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Estimating a Three-Level Latent Variable Regression Model with 

Cross-Classified Multiple Membership Data 

 

Audrey Josée Leroux, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor: S. Natasha Beretvas 

 

The current study proposed a new model, termed the cross-classified multiple 

membership latent variable regression (CCMM-LVR) model, to be utilized for multiple 

membership data structures (for example, in the presence of student mobility across 

schools) that provides an extension to the three-level latent variable regression model 

(HM3-LVR). The HM3-LVR model is beneficial for testing more flexible, directional 

hypotheses about growth trajectory parameters and handles pure clustering of participants 

within higher-level units. However, the HM3-LVR model involves the assumption that 

students remain in the same cluster (school) throughout the duration of the time period of 

interest. The CCMM-LVR model, on the other hand, appropriately models the participants’ 

changing clusters over time. 

The first purpose of this study was to demonstrate use and interpretation of the 

CCMM-LVR model and its parameters with a large-scale longitudinal dataset that had a 

multiple membership data structure (i.e., student mobility). The impact of ignoring 
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mobility in the real data was investigated by comparing parameter estimates, standard error 

estimates, and model fit indices for the two estimating models (CCMM-LVR and HM3-

LVR). The second purpose of the dissertation was to conduct a simulation study to try to 

understand the source of potential differences between the two estimating models and find 

out which model’s estimates were closer to the truth given the conditions investigated. The 

manipulated conditions in the simulation study included the mobility rate, number of 

clustering units, number of individuals (i.e., students) per cluster (here, school), and 

number of measurement occasions per individual. The outcomes investigated in the 

simulation study included relative parameter bias, relative standard error bias, root mean 

square error, and coverage rates of the 95% credible intervals. 

Substantial bias was found across conditions for both models, but the CCMM-LVR 

model resulted in the least amount of relative parameter bias and more efficient estimates 

of the parameters, especially for larger numbers of clustering units. The results of the real 

data and simulation studies are discussed, along with the implications for applied 

researchers for when to consider using the CCMM-LVR model versus the misspecified 

HM3-LVR model. 
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Chapter 1: Introduction 

In educational research, evaluating changes in student achievement over time is an 

essential research endeavor. Many studies examine student growth over time in order to 

have more than a one-time snapshot of student performance. Examples include school 

progress monitoring, educational interventions, program evaluations, and school effects 

that examine the differences in school implementations on student progress. Typical 

analyses for these types of studies use hierarchical growth curve modeling (GCM), where 

students’ scores at different time-points are nested within each individual student resulting 

in two-level data that can be analyzed using the conventional hierarchical linear modeling 

(HLM). Beyond modeling the longitudinal student data, additional complexities inherent 

in educational research studies can be handled using HLM. Some educational research 

studies evaluate student growth for clusters of students sampled from schools. For these 

kinds of data, a three-level GCM would be utilized, where students’ scores are modeled as 

nested within students, who are then nested within schools. 

There is another type of growth analysis, called latent variable regression (LVR) 

modeling, that extends GCM by modeling the prediction of a student’s growth rate by the 

student’s initial status (i.e., start of time for a study). The argument is that it is important to 

study the expected differences in growth rates while taking into account the levels or 

variation in student achievement at the initial status (Seltzer, Choi, & Thum, 2003). 

Student-level predictors can also be included in the model to evaluate the interaction 

between the student characteristics and the effect of initial status on growth rate. As an 

example, an interaction may indicate that differences in growth rates between treatment 
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and control groups in an educational intervention program may vary as a function of the 

students’ initial status values. Along the same lines in a three-level LVR model, school-

level characteristics could be included as predictors of the effect of initial status on growth 

rate. The coefficient representing the prediction of growth rate by initial status could be 

modeled as varying across schools (random effects). Therefore, more hypotheses about 

growth trajectories can be tested by using the more flexible LVR framework. 

Choi and Seltzer (2010) presented a fully Bayesian approach to estimate a three-

level LVR model with purely clustered data, and conducted a small simulation study to 

evaluate the differences in the choice of prior distributions for the level-2 random effects’ 

variance components. Using fully Bayesian estimation can provide more precise and robust 

estimates for parameters in a more complex model, such as with LVR models, as long as 

prior distributions are appropriately chosen. Choi and Seltzer (2010) found that uniform 

priors, which are analogous to inverse-Pareto distributions for the level-2 LVR variance 

components, resulted in less bias than using default inverse-gamma distributions. These 

results assist future researchers when selecting the best prior distributions to use for a three-

level LVR analysis. 

Research evaluating student growth over time clustered within some unit (i.e., 

school, class, district, etc.), such as a three-level LVR analysis, can lead to additional 

intricacies, including student mobility in educational research. Students can change 

classrooms, teachers, schools, or districts within a study, especially if the study continues 

for multiple years. Students switched schools or moved at rates ranging between 12% and 

38.5% between 2005 and 2010, with 25% of students relocating within the same county 
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(see, for example, Ihrke & Faber, 2012; U.S. Census Bureau, 2013; U.S. Government 

Accounting Office, 2010). Also, within a school, students can change classes and teachers 

on a semester or yearly basis. A report by the U.S. Government Accounting Office (2010) 

found that certain school characteristics, such as low-income area, proportion of English 

language proficiency, and percentage of students receiving special education, tend to be 

associated with the school rates of mobility. These non-trivial student mobility rates 

produce problems for the LVR structure, because students who move will then be 

associated with a different cluster. 

Grady and Beretvas (2010) introduced a cross-classified multiple membership 

growth curve model (CCMM-GCM) for modeling, as an example, academic achievement 

trajectories in the presence of student mobility. Previous research has demonstrated that 

incorrect model specification in the presence of student mobility can negatively impact 

parameter estimates. Previous simulation studies have shown that model misspecification 

can lead to inaccurate estimates of between-schools variance components and standard 

errors of the fixed effects (Chung & Beretvas, 2012; Grady, 2010; Luo & Kwok, 2009; 

Luo & Kwok, 2012; Meyers & Beretvas, 2006). The purpose of this research is then to 

investigate the estimation of a three-level latent variable regression model with cross-

classified multiple membership data, resulting in the utilization of a CCMM-LVR model. 

Parameter estimates for the CCMM-LVR model were compared to those estimated 

assuming a three-level LVR model that ignores mobility by only recognizing the first 

school attended (HM3-LVR). The dissertation is comprised of two studies, a real data 

analysis and simulation study. The real data analysis compared the two models with a large-
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scale longitudinal dataset containing mobile students. The second study is a simulation 

study that examined differences in parameter estimates from the two models to discover 

the impact of ignoring student mobility. The real data are from the Longitudinal Study of 

American Youth (LSAY) (Miller, 1987-1994) and contained three yearly measurement 

occasions from ninth through eleventh grade. Results from that analysis are presented 

including the parameter and standard error estimates, along with fit indices, from fitting 

the baseline unconditional and conditional versions of the CCMM-LVR and HM3-LVR 

models. The parameter estimate values from the real data analysis were used to help inform 

generating parameter values in the simulation study. In addition, some of the real dataset’s 

characteristics were used in designing the simulation study’s conditions. 

A simulation study is conducted because true population parameters are known and 

design factors can be manipulated to assess their impact on the resulting estimates. The 

conditions that were manipulated for the simulation study include the percentage of mobile 

students, number of schools, number of students per school, and number of measurement 

occasions. Relative parameter bias, relative standard error bias, root mean square error, and 

coverage rates were used to evaluate the estimation of model parameters under the various 

manipulated conditions for the two models, CCMM-LVR and the HM3-LVR. 

This study is important due to the increased educational research with longitudinal 

data, where subject mobility is likely to arise, and the benefit of knowing which model is 

best for researchers’ circumstances based on the current study’s findings. For policymakers 

and educational interventionists, it is also important for them to be aware that student 

growth analyses based on a model that does not handle mobility would model the students’ 
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growth as only being affected by one school, rather than all schools attended. Evaluating 

school- or student-level characteristics with a misspecified model impacts the validity of 

resulting statistical inferences and associated conclusions (Chung & Beretvas, 2012; Luo 

& Kwok, 2009; Luo & Kwok, 2012; Meyers & Beretvas, 2006). In addition, the results 

from this study are applicable not only to educational research, but to any applied research 

entailing a three-level data structure with mobility of individuals across clusters. 
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Chapter 2: Literature Review 

In this chapter, a general discussion of growth curve modeling will first be 

presented. Following this discussion, subsequent sections will expand on this topic by 

covering latent variable regression modeling, growth curve modeling with mobile 

individuals, and lastly latent variable regression modeling with mobile individuals. 

GROWTH CURVE MODELING 

Individual change is a topic that has been studied for many years within the context 

of multilevel modeling, particularly in the educational context where, for example, studies 

have assessed students’ rate of growth in reading comprehension (Bryk & Raudenbush, 

1987; Seltzer, Frank, & Bryk, 1994), student trajectories in math achievement (Bryk & 

Raudenbush, 1987), as well as teacher-reported student aggressiveness over time within an 

intervention program (Muthén & Curran, 1997), among many other examples. With 

GCMs, various student demographics can be integrated into the models to assess how these 

student characteristics relate to differences in change over time. Additional hierarchical 

clustering levels (for example, schools or classrooms) can also easily be incorporated into 

the GCM, and characteristics describing these higher level clustering units can be 

investigated as predictors of differences in student achievement trajectories (Bryk & 

Raudenbush, 1988). These are just examples within the education context, but many other 

fields of applied social and behavioral science research also employ GCMs (see for 

example, Francis, Fletcher, Stuebing, Davidson, & Thompson, 1991; Horney, Osgood, & 

Marshall, 1995; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Raudenbush, & 

Chan, 1993). 
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For GCMs, researchers need to utilize measures with scales equated using item 

response theory, which are more appropriately suited for evaluating change across time 

(Embretson & Reise, 2000; Seltzer et al., 1994). As for the design of the study, more than 

two time-points of data need to be collected in order to obtain a more adequate description 

of individual growth (Bryk & Raudenbush, 1987; Bryk & Weisberg, 1977; Rogosa, Brandt, 

& Zimowski, 1982). The following section will discuss the two-level baseline 

unconditional GCM. 

Two-Level Baseline Unconditional GCM 

A model of individual change in some outcome over time can be constructed using 

a two-level hierarchical linear model. Data for these models are assumed to have repeated 

observations (level-1) nested within each individual (level-2). Raudenbush and Bryk’s 

(2002) formulation will be used here. At level 1, the baseline unconditional model is 

 Yti = π0i + π1iTIMEti + eti, (1) 

where Yti is the observed score at time t for individual i, TIMEti is the time-point for 

individual i at time t, π0i is the intercept parameter for individual i when TIMEti equals zero, 

π1i is the slope parameter for individual i representing the expected change over a specified 

period of time, and eti is the error (i.e., random effect). The errors are assumed to be 

independent and normally distributed with a mean of zero and constant variance σ2, which 

is a simpler error structure but the one that is most frequently assumed (Raudenbush & 

Bryk, 2002). This model can be used even when the spacing between time and the number 

of scores are different across people. 
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At level-2 in the baseline unconditional model, the intercept and slope parameters 

are typically permitted to vary across individuals as follows: 

 {

π0i = β
00
+ r0i

π1i = β
10
+ r1i

, (2) 

with β00 as the average outcome across individuals when TIMEti equals zero, β10 is the 

average growth rate for individuals, r0i is the residual for the intercept for individual i, and 

r1i is the residual for the growth rate for individual i. 

The level-2 residuals (i.e., random effects) are assumed bivariate normally 

distributed with means of zero and variances of τ00 and τ11 for r0i and r1i, respectively, and 

with covariance τ01. τ00 is the variance of the intercept residuals and τ11 is the variance of 

growth rate residuals. Larger estimates for τ11 suggest that there is a lot of variability across 

individuals in their growth rates. Likewise for τ00, large estimates reflect that individuals’ 

scores when TIMEti equals zero vary a lot around the fixed effect parameter, β00. Last, 

larger positive estimates of τ01 indicate that as scores when TIMEti equals zero increase, the 

growth rates increase. Negative large τ01 estimates would imply that the growth rates are 

stronger for individuals with lower scores when TIMEti equals zero. 

With GCMs, the location of the time variable, TIME, is vital to the interpretation 

of the intercept, level-2 coefficients of the intercept, level-2 variance of the intercept, and 

the covariance between the intercept and the slope. Initial status is π0i when TIMEti 

represents the amount of time that has passed since the starting point of data collection for 

a study. TIMEti can also denote the period of time from the last point of data collection, in 
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which case π0i would be the final status, or even represent the period of time from the mid-

point of data collection and be the mid-point status. 

To explain using an example, let’s suppose students were assessed in 6th, 7th, and 

8th grade. To represent π0i as initial status, the level-1 formula would utilize (TIMEti – 6), 

where TIMEti represents the grade level. For final status, the level-1 equation would use 

(TIMEti – 8), and the equation would utilize (TIMEti – 7) to model mid-point status. Using 

(TIMEti – 6) in the level-1 equation in Equation 1, the intercept is interpreted as the initial 

status, the level-2 β00 coefficient is the average initial status across individuals, the level-2 

variance τ00 is defined as the variance in initial status, and the covariance is between the 

initial status and growth rate. Similarly, different centering of the time variable [e.g., 

(TIMEti – 7) or (TIMEti – 8)] in the level-1 equation changes interpretation of the resulting 

coefficients by replacing initial status with mid-point status or final status, respectively. 

Thus, from here on, the time variable, TIME, in the level-1 equation (Equation 1) will be 

assumed centered such that the intercept represents initial status. 

With this two-level baseline unconditional growth model, the correlation of change 

with initial status can also be computed. To compute the correlation of change with initial 

status, the equation is 

 ρ(π0i, π1i) = τ01 √τ00 × τ11⁄ , (3) 

which is simply the correlation between individuals’ initial status, π0i, and their linear 

growth in the outcome, π1i. Similar to a Pearson correlation coefficient, the values can 

range between –1 and 1. The next section describes the extension to this baseline 

unconditional model that includes the addition of predictors to the model. 
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Two-Level Conditional GCM 

The two-level conditional GCM incorporates individual-level characteristics or 

treatment indicators as predictors to explain variability found in the baseline unconditional 

model. These types of models can be used to evaluate questions about the effect of 

individual characteristics on the initial status and growth rate. Equation 1 would remain the 

same, but Equation 2 would be modified to become: 

 {

π0i = β
00
+ β

01
Xi + r0i

π1i = β
10
+ β

11
Xi + r1i

, (4) 

where Xi represents an individual-level variable about some characteristic of individual i. 

β00 is now the average initial status across individuals when Xi equals zero, and β01 is the 

change in initial status for one unit change in Xi. This definition of β01 assumes that Xi is a 

continuous explanatory variable, but when Xi is an indicator variable, β01 is defined as the 

contrast in outcomes for someone with Xi = 1 versus a case with Xi = 0. β10 is the average 

growth rate when Xi equals zero and β11 is the change in growth rate for a one unit change 

in Xi. Again, this definition of β11 assumes Xi is continuous, but when Xi is an indicator β11 

represents the contrast in growth rates between someone with Xi = 1 versus someone for 

whom Xi = 0. For the level-2 random effects, r0i is now the intercept residual for individual 

i when Xi equals zero, and r1i is the distinct slope residual for individual i when Xi equals 

zero. The same assumptions hold for the level-2 residuals (i.e., random effects) as are made 

with the baseline unconditional model, however, τ00 is defined as the variance in initial 

status remaining after controlling for level-2 predictor variable Xi, and τ11 is the variance 

in growth rates remaining after controlling for Xi. 
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More complex growth curve models could contain additional growth trajectory 

parameters including, for example, a quadratic term. The initial decision about the 

functional form of the GCM should be based on the inspection of the data. These 

trajectories could look linear or non-linear, and if non-linear, then the number of “bends” 

in the trajectories would help identify the appropriate order of the polynomial to be 

modeled. Other level-1 predictors, besides the time variable, could be included in the 

model. In addition, more complex level-1 error assumptions can be presumed, such as 

dependence on individual characteristics or estimation of separate level-1 error variances 

for each time point. For the current study, only simple level-1 error structures (described 

previously) and linear growth forms without time-varying covariates will be considered, 

however, more information can be found in Raudenbush and Bryk (2002). The following 

section will describe the extension of the two-level GCM to the three-level GCM. 

Three-Level Baseline Unconditional GCM 

Researchers commonly gather repeated measures (level-1) on individuals (level-2) 

who are clustered within higher level organizational units (level-3). In education, common 

organizational units include schools, classrooms, or districts. Bryk and Raudenbush (1988) 

illustrated this approach with longitudinal data using five measurement occasions between 

the spring of first grade through the spring of third grade. Other fields of research in the 

social sciences may have to consider organizational units such as regions, neighborhoods, 

hospitals, and clinics. 

Adding a third level to the GCM, the data structure entails repeated measures nested 

within individuals who would then be nested within organizational units. Therefore, the 
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individual growth trajectories represent the level-1 model, variation in growth parameters 

among individuals within an organizational unit is captured in the level-2 model, and 

variation among the organizational units is modeled in the level-3 model. With these types 

of models, studies can assess questions about how characteristics of these organizational 

units (as well as about the individuals themselves) influence individuals’ growth trajectory 

parameters. 

There are important reasons for incorporating the third level representing 

organizational units into a GCM that resolve potential issues with aggregation bias, 

misestimated standard errors, and heterogeneity of regression (Raudenbush & Bryk, 2002). 

Aggregation bias can occur when variations in characteristics of an organization affect 

individual scores in addition to the effect the individual’s characteristics have on their 

scores. In educational research, for example, differences in school socioeconomic status 

can affect student achievement above and beyond the student’s socioeconomic status. 

Misestimated standard errors can ensue when the dependence within an organizational unit 

is not taken into account. This dependence is inherent to many situations of individuals 

nested within organizational units because the individuals have shared experiences within 

an organization. Heterogeneity of regression happens when the relationship between 

individual’s characteristics and their scores differ across the organizational units. 

Recognition of a third level of clustering in a dataset through use of a three-level GCM 

provides one way to resolve aggregation bias, misestimated standard errors, and 

heterogeneity of regression. 
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As with the previous section on the two-level GCM, the three-level GCM 

discussion will begin with the baseline unconditional model. The baseline unconditional 

level-1 model equation, with the measurement occasions at time t for individual i within 

the organization unit j, is 

 Ytij = π0ij + π1ijTIME + etij, (5) 

where Ytij is the observed score at time t for individual i within organizational unit j, π0ij is 

the intercept parameter for individual i within organization j, π1ij is the slope parameter for 

individual i within organization j, TIMEtij is the time-point for individual i within 

organization j at time t, and etij is the error. As before, the errors are assumed to be 

independent and normally distributed with a mean of zero and constant variance σ2. The 

difference between Equation 1 and Equation 5 is the inclusion of the additional third level 

subscript j to represent the organizational unit. This will also be the same difference 

between the level-2 model from the two-level and the three-level baseline unconditional 

GCMs. 

The level-2 model of the baseline unconditional three-level GCM is 

 {

π0ij = β
00j
+ r0ij

π1ij = β
10j
+ r1ij

, (6) 

where β00j is the mean initial status (i.e., when TIMEtij equals zero) across individuals 

within organization j, β10j is the mean growth rate for individuals within organization j, r0ij 

is individual-level residual for the mean initial status for organization j, and r1ij is the 

individual-level residual for the mean growth rate for organization j. The level-2 residuals 

are again assumed bivariate normally distributed with means of zero, but with variances of 
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τπ00 and τπ11 for r0ij and r1ij, respectively, and with covariance τπ01. τπ00 is the variance of 

initial status within the organizational units and τπ11 is the variance of growth rates within 

the organizations. Another assumption is that the variability among individuals within the 

j organizational units is the same. 

