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Designs and Applications of Microstrip Leaky Wave Antenna for Radar 

Sensing 

 

Shang-Te Yang, Ph.D. 

The University of Texas at Austin, 2014 

 

Supervisor:  Hao Ling 

 

This dissertation investigates the application of the frequency-scanned beam of a 

microstrip leaky wave antenna (LWA) to track humans in the two-dimensional (2-D) 

range-azimuth plane. The history, operating principles and frequency-scanned properties 

of a microstrip LWA are first reviewed. The basic concept of using a microstrip LWA to 

track humans is verified by designing, building and testing a broadband microstrip LWA, 

developing the necessary processing algorithm, and collecting data using a vector 

network analyzer. A number of topics are then investigated to further advance the 

concept. First, the idea of combining the frequency-scanned antenna with a short-pulse 

ultra-wideband (UWB) radar is developed to realize a portable, real-time system for 

human tracking. The radar concept and the components of the system are discussed in 

detail. Line-of-sight and through-wall measurements of a human subject are carried out to 

demonstrate the performance. Second, a new LWA structure is proposed to achieve a 

narrower azimuth beam, which requires both a small leaky-wave attenuation constant and 

a long aperture. The transverse resonance method (TRM) is applied to analyze the 

proposed structure and the results are verified with measurements of a built prototype. 

Third, a new signal processing technique, compressive sensing, is applied to further 

improve the resolution in both the azimuth and down range dimensions. The technique is 
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tested with simulation and measurement data and is shown to produce sharper target 

responses in both the down range and azimuth dimensions. Lastly, the radar cross-section 

(RCS) of a microstrip LWA is studied. The antenna mode scattering and structural mode 

scattering are modeled separately. A ray picture is provided to explain the observed time-

domain features using the group delay of the leaky wave. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Monitoring human activities using radar is a topic of current research interest, 

with applications ranging from urban military operations and law enforcement to disaster 

search-and-rescue and border security. Radio waves in the low GHz range can penetrate 

through walls and provide a non-intrusive means to monitor suspicious personnel or to 

search for vital signs of survivors buried under debris after disasters. Moreover, radar can 

operate at night as well as in all weather conditions. Thus, it is very useful for 

surveillance applications. Over the years, different radars have been developed to address 

different aspects of human monitoring. 

Doppler radar has been exploited for human monitoring due to its capability to 

capture a unique feature of a moving human called the microDoppler, which was first 

reported by Geisheimer et al. in 2002 [1]. This feature corresponds to the non-rigid nature 

of a human body. As a human subject moves, the different body parts move in different 

directions with different speeds. Consequently, the movements of body parts can be 

identified by observing the various Doppler frequency components over time. Different 

human models were proposed to simulate the movements of a human subject and the 

results led to a better understanding of microDoppler features [1, 2, 3, 4, 5]. 

MicroDoppler features were also used to differentiate a human subject from other moving 

targets, such as a fan [6] or other animals [7, 8]. Other works further exploited human 

microDoppler features to achieve automatic target and activity identification [9, 10, 11, 

12, 13, 14].  

Doppler radar has also been combined with interferometry to achieve a low-

complexity system to track direction-of-arrivals (DOAs) or two-dimensional (2-D) range-
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azimuth positions of humans [15, 16].  The basic assumption used in these systems was 

that each target bears a distinct Doppler frequency and the targets can be separated in the 

Doppler domain. As a result, these systems are not very robust since different moving 

humans may move at a similar speed. Another approach was proposed to improve the 

performance by replacing interferometry with a four-element antenna array [17]. A joint 

Doppler-array processing was developed correspondingly. 

Doppler radar has been further combined with a 2-D aperture to achieve a 2-D 

azimuth-elevation frontal view of a human. This is of interest because the frontal view 

corresponds more closely with our visual experience. Lin and Ling attempted this 

problem earlier using a Doppler radar and a three-element interferometry system [18]. 

However, only a blurry image of a human was formed under the most idealized 

condition. The joint Doppler-array processing in [17] was extended to simulate a radar 

frontal image of a human in [19]. However, a robust image was only achievable when a 

large antenna array with 20 x 20 elements was used. Hence, the array was never 

implemented.  

Ultra-wide-band (UWB) radar is another class of radar that has also been utilized 

to monitor humans. Such type of radar can achieve a superior range resolution, which 

enables the radar to not only detect the range of targets but even sense the fine 

movements of human respiration [20, 21, 22, 23]. UWB radars have been combined with 

various 1-D arrays to achieve 2-D range-azimuth tracking of targets [24, 25, 26, 27, 28]. 

While UWB radar has a very fine range resolution, the azimuth resolution is still 

governed by the electrical size of the array employed. Some advanced signal processing 

techniques, such as MUSIC [29] and CLEAN [30], have been applied to improve the 

azimuth resolution of UWB radar systems without using large antenna arrays [31, 32]. 
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UWB radar has also been combined with a 2-D aperture to achieve 3-D range-

azimuth-elevation imaging of targets using different algorithms [33, 34, 35, 36, 37, 38]. 

Among these works, some were investigations using only simulation data, while others 

were tested with a synthetic aperture by moving a small set of antennas mechanically in a 

2-D plane. Only one physical 2-D array with 12 elements was implemented in [36]. Note 

that a synthetic aperture is not a practical means for tracking moving humans due to the 

time-varying nature of human movements. Consequently, a large, complex, and costly 

antenna array system is required to form a 3-D image of a moving human. To date, no 

such large array has ever been built for human monitoring applications. 

More recently, there is effort to combine Doppler radar and UWB radar to form a 

multi-functional system [39, 40, 41, 42, 43]. The pulse-to-pulse Doppler features 

measured with a UWB radar were exploited to achieve activity identification [39]. 

Moreover, a joint range-Doppler feature extraction was explored in [42] to achieve a 

better identification performance. The combination of a Doppler radar and a UWB radar 

leads to a higher-dimensional feature space, which is not only useful for target 

identification but may also help achieve a better performance in tracking and imaging of 

humans.  

1.2 MOTIVATION 

In both human tracking and imaging applications, the radar system must have a 

narrow beam and the beam must be able to scan rapidly to different directions. Moreover, 

a physical aperture instead of a synthetic one is required due to the time-varying nature of 

human movements. This necessitates the use of a large antenna array with many 

controllable elements, which leads to high complexity and high cost. Some physical 

apertures have been built and tested in earlier works. Interferometry systems were 
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combined with Doppler processing for the tracking and imaging problems [15, 16, 18]. 

However, such low-cost system usually leads to a large degradation in radar performance. 

Other larger antenna arrays have also been explored, such as the 2-D “flower” array in 

[36] and the eight-element Vivaldi antenna array in [44]. However, data were collected 

sequentially from the array elements via switches in both works before software 

beamforming was applied. This approach reduces the number of phase shifters and 

transceivers at the cost of acquisition time. Therefore, these systems are still limited when 

applied to monitor a fast moving human subject. A different approach than an antenna 

array is needed. It has to be a physical aperture that can rapidly scan to different 

directions without the complexity and cost of an antenna array.  

A frequency-scanned antenna is a class of antennas whose beam can be steered by 

changing the carrier frequency. The frequency-scanned beam of slotted waveguides was 

used for air defense radar in the 1960s, but was subsequently replaced by phased arrays. 

This is because frequency is a precious resource for military radar to counteract against 

propagation effects and hostile jamming [45]. Very recently, there is a renewed interest in 

applying the frequency-scanned beam of a leaky wave antenna (LWA) to automotive 

collision avoidance applications [46, 47, 48, 49]. Wollitzer et al. applied a dielectric slab 

LWA as the front-end of a radar using two frequency tones [46]. Matsuzawa et al. 

proposed another LWA for automotive applications, in which a movable dielectric slab 

was employed to steer the beam instead of changing the carrier frequency [47]. Ettore et 

al. proposed a pillbox LWA integrated with a parabolic reflector system [48]. The 

frequency-scanned beam of the LWA steers the beam in the elevation plane while an 

offset feed position was used to steer the beam in the azimuth plane.  

To date, frequency-scanned antennas have not been applied for human detection, 

tracking or monitoring. A microstrip LWA [50] is a particularly attractive candidate 
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among the many different LWA designs, since the structure is based on the standard 

microstrip transmission line. Such simple structure leads to easier manufacturing. 

Moreover, the cross-sectional dimensions of a microstrip LWA are much more compact 

than those of a rectangular waveguide, which is commonly used to realize a frequency-

scanned slotted array. In this dissertation, a microstrip LWA will be explored for human 

tracking applications. Only a single broadband transceiver is required to steer the 

frequency-scanned beam and the beam direction can be changed rapidly. A simple and 

portable system can be implemented to monitor human activities in real-time.  

1.3 SCIENTIFIC OBJECTIVE AND APPROACH 

The objective of my dissertation is to apply the frequency-scanned beam of a 

microstrip LWA to tracking human subjects in the 2-D range-azimuth plane. To 

accomplish this objective, the following approaches are taken. First, the basic concept of 

using a microstrip LWA to track humans is demonstrated by designing, building and 

testing a broadband microstrip LWA, developing the necessary processing algorithm, and 

collecting data using a vector network analyzer (VNA) to achieve 2-D human tracking. 

To further advance the concept, three topics are researched. First, the idea of combining 

the frequency-scanned antenna with a short-pulse UWB radar is explored to achieve a 

portable, real-time system for human tracking. Second, a new LWA structure is 

investigated to achieve a narrower azimuth beam. Third, a new signal processing 

technique, compressive sensing, is applied to further improve the resolutions in both the 

azimuth and down range dimensions. Lastly, the radar cross-section (RCS) of a 

microstrip LWA is studied.  
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1.4 ORGANIZATION 

The rest of this dissertation is organized as follows. A detailed literature review 

on microstrip LWA is presented in Chapter 2. The transverse resonance method (TRM) 

analysis of a half-width microstrip LWA is reviewed [51]. The relationship between the 

leaky mode and the radiation properties is discussed, and a single half-width microstrip 

LWA is simulated, built, and measured to show the frequency-scanned beam.  

In Chapter 3, a broadband half-width microstrip LWA is designed for the human 

tracking application. The antenna is built and the broadband radiation pattern is 

measured. The concept of “target bandwidth,” which defines the antenna bandwidth from 

the perspective of a target instead of the input port of an antenna, is discussed. The 

tracking algorithm is developed correspondingly. Data of static and moving targets are 

measured with a VNA to show the 2-D range-azimuth tracking capability. 

In Chapter 4, the idea of combing a microstrip LWA and a short-pulse radar is 

explored. First, the architecture of a short-pulse UWB radar is discussed. Afterward, the 

equivalent frequency response of the radar is characterized and measurements of static 

targets are presented to show the direction finding capability. Line-of-sight and through-

wall measurements of a human subject are then carried out to demonstrate the tracking 

performance of this portable system.  

In the next two chapters, two different approaches are studied to further improve 

the resolving capability of the system. A two-section microstrip LWA with a narrower 

beam is proposed and discussed in Chapter 5. The antenna is designed to reduce the 

attenuation constant of the leaky mode while retaining the original frequency-scanned 

property. The performance is compared to a half-width microstrip LWA and the impacts 

of a narrow-beam antenna on the whole radar system are discussed.  
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In Chapter 6, compressive sensing is applied to further improve the system 

resolution through signal processing. First, compressive sensing is reviewed from the 

mathematical perspective and previous applications to radar problems are discussed. The 

tracking problem using a frequency-scanned antenna is formulated into the framework of 

compressive sensing. The algorithm is first tested with a point scatterer simulation. Next, 

compressive sensing is applied to measurements of static target as well as moving 

humans to show the performance. Lastly, the resolving capability of compressive sensing 

is tested with closely spaced targets using point scatterer simulations.  

In Chapter 7, the RCS of a microstrip LWA is discussed. The RCS is first 

simulated using a full-wave solver and presented in both the frequency and time domains. 

The simulated RCS is then compared to measured results. Next, different observed 

features are explained using analytical models of the antenna mode scattering and 

structural mode scattering. Lastly, a time-of-arrival ray picture is proposed to explain the 

observed features in the time domain and a connection to the dispersion of the leaky 

mode is made. 

A detailed conclusion and some potential future research topics are presented in 

Chapter 8. 
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Chapter 2: Microstrip Leaky Wave Antenna 

In this chapter, an introduction to the microstrip leaky wave antenna (LWA) is 

presented. We begin with a literature review of earlier works on microstrip LWAs. Next, 

the transverse resonance method analysis of a half-width microstrip LWA is reviewed. 

The relationship between the leaky mode and the radiation properties is discussed. We 

then design, simulate and measure an air-fill half-width microstrip LWA to show the 

discussed properties. This chapter provides the basic design and operating principles of a 

half-width microstrip LWA so that a broadband design can be implemented and applied 

to human tracking in the next chapter.  

2.1 PREVIOUS WORKS ON MICROSTRIP LWA 

A microstrip LWA is a simple and elegant structure for achieving a frequency-

scanned beam. Microstrip line is a widely used guiding structure operating in the quasi-

TEM mode. Studies of higher order modes on a microstrip line showed that these modes 

can radiate power. Thus, this type of mode is termed a leaky mode or a leaky wave, and 

its radiation properties are closely related to the mode characteristics. In the late 1970s, 

Ermert first reported on the propagation constants of higher order modes on a microstrip 

line [52]. For a higher order leaky mode on a microstrip, the propagation constant (𝛽) is 

related to the beam direction:  

 

𝜃 ≈ cos−1(
𝛽

𝑘0
) 

(2.1) 

where 𝑘0  is the free space wave number and 𝜃  is the beam direction defined with 

respect to the longitudinal direction of the microstrip. Subsequently, Menzel measured 

the frequency-scanned beam of a microstrip line acting as a leaky wave antenna by 
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exciting it with an unbalanced feed [53]. The first accurate analysis of both the 

propagation and attenuation constants was done by Oliner and Lee [50]. Their analysis 

was based on the transverse resonance method (TRM). In the analysis, the cross-section 

of the microstrip structure is considered as a section of parallel plate transmission line 

with two complex impedances at the two ends. The impedance accounts for the 

discontinuity between a parallel plate waveguide and a grounded dielectric slab. This 

complex impedance was derived rigorously using the Wiener-Hopf technique by Chang 

and Kuester [54]. The result is in the form of a Sommerfeld integral, which needs to be 

evaluated numerically with contour deformation around the two poles. The Sommerfeld 

integral was later simplified using the thin-substrate approximation by Kuester et al. in 

[55]. The result is a simple algebraic equation related to the thickness of the substrate, 

material parameters, and wave numbers. After Oliner and Lee applied the simplified 

equation to their TRM analysis in [50], it became clear that the two poles in the 

Sommerfeld integral are actually related to different types of leakage. The first pole 

corresponds to a space-type leakage and it is related to the radiation properties of a 

microstrip LWA. The second pole corresponds to a surface-type leakage and it is related 

to the power lost from the microstrip into the TM0 mode of the grounded dielectric 

substrate. Oliner and Lee also used the propagation and attenuation constants to explain 

Menzel’s measurement results [56]. It was concluded that both the propagation and 

attenuation constants are important parameters to properly design a microstrip LWA. The 

former is related to the beam direction, and the latter is related to the gain and 

beamwidth. Lastly, a different design procedure for a microstrip LWA was proposed 

based on a cavity model by Luxey and Latheurte [57]. 

 In order to design a feed structure to excite the leaky mode, the field distribution 

and mode impedance of the leaky mode are required. However, TRM analysis does not 
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answer these questions. Spectral domain analysis can be used to compute the complex 

propagation constant and the field distribution at the same time. It was first applied to 

study the higher order leaky modes on a microstrip by Grimm and Nyquist [58]. 

Afterward, Lin et al. studied several feeding structures using a spectral domain integral 

equation approach to simultaneously excite the leaky mode and suppress the fundamental 

mode [59]. Chen and Tzuang measured the mode impedance and the complex 

propagation constant using a time-gated measurement [60]. The results were compared to 

those computed using the spectral domain approach with a good agreement. The mode 

impedance of the lowest order leaky mode on a microstrip was also studied using other 

methods. In [61], Hong et al. derived the mode impedance using a lossy waveguide 

model. In [62], Jiang et al. studied a simplified structure to approximate the mode 

impedance. A microstrip is simplified by placing perfect magnetic conductors (PMCs) at 

the two sides. The field equations were formulated and related to the mode impedance. It 

is noted that the corresponding transcendental equation of the simplified structure is not 

correct since radiation is not considered. However, an approximate mode impedance can 

be obtained by using the proper complex propagation constant in the mode impedance 

expression for the simplified structure. The proper complex propagation constant can be 

computed using TRM or the finite-element method (FEM). Lastly, Zelinski et al. 

modified the conventional microstrip structure into a half-width design by inserting a 

vertical perfect electric conductor (PEC) symmetry plane at the center of the structure 

[51]. This design suppresses the fundamental mode and simplifies the feed. 

 Other variations of the basic microstrip LWA structure have also been proposed 

and studied. Mode properties of microstrip LWAs in an array environment were studied 

using the couple mode theory and spectral domain method [63, 64]. This is of interest 

since the mode of a microstrip LWA in an array environment may be different from that 
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of a stand-alone one due to the presence of neighboring elements. A laterally-shielded 

microstrip LWA based on the second higher-order mode was proposed by Gomez-

Tornero et al. to control the propagation and attenuation constants separately [65]. This 

approach could lead to independent optimization of the beam direction and aperture 

distribution, which are closely related to each other for most microstrip LWAs and are 

usually difficult to engineer separately. In [66], Archbold et al. explored loading the 

radiating edge of a half-width microstrip LWA with capacitors to change the beam 

direction at a fixed frequency. TRM analysis was derived by including a distributed 

capacitance. A prototype with periodically loaded capacitors on the radiating edge was 

built and measured. Li et al. switched the shorted edge of a half-width microstrip LWA in 

a periodic pattern to achieve a wider scanning range. The concept is similar to the 

composite left-/right-handed microstrip LWA reported in [67]. Ouedraogo et al. further 

explored the idea of electronically scanning the beam direction using switches and 

discrete capacitors instead of varactors [68]. Different switch configurations for 

achieving a beam at different directions were found using a genetic algorithm. A tunable 

negative capacitive loading was also simulated by Long et al. to control the beam 

direction [69]. Recently, the complex propagation constants of a conventional microstrip 

LWA were revisited by Liu et al. to include the mutual coupling between the two edges 

[70]. Tomofuji et al. proposed a circular half-width microstrip LWA to achieve a broader 

frequency bandwidth. The structure was analyzed using an extended spectral domain 

method [71].  

2.2 TRM ANALYSIS OF A HALF-WIDTH MICROSTRIP LWA 

The detailed TRM analysis of a half-width microstrip [51] will now be presented, 

as this structure will be utilized throughout the remainder of this dissertation. The 
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structure can be considered by carrying out an odd-mode analysis of a conventional 

microstrip structure by inserting a vertical PEC symmetry plane at the center of the 

structure. This suppresses the fundamental guiding mode, which possesses even 

symmetry, and eases the design of the excitation structure. Zelingski further simplified 

the structure by removing the PEC symmetry plane outside the microstrip, since it does 

not change the field inside the microstrip structure. The resulting structure is shown in 

Fig. 2.1. It consists of a top microstrip, a side shorting plane, a ground plane, and a 

dielectric substrate with a dielectric constant 𝜖𝑟. The width of the microstrip is 
𝑊

2
 and the 

thickness of the dielectric substrate is ℎ.  

