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Modern oil and gas exploration depends on a variety of geophysical prospect

tools. One of them is reflection seismology that allows to obtain interwell information

of sufficient resolution economically. This exploration method collects reflection seis-

mic data on the surface of an area of prospect interest and then uses them to build

seismic images of the subsurface.

All imaging approaches can be divided into two groups: wave equation-based

methods and integral schemes. Kirchhoff migration, which belongs to the second

group, is an indispensable tool in seismic imaging due to its flexibility and relatively

low computational cost. Unfortunately, the classic formulation of this method im-

ages only a part of the surface data, if so-called multipathing is present in it. That

phenomenon occurs in complex geologic settings, such as subsalt areas, when seismic

waves travel between a subsurface point and a surface location through more than

one path.

The quality of imaging with Kirchhoff migration in complex geological areas
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can be improved if multiple paths of ray propagation are included in the integral. Mul-

tiple arrivals can be naturally incorporated into the imaging operator if it is expressed

as an integral over subsurface take-off angles. In this form, the migration operator

involves escape functions that connect subsurface locations with surface seismic data

values through escape traveltime and escape positions. These escape quantities are

functions of phase space coordinates that are simply related to the subsurface re-

flection system. The angle-domain integral operator produces output scattering- and

dip-angle image gathers, which represent a convenient domain for subsurface analysis.

Escape functions for angle-domain imaging can be simply computed with initial-value

ray tracing, a Lagrangian computational technique. However, the computational cost

of such a bottom-up approach can be prohibitive in practice. The goal of this work

was to construct a computationally efficient phase space imaging framework. I de-

signed several approaches to computing escape functions directly in phase space for

mapping surface seismic reflection data to the subsurface angle domain.

Escape equations have been introduced previously to describe distribution of

escape functions in the phase space. Initially, I employed these equations as a basis

for building an Eulerian numerical scheme using finite-difference method in the 2-D

case. I show its accuracy constraints and suggest a modification of the algorithm

to overcome them. Next, I formulate a semi-Lagrangian approach to computing

escape functions in 3-D. The second method relies on the fundamental property of

continuity of these functions in the phase space. I define locally constrained escape

functions and show that a global escape solution can be reconstructed from local

solutions iteratively. I validate the accuracy of the proposed methods by imaging

synthetic seismic data in several complex 2-D and 3-D models. I draw conclusions

about efficiency by comparing the compute time of the imaging tests with the compute
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time of a well-optimized conventional initial-value ray tracing.
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3.13 Escape depth function ẑ at constant depth z = 2.0 km of Marmousi
model (second-order finite-difference iterative solver). . . . . . . . . . 46

3.14 Escape lateral position function x̂ at constant depth z = 2.0 km of
Marmousi model (second-order finite-difference iterative solver). . . . 46

xiv



3.15 Escape time function T̂ at constant depth z = 2.0 km of Marmousi
model (second-order finite-difference iterative solver). . . . . . . . . . 47

3.16 Exit locations for all arrivals originating from point x = 5.0 km and
z = 2.0 km of Marmousi model (first-order finite-difference iterative
solver). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.17 Exit locations for all arrivals originating from point x = 5.0 km and
z = 2.0 km of Marmousi model (second-order finite-difference iterative
solver). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.18 Surface exit locations for all arrivals originating from point x = 5.0
km and z = 2.0 km of Marmousi model (first-order finite-difference
iterative solver) plotted over wavefield computed for a source at the
same point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.19 Surface exit locations for all arrivals originating from point x = 5.0
km and z = 2.0 km of Marmousi model (second-order finite-difference
iterative solver) plotted over wavefield computed for a source at the
same point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.20 Closeup of escape depth function ẑ at constant depth z = 2.0 km of
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Chapter 1

Introduction

Background

The modern hydrocarbon exploration relies on a variety of geological and

geophysical prospect tools. For explorationists concerned with searching for oil and

gas deposits, economically efficient mapping of new reservoirs is impossible without

reliable interwell information. Reflection seismology is one of the prospect tools that

enables geophysicists to collect such data. It is probably the most efficient instrument

for hydrocarbon exploration in terms of the ratio of price to obtained resolution of

interwell structural information.

Reflection seismology produces structural images of the subsurface through a

series of steps (Yilmaz, 2001). First, reflection seismic data are acquired on the surface

of an area of prospect interest. At this stage, a burst of energy is sent downward

repeatedly from different source positions. Structural heterogeneities, such as bedding

surfaces (horizons) or planar fractures (faults), scatter part of the energy back toward

the surface, where it is recorded at multiple receiver positions to create seismic traces

grouped into records. Raw field seismic records are impossible to utilize directly for

exploration analysis (interpretation) because the acquired data exist in the surface

acquisition coordinates that are unrelated to the subsurface. To make these data

useful for exploration purposes, they need to be mapped (imaged) back to the depth

domain. This process is known as seismic migration. At the second stage of the
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seismic data analysis, field reflection data are processed and prepared for imaging.

And, finally, the imaging (migration) stage is commenced.

Contemporary seismic imaging is, in fact, an iterative process. Proper migra-

tion of reflection time data to subsurface depth space is only possible if an accurate

depth seismic velocity is known. The latter is related to rock properties, their dispo-

sitions, and, therefore, requires some a priori knowledge of the subsurface. Since it

is usually quite limited, imaging has to be done iteratively to allow refinement of the

velocity model at every step.

The necessity to migrate recorded data back to depth was recognized very

early in the history of seismic exploration, even before the beginning of the digital

era (Bednar, 2005). In the last several decades, an strong research effort has been

focused on creating better and more advanced imaging techniques (Etgen et al., 2009).

Rapid progress in the practice of migration has been enabled by exponential growth

of available computer resources. Modern seismic imaging is a very compute intensive

process. Many of the most powerful supercomputers in the world have been built

over the years solely for addressing seismic imaging tasks. Despite stunning progress

both in computer hardware and in migration research, there exists no “silver bullet”

imaging algorithm that would always produce optimal results most economically in

all possible geological settings. Some environments, such as those related to subsalt

areas, are especially troublesome for imaging (Cogan et al., 2011).

Hydrocarbon accumulations have been known to be associated with salt de-

positions since before the creation of reflection seismology. Interestingly, early exper-

iments with reflected waves were aimed at finding shallow salt domes onshore along

the coast of Gulf of Mexico (Karcher, 1974). Today, salt basins still remain one of the
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frontiers and challenges of exploration endeavors; only it is offshore, in deep water

areas, covered by thick overburden (Addison et al., 2010).

The geologic term “salt” usually means a type of rock consisting primarily of

the mineral halite, which is chemically known as sodium chloride. Salt has unusual

mechanical properties: it is less dense than most other sedimentary rocks and it is

also relatively incompressible (Hudec and Jackson, 2007). The combination of these

features causes salt to flow like a fluid on the geologic time scale, if a substantial

differential loading is present and there are pre-existing weak points in the overburden.

Under these conditions, the salt mass will rise toward the surface. As a result of this

process, significant salt volumes can be displaced and form large canopies surrounded

by younger sediments. In the Gulf of Mexico, for example, Jurassic salt is often

found encased by Tertiary deposits. Geologically older salt in this environment is

mechanically very different from the surrounding rocks. Most notably, the velocity

of seismic wave propagation is much higher in salt. Such drastic changes in media

properties around salt edges create a very strong barrier for traveling seismic energy.

The problem is intensified by typically complex shapes of salt bodies so that the

energy can get scattered in sophisticated patterns, often hitting different parts of

the salt before returning to the surface. For sediments adjacent to the salt body or

situated under it (subsalt area), this complicated geologic environment gives rise to a

phenomenon called multipathing. This means that the same point in the subsurface

can send energy back to the surface through multiple different paths in the media. For

high-quality imaging around and under salt bodies, accurate migration of all scattered

energy is needed (Fehler et al., 2002). Certain imaging approaches can naturally do

that but it is not yet economical to use them in the iterative fashion required in

exploration practice. Other, more computationally efficient techniques need to be

3



specifically adapted for imaging with multipathing, yet there is no trivial solution to

this problem that does not carry a significant computational penalty (Bednar, 2006).

Kirchhoff imaging and traveltime computations

The assortment of imaging procedures can be generally divided into two ma-

jor groups: wave equation-based methods and integral schemes. From the second

group, integral-operator Kirchhoff migration remains a staple in the toolbox of imag-

ing practitioners, even in the most complex geologic settings (Leveille et al., 2011).

The ability of Kirchhoff migration to utilize the full bandwidth of the recorded signal

and to produce image gathers in a target-oriented fashion enables iterative imaging

and velocity model building. This type of imaging also naturally handles different

types of seismic anisotropy and allows for a computationally robust implementation.

The conventional Kirchhoff imaging operator (Schneider, 1978; Schleicher et al.,

2007) can be written as

I(x) =

∫∫
W (x, s, r) Dtu

[
ss, sr, T (ss,x) + T (sr,x)

]
dss dsr , (1.1)

where x is the subsurface (image) location, u is the wavefield recorded at the surface,

Dt is the waveform correction operator, ss and sr are the shot and receiver positions

on the surface, T is the traveltime from the surface to x, and W is the amplitude

weight.

Fundamentally, this type of imaging rests on a high-frequency approximation

of wave propagation and a necessity to compute ray-theoretical Green’s functions.

The classic Kirchhoff kernel uses single-valued traveltimes computed from surface

locations to subsurface image points. Various efficient algorithms have been developed

over the years for traveltime computations, all of which generally can be divided
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into two groups: Eulerian and Lagrangian methods (Engquist and Runborg, 2003;

Runborg, 2007).

Finite-difference eikonal solvers (Vidale, 1990; van Trier and Symes, 1991) be-

long to the first group. They enable fast simultaneous computation of minimum-time

arrivals from a surface point to many subsurface locations on a model depth grid.

Two of the most prominent methods for solving the eikonal equation are fast sweep-

ing (Zhao, 2005; Fomel et al., 2009) and fast marching (Sethian and Popovici, 1999;

Popovici and Sethian, 2002). The latter can be computationally more efficient than

the former on strongly nonuniform problems (Gremaud and Kuster, 2006). In gen-

eral, eikonal solvers provide a very robust way of calculating minimum-time arrivals.

However, minimum-time travelmaps are not always sufficient for imaging difficult ge-

ologic areas (Geoltrain and Brac, 1993). In many cases, if only single arrivals are

considered, shortest path or maximum-energy ones are better alternatives (Audebert

et al., 1997). Ray tracing techniques allow computation of many arrivals and thus

enable a choice between different arrivals.

Ray tracing algorithms belong to the group of Lagrangian methods - they

describe computation of traveltimes in terms of reconstruction of individual ray tra-

jectories. There exist a plethora of such tracing techniques (Farra, 1993; Červeny̌,

2001) which can be broken into two categories: one-point and two-point ray tracing.

The latter is concerned with finding a trajectory between two fixed start and end po-

sitions. The former is also commonly known as initial-value ray tracing, since it deals

with computation of a ray for a given initial position and a phase direction. One-

point ray tracing is relatively straightforward to implement compared to the two-point

problem, but its output is very sensitive to initial conditions in the presence of strong

velocity gradients. If the background velocity model contains significant variations,
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rays with close initial conditions tend to diverge greatly when they pass near strong

velocity nonuniformities. In such cases, so-called “shadow zones” appear when initial

conditions are sampled uniformly and rays are traced independently from each other.

This problem can be addressed using wavefront construction (Vinje et al., 1993) or

Huygens wavefront tracing (Sava and Fomel, 2001) approaches.

Eikonal solvers are computationally more efficient than ray tracing techniques,

because they define traveltime calculations in such a way that new values are obtained

with the help of previously estimated points. Ray tracers, however, are more flexible

in a sense that they allow for computing different types of arrivals and can limit com-

putations to a selected few locations. Although even with this ability to choose proper

imaging contributions, single-arrival Kirchhoff migration often does not provide ac-

curate enough images (Operto et al., 2000). It has been shown that, for complex

geology and in the presence of traveltime multipathing, incorporation of multiple ar-

rivals into Kirchhoff migration is crucial for high-quality imaging (Xu et al., 2001;

Brandsberg-Dahl et al., 2003).

Angle-domain Kirchhoff migration and escape functions

A different approach to Kirchhoff migration is based on the generalized Radon

transform (Beylkin, 1985), which introduces accurate weights related to reflectivity

for true-amplitude migration (Miller et al., 1987). However, the original formulation

for integration in the surface coordinate system does not take into account the possi-

ble development of multi-valued traveltimes and requires computation of the so-called

Beylkin determinant (Bleistein, 1987). Both obstacles can be removed if the integra-

tion is performed in subsurface angular coordinates over source and receiver branches.

This unravels multipathing and establishes an imaging domain in which surface data

6



are mapped to subsurface points as a function of scattering and dip angles (Xu et al.,

2001; Brandsberg-Dahl et al., 2003; Bleistein et al., 2005).

The Kirchhoff integral operator for multi-arrival angle-domain imaging can be

written then as

I(x) =

∫∫
Ŵ (x,ps,pr) Dtu

[
ŷ(x,ps), ŷ(x,pr), T̂ (x,ps) + T̂ (x,pr)

]
dps dpr , (1.2)

where u is the wavefield recorded at the surface, ps and pr are the shot and receiver

phase slowness vectors respectively for a pair of rays originating from x, T̂ is the ray

exit (escape) traveltime at the surface exit (escape) position ŷ, Dt is the waveform-

correction time derivative operator, and Ŵ is the amplitude weight.

Figure 1.1: Parameterization of Kirchhoff integral imaging operator (a scheme): by

surface coordinate (left), by subsurface phase angle (right). chapter-intro/. adom

The integral operator in equation (1.2) presents a bottom-up imaging ap-

proach, in which every combination of a subsurface location and a subsurface slowness

vector is mapped uniquely to a pair of a surface point (exit location) and an exit ray

parameter (Xu et al., 2001). Multiple arrivals are naturally unraveled when Kirchhoff

integration is organized in the form of equation (1.2). If we limit contributions to I(x)

only to specific fixed directions ps−pr or ps + pr, then we obtain scattering angle or
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dip angle gathers, respectively (Koren and Ravve, 2011). The first subset of gathers

is an important measure of image consistency; the latter one is a convenient domain

for separating specular and diffraction components of the image (Landa et al., 2008;

Klokov and Fomel, 2012). Scattering angle gathers also provide a convenient image

representation for AVA (amplitude versus angle) analysis.