The third level of the baseline unconditional three-level GCM is represented as 

 {

β
00j
= γ

000
+ u00j

β
10j
= γ

100
+ u10j

, (7) 

with γ000 representing the overall mean initial status across individuals and organizations, 

γ100 is the overall mean growth rate across individuals and organizations, u00j is the residual 

for organization j for the overall mean initial status, and u10j is the residual for organization 

j for the overall mean growth rate. The level-3 residuals are assumed bivariate normally 

distributed with means of zero, but with variances of τβ00 and τβ11 for u00j and u10j, 

respectively, and with covariance τβ01. τβ00 is the variance of initial status among the 

organizational units and τβ11 is the variance of growth rates among the organizations. The 

following discussion will describe the formulation of the conditional three-level GCM, 

which includes level-2 and level-3 predictors in the model. 

Three-Level Conditional GCM 

The three-level conditional GCM allows estimation of the distinct effects of 

individual and organizational characteristics on individual outcomes. The level-1 equation 

remains the same as Equation 5. The conditional level-2 model is 
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 {

π0ij = β
00j
+ β

01j
Xij + r0ij

π1ij = β
10j
+ β

11j
Xij + r1ij

, (8) 

where β00j is the mean initial status across individuals within organization j when Xij equals 

zero and β01j is the change in initial status within organization j for one unit change (or 

contrast) in Xij. β10j is the mean growth rate within organization j when Xij equals zero and 

β11j is the change in growth rate within organization j for one unit change (or contrast) in 

Xij. 

For the level-2 random effects, r0ij is now the individual-level residual for the mean 

initial status for organization j when Xij equals zero, and r1ij is the individual-level residual 

for the mean growth rate for organization j when Xij equals zero. The same assumptions 

hold for the conditional level-2 random effects as in the baseline unconditional two-level 

GCM. However, τπ00 is now defined as the variance in initial status remaining within the 

organizational units after including level-2 predictor variables and τπ11 is the variance in 

growth rates remaining within the organizations after including the level-2 predictor 

variables. 

The formulation for the third level of the three-level conditional GCM with the 

influence of Xij assumed as fixed is as follows: 

 

{
  
 

 
 
 

β
00j
= γ

000
+ γ

001
Zj + u00j

β
01j
= γ

010

β
10j
= γ

100
+ γ

101
Zj + u10j

β
11j
= γ

110

, (9) 
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where Zj represents an organizational level variable about some characteristic of 

organization j, which can be viewed as a predictor of the organization effect. Here, γ000 

represents the overall mean initial status across individuals and organizations when Xij and 

Zj equal zero and γ001 represents the change in initial status for one unit change in Zj (if Zj 

is continuous) or the contrast in initial status between Zj = 1 and Zj = 0 (if Zj is an indicator) 

when Xij equals zero. Now, γ100 represents the overall mean growth rate across individuals 

and organizations when Xij and Zj equal zero and γ101 represents the change in growth rates 

for one unit change or contrast in Zj when Xij equals zero. For the random effects, u00j is the 

residual for organization j for the overall mean initial status when Xij and Zj equal zero and 

u10j is the residual for organization j for the overall mean growth rate when Xij and Zj equal 

zero. The level-3 residuals follow the same assumptions as the baseline unconditional 

level-2 GCM, but τβ00 is now the variance of initial status among the organizational units 

after including individual and organizational variables and τβ11 is the variance of growth 

rates among the organizations after including individual and organizational variables. 

GCM provides a very useful modeling technique for longitudinal data; however, an 

extension of this modeling framework, called latent variable regression, adds potentially 

even more valuable information by allowing assessment of directional influences of one 

growth parameter on another rather than solely modeling the covariance between the 

parameters. The next section introduces latent variable regression and explains the kinds 

of research questions that can be answered when combined with a GCM. 
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LATENT VARIABLE REGRESSION MODELING 

Growth curve modeling focuses exclusively on changes in individual outcomes 

over time by estimating growth rates, whereas the use of latent variable regression 

modeling in the GCM context extends this notion by allowing modeling of, for example, 

the prediction of an individual’s growth rate (latent growth parameter) by the individual’s 

initial status. The rationale behind this type of growth analysis is to study the expected 

differences in growth rates holding constant initial status. In particular with educational 

research using longitudinal data, the argument is that it is frequently important to take into 

account the levels or variation in student achievement at the initial status (i.e., start of time 

for the study). Modeling the expected change in growth rates for one unit change in initial 

status can allow for more questions to be addressed in longitudinal studies. 

As a simple illustrative example to help convey the concepts behind latent variable 

regression modeling, suppose individuals were measured each year on math achievement 

from 1st grade to 5th grade. If we believe that there is a positive relationship between initial 

status and growth rate, Figure 1 would demonstrate that scenario. The four expected math 

achievement trajectories for students show the pattern that as first grade scores increase so 

do the slopes of the trajectories. 
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Figure 1. Positive relationship between initial math achievement score and growth rate. 

 

Figure 2 would be the situation were no relationship exists between first grade 

outcomes and the growth rates. Regardless of what an individual scored in first grade, their 

growth rate is the same across those initial outcomes. 
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Figure 2. No relationship between initial math achievement score and growth rate. 

 

In Figure 3, the four expected trajectories display a negative relationship between 

initial status and growth rate. This means that as the initial statuses increase, the slopes of 

the trajectories decrease. 
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Figure 3. Negative relationship between initial math achievement score and growth rate. 

 

All three figures have the same mean growth rate, but they have very different 

relationships between initial status and growth. This relationship between initial status and 

growth rate is provided with typical GCM. What is not provided is the answer to “What is 

the expected change in growth rates for one unit change in initial status?” In Figure 1, 

assuming the mean initial status is 95, the expected growth rate is 3.0 points per grade for 

students who scored 10 points above this mean. For students who scored 85 points in first 

grade (10 points below the mean), their expected growth from first to fifth grade is 0.2 

points per grade. In Figure 2, the expected growth rate is 1.6 points per grade level, 

regardless of what the students scored in first grade. For Figure 3, the results are opposite 

to those in Figure 1, where students who scored 105 points in first grade have an expected 

growth rate of 0.2 points per grade and students who scored 10 points below the mean 

initial status have an expected growth rate of 3 points per grade. 
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By including individuals’ characteristics in the LVR model, the researcher could 

examine interactions between the characteristics and the effect of initial status on growth 

rate. For example, it might be the case that there are differences between the genders in the 

prediction of growth rates by initial status. The prediction of growth by initial status might 

be stronger for females than for males. This hypothesis cannot be directly tested using a 

conventional GCM although this interaction effect can be tested using an LVR model that 

incorporates gender as a predictor of the coefficient representing the influence of initial 

status on growth rate (Seltzer et al., 2003). Alternatively, there might be an interaction 

effect in that differences in growth rates between educational intervention and control 

groups may vary as a function of individuals’ initial status values (Choi & Seltzer, 2010; 

Muthén & Curran, 1997). In addition, the LVR coefficient representing the prediction of 

growth rate by initial status could be modeled as varying across organizational units, as 

well as a function of organizational characteristics in the model (Choi & Seltzer, 2010). 

The three-level LVR model could be used to evaluate these kinds of research questions 

which cannot be assessed using a typical GCM. Given these reasons, use of the more 

flexible LVR framework is beneficial for testing more flexible hypotheses about growth 

trajectory parameters. 

Demonstrations of how to estimate the LVR model using multilevel modeling 

software (such as HLM7 software; Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2011) 

have allowed the use of this type of growth modeling to be more accessible to applied 

researchers and practitioners. Muthén and Curran (1997), Raudenbush and Bryk (2002, 

Chapter 11), Svärdsudd and Blomqvist (1978), and Adler, Adam, and Arenberg (1990) 
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have demonstrated use of the LVR modeling technique in the context of randomized 

intervention studies, gender differences in high school math achievement, longitudinal 

male blood pressure related to older age, and cognitive functioning associated with aging, 

respectively. All of these studies employed the maximum likelihood estimation procedure 

for obtaining the parameter estimates. Seltzer et al. (2003) showed how to use fully 

Bayesian estimation with their demonstration of a two-level LVR model in a school 

performance setting. The reasoning behind the authors’ use of Bayesian estimation was 

that it works better than maximum likelihood for estimating fixed effects and covariance 

components as long as the choice of prior distributions is carefully considered. Maximum 

likelihood estimation can be problematic particularly when the number of clustering units 

is small or when the hierarchical data structure is unbalanced. For a more detailed 

explanation of Bayesian inference for hierarchical linear models, please refer to 

Raudenbush and Bryk (2002, Chapter 13). 

It is important to note as well that latent variable regression modeling is not just 

isolated to the hierarchical linear modeling (HLM) context, but originated from the 

structural equation modeling framework. Raudenbush and Sampson (1999) extended 

LVRs to the HLM framework by demonstrating a method for integrating LVRs into the 

HLM context using maximum likelihood estimation for the parameters. In structural 

equation modeling (SEM), latent relationships are specified among model parameters, 

which is equivalent to what is accomplished when using latent variable regression 

modeling. The HLM and SEM frameworks are equivalent in many ways and in particular 

with the conventional GCM, where the within-person (level 1) model in HLM is the 



 23 

measurement model in SEM and the between-person (level 2) model is the structural 

model. Figure 4 displays how a two-level baseline unconditional GCM (see Equations 1 

and 2) would be represented using an SEM path diagram. 

 

 

Figure 4. Linear growth model with four measurement occasions. 

 

And Figure 5 shows how a two-level baseline unconditional LVR model would be 

presented. 
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Figure 5. Linear growth model for four measurement occasions using LVR 

parameterization. 

 

Note that in Figure 4, the intercept and slope are modeled as co-varying, while in 

Figure 5 the intercept is modeled as a predictor of the slope. The SEM framework can 

easily be used for growth curve analysis, but for the current study the HLM framework will 

be utilized because it offers more flexibility for handling non-purely nested data structures 

that will be discussed in a later section. The next section will provide information about 

the formulation of the two-level baseline unconditional LVR model. 

Two-Level Baseline Unconditional LVR Model 

In an LVR model, initial status is included as a predictor of growth rate, whereas in 

a GCM, initial status and growth rate are modeled as co-varying. This means that with 

LVR, it is possible to model moderation of initial status’ prediction of the slope by some 

individual participant characteristic. For example, a researcher might be interested in 

testing the effect of an educational treatment intervention on math achievement. A typical 

π0i π1i 

Y1i Y2i Y3i Y4i 
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GCM analysis could reveal differences in growth between treatment groups, but the LVR 

model could explore additional research questions including, for example, that these 

treatment effects on the slope differ based on where a student scored at the beginning of 

the study (i.e., pretest). The overall treatment effect may reveal a positive impact on 

growth, but the LVR model could then show that the treatment effect is more positively 

substantial for students who score lower at pretest than those who score higher. 

As with the formulation of the GCM, explanation of the formulation of the LVR 

model will begin with the baseline unconditional two-level model (which is termed HM2-

LVR). Level 1, the within-individuals model, is the same as in Equation 1. The differences 

between the GCM and latent variable regression model occur at level 2, where π0i is 

included as a predictor of π1i. For level 2, the HM2-LVR equation is 

 {

π0i = β
00
+ r0i

π1i = β
10
+ b(π0i − β

00
) + r1i

, (10) 

where β10 is the mean growth rate for individual i at the mean on initial status, b is the latent 

variable regression coefficient that represents the change in the growth rate (π1i) for one 

unit increase in initial status (π0i), and r1i is the slope residual for individual i at the mean 

on initial status. The random effects are assumed normally distributed with means of zero 

and variances of τ00 and τ11 for r0i and r1i, respectively, and covariance τ01 equals zero. The 

same definition holds for τ00 as in the two-level baseline unconditional GCM section, but 

τ11 is now the variance in growth rates remaining after taking into account differences in 

initial status. Notice that π0i is centered around β00 in order for β10 to not represent the mean 

growth rate for someone whose initial status value is zero, which provides a more useful 
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interpretation of β10. In addition, the centering of π0i around β00 in LVR models decreases 

the amount of autocorrelations among the samples generated by the Markov Chain Monte 

Carlo (MCMC) sampling with Bayesian estimation. Expanding on the baseline 

unconditional two-level LVR model, the conditional LVR model will be described in the 

next section. 

Two-Level Conditional LVR Model 

The two-level conditional LVR model has the same level-1 formula as Equation 1. 

The level-2 conditional formula with individual characteristic variable Xi is then 

represented as 

 {

π0i = β
00
+ β

01
Xi + r0i

π1i = β
10
+ β

11
Xi + b(π0i) + r1i

, (11) 

where β10 is the mean growth rate for individual i at the mean on initial status and for whom 

Xi equals zero, β11 is the change in growth rate for one unit change (or the contrast) in Xi 

holding constant initial status, and b is the change in the growth rate for one unit increase 

in initial status when Xi equals zero. The level-2 random effect r1i is the slope residual for 

individual i at the mean on initial status and for whom Xi equals zero. The same 

assumptions hold for the level-2 random effects and τ00 is still defined as before with the 

two-level conditional GCM, however, τ11 is now the variance in growth rates remaining 

after taking into account differences in initial status and including individual variables. In 

LVR modeling, the covariance of r0i and r1i is assumed to be unrelated (i.e., equal to zero) 

because that covariance is instead modeled by incorporating π0i as a predictor of π1i. In the 

next section, a discussion of the baseline unconditional three-level LVR model is provided. 



 27 

Three-Level Baseline Unconditional LVR Model 

Choi and Seltzer (2010) extended the two-level LVR model to a three-level LVR 

model using a fully Bayesian approach. The three-level LVR model allows handling of the 

dependence of individuals clustered within organizations (such as schools, classrooms, 

etc.). The LVR coefficient that designates the effect of initial status on growth within the 

organizations can be modeled as varying across organizations. Assessment of this variation 

permits evaluation of organizational differences in the LVR coefficient as well as 

assessment of factors that might influence the effect of initial status on growth. 

Level 1 of the three-level baseline unconditional LVR model (termed HM3-LVR) 

is the same as Equation 5 in the discussion of the three-level baseline unconditional GCM, 

and involves the same assumptions. Following the same notation as Choi and Seltzer 

(2010), the formulation for level 2 is 

 {

π0ij = β
00j
+ r0ij

π1ij = β
10j
+ Bwj (π0ij − β

00j
) + r1ij

, (12) 

where β10j is the mean growth rate for organization j for an individual at the mean on initial 

status, and Bwj is the LVR coefficient that represents the change in the growth rate for one 

unit increase in initial status within organization j. The latter coefficient is termed the 

within-organization initial status on growth effect. The random effects are assumed 

normally distributed with means of zero and variances τπ0j and τπ1j for r0ij and r1ij, 

respectively, and Cov(r0ij, r1ij) = 0. τπ1j is now the variance in growth rates remaining after 

taking into account differences in initial status within the organizations. Note that different 

from the presentation of the three-level GCM, the three-level LVR model presented in Choi 
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and Seltzer (2010) allowed the variability in residuals among individuals within 

organizational units to differ, but the current study will not model that same variability 

among individuals within the organizations. Instead, constant variances, τπ0j and τπ1j, will 

be assumed across organizations. 

The level-3 baseline unconditional LVR model is 

 

{
 
 

 
 

β
00j
= γ

000
+ u00j

β
10j
= γ

100
+ Bb (β

00j
− γ

000
) + u10j

Bwj = Bw_0 + Bw_1 (β
00j
− γ

000
) + uBwj

, (13) 

where Bb is an LVR coefficient that represents the change in growth rate for one unit 

increase in mean initial status across organizations, and γ100 is then the mean growth rate 

across organizations for organization j at the grand mean on initial status. Bw_0 is another 

LVR coefficient that is the effect of initial status on growth for organization j at the grand 

mean on initial status, and Bw_1 is the change in the effect of initial status on growth for 

one unit increase in mean initial status for organization j. The three random effects are 

assumed multivariate normally distributed with means of zero and a 3 by 3 covariance 

matrix Τu, which is 

 Τu =

[
 
 
 
 
τβ00 0 0

0 τβ10 τβ10,Bw

0 τBw,β10 τBw ]
 
 
 
 

, (14) 

where τβ00 is defined as before, τβ10 is the variance in growth rates remaining between the 

organizational units after taking into account organization mean initial status, and τBw is 

the variance in within-organization initial status on growth effects remaining between the 
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organizational units after taking into account organization mean initial status. Note also 

that the Cov(u00j, u10j) = 0 and the Cov(u00j, uBwj) = 0 because β00j is used as a predictor of 

β10j. The conditional model extension of the baseline unconditional three-level LVR model 

will be discussed next. 

Three-Level Conditional LVR Model 

The baseline unconditional HM3-LVR can easily be extended to provide the 

conditional model. Equation 5 would still represent the level-1 model, then including 

predictors Xij and Zj at levels two and three, respectively, the level-2 model becomes 

 {

π0ij = β
00j
+ β

01j
Xij + r0ij

π1ij = β
10j
+ Bwj (π0ij − β

00j
) + β

11j
Xij + r1ij

, (15) 

where β10j is the mean growth rate for organization j for an individual at the mean on initial 

status and for whom Xij equals zero, Bwj represents the change in growth rate for one unit 

increase in initial status for organization j when Xij equals zero, and β11j is the change in 

growth rate within organization j for one unit change (or contrast) in Xij holding constant 

initial status for organization j. The same assumptions hold for the random effects as for 

the baseline unconditional model, but now τπ1j is the variance in growth rates remaining 

after taking into account differences in initial status within the organizations and in 

individual variables. 

For simplicity’s sake, here, the effect of the individual-level variable will be 

assumed fixed in the level-3 model which is then expressed as follows: 
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{
 
 
 
 

 
 
 
 

β
00j
= γ

000
+ γ

001
Zj + u00j

β
01j
= γ

010

β
10j
= γ

100
+ Bb (β

00j
− γ

000
) + γ

101
Zj + u10j

β
11j
= γ

110

Bwj = Bw_0 + Bw_1 (β
00j
− γ

000
) + Bw_2(Zj) + uBwj

, (16) 

where γ100 represents the overall mean growth rate across individuals and organizations for 

organizations at the grand mean on initial status when Xij and Zj equal zero, Bb represents 

the change in growth rate for one unit increase in mean initial status across organizations 

when Xij and Zj equal zero, and γ101 represents the change in growth rates for one unit 

change or contrast in Zj when Xij equals zero for organizations at the grand mean on initial 

status. Bw_0 is the effect of initial status on growth for organization j at the grand mean 

on initial status when Xij and Zj equal zero, Bw_1 is the change in the effect of initial status 

on growth for one unit increase in mean initial status for organization j when Xij and Zj 

equal zero, and Bw_2 is the expected change in the effect of initial status on growth for 

organization j for one unit change or contrast in Zj for an organization at the grand mean 

on initial status and when Xij equals zero. 

The same assumptions are made about the distributions of the three random effects 

as for the baseline unconditional three-level LVR model. Now, τβ10 is the variance in 

growth rates remaining between the organizational units after taking into account 

organization mean initial status and including individual and organizational variables, and 

τBw is the variance in within-organization initial status on growth effects remaining 

between the organizational units after taking into account organization mean initial status 
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and including individual and organizational variables. The next section will describe 

methodological research focused on the three-level LVR model. 

