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Preface

Almost 2400 years ago Plato wrote the allegory of the cave, in which Plato’s brother
Glaucon and his mentor Socrates discuss the difference between the form and the
sensation. Socrates describes a group of people who have lived their entire live
inside a cave. The only knowledge about the outside world comes from shadows
projected to the walls of the cave of people and objects passing by outside. These
shadows are mere sensations of the true form outside the cave. Nonetheless, for the
people inside the cave there is but this one perception which constitutes their reality.

In computer networks, every node has its own view on the network and the ser-
vices therein, which is defined by the network components that allow the node to
communicate with the rest of the network. While a global perspective on the net-
work, the awareness of the form in Plato’s words, is generally desirable it might
be of limited value to a node with only its own perspective. When improving the
quality of service provision it is thus important to keep the node-specific perspec-
tive in mind. Improving as many as possible node-specific perspectives will in turn
improve the overall quality of service provision. This work focuses on the evalua-
tion of node or user-perceived views on service quality as reflected in two different
dependability properties, availability and responsiveness.

Berlin, March 2015 Andreas Dittrich
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Abstract

Services play an increasingly important role in modern networks, ranging from web
service provision of global businesses to the Internet of Things. Dependability of
service provision is thus one of the primary goals. For successful provision, a ser-
vice first needs to be discovered and connected to by a client. Then, during actual
service usage, it needs to perform according to the requirements of the client. Since
providers and clients are part of a connecting Information and Communications
Technology (ICT) infrastructure, service dependability varies with the position of
actors as the ICT devices needed for service provision change. Service dependabil-
ity models need to incorporate these user-perceived perspectives.

We present two approaches to quantify user-perceived service dependability. The
first is a model-driven approach to calculate instantaneous service availability. Us-
ing input models of the service, the infrastructure and a mapping between the two
to describe actors of service communication, availability models are automatically
created by a series of model to model transformations. The feasibility of the ap-
proach is demonstrated using exemplary services in the network of University of
Lugano, Switzerland. The second approach aims at the responsiveness of the ser-
vice discovery layer, the probability to find service instances within a deadline even
in the presence of faults, and is the main part of this thesis. We present a hierarchy
of stochastic models to calculate user-perceived responsiveness based on monitor-
ing data from the routing layer. Extensive series of experiments have been run on the
Distributed Embedded Systems (DES) wireless testbed at Freie Universität Berlin.
They serve both to demonstrate the shortcomings of current discovery protocols in
modern dynamic networks and to validate the presented stochastic models.

Both approaches demonstrate that the dependability of service provision indeed
differs considerably depending on the position of service clients and providers, even
in highly reliable wired networks. The two approaches enable optimization of ser-
vice networks with respect to known or predicted usage patterns. Furthermore, they
anticipate novel service dependability models which combine service discovery,
timeliness, placement and usage, areas that until now have been treated to a large
extent separately.
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Zusammenfassung

Die Bedeutung von Diensten in modernen Netzwerken nimmt stetig zu. Verläss-
liche Dienstbereitstellung ist daher eines der wichtigsten Ziele. Um erfolgreich
einen Dienst erbringen zu können, muss dieser zuerst von einem Nutzer gefun-
den und verbunden werden. Während der Nutzung muss der Dienst eine Leis-
tung entsprechend der Anforderungen des Nutzers erbringen. Da Anbieter und
Nutzer Teil einer Informations und Kommunikationstechnologie (IKT) Infrastruk-
tur sind, wird die Verlässlichkeit der Dienste je nach Position der Aktoren variieren,
so wie sich die für die Bereitstellung nötigen IKT Geräte ändern. Dienstverläss-
lichkeitsmodelle sollten diese nutzerspezifischen Perspektiven berücksichtigen.

Wir stellen zwei Ansätze zur Quantifizierung nutzerspezifischer Dienstverläss-
lichkeit vor. Der erste, modellgetriebene Ansatz berechnet momentane Dienstver-
fügbarkeit. Aus Modellen des Dienstes, der Infrastruktur und einer Abbildung zwi-
schen den beiden, welche die Aktoren der Dienstkommunikation beschreibt, wer-
den durch eine Serie von Modelltransformationen automatisiert Verfügbarkeitsmo-
delle generiert. Die Realisierbarkeit des Ansatzes wird beispielhaft gezeigt anhand
von Diensten im Netzwerk der Universität Lugano, Schweiz. Der zweite Ansatz be-
handelt die Responsivität der Dienstfindung, die Wahrscheinlichkeit innerhalb einer
Frist Dienstinstanzen zu finden, unter der Annahme von Fehlern. Dies stellt den
Hauptteil dieser Arbeit dar. Eine Hierarchie stochastischer Modelle wird vorgestellt,
die nutzerspezifische Responsivität auf Basis von Messdaten der Routingebene
berechnet. Umfangreiche Experimente wurden im Distributed Embedded Systems
(DES) Funktestbett der Freien Universität Berlin durchgefürt. Diese zeigen die
Probleme aktueller Dienstfindungsprotokolle in modernen, dynamischen Netzwer-
ken. Gleichzeitig dienen sie der Validierung der vorgestellten Modelle.

Beide Ansätze zeigen, daß die Verlässlichkeit der Dienstbereitstellung in der Tat
deutlich mit der Position von Nutzern und Anbietern variiert, sogar in hochverfüg-
baren Kabelnetzwerken. Die Ansätze ermöglichen die Optimierung von Dienst-
netzwerken anhand bekannter oder erwarteter Nutzungsmuster. Zudem antizipieren
sie neuartige Verlässlichkeitsmodelle, welche Dienstfindung, zeitige Bereitstellung,
Platzierung und Nutzung kombinieren; Gebiete, die bisher im Allgemeinen getrennt
behandelt wurden.
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Part I
Introduction



Part I of this thesis covers preliminaries to the topics of user-perceived dependability
evaluation in service networks. Chapter 1 gives a concise introduction to the topic
and states the scientific problems. The main contributions are listed.

Chapter 2 provides an extensive collection of related work. Background informa-
tion about the main scientific areas is connected to the state-of-the-art as reflected
in current research works.

The final Chapter 3 describes in detail the experiment framework ExCovery,
which was developed during the work on this thesis to run the necessary exper-
iments in service networks. ExCovery defines concepts for describing, measuring
and storing experiment series in distributed systems.



Chapter 1
Introduction, Motivation, Problem Statement
and Main Contributions

Abstract A brief introduction is given to dependability evaluation in service net-
works. Emphasis is put on the user-perceived scope as defined by the location of
actor nodes in the network and the time of evaluation. The scientific problems of
evaluating user-perceived service availability and user-perceived responsiveness of
service discovery are stated. The chapter concludes with a summary of the approach
to a solution of these problems and a list of the main contributions of this work.

1.1 Introduction

Information processing and communication have been converging rapidly in the last
decades. Cheaper production cost of Information and Communications Technol-
ogy (ICT) combined with increasing networking and computing capabilities have
allowed mobile and embedded devices to become ubiquitous. They have entered
traditional, static computing environments and turned upside-down the governing
paradigms. On one hand, the introduced dynamics and flexibility open a lot of pos-
sibilities related to social networking and cloud computing, to name just a few. On
the other, they create new challenges for dependability evaluation, which needs to
deal with manifold devices that differ both in their functional capabilities and in
their non-functional properties such as availability, responsiveness or performance.
Not only are the network nodes heterogeneous but there is a high variability in the
network link technologies and qualities. Furthermore, novel techniques are needed
to quickly assess the state of these dynamic networks at any point in time. An illus-
tration of such a network is Figure 1.1.

Service-Oriented Architecture (SOA) [81] proposes services as the basic build-
ing blocks of system design. The roots of SOA lie in the classic World-Wide Web
with few, powerful instances providing services to many clients. Modern service
networks may cover many diverse scenarios: Ad-hoc, decentralized Wireless Multi-
Hop Networks (WMHN) or the so-called Internet of Things [91, 21].
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X

Fig. 1.1 An illustration of a heterogeneous network with diverse devices ranging from mainframes
to embedded devices.

Meeting dependability requirements is crucial for successful service provision.

It can be observed that information about the overall network dependability is of-

ten not sufficient to assess service dependability for any client within the network.

This is due to non-functional properties like service dependability being highly de-

pendent on the properties of the underlying ICT infrastructure. Moreover, network

topologies change, components are upgraded or undergo maintenance after fail-

ure, services are migrated and so forth. These dynamics represent one of the main

challenges of service dependability evaluation, especially during run-time, when

changes need to be timely considered in the dependability models. Although ser-

vices are usually well-defined within business processes, assessing dependability

of the various processes in service networks remains uncertain. This is especially

true for the user-perceived dependability of processes between a specific pair ser-

vice requester and provider as every pair can utilize different ICT components for

communication. The underlying infrastructure varies according to the position of

the requesting client – represented by a person or even an ICT component – and

the concrete providing service instance. Evaluation of user-perceived dependability

should employ a model of the ICT infrastructure where service properties are linked

to component properties.

A Case for Service Discovery

Service Discovery (SD) is an integral part of service networks. Before a service can

be used, it needs to be discovered successfully. Thus, a comprehensive service de-

pendability analysis needs to include the dependability of the SD process. But since

first generation service networks usually had static service compositions, discovery

was only needed at deployment time, if at all. And while manual discovery is om-

nipresent during web browsing when clients use web search engines, this process is

usually not seen as part of the actual service usage. But web service providers know

the value of successful discovery and use considerable resources on search engine
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optimization to improve their search ranking and thus make it more probable to be
discovered by interested clients.

In the last decade, decentralized SD has become increasingly popular. Especially
in ad-hoc scenarios – such as wireless mesh networks – SD is an integral part of
auto-configuring service networks. Albeit the fact that auto-configuring networks
are more and more used in application domains where dependability is a major
issue, these environments are inherently unreliable. Because of a high variability
of link quality in such networks, the dependability of SD is expected to change
significantly with the positions of requester and provider.

Just as service usage, SD is an inherently time-critical process. A client using a
service expects it to perform until a required deadline. The longer discovery takes
to find the service, the less time the service has to perform. For modern network
scenarios, where SD is expected to become ever more important, Service Discovery
Protocols (SDPs) need to be able to reduce the time to discovery. They additionally
need to be able to meet this discovery deadline with a high probability. This prop-
erty is called responsiveness, the probability to perform within a deadline, even in
the presence of faults, as defined in [144]. For SD responsiveness just as for ser-
vice availability, evaluation needs to take into account the user-perceived scope: the
location of the acting nodes and the time of discovery.

General Scope of the Work

This thesis targets two areas of user-perceived dependability evaluation in service
networks. The first part of this work focuses on user-perceived service availability
as in Definition 1.1.

Definition 1.1. Given an ICT infrastructure N with a set of providing service in-
stances P and a set of service clients C, the user-perceived availability is the prob-
ability AP,c for a service provided by P to perform its required function when re-
quested from a specific client c ∈C. Service P is assumed to perform as required if
all ICT components necessary for communication between P and c are available.

Since availability is an intrinsic property of the ICT layer, a mechanism is needed
to reflect this characteristic in a service availability model. Following Definition
1.1, a service is available if all ICT components needed for interface connection
and communication during service provision are available. A model that describes
these ICT components can be called a User-Perceived Service Infrastructure Model
(UPSIM) as in Definition 1.2.

Definition 1.2. Given an ICT infrastructure N with a set of providing service in-
stances P and a set of service clients C, a providing service instance p ∈ P and
a service client c ∈ C with p,c ∈ N, a user-perceived service infrastructure model
Nupsim ⊆ N is that part of N which includes all components, their properties and
relations hosting the atomic services used to compose a specific service provided by
p for c.



6 1 Problem Statement, Approach and Contributions

As availability decreases over time, the last maintenance of components will also
impact the overall service availability. Moreover, the longer the service is expected
to run, the more relevant is the possibility of eventual failure during its execution.
One of the most common criteria when evaluating the quality of service providers
is their interval availability, the uptime of a system over a reference period which
is actually based on the instantaneous availability, the probability of a system to
be available at a given time. More background information on service availability
is given in Section 2.3.1. Part II provides a model-driven methodology to evalu-
ate user-perceived instantaneous service availability based on the properties of the
underlying ICT infrastructure.

The second part of this work focuses on the dependability of the discovery layer.
More specifically, the responsiveness of active decentralized discovery. Active SD
comprises operations where a client actively requests available service instances.
In decentralized environments, these instances will directly respond to the request-
ing client. This request-response operation includes retries in case responses do not
arrive in time. Responsiveness as introduced in [144] is defined as in Definition 1.3.

Definition 1.3. Responsiveness R is the probability of a system to operate success-
fully meeting a deadline, even in the presence of faults.

For discovery systems, the responsiveness reflects the probability of a client to
receive a required number of responses until a given deadline. In Part III, we first
provide insight into the responsiveness property in diverse SD scenarios under vary-
ing fault intensity. Second, we provide a hierarchy of stochastic models to evaluate
user-perceived responsiveness of IP network based, active and decentralized discov-
ery. The evaluation is again based on the properties of the underlying ICT infras-
tructure.

For simplification purposes, throughout the text service client and providing ser-
vice instance are also referenced as requester and provider, respectively. A mapping
of two specific instances requester and provider to the ICT infrastructure, that de-
fines the user-perceived scope, is referred to as service mapping pair.

1.2 Problem Statement

The goal of this work is the development of two related methodologies that auto-
matically generate evaluation models for user-perceived properties based on the cur-
rent state of the network. The first methodology covers user-perceived instantaneous
availability. The second methodology targets the user-perceived responsiveness of
the service discovery layer including experimental validation.
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1.2.1 User-Perceived Service Availability

A methodology is needed to support the model-driven assessment of user-perceived
non-functional properties, such as instantaneous availability, based on a UPSIM (see
Definition 1.2). To evaluate user-perceived service availability as in Definition 1.1,
the methodology needs to merge the four dimensions – infrastructure, service, user
and time – into a consistent model-driven evaluation. The methodology should in-
clude:

1. A model to describe ICT components including specific non-functional proper-
ties for availability evaluation (failure and repair rate, deployment time or time
after last maintenance action) and a formalism to model networks as relational
structures of those ICT components with the ability to assign roles (e.g. requester,
provider) to specific components.

2. A model to describe services hierarchically as a composition of atomic services,
including access times and durations of services.

3. A mapping of service elements to the relational structure that represents the ICT
infrastructure, defining concrete service requesters and providers under evalua-
tion and their redundant instances if available. In the case of redundant instances,
a temporal order needs to be specified.

4. Generation of a specialized UPSIM according to Definition 1.2, which includes
only those ICT components specific for the communication between a given pair
requester and provider during execution of a previously described service.

5. Generation of a user-perceived service availability model (UPSAM) from this
UPSIM according to the availability properties of the provided infrastructure at
a given point in time.

Items 1, 2 and 3 should facilitate updates, as the infrastructure, its properties, the
service description and user perspective will eventually change for different analy-
ses. The complete methodology should be automated as much as possible to elimi-
nate human errors during update or upgrade procedures. As a side goal, the method-
ology should be defined and implemented using well known standards and freely
available tools to support external verification and to facilitate its dissemination.

Failure rates of ICT components are assumed to be given by hardware ven-
dors or estimated using monitoring data, implying also software failures of service
providers. Repair rates depend on the implemented maintenance strategy. Obtaining
these values is out of the scope of this work. Modeling and predicting other exter-
nal factors like network load is also not considered. The effects of such factors are
assumed to be included in the failure and repair rates. This means we assume that
all faults from classes fail stop to byzantine that happen after a defined deployment
time are combined in the failure and repair rates of individual ICT components.
An ordered fault classification can be found in [25] and is illustrated in Figure 1.2.
We simplify the fault model by taking only constant failure and repair rates of ICT
components into account. However, the methodology should be prepared such that
given variable failure and repair rates, these could be included in the availability
evaluation of individual ICT components.
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Crash

Fail Stop

Fig. 1.2 An ordered classification of faults.

1.2.2 User-Perceived Service Discovery Responsiveness

A methodology is needed to quantify user-perceived responsiveness of active, de-
centralized SD. The user-perceived scope is defined by the position of requester
and provider and the time of discovery. The methodology needs to use a stochas-
tic model to evaluate responsiveness and an automated procedure that covers the
following steps:

1. Define SD scenario that contains requester and provider, protocol and deadline
for the SD operation.

2. Gather monitoring data from the network and prepare that data as input parame-
ters of the models.

3. Instantiate specific models using these parameters and the scenario definition.
4. Evaluate user-perceived responsiveness by solving these model instances.

This work focuses on IP networks and their most common SDPs: Zeroconf [54,
53], SSDP [93] and SLP [106]. The focus lies on dynamic ad-hoc networks such as
Wireless Mesh Networks (WMNs). Routing is done by the prevalent OLSR protocol
[57]. The methodology should support evaluation of three different variants of SD
responsiveness:

1. The responsiveness for different requester-provider pairs.
2. Average responsiveness of a specific provider for all requesters in the network.
3. A novel metric, the expected responsiveness distance should be investigated, to

estimate the maximum distance from a provider where requesters are expected
to discover it with a required responsiveness (see Definition 1.4).
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Definition 1.4. Let tD be the service discovery deadline, Rreq(tD) the required re-
sponsiveness at time tD, S a set of service providers and Cd ,d ∈ N+ sets of ser-
vice clients with d denoting the minimum hop distance of each client in Cd from
all providers in S. Let Ravg,d(tD) be the average responsiveness when discovering
S from Cd . The expected responsiveness distance der is the maximum d where
Ravg,d(tD)≥ Rreq(tD) and ∀d′ ∈ N+,d′ < d : Ravg,d′(tD)≥ Rreq(tD).

Considered faults are fail stop, crash, omission and timing (see Figure 1.2). Since
the focus is on the real-time behavior of the SDPs in the network, all other faults are
considered to be detected and recovered at higher layers and out of the scope of this
work.

Extensive series of experiments should be run with two goals. First, to provide
an insight into the behavior of responsiveness in modern service networks and to
understand possible shortcomings of current SDPs. Second, to correlate the estima-
tions of the proposed models with the actual measured responsiveness during the
same period. This serves to validate the models.

1.3 Approach

Part II focuses on service availability. While the term user-perceived availability has
been interpreted differently during the last 20 years, we define it as the availability
of a service as provided by specified instances to specified service clients at a given
point in time. Based on the approach initially introduced by Milanovic et al. in [157],
we define a set of models and a model-driven methodology to automatically gen-
erate availability models and calculate the instantaneous availability for any given
user perspective. Given a model of the network topology, a service description and
a pair service requester and provider, a model-to-model transformation is applied to
obtain a User-Perceived Service Infrastructure Model (UPSIM) as in Definition 1.2.
The approach uses a subset of Unified Modeling Language (UML) [170] elements
as well as UML profiles and stereotypes [171] to impose specific dependability-
related attributes to ICT components. The ICT infrastructure and services are mod-
eled independently using UML object and activity diagrams, respectively. Then, a
mechanism is used to project the properties of ICT components to services through
an XML mapping that correlates their respective models.

The methodology also provides a UML availability profile to obtain as output
instead of an UPSIM a specific availability model expressed as Reliability Block
Diagram (RBD) or Fault Tree (FT) to evaluate service availability for different user
perspectives. To support one main contribution of this work, the evaluation of user-
perceived instantaneous service availability, the probability of a service to be avail-
able at a specific point in time, the infrastructure model also includes the failure
and repair rates and deployment times for all ICT components. The mapping model
contains concrete ICT components for the agents service requester and provider,
including possibly redundant components and their expected duration of usage.
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Part III focuses on SD responsiveness. This property to date has seen no thorough
evaluation and an extensive series of experiments is first done to get an idea about
the characteristics of SD responsiveness in the target networks. The experiments are
run in two different testbeds. The first is a virtual testbed where both topology and
fault intensity can be controlled. The second is the Distributed Embedded Systems
(DES) wireless testbed at Freie Universität Berlin, which provides realistic fault
behavior. Both testbeds should guarantee a solid understanding on the state of SD
responsiveness.

Second, a methodology is developed that considers the user-perceived respon-
siveness of given communication partners in active, decentralized SD. It estimates
packet loss probabilities and transmission time distributions for each link on the
communication paths between the partners and generates specific model instances
to assess SD responsiveness. The hierarchy of stochastic models consists of mainly
two parts. The higher level model describes the SD operation itself as a stochastic
process using a regular discrete time Markov model. To map the discovery oper-
ation to a network under analysis, the individual SDP packets and their traversal
through the network under analysis is done using semi-Markov models. They pro-
vide for each SD packet the probability to traverse the network and a distribution of
the time to do so successfully. Their output is used to calculate the probabilities in
the higher level model. In case no detailed knowledge about the lower network lay-
ers is available, the higher level SD model can also calculate responsiveness using
measurement based distributions. Finally, the stochastic models are correlated with
the actual results of the experimental evaluation to demonstrate their validity.

1.4 Main Contributions

The overall contributions of this dissertation are two different methodologies for
user-perceived dependability evaluation in service networks. Both methodologies
have the same foundation, to generate models for dependability evaluation bot-
tom up based on the current monitored state of the network and to allow a time-
dependent dependability evaluation using these models. Specific advances to the
state of the art are mentioned in the following. More detailed contributions can be
found in the individual chapter summaries.

• A fully model-driven methodology with state of the art tool support is provided
which automatically generates and evaluates user-perceived instantaneous ser-
vice availability models with a series of model to model transformations. The
methodology contains proper specifications of the models and meta-models and
the relations among them. All models were chosen focusing on visualization,
such that while the methodology is able to work fully automated, human opera-
tors are able to understand the output models and manipulate the input models.

• For user-perceived instantaneous service availability evaluation, a concept of
time for services and components is integrated into the methodology. This al-
lows for a calculation of service availability at any point in time, based on the
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individual age and wear of all components necessary for service provision be-
tween specified clients and providers.

• A comprehensive evaluation of service discovery responsiveness in experiments
is presented. This evaluation goes beyond the state of the art in showing the
dependence of responsiveness on the fault intensity, the number of actor nodes
and the required time to successfully finish operation.

• This is the first methodology that enables generation and solution of stochas-
tic models to calculate user-perceived responsiveness of service discovery. The
model generation is hierarchical and models within the hierarchy can be ex-
changed or measurements used instead.

• The Monte Carlo method Probabilistic Breadth-First Search (PBFS) allows to
efficiently estimate the reachability of network-wide broadcast protocols, which
facilitates analysis of many other broadcast and multicast based protocols apart
from service discovery.

• The ExCovery framework was developed to support experiments in distributed
systems. ExCovery provides concepts that cover the description, execution, mea-
surement and storage of experiments. These concepts foster transparency and
repeatability of experiments for further sharing and comparison. ExCovery is re-
leased under an open source license to spur further development [8].

1.5 Structure of the Manuscript

This work is further structured as follows. We first summarize background infor-
mation and related work in Chapter 2. The experiment framework ExCovery that
was used to carry out the experiments on SD responsiveness is explained in detail
in Chapter 3.

Part II covers the methodology to automatically evaluate user-perceived service
availability. In Chapter 4, we define the input models and how the methodology
uses them to calculate user-perceived steady-state and instantaneous service avail-
ability. Chapter 5 demonstrates the feasibility of the methodology by applying it to
parts of the service network infrastructure at University of Lugano (USI), Switzer-
land. The service availability part is concluded by discussing further applications of
the methodology and how to combine it with the later described service discovery
models.

Part III of this work focuses on SD responsiveness. We present the results of ex-
tensive experimental evaluation in Chapter 6. Chapter 7 introduces the hierarchy of
stochastic models to calculate responsiveness and also describes the Monte Carlo
method PBFS. The part is concluded in Chapter 8, where the model results and ex-
periment measurements are correlated. Advantages and shortcomings of the models
are discussed.

Part IV closes the work and gives pointers for future research.





Chapter 2
Background and Related Work

Abstract Background information and an overview of related work is provided. We
cover the main topics important to the work presented in subsequent chapters. The
topics include the concepts of service oriented computing and service dependabil-
ity metrics. We introduce models to evaluate these metrics with a special focus on
wireless mesh networks.

2.1 Service-Oriented Computing

In the last decades, increasing requirements for both functional and non-functional
properties have lead to a significant rise in system complexity. As a parallel trend,
modern businesses are relying ever more on IT services. The whole concept of cloud
computing is based on processes realized by a complex interaction of services [19].
Thus, businesses are heavily dependent on predictable service delivery with specific
requirements for timeliness, performance and dependability. Failing to meet these
requirements can cause a loss of profits or business opportunities and in critical do-
mains, can have an even more severe impact. In order to tame complexity and enable
efficient design, operation and maintenance, various modeling techniques have been
proposed. They strive to help in better understanding IT systems by describing their
components, predicting their behavior and properties through analysis, specifying
their implementation and finally, enabling system validation and verification.

Computing and communication infrastructures have been converging rapidly in
the last decade. Increased networking capabilities have allowed mobile and embed-
ded devices to pervade areas of computing that used to have fixed environments
which has helped to make them more flexible and dynamic. A plethora of new de-
vices with different capabilities has entered traditional networks. At the same time,
we experience a ubiquity of connectivity in traditional computing environments.
This brings the need for a unified architecture to connect all devices and leverage
the services they provide.

13
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A network service in general is an abstract functionality that is provided over
the network. It can be leveraged by using the methods of an interface on a specific
instance providing that service in the network. Historically, services have existed in
computer networks since the first networks were constructed. The difference today
is that in service-oriented computing, protocols and interfaces are being developed
and deployed that provide standardized methods for the different layers of service
usage. Service-Oriented Architecture (SOA) describes a paradigm where services
are the basic building blocks of system design. It recommends the design and im-
plementation of interoperable services as discrete system components. SOAs are
most commonly realized by means of web services [178] but in theory this is not
a mandatory technological requirement. A business process model contains a clear
specification of which services the system must provide to successfully accomplish
a business goal. A concise overview on SOA is given in [119] while a comprehensive
description of SOA and its principles can be found in [81]. The Organization for the
Advancement of Structured Information Standards (OASIS) provided a reference
model [141] in 2006 to enable the development of SOAs following consistent stan-
dards. Building these standards, Service Component Architecture (SCA) provides a
programming model for building applications and solutions based on a SOA and is
specified in [168]. Service-oriented system engineering [228] finally specifies the
development phases of service-oriented methodology: specification, analysis and
validation. As one of many examples, a rigorous model of SCA is presented in [77]
that allows verification of such service component based systems.

2.1.1 Zero Configuration Networking

Supporting complex business processes, which possibly traverse multiple adminis-
trative boundaries, SOAs tend to be tedious to set up. Within every service-oriented
domain, various layers of service usage need to be defined and configured for suc-
cessful operation of the service network. These layers incorporate for example net-
work addressing, service discovery, service description, application and presenta-
tion. The first service networks have been centrally administrated. In the last decade
new technologies have emerged with methods to automatically configure the various
layers of service usage. These methods are an integral part in self-organizing ad-hoc
environments where service networks – and the service instances within – are shared
by different administrative domains with no central authority. In such environments
service auto-configuration provides significant benefits. However, self-organizing
networks are frequently deployed with wireless technology which is inherently un-
reliable. It is the goal of this work to investigate the dependability of decentralized
service network protocols, specifically service discovery, in such networks.

Devices should be able to connect to the network and automatically configure all
layers necessary for communication in the network, publishing, discovering and us-
ing service instances. This approach is called Zero Configuration Networking [51]
and its basic requirements were formulated in [110], including addressing on the
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network layer, decentralized name resolution, service discovery and description. All
layers were supposed to be automatically configured and maintained, without ad-
ministrative intervention. Possible protocol candidates to support the concepts were
presented for example in [104]. Today various implementations exist to meet those
requirements. In Internet Protocol (IP) [187] networks, which are the focus of this
work, the most complete and prevalent ones are Zeroconf [55] and Universal Plug
and Play (UPnP) [231]. Both have seen substantial backing through standardization
and industry patronage and most devices targeting auto-configuring networks today
support at least one of two. In the last years, with the rise of the Internet of Things
[21], there has been a major shift in the targeting of auto-configuring service net-
works from home appliances to a globally connected, pervasive and heterogeneous
network. Service-oriented concepts now also span such heterogeneous networks of
smart embedded devices [99]. This creates major challenges for a manifold of prop-
erties within such networks, among them dependability [58]. The work at hand tries
to address one part of this when investigating responsiveness of service discovery.

For the network layer, more precise requirements were defined in [243] to auto-
matically configure IP Hosts. This lead to a standard for the dynamic configuration
of link-local, non-routable IPv4 addresses which was based on the universally uti-
lized address Address Resolution Protocol (ARP) [185], as described in [52]. The
method today is known mostly under the term AutoIP. The dependability of AutoIP
has been thoroughly investigated in research since its introduction and since it is not
the focus of this work, no details will be given here. However, the models used in
[39] to optimize retry strategies of the AutoIP protocol have been very influencing
in investigating similar real-time Problems on the discovery layer, as presented in
Chapter 7. In [39], the authors use Markov reward models [133] to intuitively de-
scribe the AutoIP protocol. We instead use both regular and semi Markov models
to describe the discovery process in Chapter 7, but benefit from a similar intuitive
transformation of the protocol standards to stochastic processes.

Dependability evaluation in auto-configuring service networks has been carried
out on various dependability properties, e.g., robustness of service discovery with
respect to discovery delay times [172] or cost-effectiveness of network address con-
figuration [39]. The performance and cost-effectiveness of service discovery using
Local Link Multicast Name Resolution (LLMNR) [14] and multicast Domain Name
System (mDNS) [54] with respect to network traffic generation and energy con-
sumption is evaluated in [45]. This paper covers no effects of packet loss, an albeit
common fault in wireless networks.

2.1.2 Service Composition

One important concept in SOA is composition, the possibility to combine the func-
tionality of multiple services to provide more complex functionality as a composite
service with a single interface. Service composition is supported first and foremost
by the principles of composability and reusability [81] and has been a core focus
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of SOA development and deployment from the very beginning [195]. A main chal-
lenge is the automatic composition of complex services from available resources
and the verification and maintenance of such compositions, tackled among others
in [167, 107, 155]. Additionally, compositions should be chosen with the goal of
maximizing a specific quality metric [247], for example the availability of service
delivery.

Following the all-encompassing work on composition in [155], if the individual
services within a composition are indivisible entities regarding their functionality,
they can be called atomic services. A composite service is composed of and only of
two or more atomic services, while an atomic service can be part of any number of
composite services.

Ideally, atomic service functionality should not be redundant, that is, every
atomic service provides a different functionality. For instance, a composite service
email could be divided into the atomic services authenticate, send mail and fetch
mail. The indivisibility of atomic services is obviously in the eye of the beholder.
Usually, their granularity is defined by the re-usability within the business process
models. The atomic services authenticate, send mail and fetch mail could also be
split into finer grained services. However, if the complete business process is well
described with the current granularity in such a way that any of those three atomic
services can be reused within other composite services without modifications, there
is no need for further reduction. Throughout this work, we adopt and extend the ser-
vice definition from Milanovic et al. [157], where complex services are described
as a composition of atomic services:

Definition 2.1. Service is an abstraction of the infrastructure, application or busi-
ness level functionality. It consists of a contract, interface, and implementation. [...]
The service interface provides means for clients to connect to the service, possibly
but not mandatory via network.

2.2 Service Discovery

In Service-Oriented Architecture (SOA), emphasis is put on the consideration of dif-
ferent ownership domains, so interoperability among services is an important aspect.
There must be a way for potential partners to get to know of each other. This oblig-
atory aspect is called visibility which is composed of awareness, willingness and
reachability according to [141]. Among the principles introduced by SOA to sup-
port this aspect is discoverability. A comprehensive list and description of principles
can be found in [81]. Discoverability means that structured data is added to service
descriptions to be effectively published, discovered and interpreted. Communica-
tion of this data is done by means of Service Discovery (SD) and implemented by
concrete Service Discovery Protocols (SDPs), which take care of announcing, enu-
merating and sorting existing service instances. Apart from [81], the basics of SD
are explained for example in [198, 114] and, more recently, a survey has been given
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in [150]. Service discovery is actually a special case of resource discovery in the
network and a taxonomy exists with [232].

Service instances are often identified by a Universally Unique Identifier (UUID)
which might also be a human-readable name. SD additionally provides a descrip-
tion of each enumerated instance, which contains the service type and holds more
specific information for a client, for example, to locate the instance in the network,
bind to it and use its provided service. Complete SD is thus a two-step resolution
process that first resolves a service type to a number of instance identifiers and then
resolves an instance identifier to an instance description. The resolution process is
not necessarily carried out in two steps by the SDP on the network. Enumerating
and describing service instances is in fact frequently performed within one SD re-
quest packet and its response. The amount of description needed to use a service
varies depending on the information already included within the service identifier
and prior knowledge of service clients. In general, a service client needs at least
the network location of a providing instance, for example the IP network address
and port to connect to. On top of that, a description can also provide a communi-
cation protocol and information specific for the requested service type. In the case
of a printing service, for example, this could be the IP printing protocol and the
information that this printer is able to print in color.

The service instances which have been enumerated by SD can be sorted in a
subsequent step according to functional and non-functional requirements. This fa-
cilitates autonomous mechanisms like optimization of service compositions or fall-
back to correctly operating instances in case any one of the instances currently in
use fails. These are capabilities which support the envisioned pervasive comput-
ing environments (see Section 2.1.1). In fact, decentralized SD, which is the main
focus of analysis in Part III, was developed especially for pervasive computing. De-
centralized SDPs regarding their concepts and capabilities have been classified in
[249]. Unfortunately, the classification does not include the widespread Zeroconf
protocol, which is, however, included in a survey by the same authors in [250]. A
brief overview on decentralized SD systems can also be found in [79].

As we will show in Part III, the first generation of SDPs’ extensive usage of
multicast creates considerable challenges for the dependability of SD in multi-hop
ad-hoc networks. No satisfying flooding mechanism exists to date in such lossy net-
works that combines both a high reliability and performance. For this reason, novel
SD mechanisms have been proposed. Their improvements include a reduction of
the propagation depth of discovery messages in the network [48], an inclusion of se-
mantic information about the pervasive environment in the SD messages [220, 221],
cache and retry timing optimizations [45] or cross layer solutions as in [138]. The
authors of [89] introduce a middleware to abstract from the heterogeneity of differ-
ent SD mechanisms and translate among them. A related approach exists in Eureka,
where Zeroconf SD is used for component deployment [182]. Other approaches
cover the transfer of the existing methods from IPv4 to IPv6 networks [122]. A
survey with a comparison of many of these novel SDPs with a focus on ad-hoc net-
works is given in [154]. It needs to be noted, however, that none of the mentioned
approaches provided intriguing benefits to gain significant industry backing.
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2.2.1 Service Discovery Architectures

An abstract service class, such as printing is provided by concrete service instances
in the network, for example printer A, B and C. A set of abstract service classes S
can be provided on a set of concrete service providers P which then use a SDP to
make the service known to requesting clients C. This process may be supported by a
set of service registries R. Throughout this work, we will also call theses providing
instances service providers and the clients trying to discover these instances service
users. The three actor roles connected by SD can also be called user agent, service
agent and directory agent [89]. They are also known as service consumer, service
provider and service broker [43]. In this work, we will use the taxonomy of a general
SD model developed by Dabrowski et al. in [66, 70], in which these roles are called
Service Manager (SM), Service User (SU) and Service Cache Manager (SCM). We
will use these specific terms only to improve readability in figures and stick instead
to the intuitive terminology as given above. There is a slight difference however, as
the authors of [70] distinguish between the actors themselves and software artifacts
which act as agents in the process. An SM publishes its service on behalf of a service
provider either autonomously or via a registry. It makes a service description avail-
able with information on how and where its service can be invoked: The provider
identifier, a service type specification, an interface location or network address and
optionally, various additional attributes. The SU discovers services on behalf of a
user either by passively listening to announcements done by SAs or registries, by
actively sending out queries to look for them, or by doing both.

As mentioned before, SD can happen in separate steps, enumerating discoverable
instances first and then selectively retrieving the description. Also, not only services
can be discovered, but administrative scopes, registries and service types, depending
on the SDP. A registry caches service descriptions of multiple providers to maintain
a list of present services that can be queried by clients. Registries are usually used to
improve scalability. It should be noted that most SDPs implement also a local cache
on clients and providers to reduce network load.

