∇ · ρ̄kũ− ρ̄‚�u′′ ⊗ u′′ :∇ũ− ρ̄ε+∇ ·

Å
−1

2
ρ̄
‡
u′′2u′′ +τu′′

ã
+ p̄∇ · u′′ − γ− 1

γ
∇ · ρ̄flh′′u′′ + p′∇ · u′′ + f · u′′ +Sρu · u′′. (A.56)

The trade reduces by one the number of correlations appearing in the k equation which

do not appear in the mean continuity, momentum, or energy equations. It also encour-

ages thermodynamic consistency when working with pressure correlation information.

Returning to the constitutive relations, combining (A.22) and (A.24),

τ= 2µS +αµ (∇ · u) I . (A.57)

Using the kinematic viscosity and averaging,

S̃ =
1
2

Å
∇̃u+ ∇̃u

T
ã
− 1

3

Äfl∇ · uä I (A.58)

τ̄= 2µ̄S̃ + 2ρ̄flν′′S′′ +αµ̄fl∇ · uI +αρ̄Â�
ν′′ (∇ · u)′′I . (A.59)

By (A.41), Â�
ν′′ (∇ · u)′′ may also be written „�ν′′∇ · u′′ while flν′′S′′ is equivalent to a version

using the deviatoric part of the strain rate of the fluctuating velocity field. Many FANS

closure approximations neglect correlations between the kinematic viscosity and veloc-

ity derivatives. Many assume α= 0. Accepting those approximations would eliminate

the second through fourth terms in τ̄. Making the ubiquitous closure approximations

∇̃u+ ∇̃u
T ≈∇ũ+∇ũT and fl∇ · u≈∇· ũ are equivalent to neglecting fl∇u′′+fl∇u′′

T
and‡∇ · u′′ per (A.39).

To find q̄s, combine (A.27) and the assumption of a constant Prandtl number

qs = −κ∇T = − κ
Cp
∇h= − µ

Pr
∇h (A.60)
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and again employ the kinematic viscosity when averaging to obtain

q̄s = −
1
Pr

Å
µ̄∇̃h+ ρ̄‰�

ν′′ (∇h)′′
ã

. (A.61)

Again, by (A.41), ‰�
ν′′ (∇h)′′ may also be written ·�ν′′∇h′′. Again, making the ubiquitous

closure assumption ∇̃h≈∇h̃ is equivalent to neglecting fl∇h′′ per (A.39). Straightfor-

ward averaging applied to (A.25) produces

ρ̄ν̃= µ̄= µ0

Ç
T
T0

åβ
(A.62)

which is not computable given only Favre-averaged state. One commonly accepted

simplification, not employed in the present work, is taking µ (T )≈ µ ÄT̃ä.
A.2.3 Dimensional Summary

The dimensional Favre-averaged Navier–Stokes equations of interest are:

∂

∂ t
ρ̄ =−∇ · ρ̄ũ+Sρ (A.63a)

∂

∂ t
ρ̄ũ=−∇ · (ũ⊗ ρ̄ũ)−∇p̄+∇ ·

Å
τ̄− ρ̄‚�u′′ ⊗ u′′

ã
+ f̄ +Sρu (A.63b)

∂

∂ t
ρ̄ Ẽ =−∇ · ρ̄H̃ũ+∇ ·

ÅÅ
τ̄− ρ̄‚�u′′ ⊗ u′′

ã
ũ− 1

2
ρ̄
‡
u′′2u′′ +τu′′

ã
−∇ ·

(
q̄s + ρ̄

flh′′u′′)+ f̄ · ũ+ f · u′′ + q̄b +SρE (A.63c)

∂

∂ t
ρ̄k =−∇ · ρ̄kũ− ρ̄‚�u′′ ⊗ u′′ :∇ũ− ρ̄ε+∇ ·

Å
−1

2
ρ̄
‡
u′′2u′′ +τu′′

ã
+ p̄∇ · u′′ − γ− 1

γ
∇ · ρ̄flh′′u′′ + p′∇ · u′′ + f · u′′ +Sρu · u′′. (A.63d)

The equations are augmented by the following relationships:

p̄ = ρ̄RT̃ ρ̄ν̃= µ̄= µ0

Ç
T
T0

åβ
k =

1
2
fi
u′′2 ρ̄ε= τ :∇u′′ (A.63e)
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Ẽ =
R
γ− 1

T̃ +
1
2

ũ2 + k H̃ = Ẽ + RT̃ h̃=
γRT̃
γ− 1

(A.63f)

q̄s = −
1
Pr

Å
µ̄∇̃h+ ρ̄‰�

ν′′ (∇h)′′
ã

(A.63g)

S̃ =
1
2

Å
∇̃u+ ∇̃u

T
ã
− 1

3

Äfl∇ · uä I (A.63h)

τ̄= 2µ̄S̃ + 2ρ̄flν′′S′′ +αµ̄fl∇ · uI +αρ̄Â�
ν′′ (∇ · u)′′I . (A.63i)

Appropriately nondimensionalized, this system of equations produces the formulation

shown in Section 3.2.

A.3 The Spatiotemporal Homogenization Approximation

For completeness, this section documents the as yet unpublished spatiotem-

poral homogenization approximation for the compressible Navier–Stokes equations

created by Topalian et al. [165]. It appears here to preserve the state of the slow growth

formulation as used by this dissertation. The homogenization approach communicated

below may differ from the form ultimately published.

A.3.1 Requirements for a Tensor-Consistent Formulation

We derive the form that the slow growth sources can take that allows exact

computation of the sources within the slow growth Reynolds-averaged Navier–Stokes

(RANS) mean flow and mean turbulent kinetic energy equations, and that preserves

the tensor-consistent property of the velocity field and, by extension, of the Reynolds

stresses. The first two requirements ensure that uncertainty quantification studies from

the data will not be hampered by modeling the slow growth sources to close the RANS
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equations, and the last one maintains an important property of the turbulent velocity

field.

We start by recognizing that for any conserved flow variableρq the slow growth

equations that describe its time evolution may take the form

∂

∂ t f
ρq+Nρq = Sρq (A.64)

where ∂
∂ t f
ρq is the “fast” time derivative, Nρq is the spatial operator from Navier–

Stokes, and Sρq is the slow growth source.

Assume that the slow growth evolution for any primitive variable has a similar

form. In particular, for density and for any variable q

∂ρ

∂ t f
+Nρ = Sρ, (A.65)

∂q
∂ t f
+Nq = Sq. (A.66)

From the equations above we can obtain an evolution equation for conserved

variables ρq as

q
∂ρ

∂ t f
+ρ

∂q
∂ t f︸ ︷︷ ︸

∂
∂ t f
ρq

+qNρ +ρNq︸ ︷︷ ︸
Nρq

= qSρ +ρSq︸ ︷︷ ︸
Sρq

. (A.67)

The flow variables on the RANS equations are closed exactly if we obtain closed ex-

pression for the mean of the slow growth sources. As is shown below, this condition is

satisfied by having sources of the form

Sρ = ρ fρ, (A.68)

Sq = gq + q′′hq (A.69)
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where f , g, and h are functions of the Favre averages of conserved variables, and hence

are computable during solution of the RANS slow growth. By taking the mean of the

slow growth sources for the conserved flow variables we obtain

Sρ = ρ fρ,

Sρq = qSρ +ρSq = ρq fρ +ρgq +ρq′′︸︷︷︸
0

hq,

which are computable during the solution of the RANS problem.

Note that the source form of Sq suggests a decomposition in terms on Favre

mean and fluctuations of the primitive variables.

The requirement of tensor consistency of the velocity field is met if the velocity

sources are the components of a vector. For (A.69), this condition is satisfied if the

two terms on the rhs are vectors as well, which implies that gui
has to be a vector, and

that hui
has to be a scalar since it is multiplied by the Favre fluctuation of the velocity

component that corresponds to Sui
. Therefore, we consider from now on hui

=hu. We

will ensure during the modeling of these quantities that indeed these conditions are

satisfied.

To analyze the requirement of closure of the k equations for RANS, we begin

by deriving the slow growth equation of any Reynolds stress components. Any such

component can be computed symbolically as

u′′i u′′j
∂

∂ t f
ρ +ρu′′i

∂

∂ t f
u′′j +ρu′′j

∂

∂ t f
u′′i

︸ ︷︷ ︸
∂
∂ t f
ρu′′i u′′j

+u′′i u′′jNρ +ρu′′i Nu j
+ρu′′jNui︸ ︷︷ ︸

Nρu′′i u′′j

= u′′i u′′j Sρ +ρu′′i Su j
+ρu′′j Sui︸ ︷︷ ︸

Sρu′′i u′′j

.
(A.70)
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where it was considered that the fast time derivative of the Favre mean of the velocity

components is zero, and hence,
∂u j

∂ t f
=
∂u′′j
∂ t f

. The Reynolds average of the slow growth

sources is given in this case by

Sρu′′i u′′j = u′′i u′′j Sρ +ρu′′i Su′′j +ρu′′j Su′′i

= u′′i u′′j ρ fρ +ρu′′i gu j
+ρu′′i u′′j hu j

+ρu′′j gui
+ρu′′i u′′j hui

= ρu′′i u′′j fρ +ρu′′i u′′j hu j
+ρu′′i u′′j hui

(A.71)

The slow growth turbulent kinetic energy equation can be computed from the

Reynolds stress equations, by considering that ρk=1
2ρu′′k u′′k . Then,

1
2
∂

∂ t
ρu′′i u′′i

︸ ︷︷ ︸
∂
∂ t ρk

+
1
2
Nρu′′i u′′i

︸ ︷︷ ︸
Nρk

=
1
2
Sρu′′i u′′i

︸ ︷︷ ︸
Sρk

.
(A.72)

Hence, the slow growth RANS source results in

Sρk =
1
2
ρu′′i u′′i fρ +

1
2

2ρu′′i u′′i hu,

= ρk fρ + 2ρkhu, (A.73)

which is computable during a RANS solution if an equation for k is available in the

RANS model.