Methodological Research with the Three-Level LVR Model 

The only methodological work found that assesses estimation of the HM3-LVR 

was a small simulation study conducted in Choi and Seltzer (2010). Choi and Seltzer (2010) 

discussed and demonstrated the use of a fully Bayesian approach to estimating the HM3-

LVR model. One of the advantages of using a fully Bayesian approach is that it can provide 

point and interval estimates for parameters for a variety of more complex models, such as 

the HM3-LVR family of models. It is also noted in Raudenbush and Bryk (2002, Chapter 

13) that fully Bayesian estimates are robust and more precise to scenarios with unbalanced 

hierarchical data structures or smaller numbers of clustering units as compared to other 

estimation procedures, such as maximum likelihood estimation, as long as appropriate prior 

distributions were used. 

One condition in the Choi and Seltzer (2010) simulation that was manipulated was 

the type of prior used for the level-2 variance components in the Bayesian estimation 

procedure. Previous studies had commonly used either uniform or default inverse gamma 

(DIG) priors for scalar random effects variance components when the covariances between 

random effects are set to zero (Gelman, Carlin, Stern, & Rubin, 2004; Seltzer, 1993). 

However, research has indicated that there are some issues with the use of DIG priors for 

scalar variances in regard to biased estimates and insufficient coverage of true values (see 

Browne & Draper, 2006; Spiegelhalter, 2001; Gelman, 2006). Choi and Seltzer (2010) 

wanted to demonstrate the consequences of the choice of priors for the level-2 variance 
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components. They conducted the simulation with 300 replications using the baseline 

unconditional three-level LVR model. The authors based their generating parameter values 

using model estimates based on a corresponding analysis using the Longitudinal Study of 

America Youth data. Each replicated dataset in the simulation study had 8,585 time-point 

observations within 2,628 students nested within 45 schools. The uniform priors set for the 

level-2 scalar variance components resulted in less relative bias as well as the highest 

coverage rates for the 95% credible interval estimates of the following fixed effects: γ000, 

Bb, Bw_0, and Bw_0 (see Equation 13). Using the DIG priors for the level-2 variance 

components led to slightly better results for estimates of γ100, but using the uniform priors 

led to reasonable results. Based on these results, the authors recommended utilizing 

uniform priors for the level-2 and level-3 scalar variance components as well as for all of 

the fixed effects, and inverse-Wishart priors for the level-3 residuals’ covariance matrix. 

The uniform priors for the fixed effects are functionally the same as specifying a normal 

distribution with a mean of zero and variance of 100,000, and the uniform priors placed on 

the scalar variance components are analogous to using inverse-Pareto(1, 0.0001) 

distributions (Choi & Seltzer, 2010). 

Thus far, a summarization of growth modeling techniques has been presented that 

assumes a purely hierarchical data structure, whereas the following section will discuss 

techniques for growth modeling when data structures are not perfectly hierarchical. 

GROWTH CURVE MODELING WITH MOBILE INDIVIDUALS 

All of the three-level growth modeling techniques previously discussed involved a 

purely hierarchical data structure, where measurement occasions were assumed nested 
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within individuals who were themselves nested within a single organization for the entire 

duration of the study. In reality, this purely clustered data structure may not always hold, 

especially in educational studies where students can move to different schools or 

classrooms over time. In the educational context, suppose there exists a pure hierarchical 

structure, where students attended the same school for the entire three years of the study, 

which is depicted as a network graph in Figure 7. 

 

 

Figure 7. Network graph of pure three-level clustering of measurement occasions (level 

1) within students (level 2) within schools (level 3). 

 

For the data depicted in Figure 7, each student remained in the same cluster (here, 

school) for all three years. An alternative view of the pure three-level hierarchical growth 

curve data structure is presented in Figure 8. This figure will be helpful when explaining 

cross-classified and multiple-membership data structures in the following sections. 
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Figure 8. Alternate depiction of network graph of pure three-level clustering of 

measurement occasions (level 1) within students (level 2) within schools (level 3). 

 

The reason why these pure nested structures do not hold in real-world educational 

datasets is because usually a subset of students tends to move for a variety of reasons. 

According to the Ihrke and Faber (2012) report titled Geographical Mobility: 2005 to 2010, 

38.5% of people aged 5 to 17 years moved within those years. More specifically, 25% of 

people between the ages 5 and 17 relocated within the same county. From 2012 to 2013, 

12% of people between the ages 5 and 17 years old moved, with 69% of those moves 

occurring within the same county (U.S. Census Bureau, 2013). A report by the U.S. 

Government Accounting Office (2010) found that 13% of students changed schools four 

or more times between kindergarten and 8th grade, and 11.5% of schools had high rates of 

mobility. The same report found that schools with higher rates of mobile students tend to 

be in low-income areas, have a higher percentage of students receiving special education, 

and have a higher proportion of students with limited English language proficiency. 

However, not all student relocations are based on a residential move, because students can 
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change classes or teachers on a semester or yearly basis and school closures cause students 

to switch schools. Irrespective of the reason for mobility, students are changing schools at 

non-trivial rates, which produces problems for the use of three-level GCMs or LVR models 

based on an assumption of purely clustered data. 

Previous research has suggested two ways to handle student mobility when using 

the GCM. However, a study has yet to present how to incorporate the modeling of student 

mobility when interested in using the LVR model. Use of the two GCMs model options 

for mobile students’ data is presented in the next section. The first model is termed the 

cross-classified growth curve model and has been studied by Raudenbush and Bryk (2002, 

Chapter 12) and Luo and Kwok (2012). The second model is called a cross-classified 

multiple membership growth curve model, which was presented in Grady and Beretvas’s 

study (2010). 

Cross-Classified Growth Curve Modeling 

In the situation where an individual did not remain in the same organization (third-

level unit) during the duration of the study, the resulting nested data structure can no longer 

be assumed to entail a pure clustering. Instead, the data structure can be conceived of as a 

cross-classified structure. Figure 9 displays a simplified example of such cross-

classification where, for instance, Student B who attended School 1 at the first two 

measurement occasions, moved to School 2 for the third measurement occasion. Student E 

attended School 2 at the first time-point and was at School 3 for the second and third 

measurement occasions. Another circumstance depicted is Student C, who was at School 

2 for the first time-point then left for School 1 and returned to School 2 for the last 
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measurement occasion. Notice also the occurrence of lines “crossing” that was not present 

in the purely clustered dataset depicted in Figure 8. 

 

 

Figure 9. Network graph of cross-classification of measurement occasions (level 1) 

within students (level 2) and schools (level 2). 

 

This type of data structure can easily be handled using a cross-classified GCM, 

where the random effects of each school (or organization) attended is incorporated into the 

typical GCM model for the intercept at level 2. Using the baseline unconditional cross-

classified GCM presented in Luo and Kwok (2012), level 1 is 

 Yt(ij) = π0(ij) + π1(ij)TIMEt(ij) + et(ij) (17) 

and level 2 is 

 {

π0(ij) = β
00
+ r0i + u0j

π1(ij) = β
10
+ r1i

, (18) 

where the parentheses around i and j signify cross-classification between an individual and 

an organization. These additional organizational random effects (u0j) are called 
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“deflections” in Raudenbush and Bryk (2002), meaning that they modify the individual’s 

growth trajectory due to encountering each organization. According to Raudenbush and 

Bryk (2002), no organization-level random effects are included in the growth rate model 

at level 2 because the estimation of the effect of an organizational random effect on the 

growth rate should not be allowed unless the individual has two consecutive measurement 

occasions in the same organization. It is not included in the model because the model 

assumes separate organizational random effects at each time-point, even if a student went 

to the same school for all measurement occasions. Therefore, under this parameterization, 

the set of schools attended for mobile students are modeled as affecting only the intercept 

(i.e., the first time-point). Organization-level characteristics can also be incorporated into 

this model, again for just the intercept model at level 2. 

An issue arises with this type of GCM with cross-classified individuals because the 

unique effect of each organization is assumed to be the same across measurement occasions 

(Luo & Kwok, 2012; Raudenbush & Bryk, 2002). For example, using Figure 9, the 

contribution of School 2 and its characteristics for Student E would only remain for the 

first measurement occasion, while only the effect of School 3 is incorporated into the model 

for time-points two and three. Raudenbush and Bryk (2002) do present a modification to 

the cross-classified GCM that would allow for cumulative organizational effects using a 

dummy-coded variable associated with each organization and time-point for the 

organizational random effects (and possible organizational characteristics) in the intercept 

model of level 2. However, their data are yearly assessments nested within students nested 

within teachers, so every student has a different teacher each year. This again means that 
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different organizational random effects are assumed at each time-point, so no 

organizational random effects are incorporated into the growth rate model at level 2. The 

following section discusses the other growth curve model that could be used to handle 

complications introduced by mobile individuals. 

Cross-Classified Multiple Membership Growth Curve Modeling 

A GCM was introduced that was designed to handle mobility across clustering units 

that does not involve the assumption that the organization’s effect is the same across time 

like with the cross-classified GCM. For this reason, the following model is used as the 

model to handle mobility in the current study. This model is termed the cross-classified 

multiple membership growth curve model (CCMM-GCM), and was presented by Grady 

and Beretvas (2010). The model is intended for researchers using the initial status as the 

interpretation of the intercept (see previous discussion on centering). The CCMM-GCM 

model is a combination of cross-classified and multiple membership random effects models 

because individuals are cross-classified by their first organization and the subsequent 

organization or organizations attended (which results in the possible multiple membership 

portion). The cross-classified component is required because at the initial status the 

individual has only been affiliated with the first organization, therefore all organizations 

attended should not be modeled as contributing to an individual’s outcome at the first 

measurement occasion. The CCMM-GCM will allow an individual’s intercept to vary 

across the first organization attended, and their growth rate can be modeled as varying 

across the set of organizations attended across the duration of the study. 
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The scenario for a cross-classified multiple membership data structure is depicted 

in Figure 10 as a simple example with the two higher levels, where every student attended 

their first school, and in years two through three their subsequent school could remain the 

same (as with Student A) or their subsequent school could change (as with Student C). 

Student C attended School 1 in year one, but then attended School 4 at some point in years 

two through three. Notice that dashed lines are now used to signify a change in school in 

subsequent years, because students are modeled as members of all the schools they 

attended. Therefore, the school effect on the slope in the model considers all of the schools 

attended by a student. This is accomplished with weighting the effects of organization-

level units on the individual growth. Next, a discussion of the baseline unconditional three-

level CCMM-GCM model is provided. 

 

 

Figure 10. Network graph of a cross-classified multiple membership structure where 

students (level 2) are cross-classified by the first and subsequent school attended (level 3) 

with some students attending multiple schools.  
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Baseline Unconditional CCMM-GCM 

Using the parentheses as before to signify cross-classification and then the brackets 

to denote multiple membership, the level-1 equation for the three-level baseline 

unconditional CCMM-GCM is 

 Yti(j1,{j2})
= π0i(j1,{j2})

+ π1i(j1,{j2})
TIMEti(j1,{j2})

+ eti(j1,{j2})
, (19) 

where the level-1 residual follows the same assumptions as before. Note that j1 represents 

the first organization attended and {j2} represents the subsequent set of organizations 

attended. Level 2 is 

 {

π0i(j1,{j2})
= β

00(j1,{j2})
+ r0i(j1,{j2})

π1i(j1,{j2})
= β

10(j1,{j2})
+ r1i(j1,{j2})

, (20) 

with variances τr00 and τr11 for the residuals r0i(j1,{j2})
 and r1i(j1,{j2})

, respectively, and 

covariance τr01 following the same assumptions as previously discussed in the GCM 

section. The level-3 equation is 

 {

β
00(j1,{j2})

= γ
0000

+ u00j10

β
10(j1,{j2})

= γ
1000

+ u10j10 + ∑ wtihu100hh∈{j2}

, (21) 

where the residuals u00j10, u10j10, and u100{j2}
 are normally distributed with means of zero 

and variances τuj1
00, τuj1

11, and τu{j2}
11, respectively. The Cov(u00j10, u10j10) equals τuj1

01. 

τuj1
00 is the variance of initial status among the first organizational units, τuj1

11 is the 

variance of growth rates among the first organizations, and τu{j2}
11 is the variance of growth 

rates among the subsequent set of organizations attended. 
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The weight wtih is assigned to each individual i who attended organization h at each 

time-point t, and the sum of the weights must equal to one. As an example, suppose Student 

C attended School 1 in the first two years and School 4 in the last two years of a study, 

then Student C’s assigned weights would be one-third and two-thirds for Schools 1 and 4, 

respectively. Consequently, for student C the residual u100{j2}
 for the subset of schools 

attended is weighted at level 3 for the slope equation. If a student was not mobile, such as 

Student A, or if the subsequent schools attended were the same (but different from the first) 

then the weight assigned for wtih would be one. 

As previously mentioned, the incorporation of u00j10 into the intercept equation at 

level 3 allows the initial status outcomes to vary only across the first organization attended. 

The incorporation of the cross-classification of the first organization and subsequent 

organizations into the slope at level 3 allows the growth rate to vary across all organizations 

attended, meaning that the estimation of the slope is based on all organizations attended 

across the entire time of the study. Therefore, the effect of the organizations on the slope 

does not diminish over time; rather, it is cumulative. For the same mobile Student C, the 

slope would be a function of Schools 1 and 4 (u1010 +
1

3⁄ u1001 +
2

3⁄ u1004), but then for 

non-mobile Student A, it would be a function of School 1 only (u1010 + u1001). It should be 

noted that the effect of attending the first school and effect of attending the subsequent set 

of schools (even if they are the same, as with Student A) on the growth are allowed to 

differ, because the School 1 effect on growth at the first time-point may be different than 
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the School 1 effect on growth for the successive time-points. The next section will present 

the conditional CCMM-GCM. 

Conditional CCMM-GCM 

For reasons discussed previously, it is important to include individual and 

organizational variables into a growth analysis. For the CCMM-GCM, the conditional 

level-2 model is 

 {

π0i(j1,{j2})
= β

00(j1,{j2})
+ β

01(j1,{j2})
Xi(j1,{j2})

+ r0i(j1,{j2})

π1i(j1,{j2})
= β

10(j1,{j2})
+ β

11(j1,{j2})
Xi(j1,{j2})

+ r1i(j1,{j2})

 (22) 

and the conditional level-3 model is 

 

{
 
 
 

 
 
 

β
00(j1,{j2})

= γ
0000

+ γ
0010

Zj1
+ u00j10

β
01(j1,{j2})

= γ
0100

β
10(j1,{j2})

= γ
1000

+ γ
1010

Zj1
+ u10j10 + ∑ [wtih(γ1001

Zh + u100h)]h∈{j2}

β
11(j1,{j2})

= γ
1100

, (23) 

where Xi(j1,{j2})
 is an individual variable modeled as fixed across organizations (for the sake 

of simplicity), Zj1
 is an organizational variable for the first organization attended, and Z{j2}

 

is an organization-level variable for the subsequent organizations attended that is weighted 

according to time spent within each subsequent organization. Here, γ0010 is the change in 

initial status for one unit change or contrast in the first organization’s Zj1
 value when 

Xi(j1,{j2})
 is zero and γ1010 is the change in growth rates for one unit change or contrast in 

the first organization’s Zj1
 value when Xi(j1,{j2})

 is zero. γ1001 is the change in growth rates 

for one unit change or contrast in the weighted average of the Z{j2}
 values from all of the 
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subsequent organizations attended when Xi(j1,{j2})
 is zero. The focus will now turn to 

methodological work with hierarchical linear model that handles mobility to discuss those 

research findings. 

Methodological Research with HLM that Handles Mobility 

The sole methodological study conducted with the CCMM-GCM is the Grady 

(2010) dissertation and the only known simulation study using the cross-classified GCM 

is in Luo and Kwok (2012). Grady (2010) used the CCMM-GCM proposed in Grady and 

Beretvas (2010) to evaluate the effect of disregarding a cross-classified multiple 

membership data structure on the accuracy of parameter estimates. The comparison was 

made between the two different approaches, the CCMM-GCM and the first school GCM, 

with both the baseline unconditional and conditional versions of each model using Markov 

Chain Monte Carlo (MCMC) estimation (which is a Bayesian method). The other 

manipulated conditions were the percentage of mobile students (10%, 20%), the mean 

number of students per school (20, 40), and the number of measurement occasions (3, 5). 

The total number of schools was set at 50, and 100 replicated datasets were generated. The 

maximum number of school changes for the mobile students was set at two. 

Results from the Grady (2010) study found that ignoring the multiple-membership 

data structure led to inaccurate parameter estimates for the between-schools variance in 

growth rates. The conclusions drawn upon results from the first school GCM would 

mislead researchers because the between-schools variance in growth rates was reallocated 

to the between-first-schools variance in growth rates. This means that the individual’s 

growth rate would be modeled as only having been affected by the first school attended. 
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Luo and Kwok (2012) compared the first school GCM to the cross-classified GCM 

to also investigate the effect of ignoring mobile students. Their study manipulated the 

number of schools (25, 50), the number of students per school (50, 100), the percentage of 

mobile students (5%, 20%, 35%), the student-level variances and covariance 

([
.20 .05

.05 .10
] , [

.10 .025

.025 .05
]) and the school variance (0.1, 0.2). 200 replications were 

conducted using four measurement occasions. The authors split their simulation study, 

where the first study assumed mobile students only switched schools once at the same time, 

and the second study randomly switched students at each measurement occasion using the 

specific condition of 35% mobility rate, 50 schools, 100 students per school, school 

variance 0.2, and student-level covariance matrix [
.10 .025

.025 .05
]. 

The authors found that the pattern of mobility based on the different studies played 

a huge role on the impact of the direction and magnitude of the relative biases. For all 

conditions, the first school GCM redistributed to other levels the school variance, which 

underestimated the school-level variance component. In study 1, the redistributed variance 

was added to the student level, while in study 2 the variance was added to both the student 

and repeated measures levels which then led to underestimated student-level variance 

components for the intercept. In addition, the standard errors of the intercept and the 

coefficient of the school-level predictor were underestimated for all conditions. Under 

study 1, no other substantial bias was found in the standard errors of the other fixed effects, 

but in study 2 positive relative bias was found with the fixed effects using the first school 

GCM. Overall, model misspecification had a higher influence when the school-level 
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variance was larger (0.2) with the smaller student-level variances and covariance 

([
.10 .025

.025 .05
]). 

Other methodological research has been conducted with multilevel models, but not 

necessarily growth curve models, that use the cross-classified or multiple membership 

random effects modeling approaches for handling mobile individuals. Meyers and Beretvas 

(2006) and Luo and Kwok (2009) evaluated cross-classified random effects models 

(CCREMs) against misspecified models that ignored or deleted mobile individuals. Their 

studies found little differences between approaches in the fixed effects estimates, where no 

differences were found with the predictors associated with the crossed factor that was not 

ignored in the misspecified HLMs. Standard errors of the parameter estimates of the 

predictors associated with the ignored crossed factor were underestimated with the 

misspecified models, while standard error estimates were overestimated with predictors at 

the lower level. Bias in the standard errors of the parameter estimates was exacerbated 

when the correlation between crossed factors was zero and also when the sample size of 

the ignored crossed-factor was larger (50 vs. 30). Model misspecification also led to 

overestimation of variance components between levels of the crossed factor that was not 

ignored in the HLMs as well as the level-1 variance component, because the ignored cross-

factor variance was reapportioned to these other levels. 

