
Copyright

by

Nam-phuong Duc Nguyen

2014

The Dissertation Committee for Nam-phuong Duc Nguyen
certifies that this is the approved version of the following dissertation:

Family of Hidden Markov Models and its applications

to phylogenetics and metagenomics

Committee:

Tandy Warnow, Supervisor

Joydeep Ghosh

Raymond Mooney

Keshav Pingali

Mihai Pop

Shibu Yooseph

Family of Hidden Markov Models and its applications

to phylogenetics and metagenomics

by

Nam-phuong Duc Nguyen, B.S.;B.S. C.S.;M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014

Dedicated to my parents who risked their lives so that their children may

know freedom, to my siblings who helped made Utah a little more diverse,

and to Lysa who has supported me every step of the way.

Acknowledgments

My parents left Vietnam so that my siblings and I could have an op-

portunity of a better life. It is due to their journey that I am able to complete

my own journey towards my Ph.D. I am eternally grateful for their guidance

in all aspects of life, from the mundane such as how to multiply numbers to

the profound such as how to incorporate aspects of Vietnamese and American

culture. My dad was originally a medical doctor in Vietnam, and his dream

was for one of his children to pick up the mantle. While I may not be an M.D.,

I hope that earning a Ph.D. will suffice as a repayment for his sacrifices.

I thank my siblings Dan, Danchi, and An. Dan kept me current on

sports and movies when I was too busy to go outside my room. Danchi kept

me inspired with her stories about the joys of teaching. My little brother An

even moved to Austin for a brief stint to keep me on my toes. I thank them

for helping me get through the program.

My dissertation would not be possible without the guidance of my ad-

viser, Tandy Warnow. The Ph.D. program can be a grueling experience, and

at one of my most stressful moments, I was ready to give up. Tandy saw this

and in response gave an inpsirational speech to the lab about the nature of

research and how frustrating it can be. However, she also encouraged us to not

give up hope because through our frustrations, we develop insights into solving

v

the problem. Those insights lead to new experiments, and these experiments

open the floodgate of research. It was after this speech that I began work on

SEPP which lead to the main contributions of my dissertation. I thank Tandy

for encouraging me to stay through the program.

I feel blessed to have been able to work with the many people in

the Warnow lab: Bayzid for the discussions we have about our goals in life,

Keerthana for helping me run experiments, Kevin and Shel for their advice on

how to survive the program. I also thank Ruth for giving me much needed

feedback on my dissertation. I look forward to working with her at UIUC.

Finally, I thank Siavash for his keen insight on a multitude of topics. If there

was a bug in the pipeline, I could give a brief desciption and Siavash would

have an idea of the cause, and if not, a suggestion on a test to determine the

cause. Collaborating with him has been a joy.

I thank my many other collaborators across various research projects.

I thank Mihai Pop not only for his work on the development of TIPP, but

also for his career advice during my post-doctoral job search. I thank Bo Liu

for his help in designing simulated metagenomic experiments for TIPP. I also

thank Jim Leebens-Mack, David Nelson, and Gane Ka-Shu Wong for all the

knowledge I gained while working together on the 1KP project. I hope to

continue these collaborations in the future.

I thank my Ph.D. committee members: Tandy Warnow, Joydeep

Ghosh, Raymond Mooney, Keshav Pingali, Mihai Pop, and Shibu Yooseph.

Their feedback during my dissertation proposal has been helpful to the devel-

vi

opment of my final dissertation.

I am grateful for the support that Lydia Griffith and Laurie Alvarez

have given me. I can’t count the number of times that Lydia has helped me

nagivate the bureaucracy of the program. Without her, I would still be stuck

registering for classes. I thank Laurie for being patient with me, even when I

forgot to hand in my receipts for reimbursement.

The work in my dissertation covers several projects that were joint work

with my collaborators, including Tandy, Siavash, Mihai, Bo, and Keerthana.

Their contributions make this dissertation possible.

I thank my friends who helped me stay sane throughout this entire

ordeal: Hieu for putting up with my late night guitar jams, Eric for flying

out to Austin multiple times to contribute to the late night jams, and Jon for

being online whenever I needed to talk. I thank Vy for cooking for me, even

when I didn’t eat her food. I thank Lisa for helping me proof my papers and

providing simulating discussions about Texas politics. I thank Tri Dang and

Yuna Dang for keeping me from being homeless. Finally, I thank Alex, Annie,

and Wendy for helping me stay young.

Finally, I thank Lysa for standing by my side throughout this process.

I would write more words but as Lysa would say, words are impermanent so

there’s nothing left to say.

vii

Family of Hidden Markov Models and its applications

to phylogenetics and metagenomics

Publication No.

Nam-phuong Duc Nguyen, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Tandy Warnow

A Profile Hidden Markov Model (HMM) is a statistical model for rep-

resenting a multiple sequence alignment (MSA). Profile HMMs are important

tools for sequence homology detection and have been used in wide a range

of bioinformatics applications including protein structure prediction, remote

homology detection, and sequence alignment.

Profile HMM methods result in accurate alignments on datasets with

evolutionarily similar sequences; however, I will show that on datasets with

evolutionarily divergent sequences, the accuracy of HMM-based methods de-

grade. My dissertation presents a new statistical model for representing an

MSA by using a set of HMMs. The family of HMM (fHMM) approach uses

multiple HMMs instead of a single HMM to represent an MSA. I present a

new algorithm for sequence alignment using the fHMM technique. I show that

viii

using the fHMM technique for sequence alignment results in more accurate

alignments than the single HMM approach.

As sequence alignment is a fundamental step in many bioinformatics

pipelines, improvements to sequence alignment result in improvements across

many different fields. I show the applicability of fHMM to three specific

problems: phylogenetic placement, taxonomic profiling and identification, and

MSA estimation. In phylogenetic placement, the problem addressed is how to

insert a query sequence into an existing tree. In taxonomic identification and

profiling, the problems addressed are how to taxonomically classify a query

sequence, and how to estimate a taxonomic profile on a set of sequences. Fi-

nally, both profile HMM and fHMM require a backbone MSA as input in order

to align the query sequences. In MSA estimation, the problem addressed is

how to estimate a “de novo” MSA without the use of an existing backbone

alignment.

For each problem, I present a software pipeline that implements the

fHMM specifically for that domain: SEPP for phylogenetic placement, TIPP

for taxonomic profiling and identification, and UPP for MSA estimation. I

show that SEPP has improved accuracy compared to the single HMM ap-

proach. I also show that SEPP results in more accurate phylogenetic place-

ments compared to existing placement methods, and SEPP is more computa-

tionally efficient, both in peak memory usage and running time. I show that

TIPP more accurately classifies novel sequences compared to the single HMM

approach, and TIPP estimates more accurate taxonomic profiles than leading

ix

methods on simulated metagenomic datasets. I show how UPP can estimate

“de novo” alignments using fHMM. I present results that show UPP is more

accurate and efficient than existing alignment methods, and estimates accurate

alignments and trees on datasets containing both full-length and fragmentary

sequences. Finally, I show that UPP can estimate a very accurate alignment

on a dataset with 1,000,000 sequences in less than 2 days without the need of

a supercomputer.

x

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xvi

List of Figures xviii

Chapter 1. Introduction 1

Chapter 2. Background 4

2.1 Phylogenetics . 4

2.2 Profile Hidden Markov Models 16

2.3 Applications of Profile HMMs 17

2.3.1 Phylogenetic Placement 17

2.3.2 Metagenomic Analyses 21

2.3.3 Multiple Sequence Alignment Estimation 26

Chapter 3. Family of Hidden Markov Models 30

3.1 Family of HMM . 30

3.2 fHMM Alignment Algorithm 32

3.3 HMMER Commands . 36

3.4 Comparison to existing algorithms and methods 37

Chapter 4. SEPP: SATé-enabled phylogenetic placement 40

4.1 SEPP Algorithm . 41

4.2 Performance Evaluation . 44

4.3 Results . 49

4.3.1 Algorithm design experiments 49

xi

4.3.2 Comparisons using the Default Setting for SEPP 53

4.3.3 Results on Simulated Datasets 53

4.3.4 Results on 16S.B.ALL 58

4.3.5 Comparing methods on query sequences of different levels
of difficulty . 59

4.3.6 Summary . 59

4.4 Conclusion and future work 61

Chapter 5. TIPP: Taxonomic identification and phylogenetic
profiling using families of Hidden Markov Models 63

5.1 Taxonomic Identification through Phylogenetic Placement . . . 64

5.2 TIPP Algorithm . 68

5.2.1 Alignment Support Calculation 71

5.2.2 Abundance Profile Estimation 73

5.2.3 TIPP on Larger Markers 74

5.3 Performance Evaluation . 74

5.4 Results . 83

5.5 Conclusions and Future Work 92

Chapter 6. UPP: Ultra-large alignments using family of Hidden
Markov Model 94

6.1 UPP: Ultra-large alignment using Phylogeny-aware Profiles . . 95

6.2 Performance Evaluation . 100

6.3 Results . 105

6.3.1 Phylogenetic Alignment Accuracy 106

6.3.2 Structural Alignment Accuracy 113

6.3.3 Results on Fragmentary Datasets. 114

6.3.4 Factors Influencing Accuracy 118

6.3.5 Running Time . 119

6.4 Conclusion and Future Work 121

Chapter 7. Conclusion and future work 126

7.1 Conclusion . 126

7.2 Future Work . 127

xii

Appendices 132

Appendix A. TIPP 133

A1 Precision and Recall Comparisons and Statistical Significance . 133

A1.1 HMMER+pplacer versus HMMER+EPA 133

A1.2 Experiment 1: TIPP variants 133

A1.2.1 HMMER+pplacer versus SEPP 133

A1.2.2 TIPP(0%,0%,100) versus TIPP(0%,95%,100) . . 136

A1.2.3 TIPP(0%,95%,100) versus TIPP(95%,95%,100) 136

A1.3 Leave-one-out experiments: TIPP versus MetaPhyler . . 139

A2 Leave-one-out Results in Tabular Format 146

A2.1 Experiment 1: TIPP Variants 146

A2.2 Leave-one-out experiments: TIPP versus MetaPhyler . . 146

A3 Results Omitted from Chapter 5 153

A3.1 Experiment 1: Leave-one-out TIPP Variants 153

A3.2 TIPP Boosting of EPA versus pplacer 157

A3.3 Non-leave-one-out Parameter Exploration Study 160

A3.4 ROC Curves . 166

A3.5 Leave-one-out TIPP versus Metaphyler 169

A3.5.1 Leave-one-out 30 marker genes 169

A3.5.2 Leave-one-out 16S RNA gene 169

A3.6 16S RNA on archaea, leave-one-out experiments; effects
of Halobacteria . 174

A3.7 Experiment 2: Abundance profiling experiments 178

A3.8 Experiment 3: Exploring robustness to sequencing error
on taxonomic identification experiments. 178

A4 Non-leave-one-out Running Time Study. 185

A5 Abundance profile calculation 186

A6 Dataset . 187

A6.1 Marker Genes and Empirical Statistics 187

A6.2 Fragments . 187

A7 Abundance Profile Datasets 190

A7.1 Metaphlan Simulated Dataset 190

xiii

A7.2 FACs HC . 190

A7.3 FAMeS . 190

A7.4 WebCarma dataset . 191

A8 Methods . 191

A8.1 EPA and pplacer: Likelihood-based phylogenetic placement191

A8.2 Commands Used . 193

Appendix B. UPP 197

B1 Materials and Methods . 197

B1.1 Datasets . 197

B1.1.1 CRW 16S biological datasets. 197

B1.1.2 FastTree COG simulated datasets. 198

B1.1.3 Large AA datasets with full reference alignments. 198

B1.1.4 HomFam datasets. 199

B1.1.5 1000-taxon simulated datasets. 200

B1.1.6 Indelible simulated datasets. 201

B1.2 Methods . 201

B1.2.1 Basic alignment methods 201

B1.2.2 HMMER Commands 204

B1.2.3 Maximum Likelihood Tree Estimation 204

B1.2.4 UPP alignment method 205

B1.3 Early termination on large datasets 213

B2 Supplemental Figures and Tables 217

B2.1 Sequence length distribution 220

B2.2 Resampling on the CRW 16S.T dataset 222

B2.3 UPP pipeline exploration 225

B2.3.1 Backbone alignment method 226

B2.3.2 Backbone size 229

B2.3.3 Query sequence alignment method. 230

B2.3.4 Impact of using the HMM Family technique or a
single HMM . 232

B2.4 SEPP vs. UPP . 239

B2.5 MAFFT variants . 245

xiv

B2.6 PASTA on the ten large AA datasets 246

B2.6.1 PASTA commands 250

B2.6.2 Model selection for PASTA variants 252

B2.7 Comparisons between UPP, SATé-II, and PASTA 254

B2.8 Backbone and final alignment error. 265

B2.9 Results on full-length datasets 267

B2.10 TC Scores . 286

B2.11 Results on fragmentary datasets 288

Bibliography 293

xv

List of Tables

4.1 Dataset statistics for curated alignments. 48

4.2 Mean delta-error for all query sequences. 56

4.3 Mean delta-error for different categories of query sequences. . 57

5.1 Summary of all simulated abundance datasets. 79

5.2 The normalized average RMSE for abundance profiling methods. 84

6.1 UPP variants on the RNASim datasets. 120

A1 Precision-Recall Differences between HMMER+pplacer and
HMMER+EPA on the rpsB gene. 134

A2 Precision-Recall Differences between SEPP and HM-
MER+pplacer on the rpsB gene. 135

A3 Precision-Recall Differences between TIPP(0%,95%,100) versus
TIPP(0%,0%,100) on the rpsB gene. 137

A4 Precision-Recall Differences between TIPP(0%,95%,100) and
TIPP(95%,95%,100) on the rpsB gene. 138

A5 Precision-Recall Differences on 30 marker genes, Illumina. . . . 140

A6 Precision-Recall Differences on 30 marker genes, 454. 141

A7 Precision-Recall Differences on 16S RNA gene on bacteria, Il-
lumina. 142

A8 Precision-Recall Differences on the 16S RNA gene on bacteria,
454 error model. 143

A9 Precision-Recall Differences on 16S archaea gene, Illumina. . . 144

A10 Precision-Recall Differences on 16S archaea gene, 454. 145

A11 Leave-species-out results on TIPP variants for rspB marker gene.147

A12 Leave-genus-out results on TIPP variants for rspB marker gene. 148

A13 Leave-family-out results on TIPP variants for rspB marker gene. 149

A14 Leave-one-out results for 30 markers Illumina error model. . . 150

A15 Leave-one-out results for 30 markers 454 error model. 150

xvi

A16 Leave-one-out results for 16S bacteria 454 error model. 151

A17 Leave-one-out results for 16S bacteria Illumina error model. . 151

A18 Leave-one-out results for 16S RNA gene on archaea 454 error
model. 152

A19 Leave-one-out results for 16S archaea Illumina error model. . . 152

A20 Precision and recall of TIPP+EPA and TIPP+pplacer. 159

A21 Normalized RMSE for different methods on short fragment
datasets. 181

A22 Normalized RMSE for different methods on long fragment
datasets. 182

A23 Running time experiment. 186

A24 Marker gene statistics. 188

A25 Higher error fragment statistics. 189

B1 Performance of UPP variants on the million-sequence RNASim
dataset. 217

B2 Empirical statistics for simulated datasets. 218

B3 Empirical statistics for the biological datasets. 219

xvii

List of Figures

2.1 Example of rooted and unrooted trees. 7

2.2 Example of an MSA. 8

2.3 Example of sequence evolution. 9

2.4 Example of scoring MSAs. 11

2.5 Computing error metrics of estimated tree. 15

2.6 Profile HMM representation of an MSA. 18

2.7 Computing ∆FN error of query sequence placement. 22

2.8 Histogram of sequence lengths for the 16S Gutell CRW datasets. 28

3.1 Example of centroid decomposition. 32

3.2 Building an HMM. 33

3.3 Example of alignment using HMM families. 34

3.4 Example of alignment of query sequence through transitivity. . 35

4.1 Example of SEPP pipeline. 44

4.2 Scatter plot of delta error versus time versus memory for the
16S.B.ALL dataset. 50

4.3 Scatter plot of delta error versus time versus memory for the
M2 dataset. 51

4.4 Results on simulated datasets for model M2. 54

4.5 Results on 16S.B.ALL. 55

5.1 Taxonomic classification using phylogenetic placement 65

5.2 Comparing SEPP and HMMALIGN+pplacer for taxonomic
identification . 67

5.3 Non-leave-one-out experiments under 454-like errors. 88

6.1 Overview of the UPP algorithm. 97

6.2 Alignment error rates on different datasets. 107

6.3 Tree error on RNASim 10K and Indelible datasets 111

xviii

6.4 Impact of fragmentary sequences on alignment error. 115

6.5 Tree error on fragmentary RNASim 10K datasets 117

6.6 Running time for UPP(Fast) on the RNASim datasets. 119

A1 Leave-species-out experiment on the rpsB marker gene compar-
ing TIPP variants. 154

A2 Leave-genus-out experiment on the rpsB marker gene compar-
ing TIPP variants. 155

A3 Leave-family-out experiment on the rpsB marker gene compar-
ing TIPP variants. 156

A4 Leave-one-out experiment for TIPP+EPA and TIPP+pplacer. 158

A5 Varying placement support. 161

A6 Varying alignment support with placement support of 50%. . . 163

A7 Varying alignment support with placement support of 95%. . . 164

A8 Varying alignment support and placement support. 165

A9 Varying decomposition size for TIPP(95%). 167

A10 ROC curve for TIPP on rpsB data. 168

A11 Leave-one-out experiment comparing MetaPhyler and TIPP-
default on the 30 marker genes. 171

A12 Leave-one-out experiment comparing MetaPhyler and TIPP-
default on the 16S bacteria marker gene. 172

A13 Leave-one-out experiment comparing MetaPhyler and TIPP-
default on the 16S archaea marker gene. 173

A14 Taxonomy for Halobacteria class for the 16S RNA gene. . . . 175

A16 Removing Halobacteria class from leave-family-out and leave-
order-out experiments for Illumina fragments. 176

A18 Removing Halobacteria class from leave-family-out and leave-
order-out experiments for 454 fragments. 177

A19 Abundance profiling results comparing different TIPP methods
on short fragments. 179

A20 Abundance profiling results comparing different TIPP methods
on long fragments. 180

A21 Non-leave-one-out experiments for fragments with Illumina-like
and 454-like errors. 183

A22 Non-leave-one-out experiments results at phylum level. 184

xix

B1 Distribution of the backbone sequences in the tree on the first
iteration of UPP on 16S.T. 212

B2 Sequence length distributions of the HomFam datasets. 220

B3 Sequence length distributions of the ten large AA datasets. . . 221

B4 Alignment error rates for the first two iterations of UPP on the
CRW 16S.T dataset. 223

B5 Tree error rates for first two iterations of UPP on the CRW
16S.T dataset. 224

B6 Alignment error for different UPP backbone alignments on the
RNASim 10K dataset. 227

B7 Tree error rates for different UPP backbone alignments on the
RNASim 10K dataset. 228

B8 Alignment and tree error of UPP variants on the RNASim
datasets. 231

B9 Alignment error of UPP variants on the RNASim datasets. . . 233

B10 Tree error of UPP variants for RNASim datasets. 234

B11 Wall clock alignment time (hrs) of UPP variants on the
RNASim datasets. 235

B12 Alignment error of UPP variants on the CRW 16S datasets. . 236

B13 Tree error of UPP variants on the CRW 16S datasets. 237

B14 Wall clock alignment time (hrs) of UPP variants on the
RNASim datasets. 238

B15 Alignment error of UPP and SEPP on the RNASim datasets. 240

B16 Tree error of UPP and SEPP on the RNASim datasets. 241

B17 Alignment error of UPP and SEPP on the CRW 16S datasets. 242

B18 Tree error of UPP and SEPP on the CRW 16S datasets. . . . 243

B19 Alignment and tree error for SEPP and UPP on fragmentary
CRW 16S.T datasets. 244

B20 Results of default MAFFT and MAFFT-PartTree on the 16S.T,
16S.3, and RNASim 10K datasets. 245

B21 Alignment and tree error of PASTA variants on the ten large
AA datasets with full reference alignments, using substitution
models selected by PROTEST. 248

B22 Alignment and tree error of different methods on the ten large
AA datasets with full reference alignments, using substitution
models selected by PROTEST. 249

xx

B23 Alignment error of PASTA, SATé-II, and UPP for RNASim
datasets. 255

B24 Tree error of PASTA, SATé-II, and UPP for RNASim datasets. 256

B25 Alignment error of PASTA, SATé-II, and UPP on the CRW
datasets. 257

B26 Tree error rates for UPP, SATé-II, and PASTA on the CRW
datasets. 258

B27 Alignment error of PASTA and UPP on the FastTree COG
datasets. 259

B28 Tree error of UPP and PASTA on the FastTree COG datasets. 260

B29 Average alignment error of PASTA and UPP on HomFam
datasets. 261

B30 SPFN and SPFP alignment error of PASTA and UPP on Hom-
Fam datasets. 262

B31 Alignment error of PASTA and UPP on the fragmentary
1000M2 datasets. 263

B32 Delta FN tree error of UPP and PASTA on the fragmentary
1000M2 datasets. 264

B33 Comparison of initial backbone alignment error and final UPP
alignment error. 266

B34 Alignment error on the RNASim datasets. 268

B35 Tree error on the RNASim datasets. 269

B36 Wall clock alignment time (hrs) on the RNASim datasets. . . 270

B37 Average alignment error of different methods on the hardest
1000-taxon datasets. 271

B38 SPFN and SPFP alignment error of different methods on the
hardest 1000-taxon datasets. 272

B39 Tree error of different methods on the hardest 1000-taxon datasets.273

B40 Average alignment error on the Indelible datasets. 274

B41 SPFN and SPFP alignment error on the Indelible datasets. . . 275

B42 Tree error rates on the Indelible datasets. 276

B43 Average alignment error on the HomFam datasets. 277

B44 Alignment SPFN and SPFP errors on the HomFam datasets. . 278

B45 Average alignment error on the ten large protein datasets with
full alignments. 279

xxi

B46 SPFN and SPFP alignment error rates on the ten large protein
datasets with full alignments. 280

B47 RAxML tree error rates on the ten large protein datasets with
full alignments, under the JTT model. 281

B48 Average alignment error on the FastTree COG datasets. . . . 282

B49 SPFN and SPFP alignment error on the FastTree COG datasets.283

B50 Tree error rates on the FastTree COG datasets. 284

B51 Alignment error rates on the CRW datasets. 285

B52 TC scores on the biological AA datasets 287

B53 Alignment error rates on the fragmentary 1000-taxon datasets. 289

B54 Tree error rates on the fragmentary 1000-taxon datasets. . . . 290

B55 Alignment error rates on the fragmentary RNASim 10K datasets.291

B56 Tree error rates on the fragmentary RNASim 10K datasets. . . 292

xxii

Chapter 1

Introduction

Nothing in biology makes sense
except in the light of evolution

Christian Theodosius
Dobzhansky

The theory of evolution is the cornerstone of modern biology. Under

the principles of evolution, we have gained insights into hominid and human

origins [51, 86], vaccine development [21, 94], and even environmental biore-

mediation [48]. Crucial to understanding many of these topics is the ability

to estimate the evolutionary relationship between different biomolecular se-

quences.

A multiple sequence alignment (MSA) is a hypothesis of the evolu-

tionary relationships between different characters in a set of biomolecular se-

quences. MSAs have been used in many bioinformatics analyses including

phylogeny estimation [28], protein folding prediction [34], and functional an-

notation of proteins [20]. However, MSA estimation is computationally chal-

lenging, as many optimization algorithms for standard objective functions are

NP-hard [8, 91], and most heuristic methods for MSA estimation do not grow

linearly with the number of sequences [62].

1

One approach to address this problem is through the use of profile

Hidden Markov Models (HMM) [15]. Profile HMMs are statistical models for

representing an MSA alignment. They can be used to independently align new

sequences to an existing MSA [15], and thus exhibit linear scaling in running

time with respect to the number of new sequences to insert. However, profile

HMMs are used for more than just MSA estimation; other uses include remote

homology detection [20], sequence database searching [67], and classification

of short environmental reads [24].

The ability of profile HMMs to accurately insert sequences into an ex-

isting MSA degrades, however, on datasets containing evolutionary divergent

sequences [20, 59]. My investigation into this problem lead to the development

of a new statistical model which I call the family of Hidden Markov Models

(fHMM). The fHMM is a statistical model for representing an MSA by using

multiple HMMs. I show how fHMM can be used for accurate alignment of a

sequence to an existing MSA. As sequence alignment is a vital step in many

bioinformatics analyses, the fHMM can be used across a wide range of prob-

lems such as inserting sequences into a tree, taxonomically classifying short

fragments, and aligning ultra-large datasets.

In Chapter 2, I formally introduce key concepts in phylogenetics such

as MSA estimation and tree estimation. I also introduce profile HMMs and

how they can be used for aligning query sequences to an MSA. Furthermore,

I introduce three problems that will be addressed using fHMM: phylogenetic

placement, taxonomic profiling and taxonomic identification, and MSA esti-

2

mation.

In Chapter 3, I describe the fHMM technique and show how fHMM can

be used in sequence alignment. In Chapter 4, I present SEPP [55], a method

for phylogenetic placement using fHMM. I present the results simulation study

comparing SEPP and other placement methods. I show that SEPP results in

more accurate placements than the single HMM approach, and that SEPP can

accurately place sequences that are very evolutionarily divergent.

In Chapter 5, I introduce TIPP, a method for taxonomic identification

and profiling using fHMM and statistic support measures. By incorporating

statistical support within the fHMM alignment technique, the precision in

taxonomically classifying novel sequences is greatly improved. In addition, I

show that fHMM results in better estimation of the species abundance profile

of simulated microbial communities.

In Chapter 6, I present UPP, a “de novo” MSA estimation technique

using fHMM. I show how to use fHMM to align ultra-large datasets (large in

the number of sequences) without the need of an initial backbone alignment

and tree. I show how UPP can align datasets containing both short and full-

length sequences. I show that this new technique can accurately align a dataset

of 1,000,000 sequences in less than 2 days without the need of a supercomputer.

Finally, in Chapter 7, I summarize the contributions of this dissertation and

discuss future work.

3

Chapter 2

Background

In Section 2.1, I give a brief introduction to phylogenies and align-

ments and define concepts that will be used throughout my dissertation. In

Section 2.2, I describe profile Hidden Markov Models (HMM) and their use in

alignment estimation. Finally, in Section 2.3, I describe applications of profile

HMMs in the realm of phylogenetic placement, metagenomic analyses, and

ultra-large alignment estimation.

2.1 Phylogenetics

Phylogenetics is the study of the evolutionary relationships between

different organisms. A typical molecular phylogenetic study begins by collect-

ing biomolecular sequences (DNA, RNA, or amino acid sequences) from the

species of interest. The evolutionary relationships between the different char-

acters in the sequence are inferred through an alignment. From the alignment,

a tree representing the evolutionary history between the different species is es-

timated. The steps of estimating an alignment and estimating a tree are core

concepts used throughout my dissertation. I now provide more details on the

alignment and the tree, and on how one might estimate an alignment and a

4

tree.

Tree: graphical model of evolution A phylogeny is a graphical model

that represents the evolutionary relationships between different species. One

of the most common representations is a rooted tree - a directed acyclic graph.

Each leaf in the tree represents a species, and each internal node in the tree

represents a speciation event. Speciation events occurs when one species give

rise to new lineages of species. The root of the tree represents the most recent

common ancestor of all the species. Throughout my dissertation, I will refer to

the leaves of the tree as species, taxa, or sequences, interchangeably. Similarly,

I refer to phylogenies as trees, though a phylogeny does not necessarily have

to be tree-like, and more complicated representations such as phylogenetic

networks do exist.

Figure 2.1(a) shows an example of a rooted phylogenetic tree. The

relationship between the different species can be inferred from the tree. For

example, species A and B are more closely related than species A and C

because A and B share a more recent common ancestor (red node) than A

and C (blue node). The given example is a rooted rooted, i.e., the direction of

evolution is known. The root of the tree represents the most recent common

ancestor (MRCA) of all the species (black node). In general, estimating the

root of the tree is very difficult as most common models used in phylogeny

estimation assume time-reversibility, and under these models, it is not possible

to determine which node is the ancestor and which node is the descendant.

5

Thus, when I discuss phylogenies, I refer to unrooted trees.

Figure 2.1(b) shows an unrooted version of Figure 2.1(a). An unrooted

tree is a binary tree if all inner nodes have a degree of 3. If an inner node has

degree greater than 3, it is called a polytomy. Polytomies represent evolution-

ary relationships that cannot be resolved. Figure 2.1(c) shows an example of

a tree containing a polytomy.

Multiple Sequence Alignment. Biomolecular sequences are represented

as character strings over an n-letter alphabet. The most common alphabets are

the 4-letter alphabets for nucleotides ({A, T, C,G} for DNA and {A,U,C,G}

for RNA) and the 20-letter alphabet for amino acid sequences. Because DNA

is inherited from parent to child, biomolecular sequences are often used to

reconstruct the evolutionary history of present day organisms.

A fundamental step in understanding the relationship between the dif-

ferent sequences is to estimate an alignment on the sequences. A multiple

sequence alignment (MSA) is a data structure that represents the evolution-

ary relationships between the individual characters in a set of sequences. An

MSA on a set of sequences is defined by a matrix with a row for each se-

quence, and columns representing a site of common evolutionary origin. The

sequences in the MSA are interspersed with gap characters (represented by

“-”). Gap characters represent historical insertion and deletion events (called

“indel” events). If a pair of characters descended from the same ancestral

character, then they are called homologous and will be in the same column in

6

A B G HE FC D

(a) A rooted phylogenetic tree.

A E
B F
C G
D H

(b) An unrooted phylogenetic tree.

A
B
C G
D

H

F

E

(c) A polytomy.

Figure 2.1: Example of a) a rooted phylogenetic tree, b) the unrooted version
of the same tree, and c) an unrooted tree with a polytomy. In the rooted tree,
the red node is the MRCA of species A and B, and the blue node is the MRCA
of species A and C. The black node is the MRCA of all the species in the tree.
In b), the red edge represents the bipartition {CD|ABEFGH}. Finally, in c)
the red node represents a polytomy.

7

the MSA. Homology is a transitive property, so if a nucleotide A is homologous

to nucleotide B and C, then nucleotides B and C are also homologous to each

other. Figure 2.1 shows an example of an MSA. The goal of an MSA is to

infer sites of shared homologies between the different sequences.

S1 A----ATC--TG---A
S2 A----GTT--TG---A
S3 AC--C-TT-A-AA-GA
S4 AC-AC-TCCA-GATGA
..
Sn A--AC-GC-A-GA--A

S1 AATCTGA
S2 AGTTTGA
S3 ACCTTAAAGA
S4 ACACTCCAGATGA
..
Sn AACGCAGAA

Unaligned sequences Multiple Sequence Alignment

Figure 2.2: Example of an MSA estimated on the sequence set {S1, ..Sn}.
Originally the sequences are unaligned. The sequences are aligned by inserting
gaps into the sequences such that homologous characters line up in the same
site.

Simulation study. There are many different methods for estimating an

MSA and for estimating a phylogenetic tree. As it is impossible to know the

true history for a set of biological sequences, simulation studies are performed

to test the performance of different alignment and phylogeny estimation tech-

niques.

A typical molecular simulation study begins by generating a rooted

model tree that represents the true evolutionary history of the set of sequences.

The model tree can be generated by using a phylogenetic tree from a previous

study, or it can be generated by simulating a tree under a stochastic model of

speciation events (see [2] for a review of tree models). Once a model tree has

8

been generated, a stochastic model of sequence evolution is selected, as well

as a model of indel events. These models include parameters for the rate of

substitutions, insertion, and deletion events, as well as a model for the indel

length distribution. Once all the parameters have been selected, a random

sequence is generated at the root, and it is simulated down the model tree

with substitution and indel events (see Fig. 2.3). The true sequence is known

at each internal node, as well as the history of the mutation patterns. Thus,

at the very end of the simulation, the true MSA and true phylogeny of the

sequences are known and can be used to compare the accuracy of MSA and

phylogeny estimation methods.

 S1 S2 S3 S4
A-CAG ATCAC -TCA -CCG

ATCG

ATCAG

A inserted

G->C
T deleted

-TCG

A deleted

G->A T->C

True alignment
 S1 A-CAG
 S2 ATCAC
 S3 -TC-A
 S4 -CC-G

Figure 2.3: Example of sequence evolution down a model tree. The original
sequence at the root is “ATCG”. Through a series of insertions (colored blue),
deletions (colored red), and substitutions (colored green), the root sequence
evolves to 4 new sequences. The goal of a molecular phylogenetic study is to
infer from the unaligned sequences the true alignment and phylogeny.

9

MSA Estimation Computing an MSA can be formulated as an optimiza-

tion problem of minimizing the differences between the sequences across the

sites in the alignment. One example is given a set of sequences, we find the

MSA that minimizes the sum-of-pairs (SP) error. The SP error is computed

by summing the total number of mismatches (pairs of aligned “non-gap” char-

acters that do not match) and indels (any “non-gap” characters aligned to a

“gap” character) over all pairs of sequences in the MSA. Figure 2.4(a) shows

the computation of the SP error for a pair of sequences. Figure 2.4(b) shows

the SP error for two MSAs estimated on the same set of sequences. In this

example, the bottom MSA has a lower SP error and would be considered more

accurate under the SP error optimization criterion.

Computing an MSA that optimizes SP score (and many other similar

metrics) is NP-complete [8, 91] and thus, finding an exact solution is compu-

tationally intractable for large datasets.

Alternative heuristics have been developed for MSA estimation (see [62,

89] for survey and comparison of current methods), including progressive meth-

ods which build an MSA by progressively aligning pairs of sequences and then

merging the alignments using an estimated tree, and iterative methods which

combine progressive methods and iteration so that the estimated MSA from

the progress step is reused to estimate a better MSA. However, these methods

do not scale linearly with the number of sequences to be aligned [62] and may

have poor performance on large datasets or evolutionary divergent datasets.

Another class of MSA estimation methods includes methods that use

10

S1 A--ATC-TG--A
S3 ACC-TTA-AAGA
Σ 011101111110=9

(a) Computing SP error for 2 sequences.

S1 A--ATC-TG--A
S2 A--GTT-TG--A
S3 ACC-TTA-AAGA
SP score = 2+8+9 = 19

S1 A-ATC-TG--A
S2 A-GTT-TG--A
S3 ACCTTA-AAGA
SP score = 2+7+8 = 17

2
8

9

2
7

8

(b) Computing SP error for an MSA.

Figure 2.4: Example of a) computing the SP error for a pair of sequences, and
b) the SP scores for two different MSAs of the same set of sequences. In a),
mismatches are highlighted red, and indels are highlighted blue. The SP error
is the sum of the total number of mismatches and indels. In b) the SP scores
for each pair of sequences are shown. The total SP error for an MSA is the
sum of all the pairwise SP scores. In this example, the lower MSA has lower
SP error and is more desirable under the SP error optimization criterion.

11

profile Hidden Markov Models (HMM). A profile HMM is a statistical repre-

sentation of an MSA (see Section 2.2 for a more in-depth overview). HMM

methods take an existing MSA and compute a profile HMM from that MSA.

Sequences are then independently aligned to the profile. Thus, profile HMM

methods scale linearly with the number of sequences to align to an existing

MSA. However, the accuracy of HMM methods is impacted by the rate of

evolution. On datasets containing evolutionarily divergent sequences , the

accuracy for detecting homologies degrades [20, 59].

Quantifying error in alignments. If a true alignment is known via a

simulation study, or a high quality curated alignment has been estimated, one

can compare the error of an estimated alignment by examining the percentage

of shared and missing homologies in the estimated alignment with respect to

the reference alignment.

Three common metrics for quantifying the error of an estimated align-

ment are:

• sum-of-pairs false positive (SPFP) rate - the total number of homologies

in the estimated alignment that are not found in the true alignment,

normalized by the total homologies in the estimated alignment,

• sum-of-pairs false negative (SPFN) rate - the total number of homologies

in the true alignment that are not found in the estimated alignment,

normalized by the total homologies in the true alignment, and

12

• total column (TC) error rate - the number of columns in the true align-

ment that are not exactly recovered in the estimated alignment, normal-

ized by the total columns in the true alignment.

In my dissertation, I report SPFN and SPFP rates, as well as the

arithmetic mean of the two rates. In addition, I also report the TC error rate

on protein datasets. This metric is of interest when the goal is to examine how

well alignment methods recover conserved domains in the protein alignment.

Phylogeny estimation Many different phylogenetic methods exist for es-

timating a phylogenetic tree from an MSA such as distance-based meth-

ods, parsimony-based methods, Bayesian methods, and Maximum Likelihood

methods (ML) (see [28, 29] for overview of current methods). ML meth-

ods give better accuracy than distance-based and parsimony-based meth-

ods [42, 92], and unlike Bayesian methods, can be accurately run on large

datasets [47, 65, 78]. Thus I focus on ML-based methods for tree estimation

for my dissertation.

Quantifying error in trees. There are many different metrics for quantify-

ing tree error. My dissertation focuses on the topological differences between

the estimated tree and true tree, measured in edges. Each edge in the tree

defines a bipartition. For example, in Figure 2.1(b), the red edge represents

the bipartition {CD|ABEFGH} (note that {CD|ABEFGH} is identical to

{ABEFGH|CD}). Removal of this edge separates CD from ABEFGH.

13

Trees on the same leaf set can be compared by examining the bipartitions

that they share in common and the bipartitions that are unique to each tree.

Three common metrics for quantifying the topological error of an esti-

mated tree are:

• Robinson–Foulds (RF) rate [72] - the total number of bipartitions that

are unique to the reference tree and estimated tree, normalized by the

total bipartitions in both trees,

• false positive (FP) rate - the total number of bipartitions in the estimated

tree that are not in found in the reference tree, normalized by the total

bipartitions in the estimated tree, and

• false negative (FN) rate - the total number of bipartitions in the reference

tree that are not in found in the estimated tree, normalized by the total

bipartitions in the estimated tree. The FN rate is also known as the

missing branch rate.

For binary trees, FN = FP = RF . My dissertation primarily reports

the missing branch rate as the error metric for comparing trees. For simu-

lated datasets, both the model trees and estimated trees are binary trees, thus

reporting missing branch rate is identical to reporting the FP and RF rates.

For biological datasets, the reference trees are ML trees estimated on curated

alignments, with only highly support edges retained. Thus, the reference trees

on biological datasets are non-binary, and the FP and FN rates will differ. It

14

is extremely easy for a method to estimate a tree with low FP rate by random

chance; the method could estimate a unresolved tree. It is much more difficult

for a method to estimate a tree with low FN rate by random chance. Thus, I

focus on the FN rate throughout my dissertation.

Figure 2.5 shows an example of a true tree and an estimated tree.

Each tree contains 5 bipartitions. The bipartitions {AB|CDEFGH} and

{CD|ABEFGH} are found in the true tree, but not present in the esti-

mated tree. Thus, the missing branch rate is 20%. Similarly, the bipartitions

{AC|BDEFGH} and {BD|ACEFGH} are found in the estimated tree, but

are not present in the true tree, yielding an FP rate of 20%.

A E
B F
C G
D H
 True tree

A E
C F
B G
D H
 Estimated Tree

Figure 2.5: An example of the true tree and the estimated tree. The estimated
tree has an FN rate of 2

5
(two bipartitions colored red in the true tree are not

found in the estimated tree; five bipartitions in true tree) and has an FP rate
of 2

5
(two bipartitions colored blue in the estimated tree are not found in the

true tree; five bipartitions in estimated tree).

15

2.2 Profile Hidden Markov Models

A profile Hidden Markov Model (HMM) is a probabilistic model for

representing an MSA. A profile HMM can be represented by a finite state

machine (FSM, see Fig. 2.6). By transitioning through the FSM, a sequence

can be generated from the HMM. Similarly for a given sequence, an alignment

of the sequence to the HMM can be computed by finding the most probable

path through the model for generating the sequence. I now describe the FSM

in more detail.

The FSM for a profile HMM consists of a start state S and an end

state E, a set of match states M = {M1, ..,Mn}, a set of insertion states

I = {I0, .., In}, a set of deletion states D = {D1, .., Dn}, and directed transition

edges E = {(Mi,Mi+1), (Di,Mi+1), (Ii,Mi+1), (Ii, Ii)}} for i ε{1, .., n}. Each

transition edge has an associated probability, and the sum of all transition

edges leaving a state must sum up to 1. Each match and insertion state has

an associated emission probability vector which is a probability that a character

will exist at that state.

The match states represent contiguous columns (called “consensus

columns”) in the MSA. In the simplest case, the match state Mi models the

column ci in the alignment. Insertion states represent insertion events in the

sequence. Similarly, deletion states represent deletion events in a sequence. If

a sequence contains no indels (i.e., it aligns perfectly to the MSA without the

need of inserting any gaps), then the path through the model would proceed

from match state to match state. However, if the sequence contains an in-

16

sertion event at the second character, then the path through the FSM would

go from match state M2 to insertion state I2, and would remain at insertion

state I2 until all the estimated insertion characters have been processed, at

which it goes to the next match state. Finally, if the sequence seems to be

missing a character relative to the MSA, then a deletion event has occurred.

For example, if the first and second characters in the sequence are AA, but

the first 3 columns in the MSA contain with ATA, then this suggests that the

sequence had a deletion event in the second column. In this case, the path

through the FSM would go from M1 to D2 to M3.

The process of aligning a sequence to a profile HMM is to find the

most probable path through the FSM for generating the sequence. This can

be solved via the Viterbi dynamic programming algorithm [90] in O(L ∗ |M |2)

time complexity, where L is the length of the sequence and |M | is the total

number of match states. Thus, alignment using a profile HMM grows linearly

with the number of sequences to align.

2.3 Applications of Profile HMMs

2.3.1 Phylogenetic Placement

The first application of profile HMMs is in the problem of phyloge-

netic placement. As I briefly mentioned in Chapter 1, phylogenetic placement

is a method for inserting query sequences into an existing phylogenetic tree.

Phylogenetic placement is an alternative approach to phylogeny estimation for

inferring the phylogenetic relationship between a set of query sequences and a

17

S1 A----ATC--TG---A
S2 A----GTT--TG---A
S3 AC--C-TT-A-AA-GA
S4 AC-AC-TCCA-GATGA
S5 TC-TCGT--T-CTTTA
...
Sn A-TTC-GC-A-GA--A

B E

D1 D2 D... Dn

M1 M2 M... Mn

 I1 I2 I... I0 In

Figure 2.6: Profile HMM representation of an MSA using a finite state ma-
chine. Not shown are the emission probability vectors on the match states and
insertion states.

set of full-length sequences in the existing tree. Rather than estimating a new

phylogenetic tree on the entire set of full-length and query sequences, phylo-

genetic placement infers the relationships between the query sequence and the

full-length sequences one at a time, making the computational complexity of

placement grow linearly with the number of query sequences. In addition, if

new query sequences are added, the placement algorithm needs to be run on

just the new sequences. Phylogeny estimation, on the other hand, would have

to be re-run on the entire set of sequences every time a new sequence is added.

Phylogenetic placement is extremely advantageous in the analyses of

short DNA fragments taken from an environmental sample where there can be

potentially millions of fragmentary reads. By placing a short read from an un-

known species into a taxonomic tree, one can infer the taxonomic classification

18

of the read based on its placement within the taxonomic tree.

I now formally describe the phylogenetic placement problem as follows:

Phylogenetic Placement Problem.

• Input: the alignment A and tree T (called the backbone tree and back-

bone alignment) estimated on a set S of full-length sequences and query

sequence s.

• Output: tree T ′ containing s obtained by adding s as a leaf to T .

Several methods have been developed for this problem using the fol-

lowing two steps:

• Step 1: align s to the backbone alignment A to produce the alignment

A′, called the extended alignment

• Step 2: insert s into T using A′, optimizing some criterion

Methods for the first step include HMMALIGN [15] (a part of the HMMER

software suite), PaPaRa [7], Mafft-profile [35], and PAGAN [50]. Methods for

the second step include EPA (run within RAxML) [6] and pplacer [52], both of

which seek to optimize maximum likelihood (pplacer also provides a Bayesian

approach), and MLTreeMap [80], which can optimize either ML or Maximum

Parsimony (MP). In [80], Stark and Berger found that optimizing ML resulted

in overall better placements, albeit with an increase in running time.

19

Phylogenetic placement methods can be described by the methods used

for the alignment and placement steps. Three such methods include Pa-

PaRa+EPA [6], HMMALIGN+EPA [7], and HMMALIGN+pplacer [52]. As

EPA and pplacer both optimize likelihood, they were found to have almost

identical placement accuracy, but have somewhat different memory usage and

algorithmic features [52].