A.3.2 Multiscale Expansion

For the homogenization of the time variable, consider the decomposition of

any flow variable q ∈ {ui, E} into Favre mean and fluctuation components

q(x , y, z, t) = q̃(y, ts) + Aq(y, ts)q
′′
p

Ä
x , y, z, t f

ä
︸ ︷︷ ︸

q′′(x ,y,z,t f ,ts)

, (A.74)
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where q̃ is the Favre mean, q′′ is the Favre fluctuation, Aq is a normalization function

and q′′p are normalized Favre turbulent fluctuations. We assume that the mean and

normalization functions depend on the slow time variable ts = εt, where ε is a small

parameter (ε� 1), while the normalized turbulent fluctuations are a function of the

fast time variable t f = t. For density, we consider an analogous decomposition into

Reynolds mean and fluctuations as

ρ(x , y, z, t) = ρ(y, ts) + Aρ(y, ts)ρ
′
p

Ä
x , y, z, t f

ä
︸ ︷︷ ︸

ρ′(x ,y,z,t f ,ts)

. (A.75)

Using the chain rule to decompose the time derivative into slow and fast terms,

and considering the decomposition into mean and fluctuations components (A.74),

the time derivative of any q can be expressed as

∂q
∂ t
=
∂q
∂ t f
+ ε

Ç
∂q̃
∂ ts
+
∂q′′

∂ ts

å
,

=
∂q
∂ t f
+ ε

(
∂q̃
∂ ts
+

q′′

Aq

∂Aq

∂ ts

)
.

(A.76)

If we specialize the terms in slow time derivative for a specific value of slow

time, the equations describe the evolution of the flow in the fast time scale only, that

is, the normalized turbulent fluctuations. This also implies that the mean and the RMS

profiles remain unchanged (since they are only dependent on the slow time scale and

the wall-normal direction). Therefore, this set of equations can be used to characterize

the turbulent flow at a specific stage in its slow time evolution, and this can be done

with the aid of direct numerical simulations (DNS). The challenge now is to model the

slow derivatives of the flow variables at the chosen slow time.
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A.3.3 Modeling the Slow Time Derivatives

For modeling the slow derivatives, we initially express the mean field of any

flow variable q as the sum of an inviscid (I) and a defect (D) field components,

q̃(ts, y) = qI(ts, y) + q̃D(ts, y) , (A.77)

with slow derivative

∂q̃
∂ ts
=
∂qI

∂ ts
+
∂q̃D

∂ ts
, (A.78)

We assume that the inviscid part is known, it satisfies the Euler equations, and it cor-

responds to the inviscid flow field found above the boundary layer.

We consider the transformation (ts, y) to (ts′ ,η)with ts′=ts, andη= y
∆(ts)

, where

∆ is a characteristic length in the boundary layer. The Jacobian of this transformation

is Ö(
∂
∂ ts

)
y(

∂
∂ y

)
ts

è
=
(

1 − y
∆2
∂∆
∂ ts

0 1
∆

)Ö( ∂
∂ ts′

)
η(

∂
∂η

)
ts′

è
(A.79)

To model the slow time derivatives, we assume that the mean defect profile

and the normalization function evolve self-similarly in time so that any flow variable

q can be written as

q̃D(ts, y) = q̃A
D(ts′) Fq(η) , (A.80)

Aq(ts, y) = AA
q(ts′)Gq(η) , (A.81)

where the superindex A refers to the function amplitude. The function amplitudes q̃A
D

and AA
q are dependent on slow time. We considered the self-similar variable η to be
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given by,

η=
y

∆(ts)
, (A.82)

with ∆ a characteristic length related with the boundary layer. Using the chain rule

the derivatives with respect to ts and y can now be computed as

∂

∂ ts
=
∂

∂ ts′

∂ ts′

∂ ts
+
∂

∂η

∂η

∂ ts
=
∂

∂ ts′
−
Ç

y
∆2

∂∆

∂ ts

å
∂

∂η
, (A.83)

∂

∂ y
=
∂

∂ ts′

∂ ts′

∂ y
+
∂

∂η

∂η

∂ y
=
Å 1
∆

ã
∂

∂η
. (A.84)

Applying the expression for the slow time derivative (A.83) to the self similar

mean (A.80) we get
∂q̃D

∂ ts
=
∂q̃A

D

∂ ts′
Fq −

Ç
y
∆2

∂∆

∂ ts

å
∂q̃D

∂η
. (A.85)

Substituting (A.80) and (A.84) in the first and second term of the right hand side

respectively, we get an expression of the slow growth derivative in terms of (ts, y),

∂q̃D

∂ ts
=

q̃D

q̃A
D

∂q̃A
D

∂ ts
−
Ç

y
∆

∂∆

∂ ts

å
∂q̃D

∂ y
. (A.86)

Therefore,

−ε∂q̃D

∂ ts
= −q̃D

(
ε

q̃A
D

∂q̃A
D

∂ ts

)
+ y

Ç
ε

∆

∂∆

∂ ts

åÇ
∂q̃D

∂ y

å
(A.87)

where now the defect mean is expressed in terms of the boundary layer mean and the

inviscid mean.

Finally, the slow derivative of q̃ becomes

−ε ∂q̃
∂ ts
= −ε∂qI

∂ ts
− ε∂q̃D

∂ ts

= −∂qI

∂ t
− q̃D

(
ε

q̃A
D

∂q̃A
D

∂ ts

)
+ y

Ç
ε

∆

∂∆

∂ ts

åÇ
∂q̃D

∂ y

å
(A.88)
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Similarly, for the Favre fluctuations, the slow derivative term becomes

−ε∂q′′

∂ ts
= −q′′

Ñ
ε

AA
q

∂AA
q

∂ ts

é
+ q′′ y

Ç
ε

∆

∂∆

∂ ts

å
1
Aq

∂Aq

∂ y
(A.89)

We obtain the slow growth source for q by specializing the slow time derivative

terms at a specific instant in slow time, ts=t0. In particular, the factor in parenthesis in

these equations represents the logarithmic growth rate in slow time of any quantity f ,

grt0
( f ) =

Ç
ε

f
∂ f
∂ ts

å
ts=t0

. (A.90)

Furthermore, the derivatives with respect to the slow time scale can be expressed with

respect to the original time variable considering that ∂
∂ ts
=1
ε
∂
∂ t for functions that depend

only on slow time. Therefore, the equation for slow growth source for q takes the form

Sq = (q)t0
= −∂qI

∂ t
− q̃D grt0

Ä
q̃A

D

ä
+ y grt0

(∆)
∂q̃D

∂ y︸ ︷︷ ︸
gq

(A.91)

+ q′′
(
− grt0

(
AA

q

)
+ y grt0

(∆)
1
Aq

∂Aq

∂ y

)

︸ ︷︷ ︸
hq

.

where we introduced the notation ()t0
=
(
−ε ∂

∂ ts

)
ts=t0

, and where it is seen that the source

complies with the form outlined in (A.69). This source expression applies to the velocity

components ui, and to the specific total energy E. We model next the normalization

function Aq for each of these variables. For velocity, on one hand, the Aui
is related to

the RMS of the fluctuations of ui. On the other hand, for the consistent formulation,

it is required that the bracket hu to be computable during a RANS simulation, since

it may need to be used for slow growth source of the turbulent kinetic energy (A.73).
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Furthermore, it has to be such that the slow growth formulation retains the tensor

consistency property of the Reynold stresses. These requirements can be met if we

model Au=
p

2k=
√flu′′k u′′k . The normalization function for specific total energy can be

modeled analogously as AE=
»‡E′′E′′.

For density, starting from (A.75), we can follow similar steps to reach

(ρ)t0
= (ρ)t0

+
(
ρ′
)

t0

= −∂ρI

∂ t
− (ρ −ρI) grt0

Ä
ρA

D

ä
+ y grt0

(∆)
ñ
∂(ρ −ρI)
∂ y

ô
−ρ′ grt0

(
AA
ρ

)
+ρ′ y grt0

(∆)
[

1
Aρ

∂Aρ
∂ y

]

= −∂ρI

∂ t
+ρI grt0

Ä
ρA

D

ä− y grt0
(∆)

∂ρI

∂ y

−ρ grt0

Ä
ρA

D

ä−ρ′ grt0

(
AA
ρ

)
+ y grt0

(∆)
[
∂ρ

∂ y
+
ρ′

Aρ

∂Aρ
∂ y

]
.

It is seen that this model for the slow growth source of density does not have the form

required by (A.68). To satisfy this requirement, we modify this expression and make

some parameter choices as follows. First we scale the first three terms, that involve

quantities of the base flow field, by ρ
ρ . This is equivalent to including additional source

terms that scale with the density fluctuations, ρ′. Second, we require the amplitude

growth rate parameters to be equal, this is, grt0

Ä
ρA

D

ä
= grt0

(
AA
ρ

)
. And third, we choose

Aρ=ρ. With these modifications, the slow growth source becomes

Sρ = (ρ)t0
=
ρ

ρ

Ç
−∂ρI

∂ t
+ρI grt0

Ä
ρA

D

ä− y grt0
(∆)

∂ρI

∂ y

å
−ρ grt0

Ä
ρA

D

ä
+ y grt0

(∆)
ρ

ρ

∂ρ

∂ y

= ρ
1
ρ

Ç
−∂ρI

∂ t
−ρD grt0

Ä
ρA

D

ä
+ y grt0

(∆)
∂ρD

∂ y

å
︸ ︷︷ ︸

fρ

,

(A.92)
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and hence it reduces to the source form in (A.68).

A.3.4 A Spatiotemporal Model

In favorable pressure gradient scenarios, the temporal model produces bound-

ary layer profiles that differ qualitatively from those of the spatial slow growth formu-

lation, even for laminar flows. The main challenge is to construct a temporal model

with volumetric sources, where the final solution resembles the one obtained from a

spatially evolving flow. A way to overcome this shortcoming, while still maintaining a

temporal formulation for the slow growth fluctuations, is to choose volumetric source

terms that not only balance the inviscid temporal equation, maintaining the flow pro-

files at the chosen station, but also makes the mean profiles resemble the ones obtained

from spatial slow growth. This is accomplished by setting:

˙(ρ) = Sρ,x −Sρ,t , (A.93)

˙(ρui) = Sρui ,x −Sρui ,t , (A.94)

˙(ρE) = SρE,x −SρE,t , (A.95)

where ˙( f ) is a volumetric source field added to the flow equation for f , andS,t andS,x

are the slow growth sources for the temporal and spatial formulations, respectively.