Two different SD architectures can be distinguished, as depicted in Figure 2.1:
Two-party, where all SD actors A ⊆ P∪C and three-party, where A ⊆ P∪C ∪R
and A∩R ̸= /0. In two-party or decentralized architecture, there exist only clients
(SUs) and providers (SMs) in the network which communicate directly among each
other. A client that is interested in the functionality given by a specific service class
discovers providers by a combination of passively listening to announcements and
actively sending requests, with retries in specific intervals. All providers that may
answer a query respond with a discovery response that is sent to the network or
directly to the client. Depending on role and architecture, different communication
types are used: unicast, multicast or broadcast. Two-party architectures are the main
focus of the evaluation in Part III. The use of multicast generally causes higher load
on the network than unicast. However, it may suppress requests from other clients by
responding proactively and considerably simplifies distributed cache maintenance.
The architecture is called three-party or centralized if there is one or more registry
(SCM) present. Centralized does not imply a preceding administrative configuration
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because a registry itself can be discovered at runtime as part of an SD process. There
exist mixed forms that can switch among two- and three-party, called adaptive or
hybrid architectures.

SU
SM

SM
SCM

Discover SCM(s),
Request SM(s)

Answer 
Requests

Discover SCM(s),
(De-)Register

SM

SM SM
SU

Request SM(s)

Answer 
Requests

Fig. 2.1 Illustration of service discovery architectures: two-party (left) and three-party (right). SM:
Service Manager or provider, SU: Service User or client, SCM: Service Cache Manager or registry

2.2.2 Service Discovery Protocols

The currently most common SDPs are presented and compared in [70, 198, 242].
Surveys on existing approaches to service discovery systems in ubiquitous comput-
ing environments can be found in [220, 250, 79]. They cover all well-known existing
approaches to auto-configuring service networks. Such systems are the target envi-
ronment of the experimental analysis in the work at hand. In IP networks, three SDPs
are prevalent: Service Location Protocol (SLP) [103, 234, 106], Simple Service Dis-
covery Protocol (SSDP) [93] and Domain Name System based Service Discovery
(DNS-SD) [53]. DNS-SD as part of the Zeroconf protocol family is referred to by
that name throughout the rest of this work. Zeroconf SD relies on a working DNS in
the network, which is usually provided by Multicast DNS (mDNS) [54] support on
all participating nodes. Especially SSDP and Zeroconf can be found in a plethora
of embedded devices, such as printers, network-attached storage or cameras. The
protocols transmit messages using the lightweight User Datagram Protocol (UDP).

Discovery protocols recover from timing and omission faults by retrying requests
in certain intervals. The number of retries and the time between them vary among
the protocols. Zeroconf and SLP specify an initial retry timeout and then double it
every period. In SSDP, the requester may choose a timeout in a specified interval
for every period. Values for the individual intervals are shown in Table 2.1. Quan-
titative analysis of specific properties to justify these strategies, responsiveness in
particular, is practically non existent. They should be seen as best effort approaches.
This is motivation for the analysis in Chapter 7, which in fact shows that static retry
strategies struggle to perform reliably in dynamic networks. On the other hand, it is
not trivial to find optimal retry strategies.
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Table 2.1 Service discovery retry intervals for the studied protocols

tretry(1) tretry(2) tretry(3) tretry(4) tretry(5)

Zeroconf 1s 2s 4s 8s 16s
SLP 2s 4s 8s 16s 32s
SSDP (min/max) 1s/5s 1s/5s 1s/5s 1s/5s 1s/5s

A comparison of service discovery protocols, namely SLP, Jini (now known as
Apache River [17]), salutation and SSDP can be found in [31]. A more recent and
up-to-date collection of SDPs for energy and resource constrained embedded de-
vices which also contains Zeroconf is presented in [236]. The authors also evaluate
the mentioned protocols with respect to their adequacy in the target environment.

Protocol Communication Types

Depending on role and architecture, different communication types are used by the
protocols: unicast, multicast or broadcast. Some SDPs include routing mechanisms,
hence, overlay networks in their communication logic which is generally called SD
with structured communication approach. Others leave this to the underlying lay-
ers, following an unstructured approach. Furthermore, the communication scheme
used for discovery can be classified as passive (or lazy), active (or aggressive) or di-
rected. In passive discovery, clients discover discoverable items only by listening to
their unsolicited announcements. When doing active discovery, clients actively send
out multi- or broadcast queries. In directed discovery, clients actively send unicast
queries to a given registry or provider. There are many messages used by the SDPs
to coordinate the distributed system, maintain a consistent state and optimize net-
work traffic. All three common IP network SDPs follow an unstructured approach
and do both active and passive discovery.

Replying by multi- or broadcast is useful to reduce multiple identical responses.
Also, it updates information about present service instances on all nodes receiving
the response and might suppress subsequent requests by other clients for the same
service type. Sending replies via unicast on the other hand make sense if they con-
tain information that is only valid for the requester. What messages are being sent
by unicast or multi- and broadcast is basically a trade-off between network load and
service data distribution and this trade-off is being evaluated differently in common
SDPs. A sound compromise seems to be to resolve service types via multi- or broad-
cast and, if necessary, to resolve instance identifiers via unicast. This means to get a
list of existing providing instances for a given type via multi- or broadcast and then
ask a more precise description of a specific instance via unicast.
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Zeroconf service discovery

Since Part III of this work focuses mainly on the Zeroconf SDP, we will give a more
detailed introduction in this section. The Zeroconf stack works on top of the IP and
has a very low overhead compared to other service network stacks, such as UPnP.
It still provides complete auto-configuration of all layers up to service discovery. In
recent years, Zeroconf became increasingly popular and by today is supported by
numerous network services like printing, file or screen sharing and others. Linux and
Macintosh operating systems including their mobile variants are deployed with Ze-
roconf technology enabled by default and implementations exist for virtually every
operating system. The Zeroconf service network stack is described in detail in [55].
In short, Zeroconf handles the three lower layers of service networks [231] and uses
specific protocols to automatically configure them and to provide their functionality.

1. Addressing – To take part in the network, every node needs a unique network
address. The protocol used for auto-configuration is the ubiquitous Automatic
Private IP Addressing which is better known as AutoIP and standardized in [52].
AutoIP introduces special types of Address Resolution Protocol (ARP) [185]
messages called ARP probes.

2. Name resolution – Service identifiers need to be resolved to network addresses
for clients to be able to connect and bind to services. Zeroconf uses a multi-
cast version of the Domain Name System (DNS) [163] called mDNS [54]. This
protocol can configure names for service instances and resolve them to network
addresses.

3. Discovery – To reduce the number of different protocols, Zeroconf uses a DNS-
based Service Discovery (DNS-SD) mechanism [53]. All service instance iden-
tifiers as well as service types are handled as DNS names and as such can be
resolved by mDNS on the lower layer. DNS-SD is merely an extension to DNS
that provides additional record types for service discovery.

4. Description – The description needed to connect a service includes the network
address and port. This functionality is also provided by DNS-SD. DNS-SD can
provide a more complete description of service instances with additional DNS
TXT records although this is not of importance within the context of this work.

In Zeroconf , most discovery requests and responses are sent via multicast to
ensure a high distribution of the data. A single service discovery, as carried out in the
experiments in Chapter 6, consists of a single multicast request with multiple retries
1, . . . , i. The waiting time before a retry is 2i−1 seconds (see also Table 2.1). During
that time the service client continues to wait for responses from service providers.
Upon arrival of responses, it includes these known answers in subsequent requests
to suppress duplicate responses. In [92], an approach is proposed which uses DNS-
SD in wide area networks with centralized DNS servers to support discovery in
service-oriented computing environments. The authors introduce specific service
types for web services. Stolikj et al. have recently introduced a proxy concept to
allow a 3-party architecture using Zeroconf SD [215]. So far, this approach remains
a proof-of-concept and has seen no adoption in the official implementations.
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Universal Plug-and-Play

The Universal Plug-and-Play (UPnP) protocol stack just as Zeroconf not only pro-
vides SD but defines layers for the complete auto-configuration of service networks
including the service control and presentation. The full architecture is defined in
[231]. For discovery, SSDP is used which works both in two and three-party mode.
Messages are sent using the Hypertext Transfer Protocol (HTTP) over UDP. Re-
quests are generally sent via multicast while responses are sent using unicast. Ser-
vices are identified by a unique URI-tuple containing instance identifier and the ser-
vice type, while the different types are standardized. Every UPnP service provider is
accessible at a specific URL in the network where more details about the instance,
other than its generic service type, can be obtained. Thus, using SSDP only instances
of a specific service type can be enumerated, a more sophisticated discovery is not
possible.

Service Location Protocol

Development on Service Location Protocol (SLP) started at the end of the last cen-
tury. The latest standard for the protocol can be found in [106]. SLP has initially
seen considerable industry support from companies like IBM, Hewlett-Packard, Sun
Microsystems, Novell and Lexmark. SLP provides service clients with informa-
tion about the existence, location, attributes and configuration of service instances.
Within SLP, clients are modeled as User Agents and services are advertised by Ser-
vice Agents. For scalability, a registry or Directory Agent may be used. In a two-
party architecture, SLP uses multicast for requests and unicast for the responses
while in three-party architecture, only unicast is used after a registry has been dis-
covered. SLP messages are mostly text-based packets which are sent over UDP port
427. The search for services can be done by type or specific attributes rather than
only by instance name. Services and their attributes are encoded in URLs in the
form:

service :< srvtype >: // < addrspec >

In this URL, <addrspec> is a hostname or the dotted decimal notation of a
hostname, followed by an optional colon and port number. A service scheme URL
may be formed with any standard protocol name by concatenating service: and
the reserved port name. There is also the possibility to have abstract and concrete
service type as in:

service :< abstract− type >:< concrete− type >: // < addrspec >
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Diverse other protocols

Several other SD protocols exist, although none of them have seen a considerable
distribution in IP networks. We will list a short selection as reference. There ex-
ist complete application frameworks for short range wireless communication which
include ad-hoc networking and discovery of existing devices and services. Most
prominent are the Bluetooth system [35] and ZigBee, for which also a UDP/IP adap-
tation exists [223]. Once developed by Sun Microsystems, the Jini was a Java based
technology for service-oriented computing. It is now known under the name Apache
River and its specifications can be found in [17].

It has always been a tempting approach to embed SD within the routing layer to
reduce the load of discovery communication. At the same time, SD would benefit
from platform-specific optimizations on the lower network layers. This is of course
at the expense of compatibility and a separation of concerns. Examples of such ap-
proaches can be found in [209] and, as a specific extension for OLSR, in [189].
The authors of [131] propose an overlay network for SD to improve flooding per-
formance. In [143], diverse transparent cache strategies are proposed to improve the
quality of SD in mobile networks with frequent partitioning of the network.

Finally, a lot of work has been done on improving the semantic expressiveness
of SD requests and responses. Although this does not improve the real-time behav-
ior of SDP operations, it might increase the probability for a client to get useful
responses to a well-posed request. The fault model considered in this work does not
include faults caused by unnecessary or omitted responses. These faults have to be
recovered at a higher layer than the SDP itself and semantically enriched SD is one
way to do that. An overview on personalized SD mechanisms in ubiquitous com-
puting is given in [180]. How existing SD protocols could be extended to support
semantically richer discovery is outlined in [239]. Prominent candidates for SD with
increased semantic capabilities are, for example, GloServ [18], EASY [29] and the
approach proposed by Paliwal et. al in [177].

2.3 Service Dependability

When evaluating the quality of service provision, various metrics have been the
subject of interest. Metrics can be roughly categorized in performance and depend-
ability related properties but depending on the focus of analysis and because of the
interdependencies of non-functional properties, other categories can be justified as
well. Computer systems do fail [97] and it is not the goal of this work to repeat the
core research that has been done on dependability in the last decades. Instead we
will provide works that give an overview and describe in more detail the metrics
of interest to the research presented here. A concise summary of the concepts of
dependable computing including a taxonomy can be found in [23]. We refer to [85]
for a comprehensive definition of various dependability metrics. Among them are
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reliability [83, 84] and performability [86], which form the base of availability (see
Section 2.3.1) and its special case responsiveness (see Section 2.3.3).

In dependable computing the notion exists of faults which lead to errors in the
system which in turn, if not handled properly, might cause system failures [113].
The fault is thus the initial state change, manifesting itself in an observable error in
the system which by itself or in series, provokes system behavior not conforming
to the requirements, hence, a failure. Dependable computing means dealing with
the ever-occurring faults by reducing their number of occurrence (avoidance and re-
moval during design and testing) and by limiting their impact (tolerance and evasion
during runtime). An ordered fault classification can be found in [25]. Dealing with
faults reduces the risk of system failure and their are various techniques to achieve
this. For example, redundancy is a classical way of tolerating faults. Proactive fault
management describes a novel approach to achieving a more dependable system by
acting before a failure occurs [205]. All of those techniques require that faults can
be detected and possibly located, which requires precise monitoring at runtime. A
survey of online failure prediction methods, which can be used for proactive fault
management can be found in [204]. An approach to adapt service-oriented systems
proactively to improve dependability has recently been proposed in [151].

More focused on dependability of distributed systems in general, a superset of
service networks, are the works in [63, 123]. Service-oriented systems have had
their own share of dependability research. Fault taxonomies for SOA and for web
service composition can be found in [44, 43] and [49], respectively. In [44, 43],
also discovery faults are included. Important for discovery responsiveness are the
class of discovery timing faults. Works on analyzing and maintaining quality of
service throughout the service lifetime include [135, 46, 213]. Since determining
the system state is crucial for precise dependability assessment, accurate monitoring
systems are needed, possibly adapting to changes in the business process or in the
services implementing such processes [26]. Since we cannot have perfect monitors
in a dynamic distributed system, analysis also has to deal with the uncertainty in
such monitored data, which can be considerable [95].

2.3.1 Availability

One important dependability metric in distributed systems is availability, which in
general is the probability of a system to operate successfully. In case of service
availability, this denotes the probability of a system to provide a specific service.
System and service availability have been explained in numerous works already. It
is the goal of this section to repeat only the most common characteristics in terms
of the relationship of failure and repair rates and availability as this is important for
the work at hand. For more in-depth information, the foundations of availability as
a metric, which is based on reliability, can be found in [85]. A more detailed but
nonetheless concise overview presents [98] which explains also common miscon-
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ceptions about availability and reliability analysis. A study on the topic with a more
specific focus on distributed systems like service networks can be found in [73].

Following Definition 2.1, there is a direct link between atomic services and the
Information and Communications Technology (ICT) infrastructure, its hardware and
software components required to provide the specified functionality. A service can
be assumed to be available at the time it is requested if all network infrastruc-
ture components that are needed for communication between service requester and
provider are available for the duration of service provision. This section will thus
first explain different ways to calculate component and service availability.

Empirical analysis has shown that components are more prone to failure at the
beginning and at the end of their life-cycle. In this sense, the failure rate (λ ) over
time results in the so-called bathtub failure curve. Vendors usually try to mitigate
the effects of infant mortality by intensively testing the hardware before dispatching
it so that customers receive the product at the stage of lowest failure probability,
in which the failure rate is nearly constant until the wear-out stage, that delimits
the end of product’s life-cycle. This stage of constant failure rate corresponds to
the major part of the life time of an electronic component. The failure Probability
Density Function (PDF) f (t) gives the relative frequency of failures at any given
time t. For a constant failure rate, it can be approximated as an exponential function
(see Equation 2.1).

f (t) = λ · e−λ ·t (2.1)

The Cumulative Distribution Function (CDF) F(t) represents the probability of
a failure occurring before time t, and is given by the Equation 2.2.

F(t) =
 t

0
f (t) ·dt = 1− e−λ ·t (2.2)

The complement of the CDF is therefore the probability of a component to per-
form its functions for a desired period of time without failure, better known as the
reliability R(t) of a component (Equation 2.3).

R(t) = 1−F(t) =


∞

t
f (t) ·dt = e−λ ·t (2.3)

For repairable systems, the probability of a component to be alive at time t is
given by the probability that no failure has occurred before t, which is the reliability
R(t) itself, and the probability that after the last failure, the component was repaired
at time x, with 0 < x < t, and has worked properly since then, R(t− x). This prob-
ability is called availability A(t) or more specifically, instantaneous availability. It
can be expressed in terms of R(t) and the probability of repair at instant x, given by
m(x) ·dx (see Equation 2.4).

A(t) = R(t)+
 t

0
R(t− x) ·m(x) ·dx (2.4)



26 2 Background and Related Work

For constant failure rate λ and repair rate µ , the availability A(t) can be expressed
as in Equation 2.5. As can be noticed, for a repair rate tending to zero, A(t) tends to
reliability R(t).

A(t) =
µ

λ +µ
+

λ

λ +µ
· e−(λ+µ)·t (2.5)

The interval availability AI(t) is the probability that a system is operational dur-
ing a period of time (Equation 2.6).

AI(t) = A(0, t) =
1

t−0
·
 t

0
A(τ)dτ (2.6)

Throughout this work, the function A(t1, t2) is used interchangeably for interval
availability, where t1 and t2 denote the start and end times of the evaluated interval.
The steady-state availability is the probability that a system is operational when
t → ∞. As seen in Equation 2.7, it depends only on the failure and repair rates of
components.

A =
µ

λ +µ
(2.7)

Hardware vendors usually provide the Mean Time To Failure (MTTF) of their
products. For repairable systems, the Mean Time Between Failures (MTBF) can be
used instead, which means that a unit is not replaced but repaired after a failure. In
either case, the Mean Time To Repair (MTTR) depends on the implemented main-
tenance processes. For instance, a network administrator may have to completely
reinstall and reconfigure a server, or simply use a replacement machine ready for
eventual failures. The first case can lead to a longer MTTR. Constant failure and
repair rates can be obtained by calculating Equation 2.8 and 2.9, respectively.

MT T F =
1
λ

(2.8)

MT T R =
1
µ

(2.9)

Equation 2.10 then calculates the steady-state availability of a component or a
system using those values.

Acomp =
MT T F

MT T F +MT T R
=

MT T F
MT BF

(2.10)

2.3.2 Availability Evaluation

Comprehensive collections of foundations, models, methods and tools that can be
used for service availability assessment can be found in [156, 124, 147, 121]. In
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[225], various stochastic models for availability assessment are explained and com-
pared in case studies. More recently, the CHESS project [20] was founded by a joint
of public-private partners of the European Union to support the development of an
automated tool for dependability analysis. The CHESS project focuses on embed-
ded systems and provides an Eclipse-based tool with its own modeling language.

The automatic generation of steady-state service availability models from service
descriptions and infrastructure information is presented in [158, 148, 156, 157]. In
fact, the authors also calculate instantaneous availability, assuming that all service
components have been deployed at the same time, hence, they have the same age.
Due to this limited concept of component and service time, the usefulness of the
approach is clearly in steady-state analysis. The methodology relies on a config-
uration management database system to gather topology information at run-time,
but prior evaluation during design time is also contemplated. The description of the
ICT infrastructure could be completely automated. As a drawback, this requires an
external tool, such as a network management tool, to provide the information. The
automation has thus not yet been fully realized, however the approach has been im-
plemented in [230]. In their methodology, the authors propose the usage of a Depth-
First Search (DFS) algorithm [87] to discover all possible paths between service
requester and provider. For each path a boolean equation is generated. The paths are
then merged and simplified into a single equation using an external boolean solver
application. This resulting equation is converted to an RBD model which is, again,
evaluated with an external application.

A related approach with state-of-the-art tool support is presented in Part II of the
work at hand. Its main methodology is based on the work by Milanovic et al. in [157]
and designed to work fully automated. It addresses some of the shortcomings of the
approach presented by Milanovic et al. by providing a fully model-driven workflow
with proper specifications of the models and meta-models and the relations among
them. This allows for a series of model-to-model transformations to generate e.g. the
availability models, but also other output models are possible by design. In [230],
a similar idea was pursued using an intermediate model representation. However,
necessary details about the approach have not been published and the concept itself
is limited when compared to the workflow provided in Part II. The approach in this
work can be employed with minor modifications for different types of dependability
evaluation: A different UML profile and the final model transformation needs to be
specified. In addition to the model-driven design, our approach uses more expressive
models for the infrastructure representation. The UML object diagram used is highly
versatile, which allows to specify not only inherent properties of components but
also structural information such as the level of redundancy. Finally, the approach
presented in Part II defines for each component its failure rate, repair rate and its age.
In addition to the definition of temporal order for the serial and parallel execution
of services, this allows for a proper evaluation of instantaneous availability.

Other than in Part II, more information can be found in [2], where the general
methodology is described, which has been extended to include the time of analysis
to support instantaneous availability evaluation in [12]. A case study for steady-
state availability evaluation can be found in [5]. Details on the implementation are
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described in [165, 196]. The stochastic modeling and evaluation were supported
by the Symbolic Hierarchical Automated Reliability and Performance Evaluator
(SHARPE) [224], which is introduced and described to detail in [202]. SHARPE
was also used for parts of the SD responsiveness evaluation in Part III of this work.

The authors of [245] provide a stochastic model to assess user-perceived web
service availability and demonstrate that there can be significant differences between
the system perspective and perspectives of individual users. In [211] a new status-
based model to estimate user-perceived availability proposed. However, both works
do not model the providing infrastructure in detail. The availability of a cell phone
network from different mobile user perspectives and in different load conditions is
analyzed in [40]. The dependencies of quality of service on the client side and on the
server are well demonstrated in simulation. Also in [238], a model to evaluate user-
perceived service availability is described. However, the approach has a different
service model in mind. Services are perceived as available by a user if their specific
resources are available upon request by that user. In contrast, Chapter II of this work
defines a set of models and a methodology to automatically generate user-perceived
availability models that calculate AP,c of service provider P for any given user c.
The models do not take into account the quality during service usage but focus on
the availability of the network infrastructure used during service communication
between arbitrary pairs requester and provider. The user-perceived scope is thus
defined by the network subgraph of such a pair and not by the quality requirements
of a specific user.

Finally, two connected approaches warrant citation. The first work describes
Gravity, a project which tackles autonomous adaptation of component based ap-
plications to optimize availability [47]. Components are modeled as services, thus
the project is one way to implement a SCA. Related to the work at hand is the
consideration of components with different availabilities, which leads to a dynamic
availability model just as the models for user-perceived views as in Chapters 4 and
7. The second approach pursues the fact that traditional availability models are usu-
ally based on technical monitoring data of the systems they analyze. These models
do not scale well to complex IT infrastructures without a high level of abstraction,
which is also discussed in Section 5.5. Additionally, during planing and design of
infrastructure changes, this information is generally not available or incomplete. In-
stead, a novel methodology is proposed in [94] based on IT reference models that
define best practices for building IT infrastructures to meet certain requirements.
Meeting such requirements may lead to certification by official authorities. The au-
thors of [94] propose to quantify the grade of meeting the requirements, which to
date remain purely qualitative. Given a selection of processes in the reference mod-
els that have been identified to be related to availability as in [10], one could use
this approach to do a quantitative assessment of availability which is not based on
monitoring data of a running system. To date, the approach has not been backed up
with empirical data.
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2.3.3 Responsiveness

If we are interested in knowing the probability that a system is able to perform as
expected until a given deadline, we have to extend availability with a notion of real-
time. Such metric as used in this work for user-perceived SD evaluation in Part III is
called responsiveness. The foundations for responsive computing as a combination
of fault-tolerant and timely execution have been laid out in [144, 145]. A precise
definition can be found in [146] together with a consensus based framework to de-
sign responsive systems. Two types of responsiveness are distinguished in [146].
The first describes an optimization problem of a pair of parameters timeliness and
availability. The second, which is the type covered in this work, combines timeliness
and availability in a single measure. Informally, responsiveness can be defined as in
Definition 2.2, which assumes responsiveness as a function of the availability of a
system and the timeliness of its execution.

Definition 2.2. Responsiveness R is the probability of a system to operate success-
fully within a deadline, even in the presence of faults.

Both measures are time dependent and a combined metric for responsiveness can
be expressed as in Equation 2.11.

R(t0, tD) = A(t0, tD) ·P(t0, tD) (2.11)

The interval availability A(t0, tD) (see Equation 2.6) is the probability of failure-
free operation from time t0 until deadline tD and P(t0, tD) is the probability to finish
a given task successfully until tD . Generally, we can omit t0 and assume it as the
time of evaluation of responsiveness R(tD). In the area of service-oriented systems,
a task could reflect service provision to a specific client while the availability is the
user-perceived availability of the ICT infrastructure for that client. Responsiveness
can be extended for multiple tasks as in Equation 2.12 where n is the number of
parallel tasks that need to finish successfully until the deadline.

R(t0, tD) =
1
n
·

n

∑
i=1

Ai(t0, tD) ·Pi(t0, tD) (2.12)

Various works with a focus specifically on this combination of fault tolerance and
real-time have been collected in [90]. Responsiveness remains a research issue until
today. For example, the authors of [41] present a combined model to predict the
availability and response times of services and investigate the dependability of both
metrics in simulation. They do not provide a probabilistic evaluation of response
times nor a single joint responsiveness metric as in Equation 2.11. The authors of
[194] examine various restart strategies for web service reliable messaging with
respect to the effective service response times and the cost of the strategy. Further-
more, they propose a metric to determine the quality of a specific strategy, which
could be used to adapt retry strategies of current SDPs (see Section 2.2 and Table
2.1) to optimize the responsiveness of SD.
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2.3.4 Performability, Resilience and Survivability

Very often, it is not only of interest whether a system is able to perform but also,
whether it can perform with a certain quality as required by the user, given the
presence of faults. This is the domain of performability, which combines both avail-
ability and performance evaluation in a single metric. Performability has been the
focus of many works in the last four decades and we will only mention a quick se-
lection of works, such as [28, 152] or, more recently, the summary of the concepts in
[86]. Usually, performability is assessed as the probability to perform at a required
level over a period of time. Systems can be described using reward-based models
where each performance level will give a defined reward over time [56]. This way
the expected accumulated reward over a period can be calculated. How to best con-
struct such models is explained in [153] while an overview on tools and techniques
for performability modeling is given in [111]. Related to the work at hand, there
exist more recent model-driven approaches to evaluate the performability of com-
posed services, which also allow the optimization of compositions with respect to
performability [38, 96].

Availability and performability analysis usually handles the quality of service
during regular operation, under the assumption of a specific fault model. While these
models may include severe faults, the probability of the occurrence of such faults
is usually assigned low. Resilience and survivability analysis on the other hand is
focused on the probability of a system to withstand catastrophic events, for example
terrorist attacks or natural disasters, since IT networks have become part of critical
societal infrastructures. Although these metrics do not form the scope of this work,
responsiveness and availability as calculated in Parts II and III could well be used
as underlying measures to support a comprehensive resilience and survivability as-
sessment. We refer to [129, 112] for a proper definition. In [214] a survey of the
disciplines encompassed by resilience and examples for applications are presented.

2.3.5 Service Discovery Dependability

If discovery fails, a service cannot be available. Comprehensive service dependabil-
ity evaluation thus needs to consider the discovery process. Nonetheless, SD has
traditionally been neglected when evaluating service dependability. Due to the di-
versity of usage scenarios and the dynamics of modern networks, the dependability
of SD is not trivial to predict. This problem is exemplified in unreliable networks
with more complex fault behavior, such as self-organized Wireless Mesh Networks
(WMNs), where the quality of links is constantly changing and heavily affected by
external interference, fading effects and multi-path propagation. At the same time,
self-organized networks belong to the type of environment where SD is expected to
become ever more important.

As a time-critical operation, one key property of SD is responsiveness as defined
in Section 2.3.3, the probability of successful operation within a deadline even in the
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presence of faults. More precisely, responsiveness constitutes the probability that a
SDP enumerates a defined ratio of available provider instances x = p/P within a
deadline tD as required by the discovering client. When doing decentralized discov-
ery, the absence of the registry as an authoritative entity is the main difference to
centralized discovery. Every service provider is authoritative when queries resolve
to its own instance identifiers or identifier descriptions. This means that in central-
ized networks a discovery request is successful when the registry responded to a
request. In decentralized networks, depending on the needs of the requesting client,
in some scenarios all service providers need to respond for successful operation.
This introduces delays to discovery. Responsiveness is hence influenced by this de-
lay. Packet loss is a second major impact factor, especially in wireless environments.
Another side-effect of packet loss is that forced packet retransmissions result in an
increased network load.

As an integral part of service usage, comprehensive service dependability eval-
uation should include SD responsiveness. This is because common dependability
metrics, such as availability and performability, are only independent of SD respon-
siveness if a successful discovery is assumed at the time of requesting a service. For
example, the performability of a service until a deadline decreases with decreas-
ing SD responsiveness, hence, a longer time needed to discover that service with
a certain probability: Less time to perform in general means a lower probability
to perform as required [86]. On the other hand, reducing the time to discover the
service increases the risk of not finding it, in which case it would not be able to
perform at all. Unfortunately, until now few works examine SD responsiveness and
in service dependability evaluation, it has generally been neglected.

Dabrowski et al. evaluate different dependability properties of existing discov-
ery protocols in [67, 68, 69, 72]. These include update effectiveness, the probability
to timely restore a consistent state after failure, which resembles a specific case
of responsiveness. They did not consider active SD responsiveness during regular
operation. For an explanation of active versus passive discovery see Section 2.2.1.
Furthermore, the widespread Zeroconf protocol is not considered. Zeroconf respon-
siveness has been evaluated in experiments in [6]. The research described in [71]
is closely related to the topic of the work at hand. Here, the robustness of existing
discovery mechanisms is evaluated under increasing failure intensity. However, also
in [71] responsiveness is not covered in particular and the technologies used in the
experimental evaluation cover SLP [106] and UPnP [231], but not Zeroconf . Differ-
ent discovery protocols are compared with respect to their response times in [212],
the work has a strong focus on the individual implementation overhead and does
not consider faulty networks. The authors of the work at hand present results from
responsiveness evaluation of IP discovery protocols in [6, 7] and provide a hierar-
chy of stochastic models to reproduce these results in [4]. Furthermore, parts of the
results in [7] may be used as input data for the stochastic models to evaluate SD
responsiveness in diverse scenarios instead of running time-consuming experiment
series for each one of them. Responsiveness of SLP in particular is demonstrated in
[61]. Part III of this work will provide a comprehensive summary of those works.
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Other dependability properties are the robustness of SD, which has been exam-
ined with respect to discovery delay times in [172]. Preliminary measurements of
multicast SD have been done in [118] for the campus wireless network at Columbia
University, New York. They show that depending on the use cases of Zeroconf SD,
the amount of multicast traffic caused can be considerable. The performance and
cost-effectiveness of two different SDPs under different conditions of network traf-
fic and energy consumption is evaluated in [45]. However, the paper covers no ef-
fects of packet loss. A stochastic model for the cost-optimization of the Zeroconf
addressing layer protocol AutoIP has been presented and evaluated in [39]. Chapter
7 of this work proposes a related model for the discovery protocols.

Although security issues are not covered in this work, it should be mentioned
that the lack of a single authority in decentralized service networks makes adminis-
tration and control of the service instance identifier space more difficult. Additional
measures need to be implemented to guarantee the trustworthiness of service dis-
covery. An approach that introduces encryption and authentication on the SD layer
is given in [65, 117]. For DNS-SD, the recent works in [127, 128] propose extension
to support privacy. A method to progressively expose sensitive discovery informa-
tion is presented in [251] but introduces significant delays in the SD operation, thus,
reducing responsiveness.

Considered Fault Model

Impairments to SD dependability are generally the same as for generic distributed
systems: Faults can roughly be categorized in network and node faults. They result
in data loss, data delay, out-of-order data, duplicated data and varying timing errors
from one data unit to another, such as jitter. UDP is an unreliable transport so re-
covery operations for the IP based SLP, SSDP and Zeroconf are done by the SD
protocols themselves. Following the classification in [25], the different fault classes
can be described for SD as follows (see also Figure 2.2):

Fail stop A node leaves the network and announces this to the rest of the service
network. No more packets will be received by and sent to this node.

Crash A node leaves the network but is unable to announce it. No more packets
will be received by and sent to this node.

Omission A certain percentage of packets gets lost either in nodes or in the net-
work. This includes also the loss of all packets.

Timing Packets get delayed either in nodes or in the network. The delay may also
be infinite in which case a packet is lost. Packets cannot arrive too early which
would violate the causality.

Fail-stop faults may be classified as regular exhibition of network dynamics and
are recovered by goodbye messages. Crash, omission and timing faults are recov-
ered by request retries and timeouts as described in Section 2.2.2. The classes in-
correct computation, authenticated byzantine and byzantine are not covered in this
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Fig. 2.2 An ordered classification of faults. Classes important for the temporal behavior of service
discovery have been highlighted.

work and should be handled by application layer mechanisms like packet check-
sums and related integrity checks. While generally a dependency of faults has to be
assumed, we abstract from this in the analysis in Chapter 7. Also, there are possibly
arbitrary faults at lower layers which might manipulate packets such that byzantine
faults at the discovery layer happen. We expect these errors to be negligible in the
controlled environments covered in this work.

2.4 Modeling Service Networks

Throughout this work, various stochastic models are being introduced and evalu-
ated. For a definition of the underlying formalisms we refer to the excellent com-
pendium on stochastic modeling and analysis in [133]. The methodological foun-
dations of network analysis as carried out in Parts II and III are provided with
[42]. Since network topologies can almost always be represented in graph struc-
tures, common and well investigated algorithms can be utilized, many of which are
explained in [87].

When designing and modeling ICT infrastructures, it is advantageous to make
use of the principles of Model-Driven Development (MDD) [207], which can pro-
vide a better understanding of arising problems and their potential solutions through
system abstraction. Models are abstractions of a system and/or its environment. Ev-
ery model conforms to a meta-model, which defines the syntax of the model as an
explicit specification describing the relevant concepts and relations between these
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concepts [32]. The idea of obtaining one model from another characterizes a model
to model transformation, where the input and output models can either share the
same meta-model or have a completely different syntax. Usually, such transforma-
tions rely on identifying graph patterns as model elements and match them to given
structures of the meta-model, as accurately described by Czarnecki et al. in an ex-
tensive survey on model transformation [64].

As a model formalism, the often used and standardized Unified Modeling Lan-
guage (UML) consists of a set of graphic notations and relations to model structural
and behavioral characteristics. A full specification of the current version of UML
can be found in [170], complemented by [171]. In addition to a standard set of 14
different diagrams, UML has two important customization mechanisms: profiles and
stereotypes [171]. These features enable designers to aggregate detailed information
and better represent complex systems with diverse properties. Basically, UML pro-
files are mechanisms to customize the existing UML models by allowing the addi-
tion of permanent attributes according to the nature of the target model. Stereotypes
specify new modeling elements with properties called stereotype attributes and are
applied to existing UML elements, which then automatically inherit the respective
attributes. Profiles can be composed of stereotypes and their attributes, describing
model semantics with stereotypes and constraints. Thus, profiles and stereotypes
are additional instruments to tailor UML models and their elements (e.g. classes,
associations, objects) for specific needs.

To be applicable to UML diagrams, when designing a profile each of its stereo-
types must extend a UML element. For instance, a stereotype S, extending the class
element and containing the stereotype attribute A can only be applied to classes,
which are then denominated stereotyped classes and inherit the attribute A. We will
make use of these concepts in Part II of this work, where we use UML class, object
and activity diagrams to model an ICT infrastructure and the services that run on it.
We use profiles and stereotypes to make sure that all ICT components contain prop-
erties needed for a subsequent availability analysis. These properties contain static
and dynamic properties, which are updated at runtime. Although not specified, in a
full featured SOA these dynamic properties could also be gained by runtime moni-
toring, for example by a monitoring manager as proposed in [26].

The models needed to carry out this analysis are obtained by a model to model
transformation from the UML models to well known availability models, specifi-
cally Reliability Block Diagrams (RBDs) and Fault Trees (FTs) [235]. While Part
II provides a comprehensive overview of the complete methodology including an
evaluation in case studies, different aspects of this work are described in more detail
in [2, 5, 12]. An interesting extension of this methodology would be to use a Fuzz
Tree (FzT) as output model. The first approach to include fuzzy logic in fault tree
analysis has been presented in [216]. Today, high performing tools for modeling and
evaluation exist [226].

A different definition of services is proposed by the service availability forum
[210] in the Availability Management Framework (AMF). AMF specifies compo-
nents as basic framework entities that consist of a set of software or hardware
resources. In contrast to [148, 157], where infrastructure and services are mod-
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eled independently, AMF components are intrinsic service providers, which can be
grouped into bigger logical units called service units. Salehi et al. [203] developed
a UML-based AMF configuration language to facilitate the generation, analysis and
management of the AMF configurations. The language has been implemented by
means of a UML profile. Dependability Analysis Modeling (DAM) [30] consists
also of a UML profile for dependability modeling, extending the existing MARTE
profile [169] to better represent non-functional properties. It correlates service and
ICT components by defining the relation of a service and its underlying infrastruc-
ture, and describes them with a complete set of properties, although no transfor-
mation is provided by the methodology. The DAM project provides an extensive
set of models with detailed attributes, but it is focused on modeling only and does
not provide a transformation to reliability models for further evaluation. Further-
more, since the DAM methodology proposes a modeling of the system entirely us-
ing UML, changes to the mapping of service providers and ICT components have to
be reflected within such a model. Even with clear annotation, this procedure can be
tedious and error prone. Moreover, DAM is conceived as a complex UML Profile,
an extended UML model, aiming at dependability modeling, thus excluding other
non-functional properties.

