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The Boltzmann Transport Equation (BTE) has been the keystone of

the kinetic theory, which is at the center of Statistical Mechanics bridging the

gap between the atomic structures and the continuum-like behaviors. The ex-

istence of solutions has been a great mathematical challenge and still remains

elusive. As a grazing limit of the Boltzmann operator, the Fokker-Planck-

Landau (FPL) operator is of primary importance for collisional plasmas. We

have worked on the following three different projects regarding the most im-

portant kinetic models, the BTE and the FPL Equations.

(1). A Discontinuous Galerkin Solver for Nonlinear BTE We pro-

pose a deterministic numerical solver based on Discontinuous Galerkin (DG)

methods, which has been rarely studied. As the key part, the weak form of the

collision operator is approximated within subspaces of piecewise polynomials.

To save the tremendous computational cost with increasing order of polynomi-

als and number of mesh nodes, as well as to resolve loss of conservations due to
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domain truncation and DG approximation, the following combined procedures

are applied. First, the collision operator is projected onto a subspace of basis

polynomials up to first order. Then, at every time step, a conservation routine

is employed to enforce the preservation of desired moments (mass, momentum

and/or energy), with only linear complexity. The asymptotic error analysis

shows the validity and guarantees the accuracy of these two procedures. We

applied the property of “shifting symmetries” in the weight matrix, which con-

sists in finding a minimal set of basis matrices that can exactly reconstruct

the complete family of collision weight matrix. This procedure, together with

showing the sparsity of the weight matrix, reduces the computation and stor-

age of the collision matrix from O(N3) down to O(N2).

(2). Spectral Gap for Linearized Boltzmann Operator Spectral gaps

provide information on the relaxation to equilibrium. This is a pioneer field

currently unexplored form the computational viewpoint. This work, for the

first time, provides numerical evidence on the existence of spectral gaps and

corresponding approximate values. The linearized Boltzmann operator is pro-

jected onto a Discontinuous Galerkin mesh, resulting in a “collision matrix”.

The original spectral gap problem is then approximated by a constrained min-

imization problem, with objective function the Rayleigh quotient of the “col-

lision matrix” and with constraints the conservation laws. A conservation

correction then applies. We also study the convergence of the approximate

Rayleigh quotient to the real spectral gap.

(3). A Conservative Scheme for Approximating Collisional Plasmas

vii



We have developed a deterministic conservative solver for the inhomogeneous

Fokker-Planck- Landau equations coupled with Poisson equations. The origi-

nal problem is splitted into two subproblems: collisonless Vlasov problem and

collisonal homogeneous Fokker-Planck-Landau problem. They are handled

with different numerical schemes. The former is approximated using Runge-

Kutta Discontinuous Galerkin (RKDG) scheme with a piecewise polynomial

basis subspace covering all collision invariants; while the latter is solved by

a conservative spectral method. To link the two different computing grids, a

special conservation routine is also developed.

All the projects are implemented with hybrid MPI and OpenMP. Nu-

merical results and applications are provided.
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Chapter 1

Background Introduction

After centuries of work, people eventually found that the study of fluid

mechanics contributed in an essential way, with the work of Boltzmann and

Maxwell, to the understanding of the motion of atoms. All the equations

involved are undoubtedly valid, since they are just consequence of the Newton

laws of mechanics either applied directly to the molecules of the fluid, or, at a

more macroscopic level to elementary volumes of fluid (even if it requires some

non-obvious work to go from the atomic description to the continuous one).

There exists one “chain” of equations [36],

I Hamiltonian system of particles

⇓

II Boltzmann equations

⇓

III Euler/Navier-Stokes equations

⇓

IV Models of turbulence
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where each step is deduced from the previous one with introduction of hier-

archy of equations and a process of closure which in some cases leads to the

appearance of irreversibility.

The above models have their own regimes of validity. The continuum

description is valid as long as the smallest significant volume in the flow con-

tains a sufficient number of molecules to establish meaningful averages. Thus,

the gas can be modeled in its macroscopic level, for near statistical equilibrium

states. In such case, many flow and heat transfer problems can be described by

a rather low number of partial differential equations, namely the well known

Navier-Stokes equations, revealing a formal link between the macroscopic and

microscopic descriptions. However, the conservation equations are not closed

systems unless the shear stresses and heat flux can be expressed in terms of the

other macroscopic quantities. In many cases, it fails to meet this requirement.

And what’s more, the Navier-Stokes equations will fail for rapidly changing

processes, when gradients of the macroscopic variables become so steep that

their scale length is of the same oder of mean free path l0. The regimes of va-

lidity can be categorized by the the dimensionless measure Knudsen number,

Kn = l0
Lflow

(Lflow is the characteristic dimension of the flow), as follows [69].

• Kn � 1, i.e. Kn � 0.01. Hydrodynamic regime; well described by the

Navier-Stokes equations.

• 0.01 � Kn � 0.1. The slip flow regime, where the Navier-Stokes equa-

tions can describe the flow well, but must be supplied with boundary
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conditions that describe velocity slip and temperature jumps at gas-wall

interfaces (rarefaction effects).

• 0.1 � Kn � 10. The transition regime, where the Navier-Stokes equa-

tions fail, and the gas must be described in greater detail, e.g., by the

Boltzmann equation, or by extended macroscopic models.

• Kn � 10. Free molecular flow, where collisions between particles do

not play an important role and the flow is dominated by particle-wall

interactions.

The kinetic theories of gases arise from study of rarefied gases, which

are outside the hydrodynamic regime, i.e. Kn � 0.01. Rarefied gas flows

play an important role in applications like aerospace design (space shuttle

reentry; Figure 1.1), vacuum engineering (material processing, pumps), or,

more recently, nanotechnology. For example, planetary vehicles such as the

space shuttle typically operate in rarefied gas environments at the outer limits

of the atmosphere. During re-entry such craft are subject to extremes of

velocity and altitude, so it is important that the aerodynamic and thermal

loads on the vehicle are properly characterized if the feasibility of the vehicle

design is to be accurately assessed.

Mathematically such flows are described by the Boltzmann Transport

Equations (BTE). The BTE can be used to determine how physical quantities

change, such as heat energy and momentum, when a fluid is in transport, and

other properties characteristic to fluids such as viscosity, thermal conductivity

3



also electrical conductivity (by treating the charge carriers in a material as a

gas) can be derived. Its descriptive power makes it indispensable for predicting

non-continuum phenomena in gases when experimental data is limited or not

available. Its applications range from external aerodynamics and thruster

plume flows to vacuum facilities and microscale devices.

If we have a “gas” of charged particle or charge carriers, the binary col-

lisions are then replaced by Coulombic interactions and the collisions become

grazing. This is the well-known Fokker-Planck-Landau equation (FPL), which

is of primary importance for plasma applications. Plasma is an ionized gas

that can occur and apply in many cases ( 99% of the visible universe!), such as

semiconductors, controlled fusion (long-term sustainable energy sources, Fig-

ure 1.2; plasma sheath problem, Figure 1.3), space shuttle reentry (plasma

sheath problems; Figure 1.1), etc.

Figure 1.1: Space Shuttle reentry
and its glowing plasma trail (Space
Shuttle Atlantis in the sky on July
21, 2011, to its final landing) [52]

Figure 1.2: The fusion plasma [118]
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Similar to molecular gas dynamics, plasmas can be also described on

fluid level or kinetic level. Fluid theory on plasma is relatively simple and

the approximations are accurate for majority of observed phenomena, whose

distributions are assumed to be Maxwellians. However, there are still many

cases when fluid description is not adequate. In such cases, the kinetic theory

on plasmas will play an important role. For plasmas of sufficiently high tem-

peratures, collisions are negligible and thus a collisionless model, e.g. Vlasov

equation (with an electromagnetic force), becomes fundamental. When col-

lisions take effects, things can be quite different. There are collisions with

neutral atoms (modeled by Krook collision terms [40]) or collisions due to

Coulomb potentials, which is the Fokker-Planck-Landau operator. Collisions

can cause many different phenomena which cannot be tracked through Vlasov

models, for instance wave-particle interactions (e.g. “electron trapping” and

nonlinear damping), wave-wave interactions and some other nonlinear effects

[40].

Figure 1.3: The plasma sheath [85] Figure 1.4: The Solar Plasma
Sheath [1]
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One of our interests is the “plasma sheath” problem (or, Debye sheath,

electrostatic sheath, Langmuir sheath; Figure 1.3). It occurs to the plasma

at the “wall” – contact surface or interface between two plasmas of different

charge densities and energies, and is the transition from a plasma to a solid

surface (any cold wall) or to a different plasma. When ions and electrons hit

the wall, they recombine and vanish. However, electrons have much lighter

mass and faster thermal speed, so more electrons will fly out of the plasma,

charging the wall negative relative to the bulk plasma, and leave the plasma

with a potential positive with respect to the wall. As the potential increases,

more and more electrons are reflected by the sheath potential. An equilibrium

is finally reached, and a layer is formed. Due to Debye shielding, the thickness

of the layer will be several Debye length. Study on such phenomena has a wide

range of importance in, for example, seeking for materials which can cope with

the very demanding requirements of a fusion device or understanding how the

Sun’s plasma sheath (Figure 1.4) modulate the solar current (The solar wind

disappearance event on May 10-12, 1999 [101]).

Still, many subjects about such nonlinear effects in collisional plasmas

remain to be well understood.

The outline for the rest of the dissertation is organized as follows.

• Chapter 2 provides some basics on the Boltzmann equations;

• Chapter 3 describes our conservative DG solver for the Boltzmann equa-

tion;

6



• Chapter 4 goes to the computation of spectral gaps for the linearized

Boltzmann operator;

• Chapter 5 contributes to our conservative solver for the collisional plasma

model, i.e inhomogeneous FPL equations coupled with Poisson equation.

• Chapter 6 summarizes the significance and originality of the thesis and

also plans for future work.
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Chapter 2

Preliminaries On Boltzmann Equations

The BTE is an integro-differential transport equation, with the solu-

tion a phase probability density distribution f(x, v, t) ∈ Ωx×Rdv ×R+ (where

Ωx ⊆ Rdx) measuring the likelihood to find molecules at a location x with

molecular velocities v at a given time t. The classical BTE models interac-

tions or collisions through a bilinear collision operator, where the collisional

kernel models the intermolecular potentials and angular scattering mechanisms

known as the angular cross-section. These intramolecular potentials model

from hard spheres to soft potentials up to Coulombic interactions (important

for plasma collisional modeling). The scattering angular function models the

anisotropic nature of the interactions. The angular cross sections could be

integrable (Grad cutoff kernels) or non-integrable (Grad non-cutoff kernels).

The BTE with initial boundary values reads

∂f(x, v, t)

∂t
+ v · ∇xf(x, v, t) + F (x, t) · ∇vf(x, v, t) = Q(f, f)(x, v, t) (2.1)

f(x, v, 0) = f0(x, v) ,

f(x, v, t) = fB(x, v, t) x ∈ ∂Ωx ,

where the right hand side, the bilinear integral collisional operator, can

8



be defined weakly or strongly. The strong form goes

Q(f, f) =

∫
v∗∈Rd,σ∈Sd−1

[
1
′e ′J

′f ′f∗ − ff∗]B(|v − v∗|, σ) dσdv∗ , (2.2)

where, for simplicity, here and in the following, denote ′f = f(′v), f∗ = f(v∗)

and ′f∗ = f(′v∗) (the right prime means dependency on post-collisional velocity

v′, that is, f ′ = f(v′), f ′∗ = f(v′∗)) and drop the dependencies on x, t. ′v,

′v∗ are pre-collisional velocities corresponding to v, v∗. The integration is

parametrized in terms of the center of mass and relative velocity. And on

the d − 1 dimensional sphere, integration is done with respect to the unit

direction given by the elastic post collisional relative velocity. The parameter

′e (depending on pre relative velocity ′u) is the restitution coefficient covering

the range from sticky (e = 0) to elastic (e = 1) interactions. ′J is the Jacobian

of pre-collisional velocities w.r.t post-collisional ones.

The pre- and post-collisional velocities obey

u = v−v∗, v′ = v+
β

2
(|u|σ−u), v′∗ = v∗−

β

2
(|u|σ−u), β =

1 + e

2
(2.3)

Here is the key for the model, the collision kernel

B(|u|, σ) = |u|γb(cos(θ)), γ ∈ (−d,+∞) , (2.4)

with angular cross-sections

cos(θ) =
u · σ
|u|

, b(cos(θ)) ∼ sin−(d−1)−α(
θ

2
) as θ ∼ 0 , α ∈ (−∞, 2) (2.5)

Without loss of generality, we can assume

b(cos(θ)) =
1

2d−1π
sin−(d−1)−α(

θ

2
) . (2.6)
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The regularity parameters γ and α actually corresponds to different

types of interactions and different power-law molecular potentials. For inter-

action potentials obeying spherical repulsive laws

φ(r) = r−(s−1), s ∈ [2,+∞) ,

the collision kernel and angular cross-section are explicit for d = 3, that is,

γ = (s− 5)/(s− 1) and α = 2/(s− 1) (see [36]). As a convention, −d < γ <

0 defines Soft Potentials, γ = 0 is the Maxwell Molecules type interaction,

0 < γ < 1 describes Variable Hard Potentials and γ = 1 is the classical Hard

Sphere model. Also, the angular cross-sections can be of short range or long

range, that is, b(cos(θ)) can be integrable for α < 0 and non-integrable when

α ≥ 0. When α = 2, together with γ = −3, models the grazing collisions under

Coulombian potentials, which deduces to the Fokker-Planck-Landau equations

(shown later).

The weak form for (2.2), or called Maxwell form, after a change of

variable u = v − v∗ is given by∫
Rd
Q(f, f)(v)φ(v)dv =

∫
v,u∈Rd

f(v)f(v−u)

∫
σ∈Sd−1

[φ(v′)−φ(v)]B(|u|, σ)dσdudv ,

(2.7)

which is a double mixing convolution. Such a structure will be the base for

future design of solvers.

Remark. As is proposed recently by I.M. Gamba, such double mixing

convolution structures (with various quantified state transition probabilities

B) are pretty universal for kinetic evolutions of non-equilibrium systems of
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birth-death dynamics, including Boltzmann equations, Landau equations (in-

troduced in Chapter 5), etc. Such evolutions can be all derived from the Kac

Master equation, which represents a Markov process.

For the time being, in the whole report, we only consider elastic colli-

sions as examples, i.e. β = 1 in (2.3).

In spite of its complicated form, Q(f, f) enjoys many interesting and

remarkable properties. Among them, the followings are most fundamental and

important [36].

2.1 Collision Invariants and Conservation Laws

By symmetry of (2.7), one can find that∫
Rd
Q(f, f)(v)φ(v)dv =

1

2

∫
R2d

∫
Sd−1

ff∗[φ+φ∗−φ′−φ′∗]B(|v−v∗|, σ)dσdv∗dv .

(2.8)

So, one can see (2.8) is identical to zero if

φ+ φ∗ = φ′ + φ′∗ . (2.9)

Functions φ satisfying (2.9) are called “collision invariants”. The right-

hand side of (2.8) is the average change of φ(v) in unit time due to collisions.

The Boltzmann theorem [38] tells us that, (2.9) holds with v and v∗ satisfying

(2.3) if and only if φ is given by

φ(v) = a+ b · v + c|v|2 , (2.10)
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of which, φ(v) = 1, v, |v|2 are the d + 2 elementary collision invariants, which

correspond to the conservation of mass, momentum and kinetic energy.

2.2 Entropy Dissipation

For any f > 0, take φ = log f , then from the weak form (2.8)∫
Rd

log fQ(f, f)dv =
1

4

∫
R2d

∫
Sd−1

(ff∗−f ′f ′∗) log(f ′f ′∗/ff∗)B(|v−v∗|, σ)dσdv∗dv .

(2.11)

We know (x − y) log(x/y) ≥ 0 and equality holds if and only if x = y; and

notice that B(|v − v∗|, σ) ≥ 0 (‘=’ holds only at θ = 0), so,∫
Rd

log fQ(f, f)dv ≤ 0 , (2.12)

and equality holds iff

f ′f ′∗ = ff∗ (2.13)

holds almost everywhere. Taking the logarithm of both sides gives log f ′ +

log f ′∗ = log f + log f∗. Similar with what we did for (2.9), it’s provable that

such f ’s exist and are given by

f(v) = exp(a+ b · v + c|v|2) . (2.14)

In order to make f integrable over the whole velocity space, c must be negative,

which gives

f(v) = A exp(−α(v − ξ)2) , (2.15)
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where α > 0 and ξ is a constant vector. This is called Maxwellian distribution,

usually written by

M(v) =
ρ

(2πT )
d
2

exp(−|v − v̄|
2

2T
) , (2.16)

where ρ is the macroscopic density, v̄ the macroscopic velocity and T the

macroscopic temperature (= Rϑ where ϑ is the absolute temperature, R is a

gas constant).

Since the entropy dissipation rate
∫

Rd log fQ(f, f)dv is nonpositive,

then the Boltzmann inequality (2.12) holds for all positive f , and equality

holds if and only if f is a Maxwellian distribution, which is a solution to a

vanishing collision integral Q(f, f) = 0.

2.3 The H-theorem

If we define

H =

∫
Rd
f log fdv , (2.17)

and for the i-th velocity component,

Hi =

∫
Rd
vif log fdv , (2.18)

where f is any function satisfying the Boltzmann equation

∂tf + v · ∇xf + F · ∇vf = Q(f, f) , (2.19)

where, for the sake of generality, the (velocity-independent) body force term

F which is usually left out is introduced here. Then, multiplying by 1 + log f
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on both sides of the Boltzmann equation, integrating over the whole velocity

domain, noticing ∇(f log f) = (1+log f)∇f and the special collision invariant

“1”, we obtain

∂H

∂t
+∇x ·H =

∫
Rd

log fQ(f, f)dv ≤ 0 , (2.20)

where H = (H1,H2,H3). Now, we introduce a quantity

H =

∫
Rd

H dx . (2.21)

In the case of Maxwellian distribution, or Q(f, f) = 0, H is conservative, since

we can treat H as “density” and then H will be the corresponding flow of H

(now H is like the “mass”; H = H u, ∂H
∂t

+∇· (H u) = 0)(here “macroscopic

velocity” u is just the corresponding interpretation, not the true one), or we

just take the total time derivative of H and notice the vanishing collision

operator. In general case (2.20), however, we can say molecular collisions act

as a negative source for the quantity H.

We now split H into a macroscopic (convective) flow of H, H u and a

microscopic flow of H, H−H u.

We integrate both sides of (2.20) w.r.t x, if the boundary ∂Ωx of the

whole integration region Ωx moves with velocity u0, then we get

dH

dt
−
∫
∂Ωx

(H−H u0) · ndS =

∫
Ωx

∫
Rd
Q(f, f) log fdvdx ≤ 0 , (2.22)

where n is the inward normal.

In conclusion, we get two classical forms of the celebrated H-theorem

of Boltzmann equation:

14



1. If the gas is homogeneous (∂f/∂x = 0 and hence ∇x · H in (2.20) is

zero), the quantity H never increases with time and is steady iff the

distribution is Maxwellian.

2. If the gas is enclosed in a region such that (e.g. molecules are specularly

reflected at the boundary)∫
∂Ω

(H−H u0) · ndS ≤ 0 , (2.23)

then the quantity H never increases with time and is steady iff the dis-

tribution is Maxwellian.

The reason why Boltzmann equation is of basic importance is that

it shows the Boltzmann equation has a basic feature of irreversibility : the

quantity H always decreases even when it’s not released to the surroundings

when no energy exchange takes place between gas and surroundings.

At the end, we want to mention that the decreasing of H in the absence

of energy change with the surroundings shows that the Boltzmann equation

describes an evolution towards a state of minimum H, provided no additional

H flows in from the exterior. The final state (t → ∞) will probably be a

steady state provided such a state is compatible with boundary conditions and

is stable. More particular than steady state is the equilibrium state defined

as the steady state with energy exchange with the surroundings. We mention

that the distribution function must be Maxwellian in an equilibrium; and no

steady solutions of the Boltzmann equation exist when the gas is bounded by
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specularly reflecting walls except for Maxwellians. Such a propety is quite

basic but of great importance for justifying any numerical solutions. This will

be one of the benchmark tests for our numerical sovers.

2.4 Macroscopic Fluid Dynamic Limits

Now we consider the problem of evaluating the macroscopic quantities

with the distribution function given so that we hope to get a picture of how

the microscopic description and macroscopic description of gas dynamics are

connected.

The macroscopic limits are obtained when the fluid becomes dense

enough that particles undergo many collisions over the scales of interest. This

situation is described by Knudsen number mentioned above.

It’s easy to understand the definitions of mass density and mean veloc-

ity or flow velocity

ρ(x, t) =

∫
v∈Rd

fdv ρ(x, t)V̄ (x, t) =

∫
v∈Rd

vfdv , (2.24)

which can be directly observed.

In fact, each molecule has its own velocity v that can be decomposed

into the sum of macroscopic velocity u and a random term ξ (or called peculiar

velocity) which describes the random deviation of the molecular velocity from

the ordered motion with a velocity u:

v = u+ ξ . (2.25)
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Obviously, the random velocity coincides with molecular velocity when the gas

is macroscopically at rest. More, the random velocity satisfies∫
Rd
ξfdv = 0 . (2.26)

The “momentum density” ρ(x, t)V̄ (x, t) actually can be interpreted as

a mass flow. Simiarly, we can define “momentum flow”. Since momentum is

a vector, we have to consider the flow of the j-th component of momentum in

the i-th direction: ∫
Rd
vi(vjf)dv =

∫
Rd
vivjfdv . (2.27)

It shows that the momentum flow is described by a symmetric tensor of second

order. In order to find out how it will appear in a macroscopic description,

following the idea in (2.25)∫
Rd
vivjfdv = ρuiuj +

∫
Rd
ξiξjfdv . (2.28)

Now, we get two parts: the first is the macroscopic momentum flow (momen-

tum density times velocity); while the second is a hidden momentum flow due

to the random motion of the molecules. To understand the latter term, we as-

sume no external body force and take a fixed region of the gas and observe the

change of momentum inside it. We find that, the change can be only partially

attributed to the matter that enters and leaves the region, leaving the other

part of the change which has no macroscopic explanation, unless we attribute

it to the action of a force exerted on the boundary of the region of interest

by the neighboring regions of the gas. That means, the integral of
∫

Rd ξiξjfdv
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now contributes to the stress tensor. We write

pij =

∫
Rd
ξiξjfdv , (2.29)

which, in the macroscopic equations derived from the Boltzmann equations,

plays the same role as the stress tensor in the conservation equations derived

from macroscopic considerations.

Similarly, we can also define “energy density” and “energy flow”, which

gives rise to the macroscopic heat flow.

We conclude and list macroscopic quantities or informations of interest,

which are contained in the single distribution function f , for d = 3,

Density ρ(x, t) =

∫
v∈Rd

f(x, v, t)dv

Flow velocity vector V̄ (x, t) =
1

ρ(x, t)

∫
v∈Rd

vf(x, v, t)dv

Temperature T (x, t) =
1

3ρ(x, t)

∫
v∈Rd

|v − V̄ |2f(x, v, t)dv

Pressure p(x, t) =
1

3

∫
v∈Rd

|v − V̄ |2f(x, v, t)dv = ρ(x, t)T

Specific internal energy e(x, t) =
1

2ρ(x, t)

∫
v∈Rd

|v − V̄ |2f(x, v, t)dv =
3

2
T

Stress tensor, p(x, t) = {pij}(x, t) pij =

∫
v∈Rd

(vi − Vi)(vj − Vj)f(x, v, t)dv

Heat-flow vector q(x, t) =
1

2

∫
v∈Rd

(v − V̄ )|v − V̄ |2f(x, v, t)dv

(2.30)

Then, we multiply the 5 elementary collision invariants on both sides

of the BTE (2.1), and noticing the above definitions, we get
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∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pij) = ρFi (2.31)

∂

∂t
[ρ(

1

2
u2 + e)] +

∂

∂xj
[ρuj(

1

2
u2 + e) + pjiui + qj] = ρFjuj

which are the basic equations of continuum mechanics, particularly of

macroscopic gas dynamics and physically interpreted as conservation of mass,

momentum and energy.

However, they are not closed unless the so-called “constitutive equa-

tions” are introduced. In the case of gas, or more generally, a fluid, two models

are well known:

1. Euler (or ideal) fluid:

pij = pδij; qi = 0 . (2.32)

2. Navier-Stokes-Fourier (or viscous and thermally conducting) fluid:

pij = pδij − µ(
∂ui
∂uj

+
∂uj
∂ui

)− λ∂uk
∂xk

δij; qi = −κ ∂T
∂xi

, (2.33)

where µ and λ are the viscosity coefficients, and κ is the heat conducting

coefficient.
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Chapter 3

A Conservative Solver for Boltzmann

Equation Based On Discontinuous Galerkin

Scheme

In this chapter, we describe our deterministic numerical solver based

on Discontinuous Galerkin (DG) methods, which has been rarely studied.

3.1 Introduction

The BTE is of primary importance in rarefied gas dynamics. For a

gas flow, when the Knudsen number is far less than unity, the bulk quantities

can be deduced from the microscopic level and it’s enough to work under the

hydrodynamic regime. However, when the Knudsen number is of order unity,

classical macroscopic models, the Navier-Stokes equations for example, fail

to correctly capture the macroscopic quantities. In such cases, a kinematics

approach based on the Boltzmann equation modeling rarefied gases rapidly

dominates.

The existence of solutions has been a great mathematical challenge and

still remains elusive. That makes the numerical approximation to solutions a

very challenging problem. Albeit these, solving the BTE and studying the
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evolution properties are among the most fundamental problems in fluid dy-

namics. Extensive efforts have been put onto the numerical treatment of BTE

and other kinetic equations. The main challenges include, but not limited to,

the high dimensionality in the collision operator and revealing the collision

mechanism through suitable formulating.

Basically, there are a few classes of computational methods for solv-

ing the BTE. One of them is the well-known Direct Simulation Monte Carlo

(DSMC) method, which was developed initially by Bird [11] and Nanbu [100]

and more recently by [109, 110]. Currently, there is extensive work from

Rjasanow and Wagner [110] and references therein, to determine accurately

the high-velocity tail behavior of the distribution functions from DSMC data.

DSMC developed to calculate statistical moments under near stationary regimes,

but are not efficient to capture transients as well as details of the solution

f(x, v, t). In addition these methods inherit statistical fluctuations that be-

come a bottleneck in the presence of non-stationary flows or close to continuum

regimes.

During the last decade, deterministic methods, such as Discrete Ve-

locity or Spectral Methods, have been attracting more attention. Discrete

velocity models were developed by Broadwell [28] and mathematically studied

by Cabannes, Illner and Kawashima among many authors [30, 84, 88]. More

recently these models have been studied for many other applications on ki-

netic elastic theory in [17, 37, 80, 93–96, 123]. Spectral methods, which have

been originally developed by Pareschi, Gabetta and Toscani [64], and later
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by Bobylev and Rjasanow[25] and Pareschi and Russo[106], are supported

by the ground breaking work of Bobylev[14] using the Fourier Transformed

Boltzmann Equation to analyze its solutions in the case of Maxwell type

of interactions. More recent implementations of spectral methods for the

non-linear Boltzmann equation are due to Bobylev and Rjasanow [27], who

developed a method using the Fast Fourier Transform (FFT) for Maxwell

type interactions, and then for Hard-Sphere interactions [26] using general-

ized Radon and X-ray transforms via FFT. Simultaneously, L. Pareschi and

B. Perthame [105] developed a similar scheme using FFT for Maxwell type

interactions. Later, I. Ibragimov and S. Rjasanow [83] developed a numerical

method to solve the space homogeneous Boltzmann Equation on a uniform

grid for variable hard potential (VHP) interactions with elastic collisions. We

mention that, most recently, Filbet and Russo[59, 61] implemented a method

to solve the space inhomogeneous Boltzmann equation using the previously

developed spectral methods in [105, 106]. Conservative Lagrangian-Spectral

Method, which uses Fourier Transform as the main tool, was introduced by

I.Gamba and Sri H.Tharkabhushanam [68, 69], and more recently was extended

to anisotropic interactions by I. Gamba and J. Haack [86, 87]. It has the ca-

pability of approximating solutions to elastic and inelastic collisional models,

for both isotropic and anisotropic non-cutoff angular cross-sections. For other

deterministic schemes, we suggest refer to [7].

While the behavior of the spectral methods may rely on the smooth-

ness of the underlying solutions, in order to capture more irregular features,
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the discontinuous Galerkin (DG) [51] method may be more appropriate, due

to its locality and flexibility. It is a finite element method using discontin-

uous piecewise polynomials as basis functions and numerical fluxes based on

upwinding for stability. Please refer to [51] for more details. For problems

of charge transport in semiconductor devices, DG methods are very promis-

ing and have provided accurate results at a comparable computational cost

[45–48, 50]. It seems, DG could be a potential method for kinetic equations.