 

 

Fig. 2.1 Structure of the half-width microstrip. 

To perform a TRM analysis, the transverse structure is modeled as a transmission 

line. One end is shorted and the other end is connected to a radiation impedance, which is 

at the interface between a parallel plate waveguide and a grounded dielectric slab [54]. 

The longitudinal direction of the antenna is chosen to be the z-axis. The reflection 

coefficient looking into the microstrip structure (+ in Fig. 2.1) is a shorted parallel plate 

waveguide and can be expressed as: 

 

Γ+ = −e−𝑗𝑘𝑡𝑊/2  (2.2) 

W/2

h

X

Z Y

+ -

r
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where 𝑘𝑡  is the transverse wave number. The reflection coefficient looking into the 

substrate is Γ− = 𝑒𝑗𝜒, and the simplified expression for 𝜒 assuming a thin substrate was 

derived in [55]. The result is repeated here:  

 

𝜒 = 2 tan−1 𝑢 − 𝑓𝑒 (2.3) 

and  

𝑢 =
𝑘𝑧

𝑘𝑡
tanh(

kzℎ

𝜋
[
1 − 𝜖𝑟

𝜖𝑟
𝑔 + 2Q]) (2.4) 

𝑓𝑒 = −
2𝑘𝑡ℎ

𝜋
[
𝑔

𝜖𝑟
+ 2𝑄 − ln(2𝜋)] (2.5) 

where 

Q = ∑ (
𝜖𝑟 − 1

𝜖𝑟 + 1
)
𝑚

𝑙𝑛(𝑚)

∞

𝑚=1

 
(2.6) 

𝑔 = 𝑙𝑛 (𝑗ℎ√𝑘0
2 − 𝑘𝑧

2) + 𝛾 − 1 (2.7) 

γ is the Euler constant. By substituting the expressions into the transverse resonance 

condition Γ+Γ− = 1 , a transcendental equation can be derived as shown below:  

 

χ − kt𝑊 + 𝑛𝜋 = 0 (2.8) 

where n is an integer dictating the order of the mode. The associated longitudinal 

propagation constant can be found by: 

 

kz = √𝜖𝑟𝑘0
2 − 𝑘𝑡

2 (2.9) 
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It is noted that the physical solution for a radiating leaky mode requires the 

imaginary part of 𝑘𝑧 to be negative and the imaginary part of 𝑘𝑡  to be positive. The 

reasoning behind these choices is illustrated in Fig. 2.2. The structure is assumed to be 

excited from the left and the amplitude of the excited leaky wave is assumed to be A. The 

wave propagates toward the right in the +z direction. The field strength at a position z on 

the microstrip can be expressed as 𝐴𝑒−𝛼𝑧 , with a positive  to ensure that energy 

conservation is satisfied. Thus, the imaginary part of 𝑘𝑧  must be a negative number. 

Moreover, the cosine relationship in (2.1) can be interpreted as the fact that the radiating 

beam in free space must elevate to match the phase on the microstrip, when the 

propagation constant (𝛽) is smaller than k0. As for the real part of 𝑘𝑡, we can consider a 

2-D transverse cut as the dash line in Fig. 2.2. Consider a microstrip with a finite length 

L, fields along the dash line can be traced back to different parts of the microstrip, 

through rays parallel to the elevated beam direction. Since the field on the microstrip is 

 

 

Fig. 2.2   The illustration of the relationship between the wave numbers.  

Increasing
Field Strength

O +Z
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stronger when it is located closer to the excitation, the corresponding field on the 

transverse cut is also stronger. As a result, the transverse field grows from the bottom to 

the top, until the height corresponds to the excitation end. The field strength decreases as 

the height is further increased beyond this position. However, TRM is a 2-D analysis and 

the source position is equivalently located at negative infinity along the z-direction. 

Hence, the transverse field in the 2-D cut grows as the height is increased. The imaginary 

part of 𝑘𝑡 must be a positive number to ensure this condition. 

The propagation and attenuation constants of a half-width microstrip LWA are 

computed using the above equations and shown in Fig. 2.3 as the solid and dash curves, 

respectively. They are normalized with respect to the free space wavenumber. The 

parameters of the structure are 𝑊/2 = 15𝑚𝑚, ℎ = 0.5𝑚𝑚, 𝜖𝑟 = 4.4. It can be observed 

in Fig. 2.3 that the normalized propagation constant starts from nearly zero and grows 

toward the square root of the dielectric constant as frequency is increased. Since the beam 

direction is related to the propagation constant through the cosine formula in (2.1), the 

beam steers from the broadside toward the endfire direction as the carrier frequency is 

increased. It is further noted that once the normalized propagation constant is greater than 

one (the black horizontal dash curve in Fig. 2.4), the corresponding beam direction 

becomes a complex number. This is similar to a plane wave problem when the incident 

angle is greater than the critical angle. The angle of refraction becomes a complex 

number without any physical meaning, and the field on the air side of the interface 

becomes evanescent. Similarly, the proper choice of 𝑘𝑡 is with a negative imaginary part 

when the propagation constant is greater than the free space wave number. This choice 

ensures the field outside the microstrip is evanescent in the 2-D transverse cut. 

Physically, the mode transits from a leaky mode into a guided mode. It no longer radiates 

power as an antenna but only guides power in the +z direction. 
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 For the attenuation constant, it is a very large number when the frequency is low. 

This indicates that the leaky mode cannot propagate far in the z-direction at lower 

frequencies. It is noted that the structure is assumed to be PEC in the analysis. Thus, the 

attenuation constant does not originate from metal loss but is related to the radiation loss. 

For comparison, the propagation constant of a mode on a PEC rectangular waveguide is 

either purely propagating or purely evanescent. The mode becomes evanescent once the 

operating frequency is below the corresponding cutoff frequency. There is no complex 

wave number unless metal loss or dielectric loss is included. However, there is no such 

distinct cutoff phenomenon for the leaky modes on a microstrip. The onset frequency of a 

leaky mode is usually defined as the frequency where the propagation constant and the 

attenuation constant are equal. Starting from the onset frequency, the attenuation constant 

continues to decrease as the frequency is increased toward the critical frequency, where  

 

 

Fig. 2.3   Normalized propagating and attenuation constants of a half-width microstrip 

LWA structure versus frequency computed using TRM. 
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the propagation constant equals the free space wave number. The decreasing attenuation 

constant leads to a more uniformly illuminated aperture, which leads to a narrower 

beamwidth and a higher gain at higher frequencies. As frequency is further increased 

beyond the critical frequency, the dominant pole in the Sommerfeld integral changes 

from the space-type pole to the surface-type pole. Thus, the attenuation constant becomes 

corresponding to the power lost through the TM0 mode of the grounded dielectric 

substrate. It is noted that such surface leakage is different from metal loss or dielectric 

loss.  

2.2 RADIATION PATTERNS OF A HALF-WIDTH MICROSTRIP LWA 

In this section, a half-width microstrip LWA is designed, built, and measured to 

verify the theoretical behaviors described in the previous section. Full-wave simulations 

are also carried out to simulate the radiation pattern and study the numerical convergence 

with different discretizations. An equivalent magnetic current model is discussed to 

compute the theoretical radiation pattern. Lastly, the radiation patterns computed using 

these methods are compared and discussed.  

A half-width microstrip LWA with an air substrate is designed and the structure is 

shown as the inset in Fig. 2.4. The antenna consists of a 12.5mm wide top microstrip 

elevated 2mm from the ground plane. An air substrate instead of a dielectric substrate is 

chosen due to the simpler construction. Fig. 2.4 shows the propagation constant (𝛽) and 

attenuation constant (𝛼) of the lowest order leaky mode versus frequency computed 

using TRM. They are normalized with respect to the free space wave number, k0, at 

different frequencies. From 5GHz to 10GHz, the normalized propagation constant 

changes from 0.259 to 0.867. The corresponding beam directions are 75° and 30° using 

(2.1). It is observed that the leaky mode never transitions into a guided one due to the air 
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substrate. This leads to a very broadband design, which is well suited for the radar 

application to be discussed in the next chapter. A 290mm long prototype is built and 

shown in Fig. 2.5. The top conductor of the microstrip is made of an aluminum sheet 

(dark grey in Fig. 2.5). It is elevated from the ground plane by several pieces of foam 

(white in Fig. 2.5). The shorting plane is formed by using aluminum tape (light grey in 

Fig. 2.5) from the copper ground plane to the top conductor of the microstrip. The size of 

the ground plane is 30cm x 28cm. The antenna is edge-fed with a 10mm long 50 

microstrip line connected to an SMA connector. The other end of the LWA is left open. 

The width of the microstrip is 9.6mm. The microstrip LWA is mounted on a rotator for 

the radiation pattern measurement. The cut along the 𝜙 = 0𝑜 (defined with respect to the 

x-axis in the inset of Fig. 2.4) plane is measured using a broadband horn and a VNA from 

5GHz to 10GHz. The prototype is further replaced by another identical broadband horn to 

calibrate the gain. 

 

Fig. 2.4   Normalized propagating and attenuation constants of an air-filled half-width 

microstrip LWA structure versus frequency computed using TRM. 
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Fig. 2.5 The built prototype. 

The same structure is simulated with the method of moments (MoM) full-wave 

solver in the commercial package FEKO [72]. The metal structures are simulated as PEC 

on an infinitely large ground plane. The excitation end of the simulation setup is shown 

as Fig. 2.6, where a TEM edge port is used to excite the microstrip. To verify the 

numerical convergence, the structure is simulated with four different sizes of triangle 

mesh at 10GHz, 𝜆0/10, 𝜆0/15, 𝜆0/20 , and 𝜆0/25. The far field patterns simulated 

with different mesh sizes are plotted in Fig. 2.7. They show good agreements among the 

different discretization levels. The relative variations are computed by dividing the results 

of 𝜆0/10, 𝜆0/15, and 𝜆0/20 discretizations by the one computed with 𝜆0/25. They are 

shown in Fig. 2.8. The maximum deviation occurs near the direction of the back lobe, 

which is due to the backward traveling wave reflected by the far open end of the antenna. 

The relative error in the forward beam decreases as the mesh size is refined. However,  
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Fig. 2.6 FEKO simulation setup. 

 

 

Fig. 2.7 The far field patterns using difference mesh sizes. 
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Fig. 2.8 The relative errors between the far field patterns at different directions using 

difference mesh sizes. 0/25 is used as the reference for each of the curve 

shown. 

the relative errors around the back lobe direction improve slowly as the mesh density is 

increased. For some directions, such as 𝜃 = 136𝑜and 144𝑜 , the relative errors do not 

change with a definite trend as the mesh density is changed.  

In addition to measurement and simulation, a third way to predict the radiation 

pattern of the antenna is to assume the aperture field based on the TRM results and then 

compute the radiated far field with an equivalent magnetic current model. The cross-

section of a half-width microstrip LWA is shown in Fig. 2.9 (a). It is noted that the 

electric field of the leaky mode is distributed uniformly across the top and bottom 

conductors. Thus, it can be related to the excitation voltage directly as 𝐸𝑥 = 𝑉/ℎ. Next, a 

Huygens equivalent surface is chosen as the dash line in Fig. 2.9 (b). It covers the whole 

ground plane and the antenna structure. The equivalent magnetic current on this 

equivalent surface is related to the field in Fig. 2.9 (a) as 𝑀⃑⃑ = 𝐸⃑ × 𝑛̂, where 𝑛̂ is the  
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(a) 

 

(b) 

 

(c) 

Fig. 2.9 The steps to derive the equivalent magnetic current model. 

normal vector pointing outward on the equivalent surface. Since most of the original 

structure is PEC, the tangential electric field only exists on the radiating aperture, and 𝐸𝑥 

is turned into 𝑀𝑧. Lastly, the height of the microstrip is assumed to be negligible, thus 

allowing us to apply the image theory to remove the ground plane. The final field is due 

to 2𝑀𝑧 radiating in free space. It is noted that there are also equivalent electric currents 

everywhere on the equivalent surface. However, an electric current on a PEC surface 

does not radiate and they can be removed after we apply the image theory. 

To compute the far field due to the equivalent magnetic current, the field strength 

and phase variation along the z-dimension are required. Since a microstrip LWA is also 

considered as a waveguide structure, all of the field components carry a exp (−𝑗[𝛽 −

𝑗𝛼]𝑧) factor, and so does the equivalent magnetic current. At last, the electric far field 

due to this equivalent magnetic line source can be computed using: 

 

𝐸𝜙
𝑓𝑓

 (𝜃) = 2̇
𝑉

ℎ
⋅
−𝑗𝑘0

4 𝜋
⋅ sin(𝜃)∫ exp[(−𝛼 − 𝑗𝛽 + 𝑗𝑘0 cos(𝜃))𝑧]𝑑𝑧

𝐿

0

 (2.10) 
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where L is the length of the antenna. The directivity pattern can be obtained by 

normalizing the far field pattern to the total radiated power, which can be computed by 

integrating the far field over the half-radiation sphere above the ground plane. Lastly, the 

field has no 𝜙 variation in this model since the only source is a magnetic line current, 

which produces an axial symmetrical field. 

The radiation patterns from the measurement, FEKO simulation and TRM theory 

are compared in Fig. 2.10. The main beam regions at 5.5GHz, 7.5GHz and 10GHz are 

shown in this figure. It is clearly seen that the beam scans from the broadside to the 

endfire direction as frequency is increased. The gain also increases accordingly. These 

observations agree with the modal behavior described in the previous section. The 

measured main beam directions in θ are found to be 67°, 44° and 31° at the three 

 

 

Fig. 2.10.   Comparison of radiation patterns between TRM theory, simulation and 

measurement at three different frequencies. The patterns are plotted versus 

θ, which was defined with respect to the z-axis in Fig. 2.1. 
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frequencies. The measured gains are 9.8, 12.4 and 13.3 dBi, respectively. The results 

from FEKO and the measurement agree well for 7.5GHz and 10GHz. At 5.5GHz, the 

beam directions from FEKO and measurement are about the same, but the gain 

agreement is not as good. As for TRM, the beam directions are correct but the directivity 

values are always higher than the full-wave simulation and measurement results. The 

predicted gain values are 15.0, 13.6, 10.2dBi, respectively. It may be due to the effect of 

the feed radiation or the non-symmetrical 𝜙-pattern in the actual structure, which were 

not accounted for in the equivalent magnetic current model discussed earlier. 

2.3 CONCLUSION 

In this chapter, the literature on microstrip LWA was reviewed. Among different 

designs, the half-width microstrip LWA was chosen for investigation since it does not 

require a dedicated excitation structure, which could limit the bandwidth of the antenna. 

The TRM analysis of the half-width microstrip LWA was summarized. A discussion 

about the proper choices of the wave numbers was also made. The propagation and 

attenuation constants of a half-width microstrip structure with a dielectric substrate were 

computed from 1GHz to 5GHz to discuss the relationship between the radiation 

properties and the mode characteristics. To verify these theoretical behaviors, a half-

width microstrip LWA was built and measure. The propagation and attenuation constants 

were also computed using TRM from 2GHz to 10GHz. As frequency is increased from 

5GHz, the propagation constant starts from nearly zero and approaches one. 

Correspondingly, the main beam scans from near broadside toward the endfire direction. 

At the same time, the attenuation constant decreases toward zero, leading to a more 

uniformly illuminated aperture. Thus, higher gain and narrower beam were observed at 

higher frequencies. Next, full-wave simulations were carried to compute the radiation 
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patterns of the built half-width microstrip LWA. Convergence of the full-wave simulation 

was also investigated. Lastly, an equivalent magnetic current model was discussed and 

used to compute the radiation patterns from the TRM results. The radiation patterns 

collected from the measurements, full-wave simulations, and the equivalent magnetic 

current model agreed reasonably well with one another. A frequency-scanned beam was 

clearly observed. In the following chapters, several broadband microstrip LWAs will be 

designed and applied to the human tracking problem in the 2-D range-azimuth plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26 

Chapter 3: Tracking Multiple Humans Using Microstrip Leaky 

Wave Antennas 

In this chapter, the frequency-scanned beam of a half-width microstrip LWA is 

investigated as a simple, low-cost means to achieve 2-D range-azimuth tracking of 

humans. First, the frequency bandwidth of a microstrip LWA is discussed in Sec. 3.1. 

This is an important parameter since a much finer range resolution is required to track 

humans as compared to typical radar targets such as vehicles and airplanes. A broadband 

microstrip LWA is then designed and built. The radiation pattern is measured and 

discussed. In Sec. 3.2, the radar concept is illustrated and the associated “target 

bandwidth” is discussed using the broadband radiation pattern. Afterwards, the 

processing algorithm is investigated using a point scatterer simulation. In Sec. 3.3, 

measurement data of stationary trihedrals and moving humans are collected and 

processed to demonstrate the tracking performance using a microstrip LWA. Sec. 3.4 is 

the conclusion.  

3.1 BROADBAND MICROSTRIP LEAKY WAVE ANTENNA 

The frequency-scanned beam of a microstrip LWA and its relationship with the 

mode properties were discussed in the previous chapter. In this chapter, another important 

aspect of a microstrip LWA, the frequency bandwidth, is discussed in detail. For most 

antennas, the bandwidth is defined across the frequencies in which the return loss is 

greater than a predefined level, such as 10dB. However, the bandwidth of an LWA can be 

interpreted from a modal perspective. A “radiation bandwidth” can be defined for 

individual modes. To discuss the idea, the normalized propagation and attenuation 

constants of three leaky modes on a half-width microstrip LWA with 𝑊/2 =

15𝑚𝑚, ℎ = 0.5𝑚𝑚, 𝜖𝑟 = 4.4 are plotted in Fig. 3.1. The propagation constants are the 
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solid curves and the attenuation constants are the dashed curves. The blue, red, and green 

curves correspond to the three modes in an increasing mode order. The onset frequency 

of a leaky mode is defined as the frequency where the propagation and attenuation 

constants are equal. For the three leaky modes in Fig. 3.1, the onset frequencies are 

2.3GHz, 7GHz, and 11.7GHz, respectively. The latter two are approximately three times 

and five times the onset frequency of the lowest order leaky mode. These numbers 

correspond to the odd order modes on a conventional microstrip LWA. As discussed in 

Chapter 2, a half-width microstrip LWA can be considered as a conventional microstrip 

LWA with a vertical PEC symmetry plane inserted at the center of the structure. Thus, 

only the modes with an odd symmetry on a conventional microstrip LWA can be excited 

on the half-width design. For each mode, the normalized propagation constant 

asymptotically approaches the square root of the dielectric constant as the frequency is 

increased. Moreover, a leaky mode only radiates from the onset frequency to the critical 

frequency where the propagation constant is equal to the free space wave number. The 

mode transitions into a guided one above this critical frequency. In Fig. 3.1, it can be 

observed that the radiating bandwidth of the individual leaky mode is quite narrow. This 

“radiating bandwidth” gets broader as the order of the mode gets higher. Nevertheless, 

the frequency bandwidth of a microstrip LWA with a 𝜖𝑟 = 4.4 dielectric substrate is not 

sufficient for the human tracking application.  