A combination of the escape traveltime T̂ (x,p) and the escape position ŷ(x,p)

represents an escape function defined in the 6-D phase space {x,p}. To implement

the summation in equation (1.2), one has to compute a discrete version of the escape

function, escape tables, in the reduced 5-D space with the initial directions defined by

the inclination angle θ and the azimuth angle φ of the phase vectors p. A conventional

way of obtaining these tables would be to perform ray tracing for all spatial locations

in multiple directions that span the reduced phase space. Each individual set of T̂

and ŷ values of the escape tables is then produced by one traced ray. This approach,

however, poses a significant practical challenge, because it adds an extra dimension to

the computations compared to the classical surface-oriented formulation. This might

render this approach too computationally expensive.

Escape functions in phase space

Ray trajectories represent characteristic lines in the phase space. Their evo-

lution can be described by the following system of ray-tracing equations (Červeny̌,

2001)

ẋ = p− S (x,p) ∇pS , (1.3)

ṗ = S (x,p) ∇x S , (1.4)

Ṫ = S2 (x,p) , (1.5)
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where ḟ denotes d f
dσ

, σ is a parameter changing along the ray, and S (x,p) is the phase

slowness. In the isotropic case, S (x,p) does not depend on p.

A conventional way of solving the system (1.3-1.5) for a gridded medium is

to perform numerical integration (Runborg, 2007). Background velocity is usually

smoothed (Alde et al., 2002) and represented in terms of spline coefficients (Virieux

and Farra, 1991). Explicit interfaces might be used along with the smoothed back-

ground, although, interfaceless fully gridded representation of the background medium

is common in seismic imaging. The computational cost OConv of obtaining the full

escape table for such a model is then proportional to the following product

OConv ∼ O (NxNyNzNθNφ) · ORT , (1.6)

where NxNyNz is the number of points in the spatial imaging grid, NθNφ is the

number of directions needed at each point to provide sufficient angle coverage, and

ORT is the computational cost of tracing one ray trajectory, which, in turn, can be

expressed as

ORT ∼ O
(

3

√
N f
xN

f
yN

f
z

)
· OODE , (1.7)

where N f
xN

f
yN

f
z is the number of points on a spatial grid fine enough for accurate ray

tracing, and OODE is the computational cost of ODE integration.

Ray tracing estimates escape values at end points of ray trajectories by recon-

structing them independently with small integration steps in the numerical solution

of the system (1.3-1.5). This is a computationally expensive procedure for building

full 5-D escape tables due to the ORT cost. A different way of describing escape

functions needs to be used to negate the effect of this term in equation (1.6) and

bring down the total computational cost.
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It is still possible to trace rays from surface locations and then reconstruct

escape functions in the subsurface coordinate system. Because individual traced rays

never go exactly through nodes of the subsurface grid, interpolation between different

ray branches has to be performed. In case of multipathing, a difficult problem arises

- how to choose two rays which belong to the same ray branch and how to prevent

incorrect interpolation between unrelated rays? Apparently, this problem does not

have an elegant solution (Xu and Lambaré, 2004). Different criteria might be utilized

to pair correct rays, but none of them exactly guarantee proper coupling.

Another method for obtaining multiple arrivals employs robustness and stabil-

ity of eikonal solvers. In the method of slowness matching (Symes and Qian, 2003),

the background model is partitioned into small sectors, in every one of which a single

arrival solutions is obtained. Multiple arrivals are then reconstructed from these local

solutions. At the edges of sectors, the slowness vectors are matched on both sides,

so that the phase vector exactly at the boundary is continuous. However, since the

solution is not known in advance, it is difficult to split the media in such a way so

that important caustic points are not lost in individual local eikonal solutions.

Yet, another approach relies on properties of the high-frequency wave prop-

agation in phase space. In the presence of velocity anomalies, wavefronts fold and

develop caustic points. However, when described in the higher dimensional phase

space, they represent smooth curves (Lambaré et al., 1996). Wavefront propagation

can be computed with Eulerian methods in phase space directly (Benamou, 1999; Os-

her et al., 2002). Much like Eikonal solvers, these methods rely on using previously

computed values to find new ones, thus allowing to achieve greater computational

robustness compared to the Lagrangian approach of ray tracing.
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Wavefront propagation and construction is just a means of achieving the ulti-

mate goal, that is, obtaining the escape tables for the angle-domain imaging. Inter-

mediate positions of the wavefronts are not important, only escape functions T̂ (x,p)

and ŷ(x,p) are. Therefore, a more robust approach to finding the escape tables is

to compute escape functions directly in the phase space. Fomel and Sethian (2002)

showed that the distribution of escape quantities in the subsurface can be described

by a set of escape equations in the phase space, which spans all possible locations

and directions in the subsurface.

Escape functions in the phase space are continuous, provided that the back-

ground medium is smooth. Figure 1.2 demonstrates ray trajectories computed for a

source point under the low-velocity anomaly, which causes ray multipathing on the

way to the surface. In this case, one surface location may have more than one ray

exiting at it. If, however, the escape position x̂ of each ray is plotted as a function of

its initial phase (or its take-off angle θ), then it becomes a continuous single-valued

function (Figure 1.3). Other escape functions, such as traveltime T̂ , have the same

property (Figure 1.4). The property of smoothness and continuity of escape functions

in the phase space makes it a convenient domain for computing escape tables. These

functions provide a natural way of mapping all arrivals in surface reflection seismic

data to the geologically meaningful subsurface scattering-dip angle system.

Problem statement and outline

Incorporation of multipathing into Kirchhoff migration has been shown to

greatly improve quality of seismic images in difficult geologic areas (Koren et al.,

2002; Alde et al., 2003). The classic integral in the surface coordinates does not

provide a convenient way of introducing multiple arrivals into migration summation.
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Figure 1.2: Ray trajectories computed for a source point at x = 3.0 km and z = 2.75
km in the low-velocity anomaly model. chapter-intro/cloud cloud2trajs

Figure 1.3: Exit (escape) position x̂ as a function of the take-off angle θ for ray
trajectories computed for a source point at x = 3.0 km and z = 2.75 km in the
low-velocity anomaly model. chapter-intro/cloud cloud2esc1
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Figure 1.4: Exit (escape) traveltime T̂ as a function of the take-off angle θ for ray
trajectories computed for a source point at x = 3.0 km and z = 2.75 km in the
low-velocity anomaly model. chapter-intro/cloud cloud2esc2

Angle-domain definition of the integration naturally incorporates all arrivals, but

poses a significant computational challenge due to necessity to compute these ar-

rivals in the “bottom-up” fashion. If ray tracing is used for this purpose, then the

computational overhead is such that this type of imaging is not considered as robust

as the conventional single-arrival Kirchhoff migration. Due to this obstacle, multi-

arrival angle-domain Kirchhoff migration has not been widely implemented and used

in practice.

Angle-domain Kirchhoff integral maps surface reflection seismic data into sub-

surface image positions and subsurface phase directions. When combined, these two

subsystems define phase space - a combination of all possible positions and direc-

tions. For a given velocity model, this mapping of reflection data to phase space is

described by a set of escape functions. These functions can be computed by means of

many high-frequency wave propagation methods, but escape equations provide, po-

tentially, the most direct route to them. The equations describe how escape functions

13



are distributed in the phase space. Thus, they allow us to construct an Eulerian-like

algorithm for computing the required escape tables.

The objective of this work is to develop a computationally efficient framework

for imaging surface reflection seismic data in the phase space and, consequently, in the

angle domain. In Chapter 2, I provide a theoretical background for escape equations

and derive their counterparts in reduced phase space, a more convenient domain for

practical computation than full phase space. I provide a way of handling an important

case of seismic anisotropy in escape equation computations as well. The last part of

that chapter is dedicated to analysis of behavior of escape functions in reduced phase

space for complex 2-D and 3-D velocity models.

In Chapter 3, I describe the process of building a finite-difference method for

direct computation of 2-D escape equations. I analyze results obtained for the 2-D

model used in the previous chapter. I also demonstrate accuracy problems for the

pure finite-difference method and propose a modification to it, which produces a hy-

brid Eulerian-Lagrangian approach. I discuss computational performance constraints

of the resultant algorithm and obstacles for scaling it from 2-D to 3-D problems. In

Chapter 4, I design a different, semi-Lagrangian algorithm for 3-D problems. The al-

gorithm relies on reconstruction of a global escape solution by means of iterative step-

ping through local escape functions and their interpolation in reduced phase space.

I analyze performance properties of this approach and propose a version of it for

parallel computer architectures, which enables computations for larger 3-D velocity

models.

While angle-domain migration itself is not the subject of this research, it is

important to investigate if escape tables produced by the algorithms from Chapters
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3 and 4 can be utilized directly in imaging summation without any additional post-

processing. It is also imperative to verify that migration results for these algorithms,

when they are applied to complex background media, are accurate. As a frame of ref-

erence, I employ imaging results obtained through the same angle-domain migration

code but using raytraced escape tables as input instead. I draw conclusions about

performance improvements once optimal parameters for my phase space approach

are established. The optimal set of parameters implies that imaging output for this

method has comparable visual quality to that of the conventional one based on ray

tracing.

In Chapter 5, I develop a method to construct 2-D angle-domain integration

around escape tables. I cover implementation of such critical items for practical Kirch-

hoff imaging as antialiasing, phase shifts related to caustic points, noise suppression

in output image, and handling of input reflection data irregularities. I demonstrate

imaging results for a number of 2-D models, including two anisotropic ones. Escape

tables for these tests are obtained using the algorithm designed in Chapter 3. Along

with stacked images, I show scattering-angle and dip-angle gathers.

In Chapter 6, I provide some important details of the implementation of 3-

D angle-domain integration. I use escape tables computed using the algorithm from

Chapter 4 to obtain images and angle gathers for a challenging synthetic model based

on salt tectonics. I show a number of angle gathers produced for different combina-

tions of the algorithm parameters in order to illustrate how to choose them optimally.

I conclude this chapter by comparing a target line image obtained using the new al-

gorithm against a result based on ray tracing.

I summarize my findings in Chapter 7 and suggest possible improvements to
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the proposed numerical scheme for computing escape tables. I also show how this

new approach is related to some other previously developed techniques.
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Chapter 2

Escape equations and reduced phase space

Escape equations

In the previous chapter, I introduced escape functions T̂ (x,p) and ŷ(x,p)

defined in the phase space. These functions span all possible locations and directions

in the subsurface and describe escape traveltime and escape positions for them. For 3-

D media (n = 3), the vector of escape position ŷ contains three components {x̂, ŷ, ẑ}.

It has only two components {x̂, ẑ} for 2-D media (n = 2).

For every point on the ray, the escape location ŷ remains constant, therefore,

the derivative of this location with respect to the evolution variable σ defined in

equations (1.3)-(1.5) can be written as

˙̂y = 0 . (2.1)

By using the chain rule, we then can expand it into the following form

˙̂y = ∇x ŷ ẋ +∇p ŷ ṗ =

∇x ŷ (p− S∇pS) +∇p ŷ (S∇x S) = 0 .
(2.2)

Escape traveltime decreases along the ray toward the boundary, therefore, we can

derive a similar expression for T̂ :

˙̂
T = ∇x T̂ · ẋ +∇p T̂ · ṗ =

∇x T̂ · (p− S∇pS) +∇p T̂ · S∇x S = −S2 .

(2.3)
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Equations (2.2) and (2.3) are known as escape equations (Fomel and Sethian, 2002;

Fomel, 2003). They have the form of a general advection system

a (x,p) · ∇x,p x̂ = b , (2.4)

where a (x, θ, φ) is the vector field defining the characteristics (rays) in phase space,

x̂ is an escape quantity, and b is the source term, which is nonzero for quantities

changing along the ray (e.g., traveltime).

Escape equations are, therefore, steady-state advection-type partial differen-

tial equations, which describe static distribution of escape time and locations for all

arrivals originating from x with initial phase vector p. The vector field

a (x,p) =

(
p− S∇p S
S∇x S

)
(2.5)

has the following property

∇x,p · a (x,p) = 0 . (2.6)

which simply states the well-known fact that phase space is incompressible (Thomson

and Chapman, 1985). This property means that characteristic lines do not split or

merge, and, therefore, the escape quantities are continuous functions in the phase

space.

For computational purposes, it is beneficial to derive similar equations in the

reduced phase space, in which phase dimensions are replaced with angles associated

with the phase vector direction (Osher et al., 2002). Reduced phase space has fewer

dimensions, because n components of phase slowness vector p are related by (n− 1)

angles.

For a 2-D medium, we define the slowness vector as

p (px, pz) =

(
−S sin θ
−S cos θ

)
, (2.7)
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Figure 2.1: Slowness vector p in 2-D (a scheme). chapter-esceq/. pvec2

where θ is the angle between the phase vector and the vertical direction (Figure 2.1).

Then, by using the relations

∂

∂px
=
∂
(

tan−1 px
pz

)
∂px

∂

∂θ
= − pz

p2
x + p2

z

∂

∂θ
,

∂

∂pz
=
∂
(

cot−1 pz
px

)
∂pz

∂

∂θ
=

px
p2
x + p2

z

∂

∂θ
,

(2.8)

we can derive from equation (2.3) the following equation for escape traveltime in

reduced phase space

(S sin θ − Sθ cos θ)
∂T̂

∂x
+ (S cos θ + Sθ sin θ)

∂T̂

∂z
+ (Sx cos θ − Sz sin θ)

∂T̂

∂θ
= S2

(2.9)

where Sθ, Sx, and Sz are angular and spatial derivatives of the phase slowness field,

respectively. This new domain is periodic in θ.

Similarly, we can obtain equations for escape location x̂ and escape depth ẑ

(S sin θ − Sθ cos θ)
∂x̂

∂x
+ (S cos θ + Sθ sin θ)

∂x̂

∂z
+ (Sx cos θ − Sz sin θ)

∂x̂

∂θ
= 0 ,

(S sin θ − Sθ cos θ)
∂ẑ

∂x
+ (S cos θ + Sθ sin θ)

∂ẑ

∂z
+ (Sx cos θ − Sz sin θ)

∂ẑ

∂θ
= 0 ,

(2.10)
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These equations are decoupled and can be computed independently from each other.

Analogous equations can be formulated for other escape quantities, e.g. escape angle

θ̂ or escape slowness vector p̂.