The two techniques for computing the extended alignment, PaPaRa

and HMMALIGN, are very different. HMMALIGN requires only a backbone

alignment to align the query sequences. PaPaRa, on the other hand, is a phy-

logeny aware method and requires both a backbone alignment and backbone

tree to align the query sequences. HMMALIGN computes a profile HMM to

represent the MSA, and then aligns the query sequences to the HMM. In con-

trast, PaPaRa uses RAxML to estimate ancestral state vectors at all candidate

insertion points on every edge of the tree, aligns the query sequence to every

ancestral state vector, selects the alignment that had the best score, and uses

it to extend alignment A to include s. Thus, PaPaRa is more computationally

expensive as it depends on both the number of query sequences to align and

on the size of the backbone tree.

In [7], Berger and Stamatakis reported that PaPaRa+EPA had better

placement accuracy on large backbone trees or on short query sequences, and

for small backbone trees or on longer query sequences, HMMALIGN+EPA

had better placement accuracy. However, their study examined only a limited

number of model conditions (7 datasets and at most 802 sequences in the

20

backbone set) and improvements in topological accuracy for PaPaRa+EPA

over HMMALIGN+EPA were relatively small, with PaPaRa+EPA placing

query sequences on average about one edge closer to the correct location, out of

799 edges. Thus under these datasets, PaPaRa+EPA and HMMALIGN+EPA

had very similar placement accuracy, although substantially different running

time (PaPaRa anywhere from 6 to 43 times slower).

Comparing placement accuracy. The metric used in my dissertation for

measuring the accuracy of placement is the change in missing branch rate

of the backbone tree before and after insertion of the query sequence (called

∆FN). More formally, if FN is the number of missing branches in the backbone

tree T , and FN ′ is the number of missing branches in T ′, then ∆FN= FN ′ −

FN . Note that unlike the FN rate used in reporting tree error for phylogeny

estimation, ∆FN is not normalized and thus is the actual change in the number

of missing branches. Figure 2.7 shows an example of this computation. Let

the initial backbone tree have 0 FN . After the insertion of the query sequence

s into T , T ′ is missing bipartitions {As|BCDEFGH} and {ABs|CDEFGH}

(bipartitions colored red in Fig. 2.7). The resulting ∆FN is 2.

2.3.2 Metagenomic Analyses

The second application of profile HMMs is in the domain of taxonomic

identification and profiling. Traditionally, unknown bacterial species of interest

from an environmental sample was taxonomically identified by first culturing

21

A E
B F
C G
D H
 True
 placement

A E
B F
C G
D H
 Estimated
 placement

s
s

A E
B F
C G
D H
 Backbone
 tree

Figure 2.7: An example computing the ∆FN error of query sequence placement.
The backbone tree originally has 0 missing branches. After insertion of the
query sequence s, the estimated tree T ′ is missing 2 bipartitions that are found
in the true tree (missing edges colored red). Thus, the ∆FN is 2.

22

a clonal colony of the unknown species in a laboratory environment, and then

sequencing the genetic material directly from the colony. As the genetic ma-

terial came from a single species, and the Sanger sequencing technology used

resulted in read lengths of 800bps with roughly 20,000 to 200,000 reads per

run [95], assembling the reads into longer contigs was computationally feasible

on a desktop machine. From the contigs, the bacteria genome could be assem-

bled and the species could be taxonomically identified. This pipeline allowed a

window in understanding the microbial diversity in an environmental sample.

However, an estimated 99% of all microbial life cannot be cultured

in a lab [4], and thus, the majority of bacterial life cannot be studied using

this pipeline. Metagenomics is the study of analyzing genetic material taken

directly from an environmental sample, and thus, bypasses the need for cul-

turing microbes in the laboratory environment. Metagenomic analyses allows

scientists to not only identify what species are present in an environmental

sample, but to also estimate the relative abundances of the species present in

the sample.

Metagenomic analyses are not without its difficulties. Unlike the tradi-

tional approach to taxonomic identification where reads are generated from a

clonal colony, the reads generated from a metagenomic sample do not all come

from a single species. In addition, the sequencing technology used typically

generates much shorter reads than Sanger reads (80 to 100bps for Illumina

reads), and there can be millions of sequences. Thus, a fundamental challenge

in a metagenomic analyses is classifying the potentially millions of short reads

23

with taxonomic labels.

Methods for taxonomic identification depend on using previously se-

quenced genomes or genes as a reference database and extrapolating the knowl-

edge in the reference dataset to classify the unknown reads. Simple similarity-

based approaches (e.g., picking the best database hit as the best ‘guess’ at

the taxonomic label) have been shown to be insufficiently accurate when the

reference database does not contain species closely related to the query se-

quence [40], leading to the development of new and more sophisticated meth-

ods.

Classification methods fall into three types of categories: sequence

homology methods, sequence composition-based methods, and phylogenetic

methods (see [5] for survey of classification methods). Sequence homology

methods tries to identify the reads by finding the closest related sequences in

the reference database. Sequence composition-based methods use the DNA

composition of the reads (typically using contiguous words of k-length known

as k-mers) to identify the reads. Finally, phylogenetic methods attempt to

best fit the query sequence into a phylogeny. An example is using phyloge-

netic placement to insert the metagenomic read into a taxonomic tree.

Sequence homology methods and sequence composition-based meth-

ods are typically designed to classify fragments from any part of the genome.

Phylogenetic methods, however, are typically marker-based and have been de-

signed to only classify reads that have been binned to a specific set of genes

known as marker genes. Marker-based methods have better sensitivity in clas-

24

sifying reads binned to the markers, however, can only classify a subset of the

sequences.

Abundance profiling, also called “phylogenetic profiling”, seeks to esti-

mate the relative abundance of the species (or genera, or families, etc.) within

a sequence dataset. While many methods produce these estimates by charac-

terizing most (or all) of the sequences in the dataset, marker-based methods

produce these estimates by characterizing only those sequences that match the

marker genes they rely on. Since the marker genes are supposed to be sin-

gle copy and universal, these estimations do not need to be corrected for the

copy number in each genome, or for missing data. However, the restriction to

sequences that match the marker genes has the potential to reduce accuracy

since it means only a subset of the sequences are characterized.

Quantifying taxonomic identification error For the simulated taxo-

nomic classification experiments, the true lineage of each fragment is known,

so the metric for computing accuracy is given by the percentage of fragments

classified correctly, incorrectly, and left unclassified at each taxonomic rank.

Thus, a read may be unclassified at the species level, classified incorrectly at

the genus level, and classified correctly at the remaining taxonomic levels.

Quantifying taxonomic profiling error For the simulated abundance

profiling experiments, the true abundance of the metagenomes is known, so

I compute the root-mean-squared error (RMSE) of the estimated taxonomic

25

profile.

Let Cl be the set of clades found in the true profile and all the estimated

profiles for the taxonomic level l, Rx be the abundance of clade x for the

reference profile, and Ex be the abundance of clade x for the estimated profile.

Then RMSEl (root-mean-squared-error for a taxonomic level l) is:

RMSEl =

√√√√∑
x∈Cl

(Rx − Ex)2

|Cl|
(2.1)

2.3.3 Multiple Sequence Alignment Estimation

The third application of profile HMMs is in the domain of MSA es-

timation. I had previously described how MSAs can be used for phylogeny

estimation, however, their utility also extends to many other bioinformatics

pipelines, including orthology inference [1], biomolecular sequence structure

and function prediction [18], and the inference and quantification of selection

[17].

Because of the impact of alignment estimation error on these infer-

ences [23, 33, 96], many methods have been developed to estimate alignments

[13, 73] and estimate trees from the alignments [19]. Multiple sequence align-

ment of large datasets, containing several thousand to many tens of thousands

of sequences, is sometimes necessary; examples include gene family tree es-

timation for multi-copy genes (e.g., the p450 or 16S genes), viral evolution,

remote homology detection, and the inference of deep evolution [100]; how-

26

ever, current MSA methods have poor accuracy on large datasets, especially

when they evolved under high rates of evolution [45]. These limitations can

discourage biologists from utilizing the full range of biological data, and affect

downstream inferences.

Some of these projects are attempting to assemble ultra-large trees,

with many tens of thousands of sequences. For example, iPTOL [76] (the

iPLANT Tree of Life project) plans to construct a tree on 500,000 plant species,

and the Thousand Transcriptome Project constructing gene family trees with

more than 100,000 sequences for approximately 1000 species. Large-scale phy-

logenomic projects like these are enabled by next generation sequencing (NGS)

technologies, which have made the generation of sequence data much more af-

fordable [39]. Upcoming sequencing technologies [41, 61] will enable even larger

datasets containing sequences from throughout the genomes of many organ-

isms. Ambitious projects, such as the Genome 10K Project [27], that plan

to estimate species trees with thousands to tens of thousands of organisms,

will be able to take advantage of these new data, provided that computational

methods are available and able to provide sufficient accuracy on ultra-large

datasets.

Due to NGS sequencing technology, many biological datasets contain

substantial numbers of fragmentary sequences (Fig. 2.8 and figs. B2 and B3

in the Appendix B), resulting in part from incomplete assembly or insuffi-

cient transcript sampling. Although some methods (e.g., HMMER [15] and

MAFFT-Profile [35]) can add individual sequences (even short fragments) into

27

existing alignments, MSA methods are not designed to analyze datasets con-

taining a mixture of fragmentary and full-length sequences, and have not been

tested under these conditions. Thus, little is known about the accuracy of

alignments on datasets of any size that contain fragmentary sequences, nor

about the accuracy of trees estimated on such alignments.

16S.3 16S.B.ALL 16S.T

0

1000

2000

0

2500

5000

7500

10000

0

1000

2000

3000

1000 2000 3000 4000 500 1000 1500 2000 1000 2000 3000 4000
Sequence Length

C
ou

nt
s

Figure 2.8: Histogram of sequence lengths for the 16S Gutell CRW
datasets. The histogram of sequence lengths for the three CRW datasets
demonstrates substantial sequence length heterogeneity, especially for 16S.T.
The average length of the 16S sequence is approximately 1500.

Efficient maximum likelihood (ML) gene tree estimation for datasets

containing thousands [77] to tens of thousands [65] of sequences is now fea-

sible, but the accuracy of ML trees depends on having accurate multiple se-

quence alignments [60], and estimating highly accurate large-scale alignments

is extremely challenging; indeed, some datasets with only 1,000 sequences can

be difficult to align well [46, 47]. This is particularly true for non-coding data,

which can evolve under higher rates of evolution than coding data, making

alignment estimation difficult [66]. However, non-coding data can be essen-

tial for species tree estimations of rapid radiations; for example, the avian

28

phylogenomics project observed that intron alignments provided substantially

higher levels of phylogenetic signal than exon alignments for estimating the

avian phylogeny [32, 54].

Thus, large-scale multiple sequence alignment estimation is a basic step

in many problems, including gene tree estimation and protein structure and

function prediction, but existing methods have not been shown to provide

sufficient accuracy on datasets that are large, that evolve under high rates of

evolution, or that contain fragmentary data.

29

Chapter 3

Family of Hidden Markov Models

In this chapter I present a new statistical model for representing an

MSA called the Family of Hidden Markov Models (fHMM). This model was

originally developed within SEPP [55] and was joint work between myself,

Siavash Mirarab, and Tandy Warnow. In Section 3.1, I describe the fHMM and

how to build the fHMM. In Section 3.2, I describe an algorithm for sequence

alignment using the fHMM. Finally, in Section 3.3, I give the commands used

to build fHMM and align sequences to the fHMM.

3.1 Family of HMM

The fHMM is a statistical model for representing an MSA using a col-

lection of HMMs. The model was originally developed in SEPP [55] for the

problem of phylogenetic placement. During our SEPP study, we realized that

the utility of fHMM extends beyond phylogenetic placement. More specifically,

the fHMM can be used as a replacement of an HMM for sequence alignment.

Building an fHMM. The basic outline for building an fHMM is to divide

the input MSA into subsets of closely related sequences. HMMs are computed

30

on the individual subsets, and these HMMs make up the fHMM. I now provide

more details on this process.

The necessary inputs for building the fHMM are an MSA (called the

“backbone alignment”), a tree on the sequences in the MSA (called the “back-

bone tree”), and a maximum alignment decomposition size parameter ma. The

first step is to use the backbone tree to decompose the alignment into subsets

of size at most ma. We do this through a recursive decomposition technique

called the “centroid edge decomposition” [47].

From the backbone tree, we select the centroid edge e (one whose re-

moval separates the leaf set into approximately two equally sized subsets). We

remove e from the backbone tree to produce two subtrees. For each subtree

with more than ma leaves, we recursively repeat this decomposition until all

the subtrees produced by this decomposition have at most ma leaves.

Figure 3.1 shows this process explicitly. The backbone tree in the figure

has 11 taxa, and ma is set to 3. In step 1, the centroid edge (colored red) is

removed. This splits the tree into subtrees contains 5 taxa and 6 taxa. In

step 2, each of these subtrees are further subdivided into trees of sizes 2, 2,

3, and 4. In step 3, one final centroid decomposition divides the subtree of

size 4 into two subtrees of size 2 and 2. Step 4 shows the final result of this

decomposition; the original backbone tree has now been decomposed into 5

subtrees, all with at most 3 leaves.

For a given subtree, we compute the alignment induced on the sequences

31

1) 2)

3) 4)

Figure 3.1: Example of centroid decomposition. The centroid edge (colored
red) partitions the tree into roughly two equally sized subtrees. This edge is
removed, and two subtrees are created. This process is recursively repeated
on the subtrees until all subtrees contain at most as many sequences as the
maximum decomposition size ma. In this example, ma = 3.

present in the subtree’s leaf set. This is done by selecting the alignment of

the sequences from the backbone alignment. Note that the induced alignment

may contain some sites that are fully gapped; these sites are removed from

the subalignment. The HMM is then computed on the subalignment using

HMMBUILD [14] (see Fig. 3.2).

3.2 fHMM Alignment Algorithm

For a given query sequence q, it is scored against each of the HMMs

using HMMSEARCH [14], which reports a HMMER “bit score”, a measure

of the quality of the match between the query sequence q and the HMM

(see Fig. 3.3). The HMM that yields the best bit score is selected, and an

extended subalignment is produced by inserting q into the subalignment using

32

S1

S2

S3

S1 A----ATC--TG---A
S2 A----GTT--TG---A
S3 AC--C-TT-A-AA-GA
S4 AC-AC-TCCA-GATGA
S5 TC-TCGT--T-CTTTA
...
Sn A-TTC-GC-A-GA--A

S1 A---ATC-TG--A
S2 A---GTT-TG--A
S3 AC-C-TTA-AAGA

B E

D1 D2 D... Dn

M1 M2 M... Mn

 I1 I2 I... I0 In

Figure 3.2: Example of building an HMM. Each of the final subtrees produced
by the decomposition step defines a subalignment. For a given subtree, an
induced alignment is created by taking the alignment of the sequences that
are in the leaf set of the tree. Next, an HMM is computed on the induced
alignment using HMMBUILD.

HMMALIGN.

Finally, we extend q’s alignment to the entire backbone alignment (see

Fig. 3.4). This step is performed through transitivity. We can map the sites

in the subalignment back to the original backbone alignment, and thus, any

sequence that is aligned to the subalignment can easily be aligned to the back-

bone alignment by using this mapping. Note that insertion columns generated

by the alignment of the query sequence result in insertion columns being added

to the backbone alignment.

In the special case where a query sequence resulted in no scores

against any of the HMMs (i.e., HMMSEARCH reports the sequence as non-

33

HMM1
HMM2

HMM3 HMM4 HMM5

ATTCTG

10 14 8
9

6

Figure 3.3: Example of aligning a query sequence using the families of HMMs.
The query sequence is scored against a collection of HMMs. The HMM that
yields the best bit score, HMM-2 in this case, is selected and the query sequence
is aligned to that HMM.

34

Q1 A-t--TC-TG---
S1 A---ATC-TG--A
S2 A---GTT-TG--A
S3 AC-C-TTA-AAGA

Q1 ATTCTG
S1 A--ATC-TG--A
S2 A--GTT-TG--A
S3 ACC-TTA-AAGA

Q1 A-t---TC--TG----
S1 A----ATC--TG---A
S2 A----GTT--TG---A
S3 AC--C-TT-A-AA-GA
S4 AC-AC-TCCA-GATGA
..

Insert Q1 into
subalignment with
best scoring
HMM

Extend alignment
to backbone
alignment using
transitivity

Figure 3.4: Example of extending the alignment of query sequence to the
full backbone alignment through transitivity. We know how the sites of the
subalignment map back to the original backbone alignment, so we use this
information to map the alignment of the query sequence to the alignment on
the entire backbone alignment. Note that insertion columns (shown in red)
are also inserted into the backbone alignment.

35

homologous to all HMMs), the query sequence is omitted from the final align-

ment.

Over the next three chapters, I show how to apply the fHMM to phy-

logenetic placement, taxonomic profiling and identification, and ultra-large

alignment estimation.

3.3 HMMER Commands

HMMER 3.0 [15] is used for building the fHMM, for searching for the

best HMM for the alignment of a query sequence, and for inserting the query

sequence into the alignment. I provide the HMMER commands used below.

• HMMBUILD:

hmmbuild --symfrac 0.0 --informat afa --<molecule type>

<output profile> <backbone alignment>

• HMMSEARCH:

hmmsearch --noali -o <output file> --cpu 1 -E 99999999 --max

<input profile> <query file>

• HMMALIGN:

hmmalign --allcol --dna <output profile> <query file>

<output alignment>

36

3.4 Comparison to existing algorithms and methods

The fHMM model has some similarities to two methods used in machine

learning: ensemble learning (EL) [12] and mixture of experts (ME) [31]. EL

obtains better classification accuracy by taking a consensus of multiple classifi-

cation algorithms (see [98] for review of ensemble methods in bioinformatics).

While both fHMM and EL methods use multiple classifiers or models to obtain

better results, fHMM is only superficially similar to EL methods. First, EL

methods are used for classification problems, whereas the fHMM is a general

approach for representing an MSA. Thus, the utility of fHMM extends beyond

classification. Second, EL methods work by obtaining a consensus of all the

classification results. This is a very different approach compared to the fHMM

algorithm for sequence alignment, as the goal is to find the HMM that best

generates the query sequence, and use that HMM for sequence alignment.

Similar to EL methods, ME methods improve predictions (both clas-

sification predictions and regression analyses) by using multiple learners (see

[99] for review of ME methods). Unlike EL methods, each learner is considered

an “expert” in only a local portion of the input space, and thus, the amount

to weight given to the output of a learner is dependent on the location of the

input in the input space. A gating function is used to determine the domain of

each learner in the input space. Thus, similar to the fHMM model, ME meth-

ods try to find the best learner or set of learners used to produce the output.

Unlike the fHMM model, ME requires supervised training in learning domain

for each learner. The fHMM, on the other hand, requires no training to select

37

which expert to use as it selects the HMM based upon a simple algorithm.

The idea of using multiple HMMs to represent an alignment is not

novel. SCI-PHY [10] uses a family of HMMs (called subfamily of HMMs) for

functional annotation. The first step in the SCI-PHY pipeline is the identifica-

tion of the protein subfamilies. The input is a set of unaligned sequences, and

the output is a hierarchical forest of HMMs. The process begins by treating

each sequence as its own cluster. Next, SCI-PHY joins the two closest related

clusters and aligns the clusters, and then computes an HMM on the align-

ment. The alignment step is performed using pairwise sequence alignment if it

is aligning two sequences, and by using the HMM computed on the clusters if

it is aligning an MSA to an HMM. SCI-PHY repeats this process until there is

one cluster left, or the cost of joining two divergent clusters is too high. Thus,

this results in a hierarchical forest of HMMs, each tree representing a protein

subfamily.

Once the protein subfamilies have been identified, the subfamily of

HMMs can be constructed from each protein subfamily. The subfamily HMM

construction algorithm requires an MSA (found in the first step) and a de-

composition of the MSA into subalignments. However, SCI-PHY uses a fun-

damentally different approach to construct the subfamily of HMMs. First, a

master HMM is constructed from the input MSA. Each sub-HMM will have

the same architecture as the master HMM (identical insertion, deletion, and

match states and identical transition probabilities between the states). This

allows for conserved columns in the original MSA to continue to be preserved

38

in subalignments, and the all-gapped columns in the subalignments to be able

map to match states in the master HMM. The emission probabilities of the

sub-HMM for the conserved columns and all-gapped columns are identical

to the emission probabilities in the master HMM. For all other columns, the

emission probabilities are estimated from the amino acid distribution of the

columns in the subalignment.

There are several fundamental differences between fHMM and SCI-

PHY. First, given a set of unaligned sequences, SCI-PHY builds a forest of

trees to generate the protein subfamilies, whereas the fHMM approach uses a

single tree estimated from the alignment on the sequences. Second, SCI-PHY

requires, as input, the alignment decomposition of the subfamily, whereas

fHMM uses a centroid edge decomposition to generate the alignment subsets.

Finally, SCI-PHY requires that the architecture of the sub-HMMs matches the

HMM computed on the MSA of the protein subfamily. The HMMs in fHMM

are computed using only from the subalignments, and require no knowledge

about the original MSA.

39

Chapter 4

SEPP: SATé-enabled phylogenetic placement

In this chapter, I show the application of the fHMM to the phylogenetic

placement problem. As mentioned in Chapter 2, a phylogenetic placement

method can be defined by the alignment method used to insert the query

sequence into a backbone alignment, and the placement method used to insert

the query sequence into the backbone tree. One application of profile HMMs

is on the alignment step for the phylogenetic placement problem. For example

HMMALIGN+pplacer computes a profile HMM on the backbone alignment,

and the query sequences are inserted into the backbone alignment using the

HMM.

I will show, however, that the accuracy of using a single HMM, such

as in HMMALIGN+pplacer, degrades on evolutionarily divergence datasets.

I present a new software called SATé-enabled phylogenetic placement [55]

(SEPP) that uses the fHMM as a boosting technique for HMMALIGN and

pplacer. Unlike HMMALIGN+pplacer which uses a single HMM, SEPP uses

multiple HMMs to represent the backbone alignment. SEPP produces more

accurate placements than HMMALIGN+pplacer and PaPaRa+pplacer on evo-

lutionary divergent datasets, and is more computationally efficient, both in

40

terms of peak memory usage and running time when placing on very large

backbone trees. I show that SEPP can be parametrized for speed or accuracy,

depending on the application. These results show the advantages of a family

of HMMs for representing a multiple sequence alignment, and form the basis

of the remaining methods that I present in my dissertation.

In Section 4.1, I describe the SEPP algorithm. In Section 4.2, I describe

the simulation study designed to evaluate the performance of SEPP. Section

4.3, I present results comparing SEPP with two different techniques for phy-

logenetic placement, which show that SEPP outperforms the other methods

on hard datasets and is significantly faster and more computationally efficient

on datasets with large backbone trees. Finally, in Section 4.4, I present possi-

ble ways of improving SEPP, as well as outlining extensions of SEPP toward

taxonomic identification and profiling and ultra-large alignment estimation.

SEPP was developed together with Siavash Mirarab and Tandy

Warnow, was presented at the Pacific Symposium on Biocomputing 2012, and

was published in [55].

4.1 SEPP Algorithm

SEPP is a meta-method for existing methods for the two steps of phy-

logenetic placement (computing the extended alignment and placing the query

sequence into a tree). SEPP has two stages of decomposition: a placement

decomposition step, and an alignment decomposition step. The placement de-

composition step decomposes the backbone sequence set into placement sub-

41

sets. The alignment decomposition step decomposes the placement subsets

into fHMMs using the technique described in Chapter 3. To align and place

a query sequence, the query sequence is scored against every HMM in each

fHMM, and the HMM with the best bit score is selected. The query sequence

is inserted into the subalignment that generated the best HMM using the base

alignment method. Finally, the placement subset that generated the fHMM is

selected, and the query sequence is inserted into the placement subtree using

the base placement method. The placement location in the subtree is then

used to find the placement location in the original backbone tree.

More formally, the input to SEPP consists of

• the backbone tree T and alignment A for the full-length sequences and

a query sequence q, and

• positive integers a and p, with p ≥ a,

• a base alignment method for aligning the query sequence to a multiple

sequence alignment of full-length sequences, and

• a base placement method for inserting the query sequence into a tree,

given the extended alignment that includes the query sequence.

The output of SEPP is the placement of q into the backbone tree T .

The default base methods for SEPP is HMMALIGN for producing the

extended alignment and pplacer for inserting the query sequence into the back-

bone tree.

42

I now show how SEPP uses the parameters a and p to compute the ex-

tended alignment and placement of a query sequence into the tree (see Fig. 4.1

for example).

• Using the centroid decomposition for generating the fHMM, SEPP re-

cursively divides the set of taxa in the tree T into disjoint subsets of size

at most p. These subsets are called the “placement subsets.”

• SEPP computes an fHMM on each placement subset as described in

Chapter 3 with the maximum decomposition size set to a, and the input

alignment and tree set to the subalignment and subtree induced by the

placement subset.

• SEPP uses the fHMM alignment algorithm to align the query sequence.

The query sequence is scored against each the HMM in each fHMM to

find the HMM that produces the highest bit score. Next, the query

sequence is inserted into the subalignment that generated the HMM to

produce an extended alignment. By default, the alignment method used

is HMMALIGN.

• SEPP selects the placement subset that generated the fHMM that con-

tains the best scoring HMM, and pplacer is used to insert the query

sequence q into the subtree of the backbone tree induced by the place-

ment subset using the extended alignment. Finally, the location of q in

the subtree is used to insert q into the backbone tree T on the entire set

of taxa.

43

Thus, the two parameters a and p control the behavior of SEPP.

P1 P2

P1 P2P1 P2

HMM1

HMM2

HMM3

HMM4

HMM1

HMM2

HMM3

HMM4

Input Decompose into placement subsets

Decompose into fHMMsAlign and place query sequence

Figure 4.1: Example of the SEPP pipeline with a= 4 and p= 8. The input is
a backbone alignment and tree on the set of full-length sequences and a query
sequence. The first step is to decompose the backbone tree into placement
subsets of at most 8 sequences using the centroid decomposition, producing
2 placement subsets in this example. The next step is to decompose each
placement subtree into alignment subsets of at most 4 sequences, producing 4
HMMs in this example. The query sequence is aligned to the the HMM that
produces the best match (HMM3 in this example), and is placed within the
placement subset that contained the best scoring HMM (placement subset P2
in this example).

4.2 Performance Evaluation

In order to evaluate SEPP’s performance, I compared SEPP versus

HMMALIGN+pplacer and PaPaRa+pplacer on both empirical and simulated

datasets.

I studied performance of these phylogenetic placement methods on 61

44

sequence datasets1. I included 20 simulated 1000-taxon datasets that have

evolved with substitutions and indels from each of three different model con-

ditions (M2, M3, and M4), each with the “medium” gap length distribution

(see Liu et al.[46] for these data). The three model conditions are chosen such

that one dataset is hard, one is moderate, and one is easy. Because these

are simulated datasets, the true alignment and true tree are known for each

datasets.

I also used a large bacterial dataset, 16S.B.ALL, with 27,643 16S rRNA

sequences, originally taken from the Gutell Comparative Ribosomonal Website

(CRW)[11], and also studied by Liu et al.[43]. This dataset has a curated align-

ment based upon confirmed secondary (and higher-order) structures, which are

highly reliable. I use a ML bootstrap tree as the curated tree for this dataset,

retaining only those branches with bootstrap support above 75%[43]. Thus,

the 16S.B.ALL dataset has a curated tree and alignment as well.

Each dataset was randomly divided into two subsets of equal size, with

one subset (S) used to define the backbone alignment and tree, and the other

subset (R) used to produce the query sequences. These query sequences are

created by taking substrings of normally-distributed lengths (from two distri-

butions, described below), and with the start positions chosen uniformly at

random.

Two categories of reads are generated for each sequence in the M2, M3,

1All datasets used in this study are available at
http://www.cs.utexas.edu/∼phylo/datasets.

45

and M4 datasets: “long” reads, with a mean length of 250 and a standard

deviation of 60, and “short” reads, with a mean length of 100 and a standard

deviation of 20. A total of 10 fragmentary sequences are generated for each

sequence, with half long and half short. Since these datasets each include 500

reference and 500 non-reference sequences, this process yields 2500 short and

2500 long reads per dataset. In summary, each M2, M3, and M4 dataset has

a reference tree and alignment with 500 taxa and a total of 5000 fragmentary

sequences, of which half are “short” and half are “long”.

For the 16S.B.ALL biological dataset, I create two categories of reads,

with length distributions identical to those of simulated datasets. This dataset

contains 27,643 taxa, of which I use 13,822 sequences for the backbone tree,

leaving me with 13,820 sequences for creating fragmentary reads. For each

of these 13,821 sequences, I generated one fragmentary sequence, randomly

choosing between the long and short distributions. Thus, for this dataset the

backbone tree and alignment has 13,822 taxa, and there are 13,821 fragmentary

sequences.

The sequences in S are used to create two backbone alignments and

trees, as follows. For sets S that are produced by simulating sequence evo-

lution, I have the true alignment and the true tree. I restrict each of these

(which have 1000 taxa) to the subset of 500 full-length sequences, and then run

RAxML on the resultant tree/alignment pair in order to optimize the branch

lengths and GTR+Gamma parameters. This produces the first alignment/tree

backbone. The second backbone alignment/tree pair is produced by running

46

SATé on the set of full-length sequences.

For the 16S.B.ALL dataset, I use the curated alignment for the dataset

and run RAxML on the alignment to produce a binary tree. I then restrict the

tree to the subset of 13,822 sequences, and optimize the branch lengths and

GTR+Gamma parameters on the tree using RAxML. This produces the first

backbone alignment/tree pair. I use SATé on the subset of 13,822 full-length

sequences to produce the second.

I used SATé to produce these estimated alignment/tree pairs because

SATé produces more accurate alignments and trees than most two-phase

method (where an alignment is first estimated and then a tree computed on

that alignment) for these datasets[43]. I used SATé-2, the new algorithm de-

sign for SATé, for these analyses; this produces an alignment and an ML tree

on the alignment estimated using RAxML. For the 16S.B.ALL dataset, I used

FastTree[65] within SATé-2 in each iteration, and finished with RAxML in

order to produce optimized GTR+Gamma parameters on the final tree.

I classify each query sequence for its likely difficulty in phylogenetic

placement as follows. I use HMMER to produce a profile HMM on the refer-

ence alignment, and then to classify the query sequences with respect to the

profile HMM using HMMSEARCH. The fragmentary reads are classified as

easy to align (“easy”) if the obtained E-value is less than 10−5, and as “hard”

otherwise. Among the hard reads, there are some reads for which HMMER

does not report any E-value due to default filtering settings of HMMER. I

classify such reads as “very hard” reads. In earlier phylogenetic placement

47

studies, the hard fragments are excluded [52]; however, my study does not

automatically eliminate hard fragments. Many very hard reads are able to be

placed by SEPP because the reads will receive E-values with respect to one

of the HMMs in the fHMMs. Those that fail to be placed at all by SEPP

are removed from the experimental study; this process removes 9 from all the

simulated datasets together and 5 from the biological dataset.

Table 4.1: Dataset statistics: I present statistics for the true alignments for
the simulated datasets (M2, M3, M4) and statistics for the curated alignment
on the biological dataset, 16S.B.ALL. However, a small number of query se-
quences are deleted from some of the runs.

Dataset Type Size Num generated Avg Max % gap
backbone query seqs p-dist p-dist

M2 sim 500 5000 0.68 0.76 67
M3 sim 500 5000 0.66 0.74 53
M4 sim 500 5000 0.50 0.60 51

16S.B.ALL emp 13,822 13,820 0.21 0.52 74

Table 4.1 shows various statistics for the true or curated alignment of

the datasets included in our study. The p-distance is the fraction of sites within

an alignment in which two sequences are different and “% gaps” is the per-

centage of gaps within the alignment. The empirical statistics show that the

datasets vary substantially in terms of evolutionary distances, with datasets

from model M2 having the largest evolutionary distances and 16S.B.ALL hav-

ing the smallest.

48

Measurements. I measure placement accuracy (averaged over all the query

sequences), running time, and peak memory usage, for each method on each

dataset. For the simulated datasets I report averages for these measurements

over the 20 replicates in each model condition.

Computational aspects. I report the running times and peak memory us-

age, each measured separately for the computation of extended alignments

and placement of query sequences. These reported values are for alignment

and placement of all query sequences in each set. Since some query sequences

are deleted from the study as they cannot be placed, the total number of

query sequences is slightly smaller than the number generated. Thus, re-

sults for each simulated model condition are for 99997-100000 query sequences

(20 replicas, each with 5000 query sequences), results for 16S.B.ALL are for

13,819-13,821 query sequences. Due to memory requirements of PaPaRa and

pplacer, 16S.B.ALL experiments are run on a Linux machine with 16 cores

and 256GB of main memory. The results for simulated datasets are obtained

on a heterogeneous condor cluster.

4.3 Results

4.3.1 Algorithm design experiments

Figures 4.2 and 4.3 show results where I vary the two algorithmic pa-

rameters a and p. Note that decreasing a to 50 (and sometimes to 10) and

increasing p tends to improve the placement accuracy, but at a running time

49

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hours)

D
e

lt
a

 E
rr

o
r

(e
d

g
e

s
)

←HMM+pp
PPR+pp

 ↓

←50/1000

←100/100
←500/500

←2500/2500

←100/1000

←250/1000

←1000/1000

←10/all

(a) 16S.B.ALL, Curated backbone

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

Time (hours)

D
e

lt
a

 E
rr

o
r

(e
d

g
e

s
)

←HMM+pp

PPR+pp→

←100/100

←500/500

←50/1000

←2500/2500

 ↑

100/1000

←250/1000

←1000/1000

←10/all

(b) 16S.B.ALL, SATé backbone

Figure 4.2: Scatter plot of delta error (x) versus time (y) versus memory (circle
diameters). The symbol “a/p” refers to SEPP(a,p), where a is the alignment
subset size and p is the placement subset size. The default setting is 1000/1000
for 16S.B.ALL; these points are bold-faced. HMM+pp and PPR+pp are HM-
MER+pplacer and PaPaRa+pp. Note that the default setting for SEPP is
far from optimal, with other settings providing better accuracy (and in some
cases also better speed).

50

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

Time (minutes)

D
e
lt
a
 E

rr
o
r

(e
d
g
e
s
)

←HMM+pp

←PPR+pp

←10/500
←50/500
←100/500←50/50

←100/100

←250/250

←10/100←10/250←50/100
←50/250

←10/10
←10/50

(a) M2, SATé backbone

8 10 12 14 16
1.4

1.45

1.5

1.55

1.6

1.65

1.7

Time (minutes)

D
e
lt
a
 E

rr
o
r

(e
d
g
e
s
)

←50/500

←100/500

←50/50

←10/100

←10/250
←50/100

←50/250

←10/50

(b) M2, SATé backbone - most accurate settings

Figure 4.3: Scatter plot of delta error (x) versus time (y) versus memory
(circle diameters). The symbol “a/p” refers to SEPP(a,p), where a is the
alignment subset size and p is the placement subset size. The default setting
is 50/50 for M2; these points are bold-faced. HMM+pp and PPR+pp are
HMMER+pplacer and PaPaRa+pp. Note that the default setting for SEPP
is far from optimal, with other settings providing better accuracy (and in some
cases also better speed). 51

cost. Also, bigger improvements in accuracy are obtained by decreasing a than

by increasing p. However, for most conditions, there is a wide range of param-

eter settings in which the differences in placement error are quite small (often

less than half an edge), and within this collection there can be significant

differences in running time.

The general principles are that smaller alignment subset sizes typically

results in better placement accuracy, at the cost of increased running time,

and that larger placement subset sizes results in better placement accuracy,

at the cost of increased running time and peak memory usage. Using smaller

alignment subset sizes improves accuracy as the small subsets would be less

likely to contain many highly evolutionary divergent sequences. However, ev-

ery time a subset is divided in half, there is twice as much work in finding the

best alignment subset. Using larger placement subset sizes improves accuracy

as the true placement is likely to be in the placement subset, however, requires

more time and memory to check all possible placement locations.

To set the default parameters, I sought a setting that worked reason-

ably well with respect to both running time and placement accuracy. Setting

a = p = 1000 for the 16S.B.ALL datasets and a = p = 50 for the simulated

datasets produced good results. These settings correspond to setting the sub-

set sizes to about 10% of the number of taxa in the backbone tree. Note,

however, that setting a=p=50 is by no means optimal for the M2 model con-

dition (four other settings, with a at most 50, have less error and complete

faster). Similarly, setting a=p=1000 is the fastest for the 16S.B.ALL datasets,

52

but more accurate results can be obtained with other settings (each with a be-

low 1000) for a running time cost. Note that while setting a=p implies that

only a single HMM is used to represent each placement subset, multiple HMMs

are still being used to represent the backbone alignment.

4.3.2 Comparisons using the Default Setting for SEPP

I present results for PaPaRa+pplacer, HMMALIGN+pplacer, and the

default setting for SEPP where we set a=p to approximately 10% of the

number of taxa in the backbone tree. This yields parameters 50/50 for the

simulated datasets (backbone trees have 500 taxa) and 1000/1000 for the

16S.B.ALL dataset (backbone trees have 13,822 taxa).

4.3.3 Results on Simulated Datasets

The simulated datasets have backbone trees with 500 sequences and

fairly high rates of evolution, with M2 having the highest rate and M4 having

the lowest rate (Table 4.1). Placement error rates were impacted by the model,

so that the missing branch rate for all methods is higher on model M2 than

on model M3, and higher on model M3 than on model M4 (Table 4.2). Not

surprisingly, absolute error rates are lower with the true alignment and tree

than with the SATé alignment and tree. These trends also held for PaPaRa

and SEPP.

Figure 4.4 and Table 4.2 show results for PaPaRa+pplacer, HMMA-

LIGN+pplacer, and SEPP(50,50) (i.e., SEPP ran with the default setting on

53

PaPaRa+pp HMMALIGN+pp 50/50
0

10

20

30

40

50

60

70

R
u
n
n
in

g
 T

im
e
 (

m
in

u
te

s
)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 50/50
0

10

20

30

40

50

60

70

R
u
n
n
in

g
 T

im
e
 (

m
in

u
te

s
)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 50/50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
e

a
k
 M

e
m

o
ry

 (
G

B
)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 50/50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
e

a
k
 M

e
m

o
ry

 (
G

B
)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 50/50
0

1

2

3

4

5

6

7

8

D
e
lt
a
 E

rr
o
r

(e
d
g
e
s
)

(a) SATé backbone

PaPaRa+pp HMMALIGN+pp 50/50
0

1

2

3

4

5

6

7

8

D
e
lt
a
 E

rr
o
r

(e
d
g
e
s
)

(b) True backbone

Figure 4.4: Results on simulated datasets for model M2. I show running
time (top), peak memory usage (middle), and average number of additional
missing branches per query sequence (bottom). Results for the SATé backbone
alignment and tree are on the left, and results for the true backbone alignment
and tree are on the right. The SATé backbone tree has 12.1% missing branch
rate and the backbone tree based upon the true alignment has 0.09% missing
branch rate. The number of additional missing branches shown (bottom) is
the increment above that amount.

54

PaPaRa+pp HMMALIGN+pp 1000/1000
0

5

10

15

20

25

30

35

40

45

R
u
n
n
in

g
 T

im
e
 (

h
o
u
rs

)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 1000/1000
0

5

10

15

20

25

30

35

40

45

R
u
n
n
in

g
 T

im
e
 (

h
o
u
rs

)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 1000/1000
0

10

20

30

40

50

60

70

80

P
e
a
k
 M

e
m

o
ry

 (
G

B
)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 1000/1000
0

10

20

30

40

50

60

70

80

P
e
a
k
 M

e
m

o
ry

 (
G

B
)

Alignment

Placement

PaPaRa+pp HMMALIGN+pp 50/50
0

1

2

3

4

5

6

7

8

D
e
lt
a
 E

rr
o
r

(e
d
g
e
s
)

(a) SATé backbone

PaPaRa+pp HMMALIGN+pp 50/50
0

1

2

3

4

5

6

7

8

D
e
lt
a
 E

rr
o
r

(e
d
g
e
s
)

(b) Curated backbone

Figure 4.5: Results on 16S.B.ALL. I show running time (top), peak memory
usage (middle), and average number of additional missing branches per query
sequence (bottom). Results for the SATé backbone alignment and tree are on
the left, and results for the curated backbone alignment and tree are on the
right. The SATé missing branch rate is 7.64%, and the missing branch rate
for the backbone tree defined by the true alignment is 1.835%. The number
of additional missing branches shown (bottom) is the increment above that
amount.

55

Table 4.2: Mean delta-error for all query sequences. I show the mean delta-
error for each method on each model condition for all the query sequences.
Count refers to the number of query sequences processed and placed, HMM
refers to HMMALIGN+pplacer, PPR refers to PaPaRa+pplacer, and SEPP
refers to SEPP run in default mode.

All reads
bio. M2 M3 M4

SATé Backbone
count 13819 99998 99999 99999
HMM 1.1 3.4 1.4 0.3
PPR 0.6 5.4 3.6 0.4
SEPP 1.0 1.7 1 0.4

True or Curated Backbone
count 13818 99997 99999 99999
HMM 0.0 3.2 1.2 0.0
PPR 0.0 6.2 3.8 0.2
SEPP 0.4 1.4 0.7 0.1

this model of a = p = 50). Note that SEPP(50,50) has the lowest delta-error of

the three methods by far, followed by HMMALIGN+pplacer, and then by Pa-

PaRa+pplacer. Furthermore, the differences are substantial. The methods are

clearly also distinguished by running time and peak memory usage. HMMA-

LIGN+pplacer is the fastest, SEPP(50,50) is somewhat slower, and PaPaRa

uses much more time. Both PaPaRa+pplacer and HMMALIGN+pplacer use

more memory than our method.

Results for M3 (see Table 4.2) are quite similar to M2, as

HMMALIGN+pplacer was much more accurate than PaPaRa+pplacer

and SEPP(50/50) produced more accurate placements than HMMA-

LIGN+pplacer. However, the gap between SEPP(50,50) and HMMA-

56

Table 4.3: Mean delta-error for different categories of query sequences. I show
the mean delta-error for each method on each model condition, as a function of
the level of difficulty for the query sequence, as estimated by HMMER. Count
refers to the number of query sequences processed and placed, HMM refers to
HMMALIGN+pplacer, PPR refers to PaPaRa+pplacer, and SEPP refers to
SEPP run in default mode.

Hard reads Very hard reads
bio. M2 M3 M4 bio. M2 M3 M4

SATé Backbone
count 104 79510 58924 3989 21 63613 40495 844
HMM 2.4 4.2 2.3 0.7 3.9 5.2 3.2 1.5
PPR 0.8 5.8 4.4 1.0 0.9 6.2 4.9 1.5
SEPP 2.4 2.0 1.4 0.8 3.8 2.4 1.8 1.0

True or Curated Backbone
count 104 79511 58924 3989 21 63614 40495 844
HMM 0.5 4.0 2.0 0.2 2.2 5.0 2.9 0.9
PPR 0.1 6.7 4.7 0.5 0.0 7.1 5.2 0.9
SEPP 1.1 1.7 1.1 0.4 1.5 2.0 1.4 0.5

LIGN+pplacer was reduced to only half an edge. On M4 (see Table

4.2), however, the relative performance between SEPP(50,50) and HM-

MALIGN+pplacer depended on the backbone tree. For the SATé align-

ment/tree, SEPP(50,50) was more accurate but slightly slower than HM-

MALIGN+pplacer. For the true alignment/tree, HMMALIGN+pplacer was

somewhat more accurate and took less time. Note that the difference in

placement accuracy between SEPP(50,50) and HMMALIGN+pplacer was ex-

tremely small - less than one-ninth of an edge for both backbones.

57

4.3.4 Results on 16S.B.ALL

The datasets based upon 16S.B.ALL, presented a different kind of chal-

lenge. Each dataset had 13,820 query sequences and a backbone tree with

13,822 sequences. Thus, these datasets had much larger backbone trees, but

the backbone trees and alignments reflected lower rates of evolution.

The default setting for SEPP on this dataset is a=p=1000; therefore,

I ran SEPP(1000,1000) for both backbones. Results on these datasets are

shown in Figure 4.5. Note that PaPaRa+pplacer provides a small improve-

ment in placement accuracy (slightly more than half an edge) in comparison

to the other methods. However, PaPaRa+pplacer is enormously computation-

ally intensive, using 40 hours to analyze these data, much longer than either

other method. Also, HMMALIGN+pplacer and PaPaRa+pplacer have very

large peak memory usage, near or above 60GB on both backbone trees. Thus,

PaPaRa+pplacer is computationally extremely intensive, and possibly the im-

provement in placement accuracy is insufficient given the additional running

time costs.

A comparison of SEPP(1000,1000) to HMMALIGN+pplacer shows

that both have extremely good placement accuracy, with delta-error approxi-

mately one edge for both methods on the SATé backbone tree and well under

half an edge on the curated backbone tree. HMMALIGN+pplacer produces

more accurate placements than our method for the curated backbone and

SEPP(1000,1000) produces more accurate placements for the SATé backbone,

but the differences between the two methods are small in both cases (less than

58

a third of an edge). The methods are, however, distinguished by their com-

putational requirements, as HMMALIGN+pplacer is much slower (at least 4

times as much time) and uses dramatically more memory (60GB as compared

to about 2GB).