For comparison, the propagation and attenuation constants of leaky modes on the 

same geometry but with an air-filled substrate are plotted in Fig. 3.2. The line styles and 

colors in this figure are labeled in the same way as Fig. 3.1. The onset frequencies of the 

two lowest modes are 4.7GHz and 14.3GHz, which are about 2.1 times the onset 

frequencies of those in Fig. 3.1, where a dielectric substrate with 𝜖𝑟 = 4.4 is used. This 

2.1 factor is the square root of the dielectric constant. It is also observed that the  
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Fig. 3.1 The propagation and attenuation constants of the higher order leaky modes 

on a half-width microstrip LWA with r = 4.4. The propagation constants are 

the solid curves and the attenuation constants are the dashed curves.  

 

Fig. 3.2 The propagation and attenuation constants of the higher order leaky modes 

on a half-width microstrip LWA with r = 1. The propagation constants are 

the solid curves and the attenuation constants are the dashed curves.  
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propagation constant is never greater than the free space wave number, plotted as the 

horizontal black line, for the air-filled design. This observation indicates that the modes 

never become guided. In theory, a leaky mode on an air-filled microstrip LWA has an 

infinite bandwidth. However, it is still preferred to operate the antenna with only a single 

leaky mode across the frequency band, since frequency-scanned properties of different 

modes are totally different. In summary, the proper operating bandwidth of this air-filled 

antenna is from 4.7GHz all the way to 14.3GHz, between the onset frequencies of the two 

lowest order leaky modes. It corresponds to a 1:3 frequency bandwidth ratio. This broad 

operating bandwidth is well-suited for the human tracking application. 

An air-filled microstrip is built using a milling machine with a modified geometry 

as shown in Fig. 3.3. The thin copper plate is the top microstrip. The width of the top 

microstrip (𝑊/2 ) is 15mm and it is suspended 2mm from the ground plane. The 

aluminum metal block on the left serves the role of the symmetry plan. It is extended 

vertically to better preserve the field distribution outside the microstrip and to 

mechanically anchor the copper plate. The antenna prototype is 290mm long and it is 

mounted on a 260mm wide and 320mm long ground plane, which is made from steel. 

The structure is excited from an SMA connector directly soldered to the microstrip (at the 

far end in Fig. 3.3). The propagation and attenuation constants of the built structure are 

computed using TRM and plotted as the solid and dashed curves in Fig. 3.4. The mode 

has an onset frequency of 4.3GHz. As frequency is increased from 4.3GHz to 8GHz, the 

normalized propagation constant changes from 0.24 to 0.85. The beam is expected to 

steer from 74.7° to 32.1° using the cosine formula in (2.1). Correspondingly, the 

normalized attenuation constant decreases from 0.24 to 0.02, indicating a higher gain and 

narrower beamwidth at higher frequencies. 
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Fig. 3.3 The built half-width microstrip LWA prototype. The far end is an SMA 

connector with the center tip directly soldered to the top microstrip. 

 

Fig. 3.4 Propagation and attenuation constants of the built prototype calculated using 

TRM. The structure parameters are W/2 = 15mm, h = 2mm, and r = 1. 
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The broadband gain pattern of the built prototype is measured with the same setup 

described in Chapter 2. The result is shown in Fig. 3.5. The measured pattern is plotted as 

a function of both frequency and angle (defined with respect to the longitudinal direction 

of the antenna). Each horizontal cut in Fig. 3.5 is the gain pattern in the 𝜙-direction at a 

fixed frequency, showing the main beam direction, gain, and beamwidth. The figure is 

color coded from 0dBi to 15dBi. As frequency is increased from 4.3GHz to 8GHz, the 

main beam steers from 70° to 33°, which are in acceptable agreement with the TRM 

predictions. The antenna gain also increases from 6.6dBi to 12.2dBi, while the 3dB 

beamwidth decreases from 20.5° to 14.2°. In addition, it is observed that the beam scans 

less at higher frequencies.  This corresponds to the slower changing propagation constant 

at higher frequencies in Fig. 3.4. Hence, we only operate this antenna from 4.3GHz to 

8GHz for direction finding, since the antenna does not scan much beyond 8GHz. 

 

 

Fig. 3.5 Measured antenna gain pattern plotted as a function of frequency and 

azimuth angle. The gain value is color coded from 0 to 15dBi. 
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3.2 RADAR CONCEPT AND PROCESSING ALGORITHM 

The concept of using the frequency-scanned beam of a microstrip LWA for range-

azimuth tracking is illustrated in Fig. 3.6. In the illustration, the beam is pointed toward 

two different targets at 5GHz and 8GHz. Therefore, the received frequency response 

from the radar will show two peaks at these two frequencies. In practice, the peaks in the 

radar frequency response have a certain bandwidth since the beamwidth of the antenna is 

finite. This relationship is shown by the white arrows in Fig. 3.5 – the horizontal arrows 

mark the beamwidth of the antenna and the vertical arrows show the corresponding 

bandwidth when a target exists in that particular direction. When the antenna beam scans 

across  as the carrier frequency is changed, the target is illuminated by multiple 

frequencies. As a result, this bandwidth can be explored for ranging and it varies for 

targets at different directions. A direction-dependent “target bandwidth” can be defined 

correspondingly. The concept of “target bandwidth” is quite different from most antenna 

bandwidth, which could be defined by the frequency range in which the return loss, gain, 

or axial ratio varies within a predefined range. In these traditional definitions, the beam  

 

 

Fig. 3.6 Illustration of the radar concept. The frequency-scanned pattern of the 

microstrip LWA is used to track humans. 
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direction is assumed to be independent of the operating frequency. This is certainly not 

the case for a frequency-scanned antenna. Furthermore, the “target bandwidth” and the 

“mode bandwidth” discussed in the previous section are two different concepts. The 

former could be further related to the radar range resolution in that direction and the latter 

is related to the total bandwidth in which the antenna can radiate. In summary, when a 

radar target is measured with a frequency-scanned antenna, the amplitude of the 

frequency response contains the bearing information since frequency peaks are expected 

corresponding to the directions of targets. In addition, the range information of individual 

target is contained in the phase response across the frequency bandwidth around the 

corresponding frequency peak. If the collected signal is processed properly, we should be 

able to achieve simultaneous ranging and azimuth determination within a single 

frequency scan.  

To develop the processing algorithm for a frequency-scanned antenna to resolve 

multiple targets, the radar response with two targets in a scene is simulated and examined 

using the point scatterer model. The radar is assumed to transmit and receive using the 

same frequency-scanned antenna with gain 𝐺(𝑓, 𝜃), which can be computed using the 

equivalent magnetic current model discussed in Chapter 2 assuming no metal loss. The 

transmitter and receiver are assumed matched to the same impedance. Thus, the received 

power from individual targets can be computed using the radar equation and then 

converted into voltages. Lastly, the receiving voltages from different targets are weighted 

with the proper delay and summed as: 

 

𝑉𝑟(𝑓)

𝑉𝑖(𝑓)
= (1 − |Γ11|

2)∑
𝜆(𝑓) √𝜎𝑖 𝐺(𝑓, 𝜃𝑖)

(4𝜋)3/2 

𝑒−𝑗2𝑘(𝑓)𝑅𝑖

𝑅𝑖
2

𝑛

𝑖=1

 
(3.1) 
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where (𝑅𝑖, 𝜃𝑖) and 𝜎𝑖  is the position and radar cross-section (RCS) of the i-th point 

scatterer. Γ11 is the S11 of the antenna. 𝑉𝑖 is the excitation voltage and 𝑉𝑟 is the total 

received voltage. In the simulation setup, two targets with unit RCS are placed at (4m,  

=55°) and (5m,  =40°) from the antenna, respectively. The corresponding main-beam 

frequencies based on the TRM model are 5.2GHz and 6.7GHz. This setup is simulated 

using (3.1) assuming 𝑉𝑖 = 1 and Γ11 = 0. The simulated frequency response is plotted 

in Fig. 3.7(a). Two frequency peaks at 5.2GHz and 6.7GHz are clearly seen, indicating 

the targets are already resolved in the azimuth dimension. In addition, some small 

oscillations are also observed. They are due to the phase interference from the different 

ranges of the two targets. Fig. 3.7(b) shows the range profile after the frequency response 

is inverse Fourier transformed into the range domain. Two targets at 4m and 5m are 

clearly observed. This shows that the different range positions of the targets indeed can 

be extracted from the phase of the received radar signal. From Fig. 3.7(a) and Fig. 3.7(b), 

the bearing and range information about the two targets are retrieved. However, there is 

still a correspondence problem since the observed responses in range and frequency 

respectively are the projections of all targets into a single dimension. To obtain the range 

and bearing information simultaneously, it is proposed that we separate the targets in 

range first before determining their corresponding bearings, since the range response of a 

target is much sharper than the frequency response comparing Fig. 3.7(a) and Fig. 3.7(b). 

The processing is accomplished by using a window in range to gate out the range 

response of a single target first, and then Fourier transforming it back to the frequency 

domain to determine the bearing of that particular target. Two range gates are illustrated 

in dashed lines in Fig. 3.7(b). Fig. 3.7(c) shows the resulting range-gated frequency 

responses of the two targets. The 5.2GHz and 6.7GHz frequency peaks are clearly 

observed. Such processing also removes the small oscillations in Fig. 3.7(a) due to the  
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(a) (b) 

  

(c) (d) 

Fig. 3.7 Simulation results based on the point scatterer model. (a) Frequency 

response of two targets located at different azimuth angles and distances to 

the antenna. (b) Range profile obtained after the inverse Fourier transform. 

(c) Range-gated frequency responses for windows (A) and (B) in (b). The 

individual frequency responses can be used to estimate target bearings. (d) 

Final range-azimuth image of the simulated scene. 

 

interference from the other target. The range-azimuth positions of the two targets are 

successfully identified at (4m,  =55°) and (5m,  =40°). In the actual implementation, a 

sliding range window is used to repeatedly generate the frequency (or bearing) response 

at different range locations. As a result, a two-dimensional range-azimuth image (top-
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view of a scene in polar coordinates) can be obtained in this manner. This processing is 

very similar to the short-time Fourier transform (STFT), which is usually applied to a 

collected time sequence to analyze the time-varying Doppler frequencies of the radar 

return. Mathematically, this operation can be written as: 

 

𝑋(𝑡, 𝑓(𝜃)) = ∫𝑥(𝑡)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓(𝜃)𝜏𝑑𝜏 (3.2) 

where 𝑥(𝑡) is the received range profile and 𝑤(𝑡) is a window function. In (3.2), the 

time variable is related to range via the usual 𝑡 = 2 ∗ 𝑟𝑎𝑛𝑔𝑒/𝑐 formula where c is the 

speed of light in free space. Fig. 3.7(d) shows the resulting image by using a sliding 113-

cm Hamming window. The two targets are resolved in the final range-azimuth image, 

with the first target at 4m and  =55° and the second target at 5m and  =40°. As 

demonstrated in Fig. 3.7, the antenna beamwidth and “target bandwidth” can be exploited 

simultaneously using the proposed algorithm. Only a single wideband frequency scan is 

required to form a 2-D range-azimuth image. This is an important feature for tracking fast 

moving targets, such as human subjects.  

It is noted that a system combining a frequency scanned antenna and an FMCW 

radar was investigated in [73] for 2-D range-azimuth imaging. The bearing information 

was first derived from the intermediate frequency of the demodulated waveform. The 

range was then found through multiple transmitted waveforms with different frequency 

slopes. This approach requires a long acquisition time since multiple waveforms are 

required to determine a single range. For comparison, the proposed algorithm can 

determine the range within a single frequency scan.  

To summarize, the steps for generating a range-azimuth image using a microstrip 

LWA are as follows. First, the collected wideband frequency response is inverse Fourier 
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transformed to the range domain to reveal the targets. Second, a sliding window is 

applied to resolve the targets in range. Third, the gated range response is Fourier 

transformed back to the frequency domain as an azimuth scan at this particular range. 

Finally, the frequency response is mapped into the azimuth response using the (carrier 

frequency)–(main beam direction) relationship established in Fig. 3.5. It is noted that the 

achievable range resolution of the microstrip LWA-based radar is different for targets 

located at different azimuth directions. This can be seen from Fig. 3.5, where the “target 

bandwidth” gets narrower as the operating frequency is lowered. Since the range 

resolution is inversely proportional to the target bandwidth, the coarsest range resolution 

occurs at the lowest operating frequency, or when the beam is closest to broadside. For 

the microstrip LWA under consideration, it is estimated that the range resolution to be 

approximately 50cm at 4.3GHz, or =70°. This is the worst case range resolution of the 

system. It is noted that the antenna beamwidth is also the broadest near the broadside 

direction. Thus, a target near the broadside of the antenna will experience both the 

coarsest range resolution and the coarsest azimuth resolution.  

3.3 RADAR MEASUREMENTS 

A measurement is first carried out using two stationary trihedrals to validate the 

processing algorithm. Four half-width microstrip LWAs were fabricated into two pairs. 

They were used in an earlier interferometry application [74]. In work, the two pairs are 

mounted 60cm apart on the same ground plane as shown in Fig. 3.8 to alleviate self-

jamming, since a VNA is used in the continuously transmitting mode. The antennas have 

the same structure as the one shown in Fig. 3.3. The outer most two antennas are used for 

the measurement since they have the least coupling. A wood frame, a vise, and a clamp 

are used to hold the large ground plane vertically. A VNA is used to collect S21 data 
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from 4GHz to 8GHz in 401 points. The antenna z-axis is tilted with respect to the normal 

vector to the scene being imaged to best utilize the scanning range of the microstrip LWA 

from 33° to 70° (see Fig. 3.6). Two identical trihedrals shown in Fig. 3.9 are placed at 

positions similar to the simulated scene. Data measured with the trihedrals in the scene 

are subtracted with the data measured without the trihedrals to remove static clutters and 

residues of self-jamming. The subtracted data are processed with a 113-cm Hamming 

window and the result is shown in Fig. 3.10. The two trihedrals are clearly resolved in the 

range-azimuth plane. The target azimuth responses are slightly broader in the 

measurement than in the point-scatterer simulation. It is due to the physical size of the 

trihedral, 16cm per side, as shown in Fig. 3.9. 

 

 

 

Fig. 3.8 The antenna and measurement setup. 
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Fig. 3.9 The trihedral target, which is 16cm per side. 

 

 

Fig. 3.10 Range-azimuth image generated from measured data of two stationary 

trihedrals. The two trihedrals are places at positions similar to the simulated 

scene in Fig. 3.7. 
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Next, results of outdoor moving humans are collected. To continuously track 

moving targets, a script is programmed to automatically save the measured data and 

restart the next frequency scan. The VNA continuously collects frequency sweeps of S21 

data from 4.3GHz to 8.3GHz in 401 points with a 2.5Hz repetition rate. The 

corresponding unambiguous downrange from the frequency sampling is 15m. An average 

frequency scan of the whole sequence is computed and stored as the background for all 

frames. Afterwards, each frequency scan is subtracted with the background data and 

processed with a sliding 113-cm Hamming window. In the measurement, one human 

subject (subject A) walks around a circle in the clockwise direction while the other 

human subject (subject B) walks in the counterclockwise direction. A photo of the two 

human subjects walking is shown as Fig. 3.11. Four markers were placed on the ground 

to guide the circular movements.  

 

 

 

Fig. 3.11 Snapshot of the two-human tracking measurement.  
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

Fig. 3.12   Range-azimuth snapshots from a continuous human tracking measurement. 

Subject (A) walks in the clockwise direction while subject (B) walks in the 

counterclockwise direction.  
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(d) (h) 

Fig. 3.12   Range-azimuth snapshots from a continuous human tracking measurement. 

Subject (A) walks in the clockwise direction while subject (B) walks in the 

counterclockwise direction. 

Fig 3.12(a) - Fig 3.12 (h) show eight snapshots from the measurement of two 

human subjects. The snapshots are spaced by 1.5-second intervals and the color indicates 

the strength of the return. Their positions can be clearly identified in the sequence of 

images in Fig 3.12 (a) - Fig 3.12 (h). The subject (A) is observed moving in the clockwise 

direction and the subject (B) moving in the opposite direction. It is noted that propagation 

loss is not compensated for in these images. Thus, the farther target shows a weaker 

response. The azimuth extent of the farther target is also smaller due to the effect of 

amplitude threshold. Across these figures, the target strength is stronger near the endfire 

direction, indicating the frequency-dependent antenna gain overpowers the more path 

loss at higher frequencies. In addition, some shadowing effect can be observed when two 

targets are at the same azimuth direction. For example, the return from subject (A) is 

substantially weaker in Fig 3.12 (a) than in Fig 3.12 (b) due to the shadow cast by subject 

(B). Overall, the microstrip LWA achieves real-time 2-D range-azimuth tracking of two 

humans using the proposed algorithm. 
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3.4 CONCLUSION 

In this chapter, the concept of tracking multiple humans in the rang-azimuth plane 

using a simple microstrip LWA has been investigated. First, the frequency bandwidth of 

the leaky modes were discussed from the modal perspective. A broadband air-filled half-

width microstrip LWA was designed, built and measured. The frequency bandwidth 

during the beam dwell on a target was explored to achieve simultaneous ranging and 

direction finding. Furthermore, the concept of “target bandwidth” was discussed using 

the measured broadband radiation pattern. It was further related to the range resolutions 

in different directions. A processing algorithm was developed based on a point scatterer 

simulation to generate the range-azimuth (top-view) image of a scene. It entailed 

separating targets in the range domain before their frequency responses were used to 

estimate the azimuth bearing. A stationary trihedral measurement was carried out to 

validate the proposed algorithm. An outdoor two-human measurement was presented to 

demonstrate the tracking performance. In summary, it has been demonstrated that 

tracking multiple targets in the range-azimuth plane can be achieved with only two 

microstrip LWAs and two broadband transceivers. The proposed approach achieves 

simultaneous ranging and direction finding within a single frequency scan. It is well 

suited for moving targets, such as humans. 
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Chapter 4: Combining a Frequency-scanned Antenna with a Short-

Pulse Radar for 2-D Imaging 

4.1 INTRODUCTION 

A frequency-scanned antenna is a simple and low-cost way to achieve electronic 

beam scanning for radar applications. In the previous chapter, the frequency-scanned 

beam of a MLWA and its frequency bandwidth during the beam dwell were exploited to 

achieve range-azimuth imaging. It was demonstrated that the 2-D image of a scene can be 

generated with only a single frequency sweep of a VNA. A stepped-frequency radar 

system operate in the frequency domain, and the incorporation of a frequency-scanned 

antenna frontend is quite natural. However, the image refresh rate may be limited by the 

settling time of the voltage-controlled oscillator in an FMCW radar or the locking time of 

the phase-lock-loop in a VNA to synthesize the stepped frequencies. In comparison, a 

short-pulse radar may enable a higher image acquisition rate, which is needed for 

imaging movers like humans. However, the integration of a frequency-scanned antenna 

and a short-pulse radar requires additional considerations. 