Figure 2.2: Slowness vector p in 3-D (a scheme). chapter-esceq/. pvec3

In a 3-D medium, the phase-vector direction is defined by two angles (Fig-

ure 2.2): θ, the angle between p and the z axis (inclination), and φ, the angle between

the projection of p onto the x−y plane and the x axis (azimuth). The slowness vector

is then

p (px, py, pz) =

S sin θ cosφ
S sin θ sinφ
−S cos θ

 , (2.11)

and, by changing variables from p to φ, θ and using the following relations

∂

∂px
=
∂
(

tan−1 py
px

)
∂px

∂

∂φ
= − py

p2
x + p2

y

∂

∂φ
= − cosφ

S sin θ

∂

∂φ
,

∂

∂py
=
∂
(

tan−1 py
px

)
∂py

∂

∂φ
=

px
p2
x + p2

y

∂

∂φ
=

sinφ

S sin θ

∂

∂φ
,

∂

∂pz
=

∂

(
tan−1

(
−
√
p2x+p2y
pz

))
∂pz

∂

∂θ
=

√
p2
x + p2

y

p2
x + p2

y + p2
z

∂

∂θ
=

cos θ

S

∂

∂θ
,

(2.12)
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we can derive the corresponding reduced phase space equation in 3-D as(
−S sin θ cosφ+ Sθ cos θ cosφ− Sφ

sinφ

sin θ

)
∂T̂

∂x
+(

−S sin θ sinφ+ Sθ cos θ sinφ+ Sφ
cosφ

sin θ

)
∂T̂

∂y
+

(S cos θ + Sθ sin θ)
∂T̂

∂z
+

(−Sx cos θ cosφ − Sy cos θ sinφ− Sz sin θ)
∂T̂

∂θ
+

1

sin θ
(−Sy cosφ + Sx sinφ)

∂T̂

∂φ
= S2

(2.13)

where Sθ, Sφ, Sx, Sy and Sz are angular and spatial derivatives of phase slowness. In

the isotropic case, S does not depend on θ or φ, and Sθ = Sφ = 0. Dimensions θ and

φ are periodic. Analogously to the 2-D case, equations for the components of escape

location have the same left-hand side but a different right-hand side, which is equal

to zero as well.

These escape equations describe escape functions in 3-D or 5-D reduced phase

space for 2-D or 3-D media respectively. They can also be expressed as a general

advection system

a2−D (x, θ) · ∇x,θ x̂ = b ,

a3−D (x, θ, φ) · ∇x,θ,φ x̂ = b ,
(2.14)

where the vector field of characteristic lines in the 2-D case is

a2−D (x, z, θ) =

 S sin θ − Sθ cos θ
S cos θ + Sθ sin θ
Sx cos θ − Sz sin θ

 , (2.15)

and the vector field of characteristic lines in the 3-D case is

a3−D (x, y, z, θ, φ) =


−S sin θ cosφ+ Sθ cos θ cosφ− Sφ sinφ

sin θ

−S sin θ sinφ+ Sθ cos θ sinφ+ Sφ
cosφ
sin θ

S cos θ + Sθ sin θ
−Sx cos θ cosφ − Sy cos θ sinφ− Sz sin θ

1
sin θ

(−Sy cosφ + Sx sinφ)

 , (2.16)
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It is worth noting that a2−D (x, θ, ) has the same property as the vector field of

characteristic curves in the full phase space, that is

∇x,θ · a2−D (x, θ) = 0 . (2.17)

However, it is easy to show that, for the 3-D case,

∇x,θ,φ · a3−D (x, θ, φ) 6= 0 . (2.18)

This inequality is an artifact of the chosen mathematical parameterization of char-

acteristic curve distribution. If such a distribution is sampled evenly in the angular

space {θ, φ}, then it looks non-uniform when viewed in the spatial domain {x, y, z}.

Physically, only one line is present at the poles (θ = 0 or θ = π), while the descrip-

tion assumes multiple lines. These points of indeterminacy manifest themselves in the

form of singular coefficients in equation (2.13). This problem is a well-known artifact

of the spherical coordinate system, which often appears in other computational prob-

lems (Lapilli and Fowler, 2013). A stable numerical scheme for solving the escape

equations in 5-D reduced phase space should either avoid the points of indeterminacy

by shifting the angular grid or by introducing a special treatment to them (Mohseni

and Colonius, 2000). Escape functions in this domain still remain continuous.

Equation coefficients for anisotropic media

Wave propagation in sedimentary rocks is frequently anisotropic. Lithification

of sediments in layers and post-sedimentation processes, such as folding, often create

a type of anisotropy known as Tilted Transverse Isotropy (TTI). Modern imaging

practice recognizes that effects of anisotropy should be accounted for and commonly

incorporates TTI model parameters into imaging workflows.
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Figure 2.3: Consolidation of characteristic lines in polar areas of the spherical coor-
dinate system (a scheme). chapter-esceq/. pred3sing

In the isotropic case, the phase slowness function has the same number of

dimensions as the spatial domain. For all practical purposes, such a function can

usually be stored in computer memory in its entirety. In case of anisotropic wave

propagation and imaging, the dimensionality of phase slowness becomes equal to

that of the corresponding reduced phase space. It is impractical to precompute a

5-D phase slowness function for a typical 3-D model. A common strategy is then

to calculate phase values on the fly from the anisotropic model components as wave

propagation computation proceeds.

Phase slowness function has an exact 4-parameter expression in TTI media and

can be approximated with the following practical 3-parameter expression (Alkhalifah,

2000; Fomel, 2004)

v2 (x,p) =
1

2

(
v2

v cos2 ξ + v2
h sin2 ξ

)
+

1

2

√(
v2

v cos2 ξ + v2
h sin2 ξ

)2 − 8η

1 + 2η
(vv vh cos ξ sin ξ)2 ,

(2.19)

where vv is the P-wave phase velocity along the symmetry axis, vh is the P-wave phase

velocity in the direction normal to the symmetry axis, η is the anellasticity parameter
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(Alkhalifah and Tsvankin, 1995) defined through Thomsen’s elastic parameters ε and

δ (Thomsen, 1986) as

η =
ε− δ

1 + 2δ
, (2.20)

and ξ is the angle between the phase direction and the axis of symmetry, so that

cos ξ = cos θ cos θt + sin θ cosφ sin θt cosφt + sin θ sinφ sin θt sinφt

= cos θ cos θt + sin θ sin θt cos (φ− φt) ,
(2.21)

where θt and φt are the inclination and the azimuth of the symmetry axis respectively.

If equations (2.14) are used as a basis of escape tables computation, then the

derivatives Sθ, Sφ, Sx, Sy and Sz have to be calculated to estimate the equation

coefficients. These derivatives along with the phase slowness can be found from the

given spatial functions vv (x), vh (x), η (x), θt (x), and φt (x).

Equation (2.19) can be written as

v2 (x,p) =
1

2
(A + B + C) , (2.22)

where

A = E D ,

B = F (1−D) ,

C =

√
(A + B)2 + qD (1−D) ,

D = cos2 ξ ,

E = v2
v ,

F = v2
h ,

q = − 8η

1 + 2η
v2

v v
2
h .

(2.23)
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A derivative of v2 with respect to some quantity u is given by the following

sum

∂v2 (x,p)

∂u
=

1

2

(
∂A

∂u
+
∂B

∂u
+
∂C

∂u

)
. (2.24)

The individual components of this sum are

∂A

∂u
=
∂E

∂u
D + E

∂D

∂u
,

∂B

∂u
=
∂F

∂u
(1−D)− F ∂D

∂u
,

∂C

∂u
=

2 (A + B)
(
∂A
∂u

+ ∂B
∂u

)
+ ∂q

∂u
D (1−D) + q (1− 2 D) ∂D

∂u

2 C
.

(2.25)

Derivatives of E, F, and q with respect to θ and φ are zero. Spatial derivatives

of these variables are estimated numerically. The remaining component D has the

following angular and spatial derivatives

∂D

∂θ
= 2 cos ξ

(
cos θ sin θt cos (φ− φt)− sin θ cos θt

)
∂D

∂φ
= −2 cos ξ sin θ sin θt sin (φ− φt)

∂D

∂x
= 2 cos ξ

(
sin θ cos θt cos (φ− φt)

∂θt
∂x
− cos θ sin θt

∂θt
∂x

+

sin θ sin θt sin (φ− φt)
∂φt
∂x

)
,

(2.26)

and ∂D
∂y

, ∂D
∂z

are completely analogous to the expression of ∂D
∂x

. Spatial derivatives of

θt and φt are estimated numerically.

Finally, a derivative of phase slowness can be found from the above expressions

with this simple relation

∂S

∂u
= − 1

2 [v2]
3
2

∂v2

∂u
. (2.27)

Computation of the equation coefficients for 2-D anisotropic media should

follow the above approach as well with the obvious simplification of the angle between
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the phase direction and the axis of symmetry, given as

cos ξ = cos (θ − θt) . (2.28)

To sum up, only five 3-D spatial functions have to be computed in advance so

that the escape equation coefficients could be estimated on demand. These functions

are: v2
v (x), v2

h (x), q (x), θt (x), and φt (x). For the 2-D case, there are four 2-D spatial

functions. Since spatial derivatives have to be estimated as well, a practical approach

would consist of storing these functions in the form of spline coefficients (de Boor,

1978).

It should be noted that the coefficient in front of ∇x · x̂ term in equation (2.14)

is the group slowness. Other approximations are possible to this term other than that

presented above.

Escape functions in reduced phase space

To analyze behavior of escape functions in phase space, I computed a set of

constant-depth and constant-location slices of them for a popular benchmark model

- Marmousi (Versteeg, 1993).

Figures 2.6, 2.7, and 2.8 show escape quantities ẑ, x̂, and T̂ respectively com-

puted using ray tracing for all positions and angles at the z=2 km slice in reduced

phase space. Figures 2.9, 2.10 and 2.11 present same quantities for a constant lateral

location.

Each location at these plots is color coded according to the exit location and

time for the ray that originated from it. All escape solutions clearly exhibit areas

of smoothly changing values and regions of rapidly changing values – the latter is a
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Figure 2.4: Smoothed Marmousi model velocity profile for escape value computations.
chapter-esceq/marmousi marmvelescz

Figure 2.5: Ray trajectories in Marmousi model computed for location at x = 6.5 km
and z = 2.0 km. chapter-esceq/marmousi marmtrajs
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well-known effect in initial-value ray tracing, when a small change in initial conditions

causes a large change in the solution (Figure 2.5).

Figure 2.6: Escape depth function ẑ for all locations at constant depth z = 2.0 km of
Marmousi model. chapter-esceq/marmousi marmnsz0

Escape functions behave similarly also in 5-D reduced phase space correspond-

ing to a complex 3-D model. To test it, I computed escape quantities for a depth

point inside SEG/EAGE Salt Model (Aminzadeh et al., 1997).

Figures 2.13, 2.14, 2.15, and 2.16 show escape quantities ẑ, x̂, ŷ, and T̂ respec-

tively. Much like in 2-D case, the escape functions demonstrate areas of smoothly

changing values and regions of rapidly changing values. The presence of a salt body

and strong velocity gradients associated with it create rapid changes in escape func-

tions.

In the next chapter, I demonstrate an Eulerian way to compute these functions

by discretizing escape equations in reduced phase space.
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Figure 2.7: Escape lateral position function x̂ for all locations at constant depth
z = 2.0 km of Marmousi model. chapter-esceq/marmousi marmnsz1

Figure 2.8: Escape time function T̂ for all locations at constant depth z = 2.0 km of
Marmousi model. chapter-esceq/marmousi marmnsz2
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Figure 2.9: Escape depth function ẑ for all locations at constant lateral position
x = 6.5 km of Marmousi model. chapter-esceq/marmousi marmnsx0

Figure 2.10: Escape lateral position function x̂ for all locations at constant lateral
position x = 6.5 km of Marmousi model. chapter-esceq/marmousi marmnsx1
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Figure 2.11: Escape time function T̂ for all locations at constant lateral position
x = 6.5 km of Marmousi model. chapter-esceq/marmousi marmnsx2

Figure 2.12: Smoothed SEG/EAGE Salt model velocity volume for escape value

computations. chapter-esceq/segsalt vsaltesczxy
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Figure 2.13: Escape depth function ẑ at point x = 6.7 km, y = 6.7 km, and z = 2.5
km of SEG/EAGE Salt model. chapter-esceq/segsalt ssaltnesczxy0

Figure 2.14: Escape position function x̂ at point x = 6.7 km, y = 6.7 km, and z = 2.5
km of SEG/EAGE Salt model. chapter-esceq/segsalt ssaltnesczxy1
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Figure 2.15: Escape position function ŷ at point x = 6.7 km, y = 6.7 km, and z = 2.5
km of SEG/EAGE Salt model. chapter-esceq/segsalt ssaltnesczxy2

Figure 2.16: Escape time function T̂ at point x = 6.7 km, y = 6.7 km, and z = 2.5
km of SEG/EAGE Salt model. chapter-esceq/segsalt ssaltnesczxy3
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Chapter 3

Finite-difference solution of escape equations

Design constraints for a numerical scheme

Many different numerical techniques have been developed for solving advection-

type PDEs in the last several decades (Pletcher et al., 2012). A particular choice usu-

ally depends on the following properties of a problem in question and development

constraints:

1. Geometry and dimensionality of the problem.

2. Available computational resources.

3. Development cost limits.

In the exploration industry, the last factor is especially pronounced because of the

multitude of existing imaging methods. There is no single perfect imaging technique,

so imaging practitioners usually have to make a choice from tens of different algo-

rithms depending on the challenges that they face for a given exploration problem

(Etgen et al., 2009). Implementation of one from the many needed software codes is

a subject to a rather strict development cost upper limit – it is usually expected to

be at most three person-years (Bednar, 2002). Something that requires two or three

times as much effort can hardly be considered practical.

Geometry of the problem described by the reduced phase space escape equa-

tions is relatively simple – it is dictated by the type of input expected in the angle-
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domain migration module. Regularly sampled volumes of escape tables should be

sufficient for practical imaging purposes.

Unlike the two factors described above, available computational resources are

more difficult to assess. This category has been very dynamic through the history

of computational sciences. For several decades, both aggregate supercomputer CPU

power and memory have been growing exponentially (Danowitz et al., 2012; ITRS,

2011). There is an ongoing debate about how long this growth can continue into

the future; physical limitations, such as power consumption and the smallest possible

transistor size, are usually considered to be the limiting factors of the exponential

growth. At the time of this writing, top supercomputers available academically and

privately have aggregate computational performance in the low petaFLOPS range

(Top500, 2013). Total distributed memory is in the hundreds of terabytes and is

going into the petabyte range with the next generation of machines. However, these

ranges are, of course, almost never readily available for use by a single computational

problem. For practical purposes, it is safe to assume that a typical allocation of

resources is currently in the low tens of terabytes for distributed memory and the

tens to the low hundreds of teraFLOPS for aggregate CPU power.