Chung and Beretvas (2012) compared the multiple membership random effects 

model (MMREM) to the misspecified HLM that ignored mobility. This study demonstrated 

that bias resulted in the estimate of the higher level’s predictor as well as in the variance 
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component estimates of both levels. The conditions manipulated in their study were the 

number of organizational units (50 vs. 100), number of individuals per organizational unit 

(30 vs. 60), intra-class correlation (0.05, 0.15, and 0.25), percentage of mobile individuals 

(10% vs. 20%), and number of moves mobile individuals made (2 vs. 3). The purpose of 

the current study is next presented, which ties together all of the research and techniques 

previously discussed in this chapter. 

STATEMENT OF PURPOSE 

As mentioned earlier, no previous research has suggested a latent variable 

regression model that handles individual mobility across clustering units. Mobile 

individuals are encountered frequently in longitudinal studies, especially in educational 

research. Students switch schools or move at rates ranging between 12% and 38.5% over 

the span of a few years (see, for example, Ihrke & Faber, 2012; U.S. Census Bureau, 2013; 

U.S. Government Accounting Office, 2010). A growth curve model has been derived to 

handle mobility, which is the cross-classified multiple membership GCM. Previous 

simulation studies have shown that model misspecification can lead to inaccurate estimates 

of between-schools variance components and standard errors of the fixed effects. The 

pattern of the mobility, where individuals were allowed to randomly change organizational 

units at any time-point, made a large impact on the results. Therefore, it is vital to 

appropriately model a cross-classified multiple membership data structure. By 

appropriately handling mobility and taking into account the expected differences in growth 

rates holding constant initial status, this study evaluated the cross-classified multiple 

membership LVR model using a real data set and a simulation study to test the extremes 
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of certain conditions on the parameter estimates of the correctly and incorrectly specified 

models. This newly proposed model, termed the cross-classified multiple membership 

latent variable regression (CCMM-LVR) model, is defined in the following section. 

Latent Variable Regression Modeling with Mobile Individuals 

The following is the model specification of the newly proposed CCMM-LVR 

model. The level-2 formulation of the baseline unconditional CCMM-LVR model is 

 {

π0i(j1,{j2})
= β

00(j1,{j2})
+ r0i(j1,{j2})

π1i(j1,{j2})
= β

10(j1,{j2})
+ Bw(j1,{j2})

(π0i(j1,{j2})
− β

00(j1,{j2})
) + r1i(j1,{j2})

 (24) 

and at level 3 the model is 

 

{
 
 

 
 

β
00(j1,{j2})

= γ
0000

+ u00j10

β
10(j1,{j2})

= γ
1000

+ Bb (β
00(j1,{j2})

− γ
0000

) + u10j10 + ∑ wtihu100hh∈{j2}

Bw(j1,{j2})
= Bw_0 + Bw_1 (β

00(j1,{j2})
− γ

0000
) + uBwj1

, (25) 

where Bb is now the LVR coefficient that captures the change in growth rate for one unit 

increase in first organization j1 mean initial status across first organizations, and γ100 is 

then the mean growth rate across organizations for first organization j1 at the grand mean 

on initial status. Bw_0 is the effect of initial status on growth for first organization j1 at the 

grand mean on initial status, and Bw_1 is the change in the effect of initial status on growth 

for one unit increase in mean initial status for first organization j1. Also, γ1000 is now the 

mean growth rate across first and subsequent organizations for first organization j1 at the 

grand mean on initial status. 
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The level-1 errors eti(j1,{j2})
 are assumed to be normally distributed with a mean of 

zero and variance σ2. The level-2 random effects are assumed normally distributed with 

means of zero and variances τr00 and τr11 for r0i(j1,{j2})
 and r1i(j1,{j2})

, respectively, and 

Cov(r0i(j1,{j2})
, r1i(j1,{j2})

) = 0. The four level-3 random effects are assumed multivariate 

normally distributed with means of zero and a 4 by 4 covariance matrix Τu, which is defined 

as 

 Τu =

[
 
 
 
 
 
 
τuj1

00 0 0 0

0 τuj1
11 0 τuj1

Bw11

0 0 τu{j2}
11 0

0 τuj1
11Bw 0 τuj1

Bw ]
 
 
 
 
 
 

, (26) 

where τuj1
00 is defined as before, τuj1

11 is the variance in growth rates remaining among the 

first organizations after taking into account the first organization mean initial status, and 

τu{j2}
11 is the variance in growth rates remaining among the set of organizations attended 

after taking into account the first organization mean initial status, and τuj1
Bw is the variance 

in within-first-organization initial status on growth effects remaining between the first 

organizational units after taking into account the first organization mean initial status. 

Additionally, individual and organizational predictors can be incorporated into the model 

(as previously demonstrated), which will be presented in the following chapter when 

discussing the method. 

For the current study, parameter estimates for the CCMM-LVR model were 

compared to those estimated assuming a three-level LVR model that ignores mobility by 
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only recognizing the first school attended (HM3-LVR). The first study was a real data 

analysis that compared results for the two models that were estimating using a large-scale 

longitudinal dataset containing mobile students. The second was a simulation study that 

examined differences in relative parameter bias, relative standard error bias, root mean 

square error, and coverage rates from the two models to discover the impact of ignoring 

student mobility. The parameter estimate values from the real data analysis were used to 

help inform generating parameter values in the simulation study. In addition, some of the 

real dataset’s characteristics were used in designing the simulation study’s conditions. A 

simulation study was conducted because true population parameters are known and design 

factors can be manipulated to assess their impact on the resulting estimates. The conditions 

that were manipulated for the simulation study included the percentage of mobile students, 

number of schools, number of students per school, and number of measurement occasions. 

The real data analysis method and its results along with the details of the simulation study 

method will be presented in the next chapter. 
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Chapter 3: Method 

This dissertation was comprised of two studies, one using a large-scale longitudinal 

real dataset and the other a simulation. The real data study investigated the differences in 

parameter and standard error estimates as well as model fit using two models, the HM3-

LVR and the CCMM-LVR models, on a dataset that includes student mobility. The HM3-

LVR is a three-level latent variable regression model that ignores student mobility by only 

modeling the first school students attended, while the CCMM-LVR model handles the 

multiple membership data structure. The simulation study examined the differences in 

results from the two models to discover the impact of ignoring multiple membership 

operationalized, here, as student mobility across schools. 

REAL DATA STUDY 

This section describes the real data study that was used to compare the parameter 

and standard error estimates from fitting the HM3-LVR and CCMM-LVR models to the 

dataset that included mobile students. 

Data 

The data used for the analysis of the real data study is from the Longitudinal Study 

of American Youth (LSAY) conducted from 1987 to 1994 (Miller, 1987-1994), which is a 

longitudinal study that investigated student achievement in mathematics and science from 

seventh through twelfth grade in the United States. This data is structured in a hierarchical 

manner, where measurement occasions are nested within students who are then nested 

within schools. The data also has a multiple membership structure because students 

switched schools throughout the duration of data collection. In the dataset for the students 
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who entered the study in the fall of 1989 in ninth grade in the originally sampled high 

schools (schools 201-309), there is a total of 1,941 students and 45 schools. Three 

measurement occasions were used from the dataset, where students were tested at the 

beginning of each grade year: fall of ninth, tenth, and eleventh grades. Therefore, students 

without school identifiers at each of the three measurement occasions were removed, which 

then left 1,803 students. In addition, one school did not participate at every time-point in 

the study and was removed from the analysis leaving a dataset with 1,744 students and 44 

schools. 

Measures 

For the current study, the three measurement occasions were used to examine 

student achievement in environmental sciences over time. This means that the achievement 

scores from fall of ninth (1989), tenth (1990), and eleventh (1991) grades were included as 

dependent measures for the models. The environmental sciences achievement scores are 

based on items from the National Assessment of Educational Progress (NAEP, 1986), that 

is scaled using an item response theory (IRT) model. Using IRT scaled scores allows for 

the scores to be compared across students and across time. Students who had scores for at 

least one of the measurement occasions were included in the analysis. 

Level-2 and Level-3 Predictors 

The level-2 (student level) predictor that was included in the models is gender, 

where FEMALEi(j1,{j2})
 = 1 for females and equals 0 for males. The level-3 (school level) 

predictor that was incorporated is school type, which is a dichotomous variable (URBANj1
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and URBAN{j2}
) with values 1 for urban schools and 0 for non-urban schools. Students in 

the sample missing values on level-2 or level-3 predictors were removed from the analysis, 

which left a final sample total of 1,698 students. 

Student Mobility 

There were 194 (11.4%) students considered mobile from the sample of 1,698 

students. Out of those mobile students, 64 (33.0%) changed schools only between the first 

and second measurement occasions, 100 (51.5%) changed schools solely between the 

second and third measurement occasions, and 30 (15.5%) switched schools twice between 

the first and second as well as the second and third time-points. 

Analyses 

 The two models, HM3-LVR that ignores mobility and CCMM-LVR that handles 

student mobility, were fit to the sample using both a baseline unconditional model and a 

conditional model. The purpose was to compare differences in the parameter and standard 

error estimates as well as the deviance information criterion (DIC; Spiegelhalter, Best, 

Carlin, & van der Linde, 2002) values obtained from these models. In order to assess that 

a linear growth model was the functional form most appropriate, an inspection of a large 

number of individual growth trajectories was conducted. 

The baseline unconditional HM3-LVR model fit to the data was exactly the same 

as in Equations 5, 12, and 13 for levels one, two, and three, respectively. The TIMEtij 

variable was assigned values of 0, 1, and 2 for the ninth, tenth, and eleventh grade 

measurement occasions, respectively. In addition, this model ignored any school changes 

made by students, and used their first school attended as the school identifier for all three 
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measurement occasions. The first school was chosen for this study because in research 

studies, especially those using randomized control trials or cluster randomized trials, school 

identifier information is more likely known from the initial measurement occasion in the 

study, and identifiers for schools are typically missing for mobile students whose outcome 

scores might be missing at later time points are typically missing. 

The conditional HM3-LVR model is specified as follows for level one: 

 SCOREtij = π0ij + π1ijTIMEtij + etij, (27) 

for level two, 

 {

π0ij = β
00j
+ β

01j
(FEMALEij − FEMALE̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

..) + r0ij

π1ij = β
10j
+ Bwj (π0ij − β

00j
) + β

11j
(FEMALEij − FEMALE̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

..) + r1ij

, (28) 

and for level three, 

 

{
 
 
 
 

 
 
 
 

β
00j
= γ

000
+ γ

001
URBANj + u00j

β
01j
= γ

010

β
10j
= γ

100
+ Bb (β

00j
− γ

000
) + γ

101
URBANj + u10j

β
11j
= γ

110

Bwj = Bw_0 + Bw_1 (β
00j
− γ

000
) + Bw_2(URBANj) + uBwj

. (29) 

Note that for simplicity’s sake, the gender effect is modeled as fixed across schools for the 

intercept and slope. The TIMEtij variable took on the same values as the baseline 

unconditional HM3-LVR model, in order for the intercept to take on the meaning as initial 

status. 
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The baseline unconditional CCMM-LVR model that handles mobility was fit to the 

data using Equations 19, 20, and 21. The conditional CCMM-LVR model that was used to 

estimate the parameters and standard errors is as follows for level one: 

 SCOREti(j1,{j2})
= π0i(j1,{j2})

+ π1i(j1,{j2})
TIMEti(j1,{j2})

+ eti(j1,{j2})
, (30) 

for level two 

 

{
 
 

 
 π0i(j1,{j2})

= β
00(j1,{j2})

+ β
01(j1,{j2})

(FEMALEi(j1,{j2})
− FEMALE̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

..) + r0i(j1,{j2})

π1i(j1,{j2})
= β

10(j1,{j2})
+ Bw(j1,{j2})

(π0i(j1,{j2})
− β

00(j1,{j2})
)

                    + β
11(j1,{j2})

(FEMALEi(j1,{j2})
− FEMALE̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

..) + r1i(j1,{j2})

, (31) 

and at level three the model is 

 

{
 
 
 
 
 

 
 
 
 
 

β
00(j1,{j2})

= γ
0000

+ γ
0010

URBANj1
+ u00j10

β
01(j1,{j2})

= γ
0100

β
10(j1,{j2})

= γ
1000

+ Bb (β
00(j1,{j2})

− γ
0000

) + γ
1010

URBANj1

                + u10j10 + ∑ [wtih(γ1001
URBANh + u100h)]h∈{j2}

β
11(j1,{j2})

= γ
1100

Bw(j1,{j2})
= Bw_0 + Bw_1 (β

00(j1,{j2})
− γ

0000
) + Bw_2 (URBANj1

) + uBwj1

. (32) 

Once again, for the sake of simplicity, the student-level predictor was modeled as fixed. 

The weights that were used for both the baseline unconditional and conditional CCMM-

LVR models were based on how long a student was a member of a school. If a student did 

not change schools or their subsequent school remained the same from the second through 

third measurement occasions, then their weight assigned was one. If a student only changed 

schools between the second and third measurement occasions, the subsequent schools 
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attended had a weight of one-half for the first school and a weight of one-half for the second 

school. This same weighting scenario applied to a student who changed schools between 

each time-point, where a weight of one-half was associated with each subsequent school 

attended. 

All four models were fit using R software (version 3.1.0; R Core Team, 2014) with 

the package R2jags (version 0.04-03; Su & Yajima, 2014), which is the R interface to the 

Just Another Gibbs Sampler (JAGS) MCMC software (Plummer, 2013). JAGS (version 

3.4.0) is open sourced and works by having the user specify any kind of statistical model, 

then JAGS uses the Gibbs sampler to determine the appropriate Markov Chain Monte Carlo 

(MCMC) arrangement for analyzing the statistical model. The prior specification set for 

all of the fixed effects parameters was a normal distribution with a mean of 0 and a very 

large variance of 100,000 (or 0.00001 in terms of precision for JAGS). The priors were set 

to the inverse-Pareto(1, 0.0001) distribution for the scalar variance components and the 

inverse-Wishart distribution for the variance-covariance matrix associated with the β
10j

 and 

Bwj level-3 equations, which is recommended based on the simulation from Choi and 

Seltzer (2010). To determine the burn-in period and number of iterations for convergence, 

an examination of the trace plots, autocorrelation function plots, and Gelman-Rubin 

statistics was conducted. The examination indicated one chain with a burn-in period of 

10,000 iterations and an additional 50,000 iterations, for a total of 60,000 iterations, was 

optimal. 
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In addition to comparing parameter and standard errors estimates across models, 

comparisons between model fit were made. For MCMC estimation, the DIC was utilized, 

where smaller DIC values indicate better fit. The DIC fit index is defined as 

 DIC = D̅ + p
D

, (33) 

where D̅ is the posterior mean deviance and pD is the effective number of parameters in the 

model. The next section describes the results from the real data analysis. 

Results 

This section summarizes the results from the real data analysis previously 

described. The descriptive statistics are presented for the sample utilized in the real data 

analysis, as well as the results for the fixed and random effects estimated assuming the 

baseline unconditional and conditional models for the two types of models (CCMM-LVR 

and HM3-LVR). 

Descriptive Statistics 

Descriptive statistics are provided in Table 1 for the environmental sciences 

achievement scores at each of the three measurement occasions. 
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Table 1 

Descriptive Statistics for Environmental Sciences Achievement Scores at Each 

Measurement Occasion 

Outcome Variable Name M SD N 

Score at Time 1 Y1ij 59.7 13.01 1,666 

Score at Time 2 Y2ij 63.2 13.20 1,668 

Score at Time 3 Y3ij 65.8 13.48 1,534 

 

 

In Table 2, the descriptive statistics are displayed for the level-2 (student-level) and 

level-3 (school-level) predictors, gender and school type, respectively, from the real data 

sample. 

 

Table 2 

Descriptive Statistics for Gender and School Type in the Real Data Analysis 

Predictor N Percentage 

Gender   

Female 

Male 

848 

850 

49.94% 

50.06% 

School type   

Urban 

Non-urban 

12 

32 

27.27% 

72.73% 
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The following two sections discuss the parameter and standard error estimates for 

the baseline unconditional models comparing the CCMM-LVR and the HM3-LVR. 

Baseline Unconditional Fixed Effects 

In Table 3, the fixed effects parameter estimates for the two models, CCMM-LVR 

and HM3-LVR, are presented for the baseline unconditional versions. 

 

Table 3 

Fixed Effects Parameter and Standard Error Estimates for the Baseline Unconditional 

CCMM-LVR and HM3-LVR Models 

 Estimating Model 

 CCMM-LVR  HM3-LVR 

Parameter Coeff. Est. (SE)  Coeff. Est. (SE) 

Model for intercept        

Grand mean γ0000 59.285 (0.849)  γ000 59.222 (0.820) 

Model for slope        

Grand mean 

School mean initial status 

γ1000 

Bb 

2.755 

–0.041 

(0.197) 

(0.043) 
 

γ100 

Bb 

2.832 

–0.039 

(0.194) 

(0.042) 

Model for Bw        

Grand mean 

School mean initial status 

Bw_0 

Bw_1 

0.005 

0.003 

(0.013) 

(0.003) 
 

Bw_0 

Bw_1 

0.007 

0.003 

(0.013) 

(0.003) 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; 

HM3-LVR = three-level latent variable regression; Coeff. = coefficient; Est. = parameter 

estimate; SE = standard error estimate. 
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To assist in understanding the coefficients from the CCMM-LVR and HM3-LVR 

models, the CCMM-LVR results will be fully interpreted along with a presentation of 

graphical explanations. From Table 3, the grand mean of the initial status (i.e., intercept) 

is 59.285 for the CCMM-LVR model, and the grand mean of the growth (i.e., slope) is 

2.755. The Bb coefficient is negative, which indicates that the growth rate for a school with 

a higher mean initial status will be lower than the growth rate for a school with a lower 

mean initial status. To demonstrate visually, consider three schools, where School 1 is two 

standard deviations (SDs, 10.32 points) below the grand mean initial status, School 2 is at 

the grand mean initial status, and School 3 is two SDs above the grand mean initial status. 

Expected school growth rates are calculated using the grand mean growth rate, γ1000 

(2.755), and the between-schools effect of initial status on growth, Bb (−0.041). Therefore, 

the expected growth rate for students in School 1 would be 3.18 points per grade [i.e., 2.755 

+ (−0.041 × −10.23)], for School 2 it would be 2.76 points per grade, and for School 3 it 

would be 2.33 points per grade. Figure 11 displays the expected growth rates for the three 

schools, where the negative relationship between school mean initial status and school 

mean growth rate can be seen. 
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Figure 11. Expected growth trajectories for Schools 1, 2 and 3 with mean initial status 

values that are two SDs below the grand mean intercept, at the grand mean intercept, 

and two SDs above the grand mean intercept, respectively. 

