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Essays on Competition, Cooperation, and Market Structures

Jonathan Richard Lhost, Ph.D.

The University of Texas at Austin, 2014

Supervisors: David S. Sibley
Dale O. Stahl

My dissertation examines competition, cooperation, and efficiency in three

market settings in which a population of economic agents interact, either directly

with each other in pairwise matches, directly with firms, or with firms via a platform.

In one chapter I consider a population of customers who have different valu-

ations for a good sold by competing merchants, as well as varying preferences over

the merchant from which to purchase the good and the payment form with which

to make the purchase, and examine what the effects might be if a merchant placed

an additional surcharge on transactions completed with a payment form that is more

costly for the merchant. The cost for the merchant can vary dramatically depending

on the payment form used. For example, a credit card transaction is generally more

expensive for the merchant than a debit card transaction, even if the transaction is

completed using the same technology and is processed over the same network (e.g., a

MasterCard signature debit transaction and a MasterCard credit card transaction).

Historically, with limited exceptions, merchants have been prohibited, both by law

and by the contract permitting the acceptance of that network’s cards, from charging

customers different prices for transactions completed using different payment cards,
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despite the different costs these transactions impose on them. Recent concessions

made by several major payment networks in response to legal challenges raises the

possibility that this paradigm might change in the future. This chapter examines

what the effects might be if merchants were permitted to charge customers different

prices based on the payment form and whether these effects depend on differences

between the merchants, such as differences in the marginal cost of providing the good.

In another chapter, I consider a population of individuals made up of more-

patient and less-patient types who interact directly with each other in a repeated

prisoner’s dilemma embedded in a search model. A player is matched anonymously

with another player to play a prisoner’s dilemma game repeatedly until the match is

ended, either exogenously or endogenously by one of the players, at which point each

player may receive another random match. I first determine when it is feasible to

achieve the best outcome in which all players cooperate. When it is not possible to

achieve full cooperation, I examine how welfare can be improved over the outcome in

which no players cooperate. When conditions are such that less-patient players choose

not to cooperate, I first examine how separation by action within a single market can

increase welfare for all players over the uncooperative equilibrium, with more-patient

players choosing to cooperate in hopes of forming a cooperative relationship, despite

the risk of being matched with a less-patient player who chooses not to cooperate. I

then examine how full separation of the more- and less-patient players, made possible

by introduction of a second market, can increase the welfare of the more-patient

players without harming the less-patient players.

In a third chapter, customers choose to purchase a good from one of several

competing firms in a setting in which network congestion and firms’ investment in

capacity plays an important role in firm costs and product quality, e.g., the wireless

industry. Wireless carriers (e.g., Verizon) compete not only on the price of their
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service but also on its quality. The quality of a carrier’s service is determined in part

by the quantity of customers it serves and by investment in capacity with which to

serve them. While the primary effect of a carrier increasing its capacity is an increase

in that carrier’s service quality, there are also externality effects on other wireless

carriers. For example, if carrier A increases its capacity, thereby increasing its service

quality, and causes some customers to leave a competing carrier B, the service quality

experienced by customers who remain with carrier B will increase as a result of the

decreased congestion in carrier B’s network. This chapter examines the interplay

between these effects alongside traditional price competition in this oligopoly setting.
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Chapter 1

Credit or Debit? How Surcharging Affects

Customers, Merchants, and the Platform

1.1 Introduction

“Please press credit or debit,” the cashier instructs you. You press the button

corresponding to the card you just pulled from your wallet, giving little thought to

the complex, multi-party transaction you just initiated or to how your specific choice

might affect the merchant. Suppose your purchase totaled $40. If the card you just

used was a Visa credit card, then, on average, the merchant just paid around $0.80 to

the bank handling the merchant’s Visa transactions. What if instead of a credit card

you pulled a debit card out of your wallet? If you signed, then it might have cost the

merchant $0.60, and if you entered your PIN, it might have only cost the merchant

$0.20.1

While these costs may seem insignificant, the cumulative effect is large. A

significant fraction of economic activity is completed using payment cards. In 2012,

87 billion transactions were completed using payment cards in the United States,

with over $2.2 trillion worth of goods and services purchased using credit cards and

over $1.8 trillion using debit cards. The costs for merchants associated with these

transactions are significant, with merchants paying over $66 billion in fees in 2012.2

1Examples are based on the average merchant discount rates for transactions completed using a
Visa credit card, Visa signature debit card, and Visa PIN debit card.

2Source: Nilson Report.
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The economics literature generally finds that merchants would have higher

profits if they were not prohibited from what is known as “surcharging,” that is,

charging a customer a higher or lower price depending upon the cost to the merchant

of the customer’s payment method. Merchants have raised legal challenges against

the prohibition on surcharging, claiming it is anti-competitive, increases their costs,

and reduces their profits. The economics literature generally agrees, finding that the

ability to surcharge increases merchant profits. I also find this to be the case when

I make the common assumption that merchants are identical. However, while this

assumption greatly simplifies the analysis, it conceals an important alternative result:

small merchants are likely to be hurt by surcharging. When I relax the assumption

that merchants have identical marginal costs, the merchant with lower costs, typically

a larger retailer, benefits from surcharging, whereas the merchant without an ability

to reduce costs, typically a smaller retailer, does not. Trade groups representing

small merchants, such as local convenience stores and independent bookshops, have

been among the parties suing for, among other things, the right to surcharge. This

result calls into question what benefit, if any, these merchants would receive from

surcharging.

If payment cards imposed costs without conferring benefits, of course, no mer-

chants would accept them. Compared to checks, cards save time and do not run the

same risk of non-payment. And unlike cash, theft from employees and customers is

not a concern. In addition to transactional benefits, cards may increase sales. If a

merchant does not accept payment via cards, some customers who wish to pay by

card may go to a competing merchant who does. And, especially for larger purchases,

using credit cards allows some customers to finance purchases they may not otherwise

be able to make.

Payment networks (e.g., Visa, MasterCard, American Express, Discover) re-
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quire a merchant to sign a contract specifying the terms of accepting that platform’s

cards. These contracts have historically prohibited merchants from treating a cus-

tomer paying with one of that platform’s cards differently from a customer paying

with any other card. Several of these anti-discrimination rules have been challenged

in court.3 In 1996, Wal-Mart and several other retailers sued Visa and MasterCard

over those networks’ “Honor All Cards” rule. The Honor All Cards rule required

any merchant who wanted to accept any of a network’s cards to accept all of that

network’s cards. That is, if a merchant wanted to accept any payment card branded

with a MasterCard logo, the merchant was required to accept all cards branded with

a MasterCard logo. In 2003, Visa and MasterCard agreed to limit the scope of the

Honor All Cards rule so that a merchant accepting that network’s debit cards was

no longer required to accept that network’s credit cards, and vice versa. However,

the Honor All Cards rule still applies within the class of credit or debit cards, so any

merchant who accepts a MasterCard credit (debit) card must accept all MasterCard

credit (debit) cards, and similarly for Visa-branded credit and debit cards.

The other anti-discrimination rule that has received much legal attention is

what is know as the “No Surcharge Rule.” Under the No Surcharge Rule imposed by

all major payment card networks, merchants are typically allowed to give a discount

to customers paying with cash, but are not allowed to set different prices for customers

paying with different payment cards. For example, a merchant cannot set different

prices for customers paying with a Visa credit card and a Visa debit card, or with an

American Express credit card and a Discover credit card.

The costs of cash transactions vary wildly for different merchants in different

industries, depending on factors such as the overall quantity of cash, the likelihood

3For a background on the history of payment cards, see Evans and Schmalensee (2005). For the
history of the antitrust litigation involving payment networks, see Wildfang and Marth (2006).
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of mistakes, and the ease of theft,4 and thus, so too do the potential benefits for

merchants of providing cash discounts. Some merchants may have low cash-handling

costs, and thus, might benefit from providing cash discounts, while other merchants

might prefer to avoid cash altogether. Regardless, what the No Surcharge Rule pro-

hibits is what many merchants argue is the form of differential pricing merchants

would benefit from most. For example, suppose a customer has two MasterCard

credit cards in his wallet, one a standard consumer card and one a rewards card. The

physical details of the transaction are identical for both cards. The card is swiped

through the same equipment and processed over the same network, and the customer

provides his signature in the same way. However, the rewards card might be double

the cost for the merchant compared to the standard card. Merchants, they argue,

should be allowed to place a surcharge on the more costly transaction, either to recoup

some of the additional cost and/or to steer the customer towards using the less-costly

option.

In response to recent litigation brought by groups of merchants and the United

States Department of Justice, Visa and MasterCard, the two largest payment card

networks, agreed to a settlement that would allow merchants to start surcharging in

January 2013, subject to certain restrictions. Merchants may surcharge based on the

“brand level,” for example, setting one price for all Visa credit cards and a different

price for all MasterCard credit cards. Merchants may also surcharge based on the

“product level,” for example, setting different prices for different Visa credit card

types (e.g., Traditional, Traditional Rewards, Signature, Signature Preferred). In

each case, the surcharge may not exceed the merchant’s cost of accepting that brand

or type of card, or 4%, whichever is lower.5 Merchants who choose to surcharge

4See, for example, Garcia-Swartz et al. (2006).
5Additional details are available at www.visa.com/merchantsurcharging.
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are required to disclose this practice to customers, both through signage and on the

receipt. Despite this agreement, two important restrictions may limit merchants’

ability to surcharge in practice. First, surcharging is still prohibited by laws in some

states.6 Second, merchants who accept payment cards from platforms other than Visa

or MasterCard are still bound by the contractual agreements they have with those

platforms. For example, American Express, who was sued regarding its No Surcharge

Rule at the same time as Visa and Mastercard were, has not agreed to a settlement

and continues to defend its No Surcharge Rule. The outcome of this litigation will

affect the future landscape of surcharging. However, with surcharging now permitted

by the two largest payment networks, pressure on the other payment networks to

allow surcharging will increase, making it increasingly like that U.S. consumers will

start to encounter merchants who surcharge. Thus, it is important to understand the

potential effects of merchant surcharging.

The economics literature on surcharging is part of the more general literature

on two-sided markets. Payment systems are a two-sided market because the pay-

ment card networks serve as a platform to facilitate interactions between two groups,

merchants and customers. In general, to succeed, a platform must attract enough

users from both groups. For example, a newspaper must attract enough advertisers

and readers to be profitable; it can only attract enough advertisers if it also attracts

enough readers to view the advertisements, but if it includes too many advertisers, it

may lose readers. The same is true for payment card platforms. A customer has little

use for an American Express card if he is not able to use it to make purchases, and

it is only beneficial for a merchant to accept American Express for payment if doing

so attracts enough customers. In each case, the platform must balance the payments

6Currently states that prohbit surcharging inclue California, Colorado, Connecticut, Florida,
Kansas, Maine, Massachusetts, New York, Oklahoma, and Texas.
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received by or paid to each side of the market. Some newspapers are provided for free

at local businesses and receive payment only from the advertising side of the market,

while other newspapers require readers to pay for a subscription. Similarly, there is a

wide range of prices paid by merchants and by customers for using various payment

cards. One strain of the economics literature seeks to explain the optimal way to

balance the prices paid by each side of the two-sided market.7

Much of the literature on two-sided markets that is specifically about payment

card systems focuses on the role of the interchange fee.8 Some payment card systems

consist of two separate groups of banks, ones that interact with the customer side

of the market and others that interact with the merchant side of the market, each

setting the price for the side of the market with which it interacts. The interchange

fee is a monetary transfer between these two groups and is the main component of the

total price paid to the platform by merchants and customers. A complete explanation

of the structure of payment networks is provided in Section 1.2. After that section,

there will be no further mention of the interchange fee because the credit platform

considered in the model will be a three party system in which the platform is a single

entity and the concept of interchange does not apply.

However, a few aspects of the interchange fee warrant mentioning here. First,

because the interchange fee is a monetary transfer between banks, it falls under the

purview of the Federal Reserve and its regulatory capacity. Second, the interchange

fee is the main component of the total fee paid by merchants for debit card trans-

actions and certain credit card transactions. Thus, higher interchange fees usually

translate into higher costs for merchants. This has been given much popular attention

7For examples, see Evans (2003), Rochet and Tirole (2003b), Rochet and Tirole (2006), Arm-
strong (2006), Kaiser and Wright (2006), Weyl (2010), and Rysman (2009).

8Examples include Gans and King (2003), Rochet and Tirole (2003a), Wright (2003), Wright
(2004), and Guthrie and Wright (2007).
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recently in the aftermath of the financial crisis of the late 2000s and the Dodd-Frank

Wall Street Reform and Consumer Protection Act, specifically in what is known as

the “Durbin Amendment.” The Durbin Amendment instructed the Federal Reserve

to place a cap on debit card interchange fees at levels that are “reasonable and pro-

portional.” The Federal Reserve originally proposed a cap of around $0.12 per debit

card transaction, but implemented a cap of what amounts to $0.23 on the average

debit card transaction of $38.00.9 However, various consumer groups, including the

National Retail Federation and the National Restaurant Association sued the Fed,

claiming that the Fed considered factors in setting the cap that were outside the scope

of what it was allowed to consider according to the language of the law, and conse-

quently, set the cap not at a “reasonable” level, but rather, at an “unreasonable”

level. A judge in federal district court agreed, instructing the Fed to formulate a new

rule.10. The Federal Reserve has stated its intent to appeal the decision, and what

the cap on debit card interchange fees may be in the future is uncertain. However,

it seems clear that a cap will be set at some level. In the model presented here, the

cost for merchants of transactions completed by debit card will be held fixed.

There are two main strands in the economics literature regarding the No Sur-

charge Rule. One follows from Rochet and Tirole (2002) and the other from Schwartz

and Vincent (2006). In each, as will be the case in the model presented here, cus-

tomers pay by one of two payment forms, one that is exogenous (“cash”) and one

that is controlled by a profit-maximizing platform (“card”). In Rochet and Tirole

(2002), there are two symmetric merchants who compete à la Hotelling to attract

9Full text of the Federal Reserve’s ruling is available here: www.gpo.gov/fdsys/pkg/

FR-2011-07-20/pdf/2011-16861.pdf.
10The full memorandum opinion issued by United States District Judge Richard Leon, an inter-

esting example of law and economics, is available here: https://ecf.dcd.uscourts.gov/cgi-bin/
show_public_doc?2011cv2075-38.
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the business of a unit mass of customers. Each merchant decides whether to accept

cash only, or both cash and the payment card. Each customer has perfectly inelas-

tic demand, always purchasing one unit of the good for sale by the two merchants,

choosing which merchant to purchase it from based on the price set by each merchant

and his preferences for the two merchants, specified as a “transportation cost” as in a

standard “linear city” model. Customers differ in the benefit they receive from paying

with the payment card instead of cash, each choosing to use the payment form that

maximizes his utility. In Schwartz and Vincent (2006) there is a monopoly merchant

that sells a single good and decides whether to accept both cash and credit, or cash

only. Customers have elastic demand, but are exogenously divided into those who

always pay by cash and those who always pay by card. So while each customer is

able to choose the quantity he would like to purchase, he is unable to decide how he

would like to pay for it. Both Rochet and Tirole (2002) and Schwartz and Vincent

(2006) find similar effects of lifting the No Surcharge Rule and allowing merchants

to charge customers different prices based on their payment form. When allowed

to surcharge, merchants pass through to customers their cost of card transactions.

Customers paying by card pay a higher price, while cash customers pay a lower price.

Merchants have higher profits.

The model presented in Section 1.3 will combine aspects of both Rochet and

Tirole (2002) and Schwartz and Vincent (2006). There are two merchants who com-

pete on prices and card acceptance for customers who have preferences over merchants

and payment forms, as in Rochet and Tirole (2002). However, customers have elastic

demand, as in Schwartz and Vincent (2006), and thus are heterogeneous along all

three dimensions. Another key feature of the model presented in Section 1.3 is that

the merchants are not constrained to be symmetric. One consequence of allowing

merchants to differ is that they do not always make the same equilibrium decision
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regarding card acceptance, with both accepting or both not accepting.11 Thus, cus-

tomers, who have preferences over both merchants and payment forms, face a richer

set of trade-offs when maximizing utility. This, combined with the fact that I allow

for customers who have elastic demand, leads to interesting new results on the effects

of the No Surcharge Rule.

In general, the credit card platform has two potential sources of profits, the

merchant side of the market and the customer side of the market. Under the No

Surcharge Rule, the credit card platform finds it optimal to earn profits from the

merchant side of the market while subsidizing credit card use by providing rewards

(e.g., “cash-back”) to customers who use the credit card. When merchants are allowed

to surcharge, however, the platform finds it optimal to shift to making more profits

from the customer side of the market, charging customers a fee for using the credit

card while simultaneously lowering the price merchants must pay the platform when

customers pay using the credit card. Merchants now have lower costs and choose

to lower the prices they charge customers. However, the effect on merchant profits

depends on the similarity of the merchants.

When I assume merchants have identical marginal costs, I find the same re-

sult as in the previous literature, that merchants have higher profits when allowed to

surcharge. However, relaxing the assumption that merchants are identical reveals an

alternative possibility that surcharging might not always benefit merchants. Specifi-

cally, if one merchant has a marginal cost advantage over the other, as might be the

case with a large national retailer competing with a small local merchant, then only

the merchant with lower marginal costs benefits from surcharging. As small busi-

11In the model presented in Section 1.3, the two payment forms will be labeled “debit” and “credit”
instead of “cash” and “card,” but serve similar roles, with “card” acceptance in Rochet and Tirole
(2002) equivalent to “credit” acceptance here. In Schwartz and Vincent (2006), there is only one
merchant, so the concept of “both” merchants accepting does not apply.
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nesses have been among the most vocal about their desire to be allowed to surcharge,

this finding that being allowed to surcharge might reduce their profits is of particular

interest.

The remainder of this paper proceeds as follows. Section 1.2 describes the

structure of a typical payment card network, focusing on the “three-party” structure

that will be used in the following section, but also describing a “four-party” system.

Section 1.3 describes the formal model. Results are presented in Section 1.4 and

Section 1.5 concludes.

1.2 Structure of Payment Networks

This section describes the general structure of a three-party payment network,

including who the three parties are and the interactions between them.12 Consider a

three-party payment network as shown in Figure 1.1, consisting of customers, mer-

chants, and a payment platform. The payment platform provides a method of pay-

ment that a customer can use at a merchant that is part of the network. Typical

examples of the payment method include credit cards and debit cards.

Suppose a customer makes a purchase from a merchant for price P . If the

customer pays with cash, the customer hands the cash to the merchant in exchange

for the good, and the transaction is complete. Suppose instead that the customer

consummates the transaction using a card provided by the payment platform. In

this case, the customer receives the good without directly transferring money to the

merchant. Instead, the merchant is paid by the platform. The merchant receives

the purchase price P from the platform, minus a fee. This fee is typically called

12The other common type of structure, a four-party payment network, will be discussed briefly at
the end of this section.
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Platform

Customer Merchant
sells good at price

pays price +(−)
customer fee (reward)

pays price −
merchant discount

Figure 1.1: Three-party payment network

the “merchant discount” or “discount rate” because what the merchant receives in

payment is less than the purchase price P .13

The customer pays the payment platform the purchase price P , plus any fees

assessed and minus any rewards provided by the platform. The timing of the payment

made by the customer to the platform depends on the type of card. For a credit card,

the customer typically receives a monthly bill and must make a monthly payment.

The option to pay only a portion of the total charges and borrow the remainder at

a pre-agreed-upon interest rate schedule is an important aspect of credit cards, but

not one we will focus on in this paper. For this paper, the cost of financing purchases

will simply be included in the fee paid by the customer to the payment platform in

addition to the purchase price P . For a debit card, payment from the customer to the

payment platform is typically deducted automatically from the customer’s account.14

13The merchant discount is also commonly called a “swipe fee” because it is a fee the merchant
pays after swiping a customers card through a card reader.

14There are two main types of debit card transactions, PIN and signature. For PIN debit card
transactions, the customer enters a Personal Identification Number into a keypad at the time of
purchase, and the funds are removed from the customer’s account immediately. Because of this
direct connection to the customer’s account, PIN debit card transactions are also called “online”
debit card transactions. Signature debit card transactions (or “offline”) are processed in the same
manner as credit card transactions, with the customer signing a receipt authorizing the payment
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Customers might also pay other fees to both credit and debit payment platforms, such

as fees for late or incomplete payments, or an annual fee for use of that platform’s

payment card.

It is also common for customers to receive payments from the payment plat-

form. Credit card platforms often give rewards to cardholders for using that platform’s

cards, including cash-back bonuses, airline miles, discounts on goods and services, etc.

Debit card platforms sometimes provide similar rewards. In addition, the “reward”

sometimes provided to users of a platform’s debit card is free or discounted use of

banking services, such as a “free checking” account.

In the model presented in Section 1.3, there will be a debit card and a credit

card. The credit card platform will be an active player in the model, maximizing its

profits by optimally setting the discount rates paid by merchants and by setting the

reward paid to or fee received from customers paying with the credit card. Customers

in the model will purchase at most a single good. Consequently, all fees and rewards

will be combined into a single term. The debit card platform will be taken as exoge-

nous, and thus, any fees or rewards associated with the debit card are subsumed into

the customer’s preferences over payment forms.

The model presented in Section 1.3 will be a three-party payment network as

just discussed. The other common type of payment network is a four-party network.

In this type of network, the payment platform consists of two separate groups, “ac-

quires” that interact with the merchants and “issuers” that interact with cardholders.

The issuers issue cards to cardholders, receive cardholder payments and fees, and pay

cardhold rewards. The “acquires” acquire merchants to be part of the payment net-

work and pay merchants for purchases, minus the merchant discount. In order to pay

and funds later removed from the customer’s account.
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the merchants, acquires receive the purchase price from issuers, minus what is called

the “interchange fee.” The interchange fee is effectively a portion of the purchase

price that issuers retain to finance the issuing of cards and the payment of rewards

to cardholders. The acquires, in turn, finance their payment of this interchange fee

through the merchant discount. We are interested in examining the interaction be-

tween merchants, customers, and the payment platform, and not the inner workings

of the financial institutions that make up payment network. Thus, for our purposes,

it does not matter if we examine a three-party network in which one entity interacts

with both merchants and customers or a four-party network with separate issuers and

acquires, so we will focus on a three-party payment network.

In order to accept payments using a platform’s cards, merchants typically

must sign a contract dictating the terms of accepting that platform’s cards. These

contracts typically require merchants treat all cards equally. That is, the merchant

cannot charge a customer one price if the customer uses card A and a different price

if he uses card B. This requirement is often called the No Surcharge Rule because it

prohibits merchants from placing a surcharge on purchases made by specific cards.

In addition to the No Surcharge Rule imposed by payment platforms, legal restric-

tions in many locations also prohibit merchants from surcharging. Consequently, if a

customer makes a purchase from a merchant, the customer will likely pay the same

price regardless of the card they choose to use. The rest of this paper will examine

the effects of removing this No Surcharge Rule.

1.3 Model

Two competing merchants sell an identical good to customers from a pop-

ulation of customers who have different valuations for the good and heterogeneous

preferences over the two merchants and the payment method used, either credit or
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debit. Customers weight their utility of purchasing from each of the merchants and

with the available payment forms and choose the option that maximizes their utility,

or opt to make no purchase at all.

The two merchants compete both on price, as well as on whether they accept

the credit card. Under the No Surcharge Rule, they must charge all customers the

same price, regardless of how the customer chooses to pay. When surcharging is

allowed, they can set a different price for credit and debit purchases.

The credit platform sets the price each merchant must pay when a customer

makes a purchase using the credit card. The credit platform also interacts directly

with customers by providing customers with a benefit for using the credit card, or by

charging them a fee. The debit card platform is taken as exogenous.

The timing is as follows. First, the credit platform sets the price paid by

merchants for each transaction completed by the credit card and the bonus paid to or

fee paid by customers using the credit card. Second, the merchants decide whether to

accept the credit card and then set the price they will charge customers for the good.

Third, customers decide whether to buy the good, and if so, from which merchant and

with which payment form. The players and these interactions are depicted in Figure

1.2.15 The notation and details of each stage are presented in the following sections.

We will find a subgame perfect Nash equilibrium solving by backwards induction,

starting with the utility maximizing decisions of customers.

1.3.1 Utility Maximization

Let customer i denote a customer from a unit mass of potential customers.

Customer i values the good at vi ∈ [v, v], distributed according to CDF V . Customer

15See also the game tree shown in Figure 1.4.
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Customer iMerchant 1 Merchant 2

Credit

Debit

PD
1

PD
1 −d1

PD
1

PD
2

PD
2 −d2

PD
2

PC
1

PC
1 −c1

(1− β)PC
1

PC
2

PC
2 −c2

(1− β)PC
2

Figure 1.2: Possible choices for customer i and the corresponding interactions between
customer, merchant, and platform

i has preferences over the two merchants, specified as disutilities similar to a “travel

cost” often seen in Hotelling models, with customer i’s disutility of purchasing from

merchant j ∈ {1, 2} denoted t ji ∈ [t j, t
j
]. Similarly, each customer i’s preferences

for paying with a credit card (k = C) or a debit card (k = D) are also specified as

disutilities, with t ki ∈ [t k, t
k
] denoting the disutility customer i receives from paying

with payment form k ∈ {C,D}. Preferences over merchants are independently and

identically distributed according to CDF TM and preferences over payment forms, or

“wallet preferences,” are independently and identically distributed according to CDF

TW . If customer i purchases the good from merchant j using payment form k at price
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P k
j , then customer i’s utility is

Ukj
i = vi − P k

j − tji − tki (1.1)

Differences in preferences for the two merchants and the two payment forms are

one reason why a customer might choose one merchant, payment-form combination

over the others. The other reason is differences in the price paid by the customer. If

the only payment form available is the debit card, then there are two possible prices,

one for each merchant. However, with the credit card, there are two other potential

sources of differences in price. Under the No Surcharge Rule, the price charged by

each merchant must be the same whether a customer pays by credit or by debit:

P C
j = PD

j . However, when surcharging is allowed, each merchant can set P C
j different

from PD
j , bring the number of potentially different prices up to four.

Even under the No Surcharge Rule, the effective price paid by customers using

credit might be different from those paying by debit because of rewards given or

fees charged by card platforms. In this model, the debit card platform is taken as

exogenous and any such fees or rewards for use of the debit card are normalized to zero.

The credit platform, however, as part of its profit-maximizing behavior examined in

Section 1.3.3, either pays a bonus to customers who use the credit card or charges

them a fee. Specifically, if a customer makes a purchase for price P C
j using the credit

card, the net price paid by the customer is (1 − β)P C
j . For simplicity, we will refer

to β as a “cash-back bonus” as the customer receives βP C
j from the credit platform

if β > 0. However, this “bonus” is actually a fee if β is negative, with the customer

paying βP C
j to the credit platform. Whether β is positive or negative, as well as its

magnitude, is determined in equilibrium as part of the profit-maximizing decisions

of the credit card platform. Note that the presence of β means that even under the
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No Surcharge Rule, customers paying with credit may effectively pay a different price

than customers paying with debit.16

If both merchants accept credit cards, there are four possible merchant, payment-

form combinations. Customer i, given his valuation for the good (vi), his preferences

over merchants (tji ) and payment forms (tki ), the price at each merchant (P k
j ), and

the cash-back bonus (β), chooses the merchant, payment-form combination from the

available choices in order to maximize his utility. To make this choice, each customer

i makes pairwise comparisons between the available choices. For example, if customer

i were to go to merchant 2, he would choose to pay with the credit card if the utility

from doing so is higher than that from paying with the debit card instead.

Specifically, customer i prefers credit at merchant 2 over debit at merchant 2 if

UC2
i > UD2

i

vi − (1− β)P C

2 − t2i − tCi > vi − PD

2 − t2i − tDi
wi ≡ tDi − tCi > (1− β)P C

2 − PD

2

where wi is customer i’s relative preference for credit over debit.17 The other com-
parisons are made in an analogous fashion. Customer i prefers debit at merchant 2
over debit at merchant 1 if

UD2
i > UD1

i

vi − PD

2 − t2i − tDi > vi − PD

1 − t1i − tDi
PD

1 − PD

2 > t2i − t1i ≡ mi

where mi is customer i’s relative preference for merchant 1 over merchant 2.

16As customers are making at most one purchase, we assume that their utility is affected by the
effective purchase price and ignore any time delay between the time of purchase and the time the
cash-back bonus is received (or paid, in the case of a fee).
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Customer i prefers credit at merchant 2 over debit at merchant 1 if

UC2
i > UD1

i

vi − (1− β)P C

2 − t2i − tCi > vi − PD

1 − t1i − tDi
tDi − tCi > (1− β)P C

2 − PD

1 + (t2i − t1i )

wi > (1− β)P C

2 − PD

1 +mi

Customer i prefers credit at merchant 2 over credit at merchant 1 if

UC2
i > UC1

i

vi − (1− β)P C

2 − t2i − tCi > vi − (1− β)P C

1 − t1i − tCi
(1− β)(PD

1 − PD

2 ) > t2i − t1i ≡ mi

Customer i prefers credit at merchant 1 over debit at merchant 1 if

UC1
i > UD1

i

vi − (1− β)P C

1 − t1i − tCi > vi − PD

1 − t1i − tDi
wi ≡ tDi − tCi > (1− β)P C

1 − PD

1

Customer i prefers credit at merchant 1 over debit at merchant 2 if

UC1
i > UD2

i

vi − (1− β)P C

1 − t1i − tCi > vi − PD

2 − t2i − tDi
tDi − tCi > (1− β)P C

1 − PD

2 − (t2i − t1i )

wi > (1− β)P C

1 − PD

2 −mi

By examining the pairwise comparisons made by each customer i, we obtain

self-selection constraints that describe how the unit mass of customers segments itself

into regions corresponding with each of the merchant, payment-form combinations.

17wi, as well as the mi term found in the next equation, will be discussed in more detail shortly.
This representation of customer preferences is an extension of Lhost, Srinagesh, and Sibley (2012).
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We can write these self-selection constraints in terms of the parameters characterizing

customer valuations and preferences, the prices charged by each merchant, and the

bonus (or fee) set by the credit platform.

Each of the self-selection constraints that involves a comparison between the

two merchants involves a term that is the difference in disutility obtained by going to

each merchant, t2i − t1i . It is convenient to replace this difference in disutilities with a

third parameter, mi ≡ t2i − t1i , which represents customer i’s preference for merchant

1 relative to merchant 2. Customer i’s “merchant preference,” mi, is distributed

according to CDF M between lower bound m ≡ t 2
i−t

1

i and upper bound m ≡ t
2

i −t 1
i ,

where CDF M is derived directly from the underlying distribution of tji ∼ TM .18

Similarly to how we just defined customer i’s merchant preference, it is also

convenient to define customer i’s “wallet preferences” as customer i’s relative pref-

erence for paying by credit relative to debit. In each self-selection constraint that

involves a comparison between the two payment forms, it is possible to replace the

term that is customer i’s difference in disutility of paying by the two payment forms

with customer i’s wallet preferences, wi ≡ tDi − tCi , where wi is distributed according

to CDF W between lower bound w ≡ t Di − t
C

i and upper bound w ≡ t
D

i − t Ci , with

CDF W derived directly from the underlying distribution of tki ∼ TW .

By replacing the four disutility parameters, tji for j ∈ {1, 2} and tki for

k ∈ {C,D}, with two parameters representing customer i’s merchant and wallet

preferences, mi and wi, we are able to depict the self-selection constraints, and thus

the segmentation of customers into the four merchant, payment-form combinations,

as show in Figure 1.3. The specific way in which customers are segmented shown in

Figure 1.3 is only one possibility. For example, it is drawn in the case where PD
1 > PD

2 ,

18For example, if TM is the standard uniform distribution, then mi ≡ t2i − t1i has the triangular
distribution between -1 and 1.
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wi = (1− β)PC
2 − PD

2

mi = PD
1 − PD

2

wi = (1− β)PC
2 − PD

1 +mi

wi = (1− β)PC
1 − PD

1

mi = (1− β)(PC
1 − PC

2 )

Credit at
Merchant 2

Debit at
Merchant 2

Debit at
Merchant 1

Credit at
Merchant 1

w

w

0

m m0

Figure 1.3: One case for segmentation of customers by self-selection constraints in
terms of merchant preferences, mi ≡ t2i − t1i , and wallet preferences, wi ≡ tDi − tCi

and thus the vertical line mi = PD
1 − PD

2 is to the right of mi = 0. Intuitively, a cus-

tomer paying by debit card who is exactly indifferent between the two merchants (a

customer with mi = 0) will choose merchant 2 if the price is lower at merchant 2

(PD
1 > PD

2 ). If instead it was the case that PD
2 > PD

1 , then the line mi = PD
1 − PD

2

would be to the left of mi = 0. Additional examples are shown in the online appendix,

which includes an interactive version of Figure 1.3.

We have just seen how each customer i chooses which of the available mer-

chant, payment-form combinations he would choose if he were to purchase the good.

By integrating over the fraction of customers with preferences in each region we can

obtain the fraction of customers who would choose each of the available merchant,

payment-form combinations. If we assumed all customers purchase the good no mat-
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ter the price, as is commonly assumed in models similar to the model presented here,

the discussion of how customers maximize utility would be complete. However, cus-

tomers in this model are assumed to have heterogeneous valuations for the good,

and only customers with sufficiently-high valuations choose to purchase. To obtain

the quantity of customers who actually purchase the good we must also integrate

over the distribution of customer valuations, with only those for whom the utility of

purchasing is positive choosing to purchase the good.

For example, in the case depicted in Figure 1.3, the customers who choose

to make a purchase with a debit card from merchant 2 are those customers with

preferences for merchants between the lower bound on the left side of Figure 1.3

(m ≡ t 2
i − t

1

i ) and mi ≡ t2i − t1i = PD
1 − PD

2 , with preferences for payment forms

between the lower bound on the bottom of Figure 1.3 (w ≡ t Di − t
C

i ) and wi ≡
tDi − tCi = (1 − β)P C

2 − PD
2 , and with valuations such that vi > PD

2 + t2i + tDi , or

equivalently, such that UD2
i > 0. By integrating over customers with these preferences

and valuations, an expression for the quantity of purchases made with a debit card

at merchant 2, QD

2 , is obtained. The remaining quantity functions are formulated in

the same manner.

The expressions Qk
j are functions of the parameters describing customer pref-

erences and valuations, the prices set by the merchants, and the cash-back bonus set

by the credit platform. Derivatives of these functions will appear in the first order

conditions of the merchants and the credit platform found in the following sections.

A bold font will be used to distinguish expressions that refer to functions. However,

to save on notation, they will be written without listing the arguments.
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1.3.2 Merchant Profit Maximization

The two merchants compete both on price, as well as on whether they accept

the credit card. Merchant profit maximization occurs in two stages, each deciding

simultaneously whether to accept the credit card in the first stage and then simulta-

neously setting prices given these publicly observable credit acceptance choices. We

will start by examining the second, price setting stage, determining each merchant’s

best response price function for given first stage credit acceptance decisions. We will

then examine the optimal credit acceptance decisions of each merchant given optimal

price setting behavior.