In this chapter, I show the design of an Eulerian numerical scheme for solving

the reduced phase space equations (2.14) under the constraints described above. For

the sake of simplicity, I will illustrate an implementation of the designed numerical

scheme for 3-D reduced phase space first. There is no principal difference between

3-D and 5-D cases. Any problems revealed in the former will be more pronounced in

the latter. I will analyze accuracy and performance of the designed Eulerian scheme

so as to make conclusions about the feasibility of adapting it for the realistic-scale

5-D case.
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Choice of discretization technique

Fundamentally, there are two ways of discretizing equations (2.14):

• finite differences/finite volumes methods (FDM/FVM),

• finite elements methods (FEM).

FEM allows to handle complex geometries. On the other hand, FDM is generally

easier to implement. The rather simple geometry of the problem in question and

the strict limit of development cost make FDM a more preferable basis for a nu-

merical scheme. In fact, the combination of these two factors are very common in

seismic imaging problems, therefore, FDM is more prevalent in this computational

area (Virieux et al., 2011).

A common way of finding a steady-state solution for an advection problem is

to start with a non-steady formulation (Kuzmin, 2010). The non-steady formulation

for 3-D reduced phase space equations can be written as

∂x̂

∂σ
+ a2−D (x, θ) · ∇x,θ x̂ = b . (3.1)

A steady-state solution is then obtained by stepping in σ with relatively small steps

until the difference in the solution between two consecutive steps is negligible.

Reformulation to the non-steady form would allow for using one of the many

efficient schemes designed in the framework of level set methods (Osher and Sethian,

1988; Shu, 1998). However, this approach has several notorious disadvantages asso-

ciated with the addition of the extra dimension σ, namely
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• stepping in σ is subject to CFL condition – strong variations in the vector field

a2−D (x, θ) may impose a very small ∆σ step thus hampering computational

efficiency;

• the extra dimension increases requirements to computer memory making an

expansion to 5-D reduced phase space impractical.

It appears that, to preserve the computational efficiency and memory requirements,

the steady-state equation has to be solved directly without evolution from the corre-

sponding non-steady form.

Upwind finite differences

Application of finite differences method to equations (2.14) produces a system

of linear equations

Ā x̂ = b , (3.2)

where Ā is a sparse matrix comprising the finite-difference stencil coefficients.

While there are multiple possible finite-difference discretizations for first-order

partial derivatives, the advection term in equations (2.14) should be discretized in each

dimension according to the upwind principle (Courant et al., 1952; Gentry et al.,

1966), i.e., the finite-difference stencil for the current point ought to be oriented

toward the opposite direction of the vector field direction (Figure 3.1). The first-

order upwind stencil in one dimension is given by the following simple expression

(Hirsch, 2007):

∂x̂

∂xk
≈


x̂i − x̂i−1

∆xk
, ak,i > 0

x̂i+1 − x̂i
∆xk

, ak,i < 0

, (3.3)
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where xk is the k-th axis of the reduced-phase space volume, ∆xk is the grid sampling

along the axis, x̂i is the escape value at the i-th node of the same dimension, and ak,i

is the k-th component of vector a at the same location.

A more accurate second-order upwind stencil is

∂x̂

∂xk
≈


3 x̂i − 4 x̂i−1 + x̂i−2

2 ∆xk
, ak,i > 0

−x̂i+2 + 4 x̂i+1 − 3 x̂i
2 ∆xk

, ak,i < 0

. (3.4)

Figure 3.1: Upwind principle demonstrated on the first-order finite-difference stencil:
the white point is being computed, the grey points have known values and are located
in the upwind direction, the stencil is aligned with the known points in the upwind
direction determined by the vector field a (a scheme). chapter-fdiff/. escadv2

The system (3.2) can be solved iteratively in a number of ways. The Gauss-

Seidel method (Golub, 1996) is used frequently, because it allows construction of a

new solution from the previous iteration “in place” without generating extra copies of

the data. Note that, the matrix Ā does not have to be computed explicitly and stored

in computer memory – the matrix elements are the escape equations coefficients and

can be recomputed during iterations. Therefore, only the solution vector has to be

present in the computer memory.
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Boundary conditions and numerical flow

While escape equations describe a steady-state solution, the iterative numeri-

cal scheme presented above realizes a numerical flow along streamlines defined by the

vector field a. This flow propagates new values into the reduced phase space volume

away from the known boundary values.

If ∂Ω is the outer shell of the reduced phase space volume and n∂Ω is the

normal to the shell pointing in the outward direction, then the solution is determined

by boundary conditions defined on the parts of the shell, where

a · n∂Ω < 0 .

Figure 3.2 shows the boundary condition areas (shaded grey areas) for 3-D

reduced phase space volume. For the 5-D case, each spatial 3-D volume of constant

azimuth and constant inclination has three adjacent faces dedicated the boundary

conditions (Figure 3.3).

Figure 3.2: Boundary conditions for 3-D reduced phase space (a scheme).

chapter-fdiff/. escbc2

Gauss-Seidel iterations consist of visiting every point of the reduced phase grid,

except for the boundary-condition areas, and applying an upwind finite-difference
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Figure 3.3: Boundary conditions for 5-D reduced phase space (a scheme).

chapter-fdiff/. escbc3
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stencil so as to obtain the correct escape function solution. For faster convergence,

the iterative solver may incorporate alternating directions akin to those of the fast

sweeping method for the eikonal equation (Zhao, 2005).

Numerical tests of the iterative finite-difference solver

Figures 3.4, 3.5, and 3.6 show escape quantities ẑ, x̂, and T̂ respectively com-

puted using the first-order finite-difference iterative solver. Comparison of depths

slices (Figures 3.7, 3.8, and 3.9) with their ray-traced counterparts (Figures 2.6, 2.7,

and 2.8) reveals that the finite-difference solution looks less detailed - it has a signif-

icant amount of numerical dissipation. The second-order finite-difference results (see

Figures 3.10, 3.11, and 3.12 for full volumes; Figures 3.7, 3.8, and 3.9 for depth slices)

are less dissipative but still do not expose as much detalization as ray tracing. The

spatial sampling is ∆x=∆z=4 m and the angular sampling is ∆θ=1◦.

Figure 3.4: Escape depth function ẑ computed for Marmousi model (first-order finite-

difference iterative solver). chapter-fdiff/marmousi marmfc00
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Figure 3.5: Escape lateral position function x̂ computed for Marmousi model (first-

order finite-difference iterative solver). chapter-fdiff/marmousi marmfc01

Figure 3.6: Escape time function T̂ computed for Marmousi model (first-order finite-

difference iterative solver). chapter-fdiff/marmousi marmfc02
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Figure 3.7: Escape depth function ẑ at constant depth z = 2.0 km of Marmousi model
(first-order finite-difference iterative solver). chapter-fdiff/marmousi marmfsz00

Figure 3.8: Escape lateral position function x̂ at constant depth z =
2.0 km of Marmousi model (first-order finite-difference iterative solver).

chapter-fdiff/marmousi marmfsz01
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Figure 3.9: Escape time function T̂ at constant depth z = 2.0 km of Marmousi model
(first-order finite-difference iterative solver). chapter-fdiff/marmousi marmfsz02

Figure 3.10: Escape depth function ẑ computed for Marmousi model (second-order

finite-difference iterative solver). chapter-fdiff/marmousi marmfc10
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Figure 3.11: Escape lateral position function x̂ computed for Marmousi model
(second-order finite-difference iterative solver). chapter-fdiff/marmousi marmfc11

Figure 3.12: Escape time function T̂ computed for Marmousi model (second-order

finite-difference iterative solver). chapter-fdiff/marmousi marmfc12
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Figure 3.13: Escape depth function ẑ at constant depth z = 2.0
km of Marmousi model (second-order finite-difference iterative solver).

chapter-fdiff/marmousi marmfsz10

Figure 3.14: Escape lateral position function x̂ at constant depth z =
2.0 km of Marmousi model (second-order finite-difference iterative solver).

chapter-fdiff/marmousi marmfsz11
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Figure 3.15: Escape time function T̂ at constant depth z = 2.0 km of Marmousi model
(second-order finite-difference iterative solver). chapter-fdiff/marmousi marmfsz12

47



Appearance of strong dissipation in the solution results in many arrivals not

appearing on the actual exit boundary of the model. Figures 3.16 and 3.17 show this

effect for one depth point in the model. For these plots, I extracted escape depth val-

ues ẑ and escape lateral location values x̂ from the escape functions computed using

the first-order and the second-order solvers respectively. Each pair of ẑ and x̂ com-

prises one exit location. Ideally, every exit location should be positioned somewhere

along the boundary of the model. It is especially important to compute surface-bound

arrivals with good accuracy since they are utilized in migration of surface reflection

data.

Using the same depth point as a point source, I computed a wavefield with the

help of an acoustic finite-difference time-domain propagator (Virieux et al., 2012). I

extracted a surface-bound snapshot from the wavefield and plotted the same arrivals

over it (Figures 3.18 and 3.19). It is apparent that both finite-difference solvers do

not cover the arrivals on the right side of the snapshot precisely.

Modification of the iterative Eulerian solver

The presence of strong dissipation in the computational results above signals

that the chosen grid resolution is not fine enough to capture the behavior of the

escape functions in question. I computed a smaller subset of the functions on finer

grids using ray tracing in order to investigate how escape functions behave at smaller

scales. Figures 3.20, 3.21, and 3.21 show escape quantities ẑ, x̂, and T̂ computed

using ∆x=∆z=1 m and the angular sampling ∆θ=0.1◦. Figures 3.23, 3.24, and 3.24

demonstrate the same quantities for ∆x=∆z=0.25 m and the angular sampling is

∆θ=0.02◦. The second closeup reveals that the fine features in the solution can be

actually resolved at very small scales - fractions of a meter and a degree. At those
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Figure 3.16: Exit locations for all arrivals originating from point x = 5.0 km
and z = 2.0 km of Marmousi model (first-order finite-difference iterative solver).

chapter-fdiff/marmousi marmpescs1

Figure 3.17: Exit locations for all arrivals originating from point x = 5.0 km and
z = 2.0 km of Marmousi model (second-order finite-difference iterative solver).

chapter-fdiff/marmousi marmpescs2
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Figure 3.18: Surface exit locations for all arrivals originating from point x =
5.0 km and z = 2.0 km of Marmousi model (first-order finite-difference iter-
ative solver) plotted over wavefield computed for a source at the same point.

chapter-fdiff/marmousi marmfdescs1

Figure 3.19: Surface exit locations for all arrivals originating from point x =
5.0 km and z = 2.0 km of Marmousi model (second-order finite-difference it-
erative solver) plotted over wavefield computed for a source at the same point.

chapter-fdiff/marmousi marmfdescs2
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scales, escape functions are continuous as predicted by the theory. At the scale of

interest for imaging, however, they appear as discontinuous. Arrivals matching tests

above clearly show that the accuracy of the finite-difference solver on a 4-meter,1-

degree grid is insufficient. It is possible to perform same computations on a finer grid

to improve the accuracy, but this would lead to the following problems:

• significant increase in computer memory required by the algorithm;

• loss of computational efficiency, since a greater number of points have to be

visited by the solver;

• output sampling will be much finer than what is needed by angle-domain mi-

gration; the migration part needs escape tables sampled every 10-20 meters in

space and 0.25-2◦ in angle in order to image a typical marine seismic data.

Therefore, it would be highly impractical to simply increase the uniform grid sampling

in order to reduce the numerical dissipation.

A usual remedy for this problem in the Eulerian framework would be AMR

- Adaptive Mesh Refinement (Berger and Oliger, 1984; Plewa et al., 2005) and/or

application of an finite-difference stencil of a higher order (Shu, 1998). The effec-

tiveness of higher-order, accurate discretizations is limited by the fact that boundary

conditions for escape equations contain non-smooth parts due to the shape of the

domain (i.e., domain corners). Refining computational grid to extremely fine scales

only where necessary may improve accuracy of computations without drastic increase

in computer memory requirements. However, AMR does not address the problem

of spending computer time on obtaining extraneously excessive resolution. More to

the point, implementation of AMR in higher dimensions can be costly (Van Straalen
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Figure 3.20: Closeup of escape depth function ẑ at constant depth z = 2.0 km of
Marmousi model (ray tracing). chapter-fdiff/marmousi marmnz10

Figure 3.21: Closeup of escape lateral position function x̂ at constant depth z = 2.0
km of Marmousi model (ray tracing). chapter-fdiff/marmousi marmnz11
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Figure 3.22: Closeup of escape time function T̂ at constant depth z = 2.0 km of
Marmousi model (ray tracing). chapter-fdiff/marmousi marmnz12

Figure 3.23: Closeup of escape depth function ẑ at constant depth z = 2.0 km of
Marmousi model (ray tracing). chapter-fdiff/marmousi marmnz20
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Figure 3.24: Closeup of escape lateral position function x̂ at constant depth z = 2.0
km of Marmousi model (ray tracing). chapter-fdiff/marmousi marmnz21

Figure 3.25: Closeup of escape time function T̂ at constant depth z = 2.0 km of
Marmousi model (ray tracing). chapter-fdiff/marmousi marmnz22
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et al., 2011), possibly exceeding the typical implementation cost upper limit explained

in the beginning of this chapter.

A different strategy that allows the inhibition of numerical dissipation in ad-

vection problems is to use accurate Lagrangian solutions at grid points where de-

sired accuracy cannot be acquired with low-order finite-difference stencils. Such

hybrid, Eulerian-Lagrangian schemes often enable remarkable improvements in ac-

curacy without costly grid refinement (Ferziger and Perić, 2002). Before applying

the finite-difference stencil to a group of upwind points, I check if the Euclidean dis-

tances between their escape locations are smaller than some predefined threshold. If

this value is exceeded, conventional ray tracing is computed for the current location

in the grid. Newly obtained escape values are then locked in for future sweeping

iterations.

Such a relatively simple modification allows to greatly improve the accuracy of

escape computations. Figures 3.26, 3.27, and 3.28 show escape quantities ẑ, x̂, and T̂

respectively computed using this new hybrid approach. The threshold for switching

to ray tracing is set to 1.0 km in this test.

These new results demonstrate much better preservation of fine features in the

escape solution. Extracted arrivals from the hybrid solution (Figure 3.30) match the

ray-traced ones (Figure 3.31) well. Approximately 4% of all points in the solution

need to be traced to achieve this accuracy.