To construct the spatiotemporal formulation, we include volumetric sources in

the temporal formulation, such that the mean flow behaves as a homogenized spatially

evolving flow. This property makes the formulation very convenient to characterize

scenarios with various pressure gradients. To maintain the properties of tensor con-

sistency and closure for RANS, we need for the volumetric sources to comply as well
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with the requirements of equations (A.68–A.69).

The volumetric sources are modeled for the Navier–Stokes equations in terms

of primitive variables. The time and streamwise varying Favre averaged terms are

∂ρ

∂ t
+ ũi

∂ρ

∂x i
+ρ

∂ũi

∂x i
= 0, (A.96)

∂ũi

∂ t
+ ũ j

∂ũi

∂x j
+

1
ρ

∂p
∂x i
= Viscui

+ Turbui
, (A.97)

∂‹E
∂ t
+ ũ j

∂‹E
∂x j
+

p
ρ

∂ũ j

∂x j
+

ũ j

ρ

∂p
∂x j
= ViscE + TurbE. (A.98)

For a statistically steady, spatially evolving boundary layer, the time derivative terms

are zero. A slow growth homogenization of the equations above would produce, for

the mean part of the solution, sources of the form

Sρ,x = ũ (ρ)x0
+ρ (ũ)x0

, (A.99)

Sũi ,x = ũ (ũi)x0
+

1
ρ
(p)x0

δi x , (A.100)

SẼ,x = ũ
Ä‹Eä

x0
+

p
ρ
(ũ)x0

+
ũ
ρ
(p)x0

(A.101)

where we introduced the notation ()x0
=
(
−ε ∂

∂xs

)
xs=x0

, analogous to ()t0
=
(
−ε ∂

∂ ts

)
ts=t0

defined earlier.

We propose that the slow growth sources of primitive variables for the spatio-

temporal formulation be defined by

Sρ,x t = ˙(ρ)︸︷︷︸
Sρ,x−Sρ,t

+ Sρ,t︸︷︷︸
Sρ,t+Sρ′ ,t

= Sρ,x +Sρ′,t , (A.102)

Sq,x t = ˙(q)︸︷︷︸
S̃

q,x
−S̃

q,t

+ Sq,t︸︷︷︸
S̃

q,t
+Sq′′ ,t

= Sq̃,x +Sq′′,t (A.103)

with S,x t the sources for the spatiotemporal model.
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Density: The slow spatial derivative of mean density is given by

(ρ)x0
=
Ç
−∂ρI

∂x
−ρD grx0

Ä
ρA

D

ä
+ y grx0

(∆)
∂ρD

∂ y

å
, (A.104)

whereas the time derivative of the fluctuations part of the temporal model was given

by
(
ρ′
)

t0
=
ρ′

ρ

Ç
−∂ρI

∂ t
−ρD grt0

Ä
ρA

D

ä
+ y grt0

(∆)
∂ρD

∂ y

å
. (A.105)

Note that the addition of these two equations does not reduce to a source for ρ of

the form Sρ,x t=ρ fρ, as proposed in (A.68). To overcome this issue, we note that the

desired source form can be obtained if we adopt a slow growth source of the form

Sρ,x t ≡ Sρ,x = Sρ,t + ˙(ρ) = ũ (ρ)x0
+ρ (ũ)x0

, (A.106)

with (ρ)x0
given by

(ρ)x0
= ρ

1
ρ

Ç
−∂ρI

∂x
−ρD grx0

Ä
ρA

D

ä
+ y grx0

(∆)
∂ρD

∂ y

å
︸ ︷︷ ︸

fρ,x

,
(A.107)

with the spatial growth rate of ∆ defined as grx0
(∆)=

grt0
(∆)

uI ,w
, and with the w subindex

indicating a wall quantity. The slow growth plus volumetric source of the spatiotem-

poral formulation for density can be written as

Sρ,x t = ũ (ρ)x0
+ρ (ũ)x0

,

= ρ
Ä
ũ fρ,x + (ũ)x0

ä
︸ ︷︷ ︸

fρ,x t

(A.108)

Velocity: The spatial slow derivative of the Favre averaged velocity is modeled as

(ũi)x0
= −∂ui,I

∂x
− ũi,D grx0

(
ũA

i,D

)
+ y grx0

(∆)
∂ũi,D

∂ y
, (A.109)
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and for mean pressure,

(p)x0
= −∂pI

∂x
− pD grx0

Ä
pA

D

ä
+ y grx0

(∆)
∂pD

∂ y
. (A.110)

The slow growth plus volumetric source for velocity then becomes,

Sui ,x t = Sũi ,x +Su′′i ,t (A.111)

= ũ (ũi)x0
+

1
ρ
(p)x0

δi x

︸ ︷︷ ︸
gui ,x t

+u′′i

Ç
− grt0

Ä
AA

u

ä
+ y grt0

(∆)
1
Au

∂Au

∂ y

å
︸ ︷︷ ︸

hui ,x t

. (A.112)

Energy: The spatial slow derivative of the Favre averaged velocity is modeled asÄ‹Eä
x0
= −∂EI

∂x
− ‹ED grx0

Ä‹EA
D

ä
+ y grx0

(∆)
∂‹ED

∂ y
. (A.113)

The slow growth plus volumetric source for energy then becomes,

SE,x t = SẼ,x +SE′′,t (A.114)

= ũ
Ä‹Eä

x0
+

p
ρ
(ũ)x0

+
ũ
ρ
(p)x0

︸ ︷︷ ︸
gE,x t

+E′′
Ç
− grt0

Ä
AA

E

ä
+ y grt0

(∆)
1
AE

∂AE

∂ y

å
︸ ︷︷ ︸

hE,x t

. (A.115)

A.3.5 Dimensional Summary

In summary, the slow growth sources are modeled as

Sρ,x t = ũ (ρ)x0
+ρ (ũ)x0

, (A.116a)

Sui ,x t = ũ (ũi)x0
+

1
ρ
(p)x0

δi x +
Ä
u′′i
ä

t0
, (A.116b)

SE,x t = ũ
Ä‹Eä

x0
+

p
ρ
(ũ)x0

+
ũ
ρ
(p)x0

+
(
E′′
)

t0
. (A.116c)
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with the slow spatial and temporal evolution factors modeled by

(ρ)x0
=
ρ

ρ

Ç
−∂ρI

∂x
−ρD grx0

Ä
ρA

D

ä
+ y grx0

(∆)
∂ρD

∂ y

å
(A.117a)

(ũi)x0
= −∂ui,I

∂x
− ũi,D grx0

(
ũA

i,D

)
+ y grx0

(∆)
∂ũi,D

∂ y
(A.117b)

(p)x0
= −∂pI

∂x
− pD grx0

Ä
pA

D

ä
+ y grx0

(∆)
∂pD

∂ y
(A.117c)Ä‹Eä

x0
= −∂EI

∂x
− ‹ED grx0

Ä‹EA
D

ä
+ y grx0

(∆)
∂‹ED

∂ y
(A.117d)Ä

u′′i
ä

t0
= u′′i

Ç
− grt0

Ä
AA

u

ä
+ y grt0

(∆)
1
Au

∂Au

∂ y

å
(A.117e)

(
E′′
)

t0
= E′′

Ç
− grt0

Ä
AA

E

ä
+ y grt0

(∆)
1
AE

∂AE

∂ y

å
(A.117f)

based on a steady base flow solution to the Euler equations. That is, primitive data

ρI ui,I EI pI

defines instantaneous viscous flow defects

ρD = ρ −ρI ũi,D = ũi − ui,I
‹ED = ‹E − EI pD = p− pI (A.118)

as well as the spatial growth rate grx0
(∆) =

grt0
(∆)

uI ,w
. Here, uI ,w is the inviscid base flow

streamwise velocity at the wall. The normalization functions are modeled as

Au =
…flu′′k u′′k AE =

√‡E′′E′′ (A.119)

Appropriately nondimensionalized, these equations produce the form summa-

rized in Section 3.3. With appropriate modeling of the amplitude growth rate param-

eters, also discussed there, these expressions constitute a closed system of equations

that allows us to perform DNS using the spatiotemporal slow growth formulation.
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Appendix B

A Manufactured Solution for the Governing Equations

A time-varying manufactured solution is presented for the nondimensional

governing equations summarized in Section 3.1. That is, forcing terms Qρ, ~Qρu, and

QρE are added to the mass, momentum, total energy equations so that their solution

matches a prescribed form. This particular manufactured solution is the nondimen-

sional analogue of that presented in Ulerich et al. [170]. The solution was used to

verify the software described in Chapter 5. Additional background on manufactured

solutions can be found in Malaya et al. [99].

For φ ∈ {ρ, u, v, w, T} analytical solutions are selected with the form

φ(x , y, z, t) =aφ0 cos
(

fφ0 t+gφ0

)

+ aφx cos
(

bφx 2πx L−1
x +cφx

)
cos

(
fφx t+gφx

)

+ aφx y cos
(

bφx y2πx L−1
x +cφx y

)
cos

(
dφx y2πy L−1

y +eφx y

)
cos

(
fφx y t+gφx y

)

+ aφxz cos
(

bφxz 2πx L−1
x +cφxz

)
cos

(
dφxz 2πzL−1

z +eφxz

)
cos

(
fφxz t+gφxz

)

+ aφ y cos
(

bφ y 2πy L−1
y +cφ y

)
cos

(
fφ y t+gφ y

)

+ aφ yz cos
(

bφ yz 2πy L−1
y +cφ yz

)
cos

(
dφ yz 2πzL−1

z +eφ yz

)
cos

(
fφ yz t+gφ yz

)

+ aφz cos
(

bφz 2πzL−1
z +cφz

)
cos

(
fφz t+gφz

)

where a, b, c, d, e, f , and g are constant coefficient collections indexed by φ and one
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or more directions. To aid in providing reusable, physically realizable coefficients for

Cartesian domains of arbitrary size, domain extents Lx , L y , Lz have been introduced.