A work inspirational to this paper describes dependability analysis using directed
acyclic graphs [201]. Chapter 7 combines a network topology and a discovery oper-
ation in a Markov model that reflects such a graph.

2.5 Wireless Communication

Over the last two decades, wireless communication has become commonplace, in-
troducing new paradigms for communication in distributed systems. WMNs, which
consist of sets of nodes distributed within radio signal range of each other, have
lately become increasingly diffused in a manifold of applications. Depending on the
focus of application, a WMN may also be called Wireless Sensor Network (WSN),
while Wireless MultiHop Network (WMHN) is an umbrella term for WMN and
WSN. For reasons of simplicity, we will continue to use the term WMN in this
work.

A relatively low cost of deployment, ad-hoc and automatic configuration are
among the advantages of WMNs. However, inherent dependability issues such as
complex fault behavior and fault dependencies due to the wireless communication
continue to be a problem. A concise overview on the most important performance
characteristics of the prevalent 802.11 networks [120] which are the target of this
work is given in [78]. Generally, the gaps between theoretical and practical eval-
uation of WMN properties can be quite wide [161]. A survey of different types
of wireless networks, their technological background and dependability properties
and challenges exists in [16]. The same group also provides a survey with a focus
specifically on WSNs [15], a more current work on that topic can be found in [246].
Simulating the behavior of wireless signals needs a proper model. In this work,
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when estimating the propagation of radio signals, we refer to models based on the
Jakes propagation loss model as in [248].

Routing

A diverse selection of routing metrics exists in wireless networks [179] which are
being used by routing protocols. Most widely used for IP networking in WMNs is
Optimized Link State Routing (OLSR) [57] and we will also use OLSR to model
routing in WMNs in Chapter 7. OLSR nodes proactively search for routes and co-
operatively create a spanning tree that covers the whole topology. A number of
different metropolitan networks, such as in Athens, Berlin and Leipzig successfully
employ OLSR. Our experimental evaluation relies on OLSR with multicast support
[227] to support discovery protocols. OLSR has seen numerous optimizations, such
as in [102], where a variant of OLSR is introduced that tries to optimize routing
with respect to packet delay, packet loss and energy consumption constraints.

As opposed to proactive routing protocols, there also exist reactive methods,
which look for routes only upon request, among the most common ones being Dy-
namic Source Routing (DSR) [126, 125] and Ad-hoc On-demand Distance Vector
(AODV) routing [183]. Reactive routing is usually not used in the pervasive envi-
ronments as targeted in this work and no more detail will be provided here. Instead
we refer to [179].

We are aware of the fact that the routing topology has a significant impact on
the performance of wireless networks and results valid for one protocol are not
necessarily valid for another, an effect which is not only demonstrated in [190].
Our model in Section 7, however, is to a certain extent independent of the routing
protocol used and only integrates the link quality metric as provided by OLSR. It
is able to provide results for other protocols in a similar manner, as long as they
create single path routes for unicast communication and the flooding mechanism
for multicast and broadcast can be modeled with Probabilistic Breadth-First Search
(PBFS) [11].

While many works on WMNs limit their evaluation on simple topology models,
such as regular grids, the authors of [160] provide an algorithm to generate topolo-
gies which are close to the ones found in real world metropolitan networks. We also
use this algorithm for validation in Section 7.4.

2.5.1 Packet Transmission Times

The responsiveness model in Chapter 7 of this work relies on an estimation of trans-
mission times over the wireless link. Several approaches exist which model packet
transmission delays at the 802.11 MAC level, e.g. [175, 193]. They are not con-
sidered in this work due to their complexity. An explicit method to calculate the
network delay depending on the back-off process with retry limits, acknowledge-
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ments, unsaturated traffic, and packet size is presented in [181] and could be in-
tegrated into our models. Compared to PBFS [11] it has not been validated with
observations from real-world wireless networks, however. Bianchi [33] developed
a Markov model to compute the 802.11 Distributed Coordination Function (DCF)
saturation throughput. It assumes a known finite number of terminals, ideal channel
conditions and all nodes in one collision domain. These assumptions do not hold for
the WMNs targeted in this work. Instead of a detailed modeling of low-level MAC
operations, the approach presented in Chapter 7 favors an integration of application
layer protocols. The delay estimation is based on the Expected Transmission Count
(ETX) metric [62] used by OLSR [82] with packet transmission delays as defined in
the 802.11 standard [120]. This method is related to [166], but is considerably more
efficient. On the other hand, the accuracy of this method depends on the accuracy
of the ETX metric, or, on the accuracy of the link status detection metric in general,
which has been examined in [162]. Here, more reliable metrics as proposed in [159]
could be integrated.

Various extensions to OLSR exist, which extend the routing metric with infor-
mation about the link delay. Such delay information could be propagated, for ex-
ample, with a mechanism as proposed in [184]. It can then be used for a delay-
centric routing, which optimizes routes through minimizing the end-to-end delay
as in [137, 80, 136]. The delay information could further be used in a cross-layer
optimization to improve the quality of service of multimedia applications [59]. Our
work focuses on SDPs communicating on standard OLSR topologies. The men-
tioned delay-centric optimizations of OLSR show potential to increase the respon-
siveness of SD operations without altering the SDPs themselves and it seems worth-
while to investigate this in future research.

2.5.2 Network-Wide Broadcasts

A fundamental operation for WMNs are Network-wide Broadcasts (NWBs), which
are required by many of the auto-configuring protocols, such as routing, when dis-
tributing information to all nodes in the network. Also SD is an operation that relies
heavily on NWBs. However, due to the characteristics of wireless communication,
NWBs are generally problematic. Current protocols for NWBs lead to the well-
known broadcast storm problem, which was pointed out by Tseng et al. in [229].
It essentially describes excessive redundant transmissions that happen in a meshed
network during basic flooding. Efficient flooding poses a great challenge so using
broadcast or multicast should be considered carefully. NWBs have been the target
of numerous optimizations with very different goals, among them OLSR’s MPR se-
lection scheme [57, 108], probabilistic flooding and flooding with retransmissions
[37]. The authors of [229] and others proposed approaches focusing on removing re-
dundant transmissions which emanate from a simplified, unweighted graph model.
A standard for such an approach has been ratified with simplified multicast forward-
ing in [142], which is also implemented for OLSR [227]. Other approaches cover
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the probabilistic reduction of the graph size to select forwarder strategies [206],
which have been evaluated e.g. in [174]. However, removing redundancy in lossy
networks also hurts reliability and can severely decrease NWB reachability [139].

Optimizing NWBs is a prime target when improving the overall performance and
dependability of WMNs in general and specifically the responsiveness of SD, as it
is important for the work at hand. To properly evaluate trade-offs between perfor-
mance and reliability, researchers usually need to rely on extensive simulation and
experimentation, since accurate analytic methods do not scale to realistic network
sizes due to their complexity. Most existing optimizations neglect the real nature of
WMNs and are based on simple graph models, which provide optimistic assump-
tions of NWB dissemination. Unit Disk Graphs (UDGs) are one way to obtain these
unweighted graphs and are often employed for WMNs and NWBs. In an UDG, a
link always exists when two nodes have an Euclidian distance of less than 1, oth-
erwise not. Kuhn et al [132] propose an extension called Quasi Unit Disk Graphs
(QUDGs), introducing an uncertainty that allows to model the impact of obstacles
on wireless transmissions. On the other hand, models that fully consider the com-
plex propagation characteristics of NWBs quickly become unsolvable due to their
complexity.

Few approaches consider link qualities when optimizing NWBs as in [252] or
[139, 140], where flooding with different forwarder selection strategies was pro-
posed and evaluated. Evaluation revealed that in reasonably lossy networks, exist-
ing optimizations severely decrease NWB reachability when removing redundancy.
In the context of this work in Part III, when trying to estimate several properties
of multicast communication as used in SDPs, we are interested in calculating the
reachability for NWB protocols, given a weighted topology as input. Oikonomou
et. al [173] did a similar analysis for probabilistic flooding, using randomly gener-
ated graphs and not considering edge weights. Chen et. al [50] define the Flooding
Path Probability (FPP), which corresponds to the reachability as defined in Section
7.3.1. Their provided algorithm to compute the FPP has a reduced but still expo-
nential complexity. This lead to the development of PBFS ([11], see also Sections
7.3 and 7.4), a Monte Carlo method for evaluation of different measures of NWB
protocols.

2.5.3 Wireless Service Discovery

For modern decentralized networks, such as WMNs with possibly mobile nodes, SD
becomes ever more important as the number and position of providers may change
dynamically. As can be seen in the model-based evaluation in [4] and in Part III
of this work, SD responsiveness is difficult to predict in such networks and varies
dramatically. Optimizing the responsiveness of SD in these environments should
thus be a major focus in service network research.

A few SD mechanisms have been developed that target especially wireless ad-
hoc scenarios, such as the cross-layer approach in [138] or [209], where discovery
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communication is embedded into the routing layer. Related to that, [189] presents a
Multicast DNS (mDNS) extension to OLSR, which provides as a backend for several
SD protocols. More information about SD in pervasive computing environments can
be found in Section 2.2.

2.6 Conclusion

This concludes the chapter with background information and an overview of re-
lated work important to the work presented in subsequent chapters. We covered the
topics of service oriented computing, explaining service discovery and its different
architectures. We also introduced some of the most common service dependability
metrics, such as availability and performability. Furthermore, responsiveness was
defined which will be used later to evaluate SD dependability. We introduced mod-
els to evaluate these metrics with a special focus on wireless mesh networks. The
importance of including a user-perceived view into analysis was motivated. In the
the next chapter, the experiment framework ExCovery is presented, which was de-
veloped to support the extensive series of experiments that have been conducted
during this work.





Chapter 3
ExCovery – A Framework for Distributed
System Experiments

Abstract The experimentation framework ExCovery for dependability analysis of
distributed processes is presented. It provides concepts that cover the description,
execution, measurement and storage of experiments. These concepts foster trans-
parency and repeatability of experiments for further sharing and comparison. Ex-
Covery was specifically developed to support the experiments on Service Discovery
(SD) conducted for this work and presented in Chapter 6. As such, a case study is
provided to describe SD as Experiment Process (EP). A working prototype for IP
networks runs on the Distributed Embedded Systems (DES) wireless testbed at the
Freie Universität Berlin.

3.1 Introduction

Experiments are a fundamental part of science. They are needed when the system
under evaluation is too complex to be analytically described and they serve to em-
pirically validate hypotheses. Experiments also play an important role in computer
science when supporting or refuting theories inferred from observations or math-
ematical models. With increasing complexity of computer systems and networks,
exploratory experiments are themselves the source of such theories. However, due
to the diverse focuses it remains difficult to repeat, classify, evaluate and compare
results from different experiments. This is also true for the diverse experiments on
Service Discovery (SD) responsiveness that have been carried out to gather the re-
sults presented and discussed in Chapter 6.

A consistent Experimentation Environment (EE) helps to unify related experi-
ments and thus, greatly improves the impact of individual results. In this chapter,
we present ExCovery, an EE to support research on the dependability of distributed
processes. A formal description to specify experiments has been developed, which
forms the basis of ExCovery. It allows for automatic checking, execution and addi-
tional features, such as visualization of experiments. ExCovery is expected to foster
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repeatability and transparency by offering a unified experiment description, mea-
surement mechanism and storage of results.

To support the wireless testbed experiments discussed in Chapter 6, a case study
hows to use ExCovery for experiments on SD. To support and validate research on
SD responsiveness, such as in [4, 6, 7, 9, 11], was the original goal of ExCovery
development. This chapter covers the abstract description of experiments using Ex-
Covery, concrete setups and results can be found in Chapters 6 and 8. It should
further be noted that code listings presented in this chapter have been shortened for
illustrative purposes. A collection of complete code listings can also be found in the
appendix. ExCovery has been published under an open source license and can be
found at [8].

The main contents of this chapter have previously been published in [9]. More
details on the implementation and additional experiment results can be found in
[242]. The rest of this chapter is structured as follows. Section 3.2 covers the topics
of scientific experimentation and design of experiments. ExCovery is presented in
Section 3.3, its concepts illustrated with examplary experiment description code.
The description of SD as a specific experiment process follows in Section 3.6.3. An
overview of the current ExCovery prototype implementation is given in Section 3.7.
Section 3.8 concludes the chapter.

3.2 The Art of Experimentation

The subject of an experiment can be characterized as a black box process as illus-
trated in Figure 3.1. Results stem from observations of the outputs, or responses, of
an experiment process under certain conditions. The conditions are defined by the
values of the inputs to this process, also called factors, some of which are control-
lable by the experimenter while others are not. During an experiment it needs to be
identified which factors exist and how they influence the responses. The latter can
be done by manipulating one factor at a time or by manipulating multiple factors in
a factorial experiment. Usually, experiments are run in series to capture the variation
among multiple runs of the same experiment, while the optimal number of repeti-
tions depends on the amount of variation [34]. Such series of controlled experiments
are called experimental system [197].
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Fig. 3.1 Model of a generic experiment process
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Experiments need to be reliable in a sense that they must be verifiable when re-
peated under similar conditions. A sound experiment design must therefore keep
repetition in mind and the publication of experiment data must contain all necessary
information to do so. Furthermore, experiments need to fulfill requirements for va-
lidity, a concept which is described in more detail in Section 3.2.4. A comprehensive
guide on how to experiment and the caveats of running experiments can be found in
[208].

3.2.1 Experiments in Computer Science

The role of experimentation in computer science has been the root of numerous de-
bates, for example in [222, 88]. When computer science is seen as an engineering
discipline, all subjects of inquiry are synthetic, as created by man. An often ex-
pressed opinion is that phenomena in computer science should thus be derived and
explained following the construction of these subjects, instead of observing them as
natural phenomena. However, the complexity of these subjects and their relation-
ships in distributed system ever more often prohibits such deduction. Additionally,
the subjects of computer science have become part of the world around us and inter-
act with it, creating not entirely synthetic hybrids. As such, observation as in natural
sciences can be justified just as the testing of hypotheses to assess and understand
man-made systems.

When doing experiments in computer science, challenges exist mainly related to
observation and repetition. It is not always clear which responses to observe and
how to do that in such a way that the observation has no impact on the response
itself. Modern computing systems provide ways to observe tens of thousands of
parameters and observing them – measuring, recording and extracting – has to be
done in the least invasive way. Also, repeating experiments can be difficult due to
dependence on the original hardware and software platform. Where technology is
proceeding at such rapid pace, experiments should be planned as independent as
possible from specific hardware and software revisions they are running on, that is,
if the revisions themselves are not the subject of experimentation.

3.2.2 Experiment Factors

Factors are the different sources of variation among individual experiments. Because
there can be so many factors it is useful to classify them further according to [164].

Treatment factor Any substance or item whose effect on the data is to be studied
[74]. It can have continuous values but usually has discrete levels that are to be
applied to study its effect. Treatment factors can be further classified as design
factors, intentionally varied during the experiment, held-constant factors, whose
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impact is intentionally neglected by keeping their values fixed and allowed-to-
vary factors, known to have a minor influence that can be compensated by ap-
plying randomization and replication (see also Section 3.2.4).

Nuisance factor On the other hand, nuisance factors have an unwanted effect on
the output. They can be divided into controllable and uncontrollable nuisance fac-
tors. The former, often called blocking factors, can be fixed by the experimenter
to reduce their impact on the response. The latter, also called covariates, cannot
be set but their effect can be measured. Minimizing the impact of these effects
on the experiment results can be done, for example, doing covariance analysis.
Finally, noise factors cause random variations in the responses.

3.2.3 Experiment Design

A treatment is the entire description of what can be applied to the treatment fac-
tors of an Experimental Unit (EU), the smallest unit to which such treatment can
be applied [24]. An Observational Unit (OU) then is the smallest unit on which a
response will be measured. Experiment design defines which treatments are to be
observed on which EUs [74]. Following [116], it can be divided into treatment de-
sign, a specification of the treatments used in an experiment, error control design,
defining how specified treatments are to be applied to reduce unwanted variations,
and sampling and observation design, which decides on the OUs and whether uni-
variate or multivariate observations are to be taken.

Experiments tend to be time consuming. Proper experiment design strives to
maximize the gained information per run by optimized structuring of factors and
factor level variations over a required number of runs. This will be expressed in a
higher precision of the response or in an increased significance of factor relation-
ships. Reference experiment designs include completely randomized, randomized
block, full factorial, fractional factorial, screening, response surface method, mix-
ture, regression and space filling designs. A thorough explanation of experiment
designs and for which objectives to apply them can be found in [74, 164].

3.2.4 Experiment Validity

Experiments need to fulfill requirements for internal and external validity. Inter-
nal validity demands that causal relationships between factors and responses are
verified. External validity deals with the generalization of experiment results. To
improve the validity of experiments, three interconnected principles are applied.

Replication Increases the number of experiment runs to be able to average out
random errors and to collect data about the variation in responses. Care has to be
taken in the selection of held-constant factors to allow for proper replication.
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Blocking Means partitioning observations into groups, such that observations in
each group are collected under similar conditions [74]. Statistical analysis re-
quires that observations are independently distributed random variables [164].

Randomization The assignment of treatments to EUs as well as the temporal
order and spacial choice of multiple runs takes care of the requirement of ran-
domization. A design is called completely randomized when all treatment factors
can be randomized. It generally strengthens the external validity if an experiment
is run in a diversity of platforms (see also Section 3.2.5).

3.2.5 Experimentation Environment

To carry out the experiments on SD presented in Chapter 6 and 8, the ExCovery
framework has been developed. The core of ExCovery is a formal experiment de-
scription that facilitates automated checking, execution and additional features, such
as visualization of experiments. ExCovery is expected to foster experiment repeata-
bility, comparability and transparency as it offers a unified experiment description,
measurement mechanism and storage of results. The main features of ExCovery are
highlighted in this chapter and focus on the description of the conducted experi-
ments and the analysis of their results. More background information on ExCovery
can be found in [9] and [242]. To identify the demands ExCovery addresses, it is
necessary to define what an Experimentation Environment (EE) is and what it needs
to provide to an experimenter.

In the context of this work, an EE is defined as a set of tools with the purpose
of describing, executing and evaluating experiments on a given subject, using a
methodology specific to that subject. The actual setting in which the experiments
and the EE are run is called platform. In general, an EE allows to perform a certain
class of experiments in a controlled environment. It facilitates the identification and
manipulation of factors and the observation of these manipulations on the responses.
The amount of possible control depends on the characteristics of the EE. For co-
variates, the EE should allow to record them to be considered during analysis at a
later stage. To foster the repeatability, correctness and transparency of experiments,
an EE should use a well-defined description for setup, execution and evaluation of
experiments. A common output format for measurements, logs and diverse meta
information should be provided.

Last but not least, an EE should help an experimenter in designing and executing
series of high quality experiments on the topic of interest. Experiments should be
interruptible and resumable. For example, wireless testbeds allow users to experi-
ment only in booked timeslots. When time is up an experiment should gracefully
stop to be continued at a later stage. Experiments should execute as fast as possible.
This is especially necessary for the experiments carried out in Chapter 6 as current
SDPs use very long timeouts for some processes exchanging very few packets. This
makes it difficult to execute enough repetitions to get reliable and valid results. Fur-
thermore, in a distributed environment one has to consider robustness aspects for
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the experimentation software itself. It should be able to handle node and connection
failures, continuing the experiment where possible but stopping it where necessary,
alerting the experimenter.

Network Experimentation Environments

ExCovery focuses on experiments to evaluate the dependability of distributed pro-
cesses, such as network protocols that enable SD. Thus, it relies on network ex-
perimentation platforms like simulators and testbeds or mixed forms of both, for
example virtualized testbeds or simulators with interfaces to real networks or real
protocol implementations.

Simulators are software artifacts that simulate real-world processes by acting ac-
cording to an abstract model. They can be discrete event-driven simulators, which
calculate the state of the simulated object only when its state changes, or real-time
simulators, which calculate the continuous behavior of the simulated object over
time. There also exist mixed forms, for example, where an event-driven simulator
is synchronized to a wall clock. While simulators have a perfect reproducibility of
experiments, good scalability and generally a reduced execution time, their abstrac-
tions often struggle to capture the properties and behavior of real-world distributed
systems [161]. A collection of caveats when simulating real-world effects with com-
puter systems is explained in [200]. In this work, when reverting to simulators we
used NS-3 [115, 13] which is common in the community.

A testbed on the other hand is made of real network devices. They allow less con-
trol over factors but measurements are the result of a realistic interplay of factors.
As such, testbeds allow to represent a specific environment, for example a wireless
mesh or a large scale internet network, very well. Testbeds usually provide means to
manage experiment schedules and setup, data acquisition and storage. An approach
to unify generic network experimentation across simulators, emulators and testbeds
is proposed with NEPI [134, 192], an integration framework for network experi-
mentation which creates a common model of experimentation that can be applied
to many physical testbeds as well as to the NS-3 simulator and the netns emulator.
Another approach focused on testbeds is Weevil [240], a model-driven experiment
framework that was developed to automate large-scale experiments on distributed
testbeds, with several enhancements regarding repeatability and scenario definition
proposed in [241]. However, none of those approaches provides the full chain of
description, execution, measurement and storage of experiments as does ExCovery
with comparably low requirements on the platform they run on (see Section 3.3).
ExCovery additionally has a special focus on time behavior analysis of network
protocols, such as SDPs.

Choosing a wireless testbed which fulfills the requirements is no trivial task as
behavior in reality can deviate dramatically from expected behavior. This fact is con-
vincingly demonstrated for current testbeds in [161]. To carry out the experiments
needed for this work in wireless networks, we employed the Distributed Embedded
Systems (DES) testbed at Freie Universität Berlin (FUB). The DES testbed provided
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the best compromise among usability, availability and versatility. Nodes run a recent
version of the Linux operating system which facilitates software development and
deployment. Second, the DES testbed is regionally close and the staff was always
ready to provide technical help in unexpected situations. Third, the design of the
testbed and its layout allow the generation of a manifold of different scenarios to
experiment in. Comprehensive background information about the DES testbed can
be found in [100, 101, 36]. In the last years, however, many other wireless testbeds
have become available to the community. This is why ExCovery supports the DES
testbed as a first platform, but is not restricted to it, it can be ported to other platforms
for comparison in the future.

3.3 The Experimentation Environment ExCovery

We will now present the main concepts of the proposed experimentation environ-
ment ExCovery with its core, the formal abstract description of an experiment using
the Extensible Markup Language (XML). An XML schema of such a description is
provided with the framework code on request. A version specific to SD as an exper-
iment process, which was utilized for the experiments in Chapters 6 and 8 can be
found in Appendix A. The description includes definitions of the experiment with its
input factors, the process to be examined, of fault injections or manipulations and
diverse platform specific and informative declarations. ExCovery further provides
a unified measurement concept that determines which and how data are stored for
later analysis. An overview of the different concepts and the experiment work flow
is illustrated in Figure 3.2, which shows the different steps when experimenting with
ExCovery.

In the first preparation step, the experiment is designed by the experimenter fol-
lowing guidelines as mentioned in Section 3.2.3. The individual descriptions will be
explained in Section 3.5. Second, platform setup is necessary to prepare the trans-
lation of descriptions to the target platform, such as a simulator or a testbed. This
could include the deployment of executables and configuration files. The experiment
is then executed by the experiment master as specified in the description. Each run
is a sequence of actions performed on the participating nodes, described as the main
process under evaluation and a set of injected faults or manipulations. The mas-
ter and all nodes monitor and record dedicated parameters during each run, such
as raw packet captures and the complete temporal sequence of Experiment Process
(EP) actions and events. These data will be saved in a temporary location locally on
the nodes. After experiment execution, the recorded data are collected and condi-
tioned so that a common time base for all actions, events and packet measurements
is established. Finally, data are stored into a single results database that contains all
conditioned measurement data, created log files and the complete experiment plan
with the exact sequence of treatments, as described in Sections 3.4 and 3.4.2).
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Fig. 3.2 Overview of ExCovery concepts and experiment workflow. [9]

Platform Requirements

To integrate a specific target platform in ExCovery, it must support several features.
Most of the features are needed to establish a controllable environment or to com-
pensate for missing control and to allow detailed measurements. As such, these are
mainly issues for testbeds, such as the DES wireless testbed. Simulators generally
can be integrated with less effort.

Experiment Management

There must be a separate, non-interfering and reliable communication channel be-
tween the experiment master and the nodes participating in the EP. In simulators,
this is usually provided by a software interface while testbeds need to possess phys-
ically separate network interfaces. During experiments, full and privileged access to
all nodes is mandatory. The platform needs to cleanly separate concerns of multiple
users.
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Connection Control

Full control over the network connections of the individual network nodes is needed.
Network interfaces need to support activation and deactivation. Furthermore, it
needs to be possible to manipulate packets sent over these interfaces based on de-
fined rules, such as dropping, delaying, reordering, and modifying their content.

Measurement

There must be methods to capture packets with their exact local timestamps and their
complete and unaltered content. To facilitate a comprehensive subsequent analysis,
a packet tracking mechanism is required. In testbeds, this means tracking the routes
of packets hop by hop, or attaching unique identifiers to packets [253]. Finally, the
platform needs to support time synchronization among all participating nodes and
quantification of the synchronization error.

3.4 Measurement and Storage Concept

This section clarifies the basic observations that are possible using ExCovery, how
they can be observed and how this can help to unify related experiments. ExCov-
ery follows the principle of collecting as much data as possible to support diverse
analyses on the same experiment data at later time, emphasizing reusability and
repeatability.

3.4.1 Measurement Data

What data is recorded by ExCovery and how is specified in the following section.
Basic recordable data are the results of protocol operations as reflected by state
changes on the participants and network messages sent among participants. ExCov-
ery supports a plugin concept to extend these data with custom measurements [242].

Events

State changes on nodes in the context of ExCovery reflect events and occur, for ex-
ample, when an experiment run is initialized or when a fault injection is started.
Also any defined states of the EP signify events, such as Discovery Request Sent
or Discovery Response Received in the case of SD. Events are associated with the
node on which they occur. They contain a local time stamp and may have addi-
tional parameters, such as the identifier of the initialized experiment run. To control
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the experiment execution, nodes can be synchronized using global events (see also
Section 3.6).

Packets

Packets are the basic communication data of network protocols. As opposed to
events, single packets are not easily identified: Their location changes as they tra-
verse the network, retransmissions and network loops complicate the correct lo-
calization at any given time. Packets are recorded to facilitate verification of the
recorded event list and to derive statistical connection parameters. A measured
packet consists of a time stamp, representing the local occurrence of that packet,
a unique identifier, a source and destination network address and the packet content
itself.

Time

Events and packets have local time stamps of the node they were measured on. Ex-
Covery defines mandatory measurements to be done before each run to estimate the
time difference of each participant to a reference clock. This allows to construct
a valid global time line of events and packets, avoiding causal conflicts due to lo-
cal clocks deviating between experiment runs. This is especially needed when time
synchronization protocols cannot be used because they interfere with the experiment
processes.

Topology

To improve repeatability, an extensive description of the network topology is mea-
sured. This description includes the local information on each node about its direct
neighbors and any other known nodes as well as the links between them. For each
link, the quality as reflected in the Expected Transmission Count (ETX) metric is
recorded (see Section 7.5). This measurement is done at the end of each repeti-
tion within a series of experiments. This way, the impact of fault injection or load
generation will also be reflected in the routing layer quality metrics. Using these
measurements, ExCovery allows to track network dynamics over extended periods
of time.

3.4.2 Storage and Conditioning

ExCovery envisions four levels of storage for experiments, with defined data struc-
tures. This allows reusable data access functions among experiments. For more de-
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tailed information on data conditioning and the current implementation of the stor-
age concept refer to [9], [242].

The first storage level is the abstract experiment description itself, stored in an
XML document. This document can be exchanged and loaded for execution and
analysis. The second level is an intermediate storage for all concrete experiment
data: experiment results and the software artifacts used during execution. The sec-
ond level storage implementation is flexible and depends mainly on the capabilities
of the execution platform. ExCovery does not impose a specific storage mechanism
but requires that it is accessible during the subsequent collection and condition-
ing phase. Currently, ExCovery uses a special hierarchy on a file system to store
second level data. Each node has its own temporary storage for recorded data, or-
ganized into data belonging to single runs and to the entire experiment. Each log
file and measurement is stored corresponding to a run identifier and associated to
the originating node. Time synchronization measurements are stored on the experi-
ment master. Plugins have a separate storage location on the node where the custom
measurements are done.

On the way to the third storage level, data are conditioned by first evaluating
the synchronization measurements (see Section 3.4.1) and unifying the time base of
all second level measurements. Then, the event list and captured packets are split up
into single data items. Data from the second level plus the experiment description are
then stored into a single package on the third level, which represents one complete
experiment and is preferably stored as a database to unifiy and accelerate data access
and extraction methods. Facilitating exchange of experiments, ExCovery currently
stores the third level in a file based relational SQLite database. This allows to use
the included XML description to recreate the exact run sequence of the experiment
and to use SQL to access data stored within the database.

Table 3.1 shows a subset of the tables and their attributes at the third level. Stored
data is classified as either experiment or run based. Run-based data is stored for
every run of the experiment, while experiment-based data is only stored once per
experiment. All run based measurements are identified by a run identifier (ID) and
a node ID, which form the primary key of the related entities. A run ID represents
one run and a node ID specifies one concrete node by its name.

Table 3.1 Tables and Attributes of Current Storage Concept

Table Attributes
ExperimentInfo ExpXML, EEVersion, Name, Comment
Logs NodeID, Log
EEFiles ID, File
ExperimentMeasurements ID, NodeID, Name, Content
RunInfos RunID, NodeID, StartTime, TimeDiff
ExtraRunMeasurements RunID, NodeID, Name, Content
Packets RunID, NodeID, commonTime, srcNodeID, Data
Events RunID, NodeID, commonTime, Type, Parameters
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The table ExperimentInfo represents the experiment as a whole and contains
only one tuple made of the abstract experiment description, the version of Ex-
Covery and a descriptive name and comment. Logs contains all raw log files and
EEFiles the used ExCovery executables. In ExperimentMeasurements, specific
named measurements are stored that are done once per experiment. As for run based
data, RunInfos contains for each run and node the start time of the run and the off-
set of the node clock to the reference clock. Custom measurements are stored in
ExtraRunMeasurements. The table Packets contains for each packet the common
time stamp of detection, its originating node and the raw packet data. The Events

table lists all recorded events and their parameters, identified by the run, the originat-
ing node and a common time stamp. This schema represents a preliminary approach
to store data. Several future improvements are possible, for example by using a di-
mensional database model to store experiments in a data warehouse structure.

The fourth level describes the integration of multiple experiments into a single
repository to facilitate comparison and analysis covering multiple experiments. To
date, this level is not yet implemented in ExCovery.

3.5 Abstract Experiment Description

The core of experiments carried out with ExCovery consists of an abstract descrip-
tion in the Extensible Markup Language (XML). For reasons of brevity, this section
explains only the most important settings included in the experiment description. A
more thorough listing can be found in [9], [242]. Four main parts are defined in the
description of experiments:

General This part defines several parameters describing general information
about the experiment to facilitate categorization, for example the name of the ex-
periment, the time it was started or, in the case of this work, the SDP to be used.
Figure 3.3 shows a rudimentary general section of an experiment description.
Four abstract nodes are to be mapped by the processes described later. Param-
eters further classifying the experiment process are advisable as they shall help
in recreating experiment conditions and in making them more transparent. For
basic experiment classification, two parameters describing the discovery archi-
tecture and protocol are defined as key-value pairs. More information about SD
architectures and protocols can be found in Section 2.2.

Platform The platform definition contains all concrete nodes that take part in the
experiment. Nodes are classified into two types: Actor nodes take part in the
process under experimentation, for example the discovery process. Environment
nodes take part in the specified environment processes, such as load generation
and fault injection. All nodes help with regular routing. Figure 3.4 shows an
exemplary platform definition with four actor nodes to carry out the SD operation
and five environment nodes (see also Section 3.5.1).

Factors The factor definition contains a list of factors and factor levels whose ef-
fect on the results is to be studied. The order of the factors defines how the factor
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level combinations are applied, with the last factor changing its level most often.
Concrete actor nodes are mapped to abstract roles of the EP, such as requesters
and responders in the case of discovery. Furthermore, the number of load gener-
ators, which are pairs of environment nodes, and the data rate per pair is defined.
Also, the number of repetitions of each factor combination is stated as a special
factor. An exemplary factor definition is listed in Figure 3.5. More information on
the interpretation of factors when executing experiments can be found in Section
3.5.2.

Processes This part contains descriptions of experiment processes, executed only
by specific actor roles and environment processes, which are executed by possibly
all nodes. ExCovery describes processes as series of interdependent actions and
events as detailed in Section 3.6. Due to space constraints, no full description of
the processes for the discovery actors and environment nodes is shown here. The
full descriptions can be found in Appendix B.

<experiment_name>just a name</experiment_name>
<totalnodes>9</totalnodes>
<abstractnodes>
<abstractnode id="R0"></abstractnode>
<abstractnode id="P0"></abstractnode>
<abstractnode id="P1"></abstractnode>
<abstractnode id="P2"></abstractnode>

</abstractnodes>
<sd_level>user</sd_level>
<sd_protocol>zeroconf</sd_protocol> <!-- may also be "slp" -->
<sd_arch>2-party</sd_arch>

Fig. 3.3 Rudimentary general section of an experiment description with informative parameters
about discovery process and listing of abstract nodes.

In the following, the individual elements of the abstract description are explained.
How exactly they may be used within an experiment description is defined in the
XML schema in Appendix A.

Factor Part of the treatment applied to the EU. Consists of a set of levels. Depend-
ing on the design, levels are applied One aFter AnoTher (OFAT) or randomized.

List of factors Contains all factors used, sorted. In an OFAT design the first factor
varies least often during execution while the last factor changes every run.

Level Concrete value a factor can take, as input variable to the sub-processes of
each run. Levels can be of different types. As such, they can control type and
duration of fault injections (see Section 3.6.1) or represent mappings of abstract
nodes to actors.

Set of levels All levels that should be applied during the experiment. Order of
application is determined by the factor definition. There is only a single level if
the factor should be kept constant during the whole experiment.

Replication factor Parameter defining an integer number of replications to be
done for each treatment.
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<platform_specs>
<description>Nodes to be used during the experiment. Four actors (one
↩→ requester, three responders) and five environment nodes for traffic
↩→ generation.</description>
<spec_node_mapping>
<spec_actor_map abstract_id="R0" id="t9-154" ip="172.18.17.8" />
<spec_actor_map abstract_id="P0" id="t9-006" ip="172.18.17.104" />
<spec_actor_map abstract_id="P1" id="t9-147" ip="172.18.17.179" />
<spec_actor_map abstract_id="P2" id="t9-020" ip="172.18.17.88" />
<spec_env_map id="t9-117" ip="172.18.17.52" />
<spec_env_map id="t9-k61" ip="172.18.17.92" />
<spec_env_map id="t9-169" ip="172.18.17.50" />
<spec_env_map id="t9-018" ip="172.18.17.14" />
<spec_env_map id="t9-022a" ip="172.18.17.80" />
</spec_node_mapping>
</platform_specs>

Fig. 3.4 Exemplary platform definition for an experiment description. The abstract id allows to
identify abstract nodes for the mapping to actor roles. IP addresses help in filtering the raw capture
files for packet based analyses.

<factorlist>
<factor usage="blocking" id="fact_nodes" type="actor_node_map">
<description>Mapping of abstract nodes to actor roles of the discovery
↩→ process</description>
<levels>
<level>
<actor id="requester">
<instance id="0">R0</instance>
</actor>
<actor id="responder">
<instance id="0">P0</instance>
<instance id="1">P1</instance>
<instance id="2">P2</instance>
</actor>
</level>
</levels>
</factor>
<factor usage="random" id="fact_pairs" type="int">
<description>Number of node pairs for load generation, randomly distributed
↩→ in the network</description>
<levels>
<level>10</level>
</levels>
</factor>
<factor usage="constant" id="fact_bw" type="int">
<description>Datarate per node pair</description>
<levels>
<level>100</level>
<level>500</level>
</levels>
</factor>
<replicationfactor usage="replication" id="fact_replication_id"
↩→ type="int">1000
</replicationfactor>
</factorlist>

Fig. 3.5 Exemplary factor definition for an experiment description. The factors are explained
within the definition code. The replication factor denotes the number of experiment runs for each
factor level combination.
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Abstract node Actor of the EP or of a node specific fault injector. Identified by a
node identifier, such as a unique host name.

Environment node A node not participating as actor in any node specific pro-
cess. Used e.g. to generate load.

Actor description Process prototype to be executed on one specific actor of the
EP. Each abstract node is mapped to one actor description, multiple abstract
nodes can instantiate the same actor description.