4.3.5 Comparing methods on query sequences of different levels of
difficulty

Tables 4.2 and 4.3 compares methods in terms of their placement ac-

curacy as a function of the level of difficulty in placing the query sequence, as

predicted by HMMER (see the discussion in Section 4.3.6). Note that error

increases as the reads become more difficult, as HMMER predicts. I show that

SEPP, run in default mode, performs very well in general (as observed ear-

lier) in comparison to HMMALIGN+pplacer and PaPaRa+pplacer, but has a

particularly strong advantage on the hard and very hard reads. Interestingly,

PaPaRa+pplacer does well on hard and very hard reads for 16S.B.ALL but

not on the simulated datasets.

4.3.6 Summary

There are several observations we can make. First, the methods I eval-

uated for phylogenetic placement–PaPaRa+pplacer, HMMALIGN+pplacer,

and SEPP methods–often produce placements that are extremely accurate,

increasing the topological error over the input backbone tree by at most an

edge (often much less than an edge) on average. Furthermore, while these

methods do sometimes have differences in placement accuracy that go beyond

59

an edge, these differences are sometimes still small enough to be relatively

unimportant, compared to the computational cost required to obtain the im-

proved placement accuracy.

However, I did observe conditions in which the differences in placement

accuracy were quite large, suggesting that increased effort in placing query

sequences correctly was merited. For example, I see big differences in place-

ment accuracy on model M2, resulting in several edges improvement produced

by SEPP(50,50) over HMMALIGN+pplacer. The conditions under which ac-

curacy differences are substantial are characterized by large evolutionary dis-

tances between some pairs of full-length sequences. I conjecture that in such

conditions, the HMMs produced by HMMER on the full set of taxa may not be

sufficient to produce highly accurate alignments for the query sequences, and

will result in degraded placement accuracy. The technique I introduce here

avoids this problem by using HMMER to produce HMMs only on smaller, less

diverse, subsets of the taxa. As a result, the HMMs may produce more accu-

rate alignments to the query sequences, and result in improved phylogenetic

placement.

I note the interesting differences between HMMALIGN+pplacer and

PaPaRa+pplacer. Only on the slowest evolving dataset, 16S.B.ALL,

does PaPaRa+pplacer produces more accurate placements than HMMA-

LIGN+pplacer, while PaPaRa+pplacer has substantially less accurate place-

ments for the faster evolving datasets. This is consistent with the need to

estimate transition state matrices on each edge, an estimation that may only

60

be highly accurate under sufficiently low rates of evolution.

Furthermore, these methods differ dramatically with respect to run-

ning time, with PaPaRa+pplacer much more computationally intensive than

HMMALIGN+pplacer and the default setting for SEPP, thus suggesting that

PaPaRa+pplacer is unlikely to be useful in large-scale metagenomic analyses.

The comparison between HMMALIGN+pplacer and SEPP is more

complex, because SEPP is parameterized by the two algorithmic parameters

a and p. Here I see that some very simple settings for these parameters (a=p,

both set to about 10% of the number of taxa in the backbone tree) produces

very fast results with generally very good accuracy, coming close to the accu-

racy obtained by the best methods (or improving on them), but in a fraction

of the time. Other settings for the parameters can improve the placement

accuracy but require greater running time and memory usage.

4.4 Conclusion and future work

In this chapter, I presented SEPP, a technique for boosting the accuracy

and/or speed of a phylogenetic placement method. I showed that SEPP using

fHMM for alignment and pplacer for placement resulted in improvements in

placement accuracy and/or running time. Given the plans to analyze millions

of reads, the speed-ups that SEPP provides could be essential to providing

scalability for phylogenetic placement methods. In addition, I showed that

using fHMM resulted in comparable or better accuracy than using HMM for

alignment.

61

I plan to explore other methods for estimating the extended align-

ment. For example, improved accuracy might be obtained by coupling SEPP

with PaPaRa for those cases where the backbone tree and alignment has slow

evolutionary rates to enable PaPaRa to produce highly accurate extended

alignments. Another potential method to examine is Mafft-profile [35]. Mafft-

profile takes in a backbone alignment and a sequence of query sequences and

aligns each query sequence to the backbone alignment. Mafft-profile can be

run under an accurate setting (“addfragments” and “L-INS-I”), however, the

most accurate setting can only be run on a backbone alignment of 1000 se-

quences. More accurate placements may be obtained if Mafft-profile is used

within SEPP, using the decomposition technique to allow Mafft-profile to scale

to larger datasets.

Based on the placement of the query sequence, the evolutionary re-

lationship between the query sequence and the sequences in the backbone

alignment can be inferred. Thus, SEPP can be used to taxonomically iden-

tify unknown reads based upon the placement of the sequence in the backbone

tree. In Chapter 5, I will show a modification of SEPP that results in improved

classification sensitivity and precision over the single HMM approach.

62

Chapter 5

TIPP: Taxonomic identification and

phylogenetic profiling using families of Hidden

Markov Models

In the previous chapter, I presented SEPP, a method for phylogenetic

placement using families of HMMs. I presented results that show SEPP has im-

proved phylogenetic placement accuracy on evolutionarily divergent datasets.

In this chapter, I will show how SEPP can be used for taxonomic identifica-

tion, and how SEPP has high sensitivity in classifying reads, but at the cost

of high false positive classifications on reads from novel taxa or on reads with

high rates of error.

In this chapter I will present TIPP, a modification of SEPP that incor-

porates statistical support measures to control the precision and sensitivity of

classification. I will show that TIPP classifies more fragments correctly com-

pared to leading taxonomic identification methods, and that TIPP maintains

high precision and sensitivity under difficult conditions. In addition, I show

experimental results that TIPP also improves taxonomic profiling accuracy.

Section 5.1 shows how phylogenetic placement can be applied toward

taxonomic identification and profiling and present results on taxonomic iden-

63

tification using SEPP. In Section 5.2, I describe TIPP, a modification of SEPP

for taxonomic identification and profiling. In Section 5.3, I describe the simu-

lation study designed to evaluate the performance of TIPP toward taxonomic

identification and profiling. In Section 5.4, I present the results comparing

TIPP for taxonomic identification and taxonomic profiling. I show that TIPP

outperforms other taxonomic identification methods under difficult conditions

and that TIPP generally results in better profiles than leading profiling meth-

ods. Finally, in Section 5.5, I discuss possible ways of improving TIPP, and

future studies using TIPP.

5.1 Taxonomic Identification through Phylogenetic
Placement

One approach toward taxonomic identification is through phylogenetic

placement. The evolutionary relationship between the the query sequence and

the backbone sequences can be inferred from the placement location. For

example, in Figure 5.1, Q1 is placed closest to Species A1, and thus, it can

be inferred that Q1 is more closely related to Species A1. Similarly, Q2 is

more closely related to Species A1 and A2 than to Species B1 and B2. Thus,

one simple technique for identifying a query sequence is to classify it by the

lowest common ancestor (LCA) of its sibling leaf nodes. Thus, Q1 would be

classified as Species A1 (its only sibling leaf node is Species A1) and Q2 would

be classified as Genus A (its sibling leaf nodes are Species A1 and Species A2).

Using this approach, I compared SEPP and HMMALIGN+pplacer for

64

Species A1 Species A2 Species B1 Species B2

Genus A Genus B

Family C

Q2

Q1

Figure 5.1: Taxonomic classification using phylogenetic placement. The leaf
nodes of the rooted backbone tree are labeled with the species name. Each
query sequence is placed onto an edge in the backbone tree and is classified
by the LCA of its sibling leaf nodes.

65

taxonomic identification under a leave-species-out experiment. Under a leave-

species-out experiment, the species of the query sequence is removed from the

backbone alignment and tree, simulating the classification of a novel species.

Thus, while the species of the query sequence cannot be correctly identified,

the remaining taxonomic lineage (genus, family, etc...) can still be correctly

classified. The fragments were simulated under differring models and rates of

sequencing error.

Figure 5.2 shows that SEPP is more sensitive than HMMA-

LIGN+pplacer under the hardest model condition (“454 3”), classifying more

fragments correctly, especially at the phylum level. Both methods tend to

classify the large majority of the fragments, leaving very few fragments un-

classified. This results in a very high false positive rate, especially under more

difficult conditions.

To understand why this is the case, it’s important to note that pplacer

outputs multiple possible locations for the placement of each query sequence.

Each placement has an associated likelihood weight ratio. However, when

HMMALIGN+pplacer or SEPP is used for taxonomic classification, only the

placement with the likelihood weight ratio is used, ignoring the fact that there

may be other placements with comparable weight. This was one of the key

insights in the development of TIPP. By taking into account different sources

of uncertainty, both in the alignment and placement steps, the false positive

rate could be reduced.

66

genus family order class phylum

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ill
um

in
a_

1
ill

um
in

a_
2

ill
um

in
a_

4
45

4_
1

45
4_

2
45

4_
3

H
M

M
A

LI
G

N
+

pp
la

ce
r

S
E

P
P

(1
00

)

H
M

M
A

LI
G

N
+

pp
la

ce
r

S
E

P
P

(1
00

)

H
M

M
A

LI
G

N
+

pp
la

ce
r

S
E

P
P

(1
00

)

H
M

M
A

LI
G

N
+

pp
la

ce
r

S
E

P
P

(1
00

)

H
M

M
A

LI
G

N
+

pp
la

ce
r

S
E

P
P

(1
00

)

Correct Unclassified Incorrect

Figure 5.2: Leave-species-out experiments comparing SEPP and HMMA-
LIGN+pplacer taxonomic classification accuracy on the rpsB gene under se-
quences simulated under different error model conditions. Fragments were
simulated with either Illumina-like or 454-like errors, and with varying rates
of error. Models denoted with a “1” have the lowest rates of error, and mod-
els with a “3” or “4” have the highest rates of error. SEPP is run using a
alignment decomposition size of 100 and placing on the entire backbone tree.

67

5.2 TIPP Algorithm

TIPP is an extension of SEPP designed specifically for taxonomic clas-

sification and profiling of metagenomic reads. TIPP is a marker-based method

and can only classify reads that originate from one of the gene markers. As-

suming that the reads have already been binned to the specific gene markers,

TIPP uses the SEPP algorithm to place the query sequences into the backbone

tree, but with some modifications.

In contrast to SEPP which uses a single extended alignment for place-

ment of a query sequence, TIPP selects multiple extended alignments and

computes multiple placements for a query sequence. This reduces the poten-

tial for false positive classification (and hence improves the precision of the

taxon identification) by taking into account uncertainty in the alignment and

placement steps. TIPP allows the user to specify minimum statistical support

levels for both the alignment and the placement steps. Given those thresholds,

TIPP computes a set of alignments and placements that suffices to meet the re-

quired statistical support levels, and returns the LCA (least common ancestor)

of these placements as the final placement. The result is a statistically-based

method that can be tuned for precision or recall, and which has better re-

call (even for its more conservative setting) compared to other marker-based

methods such as HMM+pplacer and MetaPhyler.

As a pre-processing step, TIPP builds the backbone alignment and

tree on the full-length gene sequences for each marker gene using SATé [46,

47]. Next, TIPP uses a statistical pipeline to perform taxon identification,

68

as follows. For simplicity, I will first describe the algorithm for classifying

fragments that have already been binned to the marker genes. I will later

explain how to extend this algorithm to the case where the fragments have

not yet been binned.

TIPP’s technique for taxonomic identification for a single marker

gene. I now describe in greater detail the technique used by TIPP to

taxonomically identify the fragments matching a given marker gene. The

input is (1) a set Q of fragmentary sequences from a single gene, (2) a set S

of full-length sequences for the same gene, (3) a backbone reference alignment

A and backbone reference tree T estimated on S, and (4) a refined taxonomy

T ∗.

Parameter settings for default TIPP. I describe the simplest use of TIPP,

which is used for all cases where n, the number of full-length sequences ob-

tained for the marker gene, is not very large (see Section 5.2.3 for a description

of how I modify TIPP when n is very large). In this simple version of TIPP, I

do not constrain the portion of the taxonomy into which the fragment can be

inserted. I also need to set ma, the maximum alignment subset size, whether

EPA or pplacer is used, and the statistical support thresholds sa and sp for

alignment and placement support, respectively.

I now describe how TIPP performs a taxonomic identification of a single

query sequence q:

Step 1: Build fHMM. TIPP decomposes the reference alignment A and tree

69

T into alignments subsets with at most ma leaves using the fHMM decompo-

sition technique. This produces a partition of S into subsets S1, S2, . . . , Sk,

each of size at most ma.

Step 2: Compute extended alignments. In constrast to the fHMM align-

ment algorithm which selects the single extended alignment with the best bit

score, TIPP uses the bit scores to select as many extended alignments as nec-

essary to reach the alignment support sa. Section 5.2.1 describes this process

in more details.

Step 3: Placement. For each extended alignment, I use the selected method

(EPA or pplacer) to place q into the refined taxonomy T ∗. I thus obtain

multiple placements and their likelihood weight ratios (a value computed by

pplacer and EPA, which I treat as probabilities) for each extended alignment.

I combine all placement results of different extended alignments, and normal-

ize the placement probabilities across results from all extended alignments.

This results in multiple placements and their associated probabilities for each

placement for the fragment.

Step 4: Classification. I assign the statistical support to each node in the

taxonomy by adding the probabilities of all placements at or below the edge

above the node; this allows us to classify the fragment at all taxonomic levels

for which it has support of at least sp. If sp > 0.5 then this yields a unique

taxon identification; otherwise, TIPP outputs multiple identifications, along

with their support. The fragment is left unclassified at levels where support

of sp is not reached.

70

Thus, TIPP has many algorithmic parameters, some determining how

the decomposition is run (ma), and others determining the statistical support

thresholds (sa and sp) and the taxonomy that is used. In my experiments,

I use either the NCBI or the RDP taxonomy (depending on the dataset),

restricted to the species in S, SATé to produce the reference alignment and

tree on S, and RAxML to refine the specified taxonomy with respect to the

SATé alignment.

5.2.1 Alignment Support Calculation

The fHMM alignment algorithm aligns the query sequence against each

HMM, which in turn produces a bit score for each alignment. The HMM that

produces the best bit score is selected, and the query sequence is inserted in

the subalignment that generated the HMM. However, taking the HMM that

produced the best bit score ignores the fact that there may be other HMMs

with nearly as good bit scores.

Rather than taking the single best alignment with the highest bit score,

TIPP takes as many alignments as necessary so that together they provide

a total support above a certain threshold. To do this rigorously, I use the

HMMER output to calculate the probability that a given fragment is generated

by one of the models from a set of models, each associated with an alignment

subset. These calculations are all based on the assumptions that 1) alignment

subsets are disjoint, so that at most one subset generates the fragment, and 2)

the fragment does indeed belong to the gene, so that it is generated by some

71

alignment subset.

Minimum Alignment Support Threshold. I now show how TIPP

computes the probability that a fragment is generated by a set of alignment

subsets. For a given HMMER model H and fragment x, HMMER calculates

a bit-score, defined as:

BS(H) = log2
P (x|H)

P (x|R)
(5.1)

where BS(H) is the bit-score for x on H, P (x|H) is the probability of model

H generating fragment x, and P (x|R) is the probability of a random model

R generating fragment x. Thus models producing higher bit-scores are more

likely to have generated the fragment.

Assuming that a fragment x is generated by exactly one of the HMMs

H1 to Hn (each corresponding to a different alignment subset), the probability

that Hi generated x is:

P (Hi|x) =
P (x|Hi)P (Hi)∑n

j=1 P (x|Hj)P (Hj)
. (5.2)

Assuming that uniform prior probability (i.e. P (Hi) = P (Hj)), I can

rewrite Equation 5.2 as:

P (Hi|x) =
1∑n

j=1
P (x|Hj)

P (x|Hi)

. (5.3)

72

By Equation 5.1,

BS(Hj)−BS(Hi) = log2

P (x|Hj)

P (x|R)
− log2

P (x|Hi)

P (x|R)
(5.4)

= log2

P (x|Hj)

P (x|Hi)
(5.5)

Substituting into Equation 5.3, the result is the formula for computing

the probability of Hi using bit-scores:

P (Hi|x) =
1∑n

j=1 2BS(Hj)−BS(Hi)
(5.6)

Thus, assuming that the bit-scores are sorted such that BS(Ai) ≥ BS(Ai+1)

(i = 1, 2, . . . , n − 1), to reach a specified threshold sa, I find the smallest m

such that
∑m

k=1 P (Hk|x) ≥ sa.

5.2.2 Abundance Profile Estimation

The previous description of the TIPP algorithm requires that the frag-

ments have already been binned to the marker genes. However, in a metage-

nomic shotgun sequencing experiment, the output is reads from all the differ-

ent genomes in the sample. Thus, reads from the marker genes must first be

identified and binned before TIPP can be applied.

To bin the reads, BLAST [3] is used to map the fragments to the marker

genes. Only fragments that have been binned to a marker gene are used to

estimate the abundance profiles; fragments that fail to match to any of the

marker genes are discarded.

73

Next, TIPP is applied to classify all the reads that have been binned.

Some of the reads will fail to be classified at any taxonomic level; these reads

are discarded and are not included in the abundance profile estimation. The

binned reads that can be classified are then pooled, and the distribution is

estimated from the pooled collection.

5.2.3 TIPP on Larger Markers

I modified how I ran TIPP on the bacterial 16S RNA dataset due to

the large number of taxa (9197), as follows: I used the SATé alignment as the

reference alignment, the refined taxonomy as the reference tree, and rather

than placing into the entire refined taxonomy, I used SEPP to decompose the

refined taxonomy into both alignment subsets and placement subsets using

decomposition parameters of mp = 1000 and ma = 100. Thus, the reads were

placed into subtrees of the 16S marker, each of which contains at most 1000

leaves.

5.3 Performance Evaluation

I initially evaluated the impact of algorithmic parameters on taxonomic

classification and phylogenetic profiling, based on which I selected default set-

tings for TIPP; these are reported in the Appendix. I then evaluated TIPP in

comparison to other phylogenetic profiling methods on a collection of datasets.

I also performed experiments evaluating the impact of sequencing error on tax-

onomic classification, the effect of TIPP’s algorithmic parameter settings on

74

the taxonomic identification accuracy, and finally the ability of different tax-

onomic classification methods to identify “dark matter” (i.e., sequences that

come from novel phyla).

Methods studied. I compared MetaPhyler, MetaPhlAn, PhymmBL, and

NBC as abundance profiling methods. TIPP, MetaPhyler, and MetaPhlAn are

marker-based methods and can classify fragments from their marker reference

dataset. TIPP and MetaPhyler use the same set of universal housekeeping

markers that are unlikely to undergo duplication and horizontal gene transfer.

MetaPhlAn, on the other hand, selects markers that uniquely identify specific

taxonomic groups. NBC and PhymmBL are composition-based methods and

can classify fragments originating from any region in the genome.

MetaPhyler classifies every fragment at each taxonomic level and as-

signs the classification a confidence score. For MetaPhyler, I used a version

that classifies a fragment at the most specific classification yielding a con-

fidence score of 90% or higher. I used MetaPhyler version 1.25 (downloaded

from http://metaphyler.cbcb.umd.edu), an extension of the originally pub-

lished algorithm that also provides a confidence for each classification. The

chosen confidence cutoff of 90% roughly corresponds to a mis-classification

rate of 10%, chosen as a reasonable trade-off between precision and recall. For

PhymmBL, I classified a fragment at the most specific classification yielding

a confidence score of 95% or higher; however, PhymmBL does not give confi-

dence scores at the species level, and so cannot be used to perform taxonomic

75

identification and abundance profiling at the species level. Finally, NBC gives

a confidence score of the fragment matching to a genome. I accepted the clas-

sification if the confidence score is above the species threshold suggested by

the NBC authors. Thus, a fragment will either be classified at the species

level or be completely unclassified. See Section A8.2 for commands used for

training and running these methods.

Except where indicated, I used the following “default” settings for

TIPP. The alignment subset size ma is set to 100, and I place fragments into

the refined taxonomy (described above) after I compute the extended align-

ments. In all experiments shown here I use pplacer for the placement step (see

Section A3.2 for results on using EPA inside TIPP). The remaining parameters

are the alignment subset size ma and the alignment and placement support

thresholds sa and sp, respectively. I refer to TIPP with this parameter setting

by TIPP(sa, sp,ma). All results shown in this paper use 95% as the alignment

and placement support threshold.

Reference marker datasets. In order to classify metagenomic samples,

TIPP uses the reference sequence dataset obtained from [43, 44], which consists

of 30 phylogenetic marker genes that span the Bacteria and Archaea domains.

The marker genes selected were believed to be single copy genes and univer-

sally present across the Bacteria domain, making them resistant to horizontal

gene transfer and gene duplication. Only species whose genomes have been

sequenced were present in the reference dataset. The number of sequences

76

in each marker ranges from 65 to 1555 sequences, with an average of 1312

sequences per marker gene. See Section A6.1 for the list of marker genes and

the empirical statistics of the reference alignments on these datasets.

Simulated taxonomic identification datasets. Datasets used in the

taxonomic identification experiments were generated by simulating fragments

from biological data and then adding errors for either Illumina or 454 sequenc-

ing technologies, varying the error rates from low to high. I used MetaSim [70]

to generate fragments with Illumina or 454 errors, starting from the reference

datasets of 30 marker genes and the 16S gene. Both 100-bp Illumina-type frag-

ments and 300-bp 454-type fragments were generated, with different levels of

error, thus, I have Illumina 1, Illumina 2, and Illumina 4 models, and 454 1,

454 2, and 454 3 models (in the increasing order of error rates). Illumina-

type fragments contained only substitution errors, and 454-type fragments

contained only indel errors, biased toward insertions.

These error models allow us to explore the impact of varying sequenc-

ing error on taxonomic identification, and the higher error models improves

the realism of the non-leave-out experiments. These error models range from

low amounts of error, with the default average number of error events per

fragment, up to 7.6 times the average number of substitutions per fragment

(for Illumina data) and up to 4.2 times the number of indels (for 454 data); see

the Table A25 for the fragment statistics for the different error models. Cur-

rent sequencing data, when properly filtered, do not exhibit the levels of error

77

shown in the highest error model conditions (Illumina 4 and 454 3); therefore,

this experiment represents a stress test of the methods, testing robustness

to increased error in the data, that may indicate performance under future

sequencing technologies, or under unfiltered data.

In total, the leave-one-out experiments had 600,000 fragments simu-

lated from the 30 marker genes and 240,000 fragments simulated from the 16S

genes. The non-leave-one-out experiments had 600,000 fragments simulated

from the 30 marker genes.

Simulated abundance profiling datasets. I used several datasets from

previous studies in the abundance profiling experiments. The simulated abun-

dance profiling datasets can be grouped by the complexity of the abundance

profiles and the average fragment length. High complexity (HC) datasets have

roughly uniform distributions of the species. Low complexity (LC) datasets

have staggered distributions of the species; typically low complexity distribu-

tions have a power law distribution. Medium complexity (MC) datasets fall in

between LC and HC datasets. Datasets either have short average read length

(at most 100 nucleotides) or long average read length (200-1000 nucleotides).

I used simulated abundance profile datasets from 4 different studies:

the MetaPhlAn HC and LC datasets [74], the FACS HC dataset [83], the

FAMeS LC, MC and HC simulated datasets [53], and the WebCarma HC

dataset [24]. Of these datasets, only the MetaPhlAn datasets had short se-

quences. To better examine performance on datasets with short sequences, I

78

generated Illumina-like reads from the genomes used in the WebCarma and

FACS datasets. Finally, the FACS dataset originally contained both human

and viral sequences. These were removed from the datasets so that profiling

performance was tested only on bacterial and archaeal sequences. Table 5.1

shows the summary of the datasets examined. A more in-depth description of

the datasets can be found in Section A7. .

Table 5.1: Summary of all simulated abundance datasets. Complexity refers
to the distribution of species in the profile. High complexity datasets have
an even distribution of species. Low complexity datasets have a staggered
distribution of species. Medium complexity datasets fall in between. Datasets
with a “*” were generated by generating Illumina-like reads from an existing
abundance profile using MetaSim. Datasets labeled with “DOE-JGI” used
fragments generated from genome sequencing projects at the Department of
Energy Joint Genome Institute. “Length” refers to the average length of the
reads, and “Complex.” refers to the complexity (High, Medium, or Low).

Dataset # Genomes Complex. Seq. Model Reads Length
MetaPhlAn HC 100 High NA 1000000 88
MetaPhlAn LC 25 Low NA 240000 88
FAMeS HC 113 High DOE-JGI 116771 949
FAMeS MC 113 Medium DOE-JGI 114457 969
FAMeS LC 113 Low DOE-JGI 97495 951
FACS HC 19 High 454 26984 268
FACS HC Illumina∗ 19 High Illumina 300000 100
WebCarma 25 High 454 25000 265
WebCarma Illumina∗ 25 High Illumina 300000 100

Taxonomies. The taxonomic trees for the 30 marker genes were estimated

by using RAxML [77] to refine the NCBI taxonomy using the SATé alignment

of the reference datasets (i.e., the reference alignments). The taxonomic trees

for the 16S RNA gene were estimated by using RAxML to refine the RDP

79

taxonomy using the reference SATé alignment.

Taxonomic identification results presented in this paper are based on

reads simulated from 32 marker genes (30 genes used in the MetaPhyler study

and two additional 16S marker genes). Note the marker-based methods TIPP

and MetaPhyler are trained specifically on this reference dataset. Thus, the

main foci of the taxonomic identification experiments are parameter explo-

ration for TIPP and the comparison of TIPP versus MetaPhyler.

Experiments. I performed both leave-one-out experiments and non-leave-

one-out experiments. In leave-one-out experiments, a particular taxonomic

group is removed from the reference set, and then fragments belonging to

the left-out taxonomic group are classified using various tools. In non-leave-

one-out experiments, the fragments being classified are obtained by adding

sequencing errors to short substrings from the full-length sequences.

The leave-one-out experiments are useful at understanding whether

methods are able to identify novel organisms or taxonomic clades (an impor-

tant focus of recent studies [97]). However, the non-leave-one-out experiments

(especially under the higher error models) are useful at understanding how well

methods are able to identify sequences from organisms with close relatives in

public databases. Thus, evaluating performance under both conditions is help-

ful at characterizing how well the methods work. Real metagenomic samples

are likely a mix of species, only some of which are not present in the reference

datasets, and therefore will fall somewhere in between the two extremes of

80

leave-one-out and non-leave-one-out in terms of ease of classification.

Abundance profiling results presented in this paper are based on reads

simulated from metagenomes. Abundance profiles for each method were esti-

mated by examining the set of fragments classified by the profiling method.

As noted earlier, marker-based methods require the fragments to first be

binned to the reference markers. BLAST is used internally by MetaPhyler

and MetaPhlAn with settings specific to the software; the BLAST setting

used by TIPP can be found in Section A8.2 .

MetaPhlAn and MetaPhyler both output an abundance profile from

a set of sequences. All other methods studied output the classification of

the fragments; abundance profiles for these methods were estimated by using

the relative abundance of the fragment classification results. Abundance pro-

files for all methods were then normalized by including only fragments that

were classified at the taxonomic level of interest. For example, species-level

abundance profiles are computed only on fragments that have species levels

classification; fragments left unclassified at the species level are excluded. De-

tails on the computation of the abundance profiles can be found in Section A5

.

Experiment 1: Algorithmic parameter exploration. TIPP has many

several parameters, and so my initial experiment evaluated the impact of these

parameters on the sensitivity and precision of TIPP used as a taxon identifica-

tion method, and then on the accuracy of the phylogenetic profiles it produces.

I set default values for these parameters based on these initial experiments.

81

Experiment 2: Abundance profiling experiments. I performed abun-

dance profiling experiments, separating the datasets into two different groups:

datasets with short reads (88-100 bps) and datasets with long reads (265-969

bps). I explored performance on datasets with uniform (HC datasets) and

staggered distributions (MC and LC datasets) of species.

Experiment 3: Evaluating the impact of sequencing error on taxo-

nomic identification methods. I performed a non-leave-one-out simulation

study to compare NBC, PhymmBL, and MetaPhyler to TIPP on taxonomic

identification of fragments simulated from marker genes (MetaPhlAn was ex-

cluded because it uses a disjoint reference set), evaluating the impact of se-

quencing error on taxonomic classification.

Performance evaluation. For the taxonomic classification methods, the

true lineage of each fragment is known, so I compute the percentage of frag-

ments classified correctly, incorrectly, and left unclassified at each taxonomic

rank.

For the abundance profiling experiments, the true abundance of the

metagenomes is known, so I compute the root-mean-squared error (RMSE)

of the estimated taxonomic profile. Let Cl be the set of clades found in the

true profile and all the estimated profiles for the taxonomic level l, Rx be the

abundance of clade x for the reference profile, and Ex be the abundance of

clade x for the estimated profile. Then RMSEl (root-mean-squared-error for

a taxonomic level l) is:

82

RMSEl =

√√√√∑
x∈Cl

(Rx − Ex)2

|Cl|
(5.7)

I normalize the all the RMSE of the other methods by the RMSE of

TIPP(0%,0%,100) to infer the relative performance of the methods.

5.4 Results

Experiment 1: Parameter Exploration Experiments. Initial experi-

ments evaluated the impact of the algorithmic parameters (support thresh-

olds, alignment subset size, and placement subset size) on TIPP for fragment

taxon identification (Sections S5.1 and S5.3) and phylogenetic profiling (Fig.

S15 and S16). The results show that using 0% for both the alignment and

placement support thresholds increased the sensitivity substantially, but also

decreased the precision; thus, more fragments were classified at each level, but

some of these classifications were incorrect, compared to using a threshold of

95%. Using an fHMM rather than a single HMM increases the true classifi-

cation rate and reduces the false classification rate, with the biggest improve-

ments observed for lower taxonomic levels under the higher error conditions.

TIPP(95%,95%,100) (that is, alignment and placement support threshold of

95%, and using an HMM family with alignment subsets of size 100) is the de-

fault setting for TIPP when used as a taxonomic classifier for individual reads.

Interestingly, when the objective is to estimate the phylogenetic profile (i.e.,

the distribution of taxa within a dataset, for some specific taxonomic level),

83

then reducing the alignment and placement support thresholds improves the

estimated distribution. That is, the increase in true positives (sequences that

are correctly classified) is sufficiently larger than the increase in false positives

(sequences that are incorrectly classified), so that the resultant distribution

that is estimated has higher accuracy. Thus, for the purpose of estimating

phylogenetic profiles, I used TIPP(0%,0%,100) as the default setting. For full

details on these experiments, see the Supplementary materials.

Table 5.2: The average RMSE on the short and long fragment datasets,
normalized by TIPP’s RMSE for each model condition and each taxonomic
rank. Thus methods with RMSE > 1 have worse performance than TIPP,
and methods with RMSE < 1 have better performance than TIPP. Note
that PhymmBL does not output any species level classifications. I use
TIPP(0%,0%,100) for abundance profiling (see SOM for results using other
variants). The best results for each level and fragment length are in boldface.

Short
Fragments Species Genus Family Order Class Phylum
NBC 1.595 1.991 2.435 2.440 2.038 2.661
PhymmBL NA 1.993 2.403 2.386 1.934 2.487
MetaPhlAn 0.931 1.029 1.128 1.184 1.103 1.333
MetaPhyler 6.143 3.642 2.310 1.604 1.460 1.278
TIPP 1.000 1.000 1.000 1.000 1.000 1.000
Long
Fragments Species Genus Family Order Class Phylum
NBC 1.161 1.250 1.264 1.236 1.059 1.888
PhymmBL NA 1.194 1.075 1.045 0.823 1.373
MetaPhlAn 1.802 1.372 1.202 1.168 0.986 1.463
MetaPhyler 4.582 1.779 1.343 1.228 1.239 1.520
TIPP 1.000 1.000 1.000 1.000 1.000 1.000

Experiment 2: Abundance profiling experiments. I show results com-

paring TIPP to NBC, PhymmBL, MetaPhlAn, and Metaphyler in Table 5.2

84

(see Tables S21 and S22 for results on individual datasets).

On the short fragment datasets, methods differ on particular datasets,

and some datasets are harder than others (for example, MetaPhlAn-LC

presents a more difficult challenge than MetaPhlAn-HC). MetaPhyler’s ac-

curacy is extremely poor at the more specific levels, and has among the worst

accuracy at the species and genus level. MetaPhlAn has the best accuracy at

every level on the two MetaPhlAn datasets (MetaPhlAn HC and MetaPhlAn

LC). TIPP is the best on the WebCarma Illumina dataset at every level.

On the FACs HC Illumina dataset, TIPP is also best on the lower levels

(species through order), MetaPhlAn is best at the class level, and MetaPhyler

is best at the phylum level. Averaging across these four datasets, TIPP and

MetaPhlAn have the best results of all methods, and are very close in per-

formance (MetaPhlan is better at the species level, slightly less accurate than

TIPP at the genus level, and less accurate than TIPP at the family through

class levels) with the exception of the phylum level (MetaPhlan has 33.3%

worse RMSE).

On the long fragment sequences, the absolute and relative performance

of methods can differ substantially between datasets. TIPP has the best ac-

curacy at all levels except for class (where MetaPhlan is best) for the FACs

HC dataset. On the FAMeS HC dataset, MetaphlAn is generally best, but

NBC is best at the species level. On the FAMeS LC dataset, NBC and TIPP

are competitive for the best at the species and genus level, but PhymmBL

is best at the other levels. On the FAMeS MC dataset, TIPP is best at the

85

species, genus, and phylum levels, but MetaPhlAn is best at the other levels.

Finally, on the WebCarma dataset, NBC is best (or close to the best) at the

species and genus levels, PhymmBL is best at the family through class lev-

els, and TIPP, PhymmBL, and MetaPhlAn are the best at the phylum level.

Examining average performance by level, I see the following trends. At the

species level, TIPP has the best average performance, NBC is second (16.1%

worse than TIPP), and MetaPhlAn is third (80.2% worse than TIPP). At the

genus level, TIPP is best, PhymmBL is second (19.4% worse than TIPP),

and NBC is third (25.0% worse than TIPP). At the family level, TIPP is first,

PhymmBL is second (7.5% worse than TIPP), and MetaPhlAn is third (20.2%

worse than TIPP). At the order level, TIPP is first, PhymmBL is second (4.5%

worse than TIPP), and MetPhlAn is third (16.8% worse than TIPP). At the

class level, PhymmBL is first (17.7% better than TIPP), MetaPhlAn is second

(1.4% better than TIPP), and TIPP is third. Finally, at the phylum level,

TIPP is best, PhymmBL is second (37.3% worse than TIPP), and MetaPhlan

third (46.3% worse than TIPP). Thus, TIPP has the best average accuracy

at all levels except the class level, where PhymmBL is best. More generally,

PhymmBL has excellent performance on these datasets, and is typically in

second place. Also, although MetaPhlAn and TIPP are close in some levels,

there are large differences at the species genus, and phylum levels.

MetaPhlAn is close to TIPP on the short fragment datasets but less ac-

curate for the long fragment datasets, or at the phylum level for the short frag-

ments. PhymmBL had excellent results on the long fragment datasets (and is

86

best at the class level) but was not as accurate on the short fragment datasets.

NBC had variable performance - excellent on many long fragment conditions,

but not as accurate for the short fragment datasets. Overall MetaPhlAn and

TIPP have the best average performance on short fragment datasets, while

TIPP and PhymmBL have the best average performance on the long fragment

datasets.

Experiment 3: Exploring robustness to sequencing error on taxo-

nomic identification experiments.

I used non-leave-one-out results on fragments simulated from all 30

marker genes, comparing TIPP(95%, 95%, 100), MetaPhyler, PhymmBL, and

NBC under varying error models (Figure 5.3 for 454-like error models, Fig.

S17 for Illumina-like errors). The higher error models (Illumina 4, 454 2, and

454 3) produce datasets that do not contain any full-length sequences with a

close match to the query sequence.

PhymmBL performed reasonably well on the Illumina error-model con-

ditions and the easier 454 error-model condition. However, PhymmBL typi-

cally has more false classifications; this is most noticeable on the harder 454

model conditions.

While NBC had excellent precision, it had the worst recall of the meth-

ods. On the easiest Illumina model condition, NBC classified less than 60% of

the fragments at the phylum level. On the 454 model conditions, NBC’s recall

dropped by a considerable amount. On the easiest 454 model condition, less

87

species genus family order class phylum

0.00
0.25
0.50
0.75
1.00

45
4_

3

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

Correct Unclassified Incorrect

Figure 5.3: Non-leave-one-out experiments comparing the classification accu-
racy for NBC, PhymmBL, MetaPhyler and TIPP-default (i.e., TIPP-default
refers to TIPP(95%,95%,100)) for fragments simulated from the 30 marker
genes under different rates of 454-like errors. Note that PhymmBL does not
classify below the genus level and thus has 100% unclassified rate at the species
level.

88

than 20% of the fragments could be classified at the phylum level.

MetaPhyler had very good performance on Illumina error models, but

poorer performance on the harder 454-error models. For the Illumina error-

model conditions, MetaPhyler classified more than 90% of the fragments cor-

rectly at all taxonomic levels for the first two Illumina error-model conditions,

but dropped to 70% or higher on the hardest Illumina error-model condition.

On the 454 error-model condition, however, the percentage of fragments cor-

rectly classified by MetaPhyler rapidly dropped as the error rate increases,

with less than 50% of the fragments classified correctly at the phylum level on

the hardest model condition.

TIPP had very few incorrect classifications for any error-model at any

level. TIPP also had very good recall except at the species level. MetaPhyler

had better recall at lower taxonomic ranks (species and genus) with Illumina 1

and Illumina 2 error models.

Not surprisingly, methods trained on the marker dataset vastly out-

perform the composition-based methods on sequences from these markers for

taxon identification. However, under the higher error models (especially with

454 errors, which involve indels), we see substantial differences between meth-

ods, with TIPP showing high robustness to indels.

One interesting question is whether taxonomic classification methods

can correctly identify “dark matter” (sequences that do not belong to known

phyla [71]). Since all fragments in my datasets come from known phyla, fail-

89

ure to classify these fragments could be interpreted as an assertion that the

fragments belong to new phyla, and so would be a “false positive” with respect

to identifying dark matter. Figure 1 allows us to explore this in a non-leave

out experiment with indel errors under 454 models (low indel rates for 454 1

and higher rates for 454 3). Under low indel errors, TIPP and PhymmBL have

generally low rates (less than 2%) of incorrectly identifying sequences as “dark

matter”, Metaphyler has slightly higher rate (6%), and NBC has an extremely

high rate (72%). Incorrect dark matter identification under the 454 3 error

model is much higher: 100% for NBC, 56% for MetaPhyler, 14% for TIPP, and

2% for PhymmBL. These results show the challenges in interpreting failure to

classify sequences as indicative of membership in novel phyla, especially for

taxonomic identification methods (such as NBC and MetaPhyler) that attempt

to minimize false positive identifications.

Summary. The taxonomic identification experiments showed interesting dif-

ferences between TIPP, NBC, MetaPhyler, and PhymmBL. On average TIPP

had higher recall than MetaPhyler, with exceptions only on the non-leave-one-

out experiments on the easier Illumina error models. On all other model con-

ditions (454 non-leave-out experiments and all leave-out-experiments), TIPP

had greater recall than MetaPhyler, with the largest improvement in recall at

the lower taxonomic levels. At the same time, TIPP also had lower precision

in some (but not all) cases, but in most cases the reduction in precision was

not as large as the improvement in recall. By design, NBC had very good pre-

90

cision, but on these data NBC also had poorer recall than the other methods.

PhymmBL was typically not as accurate as either MetaPhyler or TIPP (lower

precision and recall), but was more accurate than NBC.

The experiments on abundance profiling included MetaPhlAn and ex-

plored accuracy with respect to RMSE. These experiments showed somewhat

different trends. On short fragment datasets, TIPP and MetaPhlAn had bet-

ter accuracy than the other methods. TIPP and MetaPhlAn had very similar

average accuracy, with MetaPhlAn better on the MetaPhlAn datasets, and

TIPP generally better on the other datasets. On long fragment datasets,

TIPP had generally the best accuracy of all methods. PhymmBL was overall

second best, and had the best accuracy at the class level, and MetaPhlAn was

in third place.

Since TIPP and MetaPhlAn are marker-based methods, and only clas-

sify a fraction of the full set of fragments, this shows that good performance

for abundance profiling does not rest on the ability to classify all fragments, or

even most fragments. Instead, highly accurate classification of marker genes

can provide excellent estimations of taxonomic abundance.

More generally, abundance profiling can be improved by somewhat

more aggressive taxonomic profiling techniques, provided that proportion-

ally more correct than incorrect classifications result. My comparison of the

different TIPP variants suggest that the choice between which TIPP ver-

sion to use depends on the context of the analysis; taxonomic identifica-

tion analyses may benefit by minimizing false positive classifications by us-

91

ing TIPP(95%,95%,100), whereas abundance profiling analyses may benefit

by using TIPP(0%,0%,100).

5.5 Conclusions and Future Work

In this chapter, I presented TIPP, a new marker-based method for tax-

onomic identification and abundance profiling. TIPP combines SEPP, a recent

method for phylogenetic placement, with statistical methods for evaluating the

support for a given alignment and phylogenetic placement, in order to give a

highly accurate taxon identification of each read. Furthermore, by modifying

algorithmic parameters (such as the required statistical support), the user can

control for precision and recall, and depending on the context of the analysis,

can optimize TIPP for taxonomic identification or for abundance profiling.

SEPP’s technique of using fHMM is a key part to TIPP’s improved

accuracy as a taxonomic identification method, and suggests that similar im-

provements for other HMM-based classification methods might also be achiev-

able. Therefore, in my future work, I plan to compare TIPP against mOTU

[85], a new marker-based profiling method that maps metagenomic reads to a

reference dataset generated by HMMs, and to explore the impact on mOTU’s

performance by using SEPP’s decomposition strategy in generating mOTU’s

reference dataset.

One important area of interest is the taxonomic identification of deeply

branching phyla [71]. The key step in detecting deeply branching phyla is

searching for cellular organisms with very different 16S sequences. Cells that

92

have different enough 16S sequences are targeted for single cell sequencing.

TIPP can be used to aid in this endevour. 16S fragments can be selected

from metagenomic samples and then classified using TIPP. Since the focus

is for searching on very divergent 16S sequences, the decomposition strategy

used within TIPP may be helpful in obtaining more accurate classifications

of the 16S fragments. Samples that have high amounts of “dark matter” 16S

fragments can then be targeted for single cell assembly.

93

Chapter 6

UPP: Ultra-large alignments using family of

Hidden Markov Model

In Chapter 4, I showed that SEPP resulted in improved phylo-

genetic placement accuracy compared to HMMALIGN+pplacer and Pa-

PaRa+pplacer. In this chapter, I will show a modification to SEPP for the

large-scale alignment of unaligned sequences. This new technique called Ultra-

large Alignments using Phylogenetic Profiles (UPP) allows accurate alignment

of datasets containing both fragmentary and full-length sequences, is fast and

highly parallelizable, and can generate an accurate alignment on datasets con-

taining 1,000,000 sequences.

In Section 6.1, I describe UPP, a modification of SEPP for ultra-large

alignment. In Section 6.2, I describe the simulation study designed to evaluate

the alignment and phylogeny estimation accuracy of UPP on both simulated

and biological datasets. In Section 6.3, I present the results comparing UPP

and other alignment techniques. I show that UPP can be tuned for accuracy

or speed, and that UPP generally results in better alignments than other

methods, and that UPP is the only method can align the largest datasets in

less than 24 hours on a 12 core machine. Finally, in Section 6.4, I discuss

94

future improvements and ongoing studies for UPP.

6.1 UPP: Ultra-large alignment using Phylogeny-aware
Profiles

UPP begins with a set of unaligned sequences and uses a subset of the

sequences to build the fHMM. As the fHMM model requires a backbone align-

ment and tree, UPP selects a subset of the sequences to be the “backbone set”;

the remaining sequences are called the “query set”. UPP preferentially selects

the backbone sequences from sequences that are considered to be “full-length”

in order to provide robustness to fragmentary data. UPP uses PASTA [56]

to compute a backbone alignment and tree on the backbone sequences. UPP

then uses the backbone alignment and tree to build the fHMM as described

in Chapter 3, with some minor modifications. Rather than computing HMMs

on the alignment subsets with less than ma sequences, UPP computes HMMs

at every stage of the decomposition step to create a set of nested hierarchical

HMMs. Thus, the size of the subsets range from at most ma sequences to up

to the full dataset, and all but the smallest subsets contain other subsets (see

Fig. 6.1 for diagram). UPP then applies the fHMM alignment algorithm to

align the remaining query sequences to the backbone alignment.