Partial derivatives φt , φx , φy , φz, φx x , φx y , φxz, φy y , φyz, and φzz may be computed

directly from the chosen solutions.

The above solutions are plugged into the model from Section 3.1 and solved

for the forcing terms Qρ, ~Qρu, and QρE. However, solving for these complete terms

entirely within the context of a computer algebra system causes an explosion of terms.

As the fully expanded forcing terms are too large to be usable in any meaningful way,

they are not shown. Instead, starting from the solution and its the analytic derivatives,

basic calculus followed by algebraic operations performed in floating point are used to

obtain the necessary forcing at runtime. Computing the forcing terms looks as follows:

# Assuming t h a t we are given
# rho rho_t rho_x rho_xx rho_xy rho_xz rho_y rho_yy rho_yz rho_z rho_zz

3 # u u_t u_x u_xx u_xy u_xz u_y u_yy u_yz u_z u_zz
# v v_t v_x v_xx v_xy v_xz v_y v_yy v_yz v_z v_zz
# w w_t w_x w_xx w_xy w_xz w_y w_yy w_yz w_z w_zz

6 # T T_t T_x T_xx T_xy T_xz T_y T_yy T_yz T_z T_zz
# and the c o e f f i c i e n t s
# alpha beta gamma Ma Pr Re

9 # compute the source terms
# Q_rho Q_rhou Q_rhov Q_rhow Q_rhoe
# necessary to fo rce the s o l u t i o n rho , u , v , w, and T .

12

# Computations stemming from the c o n s t i t u t i v e r e l a t i o n s h i p s
e = T / gamma / (gamma − 1) + Ma * Ma * ( u*u + v*v + w*w ) / 2

15 e_x = T_x / gamma / (gamma − 1) + Ma * Ma * ( u*u_x + v*v_x + w*w_x )
e_y = T_y / gamma / (gamma − 1) + Ma * Ma * ( u*u_y + v*v_y + w*w_y )
e_z = T_z / gamma / (gamma − 1) + Ma * Ma * ( u*u_z + v*v_z + w*w_z )

18 e_t = T_t / gamma / (gamma − 1) + Ma * Ma * ( u* u_t + v* v_t + w*w_t )
p = ( rho * T ) / gamma
p_x = ( rho_x * T + rho * T_x ) / gamma

21 p_y = ( rho_y * T + rho * T_y ) / gamma
p_z = ( rho_z * T + rho * T_z ) / gamma
mu = pow(T , beta )
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24 mu_x = beta * pow(T , beta − 1) * T_x
mu_y = beta * pow(T , beta − 1) * T_y
mu_z = beta * pow(T , beta − 1) * T_z

27 lambda_ = (3 * alpha − 2) * mu / 3 # " lambda " i s a Python keyword
lambda_x = (3 * alpha − 2) * mu_x / 3 # Strange order o f opera t ions a l lows . . .
lambda_y = (3 * alpha − 2) * mu_y / 3 # . . . a r b i t r a r y p r e c i s i o n l i b r a r y to . . .

30 lambda_z = (3 * alpha − 2) * mu_z / 3 # . . . handle ( alpha −2/3) f a c t o r c o r r e c t l y
qx = − 1 / Re / Pr / (gamma − 1) * mu * T_x
qy = − 1 / Re / Pr / (gamma − 1) * mu * T_y

33 qz = − 1 / Re / Pr / (gamma − 1) * mu * T_z
qx_x = − 1 / Re / Pr / (gamma − 1) * (mu_x * T_x + mu * T_xx )
qy_y = − 1 / Re / Pr / (gamma − 1) * (mu_y * T_y + mu * T_yy )

36 qz_z = − 1 / Re / Pr / (gamma − 1) * (mu_z * T_z + mu * T_zz )

# Computations stemming from the compressible , Newtonian f l u i d model
39 rhou = rho * u

rhov = rho * v
rhow = rho * w

42 rhoe = rho * e
rhou_x = rho_x * u + rho * u_x
rhov_y = rho_y * v + rho * v_y

45 rhow_z = rho_z * w + rho * w_z
rhou_t = rho_t * u + rho * u_t
rhov_t = rho_t * v + rho * v_t

48 rhow_t = rho_t * w + rho * w_t
rhoe_t = rho_t * e + rho * e_t

51 rhouu_x = ( rho_x * u * u ) + ( rho * u_x * u ) + ( rho * u * u_x )
rhouv_y = ( rho_y * u * v ) + ( rho * u_y * v ) + ( rho * u * v_y )
rhouw_z = ( rho_z * u * w) + ( rho * u_z * w) + ( rho * u * w_z )

54 rhouv_x = ( rho_x * u * v ) + ( rho * u_x * v ) + ( rho * u * v_x )
rhovv_y = ( rho_y * v * v ) + ( rho * v_y * v ) + ( rho * v * v_y )
rhovw_z = ( rho_z * v * w) + ( rho * v_z * w) + ( rho * v * w_z )

57 rhouw_x = ( rho_x * u * w) + ( rho * u_x * w) + ( rho * u * w_x )
rhovw_y = ( rho_y * v * w) + ( rho * v_y * w) + ( rho * v * w_y )
rhoww_z = ( rho_z * w * w) + ( rho * w_z * w) + ( rho * w * w_z )

60 rhoue_x = ( rho_x * u * e ) + ( rho * u_x * e ) + ( rho * u * e_x )
rhove_y = ( rho_y * v * e ) + ( rho * v_y * e ) + ( rho * v * e_y )
rhowe_z = ( rho_z * w * e ) + ( rho * w_z * e ) + ( rho * w * e_z )

63

tauxx = mu * ( u_x + u_x ) + lambda_ * ( u_x + v_y + w_z )
tauyy = mu * ( v_y + v_y ) + lambda_ * ( u_x + v_y + w_z )

66 tauzz = mu * (w_z + w_z ) + lambda_ * ( u_x + v_y + w_z )
tauxy = mu * ( u_y + v_x )
tauxz = mu * ( u_z + w_x )
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69 tauyz = mu * ( v_z + w_y )

tauxx_x = ( mu_x * ( u_x + u_x ) + lambda_x * ( u_x + v_y + w_z )
72 + mu * ( u_xx + u_xx ) + lambda_ * ( u_xx + v_xy + w_xz ) )

tauyy_y = ( mu_y * ( v_y + v_y ) + lambda_y * ( u_x + v_y + w_z )
+ mu * ( v_yy + v_yy ) + lambda_ * ( u_xy + v_yy + w_yz ) )

75 tauzz_z = ( mu_z * (w_z + w_z ) + lambda_z * ( u_x + v_y + w_z )
+ mu * ( w_zz + w_zz ) + lambda_ * ( u_xz + v_yz + w_zz ) )

78 tauxy_x = mu_x * ( u_y + v_x ) + mu * ( u_xy + v_xx )
tauxy_y = mu_y * ( u_y + v_x ) + mu * ( u_yy + v_xy )
tauxz_x = mu_x * ( u_z + w_x ) + mu * ( u_xz + w_xx )

81 tauxz_z = mu_z * ( u_z + w_x ) + mu * ( u_zz + w_xz )
tauyz_y = mu_y * ( v_z + w_y ) + mu * ( v_yz + w_yy )
tauyz_z = mu_z * ( v_z + w_y ) + mu * ( v_zz + w_yz )

84

pu_x = p_x * u + p * u_x
pv_y = p_y * v + p * v_y

87 pw_z = p_z * w + p * w_z
utauxx_x = u_x * tauxx + u * tauxx_x
vtauxy_x = v_x * tauxy + v * tauxy_x

90 wtauxz_x = w_x * tauxz + w * tauxz_x
utauxy_y = u_y * tauxy + u * tauxy_y
vtauyy_y = v_y * tauyy + v * tauyy_y

93 wtauyz_y = w_y * tauyz + w * tauyz_y
utauxz_z = u_z * tauxz + u * tauxz_z
vtauyz_z = v_z * tauyz + v * tauyz_z

96 wtauzz_z = w_z * tauzz + w * tauzz_z

Q_rho = rho_t + rhou_x + rhov_y + rhow_z
99 Q_rhou = ( rhou_t + rhouu_x + rhouv_y + rhouw_z

+ p_x / (Ma * Ma)
− (1 / Re) * ( tauxx_x + tauxy_y + tauxz_z ) )

102 Q_rhov = ( rhov_t + rhouv_x + rhovv_y + rhovw_z
+ p_y / (Ma * Ma)
− (1 / Re) * ( tauxy_x + tauyy_y + tauyz_z ) )

105 Q_rhow = ( rhow_t + rhouw_x + rhovw_y + rhoww_z
+ p_z / (Ma * Ma)
− (1 / Re) * ( tauxz_x + tauyz_y + tauzz_z ) )

108 Q_rhoe = ( rhoe_t + rhoue_x + rhove_y + rhowe_z
+ pu_x + pv_y + pw_z + qx_x + qy_y + qz_z
− (Ma * Ma / Re) * ( utauxx_x + vtauxy_x + wtauxz_x

111 + utauxy_y + vtauyy_y + wtauyz_y
+ utauxz_z + vtauyz_z + wtauzz_z ) )
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The errors arising in this process behave like standard floating point truncation issues.

Refer to Ulerich et al. [170] for a more extended discussion of this approach.

Employing the manufactured solution requires fixing the more than two hun-

dred coefficients appearing in the model and chosen solution forms. Selecting usable

values is not difficult but it is time consuming. Reasonable coefficient choices for testing

channel and flat plate codes are therefore presented.

In both geometries the streamwise, wall-normal, and spanwise directions are

labeled x , y, and z respectively. Both x and z are periodic while y ∈ ¶0, L y

©
is not.

Transient tests should likely take place within the duration 0 ≤ t ≤ 1/10 nondimen-

sional time units as the time phase offsets (for example, gT yz) have been chosen for

appreciable transients to occur throughout this time window.

For isothermal channel flow code verification we recommend testing using

bρ y = buy = bv y = bwy = bT y =
1
2

and the coefficients given in Table B.1. With these choices the manufactured solution

satisfies isothermal, no-slip conditions at y = 0, L y . For isothermal flat plate code

verification we recommend testing using

bρ y = buy = bv y = bwy = bT y =
1
4

and the coefficients given in Table B.1. With these choices the manufactured solution

satisfies an isothermal, no-slip condition at y = 0.
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Table B.1: Manufactured solution coefficient recommendations. Unlisted coefficients
should be set to zero.