In this chapter, the integration of a half-width MLWA [51] with a short-pulse 

ultra-wideband (UWB) radar is explored to achieve real-time 2-D imaging of a scene. 

The short-pulse radar system investigated is the P410 from Time Domain Corporation 

[75].  An introduction about the hardware architecture of the P410 is presented first. The 

frequency-domain response of the P410 and the circulator to be used in the system are 

characterized individually. Next, a new half-width microstrip LWA is designed to match 

the frequency bandwidth of the P410 and to achieve a narrower beam. The direction-

finding capability of the combined system is verified through measurement and full-wave 

simulation. Afterwards, the STFT is used to form images in both line-of-sight and 

through-wall measurements of a walking human to demonstrate the 2-D imaging 
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capability of the resulting system. Lastly, a discussion of the combined frequency-

scanned antenna and short-pulse radar system is made. 

4.2 THE P410 SHORT-PULSE UWB RADAR 

The P410 radar transmits modulated pulses at a pulse repetition frequency (PRF) 

of 10MHz. The nominal bandwidth of the radar is from 3.1GHz to 5.3GHz and the pulse 

shape was engineered to meet the Federal Communications Commission (FCC) UWB 

Mask [76]. As a result, the pulse width of the transmitted waveform is about 2ns, broader 

than the 0.5ns pulse width had all the in-band frequency components been used equally. 

Usually, it would require a heterodyne receiver with a broadband Analog-to-Digital 

Converter (ADC), 2.2GHz of bandwidth in this example, to sample the received 

waveform without aliasing. However, such ADC usually consumes a lot of power and the 

number of bits is limited. Different sampling schemes have been proposed, such as 

subsampling [77] and equivalent time sampling [78, 79, 80]. In the P410, Time Domain 

Corporation utilizes a 12-finger rake-receiver as shown in Fig. 4.1. The received 

waveform is sampled with a fast switch, which can be programmed to only a few 

picoseconds. However, the delay between fingers is fixed at 61.1ps. A range scan is 

generated by stepping through the programmable delay across the entire desired range. 

As a result, multiple pulses are required to form a single range scan, while a system with 

a heterodyne receiver and a broadband ADC can form a range scan at the rate of the pulse 

repetition frequency. The time to form a single range scan with 61.1ps step size is: 

 

𝑇𝑠𝑐𝑎𝑛 = (# 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒 𝑏𝑖𝑛𝑠) × (
1

10𝑀𝐻𝑧
) × (

1

12
) × (# 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛) (4.1) 

where pulse integration is utilized to improve the signal quality. There are other 

limitations for such an approach. For example, the size of the range bin is fixed to 61.1ps 
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and the number of range bins to be collected must be an integer multiple of 96. It is also 

noted that the transmitted pulse sequence is pseudo-random coded (it is called channel 

coding by Time Domain Corporation) to overcome the intrinsic 15m unambiguous 

downrange (due to the 10MHz PRF) as well as to achieve a smoother spectrum content 

from the repeated pulses to avoid interfering with other wireless systems. The main 

advantages of such an approach using a rake receiver are less power consumption and the 

option to use an ADC with a high dynamic range. The bandwidth requirement of the 

ADC is reduced from 2.2GHz (the frequency bandwidth of the pulse) to 10MHz (the 

pulse repetition frequency) in the rake-receiver. Thus, a high dynamic range ADC can be 

implemented using over-sampling and sigma-delta techniques. A high dynamic range 

ADC also eliminates the need of a variable-gain-amplifier (VGA) in the P410, which 

usually degrades the noise performance. Moreover, a high-dynamic range ADC is 

important for performing background subtraction in the signal processing stage, which is 

critical for the human tracking problem since the environment will cause a strong static 

clutter. 

In order to operate the P410, two antennas are required to connect to the two 

SMA connectors on it for transmitting and receiving, respectively. The radar receives 

user control commands and transfers the whole range scan (with optional motion filtered 

response or target detection) to the controlling computer through a USB cable. The P410 

unit used in this dissertaion comes with an optional power amplifer. The output power 

can be varied from -14.5dBm to 1dBm. It is noted that -14.5dBm is the highest level 

permitted by FCC and any level higher than that can only be used for research purpose. 

Lastly, the dimension of a P410 is only 12cm × 9cm × 3.5cm and it can operate tens of 

hours with a fully charged lithium-ion battery pack. Therefore, the unit is highly portable. 
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Fig. 4.1 The rake-receiver architecture 

 

The range scan (or range profile) of a trihedral target (16cm per side) was 

collected indoors and is plotted in Fig. 2. The range scan from 0ns to 152.3ns is collected 

with a P410 unit set to a transmit power of -14.5dBm and the number of pulse 

integrations of 215. The raw range scan shows the trihedral at 50ns and a strong early-time 

return that saturates the receiver. There is also a lot of room clutter between 30ns to 80ns. 

Lastly, there is a weak return around 110ns, which corresponds to the 15m raw 

unambiguous down range. As mentioned previously, the transmitted pulse sequence is 

pseudo-random coded to overcome the intrinsic unambiguous range, i.e. it can detect a 

target at a distance more than 15m away from the radar without confusing it with a target 

within 15m from the radar. However, the transmitter experiences jamming every time a 

new pulse is transmitted, which occurs at a rate of 10MHz. This “noise band” can be 

mitigated by pulse integration, which is set to the maximum in Fig. 4.2. 
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Fig. 4.2 The raw range scan of a trihedral in the scene. 

 

The early time jamming will contaminate the return of a close-in target and 

requires further discussion. It can be explained in terms of bouncing diagram as shown in 

Fig. 4.3. The mismatches of the antenna and the low-noise-amplifier are assumed to be -

10dB and there is an internal coupling between the power amplifier (PA) and the LNA. 

The coupling creates the very first return at the receiver side and this pulse is reflected by 

the input port of the LNA toward the antenna. The reflected pulse travels down the cable 

and is further reflected toward the receiver by the mismatch of the antenna. As a result, 

the receiver will experience a delayed pulse with 20dB weaker amplitude compare to the 

first pulse due to the coupling. The attenuation is the combination of the mismatches of 

the LNA and the antenna. The time delay between the two pulses is twice the time to 
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of which the amplitudes are 20dB weaker consecutively. Moreover, other mechanisms 

also introduce jamming. The reflection from the transmitting antenna can couple to the 

receiver through internal coupling and there is also coupling between antennas. All these 

pulses are sent directly from the PA thus the power level saturates the receiver and 

requires a while to damp out. This renders the first 20ns of the down range meaningless 

within the 100ns unambiguous down range as shown in Fig. 4.2. This can be mitigated by 

using a very short cable, better matched antennas and less coupling between antennas. 

Further improvements can be achieved in the transceiver with less internal coupling and 

better matched LNA and PA. It is noted that the received pulse from the target will 

experience a similar bouncing mechanism along the receiving cable and produce multiple 

peaks in the down range. There is a potential problem that weak targets are masked by 

the multiple peaks of a strong target. 

 

 

Fig. 4.3  The mechanisms of the early-time jamming. 
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4.3 A LONG MICROSTRIP LEAKY WAVE ANTENNA FOR THE P410 

A half-width MLWA is used as the frequency-scanned antenna due to its 

simplicity and compact size [51]. The antenna consists of a top microstrip, a side shorting 

plane, and a ground plane. Air substrate is chosen for a broadband operation from 

3.1GHz to 5.3GHz, which is the equivalent frequency bandwidth of the radar. The length 

of the antenna is chosen to be 90cm to achieve a narrower beam. The cross-sectional 

dimensions of the antenna are then designed using TRM to satisfy two design criteria. 

First, the attenuation constant across the band must ensure that at least 90% of the input 

power is radiated when the leaky wave travels to the far end of the antenna. Second, the 

antenna must scan across a wide angle span from 3.1GHz to 5.3GHz. The onset 

frequency of the leaky mode is set at 2.9GHz, to tolerate some manufacturing error and 

ensure there is a sufficient gain at 3.1GHz. The resulting dimensions of the half-width 

microstrip are 23mm in width and 1.5mm in height above the ground plane. The antenna 

is excited with a 10cm long semi-rigid RG-405 cable connecting to the outer edge of the 

antenna and Fig. 4.4 is a photo of the antenna prototype and a close-up view is shown as 

the inlet. Fig. 4.5 is the radiation pattern simulated using the MoM solver in FEKO [72]. 

The antenna is simulated with a thick top microstrip and an infinitely large ground plane. 

All surfaces are set to PEC. Fig. 4.4 shows the antenna gain plotted in color as a function 

of frequency and angle , which is defined with respect to the longitudinal direction of 

the antenna. As frequency is increased, the main beam steers from the broadside toward 

the endfire direction. The beamwidth of this 90cm long antenna is 15° at 3.1GHz and 6° 

at 5.3GHz. The backlobe in the 𝜃 > 90° region is due to the leaky wave reflected from 

the far end of the antenna. It is much weaker than the main beam. Its effect on the P410 

radar will be discussed later. 
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Fig. 4.4 The built antenna prototype. The pen is the dimension reference and a close-

up view of the excitation is shown in the inset. 

 

 

Fig. 4.5 Simulated gain pattern of the MLWA vs. frequency and angle. 
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4.6(a). The S11 of the antenna is less than -10dB from 3.1GHz to 5.3GHz. However, the 

effect of the reflected wave from the far end can be observed in the S11 as the strong 
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frequencies. To study if the far end of the antenna will contribute to the early-time 

jamming or not, we inverse Fourier transform the collected data into the time domain and 

the result is plotted as Fig. 4.6(b). The first peak around 0ns includes the delay of the 

10cm RG-405 cable as well as the mode conversion between the coaxial mode and the 

leaky mode. The second broad peak at 9ns is due to the reflection of the far end. The 

strength of the second pulse is attenuated by the two-way radiation loss. As the wave 

travels toward the far end, power is radiated in the forward beam. After it is reflected and 

travels in the opposite direction, power is radiated in the backward direction. There is 

also some radiation loss at the far end. In Fig. 4.6 (b), it is also noted that the pulse-width 

of the second one is broader than the one at 0ns. Moreover, 9ns corresponds to 135cm of 

distance in free space, which is longer than the 90cm long structure. These two 

phenomena arise due the fact that the leaky mode is dispersive. Thus, the group velocity 

of the wave is less than the speed of light.  Different frequency components experience 

different delays thus the pulse is stretched.  

While the reflection due to the far end is attenuated by almost 30dB, the long 

delay between the receiver and the far end is the problem. Assuming the mismatch of the 

LNA is -10dB, the reflection of the antenna input port is attenuated 22dB every 1ns, 

which is the delay of the 10cm RG-405 cable. It only takes 6ns to achieve an attenuation 

of 132dB. As for the far end of the antenna, the reflection is attenuated 40dB every 9ns 

and it will take 27ns to achieve an attenuation greater than 120dB. Thus, the reflection at 

the far end of the antenna must be reduced to mitigate the early-time jamming problem. A 

3cm RG-405 cable is soldered at the far end of the antenna and connected with a matched 

load. The measured S11 of tis modified antenna is shown as Fig. 4.6(c), which shows 

much less frequency beating and the S11 is slightly improved across the band. The 

inverse Fourier transformed response is shown as Fig. 4.6 (d). The reflected strength at 
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(a) (b) 

  

(c) (d) 

Fig. 4.6 (a) S11 of the built prototype with the far end left open. (b) The time 

response of the antenna with the far end left open. (c) S11 of the built 

antenna with a matched far end. (d) The time response of the antenna with a 

matched far end. 

 

the far end is attenuated by 24dB comparing to Fig. 4.6(b). It only takes only 18ns to 

achieve an attenuation of 128dB. Overall, this approach significantly reduces the early-

time jamming caused by the far end of the antenna. 
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4.4 SYSTEM INTEGRATION AND CHARACTERIZING THE P410 

The concept of the combined radar-antenna system is shown in Fig. 4.7, where a 

short pulse is transmitted and received through the frequency-scanned antenna. In such a 

manner, the original short-pulse is decomposed into separate pulses with different carrier 

frequencies and each radiates into a different spatial direction. The received waveform is 

the sum of all these pulses modified by the targets at different directions. Considering 

each pulse has a different carrier frequency, the combined waveform requires processing 

to convert back into an azimuth scan. A circulator is inserted between the antenna and the 

radar so that the antenna is used for both transmitting and receiving. In such a 

configuration, the overall system beamwidth is better than one where the frequency-

scanned antenna is only used on the transmitter or the receiver alone. Of course, the 

beamwidth performance of using a circulator can be achieved with two frequency-

scanned antennas on both the transmitter and receiver. However, this would require the 

two antennas to have identical frequency-scanned beams, which could be quite 

challenging from the manufacturing point of view due to the length of the antennas. 

Using two antennas would lead to a better isolation between the transmitter and receiver. 

For the system using a circulator, the isolation between the transmitter and the receiver is 

dominated by either the return loss of the antenna or the isolation of the circulator. A 

poor isolation between the transmitter and receiver will results in self-jamming as 

discussed before, which is a major problem for a stepped-frequency system, where the 

steady-state amplitudes and phases are measured at different frequencies. However, this 

very early return can be gated-out in a time-domain system as long as there is no target 

within the range of the early-time jamming. A compact circulator also helps since the 

equivalent cable length is short and the pulses damp out in less time, thus the early-time 

jamming contaminates fewer range bins. 
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Fig. 4.7 Illustration of the system concept.  

 

4.4.1 Circulator 

The circulator adopted for the system is a CS-16-50 from MLCI Corporation.  It 

has a bandwidth from 3GHz to 6GHz and can handle an average power of 50W. Port 1 

and port 2 of the circulator were measured using a VNA while port 3 was connected to a 

matched load. The results are plotted as Fig. 4.8. The two ports show similar input 

mismatch, which is less than -20dB from 2.8GHz to 6.6GHz. The insertion loss is less 

than 0.6dB from 2.5GHz to 6.6GHz. The isolation is better than 8dB from 1GHz to 

8GHz, or better than 15dB from 2.8GHz to 6.6GHz. It can be observed that the circulator 

does not have a sharp roll-off at low frequencies, which is a desirable feature for the 

system since the exact bandwidth of the P410 may extends below 3.1GHz. As stated 

before, the overall self-jamming is governed by either the isolation of the circulator or the 

mismatch of the antenna. Comparing Fig. 4.6 and Fig. 4.8, the isolation of the circulator 

is better than the antenna input mismatch. As a result, the self-jamming in the proposed 

system is mostly from the mismatch of the antenna across the band. The insertion loss 

(S21 in Fig. 4.8) and the isolation (S12 in Fig. 4.8) of the circulator from 2.8GHz to 
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Fig. 4.8 The measured S-parameters of the CS-16-50 circulator. 

 

 

Fig. 4.9  The pulse shapes of the Fourier transformed insertion loss and isolation. 

They are labelled as through and rejection, respectively. 
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5.6GHz are inverse Fourier transformed into the range domain with a Hamming window 

and plotted as Fig. 4.9. They are labeled as through and rejection, respectively. The nice 

pulse shape of the through response indicates that the circulator achieves nearly linear 

phase shift across the frequencies. Thus, it will not deteriorate the transmitted pulse shape 

from the P410. The rejection response has a magnitude of -29dB in the time domain. This 

indicates when the circulator is connected to P410, the coupling between the transmitter 

and receiver through the circulator is very weak. 

4.4.2 Equivalent frequency response of the P410 

In order to generate the azimuth response of a scene, the frequency response of 

the system must be dominated by the frequency-scanned antenna but not the other 

components. It has been shown that the frequency response of the circulator is flat across 

the band of operation. In this section, we set out to characterize the equivalent frequency 

response of the P410 radar. Instead of measuring the transmitter and receiver frequency 

response separately using a fast oscilloscope and a high speed signal generator, the P410 

unit is considered as a single unit and the equivalent frequency response is calibrated 

using a scattering measurement with time-gating. In this setup, the reflections due to 

mismatches of components are confined in the early time while the main late time 

reflection is due to the target, which can be separately characterized by VNA 

measurements for comparison and equalization.  

Two broadband horns and a 13” calibration sphere are setup and an S21 

measurement is made using the VNA first. Background subtraction is applied to remove 

the coupling between the antennas, the indoor clutters, and the supporting base of the 

sphere. The collected frequency response is inverse Fourier transformed into the time 

domain and plotted as Fig. 4.10(a). The target is located at 18ns and the pulse shape 
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includes the dispersion of the horn, path loss, as well as target-related response. The 

target response around 18ns is gated and Fourier transformed back to the frequency 

domain as shown in Fig. 4.10(b). The strength gets weaker as the frequency is increased, 

corresponding to the frequency-dependent path loss. Next, the same setup is measured 

using a high- power P410 unit set to -14.5dBm. Background subtraction is applied as 

well. The time response is plotted as Fig. 4.10(c). The response is then time-gated about 

the target response at 30ns and Fourier transformed into the frequency domain as shown  

 

  
(a) (b) 

  
(c) (d) 

Fig. 4.10   The scattering calibration. (a) VNA measured equivalent time response. (b) 

VNA measured, time-gated equivalent frequency response. (c) P410 

measured target response. (d) P410 measured, time-gated equivalent 

frequency response.  
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in Fig. 4.10(d) for comparison. The residual of the background subtraction in the early 

time is clearly seen in Fig. 4.10(c). It is also noted that the time delays for the target in 

Fig. 4.10 (a) and Fig. 4.10(c) are different, indicating there are extra delay inside the 

P410. As for the equivalent frequency response in Fig. 4.10(d), it does show a finite 

bandwidth with a plateau from 3.3GHz to 4.6GHz. It is also noted that the roll-off is 

different at low frequencies and high frequencies. Lastly, the complex frequency 

response in Fig. 4.10(d) is divided by the one in Fig. 4.10(b) to yield the equivalent 

frequency response of the P410, assuming the frequency response of the VNA is 

perfectly flat. The antennas, path-loss, and target response are removed in this manner. 

The result is shown as Fig. 4.11. The amplitudes at 3.1GHz and 5.3GHz are -15dB and -

34dB below the peak, respectively. The phase is within 45° from 3.4GHz to 5.3GHz. It is 

noted that the low frequency end has higher power but experiences more phase shift. 

 

 

 

Fig. 4.11   The complex equivalent frequency response of the P410 transceiver. 
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4.4.3 Validation with full-wave solver 

To verify that the system will produce frequency peaks corresponding to the 

directions of the targets, a trihedral is placed at various directions and collected using a 

P410 with background subtraction. The results are plotted as Fig. 4.12(a) - Fig. 4.12(c). 