1.3.2.1 Price Setting

Merchant j has marginal cost µj of providing the good. In addition, each

merchant also has a cost that is specific to the payment form used. This cost is the

“merchant discount” discussed in Section 1.2. The merchant discount for merchant j

is dj if a customer uses the debit card and cj if the customer uses the credit card.19

It is generally the case that if a purchase is made using a credit card it is

more costly for the merchant than if the same purchase were made with a debit card.

For ease of exposition, the two payment forms are labeled credit and debit, but this

applies more generally to a lower cost and higher cost payment form. In this model,

the credit card is meant to represent the payment form that is more costly for the

merchant (i.e., in equilibrium it will generally be true that cj > dj). Consequently,

merchants only find it optimal to accept the credit card if the benefit of attracting

more customers outweighs the additional costs. Let Aj = 1 if merchant j accepts the

credit card and Aj = 0 if he only accepts the debit card.

19The cost of transactions completed by the credit card, cj, is set by the credit platform as part
of its profit maximization, as described in Section 1.3.3.
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If merchant j’s credit acceptance decision is Aj and that of the competing

merchant is A−j, the profit of merchant j is

πj(Aj, A−j) =
(
PD

j − µj − dj
)
QD

j + Aj
(
P C

j − µj − cj
)
QC

j (1.2)

where under the No Surcharge Rule, the restriction is imposed that P C
j = PD

j . When

merchant j accepts the credit card (Aj = 1) and the No Surcharge Rule is not in

effect so that P C
j can be different from PD

j , merchant j has two first order conditions:

∂πj(1, A−j)

∂PD
j

= QD

j +
(
PD

j − µj − dj
) ∂QD

j

∂PD
j

+
(
P C

j − µj − cj
) ∂QC

j

∂PD
j

= 0 (1.3)

∂πj(1, A−j)

∂P C
j

= QC

j +
(
PD

j − µj − dj
) ∂QD

j

∂P C
j

+
(
P C

j − µj − cj
) ∂QC

j

∂P C
j

= 0 (1.4)

If merchant j does not accept the credit card, then the first order condition

with respect to P C
j , equation (1.4), does not apply. Thus, in the case of Aj = 0,

merchant j’s first order condition is

∂πj(0, A−j)

∂PD
j

= QD

j +
(
PD

j − µj − dj
) ∂QD

j

∂PD
j

= 0 (1.5)

When surcharging is allowed, each merchant has either one or two first or-

der conditions. Thus, with surcharging, the two, three, or four best response price

functions are determined by the solution of the system of two, three, or four first

order conditions, respectively, two if neither merchant accepts credit, three if only

one merchant accepts credit, and four if both merchants accept credit.

Under the No Surcharge Rule, each merchant is only allowed to set one price

that applies to both debit customers and, if the merchant accepts credit and there

are credit customers, to credit customers. Thus, under the No Surcharge Rule, the

two best response price functions are determined by the solution of the system of two
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first order conditions, one for each merchant:

∂πj(Aj, A−j)

∂Pj
= QD

j + (Pj − µj − dj)
∂QD

j

∂Pj
+ Aj

[
QC

j + (Pj − µj − cj)
∂QC

j

∂Pj

]
= 0 (1.6)

where Pj = PD
j = P C

j .

For each setting, under the No Surcharge Rule and when surcharging is al-

lowed, there are four possible systems of first order conditions corresponding with the

four possible combinations of credit acceptance decisions, (A1, A2) ∈ {0, 1} × {0, 1}.
Consider one of these systems, say, when surcharging is allowed and both merchants

accept credit. In this case there are four first order conditions, given by equations

(1.3) and (1.4) for j ∈ {0, 1} (and with A−j = 1). This system of four first order

conditions can be solved for the optimal prices of each merchant. These prices are

functions of the parameters describing customer preferences and valuations, the mer-

chant discounts, and the cash-back bonus. We will denote these best response price

functions as P̂
k

j (Aj, A−j). We will denote a quantity function evaluated at optimal

prices determined by these best response price functions as Q̂
k

j (Aj, A−j), and (1.2)

evaluated with P̂
k

j (Aj, A−j) and Q̂
k

j (Aj, A−j) as π̂j(Aj, A−j).

1.3.2.2 Credit Acceptance

We have just seen how merchants determine how to set prices optimally for a

given combination of credit acceptance decisions, (A1, A2). We now turn our attention

to the determination of whether to accept credit.

By determining how each merchant will optimally set prices in each case, as

well as what the resulting utility-maximizing behavior of customers will be and the

quantities that will result, each merchant can determine the profit each will receive

in each case, π̂j(Aj, A−j) for j ∈ {0, 1} and (Aj, A−j) ∈ {0, 1} × {0, 1}. The result

is the 2 × 2 game shown in Table 1.1. A Nash equilibrium of this game, denoted
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A2 = 1 A2 = 0
A1 = 1 π̂1(1, 1), π̂2(1, 1) π̂1(1, 0), π̂2(1, 0)
A1 = 0 π̂1(0, 1), π̂2(0, 1) π̂1(0, 0), π̂2(0, 0)

Table 1.1: Merchant credit acceptance subgame

(Â1, Â2), yields the equilibrium credit acceptance decisions of the two merchants, and

equilibrium prices are determined by the best response price functions corresponding

with that combination of credit acceptance decisions (denoted P̂
k

j (Â j, Â−j)).

The 2× 2 credit acceptance game could have multiple Nash equilibria. How-

ever, how to select which equilibrium will occur is not an issue in this framework

because there is another player, the credit platform, who moves first and can thereby

select the equilibrium which is best for it by its choice of merchant discounts and

the cash back bonus. We will now turn our attention to how the credit platform

maximizes profits.

1.3.3 Credit Platform Profit Maximization

When examining the profit-maximization problem of the merchants, we dis-

cussed the payment-form specific costs faced by merchant j, dj when a customer pays

with the debit card and cj when a customer pays with the credit card. While the

merchant discount cj is a cost for merchant j, it is revenue for the credit platform.

The credit platform can also receive revenue from customers who purchase using the

credit card by setting β < 0. Alternatively, the platform can choose to set β > 0 and

pay customers who purchase using the credit card, thereby providing customers with

extra incentive to use the card but making β a cost for the platform. The platform

has a marginal cost for transactions completed at merchant j, denoted µjc. The profit
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of the credit platform is given by

πC =
(
c1 − µ1

c − βP̂
C

1 (Â1, Â2)
)
Q̂

C

1 (Â1, Â2) +
(
c2 − µ2

c − βP̂
C

2 (Â2, Â1)
)
Q̂

C

2 (Â2, Â1)

(1.7)

where the “hats” over the quantity functions, prices, and credit acceptance decisions

indicate that both merchants are maximizing profits and customers are maximiz-

ing utility. Note that if merchant j’s optimal decision is to not accept credit, then

Q̂
C

j (0, Â−j) = 0. Thus, it is unnecessary to multiply the first term of (1.7) by Â1 or

the second by Â2.

Both P̂
C

1 and P̂
C

2 are affected by both c1 and c2. c1 is a cost for merchant 1,

and thus directly affects its optimal choice of P̂
C

1 . The same is true of c2’s effect on

P̂
C

2 , and since merchant 1’s choice of P̂
C

1 is affected by P̂
C

2 , it is also affected by c2.

In addition, both P̂
C

1 and P̂
C

2 affect the optimal choices of customers, and thus the

quantity expressions obtained by integrating over the optimal choices of customers are

also both affected by both c1 and c2. While β does not directly affect the merchants,

it does affect the decisions of customers, which affect the quantities and in turn the

merchants’ best response price functions. Consequently, all the expressions in (1.7)

with a “hat” must be differentiated in each of the platform’s first order conditions.

The credit platform’s optimal choice of c1, c2, and β is characterized by the solution
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to the following three first order conditions:

∂πC
∂c1

= 0 =

(
1− β∂P̂

C

1 (Â1, Â2)

∂c1

)
Q̂

C

1 (Â1, Â2)

+
(
c1 − µ1

c − βP̂
C

1 (Â1, Â2)
) ∂Q̂C

1 (Â1, Â2)

∂c1

+

(
1− β∂P̂

C

2 (Â2, Â1)

∂c1

)
Q̂

C

2 (Â2, Â1)

+
(
c2 − µ2

c − βP̂
C

2 (Â2, Â1)
) ∂Q̂C

2 (Â2, Â1)

∂c1

(1.8)

∂πC
∂c2

= 0 =

(
1− β∂P̂

C

1 (Â1, Â2)

∂c2

)
Q̂

C

1 (Â1, Â2)

+
(
c1 − µ1

c − βP̂
C

1 (Â1, Â2)
) ∂Q̂C

1 (Â1, Â2)

∂c2

+

(
1− β∂P̂

C

2 (Â2, Â1)

∂c2

)
Q̂

C

2 (Â2, Â1)

+
(
c2 − µ2

c − βP̂
C

2 (Â2, Â1)
) ∂Q̂C

2 (Â2, Â1)

∂c2

(1.9)

∂πC
∂β

= 0 = −
(
P̂

C

1 (Â1, Â2) + β
∂P̂

C

1 (Â1, Â2)

∂β

)
Q̂

C

1 (Â1, Â2)

+
(
c1 − µ1

c − βP̂
C

1 (Â1, Â2)
) ∂Q̂C

1 (Â1, Â2)

∂β

−
(
P̂

C

2 (Â2, Â1) + β
∂P̂

C

2 (Â2, Â1)

∂β

)
Q̂

C

2 (Â2, Â1)

+
(
c2 − µ2

c − βP̂
C

2 (Â2, Â1)
) ∂Q̂C

2 (Â2, Â1)

∂β

(1.10)

Recall that while we are examining the profit maximization problem of the

credit platform last, that is because the credit platform selects the merchant discounts
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and the cash-back bonus first and we are solving by backwards induction. Thus, the

credit platform’s solution to the three first order conditions above will dictate the

equilibrium outcome. As such, we will denote the solution to the platform’s system

of three first order conditions as c∗1 , c∗2 , β∗. The credit platform’s equilibrium profits

are analogously denoted π∗C, while that of the merchants is denoted π̂∗j .

1.3.4 Equilibrium

We have examined how customers maximize utility (Section 1.3.1), how mer-

chants maximize profits by optimally setting prices (Section 1.3.2.1) and deciding

whether to accept the credit card (Section 1.3.2.2), and how the credit platform opti-

mally sets the merchant discounts and the cash-back bonus (Section 1.3.3). To find a

subgame perfect Nash equilibrium, we need only to follow the steps discussed in each

of these sections in the order presented.

First, we determine the optimal choice of all customers for all possible prices

and combinations of credit acceptance decisions made by the merchants and all pos-

sible choices of the cash-back bonus set by the credit platform. Second, we determine

the best response price functions for each merchant for all possible combinations of

credit acceptance decisions and for all possible choices of merchant discounts and the

cash-back bonus set by the credit platform, given the optimal choices made by all

customers in each case. Third, we determine the optimal credit acceptance decisions

of the merchants, given their optimal price-setting behavior, for all possible choices of

merchant discounts and the cash-back bonus set by the credit platform. Fourth, we

determine the optimal merchant discounts and cash-back bonus for the credit plat-

form, given the profit-maximizing choices of the merchants and the utility-maximizing

choices of the customers. This process is followed twice, once under the No Surcharge

Rule and once when surcharging is allowed, to find the equilibrium in each setting.
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Figure 1.4: Note that the decision nodes found in the final level, those labeled ∀i.1
through ∀i.4, represent the choices available to each customer i from the unit mass of
customers. The payoffs shown at the bottom of the tree include the utility received
by customer i below the corresponding choices at these decision nodes, either Ukj

i if
choosing one of the available merchant, payment-form combinations, or 0 if choosing
not to purchase. The payoffs for the two merchants and the credit platform are
centered below the set of choices for customer i because these profits involve the
quantities obtained by integrating over the entire unit mass of customers.

A game tree corresponding with this process is shown in Figure 1.4.
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1.4 The Effects of Surcharging

We are interested in examining the effects of lifting the No Surcharge Rule

and allowing merchants to surcharge. To do this, we must determine equilibrium

outcomes in both settings and compare them. For example, suppose we are inter-

ested in determining how surcharging affects the profits of merchant j. One approach

would be to solve for a closed-form expression for π̂∗j under the No Surcharge Rule

and again with surcharging, and then examine properties of the function resulting

from taking the difference between the two, such as determining when it is positive

and performing comparative static analysis. Instead, we will use numerical simula-

tions. It is true that numerical simulations require us to make assumptions about

the distribution of customer preferences and valuations, and about values of certain

parameters. However, finding closed-form solutions for equilibrium outcomes of in-

terest also requires distributional assumptions. And when it is even possible to find

closed-form solutions, the resulting equations of interest are sufficiently long to be of

little use in achieving our goal. The resulting equations tend to be highly nonlinear

because each comes from solutions to multiple systems of nonlinear equations. Thus

determining whether an expression of interest is positive or negative requires choosing

specific parameter values. It is possible to explore a much wider range of possibilities

by using numerical simulations, and thus, this is the approach we will pursue.

1.4.1 Estimation Technique for Numerical Simulations

To examine the effects of surcharging, an equilibrium was found in both set-

tings, under the No Surcharge Rule and with surcharging, and the equilibrium out-

comes compared. The steps taken to find an equilibrium were as follows:

1. Choose the equilibrium to be found, including the setting, either under the No

Surcharge Rule or with surcharging, the distributions for customer preferences
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and valuations, values for the debit discount rates, d1 and d2, values of the

marginal costs of the merchants, µ1 and µ2, and values of the marginal costs of

the platform, µ1
c and µ2

c .

2. Solve the customer utility maximization problem to obtain closed-form solutions

for the quantity expressions, Qk
j , in all possible cases.

3. Using the quantity expressions found in step 2, formulate closed-form expres-

sions for merchant profits, πj(Aj, A−j), in all possible cases.

4. Using the profit equations found in step 3, find the first order conditions with

respect to the prices, P k
j , and formulate the system of first order conditions that

must be solved for each possible case.

5. For each possible system of merchant first order conditions found in step 4,

formulate the corresponding second order conditions that must be satisfied for

a solution to the system to be a solution to the merchants’ profit maximization

problem.

6. For a given numerical choice of merchant discounts and the cash-back bonus set

by the platform, (c1, c2, β), solve the merchants’ profit maximization problem.

6.1 For all four possible combinations of merchant credit acceptance decisions,

(A1, A2) ∈ {0, 1}×{0, 1}, solve the merchant price-setting profit maximiza-

tion problem by finding a solution to the system of first order conditions

found in step 4, subject to the constraint that the second order conditions

found in step 5 are strictly satisfied. Repeat this step multiple times from

multiple starting values to ensure that the solution found is the solution

to the merchants’ price-setting profit maximization problem.
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6.2 Formulate the profit of each merchant at the optimal prices found in step

6.1, and determine the Nash equilibrium or equilibria of the merchant

credit acceptance subgame.20

7. Repeat step 6 over a grid of possible values of the merchant discounts and

cash-back bonus, (c1, c2, β).

8. At each point evaluated in step 7, calculate the credit platform’s profit.

9. Determine the credit platform’s optimal choice of merchant discounts and the

cash-back bonus, (c∗1 , c
∗
2 , β

∗), by selecting the choice that results in the highest

profit in step 8. If (c∗1 , c
∗
2 , β

∗) is close to the edge of the grid explored in step 7,

return to step 7 and expand the grid.

By following these steps, we are able to obtain equilibrium outcomes for the

chosen setting and parameters. By doing so for both settings, and then comparing

these outcomes, we are able to examine the effects of ending the No Surcharge Rule

and allowing merchants to surcharge.

For the numerical results presented in the remainder of Section 1.4, merchant

and wallet preferences were independently and identically distributed according to a

uniform distribution with a width of 5, customer valuations were distributed uniformly

between 35 and 43, and the merchant discount for debit transactions was d1 = d2 =

$0.23, a value chosen to be approximately equal to the merchant discount for debit

card transactions. The marginal cost of merchant 1 was held constant at µ1 = $38, a

value approximately equal to the average card purchase. When considering symmetric

20If there are multiple equilibria, the credit platform is able to select alternative merchant discounts
to select the equilibrium it finds optimal. An example of this will be discussed in Section 1.4.2.1.
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merchants, µ1 = µ2 = 38, and when considering asymmetric merchants, µ1 = 38 >

µ2 = 36.

Equilibria were estimated over a grid spanning ($0.00, $3.00) × ($0.00, $3.00)

for merchant discount rates (c1, c2), and (−0.05, 0.05) for the cash-back bonus β.21

For each grid point, merchants’ optimal prices, P̂
k

j , were found by minimizing the

sum of squares of the first order conditions of the merchant problem, subject to the

constraints that each individual first order condition was zero and the second order

conditions were strictly satisfied.22 At many grid points, finding a solution required

attempts from multiple starting values. Starting values were obtained by following

a three-dimensional recursive algorithm, using successful solutions from neighboring

points on the grid as starting values for new attempts and returning to unsuccessful

points on the grid after a neighbor’s success. All estimation was implemented in C.

1.4.2 Merchant Credit Acceptance

The first equilibrium outcome we will examine is the merchants’ decision of

whether to accept credit. Before doing so in the context of the full model, it is

useful to first consider a simplified environment. In this spirit, we will first examine a

setting in which the credit platform is constrained from paying a cash-back bonus to

customers who pay with the credit card, or from charging them a fee. Even though

PD
j = P C

j under the No Surcharge Rule, the effective price paid by a credit customer

is still generally different from the price paid by a debit customer when β 6= 0 because

PD
j 6= (1−β)P C

j . In this setting with β = 0, however, credit and debit customers pay

21Recall that a customer purchasing with the credit card for price PC
j receives an amount βPC

j

from the credit platform if β > 0 and pays an amount βPC
j to the credit platform if β < 0.

22Alternative implementations using fewer constraints were tested. Each attempt required less
time using these alternative approaches, but was less likely to find a solution. As a result, a greater
number of attempts was required, increasing total estimation time.
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the same effective price under the No Surcharge Rule. So while holding β constant

at zero is unlikely to be the optimal choice for the platform, examining equilibrium

outcomes under this restriction makes it simple to see how different choices by the

platform of merchant discounts translate into different credit acceptance decisions

for the merchants, which in turn makes it simple to see a few key aspects about the

platform’s optimal choice of merchant discounts as well.

1.4.2.1 Without Cash-Back

In this section, we impose the restriction that β = 0. In general, we are

interested in outcomes that are a subgame perfect Nash equilibrium of the full model

presented in Section 1.3 in which the credit platform selects β in addition to the

merchant discounts. However, outcomes described in this section as a subgame perfect

Nash equilibrium, while they are a subgame perfect Nash equilibrium in this restricted

setting with β = 0, are only a subgame perfect Nash equilibrium in the general setting

if the credit platform’s optimal choice is β∗ = 0. Credit acceptance decisions of the

merchants that are a Nash equilibrium of the merchant credit acceptance subgame

are a Nash equilibrium in both settings. With this in mind, we will turn our attention

to Figure 1.5.

Figure 1.5 shows four graphs. The top row is under the No Surcharge Rule

(labeled NSR), while the bottom row is with surcharging (labeled SUR). The right

column shows the subgame perfect Nash equilibrium (labeled SPNE) outcome of the

merchant credit acceptance subgame for given marginal costs of the credit platform

(µ1
c ,µ

2
c ). The left column shows the Nash equilibrium of the merchant credit ac-

ceptance subgame (labeled CANE for credit acceptance Nash equilibrium) for given

merchant discounts (c1, c2), both those that the credit platform finds optimal and

chooses as part of a SPNE as well as those that it does not.
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Figure 1.5: Merchant credit acceptance decisions with β = 0. SPNE=subgame per-
fect Nash equilibrium. CANE=Nash equilibrium of the merchant credit acceptance
subgame. NSR=under the No Surcharge Rule. SUR=when surcharging is allowed.
A full description is provided in Section 1.4.2.1.
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In each of the four graphs in Figure 1.5, there are between one and five regions

labeled with the Nash equilibrium of the merchant credit acceptance subgame. The

label Both corresponds with the (1, 1) Nash equilibrium in which both merchants

accept credit, while Neither corresponds with the (0, 0) Nash equilibrium in which

neither merchant accepts credit. The 1 Only and 2 Only labels correspond with

the (1, 0) and (0, 1) Nash equilibria, respectively. The small region labeled 1 or 2

in the NSR–CANE graph is a region of merchant discounts for which both the (1, 0)

and (0, 1) Nash equilibria of the merchant credit acceptance subgame exist. However,

it is always possible for the credit platform to select merchant discounts outside of

this 1 or 2 region, as we shall see shortly. We will consider first the top row of

graphs that are under the No Surcharge Rule, and then examine the bottom row

where surcharging is allowed.

Consider the point labeled A in the NSR–SPNE graph. At this particular

point, the credit platform’s marginal costs are (µ1
c , µ

2
c ) = (0.4, 0.4). This point lies in

the region labeled Both. When the platform’s marginal costs are 0.4 for transac-

tions completed at each merchant, the solution to the platform’s profit maximization

problem is to select merchant discounts equal to 0.78 for each merchant. That is, the

credit platform chooses c1 = c2 = 0.78. Given this, the merchants each determine the

price they would set in each of the four possible combinations of merchant credit ac-

ceptance decisions, evaluate the profit they would get in each case, and then choose to

accept credit or not so that their choices are a Nash equilibrium of the merchant credit

acceptance game shown in Table 1.1. In this case, when c1 = c2 = 0.78, the outcome

of this process is that both merchants find it optimal to accept credit. And based

on this outcome, the profit-maximizing price set by each merchant, and the utility-

maximizing decisions of customers, the platform determines that the profit it achieves

by setting c1 = c2 = 0.78 is the highest profit achievable when it’s marginal costs are
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µ1
c = µ2

c = 0.4. The point labeled A in the NSR–CANE graph corresponds with this

optimal choice of merchant discounts for the credit platform when its marginal costs

are given by point A in the NSR–SPNE graph.

It warrants mentioning that point A is the upper- and right-most point in

the Both region. This is generally the case under the No Surcharge Rule because

causing merchants to stop accepting credit is the binding constraint on the credit

platform rather than traditional quantity effects. Ignore merchant 2 for a moment

and consider the effects of a small increase in c1. Recall that c1 is effectively the price

received by the credit platform, but is a cost for merchant 1. If the credit platform

increases c1 by a small amount, it faces effects analogous to traditional price and

quantity effects; in response to the increase in its costs (c1), merchant 1 increases

its price slightly, causing its quantity to decrease slightly. The credit platform has

increased revenue from receiving a higher price (c1), but decreased revenue from the

decrease in quantity. If merchant 1 always accepted credit, balancing these two effects

would be how the credit platform would optimally set c1. However, in this setting,

there is another potential effect of increasing c1, and that is that merchant 1 will stop

accepting credit. The effect of this decrease in quantity (to 0) clearly outweighs the

slight decrease in quantity from the traditional quantity effect. The same is true when

setting c2 for merchant two. Together, the result is that the credit platform, when it

determines that it can achieve the highest profit when both merchants accept credit,

sets the merchant discounts as high as possible without causing either merchant to

stop accepting credit. We will see a similar result when the credit platform finds it

optimal to have only one merchant accept credit.

Now consider the point labeled B in the 2 Only region of the NSR–SPNE

graph. At this point, the platform’s marginal costs are (µ1
c , µ

2
c ) = (0.8, 0.4). Compared

to point A just discussed, the platform’s marginal cost of transactions completed
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at merchant 1 has doubled, while the marginal cost of transactions completed at

merchant 2 has remained the same. As µ1
c increases while µ2

c remains constant, a

point is reached at which transactions completed at merchant 1 become sufficiently

costly for the credit platform that it becomes optimal to set merchant discounts such

that only merchant 2 accepts credit. The credit platform maximizes profits by setting

c2 = 0.97 and c1 ≥ 0.98. Because transactions completed at merchant 1 are sufficiently

costly for the platform, it wants to set the merchant discount for merchant 1 high

enough that merchant 1 does not want to accept credit.

If the credit platform were to set c1 between 0.8 and 0.97 (with c2 = 0.97), then

(c1, c2) would lie in the 1 or 2 region where multiple Nash equilibria of the merchant

credit acceptance subgame are possible. The credit platform has higher profit when

only merchant 2 accepts credit and thus wishes to avoid the equilibrium in which

only merchant 1 accepts credit. Any uncertainty from having both outcomes possible,

however, is easy for the credit platform to avoid by simply setting c1 sufficiently high

that merchant 1 does not find it optimal to accept credit. Any value c1 ≥ 0.98

achieves this goal, and thus there are a continuum of merchant discounts consistent

with SPNE.

The choice of c2 = 0.97, however, is unique. If the credit platform were to set

c2 any higher, merchant 2 would no longer find it optimal to accept credit and the

platform’s profit would be 0 (because the quantity of credit transactions would be 0,

as neither merchant would accept credit). The platform could set c2 lower and remain

in the 2 Only region. However, just as the optimal choice of discount rates when the

platform wants both merchants to accept credit was the upper- and right-most point

in the Both region, the optimal choice when the platform wants only merchant 2 to

accept credit is the upper boundary of the 2 Only region. The binding constraint

for the platform on increasing the merchant discount in each case is the complete loss
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of revenue resulting from the merchants no longer accepting credit, rather than the

slight decrease in revenue from a traditional quantity effect.

No points are labeled in Figure 1.5 in the 1 Only region, but the outcome

and intuition are analogous to that for points in the 2 Only region. When the

platform’s marginal costs are such that it is optimal for the platform if only merchant

1 accepts credit, the credit platform sets the merchant discount for merchant 1 as

high as possible without causing merchant 1 to stop accepting credit and sets the

merchant discount for merchant 2 sufficiently high that merchant 2 will not find it

optimal to accept credit. In the NSR–CANE graph, this is the right border of the 1

Only region with c2 above the 1 or 2 region.

If the credit platform’s marginal costs are sufficiently high that any merchant

discount high enough to result in positive margin is so high that the merchant does not

accept credit, then it is faced with the choice of earning negative profit by lowering the

merchant discounts to the point where one or both merchants accept credit, or earning

zero profit by setting the merchant discounts sufficiently high that neither merchant

accepts credit. Thus, if the platform’s marginal costs lie in the Neither region of the

NSR–SPNE graph, it will set merchant discounts anywhere in the Neither region of

the NSR–CANE graph, neither merchant will accept credit, and the platform’s profit

will be zero.

In the preceding discussion under the No Surcharge Rule of how the credit

platform optimally sets merchant discounts, given its marginal costs, and the SPNE

credit acceptance outcome that results, we have characterized the SPNE credit accep-

tance outcome for any possible value of the platform’s marginal costs. This is because

under the No Surcharge Rule, the binding constraint for the platform on increasing

the merchant discount is the complete loss of revenue resulting from the merchant no

longer accepting credit rather than the slight loss of revenue from a slight decrease
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in quantity as occurs with a traditional quantity effect. Consequently, the optimal

merchant discounts lie on the borders of the Both, 1 Only, or 2 Only regions.23

This occurs because under the No Surcharge Rule, merchants are constrained in how

they are able to optimize in response to an increase in the merchant discount. Since

the price must be the same for all customers, any increase in price for credit customers

must also be an increase in price for debit customers, even though the cost for cus-

tomers paying by debit has not changed. The only response available to merchants

that is directed at only customers paying by credit is the all or nothing action of

credit acceptance.

When the No Surcharge Rule is lifted, merchants are no longer restricted

in how they can respond to an increase in the merchant discount. If the cost of

transactions completed by customers paying by credit increases, the merchant has

the option to increase the price paid by those customers, and only those customers,

if he finds it optimal to do so. The merchant could also choose to spread the cost

increase over all transactions by increasing the price paid by debit customers. And the

option to stop accepting credit altogether always remains. However, when the subtler,

continuous response of a slight increase in price is available, merchants generally find

it preferable to the all or nothing response of no longer accepting credit. This can be

seen in the bottom row of graphs in Figure 1.5.

For easy comparison between settings, the points labeled A and B in the SUR–

SPNE graph are for the same platform marginal costs as in the NSR–SPNE graph.

Point A is in the region labeled Both, as it was under the No Surcharge Rule, while

point B has switched from 2 Only to Both. In fact, all points over the range of

marginal costs shown are now in the Both region. This is because the merchant

23Or, if the platform’s marginal costs are sufficiently high that zero profit is the best it can do,
then the optimal merchant discounts lie anywhere in the Neither region.
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discount at which the merchants no longer find it optimal to accept credit is much

higher when they are able to respond to a higher discount rate by increasing the

price paid by credit customers. Under the No Surcharge Rule, at the point when its

costs were those given by point A, it found it optimal to set the merchant discounts

both equal to 0.78, the highest possible value for which both merchants accept credit.

When merchants are allowed to surcharge, the merchant discount at which they stop

accepting credit is much higher. Consequently, the merchants no longer accepting

credit is no longer the binding constraint on the optimal choice of merchant discounts

for the credit platform. Rather, the platform’s choice is guided by standard price

and quantity effects, setting merchant discounts to balance the two. For point A, the

optimal choice for the credit platform is (c1, c2) = (1.06, 1.06). This is higher than

under the No Surcharge Rule, but well away from the point at which the merchants

would stop accepting credit. If the platform’s marginal cost for transactions com-

pleted at merchant 1 increases to 0.8 (point B), then the optimal choice of discount

rates increases to (c1, c2) = (1.32, 1.09). This is a small increase in c2 because the

marginal cost of transactions completed at merchant 2 has not changed. The increase

in c1 is much larger. However, the value chosen by the credit platform is still well

below the value that would cause merchant 1 to stop accepting credit.

1.4.3 With Cash-Back

When the restriction that β = 0 is removed and the platform is able to choose

β optimally in addition to the merchant discounts, the intuition for the platform’s

optimal choices remains similar, as it does for the credit acceptance decisions of the

merchants. Graphs for β 6= 0 of the merchant credit acceptance Nash equilibrium

as a function of the merchant discounts look very similar to those shown in Figure

1.5 for β = 0. If we were to look at the graph corresponding to each value of β
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chosen in SPNE by the credit platform, what we would notice is that the acceptance

regions would look very similar to those in Figure 1.5, with the borders between them

shifting further out as β increases. As β increases, the overall desire of customers to

pay by credit increases as well, and thus, so too does the threshold merchant discount

at which credit acceptance ceases to be optimal. Under the No Surcharge Rule, it

remains optimal for the platform to choose merchant discounts on the border between

acceptance regions, just as it did when β = 0. And with surcharging, the optimal

choice remains far away from the borders.

When β = 0, we saw that for the entire range of platform marginal costs, it is

always optimal for the credit platform to induce both merchants to accept credit. This

remains the case when the platform chooses β, meaning that the SUR–SPNE graph of

Figure 1.5 is representative of all SUR–SPNE graphs we could draw with surcharging.

As a result, Figure 1.6 includes only SPNE graphs under the No Surcharge Rule.

Consider first the graph on the left, which shows the SPNE in the case when merchants

are symmetric, as was the case Figure 1.5. If the platform’s marginal cost is much

higher for transactions completed at one merchant or the other, then it remains

optimal to induce that merchant to not accept credit. However, now that the platform

is able to choose β, the range of marginal costs for which the platform finds it optimal

for both merchants to accept credit is greatly expanded. When the merchants have

similar marginal costs, it is likely that the platform’s marginal cost of transactions

completed at each merchant will be similar as well. Thus, outcomes in the Both

region seem most likely. When merchants are asymmetric (see the graph on the

right side of Figure 1.6), the region for which inducing only the high cost merchant,

merchant 1, to accept credit, is much smaller. Only if transactions completed with the

higher cost merchant are significantly cheaper for the platform does the platform wish

to induce acceptance by only that merchant, a situation that seems highly unlikely.
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Figure 1.6: Subgame perfect Nash equilibrium merchant credit acceptance decisions
with β = β∗ when merchants are symmetric (µ1 = µ2 = 38) and asymmetric (µ1 =
38 > µ2 = 36)

1.4.4 Quantity of Credit Transactions

Let us now turn our attention to three main equilibrium outcomes of interest.

First, consider the total quantity of credit transactions. Most models on payment card

systems that investigate the effects of lifting the No Surcharge Rule find that the total

quantity of credit transactions is lower when merchants are allowed to surcharge. The

same results holds true here. This is shown for the case of symmetric merchants in

Figure 1.7. The left graph shows the total quantity of credit under the No Surcharge

Rule, the middle when surcharging is allowed, and the right shows the difference

between the two (i.e., Q̂
C

1 + Q̂
C

2 with surcharging minus Q̂
C

1 + Q̂
C

2 under the No

Surcharge Rule). The x- and y-axes are the platform’s marginal costs, just as in the

SPNE graphs discussed in the previous section. Recall that there is a unit mass of

customers, each of whom purchases either one or zero of the good for sale. Thus,
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the magnitude in the z direction, Q̂
C

1 + Q̂
C

2 , is the faction of all customers who both

purchase a good and do so using credit.

The distinct regions clearly seen in the No Surcharge Rule graph on the left

correspond with the different merchant acceptance regions shown in the left graph of

Figure 1.6. The parallel lines on the surface of the graph run perpendicular to the

axis corresponding with the platform’s marginal cost at that merchant, making the

Both region appear as if it is covered with a grid. As we saw in Figure 1.6, the

platform finds it optimal to induce both merchants to accept credit when surcharging

is allowed. Consequently, there is only one region in the graph depicting the situation

with surcharging. This enables us to use the same convention as in the No Surcharge

Rule graph to indicate the merchant acceptance regions under the No Surcharge Rule

in the final graph that shows the change between the situation with surcharging and

under the No Surcharge Rule. The entire third graph is negative values, indicating

that the total quantity of credit transactions decreases when surcharging is allowed.

NSR SUR ∆: SUR–NSR

µ2
c µ1c µ2

c µ1c µ2
c µ1c

Figure 1.7: Quantity of credit transactions (symmetric merchants)

While the result that the total quantity of credit transactions decreases when

surcharging is allowed is similar to what is found in other models examining the

effects of lifting the No Surcharge Rule, the intuition for this result is different. The

decrease in the quantity of credit transactions when surcharging is allowed is often
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explained by differences in the prices set by merchants; credit transactions are more

expensive for merchants under the No Surcharge Rule, so when the No Surcharge Rule

is lifted, merchants raise the price they charge customers who pay using the credit

card, thus decreasing the quantity of credit card transactions. However, in this case

the decrease in the quantity of credit card transactions is driven by changes in the

optimal fee structure set by the credit card platform. Under the No Surcharge Rule

the platform finds it optimal to earn profits from the merchant side of the market via

higher merchant discounts, increasing the volume of transactions by paying customers

a reward for using the credit card (e.g., “cash-back”). However, when surcharging is

allowed, the platform finds it optimal to stop paying customers rewards and to instead

charge customers a fee for using the credit card. This causes many customers to stop

using the credit card. To increase the volume of credit transactions, the platform

lowers the merchant discounts. This causes merchants to lower the price they charge

customers paying by credit, which partially offsets the decrease in credit transactions

caused by the platform charging customers a fee. However, the decrease in credit

transactions brought about by the cardholder fee outweighs the increase in credit

transactions brought about by merchants lowering the price, leading to an overall

decrease in the quantity of credit transactions.