Experiment process Experiment operation that is to be executed and measured.
Consists of actions performed on multiple nodes, synchronized by flow control
functions that wait for a certain time or for certain events.

Manipulation process Main part of the treatment. Similar to EPs, represents a
sequence of faults or impairments that should happen on a node.

Environment manipulation process Like experiment and manipulation processes
but not node specific. Controls environment manipulations such as traffic gener-
ation.

3.5.1 Platform Definition

To instantiate an abstract experiment description on a concrete platform, such as a
wireless testbed, a definition of this platform is required. In this definition, abstract
and environment nodes are mapped to concrete, physical nodes of the experiment
platform. ExCovery identifies nodes by their host name and IP address. The host
name should be constant during an experiment run. When an IP addresse changes
due to reconfiguration of a network interface, for example after an injection of such
a fault, an event is generated to signal this.

Figure 3.4 illustrates a compact version of a platform specification. Four actor
nodes and five environment nodes exist. Actor nodes map to an abstract node id that
has been previously defined (see Figure 3.3). All nodes have a unique identifier and
a network address that can later be used to analyze the recorded event and packet
lists.

3.5.2 Experiment Execution from Factor Definition

To execute the overall experiment and its individual runs from the abstract descrip-
tion, ExCovery generates treatment plans from replications, the factors and their
levels. Plans are OFAT if no custom factor level variation plan is given. The various
random values used in ExCovery are generated using pseudo-random generators.
This allows for perfect repeatability of random sequences when initialized with the
same seed. Which seed is used for initialization is clearly defined in the experiment
description so that all random sequences can be reproduced. Software for the design
of experiments exists that can help with the generation of such treatment plans, this
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is why a specific plan generator is outside the scope of this work. However, ExCov-
ery supports plan generators by providing all necessities, such as factor, level and
repetition representations.

ExCovery uses four internal functions for the experiment flow. Experiments are
initialized by calling experiment init on every participant, which takes care of
the necessary preparations before all individual experiment runs. Each run is then
initialized by run init. There further exist the respective exit functions run exit

and experiment exit.
Figure 3.5 shows the definition of several factors and their levels. It maps the

abstract nodes listed in the general section of the description (see Figure 3.3) to actor
roles requester and responder, defines 10 node pairs for load generation which
will first have a data rate of 100, then 500 kbit/s each. Each factor combination will
be run 1000 times as stated by the replication factor. Since there is only one node
mapping and one factor level for the load generation, there will be 1000 runs for
each data rate.

Experiment Phases

ExCovery is designed to provide a consistent state for each repetition and to min-
imize effects of any process not described in the experiment description, includ-
ing its own processes. Each run consists of a preparation phase, an execution or
measurement phase which is the core of the experiment and a cleanup phase. Dur-
ing preparation, the whole environment of the EP must be reset to a defined initial
working condition. Software agents are initialized. In testbeds, for example, network
packets generated in previous runs must be dropped on all participants. Preliminary
measurements can be done to compensate for incomplete control over the environ-
ment, such as clock offsets for all participants. During the measurement phase, only
the processes defined in the experiment description are executed and their effects
recorded by specified nodes. Only after completing all runs these measurements are
imported from their temporary directories, conditioned to contain a globally valid
timestamp and written to a database. The database represents one full experiment
and can be shared to allow transparent reusability and repeatability. It includes the
experiment description, logged events and packets of the described processes and
diverse information about the state of the testbed itself. The latter can be used to
further decrease the effect of external processes. All steps will be repeated during
each run, this has to be considered when estimating the total time an experiment
needs to finish.

3.6 Process Description

ExCovery provides common mechanisms to control execution of the defined pro-
cesses. Two types of processes can be differentiated, depending on whether they
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relate to abstract nodes or to the environment. Abstract node processes are mapped
to real nodes during experiment execution, such as protocol actions or fault injec-
tion processes. Environment processes are performed by all nodes, such as drop-
ping packets on all network interfaces to reset the environment. Every process is
described as a sequence of actions. Processes run concurrently so one needs to con-
sider timing and desired or necessary dependencies. ExCovery defines methods for
synchronization to provide basic flow control.

wait for time Process waits for a fixed delay in seconds.
wait for event Process waits until the specified event is registered on any partic-

ipant. An event can be specified by its name, location and any of its parameters.
The location is either a single abstract node or a subset of nodes specified by an
actor role. Event parameters can be of diverse types. If omitted, they default to
”any“. A time-out in seconds can be set.

wait marker Creates a time stamp used by the next wait for event call, which
considers only events occurring after that time stamp.

event flag Used to create local events to let process actions depend directly on
each other.

Besides these flow control functions, there are process specific actions, environ-
ment actions and manipulation actions. Each action can have a list of parameters,
allowing the description of manifold scenarios. In Section 3.6.3, SD as an EP is
described to illustrate this. Manipulation processes are described in Section 3.6.2.

Figure 3.6 shows a code fragment where the different processes are defined, with-
out the actual sequences of actions that will be described later. Among the node
processes, the role responder is defined and as possible actor nodes, the abstract
nodes fact nodes from the factor list are referenced. Environment processes do not
need a definition of nodes.

<processes max_run_time=120>
<env_process>
<!-- list of environment process actions -->

</env_process>
<node_processes name="...">
<process_parameters>
<actor_node_map>
<factorref id="fact_nodes"/>

</actor_node_map>
</process_parameters>
<actor id="responder" name="SM">
<!-- list of node process actions -->

</actor>
</node_processes>

</processes>

Fig. 3.6 Template for the description of node and environment processes.
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3.6.1 Manipulation Processes

ExCovery has a concept for intentional manipulations done on participant nodes
and on their network environment. Manipulations cover direct fault injections that
cause failures in a target area. Fault provocation is used when direct injection is
not desirable or possible and characterizes actions that are known to provoke faults
in a target area. The main faults considered are communication faults. ExCovery
provides a simplified fault model to allow for the description of basic fault behav-
ior with a set of common parameters. Fault injection processes can have common
parameters describing their temporal behavior: duration, ratio and randomseed.

Duration Specifies the amount of time a fault should be applied to the target.
Ratio Specifies a percentage of a given period in which a fault is active. The fault

is active in one continuous block
Randomseed The fault activation time in the period is chosen randomly using

this parameter as seed.

Fault Injections

Mechanisms for fault injection are explained in the following. In addition to the
common parameters, injections can have custom parameters to further define their
behavior. It should be noted that all injected faults add up to already existing com-
munication faults in the target platform. Also, whenever the term packet is used it
refers to packets belonging to the EP.

Interface fault No messages are transmitted or received on the specified interface
in the specified direction as long as this fault is active. Direction can be receive,
transmit, both, or chosen randomly.

Message loss Defines probability for every packet to be dropped. Direction is
analogous to the interface fault.

Message delay Applies a constant delay to every packet.
Path loss, path delay Path loss and delay are message loss and delay faults, se-

lectively affecting only the communication between the target and a given second
node.

Environment Manipulations

Environment manipulations are applied on a global level and involve possibly all
specified environment nodes. Manipulations include the previously defined fault in-
jections. Additionally, the following manipulations can be applied.

Traffic generator Creates network load between a given number of node pairs.
Each pair bidirectionally communicates at a given data rate (see also Figure 3.5).
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Pairs can be randomly chosen from the acting nodes, non-acting nodes or all
nodes. Pairs vary between runs as determined by a switch amount parameter.

Drop all packets All experiment nodes stop receiving, sending and forwarding
EP packets.

Every fault injection and environment manipulation but the traffic generator is
started only once and without a given duration, needs to be explicitly stopped. Given
is just the default list supported by ExCovery. ExCovery provides also a generic
function with an arbitrary list of parameters that are given to the acting nodes to be
executed [242]. However, an experimenter should preferably extend ExCovery by
defining a plugin with new functions and their implementation.

3.6.2 Manipulation Process Description

Manipulation processes are defined in the experiment description as a series of ac-
tions and events. This list is executed sequentially and can contain flow control
functions as described in Section 3.6. A node manipulation process is created for
each abstract node it is specified for while the environment manipulation process
is implicitely supported on all nodes. The specific actions activate or deactivate the
faults and manipulations. One event is generated by each action to signal its start
or stop, respectively. Parameters of these actions can be constant or varied during
experiment execution. Variation is realized by references to factors instead of fixed
values.

Start interface fault Starts interface fault with the given parameters. Generates
fault start interface event.

Start fault message loss Starts message loss fault with the given parameters.
Generates fault start messageloss event.

Start fault message delay Starts message delay fault with the given parameters.
Generates fault start messagedelay event.

Start traffic generator Traffic generator is started by this action.
Start dropping all packets Starts the corresponding manipulation in order to

purge all experiment process packets from the network.

The manipulation actions can be used to extend the EP description or to define
separate manipulation processes. This depends on whether manipulations shall be
synchronous with the EP or autonomous. Figure 3.7 shows a shortened listing of
a traffic generation process. After generating a ready to init event, it uses the
factors from Figure 3.5 to choose and configure traffic generation by a set of envi-
ronment nodes, switching one pair of nodes in every run. The manipulation remains
active until done is registered.
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<env_process>
<env_actions>
<event_flag>
<value>ready_to_init</value>

</event_flag>
<env_traffic_start>
<bw>
<factorref id="fact_bw" />

</bw>
<choice>0</choice>
<!-- this causes identical randomization in replications -->
<random_switch_amount>1</random_switch_amount>
<random_switch_seed>
<factorref id="fact_replication_id" />

</random_switch_seed>
<random_pairs>
<factorref id="fact_pairs" />

</random_pairs>
<random_seed>
<factorref id="fact_pairs"/>

</random_seed>
</env_traffic_start>
<wait_for_event>
<event_dependency>done</event_dependency>

</wait_for_event>
<env_traffic_stop />

</env_actions>
</env_process>

Fig. 3.7 Illustrative example of environment process for traffic generation.

3.6.3 Experiment Process Description

Remaining is a description of the main experiment process, whose events and pack-
ets are to be observed and measured. The description provides a temporal and causal
sequence of actions on the participating nodes as introduced in Section 2.2, facili-
tating flow control functions from Section 3.6. In line with the topic of this work,
we will explain how to describe generic SD as an EP to be used within ExCovery, to
support the experiments in Chapters 6 and 8. The description can contain actors for
service providers, service clients and service registries. For reasons of brevity, these
roles will be referred to as SM, SU and SCM, which is in line with the terminology
used in [70]. For each actor a number of instances can be created to represent all
participants of the SD process.

The model developed in [70] defines a set of main operations for a generic SD
process, namely “Configuration Discovery and Monitoring”, “Registrations and Ex-
tension”, “Service-Description Discovery and Monitoring”, and “Variable Discov-
ery and Monitoring”. These will be considered in the abstract SD process descrip-
tion, with an optional list of parameters to define specific variants. The description
does not intend to model a Service Discovery Protocol (SDP) specific behavior in
detail, but to give an abstract description of a SD scenario. The details of executing
the description are left to the SDP implementation, so that multiple implementations
which adhere to the same SD concepts can be compared in experiments. However,
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the executing SDPs are allowed to generate custom events which will be recorded
by ExCovery. Actions that can be executed on participating SD nodes are described
as follows.

Init SD Mandatory action to allow participation of a node in the SD. Repre-
sents “Configuration Discovery and Monitoring”. Discoverable items such and
scopes and SCMs are discovered and a unique identity is established on each
node. This action reads as parameter the role as either SCM, SU or SM. Op-
tional custom parameters further configure the used SDP. When the SCM pa-
rameter is used, the node generates a scm started event. If an SM registers
its service on an SCM node, a scm registration add event is generated with
the registering node’s identification as parameter. Analogously, when a registra-
tion is revoked or changed, the respective events scm registration del and
scm registration upd are generated. In a hybrid architecture, SU and SM
agents keep looking for SCMs and emit scm found events when a SCM has
been discovered. When SD initialization is complete, sd init done is emitted.

Exit SD Stops a previously started role and all assigned searches and publishings,
emitting sd exit done upon completion. To participate again in the SD process,
a node needs to re-run init.

Start searching SU and SM nodes initiate a continuous SD process for a given
service type, generating the event sd start search. Refers to the group of
“Service-Description Discovery and Monitoring” functions. ExCovery does not
distinguish among passive, aggressive, or directed discovery (using an SCM).
A service is considered discovered when its complete description has been re-
ceived. The event sd service add will be emitted with the found service’s iden-
tifier as parameter. Analogously, when a service becomes unavailable, the event
sd service del is generated

Stop searching A previously started search is stopped and event sd stop search

generated. Includes de-registration of any notification request on SCMs.
Start publishing Starts publishing an instance of a given service type, generating

a sd start publish event. Refers to the group of “Registrations and Extension”
functions, such as registration on a SCM.

Stop publishing Gracefully stops publishing a given service type. Comprises fur-
ther actions like aggressively sending revocation messages or SCM de-registration.
Generates sd stop publish event upon completion.

Update publication Updates a previously published service description. Cov-
ers underlying functions related to registration on SCMs. Generates an event
sd service upd with the service identifier as parameter before the update is
executed.

An example SD scenario depicted in Figure 3.8 shows a single active SD in a
two-party architecture with a timeline for each actor SU1 and SM1. Actions are
shown as white circles, events as black circles. Unlabeled events inherit the label
of the preceding action. In the preparation phase, SU and SM initialize themselves.
This phase ends a fixed time after sd start publish from SM1 is registered, to
let unsolicited announcements of SM1 pass. SU1 then starts a search, beginning the
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execution phase. After a time tR the service is discovered and sd service add is
generated on SU1. The scenario finishes here, in the clean-up phase searches and
publications are stopped and the SD system shut down.

SM1

SU1

t

sd_init

sd_init

sd_start_publish

sd_start_search
sd_service_add(SM1)

sd_stop_search

sd_stop_publish

sd_exit

sd_exit

Preparation Execution Clean-Up

tR

Fig. 3.8 Visualization of a one-shot discovery process.

Figures 3.9 and 3.10 show descriptions of two-party SD processes for SU and
SM roles using the introduced actions and events. The SM role in Figure 3.9 basi-
cally starts publishing and continues until a done event is registered. The SU role in
Figure 3.10 waits first for all SMs to emit their sd start publish event, next for
the environment to register the ready to init event. It will then start searching and
finish either when all SMs have been discovered, having generated their respective
sd service add events or when the deadline of 30 seconds has been reached. In
either case, done is generated and the clean-up phase begins.

<actor id="actor0" name="SM">
<sd_actions>
<sd_init />
<sd_start_publish />
<wait_for_event>
<event_dependency>"done"</event_dependency>

</wait_for_event>
<sd_stop_publish />
<sd_exit />

</sd_actions>
</actor>

Fig. 3.9 SD process in a two-party architecture. Publisher role.

The code listings of all processes in this section have been deliberately shortened
for reasons of readability. Full versions can be found in Appendix B.
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<actor id="actor1" name="SU">
<sd_actions>
<wait_for_event>
<from_dependency>
<node actor="actor0" instance="all"/>

</from_dependency>
<event_dependency>"sd_start_publish"
</event_dependency>

</wait_for_event>
<wait_for_event>
<event_dependency>"ready_to_init"
</event_dependency>

</wait_for_event>
<sd_init />
<wait_marker />
<sd_start_search />
<wait_for_event>
<from_dependency><node actor="actor1" instance="all"/>
</from_dependency>
<event_dependency>"sd_service_add"</event_dependency>
<param_dependency><node actor="actor0" instance="all"/>
</param_dependency>
<timeout>"30"</timeout>

</wait_for_event>
<event_flag><value>"done"</value></event_flag>
<sd_stop_search />
<sd_exit />

</sd_actions>
</actor>

Fig. 3.10 SD processes in a two-party architecture. Requester role.

3.7 Prototype Implementation

An ExCovery prototype has been implemented using the Python programming lan-
guage [191] with the aim of being reusable on diverse platforms. It abstracts the
handling of the XML experiment description and the resulting run sequence and
parameter variations in separate classes that can be instantiated by programs to an-
alyze, visualize, trace or export experiment related data.

Some requirements must be met to reuse this implementation in addition to all
requirements mentioned in Section 3.3. For testbed platforms, several additional
requirements for the software packages exist. Nodes need to run the Linux operating
system with a kernel of version 2.6.34 or higher, which was released on May 16,
2010. Packet capturing software for the pcap format should be available as well
as the components of the netfilter software. Privileged access is mandatory on all
participating nodes. The current ExCovery implementation further depends on the
software tools tc, iptables, route, kill, killall, traceroute and tshark. All of these are
broadly used standard tools on Linux systems.

As the first platform, ExCovery supports the wireless DES testbed at Freie Uni-
versität Berlin [36]. An implementation for the SD process in Section 3.6.3 ex-
ists using the Zeroconf SDP [55, 54, 53] and the Service Location Protocol (SLP)
[103, 106]. This section gives a quick overview of the prototype, a comprehensive
description of the implementation can be found in [242, 61].
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Software Components

In accordance to the developed concepts the prototype is composed of one control-
ling entity (master) and a set of controlled entities (nodes) as depicted in Figures 3.2
and 3.11. Master and nodes are connected in a centralized client-server architecture
with a dedicated communication channel. They communicate synchronously using
Extensible Markup Language Remote Procedure Calls (XML-RPC) [244].

ExperiMasterExperiMasterNodeManagerExperiMaster
Experiment 

Process Threads

Fault Threads

Environment 
Thread

Node 
Objects

Event 
Handler

RPC 
Interface

Event 
Generator

Experiment 
Process Handler

Fault Handler

Environment 
Handler

Management 
Functions

ping

avahi

tshark

iptables

route

traceroute

Fig. 3.11 Execution components of the provided implementation, here only for Zeroconf.

The controlling ExperiMaster maintains a list of objects corresponding to the
active nodes in the experiment on which actions will be executed. A node object
presents the functions of one node to the master program via XMLRPC and uses
locking to allow only one access at a time. Which action is executed at which time
is specified in process descriptions loaded from the experiment description file. The
master creates an EP thread and a fault thread for each abstract node in the descrip-
tion. A single thread is created for the environment manipulations. The actions per-
formed by this thread and the management actions performed by the main program
can be executed concurrently on all nodes.

The NodeManager is the central component of the nodes participating in experi-
ments. It handles Remote Procedure Calls (RPCs) from ExperiMaster. Basically, the
NodeManager provides an interface to the ExperiMaster. Components on a node use
the event generator to signal the occurrence of events, as defined in Section 3.4.1.
Basic procedures exposed via RPC are actions for management, fault injection, en-
vironment manipulation and the EP actions as defined in Sections 3.3 and 3.6.3. The
implementation of these functions can be delegated to sub-components, e.g., the EP
actions in the context of this work refer to SD actions that are implemented by the
Avahi [22] software package in the case of Zeroconf. For SLP, the reference imple-
mentation provided by OpenSLP project group [176] is used by means of a Python
wrapper.

To allow analysis of properties outside the scope of the ExCovery processes, for
example packet loss and delay, a network packet tagger is provided. It remains run-
ning in the background on each node. The tagger adds an option to the header of each
selected IP packet and writes a 16 bit identifier to it, incrementing the identifier with
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each packet. This approach can cause problems when IP packets are fragmented,
due to the packet size being larger than the Maximum Transmission Unit (MTU) of
the network. In the context of this work, however, SD packet sizes used for testing
are generally far below the MTU. Additionally, ExCovery includes a set of Python
scripts to collect, condition and store experiment results in a database.

The presented concept and implementation generally support multiple SDPs.
They need to provide a Linux implementation which provides an interface to fun-
damental SDP operations, as represented by the actions in Section 3.6.3. For the
prototype, the Zeroconf SDP suite Avahi [22] was modified to allow the association
of request and response pairs. This allows analysis of response times not only at
the SD operation level (tR in Figure 3.8) but at the level of individual SD request
and response packets, which by default is not supported in Zeroconf SDPs. These
response times are different when packets are being lost and requests are retried.
Zeroconf is based on multicast DNS [54] and the ID field of the used DNS records
was chosen to identify responses to a request. This field is suitable and least invasive
because it “must be ignored on reception” and queries “should not” use the ID field.
The identifier is initialised with a random value in each run and then incremented
for each retransmission and each new query. A set of functions exist for extraction
and analysis of event and packet based metrics.

A set of specific analysis functions was added to the framework code as pre-
sented in [9] to support the results presented in Sections 6.5 and 6.4. Additionally,
diverse enhancements were developed to improve monitoring during execution of
experiments, given the long durations of the individual experiments. Finally, the
framework code for the execution of experiments was redesigned to reduce the du-
ration of experiments, especially when they are resumed after partial completion.
Since they are not the focus of this work, the implementation of these changes will
not be discussed in detail.

3.8 Conclusion

This concludes the presentation of the ExCovery framework. ExCovery has been
tried and refined in a manifold of SD dependability experiments over the last two
years that were carried out on the wireless DES testbed at Freie Universität Berlin.
Specifically, ExCovery was developed for the experiments on Service Discovery
(SD), which are presented in Chapters 6 and 8. The described abstract description
of SD as experiment process was used in those experiments.





Part II
User-Perceived Service Availability



Service-Oriented Architecture (SOA) has emerged as an approach to master grow-
ing system complexity by proposing services as basic building elements of system
design. However, it remains difficult to evaluate dependability of such distributed
and heterogeneous functionality as it depends highly on the properties of the en-
abling Information and Communications Technology (ICT) infrastructure. This is
especially true for the user-perceived dependability of a specific pair service client
and provider as every pair may utilize different ICT components.

In Chapter 4, we provide a model for the description of ICT components and
their non-functional properties based on the Unified Modeling Language (UML).
Given a service description, a network topology model and a pair service client and
provider, we propose a methodology to automatically identify relevant ICT compo-
nents and generate a User-Perceived Service Infrastructure Model (UPSIM). We fur-
ther provide a model-driven methodology to automatically create availability mod-
els of such views, called User-Perceived Service Availability Models (UPSAM). The
methodology supports the generation of different availability models, exemplarily
providing reliability block diagrams and fault-trees. These can be used to calculate
user-perceived steady-state and instantaneous service availability. For instantaneous
availability evaluation, the age of the ICT components, the order and time of their
usage during service provision are taken into account, providing a proper concept
of service time.

Chapter 5 demonstrates the feasibility of the methodology by applying it to parts
of the service network infrastructure at University of Lugano (USI), Switzerland.
We then show how this methodology can be used to facilitate user-perceived service
dependability analysis. Using the UPSAM, we calculate the availability of an exem-
plary mail service in diverse scenarios. We conclude this part by discussing further
applications of the methodology and explaining how to combine it with the service
discovery models in Chapter 7.



Chapter 4
Modeling User-Perceived Service Dependability

Abstract This chapter presents an approach to generate models for the evaluation
of user-perceived service properties. It provides a model for the description of a net-
work of ICT components and their non-functional properties based on the Unified
Modeling Language (UML). Given a set of input models that describe the service
network topology, its services and actors, the proposed methodology automatically
identifies relevant ICT components and generates a User-Perceived Service Infras-
tructure Model (UPSIM) which can be further transformed into User-Perceived Ser-
vice Availability Models (UPSAMs) for steady-state and instantaneous availability
analysis. So far, the methodology can create Reliability Block Diagrams (RBDs) and
Fault Trees (FTs). How these models can be utilized is demonstrated in case studies
in Chapter 5.

4.1 Introduction

This chapter builds on and combines previously published work on the topic which
is described in the following. In order to assess the service dependability from dif-
ferent user perspectives, an extraction of relevant network parts is presented in [2].
Given a model of the network topology, a service description and a pair service re-
quester and provider, a model-to-model transformation is applied to obtain a User-
Perceived Service Infrastructure Model (UPSIM) as in Definition 1.2. The approach
in [2] uses a subset of Unified Modeling Language (UML) [170] elements as well
as UML profiles and stereotypes [171] to impose specific dependability-related at-
tributes to ICT components. The ICT infrastructure and services are modeled in-
dependently using UML object and activity diagrams, respectively. Then, a mech-
anism is used to project the properties of ICT components to services through an
XML mapping that correlates their respective models. The methodology in [2] is
based on the work by Milanovic et al. in [156, 157], which provides the core con-
cepts of transforming the three dimensions service, infrastructure and actors into
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availability models of the service. More background information about this work
can be found in Section 2.3.2.

In [5], a methodology is presented that provides a UML availability profile to
obtain as output instead of an UPSIM a specific availability model expressed as
Reliability Block Diagram (RBD) to evaluate service availability for different user
perspectives. The case study in [5] uses an implementation of that methodology
that is extensively described in [165]. Extending [2] and [5] with a time dimension
has been done in [12] to support instantaneous service availability evaluation, the
probability of a service to be available at a specific point in time. The infrastructure
model from [2] is extended to include all ICT components, their failure and repair
rates and deployment times. The mapping contains concrete ICT components for the
service requester and provider, including possibly redundant components and their
expected duration of usage. Using these models, the methodology automatically
generates an availability model from those parts of the ICT infrastructure needed
during service provision for the specified user-perceived view. The implementation
of this approach is described in [196]. This provides a basic but solid concept of
service time, an thus allows for true instantaneous availability evaluation. This will
become even more important when variable and dependent failure and repair rates
are introduced. In [157], although instantaneous availability is calculated, all com-
ponents are considered to have been deployed at the same time. Additionally, the
service execution has no duration but happens in one instant of time. The approach
in [157] is thus most suitable for steady-state evaluation.

The remainder of the chapter is organized as follows. Section 4.2 defines the in-
put models to be used in the service dependability evaluation. The methodology to
evaluate user-perceived service dependability is presented in Section 4.3. Section
4.4 describes how to use this methodology to generate availability models. In chap-
ter 5, the feasibility of the approach is demonstrated in representative case studies
by applying it to an exemplary services within parts of the service network infras-
tructure of University of Lugano, Switzerland.

4.2 Model Specification

The methodology consists of generating a UPSIM respectively UPSAM from a ser-
vice description, a network topology and a mapping between them. The UPSAM
is then evaluated using an external tool for availability analysis. In this section, the
different types of input models are defined and explained.

ICT infrastructures are able to support a variety of services, while a single service
description can be similarly applied to a diversity of networks. For this reason, the
presented methodology supports independent modeling of infrastructure and ser-
vices, relying on a third model to provide a relation between them. This approach
implies also that changes on the network topology or service description should be
reflected only in their respective models. Our approach uses a subset of UML ele-
ments as it is standardized, easily expandable, well supported by numerous tools and
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thus, widely accepted in both industry and academia. Moreover, UML profiles and
stereotypes are applied to impose specific attributes to ICT components, resulting in
a coherent model with a standardized description:

• Class diagrams are used to describe structural units of the network (e.g.: routers,
clients, servers), their properties and relations in distinct classes.

• Object diagrams describe a deployed network structure/topology composed of
class instances, namely objects with all properties of the parent class, and links
as instances of their relations. Object diagrams are used to describe both the
complete network structure as well as the UPSIM.

• Activity diagrams are used for the service description and represent the service
as a flow of actions.

Figure 4.1 depicts the context of a UPSIM as a UML class diagram. The follow-
ing subsections explain the different parts of the diagram in detail.
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User-perceived Service Infrastructure Context

Service Mapping Pair

atomic service:Atomic Service
requester:Component
provider:Component

ICT Infrastructure

Atomic Service Composite Service

Connector Device

ICT Component

Service

* *

Fig. 4.1 Context of a user-perceived service infrastructure model.

4.2.1 ICT Infrastructure Model

A network topology can be represented as a bidirectional graph, in which network
devices and their links are respectively characterized by nodes and edges. But in
practice, service dependability rests upon the characteristics of individual compo-
nents and networks are generally composed of heterogeneous nodes. This is why in
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opposition to graphs, a separate model would better represent the individual charac-
teristics of network components.

The class ICT infrastructure in the left part of Figure 4.1 aggregates a set of
interconnected ICT components. Network nodes and the communication between
them exhibit very distinct properties. For this reason, ICT components are subdi-
vided into Device and Connector types. Following standard UML notation, Figure
4.1 shows that every Connector must be associated to two Devices, which may have
any number of Connectors. Devices and Connectors are respectively modeled as
classes and associations in a UML class diagram. The ICT infrastructure model is
then presented in a UML object diagram, where network nodes are instance speci-
fications of those classes, and communication is represented by the corresponding
links, which are instances of associations. To ensure that two different instances
of the same class also have the same properties, every class may only have static
attributes.

The same set of attributes can be applied to common model elements through
profiles [171] to facilitate dependability analysis that requires specific properties to
be present for each model element. A stereotype containing these specific properties
can be employed to guarantee that every ICT component inherits them and thus,
meets the requirements of the analysis. Following this approach, we provide an
availability profile, which is depicted in Figure 4.2. Focusing on both steady-state
and instantaneous availability (see Section 2.3.1), the profile includes the stereotype
attributes (1) failure rate, (2) repair rate and (3) component deployment time, at
which a component is expected to have its maximum availability. Although any
date and time format could be applied, epoch time has been chosen for deployment
time to simplify subsequent steps. Additionally, the redundant components property
specifies internal redundancy, which can be used to implicitly define a large set of
ICT components into a single object in the infrastructure model. ICT components
are divided into devices and links and are represented in the UML class diagram in
Figure 4.2 as classes and associations, respectively.

<<Stereotype>>
Component

failureRate: Real
repairRate: Real
deploymentTime: Integer
redundantComponents: Integer

<<Stereotype>>
Device

<<Stereotype>>
Connector

<<metaclass>>
Class

<<metaclass>>
Association

Fig. 4.2 Elementary availability profile

Furthermore, a network profile (see Figure 4.3) has been developed to guaran-
tee the uniformity of the infrastructure. It defines an abstract stereotype Network
Device to capture common properties of identified network components: Router,
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Switch, Printer and Computer. The latter one is abstract and specializes into Client
and Server. Communication is a stereotype dedicated to the association between
classes, and has channel and throughput attributes. In practice, it corresponds to
communication links between devices. With this profile, a set of attributes can con-
sistently be imposed to stereotyped classes for later model transformation. Albeit
only an illustrative representation in this case study, the network profile of Figure
4.3 can support a variety of attributes depending on the application.

<<metaclass>>
Class

<<Stereotype>>
Client

<<Stereotype>>
Server

<<Stereotype>>
Network Device

manufacturer:String
model:String

<<Stereotype>>
Computer

processor:String

<<Stereotype>>
Router

<<Stereotype>>
Switch

<<Stereotype>>
Printer

<<Stereotype>>
Communication

channel:String
throughput:Real

<<metaclass>>
Association

Fig. 4.3 Network profile with types of elements and their basic properties.

4.2.2 Service Model

Services in the context of this work are described as a sequence of complex ac-
tions provided by a composition of atomic service instances. Composite services
are modeled with UML activity diagrams using atomic services as building blocks,
as depicted in the right part of Figure 4.1. A composite service consists of initial
and final nodes, atomic services and join and fork figures. Figure 4.4 presents the
UML activity diagram of a simple composite service. It is assumed that each atomic
service is being executed – in series or in parallel. In this particular diagram, atomic
services A and B are executed in parallel. Instead of using decision nodes, separate
decision branches are modeled as separate services.
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A

B

C D

Fig. 4.4 Example of composite service model as UML Activity Diagram.

In this methodology, the availability is measured by the probability to traverse the
activity diagram from start to end nodes, just like in common availability models.
To accomplish that, every composing atomic service must be successfully executed,
that is, there must be at least one path between a service requester and one of its
providers in which all network components are available. As an example, the com-
posite service model in Figure 4.4 shows that atomic services A and B are executed
in parallel, C is executed right after both of them completed, D follows after C. The
represented composite service is successful if and only if all its composing atomic
services are successful.

According to Milanovic et at. [157], atomic services are abstractions of the ICT
infrastructure, application or business level functionality. At this point, atomic ser-
vices are still considered abstract functionalities and are not yet related to a set of
concrete ICT components. This relation exists later during service execution, where
atomic services map to a set of ICT components including requester, provider and
connecting ICT components and inherit their properties.

4.2.3 Network Mapping Model

Since service properties strongly depend on the underlying infrastructure, a correct
mapping between services and the ICT components that enable them is required
for further analysis. To obtain the set of potentially required ICT components for
each atomic service, the service model is projected to the ICT infrastructure by
a separate mapping, represented by the dashed line in Figure 4.1 between classes
Atomic Service and ICT component. Atomic services are instantiated by a service
mapping pair when defining requester and provider. The mapping, provided as an
XML file (see Figure 4.5), contains a unique description of the service mapping pair
requester and provider for every atomic service. The service mapping pair in the
center of Figure 4.1 gives the initial and final boundaries of the ICT infrastructure
used by a specific atomic service. Other related ICT components depend on the
possible paths between those communication end points. The methodology thus
uses a path discovery algorithm to identify these paths as initially proposed in [148].

Contrarily to the service mapping pair proposed in [2] and as proposed in [12],
this methodology defines a mapping model that allows multiple service providers
per atomic service, which enables the modeling of redundant parts (i.e. multiple
DNS servers) located in different areas of the network. This feature requires an ad-
ditional annotation to describe the priority of access, as the redundant parts can be
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<atomicservice id="A">
<requester id="req1"></requester>
<provider id="prov1"></provider>

</atomicservice>

Fig. 4.5 Example of the XML code representing the mapping of a single atomic service.

accessed in parallel or in series after an eventual failure. For the latter case, fur-
ther annotations are needed to define serial access times of redundant components.
Additionally, this methodology supports redundancy modeling using independent
components with possibly different properties, instead of identical replicas as in [2].
Service and infrastructure descriptions are time-independent and, alone, are not able
to provide an estimated execution time for atomic services. This becomes instead a
parameter of the mapping. Having such information, it is possible to estimate for
which interval each atomic service availability should be evaluated. The service
model (see Section 4.2.1) plays an important role by describing which atomic ser-
vices are executed in parallel or in series.

An example of the enhanced mapping model is shown in Figure 4.6. Multiple
providers within an atomic service description are always considered to be redun-
dant, that is, at least one of the listed instances must be available for the requester
to achieve a successful service provision. Every instance may be able to provide the
atomic service with a different estimated duration in seconds, and the priority (0
being the highest) plays a role for the definition of start and end execution times for
each instance access.

<atomicservice id="C" requester="req1" timeout="10">
<provider="prov1" duration="3" priority="0">
<provider="prov2" duration="4" priority="1">
<provider="prov3" duration="8" priority="1">

</atomicservice>

Fig. 4.6 Mapping of atomic service with parameters for instantaneous availability evaluation.

In the example of Figure 4.6, three providers prov1, prov2, prov3 are able to
deliver a specified atomic service C to the requester req1. Supposing this atomic
service is invoked at time t = 0s, the example models the following behavior: com-
ponent req1 requests a service from component prov1, which has the highest prior-
ity. If service provision fails, req1 requests the same service from components prov2
and prov3 simultaneously – both have priority 1 – after the timeout. Therefore, next
requests are invoked at time t = 10s and take 4 and 8 seconds, respectively. The
atomic service is considered finished only after every provider has finished. The du-
ration of atomic service C is then 18 seconds, that is the latest estimated end time
minus the earliest estimated start time of its redundant providers. This way, the next
atomic service will be invoked at time t = 18s.
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Although there is a well-defined serial and parallel order of execution in the
system behavior, availability analysis will always consider them as parallel since
they represent redundancy. Details are described in Sections 4.4.1 and 4.4.2, where
the example of Figure 4.6 is evaluated.

4.2.4 Input Model Considerations

Separating the infrastructure model, the service description and the mapping allows
to efficiently handle dynamic system changes by updating only individual models
where necessary. The reasons for system changes are manifold: user mobility, net-
work topology changes due to new or failing components, service migration and so
on. For instance, the UPSIM can be generated for different user perspectives with
only minor changes to the mapping of atomic services while the abstract service
model and network model remain untouched. In a mobile scenario, where users
can be at different positions within the network but still use the same service, the
network model needs to be updated while the service description and mapping re-
main the same. Migrating a service from one provider to another requires updating
only the mapping while substituting a service – replacing one service composition
with another one that provides the same functionality – requires changing only the
service description and mapping but not the network model.

As input models, this work adopts the Unified Modeling Language (UML) for in-
frastructure and service descriptions as it is standardized and widely used, especially
for design purposes. For the mapping model, XML is chosen due to its versatility.
The decisions for UML and XML guarantee that the models remain human-readable
and visualization was a relevant factor driving those decisions. However, the main
contribution of the methodology proposed in Section 4.3 lies in the evaluation of
user-perceived service availability, given that the ICT infrastructure is accordingly
described with availability properties. Therefore, those inputs can also be provided
using different formalisms, keeping intact the main purpose of the methodology but
improving, for instance, the scalability of its application. One possible improvement
has already been proposed in Chapter 7 (see also [4]), where the topology is gathered
directly from the routing layer to be used in the responsiveness evaluation of service
discovery in wireless mesh networks. The routing layer is also able to provide infor-
mation about the quality of links, as it keeps statistical data about successful packet
transmission among nodes.