However, there are barely any previous work on full nonlinear BTE. To our

best knowledge, one try might be [82], which is only dealing with 1D proto-

type of BTE. Most recently, A. Majorana [91] published a work on a DG-based

BTE solver. He derived a set of partial differential equations on t, x by a par-

tial application of the DG method, which is only on variable v. The collision

invariants are used as basis to guarantee the conservations laws. However, it’s

unclear how the collisional integrals are evaluated and this evaluation actually

requires O(N3) operations. Also very few and limited numerical results were

provided. Another most recent work comes from A. Alekseenko et al [2]. Our

scheme was developed independently and is different than the one in [2], in the

way of constructing basis functions, evaluating angular cross-section integrals

and the enforcing of conservation routines. In addition, we are able to provide

asymptotic error analysis.
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3.2 The Discontinuous Galerkin Projections and Eval-
uations of the Collision Integrals

We are working in the velocity domain v ∈ Rd. The general theory of

homogeneous Boltzmann equation tells us [22, 67] that if Ωv is a sufficiently

large velocity domain such that the initial state f0 enjoys most of its mass and

energy inside it, then Ωv (or one of comparable size) will also contain most of

the mass and energy of the solution f for any given time t > 0. For example,

if the initial state f0 ∈ L1
ea|v|2

(Rd), then f(v, t) ∈ L1
eb|v|2

(Rd) for some positive

constant b ≤ a [4]. Thus, it’s reasonable to assume a compact support for the

solution and truncate the whole velocity domain to finite Ωv = [−L,L)d.

A regular mesh is applied, that is, we divide each direction into n

disjoint elements uniformly, such that [−L,L] =
⋃
k Ik, where interval Ik =

[wk− 1
2
, wk+ 1

2
), wk = −L + (k + 1

2
)∆v, ∆v = 2L

n
, k = 0 . . . n − 1 and thus

there is a Cartesian partitioning Th =
⋃
k Ek, with uniform cubic element

Ek = Ik1 ⊗ Ik2 ...⊗ Ikd , k = (k1, k2, ..., kd).

Discontinuous Galerkin methods assume piecewisely defined basis func-

tions, that is

f(v, t) =
∑
k

uk(t) · Φ(v)χk(v), (3.1)

where multi-index k = (k1, k2, ..., kd), 0 ≤ |k| < (n − 1)3; χk(v) is the char-

acteristic function over element Ek; coefficient vector uk = (u0
k, ...,u

p
k), where

p is the total number of basis functions locally defined on Ek; basis vector

Φ(v) = (φ0(v), ..., φp(v)). Usually, we choose element of basis vector Φ(v)

24



as local polynomial in P p(Ek), which is the set of polynomials of total de-

gree at most p on Ek. For sake of convenience, we select the basis such that

{φi(v) : i = 0, ..., p} are orthogonal. For example, when d = 3, p = 1, local

linear basis over element Ek can be set as

{1, v1 − wk1

∆v
,
v2 − wk2

∆v
,
v3 − wk3

∆v
}. (3.2)

One fact should be addressed that, no matter what types of numerical

schemes for Boltzmann-type equations, the treatment of the collision operator

always remains the most important and challenging part. The remaining left

hand side, i.e. advection part of (2.1) would just follow the standard way of

DG-FEM. So, first of all, let’s consider the homogeneous problem

∂f(v, t)

∂t
= Q(f, f)(v, t), (3.3)

and focus on the weak form (2.7).

Apply the i-th basis function on element Em, φi(v)χk(v), to (2.7) and

operate a change of variables (v, u)← (v, v∗), where u = v − v∗ is the relative

velocity,∫
v∈Em

Q(f, f)φi(v)dv

=

∫
v∈Em,v∗∈Rd

f(v)f(v − u)

∫
σ∈Sd−1

[φi(v
′)χm(v′)− φi(v)χm(v)]|u|γb(u · σ

|u|
)dσdudv

=
∑
k

∑
k̄

uTkGm,i(k, k̄)uk̄ ,

(3.4)

where we recall that the post-collisional velocity v′ = v + 1
2
(|u|σ − u). Here,

for fixed k, k̄,m, i, the entry Gm,i(k, k̄) is actually a (p + 1)× (p + 1) matrix,
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defined as

Gm,i(k, k̄) =

∫
v∈Ek

∫
v−u∈Ek̄

Φ(v)⊗ Φ(v − u)χk(v)χk̄(v − u)|u|γ
∫

Sd−1 [φi(v
′)χm(v′)− φi(v)χm(v)]b(u·σ|u| )dσdudv .

(3.5)

The key is to evaluate the block entry Gm,i(k, k̄) in (3.5). Due to the

convolution formulation, the integrals w.r.t v, u can be approximated through

Triangular quadratures. Indeed, along each dimension, if vi ∈ Iki , v∗ ∈ Ik̄i ,

then (vi, ui) will form a parallelegram which can be divided into two triangles.

See Figure 3.1.

Figure 3.1: Along each dimension, (vi, ui) forms two right triangles

The integrals on the sphere take the most effort, because one has to

figure out how the Cartesian cubes intersect with the sphere. Let’s extract the

angular integrals in (3.5), denoted by gm,i(v, u), and study it separately

gm,i(v, u) =

∫
Sd−1

[φi(v
′)χm(v′)− φi(v)χm(v)]b(

u · σ
|u|

)dσ. (3.6)

26



For any fixed v, u, the post-collisional velocity v′ will be on the surface

of a ball centered at v − u
2

with radius |u|
2

. The angular cross-section b(cos θ)

itself may contain non-integrable singularity at θ = 0. However, the “gain-

loss” terms in the above square bracket will absorb the singularity in b(cos θ)

and make it integrable. Our scheme has to take this issue into account and

design a careful way of computing.

1. Integrable b(cos θ).

This case allows to split the “gain” and “loss” terms. Only “gain” terms

involve post-collisional velocity v′ and can be studied separately.

For d = 2, the angular integrals (4.70) can be evaluated analytically.

Indeed, for fixed v, u, the regions over the cycle σ = (sin θ, cos θ) such

that v′ = v + 0.5(|u|σ − u) ∈ Em can be exactly figured out, by solving

a system of trigonometric inequalities v1 + 0.5(|u| sin θ − u1) ∈ Im1

v2 + 0.5(|u| cos θ − u2) ∈ Im2

(3.7)

We have built a programmable routine of deriving all possible overlapped

intervals of θ.

The case d = 3 performs similarly. We solve the following nonlinear

trigonometric inequalities
v1 + 0.5(|u| sin θ cosϕ− u1) ∈ Im1

v2 + 0.5(|u| sin θ sinϕ− u2) ∈ Im2

v3 + 0.5(|u| cos θ − u3) ∈ Im3

(3.8)
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The third inequality will give a range for the polar angle θ, and all

integrals w.r.t θ will be performed by adaptive quadratures, say, CQUAD

in GSL [58]; for any fixed θ, the first two inequalities will decide the range

of azimuthal angle ϕ exactly (by invoking the routine mentioned above).

Note: The angle θ above is NOT the scattering angle defined in (2.5).

2. Non-integrable b(cos θ).

Consider a local spherical coordinate system with u being the polar direc-

tion. Then, consider a transformation which rotates the polar direction

back onto z-axis of the Cartesian coordinate system. The orthogonal

rotation matrix A can be constructed explicitly

d = 2:

A =
1

|u|

(
−u2 u1

u1 u2

)
(3.9)

d = 3:

A =
1

|u|


u1u3√
u2

1+u2
2

u2u3√
u2

1+u2
2

−
√
u2

1 + u2
2

− u2|u|√
u2

1+u2
2

u1|u|√
u2

1+u2
2

0

u1 u2 u3

 (3.10)

where we assume u2
1 + u2

2 6= 0, otherwise, the rotation matrix is reduced

to the identity matrix.

Then, consider a change of variable σ ← A−1σ = ATσ, for which the

Jocobian is 1. If denote by θ the angle between u and σ , as exactly

defined in (2.5), recalling post-collisional velocity v′ = v + 1
2
(|u|σ − u),
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we have

gm,i(v, u) =

∫
Sd−1

[φi ◦ χm(v + z)− φi ◦ χm(v)] b(cos θ)dσ

=

∫
Sd−1

[
φi ◦ χm(v − u

2
+
|u|
2
σ)− φi ◦ χm(v)

]
b(cos θ)dσ,

where, if d = 2: z = |u|
2
AT (sin θ, cos θ − 1)T , σ = AT (sin θ, cos θ)T ; if d =

3: z = |u|
2
AT (sin θ cosϕ, sin θ sinϕ, cos θ − 1)T , σ = AT (sin θ cosϕ, sin θ sinϕ, cos θ)T .

We take d = 3 for example. The whole domain of (θ, ϕ), i.e. the sphere,

can be divided into the following four subdomains: (1) S1 = [0, θ0] ×

[0, 2π]; (2) S2 = [θ0, θ1] × Iϕ(θ); (3) S3 = [θ0, θ1] × ([0, 2π] \ Iϕ(θ)); and

(4) S4 = [θ1, π]× [0, 2π]. Here θ0 is determined according to the following

strategy: when v ∈ Em, sin θ0
2

= min(1, 1
|u|dist(v, ∂Em)) by noticing that

|z| = |u| sin θ
2
; when v /∈ Em, θ0 is the smallest possible θ such that v′

lies in Em. θ1 is the largest possible θ such that v′ lies in Em. Iϕ(θ) are

effective intervals for ϕ, depending on θ, such that v′ lies in Em.

Due to the characteristic functions in the integrands of gm,i(v, u) (3.11),

we have the following four cases

(a) ‘0-0’: when v′ /∈ Em and v /∈ Em. It’s trivial because it contributes

nothing to the final weight matrix.

(b) ‘1-0’: when v′ ∈ Em but v /∈ Em. In this case, the effective domain

(where gm,i(v, u) 6= 0) is (θ, ϕ) ∈ S2

gm,i(v, u) =

∫
S2

φi(v
′)b(cos θ) sin θdθdϕ
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(c) ‘0-1’: when v′ /∈ Em but v ∈ Em. In this case, the effective domain

is (θ, ϕ) ∈ S3 ∪ S4.

gm,i(v, u) = −
∫
S3∪S4

φi(v)b(cos θ) sin θdθdϕ

(d) ‘1-1’: when v′ ∈ Em and v ∈ Em. In this case, the effective domain

is (θ, ϕ) ∈ S1 ∪ S2.

gm,i(v, u) =

∫
S1∪S2

[φi(v
′)− φi(v)] b(cos θ) sin θdϕdθ

We have to pay special attention to integrals over S1, where the

singularity is absorbed. Recall φi(v) are polynomial basis locally

defined on each element Em and v′ = v + z. Since z ∼ 0, we take

the Taylor expansion of φi(v
′) around v,

φi(v
′)− φi(v) = ∇φi(v) · z +

1

2
zT∇2φi(v)z +O(|z|3)

So, it’s not hard to observe that, for terms with lowest power of

sin θ, the azimuthal angle ϕ will be integrated out and leaves only

powers of 1−cos θ, which will help cancel the singularity in b(cos θ).

30



That is,∫ θ0

0

∫ 2π

0

[φi(v
′)− φi(v)] b(cos θ) sin θdϕdθ

=

∫ θ0

0

∫ 2π

0

[φi(v
′)− φi(v)] sin−2−α θ

2
sin θdϕdθ

= 4

∫ t0

0

∫ 2π

0

[φi(v
′)− φi(v)] t−1−αdϕdt (change t = sin

θ

2
)

≤ C

∫ θ0

0

(1− cos θ) sin−2−α θ

2
sin θdϕdθ

≤ C

∫ t0

0

t1−αdt ( change t = sin
θ

2
, t0 = sin

θ0

2
)

=
C

2− α
t2−α0 ( notice α < 2).

The sets S1 and S2 can be combined. The outer integration w.r.t the

polar angle θ is performed using adaptive quadratures , say CQUAD in

GSL [58], and the inner integration w.r.t ϕ is done analytically by calling

a similar routine that derives all possible intervals of ϕ.

Remark. In practice, the above routine can be only applied to the

case when v, v′ fall onto the same mesh element (when collision is almost

grazing); for other cases, the angular cross-sections can be regarded as

integrable (far away from grazing collisions) and thus can call routines

in “Integrable b(cos θ)”.

Once gm,i(v, u) is done, plugging it back into (3.5), we get the block

matrix Gm,i(k, k̄).

If denote the whole coefficient vector U = (u0, . . . ,uN−1)T , where uk =

(u0
k, ...,u

p
k)
T , then the semi-discrete DG form of the homogeneous BTE (3.3)
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goes

dU

dt
= Q(U), (3.11)

with initial data the L2 projection of f0 = f(v, 0); where the collision vector

Q = (Q0, . . . ,QM−1)T , M = ((p + 1)n)d is total degrees of freedom and each

block Qm is of size (p+ 1)d × 1, with its components Qi
m, for i = 0 . . . l,

Qi
m =

∑
k

∑
k̄

uTkGm,i(k, k̄)uk̄. (3.12)

Or, for each component of the coefficient vector,

duim
dt

=
∑
k

∑
k̄

uTkGm,i(k, k̄)uk̄, (3.13)

where we call the matrix Gm,i “Boltzmann collision matrix” or simply “weight

matrix”.

3.3 Reductions on the Computing and Storage Com-
plexity of Collision Matrix

For every test function φi(v) defined over element Em, we have to com-

pute a collision matrix Gm,i of size N×N , with N = (p+1)n. So, theoretically,

the computing and storage complexity for the weights in total would be O(N3).

This could be hugely expensive. However, the following features of the collision

matrices are crucial for reducing the complexity, i.e

• Temporally independent and precomputed;

• “Shifting symmetries”;
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• Sparse;

• Parallelizable.

3.3.1 Shifting Symmetry Property for Uniform Meshes

Here we assume a uniform mesh. Recall the fact that the post-collisional

velocity v′ = v+v∗
2

+ |v−v∗|
2

σ. Thus, after doing a same shift on both v ∈ Ek

and v∗ ∈ Ek̄, v′ will end up with shifting the same as well. So, as long as the

relative positions between Ek (Ek̄) and test element Em keep unchanged, and

at the same time, the piecewise basis functions φ(v) on Em are only valued

locally upon the relative position of v inside Em, then the evaluation of (3.5)

will be unchanged. This is summarized as the following property.

Shifting Symmetry Property If the basis piecewise polynomials φ(v),

defined over element Em, are functions of v−wm
∆v

(where wm is the center of

cube Em), then, the family of collision matrix {Gm,i} satisfies the “shifting

symmetry” property

Gm,i(k, k̄) = Gm̃,i(k − (m− m̃), k̄ − (m− m̃)), (3.14)

where m, m̃, k, k̄ are d-dimensional multi-indices; i = 0, . . . , p.

This shifting procedure can be illustratively shown in Figure 3.2, for

a 1D problem with piecewise constant basis functions. Figure 3.2 shows that

the lower-right (n− 1)× (n− 1) submatrix of Matrix G1 is equivalent to the

upper-left submatrix of Maxtrix G0, while only leaving the first row and first

column of G1 to be determined. This rule applies again to Matrix G2.

33



Matrix G0 Matrix G1 Matrix G2

Figure 3.2: Dots (entries) of the same color are shifted to the neighboring
matrices, showing illustratively for 1-D

This property inspires us to seek for possible ways to reduce the actual

computing complexity of all the collision matrices.

Theorem 3.3.1 (Minimal Basis Set). There exists a minimal basis set of

matrices

B = {Gm,i(k, k̄) : For j = 1..d, if mj 6= 0, kj×k̄j = 0; if mj = 0, kj, k̄j = 0, 1, . . . , n−1},

which can exactly reconstruct the complete family {Gm,i}, through shifting.

Proof. Indeed, without loss of generality, let’s only consider piecewise constant

basis functions, i.e i = 0. And we start from only one “layer” on one dimension

or let’s imagine a 1-D prototype problem, i.e Gm(k, k̄) where m, k, k̄ are 1-d

indices. This is corresponding to one velocity component. The complete family

{Gm} will be the tensor product of all “layers”.

For any m 6= 0 (m = 1, . . . , n − 1), the entries Gm(k, k̄) are obtained

through shifting according to the following policy
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Gm(k, k̄) =


G0(k −m, k̄ −m), if k, k̄ ≥ m

Gl(0, k̄ − k) with l = 1...m, if k̄ ≥ k, k < m

Gl(k − k̄, 0) with l = 1...m, if k ≥ k̄, k̄ < m

(3.15)

which recover the complete set of entries Gm(k, k̄). None of the entries in the

basis set are shifting-equivalent. And it’s not hard to observe that if one drops

any entry in the basis set, it will be impossible to recover the original complete

family. Thus, we conclude that the set B is one minimal basis set.

As seen from Theorem 3.3.1, along each dimension, we only need to

compute and store the full matrix for m = 0, and the first rows and columns

for all other m’s. This requires a computing and stroage complexity bounded

by 3n2. For d dimensions, the total complexity will be bounded by 3dN2 with

N = nd. Hence, in the actual algorithm, we only need to compute the minimal

set B, which requires a computing complexity of only O(N2).

3.3.2 Sparsity

The matrices in the set B are actually highly sparse. The sparsity of

B, again, comes from v′ = v− u
2
+ |u|

2
σ. The post-collisional velocity v′ is on the

sphere parametrized by σ ∈ Sd−1, centered at v+v∗
2

and radius given by |u|/2.

Thus, not all binary particle collisions between velocities v ∈ Ek and v∗ ∈ Ek̄

could collide ending up with a post-collisional velocity v′ lying in a given fixed

element Em. Since, for each v and v∗ fixed, the sphere that contains v′ and

v′∗ in a binary collision is a (d − 1)-manifold embedded in d-dimensions, the
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counting of such interactions are non-zero when such sphere intersects with

element Em. This results in only an O(n2d−1) of nonzeros in the set B.

Therefore, while by Theorem 3.3.1, the calculations of the weights

Gm(k, k̄) can be made in an algorithm with computational complexity of

O(n2d), we conjecture that the corresponding storage complexity is ofO(n2d−1).

Indeed, we verify this order complexity with test run for d = 3 in Table 3.1,

done on a single core of Xeon E5-2680 2.7GHz processor (on cluster Stampede-

TACC [103]).

n wall clock time (s) order ] of nonzeros order
8 3.14899 \ 812884 \
12 39.3773 6.2301 6826904 5.2484
16 228.197 6.1075 30225476 5.1717
20 893.646 6.1176 94978535 5.1311
24 2686.72 6.0375 241054134 5.1054

Table 3.1: The computing and storage complexity of “basis” B.

3.3.3 Parallelization

The whole weight matrices are only computed once and stored for fur-

ther use. Due to the locality of DG schemes, the whole process of computing

B can be well performed using hybrid MPI [65] and OpenMP [13]. The colli-

sion weight matrices quantify the contributions of the binary collisions to the

evolution of the distribution functions. For each grid point on the distribution

fuction, the time evolution is attributed to all possible binary collisions. Fur-

thermore, different grid points do not need to communicate with each other.

Thus, one can distribute all grid points across the computing node community
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while keeping the grid information accessible to each computing node within

the community. This is done using MPI. To further parallelize the computing,

on each node, the working load, for example, computing of matrix entries and

matrix-vector computations are shared among threads, using OpenMP.

Figure 3.3 shows the parallel efficiency of strong scaling for computing

some sets of “basis matrix”.

Figure 3.3: The strong scalability of computing collision matrix (n=18)

3.4 Conservation Routines

The above approximate collision operator Q doesn’t preserve the mo-

ments as needed, due to the truncation of velocity domain. To achieve the

conservation properties, following the ideas in [68], we design an intermedi-

ate routine to enforce the conservations. This routine will be implemented as

a L2-distance minimization problem with the constraints the preservation of

desired moments. The optimization problem can be solved through Lagrange
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multiplier method.

The conservation of moments for the approximate solution fh(t, v) goes,

for any time t, ∫
Ωv

fh(t, v)ϕ(v)dv =

∫
Ωv

fh,0(v)ϕ(v)dv, (3.16)

where ϕ(v) is one of the d+ 2 collision invariants 1, v1, . . . , vd, |v|2.

So, our objective is to solve

Conservation Routine [Functional Level]: Minimize in the Banach space

Be =

{
X ∈ L2(Ωv) :

∫
Ωv

X =

∫
Ωv

Xv =

∫
Ωv

X|v|2 = 0

}
,

the functional

Ae(X) :=

∫
Ωv

(Quc(f)(v)−X)2 dv. (3.17)

Recall the DG approximation for fh(t, v) in (4.67) and the time evo-

lution for fh(t, v) (3.11), one can get the conservation requirements on the

approximation collision voctor Q, defined in (3.11),

CQ = 0 (3.18)

where the (d+ 2)×N dimensional constraint matrix writes

C:,j =


∫
Ek
φl(v)dv∫

Ek
φl(v)vdv∫

Ek
φl(v)|v|2dv

 , (3.19)

with φl the l − th basis function on element Ek and the column index j =

(p+ 1)k + l = 0, . . . , N − 1.
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To enforce the conservation, we seek for the L2-distance closest Qc,

which is the minimizer of the following constrained optimization problem:

Conservation Routine [Discrete Level]: Find Qc, the minimizer of the

problem

min
1

2
(Qc −Q)TD(Qc −Q)

s.t. CQc = 0.

Due to the orthogonality of the local basis, D is a positive definite

diagonal matrix with its j-th entry 1
|Ek|

∫
Ek

(φl(v))2dv, j = (p + 1)k + l. For

example, in 3D, when p = 0, D is reduced to an identity matrix; while p = 1,

with the orthogonal basis chosen in (3.2),

D = Diag (1,
1

12
,

1

12
,

1

12
, 1,

1

12
,

1

12
,

1

12
, 1, ...).

Remark. Note that with spectral method in [68], the corresponding

discrete optimization problem actually takes D to be an identity matrix. This

is because the L2 norm is aymptotically preserved by the l2 norm of its Fourier

coefficients.

To solve the minimization problem, we employ the Lagrange multi-

plier method. Denote by λ ∈ Rd+2 the multiplier vector. Then the objective

function writes

L(Qc, λ) =
1

2
(Qc −Q)TD(Qc −Q)− λTCQc. (3.20)
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Solving by finding the critical value of L gives
∂L
∂Qc

= 0

∂L
∂λ

= 0

=⇒

Qc = Q + D−1CTλ

CQc = 0
=⇒ λ = −(CD−1CT )−1CQ.

(Here, notice that CD−1CT is symmetric and positive definite and hence exists

the inverse.)

Thus, we get the minimizer Qc

Qc = [I−D−1CT (CD−1CT )−1C]Q, (3.21)

where I is an identity matrix of size N ×N . So, Qc is a perturbation of Q.

So, the final conservative semi-discrete DG formulation for the homo-

geneous equation writes

dU

dt
= Qc, (3.22)

which preserves the desired moments. Furthermore, the approximate solution

approaches a stationary state. This is guaranteed by analyzing the convergence

behavior.

3.5 Temporal Evolution

The approximate solution will be solved at the level of discrete time.

That is, tn+1 = tn + 4t, where 4t is the time step size. Since there is no

high order derivatives or diffusive natures in the homogeneous BTE, no CFL

condition is imposed. The only restriction on time step size maybe that ∆t

should be less than the dimensionalized mean free time. So, we can choose the
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simplest Euler scheme. At each time step, the conservation routine, denoted

CONSERVE, designed in the last section will be called to force conservations.

So, suppose Un is the coefficient vector (thus the solution) computed

at the current time tn, then the solution for the next time step is obtained

through the following routines

Qn = COMPUTE(Un) ,

Qc,n = CONSERVE(Qn) ,

Un+1 = Un +4tQc,n .

The Euler scheme is formally first order in time. For higher order

accuracy, a higher order Runge Kutta scheme can be used whenever necessary.

The conservation routine has to be invoked at every intermediate step of the

Runge Kutta scheme.

At each time step, for the evolution of each mesh element, we have to

compute a quadratic form (3.13) which inevitably involves O(n9) (in d = 3)

operations in total. However, due to the sparsity, the actual order of number

of operations for each time step is O(n8), which is indeed a large number. For-

tunately, the reconstructions of collision matrices and computing of quadratic

form (3.13) are well parallelizable for each Euler step. See Table 3.2 for the

results on time for one single temporal step of evolution, and Table 3.3 for

results on the parallelization for one step of time evolution. Both tests run on

Xeon Intel 3.33GHz Westmere processors (on cluster Lonestar-TACC [103]).

From Table 3.2 we can see, the time consumed for one single step

grows with an order slightly less than 8. This is normal, because during
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n wall clock time (s) order
16 18.3362 \
18 47.6001 8.0993
20 105.155 7.5227
22 216.818 7.5923
24 419.533 7.5862
26 781.282 7.7683

Table 3.2: The wall clock time for one temporal evolution step

number of cores wall clock time (s)
1 459.967
2 341.771
6 181.561
12 144.485
24 129.691
36 107.907
48 90.2676
72 74.2794

Table 3.3: The parallelization for one temporal evolution step, for n = 24

time evolution and reconstruction of the whole collision matrix, we only need

to retrieve those “effective” (non-zero) matrix entries through shifting of the

basis set B (see Theorem 3.3.1). The grid points (index m) and associated

“effective” entries (indices k, k̄) are shifted together. Thus, in practice, not

every grid point requires a full ergodic of the weight matrix, or in other words,

many grid points only need a partial access to the weight matrix. Table 3.3

actually shows a low strong scaling efficiency (speedup is far from linear).

This is not surprising because we need to call a parallelized reconstruction

process for each time step, then gather information together and re-distribute

them to the computing community. And furthermore, we have to call the
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conservation routine, which is essentially serial, at each time step. In addition,

when computing the basis set B, we choose to distribute grid points across the

computing nodes while the basis information associated with each grid point

m (see Theorem 3.3.1) is not of equivalent size, for example for m = 0 the

full matrix is computed, while for other m’s, only first row and column are

computed. Hence, some processing elements, for example the one containing

m = 0, have to be accessed much more frequently than others, also causing an

unbalanced distribution of computing resources.

3.6 Asymptotic Behaviors and Error Analysis

The asymptotic error analysis is based on the work [5]. Readers can

find more details of the proofs for many theorems and estimates invoked here.

Since we are working under a DG framework, it might be necessary to

summerize some of the notations and properties regarding DG approximations,

see Appendix for details.

Next we analyze the asymptotic error. We assume f ∈ C([0, T ];L2(Rd))

be the solution to the homogeneous BTE (3.3) with initial f0 = f(v, 0). The

Galerkin method allows us to take the L2 projection, Ph : L2(Ωv) → L2(Ωv),

on both sides of the BTE (3.3)

∂

∂t
Phf(v, t) = PhQ(f)(v, t) in [0, T ]× Ωv. (3.23)

We introduce the concept of extension operator E : Hα(Ωv)→ L2(Rd),

which will be used in future derivations. See appendix or [5] for properties of
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extension operators and definition of moments.

The collision operator Q(f) is global in velocity. It’s reasonable to ex-

pect PhQ(f) ∼ PhQ(EPhf) for “accurate” enough projectors (or small enough

mesh size h). Thus the discrete solution g(v, t) to the problem

∂

∂t
g(v, t) = PhQ(Eg)(v, t) (3.24)

is expected to be a good approximation to Phf , the solution to projected

equation (3.23).

This is not enough, because we are limited to the conservation proper-

ties. Hence, the following initial value problem is studied in our asymptotic

analysis, whose solution is expected to approximate the solution f of the orig-

inal homogeneous BTE (3.3).

∂

∂t
g(v, t) = Qc(g)(v, t)

g0(v) = Phf(v, 0), (3.25)

where Qc(g) is the conservation correction to the following unconserved oper-

ator Quc(g)

Quc(g)(v, t) = Ph(Q(Eg)χΩv)(v, t), (3.26)

where χΩv is the characteristic function on the truncated domain Ωv. It follows

that

‖Quc(fh)‖L2(Ωv) . ‖Q(Efh)‖L2(Ωv) . ‖Q(f)‖L2(Ωv), (3.27)

As is shown in the last section, the conservation correction is the min-

imizer of the L2-distance to the projected collision operator subject to mass,
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momentum and energy conservation. It can be shown that, the conserved

projection operator Qc(fh) is a perturbation of Quc(fh) by a second order

polynomial. See Theorem 3.3 in [5] for the Conservation Correction Estimate.

Let’s summerize our major estimate result first.