The targets are placed about 80°, 60°, and 40° with respect to the longitudinal direction of 

the antenna. The distance is about three meters. It can be seen that the target at 80° 

returns very weak power and does not show a strong frequency peak. This is due to two 

factors. First, the carrier frequency with a main beam direction at 80° is 2.9GHz, where 

the P410 transmits very little power as shown in Fig. 4.11. Second, the gain at this 

direction is very low comparing to other directions, since this is the onset frequency of 

the mode. The other two target directions both show prominent peaks at different 

frequencies, indicating that the target is resolved by the frequency-scanned beam. For 

comparison, a 16cm dihedral is simulated using the MoM solver in FEKO. A simulated 

S11 without the dihedral is subtracted from S11 with the dihedral to remove the reflection 

due to the antenna. The remaining frequency response is multiplied by the equivalent 

frequency response in Fig. 4.11. The results with the dihedral placed at different 

directions are plotted as Fig. 4.12(d) - Fig. 4.12(f) and they all show different frequency 

peaks. The agreement between the Fig. 4.12(a) - Fig. 4.12(c) and Fig. 4.12(d) - Fig. 

4.12(f) is reasonable. Lastly, the measured response outside the 3.1GHz to 5.3GHz is 

substantially higher comparing to the simulated counterpart. This could be due to noise 

and intermodulation from the non-linearity of the transceiver. 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 4.12 (a) - (c) Measured frequency response of targets at about 80°, 60°, and 40°. 

(d) - (f) Combined response of full-wave simulations and the equivalent 

frequency response of the P410. 
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4.5 LINE-OF-SIGHT AND THROUGH-WALL TRACKING OF HUMAN 

The direction-finding capability of the system has been demonstrated in the 

previous section and it shows that the low-end cutoff of P410 limits the scanning range 

near the broadside direction. In this section, two measurements were collected and 

processed to show the capability of the combined system. It is noted that the STFT can 

directly applied to the collected time domain data without the need to Fourier transform 

the collected frequency data into the time domain as in the previous chapter. Line-of-

sight and through-wall measurements of a human subject walking were collected first. An 

average frame is computed from the whole sequence as the background and it is 

subtracted from all the frames to remove static clutter as well as the early-time jamming. 

Afterwards, the data are processed using the STFT with a 6ns Hamming window. 

Snapshots of the line-of-sight measurement are shown as Fig. 4.13(a) - Fig. 4.13(f). The 

time interval between snapshots is about 1.5sec. During this measurement, the subject 

walked from the endfire toward the broadside direction of the antenna while maintaining 

the same distance to the radar. The sequence of snapshots clearly shows the subject 

walking from the endfire direction (high frequency) toward the broadside direction (low 

frequency). It is also noted that the target response is different in each snapshot. This may 

be due to the frequency response of the antenna and the posture of the subject at different 

frames.  

Next, the antenna was put right next to a 23cm-thick exterior wall to test the 

through-wall performance as shown in Fig. 4.14. The antenna and radar were on an 89cn 

tall wood bench. Instead of using a constant background subtraction, a two-second 

moving average is used to generate the background for each frame. This moving average 

background is subtracted from each frame to remove the return due to static clutter, 

especially the wall. The snapshots of a human subject walking are shown in Fig. 4.15(a) -  



 63 

h   
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 4.13   Snapshots of the line-of-sight measurement of a walking human subject. 
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Fig. 4.15(f). The first three snapshots are the subject walking near the broadside direction 

of the antenna and toward the radar. The last three snapshots are the subject walking 

along the endfire direction of the antenna. The signal to noise ratio is not as good as the 

line-of-sight measurement since the wall not only attenuates the transmitted power but 

also introduces a strong reflection, which can be considered as a strong early-time 

reflection that masks the other targets and may even saturate the receiver. Overall, the 

human subject still can be tracked in the through-wall environment. However, the target 

response is less focused compared to Fig. 4.13. Moreover, the signal strength near the 

endfire direction is much weaker than those near the broadside direction due to two 

factors. First, the wall attenuates high frequency components more than low frequency 

components. Second, the transmitted power is much weaker at higher frequencies as 

shown in Fig. 4.11. An ADC with a higher dynamic range and a high power PA together 

may improve the through-wall performance. Lastly, the wall may cause refraction that 

distorts the DOA information. 

 

 

Fig. 4.14 The setup of the through-wall measurement. The antenna is put right against 

the wall.  
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 4.15 Snapshots of the through-wall measurement of a walking human subject. 
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4.6 CONCLUSION 

In this chapter, a frequency-scanned antenna was combined with a short-pulse 

radar to achieve 2-D range-azimuth imaging of a scene. The early-time jamming of the 

short-pulse radar was studied in detail. A long antenna was designed and built to achieve 

a better azimuth resolution than the short microstrip LWA used in Chapter 3, and to 

match the frequency bandwidth of the radar. The far end of the antenna was effectively 

matched to reduce the early-time jamming. Next, the system concept was discussed and a 

circulator was inserted between the antenna and the radar to effectively use the antenna 

for both transmit and receive and therefore achieve a narrower azimuth resolution. The 

frequency responses of the circulator and the short-pulse radar were characterized in 

detail through a set of measurements. Next, the direction-finding capability of the 

combined system was verified with static target measurements and full-wave simulations.  

Both line-of-sight and through-wall images of a human subject were presented. These 

results demonstrate the performance of this simple and compact system, which can be 

readily tailored for law enforcement or perimeter security applications.  

The detailed study of the relationship between the short-pulse radar and the 

frequency-scanned antenna also leads to other observations that may improve the overall 

performance by changing the design of the transceiver. First, early-time jamming can be 

reduced with less internal coupling and better matched LNA and PA. Second, a smoother 

window function, instead of a nearly square window, in the rake receiver can be 

implemented for a better sidelobe performance in the frequency domain. Lastly, a higher 

transmitted power, especially at higher frequencies, and a receiver with a better dynamic 

range can improve the through-wall performance.  
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Chapter 5: Two-section Microstrip Leaky Wave Antenna 

5.1 INTRODUCTION 

The half-width microstrip LWA was used in the previous two chapters to 

demonstrate the imaging capability of a frequency-scanned antenna with both a stepped-

frequency radar and a short-pulse radar. Furthermore, a long antenna was designed in the 

previous chapter to match the frequency bandwidth of the short-pulse radar as well as to 

improve the direction-finding capability. Usually, the beamwidth of an antenna can be 

reduced by increasing its electrical size. However, this is not always the case for an LWA 

since the attenuation constant also affects the effective antenna length. As a rule of 

thumb, the length of an LWA is usually chosen for the antenna to radiate 90% of the 

accepted power at the frequency with the smallest attenuation constant within the 

operating bandwidth. Therefore, both a small attenuation constant and a long aperture are 

needed for an LWA to achieve a narrow beam. In this work, a two-section microstrip 

LWA is proposed to achieve a small attenuation constant and a narrow beam. 

This chapter is organized as follows. The proposed antenna geometry and the 

associated TRM analysis are presented in Sec. 5.2. The effects of the geometrical 

parameters on the propagation and attenuation constants are examined. In Sec. 5.3, a 

microstrip LWA is designed based on the TRM analysis. A short prototype is then built 

and measured. The antenna gain patterns and the extracted propagation and attenuation 

constants are further compared to TRM results to verify that the proposed structure 

indeed achieves a small attenuation constant. In Sec. 5.4, a longer version of the proposed 

LWA is simulated using the full-wave solver FEKO. Its narrow-beam performance is 

demonstrated in comparison to a conventional half-width microstrip LWA. Some 

implications of the proposed antenna for radar applications are discussed in Sec. 5.5, and 

Sec. 5.6 is the conclusion. 
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5.2 ANTENNA GEOMETRY AND TRM ANALYSIS 

The cross-section views of a conventional half-width microstrip LWA and the 

proposed two-section design are illustrated in Fig. 5.1(a) and Fig. 5.1(b), respectively. 

The longitudinal direction is chosen to be the z-axis and the transverse direction is along 

the y-direction. A half-width microstrip LWA consists of a top microstrip, a large ground 

plane, a dielectric substrate, and a side shorting plane. The dielectric substrate is shown in 

green in Fig. 5.1(a). Note that even though this dissertation focuses on the air-filled 

design due to the broader antenna bandwidth, the derivation here will be kept more 

general by considering a dielectric substrate. The width of the half-width microstrip is W 

and the thickness of the dielectric substrate is h. Microstrip LWA is usually fabricated 

using PCB technology and the shorting plane can be implemented using vias. It is noted 

that the attenuation constant of the dominant leaky mode in this structure is strongly 

dependent on the thickness of the substrate, as it controls the radiation leakage from the 

structure. Although a very thin half-width microstrip LWA would have a small 

attenuation constant, it would also affect the characteristic impedance of the leaky mode 

and complicate the input impedance matching to the antenna. In order to reduce the 

radiation leakage while retaining most of the original field distribution, it is proposed to 

add another thinner section of microstrip to a conventional half-width microstrip LWA. 

The proposed two-section microstrip LWA is illustrated in Fig. 5.1(b). The total width of 

the top microstrip becomes (W1 + W2) and the thicknesses of the dielectric substrate in 

the individual section are h1 and h2, respectively.  

Next TRM is applied to solve for the complex propagation constant of the 

proposed two-section design. The transverse equivalent circuit is shown in Fig. 5.2. It 

includes two transmission lines with different characteristic impedances, two load 

impedances on the two ends, and a lump capacitor to model the stored energy due to the 
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step. Since the heights are much smaller than the widths in the individual sections, 

transverse electromagnetic (TEM) modes are assumed. As a result, the impedance in the 

individual section is proportional to the height hi and the transverse wave numbers in the 

two sections are the same. The impedance of the thicker section as unity and the 

impedance of the thinner section as h2 /h1, without loss of generality. The complex 

propagation constant of the proposed two-section microstrip LWA can be computed by 

solving the following transverse resonance condition: 

 

0- +++ jBYY  (5.1) 

where Y+ and Y- are the admittances looking into the thicker and thinner sections, 

respectively, and B is the capacitive susceptance per unit length of the step discontinuity. 

The individual quantities are discussed separately. First, the admittance Y+ is the 

reciprocal of the familiar impedance expression of a shorted transmission line with a 

transverse wave number ky and length W1: 
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For B, the capacitive susceptance per unit length of an E-plane step discontinuity between 

two parallel plate waveguides is used, where the characteristic impedances of the two 

transmission liens are unity and h2 /h1 respectively. This was derived in [81] using 

conformal mapping, with the result: 
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(a) 

 

(b) 

Fig. 5.1 (a) The geometry of a conventional half-width microstrip LWA. It consists 

of a top microstrip, a ground plane, and a side shorting plane. (b) The 

proposed two-section microstrip LWA. It consists of two microstrip LWA 

sections with different thicknesses of dielectric material. The top microstrip 

is kept at the same height. 

 

 

 

Fig. 5.2 The transverse equivalent circuit model of the proposed two-section 

microstrip LWA. The left most edge represents the shorting plane and the 

right most impedance represents the radiation impedance from a parallel 

plate waveguide connecting to an extended dielectric slab. The capacitor in 

the middle models the step discontinuity. 
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where k0 is the free space wave number and r is the dielectric constant. It is found 

through the subsequent validation with measurements, that the inclusion of this 

susceptance is crucial to correctly model the propagation constant. To obtain Y-, the 

following equation is derived by Chang and Kuester [54] for the reflection coefficient, 

𝛤 = 𝑒𝑥𝑝(𝑗𝜒), of a thin parallel plate waveguide connected to an infinitely extended 

dielectric substrate. The detail of cwas summarized in Chapter 2. Therefore, Y- can be 

expressed as the transformed impedance of the complex radiating impedance due to a 

section of transmission line:  
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Combining (5.2), (5.3), and (5.4) into (5.1), the final transcendental equation is expressed 

as: 
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To compute the complex wave number of the lowest order leaky mode, it is assumed that 

both the cotangent and tangent functions in (5.5) are within the first branch cut and (5.5) 

is solved for ky at each frequency. Higher order modes can be solved in a similar fashion 

with the proper choice of branch cuts. Lastly, the longitudinal wave number kz, which 

governs the radiation properties of the leaky wave antenna, can be computed using (2.9) 

in Chapter 2 after ky is found. 

In order to show the relationship between the geometry and the resulting mode 

properties, complex propagation constants of different air-filled two-section designs are 
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computed and plotted. The air-filled design was chosen in Chapter 3 because of the 

inherent broad bandwidth for ranging. This will be assumed throughout the remainder of 

the chapter. Fig. 5.3 shows the propagation constant, , and attenuation constant, , for 

various values of h2, while h1 is fixed at 2mm. W1 and W2 are 15mm and 0.5mm, 

respectively. As h2 is reduced from 2mm to 0.1mm, the propagation constant becomes 

larger while the attenuation constant becomes smaller for frequencies higher than the 

cutoff frequency, which is the point at which the attenuation and propagation constants 

are equal. The change in the propagation constant is similar to the effect of a capacitive 

loading on the open edge [66]. In fact, the narrow second section can be considered as a 

parallel plate capacitor. As h2 becomes smaller, the increased capacitance leads to an 

increase in the propagation constant. Moreover, a larger difference between h1 and h2 

increases the local stored electric energy in the step. This effect also contributes to an 

increased propagation constant. In Fig. 5.4, W2 is changed to show its effect on the 

complex propagation constant while W1, h1, and h2 are fixed at 14.3mm, 2mm, and 

0.3mm, respectively. The propagation constant increases and the attenuation constant 

decreases at a fixed frequency as W2 becomes wider. The change of the propagation 

constant can be explained by the increase in capacitance, similar to the argument for the 

change in h2. 

To better illustrate the effects of the geometry on the attenuation constant, which 

is one of the key factors to achieve a narrow-beam microstrip LWA, the propagation and 

attenuation constants versus frequency plot of a given structure is converted into a 

(attenuation constant)-(beam direction) plot using the frequency scanning property. The 

main beam direction , which is defined with respect to the z-axis, is computed using the 

𝑐𝑜𝑠𝜃 = 𝛽 𝑘0⁄  formula. As a result, each pair of  and  versus frequency curves in Fig. 

5.3 and Fig. 5.4 is converted into a single  vs.  curve in Fig. 5.5(a) and Fig. 5.5(b).  
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Fig. 5.3 Complex normalized propagation constants for different heights in the 

second section. Solid lines are propagation constants and dashed lines are 

attenuation constants.  

 

 

Fig. 5.4 Complex normalized propagation constants for different widths in the 

second section. Solid lines are the propagation constants and dashed lines 

are attenuation constants. 
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These figures show the absolute (not normalized) attenuation constant versus beam 

direction for different geometries. If all structures are infinitely long, the antenna with the 

smaller absolute attenuation constant will have a narrower beamwidth. From Fig. 5.5(a) 

and Fig. 5.5(b), it is apparent that to design a narrow-beam two-section microstrip LWA, 

a thin and wide second section is needed. Moreover, it can be observed that the 

beamwidth is always the narrowest near the end-fire direction (small ). However, by 

designing for a small attenuation constant, the beamwidth variation across scan angles is 

reduced. 

 

 

  
(a) (b) 

Fig. 5.5 (a) Attenuation constants at different beam directions of the geometries 

discussed in Fig. 5.3. (b) Attenuation constants at different beam directions 

of the geometries discussed in Fig. 5.4. 
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5.3 PROTOTYPE AND MEASUREMENT 

To verify the TRM analysis, two-section microstrip LWA was designed and built. 

Its performance is then compared to the conventional half-width microstrip LWA 

implemented earlier in Chapter 3. The prototype of the proposed two-section design is 

shown in Fig. 5.6. It consists of two aluminum blocks. The green region in Fig. 5.1(b) 

was first removed from the bottom block using a milling machine and the top block 

works as the top microstrip with an increased thickness for better mechanical stability. In 

the structure, W1=11.6mm, W2=4.42mm, h1=1.8mm, and h2=0.343mm. The length was 

chosen to be 26cm, the same as the half-width microstrip LWA prototype in Chapter 3 

for a direct comparison. To excite the leaky modes, 0.085 in. semi-rigid 50 coaxial 

cables were used as the feeds for both antennas. The center conductor of the coaxial cable 

was soldered to the edge of the top microstrip in the conventional half-width prototype 

and to the top microstrip in the proposed two-section design at where the step is. The 

outer connectors were both soldered to the ground planes. The measured radiation 

patterns of the proposed two-section design and the conventional half-width design are 

plotted respectively in Fig. 5.7 and Fig. 5.8. The horizontal axis is the angle  measured 

with respect to the z-axis and the vertical axis is the frequency. The measured antenna 

gains are color coded with a dynamic range from -2dBi to 13dBi. In this format, the 

frequency-scanned beam is well illustrated. Comparing Fig. 5.7 and Fig. 5.8, the beam 

steers more quickly as frequency is varied in the proposed two-section design than in the 

conventional half-width design. More significantly, a much stronger back lobe (in the 

90sector) is observed in the proposed two-section design. This is a clear indication 

of a smaller attenuation constant of the leaky mode in the new structure. When combined 

with the short length of the antenna, this leads to a backward traveling wave reflected 

from the far end of the antenna and a strong back lobe. The peak gain is also observed to 
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fluctuate as a function of frequency. This is due to the interference between the radiated 

fields from multiply reflected leaky waves between the two ends of the proposed two-

section structure. 

Since the antenna pattern shows a prominent back lobe, it may be possible to 

relate its strength to the attenuation constant. This could provide a useful way to obtain 

the attenuation constant of the guiding structure from the measured antenna pattern. Here 

a simple retrieval procedure is carried out to approximately determine the attenuation 

constant from the radiation pattern. It is assumed that the radiation of the antenna is from 

the equivalent magnetic current on the outer edge of the structure, which carries the 

complex propagation constant of the leaky mode. Next, only one forward propagating 

wave and one backward propagating wave are assumed on the structure. They give rise to 

the beams in the forward and backward directions, respectively. The two waves have the 

same field distribution, except they travel and decay in opposite directions. Therefore, 

their resulting radiation patterns are symmetrical about =90° while the field strengths are 

proportional to the strengths of individual magnetic currents. 

 

Fig. 5.6   The prototype of the proposed two-section microstrip LWA consists of two 

aluminum blocks. The air-filled region is removed from the bottom ground 

plane using a milling machine and the top aluminum block works as the top 

microstrip.  
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Fig. 5.7 Measured radiation pattern of the proposed two-section microstrip LWA 

prototype. 

 

 

Fig. 5.8 Measured radiation pattern of the conventional half-width microstrip LWA 

prototype. 
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It is further assumed that the field in the backlobe direction due to the forward 

propagating wave is much weaker than the field in the same direction due to the 

backward propagating wave. As a result, the gain ratio of the forward and backward lobes 

can be approximated by the square of the ratio between the amplitudes of the forward and 

backward propagating equivalent magnetic currents. The result is simply exp(−2𝛼𝐿), 

where L is the physical length of the antenna. The normalized attenuation constant can 

thus be expressed as: 
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where Gfwd and Gbwd are the gains in the forward and backward directions in dB scale. 

This formula is only an approximate one since the actual structure could support multiply 

reflected waves. In addition, it is assumed that 100% of the power is reflected from the 

far end of the antenna. 