55



Figure 3.26: Escape depth function ẑ at constant depth z = 2.0 km of Marmousi
model (hybrid iterative solver). chapter-fdiff/marmousi marmhsz0

Figure 3.27: Escape depth function x̂ at constant depth z = 2.0 km of Marmousi
model (hybrid iterative solver). chapter-fdiff/marmousi marmhsz1
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Figure 3.28: Escape depth function T̂ at constant depth z = 2.0 km of Marmousi
model (hybrid iterative solver). chapter-fdiff/marmousi marmhsz2

Figure 3.29: Exit locations for all arrivals originating from point x =
5.0 km and z = 2.0 km of Marmousi model (hybrid iterative solver).

chapter-fdiff/marmousi marmpescs3
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Figure 3.30: Surface exit locations for all arrivals originating from point x = 5.0 km
and z = 2.0 km of Marmousi model (hybrid iterative solver) plotted over wavefield

computed for a source at the same point. chapter-fdiff/marmousi marmfdescs3

Figure 3.31: Surface exit locations for all arrivals originating from point x = 5.0 km
and z = 2.0 km of Marmousi model (ray tracing) plotted over wavefield computed

for a source at the same point. chapter-fdiff/marmousi marmfdescs0
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Figure 3.32: Map of ray-traced points (red) of the hybrid escape solution at constant

depth z = 2.0 km of Marmousi model. chapter-fdiff/marmousi marmbrsz

Computational cost of the Eulerian-Lagrangian approach

The computation cost of the proposed Eulerian-Lagrangian scheme can be

expressed as

OEL ∼ O (NxNzNθ) · OGS +O (Nr) · ORT , (3.5)

where NxNz is the number of points in the spatial imaging grid, Nθ is the number

of phase directions, OGS is the cost of Gauss-Seidel iterations, Nr is the number of

points that need to be traced, and ORT is the computational cost of tracing one ray

trajectory. Nr is much smaller than the NxNzNθ product, but the term ORT repre-

sents an expensive computational procedure. The test above shows that even when

Nr constitutes only 4% of NxNzNθ points, however, total compute time increases ap-

proximately 5 times. On top of that, it is impossible to predict which points have to

be ray traced beforehand, because the structure of the escape solution is not known
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in advance. This makes load balancing on parallel computer architectures non-trivial.

These limitations make the hybrid Eulerian-Lagrangian approach less advantageous

than conventional ray tracing. It may be impractical to apply this scheme to compu-

tation of large-scale escape tables. Nevertheless, this algorithm might still be useful

as a complimentary procedure to massive ray tracing. A somewhat common practice

for computing ”bottom-up” escape tables is to perform ray tracing on a very sparse

spatial grid and then interpolate the tables to a finer grid (Ettrich et al., 2008). In-

stead of using a usual interpolation routine, the hybrid algorithm can be applied as

a more accurate, physics-guided interpolator.

Semi-Lagrangian approach

I showed in this chapter that an Eulerian solver for escape equations can be

built with the help of finite-differences. On a regularly-sampled phase space grid, it

is computationally robust, but it does not appear to provide sufficient accuracy for

imaging purposes. Adaptive mesh refinement can be used to preserve accuracy in the

solution. However, the necessary degree of refinement might be too excessive for a

typical migration task. A different way of preserving accuracy consists of providing

Lagrangian treatment only to a few difficult places in the escape solution. This

approach allows for a relatively simple implementation compared to AMR without

having to obtain parts of the solution at very fine scales. Unfortunately, this scheme

involves a significant computational penalty.

Another way of solving advection problems is known as the semi-Lagrangian

method (Durran, 2010). In that framework, points in the solution are obtained with

Lagrangian-type tracking of characteristic lines. But instead of performing it with

small steps, large steps are allowed during computations. That is possible with the
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help of additional information which is either precomputed in advance or available

from previously computed points. Large steps potentially enable sizable computa-

tional gains compared to the traditional Lagrangian approach.

In the next chapter, I propose a design of a semi-Lagrangian numerical scheme

for computing 5-D escape tables. I show that a set of local escape functions can be

defined for different subregions of a 3-D velocity model. These functions describe local

displacements, rotations, and traveltime accumulations for any initial position and

phase direction. The global escape functions then can be computed through iterative

evaluation of the local escape functions in the reduced phase space.
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Chapter 4

Semi-Lagrangian method for computing escape functions

Global and local escape functions

In the previous chapter, I showed that direct finite-difference solutions of es-

cape equations may not provide sufficient accuracy in escape tables computations for

complex velocity models. Different means of increasing the accuracy lead either to a

significant loss of computational efficiency or to implementation requirements which

cannot be considered practical. Nevertheless, escape equations establish a convenient

framework for analyzing escape functions. These functions posses an important prop-

erty - they are continuous in the phase space. In this chapter, I construct a different,

semi-Lagrangian, algorithm for computing escape functions that utilizes this property

at scales which are smaller than the typical velocity-model scale.

The continuity of escape functions may not be immediately apparent in com-

plex velocity models. Figure 2.16 shows the escape traveltime T̂ for one depth point

in SEG/EAGE model. The values have been obtained with ray tracing; the angular

sampling is ∆θ = ∆φ = 1◦. Each ray was allowed to reach the boundary of the model,

and its total traveltime contributed to T̂ . We can observe rapid changes in the values

of the escape traveltime, specifically in the areas corresponding to ray paths going

through the salt body (Figure 4.1). High velocity contrasts associated with the edges

of the salt body greatly diverge rays and cause ray paths with close initial conditions

to differ from each other significantly (Figure 4.2). The escape functions at this scale
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look as if they are discontinuous. Their continuity becomes only apparent at much

smaller scales as I demonstrated it in the previous chapter.

However, if we limit the maximum allowed travel distance for rays to some

value dmax that is several times smaller than the average length of rays, then the corre-

sponding localized escape traveltime starts to look much smoother (Figures 4.3,4.4,4.5).

Similar changes can be demonstrated for other components of the escape function,

i.e. escape location and escape phase.

Figure 4.1: Salt body in SEG/EAGE Salt model. chapter-psint/. ssaltbod

Suppose that such local escape functions are known everywhere in the spatial

area of interest. It should be possible then to construct a global escape solution for

some initial conditions by traversing the phase space according to these local values.

This observation leads to a numerical method described in this chapter.
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Figure 4.2: Ray trajectories computed for the location x = 6.7 km, y = 6.7 km, and
z = 2.5 km of SEG/EAGE Salt model. chapter-psint/. ssaltbdrs

Figure 4.3: Local escape traveltime T̂ computed for dmax = 1.0 km at the lo-
cation x = 6.7 km, y = 6.7 km, and z = 2.5 km of SEG/EAGE Salt model.

chapter-psint/segsalt ssaltnescmd1
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Figure 4.4: Local escape traveltime T̂ computed for dmax = 0.75 km at the lo-
cation x = 6.7 km, y = 6.7 km, and z = 2.5 km. of SEG/EAGE Salt model.

chapter-psint/segsalt ssaltnescmd2

Figure 4.5: Local escape traveltime T̂ computed for dmax = 0.5 km at the loca-
tion x = 6.7 km, y = 6.7 km, and z = 2.5 km. of SEG/EAGE Salt model.

chapter-psint/segsalt ssaltnescmd3
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Reconstruction of global escape solution from local escape functions

Let us denote the change along the characteristic line (seismic ray) in the phase

space from some position x to x̂ as

x∆ = x̂− x , |x̂− x| = dmax . (4.1)

The corresponding traveltime from x to x̂ is T∆ = T̂ − T , and the change of the

phase from p to p̂ along the same characteristic line between the same points can be

written as the following product

p̂ = q p q∗ , (4.2)

where q is a quaternion (Cayley, 1845; Shoemake, 1985) defined as

q = cos
ψ

2
+ sin

ψ

2
(lxi + lyj + lzk) , (4.3)

where ψ is the angle of rotation defined as

cosψ =
p · p̂
|p| |p̂|

,

around the axis of rotation l (Figure 4.6)

l =
p× p̂

|p× p̂|
,

and q∗ is the complex conjugate of q.

Here, the quantities x̂, p̂, and T̂ are the local escape values for the given initial

conditions x, p, and T . These values are determined by the local escape function,

which contains information about changes in position, traveltime, and phase – x∆,

T∆ and q respectively.

66



Figure 4.6: Change of phase p to p̂ defined as a rotation by angle ψ around vector l
(a scheme). chapter-psint/. quat

Figure 4.7: Change of position x and phase p according to local values of functions
x∆ and q (a scheme). chapter-psint/. gfunc
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Suppose that we know x∆, T∆ and q everywhere in the phase space for all

possible combinations of x and p

x∆ = g∆ (x,p) ,

T∆ = gT (x,p) ,

q = gq (x,p) .

Then, function g (x,p) defines local escape functions g∆ (x,p), gT (x,p), and gq (x,p)

everywhere in the phase space.

While the global escape functions produce exit location, time, and other quan-

tities on the global model boundary for a combination of the initial position and the

phase, the local ones generate only escape quantities constrained to some local sub-

volumes of the model. In order to find the global escape values for given initial

conditions, the local escape function has to be evaluated consecutively. The found

escape quantities from the previous estimation should be used as input for the next

step. The process can be repeated until the boundary is reached.

Thus, the process of finding the global escape solution for a set of initial

conditions x̂0 = x, T̂0 = 0 and p̂0 = p̂ can be described as the following iterative

procedure

x̂n = x̂n−1 + g∆ (x̂n−1, p̂n−1)

T̂n = T̂n−1 + gT (x̂n−1, p̂n−1)

qn = gq (x̂n−1, p̂n−1)

p̂n = qn p̂n−1 q∗n

(4.4)

which stops when x̂n = ŷ.

The whole computational scheme to find a global escape solution thus consists

of the two major steps:
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Figure 4.8: Iterative reconstruction of escape quantities (a scheme).

chapter-psint/. gstepn

1. Initialization of function g (x,p).

2. Estimation of the global escape quantities by iterative reconstruction of their

flow in the phase space with the help of g (x,p).

Computational cost

The computational cost of the proposed numerical method is the sum of two

parts

OInit +ORec , (4.5)

where the first term is the cost of the initialization procedure and can be written as

OInit ∼ O
(
N s
xN

s
yN

s
zN

s
θN

s
φ

)
· OLoc , (4.6)

where OLoc is the cost of finding one set of values of g (x,p).
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The second term in expression (4.5) is the cost of iterative reconstruction

procedure in the phase space for a full escape table and can be expressed as

ORec ∼ O (NxNyNzNθNφ) · OIPS , (4.7)

and OIPS is the cost of iterative reconstruction of one set of x̂ and p̂ values. This

cost can approximated as

OIPS ∼ O
(

3

√
N s
xN

s
yN

s
z

)
· OLPS , (4.8)

where OLPS is the cost of finding one set of local escape values values x̂n and p̂n for

the given pair of phase space position x̂n−1 and p̂n−1.

The total cost in equation (4.5) is primarily driven by the second term. It

can be significantly smaller than the cost in equation (1.6), thus allowing for a faster

implementation of Kirchhoff common-angle migration defined in equation (1.2), which

is the main objective of this study.

Implementation details

In my implementation, I compute g (x,p) on a relatively sparse spatial grid

N s
xN

s
yN

s
z and a sparse angular grid N s

θN
s
φ. The grid sampling is related to the choice

of the maximum allowed local change in position dmax along characteristic lines. dmax

is set to be significantly larger than the sampling of the imaging grid to allow sizable

steps in the reconstruction process. It is a dominant parameter that depends on the

complexity of the velocity model: the higher the gradients in the velocity are, the

shorter the distance dmax has to be so as to avoid big interpolation errors in the

reconstruction process later. This distance, in turn, controls the spacing of function

g (x,p): the longer dmax is, the finer both spatial and angular spacings need to be.
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I introduce some empirical rules for choosing the optimal set of these parameters in

Chapter 6, where I compare different values for them in imaging accuracy tests.

Local escape function g (x,p) can be computed by either ray tracing or the

finite-difference method described in the previous chapter. This choice is not par-

ticularly critical, because the initialization step takes relatively little compute time

compared to the global escape values reconstruction stage. For practical purposes,

function g (x,p) becomes a 5-D function in reduced phase space, gr (x, θ, φ).

Function gr (x, θ, φ) can be represented by a set of constant-inclination, constant-

azimuth 3-D volumes, gr,θ,φ (x). The set is distributed across the 2-D inclination-

azimuth (θ − φ) angular grid. Each volume gr,θ,φ (x) is located at a specific node on

that grid. I compute functions gr,θ,φ (x) independently from one another and store

their values in the form of B-spline coefficients (de Boor, 1978). This particular ap-

proach will become more apparent below, where I explain the second stage of the

algorithm. Note that the first stage can be trivially parallelized: each 3-D volume

gr,θ,φ (x) can be computed by a separate node on a computer cluster.

The second stage, the iterative reconstruction, then becomes a 5-D interpola-

tion in the reduced phase space. I perform this interpolation as a two-step process.

At the second step of the process, the value of g (x,p) is computed on the angular

grid θ-φ by means of thin-plate spline interpolation (Duchon, 1977)

g (x,p) = b0 + bθθ + bφφ+
m∑
i=1

aiR (α,αi) , α = {θ, φ} (4.9)

where b0, bθ, bφ, and ai are interpolation coefficients and R is the radial-basis function

(RBF) (Buhmann, 2003) defined as

R (α,αi) =

{
r2 ln r , r 6= 0

0 , r = 0
, r = |α − αi| . (4.10)
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The interpolation coefficients are determined at the first stage from a set of

points which define the RBF interpolation stencil on the angular grid. These points

surround the location where the values of gr (x, θ, φ) are to be found (Figure 4.9).

The values of each of the points in the stencil are computed with 3-D cubic B-spline

interpolation in constant-θ-φ subvolumes gr,θ,φ (x).

Figure 4.9: 5-D interpolation of the local escape values (a scheme).

chapter-psint/. int5d

For M-point interpolation stencil, RBF coefficients for equation (4.9) are found

as follows

c = T̄−1f , (4.11)

where c and f are the vector of interpolation coefficients and the vector of local escape
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function values respectively. They can be written as

f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1

f2

·
·
fM
0
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, c =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1

a2

·
·
aM
b0

bθ
bφ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.12)

Value fi is one of the components of function gr,θ,φ (x) extracted at i-th position of

the interpolation stencil.