4.3 Methodology

Given the input models from Section 4.2, a model-to-model transformation is ap-
plied to obtain the UPSIM and UPSAM, depending on the desired type of depend-
ability evaluation. This section describes a methodology to do so and is based on
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the methodology provided by Milanovic et al. in [157], although the order of steps
has changed and the steps have been adjusted and extended to match the presented
model-driven workflow. Especially the concept of service and component time is
completely new, which will be applied in Steps 9 and 10. More detail can be found
in Sections 4.4.1 and 4.4.2. Open-source tools are chosen for the implementation.
Eclipse [217] is a multi-language software development environment with numerous
extension plug-ins. This includes the UML2-compliant [170] modeling tool Papyrus
[218] and the model transformation plug-in VIATRA2 [219] with embedded support
for UML models. VIATRA2 complements the Eclipse framework with a transfor-
mation language based on graph theory techniques and abstract state machines. It
also provides its own model space, so it can import the input models to an inter-
mediate representation where they can be manipulated before a subsequent model
generation.

As output, two different types of models are generated. The UPSIM is presented
as UML object diagram and represents a subset of the original ICT infrastructure
that includes all components relevant for the specific service mapping pair. All re-
dundant paths between requester and provider are included. A methodology to gen-
erate the UPSIM is presented in Figure 4.7. Instead of generating the UPSIM, we
can also output a Reliability Block Diagram (RBD) or Fault-Tree (FT) for the same
subset of the network. Figure 4.8 presents an overview of the methodology, which
differs only in the last step when generating the output model. All steps are de-
scribed in detail below. Steps 1 to 4 provide the input models specified in Section
4.2 for later transformation and output model generation. The three input models are
in the left part of Figures 4.7 and 4.8. All model tranformations and their auxiliary
measures are depicted within the center rectangle labeled VIATRA2 and described
in Steps 5 to 7. The UPSIM generated in Step 8 and the UPSAM generated in Step
9 can be seen at the bottom of the figures.

1. Identify ICT components and create the respective UML classes for each class
type. According to the subject of a subsequent dependability analysis, a UML
profile can be applied to classes in this step. Results in a class diagram containing
the description of every ICT component. See also Section 4.2.1.

2. Model the ICT infrastructure using UML object diagrams with instances of the
classes from Step 1. Results in an object diagram of the complete infrastructure.
See Section 4.2.1.

3. Identify and iteratively describe services using UML activity diagrams with
atomic services as building blocks (actions). Results in a collection of service
models with no correlation to the infrastructure. See Section 4.2.2.

4. Generate service mapping pairs by mapping atomic services from Step 3 to re-
spective requester and provider ICT components from the infrastructure object
diagram (Step 2). Results in an external XML file (see Figure 4.5). See Section
4.2.3.

5. Import ICT infrastructure and service UML models to the VIATRA2 model space
using its native UML importer. VIATRA2 creates entities for model elements and
their relations. Also, atomic services are transformed into entities of the model
space.
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Fig. 4.7 Implementation of the model transformation to obtain the User-Perceived Service Infras-
tructure Model (UPSIM).

6. Import service mapping pairs to the VIATRA2 model space using a custom ser-
vice mapping importer.

7. Discover all acyclic paths between requester and providers. Given a composite
service, its atomic services and their service mapping pairs, an algorithm discov-
ers all paths between the ICT components contained in these mappings. Resulting
paths are stored separately in the model space for further manipulation. This step
is described in 4.3.1.

8. Generate output model: UPSIM. Paths extracted from Step 7 are merged into a
single network topology, corresponding to the user-perceived service infrastruc-
ture. The UPSIM is obtained as a UML object diagram. See Section 4.3.2.

9. Generate output model: UPSAM.

a. Generate atomic UPSAMs. For each atomic service, Paths extracted from
Step 7 are merged into a single network topology, corresponding to the user-
perceived service infrastructure. The atomic UPSAM is obtained as an RBD
or FT from that infrastructure.

b. Generate composite UPSAM. According to the service model from Step 3,
the atomic UPSAMs are combined into a single RBD or FT.

10. Calculate the user-perceived availability with the Symbolic Hierarchical Auto-
mated Reliability and Performance Evaluator (SHARPE) [224] using the com-
posite UPSAM from Step 9.
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Fig. 4.8 Implementation of the model transformation to obtain the User-Perceived Availability
Model (UPSAM).

Steps 1 to 3 are done manually using a UML modeling tool like Papyrus and
kept unaltered as long as the ICT infrastructure and services descriptions do not
change. They may also be obtained automatically using data from a configuration
management database. The mapping in Step 4 is a simple XML structure where
changes will eventually be performed in order to analyze different user-perspectives
on a service. This can be done manually or automated. Steps 5 and onward are
then fully automated. Extensive details about the implementation of all steps can be
found in [165].

VIsual Automated model TRAnsformations tool

The approach relies on a model-to-model transformation using VIATRA2, that re-
ceives multiple input models conforming to specific source meta-models and pro-
duces a single target model conforming to a target meta-model (see Figure 4.7). A
meta-model describes the abstract syntax of a model, its elements, their properties
and relationships and modeling rules [64]. In VIATRA2, a meta-model is described
using a specific syntax provided by the VIATRA textual meta-modeling language.
Models and meta-models are stored in the Visual and Precise Metamodeling (VPM)
model space, which provides a flexible way to capture languages and models from
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various domains by identifying their entities and relations. To import the UML mod-
els into this model space, VIATRA2 provides a UML native importer and a UML
meta-model. In order to import the service mapping pair into the model space, a
custom service mapping meta-model and importer plug-in was developed based on
the hierarchy presented in Figure 4.5. The task of the services mapping importer is
to parse the XML file, traverse the content tree and find appropriate VPM entities
in the meta-model corresponding to the type of each element. It is implemented in
the Java programming language and added to the project workspace as an Eclipse
plug-in. Additionally, the VIATRA2 textual command language provides a flexible
syntax to access the VPM model space. It is based on mathematical formalisms
and provides declarative model queries and manipulation [233]. This language is
especially useful in this methodology to implement the path discovery algorithm in
Section 4.3.1.

4.3.1 Path Discovery Algorithm

As stated in Section 4.2.3, the service mapping pair gives the initial and final bound-
aries of the ICT infrastructure used by a specific atomic service. In order to identify
the ICT components potentially required for service provision, all possible paths
between the service requester and provider must be traced. Multiple paths signif-
icantly increase the availability of an atomic service, as they provide redundancy.
This approach implies that topology changes on the ICT infrastructure do not re-
quire adjustments to the service model or the atomic service mapping, given that
requester and provider are still running on the same ICT components. For every
service mapping pair, the algorithm discovers a set of paths between the respective
requester and provider, and stores the visited entities in a reserved tree structure
inside the model space.

The complexity of such algorithms grows significantly with the size of the ICT
infrastructure. In order to find all possible paths, every node must be visited through
all available edges. For this reason, the time complexity of the algorithm is even
more sensitive to the number of edges, reaching O(n!) for a fully interconnected
graph of n nodes. The complexity is a serious problem in networks with a high
connectivity, such as wireless mesh networks and the reason why the methodology
for evaluation of service discovery responsiveness presented in Chapter 7 uses a
probabilistic path discovery. However, cabled networks usually contain few if any
loops, while most clients are located in tree-like structures with a low number of
edges. The path discovery algorithm used in this methodology was first described
in [2] and is based on the DFS algorithm [87], with a path tracking mechanism
to avoid live-locks in cycles. It takes a pair of service requester and provider from
the mapping model, identifies both in the graph representation of the network – ob-
tained from the UML object diagram in Section 4.2.1 – and traces the paths between
them to be subsequently merged into a subgraph. This process is repeated for every
provider described in the mapping model. This assures a precise solution at the cost
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of a higher runtime, which proved to be acceptable for the case study networks in
Chapter 5. However, the methodology might as well use Probabilistic Breadth-First
Search (PBFS) as described in Section 7.3 to achieve better scalability.

4.3.2 User-perceived Service Infrastructure

The final step of the methodology is the generation of an output model by merging
the paths obtained from the algorithm. Since all the atomic services within a given
composite service are executed, their paths are also merged into one UML object
diagram which corresponds to the partial infrastructure required for proper service
delivery. The instance specifications of the UPSIM object diagram have the same
signature as in the original ICT infrastructure. Therefore, they maintain the same
set of properties as the classes they instantiate. It is thus guaranteed that a subse-
quent service dependability analysis will find specific required properties for every
element of the user-perceived ICT infrastructure. One such analysis could assess
service availability based on those properties, which is exactly what the UPSAM
does. Details on the generation of the UPSAM can be found in Section 4.4.

4.4 User-perceived Availability Model Generation

Since all the atomic services within a given composite service may be executed, the
paths found in Section 4.3, Step 7 are merged into one model which corresponds to
the partial infrastructure required for proper service delivery of a given service pair.
The UPSAM is a transformation of that partial infrastructure. The instance specifi-
cations of the components within that partial infrastructure have the same signature
as in the original ICT infrastructure from Section 4.2.1. Therefore, they maintain the
same set of properties as the classes they instantiate. It is thus guaranteed that a sub-
sequent availability analysis will find specific required properties for every element
of the UPSAM.

Each atomic service has its own set of paths. All ICT components forming the
path are translated into serialized blocks inside the RBD, given that all of them
must be working in order to traverse the path. If an ICT component has n redundant
components, the RBD will have n parallel blocks with the same characteristics. This
corresponds to the redundant components property of the profile (see Figure 4.2).
An atomic service is available if all ICT components on at least one of its paths
are available. This introduces path redundancy inside the service network, and is
represented within the RBD by placing blocks related to these paths in parallel.
Identical blocks within those parallel paths are then merged into a single block.

Let us demonstrate this using Figure 4.9 as an example of an ICT infrastruc-
ture model, ignoring the links for simplification purposes. The following paths are
identified from component A to G:
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F
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BA

Fig. 4.9 ICT Infrastructure model example

A→ B→C→ D→ F → G

A→ B→C→ E→ F → G

Components A,B,C and F,G are represented as a series of blocks, as they are
common for both paths. Blocks D and E are in series within their respective paths
but parallel to each other. Thus, they are represented as a pair of parallel blocks in
between the two sequences obtained previously. Given all components have no re-
dundancy, only component B is triplexed (redundantComponents=2). Know-
ing that B has two redundant components for a total of three components, it is rep-
resented as three parallel blocks B. The resulting RBD is presented in Figure 4.10.
Note that for steady-state evaluation, the order of the blocks does not affect the re-
sulting availability. The individual RBDs of the atomic services are then connected
in a similar manner to an overall availability model of the composite service, ac-
cording to the defined service model (see Section 4.2.2).

A

B

B

B

C

D

E

F G

Fig. 4.10 Reliability Block Diagram of the example ICT infrastructure model

Existing methodologies for steady-state availability analysis mostly use RBDs
to represent their output models. If the focus of modeling is on failure instead of
success conditions, FTs are used. Both models provide comparable analysis for dif-
ferent points of view and are supported by the proposed methodology.
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4.4.1 Instantaneous Availability Evaluation

In order to evaluate user-perceived instantaneous service availability, the time di-
mension must be added to the problem. So far, we have only been dealing with
steady-state availability, where time t → ∞. In such scenarios, every component is
known to have reached a constant and stable availability, so that composite ser-
vice availability can be evaluated as if composing atomic services were invoked at
the same time t → ∞. While steady-state availability has its applications, it cannot
capture the behavior of services over time as it cannot consider different execution
times of atomic services and the age of their providing components. For example,
if after failure a hardware component is replaced with an identical, but new unit,
steady-state analysis would result in the same service availability as before the re-
placement. When evaluating the service availability at time tx<∞, it is important to
know the estimated execution time of each atomic service, since they may be in-
voked at different instants and the availability of ICT components varies over time.
Moreover, every component may have been deployed at different points in time.
Some components may have already reached a steady-state condition, while others
are in transient state.

Consider the graph in Figure 4.11 and the atomic service mapping of Figure 4.6.
The path discovery is executed three times, once per provider. Taking provider prov1
as example, the algorithm is able to discover two paths starting from component
req1 (Figure 4.12(a)). In order to merge all discovered paths, identical vertices and
edges are merged. The resulting subgraph is shown in Figure 4.12(b), and can be
directly transformed into an availability model.

lr1x

lp2x

lxy

lxz lyz

lp1y

lp3z

req1

prov2

x
y

z

prov1

prov3

Fig. 4.11 Simple network topology to demonstrate path discovery.

For the purpose of instantaneous availability evaluation, the resulting subgraphs
are transformed into individual availability models and connected to a composite
model that calculates the user-perceived instantaneous service availability. A key
contribution is that the availability of individual components is shifted in time ac-
cording to their deployment time and to the estimated atomic service duration. This
approach provides a realistic and consistent evaluation for transient scenarios, and
can be divided into two steps:
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(a)
req1 lr1x x lxy y lp1y prov1

req1 lr1x x lxz z lzy y lp1y prov1

(b) req1 lr1x x y lp1y prov1
lxy

lxz z lzy

Fig. 4.12 Paths between req1 and prov1 (a) and merged subgraph (b).

1. The Model generation step generates the service availability model, which is
composed of the availability of individual components arranged according to
their roles in the service provision.

2. The Access time definition step complements the service availability model by
identifying the exact instant at which each component is invoked within its life-
cycle.

The model generation for the atomic services is similar to the one described for
steady-state availability, while the access time definition warrants more detailed ex-
planation in Section 4.4.2. The resulting user-perceived service availability model,
represented in the FT in Figure 4.13, is composed of three main stages: (1) Com-
posite service, (2) atomic services and (3) ICT components necessary for provision
of the atomic services.
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req1(ts,te)

req1
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123
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lxz(ts,te)

z(ts,te)

lzy(ts,te)
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D

Fig. 4.13 Partial fault-tree (FT) of the provided example.

We will now explain the three stages in detail using the example FT in Figure
4.13. According to the service model in Figure 4.4, the condition for the compos-
ite service S to fail is that at least one of the atomic services fails. Therefore, the
first stage of this model can be represented in the rightmost part of the tree by a
single OR logic gate, where the number of input ports corresponds to the number
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of atomic services. In stage two, every atomic service is represented by an AND
logic gate with every provider connected to an input port. This logic gate represents
the condition that all providers must fail to result in an atomic service failure. This
information is provided by the mapping model in Figure 4.6, which contains three
providers prov1, prov2 and prov3. Stage three in Figure 4.13 does not have a fixed
pattern. Its logical circuits depend exclusively on the subgraphs from Section 4.3.1.
Components essential for service provision of a specific provider are connected to
OR logic gates, while redundant components are connected to AND logic gates. The
third stage shows the logic circuits of the resulting subgraph in Figure 4.12(b), cor-
responding to communication between requester req1 and provider prov1 in Figure
4.6.

The same problem can be modeled using an RBD, depicted in Figure 4.14. The
layers 1, 2 and 3 correspond to the equivalent stages in Figure 4.13: Composite
service S, atomic service C and component req1 using component prov1 when re-
questing C. According to the RBD and FT formalisms, logical AND gates represent
parallel blocks while logical OR gates represent serial blocks. The models in Figures
4.13 and 4.14, in addition to failure and repair rates of individual ICT components,
are sufficient to evaluate the user-perceived steady-state service availability. In the
next section, the access time definition is explained that allows these models to eval-
uate instantaneous availability of composite services.
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Fig. 4.14 Partial reliability block diagram (RBD) of the provided example.
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4.4.2 Access Time Definition

In a non-steady-state scenario, we want to evaluate how availability decreases over
time. The deployment time defines the instant at which individual components were
fully available. Furthermore, using the additional information proposed in the map-
ping model – duration and priority – it is possible to calculate when every single
atomic service provision is expected to start and finish. The assumption that every
service provision starts at the same time is only valid for steady-state evaluation,
where components have reached a stable availability – a proposition hardly realistic
in dynamic and heterogeneous networks.

As seen in Section 4.4.1, the user-perceived service availability depends on the
interval availability of many components, according to their roles in their respective
atomic services. Another option would be to use the instantaneous availability of
those components at a specific instant within this interval. Picking the correct in-
stant is not trivial, however. Using the start of the interval would lead to an overly
optimistic estimation while using the end time might be too pessimistic, especially
for longer running atomic services. Picking any specific instant within the interval
would need a sophisticated atomic service model with access durations for every
component and dependencies among them. It is unclear what such a model would
look like, knowing that components will change for every user-perspective, and how
it could be reasonably validated to justify its usage. This is why this methodology
proposes to use interval availability, the average availability over the whole dura-
tion of an atomic service. The exact range of the interval availability evaluation,
however, is estimated according to the instant each component is invoked, taking its
deployment time as reference. Initial references can be defined as follows:

• t0 of an individual component is independently defined as its own
deployment time.

• ta0 of a composite service is defined as t0 of the youngest component.

Furthermore, every atomic service is invoked at different instants, with ta0 as
reference. Their initial times are set according to the service and mapping models,
which denote the serial/parallel configuration of each atomic service, and provide
their estimated duration. As mentioned in Section 4.2.3, the estimated duration of
each atomic service is given by the latest estimated end time minus the earliest
estimated start time of its redundant providers.

As an example, consider the FT model in Figure 4.13. The relevant network
components, required for the provision of atomic service C from provider prov1
to requester req1, were deployed at different instants. In this example, components
prov1 and lp1y are assumed the youngest and their deployment time is therefore
taken as reference time ta0. The composite service S will be invoked at t = ta0 +
3600, that is, one hour after the youngest component was deployed. The atomic
service C, mapped in Figure 4.6, has an estimated duration of 18 seconds, as already
described in Section 4.2.3. Using similar analysis, the estimated duration of atomic
services A and B are set to 10 and 20. This way, it is possible to identify the time
intervals of each atomic service relative to the reference ta0:
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tinvocation start,A = ta0 +3600 seconds

tinvocation end,A = ta0 +3600+10 seconds

tinvocation start,B = tinvocation start,A

tinvocation end,B = ta0 +3600+20 seconds

tinvocation start,C = tinvocation end,B

tinvocation end,C = ta0 +3600+38 seconds

The invocation start time of C is equal to the latest invocation end time of A and
B, as it will be invoked only after both A and B have finished. The same applies to
each service provision within atomic services. Absolute start and end times of the
availability intervals of individual components i necessary for service provision p
are given by:

ts,i = tinvocation start,p− tdeployment,i

te,i = tinvocation end,p− tdeployment,i

Let the deployment time of component x be ten days, hence, 864000 seconds
before ta0. This way ts,x and te,x in the service provision req1-prov1 within atomic
service C are obtained as follows:

ts,x = ta0 +3600+20− (ta0−864000) = 867620
te,x = ta0 +3600+38− (ta0−864000) = 867638

The interval unavailability Ux(ts, te) = 1− Ax(ts,x, te,x) for component x in the
example of Figure 4.13 should be calculated using Equation 4.1.

Ax(ts,x, te,x) =
1

te,x− ts,x
·
 te,x

ts,x
Ax(τ)dτ (4.1)

For constant failure and repair rates, Ax(τ) is given by Equation 2.5. A constant
failure rate is a reasonable approximation after the wear-in period of hardware com-
ponents, in which faults become random and independent events along most of the
component lifetime. For the case study in Chapter 5, we will use this approxima-
tion for all availability calculations. It should be mentioned that in scenarios where
this approximation is not valid and non-constant failure rates are given, a different
instantaneous availability equation could be derived using these non-constant rates
and used without further modifications within the proposed methodology.





Chapter 5
Case Study of User-Perceived Service
Availability

Abstract This chapter demonstrates the feasibility of the methodology previously
introduced in Chapter 4 with a representative case study. We apply the methodology
to parts of the network infrastructure of University of Lugano (USI), Switzerland.
This infrastructure consists of six interconnected routers and switches in its core
with servers directly connected to it, and tree-like peripheral networks composed of
clients and printers. First, a User-Perceived Service Infrastructure Model (UPSIM)
is generated for two different clients of an exemplary mail service. User-perceived
steady-state and instantaneous availability models are created for diverse scenar-
ios. We show and discuss how availability changes in these scenarios and how the
methodology enables assessment of these different results with very low effort.

5.1 Introduction

In this chapter, the feasibility of the methodology from Chapter 4 is demonstrated
by generating the User-Perceived Service Infrastructure Model (UPSIM) and var-
ious different User-Perceived Service Availability Models (UPSAMs) of an exem-
plary Send mail service in a real network and from different user perspectives. The
topology depicted in Figure 5.1 is based on the network of University of Lugano
(USI), Switzerland. The network core, consisting of six interconnected routers and
switches in its core, is nearly identical to the real infrastructure while the tree-formed
peripheral parts connected to the core, composed of clients and printers, have been
reduced for demonstration purposes. Servers are directly connected to the bottom-
most switches. Every component has a unique ID and a specified type in the format
id : type. For better visualization, links lack labels. They are, however, referenced
throughout this chapter as the concatenated IDs of the devices they connect. For
instance, the line between t1 and e1 represents a communication link identified by
t1 e1. Links in this network are categorized either as wired or wireless, respectively
represented by full or dashed lines. In Sections 5.2 and 5.3, only wired links are
taken into account.
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Fig. 5.1 Network infrastructure based on university campus network. Lines between devices rep-
resent network links.

5.2 User-Perceived Service Infrastructure

A number of atomic services are provided in the network, such as Check authenti-
cation, Dispatch email, Print document, Request backup and so forth, whereas each

service has at least one provider. Atomic services can compose composite services,

for example email, printing or backup, which are requested by different clients lo-

cated at various positions within the network. The following sections explicitly re-

flect the steps of the proposed methodology defined in Section 4.3.

5.2.1 Identification and Modeling of ICT Components

The ICT infrastructure is modeled with focus on service dependability assessment,

more specifically, steady-state and instantaneous availability. In order to use the
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UPSIM for user-perceived service availability assessment, we developed the sim-
ple UML profile in Figure 4.2, which contains relevant properties for such analysis.
This profile is then applied to the infrastructure. Each ICT component, device or
connector, has intrinsic dependability attributes such as a failure rate, a repair rate
and a number of internal redundant components. In this case study, we assume that
these rates are constant, and that the failure rate encapsulates all possible failure
causes within the scope of a component, e.g. hardware or software. As mentioned in
Section 4.4.2, this assumption does not necessarily hold. In scenarios where func-
tions of non-constant rates are given, a different equation to calculate instantaneous
availability of individual components could be derived and used without further
modifications within the proposed methodology.

As can be seen in the availability profile in Figure 4.2, although Device and Con-
nector inherit the same attributes from Component, they are distinguished in order
to be applied – respectively and exclusively – to Class and Association elements.

The different types of ICT components identified in the infrastructure model
(Figure 5.1) are modeled in a set of stereotyped classes depicted in Figure 5.2,
which shows the UML class diagram containing the description of the devices and
their connections as, respectively, classes and associations. This diagram contains
all network elements with their predefined availability properties. At this point, we
evaluate all constituting devices and their possible connections. For instance, D1
and D2 are different instances of the same device labeled C3750, which is known
to be a switch. Therefore, the corresponding class is created, with Component and
Switch stereotypes applied from the availability and network profiles. When all de-
vices are represented as classes, their possible links are represented by associations
stereotyped as Component and Communication.

As another example for the ICT component description in UML, in Figure 5.2
the type RServer represents a server containing an internal redundancy of one
extra component (redundantComponents=1) which signifies that there are ac-
tually two servers with one server to fail over. Type C2960 represents a switch. The
complete list of ICT components including relevant availability data is presented in
Table 5.1.

5.2.2 ICT Infrastructure Modeling

The infrastructure object diagram (see Figure 5.3) is built with instances of classes
and associations (namely instanceSpecification and links) from the previous step,
and reflects the topology of the network in Figure 5.1. Since attributes are statically
defined in classes, those instances are already well-defined components. Also, given
that links are instances of associations, connections are possible only when those
associations exist.

In the UML object diagram in Figure 5.3, each node is represented by a unique
identification and the respective type, in the format id:Type. Types HP2650,
C3750, C6500 and C2960 are switches, the other types should be self-explanatory.
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Fig. 5.2 Predefined network elements classes.

Table 5.1 Specification of ICT components

Type Manufacturer Model Failure rate (1/h) Repair rate (1/h) RC*

C2960 Cisco Catalyst 2960-48FPD-L 5,45 ·10−6 2 0
C6500 Cisco Catalyst 6500 1,63 ·10−5 2 0
C3750 Cisco Catalyst 3750G-24TS 5,303 ·10−6 2 0
HP2650 Hewlett-Packard ProCurve 2650 5,025 ·10−6 2 0
Server Dell PowerEdge T620 1,67 ·10−5 10 0
RServer Dell PowerEdge T620 1,67 ·10−5 10 1
Comp HP Compaq DC7800 0,000333 0,04167 0
Printer Canon IR3245N 0,001389 2 0
Wired link n/a n/a 7,69 ·10−6 0,25 0
Wireless link n/a n/a 0,0833 33,333 0
*redundantComponents
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Fig. 5.3 Network infrastructure presented in UML Object Diagram

Given that RServer has redundantComponents = 1, the dns is then known to have
redundancy although represented by a single node.

5.2.3 Identifcation and Modeling of Services

The exemplary Send mail service of this case study consists of resolving the Mail
Exchanger (MX) address via the Domain Name System (DNS) and then sending
an email message over that MX by means of the common Simple Mail Transfer
Protocol (SMTP). During SMTP communication, the MX checks the credentials
provided by the client with an external authentication server. This service represents
a widespread use-case in present-day service networks. In detail, the service is com-
posed of three atomic services, used in sequential order. Following is a description
of the atomic services:

1. Resolve mail server address – A client first uses the DNS to resolve the MX
record, an IP address of the mail server.

2. Dispatch email via SMTP – The client connects to the MX using that address. It
will then send an email message over that MX by means of the common SMTP.
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3. Check authentication – During SMTP communication, the MX will check au-
thentication credentials provided by the client using an external authentication
server.

The UML activity diagram representing the Send mail flow of actions of the
composite service is depicted in the activity diagram in Figure 5.4.

Resolve Mail
Server Address

Dispatch email
via SMTP

Check
authentication

Fig. 5.4 Send mail service represented in UML activity diagram

The Send mail service description (see Figure 5.4) remains generic and abstract.
It is a composition of exclusively atomic services, which are not yet mapped to
ICT components. This means that in case of changes to the ICT infrastructure, the
service description remains identical. Thus, the same service description can be used
to describe a service for arbitrary pairs in any network that provides the atomic
services.

5.2.4 Service Mapping Pair Generation

Each atomic service from the service description is now mapped to infrastructure el-
ements by means of service mapping pairs, which associate each atomic service with
requester and provider ICT components. Mapping is the key mechanism to support
dynamicity as it allows to change service requesters and providers with minimal ef-
fort. According to the service description of Figure 5.4, the service mapping should
contain at least three pairs with their atomic service as unique key. Additional ser-
vice mapping pairs could be listed in the mapping file to support other services.
However, they will be ignored when the corresponding atomic service is irrelevant
for the analyzed service.

To illustrate the proposed methodology for a specific user-perspective, we explic-
itly select requesters and providers in the service mapping pairs of all atomic ser-
vices: In this case study, the ICT components t1 and backup were chosen as clients to
compare two views on a composite service as perceived by different clients. Compo-
nents dns, email and auth play the roles of dns server, mail server and authentication
server. The mappings between atomic services and the ICT infrastructure (Step 4 of
the methodology) for the clients t1 and backup are given in Tables 5.2 and 5.3, re-
spectively. It can be seen that only minor changes to the input models are necessary
to change the user-perceived view on a service: Only the requesting instance in the
mapping is changed, the network model and service description remain untouched.
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Table 5.2 Service mapping pairs of the Send mail service for client t1.

Atomic Service Requester Provider

Resolve mail server address t1 dns
Dispatch email via SMTP t1 email
Check authentication email auth

Table 5.3 Service mapping pairs of the Send mail service for client backup.

Atomic Service Requester Provider

Resolve mail server address backup dns
Dispatch email via SMTP backup email
Check authentication email auth

5.2.5 Model Space Import

Next, we are running the VIATRA2 native UML2.2 importer on all files contain-
ing the set of input diagrams (profiles, class diagram, object diagram and activity
diagram). As described in Section 4.3, the import of the service mapping pairs to
the VIATRA2 model space is accomplished with a custom-developed service map-
ping metamodel and importer plug-in. The XML file is parsed and the content tree
traversed to identify elements. All import steps are completely automated.

5.2.6 Path Discovery for Service Mapping Pairs

In this step, the elements of each service mapping pair are matched to ICT compo-
nents of the infrastructure (see Figure 5.1). The algorithm sees the infrastructure as
a graph and iteratively extracts all possible paths between two vertices requester and
provider. For instance, for the first service mapping pair of Table 5.2, the discovery
for client t1 identifies eight acyclic ways to reach dns:

t1→ e1→ d1→ c1→ c2→ d4→ dns

t1→ e1→ d1→ c1→ c2→ d4→ dns

t1→ e1→ d1→ c1→ d2→ c2→ d4→ dns

t1→ e1→ d1→ c1→ d3→ c2→ d4→ dns

t1→ e1→ d1→ c2→ d4→ dns

t1→ e1→ d1→ c2→ c1→ d4→ dns

t1→ e1→ d1→ c2→ d2→ c1→ d4→ dns

t1→ e1→ d1→ c2→ d3→ c1→ d4→ dns
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These paths are then added to the VIATRA2 model space for further manipula-
tion. The path discovery algorithm has been implemented using the VTCL language
provided by VIATRA2. This step is completely automated.

5.2.7 User-Perceived Infrastructure Model Generation

The final step comprises of matching the elements of the paths obtained in the pre-
vious step (Section 5.2.6) to the complete infrastructure given by the second step
(Section 5.2.2). This step is fully automated and behaves like a filter on the com-
plete topology, where only nodes which appear at least once in the discovered paths
are preserved. Multiple occurrences are ignored. The output model is a UML object
diagram containing only that fragment of the infrastructure required for the execu-
tion of the Send mail service from client t1, all redundant paths taken into account.
This user-perceived service infrastructure model is shown in Figure 5.5a. The types
of InstanceSpecifications are adopted from the input infrastructure object diagram.
Therefore, the service and network properties (failure rate, repair rate, etc.) are au-
tomatically inherited from the instantiated classes. Services and dependability prop-
erties are now correlated, facilitating extraction for further analysis. To generate the
UPSIM for the second perspective, the Send mail service from client backup using
the same atomic service providers, we only have to make minor adjustments to the
service mapping. Figure 5.5b shows the UPSIM from this user perspective.

The generated UPSIM can be used to visualize the set of ICT components and
their connections relevant for a particular pair requester and provider. This alone is
very helpful in case of service problems, as it provides a quick overview on which
ICT components might be the cause. More important, the UPSIM can be used to fa-
cilitate analysis of various user-perceived dependability properties (e.g.: availability,
performability, responsiveness). For example, it can be used to assess user-perceived
steady-state availability for a service, that is, the ratio of operational time over the
livetime of a service, observed by a particular user. Such analysis can be performed
by transforming the UPSIM to a RBD or FT, in which entities correspond to com-
ponents of the UPSIM. The availability for individual components can be calculated
using the component attributes failure rate and repair rate, as seen in Formula 2.10.
The service availability can then be computed using the RBD or FT. We present
this complementary transformation to RBDs in Section 5.3. More details about the
process can be found in [5].

5.3 User-Perceived Steady-State Availability

We will now demonstrate the evaluation of user-perceived availability using the
methodology from Section 4.4 with the exemplary Send mail service. We simplify
the fault model by taking only the steady-state availability of ICT components into
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Fig. 5.5 UPSIM of Send mail service for two different user perspectives.

account. This means we assume that all faults from classes fail stop to byzantine
are combined in the steady-state availability of the individual ICT components. An
ordered fault classification can be found in [25]. We also disregard service discov-
ery: The DNS server address is known a priori to the client as is the authentication
server address to the MX. In the following, we will generate the UPSAM for the
first atomic service of the Send mail service, Resolve mail server address. Genera-
tion for the subsequent atomic services is omitted but will adhere to the exact same
procedure.

As described in Section 4.3, the ICT infrastructure is represented by a UML
object diagram, where each node is an instance of a specific ICT component class
described in a UML class diagram. The links between nodes are also represented
as instances of associations from the UML class diagram. For simplification, in this
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specific evaluation associations are given the maximum availability of 1 – meaning
that they are always available – for the sole purpose that their respective RBD blocks
can be omitted in illustrations without affecting the steady-state availability. The full
topology object diagram is shown Figure 5.3.

For UPSAM generation, instead of generating the UPSIM as described in Section
5.2.7, the paths discovered in the step described in Section 5.2.6 are merged and
transformed into a single RBD. For requester t1, this RBD is shown in the upper part
of Figure 5.6. This procedure basically corresponds to Step 9a of the methodology
detailed in Section 4.3. It reduces common nodes of different paths and excludes
those which do not affect the overall availability of the service. For instance, in order
to pass through d2, nodes c1 and c2 must be available, in addition to the common
nodes t1, e1, d1, d4 and dns. However, their availability implies that there is already
at least one path guaranteed to be available between d1 and d4. This is because
associations have an availability of 1 and there are associations between c1 and
d1,d4 as well as between c2 and d1,d4. For this reason, the node d2 does not affect
the overall steady-state availability and is excluded from the UPSAM. Furthermore,
redundant components are expanded: The dns component is converted into a pair of
parallel blocks dns1 and dns2.

t1 e1 d1

c1

c2

d4

dns1

dns2

backup d3

c1

c2

d4

dns1

dns2

Fig. 5.6 User-perceived service availablity models (UPSAM) of atomic service Resolve mail
server address for requesters t1 and backup.

Figure 5.6 shows the UPSAM for requester t1 side by side with the analogously
created UPSAM for requester backup. We see only minor differences in the two
models because to reach dns, both requesters have to use almost the same part of the
network. Both have to traverse the network core, only the entry points are different.
The next atomic service Dispatch email via SMTP paints a different picture. To
reach the mail exchanger, requester backup does not need to traverse the network
core, drastically reducing the number of blocks in the reliability block diagram. The
UPSAMs for these user perspectives are depicted in Figure 5.7.

Next, a composite UPSAM is created from the atomic UPSAMs according to the
service description in Figure 5.4. Although the Send mail service described in the
activity diagram contains a parallel execution, every single atomic service must be
concluded in order to accomplish the execution of the composite service. For this
reason, the resulting UPSAMs of the individual atomic services are put in series to



5.3 User-Perceived Steady-State Availability 99
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d3 email

backup d3 email

Fig. 5.7 User-perceived service availablity models (UPSAM) of atomic service Dispatch email
via SMTP for requesters t1 and backup.

compose the overall UPSAM of the composite service Send mail, as presented in
Figure 5.8. This corresponds to Step 9b of the methodology detailed in Section 4.3.
For the sake of clarity, the atomic service RBDs have been combined into single
blocks in the figure.

Resolve mail
server address

Dispatch email
via SMTP

Check
authentication

Fig. 5.8 Service availablity model of the Send mail service

As the last step, we use the SHARPE tool [224] to solve the obtained UPSAM to
calculate the steady-state availability for the composite service Send mail. Results
are shown in Table 5.4. We included results for the same service as requested by
client backup to show how two different user perspectives on the same service differ
in their availability.

Table 5.4 Service availability of Send mail service from different user perspectives

Service Requester t1 Requester backup

Resolve mail server address (atomic) 0.999912118 0.999992884
Dispatch email via SMTP (atomic) 0.999910452 0.999993942
Check authentication (atomic) 0.999993942 0.999993942

Send mail (composite) 0.999816521 0.999980768

In fact, altough the availability is reasonably high for both clients, it is an order
of magnitude higher when the same service is requested by client backup instead
of client t1 (1.6 hours downtime per year for client t1 versus 10 minutes for client
backup). This justifies the approach of considering user-peceived service availabil-
ity. These differences are expected to be of a much higher magnitude in more het-
erogeneous networks with a significant variability in availability of the various com-
ponent types, especially when taking into account different link qualities. In Section
5.4, we introduce several types of heterogeneity, such as varying link quality and
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component age to provide a more complete picture of user-perceived service avail-
ability.

5.4 User-Perceived Instantaneous Availability

This section demonstrates the proposed methodology for instantaneous availability
evaluation applied to the previously described illustrative Send email service. Three
atomic services compose the service, as depicted in Figure 5.4. This part of the case
study slightly modifies server positions from Figure 5.1 and introduces a wireless
link. These changes are introduced solely to exemplify conceptual differences of
the types of analysis. For example, network links now have a realistic availability to
integrate varying link quality into the analysis. We also include external redundancy
represented by redundant providers of an atomic service at different positions in
the network, as opposed to internal redundancy in previous sections, which means
identical redundant providers at the same position in the network. This also leads to
a UML object diagram updated from Figure 5.3.