Fig. 5.7 and Fig. 5.8 are processed using (5.6) to show the retrieved attenuation 

constants. Results of the proposed two-section microstrip LWA are shown in Fig. 5.9 and 

results of the conventional half-width microstrip LWA are shown in Fig. 5.10. The 

propagation constant is also plotted in these figures by using the standard cosine formula 

(2.1) given in Chapter 2. The measurement-extracted results are plotted as solid curves 

and the TRM results are plotted as dash curves for comparison. The blue curves are the 

attenuation constants and the green curves are the propagation constants. The range of the 

normalized attenuation constant is only from 0 to 0.1 in order to better illustrate the very 

small attenuation constants while the range of the normalized propagation constant is still 

from zero to one. The propagation constant curves derived from the measured beam 
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directions agree well with those from TRM. Although the retrieved attenuation constant 

curves contain some undulations due to the higher-order multiple reflections present in 

the actual structure, they show fairly good agreement with the TRM results. It is also 

noted that the retrieved attenuation constant in Fig. 5.10 is not accurate below 5GHz, 

since (14) is not accurate when the backlobe is not prominent. Overall, the results show 

that the complex propagation constant of the new structure based on TRM agrees 

reasonably well with the measurement results. More importantly, the designed two-

section microstrip LWA has a small  and can achieve narrow-beam performance when 

the aperture is made sufficiently long. 

 

 

 

Fig. 5.9 Retrieved propagation and attenuation constants from the radiation pattern 

of the proposed two-section microstrip LWA. Dashed curves are the 

attenuation and propagation constants computed using TRM. 
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Fig. 5.10 Retrieved propagation and attenuation constants from the radiation pattern 

of the conventional half-width microstrip LWA. Dashed curves are the 

attenuation and propagation constants computed using TRM. 

5.4 NARROW BEAM ANTENNA DESIGN 

The antenna design from the previous section is next extended to a long aperture 

to demonstrate its narrow-beam performance. Based on the 90% radiated power criterion 

at 4.5GHz, the length of the antenna is chosen to be 200cm long. The antenna is operated 

between 2.5GHz and 4.5GHz since this is the frequency range where the beam steers the 

most. The structure is simulated using the MoM solver in FEKO. The finite ground plane 

and the thick top microstrip shown in Fig. 5.6 are both modeled. The width and 

maximum thickness of the ground plane are 49.94mm and 5.68mm, respectively. For the 

top microstrip, the dimensions are 32mm and 6.18mm. The 0.085 in. semi-rigid 50 

coaxial cable is also modeled in the simulation with a cable length of 3cm. All surfaces 

are simulated as PEC.   
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The simulated radiation patterns of the proposed two-section design are plotted in 

a polar format in Fig. 5.11. The angle is defined with respect to the longitudinal direction 

(so zero degree is the endfire direction), and the dynamic range is from -10dBi to 20dBi. 

The simulated patterns at 2.9GHz, 3.4GHz and 3.9GHz are plotted as the blue curves. 

The resulting directivities are 18.3dBi, 19.4dBi, and 20.0dBi, respectively. The 

corresponding main beam directions are 56°, 45°, and 38°. Moreover, the 3dB 

beamwidths are 3.7°, 3.4°, and 3.2°. Theoretical radiation patterns based on the TRM 

results are also computed for comparison. They are plotted as the black curves in Fig. 

5.11. An infinite number of multiply reflected waves is assumed and summed in closed 

form in the formulation. It is observed that full-wave simulation and TRM results show 

good agreement. The predicted directivities from TRM are slightly lower than the FEKO 

simulation result. This may be due to the fact that the finite ground plane modeled in 

FEKO produces a not axial-symmetric pattern in the -direction, thus leading to an 

increased directivity. 

In order to show the interplay between the attenuation constant and the length of a 

leaky wave antenna, a 200cm long conventional half-width microstrip LWA is simulated 

using FEKO for comparison. The structure is simulated as PEC on an infinitely large 

ground plane. Radiation patterns are plotted in polar format in Fig. 5.12. FEKO-simulated 

patterns at 5.3GHz, 6.2GHz and 7.1GHz are plotted in blue. The directivities are 11.0dBi, 

13.4dBi, and 14.9dBi, respectively.  The corresponding main beam directions are 58°, 

46.5°, and 39.5°, and the 3dB beamwidth are 13.0°, 8.5°, and 6.6°. Radiation patterns 

based on TRM in conjunction with the equivalent magnetic current model are plotted in 

black. Again, the agreement between full-wave simulations and TRM-derived patterns is 

good. Comparing Fig. 5.11 and Fig. 5.12, it can be seen that the proposed two-section 
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design achieves a higher directivity and a narrower beamwidth at approximately the same 

beam directions even though both antennas are 200cm long.  

To complete the performance comparison, the FEKO-simulated directivity and 

beamwidth of the conventional half-width MWLA and the proposed two-section design 

are summarized in Table 1 and Table 2, respectively. Table 1 shows the results for a short 

(26cm) and a long (200cm) conventional half-width microstrip LWA. It is observed that 

the beamwidth of the 200cm antenna is comparable to that of the much shorter antenna at 

low frequencies, becoming narrower only at high frequencies, where the attenuation 

constant is smaller. Table 2 summarizes the performance of a short (26cm) and a long 

(200cm) two-section microstrip LWA. It shows that the longer antenna always 

significantly outperforms the short one. The 200cm long two-section microstrip LWA 

achieves a beamwidth between 6.3° and 3.3°, with a scan range between 32° and 74°. It is 

clear that a microstrip LWA with a small  and a long aperture provides the highest 

directivity, the narrowest beamwidth, and the widest scanning range. 

 

 

Fig. 5.11 The radiation patterns of the proposed two-section microstrip LWA at 

2.9GHz, 3.4GHz and 3.9GHz. FEKO simulation results are shown as blue 

curves and the TRM predicted results are shown as black curves. 
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Fig. 5.12 The radiation patterns of the conventional half-width microstrip LWA at 

5.1GHz, 6GHz and 7GHz. FEKO simulation results are shown as blue 

curves and the TRM predicted results are shown as black curves. 

 

 

Table 1: Simulated Performances of Conventional Half-width microstrip LWAs. 

Frequency DIR(dBi) beamwidth DIR(dBi) beamwidth 

 26cm long 200cm long 

4.5 GHz 7.2 32.7° 7.2 32.6° 

5.0 GHz 9.7 18.1° 9.9 16.3° 

5.5 GHz 10.9 15.3° 11.7 11.5° 

6.0 GHz 11.7 14.2° 12.9 9.2° 

6.5 GHz 12.2 13.8° 13.9 7.7° 

7.0 GHz 12.5 13.4° 14.8 6.8° 
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Table 2 Simulated Performances of Two-section microstrip LWAs. 

Frequency DIR(dBi) beamwidth DIR(dBi) beamwidth 

 26cm long 200cm long 

2.5 GHz 10.2 20.6° 15.3 6.3° 

2.9 GHz 9.8 21.8° 18.4 3.7° 

3.3 GHz 9.6 22.5° 19.5 3.4° 

3.7 GHz 9.6 23.7° 20.1 3.3° 

4.1 GHz 9.7 24.4° 20.5 3.3° 

4.5 GHz 9.8 22.4° 20.8 3.3° 

 

5.5 DISCUSSION 

A two-section microstrip LWA with a narrow beam was designed in the previous 

sections. Here some radar related implications will be discussed. First, a narrow-beam 

microstrip LWA will improve the azimuth resolution for the range-azimuth tracking of 

targets. However, the narrower beamwidth will also reduce the “target bandwidth” and 

thus hamper the range resolution. This can be seen from the frequency-scanned radiation 

pattern in Fig. 5.8. As the beamwidth becomes narrower, the “target bandwidth” on a 

target located in a particular direction (corresponding to a vertical cut in Fig. 5.8) will 

also decrease. The trade-off between the antenna beamwidth and frequency bandwidth is 

an intrinsic property of the microstrip LWA and must be considered carefully for the 

intended application.  

Second, while beamwidth is the primary concern for radar applications, the 

antenna radiation efficiency is also worth consideration. To simulate efficiencies while 

maintaining a reasonable computation time, the structures (both the conventional and the 

proposed two-section microstrip LWAs) are modeled as thin metal (copper or steel) 
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sheets on an infinitely large PEC ground plane. The efficiencies of the two 200cm long 

antennas in the previous section are plotted in Fig. 5.13. Both antennas are simulated with 

copper and steel. Efficiencies of the copper antennas versus frequency are plotted as blue 

curves, while those of the steel construction are plotted as black curves. The dash curves 

are the efficiencies of the conventional half-width microstrip LWAs. Results show that 

the efficiency is better than 94% with either copper or steel. The two solid curves are the 

efficiencies of the two-section microstrip LWAs. The efficiency of the steel antenna 

drops to 46% at 4.5GHz while the copper one is 87%. It is concluded that the efficiency 

is lower in the proposed two-section structure. This is because of the higher field 

confinement in the structure that leads to the lower attenuation constant. Consequently, 

construction with highly conductive metals is preferred. For dielectric-filled designs, 

dielectric loss will further lower the efficiency. The lower radiation efficiency of the new 

structure will lead to a slightly lower gain and lower received signal strength. However, 

the goal of achieving a narrower beamwidth is nonetheless achieved.  

The reflection coefficient (S11) of the 200cm two-section MWLA is also 

simulated in FEKO and shown in Fig. 5.14. It is seen that the coaxial cable feed achieves 

a better than -10dB matching between 2.6GHz and 3.6GHz. From 3.6GHz up to 4.5GHz, 

the matching is still better than -6dB (75% of the available power accepted by the 

antenna). Additional feed designs could be explored to further improve the matching 

performance [59]. 

The 200cm-long antenna with such fine features with high precision cannot be 

built at our machine shop. However, it is believed the construction is possible with proper 

machining tools. Also, even though 200cm appears to be quite long, there are platforms 

can support such an antenna, such as a vehicle or even a police stick, which can be 
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carried by law enforcement personnel. The proposed two-section microstrip LWA may 

serve well in these applications. 

Lastly, we would like to point out some earlier works with similar structures [82, 

83]. They are both based on rectangular waveguides and only air-filled structures were 

analyzed. Our analysis, derived from the MLWA, is applicable to different dielectric 

filling. Although our built prototype is air-filled and has a thick top conductor, we 

consider the proposed structure as a microstrip rather than a rectangular waveguide due to 

limitations in our TRM formulation. The thick top conductor could change the boundary 

condition around the edge of the top microstrip. However, the effect is not prominent 

since the measured results with a thick top conductor agree with those computed using 

TRM as shown in Fig. 9. 

 

 

Fig. 5.13 Simulated efficiencies of the 200cm long conventional half-width microstrip 

LWA and the 200cm long two-section microstrip LWA. Both structures are 

simulated with copper and steel.  
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Fig. 5.14 Simulated S11 of the proposed 200cm two-section microstrip LWA using 

the MoM solver in FEKO. 

 

5.6 CONCLUSION 

In this chapter, a new two-section microstrip LWA was proposed to achieve a 

smaller attenuation constant in the structure. The complex propagation constant was 

derived using TRM and the results of different geometrical parameters were examined. 

Next, a two-section microstrip LWA was designed and built to the length of the 

conventional half-width microstrip LWA in Chapter 3 for a direct comparison. The 

propagation and attenuation constants of the new structure were extracted from the 

measured far-field patterns and they agreed well with the TRM results. Lastly, a long 

microstrip LWA antenna was simulated using full-wave simulation. The results showed 

that a narrow-beam microstrip LWA could be achieved by combining the small 

attenuation constant structure with a long aperture. Finally, the implications of employing 

a narrow-beam microstrip LWA for radar applications were discussed. 
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Chapter 6: 2-D Imaging Using a Microstrip LWA with Compressive 

Sensing 

In the previous chapter, the azimuth resolution of a 2-D tracking system was 

improved by designing a microstrip LWA with a narrower beam. However, the trade-off 

between the antenna beamwidth and its frequency bandwidth becomes a major 

consideration for system planning. In this chapter, a different signal processing technique 

than the STFT is applied to improve the performance of the 2-D tracking system. Sec. 6.1 

first discusses the compressive sensing technique, which is an emerging signal processing 

technique that can solve a highly underdetermined matrix equation under the sparsity 

constraint. Next, the 2-D tracking problem using a microstrip LWA is formulated in the 

framework of compressive sensing. The compressive sensing technique is tested with 

both point scatterer simulation and static target measurement. In Sec. 6.3, it is applied to 

measurement data of two walking human subjects and the results are compared with 

those processed with the STFT in Chapter 3. Furthermore, the capabilities to resolve 

closely spaced targets using compressive sensing for a short and a long microstrip LWA 

are discussed in Sec. 6.4 and Sec. 6.5, respectively. Sec. 6.6 provides some conclusions 

reached from this study.  

6.1 COMPRESSIVE SENSING 

Compressive sensing [84, 85] addresses the problem of how to reconstruct a 

complex signal 𝑥 ∈ 𝐶𝑁  from a linear measurement 𝑦 = 𝐴𝑥, 𝐴 ∈ 𝐶𝑀×𝑁  when the 

problem is underdetermined, i.e. 𝑀 < 𝑁. Since the problem is underdetermined, there 

exist many possible solutions and the solution with the least amount of non-zero entries is 

desired among all the solutions. The underlying assumption is that the sparest solution is 
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often the most desirable one in many physical problems of interest.  This process can be  

written as an optimization problem as: 

 

𝑚𝑖𝑛
𝒙 ∈ 𝐶𝑁

{‖𝒙‖0, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒚 = 𝐀𝒙} (6.1) 

where ‖∙‖0 denotes the L-0 norm. However, the above optimization problem is NP-hard 

and can only be solved by exhaustively comparing the L-0 norms of all solutions. As the 

measurement matrix gets larger, this exhaustive approach is not feasible. Alternatively, a 

basis pursuit problem can be formulated using the L-1 norm [86]: 

 

𝑚𝑖𝑛
𝒙 ∈ 𝐶𝑁

{‖𝒙‖1, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒚 = 𝐀𝒙} (6.2) 

It has been shown that under certain conditions [87, 88, 89, 90, 91], the solutions of the 

two problems are unique and identical. Moreover, the problem in (6.2) is a convex 

problem and can be solved as a linear program with inequality constrains. There exist 

various numerical methods developed for this type of problem. However, these solvers 

are not designed for a large amount of inequality constraints encountered in a 

compressive sensing problem. Other efficient algorithms have been developed, such as 

first-order primal-dual algorithms [92, 93]. The name follows the fact that these methods 

explicitly update both the primal and dual variables at every iteration. They are more 

efficient in two ways. First, they take fewer steps to converge. Second, they can take 

advantage of certain type of matrices, such as the discrete Fourier transform matrix, for a 

fast matrix-vector product operation. In this chapter, the YALL1 solver [93] based on the 

first-order primal-dual alternating direction algorithm is used. 
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Compressive sensing has already been applied to various radar imaging problems 

to date [94]. For example, it has been combined with randomized frequencies to 

overcome the unambiguous down range limit of using linearly spaced frequencies. The 

concept was implemented in random binary waveforms and frequency-hopped 

measurements [95, 96]. Compressive sensing has also been applied to mono-static 

synthetic aperture radar (SAR) with randomized sampling position to overcome the 

beamwidth, grating lobe, and sidelobe limitations of an array with uniform spacing [97]. 

Lastly, it has been applied to compute the joint time-frequency distribution of targets to 

achieve a more localized time-frequency content, which is an essential tool to find the 

target range and velocity at once [98, 99]. In the next section, I will reformulate the 

problem of forming a 2-D range-azimuth image into the framework of compressive 

sensing. 

6.2 PROBLEM FORMULATION AND VALIDATION 

In Chapter 3, it has been shown that a 2-D image can be generated from the 1-D 

frequency data collected through a frequency-scanned antenna. We first inverse-Fourier 

transformed the collected frequency response into the range domain for target separation. 

Afterwards, we applied the STFT to generate a 2-D range-azimuth image. The problem to 

form a 2-D range-azimuth image from the 1-D frequency data received through a 

frequency-scanned antenna is essentially an underdetermined problem, i.e. to find a few 

targets in a large 2-D space while the measurement is a 1-D data set. The problem 

appears to be well suited for compressive sensing. We can consider the x vector in (6.2) 

with N entries as N possible target positions, and the received frequency response as the y 

vector, which has M frequencies. As for the matrix A, we interpret the equality constrains 

in (6.2) as a linear combination of vectors: 
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𝒚 = 𝐀𝒙 = ∑𝒂𝒊𝑥𝑖

𝑵

𝒊=𝟏

 
(6.3) 

where ai is the i-th column vector of the A matrix. In this form, the total frequency 

response (𝒚) is a linear combination of N frequency responses (𝒂𝒊) weighted by N targets 

(𝑥𝑖). We compare (6.3) with the point scatter model used in Chapter 3. The frequency 

response due to all the targets can be computed using the following equation, which is 

simplified and reorganized from (3.1): 

 

𝑉𝑟(𝑓)

𝑉𝑖
= ∑[

𝜆(𝑓) 𝐺(𝑓, 𝜃𝑖)

(4𝜋)3/2 
∙
𝑒−𝑗2𝑘(𝑓)𝑅𝑖

𝑅𝑖
2 ]√𝜎𝑖 

𝑁

𝑖=1

 
(6.4) 

where (𝑅𝑖, 𝜃𝑖) and 𝜎𝑖  are the position and RCS of the i-th point scatterer, 𝑉𝑖  is the 

excitation voltage which is assumed to be constant across the frequency band, and 𝑉𝑟 is 

the total received voltage, which is a function of frequency. By comparing (6.3) and 

(3.1), we see that 𝑥𝑖 can be equated to the square root of the RCS of the i-th target while 

𝒂𝒊 corresponds to the frequency response of a target with unity RCS placed at (𝑅𝑖, 𝜃𝑖). 

To apply compressive sensing to generate an image, we take the following steps. First, 

we choose the potential target positions. An arbitrary shape of interested area could be 

used. Next, we compute the corresponding 𝒂𝒊 using (3.1) with the theoretical directivity 

values derived from TRM. Lastly, we assemble the final A matrix and apply the 

compressive sensing solver, YALL1, to find the target positions from the frequency 

response. It is noted that higher order interactions between targets are ignored. Otherwise 

the problem cannot be solved by compressive sensing. 

 The compressive sensing imaging using a microstrip LWA is first tested with 

point-target simulation data. The potential target positions are limited to a polar sector of 
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space, where the range extent is set from 0m to 15m and the azimuth extent is set from 

33° to 75°. This area is further uniformly discretized into pixels with 3.75cm in range and 

1° in azimuth. The corresponding 𝒂𝒊 for all these positions are computed and assembled 

as the A matrix. Two targets are placed in the scene at (4m,  =55°) and (5m,  =40°) 

with unity RCS for testing. The target positions are the same as in Sec. 3.2. The simulated 

frequency response is first generated using the computed A matrix and the target 

information. The resulting data are then inverted into an image using the same A matrix 

and YALL1. YALL1 supports a number of cost functions, and we found the best result 

using the combined L1-L2 cost function:   

 









-+
21

1
min Axyx


 (6.5) 

where  is a weighting parameter to add the residual L-2 norm of the linear constrains in 

the cost function. The residual L-2 norm of the linear constrains is usually from the 

additive white Gaussian noise in the y vector. The choice of  is related to the signal-to-

noise ratio. Overall, we can consider (6.5) as a combined imaging and de-noising 

algorithm. The resulting quality of the image is sensitive to the choice of . If  is set too 

high, targets will not be revealed. If  is set too low, the target response will show too 

much spreading. In this chapter, the parameter  is experimentally determined for 

different sets of data. Fig. 6.1(a) shows the range-azimuth image obtained by using 

YALL1 for the point-scatterer simulation data with  set to 1e-5. In comparison to Fig. 