Theorem 3.6.1 (Hp+1-error estimate). Fix k′, k ≥ 0 and assume nonnegative

initial density function f0 ∈ L1
2 ∩ Hp+1

q (Rd) with q = max{k + k′, 1 + d
2γ
},

0 < γ ≤ 1 defined in collision kernel (2.4). g is the DG solution of the equation

(3.25), where the piecewise basis polynomials are of order at most p. For a

given simulation time T and index α ≤ p+ 1, there exists an extension Ep+1,

a lateral size L0(T, f0) for domain Ωv and a small grid diameter h0(T, L, f0, α)

for triangulation Th of Ωv, such that for any L ≥ L0, h ≤ h0,

sup
t∈[0,T ]

‖f − g‖Hα
k (Th) ≤ Ck′e

CkT
(
O(Lγk+αhp+1−α) +O(L−γk

′
)
)

where h = maxEv∈Thdiam(Ev) is the maximal grid diameter for the regular

triangulation Th of Ωv; the constants Ck and Ck′ depends on Hp+1
q -norms and

moments of f0.

Proof. The proofs can be easily extended from the one in [5]. But here to

make the work complete, we would like to briefly explain how the proofs go.

The readers can refer to [5] for more details.

We will first prove the case α = 0, i.e the L2
k estimate and then follow

an induction on the index α.
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One can easily observe that, in domain Ωv,

∂

∂t
(f−g) = Q(f, f)−Qc(g) = (Q(f, f)−Q(Eg,Eg))+(Q(Eg,Eg)−Qc(g)) .

(3.28)

Denote eh = ‖f − g‖L2
k(Th). Multiply on both sides of the above equa-

tion (3.28), piecewisely, by (f − g)〈v〉2γk restricted over each element of the

triangulation Th, and sum over all the elements, we get

1

2

∂e2
h

∂t
= I1 + I2. (3.29)

We estimate I1 and I2 separately.

I1 =

∫
Th
〈v〉2γk(f − g)(Q+(f + Eg, f − Eg) +Q+(f − Eg, f + Eg))

−
∫
Th
〈v〉2γk(f − g)(Q−(f + Eg, f − Eg)−

∫
Th
〈v〉2γk(f − g)Q−(f − Eg, f + Eg))

. ‖f − g‖2
L2
k(Th) + ‖f − g‖L2

k(Th)

(
‖f‖L2

k+1/2
(Rd\Ωv) + ‖g‖L2

k+1/2
(Ωv\δ−1Ωv),

)
where δ is the dilation parameter of the extension operator; . means the

estimate constants are independent of parameters T, L, h but only information

(norms, moments, etc.) of f, g itself. Here, the uniform propagation of higher

order moments of f, g are applied. See Lemma 4.2 in [5].

By Holder’s inequality and Conservation Correction Estimate,

I2 =

∫
Th
〈v〉2γk(f − g)(Q(Eg,Eg)−Qc(g))

. Lγk‖f − g‖L2
k(Th)

(
‖Q(Eg,Eg)−Quc(g)‖L2(Th) + δ2k′Od/2+γ(k′−1)‖g‖L1

k′ (Th)

)
,

where and in the following we apply notation Or := O(L−r).
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So, combining the above estimates for I1 and I2 gives us

deh(t)

dt
≤ Ceh(t) + ε(t) +$(t),

where, by the standard approximation theory in the broken Sobolev spaces,

ε(t) := CLγk‖Q(Eg,Eg)−Quc(g)‖L2(Th)

. Lγkhp+1‖Q(Eg,Eg)‖Hp+1(Ωv)

. Lγkhp+1‖g‖2
Hp+1
µ (Ωv)

(µ > 1 +
d

2γ
),

and

$(t) := C
(
‖f‖L2

k+1/2
(Rd\Ωv) + ‖g‖L2

k+1/2
(Ωv\δ−1Ωv)

)
+ Od/2+k′−k−s‖Efh‖L1

k′ (Ωv)

= δ2k′Oγ(k′−k−1/2)

(
‖f‖L2

k′ (R
d) + ‖g‖L2

k′ (Ωv) + ‖g‖L1
k′ (Ωv)

)
≤ Oγk′ .

The Gronwall’s inequality implies

sup
t∈[0,T ]

‖f − g‖L2
k(Th) ≤

(
‖f0 − fh,0‖L2

k(Th) +

∫ T

0

ε(s)ds+ sup
t∈[0,T ]

$(t)

)
eCT ,

(3.30)

for any T > 0. The lateral size L(T, f0), h ≤ h0(T, L, f0) are decided following

a same argument in Theorem 5.1 in [5].

Additionally, by the standard approximation theory,

‖f0 − fh,0‖L2
k(Th) . Lγkhp+1‖f0‖Hp+1(Ωv).

Thus, the case α = 0 is proved. Assume the result is true for any multi-index

β < α ≤ p+ 1. The similarly following the above procedures,

∂

∂t
‖∂α(f − g)‖2

L2
k(Th) ≤ I1 + I2 + I3.
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Using Leibniz formula and the smoothing effect of the positive collision

operator,

I1 :=

∫
Th
〈v〉2γk∂α(f − g)∂α(Q(f, f)−Q(Eg,Eg))

. ‖∂α(f − g)‖2
L2
k(Th) + lower order terms .

A typical lower order term is given by

‖∂α(f − g)‖L2
k(Th)‖∂α−β(f + Eg)‖L2

k+µ(Rd)‖∂β(f − Eg)‖L2
k+1(Rd).

By induction hypothesis,

‖∂β(f − Eg)‖L2
k+1(Rd) :≤ ‖∂β(f − g)‖L2

k+1(Th) + ‖∂βf‖L2
k+1(Rd\Ωv) + ‖∂βEg‖L2

k+1(Rd\Ωv)

≤ Ck′e
CkT

(
O(Lγ(k+1)+βhp+1−β) + δ2(k+k′)O(L−γk

′
)
)

≤ Ck′e
CkT

(
O(Lγk+αhp+1−α) + δ2(k+k′)O(L−γk

′
)
)
,

where the last inequality holds as long las h ≤ L1−γ.

For I2, by Holder’s inequality and the conservation correction estimate,

I2 :=

∫
Th
〈v〉2γk∂α(f − g)∂α(Qc(g)−Quc(g))

≤ ‖∂α(f − g)‖L2
k(Th)‖∂α(Qc(g)−Quc(g))‖L2

k(Th)

≤ ‖∂α(f − g)‖L2
k(Th)

(
Lγk‖Q(Eg,Eg)−Quc(g)‖L2(Th) + δ2k′′Od/2+γ(k′′−k)

)
.

For I3, by holder’s inequality and approximation theory,

I3 :=

∫
Th
〈v〉2γk∂α(f − g)∂α(Quc(g)−Q(Eg,Eg))

≤ Lγk‖∂α(f − g)‖L2
k(Th)‖∂α(Quc(g)−Q(Eg,Eg))‖L2(Th)

. Lγk‖∂α(f − g)‖L2
k(Th)h

p+1−α‖g‖2
Hp+1
d/2+γ

.
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Finally, we get

∂

∂t
‖∂α(f−g)‖L2

k(Th) ≤ C‖∂α(f−g)‖L2
k(Th)+Ck′e

CkT
(
O(Lγk+αhp+1−α) + δ2(k+k′)O(L−γk

′
)
)
,

therefore, the Gronwall’s inequality will give us the final estimate.

3.7 Numerical Results

Test 1 is a 2-d Maxwell type of elastic collisions, benchmarked by

Bobylev-Krook-Wu (BKW) exact solutions. The initial density distribution is

f(v, 0) =
v2

πσ2
exp(−v2/σ2) . (3.31)

This problem has an exact solution [57]

f(v, t) =
1

2πs2

(
2s− 1 +

1− s
2s

v2

σ2

)
exp

(
− v2

2sσ2

)
, (3.32)

where s = 1 − 1
2
exp(−σ2t/8). In the test, we choose the scaling parameter

σ = π/6 such that the truncation domain is well chosen by Ωv = [−π, π].

We let it run for 600 time steps with ∆t = 0.1. This example is used to

test the accuracy by calculating the relative L2 errors compared to its exact

solution and relative entropy verifying that the numerical solution will converge

to the true equilibrium. See Figure 3.4 for the evolution of the marginal

density distributions; Figure 3.5 and Figure 3.6 shows the relative L2 errors

and relative entropy, respectively. The marginal density distribution is defined

as

fx(vx ∈ Ik) =
1

(∆v)2

∫
Ik

∫
In/2

f(v, t)dvxdvy .
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The relative L2 error is defined as(∫
Ωv
|fh(v, t)− f(v, t)|2dv

)1/2

(∫
Ωv
|f(v, t)|2dv

)1/2
,

and the relative entropy given by

Hrel(t) =

∫
Ωv

f(v, t) log f(v, t)− fM(v) log fM(v)dv =

∫
Ωv

f(v, t) log
f(v, t)

fM(v)
dv ,

(3.33)

where fM(v) is the true equilibrium density distribution, is expected to con-

verge to zero which implies the solution converges to the true equilibrium in

the sense of L1.

Figure 3.4: Test 1: Comparison of solutions at time t = 0, 1, 5, 10, 15s. n=44
per direction; solid line: exact solution, stars: p.w. constant approximation

Remark. Through Test 1, we would like to mention the positivity issue

of numerical solutions. The true density distributions are expected to be pos-

itive for any given positive time, if initially so. Our numerical tests show that,
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Figure 3.5: Test 1: Relative L2 er-
rors, compared with true solution,
for different number of mesh ele-
ments

Figure 3.6: Test 1: Relative En-
tropy for different number of mesh
elements

positivity can be achieved if we apply piecewise constant basis functions. The

conservation laws (here, only mass due to the zero-th order of basis polynomi-

als) are expected to hold but only for a short time, and will be seriously broken

in the long run (see more details from the results of the next test problem).

With invoke of our conservation routine, the conservations are guaranteed but

the positivity is inevitably broken. This seems a common issue for almost all

numerical solvers known so far. But fortunately, the negativity only occurs at

the tails of the distribution functions, and as long as the “negative energy”

(second order moment of the negative part of the density function) stays un-

der controlled by a small ratio to the “positive energy”, the accuracy of the

numerical approximations is guaranteed.

Test 2 is also 2-d Maxwell type of elastic collisions. This example is
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used to show the conservation routines. The initial states we take are convex

combinations of two shifted Maxwellian distributions.

Figure 3.7: Test 2: Initial Probability Distribution: two shifted Maxwellians

Truncate the velocity domain Ω = [−4.5, 4.5]2 and set number of nodes

in each velocity direction n = 32, 40. The initial density function is a convex

combination of two Maxwellians

f0(v) = λM1(v) + (1− λ)M2(v) , (3.34)

with Mi(v) = (2πTi)
−d/2e

− |v−Vi|
2

2Ti , T1 = T2 = 0.16, V1 = [−1, 0], V2 = [1, 0] and

λ = 0.5.

We test for n = 32 and n = 40, for 1000 time steps to compare the

results and see the long time behavior as well. The probability density distri-

bution functions are reconstructed with splines.

From Figure 3.10 and Figure 3.11, we can see, the scheme with piecewise

constant test functions, as expected conserves moments for short time; in the
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Figure 3.8: Test 2: Evolution of
pdf without conservation routines.

Figure 3.9: Test 2: Evolution of
pdf with conservation routines

Figure 3.10: Test 2: Evolution of
mass

Figure 3.11: Test 2: Evolution of
kinetic energy

long run, due to the truncation, the tails of the density functions are lifted

up and thus moments are expected to lose. At the same time, finer grids

indeed give more accuracy. Since the basis polynomials are only zero order,

it’s expected that mass is much better conserved than higher order moments.

Through the comparison of Figure 3.8 and Figure 3.9 we see, after long

time, with no conservation routine, the density distribution collapses due to the
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truncation of the domain. While with the invoke of conservation routines, the

density function stays stable when reaching equilibrium. So, the conservation

routine works and is necessary for stability. However, the cost we pay is the

loss of positivity.

Test 3 is initialized by a sudden jump on temperatures, i.e. a jump

discontinuity in its initial and far from equilibrium, as shown in Figure 3.12.

The initial state is given by

f0(v) =


1

2πT1

exp(−|v|
2

2T1

) , v1 ≤ 0

1

2πT2

exp(−|v|
2

2T2

) , v1 > 0

with T1 = 0.3 and T2 = 0.6. The collision is of type 2d hard spheres.

Figure 3.12: Test 3: Initial density function

With truncated domain Ωv = [−5, 5], n = 44 in each direction, the

DG solution well captures the discontinuity and converges to equilibrium. See

Figure 3.13 and Figure 3.14.
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Figure 3.13: Test 3: DG solutions Figure 3.14: Test 3: The entropy
decay of DG solutions

Test 4 is testing on the 3D homogeneous Boltzmann equation with

Maxwell molecular potential, with initial

f0(v) =
1

2(2πσ2)3/2

[
exp

(
−|v − 2σe|2

2σ2

)
+ exp

(
−|v + 2σe|2

2σ2

)]
,

where parameters σ = π/10 and e = (1, 0, 0). Ωv = [−3.4, 3.4]3, n = 30.

Figure 3.15 shows the evolution of the marginal density distributions,

which is defined as

fx(vx ∈ Ik) =
1

(∆v)3

∫
Ik

∫
In/2

∫
In/2

f(v, t)dvxdvydvz .

Figure 3.16 shows the decay of entropy to its equilibrium state.

Figure 3.17 shows the relaxations of directional temperature, which as

expected converge to the averaged temperature.
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Figure 3.15: Test 4: Evolution
of marginal distributions at t =
0, 1, 2.5, 5s; dots are the piece-
wise constant value on each el-
ement; solid lines are spline re-
constructions

Figure 3.16: Test 4: Entropy
decay

Figure 3.17: Test 4: Temperature relaxations along x and y directions
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Chapter 4

Computations of Spectral Gaps for Linearized

Boltzmann Operators

The quantitative information on the spectral gaps for the linearized

Boltzmann operator is of primary importance on justifying the Boltzmann

model and study of relaxation to equilibrium. In this chapter, for the first

time in this field, we provide numerical evidence on the existence of spectral

gaps and corresponding approximate values.

4.1 Introduction

The existence of solutions and regularity theory of the BTE in the space

inhomogeneous setting have been great mathematical challenges and still re-

main elusive. Nevertheless, it is well understood that these qualitative proper-

ties depend on the intermolecular potential γ and the integrability properties

of the angular cross-sections (2.4, 2.5). Indeed, the relaxation to equilibrium

has been at the core of kinetic theory ever since the works of Boltzmann. It

provides an analytic basis for the second principle of thermodynamics for a

statistical physics model of a gas out of equilibrium. The well-known Boltz-

mann’s H theorem [36] shows the possible convergence process and equilib-
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rium states. However, it’s not enough to justify the Boltzmann model with

only non-constructive arguments. It is crucial to obtain quantitative informa-

tions on the time scale of the convergence. The question of obtainig explicit

decay rates in recent new energy methods [74–77, 114–116] also motivates the

work on studying spectral gaps and coercivity estimates. Many authors, for

instance [8, 10, 18, 31, 33, 39, 71, 72, 81, 99, 104], have made enormous efforts on

(non-)constructive estimates for the rate of convergence (we refer to [56] for a

review), among which Cercignani’s conjecture [35] is a great attempt:

For any f and its associated Maxwellian µ, there is an entropy-entropy

production relation

D(f) ≥ λ [H(f)−H(µ)] ,

where H(f) =
∫
f log(f)dv is the (opposite) entropy; D(f) = − d

dt
H(f) is the

dissipation of the entropy, or “entropy-production” functional; λ > 0 is some

“suitable constant”. The existence of such inequalities is equivalent to the

existence of exponential convergence towards equilibrium.

In the regime very close to equilibrium, the linearized part of the model

can actually dominate. In particular, the linearized counterpart of Cercignani’s

conjecture writes

D(F ) ≥ λ‖F −PF‖2
2 ,

where D(F ) = 〈LF, F 〉; P is the orthogonal projection in L2 onto the null

space N (L). The definitions of L and N (L) will be introduced later.

To find the explicit rate λ (if exists) will be our goal. Though there
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are very few results on the estimates, we have not seen any numerical results

that provide the “exact” rate governing the exponential decay to equilibrium.

This will be the first attempt to solve this problem numerically.

4.2 The Linearized Boltzmann Operators and Spectral
Gaps

Recall the Boltzmann equation and Boltzmann collision operator

∂f(x, v, t)

∂t
+ v · ∇xf(x, v, t) = Qsym(f, f)(x, v, t) , (4.1)

f(x, v, 0) = f0(x, v) . (4.2)

Here, the right-hand side symmetrized Boltzmann bilinear operator

Qsym(f, g)(v) =
1

2

∫ ∫
(f ′g′∗ + f ′∗g

′ − fg∗ − f∗g)B(|u|, σ)dσdv∗ , (4.3)

where, for simplicity, denote f ′ = f(v′), f ′∗ = f(v′∗) and f∗ = f(v∗), with

pre-collisional velocities v′, v′∗. The integration is parametrized in terms of the

center of mass and relative velocity. And on the d − 1 dimensional sphere,

integration is done with respect to the unit direction given by the elastic post

collisional relative velocity.

The elastic law for pre- and post-collisional velocities obeys (2.3) for

β = 1. and the key terms for the model, the collision kernel and angular

cross-sections, are defined in (2.4, 2.5).

For sake of simplicity, when necessary, we use the symmetrized angular

cross-section defined over half sphere,

b̃(cos θ) =
1

2

(
b(cos θ) + b(cos(π − θ))

)
, θ ∈ [0,

π

2
] . (4.4)
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And for purpose of analysis in the following, we always assume the angular

cross-section b(cos θ) satisfies the singularity condition (2.5) when θ ∼ 0.

Since our interest focuses on the behavior in a regime very close to

equilibrium, we consider the perturbation near equilibrium

f = µ+ µ
1
2F , (4.5)

with µ = (2π)−
d
2 e−

|v|2
2 the normalized equilibrium with mass 1, momentum 0

and temperature 1. Then the linearization of homogeneous Boltzmann equa-

tion gives an equation for the perturbation F (v),

∂tF = −L(F )− Γ(F, F ) .

where the linearized Boltzmann collision operator L writes

L(F ) = −2µ−
1
2Qsym(µ, µ

1
2F ) , (4.6)

and the bilinear operator Γ writes

Γ(F, F ) =

∫
Rd

∫
Sd−1

µ
1
2
∗ [FF∗ − F ′F ′∗]B(|v − v∗|, σ)dσdv∗ ,

which will be a negligible term when close to equilibrium.

The Dirichlet form associated to the linearized Boltzmann operator is
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given by

〈L(F ), F 〉 := −
∫

Rd
2Qsym(µ, µ

1
2F )Fµ−

1
2 (v)dv

=
1

4

∫
R2d

∫
Sd−1

µµ∗

(
F (v′)

µ
1
2 (v′)

+
F (v′∗)

µ
1
2 (v′∗)

− F (v)

µ
1
2 (v)

− F (v∗)

µ
1
2 (v∗)

)2

·B(u, σ)dσdv∗dv

= −
∫

R2d

∫
Sd−1

[
F (v)µ

1
2 (v∗) + F (v∗)µ

1
2 (v)

] [
F (v′)µ

1
2 (v′∗)− F (v)µ

1
2 (v∗)

]
·B(u, σ)dσdv∗dv

= −
∫

R2d

∫
Sd−1

µ(v)µ(v∗) [g(v) + g(v∗)] [g(v′)− g(v)]B(u, σ)dσdv∗dv

(4.7)

where the second line uses the fact that µµ∗ = µ′µ′∗ and the last line changes

g(v) = F (v)

µ1/2(v)
. The linear operator L has basic properties [36]:

• It is an unbounded symmetric (self-adjoint) operator on un-weighted

L2(Rd);

• It is a positive operator, i.e has non-negative real spectrum;

• The null space F (v) ∈ N (L) = µ
1
2 · span{1, v, |v2|}. Thus 0 is an eigen-

value of multiplicity d+ 2.

Here, in order to study the decay of F for t → ∞, we need to study

the eigenvalue problem

Lg = λg , (4.8)

for which, we know it has d+ 2 eigen-solutions (collision invariants) for λ = 0.

All the other λ > 0.
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If the eigen-solutions of equation (4.8), gλ(v), can be taken as general-

ized functions, then it’s known that the linearized Boltzmann equation

∂tF = −LF (4.9)

has solutions written as [36, 70]

F (v, t) =

∫ λ∞

λ0

e−λtgλ(v)hλ(v)dλ+
d+1∑
i=0

hi(v)φi(v) , (4.10)

where hλ(v) is an arbitrary function depending on λ and the integrals extends

to all λ 6= 0 for which gλ 6= 0 exists. If some λ’s form a discrete set, then

the corresponding integral is replaced by the sum
∑

k e
−λktgk(v)hk(v). So, if

λ0 6= 0 exists, F (v) decays exponentially into the null space N (L); while if

λ0 = 0, the decay is not exponential and depends on initial datum.

Definition (Spectral Gap [97]). Denote by σ(L) the spectrum for the operator

L. For the case σ(L) ⊆ R+ (i.e. non-negative spectrum), the spectral gap is

defined as the distance between 0 and σ(L) \ {0}.

Hence, the spectral gap is the solution to the constrained minimization

problem:

min
〈L(F ), F 〉
‖ F ‖2

L2

s.t F ⊥ N (L) .

(4.11)

The solution to the optimization problem tells us how the entropy pro-

duction functional, given by the Dirichlet form in (4.7), is bounded by the
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relative entropy and hence, gives an estimate on the exponential decay of the

solutions to the Boltzmann equation.

Thus, both the theoretical as well as numerical existence of this “spec-

tral gap” is very important to us. We will see that the existence of spectral gaps

depends on the types of intermolecular potentials (γ) as well as the integrabil-

ity of the angular cross-section (b(cos(θ))). We will look at them separately.

4.2.1 Integrable Angular Cross-section

The study on the spectral properties of the linearized Boltzmann col-

lision operator can be traced back all the way to Hilbert [81]. He suggested

the splitting, in the case of hard spheres, between the local and non-local

parts of L and proved the compactness of the non-local part. Later, Carle-

man [33] introduced the use of so-called Weyl’s theorem to prove the existence

of a spectral gap, and Grad [72] generalized it to hard potentials with cutoff

(0 < γ ≤ 1). Recently, Caflisch [31] and Golse and Poupaud [71] proved the

non-existence of spectral gap for soft potentials with cutoff, but the existence

of a “degenerated” spectral gap. All the above results are non-constructive.

The first constructive estimates were given by Baranger and Mouhot [10] for

the hard spheres model.

For the integrable angular cross-sections, index α < 0 in (2.5). Basi-

cally, by splitting, L writes

L(F )(t, v) = ν(v)F (t, v) + (KF )(t, v) , (4.12)
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where the collision frequency

ν(v) =

∫∫
µ(v∗)dv∗B(|v − v∗|, û · σ)dσ , (4.13)

and the integral operator K with kernel k(v, η) can be explicitly given in the

next section.

Here, an important feature is that the non-local K is proven to be a

compact bounded integral operator.

4.2.1.1 Carleman Representation and Grad Splitting

Due to the integrability of the angular cross-sections, we can separate

terms in the Dirichlet form of L (4.7) and easily obtain the non-local KF ,

which is given by

KF (v) = µ
1
2 (v)

∫∫
µ

1
2 (v∗)F (v∗)B(|v − v∗|, σ)dσdv∗

−
∫∫ [

µ
1
2 (v∗)µ

1
2 (v′)F (v′∗) + µ

1
2 (v∗)µ

1
2 (v′∗)F (v′)

]
B(|v − v∗|, σ)dσdv∗

= K1F −K2F ,

(4.14)

where it’s not hard to observe that the kernel k1(v, ξ) (here ξ = v∗) for the

integral operator K1 is

k1(v, ξ) = µ
1
2 (v)µ

1
2 (ξ)|v − ξ|γ

∫
Sd−1

b((v − ξ) · σ)dσ . (4.15)

The remaining part of (4.14) defines K2. The kernel k2(v, ξ) will be derived

explicitly.
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We start from Carleman Representation, first introduced by Carleman

[32] in 3 dimensions for hard spheres. It is actually a transformation of integrals

over spheres to integrals over some orthogonal planes.

Lemma 4.2.1 (Carleman). The following identity holds for any appropriate

test functions φ(z):Rd → R

∫
Sd−1

φ(
|u|σ − u

2
)dσ = 2d−1|u|2−d

∫
Rd
φ(z)δ(|z|2 + z · u)dz , (4.16)

where u ∈ Rd is an arbitrary vector and δ is the one-dimensional Dirac delta

function.

Then, we take the following changes of variables

u = v − v∗ , z =
1

2
(|u|σ − u) , w = −1

2
(|u|σ + u) . (4.17)

Then, u = −(z + w), v∗ = v + w + z, v′∗ = v + w and ξ := v′ = v + z.

Also assuming a symmetrized angular cross-section (4.4) and noticing that

|v′ − v| = |u| sin(θ/2) and |u| = (|ξ − v|2 + |w|2)
1
2 , we obtain the integral form

of K2F given by

K2F (v)

= 2d
∫

R2d

µ
1
2 (v + w + z)µ

1
2 (v + w)F (v + z)|u|2−dB(u,

2z + u

|u|
)δ(z · (z + u))dzdu

= 2d
∫

R2d

µ
1
2 (v + w + z)µ

1
2 (v + w)F (v + z)B̃(w, z)δ(z · w)dzdw

= 2d
∫

Rd

∫
w⊥z
|z|−1µ

1
2 (v + w + z)µ

1
2 (v + w)F (v + z)B̃(w, z)dzdw

=
2

π

∫
Rd

∫
w⊥z

F (ξ)µ
1
2 (ξ + w)µ

1
2 (v + w)|ξ − v|−d−α

(
|w|2 + |ξ − v|2

) γ+1+α
2 dξdw ,
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where we used the relationship w ⊥ z and

B̃(w, z) = |w+z|2−dB(−(w+z),
z − w
|z + w|

) =
1

2d−1π
|z|−(d−1)−α (|w|2 + |z|2

) γ+1+α
2 .

Therefore, the explicit kernel k2(v, ξ) for integral operator K2 can be extracted,

which writes

k2(v, ξ) =
2

π
|ξ − v|−d−α

∫
Π

µ
1
2 (ξ + w)µ

1
2 (v + w)

(
|w|2 + |ξ − v|2

) γ+1+α
2 dw ,

where the plane Π := {w ∈ Rd : (ξ − v) · w = 0}.

However, we can simplify more, following tricks from [38]. Notice that

|v + w|2 + |ξ + w|2 = 2|w +
1

2
(ξ + v)|2 +

1

2
|ξ − v|2 , (4.18)

and decompose 1
2
(ξ+v) into parts perpendicular to ξ−v and parallel to ξ−v.

The projection onto ξ − v is denoted by ζ⊥, which is

ζ⊥ :=

(
1

2
(ξ + v) · ξ − v

|ξ − v|

)
ξ − v
|ξ − v|

=

(
1

2

|ξ|2 − |v|2

|ξ − v|

)
ξ − v
|ξ − v|

. (4.19)

Its orthogonal part, denoted by ζ, is in the same plane as w,

ζ :=
1

2
(ξ + v)− ζ⊥ =

1

2
(ξ + v)−

(
1

2

|ξ|2 − |v|2

|ξ − v|

)
ξ − v
|ξ − v|

. (4.20)

Thus, plugging these into k2 gives

k2(v, ξ) =
2

π
(2π)−

d
2 |ξ − v|−d−α exp(−1

8
|ξ − v|2 − 1

8

(|ξ|2 − |v|2)2

|ξ − v|2
)

·
∫

Π

exp(−|w + ζ|2

2
)
(
|ξ − v|2 + |w|2

) γ+1+α
2 dw .

(4.21)

Clearly, k2(v, ξ) is symmetric.
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Remark. The kernel k2(v, ξ) can be further simplified if γ+ 1 +α = 0.

For example, in the case of 2-d Maxwell model or 3-d hard sphere model, since

ζ is just a shift of w on plane Π and thus the integrations on plane Π can be

done analytically,

k2(v, ξ) = 2
1
2π−

3
2 |ξ − v|−(d−1)−1−α exp(−1

8
|ξ − v|2 − 1

8

(|ξ|2 − |v|2)2

|ξ − v|2
) . (4.22)

Thus,

L(F )(v) = ν(v)F (v) + KF (v) , (4.23)

where the kernel for the integral operator K is explicitly given

k(v, ξ) = k1(v, ξ)− k2(v, ξ)

= (2π)−
d
2 exp(−|v|

2 + |ξ|2

4
)|ξ − v|γ

∫
Sd−1

b(σ)dσ

− 2

π
(2π)−

d
2 |ξ − v|−d−α exp(−1

8
|ξ − v|2 − 1

8

(|ξ|2 − |v|2)2

|ξ − v|2
)

·
∫

Π

exp(−|w + ζ|2

2
)
(
|ξ − v|2 + |w|2

) γ+1+α
2 dw ,

(4.24)

which makes the integral operator K compact on L2(Rd).