Failure and repair rates are again set according to their types as in Table 5.1. But
to allow instantaneous availability assessment, the deployment times are provided
individually for each component in Table 5.5. Times are represented in epoch time,
where 0 denotes midnight on the 1st of January, 1970. For each link, this corresponds
to the time of deployment of the youngest component connected to its edges. For
instance, link c1 d3 was deployed on epoch time 1366027200, which is the same
as for d3 and later than 1346511000 for c1. Reasonable values that could reflect a
real world example were chosen for all components. In an actual network infras-
tructure, both tables could be updated at run-time using monitoring information and
a configuration management database.

Two distinct scenarios will now be evaluated. First, the variance of instantaneous
availability from different user perspectives is demonstrated in Section 5.4.1). The
impact of changing the age or number of components is investigated in Section
5.4.2. The resulting RBDs and FTs are too complex to be visually presented in a
reasonable manner in this section and are thus left out. Only the results of their
evaluation are shown instead.

5.4.1 Different User Perspectives

In this scenario, three different clients t1, t2 and printer p2 are requesting Send email.
As can be seen in Figure 5.9, component t1 is connected to e1 via a wired link.
The mapping model of this scenario is shown in Table 5.6. As opposed to t1, t2 is
connected to e1 via a wireless link. The rest of the infrastructure remains unchanged,
so the only difference from client t1 is a less reliable link. The third client, printer
p2, connects to the network from a completely different position. The change of user
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Fig. 5.9 Network infrastructure based on university campus network, slightly modified server po-
sitions for case study. Lines between devices represent network links, a dashed line constitutes a
wireless link.

perspective for t2 and p2 is achieved with only minor modifications to the mapping
model, changing the requester component of the atomic services Resolve address
and Dispatch email in Table 5.6. The methodology then automatically generates
different availability models.

The reference time t0 of this evaluation corresponds to the deployment time of the
newest component potentially required during service provision, component auth at
epoch time 1366108200 for all three clients. Instantaneous availability A(t) is then
calculated over t until it reaches a steady-state condition. Although this network
contains younger components, these were not identified by the path discovery as
potentially required during service provision and have no impact on this analysis.
The resulting diagram for the instantaneous availability of Send email when invoked
at time t is presented in Figure 5.10. Send email is not fully available at t0 because
not all components were deployed at that exact time. This means that while some
components may have reached a steady-state condition, others will be in a transient
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Table 5.5 Deployment times of individual ICT components.

ID Deployment time (s) ID Deployment time (s)

t1 1366043100 e3 1366016400
t2 1366024200 e4 1367073300
t3 1368788400 d1 1366038000
t4 1368896400 d2 1346511000
t5 1366013700 d3 1366027200
t6 1366459200 d4 1346511000
t7 1366545600 c1 1346511000
t8 1367778000 c2 1346511000
t9 1369040400 p1 1366027200
t10 1366016400 p2 1366099200
t11 1366026600 p3 1368361800
t12 1366026600 backup 1368446400
t13 1367073300 db 1365850800
t14 1367073900 dns2 1366027200
t15 1367247600 auth 1366108200
e1 1366038000 email 1366050000
e2 1366013700 dns1 1355572800

Table 5.6 Mapping model of client t1 for Send email. For other clients simply all occurences of t1
have to be changed to the new client.

Atomic Service Requester Timeout Provider Prio Durat.

Resolve address t1 10s dns1 0 2 sec
dns2 1 2 sec

Dispatch email t1 10s email 0 5 sec
Check auth. email 2s auth 0 2 sec

state. Over time, the availability decreases until also the most recently deployed
components, in this case auth and d3 auth, reach their individual steady-state avail-
ability. Figure 5.10 shows a comparison of the instantaneous availability of Send
email when invoked by clients t1 (dotted line), t2 (full line) and p2 (dashed line).
Some corner values are shown in Table 5.7 with the instantaneous availability A(ta0)
at the reference time, the steady-state availability A and difference of the two.

Table 5.7 Availability numbers of Send email service for different user perspectives.

Requester A(ta0) A A(ta0)−A

t1 0.9955 0.9916 0.0039 → 5.616 min/day
t2 0.9922 0.9891 0.0031 → 4.464 min/day
p2 0.9990 0.9989 0.0001 → 0.175 min/day

The steady-state availability for t1 is 0.9916 and that of t2 is 0.9891. This trans-
lates to 3 days of downtime per year for Send email when requested by t1 versus
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Fig. 5.10 Instantaneous availability over time of Send email service for three different clients.

almost 4 days when requested by t2. In both scenarios, the links between clients
t1 and t2 and the device e1 have a time redundancy when the DNS service is re-
quested. If the first request to dns1 fails, the links will be tried again by requesting
dns2. So with respect to t1 e1 and t2 e1, the DNS service will be successful when
they are available either during the first or the second request. This can be modeled
as a system of parallel availability blocks. During a subsequent request to the email
server, the links are again accessed, which can be modeled as a block in series to the
previous parallel system.

The evaluation of links t1 e1 and t2 e1 according to their access order in this
system of two parallel blocks in series with a single block, results in the steady-state
availability of 0.99997 and 0.9975, corresponding to the one for wired and wireless
links, respectively. The ratio of these values resembles the ratio of the composite
service steady-state availabilities for t1 and t2, since the only difference between
them is the link from the clients to e1. A(t) of p2 is much higher than the one of
t1 and t2. It is also notably more stable: While the difference between A(ta0) and
A is minor for the printer, it sums up to a few minutes per day for the two client
computers, as can be deducted from Table 5.7. The scenario shows that the proposed
methodology is able to capture diverse availabilities of the same service, depending
on which client is using it and also, that the variation of availabilities is different
over time.

5.4.2 Adding and Replacing Equipment

The second scenario evaluates how A(t) changes when a set of network components
is added or replaced. Evaluation is again done from the perspective of t1 with refer-
ence time ta0. This time, dns2 is absent during the first week. In the mapping model,
this fact is reflected by having no redundant provider for the first atomic service.
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The next event is a renewal of equipment in the lab room where components t1, t2,
t3, t4 and e1 were located (see Figure 5.9).

In Figure 5.11, the availability with a single DNS server reaches a lower steady-
state availability of 0.984 during the first week, against 0.9916 with redundant DNS
providers. The addition of dns2 after one week increases the availability of the com-
posite service considerably. However, adding dns2 alone does not show a signif-
icant effect on instantaneous availability, as all but one component necessary to
reach dns2, link dns2 d3, are also required to access components dns1 and email.
All of the are already close to a steady-state condition. Thus, A(t) for Send email
decreases only minimally over a few days to steady-state availability before the lab
room equipment is exchanged. Following the replacement, A(t) reaches 0.9997 as
new components are known to be fully available. The individual component avail-
ability then decreases until they again reach a steady-state condition, bringing the
overall service availability to the same level as before. Results are summed up in
Table 5.8, steady-state values for A represent the lowest values within the evaluated
period.
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Fig. 5.11 Instantaneous availability over time of Send email service for client t1 when changing
equipment.

Table 5.8 Availability of Send email for t1 when changing components.

Requester A(ta0) A A(ta0)−A

only dns1 0.991091 0.983619 0.007472 → 10.76 min/day
dns1, dns2 0.991609 0.991605 0.000004 → 0.3 sec/day
new lab 0.999674 0.991612 0.008063 → 11.61 min/day

When exactly the availability of a service will reach steady-state depends on
the individual characteristics of the deployed components. Usually, the instanta-
neous availability will tend to steady-state availability after a duration in the order
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of few weeks without changes in the network. In a regular network with a reason-
able amount of components and dynamics, it is very rare to have weeks without any
changes to the ICT infrastructure. This means that at any time, there will be at least
some user-perspectives in a transient state, which justifies the decision to evaluate
instantaneous availability.

5.5 Conclusion

The evaluation of availability over time concludes this part about user-perceived ser-
vice availability evaluation. Dependability assessment in modern service networks
remains challenging. It has been demonstrated that service availability indeed de-
pends considerably on the properties of the providing ICT infrastructure. This is
expected to be true for dependability properties other than availability as well. The
methodology presented in Chapter 4 facilitates the automated calculation of such
user-perceived properties. The separation of input models allows for quick updates
in dynamic networks. However, parts of the methodology have limits regarding their
scalability. Future research should focus on reducing the complexity of those parts.
For example, we will show in Chapter 7, how in specific networks the exact path
discovery may be replaced by a stochastic method.

The presented service models still do not include the Service Discovery (SD)
process. It could be included as a first service in series with the original service de-
scription. The duration of this SD service would be the deadline until SD is required
to have successfully enumerated all providers of subsequent services in the service
model. The availability of this SD service thus reflects the probability of SD to fin-
ish successfully until the deadline, or in other words, its responsiveness. Part III of
this work covers the metric SD responsiveness and the models presented in Chapter
7 allow to calculate it.





Part III
Service Discovery Responsiveness



In service networks, Service Discovery (SD) plays a crucial role as a layer where
providers can be published and enumerated. This part focuses on the responsiveness
of the discovery layer, the probability to operate successfully within a deadline, even
in the presence of faults.

We approach SD responsiveness by evaluating it in two different experiment en-
vironments in Chapter 6. Both setups evaluate common protocol implementations to
provide a realistic view on the responsiveness of active SD. First, a virtual testbed is
set up with a simplified communication fault model that includes only packet loss.
This is done to isolate the impact of packet loss on responsiveness as it is expected
to have a major influence. Next, similar experiments are run using the previously
introduced experiment framework ExCovery on the Distributed Embedded Systems
(DES) testbed at Freie Universität Berlin. In the DES testbed, instead of injecting
faults, varying load conditions provoke realistic fault behavior.

Following the experiments, a hierarchy of stochastic models for decentralized SD
is proposed in Chapter 7. It is used to describe the active discovery of a single ser-
vice using three popular SD protocols. A methodology to use the model hierarchy
in wireless mesh networks is introduced. Given a pair requester and provider, a dis-
covery protocol and a deadline, it generates specific model instances and calculates
responsiveness. This process is supported by the Monte Carlo method Probabilis-
tic Breadth-First Search (PBFS), which estimates various metrics for the propaga-
tion of discovery packets. Furthermore, a new metric Expected Responsiveness Dis-
tance der is introduced, to estimate the maximum distance from a provider where
requesters can still discover it with a required responsiveness. Using monitoring
data from the DES testbed, it is shown how responsiveness and der of the protocols
change depending on the position of nodes and the link qualities in the network.
Chapter 8 uses data from experiments to validate the developed models. Two ways
of solving the models are evaluated. First, the full model hierarchy is solved based
on low level monitoring data from the routing layer. Second, only the application
level discovery model is solved using a history of SD communication measure-
ments. Results show that the discovery model estimations correlate almost perfectly
with the real responsiveness. In the absence of SD communication measurements,
the full model hierarchy provides reasonable estimations given that the low level
monitoring data is accurate.

Both the extensive series of experiments and the analytical model results give
valuable insight into the responsiveness of SD that can help to improve future re-
search on the dependability of service usage as a whole.



Chapter 6
Experimental Evaluation of Discovery
Responsiveness

Abstract As a time-critical operation, an important metric of Service Discovery
(SD) is responsiveness – the probability of successful discovery within a deadline,
even in the presence of faults. To get an idea about the responsiveness of SD in
realistic scenarios, this chapter provides an evaluation from a comprehensive set of
experiment series. We present results of the evaluation of decentralized SD, specif-
ically active SD using Zeroconf . To identify the main impairments to SD respon-
siveness, two different experiment setups are chosen. First, we examine SD respon-
siveness under the influence of packet loss in a controlled virtual platform. We show
that responsiveness decreases significantly already with moderate packet loss and
becomes practicably unacceptable with higher packet loss. Second, we examine SD
in the Distributed Embedded Systems (DES) wireless testbed at Freie Universität
Berlin. We demonstrate how the responsiveness changes depending on the distance
of actors and the load on the network. The experiments reveal packet loss, packet
delay and the position of SD actors as main factors influencing SD responsiveness.
The results clearly demonstrate that in all but the most favorable conditions, the
configurations of current SD protocols struggle to achieve a high responsiveness.
We further discuss results that reflect the long-term behavior of the wireless testbed
and how its varying reliability may impact SD responsiveness.

6.1 Introduction

Rather than developing an analytical model, which will be presented in Chapter 7,
this chapter approaches the responsiveness of Service Discovery (SD) in a series of
experiments. The experiments serve the following purposes:

1. To provide a general overview on SD responsiveness using a virtual experiment
environment with a simplified fault model. For several realistic discovery scenar-
ios, the responsiveness of active SD using Zeroconf [55] is shown depending on
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the deadline tD of the discovery operation, the packet loss rate and the required
number p of providers P to be discovered.

2. To allow a deep insight into SD responsiveness in WMNs, similar scenarios are
examined in experiments carried out in the Distributed Embedded Systems (DES)
wireless testbed at Freie Universität Berlin. Responsiveness is evaluated depend-
ing on the distance of actor nodes and the load in the network. This analysis
is done both for the individual SDP packets as well as the complete discovery
operation, which includes retries by the requester in case response packets do
not arrive in time. The former allows to infer conclusions for other application
protocols which use similar packets and can provide input for analytical models
presented in Chapter 7. As such, the gained results could be used to verify the
validity of employing these models when optimizing the responsiveness of SD
configurations in WMNs.

3. To demonstrate how to use ExCovery for experiments in the wireless DES testbed
and how the comprehensive range of measurements stored during runs facilitates
diverse types of analyses.

4. To show the long-term behavior of the DES testbed and demonstrate the effects
of internal and external faults. These faults are being recorded by ExCovery dur-
ing experiment execution and have to be taken into account when interpreting the
results. Internal faults contain node crashes or clock drifts, external faults com-
prise all types of wireless interference or forced interruptions during execution
of experiments.

The focus of the evaluation is on active SD (see Section 2.2.2), where a client
actively sends out discovery requests, retrying in case not enough valid responses
were received until a timeout. The responsiveness in active discovery reflects the
probability R(tD) that p valid responses to a request sent at time t0 are received until
the deadline tD > t0. The number p denotes the required number of service providers
in a specific scenario.

This chapter provides results from two different sets of experiments that evaluate
responsiveness of active decentralized SD in unreliable networks. All systems in
experiments ran common Linux operating systems and service network stacks based
on publicly available reference implementations. They are thus representative for
systems in real life applications. Two different experiment setups are used:

1. A virtualized testbed, based on the XeN hypervisor technology [188, 27]. The
service network is automatically configured using the de-facto standard tech-
nologies proposed by the Zeroconf working group [243, 105, 55].

2. The Distributed Embedded Systems (DES) wireless testbed at the Freie Univer-
sität Berlin. The ExCovery framework is used to run experiments, which provides
a unified description, execution, measurement and storage of distributed system
experiments and assures repeatability. ExCovery is described in detail in Chapter
3.

We present and discuss the results of the experiments and show how SD respon-
siveness is affected by the loss rate in the network, the load in the network as well as
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the position and number of requesters and providers. The presented research com-
plements the existing work on SD dependability (see Section 2.3.5) by providing
a comprehensive experimental evaluation of responsiveness with a realistic fault
model.

This chapter represents a concise presentation of the results published in [6, 7]
and [61]. The rest of the chapter is structured as follows. The SD scenarios evaluated
in the experiments are described in Section 6.2. The experiment setup and config-
urations can be found in Section 6.3. Sections 6.4 and 6.5 present and discuss the
results of analysis. The chapter concludes with Section 6.6.

6.2 Service Discovery Scenarios

For the experiments, three representative SD scenarios were chosen. The scenarios
reflect common use cases of SD, such that the experiments should give a reasonable
overview of the responsiveness of decentralized discovery mechanisms with differ-
ent fault intensity. Table 6.1 summarizes the parameters of the experiment scenarios.

Table 6.1 Summary of simulation parameters for the three scenarios for virtual testbed and the
wireless DES testbed.
Scenario I II III
Testbed Virtual DES Virtual DES Virtual DES
Number of network nodes 2 115,119 2 . . .51 115,119 2 . . .51 51
Number of service clients 1 1 1 1 1 1
Number of service providers 1 1,1 1,20,50 1,1 1 . . .50 1 . . .30
Maximum discovery time 1,7s 1,7s 0 . . .20s 0 . . .20s 20s 20s
Packet loss (%) 0 . . .90 n/a 20,40 n/a 10,20,30,40 n/a
Number of load generators n/a 0 . . .50 n/a 0,40 n/a 10
Bitrate per load generator n/a 72kbit/s n/a 72kbit/s n/a 0 . . .1,7Mbit/s
Observed discovery operations 10000 24000 6000 4000 24000 4000

6.2.1 Scenario I – Single Service Discovery

The goal of the first scenario is to measure the responsiveness when discovering a
single service. The service network consists of one client and one provider. This
might resemble the most common scenario for SD: One client needs to use one spe-
cific service in the network, such as the printing on a specific printer or the backing
up to a Network-Attached Storage (NAS). The scenario can be considered as the
baseline: Only one answer needs to be received and the requesting application has
different requirements in terms of how long it is able to wait for a response. The
client is allowed to wait for a positive response up to tD = 1 second in one case, and
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up to tD = 7 seconds in the other. These deadlines were chosen as they correspond
to two retry events in the Zeroconf discovery protocol, which was used in the exper-
iments. As can be seen in Table 2.1, the first retry is triggered at tD = 1 second and
the third retry at tD = 7 seconds. Due to delays on the nodes and in the network, we
can be sure that in the first case only responses to a single request arrived while in
the second case three requests have been sent.

To see how results vary in unreliable networks, measurements are taken with
increasing fault intensity. In the virtual testbed, packet loss rates are varied from 0
to 90 percent. In the wireless testbed, additional load is generated increasing from
0 to 50 streams with a data rate of 72 kilobits per second each. We additionally
analyze providers at two different positions in the WMN to investigate the impact
of distance on responsiveness.

6.2.2 Scenario II – Timely Service Discovery

Many service networks are populated with multiple instances of the same service
type to support redundancy. A client needs to discover as many instances as possi-
ble and will then choose one that optimally fits its requirements or failover to an-
other provider later in case the chosen one crashes. For consistent conditions, in this
scenario full coverage is required, so all available providers need to be discovered.
There is one service client, P service providers with P ∈ {1,10,50} and discovery
is successful when all p = P provided service instances have been discovered. The
goal is to measure how responsiveness increases with time. It should be obvious that
the faster a required responsiveness can be reached, the better.

In the virtual environment, measurements are carried out with a packet loss rate
of 20 and 40 percent, respectively. In the testbed, we use two different load setups, 0
to 40 streams with the same data rate of 72 kilobits as in Section 6.2.1. Additionally,
instead of trying to discover multiple providers, we fix P = 1 and analyze providers
at two different positions in the WMN to demonstrate the impact of distance on
R(t).

6.2.3 Scenario III – Multiple Service Discovery

When dealing with diverse faults in the network, having more redundant instances
of a given service type should generally increase SD responsiveness when looking
for a fixed number of instances. In the case of fixed coverage however, which means
the ratio of discovered services needed for successful operation remains constant,
this is not necessarily the case. Fixed coverage is needed, for example, for monitor-
ing tasks or in general, when complete knowledge about available service providers
is demanded. A more thorough investigation of the improvements to responsiveness
when deploying more service providers is justified. The impact of additional com-
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munication overhead when discovering an increasing number of providers remains
unclear.

This is why in the third scenario, we investigate the difference in responsiveness
when discovering p = P out of P service instances (full coverage). In the virtual
testbed, P is growing from 1 up to 50 providers. Measurements are carried out
with a packet loss rate of 10,20,30 and 40 percent. The experiments in the DES
testbed were run in the dense cloud of building T9 of the DES testbed (see Section
6.3.2) as the increasing load would quickly cause bridging links between the build-
ings to break down, partitioning the network and rendering results useless. This re-
duced the total number of network nodes. The maximum number of providers here
is max(P) = 30. Also, instead of setting a packet loss rate, we are increasing the
load in the network until a saturation point where responsiveness does not decrease
anymore.

6.3 Experiment Setup

In this section, the setups for the two experiment platforms, the virtualized envi-
ronment and the wireless DES testbed, are explained, to carry out the experiments
needed for the scenarios described in Section 6.2. We focus on the most important
parameters. More detailed information about the experiments can be found in [6, 7],
the ExCovery framework is described in Chapter 3.

As service discovery protocol, the wide-spread Zeroconf protocol suite based on
multicast DNS [54] and DNS-based service descriptions [53] is used. A full de-
scription of the protocol can be found in [55]. Zeroconf implements a two-party
architecture (see also Section 2.2.1) and all messages, requests and responses, are
sent via multicast. Comparable experiments were carried out using Service Loca-
tion Protocol (SLP). Since the results for SLP confirm the findings shown here for
Zeroconf , they are not included in this Chapter and can be found in [61].

Discovery requests are run from a single dedicated discovering node – or ser-
vice client. All other nodes act as service providers forwarding and/or responding
to discovery requests. A discovery operation consists of an initial request and a se-
ries of retries if an insufficient number of responses is received until a timeout. For
each provider, only a single response packet needs to arrive at the requester. Given
a total number of P providers, an operation to discover p providers is successful,
when p providers have received at least one request packet and from each of these
p providers one response has arrived at the requester within deadline tD. The prob-
ability of a request to arrive at p providers and of p responses from those providers
to arrive until tD at the requester denotes the responsiveness R(tD) of the discovery
operation. The minimum of multicast messages to be sent is p+ 1, not including
duplicate transmissions in the network due to the multicast flooding. Consequently,
the maximum number of messages for each request and subsequent retry is P+ 1.
It needs to be pointed out that the actual number of transmissions inside the mesh
network is considerably higher and grows with an increasing number of collisions.
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Discoveries were aborted and considered failed if no responses arrived until an
experiment run deadline of max(tD) = 20 seconds in the virtual testbed, respectively
max(tD) = 30 seconds in the wireless testbed. This value was chosen because in Ze-
roconf , the time between retries doubles after each retry to reduce network load (see
also Section 2.2.2 and Table 2.1). So after 15 seconds, we have reached a total num-
ber of five SD requests and the next one would be sent after 31 seconds. Waiting
time was extended by additional 5 seconds in the XeN environment to ensure de-
livery of all responses. In the wireless testbed, the extension was 15 seconds. Since
no considerable delay was to be expected in the virtual testbed, the shorter dead-
line is justified. In both cases, the timeout means that for Zeroconf we will have the
responsiveness after four retries at max(tD).

6.3.1 Virtual Testbed

All experiments in the virtual testbed were carried out on a machine running the
Xen hypervisor [188]. Service provider and client nodes ran as unprivileged guest
domains [27]. Provider nodes had the same base system to boot from, which was
a minimal installation of the Debian Linux operating system [75]. At boot time,
they were only running the Zeroconf daemons to configure the service network
and do SD. A dedicated client node additionally ran a Secure SHell (SSH) daemon
for remote execution of discovery operations. Memory requirements for the guest
systems were very low, the technical specifications of the systems are listed in Table
6.2. A schematic of the virtual testbed setup is shown in Figure 6.1.

Table 6.2 Technical specification of simulation systems

Xen host Zeroconf nodes

Processor type Intel Xeon X5365 n/a

Processor frequency 3000 Mhz n/a

Cores 2∗4 1

Memory 16 GB 48 MB

Operating system Linux openSUSE 11.0 Linux Debian 5.0.3

Architecture x86 64 x86 64

Kernel version 2.6.25.20-0.5-xen 2.6.26-2-xen-amd64

Xen version 3.2.1 16881 04-4.3 n/a

Avahi version n/a 0.6.23-3lenny1

The service network for the nodes was realized by connecting them to a virtual
network bridge on the Xen host. This network was solely used for SD communi-
cation. On the Internet Protocol (IP) [187] layer, the topology reflects a fully con-
nected, single-hop network. All packets sent among nodes pass the bridge between
them. On this bridge, packet loss was realized by randomly dropping packets at a
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Fig. 6.1 Overview of the virtual testbed setup.

given rate. The rate was the same for every packet, no additional faults were injected
on the bridge. Packet dropping was done independently in the forwarding direction
of every individual interface connected to the virtual bridge. The setup causes mul-
ticasts or broadcasts to be potentially lost at the interface to every node they were
transmitted to. This effectively prevents all-or-nothing behavior where a broadcast
is either received by all or by no host at all. A multicast can be lost on the way to one
node without affecting the probability of getting lost on the way to any of the other
nodes. The SSH daemon on the client node ran on a second interface which was not
connected to the virtual bridge so that it was unaffected by the fault injection and
traffic on this interface did not interfere with service network traffic.

To automatically configure the service network, software developed by the Avahi
project [22] was used. Avahi is an implementation of the protocols recommended
by the Zeroconf working group for automatic configuration of IP service networks
[243]. An Automatic private IP addressing (AutoIP) [52] daemon set a unique IP
address within the 169.254.0.0/16 subnet and an mDNS [54] daemon handled ser-
vice name resolution for DNS-based service discovery [53]. Due to the fact that
Avahi was used for auto-configuration, all nodes could run from copies of the same
system disk image and no manual administration was necessary after booting. Dur-
ing measurements, no nodes joined or left the network so no reconfiguration of the
network layers occurred which could interfere with the observed SD operations.

In the XeN environment, discovery times were measured on the client directly
before the request was sent and directly after responses were received to measure
user-perceived responsiveness. Thus, time synchronization between nodes in the
service network was not necessary.
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Justification of Experiment Setup

The chosen network model is a simplified version of a fully connected, wired Eth-
ernet network. In such reliable networks, packet loss is usually not an issue. Typical
unreliable networks, especially wireless networks as in the second testbed, have
a complex fault behavior. Most faults occurring in these networks, such as bursts
of packet loss, delay or jitter have complex functional dependencies. However, the
intention behind using this virtual testbed is to control the network faults during
experiments as much as possible to isolate their impact.

Packet loss is expected to be among the highest-impact faults in SD. Thus, the
experiments run in this testbed focus on packet loss. The fault model includes only
random packet loss at a given rate, independent of the traffic occurring on the link
and whether preceding packets are lost as well. Packet delivery time, which is in
the order of hundreds of microseconds in this testbed, can be neglected compared
to the time between discovery retries, which is in the order of seconds (see Ta-
ble 2.1). Since an average packet loss is assumed, service discovery responsiveness
will most probably be worse in networks with the same packet loss rate but more
complex fault characteristics. This analysis hence provides an upper bound for re-
sponsiveness which will be compared to the results in the wireless DES testbed with
highly complex fault characteristics.

6.3.2 Wireless Testbed

As the second platform to execute experiments, the wireless DES-Testbed at Freie
Universität Berlin (FUB) was used. To run the experiments, the ExCovery frame-
work for distributed system experiments was employed. ExCovery was specifically
developed for this work and supports the DES testbed as the first experiment plat-
form. More in-depth information on ExCovery follows in Chapter 3.

The DES testbed consists of roughly 130 uniform nodes equipped with IEEE
802.11 hardware. The nodes are spread indoors and outdoors over three adjacent
campus buildings at FUB. An overview of the testbed topology is depicted in Figure
6.2 which shows the geographical location of the nodes in buildings a3, a6 and t9.
Nodes have been color-coded to distinguish the different building floors. Special
nodes that are the focus of the following analysis are labeled with their identification
string. Wireless network links have been left out for reasons of visibility. While the
mesh network forms reasonably dense clouds within the buildings, the connections
between buildings are not optimal. Building a6 and t9 are connected by several links
but a3 and a6 are often only connected by a single bridge, depending on the overall
wireless signal quality. More in-depth information about the properties of the DES
testbed can be found in [36, 100, 101].

The DES testbed was chosen for various reasons. First of all, as opposed to the
virtual environment, it allows to evaluate processes in a network with realistic fault
behavior. Second, the DES testbed allows to generate manifold topologies due to



6.3 Experiment Setup 117

Fig. 6.2 Overview of the wireless DES testbed. Three buildings can be distinguished, nodes colors
define their building floors.

its wide distribution of nodes on campus and the ability to manipulate their wire-

less signal range. This gave us the possibility to study in detail the effects of node

distance on SD responsiveness. Finally, the nodes run a relatively modern Linux

distribution which simplifies the development and deployment of new software.

Multicast provides considerable challenges in wireless mesh networks, which

need to rely on costly flooding mechanisms to deliver these messages. Nevertheless,

Zeroconf was developed for mobile and dynamic networks and both its focus and

prominence make it a prime target for examination. Just as for the experiments in the

virtual testbed, Avahi [22] was used to implement SD, albeit in a slightly newer ver-

sion 0.6.29. However, the results presented in Sections 6.4 and 6.5 provide insight

also in the behavior of other SD protocols, which implement the same operations,

as will be discussed later.

The experiments have been run in three series from May 2013 to May 2014. Each

series took several weeks to complete, due to the overhead involved when carrying
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out experiments. Every single discovery operation needs to be initialized properly,
measured and cleaned up. Since the setup is slightly more complex than in the XeN
testbed, we will detail a few of those steps below. It should be noted, however, that
the ExCovery framework takes care of most of the steps during the actual execution
of experiments.

Experiment Initialization

During initialization, the SD daemons are started on all providers. Then, all SD
packets are dropped on all nodes for a specific period to prevent service announce-
ments and delayed responses from previous runs on the network. After dropping,
the load generation is started. To simulate additional load on the network, environ-
ment nodes are chosen randomly to exchange UDP [186] packets at a given data
rate. UDP is chosen due to its ”send and forget” strategy, to be able to control the
data rate at the given level without corrective measures such as flow and congestion
control.

Experiment Measurement and Cleanup

During the measurement phase, the SD process is started and SD packets captured
as well as defined SD events recorded, such as ”search started” or ”provider found”.
Either when a required number of providers has been found or the deadline of 30
seconds has been reached, the measurement phase ends and cleanup starts, where
load generation is stopped and SD daemons are shut down. Due to the long time-
outs of current SD protocols and the overhead involved, one experiment run usually
takes between 45 and 90 seconds to complete. Runs can be rendered invalid due to
complete network outages or missing connectivity on too many actor nodes of the
discovery operation. While requesters had to be connected at any time to produce
valid results, we decided that up to 10 percent of providers where allowed to be
temporarily disconnected. This means that the actual number of SD operations that
were carried out was considerably higher than the number shown in Table 6.1.

Scenario-Specific Setups

The first two series of experiments cover the discovery of a single provider by a
single client as in the scenario from Section 6.2.1 and in parts, from Section 6.2.2.
In both series, the requesting node was t9-105. In one series the provider was t9-154
to cover scenarios where both nodes are in the same building, thus, in one well con-
nected cloud. In the second series the provider was a3-119 at a maximum hop dis-
tance to t9-105 to study the effects on SD responsiveness in scenarios where nodes
are connected with sparse and possibly weak links. All other nodes participated in
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Table 6.3 Experiment configuration of each series

Experiment Series I Series II Series III

Number of nodes (max) 115 119 51

Nodes in buildings t9, a3, a6 t9, a3, a6 t9

Number of requesters 1 (t9-105) 1 (t9-105) 1 (t9-154)

Number of responders 1 (a3-119) 1 (t9-154) 1 . . .30

Number of load generators 0 . . .50 0 . . .50 10

Bitrate per generator (kbit/s) 72 72 0 . . .1725

randomly distributed load generation at various levels. The position of nodes within

the network is depicted in Figure 6.2.

A separate series of experiments for the scenario from Section 6.2.3 was carried

out only in the dense cloud of building t9. Requester t9-154 was trying to discover

up to 30 service providers while the remaining nodes generated load in the network.

The topology of these experiments is illustrated in Figure 6.3. Nodes can be distin-

guished by their form and color. Again, the colors define the three building floors

the nodes reside on. The shapes define the node type: Circle nodes are providers,

cross nodes are environment nodes used for load generation.

Fig. 6.3 Overview of building t9 of the wireless DES testbed. Nodes colors define their build-
ing floors. Circle nodes are providers, crosses denote environment nodes for load generation. The
requester t9-154 has been labeled.

The most important configuration parameters of the three experiment series are

summed up in Table 6.3.
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6.4 Experiment Results

We will now present and discuss the results for the behavior of R(tD) under vary-
ing influences, as described in the three scenarios in Section 6.2. Each scenario was
repeatedly run and observed in a series of experiments. In the virtual testbed exper-
iments, the total number of experiment runs amounted to 60,000. This equals the
number of discovery operations for all scenarios combined, hence it is equal to the
number of discovery requests without retries. The number of accumulated discovery
responses reached 599,046 over all runs. Requests were split equally over loss rates
ranging from 0% to 90% in 10% steps and over the number of provided service in-
stances equal to 1,2,5,10,20 and 50. A subset of these results was investigated for
the defined SD scenarios, as shown in Table 6.1. The total number of experiment
runs in the wireless testbed series was 32004 of which 26670 provided valid results
for analysis. Due to the overhead involved in running those experiments, the series
took several weeks to complete. The conditions for the validity of runs are explained
in Section 6.3.2.

To foster repeatability, the raw measured data of all experiments in the XeN
testbed has been uploaded to the AMBER Data Repository [149]. Interested re-
searchers are invited to validate the results and perform further investigations. The
full experiment data of the DES experiments, including experiment description,
packet and event logs and all other measurements as explained in Chapter 3 are
available for examination on request.

6.4.1 Scenario Results – Single Service Discovery

This analysis investigates in more detail how R(tD) for tD ∈ {1,7} seconds decreases
with an increasing fault intensity in the network. According to the results in the vir-
tual testbed, discovery of single service providers within the deadline tD = 7 seconds
proved to be reasonably responsive in networks with low packet loss. As illustrated
in Figure 6.4, even with 30% packet loss, the responsiveness of single service dis-
covery was well above 0.9 for the given deadline. Keeping in mind the focus of this
scenario with lax requirements for the deadline, this is most probably also true for
the required responsiveness. Considering a consumer context, such as home office
or entertainment, a higher than 90% probability of success seems sufficient.

With higher packet loss rates, responsiveness decreases rapidly, dropping to 0.63
at 50 percent packet loss. In real world networks with more complex fault behavior,
for example wireless networks, the results are expected to be worse, which is not
promising for use cases with stricter requirements. However, it is valid to conclude
that given a deadline tD = 7 seconds, with up to 20 percent packet loss and no
additional negative effects, single service discovery is sufficiently responsive.

The picture is a different one for tD = 1 second. Here, at a packet loss rate of
30%, a service will only be discovered every second try. The curve for R(1) per-
fectly represents the expected behavior for discovery without retries. Since for SD
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Fig. 6.4 Responsiveness of single service discovery with deadline tD = 1,7 seconds as a function
of packet loss rate.

to be successful, both the request and the subsequent response need to arrive at their
destinations. Given a packet loss rate of Ploss in each direction, both packets arrive
with a probability of 1−Ploss. So R(1) may also be calculated using Equation 6.1.
Values calculated by Equation 6.1 are listed in Table 6.4. They almost perfectly
match the results from the experiment series in Figure 6.4. This validates the cho-
sen experiment setup. With a more realistic fault model and an arbitrary number of
retries, the calculation of responsiveness gets considerably more complex. Chapter
7 will present a hierarchy of stochastic models to do so.

R(1) = (1−Ploss)
2 (6.1)

Table 6.4 Expected responsiveness with a given packet loss rate for discovery without retries.

Packet Loss Rate 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R(1) 1 0.81 0.64 0.49 0.36 0.25 0.16 0.09 0.04 0.01 0

In the wireless testbed, the results paint a comparable picture, although the dif-
ferences are worth being explored. For this, R(tD) with tD ∈ {1,7} was calculated
for each load level. The results are illustrated in Figure 6.5. The figures show for
the two providers t9-154 and a3-119 how R(tD) decreases with increasing load. The
curves in the figures are the regression functions over all data points of a specific
provider.

Comparable is for both providers that until a certain point, the responsiveness de-
creases but does not drop to quickly. Depending on the distance from the requester,



122 6 Experimental Responsiveness Evaluation

(a) Deadline tD = 7 seconds.) for two different providers.

(b) Deadline tD = 1 second.) for two different providers.

Fig. 6.5 Responsiveness over increasing load without retries for two different providers.

however, there is a turning point after which the load gets too high and respon-
siveness rapidly goes below acceptable values. This is around 40% for R(7) in the
virtual testbed results. In the wireless setup, for short distances as provider t9-154
this corresponds to 40 VoIP streams. For long distances as provider a3-119, respon-
siveness already drops with 20 concurrent streams. This effect is even stronger with
shorter deadlines, as illustrated in Figure 6.5b. The curves for R(tD) do not continue
along the regression slope forever. At higher fault intensities, the responsiveness ef-
fectively drops to zero because the whole service network breaks down, an effect
that is also visible in the following results.