3.6(d), the two targets are much better focused in both range and azimuth. Next, the 

range-azimuth image of the two-trihedral measurement in Sec. 3.2 is also generated using 

YALL1 with  set to 1e-4.  In this case, the computed A matrix is still used. The result 

is shown in Fig. 6.2. In comparison to Fig. 3.7(d) in Chapter 3, the compressive sensing  
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Fig. 6.1 Range-azimuth images generated using the L1-norm minimization with 

point scatterer simulation. 

 

 

Fig. 6.2 Range-azimuth images generated using the L1-norm minimization of the 

two-trihedral measurement. 
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gives a much more focused image. In these two cases, is set to the maximum values 

that still reveal the two targets in the individual data sets. 

6.3 SNAPSHOTS OF 2-D TRACKING USING COMPRESSIVE SENSING 

The entire sequence of human measurement data are then processed with  set to 

1.5e-7. This value is kept for the whole sequence since the noise level should remain the 

same in the measurement. Eight snapshots are presented from Fig. 6.3(a) to Fig. 6.3(h). 

These figures are one-to-one counterparts of those in Fig. 3.8. Over the entire sequence, 

the compressive sensing always gives a better localization of the targets as compared to 

the STFT processing. In Fig. 6.3(a), only target (B) is seen. This is because the shadow 

casted on target (A) from target (B) makes target (A) disappear altogether in the 

snapshot. This is different from the same snapshot generated using the STFT shown in 

Fig. 3.8(a). In the other seven snapshots, both targets can be seen with a focused response 

for each one. It is also noted that the sharpening of target responses comes at the expense 

of computation time. Each snapshot of the human tracking measurement took more than 

six minutes to process using YALL1 while the STFT processing took less than 0.15 sec 

on the same computer (with an Intel®  Core™ i5 CPU and 8GB of memory). 
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(a) (e) 

  

(b) (f) 

  

(c) (g) 

Fig. 6.3 Range-azimuth images of the human tracking measurement generated using 

L1-norm minimization. (a) - (h) are the same snapshot as Fig. 3.12(a) – (h). 
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(d) (h) 

Fig. 6.3 Range-azimuth images of the human tracking measurement generated using 

L1-norm minimization. (a) - (h) are the same snapshot as Fig. 3.12(a) – (h). 

 

6.4 RESOLVING CAPABILITY OF COMPRESSIVE SENSING 

In the previous section, it has been shown that compressive sensing works well 

for measurement data of two walking humans. The resulting images are better focused 

compared to the snapshots generated using the STFT. However, the capability to resolve 

closely spaced targets is not verified yet. For conventional array processing, the azimuth 

resolving capability is the 3dB beamwidth of the antenna and the down range resolution 

is inversely proportional to the 3dB frequency bandwidth. In order to test the resolving 

capability of the short microstrip LWA using compressive sensing, a point scatterer 

simulation is carried out. The spacing of the targets in the azimuth dimension is set to the 

3dB beamwidth and the range difference corresponds to the 3dB frequency bandwidth. 

Afterwards, a simulated frequency response of these closely spaced targets is generated 

using the point scatterer model. Lastly, YALL1 is applied to form the 2-D image. The 

3dB beamwidth and bandwidth of the 28.5cm long half-width microstrip LWA are shown 
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in Fig. 6.4. It is noted that the “target bandwidth” and azimuth beamwidth are both 

functions of the direction. The beamwidth is about 8 degrees for most of the target 

directions and the 3dB bandwidth ranges from 700MHz to 2GHz. The frequency 

bandwidth is widest at 38°, of which the higher edge of the 3dB bandwidth corresponds 

to the highest frequency in the setup, 8.3GHz. As the target moves even closer to the 

endfire direction, part of the 3dB bandwidth will not be collected and it shows as the 

reduced bandwidth. In the testing, three sets of targets are placed around 𝜃 =

40o, 60o, 70o to evaluate the resolving capability. The ground truth image is shown in 

Fig. 6.5(a). All the targets have unity RCS. Next, the simulated frequency response of all 

the targets present is processed with compressive sensing and the settings are as follows. 

The frequency is set from 4.3GHz to 8.3GHz with 401 frequency points. The azimuth 

pixel size is set to one degree, and the range pixel size is set to 3.75cm. The 2-D image 

generated by compressive sensing is shown in Fig. 6.5(b). It can be observed that the two 

targets at the same range are barely resolved in the azimuth dimension. Moreover, the 

target closest to the broadside direction of the nine targets is substantially weaker than the 

others. It is also noted that there are significant artifacts in the azimuth dimension for the 

two sets at 𝜃 = 60o and 70o. Lastly, the targets are resolved in down range in all three 

sets but the range response is not as focused as the ground truth.  

The same data are also processed with the STFT using two different windows. 

The results with a 113cm and a 30cm Hamming windows are shown in Fig. 6.6(a) and 

Fig. 6.6(b), respectively. The 113cm Hamming window resolves the closely spaced 

targets in azimuth but cannot resolve the targets in down range for all three sets of 

targets. Moreover, there are artifacts in the azimuth domain (similar to the compressive 

sensing result) and the azimuth responses are broader compared to compressive sensing. 

As for the 30cm Hamming window, it resolves the down range in the three sets of targets. 
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However, the 30cm window cannot resolve the closely spaced targets in azimuth. 

Overall, the size of the Hamming window determines the trade-off of the resolutions in 

the azimuth and down range dimensions when the STFT is used to image a 2-D scene 

with a frequency-scanned antenna. As observed in Fig. 6.6, the target separation can be 

achieved either in the down range or the azimuth dimension, but not simultaneously. For 

comparison, the targets are always resolved both in the azimuth and down range 

dimensions when compressive sensing is applied. It can be concluded that compressive 

sensing has higher resolving capability than the STFT. However, compressive sensing 

can barely resolve targets spaced by the 3dB beamwidth. The result also contains artifacts 

in the azimuth dimension. It seems that compressive sensing does not improve the 

azimuth resolution much.  

 

 

 

Fig. 6.4 The two-way 3dB beamwidth and bandwidth of the 28.5cm long half-width 

microstrip LWA. 
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(a) (b) 

Fig. 6.5 (a) The ground truth of three sets of targets placed 3dB in azimuth and down 

range locations. The color code is reversed compared to the others to better 

show the targets. (b) The 2-D image generated by compressive sensing. 

  
(a) (b) 

Fig. 6.6 The 2-D image generated using the STFT. (a) 113cm Hamming window. (b) 

30cm Hamming window. 

6.5 COMPRESSIVE SENSING AND A LONG MICROSTRIP LWA 

In order to further improve the azimuth resolution of the 2-D imaging system, the 

90cm long half-width microstrip LWA developed in Chapter 4 is combined with 

compressive sensing. However, the far field distance of the 90cm long antenna at 5.3 

GHz is 28.6m based on the (2D2)/𝜆 formula. As a result, the targets to be imaged will 

likely be in the near field region of the antenna and the point source approximation of the 
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antenna is no longer valid. In order to test the potential performance degradation due to 

the model mismatch, the electric near field of the antenna is calculated using numerical 

integration as:  

 

−𝑗𝑘0

4 𝜋
∫ sin(𝜃(𝑧)) ⋅ exp[(−𝛼 − 𝑗𝛽)𝑧] ⋅

exp[−𝑗𝑘0𝑅(𝑧)]

𝑅(𝑧)
𝑑𝑧

0.9

0

 (6.6) 

where R and  are respectively the distance and direction of a near-field target to different 

parts on the antenna aperture. The target response is the square of the electric near field 

multiplied by the square root of the RCS of the target. A grid of targets is setup for 

testing as shown in Fig. 6.7(a) to Fig. 6.7(d), where the targets are placed at 90m, 30m, 

10m, and 3m in these figures, respectively. The results obtained using compressive 

sensing with the far-field A matrix are shown in Fig. 6.7(e) to Fig. 6.7(h). It can be seen 

that as the targets get closer to the antenna, the resulting images get blurrier. It is 

particular obvious in Fig. 6.7(h), where the targets are placed at 4m, 6m, and 8m away 

from the radar. The three targets at 4m are blurrier than the targets at the other distances. 

It can be concluded that the model mismatch due to the far-field A matrix is the worst 

when the target is very close to the radar.  

For comparison, a near-field A matrix is computed exhaustively by changing the 

target position across the whole image plane. The image of the targets placed from 4m to 

8m using the near-field A is shown in Fig. 6.8. In comparison to Fig. 6.7 (h), it is clear 

that all the targets are now much better focused. It is noted that although the targets near 

the broadside direction are better focused compared to Fig. 6.7 (h), they are still blurrier 

than the other targets in Fig. 6.8. This is because the antenna beam is the broadest near 

the broadside direction. Therefore, the ability of compressive sensing to focus the target 

in azimuth is still limited by the physical beamwidth of the antenna.  
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

Fig. 6.7  Testing of the near field effect at 90m, 30m, 10m, and 3m.The ground truths 

are on the left and the images obtained using compressive sensing are shown 

on the right. 
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(d) (h) 

Fig. 6.7  Testing of the near field effect at 90m, 30m, 10m, and 3m.The ground truths 

are on the left and the images obtained using compressive sensing are shown 

on the right. 

 

 

Fig. 6.8 The reconstructed near-field image using a matching near-field A matrix. 
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The resolving capability of combining compressive sensing, a long microstrip 

LWA, and a near-field A matrix is next examined. The same nine targets used in the 

previous resolution testing in Fig. 6.5(a) are tested with the 90cm long antenna. The 

resulting compressive sensing image is plotted in Fig. 6.9. It is clear that the range and 

azimuth of all 9 targets are resolved. However, there are also some artifacts near the 

targets around 13m as well as 11m in both the down range and azimuth dimensions. The 

3dB beamwidth and bandwidth of the 90cm long half-width microstrip LWA are shown 

in Fig. 6.10. Comparing to Fig. 6.4, the 90cm-long antenna achieves a narrower 

beamwidth across the whole scanning range. However, the corresponding bandwidth is 

much narrower. The frequency bandwidth ranges from 200MHz to 1GHz, compared to 

700MHz to 2GHz of the short antenna. This indicates that the long antenna may not 

resolve the targets in the down range dimension. However, the long antenna can actually  

 

 

Fig. 6.9 The compressive sensing image of Fig. 6.5(a) using the 90cm-long 

microstrip LWA. The targets are clearly resolved in both the azimuth and 

down range dimensions. 
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Fig. 6.10  The 3dB beamwidth and bandwidth of the 90cm-long microstrip LWA. 

resolve the down range dimension as shown in Fig. 6.9. Thus, it is concluded that the 

long antenna improves azimuth resolution with a narrower beam while compressive 

sensing achieves super resolution in the down range dimension with the expense of some 

artifacts. Overall, the combination of a long microstrip LWA and compressive sensing 

achieves the best result. 

6.6 CONCLUSION 

In this chapter, the compressive sensing technique was applied to the 2-D range-

azimuth imaging problem using a frequency-scanned microstrip LWA. The problem to 

find the targets in a large 2-D range-azimuth space with a 1-D (frequency) data was 

formulated into the framework of compressive sensing. Compressive sensing resulted in a 

more focused image than the STFT in both the case of point scatterer simulation and 

measured data for two static targets. Next, compressive sensing was applied to a 

sequence of data of two walking human subjects and sharper images were also achieved. 

However, a more focused image does not necessarily mean two closely spaced targets 
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can be resolved. The compressive sensing approach was tested against point scatterer 

simulations with closely spaced targets in both the down range and azimuth dimensions 

to verify its resolving capability. The results showed that the azimuth resolution is still 

predominantly governed by the antenna beamwidth. Lastly, a long microstrip LWA with 

a narrow beam was combined with compressive sensing. It was found that a near-field 

data model was required since the antenna is long and the operating frequency is high. 

Comparing the compressive sensing images using a short and a long microstrip LWAs, 

the long antenna achieved a better azimuth resolution with the narrower beam. At the 

same time, compressive sensing essentially compensated for the loss of bandwidth in the 

long antenna and achieved nearly the same down range resolution as the short antenna. 

Therefore, the combination of a long microstrip LWA with compressive sensing yielded 

the best imaging performance.  
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Chapter 7: Radar Cross-Section of a Microstrip LWA 

7.1 INTRODUCTION 

In the previous chapters, the microstrip LWA was applied to the human tracking 

problem. Different aspect of the system was investigated in the different Chapters, 

including radar architecture, antenna design, and signal processing. In this chapter, the 

objective is not to improve the tracking performance but focuses on the radar cross-

section (RCS) of a microstrip LWA. This property of an antenna is important because it 

could be the prominent contributor of the total RCS of a stealthy vehicle. Moreover, the 

scattering from an antenna cannot be fully eliminated since the antenna still receives and 

radiates power. As a result, the RCS characteristic of the antenna may be used to identify 

different vehicles [100].  

The RCS of two structures related to the microstrip LWA have been investigated 

in the past. The RCS of a microstrip patch antenna was reported in [101]. Since a patch 

antenna is a high-Q resonator, the fundamental as well as higher order resonances can be 

observed through its RCS response. A more closely related structure to the microstrip 

LWA is a long trough, which can arise from gaps and seams in a smooth conducting 

body. In [102], Shamansky and Dominek showed that the traveling wave mechanism in 

the trough gives rise to prominent features in the RCS. In this work, the RCS of a half-

width MLWA is investigated. First, the monostatic RCS of a microstrip LWA obtained 

using full-wave simulation and measurement are presented in Sec. 7.2. To better 

understand the various scattering features, the antenna mode scattering and structural 

mode scattering are separately modeled using different approximations in Sec. 7.3. As a 

result, the correspondence between the observed features and the different scattering 

mechanisms can be clearly established. In Sec. 7.4, the behavior of the antenna mode 

scattering is further interpreted using a time-of-arrival ray picture. It is shown that the 
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unique range-extended feature is due to a combination of the finite continuous aperture 

and the dispersive group delay of the leaky mode. Sec. 7.5 is the conclusion. 

7.2 RADIATION PROPERTIES OF A MICROSTRIP LWA 

Before presenting the RCS of a microstrip LWA, the radiation characteristics of a 

microstrip LWA is first reviewed, which are closely related to the properties of the 

microstrip leaky mode. The cross section of the half-width microstrip LWA for studying 

the RCS is illustrated in the inset of Fig. 7.1. The antenna under consideration consists of 

a metal ground plane, a 15mm wide microstrip line elevated 2mm from the ground plane, 

and a vertical shorting plane on the left side. The length of the antenna in the longitudinal 

direction (z-direction) is 29cm. The antenna is fed on one end via a coaxial line while the 

other end is left as an open. The antenna operates from 4GHz to 8GHz with a frequency-

scanned beam. The propagation constant () and attenuation constant () of the two 

lowest order leaky modes are computed from 2GHz to 20GHz using TRM and shown in 

Fig. 7.1. Below 13GHz, only the lowest order leaky mode can exist. Its propagation 

constant determines the progressive phase shift along the z-direction, and thus controls 

the main beam direction. On the other hand, the attenuation constant determines the 

amplitude tapering along the aperture length, and thus affects the gain value and the 

antenna beamwidth. As frequency is increased, the propagation constant increases from 

nearly zero to the free space wave number. As a result, the beam steers from the 

broadside (=90°) toward the endfire direction (=0°). Along with the change in the 

propagation constant, the attenuation constant decreases as a function of frequency. This 

results in a higher antenna gain and a narrower beamwidth at higher frequencies. As for 

the second order leaky mode, the general operating principle is the same but starts at a 

higher frequency. 
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Fig. 7.1 The propagation and attenuation constants of a half-width microstrip LWA 

shown in the inset. These quantities are computed using TRM and 

normalized with respect to the free space wave number. The blue curves are 

for the lowest order leaky mode and the black curves are for the next higher 

order leaky mode. 

 

Next, the broadband RCS of the half-width microstrip LWA is simulated and 

measured. The microstrip LWA is first simulated using the method of moments solver in 

FEKO [72]. In the simulation setup, the antenna is embedded in an infinite ground plane 

and the feed port is connected to a short load. The polarization of the incident plane wave 

is set to H-pol, i.e., the electric field is in the y-direction in Fig. 7.1. The simulated 

monostatic HH-pol RCS versus frequency (from 2GHz to 13GHz) and aspect is plotted in 

Fig. 7.2. It is noted that only the lowest order leaky mode is excited below 13GHz. The 

peak RCS is normalized to 0dB and the aspect angle  is defined with respect to the z-

axis. Two prominent features, labeled as (i) and (ii), are observed. Feature (i) is a strong 

function of the aspect angle and frequency. As frequency is increased, the RCS peak 

changes from broadside to the endfire direction. Such phenomenon is similar to the 
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frequency-scanned beam of a microstrip LWA. Feature (ii) is a strong flash that occurs at 

broadside, with associated sidelobe patterns in the angular dimension. 

An alternative way of displaying the RCS data is in the range-aspect domain.  

The RCS data from 2GHz to 13GHz are windowed using a Hamming window and 

inverse-Fourier transformed to the range domain for each aspect angle. Moreover, the 

rotation center at the left edge is shifted to 29cm in range to better illustrate the early time 

features. The result is presented in Fig. 7.3. It shows three prominent features in the 

range-aspect plot and they are labeled as (a), (b) and (c) in an increasing order of range 

delay. Feature (a) is a range-focused feature, which corresponds to the response of a point 

scatterer that is offset by 29cm from the rotation center. Feature (b) is a range-extended 

one. It starts from 29cm and extends more in range as is increased. Feature (c) is 

similar to feature (b) but with a narrower range extension and it starts at 58cm. 

Measured RCS data are also collected from a half-width microstrip LWA with the 

described parameters. The antenna is mounted on a 60cm long almond-shape ground 

plane and the whole unit is mounted on a rotator to perform the frequency-aspect 

measurement. A broadband horn is connected to a vector network analyzer to 

continuously collect data from 2GHz to 13GHz. Two sets of measurement are collected, 

the RCS data of the ground plane alone and the RCS data with the half-width microstrip 

LWA mounted on the ground plane. The first result is then subtracted from the second 

one to remove the effect of the finite ground plane. In addition, the gain and phase 

variations of the horn are equalized. The result is processed and plotted in the range-

aspect format as shown in Fig. 7.4 with the peak amplitude normalized to 0dB. The three 

prominent features identified in Fig. 7.3 are clearly seen in the measurement, although the 

signal-to-noise ratio is limited in comparison to the simulation. The three features will be 

further modeled and discussed in the next section. 
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Fig. 7.2 Simulated RCS of a 29cm-long half-width microstrip LWA as a function of 

frequency and aspect angle. 

 

 

Fig. 7.3 Simulated RCS of a 29cm-long half-width microstrip LWA as a function of 

range and aspect angle.  
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Fig. 7.4 Measured RCS of a 29cm-long half-width microstrip LWA as a function of 

range and aspect angle.  