UPP can also be used iteratively. In the first iteration, the UPP align-

ment is estimated, and a ML tree is estimated using FastTree [65]. This ML

tree is then used to select the backbone dataset for the next iteration, thus

ensuring appropriate phylogenetic diversity in the backbone. While this re-

95

sampling technique is generally beneficial, it is particularly helpful when there

is highly uneven taxon sampling (e.g., a densely sampled in-group and very

sparsely sampled distant outgroup), when fragmentary sequences are unevenly

distributed throughout the phylogeny, or when sequence lengths changed sub-

stantially over evolutionary history. In each of these cases, the technique used

to select backbone sequences could lead to backbones that fail to have ade-

quate representation in all the major clades – thus reducing the accuracy of

the resultant alignment.

The UPP algorithm. I describe a single iteration of UPP run in its default

mode where the maximum alignment subset size ma is set to 10; see Appendix

B1.2.4 for additional details. The input to UPP is a set of sequences. In

the first step, UPP determines whether the dataset has fragmentary sequences

based on the estimated median length of “full-length” sequences. Any sequence

that is shorter than 75% of the median length, or longer than 125% of the

median length, is not considered to be full-length, and will not be included

in the backbone dataset (except in a “directed sampling” step, as described

earlier). Next, a random subset S0 of 1000 full-length sequences is selected,

and a PASTA alignment A and tree T are computed on the subset. (If the

number of full-length sequences is less than 1000, then S0 is the entire set of

full-length sequences.) The set S0 is called the “backbone dataset” and the

tree and alignment computed using PASTA on S0 are called the “backbone

alignment” and “backbone tree”.

96

Alignment of query sequences to the best scoring model

Final merged alignment of all sequences

HMM2

HMM3

HMM4

HMM5

HMM1

Unaligned sequences (input)

Randomly selected
backbone

Remaining sequences
 (query set)

Backbone alignment
and tree

Family of HMMs

Figure 6.1: The UPP algorithm and the HMM Family technique.

97

The backbone tree is then used to produce a collection C of subsets of

the backbone dataset, as follows. In contrast to the original fHMM model, C

is initialized to include S0. The centroid is removed and the leaf sets of the

two subtrees produced by removing the centroid edge are also added to C. At

this point, C contains three sets: one containing the entire set of backbone

sequences, and two others with roughly half the backbone sequences. This

process is repeated on every subtree with more than ten leaves. Thus, the

collection C contains a set of subsets of S0, where the smallest subsets might

contain fewer than ten leaves, and where every subset (except for the smallest

subsets) contains two other subsets. For example, if the backbone tree con-

tains 1000 leaves, then C would contain one set of 1000 sequences, two sets of

approximately 500 sequences, four sets of approximately 250 sequences, etc.,

down to some number of sets with ten or fewer sequences.

I then compute the backbone alignment restricted to each subset of

sequences in C; these are called the subset alignments. I use HMMBUILD

(from the HMMER3 suite of tools) to build an HMM on each subset alignment,

with a match state for each site that has at least one non-gap character (note

that this is not the default way of running HMMBUILD). This produces a set

H of profile HMMs, one for every subset alignment, with approximately the

same number of states in each HMM (the only condition where different profile

HMMs will have different numbers of states are when the subset alignments

contain different numbers of all-gap sites).

Each sequence in S−S0 is called a query sequence. I use HMMSEARCH

98

(which takes alignment uncertainty into account) to compute the fit between

each query sequence and each profile HMM in H. The HMM with the best fit

(defined by the best bit score returned by HMMSEARCH) is selected for the

query sequence.

HMMALIGN is then used to add query sequence s to the subset align-

ment As associated to the HMM Hs selected by s. This produces a local

alignment of s to As (and hence an alignment of As ∪ {s}). By transitivity,

this defines how to add s into the backbone alignment on S0, which I call the

“extended alignment for s”. When the sequence s has a character (nucleotide

or amino acid) that is not aligned to anything in the backbone alignment, the

extended alignment will have an “insertion site”.

Once all the extended alignments are computed, I can merge them all

into a single multiple sequence alignment on S. This approach will tend to

have potentially many insertion sites, which can be masked out during the tree

estimation step to improve speed.

UPP can be used iteratively, but iteration only occurs if the distribu-

tion of backbone sequences in a tree estimated on the UPP alignment provides

inadequate phylogenetic diversity. Thus, the first step is to determine if all

the major clades in the estimated tree contain at least one tenth of the ex-

pected number of backbone sequences. If the estimated tree passes this test,

no resampling is triggered. Otherwise, UPP uses the tree to select the back-

bone sequences, ensuring that every major clade contributes appropriately to

the backbone sequence dataset. See Appendix B1.2.1, B1.2.2, and B1.2.4 for

99

additional details.

6.2 Performance Evaluation

I demonstrate UPP’s accuracy on a collection of biological and sim-

ulated datasets, in comparison to leading multiple sequence alignments. I

compare estimated alignments to reference (true or curated) alignments, and

ML trees on these alignments to reference trees, and record alignment error

and tree error.

Datasets. Because structural alignment and phylogenetic alignment have

different purposes and potentially different criteria [30, 69], I use both simu-

lated and biological datasets (with structurally-based alignments) to evaluate

UPP in comparison to other MSA methods.

The simulated datasets include 1000-sequence nucleotide datasets with

average length 1000-1023 from [46] that were generated using ROSE [82], and

used to evaluate SATé in comparison to other MSA methods on large datasets;

10,000-sequence datasets we generated using Indelible v. 1.03 [22] with average

sequence length 1000; and subsets of the million-sequence RNASim [26] dataset

with average sequence length 1554.5. RNASim is a simulator for RNA sequence

evolution that I present here, and that was designed to simulate a complex

molecular evolution process using a non-parametric population genetic model

that generates long-range statistical dependence and heterogeneous rates. The

simulated AA datasets include the 5000-sequence datasets from [65], which

100

were generated using ROSE based on proteins from the COG database [87],

and had average sequence lengths varying from 179.4 to 346.9.

The biological datasets include the three largest datasets from the Com-

parative Ribosomal Website (CRW) [11], each a set of 16S sequences. I include

the 16S.3 dataset (6,323 sequences of average length 1557, spanning three phy-

logenetic domains), the 16S.T dataset (7,350 sequences of average length 1492,

spanning three phylogenetic domains), and the 16S.B.ALL dataset (27,643 se-

quences of average length 1371.9, spanning the bacteria domain). The CRW

datasets have highly reliable, curated alignments inferred from secondary and

tertiary structures. I include ten large amino acid datasets (10 AA) with cu-

rated multiple sequence alignments (the eight largest BAliBASE datasets [89]

and IGADBL 100 and coli epi 100 from [25]); these range in size from 320

to 807 sequences and have average sequence lengths that range from 56.7 to

886.3. I also used 19 of the largest HomFam datasets, which are amino acid

sequence datasets ranging in size from 10,099 to 93,681 sequences, and hav-

ing average sequence lengths ranging from 29.1 to 469.8; these datasets were

used in [75] to evaluate protein multiple sequence alignment methods on large

datasets, and have Homstrad [58] reference alignments on very small subsets

(5-20 sequences, median 7) of their sequences.

I generated fragmentary datasets by selecting a random subset of se-

quences and a random substring (of a desired length) for each selected sequence

(see Appendix 6.2 for full details). Empirical statistics (number of sequences,

number of sites in the reference alignment, average and maximum p-distances,

101

average gap length, and percent of the matrix that is gapped) for each dataset

and model condition can be found in Tables B2 and B3.

Reference alignments and trees. For simulated datasets, the refer-

ence alignment is the true alignment (known because I simulate evolution

and record the events); for biological datasets, the reference alignment is the

curated structural alignment. Reference trees for the simulated datasets are

the model trees that generate the data. For the biological datasets, we use

RAxML with bootstrapping on the reference alignments to obtain ML trees

with branch support, and then I collapse all branches with less than 75% sup-

port; this is the same technique used in [47] to produce the reference trees on

the CRW datasets. The reference trees for the biological datasets are typically

incompletely resolved. In this case, the recovery of low support branches in

the biological datasets is largely influenced by chance, making the FN rate

preferable to the standard bipartition error rate, also called the Robinson-

Foulds (RF) [72] error rate. FN rates are identical to the RF error rates when

estimated and reference trees are fully resolved, and so FN rates are also ap-

propriate for the simulated dataset analyses; hence, I report FN rates for all

analyses, using [64].

Fragment Simulation In order to test the robustness of different alignment

methods to fragmentary sequences, I generated datasets with both full-length

and fragmentary sequences from the 1000-taxon 1000M2, 1000M3, and 1000M4

102

datasets, the CRW datasets, the Indelible datasets, and the RNASim 10K

dataset. For each dataset, a fraction of the sequences (12.5%, 25%, or 50%)

were made fragmentary by selecting a contiguous substring (length drawn from

a normal distribution with mean length of 500 bps and standard deviation

of 60 bps) from a random position (drawn uniformly, at random) from the

original full-length sequence. The remaining sequences that were selected to

be full-length were left unmodified.

For each of the 1000-taxon fragmentary datasets, 5 replicates were gen-

erated. For the larger CRW, Indelible, and RNASim 10K datasets, only 1

replicate was generated.

Methods. I use Clustal-Omega [75] version 2.1, MAFFT [36, 38] version

6.956b, Muscle [16] version 3.8.31, Opal [93], PASTA, SATé-II [47], and UPP

to compute multiple sequence alignments. I show results for only iteration

of UPP in this chapter; see Appendix B2.2 for results using more than one

iteration. I use FastTree [65] and RAxML [78] to compute maximum likelihood

trees on estimated and reference alignments.

Performance Metrics. I compare estimated alignments and their maxi-

mum likelihood (ML) trees to reference alignments and trees. I use FastSP [57]

to compute alignment error, recording the sum-of-pairs false negative (SPFN)

rate (which is the percentage of the homologous pairs in the reference align-

ment that are not in the estimated alignment) and the sum-of-pairs false posi-

103

tive (SPFP) rate (which is the percentage of homologous pairs in the estimated

alignment that are not present in the reference alignment). SPFN and SPFP

rates are given in Appendix B, and the means of these two alignment error

rates are given in this chapter. I report tree error using the false negative

(FN) rate (also known as the missing branch rate), which is the percentage

of internal edges in the reference tree that are missing in the estimated tree.

I also report ∆FN , the difference between the FN rate of the estimated tree

versus the FN rate of the tree estimated on the true alignment, to evaluate the

impact of alignment estimation error on phylogenetic analysis. Most typically,

∆(FN) > 0, indicating that the estimated tree has higher error than the ML

tree on the true alignment.

Computational resources. The majority of experiments were run on

the homogeneous Lonestar cluster at the Texas Advanced Computing Center

(TACC). Because of limitations imposed by TACC, these analyses are limited

to 24 hours, using 12 cores with 24 GB of memory; methods that failed to

complete within 24 hours or terminated with an insufficient memory error

message were marked as failures. For experiments on the million-sequence

RNASim dataset, I ran the methods on a dedicated machine with 250 GB of

main memory and 12 cores and ran until an alignment was generated or the

method failed. I also performed a limited number of experiments on TACC

with checkpointing, to explore performance when time is not limited.

104

6.3 Results

Initial experiments. I let UPP(Default) denote the default version of

UPP in which I use backbones of 1000 sequences, use PASTA to compute the

backbone alignment, and add sequences to the backbone alignment using the

HMM Family technique. I also explore UPP(Fast), the variant where I use use

backbones of 100 sequences but keep the other algorithmic parameters fixed,

and “NoDecomp” versions of UPP(Fast) and UPP(Default) to indicate that

I use just one HMM instead of a family of HMMs to represent the backbone

alignment. I show results for one iteration of UPP.

Since UPP computes its backbone using PASTA, I compared UPP to

PASTA, and included a comparison to SATé-II, focusing on the RNASim

datasets. As shown in [56], PASTA is more accurate than SATé-II, can analyze

larger datasets, and is computationally more efficient than SATé-II. A compar-

ison between UPP(Default), SATé-II, and PASTA shows that UPP(Default)

typically had the lowest alignment error rates (figs. B23-B30) and was much

more robust to fragmentation (fig. B31). UPP produced more accurate trees

than SATé-II (fig. B24). PASTA had a small advantage over UPP with re-

spect to tree estimation on datasets without fragments (fig. B24), but was less

accurate than UPP on datasets with fragments (fig. B32). UPP(Fast) was also

able to analyze larger datasets than PASTA and SATé-II: the million-sequence

RNASim dataset was analyzed by UPP(Fast, NoDecomp) in 52 hours, but

PASTA failed to complete on the dataset and SATé-II failed to complete on

even the 100K RNASim dataset (Appendix B1.3). I focus the remainder of

105

the discussion on Clustal-Omega, Muscle, MAFFT, and UPP; results for the

full set of methods can be found in Section B2.9.

6.3.1 Phylogenetic Alignment Accuracy

I begin by evaluating UPP for phylogenetic estimation purposes. I use

simulated datasets, since these provide true alignments and true trees, and

thus allow us to exactly quantify error in identifying true positional homology

(i.e., descent from a common ancestor [69]).

Alignment estimation error on RNASim datasets. I examined

performance on the RNASim datasets with up to 200,000 sequences, using

UPP(Fast) to reduce running times (results obtained using backbones of 1000

sequences showed improved accuracy but took longer; see Table 6.1). I com-

pare UPP(Fast) to MAFFT (default MAFFT on the 10K and 50K datasets,

MAFFT-PartTree on 100K dataset), Clustal-Omega, and Muscle (Fig. 6.2(a)).

Default MAFFT produced less accurate alignments than MAFFT-PartTree on

the RNASim 10K dataset (fig. B20) and failed to complete on the 100K and

larger datasets (Section B1.3).

UPP(Fast) succeeded in analyzing all the datasets within the 24 hour

time limit, MAFFT-PartTree succeeded in analyzing the datasets with up to

100K sequences, and default MAFFT successfully analyzed datasets with up

to 50K sequences; however, the other methods failed to align RNASim datasets

with more than 10K sequences. Muscle failed because it required more than 24

106

0.0

0.2

0.4

0.6

10000 50000 100000 200000
M

ea
n

al
ig

nm
en

t e
rr

or

Clustal−Omega Muscle MAFFT UPP(Fast)

(a) Alignment error on RNASim datasets with 10K to 200K sequences

0.00

0.25

0.50

0.75

1.00

Indel_10000M2 Indel_10000M3 Indel_10000M4 FastTree COG

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Alignment error on other simulated datasets

0.0

0.2

0.4

10 AA CRW HomFam

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(c) Alignment error on biological datasets

Figure 6.2: Alignment error rates on simulated and biological
datasets. All methods were run with 24 GB of memory and 12 CPUs,
and given 24 hours to complete. MAFFT is run using L-INS-i on the 10 large
AA datasets, using default MAFFT on the FastTree COG datasets, HomFam
datasets, and the CRW 16S.T and 16S.3 datasets, and using the PartTree com-
mand for the CRW 16S.B.ALL dataset (default MAFFT failed to align this
dataset). Results not shown are due to methods failing to return an alignment
within the 24 hour time period on TACC, using 12 processors.

107

GB of memory on these larger datasets, and Clustal-Omega failed to return

an alignment but without giving an error message (see Appendix B1.3 for

details). On the RNASim 10K dataset (Fig. 6.2(a)), the error rates were

13.3% for UPP(Fast), 34.9% for Clustal-Omega, 52.7% for default MAFFT,

and 64.6% for Muscle. UPP(Fast)’s alignment error rate was quite stable

across all numbers of sequences (up to 200,000), varying between 12.5-13.3%.

I analyzed the million-sequence RNASim dataset using UPP(Fast),

UPP(Fast,NoDecomp), and UPP(Default,NoDecomp), using a dedicated ma-

chine, allowing the analysis to exceed the 24 hour time limit in TACC. Both

UPP(Fast, NoDecomp) and UPP(Default, NoDecomp) completed in less than

three days and produced very accurate alignments (13.0% and 11.1% align-

ment error, respectively; see Table B1). UPP(Fast) took 12 days to align this

dataset, and produced a slightly more accurate alignment than UPP(Fast,

NoDecomp) (alignment error 12.8%).

Results on the Indelible NT simulated datasets. The 10,000-

sequence Indelible simulated datasets evolved under low (10000M4), moderate

(10000M3), or high (10000M2) rates of evolution. The difficulty in estimating

alignments increased with the rate of evolution; therefore, I refer to these model

conditions as easy (10000M4), medium (10000M3), and hard (10000M2). I ran

UPP(Default), MAFFT-Default, Muscle, and Clustal-Omega on ten replicates

for each model condition.

UPP had very low average alignment error across all three model con-

108

ditions: 3.3%, 1.3%, and 0.1% on the hard, medium, and easy model condi-

tions, respectively (Fig. 6.2(b)). The accuracy of the other methods, however,

degraded rapidly with the increase in the rate of evolution. For example,

under the hard model condition, Muscle had 99.5% average alignment error,

MAFFT-Default had 97.9% error and Clustal-Omega failed to generate an

alignment (Fig. 6.2(b)). Under the medium model condition, MAFFT-Default

had 22.8% error, Clustal-Omega had 65.6% error, and Muscle had 87.6% er-

ror (Fig. 6.2(b)). Finally, under the easy model condition, MAFFT-Default,

Muscle and UPP all had very low error (below 0.4%), and Clustal-Omega had

3.4% error (Fig. 6.2(b) and figs. B40 and B41).

Results on simulated AA datasets with 5000 sequences. On the

5000-sequence simulated amino acid datasets, UPP had very low error (2.9%),

MAFFT-Default had 4.9%, Muscle had 5.5%, and Clustal-Omega had 6.5%

(Fig. 6.2(b), figs. B48-B49).

Results on 1000-sequence simulated nucleotide datasets. The nine

1000-sequence model conditions studied in [46, 47] varied in gap length distri-

bution and overall difficulty (as influenced by the relative frequency of inser-

tions and deletions (indels) to substitutions, and rate of evolution). Although

there is sequence length heterogeneity in these datasets, all sequences fall

within the range considered “full-length”; therefore, because these datasets

have only 1000 sequences, UPP(Default) is identical to PASTA on these data.

109

I were able to run Opal and MAFFT-L-INS-i (the most accurate version of

MAFFT) in addition to Clustal-Omega, Muscle, and UPP(Default). Error

rates varied across the model conditions, but the relative performance of meth-

ods was fairly stable: UPP(Default) and Opal had the lowest alignment error

rates (with UPP(Default) more accurate than Opal under all models except

those with the lowest rate of evolution), Muscle and MAFFT-L-INS-i were

typically close in error (with about twice as much error as UPP(Default) and

Opal), and Clustal-Omega had the highest error (fig. B37). As an example,

on 1000M3, one of the easiest model conditions, UPP(Default) and Opal had

the lowest alignment errors (5.6% and 5.4%, difference not statistically sig-

nificant), followed by MAFFT-L-INS-i (14.1%), Muscle (15.1%), and finally

Clustal-Omega (34.3%). On 1000M1, one of the hardest model conditions,

UPP(Default) had 19.9% error, followed by Opal with 25.1%, MAFFT-L-INS-

i with 52.2%, Muscle with 52.5%, and finally by Clustal-Omega with 91.8%.

Impact of MSA estimation technique on phylogenetic tree estima-

tion. Next, I evaluated the impact of MSA estimation on phylogenetic tree

estimation. I show results for three of the 1000-sequence model conditions,

each with medium gap lengths, and varying the rate of evolution. Under rel-

atively low rates of evolution (1000M3), error rates were generally low, but

under moderate (1000M2) to high (1000M1) rates of evolution, the tree error

rates increased for most methods (fig. B39). For example, on the hardest model

condition (1000M1), the ∆FN error rates were 4.2% for UPP(Default), 15.4%

110

0.0

0.2

0.4

0.6

RNASim 10K Indel 10000M2 Indel 10000M3 Indel 10000M4

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default) True alignment

Figure 6.3: Tree error on simulated datasets with 10,000 sequences.
I show FN tree error results on the RNASim 10K and Indelible datasets. ML
trees were estimated using FastTree under the GTR model. All MSA methods
were run with 24 GB of memory and 12 CPUs and given 24 hours to complete.
MAFFT was run under the default setting on all datasets. Standard error bars
are shown. Averages are computed over 10 replicates per dataset. Clustal-
Omega terminated with an error message on the Indelible 10000M2 datasets
and thus, results are not shown.

for MAFFT-L-INS-i, 20.5% for Opal, 26.5% for Muscle, and 52.0% for Clustal-

Omega. At the other extreme, on a very easy model condition (1000M3), ∆FN

error rates were generally good: 0.2% for UPP(Default), 1.7% for MAFFT-

L-INS-i, 1.8% for Opal, and 3.7% for Muscle; only Clustal-Omega did poorly

under this model condition (11.4% ∆FN).

Most methods do well on the 5000-sequence simulated AA datasets, ex-

cept for Opal, which failed to align the COG438 dataset (terminated early due

to memory error) and had high ∆FN (12.2%) on the other datasets; in com-

parison, UPP(Default) had the most accurate results (1.9% ∆FN), followed

by Muscle with 3.1% and Clustal-Omega with 4.1% (fig. B50).

111

Performance on the Indelible and RNASim datasets with 10,000 se-

quences (Fig. 6.3) show that UPP(Default) had very low FN error, within

0.7% tree error of ML on the true alignment, even on the hardest Indelible

datasets. With the exception of the easiest Indelible model conditions where

all methods perform equally well (within 0.4% tree error of ML on tree align-

ment), the other methods produced significantly less accurate trees. For exam-

ple, on the Indelible 10000M2 model, UPP had 0.6% ∆FN error, MAFFT had

58.1%, Muscle had 58.6%, and Clustal-Omega failed to generate an alignment

(Fig. 6.3 and section B1.3).

I computed ML trees using FastTree on three UPP alignments

(UPP(Fast), UPP(Fast,NoDecomp), and UPP(Default,NoDecomp)) of the

million-sequence RNASim dataset. Despite the large number of sequences

and relatively few sites (1500 average sequence length), FN tree error was still

very low: 8.4% for UPP(Fast,NoDecomp), 7.7% for UPP(Default,NoDecomp),

and 7.5% for UPP(Fast), so that ∆FN was between 2.0-2.8% for all UPP vari-

ants I tested. The phylogenetic accuracy of these trees is noteworthy, given

that the true alignment; see Table B1) given sequences were not particularly

long (1500 sites, on average), indicating not only the quality of the sequence

alignment produced by UPP(Fast) and UPP(Fast,NoDecomp), but FastTree’s

ability to produce reasonable results on extremely large datasets.

I used the RNASim datasets to explore the impact of increased taxon

sampling, which is expected to improve phylogenetic accuracy [100]. As ex-

pected, tree error was reduced with increased taxon sampling when using true

112

alignments: ML trees had FN error rates of 10.6%, 8.1%, 6.9%, and 6.1% on the

RNASim 10K, 50K, 100K, and 200K datasets, respectively. I then tested this

on the UPP alignments, to see if the beneficial impact held for alignments es-

timated using UPP. Maximum likelihood trees computed on UPP(Fast) align-

ments also reduced in error with increasing numbers of taxa: UPP(Fast) trees

had 11.8% FN error at 10K sequences, 9.4% at 50K sequences, 8.3% at 100K

sequences, 7.6% at 200K sequences, and 7.5% at 1,000,000 sequences. Thus,

UPP alignments are good enough to show the beneficial impact of increased

taxon sampling on phylogenetic accuracy (similar patterns hold for other UPP

variants, see Table 6.1).

6.3.2 Structural Alignment Accuracy

I used biological datasets with structurally-defined reference alignments

to evaluate UPP with respect to structural alignment accuracy. On the ten

amino-acid datasets (10 AA) with full alignments, Muscle had the highest av-

erage alignment error (30.2%) and the other methods (MAFFT-L-INS-i, Opal,

and UPP) have very close error rates between 23.5% and 24.3% (Fig. 6.2(c),

figs. B45 and B46). The 19 HomFam datasets and three CRW datasets are too

large for MAFFT-L-INS-i or Opal, and so I use MAFFT-Default (or MAFFT-

PartTree on CRW 16S.B.ALL) on these data. On the 19 HomFam datasets,

Muscle failed to align two datasets, and had generally very high error on those

it could align; the other methods succeeded in aligning all the datasets. Com-

paring methods on just the 17 datasets that Muscle succeeded in aligning,

113

UPP had 22.5% alignment error, followed by MAFFT-Default with 25.3%

error, Clustal-Omega with 27.7% error, and Muscle with 48.1% average error

(Fig. 6.2(c), see also figs. B43 and B44 for additional results). MAFFT-default

failed to run on the 16S.B.ALL CRW dataset (see Section B1.3), and so I

used MAFFT-PartTree for that dataset; however, I report MAFFT-default

for 16S.3 and 16S.T. UPP had the lowest average alignment error across these

three datasets (16.3%), MAFFT had 28.8%, Muscle had 30.7%, and Clustal-

Omega had 43.3% (Fig. 6.2(c)). Overall, UPP had the the best or close to the

best results on these biological datasets, showing that UPP produced excellent

alignments according to structural benchmarks on both nucleotides and amino

acid sequences.

6.3.3 Results on Fragmentary Datasets.

Figure 6.4 shows alignment error on fragmentary versions of the 1000M2

simulated datasets and the CRW 16S.T biological dataset, varying the percent-

age of fragmentary sequences from 0% to 50%, with average fragment length

500 (roughly half the length of the full-length 1000M2 sequences and one third

the length of the full-length 16S sequence). UPP(Default) had substantially

lower error than the other methods, at all levels of fragmentation for both

datasets. In most cases, alignment error increased as the amount of fragmen-

tary data increases, but methods differed in their responses. Muscle was the

most impacted by the amount of fragmentary data, with very large increases in

alignment error as the amount of fragmentary data increases. MAFFT-default

114

0.00

0.25

0.50

0.75

0 12.5 25 50
%DFragmentary

M
ea

nD
al

ig
nm

en
tDe

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(a) Fragmentary 1000M2 model conditions

0.00

0.25

0.50

0.75

0 12.5 25 50
% Fragmentary

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Fragmentary CRW 16S.T datasets

Figure 6.4: Impact of fragmentary sequences on alignment error. I
show alignment error rates for different methods on the 1000-sequence 1000M2
datasets and the 7350-sequence CRW 16S.T dataset, but include results where
a percentage of the sequences are made fragmentary, varying the percent-
age from 12.5% to to 50%. Fragmentary sequences have average length 500
(i.e., approximately half the average sequence length for 1000M2, and ap-
proximately one third the average sequence length for 16S.T). MAFFT is run
using L-INS-i on the 1000M2 datasets and using MAFFT-Default on the 16S.T
datasets.

115

was also impacted, but not as severely as Muscle. UPP and Clustal-Omega

were largely unaffected by fragmentation on these data (with error rates that

change only in small ways); however, Clustal-Omega had poor accuracy con-

sistently, while UPP had consistently good accuracy. Interestingly, the relative

performance of methods changed with the amount of fragmentation; for exam-

ple, Muscle was more accurate than Clustal-Omega on the 16S.T dataset be-

fore I introduce fragmentation, but less accurate when 12.5% of the sequences

were fragmentary (Fig. 6.4(b)). Differences between methods were reduced

on model conditions with lower rates of evolution, but UPP(Default) still

demonstrated greater robustness to fragmentary data than the other methods

(Appendix B2.11).

Phylogenetic accuracy was also impacted by fragmentary data, but

responses varied by the alignment method. Results on the RNASim 10K

datasets (Fig. 6.5) with fragmentation varying from 0% to 50%, and all frag-

ments of length 500 (i.e., about one third of the average length of the full-

length sequences) show that UPP(Default) and MAFFT-default were both

highly robust to fragmentary data (∆FN error rates only changing by 3% for

UPP and 2% for MAFFT-default). In contrast, tree errors for Clustal-Omega

and Muscle were very impacted by fragmentation. Muscle had 7.3% ∆FN on

full-length sequences, and then 35.6-49.0% ∆FN under all the fragmentary

conditions. Clustal had 9.1% ∆FN on full-length sequences, and then 25.4%-

25.8% on the fragmentary conditions. Furthermore, while both UPP(Default)

and MAFFT-default were highly robust to fragmentary data, UPP(Default)

116

had better accuracy under all levels of fragmentation on this model condition:

0.8% ∆FN on full-length sequences, and at most 3.9% ∆FN even when half

the sequences are fragmentary. MAFFT-default had 5.9% ∆FN for full-length

sequences, and ∆FN between 5.8% and 7.1% on the fragmentary sequences.

0.0

0.1

0.2

0.3

0.4

0.5

0 12.5 25 50
% Fragmentary

D
el

ta
 F

N
 tr

ee
 e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

Figure 6.5: Impact of fragmentation on tree error for the RNASim
10K datasets. I show the ∆FN error rates of maximum likelihood trees
computed using FastTree under the GTR model on alignments computed using
Clustal-Omega, Muscle, MAFFT-Default, and UPP(Default), on the RNASim
10K dataset, including results on versions of the dataset where I make some of
the sequences fragmentary. All fragments have average length 500, but I vary
the percentage of the dataset that is fragmentary.

Figure B54 shows similar trends for the fragmentary 1000M2 and

1000M3 datasets. ∆FN on the fragmentary 1000M2 datasets ranged for

UPP(Default) from 2.5-4.7%, from 34.7-65.0% for Muscle, and from 55.8-70.8%

for Clustal-Omega (fig. B54). Results on fragmentary versions of the 1000M3

model condition, which has a lower rate of evolution than 1000M2, show ∆FN

for UPP(Default) ranging from 0.2-2.2%, while ∆FN ranged from 12.7-27.8%

117

for Muscle and from 18.8-57.2% for Clustal-Omega. MAFFT-L-INS-i showed

somewhat better tolerance to fragmentary data than Clustal-Omega or Mus-

cle, but still had high ∆FN rates: 18.1-43.5% error on the 1000M2 model

condition, and 4.0-14.1% for 1000M3.

6.3.4 Factors Influencing Accuracy

The choice of alignment method to compute the backbone alignment

has an impact on final alignment and tree accuracy: comparing PASTA,

MAFFT-L-INS-i, Muscle, and Clustal-Omega for backbone alignment estima-

tion, I found that PASTA and Muscle backbones yielded the best alignment

accuracy (fig. B6) but PASTA and MAFFT-L-INS-i backbones yielded the best

tree accuracy (fig. B7). The choice of technique used to align query sequences

to the backbone alignment also impacts alignment and tree error (Table 1 and

figs. B8, B10, B13, B9, and B12), with the HMM Family technique giving the

best results compared to a single HMM or MAFFT-Profile with either --add

or --addfragments.

I found that the error of the backbone alignment and the alignment

generated by three different ways of running UPP (default setting, and align-

ing query sequences using MAFFT-Profile) were strongly correlated (Fig. B33,

Pearsons correlation coefficient 0.897; p-value=2.29e-10). Furthermore, align-

ment errors for UPP(Default) were very close to the backbone alignment error,

with root mean square difference (RMSE) of 0.020, and closer to the backbone

alignment error than those produced by UPP using MAFFT-profile (RMSE

118

of 0.024 for MAFFT-profile--addfragment and 0.051 for MAFFT-profile--add,

fig. B33). Thus, while the three versions of UPP all showed good correlations

between backbone alignment error and final alignment error, the use of the

HMM Family technique gave the best correlation, and helps UPP to scale

alignment accuracy obtained on small subsets to large datasets.

6.3.5 Running Time

●

●

●

●

0

5

10

15

50000 100000 150000 200000
Number of sequences

W
al

l c
lo

ck
 a

lig
n

tim
e

(h
r)

● UPP(Fast)

Figure 6.6: Running time for UPP(Fast) on the RNASim datasets. I
show running time for UPP(Fast) on RNASim datasets with 10K, 50K, 100K,
and 200K sequences. UPP(Fast) uses a backbone of size 100, computes the
backbone alignment using PASTA, and then aligns the remaining sequences
using the HMM Family technique. All analyses were run on TACC with 24
GB of memory and 12 CPUs.

Running times for UPP(Fast) on the RNASim datasets with up to

200,000 sequences, using 12 processors, show a close to linear trend, so that

UPP(Fast) completes on 10K sequences in 55 minutes, on 50K sequences in 4.2

119

Table 6.1: Results for UPP variants on the RNASim datasets. I show
results for different variants of UPP on the RNASim datasets with 10,000 to
200,000 sequences. I report the average alignment error, ∆FN error (the differ-
ence between the error on the true alignment and on the estimated alignment),
and running time (in CPU hours), using 12 processors with 24Gb of memory.
The default setting for UPP is denoted Default; it uses a backbone of size
1000, uses PASTA to compute the backbone alignment, and the HMM Family
technique; Fast is obtained by using backbones of size 100 and keeping all
other settings constant. The “ND” versions of these two methods replace the
HMM Family technique with a single HMM. Default-MP uses MAFFT-Profile
(with --add, denoted “A”, or with --addfragments, denoted “AF”) to add the
query sequences into the backbone alignment, and otherwise is identical to
Default; Fast-MP differs from this only by using a backbone of size 100.

Number seq. Method Align. error FN ∆FN Time (hrs)
10,000 Fast-ND 13.1% 14.2% 3.6% 0.1
10,000 Default-ND 11.2% 13.6% 3.0% 0.2
10,000 Fast 13.3% 11.8% 1.2% 0.9
10,000 Default 10.3% 11.4% 0.8% 6.7
10,000 Fast-MP-A 26.2% 18.0% 7.4% 0.2
10,000 Default-MP-A 14.0% 14.8% 4.2% 0.3
10,000 Fast-MP-AF 17.8% 15.5% 4.9% 1.0
10,000 Default-MP-AF 12.7% 12.3% 1.7% 6.5
50,000 Fast-ND 12.2% 10.7% 2.6% 0.4
50,000 Default-ND 12.0% 10.5% 2.5% 0.9
50,000 Fast 12.7% 9.4% 1.3% 4.2
50,000 Default 11.2% 8.6% 0.5% 44.0
50,000 Fast-MP-A 33.6% 13.8% 5.7% 2.1
50,000 Default-MP-A 16.0% 10.1% 0.2% 3.5
100,000 Fast-ND 13.5% 9.9% 3.3% 0.8
100,000 Default-ND 11.2% 9.4% 2.8% 1.9
100,000 Fast 13.0% 8.3% 1.4% 8.5
100,000 Default 11.1% 7.6% 0.7% 82.3
100,000 Fast-MP-A 40.2% 10.2% 3.3% 10.7
200,000 Fast-ND 12.4% 8.5% 2.4% 1.9
200,000 Default-ND 11.3% 8.6% 2.4% 6.1
200,000 Fast 12.5% 7.6% 1.4% 17.9
200,000 Default 10.6% 6.8% 0.7% 151.1

120

hours, on 100K sequences in about 8.5 hours, and on 200K sequences in about

17.8 hours (Fig. 6.6). Table 6.1 explores the trade-off between running time

and accuracy (both alignment and tree) of UPP variants. For example, using

UPP(Fast) instead of UPP(Default) reduces the running time substantially

(by a factor of 7 to 10) and produces only a small increase in tree error and

alignment error. However, UPP is extremely parallelizable, and so speed-ups

are easily achieved through increasing the number of processors.

6.4 Conclusion and Future Work

Although the relative performance of multiple sequence alignments var-

ied by datasets, UPP in most cases showed improved alignment accuracy com-

pared to PASTA, SATé-II, Clustal-Omega, Muscle, and MAFFT. By design,

UPP(Default) is identical to PASTA on datasets without fragments and at

most 1000 sequences, but UPP is highly robust to fragmentary data whereas

PASTA is not. On larger datasets, UPP alignments tend to be more ac-

curate than PASTA alignments, but ML trees based on PASTA alignments

(for fragment-free datasets) are typically more accurate than ML trees based

on UPP alignments. However, on large datasets, ML trees estimated on UPP

alignments are typically more accurate than ML trees based on all other meth-

ods (including SATé-II). Moreover, for datasets with fragmentary sequences,

UPP provided the best alignment and tree accuracy of all the methods I tested.

Finally, UPP was the only method I tested that was able to analyze the million

sequence RNASim dataset.

121

UPP exhibits great scalability, both with respect to running time

(which scales in a nearly linear manner) and parallelism, but also with re-

spect to alignment accuracy. For example, my study showed the alignment

error on the backbone alignment is quite close to the alignment error on the

alignment returned by UPP(Default) (Section B2.8), and this close relation-

ship between the accuracy of the backbone alignment and the final alignment

is weaker when I use MAFFT-Profile second iteration) and I didn’t fully ex-

plore using a single HMM other than RNASim instead of an HMM Family to

align query sequences. Thus, the HMM Family technique is a key algorith-

mic technique to providing scalability for alignment accuracy, so that large

datasets can be aligned nearly as accurately as smaller datasets.

However, the other algorithmic techniques also contribute to UPP’s im-

proved accuracy. Restricting the backbone to full-length sequences improves

the robustness to fragmentary sequences, and the re-sampling technique im-

proves the close relationship between the backbone alignment accuracy and the

final alignment accuracy. Using PASTA for the backbone alignment gives bet-

ter results than using less accurate alignment methods, and because PASTA

is computationally efficient it also makes it feasible to use large backbones.

Thus, the different algorithmic steps work together to provide the improved

accuracy, scalability, and robustness to fragmentary sequences. Furthermore,

while good accuracy with respect to structural benchmarks was achieved us-

ing simpler versions of UPP (e.g., using MAFFT-L-INS-i instead of PASTA

for the backbone alignment, or using a single HMM rather than the HMM

122

Family Technique to align query sequences), the best accuracy was obtained

using my default setting, which also gave better results on the phylogenetic

benchmarks. Thus, UPP has excellent accuracy with respect to both phylo-

genetic and structural benchmarks, indicating that alignments produced by

UPP are highly accurate with respect to positional homology and also struc-

tural homology (see [69] for further discussion of these related but different

concepts).

By design, UPP is a highly modular algorithm, and substitutions in

its algorithmic steps could lead to additional improvements. Because my re-

sults show that using small backbones reduces accuracy only slightly, this

opens the possibility of using sophisticated but computationally intensive mul-

tiple sequence alignment methods (for example, statistical methods based on

stochastic models of sequence evolution involving indels [9, 84]) to produce

the backbone alignment. The HMM Family technique is another part of this

pipeline that could be improved, for example through using new techniques to

compute HMMs (which might incorporate structural information) or to add

query sequences to alignments (another active area of research). Thus, UPP is

an algorithmic paradigm rather than a specific method, and future work will

explore the design space enabled by this paradigm.

In summary, UPP enables highly accurate analyses of sequence datasets

that have been considered too difficult to align, including datasets that evolved

with high rates of evolution, that contain fragmentary sequences, or that are

very large. While datasets like these are increasingly being generated in large-

123

scale sequencing projects, the limited ability to analyze these datasets has

discouraged biologists from using the full range of their data. Instead, large-

scale transcriptomic and genomics projects often sub-sample from the available

data (in terms of taxa, genomic regions, and sites within genes) in order to

obtain datasets that are small enough, that evolve sufficiently slowly, and

that do not contain fragmentary data, so that available MSA methods can be

reliably run on these datasets.

UPP’s robustness to fragmentary data, and its high accuracy even for

ultra-large datasets with high rates of evolution, increases the range of genomic

data that can be used in scientific studies. As a result, scientific questions

that would be improved through larger sequence datasets might be able to be

addressed with greater accuracy using UPP. A prime case of where UPP could

be useful is for phylogeny estimation of rapid radiations or deep evolution,

since phylogeny estimation is often improved by dense taxon sampling [100].

For example, the avian genome project is planning to eventually sequence

all roughly 10,000 living bird species, and such efforts require scalable and

accurate alignment techniques such as UPP. However, datasets on smaller

numbers of taxa can also include extremely large multi-copy gene families

(e.g., the 1KP gene sequence datasets for 1000 species and more than 100,000

sequences). Understanding the evolutionary history of these large gene families

requires gene family trees and alignments, that can easily involve many tens

of thousands of sequences. Thus, UPP is a tool for both current and future

genomics and transcriptomics projects, that will enable biologists to utilize

124

the full range of their data to address biological problems of broad interest.

125

Chapter 7

Conclusion and future work

7.1 Conclusion

Sequence alignment is a vital step in many bioinformatics pipelines.

From the alignment, the phylogenetic relationship between the different se-

quences in the alignment can be inferred. Under the context of phylogenetic

placement, I have shown that the standard approach of using a single HMM for

aligning sequences to an existing alignment degrades when the sequences come

from distantly related taxa, and that new methods are necessary for aligning

evolutionarily divergent sequences. I present fHMM as a new statistical model

for representing an MSA in Chapter 3, and I show how it can be used to align

sequences to an existing backbone alignment.

In Chapter 4, I implemented the fHMM technique within SEPP and

apply SEPP toward the phylogenetic placement problem. I presented a sim-

ulation study and showed that SEPP resulted in better placement accuracy

than HMMALIGN+pplacer and PaPaRa+pplacer on difficult datasets. More

importantly, I validated the hypothesis that using multiple HMMs can result in

significantly better phylogenetic placement accuracy than using a single HMM.

This result forms the basis for the remaining chapters of my dissertation.

126

In Chapter 5, I presented TIPP, an extension of SEPP by including

statistical support measures to control the false classification rate, and showed

its performance on taxonomic identification and profiling. I showed that using

multiple HMMs resulted in better classification accuracy than using a single

HMM. Most interestingly, I showed that under the context of taxonomic identi-

fication, requiring a high statistical support threshold for classification resulted

in the best overall results, however, under the context of taxonomic profiling,

using the minimum support threshold resulted in the best overall taxonomic

profiles. Thus, the choice of the statistical support threshold depends on the

application.

In Chapter 6, I presented UPP, a modification of SEPP for “de novo”

sequence alignment. SEPP requires a backbone alignment as input. I pre-

sented a new technique to intelligently select the set of sequences to form the

backbone alignment, and then applied the family of HMMs technique to com-

plete the alignment on the entire set of sequences. I showed that UPP typically

resulted in better alignments on both DNA and amino acid sequences, which

in turn, resulted in more accurate phylogenies compared to other methods.

In addition, I showed that UPP could accurately estimate an alignment on

1,000,000 sequences without the need of a supercomputer in less than 2 days.

7.2 Future Work

SEPP, TIPP, and UPP all use a similar pipeline for sequence align-

ment: a backbone alignment is decomposed into closely related subalignments

127

using a phylogenetic tree, and the query sequences are aligned to the subalign-

ments. Any improvement to this pipeline may potentially improve accuracy of

these three techniques. Possible ways to improve the accuracy of the pipeline

include:

• Using different methods for aligning the query sequence to the back-

bone alignment. For example, we saw in Chapter 6 that Mafft-profile

run under the most accurate settings resulted in accurate alignments on

datasets containing both fragmentary and full-length sequences. How-

ever, this setting of Mafft could not be run on the larger datasets. The

subalignments generated by the fHMM decomposition could be made

sufficiently small enough such that Mafft-profile can be run under the

most accurate setting. This may result in more accurate alignments of

the query sequences to the subalignments.

• Applying different methods for decomposing the backbone alignment. In

all three methods presented, the backbone tree was decomposed using

the centroid edge decomposition. Using a different technique, such as

the longest edge decomposition used in SATé [46], may result in better

HMMs. Similarly, using a clade-based decomposition may group taxo-

nomically similar sequences together and result in better HMMs.

• Using the hierarchical family of HMMs within SEPP and TIPP. Cur-

rently, only UPP has been tested with the hierarchical family of HMMs.

128

However, the hierarchical family may also lead to better placement re-

sults and taxonomic profiling results. In both SEPP and TIPP, the

HMMs are computed on subalignments of roughly the same size. How-

ever, we saw in Chapter 6 that the HMM that yields the best HMMER

score is not always the HMM based upon the smallest alignment subsets.

By using the hierarchical family of HMMs, we allow fragments to align

to both small and large HMMs which may result in improved alignment

accuracy.

Future research for TIPP includes simple changes such as expanding

the reference dataset, and algorithmic changes such as modifications to iden-

tification and profiling. Future work includes:

• Expanding the marker gene set. TIPP currently uses a set of 30 marker

genes for taxonomic profiling. A simple extension would be to expand

the marker gene set to the 40 marker genes used in [85], as well as update

existing marker genes to include more recently sequenced genomes. By

expanding the marker gene set, TIPP may be able to estimate more

accurate profiles on metagenomic datasets.

• Exploring taxonomic identification of viral sequences. Viruses are dif-

ficult to identify because there are no genes that are found across all

viruses. Instead, viruses are typically identified using group specific

genes. To make the problem more difficult, viruses can have higher rates

of mutations and horizontal gene transfer, making alignment estimation

129

and phylogeny estimation difficult. Thus, viral identification would be a

good test case for TIPP’s ability to classify very divergent sequences.

• Combining abundance profiles. TIPP currently uses a simplistic algo-

rithm for computing the taxonomic profile from the marker genes; all

reads that are binned to any of the marker genes are pooled together,

and the abundance profile is estimated on the pooled reads. This pro-

cess ignores the fact that the source gene of the reads is known. Better

profiles may be obtained if separate abundance profiles are estimated

from the reads binned to each individual marker gene, and the profiles

are combined using a mixture modeling approach.