1.4.5 Quantity-Weighted Average Price

Another main finding in the literature examining the effects of lifting the No

Surcharge Rule and allowing merchants to surcharge is that there is an overall decrease

in the prices paid by consumers. This occurs here as well, but again, with a slightly

different explanation. The standard expectation is that when the No Surcharge Rule

is lifted, merchants raise the price for credit card customers and lower the price for

debit card customers. This tends to decrease the quantity-weighted average price by
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lowering the price paid by customers who use a debit card and, in addition, by lowering

the fraction of customers who use the more-costly-for-the-merchant credit card. In

this case, however, the platform lowers the merchant discounts when surcharging is

allowed, prompting merchants to lower the price for customers paying by credit card.

In addition, merchants also lower the price for customers paying by debit card. As

merchants lower the price paid by both credit and debit customers, the quantity-

weighted average price is higher under the No Surcharge Rule than when surcharging

is allowed. This can be clearly seen in Figure 1.8.

NSR SUR ∆: SUR–NSR
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c µ1c µ2
c µ1c

Figure 1.8: Quantity-weighted average price (symmetric merchants)

1.4.6 Merchant Profits

So far, the outcomes of interest occurring in equilibrium in this model have

corresponded closely with what has been found previously in the literature. When we

examine the effect of surcharging on merchant profits when merchants are symmetric,

this will continue to be the case.

1.4.6.1 Symmetric Merchants

Consider first the case when merchants have the same marginal cost, shown

in Figure 1.9. The columns are the same as in the previous sections. The top row
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Figure 1.9: Merchant profits (symmetric merchants)

shows the profit of merchant 1, while the second row shows the profit of merchant

2. In the third column, a horizontal plane is included in the graphs at z=0. Thus,

wherever the graph is above the plane, profits increase with surcharging, and wherever

it is below the plane, profits decrease. At first glance, the results appear ambiguous,

with part of the graph above the plane and part below. However, not all points in

the graph are equally likely to occur in reality. Recall that the x- and y-axes are the

platform’s marginal costs of transactions completed at merchant 1 and 2, respectively.

The region of the top-right graph that is below the plane is the region of platform

marginal costs where transactions completed with merchant 1 are significantly more

costly than transactions completed at merchant 2. Taken out of context, this could

seem plausible or not. However, recall that the two merchants are identical. If they

both have the same marginal cost of providing the good (µ1 = µ2), it seems likely that
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Figure 1.10: Merchant profits (assymmetric merchants)

their transactional costs of credit card transactions would be similar as well. Thus,

the points along the 45 degree line through the center of the graph seem most likely

to occur in the real world. Near this 45 degree line, the graph is above the plane, and

thus, it seems most likely that both merchants have higher profits when allowed to

surcharge.

1.4.6.2 Asymmetric merchants

Now consider the case when the two merchants are asymmetric in terms of

their marginal costs. This is shown in Figure1.10. It seems reasonable to believe that

the platform’s marginal costs would be higher for transactions completed at merchant

1, the merchant with higher overall marginal costs, rather than at merchant 2, the
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merchant with lower overall marginal costs. At most, we might believe that the

marginal costs for the platform should be roughly equal. It does not seem reasonable

to believe that it would be more costly to complete transactions with the lower-cost

merchant. Thus, points to the left, or, perhaps, on the 45 degree line, seem most

likely to occur in the real world. For these points, merchant 2’s graph is above the

plane, indicating higher profits from surcharging. However, the graph for merchant

1 is below the plane, indicating that merchant 1, the smaller merchant, has lower

profits when allowed to surcharge.

1.4.6.3 Effects of Platform’s Optimal Choices on Merchant Profits

As discussed in Section 1.4.5, the removal of the No Surcharge Rule causes the

platform to switch from earning profits mostly from the merchant side of the market

to the customer side of the market. The platform stops giving customers rewards

for using the credit card and instead starts charging them a fee. This causes many

customers to stop using the credit card. In order to increase the volume of credit card

transactions, the platform lowers the merchant discounts. This causes merchants to

lower prices, thereby increasing volume. When the merchants are symmetric, the

platform lowers the merchant discounts symmetrically. In response to this reduction

in their costs, both merchants lower their prices, sell a higher quantity of goods, and,

in equilibrium, end up with higher profits.

When merchants are asymmetric, the platform no longer lowers merchant dis-

counts symmetrically. The goal of lowering the merchant discount is to increase

the volume of credit transactions. In order to increase the volume of transactions,

the platform finds it optimal to decrease the merchant discount by more for the

higher-volume, lower-cost merchant. While this benefits the lower-cost merchant, the

higher-cost merchant was already at a competitive disadvantage under the No Sur-
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charge Rule, which is made worse by the platform lowering costs by more for the

lower-cost merchant. Consequently, the lower-cost merchant has higher profits when

surcharging is allowed, but the higher-cost merchant has lower profits.

1.5 Conclusion

This paper examined the effects of merchants being allowed to place a sur-

charge on transactions completed using payment forms that are more costly to the

merchants. The model combined aspects of several strands of the economics litera-

ture on the No Surcharge Rule, while relaxing a few key limiting assumptions made

in each. Customers are heterogeneous along three key dimensions, having varying

preferences for both merchants and payment forms as well as different valuations for

the good. Merchants compete not only on price, but also on the acceptance of the

credit card. In addition, allowing the merchants to be different means that the same

choices are not always optimal for both in equilibrium, adding to the richness of the

interactions between the parties.

In this more general framework, I find results similar to those found elsewhere

in the literature for most outcomes of interest, with one important difference. Sur-

charging of credit card transactions reduces the quantity of credit card transactions

and the quantity-weighted average price. Merchants, in most cases, have higher prof-

its when allowed to surcharge. Because merchants have been quite vocal over many

years about their desire to be allowed to surcharge, finding they have higher profits

when allowed to do so is to be expected.

However, by relaxing the common assumption that merchants are identical, an

important alternative outcome was revealed. When merchants differ in their marginal

costs, they are affected differently by surcharging. The merchant who is able to reduce

marginal costs, as might be the case with a large retailer, benefits from surcharging.
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However, a merchant competing with this larger retailer that does not have the same

ability to reduce marginal costs, typically a smaller business, often has lower profits

when allowed to surcharge.
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Chapter 2

Worth the Wait? Cooperation in a Repeated

Prisoner’s Dilemma with Search

2.1 Introduction

When can sorting tip the balance in favor of maximizing the mutual gains

from collaboration in spite of conflicting personal incentives? When the first-best

outcome in which all individuals in a population cooperate is not feasible because some

individuals in the population choose not to cooperate, is it possible that cooperation

by only some individuals can improve the welfare of those who do choose to cooperate,

or perhaps, improve the welfare of all, despite a fraction of the population choosing not

to cooperate? The literature examining cooperation in a repeated prisoner’s dilemma

situation has largely focused on sustaining cooperation between all individuals in a

population. Different ways of sustaining cooperation under different informational

structures have been found, each striking a different balance between complexity

and robustness to real world challenges. When the actions of all are observable by

all, sustaining cooperation is relatively simple (e.g., standard folk theorem results).

When observability is limited, cooperation can still be sustained despite the imperfect

information, but often at the expense of strategic simplicity and with a greater need

for a common understanding of and desire to implement coordinated punishments

(e.g., Kandori (1992), Ellison (1994)). Largely unexamined is the question: when the

first-best outcome, in which all individuals cooperate, is not feasible, can welfare be

improved over the worst possible outcome, in which no individuals cooperate?
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To examine this question I consider a population of individuals with different

rates of time preference interacting in a repeated prisoner’s dilemma. The appeal

of the prisoner’s dilemma as a tool for modeling human behavior in strategic situa-

tions lies in the tension it exemplifies between rational individuals acting to maximize

their own utility and the inefficient outcome that results in spite of this optimizing

behavior. A repeated prisoner’s dilemma is embedded in a search market model. In-

dividuals fully observe the actions taken in a current match but nothing else. Players

follow uncomplicated strategies and there is no informational structure to facilitate

labeling of individuals or public devices to coordinate punishments. The fact that

cooperation is sustained despite the simplicity of strategies followed by players and

limited reliance on complicated information structures or common understanding or

even desire to implement coordinated punishments is attractive when considering

facilitating cooperation in real-world situations.

When all players find it optimal to cooperate, there is no need to examine ways

to increase welfare because welfare is already maximized. The first-best outcome in

which all players cooperate is feasible if the least patient player finds cooperation

optimal. After establishing this baseline of comparison, I examine how partial and

full separation can improve welfare when the first-best outcome is not feasible.

In this paper I establish when cooperation by only some individuals in the

population can improve the welfare of all, both cooperators and non-cooperators.

When the first-best outcome is not feasible, separation by action within a market can

improve the welfare of all individuals over the fully uncooperative outcome. Players

who do not choose to cooperate have the opportunity to take advantage of those who

do. And despite sometimes finding themselves matched with individuals who do not

cooperate, cooperators find themselves better off as well, as long as a sufficiently large

fraction of the population find cooperation to be optimal. No matter how impatient
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are the low type, cooperation can still be sustained among the more-patient players

as long as enough of the population are the more-patient type, providing higher

expected utility for all. This allows welfare to be improved for all players, even when

some players are very impatient or even completely myopic.

If enough of the population do not find cooperation to be optimal in the

presence of defectors, the only one-market equilibrium consistent with individual ra-

tionality is the fully uncooperative equilibrium. In these situations, I find that some

individuals can be made better off, without making the rest of the population worse

off, by using time, a resource possessed by all, to separate players with different

levels of patience. Specifically, a second, slower market is introduced, allowing the

more-patient types to separate themselves from the less-patient types. More-patient

players find it worth the wait to enter the slower market to wait for a cooperative

match, while less-patient players do not, preferring to receive an uncooperative match

more quickly. This ability to fully separate themselves from the less-patient players

improves the welfare of the more-patient players without making the less-patient play-

ers worse off. This Pareto improvement opportunity is not sensitive to the fraction of

the population that is each type and can allow for cooperation to be sustained among

more-patient individuals, even if they make up a small fraction of the population

and even if the risks associated with cooperation are significantly higher than the

maximum level sustainable with one market.

The second market unambiguously improves welfare when no cooperation is

sustainable with only one market. However, when conditions are such that partially-

cooperative equilibria with separation-by-action within one market and full separation

across two markets exist simultaneously, the less-patient players are always better

off with only one market. This is because when all players must meet in a single

market, the less-patient players are able to take advantage of the more patient players

54



and receive the temptation payment whenever they are matched with a player who

cooperates, and when they are matched with another less-patient player who defects,

they receive exactly what they would with full separation across two markets.

The other side of the less-patient types’ gain from taking advantage of the

more-patient types when all players co-exist in one market is of course losses expe-

rienced by the more-patient types when matched with a player who defects. This

risk can be avoided entirely through the full separation facilitated by the second mar-

ket. However, the more-patient players sometimes prefer one market to two despite

this risk, depending on how much longer they must wait to receive a match in the

second, slower market. The welfare gains from introducing the second market when

no cooperation is sustainable with only one market come from the second market

being sufficiently slow that less-patient players are not tempted by it but not so slow

that more-patient players do not find it to be worth the wait as a means to achieve

separation from the less-patient players. If the second market does not have to be

too slow, then the more-patient players prefer the separation it affords them while

the less-patient players receive exactly what they would receive with repetition of the

stage game Nash equilibrium, no longer receiving any gains from taking advantage

of cooperating players. However, if the second market is too slow, even though full

separation may be possible, it may not be desirable. If the slow market is sufficiently

slow, the more-patient players prefer to co-exist with the less-patient players in a

single market, despite the risks of being matched with a player who does not cooper-

ate, because the loss of utility associated with waiting for a cooperative match in the

slower market is too great. In this case, both types of players prefer an equilibrium

in one market in which cooperation and defection exist simultaneously.

This paper proceeds as follows. Section 2.2 discusses implementations of coop-

eration in the prisoner’s dilemma found in the existing literature. Section 2.3 presents
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the basic model, while Section 2.4 explores possible equilibria with one market. The

model is extended to include two markets in Section 2.5 and possible welfare im-

plications of this addition are analyzed. Because the notation is much simpler and

much of the intuition for the model and results can be obtained in the simpler envi-

ronment, the model presented in Sections 2.3 through 2.5 does not allow for players

to end matches endogenously. However, the qualitative results remain unchanged

when players are allowed to end matches endogenously. The similarities and few key

changes to incentives when endogenous breakup is allowed are discussed in Section

2.6 and presented formally in Section 2.7. Section 2.8 concludes.

2.2 Cooperation in the Prisoner’s Dilemma

It is well known that not cooperating is the dominant action in a one shot

prisoner’s dilemma. The simplest and earliest approach to facilitating cooperation is

to consider two players who play a repeated prisoner’s dilemma, forever. By stan-

dard folk theorem results (e.g., Fudenberg and Maskin (1989)), cooperation can be

sustained if players are sufficiently patient. Kandori (1992) extends standard folk the-

orem results to the case of a population that plays forever but in which individuals

are randomly matched. For example, suppose there is a market in which members

of a large population are randomly matched each day to play a prisoner’s dilemma

stage game. Players cooperate against other players who have always cooperated and

defect against players who have not. As long as there is an information structure to

facilitate the labeling and thus punishment of defectors, cooperation can be sustained.

Kandori (1992) also considers random anonymous matching in a setting where

labeling is not possible. He finds that despite the inability for direct punishment,

cooperation is still sustainable by community enforcement. Extending the example

to this setting, since it is no longer possible to only defect against defectors since

56



they cannot be identified, now players cooperate until defected against, at which

point they switch to defecting against all future matches. Once one player defects

one time, defection spreads through the population and cooperation is lost forever,

providing a harsh but effective punishment that sustains cooperation.

One objection to the contagion equilibrium of Kandori is the lack of forgiveness

and lack of robustness to mistakes. On the equilibrium path efficiency is obtained, but

if one player fails to cooperate even once, even if by mistake, cooperation is lost for-

ever. Ellison (1994) considers a similar framework with anonymous random matching

but introduces a public random variable on which players can coordinate. Contin-

uing the example, players cooperate until defected against, and then defect against

all future matches until some day it is raining when they show up to be matched.

Once it rains, the punishment phase ends and cooperation is restored. If this does

not provide strong enough incentives for cooperation, the punishment phase could be

extended to ending only after two occurrences of rain, and so on. Thus the public

signal allows for coordinated punishments and can be adjusted to provide optimal

punishment intensity, strong enough to facilitate cooperation but not so strong that

players do not follow through with punishment when it is their equilibrium strategy

to do so. This public coordination device allows for near efficiency even with mini-

mal noise and trembles. It does, however, increase the complexity of the strategies

followed by the players and requires common understanding of the public signal and

what actions are required in response to it.

We are interested in considering a framework similar to Kandori and Ellison

with random matching in a population. However, we would like to limit the complex-

ity required in terms of strategies followed by the players and the requirements for

informational structures. One approach of relaxing the informational requirements is

to consider imperfect monitoring. Fudenberg et al. (1994) extend folk theorem results
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to the case of imperfect public monitoring, as do Abreu et al. (1990) in a dynamic

programming context, while Ely and Välimäki (2002) do so for private (but almost

perfect) monitoring. We will instead assume players observe perfectly the actions

taken by each player in a current match, but nothing else. The strategies followed

will limit the cognitive burden placed on players, thus eliminating the requirement

that players have a common understanding of public signals and the complex punish-

ments coordinated on them. The result is facilitation of cooperation in a setting with

limited informational requirements and appealingly simple strategic requirements.

Players need only cooperate if they wish, and punish a current match if they defect.

The desire to simplify the strategic requirements placed on players is not

unique to this work. Recent economic events have increased the attention given to be-

havioral economics in general, with one focus being on modeling the way individuals

actually behave together with constraints that may exist on their cognitive abilities.

The model presented here does not formally include any behavioral modifications,

such as non-standard preferences or cognitive limitations.1 However, in line with this

research, the results derived here come from an environment that attempts to limit

the memory recall required by players to actions taken in the current match, the need

for complex common understanding of signals or other events, and the complexity of

strategies needed to sustain cooperation, all of which serve the dual role of decreasing

the cognitive requirements on players while at the same time reducing informational

requirements.

The setting with one market is similar to Ghosh and Ray (1996) and Kranton

(1996). However, in the model presented here, each period, players are only able to

1For an overview, see the book Advances in Behavioral Economics edited by Camerer et al. (2002),
or the more recent article “Advancing Beyond Advances in Behavioral Economics” by Fudenberg
(2006).
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cooperate or not, rather than having the option to increase the level of cooperation,

and thus payoffs from being in a cooperative match, over time. An alternative exami-

nation of sustaining cooperation in a repeated prisoner’s dilemma with a similar focus

on separation is an experimental paper by Bohnet and Kübler (2005). These authors

conducted an experiment in which a group of individuals played a repeated prisoner’s

dilemma. Prior to playing the repeated stage game, subjects were given the oppor-

tunity to bid in an n-price auction. The n highest bidders then played a modified

stage game that was more conducive to cooperation, basically providing insurance for

cooperators against the losses of being defected against, while the remainder played

a non-insured version of the repeated stage game. They found that if the number

of spots in the modified game did not exceed the fraction of the population inclined

to cooperate, then cooperation could be sustained by separating cooperators from

non-cooperators. This paper will have a similar feel in terms of sustaining coopera-

tion by separating types, but without requiring the resources necessary to essentially

pay players to cooperate. Here stage game payoffs will not be altered, but rather

cooperation will be facilitated by separation alone.

2.3 Environment

Consider a population consisting of two types of players who differ only by

their discount rates. Player i discounts the future at rate δti . The high type of

players, denoted ti = h, are more patient players who discount the future at rate

δti = δh. The low type of players, denoted ti = `, are less patient and discount the

future at rate δti = δ` < δh. Players are otherwise identical. The fraction of players

who are the high type is given by π and is commonly known.

Each discrete period, a player is either matched or unmatched. The utility

received by unmatched players is normalized to 0. Unmatched players can choose
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to stay unmatched or to enter the market. When an unmatched player enters the

market he is matched randomly with another unmatched player with probability

µm. Once matched, players play a repeated prisoner’s dilemma stage game until the

match dissolves exogenously, with probability βm, or endogenously, when endogenous

breakup is allowed. Matched players play the stage game, receive their utility payoffs

for the period, and then learn if the match will dissolve that period or not. If the

match does breakup, players start the next period in the unmatched state, choosing

to either enter the market again or to stay unmatched. The timing is such that each

period can be thought of as having three subperiods, with matching occurring in the

first subperiod, stage game play and utility received in the second, and resolution of

breakup uncertainty in the third. Matched players know their own action and payoff,

as well as that of their match, for the duration of the match. However, once a match

dissolves, players are unable to identify players with whom they have previously been

matched.

Later, in Section 2.5, we will explore an environment with two markets. The

two markets differ only by the search probabilities, µm and βm, where m ∈ {s, f}
denotes the two markets. The slow market, m = s, is slower than the fast market, m =

f . A player entering the slow market expects to wait longer before receiving a match

(µs < µf ). Once matched, the breakup probability in the new slower market is no

higher than the breakup probability in the fast market (βs ≤ βf ). Before considering

what happens with two markets, in Section 2.4, we will consider equilibrium when

there is only one market. Because the two market environment nests the one market

environment, to avoid duplication, the full environment with two markets will be

presented now. To reduce the two-market setting to a setting with only one market,

let µs = 0 so that a player who enters the slow market never receives a match. Most

of the model will be developed in terms of general market m, but all one market
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equilibria occur in the fast market, m = f .

Both the probability of breakup, βm, and the matching probability, µm, are

exogenously determined and are the same for all players in each period. Three versions

of the model are explored, one in which all breakup is exogenous, one in which

endogenous breakup is allowed each period, and a hybrid between the two.2 Much of

the intuition can be gained from exploring the model without endogenous breakup,

and it requires less notation than and produces similar results to the model with

endogenous breakup. Thus, the model without endogenous breakup will be developed

first here and explored in Sections 2.4 and 2.5, while the similarities, as well as the

few key differences, between the models will be discussed in Section 2.6. The formal

model with endogenous breakup is presented in Section 2.7. The hybrid model (e.g.,

endogenous breakup is allowed with some probability each period) is the most flexible,

nesting the other two models. However, because it is simply a weighted average of

the models with and without endogenous breakup and requires even more notation,

it will be discussed only briefly in Section 2.7.

When player i is matched with another player, they play a prisoner’s dilemma

game with possible actions Cooperate and Defect. Stage game utility payoffs are given

in Table 2.1. Payoffs are finite and satisfy the standard prisoner’s dilemma incentive

structure with (c+ τ) > c > d > (d− λ) so that D is the dominant action.3 We will

2Note that there is still an exogenous chance of breakup, βm, in all three models.
3The analysis presented here extends to the case where payoffs differ by type or differ for the

row and column players as long as the prisoner’s dilemma incentive structure is maintained. The
payoffs given in Table 2.1 could be written as (cjti + τ jti) > cjti > djti > (djti − λ

j
ti) ∀ti, j, where j

refers to row or column player to allow for two-sided markets. For cjti , d
j
ti , τ

j
ti , λ

j
ti > 0 ∀ti, j, the

qualitative results are unchanged and thus for simplicity we will focus on the completely symmetric
case shown in Table 2.1. The model could also be presented with several payoffs normalized, e.g.,
with c = 2, d = 1. However, the analysis is more transparent when it is possible to discuss c − d
directly as the value of cooperation relative to non-cooperation, so this normalization has not been
made.
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assume that c, d, τ, λ > 0, but allow for (d − λ) to be positive or negative. We will

often consider the case where the temptation to defect, τ , is equal to the loss from

cooperating against a player who defects, λ, but this assumption is not required.

C D
C c, c d− λ, c+ τ
D c+ τ, d− λ d, d

Table 2.1: Stage Game Payoffs

2.3.1 Strategy of player i type ti

We are interested in comparing the static stage game Nash equilibrium strategy

of always Defect with a strategy that involves cooperation. To reduce informational

requirements and the cognitive burden placed on players, we are interested in having

players follow strategies that are as simple as possible. Thus players who choose to

cooperate instead of defect will follow the grim trigger strategy.

The main drawback to considering only these two strategies is the lack of

forgiveness of the grim trigger strategy. It is a straightforward extension to allow

for both a probability of accidentally defecting as well as a probability of forgiving

an accidental defector. Parameters to capture these features would mostly appear as

multipliers on the existing pm term introduced shortly (e.g., a player’s beliefs could

be (1 − ε)pm instead of pm). However, for simplicity we will assume that players do

not make mistakes, making forgiveness of mistakes unnecessary.4

4Numerous other strategies, such as those that involve players cycling between cooperation and
defection, are also possible. While we could certainly construct an equilibrium in which players cycle
between cooperating for 17 periods and defecting for 11, it would require greater strategic complexity
from the players and to little end. Furthermore, behavior such as this is not something we would
expect to observe. We are also not considering strategies that require an additional information
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The two strategies followed by the players are simple, which is appealing in its

own due to the decreased cognitive burden it places on players as well as the limited

informational requirements it places on the environment. Despite the simplicity of

the strategies followed by players, however, these strategies allow for an interesting

range of behavior. We will, of course, examine the standard cases in which all players

cooperate or all players defect. But we will also examine situations in which cooper-

ation exists simultaneously with defection; of interest is the fact that these situations

can make players of both types better off. Thus we will start our analysis assuming

that players follow one of these two strategies.

Formally, players who do not find cooperation optimal will follow the stage

game strategy of always playing D. Players who choose to cooperate will follow a

grim trigger strategy, σgt, defined by (2.1).

σgt =

{
C if neither player has played D before in this match

D if D has been played before during this match
(2.1)

Let pm ∈ [0, 1] be the probability with which player i believes his match will follow

the cooperative grim trigger strategy given by (2.1) in market m, and 1− pm be the

probability with which he believes his match will play D.

An unmatched player chooses to enter market m ∈ {s, f}, with hopes of

receiving a match, or to remain unmatched. The expected value of the decision

structure, such as coordination on public devices or labeling of defectors. Contagion equlibria, in
addition to potentially imposing harsher punishments than the grim trigger, are ruled out by the
assumption of a continuum of players, as the probability of being matched with the same player
again, or with a player who has been matched with that player, is zero.
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problem facing an unmatched player is5

Vti = max{0, V s
ti

(ps), V
f
ti (pf )} (2.2)

where 0 is the utility received from remaining unmatched and V m
ti

(pm) is the utility

the player expects to receive from entering market m ∈ {s, f}. When we examine

equilibria with only one market, we will set the matching probability in the slow

market to zero (µs = 0) so that the value of entering the slow market is V s
ti

(ps) = 0,

the same as the utility of remaining unmatched. In general, the utility the player

expects to receive from entering market m is

V m
ti

(pm) =

receive match︷ ︸︸ ︷
µmW

m
ti

(pm) +

stay unmatched︷ ︸︸ ︷
(1− µm)(0 + δtiVti) (2.3)

Wm
ti

(pm) is the value player i type ti ∈ {h, `} expects to receive from a new

match once matched, which occurs with probability µm. This expectation depends

on the probability the player assigns to the likelihood of being matched with a player

who chooses to cooperate.

The value of a match, Wm
ti

(σgt|pm), for player i type ti choosing to follow the

grim trigger strategy with the expectations pm that his match will also follow the

grim trigger strategy and 1− pm that he will not, is

Wm
ti

(σgt|pm) =

matched with cooperator︷ ︸︸ ︷
pm
(
c+ δti [(1− βm)Wm

ti (σgt|1) + βmVti ]
)

+

matched with non-cooperator︷ ︸︸ ︷
(1− pm)

(
d− λ+ δti [(1− βm)Wm

ti
(σgt|0) + βmVti ]

)
(2.4)

After the first period of a match, players’ actions reveal their strategies, and

beliefs are updated accordingly to pm = 1 if both players cooperated and to pm = 0

5Note that Vti , the left hand side of (2.2), also depends on pm. However, for notational simplicity
and to avoid confusion later on, the pm argument of Vti expressions will be omitted.
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otherwise. This is reflected in the value expected in the second and subsequent periods

of a match, Wm
ti

(σgt|1) and Wm
ti

(σgt|0). The second period of the match is reached

only if the match does not dissolve, which occurs with probability 1−βm. If the match

dissolves, which occurs with probability βm, then the player re-enters the unmatched

state.6

Similarly, the expected value of a match for a player with beliefs pm who

chooses to play D is

Wm
ti

(D|pm) =

matched with cooperator︷ ︸︸ ︷
pm
(
c+ τ + δti [(1− βm)Wm

ti (D|0) + βmVti ]
)

+

matched with non-cooperator︷ ︸︸ ︷
(1− pm)

(
d+ δti [(1− βm)Wm

ti
(D|0) + βmVti ]

)
(2.5)

where Wm
ti

(D|0) reflects the fact that because player i plays D, his match will play

D for the duration of the match, regardless of the match’s strategy.

After the first period of a match, players know what their opponent will play

each period for the duration of the match, except if there is a deviation, which we

will consider later. Thus we can formulate the expressions explicitly for the value

players expect to receive in the second and subsequent periods of a match, Wm
ti

(σgt|1),

Wm
ti

(σgt|0), and Wm
ti

(D|0), as follows

6Recall that in the version of the model presented in this section, there is no endogenous breakup.
The analogous equations when endogenous breakup is allowed is given by equation (2.39).
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Wm
ti

(σgt|1) = c+ δti
[
(1− βm)Wm

ti
(σgt|1) + βmVti

]
⇒ Wm

ti
(σgt|1) =

c+ δtiβmVti
1− δti(1− βm)

(2.6)

Wm
ti

(σgt|0) = d+ δti
[
(1− βm)Wm

ti
(σgt|0) + βmVti

]
⇒ Wm

ti
(σgt|0) =

d+ δtiβmVti
1− δti(1− βm)

(2.7)

Wm
ti

(D|0) = d+ δti
[
(1− βm)Wm

ti
(D|0) + βmVti

]
⇒ Wm

ti
(D|0) =

d+ δtiβmVti
1− δti(1− βm)

(2.8)

Substituting (2.6) and (2.7) into (2.4), we can solve for Wm
ti

(σgt|pm) in terms of pa-

rameters and Vti . Similarly, we can substitute (2.8) into (2.5) to solve for Wm
ti

(D|pm).

Doing so yields

Wm
ti

(σgt|pm) = pm

(
c

1− δti(1− βm)

)
+ (1− pm)

(
d− λ+

δti(1− βm)d

1− δti(1− βm)

)
+

(
δtiβm

1− δti(1− βm)

)
Vti (2.9)

Wm
ti

(D|pm) = pm

(
c+ τ +

δti(1− βm)d

1− δti(1− βm)

)
+ (1− pm)

(
d

1− δti(1− βm)

)
+

(
δtiβm

1− δti(1− βm)

)
Vti (2.10)

The first two terms of each reflect what a player expects to receive from a new match

given his beliefs about the probability his match will cooperate, while the last term

is the value expected following breakup.

As long as d > 0, players can always obtain positive value by playing D. Thus

V m
ti

(pm) > 0 and all unmatched players will choose to enter the market rather than to

stay unmatched. If we assume that a player of a given type will always choose to follow
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the same strategy, which we will verify shorty as individually rational equilibrium

behavior, then the decision problem of the unmatched player given in (2.2) becomes

Vti = V m
ti

(pm) > 0. Equation (2.3) can then be solved for V m
ti

, yielding the ex ante

expected value of an unmatched player

V m
ti

(pm) =
µmW

m
ti

(pm)

1− δti(1− µm)
(2.11)

Using (2.11), we can solve (2.9) for Wm
ti

(σgt|pm) and (2.10) for Wm
ti

(D|pm) in terms

of parameters only, yielding

Wm
ti

(σgt|pm)=
(

(1−δti (1−µm))(1−δti (1−βm))

(1−δti (1−µm))(1−δti (1−βm))−δtiµmβm

)
·
(
pm

c

1− δti(1− βm)
+ (1−pm)

(
d− λ+

δti(1− βm)d

1− δti(1− βm)

))
(2.12)

Wm
ti

(D|pm) =
(

(1−δti (1−µm))(1−δti (1−βm))

(1−δti (1−µm))(1−δti (1−βm))−δtiµmβm

)
·
(
pm(c+ τ) + (1− pm)d+

δti(1− βm)d

1− δti(1− βm)

)
(2.13)

These expressions provide the lifetime value a player expects to receive imme-
diately after receiving a new match but before playing the stage game for the first
time with this new match, and are in terms of parameters only. The first term is a
multiplier reflecting the agent’s discount rate as well as the probabilities of matching
and breakup, while the second terms reflect what a player expects from a match as in
(2.9) and (2.10). Together, the terms involving δti , µm, and βm are analogous to the
familiar 1

1−δ and δ
1−δ terms common in repeated games without search.7 With these

expressions, we are now ready to consider equilibrium in this environment.

7A standard repeated game without search is nested in the present model if matching is certain
and breakup never occurs. With µm = 1 and βm = 0, (2.12) and (2.13) reduce to pm

c
1−δti

+ (1 −
pm)

(
d− λ+

δtid

1−δti

)
and pm(c+ τ) + (1− pm)d+

δtid

1−δti
.
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2.3.2 Equilibrium

In Section 2.3.1 we found the value player i type ti expects to receive from
following either the cooperative grim trigger strategy or from not cooperating and
always playing D. Individually rational players will choose the strategy that max-
imizes their individual expected utility given beliefs about what the match will do.
Accordingly, the value expected from a new match by a player with beliefs pm is

Wm
ti

(pm) = max{Wm
ti

(σgt|pm),Wm
ti

(D|pm)} (2.14)

A player with beliefs pm will find it optimal to follow σgt and cooperate in
the first period of a new match if and only if Wm

ti
(σgt|pm) ≥ Wm

ti
(D|pm). Equations

(2.12) and (2.13), respectively, give these expected values of a new match in terms
of parameters, allowing us to solve for a condition on the discount rate necessary for
cooperation to be optimal. A newly matched player will choose the optimal strategy
as follows:

arg maxWm
ti

(·|pm) =

{
σgt if Wm

ti
(σgt|pm) ≥ Wm

ti
(D|pm)⇐⇒ δti ≥ δmpm

D if Wm
ti

(D|pm) > Wm
ti

(σgt|pm)⇐⇒ δti < δmpm
(2.15)

where δmpm ≡
pmτ + (1− pm)λ

(1− βm)(pm(c− d+ τ) + (1− pm)λ)
(2.16)

An increase in the potential loss from cooperating against a defector and the
temptation to defect yourself, weighted by the probability of being faced with either
situation, increases the discount rate required for cooperation to be optimal. The
remaining term in the denominator of (2.16) reflects the benefit received each period
from a cooperative relative to a non-cooperative match. The higher is (c − d), the
lower the discount rate required to induce cooperation. If (c − d) is sufficiently low
or (pmτ + (1− pm)λ) is sufficiently high, δmpm ≥ 1, reflecting the fact that players will
never cooperate if cooperation is not sufficiently attractive.

We are now ready to define equilibrium, defining equilibrium with one mar-
ket first as a special case of equilibrium with two markets, and then providing the
complete definition of equilibrium with two markets.

Definition 1 (Equilibrium with One Market). An equilibrium with one market is an
equilibrium with two markets, as given by Definition 2 with conditions i through iv,
in the special case of µs = 0 so that V s

ti
(ps) = 0 according to (2.11), making players

indifferent between entering market m = s and staying unmatched as part of condition
ii.
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Definition 2 (Equilibrium with Two Markets). An equilibrium with two markets
is, for m ∈ {s, f}, a list of values, (Vti , V

m
ti
,Wm

ti
), and beliefs, pm, such that, given

market probabilities of matching and breakup, (µm, βm)

i. (Matched) Given beliefs pm, player i chooses strategy σgt or D according to
(2.15) and (2.16) that maximizes Wm

ti
(pm) as given by (2.14), ∀i

ii. (Unmatched) Given values Wm
ti

(pm), m ∈ {s, f}, expected once matched, player
i forms expectations V m

ti
(pm) about the value of entering each market according

to (2.11) and chooses to enter market m ∈ {s, f} or to stay unmatched to
maximize Vti according to (2.2), ∀i

iii. (Individual Rationality) Given V m
ti

(pm) and Wm
ti

(pm), m ∈ {s, f}, player i does
not have an incentive to deviate from his strategy determined by conditions i
and ii, ∀i

iv. (Consistency) ∀i, player i’s beliefs, pm, are consistent with the strategies fol-
lowed by all players j 6= i

2.4 One Market

In this section we will consider equilibrium with one market, as given by Def-
inition 1. By setting µs = 0, we are effectively shutting down the second market
and considering only what happens when all players interact within one market, the
fast market (m = f). After examining what is possible with one market, in the next
section we will explore what further opportunities may be available when there are
two markets. With the slower market shut down, all one-market equilibria occur in
the fast market.