Combining (4.15) and (4.21) yields the explicit definition for K, which

can be proven to be a Hilbert-Schmidt integral operator (this needs α < 0

which is satisfied due to the integrability of angular cross-sections), and thus

k1(v, ξ)− k2(v, ξ) is L2 integrable. Starting from Carleman representation, we

actually have recovered the results from Grad splitting [72].

4.2.1.2 The Geometry of Existence of Spectral Gaps

Now, we have separated the linear operator L into a local part and an

non-local compact part. The following Weyl’s theorem will be used.
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Theorem 4.2.2 (Weyl’s). The essential spectrum (here, the continuous spec-

trum due to the self-adjoint L) is unchanged under a compact perturbation.

We easily get that the information of continuous spectrum is completely

contained in the local part ν(v). If assuming a normalized angular cross-

section, i.e.
∫
Sd−1 b(û · σ)dσ = 1, then, we get the collision frequency

ν(v) = (2π)−
d
2

∫
|v − v∗|γe−

|v∗|2
2 dv∗ . (4.25)

• Hard potential model, γ ≥ 0, we can see the continuous spectrum will

range from some positive value to infinity. What’s left is the discrete

spectrum, i.e the eigenvalues. There will be a smallest positive one,

which is the spectral gap;

• Soft potential model, γ < 0, the continuous spectrum can go all the way

down to zero; thus we cannot expect a spectral gap. (But, there will be

a “degenerate” one.)

The spectrum can be described with pictures, see Figure 4.1, Figure 4.2

and Figure 4.3. Thus the geometry of the spectrum of linearized Boltzmann

operators is clear to us. However, we will revisit the details of splitting in

Section 4.2.1.1, since a numerical treatment can be designed based on this

property of “splitting”, see Section 4.4.

4.2.2 Non-integrable Angular Cross-section

In particular, the above “splitting” property does not hold in the usual

way with an non-integrable b(cos(θ)). Thus the above perturbation theories
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Figure 4.1: Spectrum of −L for
variable hard potential with angu-
lar cutoff

Figure 4.2: Spectrum of −L for
Maxwell type with angular cutoff

Figure 4.3: Spectrum of −L for soft
potential with angular cutoff

may no longer directly apply to the spectrum of non-cutoff linearized Boltz-

mann. Nevertheless, with a suitable choice of truncated angular domain, which

depends on relative velocities, one can still perform some “splitting” and study

each term separately. Thus some constructive coercivity estimates for the

Dirichlet form can be found and used to characterize the spectral gaps. This

is what Mouhot & Strain [99] conjectured and partially proved

Theorem 4.2.3 (Mouhot & Strain [99]). With the collision kernel B specified

in (2.4), one has

• For any ε > 0 there is a constructive constant CB,ε, such that the Dirich-

let form satisfies:

〈LF, F 〉 ≥ CB,ε‖(F −PF ) < v >(γ+α−ε)/2 ‖2
L2(Rd). (4.26)

• There is a non-constructive constant CB,0 such that

〈LF, F 〉 ≥ CB,0‖(F −PF ) < v >(γ+α)/2 ‖2
L2(Rd). (4.27)
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where 〈v〉 = (1 + |v|2)
1
2 and P is the orthogonal projector onto the null

space N (L). So, it’s sufficient to claim that when γ + α ≥ 0, there exists a

spectral gap for linearized Botlzmann operator. But they went further and

conjectured the necessary part

Theorem 4.2.4 (Mouhot & Strain [99]). With γ ∈ (−d,∞) and α ∈ [0, 2) in

B, the linearized Boltzmann collision operator associated to the kernel B (2.4)

admits a spectral gap if and only if γ+α ≥ 0. Moreover, this statement is still

valid if one includes formally the case of angular cutoff in “α = 0”, and adds

the linearized Landau collision operator as the limit case “α = 2”.

Recently the necessary part was answered by Gressman and Strain

[73], by proving sharp constructive upper and lower bounds for the linearized

collision operator in terms of a geometric fractional Sobolev norm.

4.3 A New Nonconstructive Proof of the Existence of
Spectral Gaps for Non-integrable Angular Cross-
sections

The sufficient condition on existence of spectral gaps for the linearized

Boltzmann operators has been proved [99], in term of L2 norms and the the

necessary part is conjectured. Later, a complete theorem on the existence of

spectral gaps is built when proving the existence of global classical solutions for

the Boltzmann equation with non-cutoff interactions [73]. However, the latter

is developed in terms of a very complicated weighted non-isotropic Sobolev

norm.
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Our current numerical work aims at verifying the existence of spectral

gaps proved in and also answering the conjecture proposed in [99], both in

L2 norms. Thus, we would also like to provide a proof on the existence in

L2 spaces. Here, a non-constructive one is enough, since we will practically

compute the spectral gaps. Inspired by the Grad splitting method in Section

4.2.1 for study on the geometry of spectral gaps for integrable angular cross-

section, we generalize Grad’s derivations to arbitrary intramolecular potential

γ and α. This is how our new nonconstructive proof comes out, which will be

stated in details below.

We have to carefully treat the singularities in b(u·σ|u| ) and find out a way

to cancel the singularity. This is done by cut the sphere Sd−1 into two parts:

with a small and fixed parameter ε > 0,

Σs = {σ ∈ Sd−1 : |v′ − v| ≤ ε}, Σr = {σ ∈ Sd−1 : |v′ − v| > ε} , (4.28)

where the subscript “s” denotes “singular” part containing the singularity

neighborhood; “r” denotes “regular” part with singularity excluded.

Recall the Dirichlet form of the linearized Boltzmann operator L in

(4.7)(the last line of formulas). With the same parameter ε and cuts of sphere

domain (4.28), we define an approximate operator Lε, such that

〈LεF, F 〉 :=

−
∫

Rd

∫
Rd
µµ∗|v − v∗|γ(g + g∗)

(∫
Σs

∇g(v) · (v′ − v) +

∫
Σr

(g′ − g)

)
b(σ)dσdvdv∗ ,

(4.29)
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with a relationship g(v) = µ−1/2(v)F (v). Here, for the time being, we assume

F or g is smooth up to second order (this is true for the null space of L).

Later, we will release the smooth assumption.

Consider the Taylor expansion

g(v′)− g(v) = ∇g(v) · (v′ − v) +O(|v′ − v|2) , (4.30)

where O(|v′ − v|2) is bounded by |v′ − v|2 times some constant depending on

∇2g. It’s not difficult to observe that, for F (v) ∈ L2,

〈LεF, F 〉 → 〈LF, F 〉 , (4.31)

as ε ↘ 0. So, it’s enough to study the geometry of the spectral gaps for the

approximate operator Lε.

Corresponding to the cuts of sphere domain (4.28), we can also define

the singular and regular parts for Lε, namely,

〈LεF, F 〉 = 〈S1(F ), F 〉+ 〈S2(F ), F 〉+ 〈R(F ), F 〉 , (4.32)

where S1 and S2 are the singular parts coming from integrals over Σs; R is

the remaining regular integrals over Σr. In particular,

〈S1(F ), F 〉 = −
∫

Rd

∫
Rd
µµ∗|v − v∗|γg

∫
Σs

∇g(v) · (v′ − v)b(σ)dσdvdv∗ ,

〈S2(F ), F 〉 = −
∫

Rd

∫
Rd
µµ∗|v − v∗|γg∗

∫
Σs

∇g(v) · (v′ − v)b(σ)dσdvdv∗ ,

〈R(F ), F 〉 = −
∫

Rd

∫
Rd
µµ∗|v − v∗|γ(g + g∗)

∫
Σr

(g′ − g)b(σ)dσdvdv∗ .

(4.33)
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We will study them separately.

(1) Singular parts S1F and S2F .

First, let’s look at the angular integrals

IΣs :=

∫
Σs

∇g(v) · (v′ − v)b(σ)dσ . (4.34)

Consider a local spherical coordinate system with u being the polar

direction. Then, take a transformation which rotates the polar direction back

onto z-axis of the standard Cartesian coordinate system. The orthogonal

rotation matrix A can be constructed explicitly, with relative velocity u =

v − v∗. They are given by

d = 2:

A =
1

|u|

(
−u2 u1

u1 u2

)
; (4.35)

d = 3:

A =
1

|u|


u1u3√
u2

1+u2
2

u2u3√
u2

1+u2
2

−
√
u2

1 + u2
2

− u2|u|√
u2

1+u2
2

u1|u|√
u2

1+u2
2

0

u1 u2 u3

 , (4.36)

where we assume u2
1 + u2

2 6= 0. Otherwise, the rotation matrix is reduced to

the identity matrix (with possibly minus sign).

Then, consider a change of variable σ ← A−1σ = ATσ, for which the

Jacobian is 1. If denote by θ the angle between u and σ, as exactly defined

in (2.5), and ϕ is the corresponding azimuthal angle. Recall post-collisional
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velocity v′ = v + 1
2
(|u|σ − u), we have

v′ − v =: z =


|u|
2
AT (sin θ, cos θ − 1)T , if d = 2

|u|
2
AT (sin θ cosϕ, sin θ sinϕ, cos θ − 1)T , if d = 3 .

(4.37)

We will take d = 3 for example. It’s not hard to see that the azimuthal

angle ϕ is integrated out due to its periodicity over [0, 2π]. With (4.36), (4.37)

and a change of variable t = sin θ
2
, we have

IΣs =

∫
|v′−v|≤ε

∇g(v) · zb(σ)dσ

=

∫
|u| sin θ

2
≤ε

∫ 2π

ϕ=0

|u|
2
A∇g(v) · (sin θ cosϕ, sin θ sinϕ, cos θ − 1)T dϕb(σ) sin θdθ

= 2π

∫
|u| sin θ

2
≤ε

|u|
2

(
A∇g(v)

)
3
(cos θ − 1)b(σ) sin θdθ

=
1

2

∫
|u| sin θ

2
≤ε

1

2
u · ∇g(v)(−2 sin2 θ

2
)
(

sin−2−α θ

2

)(
4 sin

θ

2

)
d sin

θ

2

= −2u · ∇g(v)

∫ ε
|u|

0

t1−αdt

= −2
u · ∇g(v)

2− α

(
ε

|u|

)2−α

,

(4.38)

where u = v − v∗ denotes the relative velocity. The formula (4.38) is well-

defined, because in the Boltzmann regime, we require α < 2.

Plugging (4.38) back into (4.33) and applying the Divergence theorem
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on variable v, gives

〈S1(F ), F 〉

= c

∫
Rd

∫
Rd
µµ∗|v − v∗|γ+α−2g∇g(v) · (v − v∗)dvdv∗

= −c
∫

Rd

∫
Rd
∇ ·
(
µµ∗g|v − v∗|γ+α−2(v − v∗)

)
g(v)dvdv∗

= −〈S1(F ), F 〉

+ c

∫
Rd

∫
Rd
µµ∗|v − v∗|γ+α−2 (v · (v − v∗)− (γ + α− 2 + d)) g2(v)dvdv∗ ,

(4.39)

where the constant c = 2 ε
2−α

2−α . Thus,

〈S1(F ), F 〉 =
1

2
c

∫
Rd

∫
Rd
µµ∗|v−v∗|γ+α−2 (v · (v − v∗)− (γ + α− 2 + d)) g2(v)dvdv∗ .

(4.40)

To further simplify (4.40), we make a change of variables (v, v∗)→ (v, u)

in (4.33) and performing integration by parts again w.r.t v. We get

〈S1(F ), F 〉 = c

∫
Rd

∫
Rd
µ(v)µ(v − u)|u|γ+α−2g(v)∇g(v) · udvdu

= −c
∫

Rd

∫
Rd
∇ (µ(v)µ(v − u)g(v)) · u|u|γ+α−2g(v)dvdu

= −〈S1(F ), F 〉+ c

∫
Rd

∫
Rd
µ(v)µ(v − u)|u|γ+α−2

(
2v · u|u|2

)
g2(v)dvdu .

(4.41)

Thus,

〈S1(F ), F 〉 =
1

2
c

∫
Rd

∫
Rd
µµ∗|v−v∗|γ+α−2

(
2v · (v − v∗)− |v − v∗|2

)
g2(v)dvdv∗ .

(4.42)
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Taking twice (4.40) and subtracting (4.42) gives

〈S1(F ), F 〉 =
1

2
c

∫
Rd

∫
Rd
µµ∗|v−v∗|γ+α−2

(
|v − v∗|2 − 2(γ + α− 2 + d)

)
g2(v)dvdv∗ .

(4.43)

Similarly, we have

〈S2(F ), F 〉 =
1

2
c

∫
Rd

∫
Rd
µµ∗gg∗|v−v∗|γ+α−2

(
|v − v∗|2 − 2(γ + α− 2 + d)

)
dvdv∗ .

(4.44)

So, the operators S1 and S2 can be defined explicitly by extracting the

integral kernels in (4.43) and (4.44). In addition, S1 acts as a local operator

and S2 is a global one.

(2) Regular parts RF .

With a neighborhood of singularity being removed, the remaining an-

gular cross-section is integrable

Iσ :=

∫
Σr

b(σ)dσ = 2

− log ε
|u| α = 0;

1
α

((
ε
|u|

)−α
− 1

)
α > 0.

. (4.45)

where u = v − v∗ is the relative velocity. Thus, we can split the “gain” and

“loss” terms and study them separately, following a similar argument as for

integrable angular cross-sections. That is, the reformulating is expected

R(F )(v) = νε(v)F (v) + Kε
1F (v)−Kε

2F (v) , (4.46)

where we denote the “truncated” collision frequency

νε(v) =

∫
µ(v∗)|v − v∗|γIσdv∗ , (4.47)
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the kernel kε1(v, v∗) for Kε
1

kε1(v, v∗) = µ
1
2 (v)µ

1
2 (v∗)|v − v∗|γIσ , (4.48)

and the kernel kε2(v, ξ) for Kε
2 can be explicitly derived, based on the Carleman

representation Lemma 4.2.1 (with a symmetrized angular cross-section). Then,

following a quite similar argument in Section 4.2.1.1, we obtain

Kε
2F (v)

=
2

π

∫
|z|>ε

∫
w⊥z

F (ξ)µ
1
2 (ξ + w)µ

1
2 (v + w)|ξ − v|−d−α

(
|w|2 + |ξ − v|2

) γ+1+α
2 dξdw ,

With a change of variable v + z → ξ and same derivations in Section 4.2.1.1,

We can finally extract an explicit kernel for Kε
2

kε2(v, ξ) =
2

π
(2π)−

d
2 1|ξ−v|>ε|ξ − v|−d−α exp(−1

8
|ξ − v|2 − 1

8

(|ξ|2 − |v|2)2

|ξ − v|2
)

·
∫
w⊥(ξ−v)

exp(−|w + ζ|2

2
)
(
|ξ − v|2 + |w|2

) γ+1+α
2 dw ,

(4.49)

where 1|ξ−v|>ε is the characteristic function over the domain |ξ − v| > ε and ζ

is defined in (4.20).

Till now, we have completed the reformulating of the Dirichlet form and

thus obtained an approximating formula, Lε, for the linearized operator L. The

approximated Lε depends on the parameter ε because of the Taylor expansion

used in formulating the singular parts. Let’s summarize here (changing back

F (v) = µ1/2(v)g(v)):

LεF (v) = (s1(v) + νε(v))F (v) + S2F + Kε
1F (v)−Kε

2F (v) , (4.50)
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where νε is defined in (4.47) and the kernel for the local integral operator S1

is

s1(v) =
ε2−α

2− α

∫
Rd
µ∗|v − v∗|γ+α−2

(
|v − v∗|2 − 2(γ + α− 2 + d)

)
dv∗ . (4.51)

the kernel s2(v, ξ) for the non-local integral operator S2 is given by

s2(v, ξ) =
ε2−α

2− α
µ(v)µ(ξ)|v − ξ|γ+α−2

(
|v − ξ|2 − 2(γ + α− 2 + d)

)
, (4.52)

and the kernel kε1(v, ξ) for Kε
1 is defined in (4.48) (note here, actually ξ = v∗ and

thus u = v−ξ.) And the kernel kε2(v, ξ) for Kε
2 is given above in (4.49). Please

note, following the reformulation of Lε in (4.50), we have actually released the

regularity assumption on F .

It’s not hard to verify that Lε, defined in (4.50), is self-adjoint on L2. A

very interesting observation is that, s1(v)+νε(v) behaves like
∫

exp(− |v−u|
2

2
)|u|γ+αdu

∼ (1 + |v|)γ+α. The operator S2 +Kε
1 +Kε

2, with ε fixed, can be seen as a per-

turbation. If the perturbation could be shown to be compact, then, according

to Weyl’s theorem, the continuous spectrum for the self-adjoint operator Lε

will be characterized only by the kernel s1(v) + νε(v). So, when γ + α ≥ 0,

s1(v) + νε(v) is bounded from below by a positive number and thus we can

expect a spectral gap; otherwise, there is no spectral gap. This is our following

theorem.

Theorem 4.3.1. The approximate self-adjoint linear operator Lε, defined in

(4.29) or (4.50), with the small parameter ε fixed, has a spectral gap if and

only if γ + α ≥ 0.

78



Proof. Let’s only consider the case d = 3 and α > 0. The case α = 0 will follow

the same way. First, let’s find the lower and upper bound for s1(v) + νε(v).

Notice that ∫
exp(−|v|

2

2
)|v − v∗|sdv∗ ∼ (1 + |v|)s . (4.53)

Thus, from (4.47) and (4.51),

νε(v) + s1(v)

=

(
2ε−α

α
+

ε2−α

2− α

)∫
R3

µ(v∗)|v − v∗|γ+αdv∗ −
2

α

∫
R3

µ(v∗)|v − v∗|γdv∗

− 2ε2−α

2− α
(γ + α + 1)

∫
Rd
µ(v∗)|v − v∗|γ+α−2dv∗

∼ (ε−α + ε2−α) (1 + |v|)γ+α − (1 + |v|)γ − ε2−α (1 + |v|)γ+α−2

= (1 + |v|)γ+α ((ε−α + ε2−α)− (1 + |v|)−α − (1 + |v|)−2)
= c(ε, α) (1 + |v|)γ+α ,

(4.54)

where c(ε, α) > 0 is some constant independent of v and bounded from below

by a positive constant independent of parameter ε. Thus, if γ+α ≥ 0, νε(v) +

s1(v) is bounded from below by a positive constant; otherwise, if γ + α < 0,

νε(v)+s1(v) goes to zero for large |v|, so there is a uniform control from below.

Next, we show S2 + Kε
1 and Kε

2 are both compact operators on L2(R3),

by proving that they are actually Hilbert-Schmidt integral operators. That

mean, their kernels are L2 integrable.

Indeed, kε1(v, ξ)+s2(v, ξ) is L2 integrable because each term, µ
1
2 (v)µ

1
2 (ξ)|v−

ξ|γ+α, µ
1
2 (v)µ

1
2 (ξ)|v − ξ|γ and µ

1
2 (v)µ

1
2 (ξ)|v − ξ|γ+α−2, is L2 integrable. In
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addition, the kernel kε2(v, ξ) for operator Kε
2, defined in (4.49), satisfies the

following estimates.

Take a sequence, with index δ > 0,

kε,δ2 (v, ξ) := kε2(v, ξ)1| v·(ξ−v)
|v||ξ−v| |≥δ

(4.55)

Since the set of compact operators is closed in L2(R3), it’s enough to show

kε,δ2 (v, ξ) is L2 integrable.

The integral over the plane w⊥(ξ − v) can be estimated as∫
w⊥(ξ−v)

exp(−|w + ζ|2

2
)|ξ − v + w|γ+1+αdw

=

∫
w⊥(ξ−v)

exp(−|w|
2

2
)|ξ − v + w − ζ|γ+1+αdw

≤ C

{
(1 + |ζ|)γ+1+α(1 + |ξ − v|)γ+1+α, if γ + 1 + α ≥ 0

(|ζ|2 + |ξ − v|2)(γ+1+α)/2, elsewhere
,

(4.56)

where constant C is uniform in γ and α, and the estimate for γ + 1 + α < 0

uses the fact ζ ⊥ (ξ − v), (see (4.20)).

When setting z = ξ − v, from (4.20),

|ζ|2 =
1

4

[
|2v + z|2 − (|v + z|2 − |v|2)2

|z|2

]
=

1

4

[
|2v + z|2 − (|z|2 + 2v · z)2

|z|2

]
=

1

4

[
|2v + z|2 −

(
|z|+ 2v · z

|z|

)2
]

= |v|2
(

1−
(
v · z
|v||z|

)2
)
.

(4.57)
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Plugging back into kε,δ2 (v, ξ) and transferring to the spherical coordi-

nate, if γ + 1 + α ≥ 0, then the following estimate holds∫
R3

∫
R3

(
kε,δ2 (v, ξ)

)2

dvdξ

≤ C

∫
R3

∫
R3

1|ξ−v|>ε|ξ − v|−2(3+α) exp(−1

4
|ξ − v|2 − 1

4

(|ξ|2 − |v|2)2

|ξ − v|2
)

· (1 + |ζ|)2(γ+1+α)(1 + |ξ − v|)2(γ+1+α)dvdξ

≤ C

∫ ∞
|z|=ε
|z|−4−2α(1 + |z|)2(γ+1+α) exp(−|z|

2

4
)

∫ ∞
|v|=0

|v|2

·
∫ π

0

exp(−(|z|+ 2|v| cos θ)2

4
)(1 + |v| sin θ)2(γ+1+α) sin θ1| cos θ|≥δdθd|v|d|z|

≤ C

∫ ∞
|z|=ε
|z|−4−2α(1 + |z|)2(γ+1+α) exp(−|z|

2

4
)

∫ ∞
|v|=0

|v|2(1 + |v|)2(γ+1+α)

·
∫ π

0

exp(−(|z|+ 2|v| cos θ)2

4
) sin θ1| cos θ|≥δdθd|v|d|z|

≤ C

∫ ∞
|z|=ε
|z|−4−2α(1 + |z|)2(γ+1+α) exp(−|z|

2

8
)d|z|

·
∫ ∞
|v|=0

|v|2(1 + |v|)2(γ+1+α) exp(−δ
2|v|2

3
)d|v|

< Cε,δ
1 ,

(4.58)

where Cε,δ
1 is a constant only depending on parameters ε and δ, when γ and α

are fixed.
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Indeed, in the above estimates for integral w.r.t θ,

|z|2 + (|z|+ 2|v| cos θ)2

= 2|z|2 + 4|v|2 cos2 θ + 4|z||v| cos θ

= 2|z|2 + 4|v|2 cos2 θ + t|z| · 4

t
|v| cos θ

≥
(

2− τt2

2

)
|z|2 + 4

(
1− 2

τt2

)
|v|2 cos2 θ

≥
(

2− τt2

2

)
|z|2 + 4

(
1− 2

τt2

)
|v|2δ2 ,

(4.59)

where τ is the parameter in the Young’s inequality. So, an estimate with

2 < τt2 < 4, e.g t = 2 and τ = 3
4
, would serve our purpose.

Similarly, if γ + 1 + α < 0,∫
R3

∫
R3

(
kε,δ2 (v, ξ)

)2

dvdξ

≤ C

∫
R3

∫
R3

1|ξ−v|>ε|ξ − v|−2(3+α) exp(−1

4
|ξ − v|2 − 1

4

(|ξ|2 − |v|2)2

|ξ − v|2
)

· |ζ|γ+1+α|ξ − v|γ+1+αdvdξ

≤ C

∫ ∞
|z|=ε
|z|γ−3−α exp(−|z|

2

8
)d|z|

∫ ∞
|v|=0

|v|γ+3+α exp(−δ
2|v|2

3
)d|v|

·
∫ π

0

sinγ+2+α θ1| cos θ|≥δdθ

< Cε,δ
2 ,

(4.60)

by noticing that γ + 1 + α > −2. Here, Cε,δ
2 is also a constant only depending

on parameters ε and δ, when γ and α are fixed.

At last, for ε fixed, we show

lim
δ→0+

∫ ∫ (
kε,δ2 (v, ξ)− kε2(v, ξ)

)2

dvdξ . (4.61)
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Actually, simply replace 1| cos θ|≥δ by 1| cos θ|<δ in (4.58) and (4.60), re-

spectively. Observe that, when γ + 1 + α ≥ 0, from (4.58),∫ π

0

exp(−(|z|+ 2|v| cos θ)2

4
) sin θ1| cos θ|<δdθ

= exp(−|z|
2

4
)

∫ π

0

exp(−(|v|2 cos2 θ + |v| cos θ)) sin θ1| cos θ|<δdθ

≤ exp(−|z|
2

4
)

∫ δ

−δ
exp(−|v|2 cos2 θ)d cos θ → 0 as δ → 0+ ,

(4.62)

and when −2 < γ + 1 + α < 0, from (4.60),∫ π

0

sinγ+2+α θ1| cos θ|<δdθ → 0 as δ → 0+ . (4.63)

Finally, according to Weyl’s theorem, we conclude that Lε and (νε(v)+

s1(v))I have the same essential spectrum (here, the continuous spectrum due

to the self-adjointness of Lε). From the above, we can conclude that, (νε(v) +

s1(v))I has a continuous spectrum positively bounded from below if and only

if γ + α ≥ 0. Thus, there exists a spectral gap.

Now Theorem 4.3.1 has shown the existence of spectral gap for the

linearized operator Lε under cutoff condition (4.29). However, it still remains

an open problem on the existence of spectral gap for the original linearized

Boltzmann operator L, in the sense of L2-norm relaxation of perturbation

F (v). We conjecture that, as long as one can prove the uniformity when

passing the cutoff parameter ε to zero, the following result holds
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Conjecture 1. The linearized Boltzmann operator L, defined in (4.6) or (4.7),

has a spectral gap, in the sense that, there exists a positive constant λ such

that

〈LF, F 〉 ≥ λ‖(F −PF )‖2
L2(Rd) , (4.64)

if and only if γ + α ≥ 0.

Remark. In order to see the estimate (4.64) in the sense of a norm

different than L2, readers can appeal to the argument in [73].

4.4 The Discontinuous Galerkin Projections

In this section, we introduce how to project the original eigenvalue

problem onto a finite approximation space, based on Discontinuous Galerkin

methods. The key is the treatment of the angular integrals over the d − 1

dimensional sphere Sd−1. Our DG approximation can handle both integrable

and non-integrable angular cross-sections, and has also served a foundation

for the development of the deterministic DG solvers for fully nonlinear Boltz-

mann equations, also done by the author. Particularly, for operators with

integrable angular cross-sections, it can be specially reformulated based on

so-called “Grad splitting”, done in Section 4.2.1.1 and can be easily projected

onto our DG meshes.

Albeit the high complexity of DG discretizations, we still prefer the

DG scheme, since with little knowledge of eigenfunction behaviors, DG ap-

proximations are expected to accommodate various kinds of regular and/or
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irregular eigenfunctions and thus to provide more accurate eigenvalues. In

order to apply DG, we first need to build a reasonable truncated domain.

4.4.1 Domain and Mesh

Let’s recall the Dirichlet form for the operator L (4.7) and the equiva-

lent minimization problem for the spectral gap (4.11). If we employ change of

variables, g(v) = F (v)

µ1/2(v)
, then, equivalently, the spectral gap problem becomes

min
〈L(F ), F 〉
‖ g ‖2

L2(µ)

,

s.t. g ⊥
(
µ−

1
2 · N (L)

)
,

(4.65)

where ‖ · ‖L2(µ) is the weighted L2 norm with weight µ(·).

It’s not difficult to observe that, g(v) can be restricted onto a truncated

domain, Ωv = [−V, V )d, which is large enough such that the objective function

and constraint in (4.65) will only differ than their real values within small

errors, respectively. Besides, since the whole linearization only makes sense

at the regime very close to equilibrium, it is still reasonable only to consider

perturbations F (v) with the same “compact support” as µ(v). Thus, in the

following, our computational domain is the truncated set Ωv, for g(v) and/or

F (v).

Remark. It is vitally important to pay attention to the domain trun-

cation here. With a velocity cutoff, we are actually dealing with the corre-

sponding cutoff operator

LΩ = χΩL , (4.66)
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which will definitely possess a spectral gap due to the finite integration domain.

Though, see (4.25) and analysis below for example, this will not essentially

influence the spectral gap for γ ≥ 0, yet for soft potential case, χΩL is expected

to have a “spectral gap” bounded by χΩµ(v), up to some constant factors.

However, as Ω gets larger, we can expect this “spectral gap” goes to zero. An

analytical reasoning is provided in the convergence analysis.