• Improved detection of rare species in a sample. One difficulty in taxo-

nomic profiling is determining whether a low abundance species is truly

present, or the abundance estimation is a false positive. While TIPP

treats each read independently, the reads themselves are not indepen-

dent; they come from the population of species present in the metage-

nomic sample. Thus, inferences about the abundance profile of the reads

can be used to filter out false positives, as well as detect rare species. For

example, if a rare species is detected across multiple different markers,

it’s likely to be present in the sample. However, if the species is only

present in very few markers, then it is more likely to be a false positive.

Future work on UPP include:

130

• Incorporating iteration within UPP. The quality of the final alignment

can be heavily dependent on the initial selection of the backbone se-

quences. The initial step of filtering short sequences from the backbone

selection process may exclude entire clades from the backbone set, mak-

ing it difficult to align sequences from the excluded clade. I have already

shown preliminary work that iteration within UPP can result in bet-

ter alignments when the initial backbone set is sampled non-uniformly

from the phylogenetic tree. Re-sampling may also be necessary due to

the process of random sampling failing to include any sequences from

smaller clades. Better results could be obtained by examining different

re-sampling strategies, as well as examining different ways of selecting

the backbone set.

131

Appendices

132

Appendix A

TIPP

A1 Precision and Recall Comparisons and Statistical
Significance

In this section we compare techniques two at a time according to preci-

sion and recall. For each comparison we show tables with differences between

precision and recall values of the two techniques being compared, and indicate

whether the differences are statistically significant.

A1.1 HMMER+pplacer versus HMMER+EPA

Table A1 shows that pplacer and EPA are indistinguishable in terms of

both precision and recall (i.e., the differences are not statistically significant).

A1.2 Experiment 1: TIPP variants

In this section we provide comparisons of different TIPP variants.

A1.2.1 HMMER+pplacer versus SEPP

We first compare HHMER+pplacer (which is TIPP(0%,0%,ALL))

against SEPP (which is TIPP(0%,0%,100)) based on the leave-species-out

study.

133

Table A1: The difference between precision and recall of HMMER+pplacer
and HMMER+EPA in the leave-species-out experiments on the rpsB gene.
Negative values indicate HMMER+EPA is better, while positive values indi-
cate that HMMER+pplacer is better. None of the differences were statisti-
cally significant according to the Pearson’s chi-square contingency table test
(as implemented in R [68]). p-values are shown in parentheses below each
comparison.

recall precision
genus 0.005 0.008

(0.535) (0.386)
family -0.001 -0.001

(0.930) (0.865)
order 0.004 0.004

(0.525) (0.517)
class 0.005 0.005

(0.350) (0.297)
phylum 0.003 0.004

(0.405) (0.329)

134

Table A2 shows the difference between precision and recall of SEPP and

HMMER+pplacer (positive values mean SEPP performs better, and negative

values mean that TIPP performs better). Compared to HMMER+pplacer,

SEPP always results in both better precision and better recall. All differences

are statistically significant.

Table A2: The difference between precision and recall of SEPP and HM-
MER+pplacer in the leave-species-out experiments on the rpsB gene. Negative
values indicate HMMER+pplacer is better, while positive values indicate that
SEPP is better. Differences in bold are statistically significant according to the
Pearson’s chi-square contingency table test (as implemented in R [68]). SEPP
always results in better precision and recall. All differences are statistically
significant.

genus family order class phylum
Recall

Illumina 1 0.035 0.043 0.039 0.041 0.037
Illumina 2 0.033 0.042 0.045 0.040 0.039
Illumina 4 0.034 0.048 0.050 0.050 0.045
454 1 0.027 0.033 0.029 0.027 0.025
454 2 0.055 0.064 0.064 0.058 0.051
454 3 0.276 0.349 0.367 0.341 0.294

mean 0.077 0.097 0.099 0.093 0.082
Precision

Illumina 1 0.036 0.042 0.037 0.039 0.035
Illumina 2 0.034 0.042 0.044 0.038 0.039
Illumina 4 0.032 0.042 0.048 0.045 0.041
454 1 0.028 0.026 0.022 0.020 0.021
454 2 0.055 0.060 0.059 0.051 0.045
454 3 0.286 0.354 0.359 0.320 0.273

mean 0.079 0.094 0.095 0.086 0.076

135

A1.2.2 TIPP(0%,0%,100) versus TIPP(0%,95%,100)

Next, we compare TIPP(0%,0%,100) (which is SEPP) versus

TIPP(0%,95%,100) (which is SEPP plus consideration of placement sup-

port) based on the leave-species-out study to study the effects of place-

ment support considerations. Table A3 shows difference between precision

and recall of TIPP(0%,95%,100) versus TIPP(0%,0%,100) (positive values

mean TIPP(0%,95%,100) performs better, and negative values mean that

TIPP(0%,0%,100) performs better). Our results show that on average, gains

in precision due to the consideration of placement support are larger than

losses in recall.

A1.2.3 TIPP(0%,95%,100) versus TIPP(95%,95%,100)

Finally, we compare TIPP(0%,95%,100) versus TIPP(95%,95%,100)

based on the leave-species-out study to study the effects of alignment sup-

port considerations.

Table A4 shows difference between precision and recall of

TIPP(0%,95%,100) versus TIPP(95%,95%,100) (positive values mean

TIPP(0%,95%,100) performs better, and negative values mean that

TIPP(95%,95%,100) performs better). Many of the differences, especially at

lower levels, are not statistically significant. On average gains in precision and

losses of recall due to the consideration of alignment support are very close.

Therefore, the decision of whether to include alignment uncertainty should

depend on the application, and whether recall or precision is more important.

136

Table A3: The difference between precision and recall of TIPP(0%,95%,100)
versus TIPP(0%,0%,100) in the leave-species-out experiments on the rpsB
gene. Negative values indicate TIPP(0%,0%,100) is better, while positive val-
ues indicate that TIPP(0%,95%,100) is better. Differences in bold are sta-
tistically significant according to the Pearson’s chi-square contingency table
test (as implemented in R [68]). TIPP(0%,95%,100) always results in better
precision, but worse recall compared to TIPP(0%,0%,100). All differences are
statistically significant. On average, gains in precision due to the consideration
of placement support are larger than losses in recall.

genus family order class phylum
Recall

Illumina 1 -0.068 -0.055 -0.031 -0.021 -0.015
Illumina 2 -0.073 -0.055 -0.031 -0.021 -0.013
Illumina 4 -0.075 -0.057 -0.030 -0.019 -0.016
454 1 -0.047 -0.035 -0.017 -0.013 -0.009
454 2 -0.058 -0.044 -0.022 -0.012 -0.011
454 3 -0.097 -0.077 -0.050 -0.034 -0.022

mean -0.070 -0.054 -0.030 -0.020 -0.014
Precision

Illumina 1 0.225 0.111 0.059 0.029 0.018
Illumina 2 0.229 0.105 0.060 0.035 0.021
Illumina 4 0.239 0.119 0.060 0.031 0.021
454 1 0.161 0.069 0.032 0.013 0.008
454 2 0.200 0.089 0.044 0.021 0.012
454 3 0.301 0.181 0.099 0.046 0.026

mean 0.226 0.112 0.059 0.029 0.018

137

Since our goal was to reduce TIPP’s false classifications, we set the default

setting for TIPP to be TIPP(95%,95%,100). This is indicated by TIPP-def

(or TIPP-default).

Table A4: The difference between precision and recall of TIPP(0%,95%,100)
and TIPP(95%,95%,100) in the leave-species-out experiments on the rpsB
gene. Negative values indicate TIPP(95%,95%,100) is better, while positive
values indicate that TIPP(0%,95%,100) is better. Differences in bold are sta-
tistically significant according to the Pearson’s chi-square contingency table
test (as implemented in R [68]). TIPP(95%,95%,100) always results in bet-
ter precision, but worse recall compared to TIPP(0%,95%,100). Many of the
differences are not statistically significant. On average gains in precision and
losses of recall due to the consideration of alignment support are very close.

genus family order class phylum
Recall

Illumina 1 0.006 0.015 0.021 0.023 0.028
Illumina 2 0.007 0.010 0.013 0.016 0.017
Illumina 4 0.009 0.014 0.018 0.021 0.021
454 1 0.001 0.004 0.005 0.006 0.005
454 2 0.005 0.009 0.010 0.009 0.009
454 3 0.035 0.044 0.058 0.065 0.070

mean 0.011 0.016 0.021 0.023 0.025
Precision

Illumina 1 -0.009 -0.012 -0.017 -0.020 -0.021
Illumina 2 -0.014 -0.016 -0.018 -0.020 -0.022
Illumina 4 -0.012 -0.012 -0.015 -0.016 -0.019
454 1 -0.005 -0.005 -0.006 -0.005 -0.005
454 2 -0.006 -0.006 -0.011 -0.009 -0.008
454 3 -0.037 -0.044 -0.064 -0.069 -0.064

mean -0.014 -0.016 -0.022 -0.023 -0.023

138

A1.3 Leave-one-out experiments: TIPP versus MetaPhyler

In this section we present comparisons of TIPP and MetaPhyler to

directly compare the two methods that use the same set of marker genes.

Here, negative values mean that TIPP is better, and positive values mean

that MetaPhyler is better. Tables A5 to A10 shows results based on 30 marker

genes and 16S RNA, and under both Illumina and 454 error models.

TIPP has better recall on all genes. On the 30 marker genes, TIPP

generally has better precision, but in some cases (especially at the diagonal),

MetaPhyler has better precision. On 16S RNA datasets, MetaPhyler usually

has better precision. In most cases, TIPP’s gains in recall are much greater

than its losses in precision.

139

Table A5: The difference between precision and recall of MetaPhyler and
TIPP-def in the leave-one-out experiments on 30 marker genes with Illumina
error models. Negative values indicate TIPP-def is better, while positive val-
ues indicate that MetaPhyler is better. Differences in bold are statistically
significant (in this case all results) according to the Pearson’s chi-square con-
tingency table test (as implemented in R [68]). TIPP-default always has better
recall, and in many cases also has better precision. Note that in all but the
genus level, TIPP’s gains in recall are on average much greater than its losses
in precision.

genus family order class phylum
Recall

species -0.090 -0.150 -0.154 -0.153 -0.145
genus -0.154 -0.255 -0.278 -0.264
family -0.148 -0.262 -0.263
order -0.213 -0.281
class -0.212

mean -0.090 -0.152 -0.186 -0.227 -0.233
Precision

species 0.106 0.011 -0.006 -0.017 -0.017
genus 0.125 -0.030 -0.045 -0.037
family 0.102 -0.042 -0.032
order 0.023 -0.040
class 0.039

mean 0.106 0.068 0.022 -0.020 -0.017

140

Table A6: The difference between precision and recall of MetaPhyler and
TIPP-def in the leave-one-out experiments on 30 marker genes with 454 error
models. Negative values indicate TIPP-def is better, while positive values indi-
cate that MetaPhyler is better. Differences in bold are statistically significant
according to the Pearson’s chi-square contingency table test (as implemented
in R [68]). TIPP-default always has better recall, and in many cases has better
precision, too. Note that TIPP’s gains in recall are on average greater (often
many times) than its losses in precision.

genus family order class phylum
Recall

species -0.202 -0.222 -0.197 -0.176 -0.156
genus -0.253 -0.325 -0.285 -0.232
family -0.216 -0.272 -0.223
order -0.240 -0.265
class -0.215

mean -0.202 -0.237 -0.246 -0.243 -0.218
Precision

species 0.156 0.023 -0.011 -0.027 -0.026
genus 0.134 -0.039 -0.066 -0.056
family 0.070 -0.072 -0.059
order -0.001 -0.077
class -0.018

mean 0.156 0.079 0.007 -0.042 -0.047

141

Table A7: The difference between precision and recall of MetaPhyler and
TIPP-def in the leave-one-out experiments on 16S RNA gene on the bacte-
rial dataset, with Illumina error models. Negative values indicate TIPP-def is
better, while positive values indicate that MetaPhyler is better. Differences in
bold are statistically significant according to the Pearson’s chi-square contin-
gency table test (as implemented in R [68]). TIPP-default always has better
recall, but MetaPhyler always has better precision. Note that TIPP’s gains in
recall are on average many times greater than its losses on precision.

genus family order class phylum
Recall

species -0.322 -0.427 -0.262 -0.116 0.008
genus -0.237 -0.246 -0.203 -0.086
family -0.147 -0.226 -0.153
order -0.183 -0.159
class -0.169

mean -0.322 -0.332 -0.219 -0.182 -0.112
Precision

species 0.070 0.025 0.018 0.011 0.007
genus 0.173 0.053 0.021 0.010
family 0.203 0.058 0.028
order 0.182 0.047
class 0.205

mean 0.070 0.099 0.092 0.068 0.059

142

Table A8: The difference between precision and recall of MetaPhyler and
TIPP-def in the leave-one-out experiments on the 16S RNA gene on bacteria,
under the 454 error models. Negative values indicate TIPP-def is better, while
positive values indicate that MetaPhyler is better. Differences in bold are
statistically significant according to the Pearson’s chi-square contingency table
test (as implemented in R [68]). TIPP-default always has better recall, except
for phylum level classification with leave-out-species, and MetaPhyler always
has better precision. TIPP’s gain in recall is on average greater than its loss
in precision for lower taxonomic levels (genus, family, and order).

genus family order class phylum
Recall

species -0.543 -0.487 -0.141 -0.008 0.003
genus -0.451 -0.266 -0.088 -0.036
family -0.190 -0.133 -0.035
order -0.125 -0.038
class -0.121

mean -0.543 -0.469 -0.199 -0.088 -0.045
Precision

species 0.074 0.020 0.011 0.005 0.003
genus 0.119 0.040 0.011 0.005
family 0.186 0.041 0.014
order 0.204 0.102
class 0.270

mean 0.074 0.070 0.079 0.065 0.079

143

Table A9: The difference between precision and recall of MetaPhyler and
TIPP-def in the leave-one-out experiments on 16S RNA gene on archaea with
Illumina error models. Negative values indicate TIPP-def is better, while
positive values indicate that MetaPhyler is better. Differences in bold are
statistically significant according to the Pearson’s chi-square contingency table
test (as implemented in R [68]). TIPP-default always has better recall, but
MetaPhyler has better precision in most cases. Note that at leave-class-out
level, TIPP-def has better precision, and in some other cases, the differences
between precision values are not statistically significant.

genus family order class phylum
Recall

species -0.524 -0.353 -0.317 -0.250 -0.062
genus -0.420 -0.506 -0.476 -0.183
family -0.178 -0.300 -0.568
order -0.190 -0.634
class -0.620

mean -0.524 -0.387 -0.333 -0.304 -0.413
Precision

species 0.058 0.007 0.004 0.002 0.001
genus 0.045 0.009 0.001 0.000
family 0.476 0.386 0.007
order 0.524 0.006
class -0.259

mean 0.058 0.026 0.163 0.228 -0.049

144

Table A10: The difference between precision and recall of MetaPhyler and
TIPP-def in the leave-one-out experiments on 16S RNA gene on archaea with
454 error models. Negative values indicate TIPP-def is better, while positive
values indicate that MetaPhyler is better. Differences in bold are statistically
significant according to the Pearson’s chi-square contingency table test (as
implemented in R [68]). TIPP-default always has better recall, but MetaPhyler
always has better precision. In all but three cases (leave-out-order and family
at order and class levels) the differences between recall values are greater than
differences between precision values.

genus family order class phylum
Recall

species -0.646 -0.233 -0.111 -0.073 -0.022
genus -0.307 -0.278 -0.219 -0.065
family -0.213 -0.308 -0.506
order -0.224 -0.610
class -0.522

mean -0.646 -0.270 -0.200 -0.206 -0.345
Precision

species 0.084 0.006 0.002 0.002 0.002
genus 0.066 0.004 0.001 0.002
family 0.370 0.356 0.013
order 0.448 0.012
class 0.021

mean 0.084 0.036 0.126 0.202 0.010

145

A2 Leave-one-out Results in Tabular Format

In this section we present the leave-one-out results in a tabular format.

In each table, we show true positive and false positive classification rates (in

that order). When these two numbers do not add up to one, the remaining

fraction of fragments are unclassified.

A2.1 Experiment 1: TIPP Variants

Tables A11 to A13 show the leave-one-out results corresponding to

Section A3.1. These show leave-one-out results comparing variants of TIPP on

the rpsB gene, with varying error model conditions. Table A11 shows leave-

species-out, Table A12 shows leave-genus-out, and Table A13 shows leave-

family-out results.

A2.2 Leave-one-out experiments: TIPP versus MetaPhyler

Tables A14 and A15 show the leave-one-out results for the 30 marker

genes with Illumina and 454 error models respectively. Tables A16 to A19

similarly show leave-one-out results for 16S RNA under both error model con-

ditions.

146

Table A11: Leave-species-out results comparing TIPP variants on rspB
marker gene and various error models. Rows show the TIPP variants for
different error models and columns show the classification ranks. Each cell
of the table shows (true positive, false positive) classification rates for the
corresponding method at the corresponding level.

leaveout.higher.species genus family order class phylum
illumina 1

(0%,0%,ALL) (0.564,0.407) (0.760,0.205) (0.845,0.141) (0.894,0.097) (0.919,0.080)
(0%,0%,100) (0.599,0.372) (0.803,0.165) (0.884,0.105) (0.935,0.058) (0.955,0.045)
(0%,95%,ALL) (0.495,0.099) (0.707,0.052) (0.808,0.045) (0.868,0.036) (0.898,0.037)
(0%,95%,100) (0.531,0.100) (0.749,0.048) (0.853,0.042) (0.915,0.028) (0.941,0.026)
(95%,95%,100) (0.525,0.092) (0.734,0.037) (0.832,0.026) (0.891,0.009) (0.913,0.005)

illumina 2
(0%,0%,ALL) (0.553,0.417) (0.752,0.206) (0.830,0.159) (0.884,0.108) (0.909,0.089)
(0%,0%,100) (0.585,0.383) (0.794,0.167) (0.874,0.116) (0.924,0.070) (0.948,0.051)
(0%,95%,ALL) (0.479,0.098) (0.695,0.052) (0.798,0.057) (0.860,0.039) (0.892,0.040)
(0%,95%,100) (0.512,0.102) (0.739,0.054) (0.844,0.051) (0.903,0.034) (0.935,0.029)
(95%,95%,100) (0.505,0.091) (0.729,0.040) (0.830,0.034) (0.888,0.015) (0.918,0.008)

illumina 4
(0%,0%,ALL) (0.568,0.404) (0.750,0.213) (0.830,0.156) (0.883,0.107) (0.904,0.090)
(0%,0%,100) (0.602,0.374) (0.797,0.174) (0.879,0.110) (0.933,0.062) (0.949,0.050)
(0%,95%,ALL) (0.491,0.086) (0.684,0.054) (0.790,0.053) (0.857,0.041) (0.882,0.042)
(0%,95%,100) (0.527,0.089) (0.740,0.047) (0.849,0.046) (0.914,0.030) (0.933,0.028)
(95%,95%,100) (0.517,0.079) (0.726,0.036) (0.831,0.031) (0.893,0.014) (0.912,0.009)

454 1
(0%,0%,ALL) (0.608,0.350) (0.819,0.140) (0.896,0.087) (0.944,0.046) (0.956,0.040)
(0%,0%,100) (0.635,0.323) (0.852,0.116) (0.925,0.066) (0.971,0.026) (0.981,0.019)
(0%,95%,ALL) (0.548,0.103) (0.766,0.035) (0.865,0.030) (0.923,0.016) (0.943,0.013)
(0%,95%,100) (0.589,0.126) (0.817,0.044) (0.908,0.032) (0.957,0.013) (0.971,0.011)
(95%,95%,100) (0.587,0.121) (0.814,0.039) (0.903,0.026) (0.951,0.008) (0.967,0.005)

454 2
(0%,0%,ALL) (0.559,0.395) (0.766,0.191) (0.837,0.146) (0.894,0.093) (0.920,0.072)
(0%,0%,100) (0.613,0.344) (0.830,0.134) (0.901,0.089) (0.952,0.043) (0.972,0.028)
(0%,95%,ALL) (0.481,0.090) (0.699,0.041) (0.789,0.043) (0.861,0.030) (0.896,0.028)
(0%,95%,100) (0.555,0.105) (0.786,0.042) (0.879,0.042) (0.940,0.022) (0.960,0.015)
(95%,95%,100) (0.551,0.100) (0.777,0.036) (0.870,0.032) (0.931,0.013) (0.952,0.006)

454 3
(0%,0%,ALL) (0.239,0.691) (0.335,0.580) (0.405,0.541) (0.499,0.441) (0.591,0.367)
(0%,0%,100) (0.515,0.434) (0.684,0.266) (0.772,0.209) (0.840,0.148) (0.885,0.109)
(0%,95%,ALL) (0.167,0.079) (0.255,0.100) (0.321,0.125) (0.405,0.142) (0.482,0.149)
(0%,95%,100) (0.418,0.078) (0.608,0.067) (0.722,0.093) (0.806,0.093) (0.863,0.080)
(95%,95%,100) (0.383,0.052) (0.563,0.033) (0.664,0.036) (0.741,0.027) (0.793,0.017)

147

Table A12: Leave-genus-out results comparing TIPP variants on rspB marker
gene and various error models. Rows show the TIPP variants for different error
models and columns show the classification ranks. Each cell of the table shows
(true positive, false positive) classification rates for the corresponding method
at the corresponding level.

leaveout.higher.genus family order class phylum
illumina 1

(0%,0%,ALL) (0.450,0.474) (0.709,0.265) (0.820,0.166) (0.868,0.128)
(0%,0%,100) (0.466,0.458) (0.738,0.237) (0.848,0.141) (0.901,0.098)
(0%,95%,ALL) (0.340,0.142) (0.620,0.085) (0.768,0.063) (0.836,0.059)
(0%,95%,100) (0.359,0.151) (0.654,0.090) (0.805,0.062) (0.875,0.051)
(95%,95%,100) (0.352,0.132) (0.639,0.063) (0.783,0.030) (0.847,0.021)

illumina 2
(0%,0%,ALL) (0.449,0.471) (0.696,0.285) (0.811,0.178) (0.867,0.131)
(0%,0%,100) (0.481,0.439) (0.741,0.238) (0.852,0.141) (0.907,0.092)
(0%,95%,ALL) (0.338,0.142) (0.609,0.095) (0.751,0.064) (0.828,0.058)
(0%,95%,100) (0.367,0.159) (0.654,0.096) (0.799,0.062) (0.874,0.047)
(95%,95%,100) (0.359,0.135) (0.638,0.068) (0.779,0.036) (0.850,0.021)

illumina 4
(0%,0%,ALL) (0.424,0.503) (0.684,0.295) (0.804,0.184) (0.855,0.141)
(0%,0%,100) (0.454,0.475) (0.731,0.248) (0.850,0.143) (0.898,0.101)
(0%,95%,ALL) (0.318,0.144) (0.589,0.094) (0.738,0.067) (0.812,0.057)
(0%,95%,100) (0.346,0.147) (0.636,0.098) (0.795,0.065) (0.865,0.051)
(95%,95%,100) (0.339,0.126) (0.617,0.068) (0.767,0.035) (0.833,0.022)

454 1
(0%,0%,ALL) (0.501,0.397) (0.779,0.202) (0.893,0.095) (0.923,0.074)
(0%,0%,100) (0.534,0.373) (0.822,0.158) (0.926,0.068) (0.948,0.050)
(0%,95%,ALL) (0.402,0.130) (0.705,0.074) (0.848,0.032) (0.895,0.024)
(0%,95%,100) (0.451,0.140) (0.760,0.074) (0.888,0.034) (0.924,0.024)
(95%,95%,100) (0.448,0.131) (0.753,0.062) (0.877,0.022) (0.914,0.015)

454 2
(0%,0%,ALL) (0.453,0.450) (0.700,0.273) (0.822,0.160) (0.870,0.122)
(0%,0%,100) (0.519,0.375) (0.791,0.184) (0.901,0.091) (0.932,0.066)
(0%,95%,ALL) (0.341,0.116) (0.603,0.080) (0.764,0.049) (0.826,0.040)
(0%,95%,100) (0.418,0.132) (0.723,0.075) (0.863,0.045) (0.905,0.032)
(95%,95%,100) (0.409,0.117) (0.709,0.056) (0.845,0.026) (0.888,0.017)

454 3
(0%,0%,ALL) (0.152,0.739) (0.289,0.649) (0.422,0.511) (0.538,0.416)
(0%,0%,100) (0.361,0.530) (0.615,0.354) (0.757,0.231) (0.832,0.166)
(0%,95%,ALL) (0.090,0.133) (0.193,0.152) (0.312,0.163) (0.420,0.162)
(0%,95%,100) (0.250,0.145) (0.522,0.149) (0.705,0.130) (0.803,0.106)
(95%,95%,100) (0.233,0.088) (0.475,0.068) (0.648,0.047) (0.739,0.032)

148

Table A13: Leave-family-out results comparing TIPP variants on rspB marker
gene and various error models. Rows show the TIPP variants for different error
models and columns show the classification ranks. Each cell of the table shows
(true positive, false positive) classification rates for the corresponding method
at the corresponding level.

leaveout.higher.family order class phylum
illumina 1

(0%,0%,ALL) (0.425,0.524) (0.736,0.245) (0.816,0.180)
(0%,0%,100) (0.446,0.503) (0.769,0.211) (0.853,0.146)
(0%,95%,ALL) (0.345,0.199) (0.673,0.096) (0.775,0.083)
(0%,95%,100) (0.369,0.205) (0.711,0.091) (0.819,0.072)
(95%,95%,100) (0.357,0.172) (0.689,0.056) (0.791,0.037)

illumina 2
(0%,0%,ALL) (0.418,0.538) (0.721,0.257) (0.823,0.171)
(0%,0%,100) (0.449,0.506) (0.763,0.218) (0.862,0.138)
(0%,95%,ALL) (0.317,0.194) (0.623,0.092) (0.741,0.076)
(0%,95%,100) (0.366,0.203) (0.692,0.095) (0.814,0.068)
(95%,95%,100) (0.352,0.171) (0.669,0.060) (0.787,0.034)

illumina 4
(0%,0%,ALL) (0.413,0.542) (0.726,0.252) (0.809,0.185)
(0%,0%,100) (0.438,0.515) (0.765,0.218) (0.847,0.151)
(0%,95%,ALL) (0.322,0.192) (0.640,0.092) (0.751,0.081)
(0%,95%,100) (0.352,0.213) (0.689,0.098) (0.802,0.076)
(95%,95%,100) (0.335,0.173) (0.662,0.060) (0.769,0.040)

454 1
(0%,0%,ALL) (0.493,0.451) (0.819,0.158) (0.878,0.117)
(0%,0%,100) (0.527,0.419) (0.862,0.121) (0.914,0.082)
(0%,95%,ALL) (0.416,0.183) (0.747,0.057) (0.830,0.045)
(0%,95%,100) (0.465,0.206) (0.810,0.061) (0.878,0.043)
(95%,95%,100) (0.459,0.184) (0.796,0.044) (0.867,0.029)

454 2
(0%,0%,ALL) (0.417,0.529) (0.745,0.231) (0.826,0.168)
(0%,0%,100) (0.475,0.464) (0.824,0.155) (0.896,0.101)
(0%,95%,ALL) (0.325,0.179) (0.662,0.078) (0.760,0.062)
(0%,95%,100) (0.409,0.212) (0.765,0.074) (0.850,0.055)
(95%,95%,100) (0.398,0.178) (0.746,0.047) (0.828,0.033)

454 3
(0%,0%,ALL) (0.172,0.760) (0.371,0.562) (0.515,0.439)
(0%,0%,100) (0.373,0.584) (0.692,0.292) (0.806,0.191)
(0%,95%,ALL) (0.104,0.196) (0.270,0.178) (0.397,0.170)
(0%,95%,100) (0.298,0.281) (0.634,0.180) (0.776,0.131)
(95%,95%,100) (0.266,0.171) (0.581,0.070) (0.708,0.039)

149

Table A14: Leave-one-out results for 30 marker genes Illumina error model.
Rows show the left-out clade and columns show the classification rank. For
each rank (true positive, false positive) rates are shown.

leaveout.illumina genus family order class phylum
Metaphyler

species (0.429,0.024) (0.586,0.027) (0.673,0.031) (0.745,0.026) (0.776,0.023)
genus (0.190,0.032) (0.353,0.060) (0.495,0.048) (0.570,0.042)
family (0.177,0.060) (0.387,0.062) (0.493,0.050)
order (0.234,0.061) (0.365,0.062)
class (0.181,0.059)

TIPP-def
species (0.519,0.099) (0.735,0.042) (0.827,0.033) (0.898,0.015) (0.921,0.011)
genus (0.345,0.127) (0.609,0.078) (0.773,0.035) (0.834,0.028)
family (0.325,0.178) (0.649,0.070) (0.756,0.049)
order (0.448,0.134) (0.645,0.075)
class (0.393,0.158)

Table A15: Leave-one-out results for 30 marker genes 454 error model. Rows
show the left-out clade and columns show the classification rank. For each
rank (true positive, false positive) rates are shown.

genus family order class phylum
Metaphyler

species (0.385,0.018) (0.595,0.021) (0.705,0.033) (0.781,0.031) (0.815,0.028)
genus (0.224,0.026) (0.447,0.062) (0.617,0.060) (0.697,0.055)
family (0.240,0.072) (0.518,0.082) (0.638,0.072)
order (0.340,0.085) (0.514,0.091)
class (0.306,0.099)

TIPP-def
species (0.587,0.147) (0.817,0.050) (0.902,0.031) (0.957,0.010) (0.971,0.007)
genus (0.477,0.150) (0.772,0.069) (0.902,0.021) (0.929,0.016)
family (0.456,0.196) (0.790,0.055) (0.861,0.037)
order (0.580,0.143) (0.779,0.061)
class (0.521,0.153)

150

Table A16: Leave-one-out results for 16S RNA gene on bacteria, under the 454
error model. Rows show the left-out clade and columns show the classification
rank. For each rank (true positive, false positive) rates are show.

genus family order class phylum
Metaphyler

species (0.149,0.001) (0.381,0.002) (0.770,0.002) (0.954,0.001) (0.979,0.001)
genus (0.145,0.003) (0.524,0.006) (0.811,0.005) (0.897,0.003)
family (0.312,0.011) (0.624,0.009) (0.804,0.008)
order (0.355,0.009) (0.593,0.013)
class (0.313,0.028)

TIPP- large
species (0.692,0.061) (0.868,0.022) (0.910,0.013) (0.961,0.007) (0.975,0.004)
genus (0.596,0.098) (0.790,0.042) (0.899,0.015) (0.933,0.008)
family (0.502,0.143) (0.756,0.045) (0.839,0.020)
order (0.480,0.142) (0.632,0.088)
class (0.434,0.236)

Table A17: Leave-one-out results for 16S RNA gene on bacteria, under the
Illumina error model. Rows show the left-out clade and columns show the
classification rank. For each rank (true positive, false positive) rates are show.

genus family order class phylum
Metaphyler

species (0.031,0.001) (0.090,0.002) (0.391,0.003) (0.638,0.003) (0.825,0.002)
genus (0.035,0.002) (0.269,0.005) (0.456,0.007) (0.655,0.005)
family (0.189,0.008) (0.327,0.010) (0.523,0.009)
order (0.113,0.008) (0.296,0.015)
class (0.104,0.012)

TIPP- large
species (0.353,0.041) (0.517,0.026) (0.654,0.017) (0.754,0.013) (0.817,0.007)
genus (0.272,0.080) (0.515,0.041) (0.658,0.024) (0.741,0.014)
family (0.337,0.109) (0.552,0.053) (0.676,0.032)
order (0.296,0.096) (0.455,0.047)
class (0.274,0.122)

151

Table A18: Leave-one-out results for 16S gene on archaea under the 454 error
model. Rows show the left-out clade and columns show the classification rank.
For each rank (true positive, false positive) rates are show.

genus family order class phylum
Metaphyler

species (0.101,0.000) (0.734,0.000) (0.877,0.000) (0.923,0.000) (0.975,0.000)
genus (0.523,0.001) (0.689,0.001) (0.773,0.000) (0.931,0.000)
family (0.107,0.003) (0.174,0.006) (0.468,0.000)
order (0.039,0.005) (0.354,0.000)
class (0.305,0.014)

TIPP- def
species (0.747,0.070) (0.966,0.007) (0.988,0.002) (0.996,0.002) (0.997,0.002)
genus (0.830,0.061) (0.968,0.005) (0.991,0.002) (0.997,0.002)
family (0.320,0.208) (0.482,0.309) (0.974,0.013)
order (0.262,0.343) (0.964,0.012)
class (0.827,0.058)

Table A19: Leave-one-out results for 16S RNA gene on archaea, under the
Illumina error model. Rows show the left-out clade and columns show the
classification rank. For each rank (true positive, false positive) rates are show.

genus family order class phylum
Metaphyler

species (0.025,0.001) (0.562,0.002) (0.647,0.001) (0.739,0.000) (0.934,0.001)
genus (0.353,0.003) (0.405,0.002) (0.483,0.001) (0.810,0.001)
family (0.034,0.002) (0.088,0.005) (0.364,0.003)
order (0.035,0.004) (0.277,0.004)
class (0.149,0.087)

TIPP- def
species (0.549,0.058) (0.916,0.010) (0.964,0.005) (0.989,0.002) (0.996,0.001)
genus (0.773,0.044) (0.911,0.012) (0.959,0.003) (0.994,0.002)
family (0.212,0.247) (0.388,0.303) (0.932,0.014)
order (0.226,0.360) (0.910,0.018)
class (0.768,0.096)

152

A3 Results Omitted from Chapter 5

A3.1 Experiment 1: Leave-one-out TIPP Variants

In Chapter 5, in Experiment 1: TIPP variants section, we discussed

results on different variants of TIPP. Here we compare different variants of

TIPP under 3 different leave-one-out experiment settings for the rpsB marker

gene: leave-species-out (Figure A1), leave-genus-out (Figure A2), and leave-

family-out (Figure A3).

153

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

genus

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

family

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

order

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

class

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

phylum

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)
ill

um
in

a_
1

ill
um

in
a_

2
ill

um
in

a_
4

45
4_

1
45

4_
2

45
4_

3

Correct Unclassified Incorrect

Figure A1: Leave-species-out experiment on the rpsB marker gene, comparing
the classification accuracy of different variants of TIPP. Each variant is labeled
by (X,Y,Z), where X refers to alignment support (sa), Y refers to placement
support (sp), and Z refers to alignment subset size (ma). Note that SEPP
with ma = 100 is identical to TIPP(0%,0%,100), and that HMMER+pplacer
is identical to TIPP(0%,0%,ALL).

154

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

family
(0

%
,0

%
,A

LL
)

(0
%

,0
%

,1
00

)
(0

%
,9

5%
,A

LL
)

(0
%

,9
5%

,1
00

)
(9

5%
,9

5%
,1

00
)

order

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

class

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

phylum

(0
%

,0
%

,A
LL

)
(0

%
,0

%
,1

00
)

(0
%

,9
5%

,A
LL

)
(0

%
,9

5%
,1

00
)

(9
5%

,9
5%

,1
00

)

ill
um

in
a_

1
ill

um
in

a_
2

ill
um

in
a_

4
45

4_
1

45
4_

2
45

4_
3

Correct Unclassified Incorrect

Figure A2: Leave-genus-out experiment on the rpsB marker gene, comparing
the classification accuracy of different variants of TIPP. Each variant is labeled
by (X,Y,Z), where X refers to alignment support (sa), Y refers to placement
support (sp), and Z refers to alignment subset size (ma).

155

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

order
(0

%
,0

%
,A

LL
)

(0
%

,0
%

,1
00

)

(0
%

,9
5%

,A
LL

)

(0
%

,9
5%

,1
00

)

(9
5%

,9
5%

,1
00

)

class

(0
%

,0
%

,A
LL

)

(0
%

,0
%

,1
00

)

(0
%

,9
5%

,A
LL

)

(0
%

,9
5%

,1
00

)

(9
5%

,9
5%

,1
00

)

phylum

(0
%

,0
%

,A
LL

)

(0
%

,0
%

,1
00

)

(0
%

,9
5%

,A
LL

)

(0
%

,9
5%

,1
00

)

(9
5%

,9
5%

,1
00

)

ill
um

in
a_

1
ill

um
in

a_
2

ill
um

in
a_

4
45

4_
1

45
4_

2
45

4_
3

Correct Unclassified Incorrect

Figure A3: Leave-family-out experiment on the rpsB marker gene, comparing
the classification accuracy of different variants of TIPP. Each variant is labeled
by (X,Y,Z), where X refers to alignment support (sa), Y refers to placement
support (sp), and Z refers to alignment subset size (ma).

156

A3.2 TIPP Boosting of EPA versus pplacer

TIPP requires an external placement tool for its placement step. While

the initial submission only used pplacer, the current current implementation

of TIPP can use both pplacer and EPA. The results in Chapter 5 are based on

using pplacer internally, and here we show results on using EPA inside TIPP,

compared to using pplacer inside TIPP, in a leave-species-out experiment on

the rpsB marker gene. We observe that in this experiment, TIPP using pplacer

and EPA are almost identical (Figure A4); the differences in recall between

the two techniques are statistically significant only when placing at the class

or phylum level and the differences between precision is never statistically

significant (Table A20).

157

0.0

0.2

0.4

0.6

0.8

1.0

genus

(9
5%

,9
5%

,1
00

,E
PA

)

(9
5%

,9
5%

,1
00

,p
pl

ac
er

)

family

(9
5%

,9
5%

,1
00

,E
PA

)

(9
5%

,9
5%

,1
00

,p
pl

ac
er

)

order

(9
5%

,9
5%

,1
00

,E
PA

)

(9
5%

,9
5%

,1
00

,p
pl

ac
er

)

class

(9
5%

,9
5%

,1
00

,E
PA

)

(9
5%

,9
5%

,1
00

,p
pl

ac
er

)

phylum

(9
5%

,9
5%

,1
00

,E
PA

)

(9
5%

,9
5%

,1
00

,p
pl

ac
er

)

Correct Unclassified Incorrect

Figure A4: Leave-one-out experiment comparing the classification accuracy
for TIPP with default settings when it uses EPA or pplacer internally for the
placement step. Results are for a leave-species-out experiment on the rpsB
marker gene with Illumina-like errors. Differences in recall are statistically
significant at the class and phylum levels, but not below the class level.

158

Table A20: Precision and recall of TIPP when it uses EPA or pplacer inter-
nally for the placement step. The table shows the difference between precision
and recall values of the two techniques (delta) and p-value of a statistical test
showing whether the differences are statistically significant according to the
Pearson’s chi-square contingency table test (as implemented in R [68]). Posi-
tive values mean TIPP with pplacer was better than TIPP with EPA. Results
are for a leave-species-out experiment on the rpsB marker gene with Illumina-
like errors. Differences in recall are statistically significant at the class and
phylum levels, but not below the class level. In all other cases differences are
not statistically significant.

genus family order class phylum
Recall
Delta 0.006 0.012 0.013 0.013 0.011
p-value 0.5617 0.1975 0.0763 0.0244 0.0165

Precision
Delta 0.000 -0.001 0.002 0.003 0.001
p-value 0.9960 0.8662 0.6282 0.2412 0.4704

159

A3.3 Non-leave-one-out Parameter Exploration Study

In this section we report on non-leave-one-out experiments performed

on the rpsB marker gene in order to further understand the impact of param-

eter settings on the accuracy of TIPP. Note that results from these non-leave-

one-out experiments should be interpreted in conjunction with leave-one-out

results presented earlier. The impact of parameter settings could be quite

different between non-leave-one-out and leave-one-out results, hence caution

is required in interpreting the results. In general, changing TIPP parameters

show a higher impact on classification accuracy in leave-one-out experiments.

In non-leave-one-out experiments, the impact of changes to the TIPP param-

eters is often most observable at the highest error model conditions.

Placement Support. Placement support has a large impact on the overall

classification accuracy (Fig. A5). For both types of sequencing error, the

largest of varying placement support is at the species level; increasing the

placement support results in fewer incorrect and correct classifications. The

impact of placement support is most visible on 454 models with higher rates of

error. A sizeable portion of the false positives can be removed by using higher

placement support values.

Alignment Support. Figures A6 and A7 show the result of fixing the

placement support to be 50% or 95%, and changing the alignment support

threshold. Increasing the alignment support has a slight impact on the overall

160

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

genus

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

family

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

order

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

class

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

phylum

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

illumina_1

illumina_2

illumina_4

Classification
correct
incorrect
unclassified

(a) Illumina-like fragments

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

genus

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

family

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

order

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

class

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

phylum

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(0

%
,2

5%
,1

00
)

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(0

%
,7

5%
,1

00
)

T
IP

P
(0

%
,9

5%
,1

00
)

454_1

454_2

454_3

Classification
correct
incorrect
unclassified

(b) 454-like fragments

Figure A5: Non-leave-one-out experiments showing the impact of changing
placement support on the classification accuracy for fragments simulated from
the rpsB gene with (c) Illumina-like errors and (d) 454-error like errors. Each
column is the classification accuracy for a taxonomic rank and each row is the
error model used. TIPP(X%,Y%,Z) refers to TIPP run under the default set-
tings with an alignment support of X, placement support of Y , and maximum
alignment decomposition subset size of Z.

161

classification accuracy for the Illumina-type errors. The differences between

the percentage of fragments classified at all levels for 0% alignment support

and 95% alignment support is less than 5 percentage points. For the 454-

type errors, the impact of alignment support is only noticeable for the higher

error model conditions. Note that leave-one-out results were impacted more

by varying alignment support.

Alignment Support and Placement Support. Figure A8 shows the

result of changing alignment support and placement support together.

TIPP(0%,0%,100) tends to over-classify, resulting in the largest percentage of

incorrect classifications. Both TIPP(25%,25%,100) and TIPP(50%,50%,100)

result in a drop of correct classifications at the species level, but, at the same

time, a larger drop in incorrect classifications at the species level. The drop in

correct classifications is not noticeable for the higher taxonomic levels on the

error models with low rates of error. TIPP(95%,95%,100) has a large decrease

of correct classifications at the species level, but also has the fewest incorrect

classifications at all levels for all error models; nearly all the error for the lower

error model conditions are eliminated.

Impact of maximum alignment subset size. We found that using

smaller alignment subset sizes tends to improve accuracy, especially at the

species level, but also increases the running time as there are more alignment

subsets to analyze: the wall clock time to classify 200,000 fragments from the

162

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

genus

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

family

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

order

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

class

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

phylum

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

illumina_1

illumina_2

illumina_4

Classification
correct
incorrect
unclassified

(a) Illumina-like fragments

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

genus

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

family

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

order

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

class
T

IP
P

(0
%

,5
0%

,1
00

)
T

IP
P

(2
5%

,5
0%

,1
00

)
T

IP
P

(5
0%

,5
0%

,1
00

)
T

IP
P

(7
5%

,5
0%

,1
00

)
T

IP
P

(9
5%

,5
0%

,1
00

)

phylum

T
IP

P
(0

%
,5

0%
,1

00
)

T
IP

P
(2

5%
,5

0%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,5

0%
,1

00
)

T
IP

P
(9

5%
,5

0%
,1

00
)

454_1

454_2

454_3

Classification
correct
incorrect
unclassified

(b) 454-like fragments

Figure A6: Non-leave-one-out experiments showing the impact of changing
alignment support while fixing the placement support to be 50% on the classi-
fication accuracy for fragments simulated under the (a) Illumina error model
and (b) 454 error model for the rpsB marker gene. Each column is the classi-
fication accuracy for a taxonomic rank and each row is the error model used.
TIPP(X%,Y%,Z) refers to TIPP run under the default settings with an align-
ment support of X, placement support of Y , and maximum alignment decom-
position subset size of Z.

163

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

genus

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

family

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

order

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

class

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

phylum

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

illumina_1

illumina_2

illumina_4

Classification
correct
incorrect
unclassified

(a) Illumina-like fragments

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

genus

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

family

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

order

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

class
T

IP
P

(0
%

,9
5%

,1
00

)
T

IP
P

(2
5%

,9
5%

,1
00

)
T

IP
P

(5
0%

,9
5%

,1
00

)
T

IP
P

(7
5%

,9
5%

,1
00

)
T

IP
P

(9
5%

,9
5%

,1
00

)

phylum

T
IP

P
(0

%
,9

5%
,1

00
)

T
IP

P
(2

5%
,9

5%
,1

00
)

T
IP

P
(5

0%
,9

5%
,1

00
)

T
IP

P
(7

5%
,9

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

454_1

454_2

454_3

Classification
correct
incorrect
unclassified

(b) 454-like fragments

Figure A7: Non-leave-one-out experiments showing the impact of changing
alignment support while fixing the placement support to be 95% on the classi-
fication accuracy for fragments simulated under the (a) Illumina error model
and (b) 454 error model for the rpsB marker gene. Each column is the classi-
fication accuracy for a taxonomic rank and each row is the error model used.
TIPP(X%,Y%,Z) refers to TIPP run under the default settings with an align-
ment support of X, placement support of Y , and maximum alignment decom-
position subset size of Z.