Proposition 1 (Existence with One Market). An Equilibrium with One Market al-
ways exists.

One possible equilibrium that always exists is repetition of the stage game
Nash equilibrium, which in this search framework is a pooling equilibrium in which
all players defect. Given expectations that all other players will defect, the probability
a match cooperates is pf = 0.8 Given pf = 0, (2.16) yields δf0 = 1

1−βf
> 1, ∀βf ∈ (0, 1),

8In this one market setting, the equations that have m sub and superscripts in Section 2.3 will
have f sub and superscripts in this section because all equilibria occur in the fast market, m = f .
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so by (2.15), each player maximizes (2.14) by playing D. Given W f
ti(0) = W f

ti(D|0),

V f
ti (0) > 0 is each player’s solution to (2.2). Given V f

ti (0) and W f
ti(0), no player has an

incentive to deviate from the strategies determined by conditions i and ii, satisfying
condition iii. Since all players are playing D, pf = 0, verifying condition iv. Thus an
equilibrium with one market, as defined in Definition 1, always exists.

Proposition 2 (First Best). The first-best equilibrium in which all players cooperate
exists if and only if δ` ≥ δf1, where δf1 is given by (2.16).

Repetition of the stage game Nash equilibrium, while always a possible equi-
librium, is inefficient. The best possible outcome is an equilibrium in which all players
cooperate. Pooling on cooperation is an equilibrium if and only if the least-patient
player is sufficiently patient. If all players expect all other players to cooperate, then
pf = 1. Given beliefs pf = 1, if min{δh, δ`} = δ` ≥ δf1, where δf1 ≡ τ

(1−βf )(c−d+τ)
by

(2.16), then each player, choosing the optimal strategy according to (2.15), maximizes
(2.14) by following the grim trigger strategy. Thus ∀i, ti ∈ {h, `}, conditions i and ii
yield W f

ti(1) = W f
ti(σ

gt|1) and V f
ti (1) > 0. If a player found it optimal to cooperate

in the first period of a match, he will not find it optimal to deviate later on in the
match,9 satisfying condition iii. Since all players are cooperating, pf = 1, and the
consistency condition iv is satisfied. Thus an equilibrium with one market in which
all players cooperate exists if δ` ≥ δf1, and the first-best outcome is achievable.

The first-best outcome is feasible under a fairly wide range of parameters,
including at relatively high breakup probabilities. The condition δ` ≥ δf1 can be
solved for the maximum breakup probability for which cooperation can be sustained
for given discount rates, yielding

βf ≤ 1−
τ
c−d

δ`
(
1 + τ

c−d

) ≡ β̄1
(

τ
c−d

)
(2.17)

where τ
c−d is the ratio of the temptation to defect to the value of sustaining a cooper-

ative relationship. Figure 2.1 shows the relationship between the breakup probability
and the temptation to defect for different values of δ`. If both types are fairly patient,
with δ` = 0.97 and δh = 0.99, cooperation can be sustained at breakup probabilities:
β̄1(

τ
c−d = 1) = 0.48, β̄1(5) = 0.14, β̄1(10) = 0.06, β̄1(25) = 0.01. Surprisingly, players find

it optimal to cooperate even if the likelihood of staying matched for another period

9Formally, it remains true that δti ≥ δf1, so cooperation remains the best response for all players.
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Figure 2.1: Maximum breakup probability (βf ) for existence of first-best equilibrium
vs. temptation to defect (τ) for different values of δ` with c− d = 1. For (τ, βf ) pairs
below and left of a line, the first-best equilibrium exists for that value of δ`.

is close to a flip of a coin if the temptation to defect and the value of a cooperative
relationship are equal. Even more surprisingly, cooperation can be sustained if the
temptation to defect is 25 times higher than the value of a cooperative relationship
with a one percent probability of breakup, which is a small probability, but far from
requiring infinite repetition.

If δ` < δf1, then the first-best outcome is not achievable. However, if the
high type are sufficiently patient, an outcome that provides higher ex ante expected
value for all players than repetition of the stage game Nash equilibrium might still
be possible.

Proposition 3 (Existence of Separating Equilibrium with One Market). Given δ`
and δh, if there exists a π such that δ` < δfπ ≤ δh, where δfπ is defined by (2.16), then
there exists an Equilibrium with One Market in which all high types cooperate and all
low types defect.

Consider an equilibrium in which all players who are the high type follow
the grim trigger strategy and all players who are the low type defect. In such an
equilibrium, the probability of being matched with a player who cooperates is the
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same as the fraction of the population who are the high type, so pf = π.10 With all
players choosing which strategy to follow according to (2.15), a necessary condition
for a separating equilibrium with one market to exists is δ` < δfπ ≤ δh where δfπ is
defined by (2.16).

For both pooling equilibria, the conditions on the discount rates were also
sufficient for existence, which remains the case here. If δ` < δfπ, then W f

` (π) =

W f
` (D|π) is the solution to (2.14) for all low types, and thus V f

` (π) > 0. If δh ≥ δfπ,

then W f
h (π) = W f

h (σgt|π) is the solution to (2.14) for all high types types. When a
high type is matched with a low type, if λ > 1, it is possible that the value realized
from the match will be negative. However, δh ≥ δfπ ⇔ W f

h (σgt|π) ≥ W f
h (D|π) > 0,

and thus V f
h (π) > 0 is the solution to (2.2) for all high types.

We next need to verify that no player has a profitable deviation from the
strategies determined by conditions i and ii. Any player with which a low type is
matched will play D in the second and subsequent periods of a match, regardless of
the match’s type, so deviation from D is not profitable for the low type. If a high type
is matched with a low type, his strategy is to play D for the duration of the match,
and it is not profitable for him to deviate from the grim trigger. If a high type is
matched with another high type, his belief that the match will cooperate in the second
and subsequent periods of a match is pf = 1. Deviation is not profitable as long as

δh ≥ δf1. It is easy to verify that δ 1 < δfpf ,∀pf < 1, and thus the condition on the
discount rate required for deviation to not be profitable is nested in the condition on
the discount rate required for cooperation to be optimal in the first place. Intuitively,
if a player finds it optimal to cooperate when he is uncertain about whether the
other player will also cooperate, he certainly finds it optimal to cooperate when he is
certain. Thus no player has a profitable deviation and condition iii is satisfied.

Given conditions i, ii, and iii, all low types will play D and all high types
will play σgt. Thus the probability of being matched with a player who cooperates in

10Intuitively, this is the case because with only exogenous breakup, players of each type are equally
likely to be unmatched. Formally, the probability that an unmatched player is the high type must
be found from the stead-state distribution of players of each type and in each state, matched and
unmatched. When no matches are ended endogenously (as occurs in this section, because endogenous
breakup is not allowed, but which also occurs if the matching probability is sufficiently low even if
endogenous breakup is allowed), the probability that an unmatched player is the high type reduces
to π. However, when endogenous breakup is exercised (which occurs when endogenous breakup is
allowed and the matching probability is higher), the probability no longer reduces to π, but rather
depends on µf and βf as well. This is discussed formally in Section 2.6.
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equilibrium is the fraction of the population who are the high type, so pf = π, and
the consistency condition iv is satisfied. Thus δ` < δfπ ≤ δh is necessary and sufficient
for a separating equilibrium with one market to exist.

Proposition 4 (Welfare Gains from Separating Equilibrium with One Market).
When the separating equilibrium with one market exists, it Pareto dominates repe-
tition of the stage game Nash equilibrium. These welfare gains exist no matter how
impatient are the low type, existing for any δ` such that 0 ≤ δ` < δfπ.

When a separating equilibrium with one market exists, all players prefer it
to repetition of the stage game Nash equilibrium because it provides higher ex ante
expected utility for players of each type. For each type, Wti(D|pf ) > Wti(D|0),∀pf >
0. Thus the low type prefer the separating equilibrium because they receive (c+τ) > d
in the first period of any match with a high type. The high type risk losing λ if
matched with a low type in a separating equilibrium, which they could avoid by play
D. However, a separating equilibrium only exists if W f

h (σgt|π) ≥ W f
h (D|π), and since

Wh(D|pf ) > Wh(D|0),∀pf > 0, it must be the case that W f
h (σgt|π) > Wh(D|0), the

value expected from matches in an uncooperative equilibrium, so the high type also
expect higher utility. Thus when a separating equilibrium with one market exists, it
Pareto dominates repetition of the stage game Nash equilibrium.

For the separating equilibrium with one market to exist, the high type must be
sufficient patient, requiring δfπ ≤ δh. The low type, however, can be very impatient,
0 ≤ δ` < δfπ. Thus the welfare gains achievable with the separating equilibrium with
one market exist even if the low type are completely myopic (δ` = 0). Figure 2.2
shows the relationship between the fraction of the population who are the high type,
π, and the temptation to defect, τ , for different values of δh. Each line shows the
minimum value of π for which the one-market separating equilibrium exists for that
level of δh, as a function of τ . No matter how impatient are the low type, cooperation
can still be sustained among the high types as long as enough of the population are
the high type, providing higher expected utility for all.

2.5 Two Markets

In Section 2.4 we saw how when the first-best outcome is not obtainable,
sorting may provide a Pareto improvement opportunity over repetition of the stage
game Nash equilibrium. Low types expect higher utility because they receive the
temptation payment whenever they are matched with a high type. The other side of
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Figure 2.2: Minimum fraction of the population who are the high type (π) for exis-
tence of one-market separating equilibrium vs. temptation to defect (τ) for different
values of δh with c− d = 1 and β = 0.1. For (τ, π) pairs above and left of a line, the
one-market separating equilibrium exists for that value of δh.

the low types’ gain is of course losses experienced by high types. However, in spite of
these losses expected from being matched with low types, the high types also expect
higher utility when the expected gains from cooperation from being matched with
other high types exceed the expected losses.

Proposition 4 naturally leads to the question, can overall welfare be improved
by providing opportunities for further sorting? Such gains would likely come from
reducing the losses expected by high types, but in order for this to be a Pareto
improvement, it must not come at the expense of the low types. In this section we
will see how in some circumstances the addition of a second market can make the
high types better off without decreasing the ex ante expected value of the low types.

2.5.1 Two Market Setting

The environment presented in Section 2.3 contained two markets, m ∈ {s, f}.
However, in Section 2.4, the slow market was shut down by assuming µs = 0 so that if
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a player entered the slow market, he would never receive a match and would thus be
indifferent between staying unmatched and entering the slow market. We now want
to consider what is possible if µs > 0 so that the slow market is a viable option for
players.

Just as was done in the one-market setting, we will assume that all players of
the same type will always choose to follow the same stage game strategy once matched
and to enter not only a market, but the same market each time they are unmatched,
all of which will be verified shortly as being individually rational equilibrium behavior,
as defined by Definition 2.

In the one-market setting, we considered the existence of three equilibria.
In the two-market setting, continuing to limit our focus to symmetric equilibria,
conditional on type, and two possible stage game strategies, the number of possible
equilibria has increased to at least seven. There are four equilibria with full pooling
in which all players enter the same market and follow the same stage game strategy,
two equilibria with partial pooling in which all players enter the same market but
follow separate stage game strategies once matched, and one equilibrium with full
separation.

The equilibria in which all players pool into the fast market are the same
as the equilibria discussed in Section 2.4. Each has an analogous equilibrium with
pooling into the slow market. However, for any two equilibria with identical strategies
followed once matched, the value expected from the equilibrium with pooling into the
fast market will always be higher than that expected from pooling into the slow
market because µf > µs, and thus no player will ever prefer an equilibrium with
pooling into the slow market to the analogous equilibrium with pooling into the fast
market. Accordingly, we will not consider further any equilibria with pooling into the
slow market.

2.5.2 Separating Equilibrium with Two Markets

The new case of interest is the equilibrium with full separation made possible
by the existence of two markets. Given the large number of parameters and the
resulting complexity of the conditions that must be satisfied, it will be useful to
focus attention on cases in which the two markets are as comparable as possible.
Thus for simplicity, we will assume that the breakup probability is identical in each
market (βs = βf ≡ β) and that the temptation to defect is equal to the loss from
cooperating but being defected against (τ = λ). Furthermore, since our interest is
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in comparing overall welfare with the one-market setting, any conclusions we reach
about possible welfare improvements achievable with the addition of the slow market
will be strongest if the fast market is made as attractive as possible. In the one-
market setting, the matching probability only affected the level of the ex ante expected
value of unmatched players, with higher matching probabilities translating into higher
expected values. The incentives facing the players, and thus the qualitative results,
are identical ∀µf ∈ (0, 1]. Thus it is without loss of generality to consider the case
where µf = 1, which we will do from now on in this Section in order for the comparison
to be as favorable as possible for the one-market setting.

Proposition 5 (Separating Equilibrium with Two Markets). A Separating Equilib-
rium with Two Markets is an Equilibrium with Two Markets, as given by Definition
2, in which all unmatched high types enter the slow market and cooperate following the
grim trigger strategy once matched while all unmatched low types enter the fast market
and defect once matched. Given δ` and δh, if δh ≥ δs1, where δs1 is given (2.16), and
if there exist bounds on the matching probability in the slow market, µ

s
< µs < µs,

and on the temptation to defect, τ < τ , such that V s
h ≥ V f

h and V f
` ≥ V s

` , then a
Separating Equilibrium with Two Markets exists.

Proposition 6 (Independence of π in Separating Equilibrium with Two Markets).
Existence of and the value expected by players of each type in the separating equilibrium
with two markets does not depend on the fraction of the population who are the high
type, π.

First we will show Proposition 5, existence of the two-market separating equi-
librium. In doing so, the fraction of the population who are the high type, π, will
never appear, thus proving Proposition 6.

If all players believe that all players matched in the fast market will defect,
then pf = 0. Given these beliefs, from (2.16), δf0 = 1

1−β > 1 > δti ,∀ti,∀β ∈ (0, 1),

and thus by (2.15), all players will play D if matched in the fast market. By (2.14),
the value expected by matched players of each type in the fast market is W f

ti(D|0).

If all players believe that all players matched in the slow market will follow
the grim trigger strategy, then ps = 1. Given these beliefs, the cutoff on the discount
rate required for cooperation, as given by (2.16), is δs1 = τ

(1−β)(c−d+τ) . A necessary

condition for a separating equilibrium with two markets to exist is δh ≥ δs1. If the high
type are sufficiently patient that this condition holds, then by (2.15), all high types
will follow the grim trigger strategy once matched in the slow market and the value
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expected once matched is W s
h(σgt|1). If a player who is the low type enters the slow

market, he will choose whichever strategy maximizes his expected value according to
(2.15) with δs1 and the value expected once matched, W s

` (1), is given by (2.14).

Given the value expected once matched for players of each type in each market
as required by condition i of Definition 2, the value expected by unmatched players
from entering either market can be specified according to condition ii. For µf = 1,
matching occurs with certainty in the fast market, and thus the value expected by
an unmatched player choosing to enter the fast market is equal to the value expected
by a matched player in the fast market. Combining (2.11) and (2.13) with the case
of µf = 1 yields

V f
ti (0) =

µfW
f
ti
(D|0)

1−δti (1−µf )
= W f

ti(D|0) =
µfd

(1− δti(1− µf ))(1− δti(1− βf ))− δtiµfβf
=

d

(1− δti(1− βf ))− δtiβf
=

d

1− δti
(2.18)

Since matching is certain in the fast market, players entering the fast market receive
d each period, and thus the value expected is the same as the value in a standard
repeated game without search probabilities.

The value expected by unmatched players for the slow market where µs < 1
does not simplify to the same extent. Using (2.11), (2.12), and (2.13), we can derive
expressions for the value expected by unmatched players entering the slow market.
The value expected by an unmatched high type entering the slow market is

V s
h (1) =

µsW
s
h(σgt|1)

1− δh(1− µs)
=

µsc

(1− δh(1− µs))(1− δh(1− β))− δhµsβ
(2.19)

For the low type, there are two cases for the value expected by an unmatched
player if he were to enter the slow market, one if he is sufficiently patient that he
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would cooperate11 and one if he is not:

V s
` (1) =


µsW

s
` (σgt|1)

1− δ`(1− µs)
=

µsc

(1− δ`(1− µs))(1− δ`(1− β))− δ`µsβ
if δ` ≥ δs1

µsW
s
` (D|1)

1− δ`(1− µs)
=
µs ([1− δ`(1− β)](c+ τ) + δ`(1− β)d)

(1− δ`(1− µs))(1− δ`(1− β))− δ`µsβ
if δ` < δs1

(2.20)

This completes the specification of the values expected by unmatched players.
Given these values, each unmatched player chooses to enter the market that provides
the highest expected value according to (2.2). For a separating equilibrium with two
markets to exist, it is necessary that V s

h (1) ≥ V f
h (0) and V f

` (0) ≥ V s
` (1) as given by

(2.18), (2.19), and (2.20). These conditions and the condition on the discount rate of
the high type, δh ≥ δs1, complete the specification required for conditions i and ii of
Definition 2 for an equilibrium with two markets.

To see that no player has incentive to deviate from their strategy as specified
by conditions i and ii, it is useful to consider bounds on parameters implied by these
conditions. The condition for the high type on the discount rate and values expected
from each market can be solved for an upper bound on the temptation to defect and
a lower bound on the matching probability in the slow market, such that

δh ≥ δs1 ≡
τ

(1− β)(c− d+ τ)
⇔ τ ≤ τh ≡

δh(1− β)(c− d)

1− δh(1− β)
(2.21)

V s
h (σgt|1) ≥ V f

h (D|0)⇔ µs ≥ µ
s
≡ (1− δh)(1− δh(1− β))d

(1− δh(1− β))(c− δhd)− δhβ(c− d)
(2.22)

For players who are the high type, if τ ≤ τh, there is no profitable deviation when
matched, and if µ ≥ µ

s
, the slow market is attractive enough to be worth the wait

and there is no profitable deviation when unmatched. Thus high types do not have
an incentive to deviate when these conditions hold.

To satisfy condition iii we also need to establish that the low type does not
have a profitable deviation. There are two cases to consider. Consider first the case

11The case when δ` ≥ δs1 also implies that the first-best is possible, making the second market
unnecessary from a welfare perspective. This is discussed in Section 2.5.3. However, it is still
necessary to examine this case here in order to fully characterize when the two-market separating
equilibrium exists and to see Proposition 6, that this equilibrium does not depend on π.
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when δ` ≥ δs1 and the low type is sufficiently patient that they find it optimal to
cooperate if matched in the slow market. This implies an alternate upper bound on
the temptation parameter, as well as a lower bound on the matching probability in
the slow market implied by the condition required for the low type to find it optimal
to enter the fast market, such that

δ` ≥ δs1 ≡
τ

(1− β)(c− d+ τ)
⇔ τ ≤ τ ` ≡

δ`(1− β)(c− d)

1− δ`(1− β)
(2.23)

V f
` (D|0) ≥ V s

` (σgt|1)⇔ µs ≤ µs ≡
(1− δ`(1− β))d

c− δ`(1− β)d
(2.24)

For players who are the low type, if τ ≤ τ ` they would cooperate in the slow market.
As long as the slow market is sufficiently slow, with µs ≤ µs, they do not find it
worth the wait and entering the slow market is not a profitable deviation. Thus if
τ ≤ τ ` = min{τ `, τh} and µ

s
≤ µs ≤ µs, no player has a profitable deviation and

condition iii is satisfied.

Now consider the other case when the low type is not sufficiently patient that
they would cooperate in the slow market, or when δ` < δs1. This case implies a lower
bound on the temptation to defect, or

δ` < δs1 ≡
τ

(1− β)(c− d+ τ)
⇔ τ > τ ` ≡

δ`(1− β)(c− d)

1− δ`(1− β)
(2.25)

The low type in this case will only find it optimal to enter the fast market if V f
` (D|0) ≥

V s
` (D|1). Using (2.18) and (2.20) in the case where δ` < δ 1 yields

d

1− δ`
≥ µs ([1− δ`(1− β)](c+ τ) + δ`(1− β)d)

(1− δ`(1− µs))(1− δ`(1− β))− δ`µsβ
(2.26)

Since µf = 1, the low type can get at least d without wait by entering the fast market.
Since he will also play D if matched in the slow market, he will get d in the second
and subsequent periods of any match in the slow market. Thus he only finds entering
the slow market to be a profitable deviation if µs(c+τ) > d. The underlying intuition
for this condition is transparent in the case presently being considered with µf = 1
and βf = βs ≡ β, but it comes directly from simplifying (2.26) and similar conditions
with corresponding intuition can be obtained in the more general case. This joint
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condition on the temptation to enter the slow market implicitly defines bounds on τ
and µs as follows

τ < τ ≡ d

µs
− c and µs < µs(τ) ≡ d

c+ τ ′
,∀τ ′ ≤ τ (2.27)

Thus when δ` < δs1 and the low type would play D in the slow market, if
τ < τ the temptation payment received once matched in the slow market is not high
enough to make it worth the wait for any µs < µs(τ), and the deviation of entering
the slow market is not profitable. Thus in this case if τ ` < τ ≤ min{τ , τh} and
µ
s
≤ µs < µs(τ) no player has a profitable deviation and condition iii is satisfied.

Conditions i, ii, and iii of Definition 2 for an equilibrium with two markets
to exist are thus satisfied. With both types following strategies consistent with the
separating equilibrium with two markets, all players cooperate in the slow market
and defect in the fast market, ps = 1 and pf = 0, and the consistency condition
iv is satisfied. Thus a separating equilibrium with two markets that satisfies all the
conditions of an equilibrium with two markets as in Definition 2 exists as claimed in
Proposition 5.

Proposition 6 is that existence of and the value expected by players of each
type in the separating equilibrium with two markets does not depend on the fraction
of the population who are the high type, π. This follows immediately from the fact
that π never appears in any expressions in the preceding proof of existence of the
separating equilibrium with two markets.

Figure 2.3 shows the range of matching probabilities in the slow market for
which the two-market separating equilibrium exists in the case where the low type is
impatient enough that they would defect if they entered the slow market (δ` < δs1).
The solid line is µs(τ) given by (2.27), the upper bound on µs above which the
low type will be sufficiently tempted that they will enter the slow market.12 The
horizontal dashed line is µ

s
, as given by (2.22), for δh = 0.99. When µs is above

this horizontal dashed line, the high type finds it optimal to enter the slow market.
The area between these two lines (shaded with northwest to southeast lines, both to
the left and right of the vertical dashed line) are the matching probabilities in the
slow market that, given τ , are in the range µ

s
≤ µs < µs(τ) for which the high type

want to enter the slow market and the low type do not, which is the range of µs for

12Analogously, for a given µs, values of τ to the right of the solid line are sufficiently tempting for
the low type that they will enter the slow market.
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Figure 2.3: Range of matching probabilities in slow market (µs) for existence of two-
market separating equilibrium vs. temptation to defect (τ) for δh = 0.99 when the
low type is impatient enough that they would defect if they entered slow market
(with π = 0.33, β = 0.1, and c − d = 1). The region shaded with northwest to
southeast lines are the (µs, τ) pairs for which the two-market separating equilibrium
exists, while the subset crosshatched with both northwest to southeast and northeast
to southwest lines are the (µs, τ) pairs that make up the Pareto improvement region
of Proposition 7.

which the two-market separating equilibrium exists. The subset of this area to the
right of the vertical dashed line (crosshatched with both northwest to southeast and
northeast to southwest lines) is the subset of these (µs, τ) pairs for which the two-
market separating equilibrium provides a Pareto improvement opportunity, which is
discussed further in the next section.

2.5.3 Welfare Gains from Second Market

We have just seen that the two-market separating equilibrium can exist both
when the low type would cooperate if matched in the slow market and when they
would not. However, the case when the low type is sufficiently patient that they
would cooperate in the slow market is the case when δ` ≥ δs1, and since the breakup
probability is the same in each market, δs1 = δf1 ≡ δ 1, so a fully cooperative equi-
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librium with pooling in the fast market also exists.13 Thus in this case the first-best
outcome is feasible so there cannot be welfare gains from the addition of the second
market. The sorting possibilities provided by the second market will only provide a
Pareto improvement opportunity in the case when the first-best is not feasible.

Proposition 7 (Welfare with Two Markets). When the discount rates of the types
are such that δ` < δ 1 ≤ δh < δ π and there exist bounds τ < τ < τ , and µ

s
≤ µs < µ s

such that V s
h ≥ V f

h and V f
` ≥ V s

` , then

7a. The first-best outcome in which all players cooperate is not feasible

7b. A Separating Equilibrium with One Market does not exist

7c. A Separating Equilibrium with Two Markets exists

7d. The Separating Equilibrium with Two Markets Pareto dominates all other equi-
libria feasible with this information structure and with all players following the
grim trigger strategy σgt or always playing D

The proof of Proposition 7 follows directly from the preceding analysis. From
Section 2.4 we know that the low type discount rate condition, δ` < δ 1, directly
implies 7a. The condition on the discount rate of the high type, δh < δ π, directly
implies 7b as was shown with Proposition 3. 7c was shown in the previous section in
the proof of Proposition 5, included in the case when δ` < δ 1 ≤ δh. In this case we
found that the separating equilibrium with two markets exists if τ ` < τ ≤ min{τ , τh}
and µ

s
≤ µs < µs(τ), where these bounds are given by (2.21), (2.22), (2.25), and

(2.27). These bounds were defined such that 7d is true. The only other equilibria
feasible with the current information structure and strategies are repetition of the
stage game Nash equilibrium with pooling into either the slow or fast market, with
pooling into fast clearly preferred by all. Given 7c, we know that the low type are
indifferent between the two-market separating equilibrium and repetition of the stage
game Nash equilibrium with pooling into the fast market. Since high types have
the option to enter the fast market and play D but instead find it optimal to enter
the slow market and cooperate, they prefer the two-market separating equilibrium.
Other equilibria may be possible if we expanded our focus to include more complicated
information structures or coordinated punishment. However, continuing our focus on

13The case of βs = βf is for ease of comparison across markets but is not required. More generally
the first-best is feasible for any βf ≥ βs as long as βf ≤ β̄1(τ) as given by (2.17), which corresponds

to the condition that δ` ≥ δf1.
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strategic simplicity, they are not, and the fact that separation can improve welfare
despite the simplicity of what is expected of the players is central to the importance
of this result.

The shaded region to the right of the vertical dashed line (crosshatched with
both northwest to southeast and northeast to southwest lines) in Figure 2.3 corre-
sponds with the (µs, τ) pairs that make up the Pareto improvement region of Propo-
sition 7. The bounds on µs and the upper bound on τ were discussed in the previous
section. The vertical dashed line is the largest τ for which the one-market separating
equilibrium exists, co-existing with the two-market separating equilibrium. The wel-
fare implications of this co-existence are discussed in the next section. Proposition 7
deals with the case where the high type are not sufficiently patient for the one-market
separating equilibrium to exist. This case, δh < δ π, implies a lower bound on τ above
which the one-market separating equilibrium does not exist,14 which leaves the two-
market separating equilibrium as the only possible Pareto improvement opportunity
over repetition of the stage game Nash equilibrium. Any (µs, τ) pair to the right of
the vertical dashed line in the shaded region (crosshatched) are values of (µs, τ) for
which the second market increases welfare. Even when the temptation to defect is 8
times larger than the value of a cooperative relationship and no Pareto improvement
is possible in one market, cooperation can still be sustained among the high types
by allowing separation of the types, making the high types better off without making
the low types worse off.

2.5.4 One versus Two Market Separating Equilibria

Item 7a of Proposition 7 is not necessary for existence of either separating
equilibrium. However, when the first-best is feasible, the maximum welfare is already
achievable and other equilibria are of little interest. When the first-best is not feasible,
without sorting, the worst case in terms of welfare is all that is possible, and potentials
for sorting become of interest as a way of improving welfare. In Proposition 4 we
saw how separation by action in the one-market setting increases the welfare of all
players. From Proposition 7 we know that when this separation is not possible, a
Pareto improvement opportunity still exists over repetition of the stage game Nash
equilibrium if full separation is made possible by introduction of a second, slower

14 The one-market separating equilibrium does not exist for any τh ≡ τ > δh(1−βm)π(c−d)
(1−δh(1−βm)) , which

is δh < δ π with λ = τ .
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market, increasing the welfare of the high type without decreasing the welfare of the
low type.

When both the one and two-market separating equilibria exist, the low type
will always strictly prefer the separating equilibrium with one market to both the
separating equilibrium with two markets and repetition of the stage game Nash equi-
librium, between which the low type is indifferent. This occurs because in all three
equilibria, the low type is guaranteed at least d each period, while in the separating
equilibrium with one market, a payoff of c + τ is received in the first period of each
new match with a high type. The high type will always strictly prefer either separat-
ing equilibrium to repetition of the stage game Nash equilibrium. However, the high
type does not always prefer the separating equilibrium with one market to the one in
two markets as does the low type due to the trade-off facing the high type between
potential losses associated with being matched with low types in the one-market sep-
arating equilibrium and the wait expected in the two-market separating equilibrium.
The high type prefers the two-market separating equilibrium to the one-market sep-
arating equilibrium if and only if he finds it worth the wait. Formally, this result is
as follows:

Proposition 8 (Comparison of Separating Equilibria). If δ` < δ 1 < δ π ≤ δh and the
conditions of both Propositions 3 and 5 are met such that both a separating equilibrium
with one and two markets exist, if given π there exists a µs(π) such that µs ≤ µs(π),
or equivalently, if given µs there exists a π such that π ≥ π, then the separating
equilibrium with one market Pareto dominates all other equilibria feasible with this
information structure and with all players following the grim trigger strategy σgt or
always playing D.

In order for the separating equilibrium with one market to Pareto dominate
the separating equilibrium with two markets, it must provide higher ex ante expected
value for the high type, or V f

h (σgt|π) ≥ V s
h (σgt|1). When the high type prefer separa-

tion in one market to two markets depends on the fraction of the population who are
the high type as well as how attractive the second, slower market is. For a given pop-
ulation fraction π, the high type prefer the separating equilibrium with one market
to that in two markets if

µs ≤ µs(π) ≡ (1− δh(1− β))[πc+ (1− π)((1− δh(1− β))(d− τ) + δh(1− β)d)]

c− δh(1− β)[πc+ (1− π)((1− δh(1− β))(d− τ) + δh(1− β)d)]
(2.28)
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Alternatively, for a given matching probability in the slow market, µs, the high type
prefer separation-by-action within one market rather than full separation across two
markets if a large enough fraction of the population is the high type, that is if

π ≥ π ≡
µsc(1−δh)

(1−δh(1−β))(1−δh(1−µs))−δhµsβ
− [(1− δh(1− β))(d− τ) + δh(1− β)d]

c− [(1− δh(1− β))(d− τ) + δh(1− β)d]
(2.29)

Since the low type always prefer the separating equilibrium with one market
to that in two markets, if the slow market is slow enough, as given by (2.28), or
equivalently, if enough of the population is expected to cooperate, as given by (2.29),
then the gains for the high type found in the separating equilibrium with two markets
that come from avoiding being matched with low types playing D in the separating
equilibrium with one market are not worth the wait and the separating equilibrium
with one market is Pareto optimal.

Proposition 8 is illustrated in Figure 2.4. The solid line and horizontal dashed
lines are the bounds on µs and the vertical dashed line is the bound on τ from Figure
2.3. The shaded (crosshatched) region to the right of the vertical dashed line is the
(µs, τ) pairs for which only the two-market separating equilibrium exists. This is the
region for which the second market unambiguously provides a Pareto improvement
because no other equilibrium with cooperation is possible, as discussed in the previous
section with Proposition 7. The shaded (with northwest to southeast lines and with
solid fill) to the left of the vertical dashed line is the (µs, τ) pairs for which the
one and two-market separating equilibria both exist. When both exist, the low type
always prefer the separating equilibrium with one market to that in two. The high
type also prefer the one-market separating equilibrium when µs ≤ µs(π), which is the
downward-sloping dashed line (equation (2.28)) in Figure 2.4. This subset below the
downward-sloping dashed line (the region with solid background) are (µs, τ) values
for which both types prefer separation within one market to separation across two
markets. This is the Pareto improvement region discussed in Proposition 8.

2.6 Endogenous versus Exogenous Breakup

A legitimate question is how applicable are the results presented in the pre-
vious sections derived from a setting with only exogenous breakup to situations in
which players have the ability to dissolve matches? Surprisingly, allowing players to
end matches at any point does not change the qualitative results. First, with fully
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Figure 2.4: Range of matching probabilities in slow market (µs) for which the one-
market separating equilibrium (1MS) and two-market separating equilibrium (2MS)
exist vs. temptation to defect (τ) for δh = 0.99 when the low type is impatient
enough that they would defect if they entered slow market (with π = 0.33, β = 0.1,
and c−d = 1). 2MS exists for (τ, µs) pairs in the entire shaded region, while 1MS only
exists in the shaded region to the left of the vertical dashed line. The subset shaded
solid below the downward-sloping dashed line is the Pareto improvement region of
Proposition 8 in which both types prefer 1MS to 2MS.

endogenous breakup,15 the first-best outcome is achievable in a similar set of circum-
stances to what was feasible with exogenous breakup, with the additional requirement
that the matching probability cannot be too high. Second, separation, both within
and across markets, can still improve welfare when the first-best is not feasible. In
this section we will briefly explore the conditions required for the first-best outcome
because these conditions capture much of the intuition of the endogenous breakup
setting and highlight the one key difference. The additional steady-state requirements
of the one-market separating equilibrium with endogenous breakup will also be dis-
cussed. Then, given the intuition developed here, the formal model with endogenous
breakup will be presented in Section 2.7.

15Fully endogenous breakup means that players have the ability to end a match at any point. An
exogenous breakup probability, β, remains in place to avoid absorbing states.
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Definitions 1 and 2 of equilibria with exogenous breakup with one and two
markets, respectively, require that stage game strategies and market entry be indi-
vidually rational given beliefs, which must be consistent in equilibrium. To be an
equilibrium in a setting with endogenous breakup, as given by Definition 3 in Section
2.7, we add to these conditions the requirement that endogenous breakup decisions
be individually rational for all players, given their beliefs, as well as a consistency re-
quirement on these beliefs. No other changes or restrictions are made to the strategies
or equilibrium conditions.

Players, given their beliefs, choose to end a match if and only if the value
expected from ending the match and entering the unmatched state is greater than
the value expected from staying matched. The value expected when unmatched now
depends not only on the matching probability and beliefs about the likelihood a new
match will follow the grim trigger strategy or play D, but also on the decision a match
will make about whether to stay matched after the stage game strategies have been
revealed in the first period of a match.