The RBF matrix that connects function values and interpolation coefficients

is

T̄ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R11 R12 · · · R1M 1 θ1 φ1

R21 R22 · · · R2M 1 θ2 φ2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

RM1 RM2 · · · RMM 1 θM φM
1 1 · · · 1 0 0 0
θ1 θ2 · · · θM 0 0 0
φ1 φ2 · · · φM 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.13)

where

Rij = R (αi,αj) .

The choice of RBF for 5-D interpolation enables certain flexibility in the re-

construction process: the stencil does not have to be rectangular and can potentially

vary as the computation progresses. This two-stage interpolation process enables

parallelization of the algorithm on computer clusters.

One attractive property of this algorithm is that all effects of seismic anisotropy

are already precomputed in function gr (x, θ, φ), which means that compute time of
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the interpolation stage does not depend on the type of background model. On the

contrary, conventional ray tracing requires computation of the phase slowness and its

derivatives in the right hand side of equations (1.3)-(1.5). For a general anisotropic

model, phase slowness is a 5-D function, therefore, it is impractical to precompute it

in advance. Instead, it is usually approximated during ray tracing from a number of

3-D model components, which provide sufficient description for background media.

As a result, the total compute time for the same number of imaging points depends

significantly on the type of the model and increases by a large factor when switching

from isotropic to anisotropic ray tracing.

Implementation for parallel and distributed architectures

Much like the conventional ray tracing, the proposed approach exposes so

called embarrassingly parallel logic at the most outer layers which deal with the

collection of depth points that comprise the escape tables. Each point in that set can

be computed independently from others according to the scheme described above.

The sequential, innermost part of the algorithm has the following steps in its

core that compute one arrival for a fixed depth point and a given set initial phase

angles:

1. Form stencil: build a list of points that belong to the RBF interpolation stencil.

2. Extract escape values: obtain local escape values needed by the stencil.

3. Interpolate escape function: form vectors f , find RBF coefficients c, perform

interpolation and find x∆, T∆, and q.

4. Advance escape solution: update current values of x̂n−1, p̂n−1, and T̂n−1 to
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x̂n, p̂n, and T̂n according to the scheme (4.4).

5. Check for completion: if x̂n belongs to the model boundary, then stop; other-

wise, go to step 1.

For the salt model shown above and the typical algorithm parameterization

needed for high-quality imaging, the full size of function gr (x, θ, φ) is on the order

of 300 Gb. However, in a usual imaging problem, the migration aperture is spatially

limited. Therefore, only a fraction of the local escape function has to be loaded into

computer memory at any given time. However, if a bigger volume of the local escape

function has to be used, then a distributed version of the algorithm might be needed.

In a distributed version, the local escape values are partitioned across com-

puter cluster nodes (Figure 4.10). Every node holds a number of constant-inclination

constant-azimuth 3-D parts of the local escape function. The algorithm above is then

modified at step 2: the local extraction becomes a remote request-reply operation.

The workload is divided between multiple server and client sides. Server processes

simply wait for incoming requests to extract local values and return results to clients.

Client processes traverse the phase space to obtain the final global escape solution.

Sending one request at a time is inefficient in practice, however. The request

is represented by a small data structure consisting of the spatial coordinates, phase

angles and a unique message identification tag. The reply is similar in length - it

contains the message tag and a set of local escape values. Due to typical network

latency and hardware overhead, such one-at-a-time exchange takes much more time

than the direct extraction from local computer memory. To overcome this problem, I

adopted the usual remedy - grouping multiple requests into one message. The client
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Figure 4.10: Distribution of the local escape functions across computer cluster nodes
(a scheme). chapter-psint/. angrem

side then works with a queue of points instead of a single point. The modified core

contains the following sequence:

1. Add new points: fill the queue with arrivals to be computed.

2. Form stencils: build a list of points that belong to all interpolation stencils in

the queue, construct network request data structures for them.

3. Sort request: sort the list of requests by phase angles so that ones designated

to the same server are continuous in memory and can be sent as one message.

4. Send requests: send request messages to remote server.

5. Receive replies: wait for the servers to return replies that contain local escape

values.
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6. Reverse sort replies: sort the list of replies so the new order matches that of

the original list of stencil points.

7. Interpolate escape function: form vectors f , find RBF coefficients c, perform

interpolation and find x∆, T∆, and q for all points in the queue.

8. Advance escape solution: update current values of x̂n−1, p̂n−1, and T̂n−1 to

x̂n, p̂n, and T̂n according to the scheme (4.4) for all points in the queue.

9. Check for completion: for every point in the queue, if its x̂n belongs to the

model boundary, then remove it from the queue; if there are uncomputed arrivals

for the current depth point, go to step 1.

The above version is significantly more efficient, but it may still waste time

on waiting for servers to process requests and return results. To hide this latency,

I overlap computations with network exchange and construct a fully asynchronous

version of the distributed algorithm. Instead of one queue, I use two queues. Us-

ing the notation from above, I build the following sequence of computational and

communicative steps for the following version of the algorithm implementation:

1. Queue #1: Add, Form, Sort, Send.

2. Queue #2 (if not empty): Receive, Reverse sort, Interpolate, Advance,

Check.

3. Queue #2: Add, Form, Sort, Send.

4. Queue #1: Receive, Reverse sort, Interpolate, Advance, Check.

5. Go to step 1, if there are uncomputed arrivals.
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My test implementation uses Sockets Direct Protocol (SDP), which allows to

utilize the advantages of Inifiniband network interconnect (Goldenberg et al., 2005)

while providing natural semantics for client-server type data exchange and enabling

fault tolerance. My tests show that the communication overhead in the distributed

version increases the compute time by a factor of 2-2.5. Network fabric other than

Infiniband may introduce a greater overhead.

Arrivals matching test

Similarly to the arrivals matching test described in the previous chapter, I

performed comparisons for SEG/EAGE Salt model (Figures 4.11 and 4.12). The

spatial sampling of gr (x, θ, φ) is 60 m in every of the three dimensions, the angular

sampling is 5◦ in azimuth and inclination. dmax is 0.5 km. There is some discrepancy

on the right side of the wavefield snapshot. Nevertheless, both tests cover all of the

major arrivals to some extent. Interestingly, the iterative reconstruction produces

more even coverage of the left part of the most energetic arrival. This effect can be

explained by smoothing created implicitly during the iterative process. In Chapter

7, I compare both approaches by imaging a target line from the same model.
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Figure 4.11: Surface exit locations for all arrivals originating from point x = 6.7 km,
y = 7.7 km, and z = 2.5 km of SEG/EAGE Salt model (ray tracing) plotted over
wavefield computed for a source at the same point and extracted at receiver line of
constant y = 7.7 km. chapter-psint/segsalt ssaltfdescsxl0

Figure 4.12: Surface exit locations for all arrivals originating from point x = 6.7 km,
y = 7.7 km, and z = 2.5 km of SEG/EAGE Salt model (iterative reconstruction)
plotted over wavefield computed for a source at the same point and extracted at
receiver line of constant y = 7.7 km. chapter-psint/segsalt ssaltfdescsxl1
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Chapter 5

2-D angle-domain Kirchhoff imaging with escape functions

Imaging using escape functions

In this chapter, I demonstrate how to implement angle-domain migration in

2-D using escape functions as input. To produce high quality image, the migration

process needs to infer the following information from input escape data in order to

implement the summation defined by integral (1.2):

1. Relationship of the current image point’s position, subsurface scattering and

dip angles to correct image contributions from the discrete surface reflection

data u (s, r, t).

2. Waveform-correction operator Dt.

3. Amplitude weight Ŵ .

4. Antialising parameters.

I show below that all of this information can be extracted from only two functions:

escape time T̂ (x̂, θ) and escape position ŷ (x̂, θ). I demonstrate imaging examples

for 4 different synthetic 2-D models. Each of the examples contains scattering and

dip angle gathers along with stacked images. Escape tables for the examples are

computed using the hybrid algorithm from Chapter 3.
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Subsurface reflection system

The relationship between source and receiver phase vectors in integral (1.2)

and scattering and dip angles in a 2-D media is depicted schematically in Figure 5.1.

Figure 5.1: 2-D subsurface reflection system, relationship between phase vectors and
scattering and dip angles (a scheme). chapter-imag2/. croper2d

The scattering angle γ can be defined as

γ = cos−1

(
ps · pr
|ps| |pr|

)
, γ ∈ [ 0; π). (5.1)

Correspondingly, the dip angle ν is

ν =


− cos−1

(
−
pzs+r
|ps+r|

)
, pxs+r > 0

cos−1

(
−
pzs+r
|ps+r|

)
, pxs+r < 0

, ν ∈ [−π; π)

ps+r = ps + pr .

(5.2)

When the integral (1.2) get discretized, angle-domain migration becomes a

summation over a finite number of source and receiver branches defined by escape

function tables. Every pair of branches gives the source location ŷ(x,ps), the receiver

location ŷ(x,ps), and the total traveltime from the source to the receiver T̂ (x,ps) +
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T̂ (x,pr). This combination allows us to find the correct contribution to the image

from surface data. Because of the discrete nature of both input data and escape tables

in practice, escape locations almost never exactly coincide with source and receiver

positions. Instead of using individual arrivals in the summation process, I analyze

couples of nearest values in the escape tables. Every such pair forms an exit segment

on the surface, provided that ẑi = ẑi+1 = zsurface. For every exit source segment, all

source locations inside the segment are identified. Then, for a fixed source point, all

of its receivers inside the exit receiver segment are found. All of the identified samples

contribute to the same migration angle bin. The contribution is normalized by its hit

count. Escape traveltime in each of the branches needs to be interpolated between T̂i

and T̂i+1 values.

Figure 5.2: 2-D angle-domain migration using escape tables (a scheme).

chapter-imag2/. cram2d
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Phase shifts due to caustics

If a ray tube travels through a caustic point, then it causes seismic signal to

shift its phase by π
2

(Chapman and Drummond, 1982). The total number of times

the ray tube hit caustics is called Keller-Maslov-Arnold-Hörmander (KMAH) index.

One hit corresponds to the index of 1. The aggregate phase shift of the signal is the

sum of all KMAH indices in receiver and source branches times π
2
.

I use a crude measure of the aggregate index by looking at the sign of dx =

x̂i+1− x̂i (Figure 5.3). The plus sign assumes KMAH to be equal to 0, the minus sign

makes it 1. This technique misses some of rare cases of caustic-related phase shifts

but still allows to improve the quality of imaging.

Figure 5.3: Reversal of exit positions on the surface for a ray tube in 2-D due to a
caustic point (a scheme). chapter-imag2/. kmah2d

Antialiasing

The migration summation may introduce noticeable artifacts to the image,

if the imaging operator accumulates data in large steps along the time axis in the

steep part of the diffraction curve (Fomel, 2002). A popular approach to this problem
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proposed by Lumley et al. (1994) avoids aliasing by applying a low-pass triangle filter

on the fly according to the slope (exit ray parameter) of the migration operator (Abma

et al., 1999). The latter can be trivially found from an exit segment as

pexit '
T̂i+1 − T̂i
x̂i+1 − x̂i

. (5.3)

Amplitude weights

For true-amplitude imaging, correct amplitude weights need to computed and

applied during the summation process. Both receiver and source branch weights

depend on their geometrical spreading (Koren and Ravve, 2011), which is proportional

to the orthogonal cross section of a ray tube. If the exit ray parameter is also written

as

pexit = Sexit sinαexit , (5.4)

where Sexit is the slowness at the surface at the exit location and αexit is the angle

between the vertical direction and the exit ray, then, the area of the ray tube cross

section can be written as

Jexit ' |x̂i+1 − x̂i|

√
1−

(
pexit
Sexit

)2

. (5.5)

Other components of the amplitude weights, such as the obliquity factor and

slowness value at the image point, do not depend on the exit quantities.

Data preparation

Before angle-domain migration can start mapping surface data to the image

space, the data must be prepared accordingly. This usually includes:
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1. Preprocessing data (noise attenuation, signal bandwidth enhancement, multiple

removal, etc).

2. Clipping large amplitudes and removing bad data samples.

3. Differentiating data in time to compensate for the loss of bandwidth in image

due to migration summation.

4. Performing causal and anticausal integration as required by the Lumley-Claerbout-

Bevc antialising filter.

5. Creating a second copy of the dataset phase-shifted by π
4

(other phase shifts are

then produced from these two copies).

Image muting and noise suppression

The migration output rarely contains any useful information at large dips and

large scattering angles. To improve the image quality and computational efficiency of

the migration algorithm, the output area should be constrained in the angle domain.

Figure 5.4 demonstrates the construction of a mute zone and its counterpart - a pass

zone, which allows migration contributions. The pass zone is a half-ellipse with the

two axes defined by the maximum scattering angle γmax and the maximum dip angle

±νmax. For even better results, γmax and νmax should gradually decrease from the

top to the bottom of the image domain.

Marmousi model

I implemented an imaging algorithm based on the choices described above.

This migration program takes regularly sampled escape tables as input and generates
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Figure 5.4: Definition of a muting zone in angle-domain for a fixed depth point (a

scheme). chapter-imag2/. amute

scattering and dip angle gathers for a specified image area.

I computed escape tables for Marmousi benchmark model (Versteeg, 1993) us-

ing the hybrid Eulerian-Lagrangian solver. The spatial sampling of the escape tables

is ∆x=∆z=4 m and the angular sampling is ∆θ=1◦. The threshold for switching to

ray tracing is set to 1.0 km.

The final image is shown on Figure 5.5. A series of scattering angle gathers is

presented on Figures 5.6(a)-5.9(a) and dip angle gathers are on Figures 5.6(b)- 5.9(b).

Sigsbee2B model

Sigsbee2B (Figure 5.10) is another popular 2-D imaging isotropic benchmark

(Paffenholz et al., 2002). It contains a salt body and creates a challenge of imaging

target subsalt features. The escape tables sampling for this model is ∆z = 7.62 m,

∆x=11.43 m, and ∆θ=0.5◦. The final image is presented on Figure 5.12. A series
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of scattering angle gathers is presented on Figures 5.11(a), 5.13(a)-5.16(a) and dip

angle gathers are on Figures 5.11(b), 5.13(b)-5.16(b).

Hess VTI model

Hess VTI is an anisotropic imaging benchmark created by Hess Corporation

(Figures 5.17, 5.18, 5.19). It contains a salt body and a low-amplitude target reservoir

adjacent to the salt. The spatial sampling of the escape tables is ∆x=∆z=6.096 m

and the angular sampling is ∆θ=1◦. The final image is presented on Figure 5.21. A

series of scattering angle gathers is presented on Figures 5.20(a), 5.22(a), 5.23(a) and

dip angle gathers are on Figures 5.20(b), 5.22(b), 5.23(b).