164

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

genus

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

family

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

order

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

class

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

phylum

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

illumina_1

illumina_2

illumina_4

Classification
correct
incorrect
unclassified

(a) Illumina-like fragments

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

genus

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

family

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

order

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

class

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

phylum

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(2

5%
,2

5%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(7

5%
,7

5%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

454_1

454_2

454_3

Classification
correct
incorrect
unclassified

(b) 454-like fragments

Figure A8: Non-leave-one-out experiments showing the impact of changing
both alignment support and placement support on classification accuracy for
fragments simulated from the rpsB gene with (a) Illumina-like errors and (b)
454-error like errors. Each column is the classification accuracy for a taxonomic
rank and each row is the error model used. TIPP(X%,Y%,Z) refers to TIPP
run under the default settings with an alignment support of X, placement
support of Y , and maximum alignment decomposition subset size of Z.

165

rpsB gene ranged from 2.1 hours for TIPP(95%,95%,ALL) to 3.6 hours for

TIPP-default (TIPP(95%,95%,100)) (each run with 4 CPUs). The number

of sequences in the reference alignment also impacts the running time for

the TIPP(95%,95%,ALL) method, but this scales (at most) linearly with the

number of sequences. The running time shown for the rpsB gene is a good

case study, since the reference alignment has 1463 sequences and is one of the

larger datasets in this study.

Figure A9 shows the impact of changing the alignment decomposi-

tion size on TIPP(95%,95%). The result shows that, in general, decreasing

the alignment decomposition size increases the percentage of correctly clas-

sified fragments, as well as decreases the percentage of incorrectly classified

fragments. In other words, smaller alignment subsets produce more accurate

placements. However, using smaller alignment decomposition sizes results in

an increase in running time.

A3.4 ROC Curves

Here we explore the impact of change in support threshold for align-

ment subsets of size 10 in a non-leave-one-out experiment on the rpsB marker

gene (one of the hardest in the dataset), as alignment and placement support

thresholds are increased progressively.

The ROC curves shown in Figure A10 show that the impact of the

support thresholds is very visible at the species level, very reduced at the

genus level, and then largely eliminated at the family level and above. The

166

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

genus

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

family

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

order

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

class

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

phylum

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

illumina_1

illumina_2

illumina_4

Classification
correct
incorrect
unclassified

(a) Illumina-like fragments

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

species

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

genus

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

family

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

order

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

class

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

phylum

T
IP

P
(9

5%
,1

0)
T

IP
P

(9
5%

,5
0)

T
IP

P
(9

5%
,1

00
)

T
IP

P
(9

5%
,5

00
)

T
IP

P
(9

5%
,A

LL
)

454_1

454_2

454_3

Classification
correct
incorrect
unclassified

(b) 454-like fragments

Figure A9: Non-leave-one-out experiments showing the impact of changing the
size of the alignment decomposition for TIPP(95%) for fragments simulated
from the rpsB gene with (a) Illumina-like errors and (b) 454-error like errors.
Each column is the classification accuracy for a taxonomic rank and each
row is the error model used. TIPP(X%,Y) refers to TIPP run under the
default settings with an alignment support and placement support of X and
a maximum alignment decomposition subset size of Y .

167

curves for the species-level classification show that there is a tight relationship

between the precision and recall as the support varies between 0% to 50%,

but that the gain in precision moving from 50% support to 95% support is

significantly smaller than the loss in recall (1-2% gain in precision but 6-10%

drop in recall).

Precision

R
ec

al
l

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

species

●●●●
●

●

●●●●
●

●

●●●●

●

●

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

genus
●●●●●●

●●●●●●

●●●●●

●

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

family
●●●●●●

●●●●●●

●●●●●
●

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

45
4_

1
45

4_
2

45
4_

3

TIPP Settings:
● (0%,0%,10)
● (10%,10%,10)
● (15%,15%,10)
● (20%,20%,10)
● (50%,50%,10)
● (95%,95%,10)

Figure A10: ROC curve showing the impact of the different support thresh-
olds on precision and recall for species-level to family-level classification of
fragments simulated from the rpsB marker genes in a non-leave-one-out ex-
periment under the Illumina-error models. Note TIPP(0%,0%,10) is the same
as SEPP with alignment subset size ma = 10.

168

A3.5 Leave-one-out TIPP versus Metaphyler

Next, to compare TIPP and MetaPhyler, we performed a leave-one-out

study on the 30 marker genes used in the original MetaPhyler paper and on

the 16S gene. Here we show results for the default setting for TIPP (i.e.,

TIPP(95%,95%,100)).

A3.5.1 Leave-one-out 30 marker genes

Figures A11 shows the result for the leave-one-out experiments for the

30 marker genes. TIPP has higher recall on these data than MetaPhyler, and

the differences are substantial and statistically significant (p-values � 10−5).

The comparison with respect to precision is very interesting: while TIPP

generally had better precision in about two-thirds of the cases, MetaPhyler

had better precision one third of the time (except in one case, differences are

statistically significant, p-value � 10−5; see Section A1.3). Furthermore, the

relative performance depended on the taxonomic level, so that MetaPhyler had

better precision at the lower taxonomic levels, and TIPP had better precision

at the higher taxonomic levels.

A3.5.2 Leave-one-out 16S RNA gene

Figures A12-A13 show the result for the leave-one-out experiments for

the 16S rRNA gene. TIPP classifies more fragments correctly than MetaPhyler

on these data, especially at the lower taxonomic levels. MetaPhyler generally

had very low false classification rates. TIPP’s false classification rates were

169

generally low, except when a taxonomic clade at the family or higher level is

removed and classification is tested at the next taxonomic level. A detailed

analysis of these cases revealed that the false classifications were mostly due to

peculiarities in the taxonomy, potentially due to sparse taxonomic sampling.

For example, in the 16S Archaea taxonomy, the Halobacteria class has

exactly one family. Therefore, the leave-one-family-out experiment results

in an imbalanced taxonomy with no sequences from the Halobacteria class

present in the taxonomy, and the nearest relatives are at the phylum level.

As a result, it is impossible to correctly classify the fragments at the order or

class level. Because TIPP tends to classify fragments if it can do so with some

confidence, this results in a higher false classification rate (see Section A3.6

for more detailed discussion).

MetaPhyler generally had better precision than TIPP, but at a sub-

stantial cost in recall, especially at the lower taxonomic levels. For example,

in the leave-out-species experiments for the 454 bacterial 16S rRNA fragments,

MetaPhyler classified only 15% correctly at the genus level, and TIPP classified

69% correctly. On the other hand, the false classification rate for MetaPhyler

was quite low, varying from less than 1% to 3%, while the false classification

rate for TIPP was somewhat higher. On the bacterial 16S rRNA gene set, the

false classification rate for TIPP was quite low (with the exception of the phy-

lum level in the leave-one-class-out experiment). On the archaeal 16S rRNA

genes, TIPP generally had low false classification rates, but there were a few

cases where TIPP had high false classification rates.

170

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

genus

M
et

ap
hy

le
r

T
IP

P
−

de
f

family

M
et

ap
hy

le
r

T
IP

P
−

de
f

order

M
et

ap
hy

le
r

T
IP

P
−

de
f

class

M
et

ap
hy

le
r

T
IP

P
−

de
f

phylum

M
et

ap
hy

le
r

T
IP

P
−

de
f

sp
ec

ie
s

ge
nu

s
fa

m
ily

or
de

r
cl

as
sCorrect

Unclassified
Incorrect

(a) Illumina error model
genus

M
et

ap
hy

le
r

T
IP

P
−

de
f

family

M
et

ap
hy

le
r

T
IP

P
−

de
f

order

M
et

ap
hy

le
r

T
IP

P
−

de
f

class

M
et

ap
hy

le
r

T
IP

P
−

de
f

phylum

M
et

ap
hy

le
r

T
IP

P
−

de
f

sp
ec

ie
s

ge
nu

s
fa

m
ily

or
de

r
cl

as
s

(b) 454 error model

Figure A11: Leave-one-out experiment comparing the classification ac-
curacy for MetaPhyler versus TIPP-default (i.e., TIPP-default refers to
TIPP(95%,95%,100)) on the 30 marker genes.

171

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

genus

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

family

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

order

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

class

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

phylum

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e
sp

ec
ie

s
ge

nu
s

fa
m

ily
or

de
r

cl
as

sCorrect
Unclassified
Incorrect

(a) 16S bacteria; Illumina error
genus

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

family

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

order

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

class

M
et

ap
hy

le
r

T
IP

P
−

 la
rg

e

phylum
M

et
ap

hy
le

r
T

IP
P

−
 la

rg
e

sp
ec

ie
s

ge
nu

s
fa

m
ily

or
de

r
cl

as
s

(b) 16S bacteria; 454 error

Figure A12: Leave-one-out experiment comparing MetaPhyler to TIPP on
the 16S bacteria datasets, with both Illumina-like and 454-like error models.
TIPP-large is similar to TIPP-def, except placement size is set to 1,000, and
the taxonomic tree is used for alignment decomposition.

172

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

genus

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

family

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

order

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

class

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

phylum

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

sp

ec
ie

s
ge

nu
s

fa
m

ily
or

de
r

cl
as

sCorrect
Unclassified
Incorrect

(a) 16S archaea; Illumina error
genus

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

family

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

order

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

class

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

phylum

M
et

ap
hy

le
r

T
IP

P
−

 d
ef

sp

ec
ie

s
ge

nu
s

fa
m

ily
or

de
r

cl
as

s

(b) 16S archaea; 454 error

Figure A13: Leave-one-out experiment comparing MetaPhyler to TIPP on the
16S archaea datasets, with both Illumina-like and 454-like error models. TIPP-
def refers to TIPP run under the default settings (i.e. TIPP(95%,95%,100)).

173

A3.6 16S RNA on archaea, leave-one-out experiments; effects of
Halobacteria

In this section we discuss the particularly high false classification rates

for the leave-family-out and leave-order-out experiments for 16S RNA on ar-

chaea (). We find that the majority of the false classifications are caused by the

Halobacteria class, and 37% of all fragments from the 16S RNA on Archaea

dataset belong to this class. For the leave-family-out experiment, the total

numbers of incorrect classifications for TIPP(95%,95%,100) at the order level

and class level were 13,651 and 18,456, respectively. Of those incorrect classi-

fications, 9,223 of the 13,651 (68%) and 15,187 of the 18,456 (82%) belong to

fragments from this class.

Figure A14 highlights the reason for the large number of incorrect clas-

sifications. Most normal OTUs have more than direct child OTU, i.e. phyla

typically have more than one class, and classes typically have more than one

order. The Halobacteria class has only one order, and that order has only one

family. Thus, removing either the family or the order prunes the entire class

from the taxonomy. This makes it impossible to correctly classify fragments

at either the order level or the class level. Note that this phenomenon is not

unique to Halobacteria: any OTU that has exactly one direct child OTU will

be removed completely when the child OTU is omitted in the leave-one-out

experiment. This is most notable in Halobacteria because of the large number

of fragments belonging to this class.

Figures A16 and A18 shows the result of omitting fragments from

174

this class from the leave-family-out and leave-order-out experiments. When

Halobacteria is omitted, the incorrect classification rate drops and is in line

with the incorrect classification rates for the 16S experiments.

Figure A14: Taxonomy for Halobacteria class for the 16S RNA gene.

175

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

genus

M
et

ap
hy

le
r

T
IP

P
−

de
f

family

M
et

ap
hy

le
r

T
IP

P
−

de
f

order

M
et

ap
hy

le
r

T
IP

P
−

de
f

class

M
et

ap
hy

le
r

T
IP

P
−

de
f

phylum

M
et

ap
hy

le
r

T
IP

P
−

de
f

sp
ec

ie
s

ge
nu

s
fa

m
ily

or
de

r
cl

as
s

Correct
Unclassified
Incorrect

Figure A15: Illumina-like fragments

Figure A16: Removing Halobacteria class from leave-family-out and leave-
order-out experiments for 16S RNA archaea gene for fragments simulated with
Illumina-like errors . Each column is the classification accuracy for a taxonomic
rank and each row is level being omitted.

176

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

genus

M
et

ap
hy

le
r

T
IP

P
−

de
f

family

M
et

ap
hy

le
r

T
IP

P
−

de
f

order

M
et

ap
hy

le
r

T
IP

P
−

de
f

class

M
et

ap
hy

le
r

T
IP

P
−

de
f

phylum

M
et

ap
hy

le
r

T
IP

P
−

de
f

sp
ec

ie
s

ge
nu

s
fa

m
ily

or
de

r
cl

as
s

Correct
Unclassified
Incorrect

Figure A17: 454-like fragments

Figure A18: Removing Halobacteria class from leave-family-out and leave-
order-out experiments for 16S RNA archaea gene for fragments simulated with
454-error like errors. Each column is the classification accuracy for a taxonomic
rank and each row is level being omitted.

177

A3.7 Experiment 2: Abundance profiling experiments

We show the impact of alignment and placement support on abundance

profiling (Fig. A19 and A20). Although results depended on the particular

dataset, the following trends can be observed. On the short fragment datasets,

on average using the 0% threshold improved average abundance profiles at the

lower taxonomic levels and was neutral at the phylum level. On the long

fragment datasets, the change in threshold had essentially no impact. This

result lead us to select TIPP(0%,0%,100) for abundance profiling.

In Chapter 5, we compare TIPP-default against other abundance pro-

filing methods. The tabular results for the figures are shown in Tables A21

and A22.

A3.8 Experiment 3: Exploring robustness to sequencing error on
taxonomic identification experiments.

In Chapter 5 we showed non-leave-one-out results comparing

TIPP(95%,95%,100), MetaPhyler, PhmmBL, and NBC on all marker genes

under the 454 3 error model condition. Here we also show results on all re-

maining error model conditions. Figure A21 shows results under different rates

of Illumina-like and 454-like errors.

Figure A22 show results for false positive detection of “dark matter”

under the assumption that any read left unclassified at the phylum level comes

from a novel phylum.

178

facs_simhc_illumina webcarma_illumina metaphlan_HC metaphlan_LC Average

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0.0

0.5

1.0

1.5

species
genus

fam
ily

order
class

phylum

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

R
oo

t.M
ea

n.
S

qu
ar

ed
.E

rr
or

Abundance profiles

Figure A19: Abundance profiling results comparing different TIPP methods
on short fragments. The RMSE has been normalized by TIPP(0%,0%,100)’s
RMSE.

179

facs_simhc fames_simhc fames_simlc fames_simmc webcarma Average

0.00
0.25
0.50
0.75
1.00
1.25

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

species
genus

fam
ily

order
class

phylum

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

T
IP

P
(0

%
,0

%
,1

00
)

T
IP

P
(5

0%
,5

0%
,1

00
)

T
IP

P
(9

5%
,9

5%
,1

00
)

R
oo

t.M
ea

n.
S

qu
ar

ed
.E

rr
or

Abundance profiles

Figure A20: Abundance profiling results comparing different TIPP methods
on long fragments. The RMSE has been normalized by TIPP(0%,0%,100)’s
RMSE.

180

Table A21: The RMSE for different methods on the short fragment datasets,
normalized by TIPP(0%,0%,100)’s RMSE for each model condition and each
taxonomic rank. Thus methods with RMSE > 1 have worse performance
than TIPP, and methods with RMSE < 1 have better performance than
TIPP. Note that PhymmBL does not output species level classification.

Dataset Species Genus Family Order Class Phylum
FACs HC Illumina
NBC 1.889 2.278 2.226 2.241 1.431 3.111
PhymmBL NA 2.254 2.186 2.201 1.405 3.035
MetaPhlAn 1.134 1.101 1.403 1.054 0.967 2.018
MetaPhyler 5.324 2.095 1.496 1.351 1.279 0.743
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.341 1.264 1.101 1.104 1.119 0.691
WebCarm Illumina
NBC 1.132 1.483 2.768 2.806 4.116 8.142
PhymmBL NA 1.492 2.693 2.589 3.508 6.052
MetaPhlAn 1.321 1.576 1.377 2.229 2.720 5.595
MetaPhyler 3.443 1.816 2.181 1.738 1.759 1.630
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.066 0.899 0.999 1.141 1.065 1.773
MetaPhlAn HC
NBC 1.200 2.066 2.192 2.474 2.234 1.985
PhymmBL NA 2.061 2.210 2.500 2.217 2.023
MetaPhlAn 0.585 0.742 0.833 0.822 0.769 0.445
MetaPhyler 5.037 2.165 1.307 1.268 1.186 1.103
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.176 1.028 1.035 1.060 1.093 1.094
MetaPhlAn LC
NBC 2.020 2.175 2.644 2.483 2.205 1.708
PhymmBL NA 2.200 2.624 2.462 2.132 1.675
MetaPhlAn 0.492 0.527 0.725 0.952 0.787 0.628
MetaPhyler 10.000 7.744 4.169 2.051 1.880 1.803
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.286 0.919 0.789 0.967 1.044 1.004
Average
NBC 1.595 1.991 2.435 2.440 2.038 2.661
PhymmBL NA 1.993 2.403 2.386 1.934 2.487
MetaPhlAn 0.931 1.029 1.128 1.184 1.103 1.333
MetaPhyler 6.143 3.642 2.310 1.604 1.460 1.278
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.211 1.030 0.988 1.064 1.092 0.997

181

Table A22: The RMSE for different methods on the long fragment datasets,
normalized by TIPP(0%,0%,100)’s RMSE for each model condition and each
taxonomic rank. Thus methods with RMSE > 1 have worse performance
than TIPP, and methods with RMSE < 1 have better performance than
TIPP. Note that PhymmBL does not output species level classification.

Dataset Species Genus Family Order Class Phylum
FACs HC
NBC 1.554 1.864 2.008 2.030 1.397 3.124
PhymmBL NA 1.727 1.869 1.885 1.236 2.593
MetaPhlAn 1.220 1.087 1.533 1.239 0.661 1.720
MetaPhyler 5.338 2.048 1.441 1.366 1.176 1.268
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.007 1.002 0.967 0.977 1.028 1.134
FAMeS HC
NBC 0.797 0.894 0.830 0.784 0.661 1.630
PhymmBL NA 0.870 0.783 0.732 0.584 1.399
MetaPhlAn 1.206 0.834 0.761 0.608 0.478 0.877
MetaPhyler 4.159 1.624 1.194 1.109 1.249 1.777
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.025 1.002 1.005 0.998 0.988 0.983
FAMeS LC
NBC 0.974 0.943 1.006 0.976 0.658 1.127
PhymmBL NA 1.016 0.527 0.528 0.334 0.713
MetaPhlAn 3.849 2.714 1.813 1.868 1.349 1.683
MetaPhyler 6.489 2.197 1.442 1.221 1.175 1.331
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.195 1.046 1.036 1.008 1.015 0.997
FAMeS MC
NBC 1.844 1.829 1.651 1.679 1.363 1.863
PhymmBL NA 1.645 1.342 1.363 1.069 1.461
MetaPhlAn 2.332 1.521 0.690 0.859 0.647 2.463
MetaPhyler 4.997 1.741 1.291 1.260 1.019 2.366
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.014 1.015 1.049 1.037 1.038 0.987
WebCarma
NBC 0.771 0.795 0.862 0.818 1.141 2.081
PhymmBL NA 0.788 0.807 0.769 0.839 1.013
MetaPhlAn 1.384 1.153 1.127 1.207 1.665 1.003
MetaPhyler 3.205 1.467 1.318 1.186 1.567 1.260
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 0.932 0.894 1.039 1.038 1.071 0.957
Average
NBC 1.161 1.250 1.264 1.236 1.059 1.888
PhymmBL NA 1.194 1.075 1.045 0.823 1.373
MetaPhlAn 1.802 1.372 1.202 1.168 0.986 1.463
MetaPhyler 4.582 1.779 1.343 1.228 1.239 1.520
TIPP(0%,0%,100) 1.000 1.000 1.000 1.000 1.000 1.000
TIPP(95%,95%,100) 1.010 0.973 1.020 1.013 1.029 1.012

182

species genus family order class phylum

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ill
um

in
a_

1
ill

um
in

a_
2

ill
um

in
a_

4

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

Correct Unclassified Incorrect

(a) Illumina error model
species genus family order class phylum

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

45
4_

1
45

4_
2

45
4_

3

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

N
B

C
P

hy
m

m
B

L
M

et
ap

hy
le

r
T

IP
P

−
de

f

Correct Unclassified Incorrect

(b) 454 error model

Figure A21: Non-leave-one-out experiments comparing the classification accu-
racy for NBC, PhymmBL, MetaPhyler and TIPP-default (i.e., TIPP-default
refers to TIPP(95%,95%,100)) for fragments simulated from the 30 marker
genes under different rates of Illumina-like and 454-like errors. Note that
PhymmBL does not classify below the genus level and thus has 100% unclas-
sified rate at the species level.

183

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ill
um

in
a_

1
ill

um
in

a_
4

45
4_

1
45

4_
3

N
B

C

P
hy

m
m

B
L

M
et

ap
hy

le
r

T
IP

P
−

de
f

Classified Unclassified

Figure A22: Non-leave-one-out experiments comparing the proportion of clas-
sified and unclassified reads at the phylum level for NBC, PhymmBL, Meta-
Phyler and TIPP-default (i.e., TIPP-default refers to TIPP(95%,95%,100)) for
fragments simulated from the 30 marker genes under different error models.
If reads that could not be classified at the phylum level are considered novel,
then the unclassified rate identical to the false positive rate for detecting “dark
matter” microbes.

184

A4 Non-leave-one-out Running Time Study.

In this section we report on running time experiments performed on the

rpsB marker gene in order to examine the impact of the maximum alignment

decomposition size on the running time. While the previous leave-one-out and

non-leave-one out experiments had over million fragments, each individual

TIPP run typically examined fewer than 5,000 fragments. Thus, computing

the total running times across all the experiments would incur a substantial

cost in setup time.

To obtain a better estimate of the running time, we ran TIPP on a

very large simulated dataset. We simulated 200,000 fragments from rpsB with

Illumina-like errors. We selected the rpsB gene because the number of se-

quences in its reference alignment is on the high end of the range (1463), so

that its running time will be also at the high end of most analyses. We ran

TIPP(95%,95%,X) on the fragments, with X ranging from 10 to the total

number of sequences in rpsB, and we used pplacer within TIPP to place the

fragments. Note that we could not run EPA inside of TIPP for these experi-

ments, as we found EPA to be significantly slower than pplacer. For example,

the time to place 200 fragments using pplacer within TIPP was roughly half

a minute, while EPA took 55 minutes.

Each TIPP run was computed on an individual computer node with 32

GB of memory and was given 4 CPUs. We report the elapsed wall clock time

in Table A23.

185

Table A23: Wall clock running time (in hours) to classify 200,000 fragments
for different maximum alignment decomposition sizes, using four processors.
The fragments were simulated using MetaSim with Illumina 1 errors from the
rpsB marker gene.

Method Wall clock time (hr)
TIPP(95%,10) 7.5
TIPP(95%,100) 3.6
TIPP(95%,500) 2.8
TIPP(95%,ALL) 2.1

A5 Abundance profile calculation

In Chapter 5, we briefly described how to compute an abundance profile

of a method. We now provide more details on this procedure. Almost all the

studied methods (lone exception of NBC) can leave a fragment partially clas-

sified. Abundance profiles at a specific level for a given method is computed

by removing all unclassified fragments at the specific level and then computing

the abundance profile on the remaining fragments. For example, if the abun-

dance profile of a method at the species level is 30% species A, 30% species

B, and 60% unclassified, the modified abundance profile would be 50% species

A and 50% species B. Note that for the marker-based methods, the source

gene of the fragment is ignored when computing abundance profiles, i.e., the

profiles are computing on the entire set of classified fragments, ignoring that

the fragments may be binned to different markers.

186

A6 Dataset

A6.1 Marker Genes and Empirical Statistics

Table A24 shows statistics for the marker genes used in this study. We

show the maximum and average p-distances for each gene, which are defined

as follows. We compute the SATé alignment on each gene, and we define

the p-distance between two aligned sequences for a gene to be the fraction

of the positions in which they both have nucleotides, but the nucleotides are

different. The maximum of these pairwise distances is the “max p-distance”,

and the average of these pairwise distances is “average p-distance”. Datasets

that have maximum p-distances at 0.75 or larger are said to be “saturated”,

and estimating alignments and trees on such datasets is very difficult.

A6.2 Fragments

We used MetaSim [70] to generate fragments, starting from the refer-

ence datasets of 30 marker genes and the 16S gene. Both 100-bp Illumina-type

fragments and 300-bp 454-type fragments were generated, with different lev-

els of error (thus, we have Illumina 1, Illumina 2, and Illumina 4 models for

Illumina-type error, and similarly 454 1, 454 2, and 454 3 models). The index

j in Illumina j error model is scaling factor for the substitution error rates; an

index of 2 means all the substitution error rates per site are doubled. The index

j in the 454 j error model is the scaling factor for the negative flow error rate;

an index of 2 means that insertions are twice more likely. Illumina-type frag-

ments contained only substitution errors, and 454-type fragments contained

187

Table A24: Statistics for 30 marker genes and 16S RNA gene.

Marker Number of sequences Max p-distance Average p-distance
16S archaea 375 0.35 0.22
16S bacteria 9197 0.36 0.20
dnaG 1555 1.00 0.59
frr 1313 0.67 0.47
infC 1338 0.73 0.46
nusA 1406 1.00 0.56
pgk 1544 0.81 0.49
pyrG 1501 1.00 0.43
pyrg 65 0.55 0.43
rplA 1396 0.70 0.45
rplB 1370 0.68 0.43
rplC 1400 0.73 0.48
rplD 1341 0.75 0.53
rplE 1399 0.72 0.42
rplF 1366 0.78 0.48
rplK 1421 1.00 0.41
rplL 1315 0.77 0.42
rplM 1365 0.71 0.45
rplN 1311 0.66 0.40
rplP 1351 0.75 0.43
rplS 1383 0.81 0.46
rplT 1279 0.73 0.44
rpmA 1223 0.63 0.42
rpsB 1463 0.74 0.45
rpsC 1293 1.00 0.46
rpsE 1316 0.69 0.45
rpsI 1174 0.74 0.47
rpsJ 1287 0.68 0.41
rpsK 1308 0.64 0.42
rpsM 1307 0.70 0.43
rpsS 1277 0.67 0.40
smpB 1278 0.71 0.49

188

only indel errors, biased toward insertions. The Illumina 1 and 454 1 models

have the lowest error rates, and the Illumina 4 and 454 3 models have the

highest error rates. Table A25 shows the amount of error simulated for each

model condition.

Table A25: Statistics for non-leave-one-out fragment datasets. Fragments
were simulated using MetaSim with Illumina-like error or with 454-like errors.
Illumina-like fragments suffered from single bp substitution errors, while 454-
like fragments suffered from indel errors, biased toward insertions.

Model Num. substitutions Avg. Model Num. indel events Avg.
name per fragment (avg) length name per fragment (avg) length
Illumina 1 0.5 100 454 1 14.2 272.5
Illumina 2 1.5 100 454 2 24.5 275.9
Illumina 4 3.8 100 454 3 60.2 284.9

189

A7 Abundance Profile Datasets

A7.1 Metaphlan Simulated Dataset

The Metaphlan simulated datasets [74] consist of 2 high complexity

datasets and 8 low complexity datasets. The high complexity datasets contain

1,000,000 fragments each, and the low complexity datasets contain 250,000

fragments each. The average read length of the datasets was 88 bps. The

fragments span the bacteria and archaea domains.

A7.2 FACs HC

The FACs simulated dataset [83] is a high complexity dataset contain-

ing 19 bacterial genomes, 3 viral genomes, and 2 human chromosomes. All

genomes are present in equal amounts. MetaSim was used to simulate 454-

like fragments from the genomes. The dataset contained 100,000 sequences

total with an average length of 269 bps. The fragments in the original dataset

span the bacterial, viral, and eukaryote domains. We used only the bacterial

fragments from this dataset.

We also generated a high complexity dataset with 300,000 Illumina-like

reads using MetaSim from this dataset. The fragments had an average length

of 100 bps.

A7.3 FAMeS

The FAMeS simulated datasets [53] consist of a low complexity, medium

complexity, and high complexity dataset. Fragments were obtain from isolate

190

genome sequencing projects at the Department of Energy Joint Genome In-

stitute (DOE-JGI). Simulated abundance profiles were created by adding the

desired proportion of fragments to achieve a desired profile. Thus, while the

sequences are from a real study, the abundance profile itself is simulated and

the true abundance is known. The datasets consist of 328,728 sequences to-

tal with an average length of 950 bps. The fragments span the bacterial and

archaeal domains of life.

A7.4 WebCarma dataset

The WebCarma dataset simulated dataset [24] is a high complexity

dataset containing 25 bacteria genomes. MetaSim was used to simulate 454-

like fragments from the genomes. The dataset contained 25,000 fragments

with an average length of 265 bps.

We also generated a high complexity dataset with 300,000 Illumina-like

reads using MetaSim from this dataset. The fragments had an average length

of 100 bps.

A8 Methods

A8.1 EPA and pplacer: Likelihood-based phylogenetic placement

EPA and pplacer are both tools for phylogenetic placement based on

maximum likelihood, although pplacer can also use a Bayesian approach. Both

of these tools evaluate the likelihood of placing the fragment on different refer-

ence tree edges, and optimize the length of the pendant edge and the position

191

of the pendant edge on the reference tree edge. They both return a set of near

optimal placements along with the likelihood score that could be achieved with

that placement. Thus, for a given extended alignment, a query sequence can

be placed on multiple edges of the backbone tree, each with varying levels of

confidence, and a comparison of the likelihoods of alternative placements can

be used as a measure of placement uncertainty. Both pplacer and EPA uses

heuristics to limit expensive likelihood calculations to the parts of the tree they

consider to be most likely to contain optimal solution, but the exact heuristics

used are very different between the two methods. EPA has the ability to use

more models of sequence evolution than pplacer does.

We consulted Alexis Stamatakis, the author of EPA, regarding the

differences between the two tools; his response is given below:

Date: Sun, 10 Mar 2013 17:21:53 -0700 From: Alexandros Sta-

matakis ¡alexandros.stamatakis@gmail.com¿ To: Tandy Warnow

¡tandy@cs.utexas.edu¿ Subject: Re: difference between EPA and

pplacer

Hi Tandy,

There is indeed no essential difference, you can quote this as pers.

comm. with me.

Alexis

192

A8.2 Commands Used

Reference alignment: Each of the 30 marker genes were aligned using

SATé-II [47] version 2.0.3. SATéis run using a configuration file (available

upon request). The configuration options, listed below, indicate that we used

SATéin its default mode.

Centroid edge decomposition, Maximum alignment size of 20% of the

number of sequences, MAFFT to align, Muscle to merge alignments, FastTree

to estimate trees, simple stopping rule.

Reference tree and refined taxonomy: Two sets of trees are used in

all studies of marker genes: the reference tree (which is the SATétree, and

thus the RAxML tree on the reference alignment) and the refined taxonomy.

Note that for the 16S analyses, the SATé alignment is used for the reference

alignment, but the refined taxonomy also serves as the reference tree.

For refining a taxonomy the following RAxML command is used:

raxmlHPC -g [taxonomy] -s [SATé alignment] -m GTRGAMMA -n

[name]

Fragment simulation: MetaSim, by default, can generate fragments with

454-like errors. The command used to generate the 454 reads are shown below.

193

MetaSim cmd -4 -r<number fragments> -f 300 -t 0

--454-multiplier 0.30 --454-logn-mean < 0.23 ∗ j >

<sequence names>

where j is the error model scaling factor. For the leave-out experi-

ments on the 30 marker genes and 16S marker genes, j is 1; for the remaining

experiments, j ranges from 1 to 3.

MetaSim does not have a default setting to simulate Illumina-like frag-

ments. An empirical error model was downloaded from http://ab.inf.

uni-tuebingen.de/software/metasim/errormodel-80bp.mconf/. The er-

ror model generates fragments of 80 bps. To generate 100 bp fragments, the

error model for the last bp was repeated 20 extra times. For the higher error

fragments, the error rates at each position was multiplied the by error factor

(1, 2, or 4). The error model files used to generate the fragments are available

upon request.

pplacer: pplacer v1.1.alpha13 was run with the following command.

pplacer --out-dir [output directory] -j 1

-r [reference alignment] -s [raxml info file] -t

[reference placement] [extended alignment]

EPA: EPA was run using version 7.4.2 of RAxML, and using -f v option.

raxmlHPC -f v -t [placement tree] -s [extended alignment]

-m GTRGAMMA -n [name]

194

HMMER: The following commands were used for building and aligning

using HMMER.

hmmbuild --symfrac 0.0 --dna --informat afa [outputname]

[input alignment]

hmmsearch --allcol --dna -o [outputname] [input model]

[fragment file]

Blast Binning: Fragments were binned to marker genes by blasting the

fragments against the 30 marker reference dataset. The fragments were binned

to the source gene of the sequence that gave the best match. The following

commands were used to bin the fragments to marker genes.

blastn -db [blast database] -outfmt 6 -query

[fragment file] -out [outputname] -max target seqs 1

TIPP: TIPP can be run through a configuration file or through the com-

mand line. To run default TIPP, as described in Chapter 5, the following

command can be used.

python run tipp.py -t [taxonomic tree] -a

[backbone alignment] -r [raxml info file] -at 95 -pt 95 -tx

[taxonomy file] -txm [taxonomy mapping file] -A 100 -adt

[ml tree] -f [fragment file] -o [outputname]

195

MetaPhyler: MetaPhyler version 1.25 was run using the following com-

mand.

perl runMetaPhyler.pl [fragment file] blastn [outputname]

PhymmBL: PhymmBL version 4.0 was trained and run using the following

commands.

perl phymmblSetup.pl

perl scoreReads.pl [fragment file]

NBC: NBC version 1.1 was trained and run using the following commands.

Fragments were classified at the best hit genome if the confidence score of the

hit was above the species threshold.

countncbi [nbc genome directory] 15

score -a [fragment file] -r 15 -j [nbc genome directory]

Species threshold = −23.7∗ Read length+490

MetaPhlAn: MetaPhlAn version 1.7.3 was run using the following com-

mand.

python metaphlan.py --blastdb [metaphlan blast database]

[fragment file] [outputname]

196

Appendix B

UPP

B1 Materials and Methods

Datasets used in this study are available at http://www.cs.utexas.

edu/~phylo/datasets/alignment.html. (All software will be made freely

available in open-source form upon acceptance.)

B1.1 Datasets

B1.1.1 CRW 16S biological datasets.

We used three ribosomal RNA datasets (6,323 to 27,643 taxa) from

the Comparative Ribosomal Website [11]; these datasets have highly reli-

able, curated alignments based upon secondary and higher-order structures.

The alignments were cleaned by removing any sequence that contained more

than 50% gap characters, and then removing any site that consisted of all

gapped characters. Reference trees containing only highly supported edges

(contracting edges with less than 75% bootstrap support) were generated

for these alignments by previous studies [46, 47]. The alignments and trees

can be downloaded from http://www.cs.utexas.edu/~phylo/datasets/

phylogeny-topology.html.

197

B1.1.2 FastTree COG simulated datasets.

We include seven simulated protein COG datasets with 5,000 sequences

from [65]. The datasets were generated by aligning the gene families from the

Clusters of Orthologous Groups (COG) database [88], and for each alignment,

a random subalignment of 5000 sequences were sampled. The subalignment

was cleaned (sites containing more then 25% gapped characters were removed

from the subalignment) and an ML tree was estimated on the cleaned align-

ment using FastTree under JTT. The ML trees were then used as input to

ROSE [82] for sequence simulation.

B1.1.3 Large AA datasets with full reference alignments.

We include ten large biological protein datasets with 353 to 807 se-

quences with curated reference alignments. We include eight datasets from

the BAliBASE database (BAliBASE datasets RV100 BBA0039, 0067, 0081,

0101, 0117, 0134, 0154, and 0190) from [89] and two datasets (1GADBL 100

and coli epi 100) from [25]). RAxML bootstrapping was performed on the cu-

rated alignments to obtain ML trees with branch support, and branches with

less than 75% support were contracted and used as the reference tree for the

datasets.

The model of amino acid evolution used to generate the reference trees

was selected using RAxML-Light [79] version 1.0.5). The command used to

find the best amino acid model is given below.

198

• RAxML-LIGHT: raxmlLight-v1.0.5 -s [reference alignment] -T2 -m

PROTCATAUTOF -n [name] -t [raxml parsimony tree]

The following models were selected:

• RV100 BBA0067: VT

• RV100 BBA0081: VT

• RV100 BBA0101: WAG

• RV100 BBA0117: LG

• RV100 BBA0134: JTT

• RV100 BBA0154: WAG

• RV100 BBA0190: VT

• 1GAD BL 100: LG

• coli epi 100: LG

• RV100 BBA0039: LG

B1.1.4 HomFam datasets.

These are biological datasets that were assembled to evaluate protein

MSA methods on large datasets in [75]; we use 19 of the 20 largest HomFam

datasets (10,099 to 93,681 taxa). (We omit the “rhv” dataset due to the

199

warning on the Pfam website that the alignment of these sequences was very

weak.)

The HomFam datasets were generated using the HomStrad [81] and

Pfam [67] databases, as follows. Curated seed alignments on 5-20 sequences

(median 7) from each protein family were downloaded from the HomStrad

database, and for each protein family, homologous protein sequences from the

Pfam database were added to the HomStrad seed sequences to produce each

HomFam datasets.

The HomStrad seed alignments were used as the reference alignment;

therefore estimated alignments were evaluated only with respect to the induced

alignment produced on the seed sequences. See Table B3 for the number of

seed sequences found in each dataset.

B1.1.5 1000-taxon simulated datasets.

We included 300 simulated 1000-taxon NT datasets that were used in

[46, 47] to evaluate MSA methods on large nucleotide datasets. The average

sequence length is 1000 under all model conditions. These were produced using

ROSE under 15 different model conditions (20 replicates per model condition),

varying the rates of substitutions, indels, and gap length distributions. The

model conditions range in terms of difficulty (largely due to rate of evolution

and relative frequency of indels versus substitutions). Thus, model conditions

ending with “1” are the hardest, model conditions ending with “5” are the

easiest, and model conditions ending in “2” or “3” are still somewhat difficult.

200

The letter (M, L, or S) refers to the gap length distribution (medium, long, or

short). See [46] for further details on sequence generation.

B1.1.6 Indelible simulated datasets.

We used Indelible [22] version 1.03 to generate 30 NT datasets under 3

different model conditions (10 replicates per model condition) that had similar

empirical statistics (percent gapped, average p-distance, and max p-distance)

as the 1000-taxon 1000M2, 1000M3, and 1000M4 model conditions. We label

these model conditions as 10000M2, 10000M3, and 10000M4. The average

sequence length is 1000 under all model conditions.

B1.2 Methods

B1.2.1 Basic alignment methods

Each dataset was aligned (when possible) using Opal [93] version 2.1.2,

Clustal-Omega [75] version 1.2.0, MAFFT[35–37] version 6.956b, MUSCLE

[16] version 3.8.31, SATé-II [47] version 2.2.7 and PASTA version 1.0 [56]. Due

to a bug in earlier versions of MAFFT 6.956b, MAFFT-Profile and MAFFT-

default were run using MAFFT version 7.143.

We ran three different versions of MAFFT. MAFFT-L-INSI was run

on datasets with 1,000 for fewer sequences. For datasets with more than 1,000

sequences, we ran MAFFT-default (“--auto”) and MAFFT-PartTree (using

PartTree algorithm). All MAFFT variants included the “--ep 0.123” parame-

ter.

201

MUSCLE was run with the “-maxiters 2” option on datasets of 3000

sequences or greater. UPP was run using a configuration file, available upon

request (these will be made public upon acceptance.)

We ran two different versions of MAFFT-Profile: MAFFT-Profile-

addfrag (“- -addfragments”) and MAFFT-Profile-add (“- -add”). On datasets

with less than 1,000 sequences, the “L-INS-i” flag was also set.

SEPP version 1.0 [55] was simulated through UPP by excluding the

“-S hierarchical” flag. Excluding this flag resulted in non-overlapping, ap-

proximately equally-sized alignment subsets instead of the nested hierarchical

alignment subsets used within UPP.

PASTA was run using a MAFFT-PartTree starting tree for all but

the RNASim datasets. For the RNASim datasets, we used the ML tree esti-

mated on the UPP(Fast, No Decomp) alignment as the starting tree (MAFFT-

PartTree was unable to run on the largest RNASim datasets). The remaining

settings for PASTA are set using the “--auto” flag. PASTA is always run for

3 iterations or 24 hour time limit, whichever one came first. Commands for

each method is given below.

• Clustal-Omega: clustalo -i<input sequence> -o <output alignment>

• MAFFT-L-INS-i: mafft --ep 0.123 --localpair --maxiterate 1000 --quiet

--anysymbol <input sequence> > <output alignment>

• MAFFT-default: mafft --ep 0.123 --auto --quiet --anysymbol

<input sequence> > <output alignment>

202

• MAFFT-PartTree: mafft --ep 0.123 --parttree --retree 2 --partsize 1000

--quiet <input sequence> > <output alignment>

• MAFFT-profile: mafft [--localpair --maxiterate 1000] [- -addfragment

| - -add] <query file> <backbone alignment> > <output alignment>

• Opal: java -Xmx20g -jar opal.jar --in <input sequences> --out

<output alignment>

• MUSCLE: muscle [-maxiters 2] -in <input sequence> -out

<output alignment>

• PASTA: python run pasta.py -o <output directory>

-i <input sequences> -t <starting tree> --auto --

datatype=<molecule type>

• UPP: python exhaustive upp.py -S hierarchical -a

<backbone alignment> -t <backbone tree> -s <query sequences>

-d <output directory> -o <output name> -x 12 -

A <max alignment subsetsize> -m <molecule type> -c

<default config file>

• SEPP: python exhaustive upp.py -a <backbone alignment> -

t <backbone tree> -s <query sequences> -d <output directory>

-o <output name> -x 12 -A <max alignment subsetsize> -m

<molecule type> -c <default config file>

203

B1.2.2 HMMER Commands

HMMER 3.0 [15] is used internally within UPP for building the HMM

family, for searching for the best HMM for the alignment of a query sequence,

and for inserting the query sequence into the alignment. We provide the

HMMER commands used internally within UPP.

• HMMBUILD:

hmmbuild --symfrac 0.0 --informat afa --<molecule type>

<output profile> <backbone alignment>

• HMMSEARCH:

hmmsearch --noali -o <output file> --cpu 1 -E 99999999 --max

<input profile> <query file>

• HMMALIGN:

hmmalign --allcol --dna <output profile> <query file>

<output alignment>

B1.2.3 Maximum Likelihood Tree Estimation

We estimated Maximum Likelihood (ML) trees using FastTree [65] ver-

sion 2.1.5 SSE3 and RAxML version 8.0.6, using the commands below. We

ran each method in default mode for the nucleotide (NT) datasets, under the

GTR substitution model.

Analyses of the amino acid (AA) datasets were performed differently

by the two methods. For FastTree, we used the default setting which sets the

204

substitution model to JTT. For RAxML analyses of the simulated datasets, we

also used JTT, with the GAMMA model for rates of evolution across sites. For

the RAxML analyses of the biological datasets, we estimated the substitution

models for each biological dataset, and then used that model with the GAMMA

model for rates of evolution across sites.

• FastTree AA:

fasttree <input fasta> > <output tree>

• FastTree NT:

fasttree -nt -gtr <input fasta> > <output tree>

• RAxML AA:

raxmlHPC -T 12 -m PROTGAMMAJTT -j -n <output name>

<starting tree> -s <input fasta> > -w <output directory> -p 1

• RAxML NT:

raxmlHPC -T 12 -m GTRGAMMA -j -n <output name>

<starting tree> -s <input fasta> > -w <output directory> -p 1

B1.2.4 UPP alignment method

UPP is a novel de novo alignment technique that uses HMM Fami-

lies to efficiently align of both large and fragmentary datasets. The input to

UPP is a set of unaligned sequences. The output of UPP is the “unmasked”

and “masked” alignments on the entire set of sequences. The “unmasked”

205

alignment preserves insertion columns generated during the alignment step.

All characters in an insertion column are non-homologous and should not be

used during tree inference. Thus, we also output the “masked” alignment in

which insertion columns are removed for ML estimation. UPP proceeds in the

following steps:

• partitioning the sequences into the backbone set and query set,

• estimating the backbone alignment and tree,

• decomposing the backbone sequence set into subsets, and computing the

families of HMMs,

• aligning query sequences to HMMs, and merging the subalignments into

the final “unmasked” and “masked” alignments.

We now provide details for each step below. Commands for building

the HMM models, searching against the HMM models, and aligning the query

sequences to each HMM, are provided in Section B1.2.2.