α= 0

β = 2/3

γ= 1.4

Ma = 1.15

Pr = 0.7

Re = 100

Lx = 4π

L y = 2

Lz = 4π/3

aρ0 = 1

aρx y = 1/11

bρx y = 3

dρx y = 3

fρx y = 3

gρx y = π/4

aρ y = 1/7

bρ y = See §B

fρ y = 1

gρ y = π/4− 1/20

aρ yz = 1/31

bρ yz = 2

dρ yz = 2

fρ yz = 2

gρ yz = π/4+ 1/20

aux y = 37/251

bux y = 3

cux y = −π/2
dux y = 3

eux y = −π/2
fux y = 3

gux y = π/4

auy = 1

buy = See §B

cuy = −π/2
fuy = 1

guy = π/4− 1/20

auyz = 41/257

buyz = 2

cuyz = −π/2
duyz = 2

euyz = −π/2
fuyz = 2

guyz = π/4+ 1/20

avx y = 3/337

bvx y = 3

cvx y = −π/2
dvx y = 3

evx y = −π/2
fvx y = 3

gvx y = π/4

av y = 2/127

bv y = See §B

cv y = −π/2
fv y = 1

gv y = π/4− 1/20

av yz = 5/347

bv yz = 2

cv yz = −π/2
dv yz = 2

ev yz = −π/2
fv yz = 2

gv yz = π/4+ 1/20

awx y = 11/409

bwx y = 3

cwx y = −π/2
dwx y = 3

ewx y = −π/2
fwx y = 3

gwx y = π/4

awy = 7/373

bwy = See §B

cwy = −π/2
fwy = 1

gwy = π/4− 1/20

awyz = 13/389

bwyz = 2

cwyz = −π/2
dwyz = 2

ewyz = −π/2

fwyz = 2

gwyz = π/4+ 1/20

aT0 = 1

aT x y = 1/17

bT x y = 3

cT x y = −π/2
dT x y = 3

eT x y = −π/2
fT x y = 3

gT x y = π/4

aT y = 1/13

bT y = See §B

cT y = −π/2
fT y = 1

gT y = π/4− 1/20

aT yz = 1/37

bT yz = 2

cT yz = −π/2
dT yz = 2

eT yz = −π/2
fT yz = 2

gT yz = π/4+ 1/20
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Appendix C

Designing Inviscid Base Flows with Prescribed Pressure
Gradients and Edge Mach Conditions

A procedure is derived for obtaining inviscid, perfect gas flow fields with ei-

ther favorable or adverse pressure gradients and varying Mach numbers for use in

homogenized boundary layer simulations. First, a compressible potential flow problem

is formulated for an isenthalpic, radially symmetric source or sink flow. The resulting

one-dimensional problem is cast into a form ordinary differential equation (ODE) inte-

grators can solve to obtain primitive state as a function of radius. The solution is then

mapped from (r,θ ) into (x , y) coordinates and a base flow profile extracted from some

constant x line segment. Finally, the segment chosen, as well as the radial problem

boundary conditions used, are taken to match some edge state of interest based on

simple algebraic relationships. A reference implementation is developed during the

discussion to aid reproducibility.

C.1 The Isenthalpic Potential Flow Equations

A succinct, coordinate-independent derivation of the velocity-potential formu-

lation of the compressible potential flow equations appears in Saad et al. [133, §II.A].

Their presentation is recounted here but velocity potential notation is suppressed.
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Wherever necessary, sufficient smoothness is assumed.

Consider a perfect gas in which pressure p, density ρ, and sound speed a are

related by a constant ratio of specific heats γ according to

γp = ρa2. (C.1)

The relative changes in these three quantities clearly obey

ρ∇a2 = γ∇p− a2∇ρ. (C.2)

In such a fluid, the total specific enthalpy H additionally relates the kinetic energy

H =
a2

γ− 1
+

1
2
~u2. (C.3)

By assuming an isenthalpic flow with H everywhere constant,

∇a2 = −γ− 1
2
∇~u2 (C.4)

implying

γ∇p− a2∇ρ = −γ− 1
2
ρ∇~u2. (C.5)

If the flow is steady, inviscid, and irrotational, the unforced momentum equation yields

~∇p = −ρ~u · ~∇~u= −ρ
Å1

2
~∇ (~u · ~u)− ~u× ~∇× ~u

ã
= −1

2
ρ ~∇~u2. (C.6)

The irrotational velocity may be replaced by the gradient of a scalar potential, viz.

~u= ~∇φ + ~∇× ~A= ~∇φ. (C.7)
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Though commonly employed, ~∇φ plays little role here. Substituting (C.6) into (C.5)

and simplifying,

a2∇ρ =∇p, (C.8)

shows isentropy holds since, by definition,
(
∂p
∂ρ

)
s
= a2. Rearranging (C.8) and invok-

ing (C.6),

~∇ρ = 1
a2
~∇p = − ρ

2a2
~∇~u2. (C.9)

Examining the steady continuity equation and applying (C.9),

0= ~∇ ·ρ~u= ρ ~∇ · ~u+ ~u · ~∇ρ = ρ ~∇ · ~u− ρ~u
2a2
· ~∇~u2. (C.10)

Because ρ > 0 and a > 0, the above equation may only be nontrivially satisfied when

1
2
~u · ~∇~u2 = a2 ~∇ · ~u. (C.11)

As suggested by Saad et al., the constant specific total enthalpy assumption, H = H0,

is used to connect a and u with a reference specific enthalpy h0 =
a2

0
γ−1 and a reference

velocity u0,

a2

γ− 1
+

1
2
~u2 =

a2
0

γ− 1
+

1
2

u2
0 (C.12)

everywhere. As specific total energy E must be strictly positive, from H = E + p/ρ it

follows

p
ρ
<

a2
0

γ− 1
+

1
2

u2
0 (C.13)
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is necessary for realizability. After rearranging, the constant stagnation enthalpy con-

dition (C.12),

a2 = a2
0 +
γ− 1

2

Ä
u2

0 − ~u2
ä

, (C.14)

may be used within (C.11) to find the useful dimensional result,

~u · ~∇~u2 =
î
2a2

0 + (γ− 1)
Ä
u2

0 − ~u2
äó
~∇ · ~u. (C.15)

C.2 Nondimensionalization of the Equations

To nondimensionalize, choose some reference length l0 and declare

x = x∗l0 a = a∗a0 u= u∗u0 = u∗Ma0a0 ρ = ρ∗ρ0 p = p∗ρ0a2
0 (C.16)

where the starred quantities are dimensionless. Inserting the definitions into (C.15),

Ma0
3a3

0

l0
~u∗ · ~∇∗~u∗2 = î2a2

0 +Ma0
2a2

0 (γ− 1)
Ä
1− ~u∗2äó Ma0a0

l0
~∇∗ · ~u∗

=
Ma0

3a3
0

l0

ñ
2

Ma0
2
+ (γ− 1)

Ä
1− ~u∗2äô ~∇∗ · ~u∗. (C.17)

Rescaling and dropping the star notation, one arrives at

~u · ~∇~u2 =
î
2Ma0

−2 + (γ− 1)
Ä
1− ~u2

äó
~∇ · ~u. (C.18)

With some ~u = ~∇φ satisfying (C.18) in hand, computing local ρ and p is of

interest. Nondimensionalizing (C.14) permits direct computation of a from

a2 = 1+Ma2
0

γ− 1
2

Ä
1− ~u2

ä
(C.19)
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where clearly a realizable a2 > 0 requires

u2
valid <

2
Ma2

0 (γ− 1)
+ 1. (C.20)

By squaring the sonic condition uu0
aa0
= 1 and solving, one obtains

u2
sonic = (γ+ 1)−1

Ä
2Ma−2

0 + γ− 1
ä
< u2

valid. (C.21)

Condition (C.13) restricts the relative magnitudes of nondimensional p and ρ,

p
ρ
<

1
γ− 1

+
1
2

Ma2
0, (C.22)

as well as, using (C.1), the maximum attainable nondimensional sound speed,

a2 =
γp
ρ
<

γ

γ− 1
+
γ

2
Ma2

0. (C.23)

Employing (C.9), nondimensionalizing, multiplying by l0, and simplifying,

~∇ρ
ρ
= ~∇ logρ = −Ma2

0

2

~∇~u2

a2
. (C.24)

Nondimensionalizing (C.6) and scaling by l0
ρ0a2

0
,

~∇p = −1
2

Ma2
0ρ
~∇~u2. (C.25)

Both of the previous two local statements can be made global by integrating over some

domain Ω and applying a corollary of Gauss’ theorem:

∫

∂Ω
logρ dS = −Ma2

0

2

∫

Ω

~∇~u2

a2
dx (C.26)

∫

∂Ω
p dS = −Ma2

0

2

∫

Ω
ρ ~∇~u2 dx . (C.27)
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C.3 Reduction to the Radially Symmetric Geometry

Suppose a two-dimensional domain possessing radial symmetry for which

~u= u(r) r̂. Then the velocity potential ~∇φ is superfluous because (C.18) is nothing

but the scalar equation

2u2(r)u′(r) =
î
2Ma0

−2 + (γ− 1)
Ä
1− u2(r)

äó Ä
r−1u(r) + u′(r)

ä
. (C.28)

Suppressing the dependence of u on r and collecting u′ terms,Ä
2u2 − î2Ma0

−2 + (γ− 1)
Ä
1− u2

äóä
u′ =

î
2Ma0

−2 + (γ− 1)
Ä
1− u2

äó
r−1u. (C.29)

Solving for u′,

u′ =
u
r

î
2Ma0

−2 + (γ− 1)
Ä
1− u2

äó
2u2 − [2Ma0

−2 + (γ− 1) (1− u2)]
, (C.30)

permits integrating u across R ∈ [R1, R2] given a boundary condition at either radius

R1 or R2.