 

To help visualize the expected growth rates within schools, consider three students 

from each of the previous three schools who are, respectively, two SDs (22.23 points) 

below their school’s mean initial status, at their school’s mean initial status, and two SDs 

above their school’s mean initial status. The expected growth trajectories within a school 

are based on the growth (2.755), Bb (−0.041), Bw_0 (0.005), and Bb_1 (0.003) parameter 

estimate values. Figure 12 displays the expected growth trajectories for the three students 

within each of the three schools. The expected growth rates increase as the students’ initial 

statuses increase within School 2 and School 3. For School 1, the students’ expected growth 
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rates decrease as the values for initial status increase. For Student C within School 1, for 

example, the expected growth rate is calculated by adding the school’s expected growth 

rate (3.18) with the value from the model for Bw [i.e., (0.005 × −22.23) + (0.003 × −10.32 

× −22.23) = 0.57] to obtain 3.18 + 0.57 = 3.75. 
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Figure 12. Expected growth trajectories for three students within Schools 1, 2, and 3 with 

initial status values that are two SDs below their school’s mean initial status, at their 

school’s mean initial status, and two SDs above their school’s mean initial status, 

respectively. 

 

For the baseline unconditional fixed effects parameters in Table 3, there were 

minimal differences between the two models’ estimates. The fixed effects standard error 
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estimates also revealed very few differences between the two types of baseline 

unconditional models. The values of the Bw_0 parameter estimates differed (0.005 versus 

0.007 for the CCMM-LVR and HM3-LVR models, respectively). 

Baseline Unconditional Random Effects 

Table 4 provides the results for the variance components estimates and standard 

error estimates for the baseline unconditional versions of the CCMM-LVR and HM3-LVR 

models. 
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Table 4 

Random Effects Parameter and Standard Error Estimates for Baseline Unconditional 

CCMM-LVR and HM3-LVR Models 

 Estimating Model 

 CCMM-LVR  HM3-LVR 

Parameter Coeff. Est. (SE)  Coeff. Est. (SE) 

Level-1 variance between        

Measures σ2 24.185 (0.856)  σ2 24.189 (0.857) 

Intercept variance between        

Students 

1st schools 

τr00 

τuj100 

123.528 

26.603 

(5.020) 

(7.828) 
 

τr00 

τu00 

123.279 

26.589 

(4.999) 

(7.247) 

Slope variance between        

Students 

1st schools 

Subsequent schools 

τr11 

τuj111 

τu{j2}11 

3.437 

0.302 

1.009 

(0.739) 

(0.197) 

 (0.494) 

 

τr11 

τu11 

— 

3.596 

0.936 

— 

(0.725) 

(0.300) 

— 

Bw variance between        

1st schools τuj1Bw 0.002 (0.001)  τuBw 0.001 (0.001) 

Note. — = not applicable; CCMM-LVR = cross-classified multiple membership latent 

variable regression; HM3-LVR = three-level latent variable regression; Coeff. = 

coefficient; Est. = parameter estimate; SE = standard error estimate. 

 

For the baseline unconditional model’s level-1 variance, parameter and standard 

error estimates, σ2, were very similar for the two models, CCMM-LVR and HM3-LVR. 

Parameter and standard error estimates of the between-students intercept variance (τr00), as 

well as between-first-schools intercept variances (τuj100 and τu00), were similar for the two 

models as well. The values of the between-students slope variance, τr11, along with 
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associated standard error estimates, were similar for the CCMM-LVR and HM3-LVR 

models. The between-first-schools Bw variance, τuj1Bw and τuBw, and associated standard 

error was slightly larger for the CCMM-LVR model (0.002 and its SE = 0.00095) than for 

the HM3-LVR model (0.001 and its SE = 0.00081). 

Large differences were found in the estimates of the between-first-schools slope 

variance, τuj111 and τu11, with values of 0.302 and 0.936 for the CCMM-LVR and HM3-

LVR models, respectively. Under the CCMM-LVR model, the between-schools slope 

variance is partitioned into the between-first-schools slope variance (τuj111) and the 

between-subsequent-schools slope variance (τu{j2}11). The parameter estimate of the 

between-first-schools slope variance, τuj111, for the CCMM-LVR model was less than one-

third of the estimate, τu11, for the HM3-LVR model, while the associated standard error 

estimates were smaller for the CCMM-LVR model (0.197 versus 0.300). The difference in 

the parameter estimates, τuj111 and τu11, was captured in the parameter estimate of the 

between-subsequent-schools slope variance, τu{j2}11 (1.009). 

The next two sections discuss the parameter and standard error estimates for the 

conditional CCMM-LVR and HM3-LVR models. 

Conditional Fixed Effects 

In Table 5, the estimates of the conditional models’ fixed effects for the two models, 

CCMM-LVR and HM3-LVR, are presented. 
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Table 5 

Fixed Effects Parameter and Standard Error Estimates for Conditional CCMM-LVR and 

HM3-LVR Models that Include Level-2 and Level-3 Predictors 

 Estimating Model 

 CCMM-LVR  HM3-LVR 

Parameter Coeff. Est. (SE)  Coeff. Est. (SE) 

Model for intercept        

Grand mean 

FEMALE 

Sch1_URBAN 

γ0000 

γ0100 

γ0010 

60.098 

–1.241 

–3.066 

(0.949) 

(0.588) 

(1.935) 

 

γ000 

γ010 

γ001 

60.043 

–1.274 

–2.936 

(0.988) 

(0.604) 

(1.858) 

Model for slope        

Grand mean 

School mean initial status 

FEMALE 

Sch1_URBAN 

SubSch_URBAN 

γ1000 

Bb 

γ1100 

γ1010 

γ1001 

2.921 

–0.058 

–0.326 

–1.220 

0.418 

(0.215) 

(0.043) 

(0.209) 

(0.842) 

(0.824) 

 

γ100 

Bb 

γ110 

γ101 

— 

3.018 

–0.053 

–0.334 

–0.877 

— 

(0.216) 

(0.043) 

(0.219) 

(0.417) 

— 

Model for Bw        

Grand mean 

School mean initial status 

Sch1_URBAN 

Bw_0 

Bw_1 

Bw_2 

0.009 

0.003 

–0.011 

(0.014) 

(0.003) 

(0.028) 

 

Bw_0 

Bw_1 

Bw_2 

0.009 

0.002 

–0.012 

(0.015) 

(0.003) 

(0.026) 

Note. — = not applicable; CCMM-LVR = cross-classified multiple membership latent 

variable regression; HM3-LVR = three-level latent variable regression; Coeff. = 

coefficient; Est. = parameter estimate; SE = standard error estimate; FEMALE = whether 

student was female; Sch1_URBAN = whether first school was rural; SubSch_URBAN = 

weighted average of school type being rural. 

 

The parameter and standard error estimates in the model for the intercept were 

similar across the CCMM-LVR and HM3-LVR models. A substantial difference was found 
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in estimates of the effect of the first school’s type (urban or not) on the slope, while all 

other estimate in the model for the slope were similar. The HM3-LVR model resulted in a 

much weaker parameter estimate (γ101 = –0.877) of the effect of the first school urbanicity 

on the slope with a smaller standard error estimate (0.417) as compared with the CCMM-

LVR model’s estimates (γ1010 = –1.220 and its SE = 0.842). The difference in the parameter 

estimates, γ1010 and γ101, is reflected in the parameter estimate, γ1001, for the effect of the 

weighted average subsequent schools’ type on the slope in the CCMM-LVR model (0.418). 

The Bw_2 parameter estimates from the model for Bw slightly differed for the CCMM-

LVR (–0.011) and HM3-LVR (–0.012) models. The values for the Bw_0 and Bw_1 

parameter estimates and all of the standard error estimates in the model for Bw were very 

similar between the two estimating models. 

Conditional Random Effects 

The parameter and standard error estimates for the variance components of the 

random effects for the conditional CCMM-LVR and HM3-LVR models are displayed in 

Table 6. 
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Table 6 

Random Effects Parameter and Standard Error Estimates for Conditional CCMM-LVR 

and HM3-LVR Models that Include Level-2 and Level-3 Predictors 

 Estimating Model 

 CCMM-LVR  HM3-LVR 

Parameter Coeff. Est. (SE)  Coeff. Est. (SE) 

Level-1 variance between        

Measures σ2 24.144 (0.849)  σ2 24.160 (0.830) 

Intercept variance between        

Students 

1st schools 

τr00 

τuj100 

123.301 

26.126 

(5.184) 

(7.512) 
 

τr00 

τu00 

123.203 

26.380 

(5.256) 

(7.798) 

Slope variance between        

Students 

1st schools 

Subsequent schools 

τr11 

τuj111 

τu{j2}11 

3.424 

0.298 

0.890 

(0.739) 

(0.183) 

 (0.424) 

 

τr11 

τu11 

— 

3.601 

0.875 

— 

(0.727) 

(0.292) 

— 

Bw variance between        

1st schools τuj1Bw 0.002 (0.001)  τuBw 0.002 (0.001) 

Note. — = not applicable; CCMM-LVR = cross-classified multiple membership latent 

variable regression; HM3-LVR = three-level latent variable regression; Coeff. = 

coefficient; Est. = parameter estimate; SE = standard error estimate. 

 

The pattern of results for the random effects variance component estimates for the 

conditional models were generally similar to the results from the baseline unconditional 

models. The parameter and standard error estimates of the level-1 variance, σ2, for the 

conditional models were very similar for the CCMM-LVR and HM3-LVR models. 

Parameter and standard error estimates of the between-students intercept variance (τr00) 
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and between-first-schools intercept variance (τuj100 and τu00) were also similar for the two 

models. The between-students slope variance estimates, τr11, along with their standard error 

estimates, were similar for the CCMM-LVR and HM3-LVR models as well. The between-

first-schools Bw variance estimates, τuj1Bw and τuBw, and associated standard error estimates 

were identical to the third decimal place. 

The parameter estimates of the between-first-schools slope variance, τuj111 and τu11, 

revealed some large differences, with values of 0.298 and 0.875 for the CCMM-LVR and 

HM3-LVR models, respectively. Under the CCMM-LVR model, the between-schools 

slope variance is partitioned into the between-first-schools slope variance (τuj111) and the 

between-subsequent-schools slope variance (τu{j2}11). The parameter estimate of the 

between-first-schools slope variance, τuj111, for the CCMM-LVR model was about a third 

of the size of the value for the HM3-LVR model estimate, τu11, while the associated 

standard error estimate was smaller for the CCMM-LVR model (0.183 versus 0.292). The 

difference between the parameter estimates, τuj111 and τu11, was reflected in the parameter 

estimate, τu{j2}11 (0.890). 

The next section discusses the fit index results for the baseline unconditional and 

conditional models comparing the CCMM-LVR and HM3-LVR models. 

Fit Index 

The DIC values for the baseline unconditional and conditional CCMM-LVR and 

HM3-LVR models are presented in Table 7. 
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Table 7 

Deviance Information Criterion Values for the Baseline Unconditional and Conditional 

Models 

 Estimating Model 

 CCMM-LVR  HM3-LVR 

Model Type DIC  DIC 

Baseline unconditional 39,129.7  39,241.4 

Conditional 38,871.9  38,736.4 

Note. DIC = deviance information criterion. 

 

The DIC values were lower for the CCMM-LVR model than the HM3-LVR model 

for the baseline unconditional model that was estimated, while the opposite result was 

found for the conditional models. The magnitude of the difference was 111.7 for the 

baseline unconditional models and 135.5 for the conditional models. Also, for the CCMM-

LVR and HM3-LVR models, the DIC values for the baseline unconditional models were 

larger than for the conditional models. 

As noted, some differences were found for the CCMM-LVR and HM3-LVR 

models’ estimates in the real data analysis. While it is possible to hypothesize the source 

of some of these differences, it is not clear with real data which model’s estimates are 

actually closer to the true values. The simulation study helps to figure out which models’ 

estimates are closer to the truth and to understand how and why these differences have 

occurred. The following section describes the simulation study that used parameter 
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estimate results and other characteristics of the real dataset to generate datasets and 

establish conditions. 

SIMULATION STUDY 

While the real data study provided valuable information about demonstrating how 

to specify the newly formed CCMM-LVR model with real data, it did not provide the 

answer to which model’s estimates are closer to truth. To achieve these goals, a simulation 

study was accompanied, where true population parameters are known and design factors 

can be manipulated to assess their impact on resulting estimates. 

Conditions 

Several conditions were manipulated to evaluate their effect on parameter recovery. 

A total of four conditions (i.e., factors) were manipulated in this study. The first condition 

is the percentage of mobile students, which has two values that were manipulated (10%, 

20%). The second factor is the number of schools, which is the level-3 unit, and has two 

values that were investigated (50, 100). The third factor is the number of students per 

school, i.e., the number of level-2 units per level-3 unit, and has two values (50, 100). The 

final factor is the number of measurement occasions, which also has two values (3, 4). The 

overview of the manipulated conditions is presented in Table 8. The next sections provide 

more information about each of the conditions. 
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Table 8 

Combinations of Design Factors 

Manipulated Conditions 

Mobility 

Rate 

Number of 

Schools 

Number of 

Students Per School 

Number of 

Measurement Occasions 

10% 50 40 3 

10% 50 40 4 

10% 50 80 3 

10% 50 80 4 

10% 100 40 3 

10% 100 40 4 

10% 100 80 3 

10% 100 80 4 

20% 50 40 3 

20% 50 40 4 

20% 50 80 3 

20% 50 80 4 

20% 100 40 3 

20% 100 40 4 

20% 100 80 3 

20% 100 80 4 

 

 

Mobility Rate 

The two values chosen for the percentage of mobile students were 10% and 20%. 

These mobility rates reflect low and medium percentages of mobility in educational 

longitudinal studies. A student is considered mobile when they change schools between 

two measurement occasions. Recent geographical mobility trends in the United States 

discovered that between 12% and 38.5% of students (people aged 5 to 17) relocated in the 
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span of two to five years (Ihrke & Faber, 2012; U.S. Census Bureau, 2013; U.S. 

Government Accounting Office, 2010). In addition, rates similar to these have been used 

in other educational mobility simulation studies (Chung & Beretvas, 2012; Grady, 2010; 

Luo & Kwok, 2012). Last, the low mobility rate value is similar to the mobility rate found 

in the real data analysis (11.4%). 

Number of Schools 

The two values chosen for the number of schools, which are the level-3 units, were 

50 and 100. Chung and Beretvas (2012) estimated a multiple membership multilevel model 

and found that utilizing 50 higher-level clustering units led to reasonable parameter 

recovery, while using 100 clustering units led to better parameter recovery. Grady (2010) 

set a fixed number of level-3 units to 50 for the CCMM-GCM. Therefore, the two values 

selected were 50 and 100 level-3 units. The lower value is also close to the number of 

organizational units (schools) found in the real data analysis, which was 44. 

Number of Students per School 

The values selected for the number of level-2 units per level-3 unit, which 

represents, here, the average school size, were 40 and 80. The average number of students 

(level-2 units) per school (level-3 unit) was 39 in the real dataset. The value of 40 was 

based on this average, and an upper average school size was chosen for the higher value, 

which is based on doubling the real-data average. Based on these two condition values 

along with the number of schools values, the total number of students simulated was 2,000 

for the 40 level-2 units condition for each of 50 level-3 units, 4,000 for the 40 level-2 units 

per 100 level-3 units condition, 4,000 for the 80 level-2 units per 50 level-3 units condition, 
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and 8,000 for the 80 level-2 units per 100 level-3 units condition. These student total values 

resemble previous student totals found in growth analysis demonstrations and simulation 

studies, such as Seltzer et al. (2003), Choi and Seltzer (2010), Grady and Beretvas (2010), 

and Luo and Kwok (2012). 

Number of Measurement Occasions 

The two values, 3 and 4, were chosen for the number of measurement occasions 

per simulated student. Longitudinal studies involve a minimum of three measurement 

occasions (see Bryk & Raudenbush, 1987; Bryk & Weisberg, 1977; Rogosa et al., 1982), 

but each additional time-point adds cost to a study and measures become less stable over 

longer periods of time. As an example, the studies by Grady and Beretvas (2010) used three 

time-points, Luo and Kwok (2012) used four time-points, and Choi and Seltzer (2010) used 

four measurement occasions. In addition, Grady (2010) utilized three and five 

measurement occasions for the simulation study, and the real data analysis conducted here 

consisted of three time-points. 

Data Generation 

For each combination of the conditions, 1,000 datasets were generated for a total 

of 16,000 datasets with the 16 conditions estimated by the two models. The data were 

generated and estimated in R using the R2jags package and JAGS (version 3.4.0) software. 

Each model was estimated using MCMC estimation with 50,000 iterations and a burn-in 

period of 10,000 iterations, with the following details provided below. 
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Generating Models 

All of the simulated datasets were designed to have a three-level multiple 

membership structure, where level-1 represents measurement occasion, level-2 is the 

student level, and level-3 is the school-level unit. Reflecting the proportions in the real 

data, 30% of the schools were designated as non-mobile and 70% were designated as 

mobile. As an example using the 100 level-3 units condition, schools 1-70 contained 

mobile students and schools 71-100 did not have mobile students. Therefore, if a student 

was randomly assigned to one of the non-mobile schools, then this student was not mobile. 

If a student was randomly assigned to one of the mobile schools, then there was a chance, 

depending on the mobility rate condition (10% or 20%), that this student could have been 

randomly selected as a mobile student. Therefore, the selection of mobile students was 

random and based on the mobility rate, but once selected as mobile, the students were 

associated only with the designated mobile schools. The subsequent school or schools 

attended also only occurred within this mobile designated group of schools. For example, 

if a student from the mobile School 4 was selected as mobile, then that student was assigned 

mobile School 5 (one plus first school identifier number) as the next school attended. If a 

student was selected as mobile from mobile School 70, then the subsequent school move 

was to School 1. 

The pattern of mobility also varied to reflect what occurred in the real data. Of the 

mobile students, 33% were randomly selected to change schools once between 

measurement occasions one and two, 51.5% were randomly selected to change schools 

once between measurement occasions two and three, and 15.5% were randomly selected 
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to change schools twice between measurement occasions one and two as well as between 

time-points two and three. This pattern was the same regardless of the measurement 

occasions condition, meaning that in the four measurement occasions condition no students 

changed schools between time-points three and four. Note that students who were 

randomly selected to change schools twice attended mobile schools S1, S1 + 1, and S2 + 

2, unless they were randomly assigned to School 69 or School 70 (in the 100 level-3 units 

condition, as a demonstration). These students attended mobile Schools 69, 70, and 1 and 

Schools 70, 1, and 2, respectively. 

No weights were used for the HM3-LVR model, but weights were used for the 

measurement occasions after the first time-point in the CCMM-LVR model. A weight of 

one was assigned to the single school attended by each of the non-mobile students, as well 

as to mobile students who only changed schools once between measurement occasions one 

and two. For the three measurement occasions condition, multiple membership weights of 

one-half were assigned to each of the two schools attended, respectively, for the mobile 

students who changed schools once between time-points two and three as well as for those 

who changed schools twice. For the four measurement occasions condition, mobile 

students who changed schools between time-points two and three as well as those who 

changed schools twice were assigned weights of one-third and two-thirds associated with 

the last two schools attended, respectively. 

The baseline unconditional data generating model was a three-level cross-classified 

multiple membership latent variable regression model, where level-1 is 

 Yti(j1,{j2})
= π0i(j1,{j2})

+ π1i(j1,{j2})
TIMEti(j1,{j2})

+ eti(j1,{j2})
, (34) 
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level two is 

 {

π0i(j1,{j2})
= β

00(j1,{j2})
+ r0i(j1,{j2})

π1i(j1,{j2})
= β

10(j1,{j2})
+ Bw(j1,{j2})

(π0i(j1,{j2})
− β

00(j1,{j2})
) + r1i(j1,{j2})

, (35) 

and level three is 

 

{
 
 

 
 

β
00(j1,{j2})

= 59.285 + u00j10

β
10(j1,{j2})

= 2.755 − 0.041 (β
00(j1,{j2})

− 59.285) + u10j10 + ∑ wtihu100hh∈{j2}

Bw(j1,{j2})
= 0.005+ 0.003 (β

00(j1,{j2})
− 59.285) + uBwj1

. (36) 

The time variable TIMEti(j1,{j2})
 took on the values 0, 1, and 2 for the three measurement 

occasions condition, and took on the additional value of 3 for the four measurement 

occasions condition. 