Partitioning the sequences. For datasets containing only full-length se-

quences and little sequence length heterogeneity, we randomly divide the se-

quences into the backbone set and the query set. For datasets with large

sequence length heterogeneity, we want only full-length sequences to be in the

backbone. Thus, we filter out sequences that might be fragmentary (too short)

206

or chimeric (too long), either by using a user-defined length threshold or by re-

moving any sequence that is less than 25% shorter or longer than the median

length of the the typical gene length. The backbone sequences are selected

from the remaining unfiltered sequences. Details on backbone selection on the

individual datasets can found in Section B1.2.4. All sequences that are not

selected for the backbone set are placed into the query set.

Generating the backbone alignment and tree. We run PASTA on the

backbone set using the commands give in Section B1.2.1; this produces the

backbone alignment and backbone tree.

Decomposing the backbone tree into HMMs. We apply the recursive

decomposition technique called the “centroid edge decomposition” [47] to build

the family of HMMs. From the backbone tree, we select the centroid edge

e (one whose removal separates the leaf set into approximately two equally

sized subsets). We remove e (but not its endpoints) from the backbone tree to

produce two subtrees. This process is recursively repeated on each subtree with

more than ten leaves. The leaf set of each subtree generated by this process,

including the initial starting tree, is added to a set C of subsets of the backbone

set. The backbone alignment restricted to each of these sets is called a “subset

alignment”. For each alignment subset, we run HMMBUILD to produce an

HMM, producing a match state for every site that is not completely gapped.

207

Aligning the query sequences. Each query sequence is scored against

each HMM using HMMSEARCH, which reports a HMMER “bit score”, a

measure of the quality of the match between the query sequence and the

HMM. The HMM that yields the best bit score is selected and the query

sequence is inserted into the subalignment using HMMALIGN. Once all the

query sequences have been inserted into the subalignments, we merge all the

subalignments back together using transitivity.

In the special case where a query sequence resulted in no scores

against any of the HMMs (i.e., HMMSEARCH reports the sequence as non-

homologous to all HMMs), the query sequence is omitted from the final align-

ment.

Backbone filtering In order to determine which sequences are acceptable

to be in the backbone set, we require that backbone sequences must be within

a centain length range. The range is defined as within 25% length of the typical

gene sequnece. In the case where the average gene length is not known, we use

the median length the reference sequences as an approximation of the average

gene length. In general, all but the 16S CRW datasets used the median length

of the full-length reference sequences as an approximation of the average gene

length. For example, on the HomFam dataset zf-CCHH where the median

length of the seed sequences is 23, we only allow sequences between 23 residues

± 6 residues to be selected into the backbone set. For the CRW datasets, we

only allow sequences between 1500 bps ± 375 bps (typical length of 16S gene

208

is approximately 1500 bps) to be selected into the backbone set.

For the fragmentary datasets, we applied the same protocol to select the

backbone sequences using the length of the unmodified full-length sequences

to define length range. Note that because the RNASim datasets and the 1000-

taxon datasets had very homogenous length distributions, the simulated frag-

mentary sequences were perfectly partitioned from the full-length sequences,

and the backbone was sampled from all the entire set of full-length sequences.

The CRW datasets, on the other hand, had more sequence length hetero-

geneity, so many full-length (defined as an unmodified sequence) sequences

were also filtered from backbone selection, and thus never had a chance to be

sampled as a backbone sequence.

Using UPP iteratively. UPP can be used iteratively. In the first iteration,

the UPP alignment is computed, and a tree is estimated on the alignment. The

next iteration uses the tree to determine if a second iteration is recommended,

and then (if needed) to do directed sampling for the backbone sequences using

the tree. The major motivation for this iterative approach is highly uneven

taxon sampling (e.g., a densely sampled in-group and very sparsely sampled

outgroup). In this case the inclusion of the outgroup sequences into the back-

bone would suffice to provide the rebalancing that is needed. However, directed

sampling is also helpful when fragmentary sequences are unevenly distributed

throughout the phylogeny, or sequence lengths have changed substantially over

evolutionary history; in these cases, the approach we use for selecting the back-

209

bone dataset (which only samples from the full-length sequences) could have

substantially reduced phylogenetic diversity compared to the input dataset, so

that some major clades may have few or no backbone sequences. When this

happens, although the alignment estimated on the backbone dataset may be

highly accurate, the ability of the HMM Family to align some of the query

sequences may be reduced for those query sequences located in under-sampled

major clades. This issue arose for the 16S.T dataset, as shown in Figure B1.

There was a major clade that was primarily composed of shorter sequences,

so that the backbone dataset contained very few sequences from that clade.

We developed a resampling algorithm to handle this problem that can

be used after an alignment and tree is computed for the dataset. The resam-

pling algorithm searches for clades that are undersampled, and if found, selects

a new backbone set with more uniform sampling across the estimated tree.

The first step is to detect undersampled clades, where the threshold t for

under-sampling is a variable that the user can set; we explored this approach

using threshold t = 0.1. UPP starts by using the estimated tree on the initial

UPP alignment and rooting it arbitrarily. Next UPP performs a post order

traversal of the internal nodes, and for each internal node v, it computes the

proportion p(v) of the leaves in the clade for v that are in the backbone. If this

proportion is less than tB (where B is the desired proportion, set to be the

total number of sequences in the backbone dataset divided by the number of

leaves in the tree) and the clade is large enough (so that the expected number

of leaves in the backbone would be at least 10, if the backbone was distributed

210

uniformly across the tree), then UPP considers the clade under-sampled. If

any clade is found that is under-sampled, this triggers an additional iteration

of UPP.

UPP uses directed sampling in the next iteration, performed as follows.

UPP performs a post-order traversal of the internal nodes, and for each internal

node v such that at least 10 sequences should have been put in the backbone

set from the clade for v, it selects the backbone set from the clade at v, with

the correct proportion (defined by the total number of backbone sequences

desired, and the total number of leaves in the tree).

The selection of the backbone sequences begins by selecting randomly

from the full-length sequences in the clade and then completes the set by sam-

pling from the remaining sequences. However, the decision of what constitutes

full-length is based on the sequence length distribution within the clade.

Then the entire clade at v is deleted from the tree. This process repeats

until all the original leaves in the tree have been deleted. The end result of

this process is a backbone set that has uniform sampling across the estimated

tree.

211

(a) Initial backbone sequences

(b) Resampled backbone sequences

Figure B1: Distribution of the backbone sequences in the estimated
ML tree on 16S.T. We show the distribution of the backbone sequences
(highlighted in green) in the ML tree estimated on the UPP(Default) align-
ment. The initial selection of the backbone sequences resulted in sparse sam-
pling throughout one clade. After applying the resampling technique, the
distribution of the backbone sequences show much more uniform coverage.

212

B1.3 Early termination on large datasets

Many alignment methods failed to complete analyses on the larger

datasets, but reasons varied. Some failed due to insufficient memory, or due to

a bug in the software, or were simply unable to produce an alignment within

the 24 hour time limit (i.e., they might have been able to produce an alignment

if given more time). This section documents each case.

MAFFT-default. MAFFT-default terminated early on the CRW

16S.B.ALL dataset due to the following error message:

Cannot allocate 12568 character vector.

MAFFT-default also failed to produce an alignment on the RNASim

100K dataset within the 24 hour time limit on TACC. According MAFFT’s

output log, MAFFT was still running when the job was evicted.

MAFFT-PartTree. MAFFT-PartTree terminated with the following error

message on the RNASim 200K dataset:

mafft: line 2028: 28963 Segmentation fault

"$prefix/splittbfast" $legacygapopt -Z

$algopt $splitopt $partorderopt $parttreeoutopt

$memopt $seqtype $model -f "-"$gop -Q

$spfactor -h $aof -p $partsize -s

$groupsize $treealg -i infile > pre 2>> "$progressfile"

213

MAFFT-addfragments. MAFFT “addfragments” terminated early on the

RNASim datasets with 50,000 sequences or more, the CRW 16S.B.ALL

dataset, and the HomFam aat, p450, rvp, and zfCCHH datasets with the

following error message (note that the line number and location of the seg-

mentation fault was different for each dataset):

mafft: line XXXX: YYYYY Segmentation fault

"$prefix/pairlocalalign" $localparam $addarg

-C $numthreads $seqtype $model -g~$lexp

-f~$lgop -Q~$spfactor -h $laof -Y

< infile > /dev/null 2>> "$progressfile"

MAFFT-add. MAFFT “add” terminated early on the Indelible 10000M2

dataset with the following error message:

bug! hairetsu ga kowareta!

On the RNASim 200K dataset, MAFFT “add” terminated with non-

zero status, which signifies an error during execution.

Opal. Opal failed to align the FastTree COG438 dataset, most likely due to

a memory problem the machine. The Opal log file shows that Opal terminated

early during execution and that the peak virtual memory usage at the time

was 31 GB (only 24 GB of RAM available on Lonestar machine).

214

MUSCLE. MUSCLE terminates early on the RNASim datasets with 50K

sequences or more with the following error message:

*** OUT OF MEMORY ***

Memory allocated so far 23718.4 MB

No alignment generated

On the HomFam zf-CCHH and rvp, MUSCLE terminated with the following

error message: Segmentation fault.

Clustal-Omega. Clustal-Omega failed to terminate within 24 hours on the

RNASim datasets with 50,000 sequences or more. The log file showed that

Clustal-Omega was still running, so given enough time, it may be possible for

Clustal-Omega to produce an alignment on the larger RNASim datasets.

On the Indelible 10000M2 dataset, Clustal-Omega terminated early

with the following error message:

HHalignWrapper:hhalign_wrapper.c:945: problem in

alignment (profile sizes: 892 + 1540) (S1870 + S7661),

forcing Viterbi

hh-error-code=3 (mac-ram=2048)

+------------------------------+

| both sequences truncated right |

+------------------------------+

215

i2 = 2 != 6699 = qa->L, j2 = 10788 != 10846 = ta->L

PrintAlignments:hhhitlist-C.h:199: qt_ali.Build failed

hhalign:hhalign.cpp:1216: Could not print alignments

HHalignWrapper:hhalign_wrapper.c:984: 2nd attempt

worked HHalignWrapper:hhalign_wrapper.c:945:

problem in alignment

(profile sizes: 833 + 2432) (S3589 + S1870), forcing Viterbi

hh-error-code=3 (mac-ram=2048)

216

B2 Supplemental Figures and Tables

Table B1: Results on the million-sequence RNASim dataset. We show
results for UPP with a backbone of 100 sequences and using HMM families
(labeled “UPP(F)”) and using only a single HMM (labeled “UPP(F,ND)”).
We also show results for UPP with a backbone of 1000 sequences but without
any decomposition (labeled “UPP(D,ND)”. For this dataset, ∆FN is com-
puted by comparing the difference in tree error between the estimated ML
tree and the ML tree estimated on the masked true alignment (labeled “TA”),
where any site with fewer than 1,000 ungapped characters was removed; this
masking was performed to reduce the size of the true alignment (21,946 before
masking and 3,887 sites after masking) and make the ML tree estimation com-
putationally feasible. The tree error reported for the true alignment is also
based on the masked true alignment. The UPP alignments were computed on
a dedicated machine with 250 GB of memory and 12 CPUs; this is a different
computational platform than TACC’s Lonestar Cluster machines, which we
used to run the 10K to 200K RNASim experiments, and so the running times
cannot be compared to results on the smaller RNASim datasets.

Dataset Method Align. Error Tree error ∆FN Time (hrs)
1,000,000 UPP(F,ND) 13.0% 8.4% 2.8% 51.6
1,000,000 UPP(D,ND) 11.1% 7.7% 2.1% 64.7
1,000,000 UPP(F) 12.8% 7.5% 2.0% 286.4
1,000,000 TA 0.0% 5.6% 0.0% 0.0

217

Table B2: Empirical statistics of the true alignments for the simu-
lated datasets. The p-distance between two sequences is the proportion of
fully ungapped sites in which they have different letters. Average p-distance
is computed by averaging all p-distances between all pairs of sequences. Max
p-distance is the maximum p-distance over all pairs of sequences. Values
marked with an “*” were estimated by subsampling 1000 sequences at ran-
dom and computing the empirical statistics of the sample. This was repeated
10 times, and the average of the results is reported (with the exception of the
max p-distance where we report the maximum value of the replicates).

Dataset Number taxa # Sites ref. Avg. Seq. Max Avg. seq. Prop. gapped Avg.
align length p-dist. p-dist. characters gap length

1000L1 1,000 3,517 1,019.7 0.77 0.69 0.71 12.34
1000L2 1,000 2,830 1,009.0 0.77 0.70 0.64 13.15
1000L3 1,000 7,142 1,023.8 0.77 0.69 0.86 19.79
1000L4 1,000 2,249 1,007.9 0.61 0.51 0.55 10.07
1000L5 1,000 1,859 1,007.7 0.60 0.50 0.46 11.13
1000M1 1,000 3,880 1012.9 0.76 0.69 0.74 9.99
1000M2 1,000 4,068 1,022.1 0.77 0.69 0.75 10.35
1000M3 1,000 2,361 1,006.2 0.75 0.66 0.57 6.90
1000M4 1,000 2,698 1,008.2 0.61 0.50 0.63 8.08
1000M5 1,000 1,690 1,004.1 0.61 0.50 0.41 5.77
1000S1 1,000 1,901 1,004.5 0.77 0.69 0.47 3.44
1000S2 1,000 1,441 1,000.1 0.76 0.69 0.31 2.61
1000S3 1,000 1,715 1,001.4 0.76 0.69 0.42 3.08
1000S4 1,000 1,288 1,000.3 0.61 0.50 0.22 2.38
1000S5 1,000 1,151 999.9 0.62 0.51 0.13 2.43
COG1028 5,000 251 233.8 0.92 0.62 0.07 3.05
COG1309 5,000 197 179.4 0.92 0.72 0.09 8.39
COG2814 5,000 384 346.9 1.00 0.65 0.10 12.57
COG438 5,000 380 337.0 0.88 0.68 0.11 7.64
COG583 5,000 296 284.2 1.00 0.67 0.04 2.95
COG596 5,000 281 254.3 1.00 0.71 0.09 5.93
COG642 5,000 322 276.1 0.89 0.65 0.14 12.22
10000M2 10,000 5,109 1,000.0 0.75 0.68 0.80 6.83
10000M3 10,000 3,088 1,000.3 0.70 0.63 0.68 5.89
10000M4 10,000 1,831 1,000.2 0.59 0.51 0.45 5.10
RNASim 10K 10,000 8,637 1,554.6 0.62 0.41 0.82 5.24
RNASim 50K 50,000 12,400 1,554.6 0.62 0.41 0.87 7.24
RNASim 100K 100,000 14,316 1,554.5 0.61∗ 0.41∗ 0.89 8.41
RNASim 200K 200,000 16,365 1,554.5 0.62∗ 0.41∗ 0.91 9.65
RNASim 1M 1,000,000 21,946 1,554.5 0.62∗ 0.41∗ 0.93 13.18∗

218

Table B3: Empirical statistics of the reference alignments of the bi-
ological datasets. The p-distance between two sequences is the proportion
of fully ungapped sites in which they have different letters. Average p-distance
is computed by averaging all p-distances between all pairs of sequences. Max
p-distance is the maximum p-distance over all pairs of sequences. Some statis-
tics for the HomFam datasets are computed only on the seed alignment; thus
the total number of taxa and average sequence length refer to the size and
length of the HomFam seed sequences, and the total number of taxa and av-
erage sequence length of the entire HomFam dataset are shown in parentheses
next to the seed size and seed length.

Dataset Number Sites in Avg. Sequence Max Avg. Prop. Avg.
taxa reference length p-distance p-distance gapped gap

alignment characters length
1GADBL 100 561 490 324.9 0.71 0.46 0.34 7.04
coli epi 100 320 150 133.1 0.87 0.58 0.11 2.71
RV100 BBA0039 807 2,696 395.1 1.00 0.42 0.85 57.41
RV100 BBA0067 410 1,092 463.7 0.92 0.78 0.58 23.26
RV100 BBA0081 353 1,693 585.8 1.00 0.86 0.65 38.29
RV100 BBA0101 509 4,214 492.3 1.00 0.78 0.88 144.10
RV100 BBA0117 460 110 56.7 1.00 0.75 0.48 13.14
RV100 BBA0134 717 3,186 470.2 1.00 0.73 0.85 88.70
RV100 BBA0154 303 1,275 518.5 0.85 0.66 0.59 28.46
RV100 BBA0190 397 2,547 886.3 1.00 0.69 0.65 26.57
CRW 16S.3 6,323 8,716 1557.2 0.83 0.32 0.82 9.43
CRW 16S.B.ALL 27,643 6,857 1371.9 0.77 0.21 0.80 4.94
CRW 16S.T 7,350 11,856 1492.1 0.90 0.34 0.87 12.09
HomFam aat 10 (25,100) 476 403.6 (337.8) 0.87 0.71 0.15 4.09
HomFam Acetyltransf 6 (46,285) 229 161.5 (83.0) 0.87 0.75 0.29 6.98
HomFam adh 5 (21,331) 375 373.6 (123.6) 0.47 0.36 0.00 1.17
HomFam aldosered 7 (13,277) 386 310.9 (268.6) 0.79 0.57 0.19 5.11
HomFam biotin lipoyl 7 (11,833) 112 83.4 (71.9) 0.84 0.71 0.26 7.14
HomFam blmb 6 (17,200) 344 241.7 (192.5) 0.90 0.79 0.30 8.19
HomFam ghf13 10 (12,607) 626 469.8 (264.5) 0.84 0.72 0.25 5.06
HomFam gluts 14 (10,099) 235 215.6 (98.1) 0.81 0.60 0.08 3.08
HomFam hla 5 (13,465) 178 178.0 (153.1) 0.33 0.24 0.00 0.00
HomFam hom 8 (12,037) 98 63.5 (53.5) 0.84 0.64 0.35 9.52
HomFam

myb DNA-binding 5 (10,398) 61 53.6 (46.6) 0.77 0.59 0.12 2.47
HomFam p450 12 (21,013) 512 408.0 (331.5) 0.87 0.79 0.20 3.95
HomFam PDZ 6 (14,950) 110 93.0 (80.9) 0.84 0.69 0.15 3.19
HomFam Rhodanese 6 (14,049) 216 150.0 (102.3) 0.89 0.76 0.31 7.33
HomFam rrm 20 (27,610) 157 86.7 (67.5) 0.91 0.77 0.45 8.28
HomFam rvp 6 (93,681) 132 106.33 (94.3) 0.76 0.63 0.19 3.08
HomFam sdr 13 (50,157) 361 259.5 (163.3) 0.89 0.77 0.28 4.70
HomFam tRNA-synt 2b 5 (11,293) 467 307.8 (177.6) 0.88 0.81 0.34 8.65
HomFam zf-CCHH 15 (88,345) 39 29.1 (23.3) 0.85 0.65 0.25 2.71

219

B2.1 Sequence length distribution

We display the sequence length distribution for the biological datasets

in Figures B2-B3. The results show that there can be large sequence

length heterogeneity within the protein family (e.g., ghf13 in Fig. B2 and

RV100 BBA0190 in Fig. B3).

aat Acetyltransf adh aldosered biotin_lipoyl

blmb ghf13 gluts hla hom

myb_DNA−binding p450 PDZ Rhodanese rrm

rvp sdr tRNA−synt_2b zf−CCHH

0

2000

4000

6000

8000

0

5000

10000

15000

0

3000

6000

9000

12000

0

1000

2000

3000

0

2000

4000

6000

0

1000

2000

3000

0

500

1000

1500

2000

0
500

1000
1500
2000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

0
1000
2000
3000
4000

0

1000

2000

3000

0
1000
2000
3000
4000
5000

0

5000

10000

0

25000

50000

75000

0

10000

20000

0

2000

4000

6000

0

20000

40000

60000

0 100 200 300 400 500 50 100 150 100 200 300 400 0 100 200 300 400 500 40 60 80 100

100 200 300 0 200 400 50 100 150 200 50 100 150 200 20 40 60 80

30 60 90 0 200 400 600 50 100 50 100 150 200 30 60 90 120

50 100 0 100 200 300 0 100 200 300 400 10 20 30
Sequence Length

C
ou

nt
s

Figure B2: Sequence length distributions for the HomFam datasets.

220

1GADBL_100 coli_epi_100 RV100_BBA0039 RV100_BBA0067

RV100_BBA0081 RV100_BBA0101 RV100_BBA0117 RV100_BBA0134

RV100_BBA0154 RV100_BBA0190

0

50

100

150

200

250

0

25

50

75

0

200

400

600

0

10

20

30

0

10

20

30

40

0

50

100

150

200

0

20

40

60

0

50

100

150

200

0

10

20

30

40

0

50

100

250 300 350 400 75 100 125 250 500 750 1000 1250 200 300 400 500 600 700

0 500 1000 0 1000 2000 3000 4000 40 60 80 0 500 1000 1500 2000

400 500 600 700 800 0 500 1000
Sequence Length

C
ou

nt
s

Figure B3: Sequence length distributions for the ten large AA
datasets with full reference alignments.

221

B2.2 Resampling on the CRW 16S.T dataset

The initial UPP alignment and tree on CRW 16S.T dataset triggered

the resampling algorithm due to a sparse sampling of a major clade. A new

backbone set was automatically selected using the resampling algorithm. The

new backbone set resulted in a more even sampling across the tree (Fig. B1).

Fig. B4 shows the alignment error for the first iteration (backbone set selected

by random sampling of the full-length sequences) and the second iteration of

UPP (uniform sampling across the ML tree). While both iterations had very

similar average alignment error (18.4% for the first iteration and 18.2% for the

second iteration), the difference in ∆FN tree error was large (11.5% for the

first iteration and 6.6% for the second).

222

0.00

0.05

0.10

0.15

0.20

16S.T

M
ea

n
al

ig
nm

en
t e

rr
or

UPP(Default)−iter1 UPP(Default)−iter2

(a) Average alignment error

0.00

0.05

0.10

0.15

0.20

16S.T

S
P

F
N

UPP(Default)−iter1 UPP(Default)−iter2

(b) Alignment SPFN error

0.00

0.05

0.10

0.15

0.20

16S.T

S
P

F
P

UPP(Default)−iter1 UPP(Default)−iter2

(c) Alignment SPFP error

Figure B4: Alignment error rates for the first two iterations of UPP
on the CRW 16S.T dataset. The first iteration used a backbone sequence
set selected by randomly sampling the full-length sequences from the dataset.
The resulting ML tree was scored with respect to the distribution of the back-
bone sequences throughout the tree and triggered a second iteration of UPP.
The second backbone was selected through the resampling algorithm. We show
results for the first and second UPP iterations.
. 223

0.00

0.05

0.10

16S.T

FN
tre

e
er

ro
r

UPP(Default)−iter1 UPP(Default)−iter2 True alignment

(a) FN tree error

0.00

0.03

0.06

0.09

0.12

16S.T

D
el

ta
 F

N
 tr

ee
 e

rr
or

UPP(Default)−iter1 UPP(Default)−iter2

(b) Delta FN tree error

Figure B5: Tree error rates for first two iterations of UPP on the CRW
16S.T dataset. The first iteration used a backbone sequence set selected by
randomly sampling the full-length sequences from the dataset. The resulting
ML tree was scored with respect to the distribution of the backbone sequences
throughout the ML tree and triggered a second iteration of UPP. The second
backbone was selected through the resampling algorithm. We show results for
the first and second UPP iterations. ML trees were estimated using FastTree
under GTR.

224

B2.3 UPP pipeline exploration

We examined different modifications to each stage of the UPP pipeline

to examine the impact alignment and tree estimation accuracy. We now give

a brief overview and summary of our findings.

225

B2.3.1 Backbone alignment method

We ran UPP(Fast) on the backbone alignments estimated using

Clustal-Omega, MAFFT-L-INS-i, MUSCLE, and PASTA on backbone sets

of size 100 on the RNASim 10K dataset (Fig. B6 and B7. We found that UPP

using PASTA and MUSCLE backbones resulted in the most accurate UPP

alignments, followed very closely by UPP on the MAFFT-L-INS-i backbone.

UPP on using the Clustal-Omega backbone, on the other hand, resulted in a

distinctively worse alignment. Curiously, while UPP on PASTA and MUSCLE

backbones resulted in the best alignments, UPP on PASTA and MAFFT-L-

INS alignments resulted in the best trees. UPP on MUSCLE was close behind,

and as before, UPP on Clustal-Omega was distinctly worse.

226

0.0

0.1

0.2

0.3

10000

M
ea

n
al

ig
nm

en
t e

rr
or

UPP(Fast)−Clustal−Omega UPP(Fast)−Muscle UPP(Fast)−MAFFT−L−INS−i UPP(Fast)−PASTA

(a) Average alignment error

0.0

0.1

0.2

0.3

10000

S
P

F
N

UPP(Fast)−Clustal−Omega UPP(Fast)−Muscle UPP(Fast)−MAFFT−L−INS−i UPP(Fast)−PASTA

(b) Alignment SPFN error

0.0

0.1

0.2

0.3

10000

S
P

F
P

UPP(Fast)−Clustal−Omega UPP(Fast)−Muscle UPP(Fast)−MAFFT−L−INS−i UPP(Fast)−PASTA

(c) Alignment SPFP error

Figure B6: Alignment error rates of different UPP backbone align-
ments on the RNASim 10K dataset. All backbones are of size 100.NAM:
fix the x-axis text size

227

0.00

0.05

0.10

10000

F
N

 tr
ee

 e
rr

or

UPP(Fast)−Clustal−Omega UPP(Fast)−Muscle UPP(Fast)−MAFFT−L−INS−i UPP(Fast)−PASTA True alignment

(a) FN tree error

0.000

0.005

0.010

0.015

0.020

10000

D
el

ta
 F

N
 tr

ee
 e

rr
or

UPP(Fast)−Clustal−Omega UPP(Fast)−Muscle UPP(Fast)−MAFFT−L−INS−i UPP(Fast)−PASTA

(b) Delta FN tree error

Figure B7: Tree error rates of different UPP backbone alignments
on the RNASim 10K dataset. All backbones are of size 100. ML trees
were estimated using FastTree under GTR.

228

B2.3.2 Backbone size

We examined the impact the backbone size on alignment and tree ac-

curacy. We compared the accuracy of UPP using the HMM Family technique

(or a single HMM) with UPP using MAFFT-Profile on small (100) and large

(1000) backbones. We denote methods that used the small backbone as “Fast”

and methods that used the large backbone as “Default”.

In general, using a larger backbone resulted in more accurate alignments

and trees for both UPP and MAFFT-Profile-add (Fig. B8).

229

B2.3.3 Query sequence alignment method.

We compared three different technique for aligning the query sequences

to the backbone alignment within the UPP pipeline: using the HMM Fam-

ily technique, using MAFFT-Profile “--add”, and using MAFFT-Profile “--

addfragments”. Figure B8 showed that the HMM Family technique resulted

in more accurate alignments and trees than MAFFT-Profile, whether using

--add or --addfragments. In addition, UPP using the HMM Family technique

made it possible to align 200,000 sequences within 24 hours, but UPP us-

ing MAFFT-Profile “--add” was unable to align the 200K dataset in that

timeframe, and UPP using MAFFT-Profile “--addfragments” could only align

up to 10,000 sequences (Table 1 from main document). Comparing MAFFT-

Profile “--add” and MAFFT-Profile “--addfragments”, we found that MAFFT-

Profile “--addfragments” resulted in more accurate alignments and trees than

MAFFT-add (Fig. B8), at a large increase in running time (Table 1 from

main document), however, neither MAFFT variants were as accurate as the

HMM Family technique.

230

0.0

0.2

0.4

0.6

10000 50000 100000 200000

M
ea

n
al

ig
nm

en
t e

rr
or

MAFFT−addfrag(Fast)
MAFFT−add(Fast)

MAFFT−addfrag(Default)
MAFFT−add(Default)

UPP(Fast)
UPP(Default)

(a) Average alignment error

0.00

0.04

0.08

0.12

10000 50000 100000 200000

D
el

ta
 F

N
 tr

ee
 e

rr
or

MAFFT−addfrag(Fast)
MAFFT−add(Fast)

MAFFT−addfrag(Default)
MAFFT−add(Default)

UPP(Fast)
UPP(Default)

(b) Delta tree error

Figure B8: Alignment and tree error for UPP variants on the
RNASim datasets. Methods labeled with “Default” use a backbone size
of 1000. Methods labeled with “Fast” use a backbone size of 100. ML trees
were estimated using FastTree under GTR.

231

B2.3.4 Impact of using the HMM Family technique or a single
HMM

We explored in more detail the impact of using a single HMM to rep-

resent the backbone alignment (UPP with no decomposition) versus using the

family of HMMs (UPP with decomposition) on both small (100) and large

(1000) backbone sizes. In general, there are very minor differences between

using a single HMM and the family of HMMs with respect to alignment error

(Figs. B9 and B12). There are exceptions, however. The CRW 16S.T dataset

cannot be fully aligned using a single HMM. The dataset contains a sequence

which HMMALIGN cannot align to the HMM computed on the entire back-

bone for both “Fast” and “Default” versions of the backbones. However, when

decomposition is applied, every sequence in 16S.T can be aligned. Thus, the

family of HMMs technique is essential for generating an alignment on some

datasets.

The impact of decomposition is much more substantial with respect to

tree accuracy: UPP with decomposition resulted in significantly more accu-

rate trees (Fig. B10 and B13). However, decomposition does come with a

significant increase in running time (Fig. B11).

232

0.00

0.05

0.10

0.15

0.20

10000 50000 100000 200000

M
ea

n
al

ig
nm

en
t e

rr
or

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(a) Average alignment error

0.00

0.05

0.10

0.15

0.20

10000 50000 100000 200000

S
P

F
N

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(b) Alignment SPFN error

0.00

0.05

0.10

0.15

0.20

10000 50000 100000 200000

S
P

F
P

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(c) Alignment SPFP error

Figure B9: Alignment error for UPP variants on the RNASim
datasets. Methods labeled with “Default” use a backbone size of 1000. Meth-
ods labeled with “Fast” use a backbone size of 100.

233

0.00

0.05

0.10

0.15

0.20

10000 50000 100000 200000

F
N

 tr
ee

 e
rr

or

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default) True alignment

(a) FN tree error

0.000

0.025

0.050

0.075

10000 50000 100000 200000

D
el

ta
 F

N
 tr

ee
 e

rr
or

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(b) Delta FN tree error

Figure B10: Tree error of UPP variants on the RNASim datasets.
Methods labeled with “Default” use a backbone size of 1000. Methods la-
beled with “Fast” use a backbone size of 100. ML trees were estimated using
FastTree under GTR.

234

0

50

100

150

10000 50000 100000 200000

W
al

l c
lo

ck
 a

lig
n

tim
e

(h
r)

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

Figure B11: Wall clock alignment time (hrs) of UPP variants on the
RNASim datasets. All methods were run on a machine with 12 CPUs and
24 GB of memory. Methods labeled with “Default” use a backbone size of
1000. Methods labeled with “Fast” use a backbone size of 100. ML trees were
estimated using FastTree under GTR.

235

0.00

0.05

0.10

0.15

0.20

0.25

16S.3 16S.T 16S.B.ALL

M
ea

n
al

ig
nm

en
t e

rr
or

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(a) Average alignment error

0.00

0.05

0.10

0.15

0.20

0.25

16S.3 16S.T 16S.B.ALL

S
P

F
N

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(b) Alignment SPFN error

0.00

0.05

0.10

0.15

0.20

0.25

16S.3 16S.T 16S.B.ALL

S
P

F
P

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(c) Alignment SPFP error

Figure B12: Alignment error for UPP variants on the CRW 16S
datasets. Methods labeled with “Default” use a backbone size of 1000. Meth-
ods labeled with “Fast” use a backbone size of 100. Both UPP(Default,No De-
comp) and UPP(Fast,No Decomp) failed to align one of the 16S.T sequences
and thus failed to generate an alignment on the entire dataset. UPP results
are based on the first iteration of UPP.

236

0.00

0.05

0.10

0.15

0.20

16S.3 16S.T 16S.B.ALL

F
N

 tr
ee

 e
rr

or

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default) True alignment

(a) FN tree error

0.00

0.05

0.10

0.15

0.20

16S.3 16S.T 16S.B.ALL

D
el

ta
 F

N
 tr

ee
 e

rr
or

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

(b) Delta FN tree error

Figure B13: Tree error of UPP variants on the CRW 16S datasets.
ML trees were estimated using FastTree under GTR. Methods labeled with
“Default” use a backbone size of 1000. Methods labeled with “Fast” use
a backbone size of 100. Both UPP(Default,No Decomp) and UPP(Fast,No
Decomp) failed to align one of the 16S.T sequences and thus failed to generate
an alignment on the entire dataset. UPP results are based on the first iteration
of UPP.

237

0

5

10

15

16S.3 16S.T 16S.B.ALL

W
al

l c
lo

ck
 a

lig
n

tim
e

(h
r)

UPP(Fast,No Decomp) UPP(Default,No Decomp) UPP(Fast) UPP(Default)

Figure B14: Wall clock alignment time (hrs) of UPP variants on the
RNASim datasets. All methods were run on a machine with 12 CPUs and
24 GB of memory. UPP(Default) uses a backbone of size 1000. UPP(Fast)
uses a backbone of size 100. Both UPP(Default,No Decomp) and UPP(Fast,No
Decomp) failed to align one of the 16S.T sequences and thus failed to generate
an alignment on the entire dataset. UPP results are based on the first iteration
of UPP.

238

B2.4 SEPP vs. UPP

We now compare UPP and SEPP. Recall that both methods use the

same backbone, but SEPP divides the dataset into approximately ten disjoint

subsets of approximately equal size, and constructs HMMs on each subset

alignment. In comparison, UPP uses the HMM Family technique, which will

produce a much larger collection of HMMs.

SEPP(Default,10%) and UPP(Default) use the same backbone align-

ment, but SEPP decomposes the alignment into disjoint subsets (approxi-

mately 10 of them), using the centroid edge decomposition from SATé-II;

“10%” refers to the requirement that every subset should have approximately

10% of the backbone sequences, the protocol used in [55].

Both UPP and SEPP had comparable alignment accuracy on both

the RNASim and CRW 16S datasets (Figs. B15-B17). Differences between

the methods were more distinct on the CRW 16S datasets, especially with

respect to tree accuracy. UPP resulted in significantly better trees on all of the

CRW datasets (Fig. B18). In addition, UPP was more robust to fragmentary

datasets compared to SEPP (Fig. B19).

239

0.00

0.05

0.10

0.15

10000 50000

M
ea

n
al

ig
nm

en
t e

rr
or

SEPP(Default,10%) UPP(Default)

(a) Average alignment error

0.00

0.05

0.10

0.15

10000 50000

S
P

F
N

SEPP(Default,10%) UPP(Default)

(b) Alignment SPFN error

0.00

0.05

0.10

0.15

10000 50000

S
P

F
P

SEPP(Default,10%) UPP(Default)

(c) Alignment SPFP error

Figure B15: Alignment error for UPP and SEPP on the
RNASim datasets with 10K and 50K sequences. UPP(Default) and
SEPP(Default,10%) both use the same backbone of size 1000. SEPP decom-
poses the backbone into (approximately) 10 subsets each of the same size.

240

0.00

0.05

0.10

0.15

10000 50000

F
N

 tr
ee

 e
rr

or

SEPP(Default,10%) UPP(Default) True alignment

(a) FN tree error

0.00

0.02

0.04

0.06

10000 50000

D
el

ta
 F

N
 tr

ee
 e

rr
or

SEPP(Default,10%) UPP(Default)

(b) Delta FN tree error

Figure B16: Tree error of UPP and SEPP on the RNASim datasets
with 10K and 50K sequences. ML trees were estimated using FastTree
under GTR. UPP(Default) and SEPP(Default,10%) both use the same back-
bone of size 1000. SEPP(Default,10%) decomposes the backbone into (ap-
proximately) 10 subsets each of the same size.

241

0.00

0.05

0.10

0.15

0.20

0.25

16S.3 16S.T 16S.B.ALL

M
ea

n
al

ig
nm

en
t e

rr
or

SEPP(Default,10%) UPP(Default)

(a) Average alignment error

0.00

0.05

0.10

0.15

0.20

0.25

16S.3 16S.T 16S.B.ALL

S
P

F
N

SEPP(Default,10%) UPP(Default)

(b) Alignment SPFN error

0.00

0.05

0.10

0.15

0.20

0.25

16S.3 16S.T 16S.B.ALL

S
P

F
P

SEPP(Default,10%) UPP(Default)

(c) Alignment SPFP error

Figure B17: Alignment error for UPP and SEPP on the CRW 16S
datasets. UPP(Default) and SEPP(Default,10%) both use the same back-
bone of size 1000. SEPP(Default,10%) decomposes the backbone into (ap-
proximately) 10 subsets each of the same size. UPP and SEPP results shown
are based on the first iteration.

242

0.00

0.05

0.10

0.15

16S.3 16S.T 16S.B.ALL

F
N

 tr
ee

 e
rr

or

SEPP(Default,10%) UPP(Default) True alignment

(a) FN tree error

0.00

0.05

0.10

0.15

16S.3 16S.T 16S.B.ALL

D
el

ta
 F

N
 tr

ee
 e

rr
or

SEPP(Default,10%) UPP(Default)

(b) Delta FN tree error

Figure B18: Tree error of UPP and SEPP on the CRW
16S datasets. ML trees were estimated using FastTree under GTR.
UPP(Default) and SEPP(Default,10%) both use the same backbone of size
1000. SEPP(Default,10%) decomposes the backbone into (approximately) 10
subsets each of the same size. UPP and SEPP results shown on 16S.T are
based off of one iteration.

243

0.00

0.05

0.10

0.15

12.5 25 50
% Fragmentary

M
ea

n
al

ig
nm

en
t e

rr
or

SEPP(Default,10%) UPP(Default)

(a) Average alignment error

0.0

0.2

0.4

0.6

12.5 25 50
% Fragmentary

F
N

 tr
ee

 e
rr

or

SEPP(Default,10%) UPP(Default) True alignment

(b) Tree error

Figure B19: Alignment and tree error for SEPP and UPP on frag-
mentary CRW 16S.T datasets. We show alignment error and tree er-
ror for UPP and SEPP on the fragmentary CRW 16S.T datasets, varying
the percentage of fragmentary sequences, each with an average length of 500
sites (i.e., approximately one third the average sequence length for 16S.T).
UPP(Default) and SEPP(Default,10%) both use the same backbone of size
1000. SEPP(Default,10%) decomposes the backbone into (approximately) 10
subsets each of the same size. UPP results are based on the first iteration of
UPP.

244

B2.5 MAFFT variants

We compared MAFFT-PartTree and MAFFT-Default on the large

datasets. Fig. B20 shows that MAFFT-PartTree results in comparable or

better alignments than default MAFFT, however, default MAFFT results in

significantly better trees.

0.0

0.2

0.4

0.6

10000 16S.T 16S.3

M
ea

n
al

ig
nm

en
t e

rr
or

MAFFT−PartTree MAFFT−default

(a) Average alignment error

0.0

0.1

0.2

0.3

10000 16S.T 16S.3

F
N

 tr
ee

 e
rr

or

MAFFT−PartTree MAFFT−default True alignment

(b) FN tree error

Figure B20: Results of default MAFFT and MAFFT-PartTree on the
16S.T, 16S.3, and RNASim 10K datasets. All ML trees were estimated
using FastTree under GTR.

245

B2.6 PASTA on the ten large AA datasets

UPP’s alignment accuracy depends on the accuracy of the backbone

alignment. PASTA is an improvement on SATé-II, and both have been studied

extensively on NT datasets [56]; however, no published studies have studied

PASTA, SATé-I or SATé-II on AA datasets.

We explored PASTA variants, varying the technique used to estimate

alignments on subsets and then to merge alignments together, using the 10

AA datasets with full reference alignments. Initial analyses (data not shown)

revealed that MAFFT-L-INS-i gave the best results for producing the subset

alignments. We then evaluated techniques for merging alignments, including

Opal [93], MUSCLE [16], or COBALT [63].

We ran PASTA under default settings (no starting tree, subset size 200,

MAFFT-L-INS-i to align subsets, FastTree to compute trees in each iteration,

and running for three iterations), varying only the alignment merger technique.

The software version numbers and commands used within PASTA to align the

sequences and merge the subsets are given in Section B2.6.1. ML trees were

estimated on the alignments using RAxML under JTT, LG, or WAG models

of protein evolution (model selection described in Section B2.6.2).

We found that while all PASTA variants resulted in alignments with

comparable accuracy, RAxML maximum likelihood trees on PASTA using

MUSCLE to merge subalignments resulted in the most accurate trees (Fig.

B21). We refer to this version as “PASTA-MUSCLE.”

246

We then compared PASTA-MUSCLE to alignments and trees com-

puted using standard MSA methods followed by RAxML for maximum likeli-

hood. PASTA-MUSCLE and MAFFT-L-INS-i gave the most accurate align-

ments, but PASTA-MUSCLE resulted in the most accurate trees (Fig. B22).

Thus, we used PASTA-MUSCLE to generate our backbone alignments for AA

datasets.

247

0.0

0.2

0.4

0.6

1G
A

D
B

L_
10

0

co
li_

ep
i_

10
0

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

Dataset

M
ea

n
A

lig
nm

en
t E

rr
or

Method

MAFFT−Muscle

MAFFT−Cobalt

MAFFT−Opal

(a) Mean alignment error of PASTA variants

0.000

0.025

0.050

0.075

1G
A

D
B

L_
10

0

co
li_

ep
i_

10
0

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

Dataset

F
N

 T
re

e
 E

rr
or Method

MAFFT−Muscle

MAFFT−Cobalt

MAFFT−Opal

(b) Tree FN error of PASTA variants

Figure B21: Alignment and tree error for PASTA variants on the
ten large AA datasets with full reference alignments. Subalignments
were estimated using MAFFT-L-INS-i, and the resulting subalignments were
merged with either MUSCLE, Opal, or Cobalt. ML Trees were estimated using
RAxML under amino acid substitution models selected using PROTEST (see
Section B2.6.2).

248

0.0

0.2

0.4

0.6

0.8

1G
A

D
B

L_
10

0

co
li_

ep
i_

10
0

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

Dataset

M
ea

n
A

lig
nm

en
t

E
rr

or
Method

PASTA

MAFFT

CLUSTAL−OMEGA

Prank

Opal

COBALT

Muscle

(a) Mean alignment error

0.0

0.1

0.2

0.3

1G
A

D
B

L_
10

0

co
li_

ep
i_

10
0

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

Dataset

F
N

 T
re

e
 E

rr
or

Method

PASTA

MAFFT

CLUSTAL−OMEGA

Prank

Opal

COBALT

Muscle

(b) Tree FN error

Figure B22: Alignment and tree error of different methods on the
ten large AA datasets with full reference alignments. PASTA used
MAFFT-L-INS-i to align subalignments, and MUSCLE to merge subalign-
ments. ML Trees were estimated using RAxML under amino acid substitution
models selected using PROTEST (see Section B2.6.2).

249

B2.6.1 PASTA commands

The following software was used to generate the results presented in

Section B2.6:

Each dataset was aligned (when possible) using Opal [93] version 2.0.0,

Clustal-Omega [75] version 1.0.2, MAFFT[35–37] version 6.857b, Cobalt [63]

version 2.0.1, MUSCLE [16] version 3.8.31, PRANK [49] version 100802 and

PASTA version 1.0 [56]. Due to a bug in earlier versions of MAFFT 6.956b,

MAFFT-Profile and MAFFT-default were run using MAFFT version 7.143.

The commands used for the experiments in Section B2.6 are given be-

low.

• Clustal-Omega: clustalo -align -i<input sequence> -o

<output alignment>

• MAFFT: mafft --localpair --maxiterate 1000 --ep 0.123

<input sequence> > <output alignment>

• Opal: java -Xmx20g -jar opal.jar --in <input sequences> --out

<output alignment>

• MUSCLE: muscle -in <input sequence> -out <output alignment>

• Cobalt: cobalt -i <input sequence> -rpsdb <cdd clique 0.75> > out-

put alignment>

250

• Prank: prank -once -noxml -notree -nopost +F -quiet -matinitsize=5

-protein -d=<input sequence> -o=<output alignement>

• RaxML: raxml -m PROTGAMMA<model> -n ml -s <output phylip>

-T2 -w <working directory>

• PASTA: python run pasta.py -o <output directory> -i

<input sequences> -t <starting tree> --auto --num-cpus=12 --

datatype=<molecule type>

251

B2.6.2 Model selection for PASTA variants

Model selection for the ten large AA datasets with full reference align-

ments was performed with PROTEST, using the input parameters listed be-

low:

Alignment file........... : [MAFFT-L-INS-i alignment]

Tree..................... :RAxML parsimony tree on

MAFFT-L-INS-i

StrategyMode............. : Fast (optimize branch lengths & model)

Candidate models......... :

Matrices............... : JTT LG WAG

Distributions.......... : +G

Number of rate categ... : 4

Observed frequencies... : false

Statistical framework

Sort models according to....: AIC

Sample size.................: 0.0 (not calculated yet)

sampleSizeMode............: Total number of characters

(aligment length)

PROTEST selected the following AA models for the 10 AA datasets:

• 1GADBL 100: LG

• coli epi 100: LG

252

• RV100 BBA0039: LG

• RV100 BBA0067: WAG

• RV100 BBA0081: JTT

• RV100 BBA0101: WAG

• RV100 BBA0117: LG

• RV100 BBA0134: JTT

• RV100 BBA0154: WAG

• RV100 BBA0190: LG

253

B2.7 Comparisons between UPP, SATé-II, and PASTA

We compared UPP to SATé-II and PASTA on both full-length se-

quences and fragmentary sequences. PASTA is generally more accurate than

SATé-II with respect to both trees and alignments (Fig. B23), and is also

faster.