Given some u, we now turn to computing local thermodynamic state. Equa-

tion (C.19) fixes a. The u= u(r) assumption reduces (C.26) to

ρ(R2) = exp


−Ma2

0

2

∫ R2

R1

Ä
u2
ä′

a2
r dr + logρ(R1)




= ρ(R1)exp
ñ
−Ma2

0

∫ R2

R1

uu′

a2
r dr

ô
. (C.31)

Likewise (C.27) becomes

p(R2) = −
Ma2

0

2

∫ R2

R1

ρ
(
u′
)2 r dr + p(R1)

= −Ma2
0

∫ R2

R1

ρuu′ r dr + p(R1) . (C.32)

Notice (C.30) easily supplies pointwise u′ for the computation of both ρ and p.
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C.4 The Sub- and Supersonic Radial Nozzle Problems

Equations (C.19), (C.30), (C.31) and (C.32) may be used to find nondimen-

sional solutions to idealized sub- and supersonic radial nozzle and diffuser problems.

Many texts, for example White [175, §9.4] and Landau and Lifshitz [83, §97], discuss

the situation when the nozzle area changes slowly. In contrast, the preceding treatment

permits geometries violating that assumption.

A subsonic nozzle may be posed on [R1, R2] by employing (C.21) to set either

−|usonic|<u(R2)< 0, (subsonic nozzle inflow) (C.33)

−|usonic|<u(R1)< 0. (subsonic nozzle outflow) (C.34)

These conditions cause −u to increase and p to decrease when traversing the domain

from R2 to R1. However, the problem becomes stiff as the flow accelerates towards

the sonic condition. Caveat numerical errors, specifying the outflow problem with a

carefully chosen R1 produces an equivalent nozzle as the physics are frictionless.

A supersonic nozzle may be posed on [R1, R2] by additionally making use

of (C.20) to set either

|usonic|<u(R1)< uvalid, (supersonic nozzle inflow) (C.35)

|usonic|<u(R2)< uvalid. (supersonic nozzle outflow) (C.36)

These conditions cause u to increase and p to decrease when traversing the domain

from R1 to R2.

Working with these conditions in conjunction with (C.30) presents initial value

problems amenable to solution by ordinary differential equation (ODE) integrators. For
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example, Octave [37] with the odepkg package can solve such problems. One possible

implementation appears in Listing C.1 along with verification tests. Its demo logic

produces the solutions depicted in Figure C.1. Though only scalar u′(r) needs to be

integrated, this implementation integrates the state vector [u,ρ, p]T so that odepkg’s

automated solution tolerance controls apply equally to all three scalar quantities.

Listing C.1: radialflow.m: A nondimensional radial flow solver implementation
% Solve r a d i a l f l o w IVP f o r [ u ; rho ; p ] given [Ma gam R1 R2 u1 rho1 p1 ]
% v ia a " coupled " ODE−based approach . P lo t r e s u l t s when no values requested .

3 function [ r u rho p a2 up rhop pp ] = r a d i a l f l o w (Ma, gam, R1, R2, u1 , rho1 , p1 ,
t o l =sqrt ( eps ) )

6 [Ma2 gam1 ] = deal (Ma. ^2 , gam−1);
asser t ( u1 .^2 < 2 / Ma2 / gam1 + 1 ,

’Ma=%g , gam=%g , u1=%g imply a .^2 <= 0 ’ , Ma, gam, u1 ) ;
9

vopt = odeset ( ’ RelTol ’ , t o l , ’ I n i t i a l S t e p ’ , 0.01*abs (R1−R2) ,
’ AbsTol ’ , eps , ’ MaxStep ’ , 0.10*abs (R1−R2 ) ) ;

12 [ r x ] = ode45 ( @radia l f low_rhs , [R1 R2 ] , [ u1 rho1 p1 ] , vopt , Ma2, gam1 ) ;
[ u rho p ] = deal ( x ( : , 1 ) , x ( : , 2 ) , x ( : , 3 ) ) ;
[ up rhop pp a2 ] = r a d i a l f l o w _ d e t a i l s ( r , u , rho , p , Ma2, gam1 ) ;

15

i f 0 == nargout
f igure ( ) ;

18 plot ( r , u , ’ o− ’ , r , rho , ’+− ’ , r , p , ’ x− ’ , r , Ma*abs ( u ) . / sqrt ( a2 ) , ’*− ’ ) ;
legend ( ’ V e l o c i t y ’ , ’ Densi ty ’ , ’ Pressure ’ , ’ Local Mach ’ , . . .

’ l o c a t i o n ’ , ’ westouts ide ’ , ’ o r i e n t a t i o n ’ , ’ v e r t i c a l ’ ) ;
21 xlabel ( ’ Radius ’ ) ;

box ( ’ o f f ’ ) ;
end

24 end

% ODEs [ u ; rho ; p ] ’ g iven r , x =[u ; rho ; p ] , Ma2=Ma.^2 , gam1=gam−1
27 function f = r a d i a l f l o w _ r h s ( r , x , Ma2, gam1)

[ up , rhop , pp ] = r a d i a l f l o w _ d e t a i l s ( r , x ( 1 ) , x ( 2 ) , x ( 3 ) , Ma2, gam1 ) ;
f = [ up ; rhop ; pp ] ;

30 end

% Find po in tw ise d e r i v a t i v e s and sound speed given sta te , Ma2=Ma.^2 , gam1=gam−1
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33 function [ up , rhop , pp , a2 ] = r a d i a l f l o w _ d e t a i l s ( r , u , rho , p , Ma2, gam1)
u2 = u . ^ 2 ;
C = ( 2 . / Ma2 + gam1 . * ( 1 − u2 ) ) ;

36 up = ( u . *C) . / ( r . * ( 2 * u2 − C ) ) ;
pp = −Ma2. * rho . * u . * up ;
a2 = 1 + 0.5*Ma2. *gam1 . * ( 1 − u2 ) ;

39 rhop = pp . / a2 ;
end

42 %! t e s t
%! % Does a s o l u t i o n s a t i s f y steady governing equat ions i n r a d i a l s e t t i n g ?
%! % A v e r i f i c a t i o n tes t , i n c l u d i n g d e r i v a t i v e s , aga ins t governing equat ions .

45 %! % Pressure p1 computed from i d e a l gas equat ion o f s t a t e .
%! pkg load odepkg ; Ma=1.5 ; gam=1.4 ; Rin =10; Rout=Rin +1 /2 ; u1=−2/7; rho1 =9/10;
%! p1 = rho1 /gam * (1+(gam−1)/2*Ma.^2*(1−u1 . ^ 2 ) ) ;

48 %! [ r u rho p a2 up rhop pp ] = r a d i a l f l o w (Ma, gam, Rin , Rout , u1 , rho1 , p1 ) ;
%! asser t ( zeros ( s ize ( r ) ) ’ , ( u . * rho . / r +rho . * up+u . * rhop ) ’ , 10*eps ) ; # Mass
%! asser t ( pp ’ , (−Ma. ^ 2 . * rho . * u . * up ) ’ , 10*eps ) ; # Momentum

51 %! asser t ( a2 ’ , (1 + Ma. ^ 2 . * ( gam−1). /2 .* (1−u . ^ 2 ) ) ’ , 10*eps ) ; # Energy
%! asser t ( ( rho . * a2 ) ’ , (gam. * p ) ’ , 10*eps ) ; # Idea l EOS

54 %! demo % Solve subsonic nozzle ( s p e c i f y i n g ou t f l ow ) and p l o t to f i l e
%! pkg load odepkg ; Ma=2; gam=1.4 ; Rin =1; Rout=Rin +1;
%! u_sonic = s q r t ( ( 2 /Ma.^2 + gam − 1) / (gam + 1 ) ) ;

57 %! r a d i a l f l o w (Ma, gam, Rout , Rin , −u_sonic / 5 , 1 , 1 / 2 ) ;
%! p r i n t ( ’ nozzle_subsonic . eps ’ , ’−depsc2 ’ , ’−S640 ,480 ’ , ’−F : 9 ’ ) ;
%! c lose ( ) ;

60

%! demo % Solve supersonic nozzle ( s p e c i f y i n g i n f l o w ) and p l o t to f i l e
%! pkg load odepkg ; Ma=1; gam=1.4 ; Rin =1; Rout=Rin +1;

63 %! u_sonic = s q r t ( ( 2 /Ma.^2 + gam − 1) / (gam + 1 ) ) ;
%! r a d i a l f l o w (Ma, gam, Rin , Rout , 1 .5* u_sonic , 1 /2 , 1 ) ;
%! p r i n t ( ’ nozzle_supersonic . eps ’ , ’−depsc2 ’ , ’−S640 ,480 ’ , ’−F : 9 ’ ) ;

66 %! close ( ) ;
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Figure C.1: Sample solutions saved by the radialflow.m demo logic in Listing C.1.
The subsonic case (above) flows from right-to-left while the supersonic case (below)
flows from left-to-right.
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C.5 Quantities of Interest for a Cartesian Base Flow

R1 R2

x

y

Ly

R0

Figure C.2: A Cartesian setting overlaid on the radially symmetric domain

Suppose a Cartesian flow profile of height L y is desired from a constant x line

segment within a radially varying solution. Referring to Figure C.2, assume a solution

u(R) with accompanying ρ(R), p(R), and a(R) is valid for any R ∈ [R1, R2]. Then for

some (x , y) and corresponding R=
»

x2 + y2 one may compute:

ρ(x , y) = ρ(R) ∂xρ =
x
R
ρ′(R) ∂yρ =

y
R
ρ′(R)

ux(x , y) = u(R)
x
R

∂xux =
1
R2

ï
x2u′(R) +

y2

R
u(R)

ò
∂yux =

x y
R2

ï
u′(R)− 1

R
u(R)

ò
uy(x , y) = u(R)

y
R

∂xuy =
x y
R2

ï
u′(R)− 1

R
u(R)

ò
∂yuy =

1
R2

ï
y2u′(R) +

x2

R
u(R)

ò
p(x , y;Ma) =

Ma2

Ma0
2

p(R) ∂x p =
Ma2

Ma0
2

x
R

p′(R) ∂y p =
Ma2

Ma0
2

y
R

p′(R)

a(x , y;Ma) =
Ma
Ma0

a(R) ∂x a =
1− γ

2
x
R

MaMa0 u(R)
a(R)

u′(R) ∂y a =
1− γ

2
y
R

MaMa0 u(R)
a(R)

u′(R) .