BP TTI model

BP TTI (Shah, 2008) is another anisotropic imaging benchmark (Figures 5.24(a), 5.24(b),

5.25(a), 5.25(b)). It contains several salt bodies and areas of strong TTI anisotropy.

The spatial sampling of the escape tables is ∆x=∆z=12.5 m and the angular sam-

pling is ∆θ=1◦. The final image is presented on Figure 5.26. A series of scattering

angle gathers is presented on Figures 5.27(a)-5.33(a) and dip angle gathers are on

Figures 5.27(b)- 5.33(b).

87



Figure 5.5: Marmousi model final image. chapter-imag2/marmousi marmdcrstk
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(a) (b)

Figure 5.6: Marmousi model scattering (a) and dip (b) angle gathers for lateral

position 2.0 km. chapter-imag2/marmousi marmocig0,marmdcig0

(a) (b)

Figure 5.7: Marmousi model scattering (a) and dip (b) angle gathers for lateral

position 4.0 km. chapter-imag2/marmousi marmocig1,marmdcig1
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(a) (b)

Figure 5.8: Marmousi model scattering (a) and dip (b) angle gathers for lateral

position 6.0 km. chapter-imag2/marmousi marmocig2,marmdcig2

(a) (b)

Figure 5.9: Marmousi model scattering (a) and dip (b) angle gathers for lateral

position 8.0 km. chapter-imag2/marmousi marmocig3,marmdcig3
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Figure 5.10: Sigsbee2B model velocity. chapter-imag2/sigsbee sigsbvel

(a) (b)

Figure 5.11: Sigsbee2B model scattering (a) and dip (b) angle gathers for lateral

position 7.0 km. chapter-imag2/sigsbee sigsbocig0,sigsbdcig0
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Figure 5.12: Sigsbee2B model final image. chapter-imag2/sigsbee sigsbdcrstk
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(a) (b)

Figure 5.13: Sigsbee2B model scattering (a) and dip (b) angle gathers for lateral

position 11.0 km. chapter-imag2/sigsbee sigsbocig1,sigsbdcig1

(a) (b)

Figure 5.14: Sigsbee2B model scattering (a) and dip (b) angle gathers for lateral

position 15.0 km. chapter-imag2/sigsbee sigsbocig2,sigsbdcig2
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(a) (b)

Figure 5.15: Sigsbee2B model scattering (a) and dip (b) angle gathers for lateral

position 19.0 km. chapter-imag2/sigsbee sigsbocig3,sigsbdcig3

(a) (b)

Figure 5.16: Sigsbee2B model scattering (a) and dip (b) angle gathers for lateral

position 23.0 km. chapter-imag2/sigsbee sigsbocig4,sigsbdcig4
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Figure 5.17: Hess VTI model vertical velocity. chapter-imag2/hessvti hessvtivz

Figure 5.18: Hess VTI model Thomsen anisotropy parameter ε.
chapter-imag2/hessvti hessvtieps
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Figure 5.19: Hess VTI model Thomsen anisotropy parameter δ.
chapter-imag2/hessvti hessvtidel

(a) (b)

Figure 5.20: Hess VTI model scattering (a) and dip (b) angle gathers for lateral

position 7.0 km. chapter-imag2/hessvti hessvtiocig0,hessvtidcig0
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Figure 5.21: Hess VTI model final image. chapter-imag2/hessvti hessvtidcrstk
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(a) (b)

Figure 5.22: Hess VTI model scattering (a) and dip (b) angle gathers for lateral

position 11.5 km. chapter-imag2/hessvti hessvtiocig1,hessvtidcig1

(a) (b)

Figure 5.23: Hess VTI model scattering (a) and dip (b) angle gathers for lateral

position 17.0 km. chapter-imag2/hessvti hessvtiocig2,hessvtidcig2
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(a) (b)

Figure 5.24: BP TTI model symmetric axis velocity (a) and axis tilt angle (b).

chapter-imag2/bptti bpttivp,bpttitheta
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(a) (b)

Figure 5.25: BP TTI model Thomsen anisotropy parameters ε (a) and δ (b).

chapter-imag2/bptti bpttieps,bpttidel 100



Figure 5.26: BP TTI model final image. chapter-imag2/bptti bpttidcrstk
101



(a) (b)

Figure 5.27: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

10.0 km. chapter-imag2/bptti bpttiocig0,bpttidcig0

(a) (b)

Figure 5.28: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

20.0 km. chapter-imag2/bptti bpttiocig1,bpttidcig1
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(a) (b)

Figure 5.29: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

30.0 km. chapter-imag2/bptti bpttiocig2,bpttidcig2

(a) (b)

Figure 5.30: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

40.0 km. chapter-imag2/bptti bpttiocig3,bpttidcig3
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(a) (b)

Figure 5.31: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

50.0 km. chapter-imag2/bptti bpttiocig4,bpttidcig4

(a) (b)

Figure 5.32: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

60.0 km. chapter-imag2/bptti bpttiocig5,bpttidcig5
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(a) (b)

Figure 5.33: BP TTI model scattering (a) and dip (b) angle gathers for lateral position

70.0 km. chapter-imag2/bptti bpttiocig6,bpttidcig6
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Chapter 6

3-D angle-domain Kirchhoff imaging with escape functions

Imaging using escape functions

In this chapter, I demonstrate how to implement angle-domain migration in 3-

D using escape functions as input. Similarly to the 2-D case, the auxiliary information

for migration is found out from the input escape time function T̂ (x̂, θ, φ) and the input

escape position function ŷ (x̂, θ, φ) only.

I demonstrate imaging examples for the same synthetic 3-D salt model used

in the previous chapters. Escape tables for the examples are computed using the

numerical scheme described in Chapter 4. This new algorithm has several important

parameters which control computational time and imaging quality. In fact, there is a

tradeoff between them, so it is important to establish an optimal range of their val-

ues, which would allow good computational performance without sacrificing imaging

accuracy.

It should be noted that the angle-domain migration with “bottom-up” trav-

eltimes has an irregular access pattern to input seismic data. It is image oriented as

opposed to the classic data-oriented migration defined as a summation over acquisi-

tion coordinates. The irregular data access becomes an engineering challenge in the

3-D case. However, it has been shown that it could be efficiently implemented for

large datasets (Ettrich et al., 2008; Koren et al., 2008). In the imaging tests below,

the size of the input data is relatively small, so my implementation simply stores a
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local copy of it at every compute node involved with migration.

Subsurface reflection system

The relationship between source and receiver phase vectors in integral (1.2)

and scattering and dip angles for a 3-D media is depicted in Figure 6.1.

Figure 6.1: 3-D subsurface reflection system, relationship between phase vectors and
scattering, dip angles (a scheme). chapter-imag3/. refl3d

The vectors associated with the dip and scattering directions are given respec-

tively as

ps+r = ps + pr ,

pr−s = pr − ps .
(6.1)

The dip angle can be defined as

ν1 =


− cos−1

(
−ps+r · nz
|ps+r|

)
, pys+r ≥ 0

cos−1

(
−ps+r · nz
|ps+r|

)
, pys+r < 0

, ν1 ∈ [−π; π) , (6.2)
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where nz is the unit vector in the direction of axis z. The dip azimuth angle is

ν2 =


cos−1

(
pxys+r · nx
|pxys+r|

)
, pys+r ≥ 0

π − cos−1

(
pxys+r · nx
|pxys+r|

)
, pys+r < 0

, ν2 ∈ [0; π) , (6.3)

where pxys+r is the projection of vector ps+r onto x− y plane and nx is the unit vector

in the direction of axis x.

The scattering angle can be defined as

γ1 = cos−1

(
ps · pr
|ps| |pr|

)
, γ1 ∈ [ 0; π). (6.4)

Following Sava and Fomel (2005), I define the following projections onto the reflection

plane

v = ps+r × nx ,

u = ps+r × pr−s .
(6.5)

The scattering azimuth angle is then defined as

γ2 =


cos−1

(
u · v
|u| |v|

)
, (u× v) · ps+r ≥ 0

2π − cos−1

(
u · v
|u| |v|

)
, (u× v) · ps+r < 0

, γ2 ∈ [0; 2π) . (6.6)

For a fixed image point in 3-D case, the corresponding angular part of the

escape tables defines a grid of exit location and exit times. One cell in the grid contains

four sets of escape variables. Any three of them form an exit triangle on the surface

(Figure 6.2), which I choose as a basis element for finding imaging contributions from

surface seismic data.

The summation process (Figure 6.3) is similar to that of the 2-D case, but

instead of exit segments, exit triangles are analyzed. For a given source or receiver
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Figure 6.2: Exit triangle defined by a set of escape values in the escape tables (a

scheme). chapter-imag3/. pang3d

position on the surface, corresponding exit triangles are found that contain that point.

To avoid overly excessive search process, all the exit triangles are sorted into search

bins in advance. Only a fraction of all the precomputed triangles has to be checked

against containing the point. For every found triangle, I use linear interpolation in

barycentric coordinates to estimate the escape quantity at the point.

Phase shifts due to caustics

In 3-D, a ray tube can go through two types of caustics. Effects of both types

can be recognized through a simple analysis of the escape triangle. I use the following

definitions for the sides of the triangle:

a = |ŷi+1,j − ŷi,j| ,

b = |ŷi,j+1 − ŷi,j| ,
(6.7)
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Figure 6.3: 3-D angle-domain migration using escape tables (a scheme).

chapter-imag3/. cram3d

A caustic point of the first type, which corresponds to the increase of KMAH

index by one, makes the product a · b negative (Figure 6.4). The second type of

caustic (KMAH index of two) causes both vectors to flip, so a different dot product

has to be looked at - the one between the current azimuth vector and whichever vector

of the two corresponds to the constant-azimuth direction in the angular escape grid

(Figure 6.4).

Antialiasing and amplitude weights

Exit triangles approximate locally the diffraction time-space surface along

which the summation is performed. For the triangle filter in antialiasing procedure,

a slope of the surface is required, which can be computed from two directional trav-

eltime derivatives along the sides of an escape triangle. Using normalized versions of
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Figure 6.4: Escape triangle corresponding to the travelpath though a caustic of the
first type (a scheme). chapter-imag3/. kmah3d1

Figure 6.5: Escape triangle corresponding to the travelpath though a caustic of the
second type (a scheme). chapter-imag3/. kmah3d2
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vectors a and b, components of the slope vector can be found as

∣∣∣∣ pxexitpyexit

∣∣∣∣ =

∣∣∣∣∣∣∣
ax
|a|

ay
|a|

bx
|b|

by
|b|

∣∣∣∣∣∣∣
−1
∣∣∣∣∣∣∣∣
T̂i+1,j − T̂i,j
|a|

T̂i,j+1 − T̂i,j
|b|

∣∣∣∣∣∣∣∣ . (6.8)

The geometrical spreading required for amplitude weights can be approximated

as

Jexit ' s∆

√
1−

(
|pexit|
Sexit

)2

, (6.9)

where Sexit is the slowness at the surface at the exit location and s∆ is the area of

the exit triangle.

Other considerations for 3-D imaging

If exit triangle sizes become small on the surface compared to the sampling

of the acquisition system, then some angle bins might be left empty in the migration

process. This effect is especially pronounced for sparse shot sampling and image

locations that are close to the surface. This situation is not something unique to

angle-domain Kirchhoff migration, but is also encountered in other imaging methods

(Tang et al., 2011). To avoid loss of image quality, angle bin spacing needs to be

adjusted with depth and the image has to be interpolated later onto the desired angle

grid.

Imaging approximations based on high-frequency asymptotics are known to

break down in very complex models, i.e. when velocity variations demonstrate high

gradients. In such cases, some contributions to the image may be erroneous to the

extent that they dominate the constructive part of the sum. This usually happens only

in a few places and can be seen as noise on gathers after imaging. Noise attenuation

112



measures, such as bandpass filtering, should be applied to gathers afterwards. Muting

in the angle plane, akin to that shown in the previous chapter, may also be necessary.

Large exit triangles should be discarded as they can not approximate the diffraction

summation surface correctly.

SEG/EAGE Salt model imaging tests

I conducted a series of imaging experiments using an implementation of 3-D

angle-domain migration based upon the principles that I described above. The goal

of these experiments was to find an optimal set of parameters for the semi-Lagrangian

algorithm for computing escape tables. I use imaging results based on ray tracing as

a reference. The best set of parameters for the semi-Lagrangian counterpart should

yield migration results of comparable quality while achieving a gain in computational

efficiency. I use the same salt model as in Chapter 4. Prestack data is a full-azimuth

45-shot dataset with sparse shot sampling (0.96 km in both directions).

The semi-Lagrangian algorithm from Chapter 4 has several parameters which

affect accuracy of imaging and/or computational efficiency of escape tables compu-

tation:

• Maximum displacement distance in local escape functions dmax.

• Spatial sampling of local escape functions ∆x,y,z (for simplicity, I use same

sampling for all of the three axes).

• Angular sampling of local escape functions ∆θ,φ (again, for simplicity purposes,

I use same sampling for azimuth and inclination).

To find an optimal combination of these parameters, I performed a series of
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imaging tests for the same salt model. I use one location in the model that has good

illumination in the subsalt area for the modeled acquisition system. Using this same

location, I generate scattering angle gathers for different combinations of dmax, ∆x,y,z,

and ∆θ,φ. I then compare these results against a ray tracing based one. All of the

results are presented below in 18 figures. I use 6 for establishing references between

values of the three parameters and each individual figure. Each figure contains four

panels as follows (from left to right):

1. A scattering angle gather computed for a given set of parameters.

2. Local similarity (Fomel, 2007) computed against the ray tracing result.

3. Comparison of stack traces: solid line - ray tracing, dashed line - iterative

reconstruction.

4. Local similarity between the two traces.

From these experiments, I find that image quality in the shallow part of the

gather allows greater values for ∆x,y,z and ∆θ,φ than the upper limit of 100 m and

10◦. It can possibly accept bigger dmax step as well. The bottom of the salt body,

however, starts to fall apart at these limits. The subsalt is then the most sensitive

part of the image to the parameterization. It appears that to capture phases of the

subsalt reflectors correctly, ∆x,y,z must be less than 75 m, ∆θ,φ must be less than 10◦,

and the value of dmax must be in the vicinity of 0.5 km.