The comparison between UPP and PASTA on the full-length datasets

shows that UPP typically results in comparable or better alignments

(figs. B27,B23 and B30), but that PASTA results in comparable or better

trees (figs. B24 and B26).

On fragmentary datasets, UPP consistently resulted in better align-

ments and trees than PASTA, especially as datasets became more fragmentary

(fig. B32).

254

0.0

0.2

0.4

0.6

10000 50000 100000 200000

M
ea

n
al

ig
nm

en
t e

rr
or

SATe−II PASTA UPP(Default)

(a) Average alignment error

0.0

0.2

0.4

0.6

10000 50000 100000 200000

S
P

F
N

SATe−II PASTA UPP(Default)

(b) Alignment SPFN error

0.0

0.2

0.4

0.6

10000 50000 100000 200000

S
P

F
P

SATe−II PASTA UPP(Default)

(c) Alignment SPFP error

Figure B23: Alignment error of UPP, SATé-II, and PASTA on the
RNASim datasets. UPP(Default) uses a backbone of size 1000. Results not
shown indicate failure to complete within 24 hours using 12 processors.

255

0.00

0.05

0.10

0.15

0.20

10000 50000 100000 200000

F
N

 tr
ee

 e
rr

or

SATe−II PASTA UPP(Default) True alignment

(a) FN tree error

0.000

0.025

0.050

0.075

10000 50000 100000 200000

D
el

ta
 F

N
 tr

ee
 e

rr
or

SATe−II PASTA UPP(Default)

(b) Delta FN tree error on the RNASim datasts.

Figure B24: Tree error of UPP, SATé-II, and PASTA for the RNASim
datasets. ML trees were estimated using FastTree under GTR. UPP(Default)
uses a backbone of size 1000. Results not shown indicate failure to complete
within 24 hours using 12 processors.

256

0.0

0.1

0.2

0.3

0.4

0.5

16S.3 16S.T 16S.B.ALL

M
ea

n
al

ig
nm

en
t e

rr
or

SATe−II PASTA UPP(Default)

(a) Average alignment error

0.0

0.1

0.2

0.3

0.4

0.5

16S.3 16S.T 16S.B.ALL

S
P

F
N

SATe−II PASTA UPP(Default)

(b) Alignment SPFN error

0.0

0.1

0.2

0.3

0.4

0.5

16S.3 16S.T 16S.B.ALL

S
P

F
P

SATe−II PASTA UPP(Default)

(c) Alignment SPFP error

Figure B25: Alignment error of SATé-II, PASTA, and UPP on the
CRW datasets. All methods were allowed to run till termination and were
not limited by the 24 hour time limit. UPP was run with 2 iterations on
the 16S.T dataset. UPP(Default) uses a backbone of size 1000. Backbone
sequences were selected from all sequences that were within 1500 bps ± 375
bps in length.

257

0.00

0.03

0.06

0.09

16S.3 16S.T 16S.B.ALL

F
N

 tr
ee

 e
rr

or

SATe−II PASTA UPP(Default) True alignment

(a) FN tree error

0.00

0.02

0.04

0.06

16S.3 16S.T 16S.B.ALL

D
el

ta
 F

N
 tr

ee
 e

rr
or

SATe−II PASTA UPP(Default)

(b) Delta FN tree error

Figure B26: Tree error for PASTA, SATé-II, and UPP on the CRW
datasets. ML trees were estimated using FastTree under GTR. All methods
were allowed to run till termination and were not limited by the 24 hour time
limit. UPP was run with 2 iterations on the 16S.T dataset. UPP(Default) uses
a backbone of size 1000. Backbone sequences were selected from all sequences
that were within 1500 bps ± 375 bps in length.

258

0.00

0.01

0.02

0.03

0.04

0.05

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

M
ea

n
al

ig
nm

en
t e

rr
or

PASTA UPP(Default)

(a) Average alignment error

0.00

0.01

0.02

0.03

0.04

0.05

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

S
P

F
N

Method PASTA UPP(Default)

(b) Alignment SPFN error

0.00

0.01

0.02

0.03

0.04

0.05

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

S
P

F
P

Method PASTA UPP(Default)

(c) Alignment SPFP error

Figure B27: Alignment error of PASTA and UPP on the FastTree
COG datasets. Backbone sequences were filtered by only selecting from
sequences within 75% to 125% in length of the median sequnce length of the
reference sequences. Standard error bars are shown.

259

0.00

0.05

0.10

0.15

0.20

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

F
N

 tr
ee

 e
rr

or

Method PASTA UPP(Default)

(a) FN tree error

0.00

0.01

0.02

0.03

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

D
el

ta
 F

N
 tr

ee
 e

rr
or

Method PASTA UPP(Default)

(b) Delta FN tree error

Figure B28: Tree error of UPP and PASTA on the simulated Fast-
Tree COG datasets. ML trees were estimated using FastTree under JTT.
Backbone sequences were filtered by only selecting from sequences within 75%
to 125% in length of the median sequnce length of the reference sequences.
UPP(Default) uses a backbone of size 1000. Standard error bars are shown.

260

0.0

0.2

0.4

0.6

0.8

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

M
ea

n
al

ig
nm

en
t e

rr
or

PASTA UPP(Default)

Figure B29: Average alignment error of UPP and PASTA on the
HomFam datasets. UPP(Default) uses a backbone of size 1000. Backbone
sequences were filtered by only selecting from sequences within 75% to 125%
in length of the median sequnce length of the seed sequences. Standard error
bars are shown.

261

0.0

0.2

0.4

0.6

0.8

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

S
P

F
N

PASTA UPP(Default)

(a) Alignment SPFN error

0.0

0.2

0.4

0.6

0.8

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

S
P

F
P

PASTA UPP(Default)

(b) Alignment SPFP error

Figure B30: SPFN and SPFP alignment error of UPP and PASTA
on the HomFam datasets. UPP(Default) uses a backbone of size 1000.
Backbone sequences were filtered by only selecting from sequences within 75%
to 125% in length of the median sequnce length of the seed sequences. Standard
error bars are shown.

262

0.0

0.2

0.4

0.6

0 12.5 25 50
% Fragmentary

M
ea

n
al

ig
nm

en
t e

rr
or

PASTA UPP(Default)

(a) Average alignment error

0.0

0.2

0.4

0.6

0 12.5 25 50
% Fragmentary

S
P

F
N

 a
lig

nm
en

t e
rr

or

PASTA UPP(Default)

(b) Alignment SPFN error

0.0

0.2

0.4

0.6

0 12.5 25 50
% Fragmentary

S
P

F
P

 a
lig

nm
en

t e
rr

or

PASTA UPP(Default)

(c) Alignment SPFP error

Figure B31: Alignment error of PASTA and UPP on the fragmentary
1000M2 datasets. UPP(Default) uses a backbone size equal to the total
number of full-length sequences. Backbone sequences were filtered by only
selecting from sequences within 75% to 125% length of the typical 1000M2
length (1000 bps). Fragments had an average length of 500 bps, roughly one
half the length of an average full length sequence from 1000M2. Note that at
0% fragmentation, UPP(Default) is identical to PASTA. Standard error bars
are shown. Averages are computed over 5 replicates per dataset.

263

0.0

0.2

0.4

0 12.5 25 50
% Fragmentary

D
el

ta
 F

N
 tr

ee
 e

rr
or

PASTA UPP(Default)

Figure B32: Delta FN Tree error of UPP and PASTA on the frag-
mentary 1000M2 datasets. UPP(Default) uses a backbone size equal to
the total number of full-length sequences. Backbone sequences were filtered by
only selecting from sequences within 75% to 125% length of the typical 1000M2
length (1000 bps). ML trees were estimated using FastTree under GTR. Frag-
ments had an average length of 500 bps, roughly one half the length of an
average full length sequence from 1000M2. Note that at 0% fragmentation,
UPP(Default) is identical to PASTA. Standard error bars are shown. Averages
are computed over 5 replicates per dataset.

264

B2.8 Backbone and final alignment error.

We examined the alignment error of the backbone alignment and the

resulting alignment error of the alignment generated by UPP using the HMM

Family technique, or using MAFFT-profile “add” or MAFFT-profile “addfrag-

ments” (Fig. B33).

We found that the backbone alignment error was statistically signif-

icantly correlated to the alignments generated by the UPP pipeline (Pear-

son’s correlation coefficient 0.897; p-value of 2.292e-10). We also found that

alignment errors on alignments generated by the HMM Family technique

(UPP(Default)) were closer to the original backbone alignment error than

when they were generated using MAFFT-profile (root mean squared differ-

ence in alignment error of 0.020 for UPP(Default) versus 0.024 and 0.051 for

UPP using MAFFT-profile “addfragments” and MAFFT-profile “add”, re-

spectively).

This result shows that the HMM Family technique best preserves the

alignment accuracy of the original backbone alignment and can be used as a

way to scale existing alignments methods to ultra-large datasets.

265

●

●

●

0.00

0.05

0.10

0.15

0.20

0.00 0.05 0.10
Backbone average alignment error

F
in

al
 a

ve
ra

ge
 a

lig
nm

en
t e

rr
or

Method
●

●

●MAFFT−add(Default)
MAFFT−addfrag(Default)

UPP(Default)

Dataset ● RNASim CRW FastTree COG

Figure B33: Comparison of initial backbone error and final UPP
alignment error, using PASTA backbones of size 1000. Each point rep-
resents the alignment error for a specific method on a specific dataset. Points
below the line represent alignment methods that have a lower alignment error
relative to the backbone alignment. Points above the line represent alignment
methods that have a higher alignment error relative to the backbone align-
ment. The Pearson’s correlation coefficient for the backbone alignment error
versus the final alignment error for the entire collection of points is 0.897 and is
statistically significantly correlated (p-value of 2.292e-10; Pearson’s product-
moment correlation test).

266

B2.9 Results on full-length datasets

We present results on all the full-length sequence datasets.

267

0.0

0.2

0.4

0.6

10000 50000 100000 200000

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Fast)

(a) Average alignment error

0.0

0.2

0.4

0.6

10000 50000 100000 200000

S
P

F
N

Clustal−Omega Muscle MAFFT UPP(Fast)

(b) Alignment SPFN error

0.0

0.2

0.4

0.6

10000 50000 100000 200000

S
P

F
P

Clustal−Omega Muscle MAFFT UPP(Fast)

(c) Alignment SPFP error

Figure B34: Alignment error on the RNASim datasets. MAFFT is run un-
der the default options on the RNASim 10K and 50K datasets and under
“PartTree” for the RNASim 100K dataset. UPP(Fast) use a backbone size of
100.

268

0.00

0.05

0.10

0.15

0.20

0.25

10000 50000 100000 200000

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle MAFFT UPP(Fast) True alignment

(a) FN tree error

0.00

0.05

0.10

10000 50000 100000 200000

D
el

ta
 F

N
 tr

ee
 e

rr
or

Clustal−Omega Muscle MAFFT UPP(Fast)

(b) Delta FN tree error

Figure B35: Tree error on the RNASim datasets. ML trees were esti-
mated using FastTree under GTR. MAFFT is run under the default options
on the RNASim 10K and 50K datasets and under “PartTree” for the RNASim
100K dataset. UPP(Fast) use a backbone size of 100.

269

0

5

10

15

20

10000 50000 100000 200000

W
al

l c
lo

ck
 a

lig
n

tim
e

(h
r)

Clustal−Omega Muscle MAFFT UPP(Fast)

Figure B36: Wall clock alignment time (hrs) on the RNASim
datasets. All methods were run on a machine with 12 CPUs and 24 GB
of memory. MAFFT is run under the default options on the RNASim 10K
and 50K datasets and under “PartTree” for the RNASim 100K dataset; the
difference in how MAFFT was run explains the diffrence in time between 50K
and 100K sequences. UPP(Fast) uses a backbone size of 100.

270

0.00

0.25

0.50

0.75

1000L1 1000M1 1000S1 1000L2 1000M2 1000S2 1000L3 1000M3 1000S3

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle Opal MAFFT−L−INS−i UPP(Default)

Figure B37: Average alignment error of different methods on the
hardest 1000-taxon datasets. Standard error bars are shown. Averages
are computed over 20 replicates per dataset. UPP(Default) is identical to
PASTA on these datasets.

271

0.00

0.25

0.50

0.75

1000L1 1000M1 1000S1 1000L2 1000M2 1000S2 1000L3 1000M3 1000S3

S
P

F
N

 a
lig

nm
en

t e
rr

or

Clustal−Omega Muscle Opal MAFFT−L−INS−i UPP(Default)

(a) Alignment SPFN error

0.00

0.25

0.50

0.75

1000L1 1000M1 1000S1 1000L2 1000M2 1000S2 1000L3 1000M3 1000S3

S
P

F
P

 a
lig

nm
en

t e
rr

or

Clustal−Omega Muscle Opal MAFFT−L−INS−i UPP(Default)

(b) Alignment SPFP error

Figure B38: SPFN and SPFP alignment error of different methods
on the hardest 1000-taxon datasets. Standard error bars are shown. Av-
erages are computed over 20 replicates per dataset. UPP(Default) is identical
to PASTA on these datasets.

272

0.0

0.2

0.4

0.6

1000L1 1000M1 1000S1 1000L2 1000M2 1000S2 1000L3 1000M3 1000S3

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle Opal MAFFT−L−INS−i UPP(Default) True alignment

(a) FN tree error

0.0

0.2

0.4

1000L1 1000M1 1000S1 1000L2 1000M2 1000S2 1000L3 1000M3 1000S3

D
el

ta
 F

N
 tr

ee
 e

rr
or

Clustal−Omega Muscle Opal MAFFT−L−INS−i UPP(Default)

(b) Delta FN tree error

Figure B39: Tree error of different methods on the hardest 1000-
taxon datasets. ML trees were estimated using FastTree under GTR. Stan-
dard error bars are shown. Averages are computed over 20 replicates per
dataset. UPP(Default) is identical to PASTA on these datasets.

273

0.00

0.25

0.50

0.75

1.00

10000M2 10000M3 10000M4
Model

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

Figure B40: Average alignment error on the Indelible datasets.
Clustal-Omega was unable to generate an alignment on the 10000M2 dataset
(terminated with error message). MAFFT was run under the default options.
Standard error bars are shown. Averages are computed over 10 replicates per
model condition.

274

0.00

0.25

0.50

0.75

1.00

10000M2 10000M3 10000M4
Average

S
P

F
N

Clustal−Omega Muscle MAFFT UPP(Default)

(a) Alignment SPFN error

0.00

0.25

0.50

0.75

1.00

10000M2 10000M3 10000M4
Average

S
P

F
P

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Alignment SPFP error

Figure B41: SPFN and SPFP alignment error on the Indelible
datasets. Clustal-Omega was unable to generate an alignment on the
10000M2 dataset (terminated with error message). MAFFT was run under
the default options. Standard error bars are shown. Averages are computed
over 10 replicates per model condition.

275

0.0

0.2

0.4

0.6

10000M2 10000M3 10000M4

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default) True alignment

(a) FN tree error

0.0

0.2

0.4

0.6

10000M2 10000M3 10000M4
Model

D
el

ta
 F

N
 tr

ee
 e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Delta FN tree error

Figure B42: Tree error on the Indelible datasets. Clustal-Omega was
unable to generate an alignment on the 10000M2 dataset (terminated with
error message). MAFFT was run under the default options. Standard error
bars are shown. Averages are computed over 10 replicates per model condition.

276

0.00

0.25

0.50

0.75

1.00

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

Figure B43: Average alignment error on the HomFam datasets. On
the two largest HomFam datasets (zf-CCHH and rvp), MUSCLE terminated
with a “segfault” error and was unable to produce an alignment. Thus, average
alignment error for MUSCLE is excluded from the results. MAFFT is run
under the default options.

277

0.00

0.25

0.50

0.75

1.00

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

S
P

F
N

Clustal−Omega Muscle MAFFT UPP(Default)

(a) Alignment SPFN error

0.00

0.25

0.50

0.75

1.00

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

S
P

F
P

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Alignment SPFP error

Figure B44: Alignment SPFN and SPFP error on the HomFam
datasets. On the two largest HomFam datasets (zf-CCHH and rvp), MUS-
CLE terminated with a “segfault” error and was unable to produce an align-
ment. Thus, average alignment error for MUSCLE is excluded from the results.
MAFFT is run under the default options.

278

0.0

0.2

0.4

0.6

0.8

1G
A

D
B

L_
10

0

co
li_

ep
i

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle Opal MAFFT UPP(Default)

Figure B45: Average alignment errors on the ten large protein
datasets with full alignments. MAFFT is run under “L-INS-I”

279

0.00

0.25

0.50

0.75
1G

A
D

B
L_

10
0

co
li_

ep
i

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

S
P

F
N

Clustal−Omega Muscle Opal MAFFT UPP(Default)

(a) Alignment SPFN error

0.0

0.2

0.4

0.6

0.8

1G
A

D
B

L_
10

0

co
li_

ep
i

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

S
P

F
P

Clustal−Omega Muscle Opal MAFFT UPP(Default)

(b) Alignment SPFP error

Figure B46: Alignment SPFN and SPFP error on the ten large pro-
tein datasets with full alignments. MAFFT is run under “L-INS-I”

280

0.0

0.1

0.2

0.3

1G
A

D
B

L_
10

0

co
li_

ep
i

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle Opal MAFFT UPP(Default)

Figure B47: Tree error rates on the large protein datasets with full
alignments. MAFFT is run under “L-INS-I”. ML trees were estimated using
RAxML under JTT.

281

0.0

0.1

0.2

0.3

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle Opal MAFFT UPP(Default)

Figure B48: Average alignment error on the FastTree COG datasets.
MAFFT is run under the default options. Opal failed to generate an alignment
on COG438, and thus is excluded from the average results.

282

0.0

0.2

0.4

0.6

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

S
P

F
N

Method Clustal−Omega Muscle Opal MAFFT UPP(Default)

(a) Alignment SPFN error

0.000

0.025

0.050

0.075

0.100

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

S
P

F
P

Method Clustal−Omega Muscle Opal MAFFT UPP(Default)

(b) Alignment SPFP error

Figure B49: SPFN and SPFP alignment error on the simulated Fast-
Tree COG datasets. MAFFT is run under the default options. Opal failed
to generate an alignment on COG438, and thus is excluded from the average
results.

283

0.0

0.1

0.2

0.3

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

F
N

 tr
ee

 e
rr

or

Method Clustal−Omega Muscle Opal MAFFT UPP(Default) True alignment

(a) FN tree error

0.00

0.05

0.10

0.15

C
O

G
10

28

C
O

G
13

09

C
O

G
28

14

C
O

G
43

8

C
O

G
58

3

C
O

G
59

6

C
O

G
64

2

A
ve

ra
ge

Dataset

D
el

ta
 F

N
 tr

ee
 e

rr
or

Method Clustal−Omega Muscle Opal MAFFT UPP(Default)

(b) Delta FN tree error

Figure B50: Tree error rates on the simulated FastTree COG datasets.
ML trees were estimated using FastTree under JTT. MAFFT is run under the
default options. Opal failed to generate an alignment on COG438, and thus
is excluded from the average results.

284

0.0

0.2

0.4

0.6

16S.3 16S.T 16S.B.ALL

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(a) Average alignment error

0.0

0.2

0.4

0.6

16S.3 16S.T 16S.B.ALL

S
P

F
N

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Alignment SPFN error

0.0

0.2

0.4

0.6

16S.3 16S.T 16S.B.ALL

S
P

F
P

Clustal−Omega Muscle MAFFT UPP(Default)

(c) Alignment SPFP error

Figure B51: Alignment error rates on the CRW datasets. MAFFT
is run under the default options on the 16S.T and 16S.3 datasets and under
“PartTree” on the 16S.B.ALL dataset. UPP results are based on the first
iteration of UPP.

285

B2.10 TC Scores

We report total column (TC) scores on the protein datasets with struc-

turally based reference alignments (Fig. B52). The TC score is the proportion

of columns in the reference alignment that are recovered in the estimated

alignment.

UPP, MAFFT, and Clustal-Omega have similar TC scores on the ten

large AA datasets, followed closely by Opal and Muscle. On the HomFam

datasets, the differences between the methods are more clear with UPP having

the best TC score, followed by MAFFT, then Clustal-Omega.

286

0.0

0.1

0.2

0.3

0.4

0.5

1G
A

D
B

L_
10

0

co
li_

ep
i

R
V

10
0_

B
B

A
00

39

R
V

10
0_

B
B

A
00

67

R
V

10
0_

B
B

A
00

81

R
V

10
0_

B
B

A
01

01

R
V

10
0_

B
B

A
01

17

R
V

10
0_

B
B

A
01

34

R
V

10
0_

B
B

A
01

54

R
V

10
0_

B
B

A
01

90

A
ve

ra
ge

T
C

 s
co

re

Clustal−Omega Muscle Opal MAFFT UPP(Default)

(a) TC scores on the ten large biological datasets with full alignments

0.00

0.25

0.50

0.75

1.00

aa
t

A
ce

ty
ltr

an
sf

ad
h

al
do

se
re

d

bi
ot

in

bl
m

b

gh
f1

3

gl
ut

s

hl
a

ho
m

m
yb

p4
50

P
D

Z

R
ho

da
ne

se

rr
m

rv
p

sd
r

tR
N

A
−

sy
nt

zf
−

C
C

H
H

A
ve

ra
ge

T
C

 S
co

re

Clustal−Omega Muscle MAFFT UPP(Default)

(b) TC scores on the Homfam datasets

Figure B52: TC (Total Column) scores of methods on the biological
AA datasets. MAFFT is run under “L-INS-i” option on the ten large AA
datasets and under the default option on the HomFam datasets.

287

B2.11 Results on fragmentary datasets

We present results on the individual fragmentary datasets.

288

1000M2 1000M3 1000M4

0.00

0.25

0.50

0.75

500
0 12.5 25 50 0 12.5 25 50 0 12.5 25 50

% fragmentary
M

ea
n

al
ig

nm
en

t e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default)

(a) Average alignment error

1000M2 1000M3 1000M4

0.00

0.25

0.50

0.75

500

0 12.5 25 50 0 12.5 25 50 0 12.5 25 50
% fragmentary

S
P

F
N

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Alignment SPFN error

1000M2 1000M3 1000M4

0.00

0.25

0.50

0.75

500

0 12.5 25 50 0 12.5 25 50 0 12.5 25 50
% fragmentary

S
P

F
P

Clustal−Omega Muscle MAFFT UPP(Default)

(c) Alignment SPFP error

Figure B53: Alignment error rates on the fragmentary 1000-taxon
model conditions. We show alignment error rates for different methods
on the 1000M2, 1000M3, and 1000M4 datasets, varying the percentage of
fragmentary sequences, each with an average length of 500 sites (i.e., approxi-
mately half the average sequence length). MAFFT is run under the “L-INS-i”.
Standard error bars are shown. Averages are computed over 5 replicates per
dataset.

289

1000M2 1000M3 1000M4

0.00

0.25

0.50

0.75

500

0 12.5 25 50 0 12.5 25 50 0 12.5 25 50
% fragmentary

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default) True alignment

(a) FN tree error

1000M2 1000M3 1000M4

0.0

0.2

0.4

0.6

500

0 12.5 25 50 0 12.5 25 50 0 12.5 25 50
% fragmentary

D
el

ta
 F

N
 tr

ee
 e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Delta FN tree error

Figure B54: Tree error rates on the fragmentary 1000-taxon datasets.
We show tree error rates for different methods on the 1000M2, 1000M3, and
1000M4 datasets, varying the percentage of fragmentary sequences, each with
an average length of 500 sites (i.e., approximately half the average sequence
length). MAFFT is run under the “L-INS-i”. ML trees were estimated using
FastTree under GTR. Standard error bars are shown. Averages are computed
over 5 replicates per dataset.

290

0.00

0.25

0.50

0.75

0 12.5 25 50
% Fragmentary

M
ea

n
al

ig
nm

en
t e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(a) Average alignment error

0.00

0.25

0.50

0.75

0 12.5 25 50
% Fragmentary

S
P

F
N

 a
lig

nm
en

t e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Alignment SPFN error

0.00

0.25

0.50

0.75

0 12.5 25 50
% Fragmentary

S
P

F
P

 a
lig

nm
en

t e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default)

(c) Alignment SPFP error

Figure B55: Alignment error rates on the fragmentary RNASim 10K
datasets. We show alignment error rates for for Clustal-Omega, MUSCLE,
MAFFT-Default, and UPP(Default) on the RNASim 10K datasets, varying
the percentage of fragmentary sequences, each with an average length of 500
sites. (i.e., approximately one third the average sequence length).

291

0.00

0.25

0.50

0.75

0 12.5 25 50
% Fragmentary

F
N

 tr
ee

 e
rr

or

Clustal−Omega Muscle MAFFT UPP(Default) True alignment

(a) FN tree error

0.0

0.1

0.2

0.3

0.4

0.5

0 12.5 25 50
% Fragmentary

D
el

ta
 F

N
 tr

ee
 e

rr
or

Clustal−Omega Muscle MAFFT UPP(Default)

(b) Delta FN tree error

Figure B56: Tree error rates on the fragmentary RNASim 10K
datasets. We show tree error rates for Clustal-Omega, MUSCLE, MAFFT-
Default, and UPP(Default) on the RNASim 10K datasets, varying the per-
centage of fragmentary sequences, each with an average length of 500 sites.
(i.e., approximately one third the average sequence length). ML trees were
estimated using FastTree under GTR.

292

Bibliography

[1] C. Afrasiabi, B. Samad, D. Dineen, C. Meacham, and K. Sjolander. The

PhyloFacts FAT-CAT web server: ortholog identification and function

prediction using fast approximate tree classification. Nucl. Acids Res.,

41(W1):W242–W248, 2013.

[2] D. J. Aldous. Stochastic models and descriptive statistics for phyloge-

netic trees, from Yule to today. Statist. Sci, 16:23–34, 2001.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.

Basic local alignment search tool. Journal of molecular biology, 215:403–

410, 1990.

[4] R. I. Amann, W. Ludwig, and K. H. Schleifer. Phylogenetic identifica-

tion and in situ detection of individual microbial cells without cultiva-

tion. Microbiological reviews, 59:143–169, 1995.

[5] A. L. Bazinet and M. P. Cummings. A comparative evaluation of se-

quence classification programs. BMC bioinformatics, 13(1):92, Jan.

2012.

[6] S. A. Berger, D. Krompass, and A. Stamatakis. Performance, Accuracy,

and Web Server for Evolutionary Placement of Short Sequence Reads

293

under Maximum Likelihood. Systematic Biology, 60(3):291–302, May

2011.

[7] S. A. Berger and A. Stamatakis. Aligning short reads to reference

alignments and trees. Bioinformatics, 27(15):2068–2075, 2011.

[8] P. Bonizzoni and G. D. Vedova. The complexity of multiple sequence

alignment with SP-score that is a metric. Theoretical Computer Science,

259:63–79, 2001.

[9] A. Bouchard-Côté and M. I. Jordan. Evolutionary inference via the

poisson indel process. Proceedings of the National Academy of Sciences,

110(4):1160–1166, 2013.

[10] D. Brown, N. Krishnamurthy, and K. Sjölander. Automated protein

subfamily identification and classification. PLoS computational biology,

3(8), 2007.

[11] J. Cannone, S. Subramanian, M. Schnare, J. Collett, L. D’Souza, Y. Du,

B. Feng, N. Lin, L. Madabusi, K. Muller, N. Pande, Z. Shang, N. Yu,

and R. Gutell. The comparative rna web (crw) site: an online database

of comparative sequence and structure information for ribosomal, intron,

and other rnas. BMC Bioinformatics, 3(1):2, 2002.

[12] T. Clemen. Combining forecasts : A review and annotated. Interna-

tional Journal of Forecasting, 5:559–583, 1989.

294

[13] C. B. Do and K. Katoh. Protein multiple sequence alignment. Methods

in molecular biology (Clifton, N.J.), 484:379–413, 2008.

[14] S. Eddy. A new generation of homology search tools based on proba-

bilistic inference. Genome Inform, 23:205211, 2009.

[15] S. R. Eddy. Profile Hidden Markov Models. Bioinformatics, 14:755–

763, 1998.

[16] R. C. Edgar. MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics, 5:113, Aug.

2004.

[17] J. Eisen and C. Fraser. Phylogenomics: intersection of evolution and

genomics. Science, 300(5626):1706–1707, 2003.

[18] J. A. Eisen. Phylogenomics: improving functional predictions for

uncharacterized genes by evolutionary analysis. Genome Research,

8(3):163–167, Mar. 1998.

[19] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland,

Massachusetts, 2003.

[20] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington,

O. L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E. L. L.

Sonnhammer, S. R. Eddy, and A. Bateman. The Pfam protein families

database. Nucleic acids research, 38(Database issue):D211–22, Jan.

2010.

295

[21] W. M. Fitch, E. M. Peterson, and L. M. de la Maza. Phylogenetic

analysis of the outer-membrane-protein genes of Chlamydiae, and its

implication for vaccine development. Molecular Biology and Evolution,

10:892–913, 1993.

[22] W. Fletcher and Z. Yang. Indelible: A flexible simulator of biological

sequence evolution. Molecular Biology and Evolution, 26(8):1879–1888,

2009.

[23] W. Fletcher and Z. Yang. The effect of insertions, deletions, and align-

ment errors on the branch-site test of positive selection. Mol Biol Evo-

lution, 27(10):2257–2267, 2010.

[24] W. Gerlach and J. Stoye. Taxonomic classification of metagenomic

shotgun sequences with CARMA3. Nucleic acids research, 39:e91, 2011.

[25] G. B. Gloor, L. C. Martin, L. M. Wahl, and S. D. Dunn. Mutual

information in protein multiple sequence alignments reveals two classes

of coevolving positions. Biochemistry, 44(19):7156–65, May 2005.

[26] S. Guo, L.-S. Wang, and J. Kim. RNA evolution simulator: User manual

version 1.0.

[27] D. Haussler, S. O’Brien, and O. Ryder. Genome 10K.

https://genome10k.soe.ucsc.edu.

[28] M. Holder and P. O. Lewis. Phylogeny estimation: traditional and

Bayesian approaches. Nature reviews. Genetics, 4:275–284, 2003.

296

[29] J. Huelsenbeck. Performance of phylogenetic methods in simulation.

Systematic biology, 44(1):17–48, 1995.

[30] S. Iantomo, K. Gori, N. Goldman, M. Gil, and C. Dessimoz. Who

watches the watchmen? An appraisal of benchmarks for multiple se-

quence alignment. In Multiple Sequence Alignment Methods, volume

1079 of Methods in Molecular Biology, pages 59–73. Springer, 2014.

[31] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive mixtures of

local experts. Neural computation, 3:79–87, 1991.

[32] E. Jarvis, S. Mirarab, and et al. Whole genome analyses resolve the early

branches in the tree of life of modern birds. Science, 2014. Submitted,

main paper of the avian phylogenomics project.

[33] G. Jordan and N. Goldman. The effects of alignment error and align-

ment filtering on the sitewise detection of positive selection. Mol Biol

Evolution, 29(4):1125–1139, 2012.

[34] K. Karplus. SAM-T08, HMM-based protein structure prediction. Nu-

cleic acids research, 37:W492–W497, 2009.

[35] K. Katoh and M. C. Frith. Adding unaligned sequences into an existing

alignment using MAFFT and LAST. Bioinformatics (Oxford, England),

28(23):3144–3146, Sept. 2012.

297

[36] K. Katoh, K.-i. Kuma, H. Toh, and T. Miyata. MAFFT version 5:

improvement in accuracy of multiple sequence alignment. Nucleic acids

research, 33(2):511–8, Jan. 2005.

[37] K. Katoh, K. Misawa, K.-i. Kuma, and T. Miyata. MAFFT: a novel

method for rapid multiple sequence alignment based on fast Fourier

transform. Nucleic acids research, 30(14):3059–66, July 2002.

[38] K. Katoh and H. Toh. PartTree: an algorithm to build an approxi-

mate tree from a large number of unaligned sequences. Bioinformatics,

23:372–374, 2007.

[39] D. C. Koboldt, K. M. Steinberg, D. E. Larson, R. K. Wilson, and E. R.

Mardis. The next-generation sequencing revolution and its impact on

genomics. Cell, 155:27–38, 2013.

[40] L. B. Koski and G. B. Golding. The closest BLAST hit is often not

the nearest neighbor. J Mol Evol, 52(6):540–2, 2001. 0022-2844 (Print)

Letter.

[41] C.-S. Ku and D. H. Roukos. From next-generation sequencing to

nanopore sequencing technology: paving the way to personalized ge-

nomic medicine. Expert Rev. Med. Devices, 10(1):1–6, 2013.

[42] M. K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny

algorithms under equal and unequal evolutionary rates. Molecular Bi-

ology and Evolution, 11(3):459–68, May 1994.

298

[43] B. Liu, T. Gibbons, M. Ghodsi, and M. Pop. MetaPhyler: Taxo-

nomic profiling for metagenomic sequences. In Bioinformatics and

Biomedicine (BIBM), 2010 IEEE International Conference on, pages

95–100. IEEE, 2011.

[44] B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and M. Pop. Accurate

and fast estimation of taxonomic profiles from metagenomic shotgun

sequences. BMC Genomics, 12(Suppl 2):S4, Jan. 2011.

[45] K. Liu, C. Linder, and T. Warnow. Multiple sequence alignment:

a major challenge to large-scale phylogenetics. PLoS Currents, page

RRN1198, November [revised 2011 March 18] 2010. Version 2.

[46] K. Liu, S. Raghavan, S. Nelesen, C. R. Linder, and T. Warnow. Rapid

and accurate large-scale coestimation of sequence alignments and phy-

logenetic trees. Science, 324(5934):1561–1564, June 2009.

[47] K. Liu, T. J. Warnow, M. T. Holder, S. M. Nelesen, J. Yu, A. P. Sta-

matakis, and C. R. Linder. SATe-II: very fast and accurate simultaneous

estimation of multiple sequence alignments and phylogenetic trees. Syst

Biol, 61(1):90–106, Jan. 2012.

[48] S. Liu and J. M. Suflita. Ecology and Evolution of Microbial-

Populations for Bioremediation. Trends in Biotechnology, 11:344–352,

1993.

299

[49] A. Löytynoja and N. Goldman. An algorithm for progressive multiple

alignment of sequences with insertions. Proceedings of the National

Academy of Sciences of the United States of America, 102:10557–10562,

2005.

[50] A. Löytynoja, A. J. Vilella, and N. Goldman. Accurate extension of

multiple sequence alignments using a phylogeny-aware graph algorithm.

Bioinformatics (Oxford, England), 28(13):1684–91, July 2012.

[51] R. D. Martin. Primate Origins and Evolution: A Phylogenetic Re-

construction. Proceedings. Biological sciences / The Royal Society,

263:689–696, 1990.

[52] F. Matsen, R. Kodner, and E. V. Armbrust. pplacer: linear time

maximum-likelihood and Bayesian phylogenetic placement of sequences

onto a fixed reference tree. BMC Bioinformatics, 11(1):538+, Oct.

2010.

[53] K. Mavromatis, N. Ivanova, and K. Barry. Use of simulated data sets

to evaluate the fidelity of metagenomic processing methods. Nature

methods, 4(6):495–500, 2007.

[54] S. Mirarab, M. S. Bayzid, B. Boussau, and T. Warnow. Statistical

binning improves species tree estimation in the presence of gene tree

incongruence. Science, 2014. Submitted, companion paper to the

Avian Phylogenomics Project paper.

300

[55] S. Mirarab, N. Nguyen, and T. Warnow. SEPP: SATé-Enabled Phylo-

genetic Placement. Proceedings of the Pacific Symposium on Biocom-

puting, pages 247–58, Jan. 2012.

[56] S. Mirarab, N. Nguyen, and T. Warnow. PASTA: ultra-large multi-

ple sequence alignment. In Research in Computational Molecular Biol-

ogy, volume 8394, pages 177–191. Lecture Notes in Computer Science,

Springer, 2014.

[57] S. Mirarab and T. Warnow. FastSP: Linear-time calculation of align-

ment accuracy. Bioinformatics, 27(23):3250–3258, 2011.

[58] K. Mizuguchi, C. Deane, T. Blundell, and J. Overington. HOM-

STRAD: a database of protein structure alignments for homologous fam-

ilies. Protein Sci, 7:24692471, 1998.

[59] E. N. Moriyama, P. K. Strope, S. O. Opiyo, Z. Chen, and A. M.

Jones. Mining the Arabidopsis thaliana genome for highly-divergent

seven transmembrane receptors. Genome biology, 7(10):R96, Jan. 2006.

[60] D. Morrison. Multiple sequence alignment for phylogenetic purposes.

Australian Systematic Botany, 19:479–539, 2006.

[61] K.-O. Mutz, A. Heilkenbrinker, M. Lonne, J.-G. Walter, and F. Stahl.

Transcriptome analysis using next-generation sequencing. Current

Opinion in Biotechnology, 24:22–30, 2013.

301

[62] C. Notredame. Recent progress in multiple sequence alignment: a sur-

vey. Pharmacogenomics, 3:131–144, 2002.

[63] J. S. Papadopoulos and R. Agarwala. COBALT: constraint-based align-

ment tool for multiple protein sequences. Bioinformatics (Oxford, Eng-

land), 23:1073–1079, 2007.

[64] M. N. Price. Fast tree-comparison tools. Website, 2009.

http://www.microbesonline.org/fasttree/treecmp.html.

[65] M. N. Price, P. S. Dehal, and A. P. Arkin. FastTree 2–approximately

maximum-likelihood trees for large alignments. PloS one, 5(3):e9490,

Jan. 2010.

[66] T. M. Prychitko and W. S. Moore. Alignment and phylogenetic analysis

of β-fibrinogen intron 7 sequences among avian orders reveal conserved

regions within the intron. Molecular Biology and Evolution, 20(5):762–

771, 2003.

[67] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate,

C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger,

L. Holm, E. L. L. Sonnhammer, S. R. Eddy, A. Bateman, and R. D.

Finn. The Pfam protein families database. Nucleic Acids Research,

40(Database issue):D290–301, Jan. 2012.

[68] R Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2012.

302

ISBN 3-900051-07-0.

[69] G. Reeck, C. de Haen, D. Teller, R. Doolitte, W. Fitch, and e. al. “ho-

mology” in proteins and nucleic acids: a terminology muddle and a way

out of it. Cell, 50:667, 1987.

[70] D. C. Richter, F. Ott, A. F. Auch, R. Schmid, and D. H. Huson.

MetaSim: a sequencing simulator for genomics and metagenomics. PloS

One, 3(10):e3373, Jan. 2008.

[71] C. Rinke, P. Schwientek, A. Sczyrba, and et al. Insights into the phy-

logeny and coding potential of microbial dark matter. Nature, 499:431–

436, 2013.

[72] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Math.

Biosci., 53:131–147, 1981.

[73] D. J. Russell, editor. Multiple Sequence Alignment Methods, volume

1079 of Methods in Molecular Biology. Springer, 2014.

[74] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and

C. Huttenhower. Efficient metagenomic microbial community profiling

using unique clade-specific marker genes. Nature Methods, 9(8):811–814,

2012.

[75] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li,

R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson,

303

and D. G. Higgins. Fast, scalable generation of high-quality protein

multiple sequence alignments using Clustal Omega. Molecular Systems

Biology, 7(539), Oct. 2011.

[76] P. Soltis and D. Soltis. iPToL: the iPLANT Tree of Life Project.

https://www.iplantcollaborative.org/challenge/iplant-tree-life.

[77] A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phyloge-

netic analyses with thousands of taxa and mixed models. Bioinformatics

(Oxford, England), 22(21):2688–90, nov 2006.

[78] A. Stamatakis. RAxML version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics (Oxford, England),

pages 1–2, Feb. 2014.

[79] a. Stamatakis, a. J. Aberer, C. Goll, S. a. Smith, S. a. Berger, and

F. Izquierdo-Carrasco. RAxML-Light: a tool for computing terabyte

phylogenies. Bioinformatics (Oxford, England), 28:2064–6, 2012.

[80] M. Stark, S. A. S. Berger, A. Stamatakis, and C. von Mering.

MLTreeMap- accurate Maximum Likelihood placement of environmen-

tal DNA sequences into taxonomic and functional reference phylogenies.

BMC genomics, 11:461, 2010.

[81] L. a. Stebbings and K. Mizuguchi. HOMSTRAD: recent developments

of the Homologous Protein Structure Alignment Database. Nucleic

acids research, 32(Database issue):D203–7, Jan. 2004.

304

[82] J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence families.

Bioinformatics, 14:157–163, 1998.

[83] H. Stranneheim, M. Kaller, T. Allander, B. Andersson, L. Arvestad,

and J. Lundeberg. Classification of DNA sequences using Bloom filters.

Bioinformatics, 26(13):1595–1600, May 2010.

[84] M. A. Suchard and B. D. Redelings. BAli-Phy: simultaneous Bayesian

inference of alignment and phylogeny. Bioinformatics, 22:2047–2048,

2006.

[85] S. Sunagawa, D. R. Mende, G. Zeller, F. Izquierdo-Carrasco, S. A.

Berger, J. R. Kultima, L. P. Coelho, M. Arumugam, J. Tap, H. B.

Nielsen, S. Rasmussen, S. Brunak, O. Pedersen, F. Guarner, W. M.

de Vos, J. Wang, J. Li, J. Doré, S. D. Ehrlich, A. Stamatakis, and

P. Bork. Metagenomic species profiling using universal phylogenetic

marker genes. Nature Methods, (october), Oct. 2013.

[86] N. Takahata and Y. Satta. Evolution of the primate lineage leading to

modern humans: phylogenetic and demographic inferences from DNA se-

quences. Proceedings of the National Academy of Sciences of the United

States of America, 94:4811–4815, 1997.

[87] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin. The

COG database: a tool for genome-scale analysis of protein functions and

evolution. Nucleic Acids Research, 28(1):33–36, 2000.

305

[88] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T.

Shankavaram, B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova,

and E. V. Koonin. The cog database: new developments in phyloge-

netic classification of proteins from complete genomes. Nucleic Acids

Research, 29(1):22–28, 2001.

[89] J. D. Thompson, B. Linard, O. Lecompte, and O. Poch. A comprehen-

sive benchmark study of multiple sequence alignment methods: current

challenges and future perspectives. PloS one, 6(3):e18093, Jan. 2011.

[90] A. J. Viterbi. Error bounds for convolutional codes and an asymptoti-

cally optimum decoding algorithm. Information Theory, IEEE Trans-

actions on, 13(2):260–269, 1967.

[91] L. Wang and T. Jiang. {On} the complexity of multiple sequence align-

ment. Journal of Computational Biology, 1:337–348, 1994.

[92] L.-S. Wang, J. Leebens-Mack, P. Kerr Wall, K. Beckmann, C. W.

DePamphilis, and T. Warnow. The impact of multiple protein se-

quence alignment on phylogenetic estimation. IEEE/ACM transactions

on computational biology and bioinformatics / IEEE, ACM, 8:1108–19,

2011.

[93] T. J. Wheeler and J. D. Kececioglu. Multiple alignment by aligning

alignments. Bioinformatics (Oxford, England), 23:i559–i568, 2007.

306

[94] A. Wilder-Smith, E.-E. Ooi, S. G. Vasudevan, and D. J. Gubler. Update

on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine

development. Current infectious disease reports, 12:157–164, 2010.

[95] K. E. Wommack, J. Bhavsar, and J. Ravel. Metagenomics: read length

matters. Applied and environmental microbiology, 74:1453–1463, 2008.

[96] K. M. Wong, M. A. Suchard, and J. P. Huelsenbeck. Alignment uncer-

tainty and genomic analysis. Science, 319(5862):473–476, 2008.

[97] D. Wu and J. A. Wu. Stalking the fourth domain in metagenomic

data: Searching for, discovering, and interpreting novel, deep branches

in marker gene phylogenetic trees. PLoS ONE, 6(3):e18011, 03 2011.

[98] P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya. A review of

ensemble methods in bioinformatics. Current Bioinformatics, 5(4):296–

308, 2010.

[99] S. E. Yuksel, J. N. Wilson, and P. D. Gader. Twenty years of mixture

of experts. IEEE transactions on neural networks and learning systems,

23(8):1177–93, Aug. 2012.

[100] D. J. Zwickl and D. M. Hillis. Increased taxon sampling greatly reduces

phylogenetic error. Syst. Biol., 51:588–598, 2002.

307