Fixed Effects 

The true fixed effect values for the baseline unconditional generating models were 

set to 59.285 for the intercept (γ0000), 2.755 for the slope (γ1000), –0.041 for the effect of Bb 

on the slope, 0.005 for the effect of Bw_0 on the Bw model, and 0.003 for the effect of 

Bw_1 on the Bw model. The true (generating) values for these fixed effects were obtained 

from the real data analysis. 

Random Effects 

For the baseline unconditional generating models, the level-1 error eti(j1,{j2})
 was 

sampled from a normal distribution with a mean of zero and a variance (σ2) of 24.185. The 

level-2 residuals r0i(j1,{j2})
 and r1i(j1,{j2})

 were each generated from normal distributions with 

means of zero and variances of 123.528 ad 3.437, respectively. The covariance of r0i(j1,{j2})
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and r1i(j1,{j2})
 was generated to be zero. The level-3 residual u00j10 was generated from a 

normal distribution with a mean of zero and variance set to 26.603, and it was not generated 

to co-vary (covariance set to zero) with any of the other level-3 residuals. The level-3 

residual u100{j2}
 was generated from a normal distribution with a mean of zero and variance 

set to 1.009, and it also did not co-vary with any of the other level-3 residuals. The other 

level-3 residuals, u10j10 and uBwj1
, were generated from a multivariate normal distribution 

with means of zero and variances set to 0.302 and 0.002, respectively. The covariance of 

u10j10 and uBwj1
 was set to 0.002. Similar to the fixed effects generating values, the true 

values set for the variance components of the random effects were based on the real data 

analysis results. 

In addition, the real data has revealed that the mobile schools have lower intercept 

residuals on average than the non-mobile schools for the baseline unconditional CCMM-

LVR model. This difference was about half a standard deviation between the means. 

Therefore, in order to mimic the real data and have student mobility that was not completely 

at random, the means of the u00j10 residuals in the data generations were generated to be –

0.774 and 1.805 for the mobile and non-mobile schools, respectively. Note that the overall 

mean of the school-level residuals for the intercept was still zero. 

Estimating Models 

The baseline unconditional CCMM-LVR model from Equations 19, 24, and 25 was 

used to estimate the baseline unconditional model that handles student mobility. The HM3-
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LVR baseline unconditional model was estimated from the model presented in Equations 

5, 12, and 13, but it ignored the subsequent schools attended by the mobile students. 

Estimation Procedure 

The R2jags R package (version 0.04-03; Su & Yajima, 2014) was used to interface 

with JAGS software (version 3.4.0; Plummer, 2013) to estimate the two models. JAGS 

software estimates user-specified statistical models by using the Gibbs sampler to 

determine the suitable Markov Chain Monte Carlo (MCMC) estimation scheme. The 

estimation of the models for the 16,000 generated datasets was made possible by the high 

performance computing resources provided by the Texas Advanced Computing Center 

(TACC) at The University of Texas at Austin. 

Similar to the real data analysis, Normal(0, 100,000) priors were placed on the fixed 

effects, inverse-Pareto(1, 0.0001) priors for the scalar variance components, and an 

inverse-Wishart prior for the variance-covariance matrix at level-3 for equations β
10j

 and 

Bwj, which were decided based on the simulation results from Choi and Seltzer (2010). An 

examination of autocorrelation function plots, trace plots, and Gelman-Rubin statistics was 

done to inform selection of the appropriate burn-in period and number of iterations for 

convergence. One chain with a burn-in period of 10,000 iterations and an additional 50,000 

iterations, for a total of 60,000 iterations, was needed. 

Analyses 

The analyses for the simulation study compared differences in the parameter 

estimates of the fixed effects and random effects variance components from the two 

models, HM3-LVR and CCMM-LVR. The following descriptions are provided about the 
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relative parameter bias, relative standard error bias, root mean square error, and coverage 

rates that were computed and analyzed. 

Relative Parameter Bias 

Relative parameter bias was calculated for the fixed effects and the random effects 

variance components using the following formula, 

 𝐵(θ̂) =
θ̂ − θ

θ
, (37) 

where θ̂ is the estimate of the parameter, θ. Positive relative parameter bias would indicate 

that the parameter was overestimated, while a negative value would reveal underestimation 

of that parameter. Relative parameter bias values between –0.05 and 0.05 would be 

considered acceptable based on Hoogland and Boomsma’s criteria (1998). These 1,000 

bias values were averaged across replications for each condition and then compared across 

models. 

Relative Standard Error Bias 

Relative bias of the standard errors was computed for the fixed effects estimates 

using 

 𝐵(𝑆̂θ̂) =
𝑆̂θ̂ − 𝑆̂θ̂_EMP

𝑆̂θ̂_EMP

, (38) 

where 𝑆̂θ̂ is the estimated standard error of the fixed effects estimates and 𝑆̂θ̂_EMP is the true 

(empirical) value of the standard error of the fixed effects estimates, which was obtained 

by calculating the standard deviation of the 1,000 parameter estimates (the θ̂s) for each 

condition. Likewise for relative parameter bias, relative standard error values are 

interpreted in the same manner, but a range of values from –0.1 to 0.1 was considered 
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acceptable (Hoogland & Boomsma, 1998). Relative standard error bias for the random 

effects variance components were not calculated because their distributions can be 

positively skewed and truncated at zero, especially for smaller values (Fears, Benichou, & 

Gail, 1996). These 1,000 bias values were averaged across replications for each condition 

and then compared across models. 

Root Mean Square Error 

The root mean square error (RMSE) was also calculated using 

 RMSE = √(θ̅̂− θ)
2

+ 𝑆̂2θ̂_EMP, (39) 

where θ̅̂ is the mean of a parameter estimate across the 1,000 replications for each 

condition. The RMSE values were compared across the two models being estimated with 

the smaller values signifying less bias and variation in parameter estimates. 

Coverage Rates 

For the fixed effects parameter estimates, the proportion of the 95% credible 

intervals that included the true parameter value was tallied for each condition and model. 

Ideally, the coverage rates of the 95% credible intervals should be around 0.95. 
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Chapter 4: Simulation Study Results 

This chapter presents the results from the simulation study that investigated 

differences in relative parameter bias, relative standard error bias, root mean square error, 

and coverage rates for the baseline unconditional model parameters estimated using the 

CCMM-LVR and HM3-LVR models. The CCMM-LVR model handles student mobility 

across clustering units, while the HM3-LVR model assumes the students remained in their 

first school (cluster) for the entire duration of the study. The following sections summarize 

the results. 

RELATIVE PARAMETER BIAS 

The relative parameter bias was computed for estimates of the fixed effects, 

including the following model-specific (CCMM-LVR and HM3-LVR, respectively) 

parameters: the intercept (γ0000 and γ000), slope (γ1000 and γ100), Bb coefficient, Bw_0 

coefficient, and Bw_1 coefficient. Relative parameter bias was also calculated for the 

estimates of the random effects variance components including the following parameters: 

the level-one variance (σ2), between-students intercept variance (τr00), between-students 

slope variance (τr11), between-first-schools intercept variance (τuj100 and τu00), between-

first-schools slope variance (τuj111 and τu11), between-first-schools Bw variance (τuj1Bw and 

τuBw), and between-subsequent-schools slope variance (τu{j2}11). Substantial relative 

parameter bias would be indicated by values smaller than –0.05 or larger than 0.05, 

according to Hoogland and Boomsma’s criteria (1998). 
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Fixed Effects 

This section presents the relative parameter bias for the 16 conditions for each of 

the fixed effects parameters estimated using the two models, CCMM-LVR and HM3-LVR. 

Intercept, γ0000 and γ000 

Table 9 provides the relative parameter bias for the intercept estimates, γ0000 and 

γ000, for the CCMM-LVR and HM3-LVR models, respectively, across conditions. No 

substantial bias was found for either model’s estimates of the intercept under any of the 

conditions. 
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Table 9 

Relative Parameter Bias of the Intercept and Slope Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 γ0000 γ000  γ1000 γ100 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.000 0.000  0.002 0.002 

   4  0.000 0.000  0.001 0.001 

  80 3  0.000 0.000  0.001 0.001 

   4  0.000 0.000  −0.002 −0.002 

 100 40 3  0.000 0.000  0.001 0.001 

   4  0.000 0.000  0.001 0.001 

  80 3  0.000 0.000  0.000 0.000 

   4  0.000 0.000  −0.001 −0.001 

20% 50 40 3  0.000 0.000  −0.002 −0.002 

   4  −0.001 −0.001  0.000 0.000 

  80 3  0.000 0.000  −0.001 −0.001 

   4  0.000 0.000  0.001 0.001 

 100 40 3  0.000 0.000  0.003 0.003 

   4  0.000 0.000  0.001 0.001 

  80 3  0.000 0.000  0.001 0.001 

   4  0.000 0.000  0.001 0.001 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression. 
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Slope, γ1000 and γ100 

Table 9 provides the relative parameter bias for the slope estimates, γ1000 and γ100, 

for the CCMM-LVR and HM3-LVR models, respectively. Similar to the results for the 

intercept estimates, no substantial bias was found for estimates of the slope under any of 

the conditions. 

Bb Coefficient 

The relative parameter bias values are provided in Table 10 for the Bb coefficient 

estimates across conditions for the two estimating models. No substantial bias was found 

for the estimates of the Bb coefficient under any of the conditions for both estimating 

models. 
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Table 10 

Relative Parameter Bias of the Bb, Bw_0, and Bw_1 Coefficient Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 Bb  Bw_0  Bw_1 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  −0.010 −0.016  0.145 0.142  0.004 0.000 

   4  −0.014 0.010  0.071 0.076  0.018 0.013 

  80 3  0.029 0.033  −0.011 −0.014  0.022 0.017 

   4  0.024 0.032  −0.014 −0.008  −0.015 −0.022 

 100 40 3  −0.010 −0.014  −0.037 −0.045  0.019 0.015 

   4  −0.012 −0.003  −0.046 −0.049  0.021 0.016 

  80 3  −0.012 −0.005  0.036 0.032  0.015 0.011 

   4  −0.002 −0.003  −0.003 −0.004  0.024 0.017 

20% 50 40 3  −0.004 −0.003  0.114 0.109  −0.001 −0.010 

   4  −0.034 −0.041  0.040 0.036  0.015 0.002 

  80 3  −0.004 0.028  −0.010 −0.014  0.048 0.040 

   4  −0.021 −0.014  0.000 −0.004  0.028 0.015 

 100 40 3  −0.034 −0.032  0.061 0.063  0.006 −0.001 

   4  −0.020 −0.011  0.027 0.036  −0.006 −0.017 

  80 3  −0.031 −0.044  0.069 0.071  −0.005 −0.014 

   4  −0.019 −0.010  −0.001 0.000  −0.012 −0.023 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate substantial bias.
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Bw_0 Coefficient 

The relative parameter bias for the Bw_0 coefficient estimates across conditions 

for the CCMM-LVR and HM3-LVR models are presented in Table 10. Substantial positive 

relative parameter bias was found under a few of the conditions (5 out of the 16 conditions) 

for both estimating models. Slightly more positive bias was generally found for the 

conditions with three measurement occasions, where the Bw_0 coefficient was 

overestimated by 6.1% to 14.5% for the CCMM-LVR model and by 6.3% to 14.2% for the 

HM3-LVR model. 

Bw_1 Coefficient 

Table 10 displays the relative parameter bias for the Bw_1 coefficient estimates for 

the estimating models across the 16 conditions. No substantial bias was found under any 

of the conditions for the two models for the Bw_1 coefficient estimates. 

Random Effects 

This section provides the relative parameter bias results for the random effects 

variance component estimates. 

Level-One Variance, σ2 

The relative parameter bias for estimates of the level-one variance, σ2, is presented 

in Table 11. No substantial bias was found for the level-one variance component estimates 

under any of the 16 conditions for both models. 
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Table 11 

Relative Parameter Bias of the Level-One and Level-Two Variance Component Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 σ2  τr00  τr11 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.003 0.003  0.001 0.001  0.004 0.037 

   4  0.001 0.001  0.002 0.002  0.003 0.039 

  80 3  0.000 0.000  0.002 0.002  0.008 0.039 

   4  0.000 0.000  0.000 0.000  0.005 0.041 

 100 40 3  0.001 0.001  0.001 0.001  0.005 0.038 

   4  0.001 0.001  0.001 0.001  0.004 0.039 

  80 3  0.001 0.001  0.000 0.000  0.001 0.032 

   4  0.001 0.001  0.001 0.001  0.000 0.034 

20% 50 40 3  0.003 0.003  0.002 0.002  −0.003 0.051 

   4  0.001 0.001  0.002 0.002  0.007 0.067 

  80 3  0.001 0.001  0.000 0.000  0.010 0.062 

   4  0.001 0.001  0.002 0.002  0.003 0.062 

 100 40 3  0.000 0.000  0.000 0.000  0.006 0.060 

   4  0.000 0.000  0.000 0.000  0.004 0.063 

  80 3  0.000 0.000  0.000 0.000  0.006 0.056 

   4  0.000 0.000  0.000 0.000  0.002 0.061 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate substantial bias.
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Between-Students Intercept Variance, τr00 

Table 11 provides the relative parameter bias for the estimates of the between-

students intercept variance, τr00. Neither model resulted in substantially biased estimates of 

the between-students intercept variance under any of the conditions. 

Between-Students Slope Variance, τr11 

The relative parameter bias is presented in Table 11 for estimates of the between-

students slope variance, τr11, across the 16 conditions for the CCMM-LVR and HM3-LVR 

models. The results revealed slightly substantial positive bias across the 20% mobility rate 

conditions for the HM3-LVR model, where the values ranged from 0.051 to 0.067. 

Between-First-Schools Intercept Variance, τuj100 and τu00 

Table 12 provides the relative parameter bias for estimates of the between-first-

schools intercept variance, τuj100 and τu00. For both the CCMM-LVR and HM3-LVR 

models, substantial positive bias was discovered in estimates of the between-first-schools 

intercept variance component estimates across conditions. The bias was the same to the 

third decimal point for both models, with the between-first-schools intercept variance 

overestimated by degrees between 9.1% and 16.4%. 
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Table 12 

Relative Parameter Bias of the Level-Three Variance Component Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per 

School 

Time- 

points 

 τuj100 τu00  τuj111 τu11  τuj1Bw τuBw  τu{j2}11 

 
CCMM- 

LVR 

HM3- 

LVR 
 

CCMM- 

LVR 

HM3- 

LVR 
 

CCMM- 

LVR 

HM3- 

LVR 
 

CCMM- 

LVR 

10% 50 40 3  0.140 0.139  0.222 3.071  −0.009 −0.047  0.108 

   4  0.147 0.147  0.108 3.010  −0.032 −0.052  0.115 

  80 3  0.164 0.164  0.114 3.097  −0.006 −0.023  0.131 

   4  0.148 0.148  0.059 3.048  −0.006 −0.014  0.137 

 100 40 3  0.091 0.091  0.049 2.949  −0.052 −0.076  0.072 

   4  0.094 0.094  −0.010 2.944  −0.018 −0.026  0.084 

  80 3  0.106 0.107  −0.013 2.970  −0.011 −0.018  0.080 

   4  0.092 0.092  −0.008 2.939  0.004 0.002  0.067 

20% 50 40 3  0.151 0.151  0.145 2.745  −0.011 −0.044  0.133 

   4  0.158 0.158  0.077 2.659  −0.032 −0.048  0.133 

  80 3  0.152 0.152  0.084 2.788  0.003 −0.013  0.145 

   4  0.143 0.143  0.026 2.633  0.019 0.016  0.122 

 100 40 3  0.100 0.100  0.020 2.661  −0.053 −0.074  0.093 

   4  0.093 0.093  −0.009 2.554  −0.028 −0.034  0.073 

  80 3  0.092 0.092  −0.023 2.600  −0.008 −0.013  0.069 

   4  0.092 0.092  0.002 2.561  0.007 0.008  0.066 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate substantial bias.
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Between-First-Schools Slope Variance, τuj111 and τu11 

The relative parameter bias is presented in Table 12 for the between-first-schools 

slope variance, τuj111 and τu11, across the 16 conditions for the CCMM-LVR and HM3-

LVR models, respectively. Very substantial positive relative parameter bias was found 

under all of the conditions for the HM3-LVR model, ranging from 255.4% up to 309.7%. 

The CCMM-LVR model consistently resulted in much less bias than the HM3-LVR model 

across conditions, and substantial bias was generally found only under the conditions with 

50 schools with relative parameter bias values ranging from 5.9% to 22.2%. 

Between-First-Schools Bw Variance, τuj1Bw and τuBw 

The relative parameter bias of the between-first-schools Bw variance, τuj1Bw and 

τuBw, is provided in Table 12 for the two estimating models across conditions. Substantially 

negatively biased estimates of the between-first-schools Bw variance were found in a small 

number of conditions, including under the conditions with 100 schools, 40 students per 

school, and 3 time-points for the CCMM-LVR and HM3-LVR models. The between-first-

schools Bw variance was underestimated by 5.2% to 5.3% for the CCMM-LVR model and 

by 7.4% to 7.6% for the HM3-LVR model. For the HM3-LVR model, slightly substantial 

negative bias was also found under the 10% mobility, 50 schools, 40 students per school, 

and 4 time-points condition (−0.052). 

Between-Subsequent-Schools Slope Variance, τu{j2}11 

Table 12 presents the relative parameter bias for estimates of the between-

subsequent-schools slope variance, τu{j2}11, across the conditions for the CCMM-LVR 
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model. The between-subsequent-schools slope variance was not estimated under the HM3-

LVR model. Substantial positive relative parameter bias was found across all conditions, 

however, more bias was found for the conditions with 50 schools (0.108 to 0.145) than for 

the conditions with 100 schools (0.066 to 0.093). 

RELATIVE STANDARD ERROR BIAS 

The relative standard error bias was computed for estimates of the fixed effects 

including the following model-specific (CCMM-LVR and HM3-LVR, respectively) 

parameters: the intercept (γ0000 and γ000), slope (γ1000 and γ100), Bb coefficient, Bw_0 

coefficient, and Bw_1 coefficient. Relative standard error bias values outside the range of 

–0.1 to 0.1 were considered substantially biased (Hoogland & Boomsma, 1998). 

Fixed Effects 

This section presents the relative standard error bias for the 16 conditions for each 

of the fixed effects parameters estimated using each of the two models. 

Intercept, γ0000 and γ000 

Table 13 provides the relative standard error bias for the intercept estimates, γ0000 

and γ000, for the two estimating models across conditions. For only one condition (the 10% 

mobility rate, 50 schools, 40 students per school, and 3 time-points condition), the CCMM-

LVR and HM3-LVR models resulted in very slightly substantial positive bias for the 

intercept estimates. The standard error of the intercept was overestimated by 10.8% under 

the CCMM-LVR model and by 10.5% under the HM3-LVR model. 