The Ma and Ma0 factors on p and a rescale them for use in a nondimensional-

ization possessing a potentially different Mach number, Ma, assuming p0 = ρ0a2
0, ρ0,

and u0 still hold in the target setting. This is exactly the nondimensional setting of Chap-

ter 3. Such a translation permits using radial solutions for the steady, nondimensional,
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primitive Euler equations written in Cartesian coordinates:




0
0
0
0


=




ux ρ 0 0
0 ux 0 ρ−1Ma−2

0 0 ux 0
0 ρa2 0 ux


∂x




ρ
ux

uy

p




+




uy 0 ρ 0
0 uy 0 0
0 0 uy ρ−1Ma−2

0 0 ρa2 uy


∂y




ρ
ux

uy

p


 . (C.37)

More concretely, take the profile from the line segment (R0, 0) to
Ä
R0, L y

ä
.

Clearly, selecting

R1 = R0 R2 =
√

R2
0 + L2

y (C.38)

produces the smallest radial domain possessing a solution along this segment. When

working with both sub- and supersonic profiles, it is convenient to abstract away the

change in sign of ux . Let ξ denote the x direction possibly reflected so that streamwise

velocity is always positive. That is,

ξ=





x if u(R1)≥ 0

−x otherwise
(C.39)

so that

∂

∂ξ
= sgn(u)

∂

∂x
=

x sgn(u)
R

∂

∂R
. (C.40)

Practically, whenever u (R1)< 0 instead of evaluating ux , ∂xux , etc. at (x , y) one eval-

uates ux , ∂xux , etc. at (−x , y) to take advantage of the solution’s symmetry about the

y axis.
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Listing C.2: radialflow_qoi.m: A kernel computing Cartesian base flow quantities
% Solve r a d i a l f l ow f o r Ma_e and p_exi a t Car tes ian po in t (R1, de l t a ) .
function [ Ma_e p_exi ] = r a d i a l f l o w _ q o i ( de l ta , gam, Ma, R1, u1 , rho1 , p1 )

3 t r y
[ r u rho p a2 up rhop pp ] = r a d i a l f l o w (Ma, gam, R1,

sqrt (R1.^2+ de l t a . ^ 2 ) , u1 , rho1 , p1 ) ;
6 Ma_e = Ma * r ( 1 ) * abs ( u (end ) ) . . .

/ ( r ( end ) * r e a l s q r t ( a2 (end ) ) ) ;
p_exi = sign ( u ( end ) ) * r (end ) * de l t a * pp ( end ) . . .

9 / (Ma.^2 * r ( 1 ) * rho (end ) * u ( end ) . ^ 2 ) ;
catch

warning ( ’ r a d i a l f l o w _ q o i (%g , %g , %g , %g , %g , %g , %g ) f a i l s : %s ’ ,
12 de l ta , gam, Ma, R1, u1 , rho1 , p1 , l a s t e r r o r . message ) ;

Ma_e = p_exi = NaN ;
end

15 end

At some location of interest with such a profile, say an edge distance δ from the

x-axis, one may also compute the edge Mach number and a nondimensional pressure

gradient parameter

Mae ≡
u0uξ
a0a

∣∣∣∣∣
(R0,δ)

pe,ξ ≡
l0δ

ρ0ρ u2
0u2

∂ (p0p)
∂ (l0ξ)

∣∣∣∣∣
(R0,δ)

=
Ma0R0

R
|u(R)|
a(R)

∣∣∣∣∣
R=
p

R2
0+δ2

=
sgn(u)δ
Ma2

0ρu2

∂p
∂x

∣∣∣∣∣
(R0,δ)

=
sgn(u)Rδ p′(R)

Ma2
0R0ρ(R)u2(R)

∣∣∣∣∣
R=
p

R2
0+δ2

= − Rδu′(R)
R0 |u(R)|

∣∣∣∣∣
R=
p

R2
0+δ2

(C.41)

to interrogate the solution’s nature at (R0,δ).

A kernel building atop Listing C.1 that computes these quantities appears in

Listing C.2. By solving to boundary R2 =
»

R2
0 +δ2, the kernel solves the smallest

possible problem. More importantly, it causes the ODE integrator to automatically
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produce full-order accurate results at (R0,δ)without requiring the integrator to possess

dense output capabilities.

C.6 Producing a Flow Matching Given Edge Conditions

We wish to produce Cartesian base flows satisfying (C.37) possessing some

prescribed edge Mach number Mae, some prescribed edge pressure gradient pe,ξ, a

unit magnitude edge streamwise velocity uξ, and a unit edge density ρ. The final two

conditions are mandated for operational convenience in Chapters 6 and 7 rather than

from some physical concern.

Considering first the edge velocity magnitude, by (C.40)

1= uξ(R0,δ) = |ux(R0,δ)|=
∣∣∣∣u
Ä
R≡»R2

0 +δ2
ä R0

R

∣∣∣∣ =⇒ |u(R)|= R
R0

. (C.42)

Folding that implication into the edge Mach number definition (C.41),

Mae =
Ma0R0

R
|u(R)|
a(R)

=
Ma0R0

R
R

R0a(R)
=⇒ a(R) =

Ma0

Mae
. (C.43)

Linking these two conditions through the equation of state (C.19),

a2(R) =
Ma2

0

Ma2
e

= 1+Ma2
0

γ− 1
2

Ä
1− u2(R)

ä
= 1+Ma2

0

γ− 1
2

(
1− R2

R2
0

)

= 1−Ma2
0

γ− 1
2
δ2

R2
0

(C.44)

forces

Ma0 =
(

1
Ma2

e

+
γ− 1

2
δ2

R2
0

)−1/2

. (C.45)
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Satisfying (C.23) in conjunction with the required behavior of a(R) shows

1= ρ(R) =⇒ p(R) =
Ma2

0

γMa2
e

. (C.46)

Turning now to the pressure gradient definition (C.41),

pe,ξ = −
Rδu′(R)
R0 |u(R)|

= −δu′(R)

= −δu(R)
R

î
2Ma0

−2 + (γ− 1)
Ä
1− u2(R)

äó
2u2(R)− [2Ma0

−2 + (γ− 1) (1− u2(R))]

= −δ |u(R)|
R sgn u(R)

Mae
−2

R2

R2
0
−Mae

−2

= − δ

R0 sgn u(R)
R2

0

Ma2
eR2 − R2

0

= − δ

sgn u(R)
R0

R2
0

Ä
Ma2

e − 1
ä
+Ma2

eδ
2

(C.47)

implies one should solve

0= R2
0

Ä
Ma2

e − 1
ä

pe,ξ sgn u(R) + R0δ+Ma2
eδ

2pe,ξ sgn u(R) (C.48)

for a strictly positive root to obtain a suitable R0. If two such roots exist, the larger is

taken as it will produce solutions with desirably smaller derivatives in the y direction.

The term sgn u(R) appearing above may be set per sgn pe,ξ and sgn
Ä
Ma2

e − 1
ä

to

achieve the requested pressure gradient regardless of sub- versus supersonic conditions.

Thus R0 is ultimately an implicit function of only Mae, pe,ξ, and δ. To obtain a favorable

pressure gradient, select

sgn u(R) = sgn
Ä
Ma2

e − 1
ä

, pe,ξ < 0 (C.49)
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thus modeling a sub- or supersonic nozzle. In this case R0 is found from solving

0= R2
0

Ä
Ma2

e − 1
ä

pe,ξ sgn
Ä
Ma2

e − 1
ä
+ R0δ+Ma2

eδ
2pe,ξ sgn

Ä
Ma2

e − 1
ä

= R2
0

∣∣∣Ma2
e − 1

∣∣∣ pe,ξ + R0δ+Ma2
eδ

2pe,ξ sgn
Ä
Ma2

e − 1
ä

, pe,ξ < 0.
(C.50)

To obtain an adverse pressure gradient, select

sgn u(R) = − sgn
Ä
Ma2

e − 1
ä

, pe,ξ > 0 (C.51)

thus modeling a sub- or supersonic diffuser. In this case R0 is obtained from solving

0= −R2
0

Ä
Ma2

e − 1
ä

pe,ξ sgn
Ä
Ma2

e − 1
ä
+ R0δ−Ma2

eδ
2pe,ξ sgn

Ä
Ma2

e − 1
ä

= −R2
0

∣∣∣Ma2
e − 1

∣∣∣ pe,ξ + R0δ−Ma2
eδ

2pe,ξ sgn
Ä
Ma2

e − 1
ä

, pe,ξ > 0.
(C.52)

Evidently the preceding two cases may be merged to yield the general result

0= −R2
0

∣∣∣Ma2
e − 1

∣∣∣
∣∣∣pe,ξ

∣∣∣+ R0δ−Ma2
eδ

2
∣∣∣pe,ξ

∣∣∣ sgn
Ä
Ma2

e − 1
ä

(C.53)

with the edge velocity sign always taken according to

sgn u(R) = − sgn
î
pe,ξ

Ä
Ma2

e − 1
äó

. (C.54)

In summary, given some δ, γ, Mae, and pe,ξ a matching base flow may be

produced as follows:

1. Solve the quadratic equation (C.53) for for all real, strictly positive roots R0.

2. Compute Ma0 from (C.45).
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3. Compute R=
»

R2
0 +δ2.

4. Set u(R) = ±R/R0 per (C.42) with the sign governed by (C.54).

5. Set ρ(R) = 1 and compute p(R) from (C.46).

6. Choose the largest R0 satisfying realizability condition (C.22).

Logic performing these steps appears in Listing C.3. The resulting parameters and initial

conditions may be integrated from R to R0 (or any other radius) using Listing C.1. That

the flow profile on segment (R0, 0) to (R0,δ) has the desired properties may be verified

with Listings C.1 and C.2 as shown in the unit tests.