A regular mesh is applied, that is, we divide each direction into N

disjoint elements uniformly, such that [−L,L] =
⋃
k Ik, where interval Ik =

[wk− 1
2
, wk+ 1

2
), wk = −L + (k + 1

2
)∆v, ∆v = 2L

n
, k = 0 . . . n − 1 and thus

there is a Cartesian partitioning Th =
⋃
k Ek, with uniform cubic element

Ek = Ik1 ⊗ Ik2 ...⊗ Ikd , k = (k1, k2, ..., kd).

Discontinuous Galerkin methods assume piecewisely defined basis func-

tions, that is

g(v) =
∑
k

uk · Φ(v)χk(v) , (4.67)

where multi-index k = (k1, k2, ..., kd), 0 ≤ |k| < (n − 1)3; χk(v) is the char-

acteristic function over element Ek; coefficient vector uk = (u0
k, ...,u

p
k), where

p is the total number of basis functions locally defined on Ek; basis vector

Φ(v) = (φ0(v), ..., φp(v)). Usually, we choose element of basis vector Φ(v) as

local polynomial in P p(Ek), which is the set of polynomials of total degree at

most p on Ek.
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4.4.2 Evaluations of Collision Integrals

For Boltzmann-type equations, the treatment of various collision ker-

nels always remains the most important and challenging part. To demonstrate

our scheme, for simplicity, we take piecewise constant basis functions as ex-

ample, i.e. p = 0, such that only the characteristic function χk(v) is applied

over each element Ek. Due to the possible singularity in angular cross-section,

b(cos θ), we keep the “gain-loss” term and will show that this is where the

cancelation of singularity occurs.

Plugging (4.67) back into the Dirichlet form (4.7) (the last line of for-

mulas) gives, with change of variables (v, u)← (v, v∗), where u = v− v∗ is the

relative velocity,

〈L(F ), F 〉 = uTGu , (4.68)

with G the “collision matrix” with N ×N blocks, each of which is (p+ 1)d ×

(p+ 1)d block defined as

G(k,m) =

∫
Rd

∫
Rd
µ(v)µ(v − u) (Φ(v)χk(v) + Φ(v − u)χk(v − u))

⊗
∫

Sd−1

(Φ(v′)χm(v′)− Φ(v)χm(v))B(u, σ)dσdudv .

(4.69)

Let’s only look at the typical term∫
Rd

∫
Rd
µ(v)µ(v − u)χk(v)

∫
Sd−1

(φi(v
′)χm(v′)− φi(v)χm(v))B(u, σ)dσdudv

=
∑
k̄

∫
v∈Ek

∫
v−u∈Ek̄

µ(v)µ(v − u)

∫
Sd−1

(φi(v
′)χm(v′)− φi(v)χm(v))B(u, σ)dσdudv .

The other terms are evaluated in a same way.
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Due to the convolution formulation, the integrals w.r.t v, u can be ap-

proximated through Triangular quadratures. Indeed, along each dimension, if

vi ∈ Iki , vi − ui ∈ Ik̄i , then the pair (vi, ui) will form a parallelegram which

can be divided into two triangles. The integrals on the sphere take the most

efforts, because one has to figure out how the Cartesian cubes intersect with

the spheres. Let’s extract the angular integrals in the above typical term,

denoted by gm,i(v, u), and study it separately

gm,i(v, u) :=

∫
Sd−1

(φi(v
′)χm(v′)− φi(v)χm(v)) b(

u · σ
|u|

)dσ . (4.70)

The treatments for (4.70) follows exactly the same as in Chapter 3, where

deterministic DG solvers for nonlinear Boltzmann equations are developed.

Please refer to Chapter 3 for more details.

Once gm,i(v, u) is done, plugging it back into (4.69), we get the “collision

matrix” G.

Finally, we would like to mention that, specially for the Grad split-

ting formulations in Section 4.2.1.1, the block G(k,m) can be written down

immediately, from (4.23),

G(k,m) = δkm

∫
Ek

ν(v)Φ(v)⊗ Φ(v)dv

+

∫
Ek

∫
Em

(k1(v, ξ)− k2(v, ξ)) Φ(v)⊗ Φ(ξ)dvdξ ,

(4.71)

where δkm denotes Kronecker delta. Here, the collision matrix G is symmetric

semi-positive definite.
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4.5 The Approximate Rayleigh Quotient

Recall the equivalent minimization problem for solving spectral gaps

in (4.11) or (4.65). With the approximation above, we can easily rewrite this

constrained minimization problem as

min
uTGu

uTDu

s.t Cu = 0 ,

(4.72)

where the block diagonal matrix D generated from the tensor product of the

basis functions; the constraint matrix C is of size (d + 2) × M (here M =

N(p+ 1)d is the number of coefficients), obtained from the constraints.∫
F (v)µ

1
2 (v)dv =

∫
F (v)µ

1
2 (v)vdv =

∫
F (v)µ

1
2 (v)|v|2dv = 0 . (4.73)

Since, we need to find the global optimization solution, then, we first

find an orthogonal basis P for the constraint space

P = {u ∈ RM : Cu = 0} . (4.74)

This calculation can be done through performing QR factorization for CT ,

the last M − (d+ 2) columns will form the orthogonal (actually, orthonormal)

basis P, of size M × (M − (d+ 2)) and PTP = IM−(d+2)

Then, the minimization problem becomes

min
0 6=b∈RM−(d+2)

bTPTGPb

bTPTDPb
, (4.75)

which is equivalently to find the smallest singular value from the generalized

eigenvalue problem

PTGP = λPTDP . (4.76)
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In practice, instead of solving (4.75) and (4.76) which requires extra QR

decomposition and matrix multiplications, we find out another way to force the

constraints (4.73), which is much more efficient and easier to implement. This

is done by perturbing the “collision matrix” G to its “L2-closest” counterpart,

through introducing a “conservation routine”. A similar conservation routine

has been successfully applied to deterministic conservative solvers for nonlinear

Boltzmann equations based on Spectral methods [68] as well as Discontinuous

Galerkin methods (see Chapter 3).

Our objective is to enforce the eigenvalues to be zeros whenever the

corresponding eigenfunctions fall onto the null space N (L) of operator L.

That is, we solve

Conservation Routine [Functional Level]: Minimize in the Banach space

Be =

{
X ∈ L2(Ωv) :

∫
Ωv

Xµ
1
2 (v) =

∫
Ωv

Xµ
1
2 (v)v =

∫
Ωv

Xµ
1
2 (v)|v|2 = 0

}
,

the objective functional

Ae(X) :=

∫
Ωv

(LF (v)−X)2 dv . (4.77)

To enforce the conservation, we seek, in L2-distance, the closest Q :=

Gu, which is the minimizer of the following constrained optimization problem:

Conservation Routine [Discrete Level]: Find Qc (the subscript c means

a conservative correction), the minimizer of the problem

min
1

2
(Qc −Q)TD(Qc −Q)

s.t. CQc = 0 ,
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where the constraint matrix C is defined in (3.19).

This conservation routine has been studied in Section 3.4. Please refer

to Section 3.4 for more details.

Finally, we get the minimizer Qc

Qc = [I−D−1CT (CD−1CT )−1C]Q , (4.78)

where I is an identity matrix of size M ×M . So, Qc is a perturbation of Q.

So, finally, the perturbed “collision matrix” G will be

Gc = [I−D−1CT (CD−1CT )−1C]G , (4.79)

which is forced to have d+2 zero eigenvalues whenever u 6∈ P defined in (4.74).

The (d+3)-th eigenvalue of Gc will be defined as our numerical spectral

gap.

4.5.1 Convergence of The Approximate Rayleigh Quotient

We will prove that the above discrete Rayleigh quotient (4.72) will

converge to the spectral gap solved from (4.11).

With standard approximation theory, it is not hard to prove that, the

above discrete Rayleigh quotient (4.72) converges to the spectral gap (if ex-

ists) of the original linearized Boltzmann operator. We summarize it in the

following theorem.

Theorem 4.5.1 (Convergence of Rayleigh Quotients). For the angular in-

tegrable (i.e. α < 0 in (2.5)) linearized Boltzmann operator, defined in the
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Dirichlet form (4.7), with a piecewise polynomial approximation (4.67) for the

perturbation F (v), the spectral gap, denoted by λ(G), solved from minimized

Rayleigh quotient (4.72) approximates the original spectral gap, denoted by

λ(L), solved from (4.11), in the following way,

• When γ ≥ 0, |λ(L)− λ(G)| . hk+1 ;

• When −d < γ < 0, |λ(L)− λ(G)| . hk+1 + e−
V 2

2 ,

where h = maxE∈Th diam(E) is the mesh size of the regular triangulation, k is

the total degree of polynomials in the piecewise polynomial space Pk. The “.”

is only upto some constant depending on the truncated domain Ω = [−V, V ]d

as well as eigenfunctions associated with the spectral gap eigenvalue.

Proof. As shown in the Dirichlet form (4.7) of L, the eigenvalue zero is cor-

responding to the conservation laws for mass, momentum and kinetic energy.

Therefore, it is of multiplicity d + 2, with eigenfunctions φ0(v) = µ1/2(v),

φi(v) = µ1/2(v)vi for i = 1, .., d and φd+1(v) = µ1/2(v)|v|2.

Suppose the truncated velocity domain Ω = [−V, V ]d is large enough.

We are indeed dealing with the cutoff operator LΩ = χΩL applying to χΩ(v)F (v).

That is, the kernel, denoted by kΩ, for cutoff LΩ is given by

kΩ = χΩ(v)ν(v)δ(v − ξ) + χΩ(v)k(v, ξ) , (4.80)

where δ(v−ξ) is short for δ(v1−ξ1) · · ·δ(vd−ξd), ν(v) is the collision frequency

defined in (4.25) and k(v, ξ) is the kernel for the compact operator K in (4.14).
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However, the null space N (L) is not invariant under the cutoff. Never-

theless, sinceN (L) is spanned by collision invariants weighted with a Guassian

distribution, as long as Ω is large enough, the approximation error due to cut-

off can be negligible. To save trouble on dealing with null space, we consider

the modified linear operator L̄, with the null space of L removed

L̄F = LF +
d+1∑
i=0

φi(F, φi) , (4.81)

where (F, φi) =
∫

Rd F (v)φi(v)dv. This is to replace the integral kernel k(v, ξ)

by

k̄(v, ξ) = k(v, ξ) +
d+1∑
i=0

φi(v)φi(ξ) , (4.82)

which is still L2(Rd) integrable. That is, L̄ can be still written as collision

frequency ν(v) plus a compact perturbation.

Thus, the minimum Rayleigh quotient of L̄ is the expected spectral gap,

if exists. That is, λ(L) = λ(L̄). So, we only need to study the approximations

for the Rayleigh quotient of operator L̄.

Similarly, we are working with the cutoff operator L̄Ω = χΩL̄ applying

to χΩ(v)F (v). That is, the kernel k̄Ω for cutoff L̄Ω is given by

k̄Ω = χΩ(v)ν(v)δ(v − ξ) + χΩ(v)k̄(v, ξ) . (4.83)

According to Weyl’s theorem, for γ ≥ 0, the spectral gap for the new

L̄ still exists. And in the case, the cutoff doesn’t change the minimum of the

Rayleigh quotient of L̄. So, the spectral gap stays the same, or λ(L̄) = λ(L̄Ω).

93



While for the case −d < γ < 0,

min
v∈Ω

ν(v) & e−
V 2

2 , (4.84)

which is the lower bound for the continuum spectrum of L̄Ω. This implies,

the spectral gap for the cutoff operator L̄Ω is no larger than e−
V 2

2 (up to some

constant factor), if ever exists. That is, |λ(L̄)− λ(L̄Ω)| . e−
V 2

2 .

Suppose Th is a regular Cartesian partition for Ω, with mesh size

h = maxE∈Th diam(E). Please refer to Appendix for some notations and the

standard approximation theory.

For any mesh elements Ev and Eξ, according to the approximation

theories (8), it’s not hard to prove the following

‖F (v)F (ξ)− PhF (v)PhF (ξ)‖L2(Ev×Eξ) ≤ hk+1
(
‖F‖Hk+1(Ev)‖F‖Hk+1(Eξ)

)
,

(4.85)

where PhF is the L2 projection defined in (7) in Appendix.

Then, the Dirichlet form is approximated as follows

|〈L̄ΩF, F 〉 − 〈L̄Ω(PhF ), (PhF )〉|

≤
∑
m

∑
n

‖k̄Ω‖L2(Em×En)‖F (v)F (ξ)− PhF (v)PhF (ξ)‖L2(Em×En)

≤ C(Ω)hk+1‖F‖2
Hk+1(Th) ,

(4.86)

where C(Ω) is some constant depending on the truncated domain Ω.
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And thus, the Rayleigh quotients have the following estimates∣∣∣∣∣〈L̄ΩF, F 〉
‖F‖2

L2(Ω)

− 〈L̄Ω(PhF ), (PhF )〉
‖PhF‖2

L2(Th)

∣∣∣∣∣
=

1

‖F‖2
L2(Ω)‖PhF‖2

L2(Th)

(
〈L̄ΩF, F 〉

(
‖PhF‖2

L2(Th) − ‖F‖2
L2(Ω)

)
+ ‖F‖2

L2(Ω)

(
〈L̄ΩF, F 〉 − 〈L̄Ω(PhF ), (PhF )〉

) )
≤ C(Ω)hk+1 ,

(4.87)

which implies,

|λ(L̄Ω)− λ(G)| ≤ C(Ω)hk+1 , (4.88)

where now the generic constant C(Ω) also depends on the eigenfunction asso-

ciated with the spectral gap eigenvalue.

Finally, noticing

|λ(L)− λ(G)| ≤ |λ(L̄)− λ(L̄Ω)|+ |λ(L̄Ω)− λ(G)| , (4.89)

gives our final estimates.

4.6 Numerical Results

We will present some raw results for 2d as well as 3d linearized Bolz-

mann operators with integrable angular cross-sections.

The computing of weight matrix G is parallelized with MPI [65]. The

matrix will be computed and stored in a way of two-dimensional block cyclic

distribution [12], on a process grid, as shown in Figure 4.4
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Figure 4.4: The 1d block-cyclic column- and 2d block-cyclic distributions

Some scalable eigensolvers in ScaLAPACK, for example, PDSYGVX

and PDSYEVX [12], are called to compute the eigenvalues for the distributed

matrix.

At first, we would like to interpret the relationship between our nu-

merical results and the true spectral gaps. Due to the domain truncation and

DG approximation, the numerical results may not represent the true spectral

gaps; however, the convergence Theorem 4.5.1 for the approximate Raleigh

quotients in Section 4.5.1 tells us that, if there exists a spectral gap for the

true problem, then as long as the domain is truncated large enough, what

matters will be only the DG scheme approximation accuracy. And if there is

no spectral gap, then as computing domain gets larger, the numerical “spec-

tral gap” will clearly decay down to zero. This is exactly what Figure 4.5 and

Figure 4.6 are showing.

Note: When increasing the lateral size of the truncated velocity do-

main, we keep the mesh size to be consistent (say, in our tests, ∆v=0.5), for

sake of comparison. For the case of soft potential, as shown in Figure 4.6 for

γ = −1, some “pseudo spectral gap” in the numerical results might be ob-

served, for example in the segment V ∈ [7, 9]; but such “pseudo spectral gap”
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Figure 4.5: The numerical spectral
gaps for 2d Maxwell type model,
i.e. γ = 0, α = −1

Figure 4.6: The numerical spectral
gaps for 2d, γ = −1, α = −1

will break immediately when increasing the domain size.

Then, we fix a large enough lateral size, increasing the number of mesh

elements on each direction. More accurate results can be expected. We can

see from Figure 4.7 and Figure 4.8, the numerical values will approach the

analytical value 1
4

(for 2d) and 1
3

(for 3d) respectively, when finer discretization

is applied, as calculating the spectral gap for Maxwell type of interactions

(γ = 0), where the exact eigenvalue for Maxwell-type interactions (γ = 0) is

known and given by [15, 34, 39]:

λnl =

∫
Sd−1

b(cos(θ))

[
cos2n+1 θ

2
Pl(cos(

θ

2
)) + sin2n+1 θ

2
Pl(sin

θ

2
)− 1− δl0δn0

]
,

where Pl(x) is the l-th Legendre polynomial; n, l=0,1,....

In particular, by actually solving the nonlinear Boltzmann equation

and plotting the evolution of the weighted L2 norm of the solution, we can

expect an exponential decay rate governed by or close to the spectral gap.
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Figure 4.7: The numerical spec-
tral gaps with Ωv = [−5, 5]2 for
2d Maxwell type model, i.e. γ =
0, α = −1

Figure 4.8: The numerical spec-
tral gap with Ωv = [−5, 5]3 for 3d
Maxwell type model, γ = 0, α =
−2

With the same DG discretization, the numerical value of the corresponding

spectral gap for γ = 1 (hars sphere) is 0.72. The numerical solutions for the

corresponding nonlinear BE is obtained by conservative DG solver developed

also by the authors, see Chapter 3. See Figure 4.9.

Remark. This can only be expected after long time or with an initial

state very close to equilibrium, because the spectral gap, as the first non-zero

eigenvalue, can only dominate the decay rate when time t is large enough.

We have computed spectral gaps for 2d variable hard potentials with

isotropic angular cross-sections, using a moderate domain discretization (piece-

wise constant basis functions; V = 5, N = 24) . As seen from Table 4.1,

stronger intermolecular potential will force a faster decay to equilibrium.

We also apply piecewise linear basis functions (P 1 polynomials) for
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Figure 4.9: The exponential decay for solutions of 2d nonlinear Boltzmann
equation with γ = 1, α = −1

γ 0 0.1 0.25 0.5 0.75 0.9 1
gaps 0.25 0.29 0.34 0.44 0.58 0.67 0.72

Table 4.1: Numerical spectral gaps for 2d variable hard potentials with
isotropic angular cross-sections

approximating F (v). Table 4.2 is the comparison with piecewise constant case.

from which one can easily see the P 1 basis functions give a much more accurate

gap (V,N)=(5,20) (V,N)=(5,24)
P 0 0.383798 0.353494
P 1 0.351826 0.332835

Table 4.2: Comparisons of numerical spectral gaps between P 0 and P 1 basis,
for 3d Maxwell model.

approximation than P 0, which is stated in the theorem of convergence.

For the non-cutoff cases, when
∫

Sd−1 b(
u·σ
|u| )dσ is unbounded, we also

have numerically verified the “conjecture” on the existence of spectral gaps,
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i.e. there exists spectral gap if and only if γ + α ≥ 0. Similar to the cutoff

case, as we show in Section 4.3, the geometry of the spectral gaps for trun-

cated operator χΩL also depends on the truncation of the domain and the

discretization resolution. If there exists a spectral gap, as long as the comput-

ing velocity domain is large enough, the approximation accuracy only depends

on the resolution of the mesh and vice versa; otherwise, if there is no spectral

gap, with the lateral size getting larger, the numerical spectral gap is expected

to decay to zero, and vice versa. See Figure 4.10 and 4.11.

Figure 4.10: The numerical spec-
tral gaps for 3d non-cutoff case,
γ = 0, α = 0

Figure 4.11: The numerical spec-
tral gaps for 3d non-cutoff case,
γ = −1, α = 0

So, once we know there exists a spectral gap, we can fix a large enough

truncated velocity domain and apply DG meshes with finer resolutions, then

more accurate approximations to the real spectral gap can be expected. See

Figure 4.12 for the numerical spectral gaps when γ = 0, α = 0, where an

approximate value 1.0 is achieved.
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Figure 4.12: The numerical spectral gaps with Ωv = [−5, 5]3 for 3d γ = 0, α =
0

We list the results for 3d variable hard potentials with isotropic angular

cross-sections, see Table 4.3. from which we also can tell, as in 2d case, stronger

γ 0 0.25 0.5 0.75 1
gaps 0.33 0.45 0.62 0.83 1.10

Table 4.3: Numerical spectral gaps for 3d variable hard potentials with
isotropic angular cross-sections

intramolecular potential imposes faster decay to equilibrium.

A hybrid OpenMP [13] and MPI [65] paralleling computing is imple-

mented to compute the eigenvalues of the conservative corrected “collision

matrix”. Some routines in package like Scalapck [12] have been called. Our

test computations have been distributed among up to 256 nodes and 4000

cores on clusters Lonestar and Stampede affiliated with TACC [103]. As long

as memory and computing power allows, one can improve the accuracy of the

numerical spectral gaps by choosing larger velocity domain, finer DG meshes
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and higher accuracy quadrature rules.

Finally, we stress that the spectral gap information can be a benchmark

property for the solution of linearized and nonlinear Boltzmann equation. One

can compute the decay of (weighted) L2 norms of the solutions and observe,

when it’s close enough to equilibrium, if the decay rate is approximately the

given spectral gap.
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Chapter 5

A Conservative Scheme for Approximating

Collisional Plasmas

We have developed a deterministic conservative solver for the inho-

mogeneous Fokker-Planck-Landau equations coupled with Poisson equations,

which is a rather realistic and primary model for collisional plasmas.

5.1 Introduction

The plasma dynamics is governed by infinite-range interactions, i.e.

Coulomb potentials, and thus behaves differently than ordinary molecular

gases. At the kinetic level, among various plasma models, the Vlasov-Poisson

(VP) equations and Fokker-Planck-Landau (FPL) equations are the most rep-

resentative ones describing, respectively, collisionless and collisional plasma

systems.

The VP system is a nonlinear kinetic system modeling the transport of

charged particles in a collisionless plasma, under the effect of a self-consistent

electrostatic field and possibly an externally supplied field. The electrostatic

potential is coupled through Poisson equation. Some natural plasmas, as for

example solar wind, behaves as collisionless, since the mean free path of a
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particle traveling from the Sun to the Earth is of the order of Sun-Earth

distance. Because of its comparative simplicity, numerical schemes for VP

equations have been not only thoroughly explored but also well developed.

One can refer to, for example [41, 49, 78]. The collisionless VP system exhibits

a variety of dynamical phenomena. For example, the well-known filamentation

(filaments in phase space and steep gradients in v) due to its dispersive nature

and Landau damping mechanism for near equilibrium states satisfying some

conditions. Readers can refer to [40] for more physical insights.

If collisions are taken into account, particles are scattered and things

could be different. To our best knowledge, there is rare work on such mod-

els. Thus, we expect to study the numerical behaviors of the inhomogeneous

FPL system for multiple species. The transport of probability density for the

particle species α is given by

∂tfα+v·∇xfα+F (t, x)·∇vfα =
∑
β

aαβQα,β(fα, fβ), v ∈ Rdv , x ∈ Ωx ⊆ Rdx ,

(5.1)

subject to some initial and boundary conditions on fα. Here, fα is the distri-

bution for species α, the term Qα,β(fα, fβ) is a nonlinear, nonlocal operator in

divergence form and models the (α, β) pair collisions (e.g. electron-electron,

ion-ion, electron-ion, etc.) and aαβ are the coupling parameters. In our present

work, we take aαβ = 1
ε

to be collision frequency with ε the Knudesen num-

ber. The case aαβ → 0 corresponds to the Vlasov-Poisson system. The force

field F (t, x) only depends on time and space position and can be external or

self-consistent. If it is self-consistent, it corresponds to the electrostatic force
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qE(t, x), where q is the charge and E(t, x) is the self-consistent electrostatic

field obtained from the Poisson equation for charges

E(t, x) = −∇xΦ(t, x); −∆xΦ =
∑
β

∫
R3

fβ(v)dv , (5.2)

subject to some boundary condition on Φ.

The FPL transport equation is used to model long-range Coulomb inter-

actions between charged particles (e.g binary collisions occurring in a plasma).

It is of primary importance in modeling evolution of collisonal plasma and ac-

tually a rather realistic model especially when the magnetic field is very weak.

The FPL transport equation can be derived from the general Boltzmann trans-

port equation by taking the so-called binary grazing collision limit, i.e collisions

that only result in very small deflections of particle trajectories, as is the case

for Coulomb potentials with Rutherford scattering [111]. The original deriva-

tion is due to Landau [89]. Readers can refer to Villani [117] and the references

therein for some mathematical aspects, and to [86] for a recent calculation of

the grazing collision asymptotics in Fourier space.

With the general non-isotropic Landau collision operator Q, the inho-

mogeneous FPL model gains huge difficulties to handle, both analytically and

numerically. The main factors generating such difficulties are the nonlinearity,

non-locality and diffusive nature with high dimensionalities. Unlike other ki-

netic models, for example Boltzmann equations where some non-deterministic

methods (DSMC) have been successfully applied, the infinite-range potential

interactions greatly limit the applications of Monte Carlo methods. Many
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people have tried to develop efficient deterministic solvers for the inhomoge-

neous FPL equations. However, due to the computational complexity men-

tioned above, people have turned to some simplified versions of this problem,

for example, space homogeneous FPL equations in the isotropic case [29] or

cylindrically symmetric problem [90] or 1D Fokker-Planck type operator [108].

Previously, L. Pareschi et al. proposed a spectral method to solve FPL equa-

tions [107], by taking truncated Fourier series and extending solutions by pe-

riodicity. This method was not intended to preserve moments as desired and

introduced unphysical binary collisions. It cannot avoid aliasing effects, which

will be present whenever a vanishing function is approximated by a periodic

one. Later, Filbet and Pareschi [60] applied the spectral method to study

inhomogeneous FPL with 1D in space and 2D in velocity. The pure transport

equations was further splitted and a finite volume scheme was used. Then,

Crouseilles and Filbet [53] proposed a solver for inhomogeneous FPL with 1D

in space and 3D in velocity, where the pure transport part was treated with

a finite volume scheme and the Landau operator was approximated by av-

eraging of uncentered finite difference operators. However, the solver in [53]

only preserved mass and energy at the discrete level (for the uncentered finite

difference approximate Landau operator), under some symmetry assumptions

on the initial datum.

In our current work, we follow a regular time-splitting scheme, splitting

the original inhomogeneous FPL equation into a pure transport problem, i.e

Vlasov-Poisson equation for advection and a homogeneous FPL equation for
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collisions. These two subproblems can be treated with completely different

schemes. For the VP problem, we apply the RKDG method with a piecewise

polynomial basis subspace covering all collision invariants, which can be proved

to conserve mass, momentum and kinetic energy up to some boundary effects

that disappear if the domain is taken large enough. While for the homogeneous

FPL equation, different than the one in [107], we extend the spectral method

first introduced in [68] for the nonlinear Boltzmann transport equation and

propose a conservative spectral method for homogeneous FPL equation, by

first extending the solution by zero, representing the collision integral through

choosing Fourier modes as the test functions in the weak form and enforcing

conservation routines. Since two completely different numerical scheme are

applied separately, our challenge is not only to link two different meshes and

at the same time, but also to keep the conserved quantities. We have designed a

new conservation correction process such that, after projecting the conservative

spectral solution onto the DG mesh, the conserved moments are transferred

to the DG solution as well.

5.2 The Fokker-Planck-Landau Operator

The FPL operator models binary collisions in a system of single- or

multi-species and reads

Qα,β(fα, fβ) = ∇v ·
∫

R3

S(v − v∗)(fβ(v∗)∇vfα(v)− fα(v)∇v∗fβ(v∗))dv∗ , (5.3)
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with the d× d nonnegative and symmetric projection matrix

S(u) = L|u|γ+2(Id− u⊗ u
|u|2

) , (5.4)

where Id is the d × d identity matrix; Π(u) = Id − u⊗u
|u|2 is the orthogonal

projection upon the space orthogonal to u. It’s semi positive definite with

eigenvalues 0,1,1. The constant L is a positive(a value related to the logarithm

of the dimensionless Debye radius of screening of the Coulomb potential in

plasma). For simplicity, we take L = 1 in the following.

The inverse-power laws has γ ≥ −3. Similar to Boltzmann equations,

different γ categorizes hard potentials for γ > 0, Maxwellian molecules for

γ = 0 and soft potentials for γ < 0. But here, we only focus on most interesting

case γ = −3, corresponding to Coulomb interactions.

When α = β, the operator Qα,α will be a nonlinear (bilinear) integro-

differential operator in divergence form. Here and in the following, when

talking about single-species distributions, we will drop the subscript α for sim-

plicity. The strong form of this nonlinear partial integrodifferential equation

is

∂tf + v · ∇xf + F (t, x) · ∇vf = QFPL(f, f), v ∈ R3, x ∈ Ωx ⊆ R3 , (5.5)

where the collision kernel is of the form

QFPL(f, f) = ∇v ·
∫

R3

S(v − v∗)(f(v∗)∇vf(v)− f(v)∇v∗f(v∗))dv∗ . (5.6)

The FPL operator, as a limit of the Boltzmann collision operator, pos-

sesses a similar conservation laws and decay of entropy(H-theorem). That
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is ∫
R3

Q(f, f)(v)φ(v)dv = 0 , (5.7)

if and only if

φ(v) = 1, v, |v|2 (5.8)

corresponding to the conservation of mass (charge), momentum and kinetic

energy. As in the previous chapters, we call the d + 2 test functions φ(v) =

1,v, |v|2 collision invariants.