 



 93 

Table 13 

Relative Standard Error Bias of the Intercept and Slope Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 γ0000 γ000  γ1000 γ100 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.108 0.105  0.069 0.000 

   4  0.056 0.054  0.091 0.017 

  80 3  0.076 0.076  −0.003 −0.071 

   4  0.056 0.056  0.056 −0.018 

 100 40 3  0.015 0.014  0.043 −0.014 

   4  0.041 0.039  −0.009 −0.066 

  80 3  0.023 0.022  0.070 0.011 

   4  0.064 0.063  0.035 −0.026 

20% 50 40 3  0.048 0.049  0.048 −0.048 

   4  0.061 0.060  0.038 −0.067 

  80 3  0.042 0.040  0.079 −0.023 

   4  0.035 0.034  0.014 −0.090 

 100 40 3  0.040 0.040  0.048 −0.039 

   4  0.029 0.028  0.011 −0.083 

  80 3  0.061 0.060  0.002 −0.088 

   4  0.013 0.013  0.051 −0.052 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate substantial bias. 
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Slope, γ1000 and γ100 

Table 13 provides the relative standard error bias for the slope estimates, γ1000 and 

γ100, for the CCMM-LVR and HM3-LVR models, respectively. Table 13 indicates no 

substantial bias for the standard error estimates of the slope under any of the conditions. 

Bb Coefficient 

The relative standard error bias in presented in Table 14 for the Bb coefficient 

estimates across conditions for the CCMM-LVR and HM3-LVR models. Substantial 

positive relative standard error bias was found for the HM3-LVR model estimates under 

12 of the 16 conditions. The bias values ranged from 0.128 to 0.283, meaning that the 

HM3-LVR model overestimated the standard error of the Bb coefficient by 12.8% to 

28.3%. 
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Table 14 

Relative Standard Error Bias of the Bb, Bw_0, and Bw_1 Coefficient Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 Bb  Bw_0  Bw_1 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.046 0.083  0.049 0.043  −0.001 −0.006 

   4  −0.015 0.089  −0.012 −0.015  −0.080 −0.082 

  80 3  0.062 0.174  0.008 0.003  −0.015 −0.015 

   4  0.050 0.263  0.036 0.036  0.024 0.023 

 100 40 3  0.002 0.050  0.020 0.019  −0.023 −0.024 

   4  0.007 0.128  −0.003 −0.003  −0.029 −0.029 

  80 3  0.020 0.139  0.009 0.009  −0.016 −0.016 

   4  −0.024 0.184  0.045 0.045  0.014 0.015 

20% 50 40 3  −0.031 0.039  0.004 0.003  0.019 0.019 

   4  0.013 0.168  0.021 0.020  −0.038 −0.035 

  80 3  0.035 0.197  0.067 0.062  −0.011 −0.012 

   4  0.021 0.283  −0.020 −0.017  −0.058 −0.055 

 100 40 3  0.052 0.139  −0.011 −0.013  0.021 0.021 

   4  0.016 0.175  0.016 0.018  −0.056 −0.053 

  80 3  0.024 0.189  −0.050 −0.049  0.014 0.014 

   4  0.002 0.255  −0.032 −0.030  −0.006 −0.001 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate substantial bias. 
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Bw_0 Coefficient 

The relative standard error bias for the Bw_0 coefficient estimates across conditions 

for the CCMM-LVR and HM3-LVR models are presented in Table 14. Substantial bias 

was not found for the models under any of the conditions. 

Bw_1 Coefficient 

Table 14 displays the relative standard error bias for the Bw_1 coefficient estimates. 

No substantial bias was found under any of the conditions for the two estimating models 

for the standard error estimates of the Bw_1 coefficient. 

ROOT MEAN SQUARE ERROR 

The root mean square error (RMSE) was calculated for estimates of the fixed effects 

including the following model-specific (CCMM-LVR and HM3-LVR, respectively) 

parameters: the intercept (γ0000 and γ000), slope (γ1000 and γ100), Bb coefficient, Bw_0 

coefficient, and Bw_1 coefficient. RMSE was also computed for the estimates of the 

random effects variance components: the level-one variance (σ2), between-students 

intercept variance (τr00), between-students slope variance (τr11), between-first-schools 

intercept variance (τuj100 and τu00), between-first-schools slope variance (τuj111 and τu11), 

between-first-schools Bw variance (τuj1Bw and τuBw), and between-subsequent-schools 

slope variance (τu{j2}11). Smaller RMSE values between the two estimating models would 

indicate less bias and variation (i.e., more efficiency) in the parameter estimates. Note that 

RMSE was not computed for the between-subsequent-schools slope variance, τu{j2}11, 
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because no comparison could be made between models due to the HM3-LVR model not 

estimating that parameter. 

Fixed Effects 

This section presents the RMSE values for each of the 16 unique conditions for 

each of the fixed effects parameters for the two estimating models, CCMM-LVR and HM3-

LVR. 

Intercept, γ0000 and γ000 

Table 15 provides the RMSE values for the intercept estimates, γ0000 and γ000, for 

the two estimating models across conditions. The outcomes indicated that there was no 

difference in RMSE values (at least to the third decimal place) estimating the intercept 

across conditions. 
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Table 15 

Root Mean Square Error of the Intercept and Slope Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 γ0000 γ000  γ1000 γ100 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.741 0.741  0.187 0.187 

   4  0.778 0.778  0.172 0.172 

  80 3  0.749 0.749  0.189 0.189 

   4  0.757 0.757  0.172 0.172 

 100 40 3  0.561 0.561  0.131 0.131 

   4  0.548 0.548  0.131 0.131 

  80 3  0.545 0.545  0.120 0.120 

   4  0.521 0.521  0.120 0.120 

20% 50 40 3  0.784 0.784  0.191 0.191 

   4  0.778 0.778  0.181 0.181 

  80 3  0.770 0.770  0.174 0.174 

   4  0.771 0.771  0.177 0.177 

 100 40 3  0.550 0.550  0.131 0.131 

   4  0.554 0.554  0.127 0.127 

  80 3  0.523 0.523  0.128 0.128 

   4  0.546 0.546  0.118 0.118 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression. 
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Slope, γ1000 and γ100 

Table 15 provides the RMSE values for the slope estimates, γ1000 and γ100, for the 

CCMM-LVR and HM3-LVR models, respectively. The models resulted in the same values 

(at least to the third decimal place) for estimating the slope across conditions. 

Bb Coefficient 

The RMSE values are provided in Table 16 for the Bb coefficient estimates across 

conditions for the CCMM-LVR and HM3-LVR models. The results indicated that there 

was no difference in RMSE values for the models (at least to the third decimal place) when 

estimating the Bb coefficient across conditions. 

 



 100 

Table 16 

Root Mean Square Error of the Bb, Bw_0, and Bw_1 Coefficient Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 Bb  Bw_0  Bw_1 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.035 0.035  0.011 0.011  0.002 0.002 

   4  0.032 0.032  0.010 0.010  0.002 0.002 

  80 3  0.029 0.029  0.010 0.010  0.002 0.002 

   4  0.026 0.026  0.008 0.008  0.001 0.001 

 100 40 3  0.025 0.025  0.008 0.008  0.002 0.002 

   4  0.021 0.021  0.007 0.007  0.001 0.001 

  80 3  0.020 0.020  0.007 0.007  0.001 0.001 

   4  0.019 0.019  0.006 0.006  0.001 0.001 

20% 50 40 3  0.035 0.035  0.012 0.012  0.002 0.002 

   4  0.029 0.029  0.009 0.009  0.002 0.002 

  80 3  0.027 0.027  0.009 0.009  0.002 0.002 

   4  0.024 0.024  0.009 0.009  0.002 0.002 

 100 40 3  0.022 0.022  0.008 0.008  0.001 0.001 

   4  0.020 0.020  0.007 0.007  0.001 0.001 

  80 3  0.019 0.019  0.007 0.007  0.001 0.001 

   4  0.017 0.017  0.006 0.006  0.001 0.001 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression. 



 101 

Bw_0 Coefficient 

The RMSE values for the Bw_0 coefficient estimates across conditions for the 

CCMM-LVR and HM3-LVR models are presented in Table 16. No differences were found 

(at least to the third decimal place) between the estimating models in RMSE values when 

estimating the Bw_0 coefficient across conditions. 

Bw_1 Coefficient 

Table 16 displays the RMSE values for the Bw_1 coefficient estimates for the 

estimating models, CCMM-LVR and HM3-LVR, for the 16 conditions. The models 

resulted in the same RMSE values (at least to the third decimal place) when estimating the 

Bw_1 coefficient across the conditions. 

Random Effects 

This section provides the root mean square error (RMSE) for the random effects 

variance component estimates. As noted before, the RMSE is not presented for the HM3-

LVR estimates of the between-subsequent-schools slope variance because this parameter 

is not estimated under that model, and therefore, no model comparisons in RMSE values 

could be made. 

Level-One Variance, σ2 

The RMSE values for the level-one variance component estimate, σ2, are presented 

in Table 17 for the 16 conditions and for each of the two estimating models, CCMM-LVR 

and HM3-LVR. No differences between models were found (at least to the third decimal 

place) in the RMSE values when estimating the level-one variance across conditions. 
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Table 17 

Root Mean Square Error (RMSE) of the Level-One and Level-Two Variance Component Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 σ2  τr00  τr11 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.762 0.762  4.732 4.732  0.630 0.642 

   4  0.542 0.542  4.271 4.271  0.292 0.321 

  80 3  0.516 0.516  3.292 3.292  0.443 0.461 

   4  0.394 0.394  3.213 3.213  0.205 0.248 

 100 40 3  0.541 0.541  3.340 3.340  0.436 0.455 

   4  0.364 0.364  3.308 3.308  0.209 0.249 

  80 3  0.391 0.391  2.302 2.302  0.315 0.333 

   4  0.277 0.277  2.193 2.193  0.144 0.187 

20% 50 40 3  0.803 0.803  4.711 4.712  0.615 0.639 

   4  0.547 0.547  4.356 4.356  0.299 0.377 

  80 3  0.535 0.535  3.369 3.369  0.444 0.490 

   4  0.386 0.386  3.170 3.170  0.209 0.298 

 100 40 3  0.540 0.540  3.241 3.241  0.468 0.510 

   4  0.375 0.375  3.209 3.209  0.197 0.292 

  80 3  0.376 0.376  2.404 2.404  0.321 0.374 

   4  0.266 0.266  2.175 2.175  0.147 0.257 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate larger RMSE values in the estimate. 
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Between-Students Intercept Variance, τr00 

Table 17 provides the RMSE values by condition and for the two estimating 

models, CCMM-LVR and HM3-LVR, for estimates of the between-students intercept 

variance, τr00. The models resulted in the same RMSE values (at least to the third decimal 

place) when estimating the between-students intercept variance in all but one condition. 

However, the difference in values was very slight between the CCMM-LVR (4.711) and 

HM3-LVR (4.712) models. 

Between-Students Slope Variance, τr11 

The RMSE values are displayed in Table 17 for estimates of the between-students 

slope variance, τr11, across the 16 conditions for the CCMM-LVR and HM3-LVR models. 

Smaller RMSE values were found for estimates of the between-students slope variance 

with the CCMM-LVR model than the HM3-LVR model across conditions. 

Between-First-Schools Intercept Variance, τuj100 and τu00 

Table 18 contains the RMSE values for estimates of the between-first-schools 

intercept variance, τuj100 and τu00, for the CCMM-LVR and HM3-LVR models, 

respectively, for each condition. The results indicated differences in RMSE values when 

estimating the between-first-schools intercept variance, for 12 of the 16 conditions. The 

differences were very slight (less than 0.01), and the model resulting in the better RMSE 

values differed across the 12 conditions. 
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Table 18 

Root Mean Square Error (RMSE) of the Level-Three Variance Component Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 τuj100 τu00  τuj111 τu11  τuj1Bw τuBw 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  7.774 7.766  0.140 0.935  0.001 0.001 

   4  7.987 7.985  0.127 0.917  0.001 0.001 

  80 3  7.783 7.785  0.130 0.944  0.001 0.001 

   4  7.756 7.756  0.115 0.927  0.001 0.001 

 100 40 3  5.335 5.334  0.113 0.898  0.001 0.001 

   4  5.273 5.273  0.106 0.895  0.001 0.001 

  80 3  5.230 5.233  0.106 0.903  0.000 0.000 

   4  4.968 4.967  0.094 0.893  0.000 0.000 

20% 50 40 3  8.200 8.202  0.134 0.839  0.001 0.001 

   4  7.851 7.851  0.123 0.812  0.001 0.001 

  80 3  7.529 7.531  0.124 0.851  0.001 0.001 

   4  7.540 7.543  0.108 0.802  0.001 0.001 

 100 40 3  5.493 5.486  0.112 0.811  0.001 0.001 

   4  5.367 5.363  0.097 0.778  0.001 0.001 

  80 3  4.987 4.987  0.098 0.791  0.000 0.000 

   4  5.066 5.073  0.082 0.778  0.000 0.000 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression; italicized and bolded values indicate larger RMSE values in the estimate. 
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Between-First-Schools Slope Variance, τuj111 and τu11 

The RMSE values are presented in Table 18 for estimates of the between-first-

schools slope variance, τuj111 and τu11, across the 16 conditions for the CCMM-LVR and 

HM3-LVR models, respectively. Smaller RMSE values were found for estimates of the 

between-first-schools slope variance for the CCMM-LVR model under all conditions. 

Between-First-Schools Bw Variance, τuj1Bw and τuBw 

The RMSE values for estimates of the between-first-schools Bw variance, τuj1Bw 

and τuBw, are provided in Table 18 for the two estimating models across conditions. Table 

18 revealed that no differences were found (at least to the third decimal place) between the 

models in RMSE values for estimates of the between-first-schools Bw variance. 

COVERAGE RATES 

The coverage rates for the 95% credible intervals were calculated for estimates of 

the fixed effects including the following model-specific (CCMM-LVR and HM3-LVR, 

respectively) parameters: the intercept (γ0000 and γ000), slope (γ1000 and γ100), Bb coefficient, 

Bw_0 coefficient, and Bw_1 coefficient. The closer the coverage rate to the nominal 95% 

rate the better the credible intervals are functioning. 

Fixed Effects 

This section presents the coverage rates across conditions for each of the fixed 

effects parameters for the two estimating models, CCMM-LVR and HM3-LVR. 
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Intercept, γ0000 and γ000 

Table 19 provides the coverage rates for the intercept estimates, γ0000 and γ000, for 

the two estimating models for each condition. All coverage rates for the CCMM-LVR and 

HM3-LVR models were relatively close to 95% for each condition, and were similar 

between the two estimating models, ranging from 94.7% to 97.1% and from 94.4% to 

97.0% for the CCMM-LVR and HM3-LVR models, respectively. 
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Table 19 

Coverage Rates of the Intercept and Slope Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 γ0000 γ000  γ1000 γ100 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.971 0.970  0.965 0.946 

   4  0.952 0.950  0.967 0.953 

  80 3  0.966 0.968  0.955 0.930 

   4  0.952 0.949  0.961 0.949 

 100 40 3  0.948 0.950  0.960 0.947 

   4  0.953 0.951  0.950 0.934 

  80 3  0.947 0.950  0.957 0.946 

   4  0.958 0.960  0.954 0.943 

20% 50 40 3  0.948 0.945  0.958 0.927 

   4  0.960 0.961  0.963 0.939 

  80 3  0.955 0.955  0.955 0.942 

   4  0.950 0.955  0.948 0.919 

 100 40 3  0.951 0.947  0.955 0.930 

   4  0.950 0.949  0.949 0.928 

  80 3  0.959 0.958  0.944 0.923 

   4  0.949 0.944  0.961 0.932 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression. 
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Slope, γ1000 and γ100 

Table 19 provides the coverage rates for the slope estimates, γ1000 and γ100, for the 

CCMM-LVR and HM3-LVR models, respectively. Table 19 reveals that the coverage rates 

for the slope estimates were close to 95% across conditions for the CCMM-LVR model 

(94.4% to 96.7%) and slightly under 95% for the HM3-LVR model (91.9% to 95.3%). The 

HM3-LVR model consistently resulted in slightly lower coverage rates (M = 93.7%) than 

the CCMM-LVR model (M = 95.6%) by about 2% on average. 

Bb Coefficient 

The coverage rates are provided in Table 20 for the Bb coefficient estimates across 

conditions for the CCMM-LVR and HM3-LVR models. No coverage rates were found to 

be far from 95% for estimates of the Bb coefficient under any of the conditions for both 

models, ranging from 94.0% to 95.8% and from 93.9% to 96.2% for the CCMM-LVR and 

HM3-LVR models, respectively. 
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Table 20 

Coverage Rates of the Bb, Bw_0, and Bw_1 Coefficient Estimates 

Condition  Parameter and Estimating Model 

Mobility 

Rate Schools 

Students 

per School 

Time- 

points 

 Bb  Bw_0  Bw_1 

 CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR  CCMM-LVR HM3-LVR 

10% 50 40 3  0.951 0.944  0.967 0.964  0.944 0.940 

   4  0.950 0.939  0.944 0.942  0.914 0.913 

  80 3  0.957 0.962  0.943 0.936  0.941 0.941 

   4  0.958 0.954  0.947 0.947  0.941 0.945 

 100 40 3  0.952 0.959  0.953 0.957  0.944 0.946 

   4  0.949 0.956  0.948 0.947  0.949 0.947 

  80 3  0.954 0.953  0.951 0.951  0.950 0.954 

   4  0.940 0.942  0.961 0.956  0.951 0.954 

20% 50 40 3  0.951 0.942  0.946 0.949  0.947 0.951 

   4  0.944 0.954  0.950 0.943  0.938 0.936 

  80 3  0.958 0.945  0.965 0.961  0.945 0.942 

   4  0.957 0.947  0.941 0.943  0.933 0.936 

 100 40 3  0.957 0.960  0.956 0.949  0.955 0.953 

   4  0.958 0.956  0.948 0.947  0.929 0.924 

  80 3  0.954 0.950  0.937 0.939  0.953 0.957 

   4  0.949 0.953  0.938 0.947  0.932 0.934 

Note. CCMM-LVR = cross-classified multiple membership latent variable regression; HM3-LVR = three-level latent variable 

regression. 
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Bw_0 Coefficient 

The coverage rates for the Bw_0 coefficient estimates for each condition for the 

CCMM-LVR and HM3-LVR models are presented in Table 20. Coverage rates of the 

Bw_0 estimates were very close to 95% for both estimating models across conditions, 

ranging from 93.7% to 96.7% and from 93.6% to 96.4% for the CCMM-LVR and HM3-

LVR models, respectively. 

Bw_1 Coefficient 

Table 20 displays the coverage rates for the Bw_1 coefficient estimates for the 

models, CCMM-LVR and HM3-LVR, for each of the 16 conditions. Coverage rates were 

found to be slightly under 95% but similar for the two estimating models, ranging from 

93.7% to 96.7% and from 93.6% to 96.4% for the CCMM-LVR and HM3-LVR models, 

respectively. 
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Chapter 5: Discussion 

This dissertation was comprised of two studies including a real data analysis and a 

simulation study. Both of these studies compared results when estimating two different 

models, the CCMM-LVR and HM3-LVR models. The HM3-LVR is a three-level latent 

variable regression model that ignores mobility by only modeling one of the multiple 

clusters associated with some participants (the first school attended, in the example used 

in this dissertation), while the CCMM-LVR model handles the student mobility found in 

multiple membership data structures. The HM3-LVR model is a useful extension to the 

typical HM3-GCM because it can model the LVR coefficients as varying across clusters, 

can examine interactions between the participant and/or cluster characteristics and the 

initial status on growth effect, and controls for differences in initial status among 

participants and among clusters. However, the HM3-LVR model cannot handle the 

participant mobility that is typically encountered in large-scale longitudinal studies, which 

is why the CCMM-LVR model was proposed in this study. The following section contains 

a discussion of the real data analysis and simulation results, followed by a discussion of 

the limitations and directions for future research. Lastly, the conclusion and implications 

of this study are discussed. 