7.3 MODELING OF INDIVIDUAL SCATTERING MECHANISMS 

It is well-known that the scattering from an antenna can be divided into the 

antenna mode scattering and structural mode scattering [103]. The former is related to the 

radiation property of the antenna. Power received into the antenna can be reflected back 

by the source impedance connected to the antenna input port. Then, the reflected power 

re-radiates as a source of backscattering. The relationship between the antenna mode 

scattering and the radiation property of the antenna is given explicitly in [103] as: 

 

𝜎𝑎𝑛𝑡 =
Γ2𝐺2(𝜃, 𝜙)𝜆2

4𝜋
 

(7.1) 

where ant is the RCS due to the antenna mode scattering,  is the reflection coefficient 

due to the mismatch between the source impedance and the antenna, G is the antenna 
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gain pattern and  is the wavelength. On the other hand, the structure of the antenna itself 

also contributes to backscattering and it should be modeled separately.  

The antenna mode scattering is modeled based on the gain of the antenna. To 

compute the antenna gain pattern, it is assumed that an equivalent magnetic current 

bearing the propagation and attenuation constants of the leaky mode exists on the open 

edge of the microstrip LWA. Image theory is used to account for the ground plane. The 

far-field pattern is then readily found by using the free-space radiation integral over the 

29cm length of the antenna. Although (7.1) is a power relationship, the full complex 

scattered field is computed to preserve the phase information, which will allow us to 

model the range domain characteristics. The antenna mode scattering is computed over 

frequency (2GHz to 13GHz) and aspect using (7.1) with the computed antenna gain. The 

data are then processed into the range-aspect plot as described in the previous section. 

The results are shown in Fig. 7.5(a). It is observed that the predicted feature matches 

quite well with the range-extended feature (b) in Fig. 7.1. It is also noted that the region 

around =30° is particularly strong. This is because the structure is exposed to the 

broadest bandwidth in this angular region, as can be seen through the RCS vs. frequency 

and aspect pattern in Fig. 7.2. Moreover, the azimuth direction of this prominent feature 

is related to the frequency bandwidth used. 

Higher-order bounces in the antenna mode scattering can also be modeled in a 

similar fashion. It is assumed the excited leaky mode bounces between the two ends of 

the microstrip LWA structure where the far end of the antenna is a perfect open. The 

RCS contribution from the first higher-order bounce (i.e., one additional round trip in the 

antenna) is then simply the antenna mode scattering discussed in the last paragraph 

multiplied by 𝑒𝑥𝑝[(−𝛼 − 𝑗𝛽)2𝐿] , where  is the attenuation constant,  is the 

propagation constant, and L = 29cm is the length of the antenna. The resulting range-
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aspect plot due to this mechanism is shown in Fig. 7.5(b). It is observed that this feature 

matches well with feature (c) in Fig. 7.3. It is also noted that only a wave with a small 

can persist after multiple bounces. Since the of the leaky wave is smaller at higher 

frequencies, the multiple-bounce antenna mode scattering is dominated by returns at  

  

  

(a) (b) 

 

(c) 

Fig. 7.5 Three scattering features modeled individually and displayed in the range-

aspect plane. (a) Primary antenna mode scattering. (b) First higher-order 

bounce antenna mode scattering. (c) Structural mode scattering. 
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higher frequencies, which are clustered near the endfire direction. This trend can be noted 

by comparing Figs. 7.5(a) and (b). 

Lastly, structural mode scattering is modeled using the physical optics (PO) 

approximation. The top microstrip is replaced with the induced PO current and the short 

vertical metal strip is neglected. Image theory is then applied to account for the ground 

plane. It is noted that the image current does not completely cancel the PO current on the 

top strip since the two are offset from the ground plane. The resulting range-aspect plot is 

shown in Fig. 7.5(c). The RCS features of the PO current are equivalent to two point 

scatterers at the two ends of the antenna. One is located at the rotation center on the left 

edge and the other is 29cm away on the right edge. The structural mode scattering also 

shows a strong flash at the broadside direction (=90°) located at a range of 29cm.  

In summary, by individually modeling the scattering mechanisms, it has been 

shown that the prominent features (a), (b) and (c) in Fig. 7.3 can respectively be 

attributed to the structural mode scattering, the primary antenna mode scattering, and the 

first higher-order bounce antenna mode scattering. Note that both the primary antenna 

mode scattering and the structural mode scattering contribute to the horizontal line RCS 

feature at 29cm. However, the former is stronger near the endfire direction (=0°) while 

the latter is stronger near the broadside direction (=90°).  

7.4 TIME DOMAIN INTERPRETATION OF ANTENNA MODE SCATTERING 

The modeling work in the previous section provided a way to interpret the 

scattering mechanisms associated with the different RCS features observed in Sec. 7.2. 

However, the range-extended return of the antenna mode scattering warrants further 

examination. To better interpret such behavior, a time-of-arrival ray picture is provided 

here to dissect the details of this mechanism. The antenna mode scattering is first divided 
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into a coupling ray and a re-radiation ray (see Fig. 7.6(a)). Furthermore, the ray 

propagates at a slower group velocity in the antenna structure due to the dispersive leaky 

mode. Thus the total propagation delay of an arbitrary ray pair with respect to the left 

edge can be expressed as:  

 

𝑡𝑑𝑒𝑙𝑎𝑦(𝜃𝑚𝑎𝑖𝑛) =
(𝐿1 + 𝐿2)

𝑣𝑔(𝑓(𝜃𝑚𝑎𝑖𝑛))
−

(𝐿1 + 𝐿2)

𝑐
cos (𝜃𝑚𝑎𝑖𝑛) (7.2) 

As shown in Fig. 7.6(a), the coupling ray (in red) is assumed to couple into the antenna at 

location L1 while the re-radiation ray (in black) leaves the structure at location L2. The 

group velocity vg can be numerically computed from the propagation constant in Fig. 7.1. 

vg is a function of frequency, which can be further related to the main beam direction, 

main.  

The time or range delay of any ray pair with an arbitrary L1 and L2 can be 

computed using (7.2) given an observation direction . The lower bound on the time 

delay occurs when L1=L2=0. The corresponding ray pair is labeled as (i) in Fig. 7.6(b), 

with the coupling ray impinging on the structure at the left edge and the re-radiation ray 

departing at the left edge. The upper bound on the time delay occurs when L1=L2=L. The 

corresponding ray pair is labeled as (ii) in Fig. 7.6(b), with the coupling ray impinging on 

the structure at the right edge and the re-radiation ray departing at the right edge. Shown 

in Fig. 7.7 is the complex sum of the three modeled features discussed in the last section 

with each feature computed under the same plane wave excitation. The lower and upper 

bounds computed from (7.2) are overlaid in dashed and dotted lines in the figure, where 

the rotation center (the left edge) is at the range of 29cm. It is seen that the range-

extended feature (b) indeed falls in between the two calculated bounds. Therefore, it can 
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be concluded that the antenna receives and radiates as a continuous aperture such that a 

ray can enter and leave the structure at any point along the antenna aperture.  

A shorted load is assumed to model the source impedance at the antenna input 

port throughout this paper to simplify the discussion. A source impedance that is better 

matched to the antenna will decrease the strength of the antenna mode scattering, as 

indicated by  in (7.1).  

7.5 CONCLUSION 

In this paper, the RCS of a half-width microstrip leaky wave antenna has been 

investigated in detail. It was found through simulation and measurement that distinct 

RCS features in the range-aspect plane can be observed. By modeling the scattering 

mechanisms individually, we were able to identify the observed features as the primary 

antenna mode scattering, higher-order bounce antenna mode scattering and structural 

mode scattering. The unique range-extended return due the antenna mode scattering was 

further interpreted using a time-of-arrival ray picture. It was shown that the extended 

range delay can be directly attributed to the continuous aperture of the microstrip LWA 

and the frequency-dependent group velocity of the leaky mode. It can also be inferred 

that the next higher order leaky mode will contribute to the RCS in a similar fashion, 

while multiple modes will be excited at the same time. Overall, the theories explained the 

monostatic RCS features of the microstrip LWA well. Moreover, the phenomenology 

described in this paper should be applicable in other types of leaky wave antennas, 

including those based on waveguide designs [104]. 
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(a) (b) 

Fig. 7.6  (a) The coupling ray (in red) and the re-radiation ray (in black) along the 

sideview of the antenna. (b) The earliest and the latest ray pairs are labeled 

as (i) and (ii). Their corresponding time delays are plotted as the dashed and 

soloid lines in Fig. 7.7. 

 

 

Fig. 7.7 Total RCS in the range-aspect plane by adding the three individually 

modeled scattering mechanisms. The dashed and dotted lines correspond 

respectively to the lower and upper bound in the range delay of the the 

primary antenna mode scattering. 
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Chapter 8: Conclusions and Future Work 

8.1 CONCLUSIONS 

The combination of a frequency-scanned antenna, a short-pulse radar, and radar 

signal processing algorithms for tracking humans in the 2-D range-azimuth plane has 

been studied in this dissertation. This approach is very attractive since only one antenna 

and one transceiver are required. The complexity and cost are vastly reduced compared to 

a traditional phased array system. A microstrip LWA was chosen as the frequency-

scanned antenna in this dissertation due to the simple structure and well-studied antenna 

behaviors. Various aspects of this system were investigated.  

In Chapter 2, the operating principle of a microstrip LWA was reviewed. The 

frequency-scanned property was related to the dispersion nature of the higher order leaky 

modes on a microstrip. A half-width microstrip LWA was designed, built, and measured 

to demonstrate the frequency-scanned beam. A 36° scanning range was covered from 

5.5GHz to 10GHz. In Chapter 3, the frequency bandwidth, which is related to the down 

range resolution, was discussed in a modal perspective. The concept of “target 

bandwidth” was further elaborated. It was shown that the range resolution of a frequency-

scanned antenna is a function of target directions. Next, the frequency bandwidth and 

antenna beamwidth were explored simultaneously to achieve ranging and direction-

finding within a single frequency scan. To convert the collected frequency response into a 

range-azimuth image, targets were separated in the down range domain first. The range-

gated target response was inverse Fourier transformed to the frequency domain and 

further related with the azimuth response. It was shown that this operation is equivalent 

to the STFT. Measurements of static trihedrals and moving humans were conducted with 

two microstrip LWAs and a VNA. Range-azimuth images were generated and the system 

successfully tracked two walking humans with a 3Hz repetition rate. 
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In Chapter 4, a half-width microstrip LWA was integrated with a short-pulse 

radar. A long half-width microstrip LWA was designed and built to match the frequency 

bandwidth of the short-pulse radar. The antenna was lengthened to improve the azimuth 

resolution. A circulator was included in the setup to reduce the required number of 

antennas and self-jamming. It was shown that, although the UWB radar transmits short 

pulses in time while the frequency-scanned antenna operates in the frequency domain, the 

two modules can be combined to operate effectively. A single human was tracked in both 

line-of-sight and through-wall setups. The scanning range of this portable system is less 

than the VNA-based system due to the roll-off at higher frequencies of the short-pulse 

radar.  

In Chapter 5, a two-section microstrip LWA structure was proposed to achieve a 

narrow beamwidth. It was shown that the antenna beamwidth of a LWA can only be 

narrowed by both making the antenna longer and reducing the attenuation constant of the 

leaky mode. TRM analysis of the new structure was carried out to compute the complex 

propagation constant. The structure was modeled with two transmission lines. The step 

discontinuity was modeled as a lump capacitor. The results showed that a thin and wide 

second section is required to lower the attenuation constant. A short prototype was built 

and compared with TRM results with good agreement. Full-wave simulations of long 

antennas were carried out to demonstrate the performance of the proposed two-section 

microstrip LWA. In comparison to a half-width design, the two-section design can 

achieve a narrower beamwidth with a slightly wider scanning range. However, the 

narrower antenna beamwidth also results in a narrower frequency bandwidth. The trade-

off between these two properties is intrinsic to frequency-scanned antennas. 

In Chapter 6, the STFT was replaced with a compressive sensing technique to 

produce a narrower target response in both the down range and azimuth dimensions. It 
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was shown that compressive sensing is well suited for the imaging problem using a 

frequency-scanned antenna, viz., finding a few targets in a large 2-D space from 1-D 

frequency data. The combined L1-L2 cost function was chosen to control noise 

encountered in measurements. Compressive sensing was tested with point scatterer 

simulation, static target measurement, as well as two moving human measurement. The 

target responses in all these results were sharper when compared to those produced using 

the STFT. Next, the resolving capability of compressive sensing was tested with closely 

spaced targets in both the down range and azimuth dimensions. The testing results 

showed that compressive sensing achieves super resolution in the down range dimension. 

However, the azimuth resolution is still governed by the antenna beamwidth. Afterwards, 

a long antenna was combined with compressive sensing. The near field effect was 

included since the antenna was long and targets were close. This combination achieves 

the best resolution in both the down range and azimuth dimensions.  

In Chapter 7, the radar cross section of a microstrip LWA was studied. The 

antenna mode scattering and the structural mode scatter were modeled separately. The 

former was related to the frequency-scanned property of the antenna and the latter was 

modeled with physical optics. The unique range-extended return due the antenna mode 

scattering was further interpreted using a time-of-arrival ray picture. It was shown that 

the extended range delay can be directly attributed to the continuous aperture of the 

microstrip LWA and the frequency-dependent group velocity of the leaky mode. 

Overall, this dissertation considered the combination of a frequency-scanned 

antenna, radar hardware, and signal processing to achieve tracking of humans in the 2-D 

range-azimuth plane. A portable system consists of a single antenna and a single 

transceiver was demonstrated. It was also found that the performance could be further 
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improved by either a new antenna structure, the application of more advanced signal 

processing, or both.  

8.2 FUTURE WORK 

The results reported in this dissertation showed that a frequency-scanned antenna 

is a viable alternative to a complex phased array system for human tracking. The concept 

can be further extended to various other radar monitoring applications discussed in 

Chapter 1. The frequency-scanned tracking system can be combined with Doppler 

processing to achieve simultaneous tracking and target identification. A 3-D range-

azimuth-elevation imaging is also possible by utilizing multiple frequency-scanned 

antennas as a 2-D aperture. The beam can be steered in one dimension using the 

frequency-scanned property and in the other dimension by phased shifters. Future 

research topics in antenna and radar hardware are discussed to meet these new 

challenges. 

Comparing to a phased array system, a frequency-scanned antenna has limited 

angular coverage. The angular coverage of a phased array could extend up to 180⁰ while 

that of the microstrip LWA used in this dissertation is only about 45⁰. This is due to the 

dispersive nature of the higher order leaky mode. Researchers have been studying other 

types of LWAs, such as meta-material LWAs [105, 106]. One major strength of a meta-

material LWA is that it can cover a wide scanning range by seamlessly connecting two 

leaky modes. Periodicity is introduced into the LWA and a backward wave can be 

created correspondingly. The structure is carefully designed such that the onset of the 

backward and forward waves are seamlessly connected at the broadside direction. A 

nearly 180⁰ scanning range can be achieved. However, there are two potential drawbacks 

for radar applications. First, a dielectric substrate is usually required to implement the 
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two modes. This will certainly limit the frequency bandwidth of the modes and hamper 

the range resolution as discussed in Chapter 3. Second, numerous sub-wavelength 

structures are required in this type of antenna to properly create the two modes. This 

could potentially lead to a higher conductor loss and a larger total attenuation constant. 

As discussed in Chapter 5, a high conductor loss limits the antenna beamwidth. The 

problem to design an LWA with a wide scanning range, broad frequency bandwidth, and 

a narrow beam is an interesting research problem worth investigating.  

A VNA and a short-pulse radar were used in this dissertation to drive the 

frequency-scanned antenna. The VNA was operated as a stepped-frequency radar. A 

continuous wave was sent for a certain duration and the receiver collected data at the 

same time. A long duration was used to improve the signal-to-noise ratio (SNR). In all, 

the VNA achieves an absolutely flat frequency response, superior dynamic range, and 

high SNR at the cost of data acquisition time. Another major drawback of the VNA is the 

self-jamming problem, since the receiver collects data while the transmitter is 

transmitting the signal. On the contrary, the short pulse radar with a coherent receiver 

requires a shorter acquisition time. The short-duration transmit pulse also eliminates the 

self-jamming problem. Most of the static residues are from environmental clutters instead 

of the radar itself. However, the transmitted power from the P410 is low. This is done 

intentionally in order to meet regulatory requirements. Acceptable SNR is only obtained 

with a large number of pulse integrations. As a result, the refresh rate is reduced. A 

broadband power amplifier (PA) is desirable to improve the SNR while keeping a very 

high refresh rate.  

The frequency response of the receiver in the P410 was designed to match the 

frequency content of the transmitted pulse. While this architecture can achieves the 

highest SNR for most applications, it deteriorates the received waveform from a 
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frequency-scanned antenna. The corresponding frequency-finding capability is hampered. 

Moreover, the internal sampling switches are optimized to produce the sharpest time 

domain step response. However, this architecture creates side lobes in the frequency 

domain. The time domain behavior of the sampling switch can be optimized to achieve 

less frequency side lobes and yield a better frequency domain response. It is interesting 

that a coherent short-pulse radar can be designed to suite operations in the frequency 

domain. Lastly, any early reflections within the radar can create deep nulls in the 

frequency response. The transmit/receive switch inside the P410 radar currently causes 

this problem. A careful PCB layout, component selection, and possibly using multiple 

circulators could improve the purity of the pulse. This is required to achieve better 

performances in both the time and frequency domains.  

In order to obtain the Doppler frequencies of targets, the phase responses from 

one range scan to the next are compared. This can be readily incorporated in the existing 

system. However, the rate to update the range scans must be twice faster than the highest 

Doppler frequencies of targets to avoid aliasing. For humans, the maximum Doppler 

frequency is about 100Hz for a 4.3GHz carrier frequency. The highest refresh rate 

achieved in the measurement using a P410 was 20Hz. It is clear that the Doppler 

frequencies of the collected data are aliased. To increase the refresh rate, the range extend 

and the number of integration must be reduced. As discussed previously, a broadband 

high-power PA could help improve the SNR. A heterodyne receiver may also be 

worthwhile to investigate, as range profiles can be generated at the rate of the pulse-

repetition rate. However, a fast analog-to-digital converter (ADC) is required and it may 

take a lot of power to operate. Moreover, the dynamic range of a fast ADC is also limited. 

In short, a transceiver must be designed and built carefully to achieve a sufficient refresh 

rate to detect the Doppler frequencies of a human.  
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Lastly, multiple transceivers and frequency-scanned antennas can be combined to 

form a 2-D aperture. The major challenge is the synchronization between transceivers. 

Pico-second accuracy is required for a short-pulse system. The pulse distribution network 

needs to distribute pulses to different antennas with equal delays and low dispersion. It 

also requires careful design and layout to remove any minor reflections that could 

deteriorate the frequency response. It is a challenging microwave engineering problem on 

its own. A simpler approach is to only use a single transmitter. Different receivers can 

operated independently. The direction of targets can be analyzed later using software 

beam forming. Such a low-cost 2-D aperture could be useful for many applications, 

considering the number of transceivers is on the order of a traditional 1-D linear phased 

array. 
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