In addition, for any f(v) > 0, if set φ(v) = log f(v), one can show the

following dissipation of entropy

d

dt

∫
Rd
f log f =

∫
Rd
Q(f, f)(v) log f(v)dv ≤ 0 , (5.9)

which also implied the equilibrium states given by the Maxwellian distribution

M(x, v) =
ρ

(2πkBT )
3
2

exp

(
−|v − v̄|

2

2kBT

)
, (5.10)

where kB is the Boltzmann constant. The local dependence of x is from the

mass ρ(x), the mean velocity v̄(x) and the kinetic temperature T (x), given by

ρ =

∫
R3

f(x, v)dv, v̄ =

∫
R3 f(x, v)vdv

ρ
, T =

∫
R3 f(x, v)|v − v̄|2dv

3ρ
.

(5.11)

When α 6= β, the operator Qα,β models collisions between two different

species. It is essentially a linear operator and the treatment will be similar and

sometimes even much simpler compared with the fully nonlinear one (5.6). We

will consider different problems associated to different forms of the operator

Qα,β in the following sections.
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5.3 Spectral Gap For Linearized Landau Operators

Before going to the real full nonlinear Landau operator, we study in

this section the spectral gap for the linear Landau operators and thus the rate

of convergence of the solution. This work was suggested and initiated by A.V

Bobylev, through a personal communication with him in October, 2013.

The linear Landau equation is an equation for a test particle, which

collides with equilibriumly distributed “field” particles. It can be obtained by

rewriting the homogeneous Landau equation in the form of nonlinear diffusion

equations for f(v, t), then replacing the f(v, t) in the integral terms by a

constant Maxwellian, say, M(v) = exp(−|v|2). Finally, consider the isotropic

case when the function f(v, t) is a radial one denoted by f(x, t) with x = |v|2.

More specifically, the generalized linear isotropic Landau equation reads

∂tf(x, t) = xθ∂x (Dθ(x)(∂xf(x, t) + f(x, t))) , x, t ≥ 0 , (5.12)

where

Dθ(x) =

∫ x

0

yθe−ydy, 0 ≤ θ ≤ 1

2
. (5.13)

The 3-D Landau equation (see (5.4), (5.5) and (5.6)) corresponds to θ = 1
2
.

The case θ = 0 can be exactly solvable through the Laplace transform.

If we take

f(x, 0) = f0(x).

∫ ∞
0

xθf0(x)dx = Γ(1 + θ) , (5.14)

where the Gamma function is defined by

Γ(z) =

∫ ∞
0

xz−1e−xdx, z > 0 , (5.15)
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then, it is easy to check that, for any x ≥ 0,

lim
t→∞

f(x, t) = e−x . (5.16)

Our goal is to study the rate of convergence.

Consider a perturbation around the equilibrium, that is,

f(x, t) = e−x(1 + ϕ(x, t)) . (5.17)

Plugging this back to the generalized linear Landau equation (5.12) gives an

equation for ϕ

xθe−x∂tϕ(x, t) = −L(ϕ)(x, t) , (5.18)

where the linear operator L reads

L(ϕ)(x, t) = −∂x[Dθ(x)e−x∂xϕ(x, t)] . (5.19)

If define the weighted L2 norm as

‖ϕ‖2 =

∫ ∞
0

xθe−xϕ2dx , (5.20)

then,

1

2

d

dt
‖ϕ‖2 = −〈L(ϕ), ϕ〉 = −

∫ ∞
0

Dθ(x)e−x[∂xϕ(x, t)]2dx , (5.21)

where the Dirichlet form 〈L(ϕ), ϕ〉 (〈·, ·〉 denotes the usual unweighted L2

innner product) is obtained through integration by parts.

Obviously, L is a positive operator. Its smallest eigenvalue is 0 with

multiplicity 1 with its eigensapce spanned by constant functions. In particular,
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we can conclude, at the formal level, that

ϕ(x, t) = O
(
e−λθt

)
, as t→∞ , (5.22)

where λθ is the spectral gap, if exists, of operator L, defined as the minimized

Rayleigh quotient of L

λθ = min
〈L(ϕ), ϕ〉
‖ϕ‖2

s.t.

∫ ∞
0

xθe−xϕ(x)dx = 0 , (5.23)

that is, ϕ is orthogonal to the eigensapce of eigenvalue 0.

That means, we can expect an exponential decay when the state is

close to equilibrium, where the decay rate is given by λθ > 0, if exists. In

addition, the existence can be analytically proved for θ = 0. For θ > 0, we

would like to study it numerically. This is done by taking a finite-dimensional

approximation space for ϕ, and examine the behavior for increasing dimensions

the approximate spaces.

To this goal, we introduce an orthogonal basis {ϕn(x)}, n = 0, 1, . . .,

for the weighted L2 space with norm (5.20), such that ϕ0(x) = const, and

〈ϕn, ϕm〉w =

∫ ∞
0

xθe−xϕn(x)ϕm(x)dx = δn,m , (5.24)

where 〈·, ·〉w denotes the weighted L2 inner product with weight w = xθe−x.

Such requirements are perfectly satisfied by the normalized generalized

Laguerre polynomials,

ϕn(x) =
Lθn(x)

‖Lθn‖
, n = 0, 1, . . . . (5.25)
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In particular,

Lθ0 = 1, Lθ1 = 1 + θ − x, Lθn =
n∑
k=0

a
(n,θ)
k xk , (5.26)

where the coefficients

a
(n,θ)
k =

(−1)k

k!

(
n+ θ
n− k

)
=

(−1)k

k!

Γ(n+ θ + 1)

Γ(n− k + 1)Γ(θ + k + 1)
, (5.27)

and the weighted norm of Lθn is given by

‖Lθn‖2 =

∫ ∞
0

xθe−x[Lθn]2dx =
Γ(n+ θ + 1)

n!
. (5.28)

Thus, we have found a polynomial approximation for ϕ(x) that well

accommodate the constraint in (5.23). For a fixed order of approximation N ,

we consider the minimization problem (5.23) for

ϕ(x) =
N∑
n=1

unϕn(x) , (5.29)

where un are the coefficients. Note that, the summation starts from n = 1,

because 〈ϕ0, 1〉w = 0 for any n > 1. This automatically fullfill the constraint

in (5.23).

Thus, with this approximation, the Dirichlet form in (5.21) can be

written as a quadratic form

〈L(ϕ), ϕ〉 = uTGu , (5.30)

where u = (u1, . . . , uN) is the coefficient vector. The entries Gnm of the

symmetric weight matrix G is given by

Gnm =

∫ ∞
0

Dθ(x)e−xϕ′n(x)ϕ′m(x)dx

=
1

‖Lθn‖‖Lθm‖

n∑
k=1

m∑
l=1

kla
(n,θ)
k a

(m,θ)
l (k + l − 2)!S(k + l − 2) ,
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with S(p) given by

S(p) =

p∑
j=0

Γ(j + θ + 1)

2j+θ+1j!
. (5.31)

It’s not hard to find that with increasing order of approximations, the

numerical spectral gap is decreasing. For example, when N = 1, the matrix

G reduces to one single entry

λθ = G11 =
1

1 + θ
2−(1+θ) . (5.32)

It can be computed analytically that for θ = 0, there exists spectral gap λ0 = 1
4
.

In particular, the above first order approximation gives a rough approximation

λ0 ≈ 1
2
. We compute the smallest eigenvalues of G and study its asymptotic

behavior with increasing N . Here shows the results for θ = 0 and θ = 1
2
.

For θ = 0, the convergence to the analytical value 1/4 can be observed; for

Figure 5.1: The numerical spectral
gaps of linear Landau operator for
θ = 0 with increasing N

Figure 5.2: The numerical spectral
gaps of linear Landau operator for
θ = 1/2 with increasing N

θ = 0.5, the “gap” goes all the way down to zero with increased orders of basis
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Laguerre polynomials (Only results w.r.t N up to 100 are plotted, but “gap”

will continue to decrease towards zero when order N > 100), which implies

there is no such a spectral gap.

At last, we would like to make the following remarks.

• As for the real (non-isotropic) linearized Landau equation, it has been

shown the solution decays with an “almost exponential” (polynomial)

rate, see for example [115] and references therein. For the isotropic

linearized Landau equation that we studied here, for θ = 1
2
, heuristic

arguments indicate that the solution will behave like O(e−λt
β
) with some

0 < β < 1. In future, some numerical simulations will be implemented

benchmarked on this analytical result.

• In the definition of the entries of the matrix G, there involves arithmetics

among numbers of enormously different magnitudes, say the factorials

and Gamma functions. To avoid large error caused by the fixed-precision

floating point arithmetic standard in C/C++, we include the package

GNU MPFR (for GNU Multiple Precision Floating-Point Reliably [62]),

which is a portable C library for arbitrary-precision binary floating-point

computation with correct rounding, based on GNU Multi-Precision Li-

brary.
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5.4 Time Splitting

The main challenges come from the high dimensionality, nonlinearity,

diffusive nature, the conservation properties, positivity, etc, which require very

careful design of the numerical scheme. We divide and conquer starting from a

time splitting method. For zero force field, i.e F (t, x) = 0, the time-splitting is

an efficient and reliable way for conquering inhomogeneous problems; however,

we will employ the time-splitting to non-zero force field as well and show that

it also works.

We discretize time tn = t0+n∆t, where ∆t is the time step size. Denote

fn(x, v) = f(tn, x, v). In a time interval [tn, tn+1], a first order time splitting

scheme turn the original problem into two subproblems

(1) The Vlasov (Collisionless) Problem

∂tg(x, v, t) + v · 5xg(x, v, t) + F (t, x) · ∇vg = 0 ,

g(0, x, v) = fn(x, v) , (5.33)

and

(2) The Homogenous FPL (Collisional) Problem

∂tf̃(x, v, t) =
1

ε
Q(f̃ , f̃) ,

f̃(0, x, v) = g(∆t, x, v) . (5.34)

If denote the above solution operators (5.76) and (5.34) by An(∆t) and

Hn(∆t), respectively. Then the solution at time step tn+1 is given by

fn+1(x, v) = Hn(∆t) ◦ An(∆t)fn(x, v) . (5.35)
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Remark. This splitting is first order in time. Higher order time splitting is

also possible. For example, one common scheme is Strang splitting, which gives

second order in time.

The above two steps can be performed with different methods. The

collisionless step can be done with finite difference, finite volume or (DG)FEM;

while the collisional step requires special techniques to handle the collisional

operator. They will be introduced in the following sections.

5.5 The Conservative Spectral Method for Homogeneous
FPL Equation

As mentioned in the time splitting scheme above, the collisionless and

collisional subproblems can be treated separately with different methods. In

the current section, we restrict ourselves to homogeneous FPL for the most

interesting Coulombian case γ = −3, in 3d velocity space.

Different than the one proposed in [107], by taking truncated Fourier

series and extending solutions by periodicity, we don’t have to introduce non-

physical binary collisions and simply extending the solution by zero, by means

of the extension operator in Sobolev spaces as done in Chapter 3 for the ap-

proximation of the nonlinear Boltzmann collision operator. Conservation of

moments are guaranteed by calling a conservation routine.
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5.5.1 Domain of Computation

We assume that the distribution function f , the solution of the FPL

equation, usually is not compactly supported in v but of negligible mass outside

of a finite ball

BL(v̄) = {v ∈ R3 : |v − v̄| ≤ R} ,

where v̄ and R actually depends on x in the inhomogeneous case. However,

numerically, in order to find an approximation in a finite domain, we assume

f is compactly supported in the above ball.

Consider the cube

Ωv = {v ∈ R3 : |vi − v̄i| ≤ Lv, i = 1, 2, 3} ,

which contains BL(v̄). This cube will be defined as the domain of computation

for all velocity variables.

For the sake of simplicity, we assume a uniform discretization over the

domain and also v̄ = 0. Let N be the number of discretizations in each

direction of velocity, then the mesh for each direction of velocities is

hv =
2Lv
N

, vi = −Lv + ihv, 0 ≤ i < N .

In order to employ the standard FFT package [63], the corresponding mesh

for the Fourier space should satisfy

hvhξ =
2π

N
, Lξ =

N

2
hξ, ξi = −Lξ + ihξ, 0 ≤ i < N , (5.36)
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where hv and Lv , hξ and Lξ are the mesh size and cube side-length for the

velocity and Fourier domain, respectively.

The whole mesh for the cubic domain will be the tensor product of the

mesh on each direction.

5.5.2 Spectral Representation

We first look at the weak form of the FPL integrals. Suppose ϕ(v) is

smooth over the whole domain and the unknown f has exponentially decaying

tails when |v| → ∞ with some rate. For sake of simplicity, we drop the

dependence on variable t and x.

Then, the weak form of the FPL operator is∫
R3

Q(f, f)ϕ(v)dv = −
∫

R3

∫
R3

S(v − v∗)(f∗∇f − (∇f)∗f) · ∇vϕ(v))dv∗dv

=

∫
R3

∫
R3

(∇v∗ϕ(v∗)−∇vϕ(v))TS(v − v∗)f∗∇fdv∗dv .

(5.37)

Let ϕ(v) = (2π)−d/2e−iξ·v be the Fourier multiplier, and u = v − v∗.
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Then,

Q̂(ξ) = (2π)−d/2
∫

R3

∫
R3

Skl(v − v∗)(∂kϕ(v∗)− ∂kϕ(v))fv∗∂lf(v)dv∗dv

= (2π)−d/2
∫

R3

∫
R3

Skl(v − v∗)(−iξk)e−iξ·v(e−iξ·(v∗−v) − 1)fv∗∂lf(v)dv∗dv

=

∫
R3

duSkl(u)(−iξk)(eiξ·u − 1)((2π)−d/2
∫

R3

τuf(v)∂lf(v)e−iξ·vdv)

= (2π)−d/2
∫

R3

τ̂uf ∗ ∂̂lf(ξ)Skl(u)(−iξk)(eiξ·u − 1)du

=

∫
R3

dωξkωlf̂(ξ − ω)f̂(ω)((2π)−d/2
∫

R3

Skl(u)(eiω·u − e−i(ξ−ω)·u)du)

= ξk

∫
R3

[Ŝkl(−ω)− Ŝkl(ξ − ω)]ωlf̂(ξ − ω)f̂(ω)dω

=

∫
R3

(
f̂(ξ − ω)f̂(ω)ωT Ŝ(ω)ω − (ξ − ω)T Ŝ(ω)(ξ − ω)f̂(ξ − ω)f̂(ω)

)
dω ,

(5.38)

where there is a summation over the same subscript indices.

Another weak form that is of interest is given by∫
R3

QFPL(f, f)ϕ(v)dv =

∫
R3

∫
R3

(∇v∗ϕ(v∗)−∇vϕ(v))TS(v − v∗)f∗∇fdv∗dv

=

∫
R3

∫
R3

ff∗
(
2[∇v · S(v − v∗)] · ∇vϕ(v) + S(v − v∗) : ∇2

vϕ(v)
)
dvdv∗ .

(5.39)

In addition, with the same derivation, we have

Q̂(f, f)(ξ) =

∫
R3

∫
R3

ff∗e
−iξ·vG(ξ, u)dvdu

=

∫
R3

f̂(ξ − ω)f̂(ω)Ĝ(ξ, ω)dω .

(5.40)

where the precomputed weight in Fourier domain Ĝ(ξ, ω) is the same as given

by the above (5.38), and the weight in velocity domain is

G(ξ, u) = |u|−3
(
i4u · ξ − |u|2|ξ⊥|2

)
, (5.41)
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where ξ⊥ = ξ−( ξ·u|u| )
u
|u| . We point out that (5.41) can be also retrieved from the

Fourier transform representation of the Boltzmann collision operator written

as a weighted convolution of Fourier transforms. It is recently shown in [86]

that the weight corresponding to the Boltzmann collision operator converges

to the one for Landau operator, if collisions are grazing and the solutions of

the BTE have some regularity and decay for large velocity.

It is easy to see that the above weighted convolution (5.38), since vari-

ables ω and ξ − ω are separable in the weights, leads to an Nd log(N) scheme

(where N is the number of discretizations on each direction), when FFT is

applied. In addition, the weights can be pre-computed and only have to be

computed once. And, we will derive the above weight analytically, without

any extra integral approximations.

Using the same notations to denote the truncated transforms (i.e inte-

grated over some ball u ∈ BR(0) instead of the whole domain ), we write

Ŝkl(ω) = (2π)−d/2
∫
BR(0)

Skl(u)e−iω·udu . (5.42)

In addition, they can be decomposed into

Ŝkl(ω) = Ŝ1
kl(ω)− Ŝ2

kl(ω) , (5.43)

with

Ŝ1
kl(ω) = (2π)−d/2

∫
BR(0)

|u|γ+2δkle
−iω·udu

Ŝ2
kl(ω) = (2π)−d/2

∫
BR(0)

|u|γukule−iω·udu .
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It is not hard to observe the following symmetry properties of Ŝkl(ω)

Ŝ2
11(ω1, ω2, ω3) = Ŝ2

33(±ω2,±ω3,±ω1) = Ŝ2
33(±ω3,±ω2,±ω1) ,

Ŝ2
22(ω1, ω2, ω3) = Ŝ2

33(±ω1,±ω3,±ω2) = Ŝ2
33(±ω3,±ω1,±ω2) ,

Ŝ2
12(ω1, ω2, ω3) = Ŝ2

21(ω1, ω2, ω3) = Ŝ2
13(ω1,±ω3, ω2) = −Ŝ2

13(−ω1,±ω3, ω2) ,

Ŝ2
23(ω1, ω2, ω3) = Ŝ2

32(ω1, ω2, ω3) = Ŝ2
13(ω2, ω1, ω3) .

(5.44)

Therefore, we only need to study, say, Ŝ1
11, Ŝ2

33 and Ŝ2
13. See Appendix for

detailed derivations.

Then, consider the symmetry properties (5.44)

Ŝ(ω) =

 Ŝ1(ω)− Ŝ2
33(ω2, ω3, ω1) −Ŝ2

13(ω1, ω3, ω2) −Ŝ2
13(ω)

−Ŝ2
13(ω1, ω3, ω2) Ŝ1(ω)− Ŝ2

33(ω1, ω3, ω2) −Ŝ2
13(ω2, ω1, ω3)

−Ŝ2
13(ω) −Ŝ2

13(ω2, ω1, ω3) Ŝ1(ω)− Ŝ2
33(ω)

 ,

(5.45)

we observe that if we write Ŝ(ω) as

Ŝ(ω) = 2

√
2

π

R|ω| − sin(R|ω|)
R|ω|3

Π̃(ω) , (5.46)

then, Π̃(ω) is an orthogonal projection onto ω, i.e. Π̃(ω)ω = ω. And thus the

weighted convolution becomes

Q̂(f̂ , f̂) =

∫
Ωξ

(
f̂(ξ − ω)f̂(ω)ωT Ŝ(ω)ω − (ξ − ω)T Ŝ(ω)(ξ − ω)f̂(ξ − ω)f̂(ω)

)
dω

= 2

√
2

π

∫
Ωξ

R|ω| − sin(R|ω|)
R|ω|

f̂(ω)f̂(ξ − ω)dω

−
∫

Ωξ

(ξ − ω)T Ŝ(ω)(ξ − ω)f̂(ξ − ω)f̂(ω)dω ,

(5.47)
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where Ωξ = [−Lξ, Lξ]d with Lξ defined in (5.36), and the first integral in the

above last formula is zero if |ω| = 0. Apparantly, it can be computed in

O(N3 log(N)), through FFT.

5.5.3 Conservation Routines

Let M = Nd be the total number of Fourier modes and

Q = (Q0, . . . , QM−1)T (5.48)

be the inverse discrete Fourier transform of Q̂ in (5.47) and

F = (F1, . . . , FM−1)T (5.49)

be the distribution vector at current time step.

The conservation routine here is actually following a similar argument

as for the conservative DGFEM solver for nonlinear BTE. If we use some

quadrature, say Trapezoidal rule, to evaluate the integrals over the whole

velocity domain, then here the constrained matrix C, analogous to (3.19), is

of size (d+ 2)×M and defined as

C:,j =

 ωj
vωj
|v|2ωj

 , (5.50)

where ωj is the j-th integration weight of the quadrature rule (say, Trapezoidal

rule).

Following a same derivations, we obtain a conservation correction for

the original collisional operator.

Qc = [I−CT (CCT )−1C]Q . (5.51)
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Then, the semi-discrete problem (with conservations) is

dF

dt
= Qc . (5.52)

5.5.4 Time Discretization

The high dimensionality and nonlinearity would make an implicit itera-

tive time discretization really expensive. Thus, an explicit method is preferred.

Due to the diffusive nature of the collision operator, a stiff problem has to be

solved, and thus the corresponding stability condition forces the time step to

be on the order of the square of the velocity step. We will show this property

in the following. The original proof is due to [60] and can easily extend to our

spectral method.

What we need to solve is the following problem

d

dt
f̂(ξk) = F (f̂(ξk)) , (5.53)

where

F (f̂(ξk)) =
1

ε
Q̂(f̂ , f̂)(ξk) (5.54)

with Q̂(f̂ , f̂) defined in (5.47).

In practice, we employ a fourth-order explicit Runge-Kutta scheme

that achieves high temporal accuracy and at the same time does not ruin the

spectral accuracy. Since the Runge-Kutta method is just a convex combination

of first order Euler scheme, we only need to consider the first order Euler

scheme

f̂n+1(ξk) = f̂n(ξk) + ∆tF (f̂n(ξk)) , (5.55)
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where the superscript n denotes the mode value at the n-th time step. The

linear stability theory tells us the stability condition is determined by the

eigenvalues of the Jacobian Jk,l = ∂F ( bf(ξk))

∂ bf(ξl)
. We need to find an upper bound

on the (negative) eigenvalues λ, such that λ∆t < 1.

Then, we have the following proposition

Proposition 5.5.1 (Stability condition for homogeneous FPL). For the first

order Euler scheme, the time step ∆t should satisfy the following stability

condition,

∆t ≤ CLvε(∆v)2 , (5.56)

where Lv is the lateral size of the fixed velocity domain, ε is the Knudesen

number and constant C only depends on the L1 norm of the current solution

f .

Proof. We rewrite (5.47) into two convolution forms

Q̂(f̂ , f̂)(ξ) = f̂ ∗G(f̂)(ξ)−
d∑

i,j=1

Hi,j(f̂) ∗ Ji,j(Ŝ; f̂)(ξ) (5.57)

with, ξ = (ξ(1), ξ(2), . . . , ξ(d)) being defined component-wisely,

G(f̂)(ξ) := 2

√
2

π

R|ξ| − sin(R|ξ|)
R|ξ|

f̂(ξ) ;

Hi,j(f̂)(ξ) := f̂(ξ)ξ(i)ξ(j) ;

Ji,j(Ŝ; f̂)(ξ) := f̂(ξ)Ŝi,j(ξ) .

(5.58)

The convolutions in (5.57) will be evaluated by the Trapezoidal quadrature
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rule, with the Fourier nodes f̂(ξk) being the quadrature points. That is,

Q̂(f̂ , f̂)(ξk) = hdξ
∑
l

ωl

[
f̂(ξk − ξl)G(f̂)(ξl)−

d∑
i,j=1

Hi,j(f̂)(ξk − ξl)Ji,j(Ŝ; f̂)(ξl)

]
,

(5.59)

where hξ is the step size in Fourier space as determined by (5.36), and ωl are

quadrature weights.

According to [60], the time step should satisfy

∆t ≤ 1

Lip(F (·))
, (5.60)

where Lip(F (·)) is the Lipschitz norm of F (·). This can be found through

estimating the upper bound on the Jacobian

|Jk,l| =

∣∣∣∣∣ d

df̂(ξl)
F (f̂(ξk))

∣∣∣∣∣
≤ 1

ε

C

Ldv
max

(
|f̂(ξk − ξl)|, |f̂(ξl)|

)
·
[
max
ξ

∣∣∣∣R|ξ| − sin(R|ξ|)
R|ξ|

∣∣∣∣+ |(ξk − ξl)T Ŝ(ξl)(ξk − ξl)|+ |ξTl Ŝ(ξk − ξl)ξl|
]

≤ C

εLv
|f̂n(0)|L2

ξ

≤ C

εLv
‖f‖L1(Rd)

1

(∆v)2
,

(5.61)

where the FFT relationship (5.36) is applied, and it is not hard to observe the

following uniform bound estimates

|Ŝ(ξ)| . Ld−1
v , |ξT Ŝ(ξ)ξ| . 1 , |(ξ − w)T Ŝ(ξ)(ξ − w)| . Ld−1

v L2
ξ . (5.62)
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Therefore, the time step has to satisfy the stability condition

∆t ≤ C

‖f‖L1(Rd)

Lvε(∆v)2 . (5.63)

This proves (5.56). In practice, we employ a fourth-order explicit

Runge-Kutta scheme and the conservation routine should be performed ad

every intermediate step. Recall our discretization of time tn = t0 +n∆t, where

∆t is the time step size. Denote by Fn the distribution vector at time step tn.

In a time interval [tn, tn+1], the numerical evolution Fn → Fn+1 follows

F̂n = FFT(Fn), K̂1
n = Compute

(
Q̂(F̂n, F̂n)

)
, K1

n = IFFT
(
K̂1
n

)
, K1

n = Conserve(K1
n)

F̃n = Fn+∆tK1
n;̂̃

Fn = FFT(F̃n), K̂2
n = Compute

(
Q̂(
̂̃
Fn,

̂̃
Fn)

)
, K2

n = IFFT
(
K̂2
n

)
, K2

n = Conserve(K2
n)

F̃n = Fn +
∆t

2
K1
n +

∆t

2
K2
n;

̂̃
Fn = FFT(F̃n), K̂3

n = Compute

(
Q̂(
̂̃
Fn,

̂̃
Fn)

)
, K3

n = IFFT
(
K̂3
n

)
, K3

n = Conserve(K3
n)

F̃n = Fn +
∆t

2
K1
n +

∆t

2
K3
n;

̂̃
Fn = FFT(F̃n), K̂4

n = Compute

(
Q̂(
̂̃
Fn,

̂̃
Fn)

)
, K4

n = IFFT
(
K̂4
n

)
, K4

n = Conserve(K4
n)

Fn+1 = Fn +
1

6
(3K1

n+K2
n + K3

n + K4
n).

where F̃n a generic intermediate step; IFFT is the (discrete) fast inverse Fourier

transform routine.
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5.5.5 Numerical Results and Applications

5.5.5.1 Single Species Charge Carriers

We test our scheme to a sum of two Gaussians in 3D velocity space, to

compute the evolution of entropy and moments and thus verify its validity,

f0(v) =
1

2(2πσ2)3/2

[
exp

(
−|v − 2σe|2

2σ2

)
+ exp

(
−|v + 2σe|2

2σ2

)]
, (5.64)

with parameter σ = π/10 and e = (1, 0, 0).

We select domain Ωv = [−3, 3]3, number of modes in each direction

N = 32, The entropy decays to its equilibrium state fast and keeps stable

Figure 5.3: The evolution of mo-
ments of numerical solution

Figure 5.4: The Entropy decay of
numerical solution

after that. The whole decay process preserves mass, momentum and kinetic

energy. See Figure 5.3 and 5.4.
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5.5.5.2 Multi-component Plasmas

In this section, we apply our scheme to a specific example of electro-

neutral hydrogen plasma. The dimensionless system of equation writes [23]

∂fe
∂t

=
1

2

[
Q

(1)
FPL(fe, fe) +Q

(θ)
FPL(fe, fi)

]
∂fi
∂t

=
θ2

2

[
Q

(1)
FPL(fi, fi) +Q

(1/θ)
FPL(fi, fe)

]
, (5.65)

where θ < 1 is the dimensionless mass ratio of electrons to ions; the subscripts

e, i stand for electrons and ions respectively. For any θ > 0,

Q
(θ)
FPL(f, g) = ∇v ·

∫
S(v − v∗)(f(v∗)∇vg(v)− θf(v)∇v∗g(v∗))dv∗ , (5.66)

with the projection matrix S defined in (5.4).

The system of equations (5.65) will be solved with normalized initials,

that is,
∫
fe(v, 0)dv =

∫
fi(v, 0)dv = 1.

We can obtain the weak form of Q
(θ)
FPL(f, g)∫

Q
(θ)
FPL(f, g)ϕ(v)dv

=

∫∫
f(v)g(v∗)

[
(1 + θ)∇v · S(v − v∗)∇ϕ(v) + S(v − v∗) : ∇2ϕ(v)

]
dv∗dv ,

(5.67)

where the Frobenius inner product A : B = Trace(ATB).