SUMMARY OF REAL DATA ANALYSIS AND SIMULATION STUDY RESULTS 

The real data study demonstrated interpretation of estimates of parameters for the 

newly proposed CCMM-LVR model when applied to a longitudinal dataset that included 

student mobility. The results revealed differences in parameter estimate values and model 

fit between the two estimating models. Some of the values for the parameter estimates and 
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characteristics of the real dataset that was analyzed were used when designing the 

associated simulation study. The purpose of the simulation study was to determine which 

baseline unconditional model, CCMM-LVR or HM3-LVR, resulted in parameter estimates 

that were closer to the truth and to assess how well the true parameter values could be 

recovered under a variety of design conditions. Several outcomes were evaluated to 

identify the differences in parameter estimates, such as relative parameter bias, relative 

standard error bias, root mean square error, and coverage rates. Conditions were 

manipulated to try to understand why these differences occurred, including the student 

mobility rate, number of level-3 units (schools), number of level-2 units (students) per 

level-3 unit, and number of measurement occasions. The following sections describe the 

results from both the real data analysis and simulation study. 

Baseline Unconditional Fixed Effects 

In the baseline unconditional models from the real data analysis, fixed effects 

estimates of the Bw_0 coefficient were smaller for the CCMM-LVR model than the HM3-

LVR model (see Table 3). Differences between multiple membership and typical 

multilevel models that ignore the multiple membership structure for baseline unconditional 

fixed effects estimates have not frequently been found in previous research (Chung & 

Beretvas, 2012; Grady, 2010; Luo & Kwok, 2009; Luo & Kwok, 2012; Meyers & Beretvas, 

2006). However, in a study by Smith (2012), substantial positive relative parameter bias 

was found when estimating the level-1 predictor for the MMREM and HLM models, which 

was attributed to model misspecification. From the simulation results in this dissertation, 

the difference in the Bw_0 coefficient estimates could be explained by the trouble 
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experienced by both estimating models in terms of parameter recovery for the Bw_0 

coefficient in the conditions with three measurement occasions. The substantial positive 

relative parameter bias found for both estimating models was not exceptionally large 

(ranging from 6.1% to 14.5%), but does indicate that more work needs to be conducted to 

further investigate whether fewer time-points for an LVR model causes overestimation of 

the Bw_0 coefficients. No other fixed effects estimates from the CCMM-LVR and HM3-

LVR models were associated with substantial relative parameter bias. 

Substantial relative standard error bias was only found for fixed effects estimates 

of the Bb coefficient for the baseline unconditional HM3-LVR model across most of the 

conditions (see Table 14). In particular, the conditions with the larger number of students 

per school (80) resulted in more positive bias (M = 21.1%) than the 40 students per school 

conditions (M = 10.9%). Interestingly, this indicates that as the number of level-2 units 

increases, the HM3-LVR model will more likely overestimate the standard error of the Bb 

coefficient. Meyers and Beretvas (2006) also found in their simulation study that the larger 

number of units per cluster conditions resulted in misestimated standard errors of the fixed 

effects with HLM. However, the direction of bias found in Meyers and Beretvas (2006) 

was negative rather than positive. The explanation given was that HLM may result in more 

biased estimates of the fixed effects’ standard errors as the number of participants per 

cluster increases, which is termed the design effect in cluster sampling (Kalton, 1983). This 

finding would potentially impact the use of an HM3-LVR model with multiple membership 

data and larger numbers of participants per cluster, because inferences about the Bb 

parameter would be misleading due to inflated Type II error rates (i.e., decreased power). 
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Differences between the CCMM-LVR and HM3-LVR models in standard error estimates 

of the Bb coefficient were not found in the real data analysis, but the smaller number of 

students per school (M = 39) may account for this result. Future research should further 

look into the impact of cluster sample sizes on the standard errors of the fixed effects, 

which may also help explain why the directional difference in bias was found. No other 

substantial relative standard error bias was found for the fixed effects, and coverage rates 

of the 95% credible intervals of the fixed effects were close to 95%. 

Conditional Fixed Effects 

For the fixed effects parameters estimated using the two conditional models in the 

real data analysis, the effect of first-school type on the slope (γ1010 and γ101) differed 

between the models (see Table 4). The HM3-LVR model’s parameter estimate for the 

effect of first-school type on the slope, γ101, was weaker but statistically significant from 

zero, while the parameter estimate, γ1010, was not statistically significant under the CMM-

LVR model due to the larger standard error estimate. The real data analysis results from 

Grady and Beretvas (2010) found that their standard error estimates of the level-3 predictor 

associated with the first school attended were similarly larger for the CCMM-GCM than 

for the HM3-GCM that ignored student mobility. . The HM3-LVR model in the current 

study seems to capture the sum of the effect of first-school type on the slope and the effect 

of subsequent-school type on the slope, whereas the CCMM-LVR model breaks down the 

effect of urbanicity on the slope into the subcomponents (i.e., first-school and subsequent-

school). 
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This difference between the CCMM-LVR and HM3-LVR models’ estimates was 

observed when the conditional models’ results were compared, because the effect on the 

slope of the first-school urbanicity (γ1010) as well as the subsequent-school urbanicity (γ1001) 

were both estimated with the CCMM-LVR model, while only the first-school urbanicity 

effect (γ101) on the slope was estimated under the HM3-LVR model. Grady (2010) 

examined the difference in estimates of the effect of a first-school-level predictor on the 

slope between the CCMM-GCM and HM3-GCM models with a simulation study, and 

found positively biased parameter estimates for the HM3-GCM model. This was attributed 

to the HM3-GCM model incorporating the effect of the subsequent-school predictor on the 

slope into the parameter estimate of the effect of the first-school predictor on the slope, 

which then resulted in positive bias. The findings of substantial positive bias from Grady 

(2010) could explain why the estimate of the effect of first-school urbanicity on the slope 

(γ101) was larger for the HM3-LVR model than the parameter estimate, γ1010, from the 

CCMM-LVR model in the real data analysis. 

Baseline Unconditional and Conditional Random Effects 

For the random effects variance component estimates from both the baseline 

unconditional and conditional models in the real data analysis, estimates of the between-

first-schools slope variance, τuj111 and τu11, were substantially smaller for the CCMM-LVR 

than for the HM3-LVR model (see Tables 5 and 6). This difference demonstrates how the 

two models parameterized the between-schools slope variance, because the HM3-LVR 

model only estimated a single level-3 slope variance (the between-first-schools slope 

variance, τu11) while the CCMM-LVR model partitioned that variance into the between-
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first-schools slope variance (τuj111) and the between-subsequent-schools slope variance 

(τu{j2}11). The substantially larger values found for the between-first-schools slope variance 

from the HM3-LVR models in the real data analysis match what previous research has 

revealed for the variance component estimates at the cluster level when comparing a 

multiple membership model to a typical multilevel model that ignores the multiple 

membership data structure (Chung & Beretvas, 2012; Grady, 2010; Grady & Beretvas, 

2010; Luo & Kwok, 2009; Luo & Kwok, 2012; Meyers & Beretvas, 2006). In addition, the 

pattern of results for the level-3 slope variance from the real data analysis matches those 

found in the current simulation study, where the between-first-schools slope variance (τu11) 

was substantially overestimated for the HM3-model as compared to the CCMM-LVR 

model’s parameter estimate, τuj111 (see Table 12). The HM3-LVR model also resulted in 

much larger RMSE values (see Table 18) when estimating the between-first-schools slope 

variance. 

For the other level-3 slope variance in the CCMM-LVR model, τu{j2}11, the 

simulation study found substantial positive relative parameter bias across conditions, but 

positive bias was larger for the conditions with 50 schools than 100 schools. Both 

estimating models also resulted in substantial positive relative parameter bias for estimates 

of the between-first-schools intercept variance, τuj100 and τu00, where larger positive bias 

was found for the conditions with 50 versus 100 schools. In addition, slightly substantial 

positive bias was found for the conditions with 50 schools for the between-first-schools 

slope variance (τuj111) in the CCMM-LVR model, but no substantial bias was found in this 
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estimate for the conditions with 100 schools. Grady (2010) found that both CCMM-GCM 

and HM3-GCM models had difficulty recovering the level-3 variance component values, 

where positive bias was found under several conditions for the between-first-schools 

intercept and slope variances. This finding is similar to those found in the current 

simulation for the level-3 slope and intercept variance component estimates. The results 

from the current simulation study appear to indicate that 100 clustering units may not be 

sufficient when estimating the between-subsequent-schools variance parameter (τu{j2}11) 

using the simplest CCMM-LVR model examined here. 

From Table 12, there is also indication that larger numbers of clustering units 

should lead to better parameter recovery of estimates of the between-first-schools intercept 

variance (τuj100 and τu00), but use of 100 clustering units may not be enough for both 

estimating models. However, using 100 clustering units appears to be sufficient for the 

CCMM-LVR in terms of reasonable parameter recovery for estimates of the between-first-

schools slope variance, τuj111, while 50 clustering units seems to generally not to be 

sufficient. In previous research (Browne & Draper, 2006; Chung & Beretvas, 2012), the 

use of MCMC estimation in multilevel modeling was found to lead to overestimated 

variance component estimates for units at the highest level in the model when the number 

of clustering units was small. This led to the authors’ recommendation to use a minimum 

of 50 or 100 clusters. However, for  LVR modeling of multiple membership data structures, 

the results from this simulation study seem to indicate that more than 100 clustering units 
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are needed for sufficient parameter recovery of the between-first schools intercept variance 

and the between-subsequent-schools slope variance. 

Another finding from the simulation study was that the between-students slope 

variance, τr11, was slightly overestimated by 5.1% to 6.7% for the HM3-LVR model under 

the 20% mobility rate conditions (see Table 11). Better RMSE values were found when 

estimating the between-students slope variance, τr11, for the CCMM-LVR model. It seems 

that higher rates of mobility negatively impact estimation of the between-students slope 

variance (τr11) for the HM3-LVR model. In the real data analysis (see Tables 4 and 6), it 

also appears that a small amount of the between-subsequent-schools variance (τu{j2}11) not 

estimated in the HM3-LVR model is reallocated to the between-students slope variances 

(τr11), because the between-students slope variance in the CCMM-LVR model is slightly 

smaller than the corresponding HM3-LVR model estimates. The findings for the between-

students slope variance from the real data analysis and simulation study are similar to the 

pattern of results found in the simulation study by Grady (2010) and Luo and Kwok (2012), 

where higher mobility rates led to slight increases in positive relative parameter bias of 

estimates of the between-students slope variance (τr11). 

Model Fit 

Model fit between the CCMM-LVR and HM3-LVR models was evaluated using 

the DIC values (see Table 7). The results from the real data analysis indicated that the 

model fit was better with the CCMM-LVR model for the baseline unconditional models. 

For the conditional models estimated using the real dataset, the model fit was better for the 

HM3-LVR model. The difference in better model fit between CCMM-LVR and HM3-LVR 
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could indicate that overall model fit is not very different between the CCMM-LVR and 

HM3-LVR models, which may coincide with known inconsistencies and weak theoretical 

justifications in model fit results when utilizing the DIC (Spiegelhalter, Best, Carlin, & van 

der Linde, 2014). The DIC values were not examined in the simulation study, but given the 

discrepancies of fit values for the real data analysis, future simulation studies should 

investigate the DIC for comparing model fit. 

LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH 

This study proposed a newly parameterized model, the CCMM-LVR, and 

investigated the impact of ignoring student mobility when fitting a three-level latent 

variable regression model. Of course, not every possible condition was examined in the 

simulation study conducted in this dissertation and additional conditions should be 

investigated. The current simulation study only investigated the baseline conditional 

CCMM-LVR and HM3-LVR models, however, future simulation research should include 

predictors at the different levels in the models to compare parameter recovery across the 

two estimating models. 

Several assumptions were made in this dissertation, including use of a linear growth 

model. Obviously, other possible growth forms should also be evaluated. The time variable 

was coded such that the intercept in the models represented initial status. Researchers might 

be interested in other coding possibilities (for example, final instead of initial status) that 

would change the parameterization of the growth model (see Grady & Beretvas, 2010). In 

addition, fixed measurement occasions were assumed in this study. Homogeneous 

variances were also assumed across the measurement occasions, but separate variances at 
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level one could be estimated for each time-point. In addition, homogeneous variances 

across level-3 units were assumed here, whereas this assumption was not made in the Choi 

and Seltzer (2010) HM3-LVR real data analysis. This would be another direction for future 

research with the HM3-LVR model, although even more problems may be encountered 

with some of the parameter estimates given that the more parsimonious model evaluated 

in this study led to some issues with parameter recovery. 

Another issue inherent with multiple membership data structures is the school (or 

cluster) identifiers. In many datasets several of these are missing, especially for those 

students who have changed schools. A study by Smith (2012) evaluated several ways of 

handling missing identifiers in a two-level multiple membership data structure. The results 

indicated that using a multiple membership model (MMREM) and either deleting cases 

with missing identifiers or assigning pseudo identifiers would be preferred to a typical 

HLM model with regard to relative parameter bias. Hill and Goldstein (1998) introduced a 

method to be used when the highest-level units were cross-classified. The authors 

demonstrated their procedure using a real dataset, but did not use a simulation study to 

empirically investigate parameter recovery. Generally, minimal differences were found 

between results from using their proposed procedure with a real dataset versus deleting the 

cases with missing classroom identifiers. In the real data analysis in this dissertation, 

students with missing school identifiers were removed from the analysis, which led to the 

removal of about 10% of the sample. If identifiers are not missing at random, then this 

could bias the results when researchers have simply deleted cases with missing cluster 

identifiers. However, the intention of the real data analysis was not to make substantive 
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conclusions about the variables that were examined but rather to demonstrate estimation of 

the CCMM-LVR model and compare its results with that of the HM3-LVR model. Future 

methodological research should investigate additional ways of handling missing identifiers 

in multiple membership data structures. 

CONCLUSIONS AND IMPLICATIONS 

Many longitudinal datasets are evaluated in the field of education, and in social 

science research more generally, where growth curve modeling is utilized to assess 

achievement over time. In these applied fields, there are many examples in which 

participants are clustered within higher-level contexts (such as students within schools, 

patients within hospitals, residents within neighborhoods, etc.). An extension to the typical 

growth curve model is the latent variable regression model, which can account for variation 

in student achievement at the initial status when studying expected differences in growth 

rates, as an example in the education field. Additionally, higher-level clustering units can 

be incorporated in an LVR model, where the initial status on growth effect can be modeled 

as varying across those clusters and the model allows testing of more flexible hypotheses 

about the influence of initial status on growth and of factors that might influence that 

relationship. 

In education research, the three-level LVR model would be useful to researchers 

examining school performance because it can investigate whether student achievement at 

initial status predicts growth. Including student- or school-level predictors in the HM3-

LVR model could inform policymakers and educational interventionists whether the 

program has differential effects on growth based on where the students score at the first 
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measurement occasion. When testing treatment or program outcomes, as well as school 

performance, the HM3-LVR model adjusts for differences among students and among 

schools in achievement scores at the start of a study. 

When conducting a typical LVR analysis using a higher-level clustering unit, such 

as schools, the assumption is made that the participant (or student) remains in the same 

higher-level cluster for the duration of analysis. However, there are many scenarios in 

which the participants change contexts over time, which results in a multiple membership 

data structure. This study evaluated the impact of ignoring multiple membership structures 

when a researcher is interested in estimating a three-level latent variable regression model. 

Using the misspecified HM3-LVR model can lead to substantial relative parameter 

bias, substantial relative standard error bias, and larger root mean square error values. 

Overestimation of the estimates of the student-level and school-level variance in the growth 

rates, as well as for the standard error estimates of the Bb coefficient, occurred for the 

HM3-LVR model. This suggests that ignoring student mobility across schools can lead to 

inaccurate conclusions about the relevant parameters. When estimating an HM3-LVR 

model, inferences about the Bb coefficient could be incorrect due to the inflated Type II 

error rates found across most conditions. The effect of the schools attended on the slope is 

also misleading when the HM3-LVR model is estimated, because only the first school 

attended is modeled as influencing student growth, whereas in reality the subsequent 

schools attended also impact student achievement over time. Given the interest that 

policymakers and educational researchers have in evaluating students’ growth over time, 

the level-3 residuals are frequently used to determine value added by the level-3 unit, which 
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is typically the school or classroom. By inappropriately modeling the student mobility 

across, for example, schools or classrooms, incorrect conclusions could be drawn about the 

“value added” by the clustering unit. The current study did not explore recovery of 

residuals but it is possible that if the residuals are poorly estimated then this will negatively 

influence their use as value-added measures. Future research should explore how well the 

residuals in the CCMM-LVR and HM3-LVR models are recovered. 

A researcher solely interested in investigating the fixed effects from an HM3-LVR 

model may find that the simulation results from this study would indicate that parameter 

recovery was reasonable for the fixed effects. Slightly substantial positive bas was found 

for the Bw_0 parameter and the standard error of the Bb parameter, but RMSE values were 

nearly identical for both estimating models and coverage rates of the fixed effects’ credible 

intervals were all very close to 95%. However, the results from the conditional fixed effects 

in the real data analysis suggest that including a cluster-level predictor associated with first- 

and subsequent-clusters could reveal differences in the magnitude of that effect on the slope 

and in its associated standard error. It has been found in Grady (2010) that the model 

ignoring participant mobility substantially overestimates the effect of the first clusters’ 

characteristic on the slope, which seems to correspond with what was found in the current 

study’s conditional fixed effects results from the real data analysis. Therefore, practitioners 

examining the results from an HM3-LVR model that includes school-level characteristics 

in the model should be careful when interpreting the effects on student growth achievement 

associated with school-level predictors. In addition, school-specific residuals were not 

assessed in this study, but the HM3-LVR model results revealed substantially 
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overestimated between-first-clusters slope variance which seems to indicate that the 

school-specific growth residuals might also be inaccurate using the HM3-LVR model. The 

between-first-schools slope variance was found to be overestimated across all conditions 

in this study, which implies that inaccurate decisions might be made about schools with as 

little as 10% mobility. 

Overall, it would be recommended for researchers to utilize the CCMM-LVR 

model over the HM3-LVR model when analyzing three-level multiple membership data 

that contains participants moving to different higher-level clustering units over time. In 

addition, the simulation findings suggest that a minimum of 100 clustering units should be 

utilized when estimating the CCMM-LVR model in order to avoid overestimation of the 

level-3 variance component estimates. It also appears that datasets with more than three 

measurement occasions per individual should be analyzed using the CCMM-LVR model 

so as to prevent overestimating the Bw_0 parameter.  

In summary, future research should continue focusing on finding ways to best 

handle and assess the impact of ignoring mobility across clusters. This work has provided 

a first exploration of an extension to the flexible three-level latent variable regression 

model that could provide the foundation for future research intended to identify optimal 

solutions for handling multiple membership data structures that are so common in applied 

educational and social science research. 
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