2.6.1 First-Best Equilibrium with Endogenous Breakup

Consider the first-best outcome in which all players cooperate. Without en-
dogenous breakup, the decision to cooperate or not depends on weighing the value
of receiving the temptation payoff today followed by the payoff of an uncooperative
match thereafter compared to receiving the payoff of a cooperative match each period,
subject to the exogenous breakup possibility. Now players in deciding if defection is a
profitable deviation must also take into account the possibility of endogenous breakup.
Unlike when all breakup was exogenous, the matching probability now affects how
profitable it is to deviate and thus when the first-best outcome is possible. The fol-
lowing proposition, which is proved in Section 2.7, summarizes when the first-best
equilibrium is possible with endogenous breakup.

Proposition 9 (First-Best with Endogenous Breakup). With endogenous breakup,
the first-best equilibrium in which all players cooperate exists if and only if either

1. d
c+τ

< µf , and either µf ≤ µ ≡ 1− τ
δ`(1−β)(c+τ)

or equivalently τ
(1−µf )(1−βf )(c+τ)

≡
δ(µf ) ≤ δti, or

2. µf ≤ d
c+τ

and τ
(1−β)(c−d+τ) ≡ δ 1 ≤ δti
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The proof of Proposition 9 requires examining the endogenous breakup deci-
sion of players on and off the equilibrium path. The intuition for these endogenous
breakup decisions is discussed below and summarized in Table 2.2, but the complete
exploration that includes all the required notation is left for Section 2.7. To see the
intuition for Proposition 9, consider the payoff a player expects to receive in the pe-
riod after choosing to deviate. After deviating, the player will get d next period if
the match stays intact and expects to get µf (c + τ) next period if the match ends,
receiving a new match with probably µf and receiving c+τ by deviating again against
this new match. If µf (c + τ) > d, a player who defects expects to receive a higher
payoff next period by ending the match and defecting again than by staying in the
match with the player against whom he just defected. Thus if µf > d

c+τ
(case 1

of Proposition 9), to find cooperation optimal a player must be more patient when
matches can be ended endogenously than when all breakup is exogenous, requiring
δti ≥ δ(µf ) > δ 1 instead of just δti ≥ δ 1. If µf (c + τ) ≤ d, then a player who
defects expects to receive a higher payoff next period by staying in the match. Thus
if µf ≤ d

c+τ
(case 2 of Proposition 9), the condition required for cooperation to be

optimal is the same with and without endogenous breakup, requiring δti ≥ δ 1.

The (1−µf ) term in the denominator of δ(µf ) captures the key change in
incentives when players can end matches endogenously. Endogenous breakup allows
for players to end a match if defected against, but it also increases the temptation
for defection because now players can defect and then end the match to go on and
defect again against a new match rather than staying in the uncooperative match.
The intuition for when a defecting player would find it optimal to stay matched is
the same as the intuition for when a player who is the low type would find it optimal
to deviate and enter the slow market in the two-market separating equilibrium with
exogenous breakup: is it better to take the payoff from an uncooperative match with
certainty, or is the temptation payment worth the wait?

This change in incentives with the possibility of endogenous breakup means
that there is an upper bound on the matching probability above which it is not possible
to achieve the first-best because the temptation to deviate becomes too great when
defecting players can end matches endogenously (the µ in case 1 of Proposition 9).
Figure 2.5 shows, as a function of the temptation to defect and for different levels of
δ`, the highest the matching probability can be in order for the first-best equilibrium
with endogenous breakup to be achievable. For all values of δ`, the relationship is
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depicted for δh = 0.99, c − d = 1, and β = 0.01.16 Consider the outermost line,
which shows this relationship between µf and τ when δ` = 0.97. The matching
probability can only be equal to 1 if the temptation to defect were 0, and then the
maximum matching probability for which the first-best is achievable declines as the
temptation to defect increases. For τ = 24.18, the maximum matching probability for
which the first-best is achievable is µf = 7.36%. For τ > 24.18, the first-best is not
achievable for any µf because the low types will no longer find cooperating optimal;
that is, δ` = 0.97 is no longer patient enough to sustain cooperation. For the values
of δ` depicted in Figure 2.5, the combinations of µf and τ for which the first-best is
achievable are bounded above and to the right by the line corresponding with that
value of δ`, with the highest µf for any value of τ prefered by both types. For values
of µf above the line or values of τ to the right of the line, the temptation to defect is
too great and the first-best is not achievable.

The maximum value of τ for which the first-best is achievable is the same with
endogenous breakup as it was with exogenous breakup. What changes is that instead
of the first-best being achievable with certain matching as it was with exogenous
breakup, with endogenous breakup, the maximum matching probability is lower and
declines with τ . When the temptation to defect is equal to the value of a cooperative
relationship, the first-best is achievable for a matching probability around 70%. And
when the temptation to defect is 24 times greater than the value of a cooperative
relationship, the first-best is achievable for a matching probability around 7%. Certain
matching remains possible, however, for both separating equilibria, and the situations
in which separation provides Pareto improvement opportunities remain strikingly
similar to the results found in the setting without endogenous breakup.

Further intuition for the model with endogenous breakup can be gained by
examining when players choose to stay matched and when they do not. On the
equilibrium path in the first-best equilibrium, all players cooperate and choose to
stay matched. However, if a match defects, whether a player chooses to end the
match in response depends on the matching probability. If the matching probability
is low, both types would choose to stay matched despite their match’s defection;
while both types would prefer to end the uncooperative match and receive a new,
cooperative match, the matching probability is too low so neither type finds it worth
the wait. If the matching probability is higher, following a defection by a match, the

16Recall that in the environment with fully endogenous breakup, players have the ability to end a
match at any point but there remains an exogenous breakup probability to avoid absorbing states.
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Figure 2.5: Maximum matching probability (µf ) for achievable first-best with endoge-
nous breakup vs. temptation to defect (τ) for different values of δ` with c − d = 1
and exogenous breakup probability β = 0.01. For (τ, µf ) pairs below and left of a
line, the first-best equilibrium with endogenous breakup exists for that value of δ`.

low type would still choose to stay matched but the high type would not; that is, the
matching probability is now high enough that the high type do find it to be worth
it to end the current uncooperative match and wait for a new, cooperative match.
If the matching probability is higher still, the wait for a new match is sufficiently
short so both types choose to end an uncooperative match. And if the matching
probability is in the highest range, both types would choose to end an uncooperative
match if the first-best equilibrium was feasible, but it is not, as previously discussed.
The endogenous breakup decision made by players of each type in each of these four
ranges for the matching probability are summarized in the Table 2.2.17

The fact that the matching probability must be lower for any level of τ to
sustain the first-best equilibrium with endogenous breakup means that the utility

17A similar table is presented in Table 2.3, that includes the specific notation used for the endoge-
nous breakup decision, which has been modified here because this notation is not presented until
Section 2.7. The table there also includes the decisions that would be made by players if they were
to defect (i.e., off the equilibrium path).
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If matching prob. is 1st best feasible if Breakup decision if match defects

µ < µ Not feasible ∀δti Both types would end match (if EQ feasible)

µ̃(δ`) <
d
c+τ

< µ ≤ µ δ(µ) ≤ δti Both types end match

µ̃(δ`) < µ ≤ d
c+τ
≤ µ δ 1 ≤ δti Both types end match

µ̃(δh) < µ ≤ µ̃(δ`) δ 1 ≤ δti Low type stay matched, high type end match

µ ≤ µ̃(δh) δ 1 ≤ δti Both types stay matched

µ≡1− τ
δ`(1−β)(c+τ)

, µ̃(δti)≡
[1−δti (1−β)]

d
c[

1−δti (1−β)
d
c

] , δ(µ)≡ τ
(1−µ)(1−β)(c+τ) , δ 1≡ τ

(1−β)(c−d+τ)

Table 2.2: Endogenous breakup decision of players in the first-best equilibrium with
endogenous breakup for different values of the matching probability

expected in the first-best equilibrium by each type is lower when endogenous breakup
is possible, even though endogenous breakup never occurs on the equilibrium path in
the first-best equilibrium.

Proposition 10 (First-Best Utility Loss from Endogenous Breakup). The ratio of
ex ante expected utility from the first-best equilibrium with endogenous breakup over
the ex ante expected utility from the first-best equilibrium without endogenous breakup
is

High type:
δ`(1− βf )(c+ τ)− τ

δ`(1− βf )(c+ τ)− δh(1− βf )τ
(2.30)

Low type:
δ`(1− βf )(c+ τ)− τ

δ`(1− βf )c
(2.31)

These expressions are obtained by comparing the highest possible expected
utility for each type in each situation, with and without endogenous breakup. The
ex ante utility expected by unmatched player i in the first-best equilibrium is

µfc

(1− δti(1− µf ))(1− δti(1− βf ))− δtiµfβf
This expected utility is highest when µf is as high as possible. Without en-

dogenous breakup, certain matching is possible, so the highest ex ante expected utility
occurs when µf = 1. With endogenous breakup, the highest the matching probability
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Figure 2.6: For first-best equilibrium, ratio of ex ante expected utility from first-best
with endogenous breakup over ex ante expected utility from first-best with exogenous
breakup vs. temptation to defect (τ) with δh = 0.99, δ` = 0.97, c − d = 1, and
exogenous breakup probability β = 0.01 (Proposition 10).

can be is µ, as given in Proposition 9. By substituting in µf = 1 and µf = µ for the
utility expected with and without endogenous breakup, respectively, and comparing
the ratio, the expressions in Proposition 10 are obtained. Note that µ includes δ`,
which is why the expression for the high type includes both δh and δ`.

Figure 2.6 shows the ratio of the ex ante expected utility with endogenous
breakup relative to the ex ante expected utility without exogenous breakup for the
high type (δh = 0.99) and low type (δ` = 0.97) when c − d = 1 and β = 0.01. The
utility lost by allowing for endogenous breakup is low when the temptation to defect
is low and increases as the temptation to defect increases, with the low type losing
more utility than the high type. However, even when the temptation to defect is 24
times higher than the value of a cooperative relationship, the ex ante expected utility
from the first-best equilibrium with endogenous breakup is 67% and 80% of that
with exogenous breakup for the low and high type, respectively. Thus, while allowing
agents the possibility of ending matches does lower the utility expected by agents, the
penalty that comes with the increased flexibility of allowing for endogenous breakup
is not that large.
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2.6.2 One-Market Separating Equilibrium with Endogenous Breakup

In the first-best equilibrium, both with and without endogenous breakup, all
players cooperate. This means that all players expect a new match to cooperate, so
there is no need to examine anything regarding the distribution of unmatched play-
ers. In the two-market separating equilibrium, both with and without endogenous
breakup, the types play different actions but are separated by market, again making
it unnecessary to examine the distribution of unmatched players. In the one-market
separating equilibrium, however, both cooperation and defection exist simultaneously.
Thus expectations about whether a new match will cooperate depend on the proba-
bility that an unmatched player is the high type. If one type is more or less likely to
be unmatched than the other type, then the probability that an unmatched player is
of a particular type is not equal to that type’s proportion in the population as a whole
that includes both matched and unmatched players. Thus it is necessary to examine
the distribution of types, high and low, as well as states, matched and unmatched, in
the population.

In the one-market separating equilibrium with endogenous breakup, the en-
dogenous breakup decisions of players of each type follow a similar pattern to that seen
in the first-best equilibrium. If the matching probability is low, both types choose to
stay matched. If the matching probability is increased, the high type find it optimal
to end an uncooperative match in hopes of receiving a cooperative match, while the
low type find it optimal to stay matched. If the matching probability is increased fur-
ther, both the high and low types find it optimal to end uncooperative matches, the
high type with the hope of receiving a cooperative match and the low type with the
hope of being matched with a high type again and receiving the temptation payoff.
We will examine each of these cases in turn.

In Section 2.4 when we examined the one-market separating equilibrium with-
out endogenous breakup, each player’s belief that a new match would be the high
type was pf = π. With the possibility of endogenous breakup, pf is equal to the
steady-state probability that a new match is the high type (defined as H below).
This probability is found for each case in the following sections. Note that for the
lowest range of the matching probability, players never choose to end matches endoge-
nously even though they are allowed to do so. In this case, we expect to find that
pf = π as was the case when endogenous breakup was not allowed. This is indeed
what we find.
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2.6.2.1 Distribution of types and states

Before examining the stationary distribution in each of the three cases, we first
must introduce some notation. Each player in the population is either the high or
low type and can be in one of three states: matched with a high type, matched with
a low type, or unmatched. Thus the population is broken down into six type-states,
which in vector form are given by

Π = (πhh, πh`, πhu, π`h, π``, π`u)

where the first subscript refers to the player’s type and the second refers to his state,
with h and ` indicating the player is currently matched with a high and low type,
respectively, and u denoting that the player is unmatched. Players transition between
states according to the following transition matrix

P =



hh′ h`′ hu′ `h′ ``′ `u′

hh hhh′ hh`′ hhu′ 0 0 0
h` h`h′ h``′ h`u′ 0 0 0
hu huh′ hu`′ huu′ 0 0 0
`h 0 0 0 `hh′ `h`′ `hu′
`` 0 0 0 ``h′ ```′ ``u′
`u 0 0 0 `uh′ `u`′ `uu′


The column to the left of the matrix denotes the player’s type and state (the subscript)
at the start of the current period, while the row above the matrix denotes the player’s
type and state (the subscript) at the start of next period. The elements of the matrix
denote the probability of transitioning from one type-state to another. For each
element, the first subscript refers to the player’s state at the start of this period while
the second subscript (with the prime) refers to his state at the start of next period.
For example, consider the element `uh′ . This is the probability that a low type starts
this period unmatched (shown in the column to the left of the matrix as `u) and starts
next period matched with a high type (shown in the row above the matrix as `h′).
Because players do not change type, the probability of hh, h`, or hu transitioning to
`h′ , ``, or `u′ is 0, as is the probability of `h, ``, or `u transitioning to hh′ , h`′ , or hu′ .

The high types, who make up a fraction π of the whole population, and the
low types, who make up a fraction 1− π of the whole population, can each be in one
of the three states. Thus

π = πhh + πh` + πhu (2.32)

1− π = π`h + π`` + π`u (2.33)
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The probability that a new match will be the high type is equal to the likeli-
hood that out of all unmatched players, a player is the high type. Thus the probability
that a new match is the high type or the low type are given by

H ≡ πhu
πhu + π`u

(2.34)

L ≡ π`u
πhu + π`u

= 1−H (2.35)

To find a stationary distribution, we need to find Π∗ such that

Π∗P = Π∗ (2.36)

We are now ready to examine the stationary distribution in the one-market
separating equilibrium in each of the three cases for the matching probability men-
tioned above.