By taking ϕ(v) = (2π)−d/2e−iξ·v, which is the Fourier multiplier, then

following a similar derivation as in (5.38) in the spectral representation of

QFPL, we get

Q̂
(θ)
FPL(f̂ , ĝ)(ξ) =

∫
f̂(ξ − w)ĝ(w)

[
(1 + θ)ξT Ŝ(w)w − ξT Ŝ(w)ξ

]
dw , (5.68)
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Remark. When θ = 1 and f = g in (5.66), the monotomic case (5.47) is

recovered.

Inspired by the work of A.V. Bobylev et al [24], which is on radial

(basically one-dimensional) Landau equations, we here study the non-isotropic

distribution functions in 3-d velocity space.

We study the relaxation process of the space uniform two-temperature

plasma theoretically, by deriving a set of governing ordinary differential equa-

tion. Also, the relaxation process will be demonstrated numerically, and at

the same time to test our conservative spectral scheme.

First, we define the (dimensionless) time-dependent temperatures for

electrons and ions

Te(t) =
1

3

∫
fe(v, t)|v|2dv, Ti(t) =

1

3θ

∫
fi(v, t)|v|2dv . (5.69)

While it is impossible to know the exact solution pair fe,i(v, t) for arbi-

trary initial data and the flow tends to equilibrate for large time, then we can

replace them by constructing two Maxwellians, such that they owns the same

temperatures, respectively,

Me(v, t) = (2πTe)
− 3

2 exp

(
−|v|

2

2Te

)
, Mi(v, t) = (2πθTi)

− 3
2 exp

(
− |v|

2

2θTi

)
.

(5.70)

Thus, one can derive

dTe
dt

=
1

3

d

dt

∫
fe(v, t)|v|2dv

≈ 1

6

[
Q

(1)
FPL(Me,Me) +Q

(θ)
FPL(Me,Mi)

]
=

1

6
Q

(θ)
FPL(Me,Mi) .

(5.71)
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Due to conservation of the kinetic energy of the two-plasma system,

there is a constant T̄ , such that Te(t) +Ti(t) ≡ T̄ . We obtain a set of ordinary

differential equation governing the relaxation of the two-temperature plasma

(θT̄ + (1− θ)Te)
3
2
dTe
dt

=
4

3
√

2π
(Te − Ti)θ ,

Te(t) + Ti(t) = T̄ , (5.72)

and the temperature difference follows

d(Ti − Te)
dt

= −θ 8

3
√

2π

Ti − Te
(θT̄ + (1− θ)Te)

3
2

, (5.73)

which implies

|Ti − Te| → 0, as t→∞ . (5.74)

So, when t is large enough, or when the system approaches equilibrium,

Te ≈ Ti ≈ T̄
2
, the difference of temperatures decays “almost” exponentially

(note that this is an approximation!)

|Ti(t)− Te(t)| ≈ |Ti,0 − Te,0|exp

(
− 16

3
√
π

θ(
(1 + θ)T̄

)3/2
t

)
. (5.75)

We solve the equation system (5.65) by our conservative scheme intro-

duced above and observe the relaxation of temperatures for electrons and ions.

The dimensionless mass ratio θ = 1
16

. The initial states are two Maxwellians

for hot ions and cold electrons, say Te = 1
2

and Ti = 3
2

(then T̄ = 2) in

(5.70). Figure 5.5 shows the decay to equilibrium of the 2-plasma system as

expected. If we take the logarithm of the the temperature difference in (5.75),

we can actually expect to observe the exponential decay rate in (5.75), which is
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− 16
3
√
π

θ

((1+θ)T̄)
3/2 = −0.061 in this example. Figure 5.6 shows the logarithm of

the temperature difference (scattered data) when time is large enough (states

approaching equilibrium) and its linear fitting, with a slope of -0.066343, which

is a rough verification of our analytical prediction.

Figure 5.5: The relaxation of tem-
peratures for the 2-plasma system:
solid blue line: temperatures of
ions; dash-dot blue: temperatures
of electrons; top solid black: the to-
tal temperature; bottom dash-dot
red: temperature difference

Figure 5.6: The logarithm of tem-
perature difference for large time
and its linear fitting

5.6 The RKDG Method for Vlasov-Poisson Equation

The VP system is a nonlinear kinetic system modeling the transport of

charged particles in a collisionless plasma, under the effect of a self-consistent

electrostatic field and possibly an externally supplied field. The electrostatic

potential is coupled through Poisson equation. The collisionless VP exhibits

a variety of dynamical phenomena, for example, the well-known filamentation
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(filaments in phase space and steep gradients in v) and Landau damping.

With coupling to Poisson equation, the collisionless VP problem be-

comes

The VP (Collisionless) Problem

∂tg(x, v, t) + v · 5xg(x, v, t)− E(t, x) · ∇vg = 0 ,

E(t, x) = −∇xΦ(t, x) ,

−∆xΦ(t, x) = 1−
∫
R3

g(t, x, v)dv ,

Φ(t, x) = ΦB(t, x) x ∈ ∂Ωx ,

g(0, x, v) = fn(x, v) , (5.76)

where fn is the current solution of the homogeneous Landau equation.

5.6.1 The Semi-discrete DG Form

In this section, we introduce a conservative Runge-Kutta Discontinuous

Galerkin (RKDG) scheme for the VP equation (5.76), for (x, v) ∈ Ω = Ωx ×

Ωv ⊆ R+ × Rd. Or, we restrict the problem to the first spatial dimension

x = (x, 0, 0), E = (E, 0, 0). The conservation properties are proved to be well

satisfied if we choose a piecewise polynomial approximation space covering

d+ 2 collision invariants.

We first list some notations for the DG method in use. Consider the

computing domain Ω = Ωx × Ωv = [0, Lx] × [−Lv, Lv]3, 1D in x and 3D in

v. Denote by T xh = Ix and T vh = Kv the regular partitions of Ωx and Ωv,
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respectively, with

T xh =
Nx⋃
1

Ii =
Nx⋃
1

[xi−1/2, xi+1/2)

T vh =

N3
v⋃

|j|=1

Kj =
Nv⋃

j1,j2,j3=1

[vj1−1/2, vj1+1/2)× [vj2−1/2, vj2+1/2)× [vj3−1/2, vj3+1/2) ,

with x1/2 = 0, xNx+1/2 = Lx, v1/2 = −Lv and vNv+1/2 = Lv.

Then, Th = {E : E = Ix×Kv,∀Ix ∈ T xh ,∀Kv ∈ T vh } defines a partition

of Ω. Denote by εx and εv be set of edges of T xh and T vh , respectively. Then,

the edges of Th will be ε = {Ix × ev : ∀Ix ∈ T xh ,∀ev ∈ εv} ∪ {ex ×Kv : ∀ex ∈

εx,∀Kv ∈ T vh }. In addition, εx = εix ∪ εbx with εix and εbx being the interior and

boundary edges, respectively. Same for variable velocity domain. The mesh

size h = max(hx, hv) = maxE∈Th diam(E), with hx = maxIx∈T xh diam(Ix) and

hv = maxKv∈T vh diam(Kv).

Next, we define the following approximation space. (Note that we only

have 1D in x):

X l
h = {f ∈ L2

Ω : g|E ∈ P l(Ix)× P l(Kv), ∀E = Ix ×Kv ∈ Th} , (5.77)

and

W l
h = {f ∈ L2

Ω : g|E ∈ P l(Ix)×Ql(Kv),∀E = Ix ×Kv ∈ Th} , (5.78)

where P l(K) denotes the space of polynomials of total degree at most l on

some element K, while Ql the space of polynomials of degree l in each variable

on K. P l(K) has number of degrees of freedom (l + 1)d, while Ql(K) has

degrees of freedom
∑l

i=0

(
i+d−1
d−1

)
(here d = 3).
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Since basis polynomials are piecewise defined over each element, we

need to introduce the concepts of jumps and averages. For any test function

φh(x, v) ∈ X l
h (or, W l

h), define (φh)
±
i+1/2,v = limε→0 φh(xi+1/2± ε, v), (φh)

±
x,Kv

=

φh|K±v . For any edge ex ∈ εx, which is actually one end point of intervals,

and any edge ev ∈ εv, with n±v as the outward unit normal to ∂K±v , the jump

across ex and ev are defined as

[φh]xi = (φh)
+
i−1/2,v − (φh)

−
i−1/2,v, [φh]v = (φh)

+
x,Kv

n+
v + (φh)

−
x,Kv

n−v . (5.79)

and the averages are

{φh}xi =
1

2
((φh)

+
i−1/2,v+(φh)

−
i−1/2,v), {φh}v =

1

2
((φh)

+
x,Kv

+(φh)
−
x,Kv

) . (5.80)

Here and below, we denote by Eh the discrete electric field computed

from the Poisson’s equation. With proper partitioning, we can assume each

direction of v has a single sign.

The DG scheme for the nonlinear VP equation is described as follows.

We seek an approximation solution gh(x, v) ∈ X l
h (or, W l

h), such that, for any

test function φh(x, v) ∈ X l
h (or, W l

h),∫
Ii×Kj

(gh)tϕhdxdv = Hi,j(gh, Eh, ϕh) (5.81)

where

Hi,j(gh, Eh, ϕh)

=

∫
Ii×Kj

v1gh(ϕh)xdxdv −
∫
Kj

(v̂1ghϕ
−
h )i+ 1

2
,vdv +

∫
Kj

(v̂1ghϕ
+
h )i− 1

2
,vdv

−
∫
Ii×Kj

Ehgh∂v1ϕhdxdv +

∫
Ii

∫
εv

(Êhghϕ
−
h )x,j1+ 1

2
dsvdx−

∫
Ii

∫
εv

(Êhghϕ
+
h )x,j1− 1

2
dsvdx .

(5.82)
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Here, j = (j1, j2, j3) is the multi-index, corresponding to the three directions

of v. The following upwinding fluxes (the trace at the element interfaces) are

used,

v̂1gh =

{
v1g
−
h , if v1 ≥ 0 in Kj;

v1g
+
h , if v1 < 0 in Kj.

(5.83)

and

Êhgh =

{
Ehg

−
h , if

∫
Ii
Ehdx ≤ 0;

Ehg
+
h , if

∫
Ii
Ehdx > 0.

(5.84)

The electric field is solved from the Poisson’s equation, as is used in

[49]. In the one-dimensional case, the exact solution of the Poisson’s equation

can be obtained through the classical representation of Green’s function, if we

enforce the periodicity condition Φ(0) = Φ(Lx),

Φh =

∫ x

0

∫ s

0

ρh(z, t)dzdx−
x2

2
− CEx , (5.85)

where ρh =
∫

Ωv
ghdv, CE = −Lx

2
+ 1

Lx

∫ Lx
0

∫ s
0
ρh(z, t)dzds, and

Eh = −Φ′ = CE + x−
∫ x

0

ρh(z, t)dz . (5.86)

The above semi-DG problem (5.81) can be solved by coupling with a

suitable time discretization, e.g. total variation diminishing (TVD) Runge-

Kutta method. The third order TVD-RK method for evolving tn → tn+1 is

136



implemented as∫
Ii×Kj

g
(1)
h ϕhdxdv =

∫
Ii×Kj

gnhϕhdxdv + ∆tHi,j(g
n
h , E

n
h , ϕh) ,∫

Ii×Kj
g

(2)
h ϕhdxdv =

3

4

∫
Ii×Kj

gnhϕhdxdv +
1

4

∫
Ii×Kj

g
(1)
h ϕhdxdv +

∆t

4
Hi,j(g

(1)
h , E

(1)
h , ϕh) ,∫

Ii×Kj
gn+1
h ϕhdxdv =

1

3

∫
Ii×Kj

gnhϕhdxdv +
2

3

∫
Ii×Kj

g
(2)
h ϕhdxdv +

2∆t

3
Hi,j(g

(2)
h , E

(2)
h , ϕh) ,

(5.87)

where E
(1)
h , E

(2)
h are also obtained through the exact representation (5.86).

Readers can refer to [112] for a detailed introduction to TVD Runge-Kutta

methods.

This completes the RKDG scheme for nonlinear VP problem. We pro-

pose to apply basis function ϕh|Kj = 1, v, |v|2, as is proposed in study of

Vlasov-Maxwell equations in [44], hoping that the RKDG scheme can well

preserve mass, momentum and energy.

5.6.2 Positivity-preserving Limiters

To ensure a positive DG solution, many authors have successfully ap-

plied positivity-preserving limiters in the intermediate time steps. Please re-

fer to [50, 119–122] for full descriptions and applications. We summarize the

scheme here. For each intermediate step of Runge-Kutta method,

• On each mesh element Ei,j = Ii×Kj, compute Ti,j := min(x,v)∈Si,j gh(x, v),

where Si,j =
(
Sxi ⊗ Ŝvj

)
∪
(
Ŝxi ⊗ Svj

)
, and Sxi , S

v
j are sets of (l+ 1) Gauss
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quadrature points and Ŝxi , Ŝ
v
j sets of (l + 1) Gauss-Lobatto quadrature

points.

• Compute f̃h(x, v) = θ
(
gh(x, v)− (gh)i,j

)
+ (gh)i,j with (gh)i,j the average

over element Ei,j and θ = min{1, |(gh)i,j|/|Ti,j − (gh)i,j|}.

• Update gh ← g̃h.

The above limiter adjusts the function to be positive while preserving

the cell average. Thus, application of such positivity-preserving limiter still

achieves conservation of total mass, yet however will deteriorate the conser-

vation of energy. This limiter maybe added when necessary, but for the time

being, we would like to highlight the conservation of all desired moments.

5.6.3 Conservation and L2-Stability

A piecewise polynomial approximation subspace containing all collision

invariants will be applied. We will show, the total mass (charge) and momen-

tum is conserved, up to some boundary effects; as for the total energy, the

variation relies on the approximation accuracy of the solution together with

the projection error of the potential Φh. Also, the approximate solution is

L2 stable. The following propositions are extensions of some related results

studied in [9, 49, 79] to higher dimensions.

Proposition 5.6.1 (Conservations of total mass and momentum). The ap-

proximate solution gh ∈ X l
h (or, W l

h) for semi-DG problem (5.81) satisfies

d

dt

∫
Th
ghdxdv = Θh,1(gh, Eh) , (5.88)
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with

Θh,1(gh, Eh) =

∫
T xh

∫
εbv

(Êhgh)x,Nv+ 1
2
dsvdx−

∫
T xh

∫
εbv

(Êhgh)x, 1
2
dsvdx , (5.89)

and

d

dt

∫
Th
ghvdxdv = Θh,2(gh, Eh) , (5.90)

with

Θh,2(gh, Eh) =

∫
T xh

∫
εbv

(Êhghv)x,Nv+ 1
2
dsvdx−

∫
T xh

∫
εbv

(Êhghv)x, 1
2
dsvdx . (5.91)

Here, boundary effects Θh,1(gh, Eh) and Θh,2(gh, Eh) are negligible if Ωv is large

enough or equal zero if assume a compact support in the velocity space for gh.

Proof. Take ϕh = 1, then∑
i,j

Hi,j(gh, Eh, 1) =

∫
T vh

∫
εx

v̂1gh[1]xdsxdv −
∫
T xh

∫
εv

Êhgh[1]v1dsvdx

=

∫
T xh

∫
εbv

(Êhgh)x,Nv+ 1
2
dsvdx−

∫
T xh

∫
εbv

(Êhgh)x, 1
2
dsvdx .

(5.92)

where considering the periodicity in x.

Take ϕh = v1, then

∑
i,j

Hi,j(gh, Eh, v1) =

∫
T vh

∫
εx

v̂1gh[v1]xdsxdv−
∫
T xh

∫
T vh

Ehghdxdv−
∫
T xh

∫
εv

Êhgh[v1]v1dsvdx .

(5.93)

The first term above is zero due to the periodic boundary conditions; the third

term is the boundary effect same as above; let’s only look at the second term.
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Thanks to the exact solver for Poisson equation (5.85) and (5.86),∫
T xh

∫
T vh

Ehghdxdv =

∫
T xh

ρhEhdx = −
∫
T xh

Eh(Eh)xdx+

∫
T xh

Ehdx = 0 . (5.94)

The cases for ϕh = v2 and ϕh = v3 follow a same way.

Proposition 5.6.2 (Variation of total energy). The total energy of the ap-

proximate solution gh ∈ X l
h (or, W l

h) for semi-DG problem (5.81) satisfies

d

dt

(
1

2

∫
Th
gh|v|2dxdv +

1

2

∫
T xh

|Eh|2dx

)
= Θh,3(gh, Eh) = Θh,3(gh−g,Φh−PΦh) ,

(5.95)

with

Θh,3(gh, Eh) =

∫
Th

(Φh)xghv1dxdv −
∫
Th

Φh(gh)tdxdv , (5.96)

where PΦh is the projection of Φh onto X l
h (or, W l

h) and PΦh = Φh on all

interfaces of T xh (such that PΦh is continuous).

Proof. Take ϕh = 1
2
|v|2, then∑

i,j

Hi,j(gh, Eh,
1

2
|v|2) =

∫
T vh

∫
εx

v̂1gh
1

2
[|v|2]xdsxdv −

∫
T xh

∫
εv

Êhgh
1

2
[|v|2]v1dsvdx

−
∫
Th
Ehgh∂v1ϕhdxdv .

(5.97)

The first term above is zero due to the periodicity; the second term is the

boundary effect, which is zero if we assume the solution if compactly supported

in Ωv.
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On the other hand, noticing again the exact Poisson solver (5.85) and

(5.86),

1

2

∫
T xh

|Eh|2dx =

∫
T xh

Eh(Eh)tdx = −
∫
T xh

(Φh)x(Eh)tdx

=

∫
T xh

Φh(1− ρh)tdx = −
∫
Th

Φh(gh)tdxdv .

(5.98)

which gives (5.99).

If take ϕh = PΦh ∈ X l
h (or, W l

h), then we obtain Θh,3(gh,PΦh) =

0, which is also valid for the exact solution g. The exact solution g also

obviously conserves total energy, which implies Θh,3(g,Φh −PΦh) = 0. Thus,

Θh,3(gh, Eh) = Θh,3(gh − g,Φh −PΦh).

This proposition means the variation of total energy relies on the nu-

merical error of g− gh and projection error Φh−PΦh. If the Poisson equation

is not solved by exact formula but instead through a local DG method, then

with special choice of flux, the total energy on the discrete level is proven to

be conserved, see [9]. But here, we focus on the inhomogeneous model coupled

with the Landau collision operator, thus the exact Poisson solver is preferred

without many extra efforts. Actually, when a relatively fine DG mesh is ap-

plied, the variations on total energy are negligible.

Proposition 5.6.3 (L2-stability). The approximate solution gh ∈ X l
h (or,

W l
h) for semi-DG problem (5.81) decays enstrophy

d

dt

∫
Th
g2
hdxdv = Θh,4(gh, Eh) ≤ 0 , (5.99)
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with

Θh,4(gh, Eh) = −1

2

∫
T vh

∫
εx

|v1|[gh]2xdsxdv −
1

2

∫
T xh

∫
εv

|Eh|[gh]2v1
dsvdx . (5.100)

Proof. Take ϕh = gh, then∑
i,j

Hi,j(gh, Eh, gh) =

∫
Th
v1gh(gh)xdxdv +

∫
T vh

∫
εx

v̂1gh[gh]xdsxdv

−
∫
Th
Ehgh(gh)v1dxdv −

∫
T xh

∫
εv

Êhgh[gh]v1dsvdx

:= a1 + a2 ,

(5.101)

where, noticing the definition of upwinding flux

v̂1gh = {v1gh}x −
|v1|
2

[gh]x , (5.102)

we have,

a1 =

∫
Th
v1gh(gh)xdxdv +

∫
T vh

∫
εx

v̂1gh[gh]xdsxdv

=

∫
Th
v1

(
g2
h

2

)
x

dxdv +

∫
T vh

∫
εx

v̂1gh[gh]xdsxdv

= −
∫
T vh

∫
εx

1

2
[v1g

2
h]xdsxdv +

∫
T vh

∫
εx

v̂1gh[gh]xdsxdv

=

∫
T vh

∫
εx

(
−1

2
[v1g

2
h]x + {v1gh}x[gh]x −

|v1|
2

[gh]
2
x

)
dsxdv

= −1

2

∫
T vh

∫
εx

|v1|[gh]2xdsxdv ,

(5.103)
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and similarly

a2 = −
∫
Th
Ehgh(gh)v1dxdv −

∫
T xh

∫
εv

Êhgh[gh]v1dsvdx

= −
∫
Th
Eh

(
g2
h

2

)
v1

dxdv −
∫
T xh

∫
εv

Êhgh[gh]v1dsvdx

=

∫
T xh

∫
εv

(
1

2
[Ehg

2
h]v1 − {Ehgh}v1 [gh]v1 −

|Eh|
2

[gh]
2
v1

)
dsvdx

= −1

2

∫
T xh

∫
εv

|Eh|[gh]2v1
dsvdx .

(5.104)

So, Θh,4(gh, Eh) = a1 + a2 ≤ 0.

5.7 The Linking Process - Conservative Projection

So far, we have solved two subproblems separately: Vlasov-Poisson

equation and homogeneous Fokker-Planck-Landau equation. The next step is

to link them together, i.e project the Fourier series solution of the homogeneous

FPL equation onto the DG mesh. If denote by Fn(f) the Fourier series solution

of the homogeneous FPL equation at the n-th time step, and P : L2(Ωv)→ X l
h

(or, W l
h) the L2 projection, then according to the time splitting scheme, the

initial condition for (n+ 1)-st Vlasov-Poisson problem (5.33) is

g(0, x, v) = P (Fn(f))(x, v) . (5.105)

During this linking process, conservation of desired moments will be

lost if the conservation routine correct the collision operator on discrete level

of Fourier modes, as in Section 5.5.3. Thus, such a concern inspires us to
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develop a new conservation routine, which conserves moments fully on level

of piecewise polynomials in the DG space X l
h (or, W l

h). This is shown in the

following.

Take d = 3 for example. After having Q̂(f, f)(ξ), the Q(f, f)(v) will

be approximated by a partial sum of Fourier series,

QN(f, f)(v) =
(2π)3/2

(2L)3

∑
|k|≤N3

Q̂(ξk)e
iξk·v , (5.106)

where ξk = πk
L

are the spectral modes, k = (k1, k2, k3) is the multi-index.

Let M = N3 be the total number of discretizations in the velocity

space, i.e. the total number of Fourier modes. We will find corrected mode

coefficients Q̂(ξk), such that∫
Ωv

QN(f, f)(v)φ(v)dv = 0

is independent of the quadrature rules. Here φ(v) are the collision invariants.

Plugging this back into (5.106) gives constraints on the corrected mode

coefficients. If denote by Q̂ the vector of mode coefficients, Q̂R, Q̂I ∈ RM the

real and imaginary parts, respectively, then

CRQ̂R −CIQ̂I = 0 , (5.107)

where the constraint matrices CR, CI ∈ R5×M , are the real and imaginary

parts of the following

CR(l, k) + iCI(l, k) =
1

(2L)3

∫
Ωv

eiξk·vφl(v)dv , (5.108)
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where φl(v) = 1, v, |v|2.

Indeed,

CR(0, k) =
3∏
i=1

sinc(Lξki), CI(1, k) = 0

CR(l, k) = 0, CI(l, k) =

{
sinc(Lξkl )−cos(Lξkl )

ξkl

∏3
i 6=l sinc(Lξki) ξkl 6= 0;

0 ξkl = 0
, l = 1, 2, 3

CR(4, k) =
3∑
l=1

(
3∏
i 6=l

sinc(Lξi)

)
·

{
L2sinc(Lξl)− 2 sinc(Lξl)−cos(Lξl)

ξ2
l

ξl 6= 0;
L2

3
ξl = 0

,

CI(4, k) = 0

(5.109)

The conservation correction is found by solving the following constrained

optimization problem: Find Q̂ = [Q̂T
R, Q̂

T
I ]T ∈ R2M , the minimizer of the op-

timization problem

min ‖Q̂o − Q̂‖2
2

s.t CQ̂ = 0 ,
(5.110)

where Q̂o is the original mode coefficient vector at the current time step;

C = [CR,−CI ] ∈ R5×2M .

Following a same derivation, we obtain the conservative correction Q̂c

Q̂c =
[
I−CT

(
CCT

)−1
C
]

Q̂o , (5.111)

where I is a 2M × 2M identity matrix.

Thus, in the temporal evolution, the above CONSERVE (5.111) and

RECONSTRUCT (5.106) routines have to be implemented at every interme-

diate step of Runge-Kutta schemes.
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Remark. We expect the whole discrete scheme to be stable and also

to be able to construct a priori error estimates. These two goals will be done

in a future project.

5.8 Parallelization

One common feature for nearly all realistic kinetic models is the high

dimensionality. Plus the higher than linear complexity, it addresses the im-

portance of implementations of parallel computing.

For RKDG schemes for VP problem, the parallelization becomes more

natural due to the locality of basis functions. Once all the nodes can access

to the information from previous time step, the evolution of each grid point is

done independently without communications across computing nodes. After

evolution is done for the current time step for all nodes, the information will be

gathered together and redistributed to all computing nodes in the community.

We will use Message Passing Interface (MPI) [65] to distribute the velocity

grid points.

For the spectral solver for homogeneous FPL equation, at each time

step, a single grid point only “sees” the particles at the same spatial grid

point, through the collision term. Since collisions involve all participating

particles and take most of the computation time, to avoid large amount of

communicating latency, we restrict all of the information needed for the current

time step on the same computing node, and thus only distribute spatial grid

points across the computing node community.
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To further parallelize the computation, we realize that, for each phase

velocity grid point ξ, the computation of Q̂(ξ) is a weighted sum over all phase

velocities w, with no information interrupted by other grid points ξ’s. Similar

features also apply to the integrations in RKDG method for the VP problem.

Thus, the work load will be further shared using OpenMP [13].

As the majority of computations occur in the collision steps, the com-

putational time consumed in collisions will dominate. Since all information

needed for collisions will be kept on the same computing node and only spa-

tial grid points are distributed, an almost linear strong scaling efficiency would

be expected. We run tests on a typical linear Landau damping problem for the

Landau-Poisson system, and record the time consumed for one single time step

in Table 5.1. This example is associated with the one in Figure 5.9.2. Tests

run on Xeon Intel 3.33GHz Westmere processors (on cluster Lonestar-TACC

[103]).

nodes cores wall clock time (s)
1 12 1228.18
2 24 637.522
4 48 307.125
8 96 154.385
16 192 80.6144
32 384 41.314

Table 5.1: The wall clock time for one single time step of a typical linear
Landau damping problem.
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5.9 Numerical Results

Our target is a two-species plasma system of electrons and ions.

5.9.1 Electron Plasma Waves

In most plasmas of interest, the ion temperature is much smaller than

the electron temperature. Together with the fact that electrons have much

smaller mass, the ions may be assumed to be stationary. If we assume the ions

temperature is negligible compared to the electron temperature, i.e Ti/Te ∼ 0,

we may assume the ions obey a Dirac measure [53], or see [54] for physical

derivations,

fi(t, x, v) = ρi(t, x)δ0(v − v̄i) , (5.112)

where ion density ρi and mean velocity v̄i are given or satisfy certain hydro-

dynamic equations. Then, we get the ion-electron collision operator

Qe,i(fe) = ρi∇v · (S(v − v̄i)∇vfi(v)) , (5.113)

which is basically a linear operator w.r.t distribution fi.

The weak form of (5.113) reads∫
R3

Qe,i(fe)ϕ(v)dv = −ρi
∫

R3

(S(v − v̄i)∇vfi(v)) · ∇vϕ(v)dv , (5.114)

from which it is not difficult to prove that the linear operator (5.113) conserves

mass and energy, by noticing that the zero eigen-space of projection matrix

S(v) is spanned by v.
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Similar to the spectral representation of the fully nonlinear collision

operator (5.38), we can also obtain the spectral representation for (5.113)

Q̂e,i(f̂e) = i(2π)−3/2

∫
R3

ξTS(v)∇vfe exp(−iv · ξ)dv

= −(2π)−3/2

∫
R3

ξTS(w)(ξ − w)f̂e(ξ − w)dw .

(5.115)

Since the conservation routine, see Section 5.7, can force the conser-

vation of any desired moments, we have to adjust it for the linear operator

(5.113), which only conserves mass and energy. This is done by choosing a

new 2 × 2N3 constraint matrix by only extracting the first the fifth (in 3D

case) rows of the full 5× 2N3 constraint matrix (5.109).

Then, the final model for electron plasma waves reads

∂

∂t
fe + v · ∇xfe + E(t, x) · ∇vfe =

1

ε

(
Qe,e(fe, fe) +Qe,i(fe)

)
, (5.116)

which will be solved by the combined RKDG-Spectral method developed in

this chapter.

5.9.2 The Linear Landau Damping

Perhaps, one of the most astonishing theoretical discoveries of plasma

physics is the wave damping without energy dissipation by collisions. It is

a result of wave-particle interactions. It occurs due to the energy exchange

between particles in motion in the plasma and an electromagnetic wave. The

velocity of a particle maybe greater or less than the phase velocity of the wave.