Figures 6.24 and 6.25 show stacked images of a target line obtained from

migration with escape tables built using ray tracing and iterative reconstruction in
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dmax = 0.25 km dmax = 0.5 km dmax = 0.75 km

∆x,y,z = 50 m, ∆θ,φ = 5◦ Figure 6.6 Figure 6.7 Figure 6.8

∆x,y,z = 50 m, ∆θ,φ = 10◦ Figure 6.9 Figure 6.10 Figure 6.11

∆x,y,z = 75 m, ∆θ,φ = 5◦ Figure 6.12 Figure 6.13 Figure 6.14

∆x,y,z = 75 m, ∆θ,φ = 10◦ Figure 6.15 Figure 6.16 Figure 6.17

∆x,y,z = 100 m, ∆θ,φ = 5◦ Figure 6.18 Figure 6.19 Figure 6.20

∆x,y,z = 100 m, ∆θ,φ = 10◦ Figure 6.21 Figure 6.22 Figure 6.23

Table 6.1: Correspondence between parameters and figures in the imaging accuracy
test for the semi-Lagrangian algorithm.
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phase space respectively. Local escape functions for the second image are sampled

with ∆x,y,z = 60 m and ∆θ,φ = 5◦; dmax is 0.5 km. Comparison of the two images

(Figure 6.26) shows a very good agreement in the upper part and around the salt body.

Both imaging methods capture subsalt reflectors (where illumination allows it) with

only slight disagreement in the amplitudes. If escape functions are accessed locally

during computations, such parameterization allows leads to an order of magnitude

of improvement over ray tracing in compute time for the iterative reconstruction

approach.
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Figure 6.6: Local escape function sampling in space is 50 m, angle - 5◦. dmax = 0.25
km. chapter-imag3/ssaltg ssaltsoamig000
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Figure 6.7: Local escape function sampling in space is 50 m, angle - 5◦. dmax = 0.5
km. chapter-imag3/ssaltg ssaltsoamig001
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Figure 6.8: Local escape function sampling in space is 50 m, angle - 5◦. dmax = 0.75
km. chapter-imag3/ssaltg ssaltsoamig002
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Figure 6.9: Local escape function sampling in space is 50 m, angle - 10◦. dmax = 0.25
km. chapter-imag3/ssaltg ssaltsoamig010
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Figure 6.10: Local escape function sampling in space is 50 m, angle - 10◦. dmax = 0.5
km. chapter-imag3/ssaltg ssaltsoamig011
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Figure 6.11: Local escape function sampling in space is 50 m, angle - 10◦. dmax = 0.75
km. chapter-imag3/ssaltg ssaltsoamig012
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Figure 6.12: Local escape function sampling in space is 75 m, angle - 5◦. dmax = 0.25
km. chapter-imag3/ssaltg ssaltsoamig100
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Figure 6.13: Local escape function sampling in space is 75 m, angle - 5◦. dmax = 0.5
km. chapter-imag3/ssaltg ssaltsoamig101
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Figure 6.14: Local escape function sampling in space is 75 m, angle - 5◦. dmax = 0.75
km. chapter-imag3/ssaltg ssaltsoamig102
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Figure 6.15: Local escape function sampling in space is 75 m, angle - 10◦. dmax = 0.25
km. chapter-imag3/ssaltg ssaltsoamig110
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Figure 6.16: Local escape function sampling in space is 75 m, angle - 10◦. dmax = 0.5
km. chapter-imag3/ssaltg ssaltsoamig111
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Figure 6.17: Local escape function sampling in space is 75 m, angle - 10◦. dmax = 0.75
km. chapter-imag3/ssaltg ssaltsoamig112
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Figure 6.18: Local escape function sampling in space is 100 m, angle - 5◦. dmax = 0.25
km. chapter-imag3/ssaltg ssaltsoamig200
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Figure 6.19: Local escape function sampling in space is 100 m, angle - 5◦. dmax = 0.5
km. chapter-imag3/ssaltg ssaltsoamig201
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Figure 6.20: Local escape function sampling in space is 100 m, angle - 5◦. dmax = 0.75
km. chapter-imag3/ssaltg ssaltsoamig202
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Figure 6.21: Local escape function sampling in space is 100 m, angle - 10◦. dmax = 0.25
km. chapter-imag3/ssaltg ssaltsoamig210
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Figure 6.22: Local escape function sampling in space is 100 m, angle - 10◦. dmax = 0.5
km. chapter-imag3/ssaltg ssaltsoamig211
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Figure 6.23: Local escape function sampling in space is 100 m, angle - 10◦. dmax = 0.75
km. chapter-imag3/ssaltg ssaltsoamig212
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Figure 6.24: Target line at x=6.7 km imaged by multi-arrival Kirchhoff angle-domain
migration using escape tables built by ray tracing. chapter-imag3/ssaltx ssaltnmig
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Figure 6.25: Target line at x=6.7 km imaged by multi-arrival Kirchhoff angle-
domain migration using escape tables built by iterative reconstruction in phase space.
chapter-imag3/ssaltx ssaltsmig
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Figure 6.26: Local similarity for the two target lines at x=6.7 km shown above.
chapter-imag3/ssaltx ssaltmigsim
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Figure 6.27: Scattering angle gather at x = 6.7km and y = 7.7km (horizontal axis is
the scattering angle, each panel represents a scattering azimuth angle sector specified
by a diagram above it). Escape tables are produced by iterative reconstruction in

phase space. chapter-imag3/ssaltx ssaltsoagath
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Figure 6.28: Dip angle gather at x = 6.7km and y = 7.7km (horizontal axis is the
dip angle, each panel represents a dip azimuth angle sector specified by a diagram
above it). Escape tables are produced by iterative reconstruction in phase space.

chapter-imag3/ssaltx ssaltsdagath
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Chapter 7

Conclusions

Summary of results

I have developed in this dissertation two numerical methods for computing

escape function tables in the phase space. The hybrid Eulerian-Lagrangian approach

uses finite-differences on a reduced phase space grid. Areas of high-gradient val-

ues in escape functions are treated separately with Lagrangian ray tracing to ensure

accuracy. While this method achieves high accuracy in escape solutions, its computa-

tional efficiency is limited. Utilization of other accuracy preserving techniques, such

as AMR, in this framework does not appear feasible in 3-D due to complexity and

high cost of implementation. However, the proposed hybrid scheme can still be used

as an accurate, physics-guided interpolator for building fine-sampled escape function

tables from results obtained on a coarse grid by other methods.

I have also introduced an alternative, semi-Lagrangian method for obtaining

escape tables. This approach is based on the fundamental property of continuity

of escape functions in the phase space. I showed that, if escape functions are con-

strained in space, then the global solution can be found by reconstructing their values

through iterative parsing of the localized solutions. In practice, this translates into a

5-D interpolation problem in reduced phase space. The extent of these local functions

should be such that they expose sufficient smoothness for accurate interpolation. This

approach is relatively simple to implement in 3-D. It also scales to large 3-D problems
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by means of distributed parallel computations. All effects of anisotropy are readily

included in local escape functions, which means that compute time at the interpo-

lation stage does not depend on the type of the background velocity model. Only

initialization of the local functions has this dependence, but for large image targets,

its compute time is much smaller than that of the iterative reconstruction. Even with

the most conservative parameterization required for imaging complex models, the

semi-Lagrangian approach demonstrated about an order of magnitude improvement

in computational efficiency compared to conventional ray tracing.

Both techniques operate directly in the phase space and produce escape ta-

bles defined in terms of phase space coordinates: positions in space and directional

angles. These angles are directly related to the geologically meaningful subsurface

reflection system and describe a unique one-to-one mapping of surface seismic reflec-

tion data to subsurface angle domain. I showed in this work how to utilize escape

tables in angle-domain migration in practice. Although the imaging process was not

the main objective of this research, it was important to show that the minimal set

of computed escape quantities can be used for quality imaging. I demonstrated how

exit slope, geometrical spreading, and approximate KMAH index can be estimated

from escape positions and escape traveltime. These parameters are needed in the

migration process to estimate correct amplitude weights, phase shifts, and antialis-

ing filters. Ultimately, only imaging quality should be used as a measure of quality

of traveltime computations. I demonstrated that the two proposed methods allow to

obtain accurate imaging outputs for several 2-D and 3-D complex benchmark models.
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Possible extensions and future work

While my current implementation displays principle features of the iterative

reconstruction algorithm with good computational efficiency, there are several possi-

ble improvements which may make the computational cost even lower. I can suggest

the following extensions:

1. The dmax parameter should be variable depending on the local complexity of the

velocity model. That way, large steps through the phase space can be performed

in relatively simple parts of the model, and small steps can be done in other

parts in order to preserve accuracy of computations.

2. Similarly, spatial sampling ∆x,y,z of local escape functions can be made variable

depending on the local model features. This should be easier to implement than

AMR, because the structure of the grid depends on the model and is known in

advance.

3. A different interpolation scheme can be implemented that operates in the angu-

lar plane {θ, φ}. The plane is a projection of the surface of the sphere of phase

directions. Approximation methods specifically designed for interpolation on

the sphere might produce more accurate results in the iterative reconstruction

(Wahba, 1981).

On the migration side, the following extensions might improve imaging quality

1. Wavefront construction (WFC), a standard approach to ray tracing type compu-

tations (Vinje et al., 1993), can help in avoiding oversampling or undersampling

of escape tables. Strictly speaking, exact positions of wavefronts are not known
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in the iterative reconstruction process. Every arrival instead is traced indepen-

dently with the biggest allowed steps. Nevertheless, WFC-like results can still

be achieved, if, for every three neighboring arrivals, their corresponding escape

triangle on the surface is analyzed. If the area of the triangle is too large, then

a new arrival should be inserted. The new arrival must originate in-between

the three original ones. Now, the four arrivals form two escape triangles on the

surface, so the analysis procedure should be repeated for each of them inde-

pendently. The process can proceed recursively until the surface wavefront is

sampled adequately.

2. Filtering data by escape slope (ray parameter) can improve the quality of output

image gathers. Xu et al. (2001) originally suggested that angle-domain imaging

should produce artifact-free gathers. This has been a point of debate in the

research community since then. Stolk and Symes (2004) showed that angle-

domain migration may still produce artifacts in a complex model setting. This

happens due to the fact that surface seismic data in such environments contain

conflicting dips. Phase-space escape functions at the core of the angle-domain

Kirchhoff integral define one-to-one mapping from image location/phase angle

to surface location/time/ray parameter. We usually ignore the ray parameter

for practical reasons. It might be too expensive to decompose 5-D surface

data into two slope components and try to manipulate 7-D datasets during

the imaging process. However, if a fast and efficient compression method is

developed for storing such datasets, then angle-domain migration can benefit

significantly from using true unique one-to-one mapping from surface data to

the subsurface image space (Koren and Ravve, 2011).
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Connections to other methods

My iterative reconstruction of global escape values in the phase space is related

to the phase flow method of Ying and Candès (2006). It employs similar principles in

order to construct wavefront positions in the phase space. In my approach, I do not

aim at tracking wavefronts with small time steps. Instead, I reconstruct individual

characteristic lines with the biggest possible step that still preserves sufficient accuracy

for imaging problems. The algorithm also bears some resemblance to the slowness

matching method of Symes and Qian (2003). The slowness matching approach utilizes

the property of continuity of the phase vector as well. However, the background

solution is defined in terms of localized minimum-time solutions in space only, as

opposed to local escape functions in phase space.
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Ferziger, J. H., and M. Perić, 2002, Computational methods for fluid dynamics:

Springer.

Fomel, S., 2002, Antialiasing of Kirchhoff operators by reciprocal parameterization:

Journal of Seismic Exploration, 10, 293–310.

——–, 2003, Angle-domain seismic imaging and the oriented wave equation: SEG

Technical Program Expanded Abstracts, 893–896.

——–, 2004, On anelliptic approximations for qP velocities in VTI media: Geophys-

ical Prospecting, 52, 247–259.

——–, 2007, Local seismic attributes: Geophysics, 72, A29–A33.

Fomel, S., S. Luo, and H. Zhao, 2009, Fast sweeping method for the factored eikonal

equation: Journal of Computational Physics, 228, 6440–6455.

Fomel, S., and J. A. Sethian, 2002, Fast-phase space computation of multiple arrivals:

Proceedings of the National Academy of Sciences of the United States of America,

99, 7329–7334.

Gentry, R. A., R. E. Martin, and B. J. Daly, 1966, An Eulerian differencing method

for unsteady compressible flow problems: Journal of Computational Physics, 1,

87–118.

Geoltrain, S., and J. Brac, 1993, Can we image complex structures with first-arrival

traveltime?: Geophysics, 58, 564–575.

Goldenberg, D., M. Kagan, R. Ravid, and M. S. Tsirkin, 2005, Zero copy Sockets

Direct Protocol over Infiniband – preliminary implementation and performance

analysis: 13th Symposium on High Performance Interconnects, 128–137.

Golub, G., 1996, Matrix computations: Johns Hopkins University Press.

148



Gremaud, P. A., and C. M. Kuster, 2006, Computational study of fast methods for

the Eikonal equation: SIAM Journal on Scientific Computing, 27, 1803–1816.

Hirsch, C., 2007, Numerical computation of internal and external flows, Volume 1:

Fundamentals of computational fluid dynamics: Elsevier/Butterworth-Heinemann.

Hudec, M. R., and M. P. A. Jackson, 2007, Terra infirma: Understanding salt tec-

tonics: Earth-Science Reviews, 82, 1–28.

ITRS, 2011, 2011 International Technology Roadmap for Semiconductors: Executive

Summary: International Semiconductor Roadmap Committee.

Karcher, J. C., 1974, The reflection seismograph: its invention and use in the discovery

of oil and gas fields.

Klokov, A., and S. Fomel, 2012, Separation and imaging of seismic diffractions using

migrated dip-angle gathers: Geophysics, 77, S131–S143.

Koren, Z., and I. Ravve, 2011, Full-azimuth subsurface angle domain wavefield decom-

position and imaging Part I: Directional and reflection image gathers: Geophysics,

76, S1–S13.

Koren, Z., I. Ravve, E. Ragoza, A. Bartana, and D. Kosloff, 2008, Full-azimuth angle

domain imaging: SEG Technical Program Expanded Abstracts, 27, 2221–2225.

Koren, Z., S. Xu, and D. Kosloff, 2002, Target-oriented common reflection angle

migration: SEG Technical Program Expanded Abstracts, 21, 1196–1199.

Kuzmin, D., 2010, A guide to numerical methods for transport equations: University

Erlangen-Nuremberg.
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Xu, S., H. Chauris, G. Lambaré, and M. Noble, 2001, Common-angle migration: A

strategy for imaging complex media: Geophysics, 66, 1877–1894.
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