2.6.2.2 Lowest matching probability: both types choose to stay matched

If the matching probability is low enough, all players prefer staying in an
existing match rather than ending the match with hopes of receiving a new one. This
means that a player who starts a period matched will be matched again next period
with the same match unless exogenous breakup occurs. Thus hhh′ = h``′ = `hh′ =
```′ = 1 − βf and hhu′ = h`u′ = `hu′ = ``u′ = βf . A player who starts the period
unmatched receives a match with probability µf and stays matched until the start of
next period with probability 1−βf . A new match is the high type with probability H
and the low type with probability L. This means that huh′ = `uh′ = µfH(1−βf ) and
hu`′ = `u`′ = µfL(1−βf ). The probability that an unmatched player stays unmatched
is huu′ = `uu′ = 1 − µf − µfβf = 1 − µf (1 − βf ), where 1 − µf is the probability of
not receiving a match and µfHβf + µfLβf = µfβf is the probability of receiving a
match but it ending exogenously. Thus, in this case, the transition matrix is

P =



hh′ h`′ hu′ `h′ ``′ `u′

hh 1−βf 0 βf 0 0 0

h` 0 1−βf βf 0 0 0

hu µfH(1−βf ) µfL(1−βf ) 1−µf (1−βf ) 0 0 0

`h 0 0 0 1−βf 0 βf

`` 0 0 0 0 1−βf βf

`u 0 0 0 µfH(1−βf ) µfL(1−βf ) 1−µf (1−βf )


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Using this transition matrix in (2.36) (and omitting the *’s on all the π terms),
and substituting in for H and L using (2.34) and (2.35), we have the following system
of equations

πhh(1− βf ) + πhuµf (1− βf )
πhu

πhu + π`u
= πhh

πh`(1− βf ) + πhuµf (1− βf )
π`u

πhu + π`u
= πh`

πhhβf + πh`βf + πhu(1− µf (1− βf )) = πhu

π`h(1− βf ) + π`uµf (1− βf )
πhu

πhu + π`u
= π`h

π``(1− βf ) + π`uµf (1− βf )
π`u

πhu + π`u
= π``

π`hβf + π``βf + π`u(1− µf (1− βf )) = π`u

Using equations (2.32) and (2.33) and simplifying, the stationary distribution of types
and states, Π∗, is

Π∗ =
(

µf (1−βf )π2

µf (1−βf )+βf
,
µf (1−βf )π(1−π)
µf (1−βf )+βf

,
βfπ

µf (1−βf )+βf
,
µf (1−βf )π(1−π)
µf (1−βf )+βf

,
µf (1−βf )(1−π)2
µf (1−βf )+βf

,
βf (1−π)

µf (1−βf )+βf

)
The probabilities that a new match will be the high type or the low type are

H =
πhu

πhu + π`u
=

βfπ

µf (1−βf )+βf
βfπ

µf (1−βf )+βf
+

βf (1−π)
µf (1−βf )+βf

=
βfπ

βfπ + βf (1− π)
=

π

π + 1− π = π

L =
π`u

πhu + π`u
=

βf (1−π)
µf (1−βf )+βf

βfπ

µf (1−βf )+βf
+

βf (1−π)
µf (1−βf )+βf

=
βf (1− π)

βfπ + βf (1− π)
=

1− π
π + 1− π = 1− π

This is exactly what we expect to find. This case is equivalent to the case with-
out endogenous breakup because no player chooses to exercise endogenous breakup.
Thus the probability that a new match is the high type is the same as the fraction of
high types in the entire population, and similarly for the low types, because players
of each type are equally likely to be in the unmatched state. This is shown by the
dotted line in Figure 2.7. The fraction of the population who are the high type (π) is
shown on the x-axis, while the y-axis is the probability that a new match is the high
type (H). Since H = π for this lowest range of µf , this is the 45◦ line.
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Figure 2.7: The probability that a new match is the high type (H, y-axis) vs. the
fraction of the population who are the high type (π, x-axis), for the three ranges
of the matching probability (µf ) that determine the endogenous breakup decision of
players in the one-market separating equilibrium with βf = 0.1. For the lowest range
of µf (dotted 45◦ line), all players choose to stay matched, so H = π. For the middle
range of µf (solid line, shown for µf = 0.5), the low type choose to stay matched but
the high type end uncooperative matches, causing H > π when π < 1

2
and H < π

when π > 1
2
. For the highest range of µf (dashed line, shown for µf = 1), both types

choose to end uncooperative matches, causing H < π.

2.6.2.3 Middle matching probability: high type choose to end uncooper-
ative matches

If the matching probability is increased, the high type find it optimal to end
any match with a low type in favor of re-entering the unmatched state and hoping
to receive a cooperative match with a high type. However, the low type, while they
would prefer to receive a new match with a high type and receive the temptation
payment, the wait is still too long so they find it optimal to stay matched. However,
since if they are matched with a high type the high type will end the match, the only
matches that stay together involving low types are those with two low types matched
together. In this situation, the transition matrix is
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P =



hh′ h`′ hu′ `h′ ``′ `u′

hh 1−βf 0 βf 0 0 0

h` 0 0 1 0 0 0

hu µfH(1−βf ) 0 1−µfH(1−βf ) 0 0 0

`h 0 0 0 0 0 1

`` 0 0 0 0 1−βf βf

`u 0 0 0 0 µfL(1−βf ) 1−µfL(1−βf )


After solving the system for the steady state distribution, the probability of

being matched with a high type is

H =
µf (1−βf )π−βf ( 12−2π)+

1
2

√
8µf (1−µf )βfπ(1−π)+4µ2fπ(1−π)+β

2
f (1−4µf (2−µf )π(1−π))

βf+µf (1−βf )+
√

8µf (1−µf )βfπ(1−π)+4µ2fπ(1−π)+β
2
f (1−4µf (2−µf )π(1−π))

This is shown by the solid line in Figure 2.7 for µf = 0.5 and βf = 0.1. As
seen in the figure, H > π if π < 1

2
and H < π if π > 1

2
. If less than half the

population is the high type, then high types are more likely to be matched with low
types, matches that the high types will end endogenously. This means that high
types are relatively more likely to be unmatched than matched, and the probability
of a new match being the high type is higher than the fraction of the population who
are high types. Similarly, if more than half the population are high types, high types
are more likely to be matched with other high types, matches that stay intact unless
breakup occurs exogenously. This means that high types are relatively more likely to
be matched than unmatched, meaning that the probability that a new match is the
high type is less than the fraction of high types in the population. As µf increases and
βf falls, H departs further from π (the 45◦ line), and as µf decreases or βf increases,
H collapses to π (the 45◦ line). If exactly half of the population is the high type,
then the probability of a new match being the high type is also one half. This is the
point of intersection where H goes from greater than π to less than π, crossing the
45◦ line.

2.6.2.4 Highest matching probability: high and low type choose to end
uncooperative matches

If the matching probability is increased further, both the high and low types
find it optimal to end uncooperative matches, which is every match for low types and
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every match with a low type for high types. In this highest range for µf , both types
prefer to end a current uncooperative match with hopes of receiving a new match
who is the high type, the high types because they wish to be in a cooperative match
and the low types because they would like to receive the temptation payoff. In this
situation, the transition matrix is

P =



hh′ h`′ hu′ `h′ ``′ `u′

hh 1− βf 0 βf 0 0 0
h` 0 0 1 0 0 0
hu µfH(1− βf ) 0 1− µfH(1− βf ) 0 0 0
`h 0 0 0 0 0 1
`` 0 0 0 0 0 1
`u 0 0 0 0 0 1


After solving for the steady-state distribution, the likelihood of a new match

being the high type is

H =
2π
√
βf√

βf +
√
βf + 4µf (1− βf )π(1− π)

This is shown by the dashed line in Figure 2.7 for µf = 1, βf = 0.1. As seen in the
figure, the probability of a new match being the high type is less than the fraction
of high types in the population (H < π). This occurs because any high type who is
matched with another high type chooses to stay matched, meaning relatively fewer
high types are unmatched than are matched, reducing the odds of a new match being
the high type below what it would be without endogenous breakup when all players
are equally likely to be unmatched.

As µf falls or as βf rises, H becomes closer to π (the 45◦ line). As µf rises or
βf falls, H bows down further below π (the 45◦ line). This occurs because the lower
the probability of exogenous breakup, the longer high types stay in matches with each
other and thus the lower the probability that high types will be unmatched, reducing
the likelihood of a new match being the high type.

2.6.3 Hybrid Model: Between Fully Exogenous and Fully Endogenous
Breakup

With one additional layer of notational complexity, it is possible to nest both
the model with exogenous and endogenous breakup, and everything in between, in one
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model. The model with endogenous breakup presented in Section 2.7 and discussed
in the previous sections introduces two new variables, one for an agent’s endogenous
breakup decision and one for his beliefs about the endogenous breakup decisions of
others. These two variables always appear multiplied together; intuitively, a match
only remains intact if both parties wish to stay matched and dissolves if either party
wishes to split. These two variables can be multiplied by a third variable that indicates
when endogenous breakup is possible that takes on a value of 1 if endogenous breakup
is possible and 0 if it is not. By allowing this indicator of possible endogenous breakup
to take on any value in [0, 1], everything in between and including fully endogenous
and fully exogenous breakup can be nested in one model.18

Players would have to consider not only if they want to end a match endoge-
nously, but also when they expect to have the ability to do so. It would also be
possible to have the ability for endogenous breakup to vary by type, which could be
combined with the extension of the stage-game payoffs to depend on type, allowing
the model to capture a wider range of two-sided interactions. While somewhat more
complicated than the special cases of endogenous breakup always or never being al-
lowed presented here, given the similarities between the model with fully exogenous
and endogenous breakup, the intuition presented in this paper extends to the hybrid
model.

2.7 Model with Endogenous Breakup

The previous section highlighted the similarities and differences between a set-
ting in which all breakup is exogenous and in which endogenous breakup is permitted.
This section presents the model discussed in the previous section in detail, extending
the model developed in Section 2.3 to allow for fully endogenous breakup. The market
structure remains the same, with probability of matching µm in market m ∈ {s, f}
where m = s and m = f still refer to the slow and fast market, respectively, with
all one-market equilibria occurring in the fast market as before. We will assume that
there is still an exogenous chance of breakup, βm, just as before, in order to avoid
absorbing states and the need to more explicitly specify the matching technology.

Players now have the option to dissolve a match endogenously each period
when matched after playing the stage game. Let φmti (σ

gt, pm) be the endogenous

18More details are provided in Section 2.7.6.
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breakup decision of player i type ti following the grim trigger strategy in market
m ∈ {s, f} with beliefs pm ∈ {0, 1} about the likelihood that the other player will
cooperate. Similarly, let φmti (D, pm) be the endogenous breakup decision but when
player i is always playing D. Just as in the exogenous breakup case, since each
player’s strategy is revealed by the action taken by each in the first period of a match
and all players are either following the grim trigger strategy or always playing D, the
beliefs of each player after stage game play in the first period of a new match will be
either pm = 1 if each cooperated and pm = 0 otherwise. To save on notation we will
refer to φmti without argument when the arguments are clear from context or when
the statement applies to all of the possible combinations of strategies, σgt or D, and
beliefs, pm ∈ {0, 1}. Let φmti = 0 be the decision of player i type ti to end a current
match in favor of becoming unmatched, while φmti = 1 is his decision to stay matched.
Player i’s beliefs about the endogenous breakup decision to be made by other players
is denoted θmtj with analogous arguments and definition.

In equilibrium, consistency will require that the endogenous breakup decision
made by players, φmti (σ

gt, pm) and φmti (D, pm) matches with beliefs about what other
players will do, θmtj (σ

gt, pm) and θmtj (D, pm), for each type, ti, tj ∈ {h, `}, market
m ∈ {s, f}, and beliefs pm{0, 1}, where j refers to all players with which player i could
be matched, j 6= i. Consistency must be verified by checking that all decisions are
individually rational given beliefs both on the equilibrium path and off the equilibrium
path on paths that must be evaluated by players to evaluate potentially profitable
deviations. For example, in the first-best outcome in which all players cooperate,
each player knows what his own optimal decision would be if defected against and
what it would be if choosing to deviate and defect himself, and thus using the same
reasoning he can form beliefs about what other players’ optimal decisions would be
in each case. Only when a player knows what they will do in each case and has
beliefs about what a match will do can a player evaluate the utility expected from
following each strategy and thus determine if deviation is profitable or not in terms
of providing higher expected utility. Thus while only φfti(σ

gt, 1) will occur on the
equilibrium path in the first-best equilibrium, players must determine their optimal
decisions if defected against, φfti(σ

gt, 0), and if choosing to defect themselves, φfti(D, 0).
Thus in equilibrium we will require consistency not only of beliefs about actions taken
on the equilibrium path, θftj(σ

gt, 1), but also of θftj(σ
gt, 0) and θftj(D, 0). Since in the

first-best outcome all players cooperate in the fast market, beliefs about what might
happen in the slow market can be ignored.

In a separating equilibrium the type of the other player is revealed by his action
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but in a pooling equilibrium it is not. Thus in a pooling equilibrium beliefs about the
endogenous breakup decision of the other player are the population-weighted average
of beliefs about the decision each type will find optimal. For example, suppose a
pooling equilibrium in which all players cooperate exists. In deciding if deviating to
D is profitable, a player must form beliefs about whether the other player will end
the match after being defected against, θmtj (σ

gt, 0) for tj ∈ {h, `}. It is not possible to
observe the other player’s type, so beliefs must be the average of the decision expected
by each type weighted by the proportion of the population who are each type.19 For
example, suppose the high type will choose to end the match if defected against but
low types will choose to stay matched. The expectations about the likelihood of the
other player ending the match are θf (σgt, 0) ≡ πθfh(σgt, 0) + (1− π)θf` (σgt, 0) = 1− π.
The beliefs θf (σgt, 1) and θf (D, 0) are defined similarly.

A match stays together only if both players choose to stay matched (φpmti θ
m
tj

=
1 · 1 = 1). If either player chooses to end the match, the match dissolves, denoted
(φpmti θ

m
tj

= 0). Since θmtj is player i’s expectation about what player j will do and
a match stays together only if both players choose to stay matched, the probability
player i assigns to staying matched given that he does not choose to end the match
himself is 1 · θmtj = θmtj .

20

We now have all the notation necessary to develop a model similar to that in
Sections 2.3 through 2.5 that allows for endogenous breakup.

2.7.1 Model with Endogenous Breakup

An unmatched player chooses to enter the market or to stay unmatched2122

Vti = max{0, V f
ti (pf ), V

s
ti

(ps)} (2.37)

19Recall that the fraction of the population who are the high type, π, and who are the low type,
1− π, as well as the discount rates of each, δh and δ`, are commonly known.

20For example, in the example provided in the previous paragraph, this value is 1 − π. Also
note that if player i decides to end the match, he could have an expectation about whether the
other player will want to stay matched but it does not matter what this expectation is because
φpmti θ

m
tj = 0 · θmtj , ∀θmtj .

21To consider the setting with only one market, let µs = 0, in which case V sti = 0, which is equal
to the outside option.

22As previously noted, while Vti depends on pf and ps, these arguments are omitted.
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The value expected by an unmatched player entering market m ∈ {s, f} is

V m
ti

(·, φmti |θmtj , pm) =

get matched︷ ︸︸ ︷
µmW

m
ti

(·, φmti |θmtj , pm) +

stay unmatched︷ ︸︸ ︷
(1− µm)(0 + δtiVti) (2.38)

There is still an exogenous chance of breakup, βm. We will continue to focus
on symmetric strategies, conditional on type. We will also continue the assumption
that players will either cooperate following the grim trigger strategy, denoted σgt and
defined by (2.1), or always play D. Including the endogenous breakup decision, the
value expected from a new match from following either the grim trigger strategy or
always playing D is

Wm
ti

(σgt, φmti |θmtj , pm) =

pm

matched with cooperator︷ ︸︸ ︷c+ δti


no endogenous breakup︷ ︸︸ ︷

φmti (σ
gt, 1)θmtj (σ

gt, 1)[(1− βm)Wm
ti

(σgt|1) + βmVti ]

+

endogenous breakup︷ ︸︸ ︷
(1− φmti (σgt, 1)θmtj (σ

gt, 1))Vti




+ (1− pm)

matched with non-cooperator︷ ︸︸ ︷d− λ+ δti


no endogenous breakup︷ ︸︸ ︷

φmti (σ
gt, 0)θmtj (D, 0)[(1− βm)Wm

ti
(σgt|0) + βmVti ]

+

endogenous breakup︷ ︸︸ ︷
(1− φmti (σgt, 0)θmtj (D, 0))Vti




(2.39)
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Wm
ti

(D,φmti |θmtj , pm) =

pm

matched with cooperator︷ ︸︸ ︷c+ τ + δti


no endogenous breakup︷ ︸︸ ︷

φmti (D, 0)θmtj (σ
gt, 0)[(1− βm)Wm

ti
(D|0) + βmVti ]

+

endogenous breakup︷ ︸︸ ︷
(1− φmti (D, 0)θmtj (σ

gt, 0))Vti




+ (1− pm)

matched with non-cooperator︷ ︸︸ ︷d+ δti


no endogenous breakup︷ ︸︸ ︷

φmti (D, 0)θmtj (D, 0)[(1− βm)Wm
ti

(D|0) + βmVti ]

+

endogenous breakup︷ ︸︸ ︷
(1− φmti (D, 0)θmtj (D, 0))Vti


 (2.40)

It only makes sense to consider the value expected from continuing a match if
the match continues. Accordingly, the φmti and θmti terms, which must always equal one
for a match to continue, are omitted from the expressions for the value expected from
staying matched, Wm

ti
(·|·). Players have the option to end a match at any period after

the stage game is played in the first period of a match. In the current framework,
stage game payoffs are known and do not change, and thus if a player finds it optimal
to end a match at any period in a match he will find it optimal to end the match
at every period of the match. Thus any endogenous breakup will occur after the
first period of a match when each players’ strategies are revealed.23 Accordingly, the
second and later periods of a match are only reached when both players choose to
stay matched, and in this case, the match will last until dissolved exogenously. Thus
the value expected from a current match in the second and subsequent periods of the

23If payoffs were stochastic or changed over the duration of a match, then we would need to
consider endogenous breakup after each period of a match. For example, it would be interesting to
consider if the return for two players cooperating was not the same each period, but rather varied
stochastically based on economic conditions, or varied monotonically over time. However, this type
of extension is beyond the scope of the present work and is relegated to future consideration.
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match is the same as it was before endogenous breakup was possible:

Wm
ti

(σgt|1) = c+ δti
[
(1− βm)Wm

ti
(σgt|1) + βmVti

]
⇒ Wm

ti
(σgt|1) =

c+ δtiβmVti
1− δti(1− βm)

(2.41)

Wm
ti

(σgt|0) = d+ δti
[
(1− βm)Wm

ti
(σgt|0) + βmVti

]
⇒ Wm

ti
(σgt|0) =

d+ δtiβmVti
1− δti(1− βm)

(2.42)

Wm
ti

(D|0) = d+ δti
[
(1− βm)Wm

ti
(D|0) + βmVti

]
⇒ Wm

ti
(D|0) =

d+ δtiβmVti
1− δti(1− βm)

(2.43)

Subbing these into (2.39) and (2.40), we get

Wm
ti

(σgt, φmti |θmtj , pm) =

pm

(
c+ φmti (σ

gt, 1)θmtj (σ
gt, 1)

δti(1− βm)c

1− δti(1− βm)

)
+ (1− pm)

(
d− λ+ φmti (σ

gt, 0)θmtj (D, 0)
δti(1− βm)d

1− δti(1− βm)

)
+ δti

(
1−

(
pφmti (σ

gt, 1)θmtj (σ
gt, 1) + (1− pm)φmti (σ

gt, 0)θmtj (D, 0)
)

(1−δti )(1−βm)

1−δti (1−βm)

)
Vti

(2.44)

Wm
ti

(D,φmti |θmtj , pm) = pm(c+ τ) + (1− pm)d

+ δti(1− βm)
(
pmφ

m
ti

(D, 0)θmtj (σ
gt, 0) + (1− pm)φmti (D, 0)θmtj (D, 0)

)
d

1−δti (1−βm)

+ δti

(
1−

(
pmφ

m
ti

(D, 0)θmtj (σ
gt, 0) + (1− pm)φmti (D, 0)θmtj (D, 0)

)
(1−δti )(1−βm)

1−δti (1−βm)

)
Vti

(2.45)

Just as we did with exogenous breakup, assuming symmetric strategies by
type, we can solve to find

V m
ti

(·, φmti |θmtj , pm) =
µmW

m
ti

(·, φmti |θmtj , pm)

1− δti(1− µm)
(2.46)
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Using this to sub in for Vti in (2.44) and (2.45), we get the ex ante expected
value from a new match in terms of parameters only, now including the endogenous
breakup decision.

Wm
ti

(σgt, φmti |θmtj , pm) =(
(1−δti (1−µm))(1−δti (1−βm))

(1−δti )
[
(1−δti (1−βm))+

(
pmφmti

(σgt,1)θmtj
(σgt,1)+(1−pm)φmti

(σgt,0)θmtj
(D,0)

)
δtiµm(1−βm)

]
)

·

 pm

(
c+ φmti (σ

gt, 1)θmtj (σ
gt, 1)

δti(1− βm)c

1− δti(1− βm)

)
+(1− pm)

(
d− λ+ φmti (σ

gt, 0)θmtj (D, 0)
δti(1− βm)d

1− δti(1− βm)

)
 (2.47)

Wm
ti

(D,φmti |θmtj , pm) =(
(1−δti (1−µm))(1−δti (1−βm))

(1−δti )
[
(1−δti (1−βm))+

(
pmφmti

(D,0)θmtj
(σgt,0)+(1−pm)φmti

(D,0)θmtj
(D,0)

)
δtiµm(1−βm)

]
)

·

 pm(c+ τ) + (1− pm)d

+
(
pmφ

m
ti

(D, 0)θmtj (σ
gt, 0) + (1− pm)φmti (D, 0)θmtj (D, 0)

) δti(1− βm)d

1− δti(1− βm)


(2.48)

Upon receiving a new match, players will choose the stage game strategy
which maximizes their expected value from the match by comparing these values
given their expectations about the strategy followed by the match, both for the stage
game strategy (pm) and for their endogenous breakup decision (θmtj ), as well as their
own optimal endogenous breakup decision in each case (φti). The expected value
when unmatched is then

V m
ti

(σgt, φmti |θmtj , pm) =
µmW

m
ti

(σgt, φmti |θmtj , pm)

1− δti(1− µm)
(2.49)

V m
ti

(D,φmti |θmtj , pm) =
µmW

m
ti

(D,φmti |θmtj , pm)

1− δti(1− µm)
(2.50)

To verify that the model presented here is identical to the model presented
in the paper with exogenous breakup except for the endogenous breakup component,
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consider what happens here if the endogenous breakup decision were made for the
players rather than by the players themselves. If we set all of the endogenous breakup
terms equal to one to correspond to all players deciding to stay matched (φtiθ

1
tj

= 1),
all equations simplify to the analogous equations from the exogenous breakup case.
If we set all the endogenous breakup terms equal to zero (φtiθ

1
tj

= 0), such that
endogenous breakup occurs for sure and matches only last for one period, then the
only possible equilibrium is one without cooperation, as expected from a one-shot
prisoner’s dilemma.

2.7.2 Equilibrium with Endogenous Breakup

The addition of endogenous breakup to the model has significantly increased
the complexity of the expressions that characterize the value expected by matched
and unmatched players, but the method of determining equilibria has remained the
same. First determine the endogenous breakup decision each player will make in each
situation, taking as given all combinations of beliefs. Next, for each combination
of beliefs and the associated optimal endogenous breakup decision in each situation,
determine the value expected once matched from following each stage game strategy.
Then given the value expected from a new match, determine if entering the market is
indeed preferable to staying unmatched, and determine which market to enter in the
two-market setting. Last, for any collection of optimal endogenous breakup, stage
game strategy, and market decisions for which no player has a profitable deviation,
verify that the beliefs that gave rise to these optimal decisions are consistent with the
optimal choices of all players.

2.7.2.1 Endogenous Breakup Decision of the Currently Matched

Each player i type ti determines his optimal endogenous breakup decision by
comparing the value expected following the first period of a match, given by (2.41),
(2.42), and (2.43), with the value expected from being unmatched, given by (2.49)
and (2.50). There are three cases in terms of combinations of stage game strategies
revealed by each player in the first period of a match and resulting updated beliefs.
Since all players make individually rational decisions, each time a player is faced with
the same situation they will make the same decision, allowing us to consider only
symmetric strategies by type. Using this assumption that each player will find it
optimal to follow the same strategy each time they are unmatched and matched, a
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player will choose to stay matched or not in each case as follows:

φmti (σ
gt, 1) =


1 if Wm

ti
(σgt|1) =

c+ δtiβmV
m
ti

(σgt, φmti |θmtj , pm)

1− δti(1− βm)
≥ V m

ti
(σgt, φmti |θmtj , pm)

0 if Wm
ti

(σgt|1) =
c+ δtiβmV

m
ti

(σgt, φmti |θmtj , pm)

1− δti(1− βm)
< V m

ti
(σgt, φmti |θmtj , pm)

(2.51)

φmti (σ
gt, 0) =


1 if Wm

ti
(σgt|0) =

d+ δtiβmV
m
ti

(σgt, φmti |θmtj , pm)

1− δti(1− βm)
≥ V m

ti
(σgt, φmti |θmtj , pm)

0 if Wm
ti

(σgt|0) =
d+ δtiβmV

m
ti

(σgt, φmti |θmtj , pm)

1− δti(1− βm)
< V m

ti
(σgt, φmti |θmtj , pm)

(2.52)

φmti (D, 0) =


1 if Wm

ti
(D|0) =

d+ δtiβmV
m
ti

(D,φmti |θmtj , pm)

1− δti(1− βm)
≥ V m

ti
(D,φmti |θmtj , pm)

0 if Wm
ti

(D|0) =
d+ δtiβmV

m
ti

(D,φmti |θmtj , pm)

1− δti(1− βm)
< V m

ti
(D,φmti |θmtj , pm)

(2.53)

Each player uses equations (2.51), (2.52), and (2.53) to determine his optimal
endogenous breakup decision in each case for all different combinations of beliefs about
the stage game strategies, given by pm, and about endogenous breakup decisions, given
by θmtj . Given the assumption that all other players also make individually rational
decisions in the same manner, since all aspects of the decision process are commonly
known, including the discount rates of each type, using these equations each player is
able to assess what the optimal decisions of the other players will be, identifying θmtj
for each type and combination of initial beliefs, pm ∈ [0, 1], and stage game strategies,
σgt and D.

2.7.2.2 Stage Game Strategy Decision of the Newly Matched

Having determined the optimal endogenous breakup decisions player i knows
he will make in each situation, φmti , and the optimal endogenous breakup decisions
expected from others, θmtj , player i can determine the optimal stage game strategy to
follow. Given these and taking as given beliefs about the likelihood a new match will
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cooperate, pm ∈ [0, 1], each player i type ti determines the optimal stage game strategy
to follow by weighing the value expected from following each as given by (2.47) and
(2.48). The stage game strategy followed by player i and the value expected from a
new match in market m ∈ {s, f} are thus

arg max
σgt,D

Wm
ti

(·, φmti |θmtj , pm) =

{
σgt if Wm

ti
(σgt, φmti |θmtj , pm) ≥ Wm

ti
(D,φmti |θmtj , pm)

D if Wm
ti

(σgt, φmti |θmtj , pm) < Wm
ti

(D,φmti |θmtj , pm)

(2.54)

Wm
ti

(·, φmti |θmtj , pm) = max{Wm
ti

(σgt, φmti |θmtj , pm),Wm
ti

(D,φmti |θmtj , pm)} (2.55)

2.7.2.3 Market Decision of the Unmatched

Having determined the optimal strategy to follow once matched and the asso-
ciated value expected from a new match, Wm

ti
(·, φmti |θmtj , pm), each player i determines

the value expected from entering market m ∈ {s, f} according to (2.49) and (2.50).
Unmatched players then choose to enter the market that provides the highest ex-
pected value, according to (2.37). In order to nest the equations necessary for an
equilibrium when there is one market in the equations necessary for an equilibrium
when there are two markets, consider µs = 0. If µs = 0 then V s

ti
= 0, making the

value expected in the slow market equivalent to the outside option, making the market
decision identical to the case where there is only one market, the fast market.

2.7.2.4 Equilibrium with Endogenous Breakup

We now have all the pieces necessary to define an equilibrium similar to the
equilibrium with two markets given by Definition 2 in the exogenous breakup setting.

Definition 3 (Equilibrium with Endogenous Breakup). An equilibrium with endoge-
nous breakup is, for m ∈ {s, f}, a list of values, (Vti , V

m
ti
,Wm

ti
), and beliefs, (pm, θ

m
tj

),
such that, given market probabilities of matching and exogenous breakup, (µm, βm)

i (Endogenous Breakup) For all possible combinations of beliefs, θmtj and pm, and

stage game strategies, σgt and D, player i uses equations (2.51), (2.52), and
(2.53) to determine his own optimal endogenous breakup decisions, φmti , and to
update his expectations about the endogenous breakup decisions of all players
j 6= i, θmtj , ∀i
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ii (Matched) Given his own optimal breakup decisions, φmti , and those expected by
others, θmtj , player i chooses strategy σgt or D for any beliefs pm ∈ [0, 1] according
to (2.54) that maximizes Wm

ti
(·, φmti |θmtj , pm) as given by (2.55), ∀i

iii (Unmatched) Given values Wm
ti

(·, φmti |θmtj , pm), m ∈ {s, f}, expected once matched,
player i forms expectations V m

ti
(·, φmti |θmtj , pm) about the value of entering each

market according to (2.49) and (2.50) and chooses to enter market m ∈ {s, f}
or to stay unmatched to maximize Vti according to (2.37), ∀i

iv (Individual Rationality) Given V m
ti

(·, φmti |θmtj , pm) and Wm
ti

(·, φmti |θmtj , pm), m ∈
{s, f}, player i does not have an incentive to deviate from his strategy deter-
mined by conditions i, ii, and iii, ∀i

v (Consistency) ∀i, player i’s beliefs pm about the stage game strategies followed
by other players and beliefs θmtj about the endogenous breakup decisions of other
players are consistent with the strategies followed by all players j 6= i

2.7.3 First Best with Endogenous Breakup

In Section 2.4 we determined the general conditions in which the first-best
outcome in which all players cooperate is feasible when all breakup is exogenous. In
this section we will examine the first-best outcome in the setting with endogenous
breakup. This will allow us to observe the tractability of the framework and solution
method along with the increase in complexity that results from allowing for endoge-
nous breakup. We will see the similarities between the two settings, as well as the one
notable difference that results from new temptations created by the ability of players
to end matches endogenously.

2.7.3.1 Endogenous Breakup Decision of the Currently Matched

Suppose that all players believe that all other players will cooperate, or that
pf = 1. Given these beliefs we need to determine whether players will stay matched
or not, both on the equilibrium path and in response to a deviation.

On the equilibrium path: both players cooperate

In the first-best equilibrium, all players cooperate. Thus on the equilibrium
path after the first period of stage game play, the value expected from staying matched

110



is Wm
ti

(σgt|1). Player i type ti will stay matched according to (2.51) in this case if

W f
ti(σ

gt|1) =
c+ δtiβmV

f
ti (σ

gt, φfti |θ
f
tj , 1)

1− δti(1− βm)
≥ V f

ti (σ
gt, φfti |θ

f
tj , 1) (2.56)

Intuitively we expect to find that a player in this situation will always prefer
to stay matched. By staying matched he will receive c each period until the match
dissolves exogenously with probability βf . By ending the match he expects to start
receiving c each period once matched again, and is thus indifferent if µf = 1 and
strictly prefers staying matched ∀µf < 1.

We can replace V f
ti (σ

gt, φfti |θ
f
tj , 1) with (2.49), yielding

c ≥ (1− δti)µf
1− δti(1− µf )

W f
ti(σ

gt, φfti |θ
f
tj , 1)

Using (2.47) with pf = 1 to substitute in for W f
ti(σ

gt, φfti |θ
f
tj , 1), we get

c ≥ (1−δti )µf
1−δti (1−µf )

(
(1−δti (1−µf ))(1−δti (1−βf ))

(1−δti )
[
(1−δti (1−βf ))+φ

f
ti
(σgt,1)θftj

(σgt,1)δtiµf (1−βf )
]
)

·
(

1 + φfti(σ
gt, 1)θftj(σ

gt, 1)
δti(1− βf )

1− δti(1− βf )

)
c

Canceling like terms and combining the last expression into one fraction, we are left
with

1 ≥
µf

[
1− δti(1− βf ) + φfti(σ

gt, 1)θftj(σ
gt, 1)δti(1− βf )

]
1− δti(1− βf ) + φfti(σ

gt, 1)θftj(σ
gt, 1)δtiµf (1− βf )

Since the denominator is clearly positive, this becomes(
1− δti(1− βf )

+φfti(σ
gt, 1)θftj(σ

gt, 1)δtiµf (1− βf )

)
≥
(

µf (1− δti(1− βf ))
+µfφ

f
ti(σ

gt, 1)θftj(σ
gt, 1)δti(1− βf )

)
1− δti(1− βf ) ≥ µf (1− δti(1− βf ))

1 ≥ µf

Recall that whenever (2.56) holds, it means that player i will choose to stay
matched whenever he is in a cooperative relationship, or φfti(σ

gt, 1) = 1. Since 1 ≥ µf
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is always true, (2.56) always holds, and φfti(σ
gt, 1) = 1, ∀i. Since this is true for

all players, the only beliefs consistent with individual rationality are θftj(σ
gt, 1) = 1.

That is, all players will choose to stay in a cooperative match, and all players expect
all other players to stay in a cooperative match. Endogenous breakup will not be
exercised on the equilibrium path in the first-best equilibrium. That does not mean,
however, that endogenous breakup does not alter incentives and change when the
first-best is feasible relative to the exogenous breakup setting, as we shall see shortly.

Off the equilibrium path: response to defection

In the first-best equilibrium the only endogenous breakup decision players will
actually make is the one just discussed, where we found that φfti(σ

gt, 1) = 1. However,
all players need to determine what they would do in response to a deviation. If player
i cooperates but his matched plays D, will player i stay matched? Using (2.52), player
i will stay matched if

W f
ti(σ

gt|0) =
d+ δtiβmV

f
ti (σ

gt, φfti |θ
f
tj , 1)

1− δti(1− βm)
≥ V f

ti (σ
gt, φfti |θ

f
tj , 1) (2.57)

The left hand side is the value expected from staying in an uncooperative
match after reverting to the grim trigger in response to the other player’s defection.
The right hand side is the value expected from ending the match and becoming
unmatched. The equation providing this expected value is still (2.49) as it was above
in (2.56) since in the first-best equilibrium, expectations are that the future match
will cooperate, despite the deviation experienced in the current match, yielding

d ≥ (1− δti)µf
1− δti(1− µf )

W f
ti(σ

gt, φfti |θ
f
tj , 1) (2.58)

However, we can now substitute in for the optimal endogenous breakup deci-
sion we just found for play on the equilibrium path. Using (2.47) with φfti(σ

gt, 1) =

1, θftj(σ
gt, 1)) = 1 for W f

ti(σ
gt, φmti |θmtj , 1) in (2.58) yields

d

c
≥ µf

1− δti(1− βf )(1− µf )
(1− δti(1− βf )(1− µf ))dc ≥ µf

(1− δti(1− βf ))dc ≥ µf − µfδti(1− βf )dc

µ̃f (φ
f
ti(σ

gt, 0)) ≡
[
1− δti(1− βf )

]
d
c[

1− δti
(
1− βf

)
d
c

] ≥ µf (2.59)
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Above when we examined the optimal endogenous breakup decisions on the
equilibrium path we found that players will always choose to stay in a cooperative
match. When defected against, however, players will only choose to stay matched if
the probability of receiving a new match is lower than the bound µ̃f (φ

f
ti(σ

gt, 0)) given

by (2.59). The fraction d
c

that appears in µ̃f (φ
f
ti(σ

gt, 0)) is the ratio of the stage game
payoff in an uncooperative match over that in a cooperative match. The higher this
ratio the higher the matching probability for which players will find it optimal to stay
matched despite being defected against.

µ̃f (φ
f
ti(σ

gt, 0)) is the cutoff matching probability below which player i will
choose to stay matched and above which player i will choose to end the match, and
it depends on δti . Thus unlike on the equilibrium path where all players of both
types found it optimal to stay in a cooperative match, off the equilibrium path,
whether player i will find it optimal to stay matched when defected against depends
on his type. µ̃f (φ

f
ti(σ

gt, 0)) is decreasing in δti , so the cutoff matching probability is
higher for the low type and lower for the high type. It follows that if the matching
probability is higher than the cutoff determined by the low type’s discount rate,
both types will choose to end the match when defected against, and if the matching
probability is lower than the cutoff determined by the high type’s discount rate, both
types will choose to stay matched when defected against. Summarizing, we have that
∀i, ti ∈ {h, `}

φfti(σ
gt, 0)) =


0 if µf > µ̃f (φ

f
` (σ

gt, 0)) ≡
[
1− δ`(1− βf )

]
d
c[

1− δ`
(
1− βf

)
d
c

]
1 if µf ≤ µ̃f (φ

f
h(σ

gt, 0)) ≡
[
1− δh(1− βf )

]
d
c[

1− δh
(
1− βf

)
d
c

] (2.60)

If the matching probability is in the range between the cutoffs, such that
µ̃f (φ

f
h(σ

gt, 0)) < µf ≤ µ̃f (φ
f
` (σ

gt, 0)), then the high type will choose to end a match
if defected against but the low type will choose to stay matched. In the first-best
equilibrium all players follow the grim trigger strategy meaning that types are not
revealed by stage game actions. Thus even though for any value of µf each player
i can determine what endogenous breakup decision will be made by each type if he
defects against them, since he cannot tell the type of a match his expectations about
the endogenous breakup decision the match will make if he defects against them must
be the population-weighted average over the types, or θf (σgt, 0) ≡ πθfh(σgt, 0) + (1−
π)θf` (σgt, 0)) = π · 0 + (1 − π) · 1 = 1 − π. Thus expectations about the endogenous
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breakup decision of a match who is defected against are

θf (σgt, 0) =


0 if µf > µ̃f (φ

f
` (σ

gt, 0))

1− π if µ̃f (φ
f
h(σ

gt, 0)) < µf ≤ µ̃f (φ
f
` (σ

gt, 0))

1 if µf ≤ µ̃f (φ
f
h(σ

gt, 0))

(2.61)

Off the equilibrium path: defection

We also need to determine the optimal endogenous breakup decision made
by a player who chooses to defect. Cooperating is only optimal, and thus the first-
best is only feasible as an equilibrium, if the value expected from cooperating is at
least as great as the value expected from defecting. In order to evaluate if defecting
is a profitable deviation, player i must determine the value expected from defecting,
which requires determining the endogenous breakup decision he will make if he defects.
Since we are considering the first-best equilibrium, each player expects a new match
to follow the grim trigger strategy and cooperate in the first period of a match. We
just determined what the other player will do when defected against, which depends
on his type and is given by (2.61). Now we must determine what the defecting
player will do himself after defecting against his match. If the matching probability
is low enough, he will want to stay matched and receive payoff d each period instead
of ending the match and receiving utility 0 each period waiting for a new match.
However, if the matching probability is high enough, he may wish to end the match
with hopes of receiving a new match and the associated temptation payment c + τ ,
which he expects with probability pf = 1 once matched again, rather than staying
matched and receiving d. Player i, after defecting in the first period of the match, is
faced with the decision presented in (2.53), finding it optimal to stay matched if

W f
ti(D|0) =

d+ δtiβfV
f
ti (D,φ

f
ti |θ

f
tj , 1)

1− δti(1− βf )
≥ V f

ti (D,φ
f
ti |θ

f
tj , 1) (2.62)

The purpose of determining the optimal endogenous breakup decision after
defecting is to evaluate the value expected from deviating from the equilibrium be-
havior of cooperating. This is reflected in V f

ti (D,φ
f
ti |θ

f
tj , 1) on the right hand side,

which assumes that if player i found it optimal to deviate in the first period of the
current match, he will find it optimal to deviate in the first period of every match.24

24This assumes that all parameters are constant each period, including the discount rates of
each type, the stage game utility payoffs, as well as the search probabilities, as has been assumed
throughout.
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This also means that the endogenous breakup decision facing player i will always be
φfti(D, 0), and expectations about the endogenous breakup decision of others are given

by θf (σgt, 0). Using this and replacing V f
ti (D,φ

f
ti |θ

f
tj , 1) with (2.50), (2.62) becomes

d ≥ (1− δti)µf
1− δti(1− µf )

W f
ti(D,φ

f
ti(D, 0)|θf (σgt, 0), 1)

Replacing W f
ti(D,φ

f
ti(D, 0)|θf (σgt, 0), 1) with (2.48) yields

d ≥ (1−δti )µf
1−δti (1−µf )

(
(1−δti (1−µf ))(1−δti (1−βf ))

(1−δti )
[
(1−δti (1−βf ))+φ

f
ti
(D,0)θftj

(σgt,0)δtiµf (1−βf )
]
)

·
(
c+ τ + φfti(D, 0)θftj(σ

gt, 0)
δti(1− βf )d

1− δti(1− βf )

)
Canceling like terms and combining the last expression into one fraction, we are left
with

d ≥
µf

[
(1− δti(1− βf ))(c+ τ) + φfti(D, 0)θftj(σ

gt, 0)δti(1− βf )d
]

1− δti(1− βf ) + φfti(D, 0)θftj(σ
gt, 0)δtiµf (1− βf )

(2.63)

We now need to consider the three cases for θf (σgt, 0), depending on the match-
ing probability. For each case we can replace θf (σgt, 0) with the appropriate beliefs
as given by (2.61) and see when (2.63) holds. When it does, φfti(D, 0) = 1, and when

it does not, φfti(D, 0) = 0. Intuitively, we expect the player to stay matched whenever
the payoff received with certainty from staying matched, d, is at least as great as the
payoff expected next period if ending the matched, µf (c + τ). This intuition proves
to be correct in each case.

When the matching probability is high enough, both types will end the match
if defected against. Using θf (σgt, 0) = 0 for this case when µ̃f (φ

f
` (σ

gt, 0)) < µf , (2.63)
becomes

d ≥ µf (1− δti(1− βf ))(c+ τ)

1− δti(1− βf )
d

c+ τ
≥ µf
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If µ̃f (φ
f
` (σ

gt, 0)) < µf ≤ d
c+τ

, then φfti(D, 0) = 1. Note, however, that in this

case θf (σgt, 0) = 0 and thus the match will end because the other player who has
been defected against will choose to end the match even though the defecting player
wants to stay matched.

When the matching probability is low enough, both types will choose to stay
matched even though they have been defected against. Using θf (σgt, 0) = 1 for this
case when µf ≤ µ̃f (φ

f
h(σ

gt, 0)), (2.63) becomes

d ≥ µf [(1− δti(1− βf ))(c+ τ) + δti(1− βf )d]

1− δti(1− βf )(1− µf )
(1− δti(1− βf )(1− µf ))d ≥ µf [(1− δti(1− βf ))(c+ τ) + δti(1− βf )d]

(1− δti(1− βf ))d ≥ µf [(1− δti(1− βf ))(c+ τ) + δti(1− βf )d]− µfδti(1− βf )d
d

c+ τ
≥ µf

If µf ≤ min{ d
c+τ

, µ̃f (φ
f
h(σ

gt, 0))}, then φfti(D, 0) = 1, and since θf (σgt, 0) = 1
as well in this case, the match will stay together unless dissolved exogenously.

If the matching probability is in the middle range, µ̃f (φ
f
h(σ

gt, 0)) < µf ≤
µ̃f (φ

f
` (σ

gt, 0)), then whether the other player will end the match after being defected
against depends on the other player’s type. Only the low type, or a fraction 1− π of
the population, will choose to stay matched. With θf (σgt, 0) = 1− π, (2.63) becomes

d ≥ µf [(1− δti(1− βf ))(c+ τ) + (1− π)δti(1− βf )d]

1− δti(1− βf ) + (1− π)δtiµf (1− βf )

[1− δti(1− βf ) + (1− π)δtiµf (1− βf )] d ≥
(
µf (1− δti(1− βf ))(c+ τ)

+µf (1− π)δti(1− βf )d

)
(1− δti(1− βf ))d ≥ µf (1− δti(1− βf ))(c+ τ)

d

c+ τ
≥ µf

If µ̃f (φ
f
h(σ

gt, 0)) < µf ≤ min{ d
c+τ

, µ̃f (φ
f
` (σ

gt, 0))}, then φfti(D, 0) = 1. Note,
however, that the match will only stay together if both players choose to stay matched,
which only occurs if the other player is the low type. For both the low and middle
ranges for µf , the upper bound is determined by min{ d

c+τ
, µ̃f (φ

f
` (σ

gt, 0))}. Whether
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the first or second expression is lower, and thus the binding upper bound, will be
determined by conditions on the discount rate that will be examined next in relation
to the conditions required for cooperation to be optimal.

Note that in all three cases, the cutoff value for the matching probability is
determined by d

c+τ
, which is the same as the upper bound on the matching probability

in the slow market given by (2.27). The upper bound given by (2.27) was the highest
the matching probability could be in the slow market for the low types to still find
it optimal to enter the fast market. Any higher, and they found entering the slow
market and waiting until matched to obtain the temptation payment worth the wait.
The intuition is the same here, except instead of deciding between entering the slow
and fast market, the decision is between staying matched or ending the match and
entering the market again.

We have now specified the optimal endogenous breakup decision each player
will make in each case, as well as expectations about the optimal decisions others will
make as required by condition i of Definition 3 for an equilibrium with endogenous
breakup.

2.7.3.2 Stage Game Strategy Decision of the Newly Matched

We have seen in the first-best equilibrium how each player will make endoge-
nous breakup decisions in each situation of a continued match, as well as the expec-
tations each player has about the decision each other player will make, both on and
off the equilibrium path. We now need to consider under what conditions players will