From all results can be deducted that the slope of the regression curve gener-
ally gets steeper with shorter deadlines. This means that the fault intensity has a
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higher impact on R(tD) the less time there is to complete the discovery operation.
In wireless networks, one reason for this behavior is the impact of delay on R(tD).
However, this effect is not existent in the virtual testbed and warrants more in-depth
evaluation in future research.

6.4.2 Scenario Results – Timely Service Discovery

The results in this section present responsiveness with increasing deadlines. The
analysis of the virtual testbed data is illustrated in Figure 6.6. The characteristic
steps in the curves mark the request retry events. Conforming to the fault model, a
certain amount of requests and responses gets lost, so after each discovery request
the responsiveness curve plateaus until the retry timeout, when a new request is
being sent.

With 20% packet loss, the responsiveness of discovering a single service ap-
proaches 1 within the observed interval (Figure 6.6a). This corresponds to the con-
clusions from single SD at 7 seconds waiting time (see Figure 6.4). In fact, in this
scenario discovering a single service reaches a responsiveness of almost 0.9 already
after the first retry, after roughly one second. We can conclude that with low packet
loss, current SD protocols work sufficiently well when discovering single service
instances.

However, Figure 6.6a also shows that responsiveness decreases rapidly if more
services need to be discovered. Both discovering 10 and 50 service instances reaches
a somewhat acceptable (≈ 0.95 and≈ 0.7) responsiveness at the end of the timescale
after four retries with 20 percent packet loss. This corresponds to use cases when
there is enough time to wait for discovery responses and, especially in the case of
50 instances, low responsiveness is acceptable. Those cases are expected to be rare
in regular service networks. If short response times are needed, as they are for the
use cases anticipated in the Internet of Things, we need a high responsiveness in
shortest time. It can be seen in Figure 6.6a that both curves require a long discovery
time, thus, a high deadline tD to reach reasonable responsiveness.

With 40 percent packet loss, discovery of multiple services becomes highly im-
probable. Figure 6.6b illustrates this. There is a chance of less than 1/3 to find all
services instances in time when there are 10 instances in the network. Discovering
50 service instances is practically impossible. In contrast, discovering single ser-
vices remains partly usable so doubling the packet loss rate did not have such a
comparable dramatic effect on responsiveness as with multiple services. This dra-
matic decrease in responsiveness when discovering more service instances will be
further investigated in the next scenario in Section 6.4.3. The observed behavior is
backed up by analytical evaluation. If we extend Equation 6.1 to the discovery of
multiple service instances, with n being the number of instances, Equation 6.2 cal-
culates the responsiveness at tD = 1 second, just before the first retry would get sent.
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(a) Packet loss 20%

(b) Packet loss 40%

Fig. 6.6 Responsiveness over time for a different number of providers.

This means that with a rate of Ploss = 0.4, R(1) for n = 10 and n = 50 is 3.6 ·10−3

and 4.85 ·10−12, respectively.

R(1) = (1−Ploss)
1+n (6.2)

It can be expected that a shorter time between retries should significantly increase
responsiveness at a given time t. However, this would also increase network load
and might have other adverse effects on the network especially when dealing with a
high number of service instances, thus, a high number of discovery responses. With-
out a more realistic network and fault model and a sound cost function for packet
transmission it remains rather difficult to determine an optimal trade-off between
responsiveness and discovery packet load.



6.4 Experiment Results 125

Using the results from experiments in the wireless testbed, we now examine how
R(tD) increases with tD, depending on the distance between requester and provider
and the load in the network. To be able to isolate the effect of node positions on
the results, only data from experiment Series I and II was used (see Section 6.3.2
and Table 6.3). Thus, the discovery operations were carried out by only two actors,
one requester t9-105 and one provider: t9-154 for a short distance and a3-119 for
the maximum distance in the network. The respective node positions are depicted in
Figure 6.2. All DES testbed nodes participated in routing network packets.

Figures 6.7 and 6.8 illustrate the results. Figure 6.7 shows the responsiveness of
the discovery operation over time, equivalent to Figure 6.6, for providers t9-154 and
a3-119. Also in the testbed the two curves in each graph reflect the responsiveness
for different load conditions. As expected, responsiveness increases with every re-
quest being sent, which corresponds to the steps in the curves. It can be seen that
R(tD) is generally lower with higher distance. It can further be noted that additional
load in the network has a dramatic effect on the packet loss rates and consider-
ably decreases R(tD). The 40 VoIP streams are randomly distributed in the network,
changing each experiment run. They impose a combined load of 2.8Mbit/s, which
does not seem much compared to the maximum theoretical data rates in the net-
work. Still, even with tD = 18s there is only a 50% chance of discovering provider
a3-119 under these conditions. However, packet loss is not the only factor impacting
R(tD). Especially at higher loads, the delay of individual packets becomes apparent,
smoothening the steps in the curve. This effect is also visible in Figure 6.7b for
provider a3-119.

The results are in line with the ones from the virtual testbed. The current SD
protocol retry configuration works well when conditions are close to perfect but
their responsiveness decreases significantly when conditions deteriorate. Their static
retry strategies struggle in unreliable networks. As can be seen later, the analytical
models in Chapter 7 hint at possible advantages in conditions when SDPs (namely
SLP [106] and SSDP [93]) use the more reliable unicast instead of multicast for
certain messsages.

Packet Based Analysis

The discovery operation of a single service consists of multiple pairs request and
response. Figure 6.8 shows the responsiveness of such individual packet pairs within
an SD operation. Here, R(tD) denotes the probability that a response to a given
request arrived within tD. The characteristics of the curves confirm the findings on
R(tD) for the complete discovery operation, with R(1) being roughly the same for
the corresponding graphs of each provider (Figures 6.7a and 6.8a, respectively 6.7b
and 6.8b). The results are included here because they are not based on the events
as measured on the discovery layer but instead use raw packet captures done by
ExCovery. As such, ExCovery supports diverse analysis types using the same result
database. Packet response times as in Figure 6.8 can be used, for example, as lower
level input data in the analytical responsiveness models presented in Section 7.2.1
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(a) Provider t9-154

(b) Provider a3-119

Fig. 6.7 Responsiveness over time for two different providers under varying load. Complete ser-
vice discovery operation including retries based on events at the discovery layer.

or when evaluating different protocols that use similar types of packets. We will also
use them to validate the stochastic models in Chapter 8.

6.4.3 Scenario Results – Multiple Service Discovery

For the last scenario, we investigate the behavior of SD responsiveness when discov-
ering a fixed percentage of service instances over an increasing number of service
instances. Full coverage is required so 100% of service instances need to be dis-
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(a) Provider t9-154

(b) Provider a3-119

Fig. 6.8 Responsiveness over time for two different providers under varying load. Packet-based
analysis for individual discovery request and response pairs.

covered for successful operation. All instances belong to the same service type –
a single discovery request should discover all instances if no packets are lost. This
configuration reflects basically any SD scenario where a client tries to enumerate
as many service providers of a given service class as possible to select the best n
providers according to its requirements. It could already be deduced from the pre-
vious scenario that SD responsiveness decreases dramatically when discovering ten
or more services in lossy networks. Figure 6.9 shows an articulate explanation for
this behavior.

With low packet loss rates responsiveness decreases almost linearly with the
number of nodes in the network. This is the reason why with 20% packet loss we
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Fig. 6.9 Responsiveness of Zeroconf service discovery after four retries (within 20s)

still have a relatively high probability of almost 80% to discover all 50 service in-

stances in time (see Figure 6.6a). If more packets get dropped the quality of SD

worsens rapidly to an exponential decrease with the number of nodes in the net-

work. In practice, SD that requires a high coverage becomes unusable when dealing

with a higher number of services. Current SD methods are usually not operating in

such scenarios yet but the envisioned Internet of Things will demand that.

For the results of the wireless experiments, the data used for this analysis are

from experiment Series III (see Section 6.3.2 and Table 6.3). One requester and 30

providers are deployed in the dense mesh cloud of building t9. This is done to make

sure that the distance of providers to the requester has less impact on the results.

Instead, we want to see how discovery performs under varying load conditions.

Because there are fewer nodes for load generation, the data rate per generator pair

is increased for a fixed number of 10 node pairs. Environment nodes and providers

are distributed randomly in the network. The topology can be seen in Figure 6.3,

which also shows the position of the different types of nodes, requester, provider

and environment.

In the analysis, it is examined for different load levels how the responsiveness

decreases with an increasing number of providers needed for successful discovery.

Results are depicted in Figure 6.10. The load levels reflect the combined data rate

of all 10 load generation streams. This means that at the highest traffic level, each

stream had a data rate of 1.7Mbit/s. With the given distribution of nodes, this is

also the saturation level. Results do not get significantly worse with higher load. At

the same time, the network does not get permanently partitioned which means that

packets exchanged among the nodes to generate the routing topology managed to

get transmitted at a sufficient rate, mainly in the preparation and cleanup phase of

every single experiment run.
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Fig. 6.10 Responsiveness over number of needed service providers for different load levels.

The results demonstrate that deploying more services is not generally a promis-

ing solution to increase responsiveness in wireless mesh networks. It confirms the

findings from the virtual testbed experiments, albeit there is no linear decrease of re-

sponsiveness with lower load. One can see that at very high loads, discovering more

than 20 nodes is impossible. Although not shown in Figure 6.10, there is an almost

identical set of discovered nodes over all runs at that load level. This is because some

nodes, although not partitioned from the rest of the network, are effectively blocked

off SD by environment nodes that are generating load at very high data rates in their

vicinity. Further research on the transmission mechanisms (unicast or multicast) and

the retry intervals is needed to optimize responsiveness in such scenarios.

6.5 Experiment Results of Testbed Behavior

Ideally, a testbed should provide a controlled environment over a series of exper-

iments. More precisely, held-constant factors should be known and accounted for

in a later analysis and the effect of allowed-to-vary factors should be minimized.

Nuisance factors with an unwanted or unknown effect on the results should be elim-

inated as much as possible. The different types of factors are described in Section

3.2.2 and more in detail in [9]. Such stable and known conditions could only be

achieved in the XeN-based virtual testbed. In the DES testbed, which is highly sen-

sitive to external interference, the different nuisance factors are both difficult to de-

termine and to measure. The probability of unwanted effects on the results is even

higher the longer it takes to run the experiments. Given that the experiments carried

out took several weeks to complete, a better knowledge of the testbed behavior is



130 6 Experimental Responsiveness Evaluation

necessary. Although we cannot determine the source of all nuisance factors, we can
measure them and show their effect.

This section presents general measurements of the behavior of the DES testbed
for the duration of the experiments. These cover the variation of response times
under similar conditions (see Section 6.5.1), the varying quality of individual links
(see Section 6.5.2) and the clock drift of the network nodes (see Section 6.5.3) over
time. The results should illustrate the behavior of the DES testbed over time and
help to interpret the results of the discovery process analyses shown in Section 6.4. It
should be pointed out that results can only be representative for the scenarios which
have been realized with the DES testbed. Uniform grid topologies, for example,
cannot be created with the testbed. Thus, the significance of the results for such
scenarios needs to be inspected before drawing conclusions.

6.5.1 Response Times over All Runs

Figures 6.11 and 6.12 illustrate the effects of internal an external faults on the results
for a part of four sets of experiments from Series I and II (see Table 6.3). The
response times of discovery operations, which in this case are the times for the
first response to arrive at the requester, are plotted over 1000 experiment runs. The
requesting node is t9-105, the providers are t9-154 (Figure 6.11) and a3-119 (Figure
6.12). Nodes t9-105 and t9-154 are in one cloud within the same building while t9-
105 and a3-119 cover the maximum hop distance in the network. The node positions
in the mesh network are shown in Figure 6.2. For each node pair, results are shown
without additional load in the network (upper Figures 6.11a and 6.12a) and with
an additional load of 40 Voice-over-IP (VoIP) streams with 72 kbit/s each, which
amounts to roughly 2.8 Mbit/s traffic overall in the network (lower Figures 6.11b
and 6.12b).

In the graphs, the dots reflect response times of individual discovery operations
while the line denotes a moving average over 20 operations. Depending on the ad-
ditional load on the network, the 1000 runs cover a period of 15− 20 hours so the
graphs are showing long-term effects in the testbed. One can see that the response
times generally increase with the load in the network and the distance of requester
and provider. At times 1,3,7 and 15 seconds we see a significant accumulation of
responses. This corresponds to the default retry intervals of the Zeroconf discovery
protocol as already visible in Figure 6.7. Zeroconf starts with a timeout of one sec-
ond and then doubles this timeout on every retry (see Table 2.1). The accumulation
of responses very close to the retry intervals hints at packet loss having the deci-
sive impact on response times: Either packets arrive in time or they get lost. With
higher loads and distances, however, also packet delay comes into play which is es-
pecially visible in Figure 6.12b, where the accumulation at the retry intervals is less
pronounced and response times generally have a wider distribution.

While the responsiveness over load and distance has been examined in more
detail in Section 6.4, it can be noted that the response times are not independent
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(a) Without additional load in the network

(b) With additional load of 40 VoIP streams with 72 kbit/s each

Fig. 6.11 Response times in testbed over 1000 experiment runs. Requester is t9-105, provider is
t9-154 at short distance in the same cloud as the requester.

over time. There are periods of consistently higher response times, such as in Fig-
ure 6.12a between runs 120 and 180 or in Figure 6.11b between runs 820 and 900.
Given that these intervals span roughly an hour of experiment time, it seems highly
improbable that these effects are random statistical accumulations. Instead, they hint
at external causes that degrade the overall quality of the wireless testbed. Further-
more, those events happen very frequently. Finding the root cause of such anomalies
is out of the scope of this work. The results are meant to demonstrate instead that any
analysis based on average measurements should be done very carefully. Choosing
the measurement history window size too big can easily lead to over- or underesti-
mating the testbed quality. Also, it is important to measure and store all historical
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(a) Without additional load in the network

(b) With additional load of 40 VoIP streams with 72 kbit/s each

Fig. 6.12 Response times in testbed over 1000 experiment runs. Requester is t9-105, provider is
a3-119 at maximum distance from the requester.

data, as does the ExCovery framework (see Chapter 3), to be able to detect and
visualize such effects.

6.5.2 Topology Changes over Time

The variations in overall response times hint at changing link qualities over time.
This why the ExCovery framework supports full topology recordings including link
qualities at the end of each run in a series of experiments. More details on these
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measurement can be found in Section 3.4.1. We will now present an analysis of

those measurents which is illustrated in Figure 6.13.

(a) Neighbor t9-158

(b) Neighbor t9-160

Fig. 6.13 Link qualities of the two neighbors of t9-154 over 500 experiment runs, equivalent to 8
hours experiment time.

The figure shows variations in link quality over time for two different neigh-

bors of node t9-154, which has been extensively used during the experiments. Node

positions in the DES testbed can be seen in Figure 6.14. On the y-axis are link qual-

ities as a ratio of Open Link-State Routing (OLSR) hello messages between the two

nodes that did not get lost. On the y-axis is the experiment run number. The red

dots are individual OLSR link quality measurements before each run while the line

represents a moving average of 20 runs. One can see that the neighbor node t9-158
generally provides a very good quality over the observed period. Most of the time
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the hello packet loss is close to zero. Node t9-160 shows a very different behavior.

During the first 250 runs, the link quality to t9-154 is very weak. Also, the variations

in quality are very inconsistent. Until run 400 the link is basically down. Then, the

link quality suddenly becomes almost perfect and remains so until the end of the

observed period. This erratic behavior of course has an impact on the routing within

the network and thus, on the propagation of multicast packets which are the base of

SD.

Fig. 6.14 Overview of building t9 of the wireless DES testbed. Nodes colors define their building
floors. The node t9-154 and its neighbors t9-158 and t9-160 have been labeled.

6.5.3 Node Clock Drift over Time

While Sections 6.5.1 and 6.5.2 show the effects of external factors on the experiment

results, there are also internal factors that need to be measured. In this section, we

focus on the clocks on the individual nodes. All nodes in the network synchronize

their clocks before running experiments but to not interfere with the measurements,

this is not done anymore during experiment execution and their clocks begin to drift

apart.

Figure 6.15 shows the variations of clock offsets as measured over 1200 experi-

ment runs (approximately 20 hours) in Series III. Each of the three lines represents

the offset of a different node to requester t9-154. The lines abruptly change at the

same positions of run 175 and 480. At run 175, the experiment was interrupted for

an extended period so the clocks continued to drift apart before resuming experi-

ments. This leads to the jump in the lines in direction of the clock drift relative to

the reference node t9-154. At run 480, the experiments needed to be interrupted be-

cause the time slot in the testbed ended. The nodes were rebooted multiple times
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for experiments carried out by other DES testbed users. Before restarting the series,

the nodes were manually synchronized, bringing the offset to reference node t9-154
close to zero. Between those characteristic steps, the clocks steadily drift apart from

each other. However, not only does every node expectedly drift differently from the

others, the drift of the individual nodes even varies over time. This can be seen for

node t9-011, which runs faster than the reference node t9-154 until experiment run

480 but after that runs slower.
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Fig. 6.15 Absolut clock differences between different providers and requester t9-154 over a dura-
tion of 1200 experiment runs, approximately 20 hours.

Clock synchronization is highly important for the analysis of real-time problems,

such as SD. Given the observed behavior, it is obvious that the current testbed syn-

chronization methods are not sufficient to guarantee consistent behavior over mul-

tiple hours of testbed usage. This justifies the approach of ExCovery to measure

the time difference between the nodes on every single run. After the experiments

are done, the stored event and packet times are corrected using these offsets before

being imported to the result database for further analysis. This reduces the abso-

lute synchronization error of all nodes to the precision of the measured timestamps,

which improves measurement accuracy and reduces the likelihood of causal prob-

lems during subsequent analysis. A future improvement to ExCovery would be to

optionally support time synchronization tasks during the initialization phase of each

experiment run.

6.6 Conclusion

In this chapter, we examined decentralized Service Discovery (SD) in experiments

with different fault intensities to get an initial idea about the behavior of SD re-

sponsiveness. Two experiment environments were setup to observe three common
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scenarios. A virtual testbed with a fault model that includes only packet loss and the
Distributed Embedded Systems (DES) wireless testbed at Freie Universität Berlin.
Analysis in the DES testbed was performed both for the individual discovery pack-
ets as well as the complete discovery operation, which includes retries in case pack-
ets do not arrive in time. The former allows to infer conclusions for other appli-
cation protocols which use similar packets and can provide input for existing and
future analytical models which use lower network level measurements. This will be
demonstrated in Chapter 8.

Second, an analysis of the long-term testbed behavior and the effects of internal
and external faults has been carried out. Internal faults contain node crashes or clock
drifts, external faults comprise all types of wireless interference or also forced in-
terruptions during experiment execution. It has been shown that the effect of these
faults is considerable and has to be taken into account when interpreting results
gathered in the testbed.

Chapter 7 provides a hierarchy of stochastic models to evaluate user-perceived
responsiveness of SD. Parts of the results presented in this work are used to validate
the presented models in Chapter 8. Comparable experiments were carried out using
Service Location Protocol (SLP). They confirm the results shown here for Zeroconf
and have been left out for reasons of brevity. More information about these SLP
experiments can be found in [61].



Chapter 7
Modeling Service Discovery Responsiveness

Abstract The focus of this work is the responsiveness of the discovery layer, the
probability to operate successfully within a deadline, even in the presence of faults.
This chapter proposes a hierarchy of stochastic models to evaluate responsiveness
of decentralized discovery. The models are used to describe the discovery of a sin-
gle service using three popular protocols. Furthermore, a methodology to use the
model hierarchy in Wireless Mesh Networks (WMNs) is introduced. Given a pair
requester and provider, a discovery protocol and a deadline, the methodology gen-
erates specific model instances and calculates responsiveness. To estimate the be-
havior of multicast communication, which is fundamental to all current protocols,
the methodology uses the Monte Carlo method Probabilistic Breadth-First Search
(PBFS). PBFS accurately approximates multicast behavior in WMNs and it does
so with low time and space complexity compared to existing approaches. Finally,
this chapter introduces a new metric, the expected responsiveness distance der, to
estimate the maximum distance from a provider where requesters can still discover
it with a required responsiveness. Using monitoring data from the DES testbed at
Freie Universität Berlin, it is shown how the models can be used to calculate respon-
siveness and der of current discovery protocols depending on the position of nodes
and the link qualities in the network.

7.1 Introduction

This chapter provides a hierarchy of stochastic models to evaluate responsiveness of
decentralized Service Discovery (SD) in unreliable networks. It provides a method-
ology to apply these models to Wireless Mesh Networks (WMNs). The stochastic
model hierarchy and the Monte Carlo method Probabilistic Breadth-First Search
(PBFS) to estimate the reachability of multicast packets have been discussed in
[4, 11]. This chapter refers to these publications where necessary and provides a
comprehensive overview of how the different contributions are interconnected.

137
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The remainder of this chapter is structured as follows. A hierarchy of stochastic
models to evaluate SD responsiveness is introduced in Section 7.2, followed by
the description and validation of the multicast estimation method PBFS in Sections
7.3 and 7.4, respectively. An overview of a methodology that creates and solves
the models can be found in Section 7.5. The case study in Section 7.6 shows the
responsiveness of SD in different scenarios as calculated by the models. Results are
explained and interpreted. Section 7.7 concludes the work.

7.2 A Model for Service Discovery

When doing SD, the number of requesters and providers may vary. For instance,
multiple clients might request a single service. One client could discover all exist-
ing providers in the network to choose one meeting best its requirements. We will
now focus on decentralized SD by a single client as it is the basis of all other SD op-
erations. Any such SD operation can be described with a generic family of Markov
models, which includes three types of states:

• A single state named req0 defines the beginning of the SD operation, when the
initial request has been sent.

• Two absorbing states ok and error define the successful or unsuccessful end of
the SD operation.

• A set containing every state between the first two types where not all required
responses have been received and the final deadline has not been reached.

The Markov model family is parametric in two parameters: number of retries and
required coverage. The maximum number of retries n describes the first dimension
of the model family. Beginning from the initial state req0, the retries define a chain
of retry states reqi, i = 1...n, that stand for “retry i has been sent”. From each retry
state the model can transition into ok in case a sufficient number of responses was
gathered. If not it will transition to the next retry state and eventually from reqn
to error. The second parameter required coverage describes how many responses
need to be received before an SD operation is called successful and is the second
dimension of the model family. Each of the retry states reqi, i = 1...n becomes a set
of states reqi j, j ≥ 1, depending on the success ratio when doing retry i. The size
of this set may be arbitrary but as an example, if three services need to be found
for successful operation, there could be three states reqi j, j = 0,1,2 for every retry
i that stand for “retry i has been sent and j responses have been received so far”.
Figure 7.1 exemplary depicts a model in this family with two retries and three states
to reflect the different success ratios.

Estimating the transition probabilities within this Markov model family is not
trivial. In the following, we propose a hierarchy of stochastic models where the
probabilities of these high level discovery models are calculated by low level models
based on link quality data measured in the network. The hierarchy consists of the
following three layers:



7.2 A Model for Service Discovery 139

req1,2 req2,2

req1,1 req2,1 error

req0,0 req1,0 req2,0

ok

P0,0

P0,1

P0,2

P1,0

P1,2
P1,2

P1,1

P1,2

P1,2

P2,0

P2,1

P2,2

1− P0

1− P1,0

1− P1,1

1− P1,2

1− P2,0

1− P2,1

1− P2,2

Fig. 7.1 Markov chain for service discovery model family.

1. Service Discovery Operation (see Section 7.2.1) – A discrete time Markov
model reflecting the overall SD operation at the application protocol level, in-
cluding discovery requests and their retries. Calculates the SD responsiveness
for a specific scenario.

2. Retry Operation (see Section 7.2.2) – A semi-Markov model describing indi-
vidual SD requests and their respective responses. Used to calculate the prob-
abilities in the upper level discovery model, can be replaced by packet based
measurements applicable to the evaluated scenario.

3. Network Mapping (see Section 7.2.3) – Extensions to the retry operation model
to map the abstract retry operation to a concrete network under analysis. Uses
PBFS to estimate parameters of multicast communication (see Section 7.3.

7.2.1 Service Discovery Model

To demonstrate the model hierarchy, we instantiate a specific model for discovery of
a single service within a deadline tD = 5s using the Zeroconf protocol. The number
of retries n can be derived by examining the retry strategy of the SDP under analysis
(see Table 2.1). Given the times in seconds tretry(i), i∈N+ between retries i−1 and i
with tretry(0) = 0. The total time ttotal(r) after the beginning of a discovery operation
when sending retry r is calculated according to Equation 7.1.
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ttotal(0) = 0, ttotal(r) =
r

∑
i=1

tretry(i), r ∈ N+ (7.1)

For Zeroconf, ttotal(2)< tD < ttotal(3). So, n= 2 retries will be sent. The resulting
regular Markov model instance is depicted in Figure 7.2: In short, retries continue
to be sent until a response is received, triggering a transition to the ok state. If no
response is received after retry n has been sent and before tD, the operation is consid-
ered failed by transitioning to state error. So, the discovery operation is successful
as soon as the first response packet arrives at the requester. Transitions between the
retry states will only happen if no response has been received until the specific retry
timeout.

req0 req1 req2 error

ok

P1 P2 Pe

1−P1

1−P2 1−Pe

Fig. 7.2 Markov chain for single service discovery

There are two related probabilities in Figure 7.2: Pr,1 ≤ r < n is the probability
that no discovery response was received between ttotal(r)− tretry(r) and ttotal(r). Pe
is the probability that no response was received between ttotal(n) and tD. Arrival
times of responses to a specific request r can be considered as a random variable Xr.
Equation 7.2 describes the cumulative distribution of this variable, the probability
that a response to request r has arrived by time t or, the responsiveness Rr(t) of a
single request-response operation for request r.

FXr(t) = P{Xr ≤ t}= Rr(t) (7.2)

Knowing this, Equation 7.3 calculates the probability that a response to request
r arrives in a specific time interval.

P{tx ≤ Xr ≤ ty}= Rr(ty)−Rr(tx) (7.3)

Functions Pr : N+→ [0,1] and Pe : N+→ [0,1], as defined in Equations 7.4 and
7.5, can now calculate Pr and Pe such that Pr(r) = Pr and Pe(n) = Pe.

Pr(r) =
r

∏
i=1


1− Ri(ttotal(r))−Ri(ttotal(r−1))

1−Ri(ttotal(r−1))


(7.4)
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Pe(n) =
n

∏
i=1


1− Ri(tD)−Ri(ttotal(n))

1−Ri(ttotal(n))


(7.5)

Since Equation 7.5 is a special case of Equation 7.4, only Equation 7.4 is ex-
plained in detail. A retry is forced when no response packet arrived until the retry
timeout, so the product multiplies the individual probabilities for non-arrival of re-
sponses to each request that has been sent so far. The probability for the response to
request i to arrive within the specific interval is described by the quotient. The nu-
merator describes the unconditional probability for a response to arrive within the
specified interval. But, deducing from the structure of the Markov model, it cannot
have arrived before. That condition is given in the denominator. The quotient, thus,
gives the probability that a response to request i is received in the specified time
interval, provided it has not arrived before. It is then subtracted from 1 to get the
probability of non-arrival.

Missing is a specification to calculate the functions Rr(t). One way would be to
measure response times of request-response pairs and fit a distribution to them, such
as the data shown in Sections 6.4.2 and 6.5.1. We will use such data to validate the
discovery model in Chapter 8. Additionally, for the cases where no comparable data
is available, we provide an analytical solution, using a retry operation model.

7.2.2 Retry Operation Model

When discovering a single service, each retry step relates to a request-response pair,
described by the semi-Markov process in Figure 7.3. In state Rq, a request has been
sent. When it arrives at the destination, the provider will send a response, triggering
a transition to state Rp. As soon as this response arrives back at the requester, the
model enters state ok. If one of the messages gets lost, it will transition to state error.
This will cause the SD process to reach a timeout and force a retry, which again will
follow that pattern.

Rq Rp ok

error

Hrq(t),Prq Hrp(t),Prp

Hrq(t),1−Prq

Hrp(t),1−Prp

Fig. 7.3 Semi-Markov chain for a single request-response pair
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In case messages arrive (with a probability of Px), they have a certain distribu-
tion of arrival times. This is described by Hx(t), the sojourn time distribution for
state x. The cumulative distribution function of time to absorption in state ok now
calculates Rr(t) as in Equation 7.2. Since t is relative to the beginning of the SD
operation, Rr(t) is in fact parametrized by the location ttotal(r), the time at which
retry r is being initiated. The retry operation model is independent of a concrete net-
work infrastructure. It has no knowledge of how to calculate the probabilities and
transition time distributions. Providing concrete values of Px and Hx(t) for specific
SD pairs on demand is the purpose of the network mapping model.

7.2.3 Network Mapping Model

Mapping requests and responses to the network under analysis means providing
models that calculate Px and Hx(t) in the retry operation model (see Figure 7.3) by
taking into account the details of the used communication mechanism, unicast or
multicast. This mapping is dependent on the concrete network infrastructure. In this
case, we provide models for a WMN running OLSR [57]. Different networks could
need diverse models, but, provided they estimate Px and Hx(t), these could be used
in the proposed model hierarchy as well.

Unicast Model

A unicast message follows the shortest path according to the routing metric. In
OLSR, every node periodically calculates that shortest path and saves the next hop
for every destination. A unicast message is sent to the next hop node which then
decides to forward according to its own next hop information for the destination.
We use an algorithm that calculates the unicast path hop by hop based on the next
hop information on each node. If no such global information is available, using the
shortest path known to the first node remains a viable, albeit less accurate solution.

Since there is only one path with n nodes and m= n−1 links, this can be modeled
as a simple semi-Markov chain of n states. Each state ki, i = 1...n− 1 stands for
“message forwarded by node i”, state kn means “message arrived at node n”. The
links between nodes i and i+ 1 become transitions ki → ki+1. Further, there is a
transition from ki, i = 1...n− 1 to error to account for packet loss. State transition
probabilities Pki,ki+1 are calculated from the currently monitored packet transmission
probabilities of the link between nodes i and i+ 1 (see Section 7.5), taking into
account that unicasts will be retransmitted up to seven times if not acknowledged
by the receiving node. The estimation of sojourn time distributions Hki,ki+1(t) is
described in Section 7.2.4. The resulting unicast chain is then integrated into the
retry operation model in Figure 7.3 – for a unicast response, for example, by merging
states ki and Rp, kn and ok as well as the two error states. The rest of the chain
replaces transition Rp→ ok.
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Multicast Model

In theory, modeling the traversal of a multicast discovery packet should consider all
possible paths between source and destination. Multicasts are in essence Network-
Wide Broadcasts (NWBs) on a subgraph of the complete network, which contains
all nodes taking part in the service network. This redundancy has been taken into
account in the methodology for service availability evaluation in Part II but finding
all paths between two nodes is NP-complete, a prohibitive complexity in networks
with high connectivity, such as WMNs. Since the vast majority of those paths has a
very low probability of traversal and their impact on the responsiveness of the multi-
cast communication would be minor, this work instead proposes a different method
to estimate the reachability of multicast communication. Probabilistic Breadth-First
Search (PBFS) is a Monte Carlo method to derive an estimation of the multicast path
length between given nodes that communicate using flooding or variations thereof.
Because of its extensive use when estimating multicast communication within the
SD models, PBFS needs a detailed description, which can be found in Section 7.3.

In PBFS, node neighbors are only considered if the edge between a node and its
neighbor succeeds a random roll against its transmission probability, as monitored
by the routing layer (see Section 7.5). This way, each run of PBFS realistically
simulates how a multicast packet would traverse the WMN. PBFS is sampled a
sufficient number of times to approximate with which probability the destination
node could be reached. This reflects Px in the retry operation model, for example,
Prq for a multicast request. We additionally store the probability for each path length
in case of arrival to later estimate the distribution of sojourn time Hx(t) in Section
7.2.4.

7.2.4 Transmission Time Distributions

Estimations for sojourn time distributions in the network mapping models are based
on the (re-)transmission and potential back-off periods defined in the 802.11 stan-
dard [120]. For transmission times over links, we assume the lowest data rate, which
is correct for multicasts. Unicasts, however, will transmit at higher data rates if
possible, reducing the time for individual retry transmissions. The estimation thus
presents an upper bound for the transmission time as dependent on the data rate.
The estimation also ignores additional contention due to internal traffic or external
interference, which affects the upper limit of transmission times. To account for this,
a certain percentage of packets is assumed to arrive after the estimated maximum
transmission time for both uni- and multicasts. The bounds calculated from these as-
sumptions are fitted to an exponential distribution for the transmission time. For the
unicast model, this is done for each transition ki→ ki+1, i = 1...n− 1 and provides
Hki,ki+1(t). In the multicast model, one distribution function is generated for each
possible path length given by PBFS. The distributions are then weighted with the
corresponding probability for their length and combined in a single function Hx(t).
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7.3 Multicast Reachability Estimation

As previously described in Section 2.2.2, all SDPs use multicast communication
for crucial parts of the discovery process. However, due to the characteristics of
wireless communication, NWBs are generally problematic in WMNs. Being able to
estimate NWB dissemination in such networks is thus fundamental when estimating
packet traversal probabilities and traversal times, as needed for the lower-level mod-
els in Sections 7.2.3 and 7.2.4. Most existing dissemination models neglect the real
nature of WMNs and are based on simple graph models, which provide optimistic
assumptions of NWB dissemination. On the other hand, models that fully consider
the complex propagation characteristics of NWBs quickly become unsolvable due
to their complexity.

In this section, we present the details of the Monte Carlo method PBFS to approx-
imate the reachability of NWB protocols. PBFS has been described in more detail
in [11]. Without reverting to expensive empirical or analytical methods, PBFS can
be used to realistically approximate various metrics, such as reachability or average
path length. PBFS simulates individual NWBs on graphs with probabilistic edge
weights, which reflect link qualities of individual wireless links in the WMN, and
estimates reachability over a configurable number of simulated runs. This approach
not only has a very low time and space complexity compared to existing approaches,
but further provides additional information, such as the distribution of path lengths.
Furthermore, it is easily extensible to NWB schemes other than flooding. The appli-
cability of PBFS is validated both theoretically and empirically in Section 7.4.

7.3.1 Network Model

A WMN can be modeled as an undirected graph G=(V,E), where each vertex v∈V
corresponds to a WMN node and each edge e ∈ E corresponds to a wireless com-
munication link between two nodes. In Quasi Unit Disk Graphs (QUDGs) [132],
there is a communication link between two nodes if their Euclidian distance is less
than d (with 0 < d < 1) and none if it is greater, otherwise unspecified. Thus, a link
may or may not exist within this uncertainty range. This neglects that links itself are
rarely perfect or completely non-existent, but their quality varies in between. For
example, there might be good links which succeed in transmitting packets 85% of
the time, while others succeed only 10% of the time. Thus, in the model proposed in
this section wireless links are not just binary but approximated with a transmission
probability pi, j, the probability a transmission from node i to node j succeeds (see
Equation 7.6). If pi, j = 0, the edge is not included in the graph.

pi, j : E→ [0,1] (7.6)

In practice, pi, j usually reflects a measurement-based approximation. Link qual-
ities are never constant but vary over time due to small-scale fading effects, micro-
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mobility of the environment and interference. Node outages may also happen. The
graph model assumes independence between the qualities of different links, any de-
pendence is expected to be already included in the approximation of pi, j. For the
application in the context of this work, SD in WMNs (see case study in Section
7.6), static networks with no node mobility are assumed. However, the method de-
scribed in Section 7.3.4 can also be adjusted to support network topology dynamics
reflected in varying values for pi, j.

7.3.2 Reachability Metrics for Network-wide Broadcasts

To evaluate the performance of NWBs within the weighted graph model, we define
reachability as the main metric, which captures an important aspect of the depend-
ability of a NWB. We distinguish between the following two reachabilities:

Individual reachability ra→b – The probability that a node b is reached by a
NWB initiated by node a. In practice, ra→b is averaged over multiple runs as
a single run will only give a binary value.

Global reachability ra – The percentage of nodes that receives a NWB sent by
node a. Let R be the number of nodes reached by a NWB initiated from node
a. The global reachability is defined as ra =

R
|V | and derived from a single NWB

or averaged over multiple NWBs. For a general statement about the performance
of a protocol or a given topology this should be averaged over a large number
of runs. Another way to derive the global reachability would be to average all
individual reachabilities.

Global and individual reachabilities depend on the given network topology with
its transmission probabilities, NWB protocol, NWB source node and, for individual
reachability, the destination node. Source independent results can be achieved by
considering NWBs from every node in the network and averaging over all of them.