Listing C.3: radialflow_match.m: Match specified boundary layer edge quantities
% Produce a r a d i a l f l ow matching the given boundary l aye r edge cond i t i ons .
function [Ma R0 R uR rhoR pR] = rad ia l f l ow_match ( de l ta , gam, Ma_e , p_exi )

3 % Track candidates from zero , one , or two p o s i t i v e r e a l roo ts f o r R0
R0 = roots ( [ − abs (Ma_e.^2 − 1)*abs ( p_exi ) ,

de l ta ,
6 − Ma_e.^2 * de l t a .^2 * abs ( p_exi ) * sign (Ma_e.^2 − 1) ] ) ;

R0 = sort (R0( a r ray fun ( @isreal ,R0) & rea l (R0) > 0) , ’ descend ’ ) ;
Ma = 1 . / r e a l s q r t ( 1 /Ma_e.^2 + (gam − 1)* de l t a . ^ 2 . / R0 . ^ 2 / 2 ) ;

9 R = r e a l s q r t (R0.^2 + de l t a . ^ 2 ) ;
uR = − R . / R0 * sign ( p_exi . * ( Ma_e.^2 − 1 ) ) ;
rhoR = ones ( size (R0 ) ) ;

12 pR = rhoR . * Ma.^2 . / gam . / Ma_e . ^ 2 ;

% Thin candidates down to r e a l i z a b l e s o l u t i o n wi th l a r g e s t R0
15 [ ok iok ] = max ( ( pR . / rhoR ) < (1 . / (gam − 1) + Ma.^2 / 2 ) ) ;

i f ok
R0 = R0( iok ) ; Ma = Ma ( iok ) ; R = R ( iok ) ;

18 uR = uR( iok ) ; rhoR = rhoR ( iok ) ; pR = pR( iok ) ;
else

warning ( ’ rad ia l f low_match(%g , %g , %g , %g ) has no r e a l i z a b l e s o l u t i o n ’ ,
21 de l ta , gam, Ma_e , p_exi ) ;

Ma = R0 = R = uR = rhoR = pR = NaN ;
end

24 end
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%! t e s t % Round t r i p : Supersonic nozzle
27 %! de l t a =1; gam=1.4087;

%! [Ma R0 R uR rhoR pR] = rad ia l f low_match ( de l ta , gam, 1.1906 , −0.025439);
%! [ r u rho p ] = r a d i a l f l o w (Ma, gam, R, R0, uR, rhoR , pR ) ; %−>R0

30 %! [R1 u1 rho1 p1 ] = deal ( r ( end ) , u ( end ) , rho ( end ) , p ( end ) ) ; %R0
%! [ Ma_e p_exi ] = r a d i a l f l o w _ q o i ( de l ta , gam, Ma, R1, u1 , rho1 , p1 ) ; %−>R
%! asser t ( [ Ma_e p_exi ] , [1 .1906 , −0.025439] , −s q r t ( eps ) ) ;

33

%! t e s t % Round t r i p : Subsonic nozzle
%! de l t a =1; gam=1.4088;

36 %! [Ma R0 R uR rhoR pR] = rad ia l f low_match ( de l ta , gam, 0.54927 , −0.014755);
%! [ r u rho p ] = r a d i a l f l o w (Ma, gam, R, R0, uR, rhoR , pR ) ; %−>R0
%! [R1 u1 rho1 p1 ] = deal ( r ( end ) , u ( end ) , rho ( end ) , p ( end ) ) ; %R0

39 %! [ Ma_e p_exi ] = r a d i a l f l o w _ q o i ( de l ta , gam, Ma, R1, u1 , rho1 , p1 ) ; %−>R
%! asser t ( [ Ma_e p_exi ] , [0 .54927 , −0.014755] , −s q r t ( eps ) ) ;

42 %! t e s t % Round t r i p : Supersonic d i f f u s e r w i th non−u n i t de l t a
%! de l t a =0 .5 ; gam=1.4 ;
%! [Ma R0 R uR rhoR pR] = rad ia l f low_match ( de l ta , gam, 1 .5 , +0 .02 ) ;

45 %! [ r u rho p ] = r a d i a l f l o w (Ma, gam, R, R0, uR, rhoR , pR ) ; %−>R0
%! [R1 u1 rho1 p1 ] = deal ( r ( end ) , u ( end ) , rho ( end ) , p ( end ) ) ; %R0
%! [ Ma_e p_exi ] = r a d i a l f l o w _ q o i ( de l ta , gam, Ma, R1, u1 , rho1 , p1 ) ; %−>R

48 %! asser t ( [ Ma_e p_exi ] , [ 1 . 5 , +0 .02 ] , −s q r t ( eps ) ) ;

%! t e s t % Round t r i p : Subsonic d i f f u s e r
51 %! de l t a =1; gam=1.4 ;

%! [Ma R0 R uR rhoR pR] = rad ia l f low_match ( de l ta , gam, 0 .5 , +0 .015) ;
%! [ r u rho p ] = r a d i a l f l o w (Ma, gam, R, R0, uR, rhoR , pR ) ; %>R0

54 %! [R1 u1 rho1 p1 ] = deal ( r ( end ) , u ( end ) , rho ( end ) , p ( end ) ) ; %R0
%! [ Ma_e p_exi ] = r a d i a l f l o w _ q o i ( de l ta , gam, Ma, R1, u1 , rho1 , p1 ) ; %−>R
%! asser t ( [ Ma_e p_exi ] , [ 0 . 5 , +0.015] , −s q r t ( eps ) ) ;
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Appendix D

Archived Simulations

Two general types of data have been captured from each completed simulation

and archived on the Corral1 and Ranch2 resources at the Texas Advanced Computing

Center3 (TACC). These complete archives will be made available on request. Reduced

data, as described towards the end of this appendix, will be made available online4 for

general consumption.

The first type of data archived describes the software environment used for the

simulations. From each production batch job the information shown in Table D.1 was

preserved. In addition to providing an execution record and raw data for performance

variability investigations, these details permit determining what, if any, portions of the

software stack may have changed between any two given batch jobs.

The second type of data archived contains instantaneous physics. This data

consists of complete instantaneous field snapshots taken periodically during each sim-

ulation run along with a variety of scenario parameters and descriptive grid statistics.

This data is stored in HDF5 [161] files via the ESIO library [120]. These snapshots

1lonestar:/corral-tacc/utexas/pecos/turbulence/thesis-rhys-chapter{5,6,7}/
2rhys@ranch:{cevisslam,channels}/
3http://www.tacc.utexas.edu/
4http://turbulence.ices.utexas.edu/

247

http://www.tacc.utexas.edu/
http://turbulence.ices.utexas.edu/


Table D.1: Software and hardware execution details captured from every production
batch job as human-readable text files. Files named like *.dat provide time measured
relative to a wall clock, the simulation physics, and time step number.

Filename Contents

bc.dat Trace of conserved state behavior at boundaries
binary Absolute path to the compiled Suzerain binary
cpuinfo /proc/cpuinfo from MPI rank zero
dependencies Runtime-resolved shared library dependencies
environment Environment variables in effect at runtime
kernel /proc/kernel from MPI rank zero
log.dat Complete execution log according to Suzerain
meminfo /proc/meminfo from MPI rank zero
output Complete execution log according to the batch system
qoi.dat Trace of scalar quantities of interest like Reθ
state.dat Trace of mean and fluctuating conserved state
version Suzerain version information from the compiled binary

are Suzerain restart files. Table D.2 describes a subset of the data captured. An effort

was made to preserve the discrete operator details so that others might post-process

the fields using consistent numerics but without needing access to a B-spline package.

While fields are stored as Fourier and B-spline expansion coefficients for efficiency and

operational flexibility, Suzerain can convert this data to physical space if necessary.

During simulation execution, in situ instantaneous mean samples of various

quantities as a function of wall-normal position are taken more frequently than full

restart checkpoints. The samples are stored in separate HDF5 files sharing much with

Suzerain’s restart files. The quantities thus sampled are a superset of information

necessary to compute the instantaneous Favre-averaged Navier–Stokes residuals per

Section 3.2.

After a simulation completes, all such samples and associated instantaneous
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Table D.2: A small subset of the details comprising a Suzerain restart file. HDF5 com-
ments in the file provide operational context. For example, information on field storage
ordering is provided in the comments of /rho, /rho_E, etc.

HDF5 Dataset Contents

alpha Ratio of bulk to dynamic viscosity
beta Temperature power law exponent
breakpoints_y Breakpoint locations used for wall-normal B-spline basis
collocation_points_x Collocation points for the dealiased, streamwise X direction
collocation_points_y Collocation points for wall-normal discrete operators
collocation_points_z Collocation points for the dealiased, spanwise Z direction
DAFx Dealiasing factor in streamwise X direction
DAFz Dealiasing factor in spanwise Z direction
Dy0T Transpose of banded, wall-normal Y collocation mass matrix
Dy1T Transpose of banded, wall-normal Y first derivative
Dy2T Transpose of banded, wall-normal Y second derivative
evmagfactor Safety factor in (0,1] used to adjust time step aggressiveness
gamma Ratio of specific heats
htdelta Wall-normal breakpoint hyperbolic tangent stretching
knots Knots used to build B-spline basis
k Wall-normal B-spline order (4 indicates piecewise cubic)
kx Wavenumbers in streamwise X direction
kz Wavenumbers in spanwise Z direction
Lx Nondimensional grid length in streamwise X direction
Ly Nondimensional grid length in wall normal Y direction
Lz Nondimensional grid length in spanwise Z direction
Ma Mach number
Nx Global logical extents in streamwise X direction
Ny Global logical extents in wall-normal Y direction
Nz Global logical extents in spanwise Z direction
Pr Prandtl number
Re Reynolds number
rho Nondimensional density
rho_E Nondimensional total energy
rho_u Nondimensional streamwise momentum
rho_v Nondimensional wall-normal momentum
rho_w Nondimensional spanwise momentum
t Simulation physical time
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residuals are aggregated into a single “reduced data” HDF5 file. This reduced data

permits third parties to easily access many first and second order turbulence statistics

without requiring them to post-process many gigabytes of raw field data on a dedicated

cluster environment. In addition, the autoregressive uncertainty estimates described

in Section 4.3 are included for each Reynolds-averaged scalar. This reduced data is

easily downloadable and may be imported into common software like GNU Octave,

MAT L A B®, Mathematica®, or Python in a single command.
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