find it optimal to cooperate given these expectations about endogenous breakup be-
havior. After receiving a new match, player i weighs the value expected from following
the grim trigger strategy with that expected from defecting as in (2.54). Given be-
liefs pf = 1 and using (2.47) and (2.48) for W f

ti(σ
gt, φfti |θ

f
tj , pf ) and W f

ti(D,φ
f
ti |θ

f
tj , pf ),

respectively, player i finds it optimal to cooperate if(
(1−δti (1−µf ))(1−δti (1−βf ))

(1−δti )
[
(1−δti (1−βf ))+φ

f
ti
(σgt,1)θftj

(σgt,1)δtiµf (1−βf )
]
)(

1 + φfti(σ
gt, 1)θftj(σ

gt, 1)
δti (1−βf )

1−δti (1−βf )

)
c

≥(
(1−δti (1−µf ))(1−δti (1−βf ))

(1−δti )
[
(1−δti (1−βf ))+φ

f
ti
(D,0)θftj

(σgt,0)δtiµf (1−βf )
]
)(

c+ τ + φfti(D, 0)θftj(σ
gt, 0)

δti (1−βf )d
1−δti (1−βf )

)
When we solved for the condition on the discount rate required for players to

find cooperation optimal in the exogenous breakup setting with one market, the large
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multiplier terms in the equivalent expression were identical, and thus canceled out
of the inequality. Here, the endogenous breakup terms are different on each side, so
solving this for a condition on the discount rate is not as simple. We found above
that φfti(σ

gt, 1)θftj(σ
gt, 1) = 1, while φfti(D, 0) and θftj(σ

gt, 0) depend on the matching

probability. Substituting φfti(σ
gt, 1)θftj(σ

gt, 1) = 1, canceling like terms, combining the
second terms on each side, and canceling that denominator as well, this becomes

c
1−δti (1−βf )+δtiµf (1−βf )

≥ (1−δti (1−βf ))(c+τ)+φ
f
ti
(D,0)θftj

(σgt,0)δti (1−βf )d

1−δti (1−βf )+φ
f
ti
(D,0)θftj

(σgt,0)δtiµf (1−βf )
(2.64)

There are several cases for the endogenous breakup decisions of defecting and
defected against players that depend on the matching probability. One possibility
of how to proceed is to solve for the matching probability and compare the results
with the ranges of µf that imply the values of φfti(D, 0) and θftj(σ

gt, 0) as given by
(2.60) and (2.61). While this method does lead to the same results, the analysis is
more transparent if we instead consider the cases for µf separately and derive the
conditions required for cooperation to be optimal in each case.

Highest matching probability: µ̃f(φf
` (σgt, 0)) < µf

In the case when µ̃f (φ
f
` (σ

gt, 0)) < µf , we found that the player who has been

defected against will end the match, or φfti(σ
gt, 0) = 0 for each type, and thus the

defecting player expects θf (σgt, 0) = 0. Because θf (σgt, 0)φfti(D, 0) = 0, ∀φfti(D, 0),
the match will end regardless of whether the defecting player wishes to stay matched
or not. Using θf (σgt, 0)φfti(D, 0) = 0 in (2.64), we find that player i, with discount
rate δti , finds cooperating rather than defecting optimal if

µf ≤ 1− τ

δti(1− βf )(c+ τ)
≡ µf (ti) where we define µf ≡ µf (`) (2.65)

Since this upper bound is lower for lower δti , it is always binding based on
the discount rate of the low type, making it useful to define µf ≡ µf (`). This upper
bound on the matching probability is the key difference between when the first-best
is feasible with endogenous breakup compared to without endogenous breakup, and
in fact, the only major difference between the incentives facing players in the settings
with endogenous and exogenous breakup.25 When players have the ability to end the

25The other main difference between the two settings occurs in the one-market separating equilib-
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match, there is an upper bound on the matching probability above which defecting
becomes a profitable deviation because a new match is expected too soon. Without
endogenous breakup, players had to wait for the match to end exogenously, which
made the prospects of being in a cooperative relationship more attractive. Now a
player can defect, receive the temptation payment, and then just end the match so
that he can receive the temptation payment again against a new match. The higher
the matching probability, the sooner he expects to be able to be matched and receive
the temptation payment again, and the less attractive is cooperating.

Just as was the case when all breakup was exogenous, with endogenous breakup
the first-best is only feasible if players are patient enough. The upper bound on
the matching probability given by (2.65) can be rearranged into a condition on the
discount rate. For a given matching probability, player i finds cooperation optimal
only if

δti ≥
τ

(1− µf )(1− βf )(c+ τ)
≡ δ(µf ) (2.66)

There are two differences between the lower bound on the discount rate re-
quired for the first-best to be feasible with endogenous breakup given by δ(µf ) and

the lower bound δf1 ≡ τ
(1−βf )(c−d+τ)

found in Section 2.4 in the exogenous breakup

setting. The first is the (1 − µf ) term in the denominator, which shows that the
greater the likelihood of receiving a new match the more patient a player must be to
find defection to not be a profitable deviation. In the exogenous breakup case the case
of certain matching with µf = 1 was often examined, but with endogenous breakup
it can easily be seen from (2.66) that cooperation cannot be sustained between all
players with certain matching when players can end a match.

The second difference between δ(µf ) and δf1 is the (c+τ) term which reflects the
temptation payment only, and does not include the difference between a cooperative
and uncooperative match, (c−d+τ), as is found in δf1. The value of an uncooperative
match does not enter into the lower bound on the discount rate given by (2.66) because
the players do not stay in an uncooperative match in this case. The condition from
the exogenous breakup setting, δf1, still plays an active role here as well. Recall that
the case we are currently considering is the case where µ̃f (φ

f
` (σ

gt, 0)) < µf , and in

rium. With endogenous breakup, it is necessary to examine explicitly the steady-state probability
of being matched with a high type in the one-market separating equilibrium, as discussed in Section
2.6. However, this steady-state analysis is technical in nature, changing what beliefs pm are equal
to in equilibrium, rather than changing the incentives facing the players.
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order for the first-best to be feasible in this case requires that µf ≤ µf . In order for

µ̃f (φ
f
` (σ

gt, 0)) < µf ≤ µf to be a valid case clearly requires that µ̃f (φ
f
` (σ

gt, 0)) < µf ,

which occurs whenever δti ≥ δf1. Thus in order for the first-best to be feasible in this
case requires both δti ≥ δf1 and δti ≥ δ(µf ).

Which lower bound is binding, δf1 or δ(µf ), depends on how the matching
probability affects the incentive to deviate, which depends on where the matching
probability is in the range µf ∈ [µ̃f (φ

f
` (σ

gt, 0)), µf ]. If the matching probability is low
enough that a defecting player would choose to stay matched, then the lower bound
on the discount rate required for the player to not find deviation profitable is the same
as in the exogenous breakup setting since he does not choose to exercise endogenous
breakup. If the matching probability is high enough that a defecting player finds
it optimal to end the match so that he can defect again, then the lower bound on
the discount rate also includes a term involving the matching probability, requiring
that players be more patient the higher the matching probability. The borderline
case is µf = d

c+τ
, which is the cutoff for the matching probability below which the

defecting player wishes to stay matched. Specifically, if d
c+τ

< µf , then δ(µf ) < δf1,

and if µf <
d
c+τ

then δf1 < δ(µf ). So while the endogenous breakup decision of the
defecting player does not have an actual effect on the longevity of the match in this
case because the player who is defected against chooses to end the match, it does
have an effect on which condition on the discount rate is binding.

Lowest matching probability: µf ≤ µ̃f(φf
h(σgt, 0))

In the case when µf ≤ µ̃f (φ
f
h(σ

gt, 0)), we found that the matching probability
is low enough that players who are defected against will choose to stay matched since
the expected wait before receiving a new match is too long, so φfti(σ

gt, 0) = 1 for
each type, and thus the defecting player expects θf (σgt, 0) = 1. As a result, it is now
the endogenous breakup decision of the defecting player that determines if the match
stays together or not. We found that the defecting player chooses to stay matched
whenever the value he knows he will receive if he stays matched, d, is as great as the
value expected from ending the match, µf (c + τ). So the defecting player chooses

to stay matched whenever µf ≤ d
c+τ

. It is easy to show that µ̃f (φ
f
h(σ

gt, 0)) < d
c+τ

whenever δf1 < δh. Assuming for a moment that this is the case and thus that
φfti(D, 0)) = 1, we can use φfti(D, 0)θf (σgt, 0) = 1 in (2.64) to find the condition

required for cooperation to be optimal, which is that δf1 < δti . The assumption that
δf1 < δh is confirmed, and thus φfti(D, 0)) = 1 is the endogenous breakup decision

of the defector. So in this case with µf ≤ µ̃f (φ
f
h(σ

gt, 0)), the condition required for
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the first-best to be feasible is δf1 < δti , the same as is required without endogenous
breakup. The condition required is the same in this case because no player chooses
to exercise endogenous breakup when the matching probability is this low.

Middle matching probability: µ̃f(φf
h(σgt, 0)) < µf ≤ µ̃f(φf

` (σgt, 0))

When µ̃f (φ
f
h(σ

gt, 0)) < µf ≤ µ̃f (φ
f
` (σ

gt, 0)), the high type find it optimal to end

the match if defected against (φfh(σ
gt, 0) = 0) but the low type find it optimal to stay

matched(φf` (σ
gt, 0) = 1). Thus the defecting player has expectations θf (σgt, 0) = 1−π

as shown above. It is easy to show that whenever δf1 < δ`, then µ̃f (φ
f
` (σ

gt, 0)) < d
c+τ

.

It remains the case that φfti(D, 0) = 1 if µf ≤ d
c+τ

. Thus whenever δf1 < δ`, the
defecting player will find it optimal to stay matched. Assuming for the moment
that this is the case, we can evaluate (2.64) using φfti(D, 0)θf (σgt, 0) = 1 − π, which

yields the condition that cooperation is optimal if δf1 < δti . Because δf1 < δ` is
required for cooperation to be optimal, the assumption that µf ≤ d

c+τ
and thus that

φfti(D, 0) = 1 is in fact correct. Thus the first-best is feasible in this middle case with

µ̃f (φ
f
h(σ

gt, 0)) < µf ≤ µ̃f (φ
f
` (σ

gt, 0)) whenever δf1 < δti .

Summary for all cases

We have found the conditions under which players find it optimal to cooperate,
given the optimal endogenous breakup decisions from condition i of Definition 3. This
completes the specification of condition ii required for an equilibrium with endogenous
breakup. We know that on the equilibrium path all players will follow the grim trigger
strategy and choose to stay matched as long as the required conditions are satisfied.
The conditions required for the first-best to be feasible in each range of the matching
probability, as well as the off-equilibrium endogenous breakup decisions in each case,
are summarized in the following table.

2.7.3.3 Completing the Specification of the First Best Equilibrium with
Endogenous Breakup

Condition iii of Definition 3 requires that we specify the decision of unmatched
players. Because we are considering the first-best equilibrium in which all players
cooperate in one market, the fast market, this condition is satisfied trivially in this
case. The endogenous breakup decisions were derived such that each player is taking
the action that maximizes his expected value, and each player’s expectations about
the decisions of others assume the same individually rational choices of others. The
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If the matching probability is 1st best feasible if Endogenous Breakup Dec.

µf < µf Not feasible ∀δti φfti(σ
gt, 0) = 0, φfti(D, 0) = 0

µ̃f (φ
f
` (σ

gt, 0)) < d
c+τ

< µf ≤ µf δ(µf ) ≤ δti φfti(σ
gt, 0) = 0, φfti(D, 0) = 0

µ̃f (φ
f
` (σ

gt, 0)) < µf ≤ d
c+τ

< µf δf1 ≤ δti φfti(σ
gt, 0) = 0, φfti(D, 0) = 1

µ̃f (φ
f
h(σ

gt, 0)) < µf ≤ µ̃f (φ
f
` (σ

gt, 0)) δf1 ≤ δti φfh(σgt, 0) = 0, φf` (σgt, 0) = 1

, φfti(D, 0) = 1

µf ≤ µ̃f (φ
f
h(σ

gt, 0)) δf1 ≤ δti φfti(σ
gt, 0) = 1, φfti(D, 0) = 1

µf≡1− τ
δ`(1−βf )(c+τ) , µ̃f (φfti(σ

gt, 0))≡ [1−δti (1−βf )]
d
c[

1−δti (1−βf )
d
c

] , δ(µf )≡ τ
(1−µf )(1−βf )(c+τ) , δ

f
1≡

τ
(1−βf )(c−d+τ)

Table 2.3: Summary of results for first-best equilibrium with endogenous breakup

conditions we derived above required for cooperation to be optimal were found by
weighing the value a player expects from cooperating against the value he expects
from defecting. As a result, no player has a profitable deviation when the conditions
are met, satisfying condition iv of Definition 3. All of the preceding was derived
starting from the assumption that all players cooperate. When the conditions are
satisfied all players cooperate, the probability of being matched with a cooperator
is 1, and thus the beliefs pf = 1 are consistent. This, together with the fact that

the endogenous breakup decisions other players will make, θftj , ∀j 6= i, are consistent

with the decision each player will make, φfti , ∀i, satisfies condition v. Thus all the
conditions of Definition 3 are satisfied and an equilibrium with endogenous breakup in
which all players cooperate exists. The first-best outcome is feasible with endogenous
breakup for any combination of parameters satisfying the conditions laid out above.
See Section 2.6.1 for examples and a discussion of the extent to which welfare is
decreased by allowing for endogenous breakup.

2.7.4 Separating Equilibrium with Endogenous Breakup

We went through the process of deriving the conditions required for the first-
best equilibrium to exist in great detail, allowing us to see the similarities and dif-
ferences between the settings with exogenous and endogenous breakup. We saw the
complicated yet straightforward process this entails and developed much of the intu-
ition that is to be gained about the incentives facing the players in the endogenous
breakup framework. Little is gained in terms of further intuition for the endogenous
breakup setting by working through the derivations of the conditions required for ex-
istence of both the separating equilibrium with one and two markets with endogenous
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breakup. As a result the key features of each of the separating equilibria, as well as
the intuition for the endogenous breakup decision in each, will be discussed but the
formal analysis will not be presented.

2.7.4.1 Separating Equilibrium with One Market

A separating equilibrium with one market that meets all the conditions of
an equilibrium with endogenous breakup as in Definition 3 exists under reasonable
circumstances, as was the case in the exogenous breakup setting. Just as in the exoge-
nous breakup setting, a separating equilibrium with one market26 is an equilibrium
in which all players who are the high type cooperate and all players who are the low
type defect.

In the first-best equilibrium, no players will choose to end a match on the
equilibrium path because on the equilibrium path all matches are cooperative and
defecting is not a profitable deviation so there is no reason to end a match. In the
separating equilibrium with one market, it remains the case that players will not find
it optimal to end a cooperative match, which in this case is limited to players who
are the high type who are matched with another high type.

There are, however, several cases in which players may find it optimal to end
a match on the equilibrium path in the separating equilibrium with one market. One
is high types who are in an uncooperative match. If the matching probability is high
enough, a high type finds it optimal to end the match with hopes of receiving a new
match who might also be a high type and cooperate. If the matching probability
is too low, however, he finds it optimal to stay in the current uncooperative match
because the hopes of receiving a new match that may be cooperative is not worth
the expected wait. The other source of endogenous breakup on the equilibrium path
is low types who hope to receive repeated temptation payments. If the matching
probability is high enough, the low type may choose to end a match with hopes of
being matched again soon with a high type and receiving the associated temptation
payment. If the matching probability is low enough, however, he will find it optimal
to stay matched rather than waiting for a new match.

Unlike in the first-best equilibrium with endogenous breakup, it is possible for
the separating equilibrium with one market and endogenous breakup to exist with

26We will continue to assume that this one-market equilibrium occurs in the fast market as was
done when we considered the first-best equilibrium.
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certain matching. In the first-best equilibrium, if the matching probability was too
high, the temptation to defect and end the match to defect again was too great. In
the separating equilibrium, this temptation is reduced by the fact that defection does
not result in the temptation payment with certainty, but rather only if matched with
a high type. Thus the incentive for high types to end the match after defecting is
not as strong, so cooperation by the high types can be sustained at higher matching
probabilities than in the first-best with endogenous breakup, including the case of
µf = 1. However, the temptation created by a high matching probability now that
players can end matches is still present. There is a trade-off between the level of
temptation resulting from the value of τ and that resulting from a higher matching
probability. If the matching probability is higher, the values of τ for which the
high type still find it optimal to cooperate are lower. For example, the separating
equilibrium with one market exists at values of the temptation payment ten times
higher with µf = 0.3 than with µf = 1, showing the importance of expected wait
times in facilitating cooperation.

For the separating equilibrium with endogenous breakup, it is necessary to
consider explicitly the steady-state probability that a new match will be the high or
low type. This is discussed in detail in Section 2.6.2.

2.7.4.2 Separating Equilibrium with Two Markets

A separating equilibrium with two markets meeting all the conditions of an
equilibrium with endogenous breakup as in Definition 3 also exists under reasonable
circumstances. Just as in the exogenous breakup case, in this equilibrium all high
types enter the slow market and cooperate while all low types enter the fast market
and defect. Just as in the first-best equilibrium, endogenous breakup is never exercised
on the equilibrium path. As a result, many of the conditions characterizing when the
separating equilibrium with two markets exists are identical to those in the exogenous
breakup case. The conditions required for the high type to find it optimal to enter
the slow market and for the low type to find it optimal to enter the fast market are
still characterized by (2.22), (2.24), and (2.27).

The only real difference between the endogenous and exogenous breakup set-
tings for the two-market separating equilibrium comes from the endogenous breakup
decision of the high type if they are defected against in the slow market. For these
players the endogenous breakup decision if defected against follows the now familiar
pattern of stay matched if the matching probability, now µs, is low enough and end
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the match if it is high enough. This threat to exercise endogenous breakup if defected
against changes the incentives for defecting, changing the conditions required for co-
operation to be optimal for the high types in the slow market. As a result, (2.21) no
longer characterizes the lower bound on the discount rate of the high type, and (2.23)
no longer characterizes the discount rate cutoff above which the low type would coop-
erate if they were to enter the slow market. As was the case in separating equilibrium
with one market, there is a trade-off for sustaining cooperation among the high types
between τ and µs just as there was between τ and µf in the one-market separating
equilibrium. However, for the two-market separating equilibrium the point at which
this trade-off has bite is never realized because before that point is reached, the slow
market has become too tempting for the low type, causing them to defect and enter
the slow market.

Also of note is that it is possible to sustain the separating equilibrium with
two markets with certain matching in the fast market, as was the case considered with
exogenous breakup. Thus the only equilibrium with endogenous breakup in which
µf = 1 cannot occur is the first-best equilibrium.

2.7.5 Optimality of Equilibria with Endogenous Breakup

We have considered three equilibria in this setting with endogenous breakup.
Just as was the case in the exogenous breakup setting, when the first-best is achiev-
able, all players prefer this equilibrium to all others. When the first-best is not
feasible, the separating equilibria with one and two markets, when they exist, are
preferred by all players to repetition of the stage game Nash equilibrium. Given that
the formal conditions characterizing the separating equilibria have been omitted, we
will discuss the general patterns that emerge rather than formulating exact conditions
that characterize the welfare properties of the separating equilibria as was done with
Propositions 7 and 8 in the exogenous breakup setting.

In general, if the low type is significantly less patient than the high type,
then both types benefit from the one-market separating equilibrium. If the types are
close together in terms of their level of patience but the temptation to defect is too
great to sustain the first-best equilibrium, then both types can benefit from the two-
market separating equilibrium. The welfare implications are the same as they were
in the setting with exogenous breakup. If neither the first-best equilibrium or the
separating equilibrium with one market are feasible, then the separating equilibrium
with two markets is preferred to all other equilibria feasible in this framework and
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with the stage game strategies of grim trigger or always defect. When the first-
best is not feasible but both separating equilibria exist, the low type always prefer
the one-market separating equilibrium while the high type sometimes also prefer the
one-market separating equilibrium and in other circumstances prefer the separating
equilibrium in two markets. The qualitative results about how separation can improve
welfare found with fully exogenous breakup remain the same, even when matches can
be ended endogenously.

2.7.6 Hybrid Model: Between Fully Exogenous and Fully Endogenous
Breakup

For the hybrid model discussed in Section 2.6.3, simply replace every instance
of φmti θ

m
ti

with ρmti φ
m
ti
θmti , where ρmti ∈ [0, 1] is the probability that an agent of type ti is

allowed to end a match in market m endogenously.27 If ρmti = 1, the model is identical
to the model with fully endogenous breakup, and if ρmti = 0, the model reduces to the
model with fully exogenous breakup.

2.8 Conclusion

In Section 2.4 we examined a repeated prisoner’s dilemma embedded in a
search model with one market and considered conditions in which some or all play-
ers find it optimal to cooperate. While the original motivation for the paper was to
determine when sorting can improve welfare when the first-best outcome is not feasi-
ble, the framework employed to address this question revealed a setting with several
appealing properties for sustaining cooperation between all players.

First, cooperation can be sustained with minimal cognitive requirements on the
players. The strategies followed by players in equilibrium are simple and only require
remembering whether the current match has defected. Players simply determine
if they find cooperation optimal and only punish players who defect against them
directly, not requiring the desire to implement punishments against those who have
not defected against them or the common understanding required for coordinated

27Everything presented in the paper has been the same for both types, with the exception of δti ,
but that is not required. Stage game payoffs can also be extended to differ by types, as discussed
in footnote 3 in the paper. The possibility of ending matches endogenously in the hybrid model can
also depend on type.
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punishments. As a result, cooperation can be sustained with minimal informational
requirements. There is no need for public randomization devices or signals and no
need to identify individuals or keep track of histories beyond the scope of an active
match. In such a setting, it would be reasonable to conclude that cooperation must
require that matches be near-infinite in duration. Surprisingly, the probability of
breakup each period can be relatively high and still sustain cooperation between
players of both types.

When the first-best outcome is not achievable, players of both types benefit
from sorting. All players prefer a separating equilibrium with one market, when it
exists, to repetition of the stage game Nash equilibrium, and in some circumstances
all prefer it to an equilibrium with full separation. These results are sensitive to the
fraction of the population who are each type. Welfare gains for each type are greater
the higher the fraction of the population who are the high type, and disappear when
the fraction becomes too low.

In Section 2.5, we found that even if conditions are such that the first-best
outcome and separation in one market are not feasible, a Pareto improvement op-
portunity may still exist if a second market is available to allow for full separation
of types. This increase in the sustainability of cooperation that resulted from the
introduction of a second market did not require changing the payoffs of the stage
game. Overall utilities are changed as a result of the time cost imposed by the lower
matching probability in the slow market. However, this type of change in utility is
more desirable than altering stage game payoffs to facilitate cooperation. The cost
incurred in the slow market is entirely born by players choosing to enter that market,
something that is done entirely voluntarily and need not be done at all. If instead
stage game payoffs are changed, the resources used to facilitate cooperation and insure
against loss must come from somewhere.

The finding that introduction of a second market can provide a Pareto im-
provement opportunity has two immediate consequences for sustaining cooperation
in a repeated prisoner’s dilemma in a heterogeneous population. First, cooperation
can be sustained for the more patient fraction of the population at significantly higher
levels of temptation and potential loss than is feasible when full separation is not pos-
sible. Second, these welfare gains expected for the more patient players are no longer
sensitive to the fraction of the population who are patient as was the case when full
separation was not possible.

An implication of these findings is that facilitating separation of types in sit-
uations in which there exist prisoner’s dilemma type tensions between benefits from
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cooperation and individual incentives has the potential to improve the welfare of
the more patient fraction of the population without decreasing the welfare of others.
When considering situations in which allowing for greater separation may provide
Pareto improvement opportunities, we should consider separation opportunities con-
sistent with the features of this model, such as ones with minimal informational
requirements and costs that are only incurred by willing participants rather than re-
quiring outside resources or transfers from unwilling participants. Time is a resource
possessed by all, but that is more valuable to some than others. As explored here,
time is one potential source of separation opportunities that can be leveraged to cre-
ate Pareto-optimal outcomes. A necessary condition is just for some fraction of the
population to find cooperation worth the wait.
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Chapter 3

Effects of Spectrum Holdings on Equilibrium in

the Wireless Market

3.1 Introduction

Providers of mobile wireless communication services (e.g., AT&T, Sprint Nextel, T-

Mobile, Verizon Wireless) compete for customers on the basis of both price and service

quality. A firm with higher service quality is able to attract more customers and set

a higher price for its services. Network congestion plays a central role in determining

a firm’s service quality. By increasing its capacity, a firm is able to reduce network

congestion and offer a higher level of service quality. Spectrum is an important

determinant of capacity for a wireless provider. The effects of spectrum holdings on

equilibrium outcomes is the focus of this paper.

A firm’s spectrum holdings, commonly measured in megahertz (MHz), refer

to what radio wave frequencies a firm has the right to use in order to transmit signals

to and from customers’ mobile devices to network infrastructure such as cell towers.

The more MHz of spectrum a firm has the right to use to transmit signals, the more

customers a firm is able to serve, and the higher the quality of service.

Various factors in addition to a firm’s total spectrum holdings also affect service

quality. For example, technological advances allow for more efficient use of existing

spectrum. In addition, spectrum at different frequencies possesses different properties.

These different properties affect the ability of signals sent at different frequencies

to travel through different climates and topographies, over long distances, and to
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penetrate buildings and automobiles. However, without spectrum, a firm is unable to

provide service, and whatever the technology employed, and whatever the frequency,

more spectrum translates into greater bandwidth for transferring signals, and in turn,

into higher capacity and service quality.

Spectrum is also interesting from a policy perspective. First, spectrum is a

finite resource. The range of frequencies suitable for transmitting mobile wireless

communications is limited. Thus, it is not possible for every firm to use as much

spectrum as it might like. Consequently, various policies limit access to spectrum. In

the United States, the Federal Communications Commission (FCC) controls the use

of spectrum. The FCC affects the allocation of spectrum by regulating its use, by

creating and implementing the mechanisms by which rights to its use are transfered,

and through explicit regulations on spectrum accumulation.

The FCC designates different frequencies for different uses, such as radio and

television transmission, radar, direct communication devices such as walkie-talkies, as

well as mobile telecommunications, including talk, text, and data transmissions. From

time to time, the FCC decides to change the use of certain frequencies. For a long

time, frequencies between 698 and 806 MHz, also know as the “700 MHz band,” were

used for transmission of UHF television signals (channels 52 to 69). In the mid 2000s,

broadcasters were required to transition from analog to digital transmissions, freeing

up the 700 MHz band for other uses. The FCC auctioned rights to use spectrum in

the 700 MHz band, most of which is now used for mobile wireless communications.

The details of the allocation process are determined by the FCC and may or may not

be optimal, for firms, customers, or society. Thus an examination of how different

allocations of spectrum affect equilibrium in the wireless market is of interest.

In addition to designing the methods by which spectrum is made newly avail-

able for use in mobile wireless communications, the FCC also regulates the sale, lease,
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and other transfers of spectrum between firms and other parties. For example, a firm

that possesses the right to use specific frequencies in a specific geographic region that

wants to sell or lease the rights to this spectrum to another party must obtain the

permission of the FCC. The FCC generally evaluates the effects of this spectrum

transfer before giving its approval or not. As a general rule, the FCC places limita-

tions on the amount of spectrum a firm may accumulate. These regulations affect

how concentrated or equally distributed spectrum holdings are among firms.

These policies that regulate the transfer of existing spectrum, as well as the

design of the mechanisms used for making spectrum newly available for use in mobile

wireless communications, affect how spectrum is allocated among firms. A theoretical

model of the industry, based on the model introduced by Pinto and Sibley (2013),

will be calibrated to data from the wireless industry, and the effects of different

allocations of spectrum will be simulated in order to evaluate how these allocations

affect equilibrium outcomes including prices, output, and welfare.

Pinto and Sibley (2013) introduce an explicit formulation of network con-

gestion into a standard oligopoly model of price competition between firms offering

partially differentiated products. The formulation facilitates direct consideration of

how capacity and service quality affect equilibrium output and prices. They show

that in a linear model, if one firm, firm A, increases its spectrum holdings, its quality

increases and it raises its price. Firm B cuts its price in response. However, the effects

on firm B’s quality in equilibrium are unclear. Ignoring equilibrium price effects for a

moment, if firm A’s congestion decreases, thereby increasing its service quality, some

of firm B’s customers will leave for firm A. Other things equal, this raises quality at

firm B, but both B and A change their equilibrium prices as well. Since A raises its

price and B lowers its price, both types of price changes work to keep B’s customers

from moving to firm A. Hence, the overall effect of the increase in firm A’s capacity on
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firm B’s service quality is unclear. However, there is the potential for an externality

effect that could deter capacity increases by firm A.

In this paper a model based on that of Pinto and Sibley (2013) is calibrated

to data from the wireless industry in order to examine the importance of these ex-

ternalities. Simulations under three counterfactual allocations of spectrum holdings

are conducted. In the first, one firm is given additional spectrum, holding constant

the spectrum holdings of the other firms. The firm that receives the additional spec-

trum increases its service quality and raises its price. The other firms lower their

prices in response, but lose some customers. Consequently, the service quality of the

other firms increases, as they now serve fewer customers with the same capacity. The

increase in service quality is highest for the firms whose spectrum remains constant

when the firm that increases its spectrum holdings is a larger firm because the changes

in quantities are larger in this case, compared to when it is a smaller firm that receives

the additional spectrum.

The second scenario considered is the equalization of spectrum holdings among

all firms. When an equal share of total spectrum is given to each firm, the firms

that lose spectrum lose customers to the firms that gain spectrum. These changes

to equilibrium quantities are accompanied by corresponding changes to equilibrium

prices, with the firms that lose spectrum lowering their prices and the firms that gain

spectrum raising prices. The effect of equalizing spectrum holdings on the quantity

weighted average price and on welfare depends on the extent to which customers are

sensitive to changes in service quality, relative to their sensitivity to changes in price.

When customers care significantly more about price than service quality, customers

experience a decrease in total consumer surplus due to the negative effects of price

increases by the firms that receive additional spectrum outweighing the positive effects

of price decreases by the firms that lose spectrum. Profits also decrease because the
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losses for the firms that lose spectrum outweigh the gains by the firms that gain

spectrum. However, when customers give relatively equal weight to the importance

of price and service quality, welfare is increased by the equalization of spectrum

holdings. The quantity weighted average price is marginally higher and firms that

lose spectrum lose profit, but this is outweighed by the increase in consumer surplus

and profits at the firms who receive additional spectrum.

Empirical studies of the wireless industry have typically focused on substitu-

tion between wireless and wireline service, on the effect of taxation, and on the effect

of capital investment on the economy as a whole. Hausman (2000) examines the

efficiency of federal, state, and local taxes placed on wireless service. He concludes

that these taxes are inefficient, costing about 50% more than they raise in revenues

by surpressing demand for wireless services. Ingraham and Sidak (2004) examine the

same issue several years later, and importantly, several years further into the adoption

of wireless services, finding that the magnitude of the inefficiency of taxes on wireless

service is even larger than the the level of inefficiency measured by Hausman (2000).

Caves (2011) examines the extent to which customers substitute wireless ser-

vice for wireline service. Previous estimates found little substitution, but were con-

ducted before widespread adoption of wireless service. Many households have both

wireline and wireless telephones, making it unclear if the two services are substitutes

or complements. He estimates a demand curve for wireline and wireless service and

finds that a one percent decrease in the price of wireless service reduces demand for

wireline service by between 1.2 and 1.3%.

Earlier literature has examined the link between investment in wireline telecom-

munications infrastructure and economic growth. For example, Röller and Waverman

(2001) find a significant causal link between a country’s investment in telecommuni-

cations infrastructure and the country’s overall economic output. They find that
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infrastructure that allows for near universal telecommunications service leads to sig-

nificantly higher economic growth. One focus of public policy throughout the devel-

opment of the wireless industry in the United States has been expanding coverage in

rural areas to allow for universal coverage by wireless telecommunications networks.

As policies regulating the allocation of spectrum affect the growth of wireless service,

spectrum policies are an important factor in reaching universal service.

The remainder of this paper proceeds as follows. The theoretical model is

presented in Section 3.2, along with a simple, symmetric, two firm example useful

for developing intuition for the sections that follow. The details of the data used to

calibrate the model, as well as the calibration process, are discussed in Section 3.3.

The results of simulations under counterfactual spectrum allocations are presented in

Section 3.4. Section 3.5 includes discussion of several checks on the robustness of the

results to the calibration process and counterfactual spectrum allocations. Section

3.6 concludes.

3.2 Model

In this section the model of the wireless industry that will be used in the simulations

found in the following sections will be presented. The model is based on the more

general model of the wireless industry found in Pinto and Sibley (2013).

There are n ≥ 2 firms that sell a single, partially differentiated good. The

demand for firm i is given by

qDi (pi, p−i, si, s−i) = αi − βiipi +
∑
j 6=i

βijpj + λiisi −
∑
j 6=i

λijsj (3.1)

where pi is the price set by firm i and si is the quality of service provided by firm i’s

network. It is assumed that βii, βij, λii, λij > 0 so that firm i’s demand is decreasing
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in its own price, increasing in the price of the other firms, increasing in its own service

quality, and decreasing in the service quality of the other firms.

Firm i’s service quality depends on the load placed on its network and on the

network’s capacity to handle that load. Let qSi be the load supplied to customers

of firm i on its network and ki be the capacity of the network. Then, based on

the Kleinrock formula for expected packet delay, quality depends inversely on the

difference between capacity and load. That is, firm i’s quality is given by si = ki−qSi .

For a firm’s network to function, load must be balanced. That is, for a given

service quality, si, and capacity, ki, the load supplied by the firm must be equal to

the load demanded by its customers: qSi = qDi . Using this-load balancing condition

together with the expression for qDi given by equation (3.1), and rewriting service

quality in terms of the load supplied (i.e., qSi = ki − si), we get

ki − si = qSi = qDi = αi − βiipi +
∑
j 6=i

βijpj + λiisi −
∑
j 6=i

λijsj (3.2)

For load to be balanced for each firm, equation (3.2) must hold simultaneously

for all firms. Define the following vectors for the capacities, service qualities, and

prices of each firm, and the following vector and matrices of parameters:

K ≡


k1
k2
...
kn

 , S ≡

s1
s2
...
sn

 , P ≡

p1
p2
...
pn



A ≡


α1

α2
...
αn

 , B ≡


β11 −β12 · · · −β1n
−β21 β22 · · · −β2n

...
...

. . .
...

−βn1 −βn2 · · · βnn

 , L ≡


λ11 −λ12 · · · −λ1n
−λ21 λ22 · · · −λ2n

...
...

. . .
...

−λn1 −λn2 · · · λnn


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Using these, the system of n equations made up of equation (3.2) for each firm can

be written as follows

K − S = A−BP + LS (3.3)

With each firm’s demand given by equation (3.1), where each firm’s demand

depends on its own service quality and the service quality of the rival firms, when

load is balanced for each firm, each firm’s service quality is given by

Ŝ ≡


ŝ1
ŝ2
...
ŝn

 = (I + L)−1(K − A+BP ) (3.4)

where I is the identity matrix.

Thus, for each firm, demand depends on its own service quality and the service

quality of other firms, and its own service quality and the service quality of other firms

depends on each firm’s demand. Accordingly, firm i’s load-balanced service quality

is a function of the price and capacity of each firm: ŝi(P,K). Substituting this in for

the service quality in equation (3.1), firm i’s load-balanced demand function is

q̂i(pi, p−i, ki, k−i) = αi−βiipi+
∑
j 6=i

βijpj+λiiŝi(pi, p−i, ki, k−i)−
∑
j 6=i

λij ŝj(pi, p−i, ki, k−i)

(3.5)

Equation (3.5) gives firm i’s demand when load is balanced for each firm.

Given this load-balanced demand function, and letting ci denote firm i’s marginal

cost, firm i chooses its price in order to maximize profits, solving

max
pi

(pi − ci) q̂i(pi, p−i, ki, k−i) (3.6)
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The first order condition for firm i is

q̂i(pi, p−i, ki, k−i) + (pi − ci)
∂q̂i(pi, p−i, ki, k−i)

∂pi
= 0 (3.7)

where

∂q̂i(pi, p−i, ki, k−i)

∂pi
= −βii + λii

∂ŝi(pi, p−i, ki, k−i)

∂pi
−
∑
j 6=i

λij
∂ŝj(pi, p−i, ki, k−i)

∂pi

Equilibrium prices are found by solving the system of first order conditions for each

firm. Note that firm i’s first order condition can be rewritten as an inverse elasticity

pricing rule:

pi − ci
pi

= − q̂i(pi, p−i, ki, k−i)

pi

(
∂q̂i(pi,p−i,ki,k−i)

∂pi

) = − 1

εi
(3.8)

3.2.1 Optimal Capacities

The discussion in the preceding section assumes that each firm capacity is given. In

this section we will examine the optimal choice of capacity. Given the capacities and

prices of rival firms, and given its own capacity, ki, firm i’s optimal price is given by

equation (3.8). If we denote this optimal price by p∗i (ki, k−i) and let Ci(ki) be the

cost of capacity, firm i chooses its capacity to solve

max
ki

(p∗i (ki, k−i)− ci) q̂i(p∗i (ki, k−i), p∗−i(ki, k−i), ki, k−i)− Ci(ki) (3.9)
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Firm i’s optimal capacity is given by the solution to the first order condition

(omitting the arguments of q̂i(p
∗
i (ki, k−i), p

∗
−i(ki, k−i), ki, k−i) and p∗i (ki, k−i))

(
∂p∗i
∂ki
− ci

)
q̂i + (p∗i − ci)

∂q̂i
∂ki

=
∂Ci(ki)

∂ki
(3.10)

Equilibrium capacities are obtained by solving the system of first order condi-

tions for each firm. Then equilibrium prices are obtained by evaluating p∗i (ki, k−i) at

the equilibrium capacities. Thus the decisions of firms can be viewed as having two

stages, with capacities selected in the first stage and prices selected in the second.

Our focus will be on equilibrium outcomes of the second stage of the model.

Decisions about capacity are made over a longer time period than decisions about

prices. Once decisions about changes to capacity are made, it can take firms sub-

stantial periods of time to implement those changes. For example, a firm may decide

to deploy more cell towers to increase the capacity of its network. However, once