Thus, there are particles gaining energy from the wave and leading to wave

149



damping, and also, there are particles losing energy to the wave and resulting

in a increase of the wave energy. The Landau damping is studied by perturbing

the Maxwellian distribution by a wave. An extremely small wave amplitude

will restrict the problem in a linear regime, and thus lead to problem of “linear

Landau damping”; however, if the the wave amplitude is relatively large, we

are in a regime of “nonlinear Landau damping”. In this section, we study the

linear damping first.

The initial condition is taken as a small of perturbation of the global

equilibrium M(v) = (2π)−
3
2 exp(− |v|

2

2
)

f0(x, v) = (1 + A cos(kx))M(v) , (5.117)

for (x, v) ∈ [0, 2π/k]× R3. Such an initial state has been chosen by many au-

thors, see for instance [49, 53], as a benchmark problem for studying damping

properties.

To study linear damping, we have to make the amplitude small enough,

e.g. A = 10−5, to restrict the problem under linear regimes. To well capture

the Landau damping, the velocity domain must be large enough. It has to be

larger than the phase velocity vφ = ω/k, where ω is the frequency approxi-

mated by [53]

ω2 = 1 + 3k2 . (5.118)

Here, we select Lv = 5.75.

The classical Landau theory tells that the square root of the electro-
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static energy

1

2

∫ Lx

0

|Eh(x)|2dx (5.119)

is expected to decay exponentially with frequency ω. We will plot the evolu-

tion of logarithm of square root of the electrostatic energy and compute its

numerical damping rate.

According to [40, 55], the theoretical damping rate can be estimated as

λ = λl + λc , (5.120)

where λl is the damping rate for collisionless plasma and λc is the “correction”

for collisional case.

λc = −ν
3

√
2

π
, (5.121)

with ν = 1
ε

denoting the collision frequency. And, λl is estimated by

λl = −
√
π

8

1

k3
exp(− 1

2k2
− 3

2
) . (5.122)

However, as pointed out in [53], (5.122) is more accurate when wave number

k is large; so, for small wave numbers, more accurate estimate is available in

[92]

λl = −
√
π

8

(
1

k3
− 6k

)
exp(− 1

2k2
− 3

2
− 3k2 − 12k4) , (5.123)

and frequency

ω = 1 + 3k2 + 6k4 + 12k6 . (5.124)

We will test with initials (5.117) for both collisionless and collisional

cases.
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We assume ρi = 1 and v̄i = 0, and fix wave number k = 0.3, 0.5.

Since here amplitude A is small enough, the model can be seen in its linear

regime and we can compare the numerical damping results against theoretical

predictions (5.120). Our numerical results recovered the exponential damping

behaviors and show that the damping is stronger if collisions are taking effects.

And the damping rate increases with larger wave number k. In collisionless

case, i.e ε = ∞, when k = 0.5, formula (5.122) gives an estimation −0.151

which agrees well with our numerical result in Figure 5.9.2; but for k = 0.3,

formula (5.123) gives a more accurate estimate −0.0132 (formula (5.122) gives

−0.020). In collisional case, e.g ε = 100, theoretically estimated damping rate

for k = 0.5 is −0.154, while for k = 0.3 is −0.0167. Also, from the damping

result, we know larger collision frequency impose a stronger damping.

Figure 5.7: Linear Landau damping for wave number k = 0.5: ε = ∞ (left),
ε = 100 (right)
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Figure 5.8: Linear Landau damping for wave number k = 0.3: ε = ∞ (left),
ε = 100 (right)

5.9.3 The Nonlinear Landau Damping

The linear theory regarding plasmas has been relatively well developed

(though still many problems remain unsolved). However, the nonlinear phe-

nomena of plasma is much less understood. From last section, we know as

long as the wave amplitude A is small enough, a well-developed linear theory

is valid. Nevertheless, when the wave amplitude gets larger, many waves in

experiments can be no longer described by the linear theory. Some of them

are even not trackable through analysis.

One example would be “electron trapping” phenomena. It occurs with

the nonlinear Landau damping of the waves. Since the particles travel relative

to the wave, a large electric potential together with collisions will trap the

electrons in a potential well of the wave. The trapped electrons will be bounced

back and forth in the well, causing fluctuating amplitudes of the wave. Thus,
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one cannot always expect an exponential damping as in the linear case.

In order to capture the electron trapping, we extract the contours of

the following marginal distribution

F (t, x, vx) =

∫
R2

f(t, x, vx, vy, vz)dvydvz . (5.125)

In phase space, F (t, x, vx) will form peaks whenever there is a potential

through. Trapped electrons will move in closed orbits in phase space, since

the contours F (t, x, vx) are also the electron trajectories. Please refer to [40]

for more explanations.

In this section, we will study the nonlinear damping with the following

initial wave

f0(x, v) = (1 + A cos(kx))M(v) , (x, v) ∈ [0, 2π/k]× R3 , (5.126)

for a relatively large amplitude A such that it is no longer in the linear regime.

Here, we choose the Maxwellian

M(v) = (2πT )−
3
2 exp(−|v|

2

2T
) .

Figure 5.9 shows the nonlinear damping results for A = 0.2, T = 0.5,

k = 0.5 and a large enough velocity domain Lv = 5, with different collision

frequencies ν = 0, 0.05, 0.1. We choose Nx = 36 mesh elements on x-direction,

Nv = 36 mesh elements on each direction of velocity v for the RKDG VP

problem, and N = 24 Fourier nodes for the spectral method. We can see
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the electric energy, in all cases, decreases exponentially at first. In the colli-

sionless regime, the electric energy then starts to oscillate around a constant,

which agrees well with the known property. With collision, the oscillations are

weaken. In particular, with the presence of stronger collisions, the amplitude

of electric energy will start to form an exponential decay again. Although a

relatively large amplitude A is imposed and moderate resolution of mesh is

applied, we still obtain good preservation of the total energy, which is even

better conserved that [53]. See Figure 5.10 on variations of total energy during

the whole process of simulation.

Figure 5.9: Nonlinear damping with A = 0.2 for ν = 0 (left), ν = 0.05 (middle)
and ν = 0.1 (right)

Figure 5.11 shows the electron trapping effects for much larger am-

plitude A = 0.5, T = 0.25, k = 2π/4 and Lv = 4. We choose Nx = 48,

Nv = 32 and N = 24. Collision effects range from weak to strong , that is,

ν = 0, 0.005, 0.2. one can observe that, without collisions, the much more elec-

trons are trapped in the potential through. While with collisions get stronger,

less and less electrons are trapped and a stationary state is reached early.
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Figure 5.10: Variations of total energy during nonlinear damping simulation
with A = 0.2 for ν = 0, 0.05, 0.1

5.9.4 Two Stream Flow

This is of primary importance for studying nonlinear effects of plasmas

in future. In this section, we consider a plasma with fixed ion background

and only consider the electron-electron collisions. We will study how well the

above time-splitting and conservative linking process work, by initializing with

a non-isotropic two-stream flow.

f0(x, v) = (1 + A cos(kx))fTS(v) , (5.127)

where A is the amplitude of the perturbation and k the wave number, and

fTS(v) =
1

2(2πσ2)3/2

[
exp

(
−|v − 2σe|2

2σ2

)
+ exp

(
−|v + 2σe|2

2σ2

)]
, (5.128)

with parameter σ = π/10 and e = (1, 0, 0). We would like it to be far from

the linear regime, so a relatively large perturbation is considered A = 0.5,
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Figure 5.11: Evolution of contours of F (t, x, vx) for ν = 0 (left), ν = 0.005
(middle) and ν = 0.02 (right)
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k = 2π/Lx with Lx = 4. A large enough velocity domain is selected Lv = 4.5.

We choose Nx = 48 mesh elements on x-direction, Nv = 32 mesh elements on

each direction of velocity v for the RKDG VP problem, and N = 24 Fourier

nodes for the spectral method.

Figure 5.12: The evolution of ki-
netic energy for the two-stream
flow

Figure 5.13: The evolution of elec-
trostatic energy for the two-stream
flow

Relatively stronger collision effects are considered by taking a relatively

large collision frequency ν = 0.1 (relatively small Knudesen number ε = 10).

Results are also compared to collisionless case, i.e. ν = 0. In Figure (5.12),

(5.13) and (5.14), the total energy initially comes from both the kinetic and

electrostatic energy, but with time forwarding, the electrostatic energy decays

with oscillations down to zero and the total energy at the end all comes from

pure kinetic motions, which means the system has reached at its global equilib-

rium. During the whole process, the total energy is well preserved only with

negligible variations. In addition, from Figure (5.12) and Figure (5.13) one

can observe that, since the Landau operator is essentially a diffusive operator,
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Figure 5.14: The variations of total energy for the two-stream flow

the oscillations generated by coupling with the Poisson equations damps with

collisions, and thus the state reaches stationary in a much earlier stage.
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Chapter 6

Summary and Future Work

The Boltzmann-type equation, as the keystone of kinetic theories, bridges

the gap between microscopic world and the macroscopic world. It studies the

behaviors of atomic structures in a mesoscopic level and is supposed to provide

information that cannot be contained in one another and reveals the relation-

ships between different scales of models.

The study of the collision operators for Botlzmann-type equations is the

key for study of properties of kinetic problems. And also, it’s always the most

challenging part both analytically and numerically. My studies include, but

not limited to, the numerical treatments for the nonlinear collisional operators

and the spectral gaps for the linearized operators.

For the full nonlinear Boltzmann equations, we evaluated the collisional

operators under a Discontinuous Galerkin method framework. Due to its high

dimensionality and the complex collision kernels, to our best knowledge, there

is barely any work on this topic. During the evaluation, we take the conserva-

tion laws into consideration and design a conservation routine to enforce the

conservation of desired moments. This will be the base for future development

of DG finite element methods for kinetic equations and applications to inho-
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mogeneous transport equations for problems of non-smooth density functions

as well as irregular spatial domains. The high dimensionality, and thus high

computation and storage complexity, is well reduced, by digging the “shift-

ting symmetry” properties of the collisional integrals, the sparsity of “collision

matrix” as well as the parallelizability.

The study on relaxation to equilibrium for the solutions of kinetic equa-

tions has been the keystone of kinetic theories ever since the work of Boltz-

mann. There are extensive researches, results and conjectures on it. When

close to equilibrium, the relaxation properties are dominated by its linearized

counterpart. Liouville’s theorems tell us that the spectral gaps, if exists, will

control the exponential decay of the solutions. The existence and values of

such gaps are of great significance for studying the hydrodynamic limits as

well as the validity of Botlzmann models. There are some work on study the

existence and estimates (very rarely constructive) of the spectral gaps, but

none of them gave a numerical approximation. My work computed the spec-

tral gap numerically, to verify the conjectures on the existence of spectral gaps,

especially for non-integrable angular cross-section, as well as giving numerical

approximations.

As a grazing limit of the Boltzmann equation, the Fokker-Planck-Landau

equation is a very important mathematical model for collisional plasmas. Sim-

ilar to the Boltzmann equations, the FPL collision operator also remains the

most challenging and important. We studied the inhomogeneous FPL equa-

tions, coupled with Poisson equations which governing the self-consistent elec-
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tric field. The complicated inhomogeneous problem is splitted into two sub-

problems, by time-splitting scheme. We applied two different methods for

treating the pure transport Vlasov problem and the pure collisional homo-

geneous FPL equation. The former is solved by RKDG method, which has

achieved its success in many other kinetic problems; while the latter is treated

using conservative spectral method. The conservative spectral method was

well developed for solving Boltzmann equations and we extended the method

to the FPL problems and apply to study the multi-component plasams. The

temperature relaxation of the multi-component plasma is studied both ana-

lytically and numerically. To link the two differnent methods, or computing

grids, we developed a new conservation routine which can guaranttee no loss

of moments when projecting the Fourier solution onto DG meshes. All desired

moments are preserved only with error of DG approximations. The whole

scheme has been applied to study the well-known Landau damping problems,

whose results agree well with theoretical estimates, and to two stream flows.

All the projects are implemented with parallelization, hybrid MPI [65]

and OpenMP [13].

In the future, we plan to dig more on speeding-up of the comptua-

tions for the nonlinear Boltzmann collisional operators as well as the time

evoltuion for Boltzmann equations. We hope to apply the conservative DG

solver that we developed to 3D inhomogeneous Boltzmann equations. The

computations on spectral gaps can achieve more accuracy by employing finer

velocity meshes. We also hope to solve the linear Landau equations to study
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the ”pseudo-exponential” decay, conjectured in Section 5.3. For the collisional

plasma problem, we would like to apply non-periodic boundary conditons on

the Poisson equations and thus to study more nonlinear effects, for instance

plasma sheath problems, which is of primary importance for Aerospace Engi-

neering.
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0.1 Tools For Asymptotic Behavior Study of DG Con-
servative Solver

The classical Sobolev spaces are defined as

Wα,p(Ω) = {f ∈ Lp(Ω) : Dβf ∈ Lp(Ω) for all multi-indices β such that |β| ≤ α}

Hα(Ω) = Wα,2(Ω) (1)

and they are equipped with the norms

‖f‖Wα,p(Ω) =
∑
|β|≤α ‖Dβf‖Lp(Ω), if p <∞

‖f‖Wα,∞(Ω) = max|β|≤α ‖Dβf‖L∞(Ω), if p =∞ (2)

The weighted Sobolev spaces Hm
α are Hm spaces weighted with 〈v〉α =(

1 + |v|2
)γα/2

. That is,

‖f‖Hm
α (Ω) =

∑
|α|≤m

‖Dαf〈v〉α‖L2(Ω) (3)

Here, please note that specially for the asymptotic error analysis for DG solver,

we include the intermolecular potential parameter γ in here. The broken

Sobolev spaces for the partition of Ω are defined as

Wα,p(Th) = {f ∈ Lp(Ω) : f |E ∈ Wα,p(E) for all E ∈ Th}

Hα(Th) = Wα,2(Th) (4)

and the corresponding norms

‖f‖Wα,p(Th) =
∑

E∈Th ‖f‖Wα,p(E), if p <∞ (5)

‖f‖Wα,∞(Th) = maxE∈Th ‖f‖Wα,∞(E), if p =∞ (6)
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Then, we define the standard d-dimensional L2 projection Ph : f 7→ Phf

by ∫
E

Phf(v)φ(v)dv =

∫
E

f(v)φ(v)dv, ∀φ ∈ Pl|E (7)

By Poincare’s inequality and Sobolev embedding theorems, we can

prove the following approximation theory

‖f − Phf‖L2(Th) . hα+1‖f‖Hα+1(Ω), ∀f ∈ Hα+1(Ω)

‖f − Phf‖L∞(Th) . hα+1‖f‖Wα+1,∞(Ω), ∀f ∈ Wα+1,∞(Ω)

‖Phf‖Lp(Th) . ‖f‖Lp(Ω), ∀f ∈ Lp(Ω), 1 ≤ p ≤ ∞

where h = maxE∈Th diam(E).

0.1.1 Extension Operators

For fixed α0 ≥ 0, there exists an extension operator E : L2(Ωv) →

L2(Rd) such that for any α ≤ α0 one has additionally E : Hα(Ωv)→ Hα(Rd).

The construction of such operator is well known and has the properties [113]:

1. Linear and bounded with

‖Ef‖Hα(Rd) ≤ Cα‖f‖Hα(Ωv) for α ≤ α0.

2. Ef = f a.e. in Ωv.

3. Outside Ωv the extension is constructed using a reflexion of f near the

boundary ∂Ωv. Thus, for any δ ≥ 1 we can choose an extension with

support in δΩv, the dilation of Ωv by δ, and

‖Ef‖Lp(δΩv\Ωv) ≤ C0‖f‖Lp(Ωv\δ−1Ωv) for 1 ≤ p ≤ 2,
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where the constant C0 is independent of the support of the extension.

4. In particular, properties 2. and 3. imply that for any δ ≥ 1 there is an

extension such that

‖Ef‖Lpk(Rd) ≤ 2C0δ
2k‖f‖Lpk(Ωv) for 1 ≤ p ≤ 2, k ≥ 0.

0.1.2 Lemmas For Asymptotic Behavior Study

Following the arguments in [5], we have

Lemma (Elastic Lagrange Estimate). The problem (4.77) has a unique min-

imizer given by

X∗ = Qu(f)(v)− 1

2

(
γ1 +

d∑
j=1

γj+1vj + γd+2|v|2
)
,

where γj, for 1 ≤ j ≤ d+2, are Lagrange multipliers associated with the elastic

optimization problem. Furthermore, they are given by

γ1 = Odρu +Od+2eu ,

γj+1 = Od+2µ
j
u , j = 1, 2, · · · , d,

γd+2 = Od+2ρu +Od+4eu .

The estimate constants Or := O(L−r) only depends inversely on |Ωv|. The

parameters ρu, , µ
j
u, eu are density, momentum and kinetic energy associated

with the unconserved collision operator Quc(fh).

In particular, for dimension d = 3, the minimized objective function is
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given by

Ae(X∗) = ‖Qu(f)−X∗‖2
L2(Ωv) = 2γ2

1L
3+

2

3
(γ2

2 +γ2
3 +γ2

4)L5+4γ1γ5L
5+

38

15
γ2

5L
7 .

(8)

The minimizer is the expected conservation correction, i.e. Qc(fh) =

X∗ . So the elastic case (conservation up to kinetic energy), the conserved

projection operator Qc(fh) is a perturbation of Quc(fh) by a second order

polynomial.

In the sequel we denote the moments of a function f by

mk(f) :=

∫
Rd

∣∣f(v)
∣∣ |v|γk dv.

and

Zk(f) :=
k−1∑
j=0

(
k
j

)
mj+1mk−j. (9)

Besides the above lemma, we list several other results necessary for the final

convergence and error estimate, most of which are generalized from the work

[5].

Lemma (Conservation Correction Estimate). Fix f ∈ L2(Ωv), then the accu-

racy of the conservation minimization problem is proportional to the spectral

accuracy. That is, for any k, k′ ≥ 0 and δ > 1, there exists some extension

operator E, such that

‖ (Qc(f)−Qu(f)) |v|k‖L2(Th) ≤
C√

(k + d)
Lγk‖Q(Ef,Ef)−Qu(f)‖L2(Th)

+
δ2γk′√
(k + d)

Od/2+γ(k′−k)

(
mk′+1(f)m0(f) + Zk′(f)

)
,
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where C is a universal constant.

To prove our final convergence estimate, we need another theorem in

the L2-theory of the collision operator, which is the Sobolev Bound Estimate.

Lemma (Sobolev Bound Estimate). Let µ > d
2

+ γ. For f, g ∈ Hα
k+µ, the

collision operator satisfies

‖Q(f, g)‖2
Hα
k
≤ C

∑
j≤α

(
α

j

)
(‖f‖2

Hα−j
k+γ

‖g‖2
Hj
k+µ

+ ‖f‖2
Hα−j
k+µ

‖g‖2
Hj
k+γ

) , (10)

where the dependence of the constant is C := C(d, β, α, ‖b‖1).

And also, we need the following Hα
k -norm propagation properties of the

solutions.

Lemma (Hα
k -norm Propagation). Assume fh,0 ∈ Hα

k+1+α(Ωv), then there ex-

ists an extension operator Eα, for any time T , we can choose a lateral size

L0(f0, k, α) for the truncated domain Ωv, such that for any L ≥ L0 there exists

a small mesh size h0 = maxEv∈Th diam(Ev),

sup
t∈[0,T ]

‖fh‖Hα
k (Ωv) ≤ max

{
‖fh,0‖Hα

k+1+λ(Ωv), Ck(mk′(g0))
}
, h ≤ h0

where k′ ≥ k is a finite number of moments. Additionally, Ck is independent

of the parameters L.

0.2 Calculations of Ŝ

(1). Ŝ1
11(ω).
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This is done immediately.

Ŝ1(ω) = (2π)−3/2

∫
BR(0)

1

|u|
e−iω·udu

=

√
2

π

1

|ω|2
[1− cos(R|ω|)]

(11)

And, if |ω| = 0, Ŝ1(ω) =
√

1
2π
R2.

(2). Ŝ2
33(ω).

Ŝ2
33(ω) = (2π)−3/2

∫
BR(0)

u2
3

|u|3
e−iω·udu

= (2π)−3/2

∫ R

0

r

∫
S2

σ2
3e
−irω·σdσdr

(12)

Suppose ω = |ω|(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T , and consider the

orthogonal rotation matrices

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 and Rz(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


(13)

which rotates the vectors about y− and z−axis, respectively.

Then,

RT
y (θ)Rz(φ)ω = (0, 0, |ω|)T := ω̃

Denote A = RT
y (θ)Rz(φ), then A is also an orthogonal rotation matrix

A =
1

|ω|


ω1ω3√
ω2

1+ω2
2

ω2ω3√
ω2

1+ω2
2

−
√
ω2

1 + ω2
2

− ω2|ω|√
ω2

1+ω2
2

ω1|ω|√
ω2

1+ω2
2

0

ω1 ω2 ω3

 (14)
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where we assume ω2
1 + ω2

2 6= 0; otherwise, matrix A is reduced to the identity

matrix.

Then ∫
S2

σ2
3e
−irω·σdσ

=
1

|ω|2
(
4π(ω2

1 + ω2
2)

sin(r|ω|)− r|ω| cos(r|ω|)
(r|ω|)3

+ 4πω2
3

((r|ω|)2 − 2) sin(r|ω|) + 2r|ω| cos(r|ω|)
(r|ω|)3

)
So, plugging back into Ŝ2

33 (12) gives

Ŝ2
33(ω) = (2π)−3/2

∫ R

0

r

∫
S2

σ2
3e
−irω·σdσdr

=

√
2

π

1

|ω|4
(
(ω2

1 + ω2
2)
R|ω| − sin(R|ω|)

R|ω|

− ω2
3

R|ω|+R|ω| cos(R|ω|)− 2 sin(R|ω|)
R|ω|

)
(15)

And, if |ω| = 0, Ŝ2
33(ω) =

√
1

2π
R2

3
.

(3). Ŝ2
13(ω).

Ŝ2
13(ω) = (2π)−3/2

∫
BR(0)

u1u3

|u|3
e−iω·udu

= (2π)−3/2

∫ R

0

r

∫
S2

σ1σ3e
−irω·σdσdr

(16)

Following the same change of variables as above,∫
S2

σ1σ3e
−irω·σdσdr =

∫
S2

(ATσ)1(ATσ)3e
−irω̃·σdσ

= 4π
ω1ω3

|ω|2
((r|ω|)2 − 3) sin(r|ω|) + 3r|ω| cos(r|ω|)

(r|ω|)3
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So,

Ŝ2
13(ω) = (2π)−3/2

∫ R

0

r

∫
S2

σ1σ3e
−irω·σdσdr

= −
√

2

π

ω1ω3

|ω|4
2R|ω|+R|ω| cos(R|ω|)− 3 sin(R|ω|)

R|ω|

(17)

And, if |ω| = 0, Ŝ2
13(ω) = 0.

172



Bibliography

[1] The sun’s magnetic field. http://www.angelfire.com/rnb/pp0/sun5.

html.

[2] A. Alekseenko and E. Josyula. Deterministic solution of the boltzmann

equation using discontinuous galerkin discretizations in velocity space.

Journal of Computational Physics, submitted.

[3] R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg. Entropy dis-

sipation and long-range interactions. Arch. Rat. Mech. Anal., 152:327–

355, 2000.

[4] R. Alonso, J. Canizo, I. Gamba, and C. Mouhot. A new approach to

the creation and propagation of exponential moments in the boltzmann

equation. Comm. Part. Diff. Equat., 38(1):155–169, 2013.

[5] R. Alonso, I.M. Gamba, and S.H. Tharkabhushaman. Convergence of

the lagrangian based conservative spectral method for space-homogeneous

non-linear boltzmann equation for hard potentials. Submitted 2014.

[6] R.J. Alonso and I.M. Gamba. l1− l∞-maxwellian bounds for the deriva-

tives of the solution of the homogeneous boltzmann equation. Journal

de Mathematiques Pures et Appliquees, 89(6):575–595, 2008.

173



[7] V. V. Aristov. Direct methods for solving the Boltzmann equation and

study of nonequilibrium flows. Kluwer Academic Publishers, Dordrecht,

2001.

[8] L. Arkeryd. Stability in l1 for the spatially homogeneous boltzmann

equation. Arch. Rational Mech. Anal., 103:151–167, 1988.

[9] B. Ayuso, J.A. Carrillo, and C.-W. Shu. Discontinuous galerkin meth-

ods for the one-dimensional vlasov-poisson system. Kinetic and Related

Models, 4:955–989, 2011.

[10] C. Baranger and C. Mouhot. Explicit spectral gap estimates for the

linearized boltzmann and landau operators with hard potentials. Rev.

Mat. Iberoam, 21:819–841, 2005.

[11] G.A. Bird. Molecular Gas Dynamics. Clarendon Press, Oxford, 1994.

[12] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

and R. C. Whaley. ScaLAPACK Users’ Guide. Society for Industrial

and Applied Mathematics, Philadelphia, PA, 1997.

[13] OpenMP Architecture Review Board. OpenMP application program in-

terface version 3.0, May 2008. http://www.openmp.org/mp-documents/

spec30.pdf.

174



[14] A. V. Bobylev. Exact solutions of the nonlinear Boltzmann equation

and the theory of relaxation of a Maxwellian gas. Translated from

Teoreticheskaya i Mathematicheskaya Fizika, 60:280–310, 1984.

[15] A. V. Bobylev. The theory of the nonlinear spatially uniform boltzmann

equation for maxwell molecule. Sov.Sci.Rev.C.Math.Phys, 7:111–233,

1988.

[16] A. V. Bobylev, J. A. Carrillo, and I. M. Gamba. On some properties of

kinetic and hydrodynamic equations for inelastic interactions. Journal

of Statistical Physics., 98:743–773, 2000.

[17] A. V. Bobylev and C. Cercignani. Discrete velocity models without non-

physical invariants. Journal of Statistical Physics., 97:677–686, 1999.

[18] A. V. Bobylev and C. Cercignani. On the rate of entropy production

for the bolzmann equation. Journal of Statistical Physics., 94:603–618,

1999.

[19] A. V. Bobylev, C. Cercignani, and I. M. Gamba. Generalized kinetic

maxwell type models of granular gases. In P. Giovine G. Capriz and

P. M. Mariano, editors, Mathematical models of granular matter, number

1937 in Lecture Notes in Mathematics. Springer, 2008.

[20] A. V. Bobylev, C. Cercignani, and I. M. Gamba. On the self-similar

asymptotics for generalized non-linear kinetic Maxwell models. arXiv:math-

ph/0608035 2006.

175



[21] A. V. Bobylev and I. M. Gamba. Boltzmann equations for mixtures

of maxwell gases: Exact solutions and power like tails. Journal of

Statistical Physics., 124:497–516, 2006.

[22] A. V. Bobylev, I. M. Gamba, and V. Panferov. Moment inequalities and

high-energy tails for Boltzmann equations with inelastic interactions.

Journal of Statistical Physics., 116:1651–1682, 2004.

[23] A. V. Bobylev, S. A. Karpov, and I. F. Potapenko. Dsmc methods for

multicomponent plasmas. In 28th International Symposium on Rarefied

Gas Dynamics 2012. American Institute of Physics, 9–13 July 2012.

[24] A. V. Bobylev, I.F. Potapenko, and P.H. Sakanaka. Relaxation of two-

temperature plasma. Phyical Review E, 56(2):2081–2093, 1997.

[25] A. V. Bobylev and S. Rjasanow. Difference scheme for the Boltzmann

equation based on the Fast Fourier Transform. European journal of

mechanics. B, Fluids, 16(22):293–306, 1997.

[26] A. V. Bobylev and S. Rjasanow. Fast deterministic method of solving

the Boltzmann equation for hard spheres. European journal of mechan-

ics. B, Fluids, 18(5):869–887, 1999.

[27] A. V. Bobylev and S. Rjasanow. Numerical solution of the Boltzmann

equation using fully conservative difference scheme based on the Fast

Fourier Transform. Transport Theory Statist. Phys., 29:289–310, 2000.

176



[28] J. E. Broadwell. Study of rarefied shear flow by the discrete velocity

method. J. Fluid Mech., 19:401–414, 1964.

[29] C. Buet and S. Cordier. Conservative and entropy decaying numeri-

cal scheme for the isotropic fokker-planck-landau equation. Journal of

Computational Physics, 145:228–245, 1998.

[30] H. Cabannes. Global solution of the initial value problem for the discrete

Boltzmann equation. Comm. Math. Phys, 74:71–95, 1980.

[31] R. E. Caflisch. The boltzmann equation with a soft potential. i. linear,

spatially homogeneousd. J. Fluid Mech., 19:401–414, 1964.
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