this decision has been made, locations for the towers must be determined and rights

to those locations obtained from what can be numerous governmental agencies,1 and

only then can the towers be constructed and integrated into the firm’s network.

Similarly, a firm that wishes to increase its capacity by increasing its spectrum

holdings also faces delays and potential obstacles. In the United States, the use of

spectrum is regulated by the FCC. Spectrum is a finite resource. The vast majority

of all spectrum is currently put to some form of use. Thus, the most common way

for firms to obtain additional spectrum is to acquire it from other spectrum holders

(who may or may not be rival firms). These transfers of spectrum require approval

1On the federal level, approval is required from the FCC and, depending on the location and
height of the structure, the Federal Aviation Administration. In addition, approval must also be
obtained from some combination of state, county, and local governments.
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by the FCC, a process that can can take some time and does not always end with

approval being given.

Occasionally the FCC chooses to change the use of a spectrum band and

new spectrum becomes available for firms to use as part of their wireless networks.

For example, in the late 2000s, television broadcasting was switched from analog

to digital signals, making available spectrum in the 700 MHz band. In 2008, the

FCC auctioned spectrum in the 700 MHz band for use by mobile wireless service

providers.2 Overall, new spectrum becomes available infrequently, and only in large

blocks. Consequently, while firms might be able to formulate first order conditions

similar to equation (3.10) and determine their optimal capacity k∗i , in practice it is

often not possible to implement exactly k∗i . Thus, an examination of how different

allocations of capacity affect equilibrium in the wireless market is of interest.

3.2.2 Two Firm Example

In the next section we will calibrate the model using data from the wireless industry

and examine the effects of changes in capacity on second stage equilibrium outcomes

such as prices, quantities, and service qualities. First, it is useful to examine a

symmetric, two firm example in order to develop intuition for the effects of a firm in-

creasing its capacity. With this in mind, suppose that c1 = c2 = 1 and the parameters

are

A =

[
10
10

]
, B =

[
8 −4
−4 8

]
, L = ρB =

[
ρ8 −ρ4
−ρ4 ρ8

]
The new parameter, ρ, is the relative importance customers place on price

compared to service quality. When ρ = 1, customers care equally about price and

2For a discussion of the 700 MHz band, see http://www.fcc.gov/encyclopedia/

700-mhz-spectrum.
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service quality, when ρ < 1, customers care relatively more about price than service

quality, and when ρ > 1, customers care relatively more about service quality than

price.

Using these parameter values, we can solve the firms’ second stage first order

conditions, as given by equation (3.7), to find the equilibrium price for each firm,

given capacities ki and kj for i, j ∈ {1, 2}, i 6= j. For ρ = 1, the equilibrium price of

firm i is given by

p∗i (ki, kj) = 0.4994ki − 0.0179kj + 1.7222 (3.11)

Given this expression for the equilibrium price of each firm, p∗i (ki, kj), we can

then solve for the equilibrium quantities and service qualities as given by equations

(3.5) and (3.4). The resulting equilibrium price, output, and service quality for firm

i are

q̂∗i (ki, kj) = 0.4302ki − 0.0154kj + 0.6222 (3.12)

ŝ∗i (ki, kj) = 0.5698ki + 0.0154kj − 0.6222 (3.13)

To develop intuition for how changes in capacity affect each firm, it is useful to

examine how changes in ki and kj affect firm i’s price, quantity, and service quality for

different values of ρ. Table 3.1 shows the coefficients on ki and kj in the function that

gives firm i’s equilibrium price (p∗i (ki, kj)), quantity (q̂∗i (ki, kj)), and service quality

(ŝ∗i (ki, kj)) for ρ = 0.75, ρ = 1, and ρ = 1.25.

Holding everything else constant, firm i’s equilibrium price, quantity, and ser-

vice quality are all increasing in its capacity. However, the size of the effect of an

increase in capacity on price, quantity, and service quality depends on the relative
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Table 3.1: Effects of Capacities on Firm i

Price Quantity Quality
ρ ki kj ki kj ki kj

0.75 0.3742 -0.0171 0.4116 -0.0188 0.5884 0.0188
1.00 0.4994 -0.0179 0.4302 -0.0154 0.5698 0.0154
1.25 0.6245 -0.0184 0.4423 -0.0130 0.5577 0.0130

Table 3.1: Coefficients on ki and kj in firm i’s second stage equilibrium price, load-
balanced demand, and load-balanced service quality functions. Note that for ρ = 1,
these coefficients correspond with equations (3.11) through (3.13).

importance of price and service quality for customers, as measured by ρ. As ρ in-

creases, the influence of capacity on price and output increases, but the influence of

capacity on service quality decreases. Recall that an increase in ρ is an increase in

the relative importance of service quality for customers compared to price. As ser-

vice quality becomes more important for customers, the more an increase in service

quality increases demand and the more the firm is able to increase its price. This is

why the coefficient on ki is increasing with ρ for quantity and, in particular, for price.

Now consider the coefficient on ki for firm i’s service quality. The coefficients

are positive because an increase in capacity increases service quality. However, the

magnitude is decreasing as ρ increases. As service quality becomes relatively more

important for customers, demand grows by more as capacity, and in turn, service

quality, increases. However, an increase in demand has the opposite effect on service

quality, decreasing it, which reverses some of the increase in service quality obtained

by increasing capacity. Thus, while an increase in capacity increases service quality,

it does so at a decreasing rate as service quality becomes relatively more important

for customers.

Comparing the coefficients on ki across price, quantity, and quality, for a

given value of ρ, we notice several things. First, the effect of capacity on quality is

larger than the effect of capacity on quantity because some of the increase in demand

141



resulting from the increase in service quality is offset by the fact that the firm also

increases its price. Second, the effect of an increase in capacity on price is larger

than the effect on quality only when customers care more about service quality than

price. The more customers care about service quality, the more the firm is able to

increase its price as it increases service quality. When customers care relatively less

about service quality, the same increase in service quality does not allow the firm to

increase price by as much. At the same time, because the firm increases price more

when customers care more about service quality, the larger the offsetting decrease

in demand resulting from the price increase, and the larger the offsetting decrease

in demand, the larger the increase in service quality resulting from the change in

capacity.

Let us now consider the effects of an increase in kj, the capacity of the rival

firm, on firm i’s price, quantity, and quality. As firm j increases its capacity, and

thus its service quality, some customers leave firm i and go to firm j. This causes a

decrease in firm i’s quantity, but an increase in firm i’s service quality.

The more customers care about service quality, the more firm i is forced to

decrease its price when the rival firm increases its service quality. Thus, as ρ increases,

the effect of an increase in kj on firm i’s price increases in magnitude. Conversely, the

higher is ρ, the lower is the effect of an increase in kj on firm i’s quality and quantity.

Recall that as a firm increases its capacity, its quality increases, but at a decreasing

rate as ρ increases. Thus, the higher is ρ, the less of an effect an increase in kj has on

firm j’s service quality, prompting relatively fewer customers to leave firm i for firm

j. This effect is strengthened by the fact that the higher is ρ, when firm j increases

its capacity, the more firm j increases its price and the more firm i decreases its price.

Overall, the effect of a firm’s own capacity on its price, quantity, and quality,

are much larger than the effects of a change in the rival firm’s capacity. In the next
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section, these effects will be explored in a model calibrated to the wireless industry.

3.3 Calibration

In this section, the model presented in section 3.2 will be calibrated to data from the

wireless industry. We will first discuss the data used in the calibrations before turning

to the details of the calibration process. Then, in the next section the calibrated model

will be used to examine the effects of alternative allocations of spectrum.

3.3.1 Data

We will focus on the four firms that provide wireless service on a national basis

in the United States: AT&T, Sprint Nextel, T-Mobile, and Verizon Wireless. The

model will be calibrated to match the quantities, prices, and capacities found in the

data. All data used in the calibrations are available from the fourteenth, fifteenth,

and sixteenth annual “Mobile Wireless Competition Reports” of the FCC,3 covering

approximately the years 2009 through 2011. The data are summarized in Table 3.2.

The model presented in the previous section assumes that quantity is measured

at the level of a customer, and does not go in to detail about the usage patterns of

specific customers. Generally, a customer selects a plan from a menu of available

options offered by the firm, uses the firm’s network for talk, text, and data, and

then pays a bill at the end of the month, potentially including fees for exceeding the

allotment of minutes, texts, or data that are included in the chosen plan. As these

overage fees are typically quite high, customers generally choose a plan that allows

them to avoid paying any overage fees, making the cost of marginal use effectively

zero. Customers typically follow usage patterns that may vary based on location and

3See http://www.fcc.gov/reports/mobile-wireless-competition-report-16th-annual.
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demographics (e.g., in a college town, in an urban businesses district), but that are

otherwise fairly predictable. Accordingly, with the exception of a minority of outliers,

the effect of an additional customer on a firm’s service quality vis-à-vis the capacity

of the firm’s network is reasonably predictable, so while focusing on the customer as

the applicable unit of measure is clearly an abstraction, it should not be one that

substantively affects the results. Thus, quantity will be measured in customers.

Corresponding with a customer being the unit of measure for output, the price

will be the monthly price of a standard plan that includes approximately 450 minutes

with unlimited text messaging and data. While all of the firms offer various other

plans, this combination was offered by all firms during the period considered. The

only exceptions were that T-Mobile offered 300 minutes in 2009 and 500 in 2010 and

2011, AT&T limited data usage to 2GB in 2011, and “anytime” minutes started at

7 P.M. instead of 9 P.M. for Sprint. Plans that offered different features were fairly

common across the firms and were generally matched with similar discrete changes

in plan price. Selecting a different, but comparable across the firms, plan as the basis

of the price did not substantively change the results.

The measure of capacity used for a firm was the firm’s population-weighted

“MHz-POPs” of spectrum across all frequency bands. A firm having one megahertz

(MHz) of spectrum refers to the firm having the right to use radio frequencies that

span one million hertz at a particular frequency, e.g., from 700 to 701 MHz. One

“POP” refers to one person. The measure “MHz-POPs” refers to the total MHz

of spectrum a firm has the right to use in a geographic region, multiplied by the

population of that region. A firm’s population-weighted MHz-POPs is the firm’s

average MHz-POPs, weighted by population.

While population-weighted MHz-POPs is clearly an imperfect measure of ca-

pacity, it does serve as a good proxy. It is not possible to offer wireless service without
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Table 3.2: Data Used For Calibrations

Year AT&T Sprint Nextel T-Mobile Verizon

2009 85,120 48,133 33,790 85,445
Quantity 2010 95,536 49,910 33,734 87,535

2011 103,247 55,021 33,185 92,167
2009 $70.00 $70.00 $60.00 $80.00

Price 2010 $85.00 $70.00 $80.00 $90.00
2011 $85.00 $80.00 $80.00 $90.00
2009 82.0 52.5 50.4 87.7

Spectrum 2010 76.8 51.2 47.7 83.4
2011 88.3 53.0 57.0 107.3

Table 3.2: Data from FCC’s 14th,15th, and 16th Mobile Wireless Competition Re-
ports. Quantity is the number of subscribers, measured in thousands. Price is the
monthly price of a base plan with approximately 450 minutes and unlimited text
and data. Spectrum is the nationwide population weighted MHz-POPs across all
frequency bands.

access to spectrum. All else equal, the more spectrum a firm is able to use, the higher

its capacity to offer service and the higher the potential quality of that service. The

main limitations to this measure of capacity are that it ignores differences in frequen-

cies and differences in technologies. Spectrum ranging from around 700 MHz up to

around 2500 MHz4 is currently used for mobile wireless communications. However,

the properties of spectrum vary across this range of frequencies, including differences

in the ability to transmit signals through adverse climates and topographies and over

long ranges, and to penetrate buildings, automobiles, and other structures. While

some frequency bands are generally viewed as having more favorable characteristics

than other frequencies for offering mobile wireless service, some also argue that it is

optimal to possess complementary frequencies in both lower and higher ranges. For

our purposes here, we will ignore any differences in frequencies and simply consider

42500 MHz is also commonly referred to as 2.5 GHz.
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the total spectrum holdings of each firm.

Differences in technology also affect capacity and service quality for a given

amount and frequency of spectrum. Several main technologies emerged in the second

generation of mobile wireless communication following the original analog cellular

technology, including CDMA (Code Division Multiple Access), TDMA (Time Divi-

sion Multiple Access), GSM (Global System for Mobile Communications), and iDen

(integrated Digital Enhanced Network). These “2G” technologies differ mostly in the

method by which a signal is divided to allow for simultaneous use by multiple devices,

e.g., division by “time”, division by “code.” Over time, various additional standards

were developed to squeeze addition use out of the airwaves, progressing from 2G to

2.5G, 3G, 3.5G, and most recently, 4G. While the various abbreviations (e.g., GPRS,

WCDMA, EDGE, 1xRTT, EV-DO, LTE) are likely both familiar and foreign to most

customers, the common theme is that over time, firms have been able to transmit

signals of increasing quality and reliability, at higher speeds, and to more customers

using the available spectrum.

Regardless of the technology deployed by a firm to create the signals to be

sent between devices and the frequencies bands used to transmit them, firms require

spectrum to provide mobile wireless communications. The more spectrum held by a

firm, the higher the firm’s capacity to serve customers and the higher its potential

service quality, making MHz-POPs a reasonable proxy for a firm’s overall capacity.

Using spectrum as the measure of capacity is also of interest because the allocation

of spectrum is partially determined by public policy. The FCC controls the use of

spectrum, and when it decides to change how certain frequencies are used, it controls

the mechanism by which the spectrum is allocated. For example, when reallocating

spectrum in the 700 MHz band from use in television transmission to mobile wireless

communication, it designed and conducted the auctions used to allocate spectrum to
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its new holders. Thus, examining the effects of different allocations of spectrum sheds

some light on the successes and failures of these allocation mechanisms.

3.3.2 Model Calibration

In order to calibrate the model to data from the wireless industry, parameters will be

chosen to match the equilibrium quantities and prices observed in the data to those

predicted by the model when the capacity of each firm is the capacity observed in the

data. The load-balanced demand function,

q̂i(P,K) = αi − βii [pi − ρŝi(P,K)] +
4∑

j=1,j 6=i

βij [pj − ρŝj(P,K)] (3.14)

gives the quantity for firm i when prices are given by the vector P ≡ (p1, p2, p3, p4), ca-

pacities are given by the vector K ≡ (k1, k2, k3, k4), and ŝi(P,K) is the load-balanced

service quality of firm i at P and K, given by equation (3.4). In addition to the load-

balanced demand function, we will also make use of each firm’s first order condition

with respect to price

q̂i(P,K) + (pi − ci)
∂q̂i(P,K)

∂pi
= 0 (3.15)

The load-balanced demand function specified by equation (3.14) allows for

consumer sensitivity to price and service quality to vary by firm, but assumes that

sensitivity to service quality is a fixed fraction of sensitivity to price. The parameter

ρ specifies this fixed fraction, giving the relative importance for customers of price

compared to service quality. We will consider a range of values for ρ. Values of

remaining parameters will be chosen to match the prices, quantities, and capacities

observed in the data. The model is calibrated separately for each value of ρ.
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For a value of ρ, the model is calibrated as follows. First, for a given vector

of prices observed in the data, the vector of marginal costs is determined assuming

a constant markup of forty percent. Second, each firm’s first order condition with

respect to its price is used to determine the betas, assuming that the first order con-

ditions are satisfied at the equilibrium prices, quantities, and capacities observed in

the data. Each firm’s first order condition can be written in the form of an inverse

elasticity pricing rule,5 which, when combined with the assumed markup, yields the

firm’s own-price elasticity at the equilibrium price observed in the data. This, when

combined with the equilibrium quantity observed in the data, provides the diagonal

elements of the matrix of betas, B. The off-diagonal elements of B are then deter-

mined using diversion ratios calculated from the quantity market shares observed in

the data. Given the B matrix, the matrix of lambdas is given by L ≡ ρB for the cur-

rent value of ρ. Last, the vector of alphas is chosen such that the quantity predicted

by the load-balanced demand function, when evaluated at the equilibrium prices and

capacities observed in the data and using the matrices B and L just determined,

matches the quantities observed in the data.

When the model is fully calibrated, solving the system of first order con-

ditions evaluated at the observed capacities yields the observed equilibrium prices,

and evaluating the load-balanced demand function for each firm at the equilibrium

prices and observed capacities yields the observed equilibrium quantities. Using the

load-balanced demand function and the firms’ profit functions, it is also possible to

calculate firm profits, as well as consumer and total surplus. Note that firm profits

are calculated without any costs associated with capacity.

In order to evaluate the effects of alternative allocations of spectrum, this post-

calibration process is repeated, except using counterfactual capacities rather than the

5See equation (3.8).
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actual capacities observed in the data. That is, using the parameters calibrated

to the actual capacities, the solution to the system of first order conditions evalu-

ated at counterfactual capacities yields the counterfactual equilibrium prices. Then,

also using the parameters calibrated to the actual capacities, the load-balanced de-

mand function for each firm is evaluated at the counterfactual equilibrium prices and

counterfactual capacities, yielding the counterfactual equilibrium quantities. The

load-balanced demand function and the firms’ profit functions, evaluated using the

parameters calibrated to the actual capacities but with the counterfactual capacities

and corresponding counterfactual equilibrium prices and quantities, can be used to

calculate counterfactual firm profits, consumer surplus, and total surplus.

3.4 Effects of Spectrum Holdings

In this section the model calibrated in the manner discussed in the previous section

will be used to simulate the effects of alternative allocations of spectrum. Three main

counterfactual scenarios will be explored. In the first, one firm is given additional

spectrum, holding constant the spectrum of the remaining firms. In the second,

the total quantity of spectrum is held constant, but it is reallocated equally among

the four firms. In the third, spectrum is transfered from one firm to another, holding

constant the spectrum of the other two firms and the total quantity of spectrum. Each

counterfactual allocation leads to similar conclusions about the effects of spectrum

on equilibrium in the wireless market.

3.4.1 Additional Spectrum for One Firm

In this section we will consider the effects of giving one firm additional spectrum,

holding constant the spectrum of the remaining firms. We will examine in detail two

scenarios, one with a larger firm and one with a smaller firm being the one to increase
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its spectrum holdings. Let us first consider AT&T, one of the two largest firms. We

will then consider Sprint, one of the two smaller firms.

Suppose AT&T receives 10% additional spectrum, holding constant the spec-

trum of the other firms. Table 3.3 shows counterfactual equilibrium quantities for

different values of ρ for this counterfactuall allocation of spectrum. When AT&T

receives additional spectrum, its quantity increases and the quantities of the other

firms decrease. Because the spectrum of the other firms has not changed, they each

have the same capacity but now have fewer customers using their networks, so their

service qualities increase. AT&T now has more capacity, but it also has more load

on its network. However, the increase in capacity exceeds the increase in quantity, so

AT&T’s quality increases as well. The effect on total quantity is small, but positive.

Now consider Table 3.4, which shows the effect on prices of AT&T’s increase in

spectrum. AT&T’s additional spectrum increases its service quality, which allows it

to increase its price. In response, the other firms lower their prices. Overall, because

AT&T starts as one of the largest firms and further increases its quantity, the quantity

weighted average price increases.

Suppose instead that Sprint receives 10% additional spectrum, holding con-

stant the spectrum of the other firms. Table 3.5 shows the effect on equilibrium

quantities of this allocation of spectrum. Just as was the case when it was Verizon

that received the additional spectrum, the firm that receives the additional spectrum

has a higher quantity, while the remaining firms have lower quantities. Sprint’s quan-

tity increases, but not by as much as its increase in spectrum, resulting in an increase

in service quality. The remaining firms have the same capacity with which to serve

a now lower quantity of customers, meaning that their service qualities increase as

well. Quantity increases overall, though only slightly.

Table 3.6 shows the effect on equilibrium prices. Sprint’s higher service quality
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allows it to increase its price, and in order to compete with Sprint, the other firms

lower their prices. Sprint is one of the smaller firms, even after its increase in quantity.

Thus, the effect of the other firms decreasing their prices dominates the effect of Sprint

raising its price, resulting in a lower quantity weighted average price.

3.4.2 Equalizing Spectrum Holdings

In this section we will consider the effects of redistributing total spectrum

holdings equally among the firms, holding constant the total quantity of spectrum.

The intuition developed in the previous section in which the spectrum holdings of

all firms except one were held constant should prove useful in this more complex

scenario.

Initially, the two larger firms, AT&T and Verizon, hold larger shares of total

spectrum than do Sprint and T-Mobile. Consequently, when the total quantity of

spectrum is divided equally among all four firms, Sprint and T-Mobile receive addi-

tional spectrum while AT&T and Verizon experience a reduction in their spectrum

holdings. In the previous section we saw how when a firm increases its spectrum

holdings, it increases in quantity and its price. In response, the other firms decreased

their prices and had lower quantities. This pattern will continue to hold here.

Consider first the effect of equalizing spectrum holdings on equilibrium quan-

tities. As shown in Table 3.7, Sprint and T-Mobile, the two firms who increase their

spectrum holdings as a result of the equalization, have higher quantities. AT&T and

Verizon, the two firms who now hold less spectrum, have lower quantities. Cumula-

tively, total quantity decreases by around three quarters of one percent.

The effect of equalizing spectrum on the price of each firm follows a similar

pattern to the effect on quantities. Table 3.8 shows the counterfactual equilibrium

prices following the redistribution of spectrum. Sprint and T-Mobile, the beneficiaries

151



−15.0%

−10.0%

−5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ρ

AT&T

Sprint

T-Mobile

Verizon

Qty Weighted Avg

%
C

h
an

ge
P

ri
ce

Figure 3.1: Percent change of equilibrium price for each firm and the quantity
weighted average when all firms receive an equal share of total spectrum as a function
of ρ

of the spectrum reallocation, both increase their price, while AT&T and Verizon both

decrease theirs. The magnitude of the price changes are largest for Sprint and T-

Mobile. Both firms increase their price to a greater extent, both in absolute and

percentage terms, compared to the amount by which AT&T and Verizon lower their

prices.

The overall effect on the quantity weighted average price depends on cus-

tomers’ sensitivity to change in service quality relative to price. This can be seen in

Figure 3.1. When ρ = 1, customers care as much about service quality as they do

about price. Thus, when ρ is closer to 1, Sprint and T-Mobile are able to increase

their price to a greater extent than when ρ is closer to zero. When ρ is close to

one, Sprint and T-Mobile both increase their price by more than AT&T and Verizon
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Figure 3.2: Change in equilibrium profits in $Billions when all firms receive an equal
share of total spectrum as a function of ρ

decrease theirs, pulling up the quantity weighted average price. However, for lower

values of ρ, the quantity weighted average price decreases. While AT&T and Verizon

do not decrease their price by as much as Sprint and T-Mobile increase theirs, they

have sufficiently higher quantities to pull the quantity weighted average price down.

A similar pattern can be seen in Figure 3.2 for firm profits. The reallocation of

spectrum benefits Sprint and T-Mobile, who both have higher profits in equilibrium.

AT&T and Verizon, who both lose spectrum, have lower profits in equilibrium. For

low values of ρ, total profits decrease. The more weight customers give to service

quality relative to price, the more profitable the additional spectrum is for Sprint

and T-Mobile. As ρ becomes closer to one, the profit gains for Sprint and T-Mobile

outweigh the decrease in profits for AT&T and Verizon, resulting in an overall increase
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Figure 3.3: Change in equilibrium profits, consumer surplus, and total surplus (in
$Millions) when all firms receive an equal share of total spectrum as a function of ρ

Figure 3.3 shows the welfare effects of equalizing spectrum holdings. For lower

values of ρ, profits and consumer surplus decrease. However, when ρ becomes high

enough, profits and consumer surplus begin to increase. As ρ approaches one, where

customers care equally about service quality and price, welfare is higher as a result of

the equalization of spectrum. However, this increase in welfare is far from a Pareto

improvement, as some firms and customers lose while others gain.

3.4.3 Transfer of Spectrum Between Two Firms

When the proposed merger between AT&T and T-Mobile failed to succeed,

AT&T transfered spectrum to T-Mobile in accordance with the breakup terms of

the deal. In this section, we will consider the effects of AT&T transferring 10%

of its spectrum to T-Mobile. The spectrum holdings of Sprint and Verizon remain

unchanged.

The effects of this spectrum transfer from AT&T to T-Mobile on equilibrium
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Figure 3.4: Change in equilibrium profits in $Billions when AT&T transfers 10% of
its spectrum to T-Mobile as a function of ρ

quantities is shown in Table 3.10. T-Mobile is the largest beneficiary, increasing its

quantity by the most. Both Sprint and Verizon also increase their quantities by

similar percentages. AT&T experiences a significant decrease in quantity.

In order to help lessen this decrease in quantity, AT&T lowers its price, as

seen in Table 3.9. Sprint and Verizon both increase their prices slightly. T-Mobile

increases its price by more, particularly when customers give more weight to service

quality.

The effects of this spectrum transfer on firm profits is shown in Figure 3.4. As

expected, AT&T suffers a large decrease in profits, while T-Mobile gains substantially.
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Figure 3.5: Change in equilibrium profit, consumer surplus, and total surplus (in
$Millions) when AT&T transfers 10% of its spectrum to T-Mobile as a function of ρ

Verizon and Sprint also gain, each having slightly higher prices and quantities in the

new equilibrium. Total profits, however, decline. The effects on consumer and total

surplus are shown in Figure 3.5. Welfare decreases more steeply the lower is ρ, starting

to level off as ρ approaches one. The decrease in total welfare is due to the large size

of AT&T. If the transfer were to go in the other direction, the model would predict

an increase in total welfare driven by a large increase in profits for AT&T. However,

if this were to cause a reduction in T-Mobile’s profits to the extent that T-Mobile

was forced to leave the industry, this would not be captured by the present model.

3.5 Robustness

Numerous checks of the robustness of the model were conducted. The results pre-

sented in the previous section used data from a specific year, as noted. Identical
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simulations using data from other years were also conducted, with similar results.

Simulations were also repeated using alternative values of the assumed markup over

marginal cost, also yielding similar results.

The model was also calibrated to different measures of the price. The price

for each firm used in the results discussed above was for a plan with 450 minutes,

unlimited text messaging, and unlimited data, with the few exceptions previously

noted. Simulations using the price of the following plans were also conducted

1. 450 minutes with text messages but no data

2. 950 minutes with text messages and data

3. 950 minutes with text messages but no data

4. unlimited minutes, text messages, and data

In addition to using the price of these alternative plans, average revenue per

unit (ARPU), a common proxy for price used in studies of the wireless industry,

was also used as the measure of price. In each case, the qualitative results remain

unchanged.

As an additional robustness check on the results presented in the previous sec-

tion, counterfactual allocations in which one firm was given 5% additional spectrum

and 25% additional spectrum were also examined. Results with these counterfac-

tual spectrum allocations were similar to those found when one firm was given 10%

additional spectrum.
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3.6 Conclusion

In this paper, a theoretical model similar to Pinto and Sibley (2013) was calibrated

to data from the wireless industry. Using the calibrated model, simulations under

various counterfactual allocations of spectrum were conducted in order to examine

how a change in one firm’s spectrum holdings affects other firms in equilibrium. If

one firm receives additional spectrum, holding constant the spectrum of the other

firms, that firm serves a higher quantity of customers and has a higher equilibrium

price. The other firms lose customers and lower their prices. Service quality is higher

at all firms.

Next, the effects of equalizing total spectrum holdings was simulated. When

spectrum holdings are reallocated such that each firm receives an equal share of total

spectrum, firms that start with a higher share of total spectrum lose spectrum to

firms who start with a smaller share of spectrum. The firms that gain spectrum have

higher service quality, attracting customers and allowing them to set higher prices

in equilibrium. The firms that lose spectrum lower their prices. The welfare effects

of the equalization of spectrum holdings depend on the degree to which customers

care about service quality relative to price. If customers care relatively less about

service quality, total welfare decreases. Only if customers care almost as much about

service quality as they do about price is welfare increased by the equal distribution

of spectrum.

Last, the transfer of spectrum from one firm to another was considered. When

a larger firm with greater spectrum holdings transfers spectrum to a smaller firm that

holds less spectrum, the firm that loses spectrum serves fewer customers, lowers its

price, and has lower profits. The other firms, both the firm that receives the additional

spectrum as well as the remaining firms whose spectrum remains unchanged, serve

more customers, set higher prices, and have higher profits. The gains are largest for
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the firm that receives the additional spectrum. Total profits fall because the losses

for the firm that loses spectrum outweigh the gains for the other firms.

In general, the effects of different allocations of spectrum depend on customer

preferences over price and service quality. In this paper, customer sensitivity to

price was calibrated to industry data, and then a range of possible preferences for

service quality were considered. In future work, an explicit examination of customer

preferences over both price and service quality would be valuable in examining the

effects of spectrum policy.
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Quantities When AT&T Receives 10% More Spectrum

ρ AT&T Sprint T-Mobile Verizon Total

Counterfactual Quantities
0 95,536 49,910 33,734 87,535 266,715
0.25 97,713 49,273 33,369 86,592 266,947
0.50 99,889 48,635 33,005 85,650 267,179
0.75 102,066 47,998 32,640 84,707 267,411
1.00 104,243 47,361 32,275 83,764 267,643

Change (Counterfactual − Actual)
0 0 0 0 0 0
0.25 2,177 -637 -365 -943 232
0.50 4,353 -1,275 -729 -1,885 464
0.75 6,530 -1,912 -1,094 -2,828 696
1.00 8,707 -2,549 -1,459 -3,771 928

Percent Change
0 0% 0% 0% 0% 0%
0.25 2.28% -1.28% -1.08% -1.08% 0.09%
0.50 4.56% -2.55% -2.16% -2.15% 0.17%
0.75 6.84% -3.83% -3.24% -3.23% 0.26%
1.00 9.11% -5.11% -4.33% -4.31% 0.35%

Table 3.3: The top section has the counterfactual equilibrium quantities for each firm
when AT&T receives 10% more spectrum, holding the spectrum of the other firms
constant. The counterfactual equilibrium quantities equal the actual equilibrium
quantities for ρ = 0. The middle section has the absolute change when moving from
the actual equilibrium to the counterfactual equilibrium. The bottom section shows
the percent change. Values shown use data from 2010. All quantities are in thousands.
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Prices When AT&T Receives 10% More Spectrum

ρ AT&T Sprint T-Mobile Verizon WgtAvg

Counterfactual Prices
0 $85.00 $70.00 $80.00 $90.00 $83.20
0.25 $85.77 $69.64 $79.65 $89.61 $83.27
0.50 $86.55 $69.28 $79.31 $89.22 $83.37
0.75 $87.32 $68.93 $78.96 $88.84 $83.48
1.00 $88.10 $68.57 $78.62 $88.45 $83.61

Change (Counterfactual − Actual)
0 $0 $0 $0 $0 $0
0.25 $0.77 -$0.36 -$0.35 -$0.39 $0.07
0.50 $1.55 -$0.72 -$0.69 -$0.78 $0.17
0.75 $2.32 -$1.07 -$1.04 -$1.16 $0.28
1.00 $3.10 -$1.43 -$1.38 -$1.55 $0.41

Percent Change
0 0% 0% 0% 0% 0%
0.25 0.91% -0.51% -0.44% -0.43% 0.09%
0.50 1.82% -1.03% -0.86% -0.87% 0.20%
0.75 2.73% -1.53% -1.30% -1.29% 0.33%
1.00 3.65% -2.04% -1.72% -1.72% 0.49%

Table 3.4: The top section has the counterfactual equilibrium prices for each firm, as
well as the quantity-weighted average price (“WgtAvg”), when AT&T receives 10%
more spectrum, holding the spectrum of the other firms constant. The counterfactual
equilibrium prices equal the actual equilibrium prices for ρ = 0. The middle section
has the absolute change when moving from the actual equilibrium to the counterfac-
tual equilibrium. The bottom section shows the percent change. Values shown use
data from 2010.
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Quantities When Sprint Receives 10% More Spectrum

ρ AT&T Sprint T-Mobile Verizon Total

Counterfactual Quantities
0 95,536 49,910 33,734 87,535 266,715
0.25 95,093 50,914 33,588 87,158 266,753
0.50 94,650 51,918 33,443 86,782 266,793
0.75 94,207 52,922 33,297 86,405 266,831
1.00 93,763 53,926 33,151 86,029 266,869

Change (Counterfactual − Actual)
0 0 0 0 0 0
0.25 -443 1,004 -146 -377 38
0.50 -886 2,008 -291 -753 78
0.75 -1,329 3,012 -437 -1,130 116
1.00 -1,773 4,016 -583 -1,506 154

Percent Change
0 0% 0% 0% 0% 0%
0.25 -0.46% 2.01% -0.43% -0.43% 0.01%
0.50 -0.93% 4.02% -0.86% -0.86% 0.03%
0.75 -1.39% 6.03% -1.30% -1.29% 0.04%
1.00 -1.86% 8.05% -1.73% -1.72% 0.06%

Table 3.5: The top section has the counterfactual equilibrium quantities for each firm
when Sprint receives 10% more spectrum, holding the spectrum of the other firms
constant. The counterfactual equilibrium quantities equal the actual equilibrium
quantities for ρ = 0. The middle section has the absolute change when moving from
the actual equilibrium to the counterfactual equilibrium. The bottom section shows
the percent change. Values shown use data from 2010. All quantities are in thousands.
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Prices When Sprint Receives 10% More Spectrum

ρ AT&T Sprint T-Mobile Verizon WgtAvg

Counterfactual Prices
0 $85.00 $70.00 $80.00 $90.00 $83.20
0.25 $84.84 $70.56 $79.86 $89.85 $83.12
0.50 $84.68 $71.13 $79.72 $89.69 $83.05
0.75 $84.53 $71.69 $79.59 $89.54 $82.99
1.00 $84.37 $72.25 $79.45 $89.38 $82.92

Change (Counterfactual − Actual)
0 $0 $0 $0 $0 $0
0.25 -$0.16 $0.56 -$0.14 -$0.15 -$0.08
0.50 -$0.32 $1.13 -$0.28 -$0.31 -$0.15
0.75 -$0.47 $1.69 -$0.41 -$0.46 -$0.21
1.00 -$0.63 $2.25 -$0.55 -$0.62 -$0.28

Percent Change
0 0% 0% 0% 0% 0%
0.25 -0.19% 0.80% -0.18% -0.17% -0.09%
0.50 -0.38% 1.61% -0.35% -0.34% -0.18%
0.75 -0.55% 2.41% -0.51% -0.51% -0.26%
1.00 -0.74% 3.21% -0.69% -0.69% -0.33%

Table 3.6: The top section has the counterfactual equilibrium prices for each firm, as
well as the quantity-weighted average price (“WgtAvg”), when Sprint receives 10%
more spectrum, holding the spectrum of the other firms constant. The counterfactual
equilibrium prices equal the actual equilibrium prices for ρ = 0. The middle section
has the absolute change when moving from the actual equilibrium to the counterfac-
tual equilibrium. The bottom section shows the percent change. Values shown use
data from 2010.
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Quantities With Equal Spectrum

ρ AT&T Sprint T-Mobile Verizon Total

Counterfactual Quantities
0 85,120 48,133 33,790 85,445 252,488
0.25 81,049 53,024 38,070 79,576 251,719
0.50 76,977 57,915 42,350 73,707 250,949
0.75 72,906 62,806 46,630 67,839 250,181
1.00 68,835 67,697 50,910 61,970 249,412

Change (Counterfactual − Actual)
0 0 0 0 0 0
0.25 -4,071 4,891 4,280 -5,869 -769
0.50 -8,143 9,782 8,560 -11,738 -1,539
0.75 -12,214 14,673 12,840 -17,606 -2,307
1.00 -16,285 19,564 17,120 -23,475 -3,076

Percent Change
0 0% 0% 0% 0% 0%
0.25 -4.78% 10.16% 12.67% -6.87% -0.30%
0.50 -9.57% 20.32% 25.33% -13.74% -0.61%
0.75 -14.35% 30.48% 38.00% -20.61% -0.91%
1.00 -19.13% 40.65% 50.67% -27.47% -1.22%

Table 3.7: The top section has the counterfactual equilibrium quantities for each
firm when all firms receive an equal share of total spectrum. The counterfactual
equilibrium quantities equal the actual equilibrium quantities for ρ = 0. The middle
section has the absolute change when moving from the actual equilibrium quantities
to the counterfactual equilibrium quantities. The bottom section shows the percent
change. Values shown use data from 2009. All quantities are thousands.
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Prices With Equal Spectrum

ρ AT&T Sprint T-Mobile Verizon WgtAvg

Counterfactual Prices
0 $70.00 $70.00 $60.00 $80.00 $72.05
0.25 $68.66 $72.85 $63.04 $77.80 $71.58
0.50 $67.32 $75.69 $66.08 $75.60 $71.47
0.75 $65.98 $78.54 $69.12 $73.41 $71.73
1.00 $64.64 $81.38 $72.16 $71.21 $72.35

Change (Counterfactual − Actual)
0 $0 $0 $0 $0 $0
0.25 -$1.34 $2.85 $3.04 -$2.20 -$0.46
0.50 -$2.68 $5.69 $6.08 -$4.40 -$0.57
0.75 -$4.02 $8.54 $9.12 -$6.59 -$0.31
1.00 -$5.36 $11.38 $12.16 -$8.79 $0.31

Percent Change
0 0% 0% 0% 0% 0%
0.25 -1.91% 4.07% 5.07% -2.75% -0.64%
0.50 -3.83% 8.13% 10.13% -5.50% -0.79%
0.75 -5.74% 12.20% 15.20% -8.24% -0.43%
1.00 -7.66% 16.26% 20.27% -10.99% 0.42%

Table 3.8: The top section has the counterfactual equilibrium prices for each firm,
as well as the quantity-weighted average price (“WgtAvg”), when all firms receive
an equal share of total spectrum. The counterfactual equilibrium prices equal the
actual equilibrium prices for ρ = 0. The middle section has the absolute change when
moving from the actual equilibrium prices to the counterfactual equilibrium prices.
The bottom section shows the percent change. Values shown use data from 2009.
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Prices When AT&T Transfers 10% of its Spectrum to T-Mobile

ρ AT&T Sprint T-Mobile Verizon WgtAvg

Counterfactual Prices
0 $85.00 $80.00 $80.00 $90.00 $85.07
0.25 $83.93 $80.26 $81.42 $90.28 $84.99
0.50 $82.87 $80.51 $82.84 $90.55 $84.94
0.75 $81.80 $80.77 $84.25 $90.83 $84.94
1.00 $80.73 $81.02 $85.67 $91.10 $84.98

Change (Counterfactual − Actual)
0 $0 $0 $0 $0 $0
0.25 -$1.07 $0.26 $1.42 $0.28 -$0.08
0.50 -$2.13 $0.51 $2.84 $0.55 -$0.13
0.75 -$3.20 $0.77 $4.25 $0.83 -$0.13
1.00 -$4.27 $1.02 $5.67 $1.10 -$0.09

Percent Change
0 0% 0% 0% 0% 0%
0.25 -1.26% 0.33% 1.78% 0.31% -0.10%
0.50 -2.51% 0.64% 3.55% 0.61% -0.15%
0.75 -3.76% 0.96% 5.31% 0.92% -0.15%
1.00 -5.02% 1.28% 7.09% 1.22% -0.11%

Table 3.9: The top section has the counterfactual equilibrium prices for each firm,
as well as the quantity-weighted average price (“WgtAvg”), when AT&T transfers
10% of its spectrum to T-Mobile. The counterfactual equilibrium prices equal the
actual equilibrium prices for ρ = 0. The middle section has the absolute change when
moving from the actual equilibrium to the counterfactual equilibrium. The bottom
section shows the percent change. Values shown use data from 2011.
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Quantities When AT&T Transfers 10% of its Spectrum to T-Mobile

ρ AT&T Sprint T-Mobile Verizon Total

Counterfactual Quantities
0 103,247 55,021 33,185 92,167 283,620
0.25 100,007 55,461 34,655 92,873 282,996
0.50 96,767 55,901 36,125 93,580 282,373
0.75 93,528 56,341 37,596 94,286 281,751
1.00 90,288 56,781 39,066 94,992 281,127

Change (Counterfactual − Actual)
0 0 0 0 0 0
0.25 -3,240 440 1,470 706 -624
0.50 -6,480 880 2,940 1,413 -1,247
0.75 -9,719 1,320 4,411 2,119 -1,869
1.00 -12,959 1,760 5,881 2,825 -2,493

Percent Change
0 0% 0% 0% 0% 0%
0.25 -3.14% 0.80% 4.43% 0.77% -0.22%
0.50 -6.28% 1.60% 8.86% 1.53% -0.44%
0.75 -9.41% 2.40% 13.29% 2.30% -0.66%
1.00 -12.55% 3.20% 17.72% 3.07% -0.88%

Table 3.10: The top section has the counterfactual equilibrium quantities for each
firm when AT&T transfers 10% of its spectrum to T-Mobile. The counterfactual
equilibrium quantities equal the actual equilibrium quantities for ρ = 0. The middle
section has the absolute change when moving from the actual equilibrium to the
counterfactual equilibrium. The bottom section shows the percent change. Values
shown use data from 2011. All quantities are in thousands.
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