7.3.3 Calculation of Reachability

There exist purely analytical methods to calculate the reachability metrics based on
the described weighted graph model. For example, Chen et al. [50] have shown how
the individual reachability ra→b can be obtained by summing up the probabilities of
the family of edge sets that contain a path from a to b, as in Equation 7.7: 2E

a→b is the
set of all subsets of edges that contain a path from a to b. Calculating this formula
has an exponential complexity due to the iteration of the power set.

ra→b = ∑
E ′∈2E

a→b


∏

(i, j)∈E ′
pi, j ∏

(k,l)∈E\E ′
(1− pk,l)


(7.7)
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Another possible approach is to enumerate all given paths between a and b and
calculate the probability of not reaching node b over any of these paths. Enumerating
all simple paths between two nodes is NP-hard for arbitrary graphs. Furthermore,
as these paths are not independent and can contain common subpaths, this approach
requires factoring out these common subpaths, which is again NP-hard, a prohibitive
complexity in highly connected WMNs. However, for certain networks with a low
connectivity, hence, a low in-degree of the nodes, this approach is viable and we
are taking it into account in Part II when presenting an approach to automatically
generate user-perceived service availability models.

Chen’s algorithm for the Flooding Path Probability (FPP) [50] also computes the
individual reachability ra→b. It resorts to computing the joint probability distribution
that a packet is received by a subset of the vertex cut in each step of its algorithm.
The complexity is O(N(C∆+ + 2C∆−)), where C is the size of the largest vertex
cut used by the algorithm, ∆+ is the maximum out-degree and ∆− the maximum
in-degree of the graph. Therefore, calculating the FPP is efficient if the network has
only a small largest vertex cut, which is not true for high connectivity WMNs.

Given their complexity, these existing approaches are only feasible in simple
networks. To support the reachability evaluation of NWBs as used by discovery
protocols in WMNs, a more efficient method is needed. Equation 7.7 will be used in
Section 7.4.1, however, to validate the proposed PBFS in exemplary small networks.

7.3.4 Probabilistic Breadth-First Search

We will now introduce the Monte Carlo method Probabilistic Breadth-First Search
(PBFS) that models flooding as a slight modification of Breadth-First Search (BFS)
[87] in a weighted graph as described in Section 7.3.1. In contrast to regular BFS,
in PBFS, for a node i its neighbor j in the graph is only considered if the edge
between i and j succeeds a random roll against its transmission probability pi, j.
Consequently, PBFS can be seen as a flooding process in a graph whose edges are
weighted with independent transmission probabilities, abstracting from wireless ef-
fects such as contention and collisions. This way, each run of PBFS simulates how
a NWB packet, for example a discovery request, would traverse the WMN. It does
so without resorting to complex network simulations or testbed experiments as in
Chapter 6, and with considerably lower complexity than the purely analytical eval-
uations in Section 7.3.3. The algorithm has previously been published in [11] and is
presented in Figure 7.4.

The global reachability rsrc is ratio of the number of nodes that were marked
(reached) to the number of all nodes. In real networks, for example, the probabilis-
tic edge weights pi, j in the graph can be obtained by doing link probing for the ETX
metric as described in Section 7.5. The PBFS procedure in Figure 7.4 samples a suf-
ficient number of times to approximate with which probability a destination node b
is reached by a NWB from node a (the individual reachability ra→b). This reflects
Px in the retry operation model from Section 7.2.2, for example, Prq for a multicast
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1: procedure PBFS(G, src) ▷ G provides nodes and pi, j .
2: mark[n]← False ∀ n ∈ G ▷ BFS visited marker.
3: NoT[n]← 1 ∀ n ∈ G ▷ Number of transmissions setup.
4: reached← 0 ▷ How many nodes were finally reached.
5: nodes← [src] ▷ Queue of nodes to be processed.
6: mark[src]← True
7: while nodes ̸=∅ do
8: i← nodes.dequeue()
9: for j ∈ G.neighbors(i) do

10: psuccess ← 1− (1− pi, j)
NoT [i]

11: if mark[j] = False ∧ random() < psuccess then
12: nodes.enqueue(j)
13: mark[j]← True
14: reached← reached + 1
15: end if
16: end for
17: end while
18: end procedure

Fig. 7.4 Demonstration of the basic Probabilistic Breadth-First Search (PBFS) algorithm, which
mimics flooding in a WMN.

request. Additionally, PBFS approximates over how many hops b is reached, pro-
viding a list of tuples with the probability for any path length b is reachable by the
flooding process initiated by a. This list can be used to estimate the transmission
time distribution functions Hx(t) in the retry operation model as described in Sec-
tion 7.2.4. For reasons of brevity, path length distributions have not been included in
Figure 7.4. It should be mentioned that while throughout this work, only undirected
graphs are considered, PBFS can be used just as well on directed graphs.

PBFS has several advantages over the existing analytical approaches. First, it is
computationally less complex as the FPP [50] resorts to computing the joint prob-
ability distribution that a packet is received by a subset of the vertex cut in each
step of its algorithm. PBFS instead has the complexity O(|E|+ |V |) of BFS [60],
which allows to calculate reachability even for large graphs. PBFS also provides
over how many hops a node is reached and with which probability. Furthermore,
it does that not only for one node pair but for all reachable nodes from a specific
NWB source node. PBFS can work with dynamic values of pi, j. Provided a function
that calculates pi, j over time or a series of ETX measurements, each run of PBFS
could use different values for pi, j as input. Additionally, it is possible to modify
PBFS to model modifications of basic flooding and other NWB approaches, as has
been demonstrated in [11]. For example, PBFS allows for different configurations
of transmissions done by each node (see code in Figure 7.4, Lines 3 and 10).
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7.4 Multicast Reachability Validation

As PBFS relies on repeated randomized sampling runs, it reflects a Monte-Carlo
method to approximate reachability. In a nutshell, more runs increase the accuracy
of its approximation. An estimation of a sufficient sampling number for PBFS, its
deviation from the exact theoretical reachability and its confidence follows in Sec-
tions 7.4.1 and 7.4.2.

7.4.1 Theoretical Validation

For theoretical validation, PBFS is evaluated in three exemplary small networks,
where the complexity still allows a precise analytic assessment of reachability using
Equation 7.7. These networks are depicted in Figure 7.5. All three network graphs
are depicted within one Figure. The first network G1 consists of nodes a, b, c and
d and connecting links. The second G2 adds nodes e and f to G1, while the third
network G3 consists of the whole graph in Figure 7.5. Edge labels correspond to
pi, j.
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Fig. 7.5 Three example networks for theoretical validation: {a,b,c,d}, {a,b,c,d,e, f} and
{a,b,c,d,e, f ,g,h, i} including all links connecting the nodes. [11]

Evaluation results are listed in Table 7.1. It lists the values of three different
reachabilities when calculated using Equation 7.7 and when approximated by PBFS
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over a certain number of runs x. The run-time of the algorithms is included in paren-
theses as a reference. The results demonstrate two phenomena: First, the exponential
increase in runtime when using Equation 7.7 is visible already for these simple net-
works. Since execution times are based on non-optimized implementations, they
have to be taken with a grain of salt. But the effect of combinatorial explosion using
Equation 7.7 is obvious. Second, one can see that PBFS converges relatively fast
to the correct reachability value. Already after only 1000 runs, the relative error is
around 5% and below 0.5% after 100000 runs with a confidence of 99%.

Table 7.1 PBFS deviation (with 99% confidence after 1000 trials) with different number of runs
x, implementation runtime included in parentheses for illustration.

Network Nodes / Edges Reachability Equation 7.7 PBFS PBFS PBFS
evaluated x1 = 103 x2 = 104 x3 = 105

G1 4 / 5 ra→d 0.22824 ±5.10% ±1.58% ±0.47%
(0.004 s) (0.020 s) (0.199 s) (1.990 s)

G2 6 / 9 ra→ f 0.19682 ±4.71% ±1.45% ±0.48%
(0.116 s) (0.023 s) (0.230 s) (2.275 s)

G3 9 / 16 ra→i 0.39104 ±6.30% ±1.90% ±0.59%
(31.004 s) (0.032 s) (0.315 s) (3.179 s)

The standard deviation of a Monte Carlo method is determined as in Equation
7.8. Here, the value of x represents the number of iterations in PBFS while e is the
absolute error.

σ =
√

x · e (7.8)

Given the characteristics of PBFS, we have to assume a constant standard devi-
ation of the calculated reachabilities. This means that the absolute error decreases
with an increasing number of runs while the standard deviation remains the same
(see Equation 7.9).

σ =
√

x1 · e1 =
√

x2 · e2 = · · ·=
√

xn · en (7.9)

So with an increasing number of runs we see the error decreasing by a factor as
in Equation 7.10

en

em
=


xm

xn
,m > n (7.10)

In fact, this expected behavior is reflected by a linear decrease of the absolute
error in the logarithmic plot in Figure 7.6. Together with the convergence of reacha-
bility it validates PBFS as a proper Monte Carlo method to approximate the behavior
of NWBs.
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Fig. 7.6 Absolute PBFS error (y-axis) over number of runs (x-axis). Obtained by comparing PBFS
results with Equation 7.7 for network G3 in Figure 7.5. Axes have a logarithmic scale. [11]

7.4.2 Experimental Validation

To justify the feasibility of PBFS when reproducing properties of real world WMNs,
this section provides an experimental validation. We compare the global and individ-
ual reachability approximations given by PBFS with results measured in simulations
and a wireless testbed. We focus on basic flooding as NWB across different network
topologies because it is the main method used to date and as such the basis of the
multicast model in Section 7.2.3. Furthermore, hop length distributions for exem-
plary node pairs are shown and compared, which are needed for the calculation of
transmission time distributions as in Section 7.2.4. PBFS estimations are expected
to have a higher deviation, as it abstracts from short-term effects not reflected in the
measured transition probabilities pi, j.

Experiment Setup

Flooding is implemented within the Click Modular Router framework [130], which
allows to run it either in a wireless testbed or in simulators. For real-word experi-
ments, the DES-Testbed at Freie Universität Berlin is used as it was the case already
in Chapter 6. This testbed consists of around 130 wireless nodes equipped with IEEE
802.11 hardware that are spread over multiple campus buildings of FUB. We refer
to [36] for a complete description of the testbed. As simulator, ns-3.14 [115, 13]
with extensions for Click is employed. The wireless model is based on the Jakes
propagation loss model [248], nodes form an NPART topology [160] consisting of
275 nodes. Different scenarios are obtained by varying the transmission power in the
testbed as well as in simulations. Measuring transmission probabilities pi, j, which
are the input to PBFS, is done by a link prober that sends neighbor discovery pack-
ets and calculates the ETX [62]. Flooding packets are sent as link-layer broadcasts
with a fixed 1 Mbps data rate and payload sizes of 400 bytes, the same size as the
probing packets. In each scenario one node was chosen to start 1000 NWBs. The



7.4 Multicast Reachability Validation 151

achieved global and individual reachabilities are then evaluated and compared with
the ones obtained by running PBFS using the same pi, j from the link prober.

Experiment Results

In Figure 7.7, the global reachability for flooding is shown, contrasting results ob-
tained by PBFS with measurements from the testbed and simulation (Figures 7.7a
and 7.7b, respectively). One data point corresponds to the reachability in a single
scenario. Linear regression results in the dashed line and shows a very strong linear
correlation with a correlation coefficient r greater than 0.99 and very small p-values
in both comparisons. This indicates a strong presumption against the null hypothe-
sis, meaning that there is no relationship between the two data sets. The complete
results of the linear regression are listed in Table 7.2. PBFS slightly over-estimates
reachability when compared to simulations, an effect that is not shown in testbed
results. This bias in simulations hints at a systemic property in the simulation setup
that needs further investigation.
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Fig. 7.7 Comparison of global reachability predicted by PBFS (y-axis) versus achieved in reality
and by simulation (x-axis). A point constitutes the reachability for a single scenario [11].

Figure 7.8 shows the individual node reachabilities (top graphs) with their cor-
responding empirical cumulative distribution functions of the absolute difference
between predicted and achieved reachabilities for all nodes (bottom graphs). Again,
a data point reflects the reachability of a single node as estimated by PBFS versus
the results from testbed or simulation. The shaded area in the top graphs constitutes
an absolute error±10% of the ideal line with slope 1. Linear regression with all data
points results in the solid line.
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Table 7.2 Values of the linear regression when correlating PBFS with experiment results. The
regression line is of the form Y = a+b ·X .

Experiment slope b intercept a r-value p-value standard error

PBFS vs. Testbed 1.015 −0.043 0.99 2.038 ·10−13 0.038
PBFS vs. Simulation 1.116 0.013 0.995 2.578 ·10−7 0.044
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Fig. 7.8 Comparison of individual node reachabilities predicted by PBFS (y-axis) and achieved
in reality or simulations (x-axis) across different scenarios (top). Corresponding CDF plots for the
absolute differences shown in the bottom graphs. [11]

While there are outliers when compared with both simulation and testbed re-
sults, PBFS reasonably approximates the measured reachability. Simulation shows
a much narrower distribution, although the points show a characteristic curve which
again hints at some systematic property of the simulation model that warrants fur-
ther research. Investigating this, however, is out of the scope of this work. In the
bottom graphs, the corresponding CDF plots for the absolute differences are shown.
The CDF plots show that in both setups, the PBFS approximation does not differ
more than 0.2 from the measured reachability for 80% of all data points.

Last but not least, PBFS provides the distribution of path length probabilities for
each destination node of a NWB as needed for the transmission time estimations
in Section 7.2.4. A comparison of these distributions between PBFS and testbed
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measurements is shown in Figure 7.9. In general, PBFS is able to estimate these
distributions reasonably accurate as exemplary shown in Figure 7.9a. This is despite
a 5% difference in reachability in this case. However, there are few nodes, espe-
cially at higher distance from the NWB source, that show misfits, usually with an
overestimated path length as can be in Figure 7.9b.
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Fig. 7.9 Exemplary path length distributions for NWBs to nodes t9-155 and a6-028. [11]

7.4.3 Discussion Validation

Validation shows that PBFS quickly converges to the theoretically correct value.
Additionally, it approximates the behavior of real-life testbeds very well. Thus, it
provides a valid method to approximate the input values for the lower level network
models used in this work (see Section 7.2.3). Although not the scope of this work,
it should be mentioned that PBFS generally promises to advance research on opti-
mizing NWBs. The inevitable inaccuracies shown in the validation regarding global
and individual reachabilities, but also regarding the distribution of multicast path
lengths stem from basically two facts:

1. The calculation of link transmission probabilities has an intrinsic error based on
its own accuracy and cannot capture short-term effects visible in experiment runs.

2. Transmission probabilities are not independent, especially during flooding (broad-
cast storm problem

Nonetheless, PBFS provides a valid approximation of reachability for NWBs
and it does this with a high efficiency. This allows to use PBFS to estimate the
stochastic behavior of NWBs when evaluating the responsiveness of SDPs, which
rely heavily on NWBs when doing multicast communication. The results in the
case study presented in Section 7.6 could not have achieved a comparable accuracy
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without resorting to considerably more complex methods. In fact, the complexity of
those models would have prohibited similar analysis.

7.5 Model Generation and Solution

After describing the various layers of the stochastic model hierarchy and the meth-
ods to measure or calculate their input parameters, it is now time to put the models
into use. So, to calculate the SD responsiveness for given pairs of requester and
provider in a network, the model layers described in Sections 7.2 need to be gener-
ated bottom-up using the following steps:

1. Define a scenario which consists of (1) the SD communication partners requester
and provider, (2) the discovery protocol and (3) a deadline for the SD operation.

2. Generate low level network mapping models for individual requests and re-
sponses between the SD pair requester and provider based on the communica-
tion mechanisms of the protocol, uni- or multicast (see Sections 7.2.3, 7.2.4 and
7.3.4).

3. Integrate the network mapping models from Step 2 in the semi-Markov chain for
the retry model (see Section 7.2.2). This chain calculates the responsiveness of
an individual retry over time.

4. Calculate the number of retries n based on the defined protocol and deadline.
This defines the structure of the high level discovery model (see Section 7.2.1).

5. Estimate the state transitions probabilities in the discovery model, using Equa-
tions 7.4 and 7.5. In these equations, Rn(t) is the cumulative probability for ab-
sorption at time t in state ok in the retry model from Step 3.

The discovery model can then be solved. The steady-state probability of arrival
in state ok in this model is the probability that an SD operation as specified in the
scenario is successful, given the current monitored state of the network. The method-
ology has been implemented in a Python [191] framework that carries out all neces-
sary steps. More complex stochastic analysis is performed using the SHARPE tool
[224].

Monitoring

All monitoring data is gathered on demand from the routing layer. This approach
is least invasive and can be used in every network where the routing layer provides
the needed data. OLSR nodes use probe messages to measure link qualities for ev-
ery neighbor. Given the forward delivery ratio d f and reverse delivery ratio dr, the
Expected Transmission Count (ETX) [62] is defined as in Equation 7.11. This infor-
mation allows to construct a complete network graph with edges weighted by their
ETX value. In the graph, nodes are annotated with meta information from their local
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OLSR routing table that includes the next hop for every other reachable node in the
network.

ETX =
1

(d f ·dr)
(7.11)

7.6 Case Study

To demonstrate how the proposed methodology can be used to estimate the respon-
siveness in common use cases of SD, three of the protocols explained in Section
2.2.2 – Zeroconf , Simple Service Discovery Protocol SSDP and Service Location
Protocol SLP – are now evaluated in three different scenarios using measured data
from a real-life WMN, the Distributed Embedded Systems (DES) testbed at Freie
Universität Berlin (FUB). For the sake of traceability, node identifiers in this text
reflect the actual hostnames in the testbed. Due to space limitations, we refer to a
complete description of the testbed in [36].

In this case study, OLSR [57] was used in version 0.6.5.2. It provides a valid
reference for the real world application of the methodology. All monitoring was
done by OLSR. Topology data was gathered with OLSR’s JavaScript Object Nota-
tion (JSON) plug-in and then integrated into the network model using the Python
framework. The testbed was configured and data gathered with different transmis-
sion power levels to obtain different topologies. Retry intervals of the SDPs are set
according to the standards as described in Section 2.2.2 and Table 2.1. Since SSDP
does not have fixed intervals, it is assessed in two different configurations reflecting
the minimum and maximum interval as defined in the standard.

7.6.1 Scenario 1 – Single Pair Responsiveness

First, the responsiveness of a single pair requester and provider is evaluated over
time. In order to investigate also how the responsiveness changes with the distance
between nodes, two different pairs were chosen. One pair (t9-105, t9-154) is within
the main cloud t9, a dense and well-connected part of the WMN consisting of 56
nodes (see Figure 7.10a). The other pair (t9-105, a3-119) covers almost the max-
imum distance in the network (see Figure 7.10b). In both cases, node t9-105 is
the requester. The results clearly show that as the distance between requester and
provider increases, overall responsiveness decreases.

The difference in responsiveness among the protocols is apparent. With increas-
ing deadlines the responsiveness of the Zeroconf protocol is consistently lower
compared to the other protocols. This is because Zeroconf uses multicast for both
requests and responses. Multicast packets will not be resent seven times before con-
sidered lost, so the danger of packet loss is much higher. The positive effects of mul-



156 7 Modeling Service Discovery Responsiveness

0 5 10 15 20 25 30
Time in seconds

0.2

0.4

0.6

0.8

1.0

R
es

po
ns

iv
en

es
s

ZCONF
SLP
SSDPmin
SSDPmax

(a) Within same cloud, provider t9-154

0 5 10 15 20 25 30
Time in seconds

0.2

0.4

0.6

0.8

1.0

R
es

po
ns

iv
en

es
s

(b) Maximum distance, provider a3-119

Fig. 7.10 Discovery responsiveness over time for different providers requested from t9-105. [4]

ticast responses for multiple communication pairs, as pointed out in Section 2.2.1,
cannot be considered in this analysis. Also not included are the effects of additional
load on the network caused by discovery. Since retries are considered independent
events, lower retry intervals will lead to a higher responsiveness. While this assump-
tion can be justified for retry intervals in the order of seconds – discovery packets
are only a few bytes in size – it cannot hold for ever-lower intervals. So, although
SSDP with a minimum interval ranks consistently best, the increased load might
not be in the best interest of the service network as a whole. More in-depth research
is needed on that matter. However, it can be deducted that with low deadlines, the
chosen retry interval is more relevant for responsiveness than the communication
mechanism (i.e., unicast vs. multicast). In general, current SDPs struggle to achieve
a high responsiveness in WMNs, even over short distances.

7.6.2 Scenario 2 – Average Provider Responsiveness

The second scenario covers the average responsiveness of a single provider over
time when requested from an arbitrary client in the network. To demonstrate how the
models capture topology changes, this scenario uses data measured in two different
topologies that were generated with different radio power settings. The focus lies on
provider t9-154 from Section 7.6.1, which is well centered within the network so it
provides a good reference to see the effects of overall link quality on responsiveness.
Figure 7.11 shows the results.

The main observation is that the average responsiveness when discovering node
t9-154 is quite high due to its prominent, almost optimal position in the network.
With high quality radio links, depicted in Figure 7.11a, all protocols quickly reach
a responsiveness of over 90%. Responsiveness is considerably decreased for lower
quality wireless connections (see Figure 7.11b). With deadlines above 15 seconds,
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Fig. 7.11 Average responsiveness over time for provider t9-154 in different topologies. [4]

there is a consistent ranking of the SDPs, with Zeroconf again having the lowest
responsiveness. The ranking is identical for different link qualities, only the over-
all values are different. Due to different retry strategies of the protocols, however,
this behavior is not consistent for lower deadlines. This underlines the findings from
Scenario 1: With deadlines close to the individual retry intervals, the chosen in-
terval is more relevant for responsiveness than the communication mechanism. In
summary, it can be said that purely multicast based SD as in Zeroconf is justified
when positive effects for multiple communication partners are expected. For single
discovery operations among few partners, responding via unicast like in SSDP and
SLP provides higher responsiveness because of its more reliable communication
mechanism. Among SSDP and SLP, the specific retry strategy until the deadline is
the main factor impacting responsiveness.

7.6.3 Scenario 3 – Expected Responsiveness Distance

The last scenario covers the expected responsiveness distance der from Definition
1.4. The responsiveness of two different providers, t9-154 and a3-119, is calculated
when requested from every client in the network. Then, the responsiveness is av-
eraged for requesters at the same distance of these providers. Again, the used data
was measured in two different topologies that were generated with different radio
power settings. The discovery deadline is set to five seconds. Results are illustrated
in Figure 7.12.

The ranking among the protocols is not the same as in the previous scenarios.
This is due to the chosen, realistically short deadline of five seconds. The retry strat-
egy until this deadline has an important impact and the maximum retry timeout for
SSDP simply did not force enough retries to account for lost messages. It can also
be recognized in Figure 7.12d, that badly placed providers risk a very low der with
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Fig. 7.12 Average responsiveness over number of hops for providers t9-154 and a3-119 in two
different topologies. [4]

decreasing link quality. The der for the different protocols with a required respon-
siveness Rreq = 0.8 is summarized in Table 7.3. It should be noted that the maximum
der depends on the eccentricity ε of the provider node, the greatest distance from any
other node.

Table 7.3 Expected responsiveness distance der of the studied protocols with a deadline of five
seconds (ε = provider eccentricity, Rreq = required responsiveness, RPS = radio power setting). A
higher der is generally desired.

Provider ε Rreq RPS Zeroconf SLP SSDP (min) SSDP (max)

t9-154 8 0.8 high 4 5 8 4
low 4 5 5 4

a3-119 15 0.8 high 3 4 13 3
low 1 1 2 1

As can be seen in Figure 7.12, the average responsiveness is not always decreas-
ing over distance. This happens because hop count as the chosen distance metric
does not necessarily reflect the quality of a path. In fact, longer paths might be of
higher quality. The hop distance is, however, an intuitive metric that in this case
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presents the lower bound for der. If needed, a more realistic, quality-based distance
metric should be used to increase accuracy.

7.7 Conclusion

The case study on SD responsiveness as calculated by the presented models con-
cludes this chapter. Results demonstrate that responsiveness varies dramatically de-
pending on the position of nodes in the network and the overall link quality. The
results further indicate that, with short deadlines close to the individual retry in-
tervals, the right retry timing strategy is more important than the communication
mechanism. With longer deadlines, using the more reliable unicast instead of mul-
ticast consistently improves responsiveness. In either case, the fixed strategies of
current SD protocols struggle to achieve a high responsiveness in these dynamic
and inherently unreliable networks. In Chapter 8, a comprehensive experimental
validation of the models is presented.





Chapter 8
Correlating Model and Measurements

Abstract After demonstrating the Service Discovery (SD) responsiveness models
in Chapter 7, the accuracy of the model estimations needs to be validated. This is
done by comparing the model results to results measured in experiments. Several
representative scenarios for active single SD are chosen with varying fault intensity.
Corresponding to previous experiments, the first set of scenarios covers SD behav-
ior with increasing load. In the second set the radio signal power on the nodes is
decreased to reduce link quality. The empirical cumulative distribution functions of
the SD response times in experiments, which reflect the responsiveness of SD are
compared to the model outputs based on low level network measurements taken dur-
ing the same period. We show that wherever direct SD packet measurements can be
used, the model output has a very low error. When monitoring data from the routing
layer is used, the error of the model has a consistently higher error depending on the
quality of this input data.

8.1 Introduction

The focus of this chapter is the validation of the different layers of the model hier-
archy which was introduced in Chapter 7. We use data gathered in experiments in
the DES testbed, which was in parts already presented in Chapter 6, and correlate
estimations given by the model with actual measured data in corresponding exper-
iments. In experiments, three types of data are being recorded that are useful when
correlating model results: Events, packets and topology (see also Sections 3.4 and
6.3.2).

Events The events reflect state changes in the Service Discovery (SD) process,
such as “SD operation started” and “SD response received”. These time-stamped
events allow to calculate the responsiveness of SD operations on the application
layer, which should correlate to the steady-state probability of arrival in state ok
in the discovery model presented in Section 7.2.1.

161
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Packets Events are caused by packet transmissions on the network communica-
tion layer. A request initiated on the SD layer will cause a request packet to be
sent, with eventual retries until a sufficient number of responses has been re-
ceived. Each of the arriving responses will in turn cause an event on the SD
layer. Since ExCovery adds unique identifiers to SD requests (see Section 3.7),
each arriving response packet can be matched with the original request packet.
The responsiveness of these pairs request and response can also be calculated. It
corresponds to the cumulative probability for absorption in state ok in the retry
model (see Section 7.2.2). As such, packet measurements can be used to validate
the discovery model isolated from the lower models in the hierarchy.

Topology In each run, a full snapshot of the topology is recorded as reflected
in the local views of each node. Every snapshot contains all known nodes, their
neighbors and link qualities to these neigbors as estimated by the Open Link-State
Routing (OLSR) layer. This allows to construct a directed graph of the network,
with edges weighted by their transmission probability. This graph can be created
for each node or over all nodes combined, creating the worst, average or best
case.

Two different types of correlations are being done, both focusing on the discov-
ery model which estimates the responsiveness of active SD operations. First, we
use the topology data to solve all models bottom up as described in Section 7.5. In
networks with proactive routing, snapshots of the current topology are usually read-
ily available and leveraging this data is an attractive alternative to actively taking
SD measurements. However, it needs to be checked whether the abstractions in the
lower layer models combined with the uncertainty in input data correlate with the
actual measured SD responsiveness. Second, we will compare model estimations
using only packet measurements as input data to validate the discovery model iso-
lated from the rest of model hierarchy. This can be seen as the baseline and reflects
the case where no monitoring data is available to solve the lower level models but
a history of past SD operations can be analyzed to predict the next SD operations.
Both types of estimations, which will be referred to as full model and discovery
model estimations, will be correlated to the actual measured responsiveness for the
same period. We will compare responsiveness over time and calculate the error of
the estimation in various conditions.

The rest of this chapter is structured as follows. In Section 8.2, the experiment
setup and input data preparation for the models is explained. Section 8.3 shows and
discusses the correlation of model and experiment results. Section 8.6 concludes the
chapter.

8.2 Experiment Setup

Separate series of experiments were run for correlation since not all experiments
presented in Chapter 6 were run with full topology recording enabled. The goal of
this chapter is to correlate the active single discovery model from Chapter 7 so a
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consistent database of measurements was generated for this purpose. We will show

here the results for two pairs of requester and provider within the building t9. A

description of the DES testbed can be found in Section 6.3.2. The first pair consists

of nodes t9-154 and t9-k21a, two nodes positioned at opposite ends of the building,

as illustrated in Figure 8.1.

Fig. 8.1 Overview of building t9 with nodes involved in experiments highlighted. Node colors
define building floors.

The second pair consists of the two neighboring nodes t9-154 and t9-149. This

pair was chosen to show differences in the full model estimation between single and

multi-hop communication, to abstract from effects of multicast propagation. The

node positions are illustrated in Figure 8.2. A relatively long link is between the two

nodes.

Fig. 8.2 Overview of building t9 with neighboring nodes involved in experiments highlighted.
Node colors define building floors.
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For each pair, a set of scenarios was defined to compare model estimations and
measurements with varying fault intensity. This was done because the abstractions
in the models assume a simplified fault model, especially on the lower network lay-
ers. It will be shown how valid these abstractions are. Each scenario was measured
in 1000 discovery operation, which proved to be a sound compromise between ex-
periment runtime and ruling out temporal anomalies on the testbed. This number
of runs translated to between 12 and 20 hours of experiment time. The individual
scenarios are explained in the following sections.

In this Chapter, we will again focus on Zeroconf SD, which is purely multi-
cast based and most sensitive to faults on the network. Multicast packets will not
be retried on the lower network layers. Also, this puts the focus on the multicast
estimations of the network mapping model (see Section 7.2.3). The unicast esti-
mations basically transforms information as given by the OLSR routing layer to a
semi-Markov model. While it remains interesting to show the quality of the respon-
siveness calculation based on our transformation, instead of proving the validity of
the transformation itself, it would rather demonstrate the accuracy of the OLSR link
quality data. As improving OLSR is not the target of this work, we will thus focus
on the multicast-based Zeroconf SD.

8.2.1 Varying Data Rate Scenario

In the first scenario, just as shown in Chapter 6, in addition to the SD actors a random
set of nodes was chosen to exchange traffic with varying data rates. We chose 44
nodes or 22 node pairs to make sure the traffic was reasonably distributed within
the topology. Load on the network will cause collisions due to the shared wireless
communication medium and the number of collisions will increase the higher the
data rate becomes. This in turn will force retransmissions on the physical layer or
lead to packet loss which will decrease the responsiveness. This scenario reflects a
realistic use case, where a client tries to discover a single service, such as a backup
file server, while other network nodes communicate at the same time.

Five different levels have been chosen for the 22 bidirectional UDP [186] stream
between the load generating node pairs causing a combined data rate of 0.52, 0.70,
0.79, 0.88, and 1.05 megabits per second on the network. At present, load gener-
ation is started at the beginning of each run and stopped during the cleanup phase
at the end of the run. This is because ExCovery does not yet support processes that
continue over a number of runs. While this behavior is not problematic when con-
sidering the impact during the measurement phase, it will have an effect on the link
quality as estimated by OLSR. Since OLSR measures this quality also during phases
when no load is generated [62], the estimated link quality will be higher on aver-
age than the actual quality during measurements. This would be reflected in the SD
responsiveness as calculated by the models.
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8.2.2 Varying Radio Power

Although the first scenario provokes a realistic fault behavior, we decided to add a
second scenario with the objective to manipulate link qualities in a consistent way.
This way OLSR would correctly estimate the link qualities within its bounds and
the input data to the stochastic models would be more accurate. Environment nodes
this time only help with routing but do not produce additional traffic. Instead, the
radio power of all nodes is varied to change the quality of the wireless links. The
power gain values for the transmission antennas wer set to values of 15, 18, 20 and
25 dB. The single hop experiments between nodes t9-154 and t9-149 have only
been carried out in this scenario as a consistent load impacting the single link could
not be guaranteed in the first scenario. Specific power values needed to be chosen
considering the characteristics of this link. We measured that 11 and 15 dB provided
a good range in which the quality changed without dropping the link.

8.2.3 Input Data Preparation

The stochastic models work purely on the basis of network data. When the full
model hierarchy is calculated bottom up, OLSR link quality data is used. If only the
discovery model is calculated, it uses SD packet based response time distributions
as input. However, the event based responsiveness on the application layer contains
also the overhead for queuing and computing on the SD actor nodes themselves.

To solve this issue, the overhead was calculated by taking the time differences of
the empirical Cumulative Distribution Functions (CDF) of packet and event based
measurements. Event based measurements were only considered before the first
retry, to make sure that in both cases, only a single request and a single response
were been sent. Then, the average time difference was calculated in each scenario.
Table 8.1 shows the result for the different experiment scenarios. As a reference,
also values for the experiments presented in Chapter 6 and experiments for which
no results have been shown in this thesis are included.

As can be seen in Table 8.1 the offset is not constant but increases with higher
load or lower link quality. Two factors are mainly responsible for this behavior.
First, the actor node has additional processing overhead when the load generation
uses a higher data rate. These packets need to be routed and also the actor node
helps with that. Second, the comparison between the empirical CDF packets and
events is not perfect. The discrete points in time do not match completely between
the two distributions so an approximation is necessary. Given that there are less data
points in the event based CDF, as more SD operations need to be retried the higher
the load and the lower the link quality, this approximation tends to overestimate
the offset. However, these offsets provide a reasonable bound with which the model
calculations can be shifted in time. This can be seen in Figure 8.3, which shows
a comparison of measured responsiveness and as calculated using the models. The
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Table 8.1 Offset between packet and event CDF due to timestamp difference. The offset reflects
the processing overhead on the SD requester node.

Experiment Offset (ms)

Load (Mbit/s)

0.53 184.9538
0.70 210.0539
0.79 293.4857
0.88 337.7214
1.05 379.0667

Power (dB)

15 201.1710
18 187.4545
20 179.8312
25 175.7707

One hop (dB)
11 175.1428
15 171.6270

t9-105 (# VoIP Streams)

0 166.1595
5 170.6339
10 169.9149
15 175.5955
20 171.6539
25 184.9500
35 188.9077
40 210.0517
50 217.9131

a3-119 (# VoIP Streams)

0 177.2267
5 178.8163
10 183.2445
15 186.2169
20 190.4982
40 295.1937
50 331.5833

Max 295.1938
Min 166.1596
Avg 193.6029

graphs on the left side show the comparison without calculating the offset. On the
right side the model results are drawn including the correction.

8.3 Correlation of Model and Experiments

We will now show the results of the correlation, first for the experiments in varying
load conditions, then with varying signal strength. The responsiveness as estimated
by the models is correlated with the measurements for a corresponding data set. For
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(d) Power 18dB with offset

Fig. 8.3 Comparison between responsiveness without correction of event and packet based mea-
surement offsets. On the right side the corrected results.

both sets of experiments, the correlation is done visually, showing both responsive-
ness curves in the same graphs, and using statistical correlation metrics. We will use
well known metrics, such as the maximum and the average of the absolute error e,
the Root Mean Squared Error (RMSE), the variance of the error σe and the Pearson
product-moment correlation coefficient r. These metrics a widely used to quantify
the correlation of given data sets. However, as is often the case with single number
metrics, none of them is able to draw a complete picture in all scenarios. This is the
reason why all metrics are calculated in all scenarios, together with a visual corre-
lation. For a comprehensive explanation and interpretation of these metrics we refer
to [237, 109]. The RMSE is basically the square root of the average squared error
of the model outputs and is calculated as in Equation 8.1. The functions CDFexp and
CDFmod calculate the responsiveness from experiments and from the models, re-
spectively. Since CDFexp is an empirical distribution, the values of i represent times
at which there actually exists a value for CDFexp(i).

RMSE =


1
n
·

n

∑
i=1


CDFexp(i)−CDFmod(i)

2 (8.1)



168 8 Correlating Model and Measurements

The Pearson coefficient is calculated as in Equation 8.2. The values of r will al-
ways lie between−1 and 1 and can be interpreted as the quality of the linear correla-
tion between two data sets. In Equation 8.2, (CDFexp(i)−avg(CDFexp))(CDFmod(i)−
avg(CDFmod)) is positive exactly when CDFexp(i) and CDFmod(i) are both higher or
both lower than their respective means and in turn, r will be positive. In the case of
r = 1, this means that a linear equation perfectly describes the relationship between
CDFexp and CDFmod . So whenever CDFexp increases, also CDFmod increases by a
similar value. A value of r = 0 says there is no linear relationship between the two.
More information and a thorough discussion of the Pearson coefficient can be found
in [199, 76]. In our case, with two monotonously increasing functions we strive for
a coefficient as close to r = 1 as possible. The p-value is of less significance, which
corresponds to the probability that random sampling would result in the same r if
there were in fact no correlation between CDFexp and CDFmod . The p-value was
zero within the precision of the calculation in all scenarios.

r =

n
∑

i=1
(CDFexp(i)−avg(CDFexp))(CDFmod(i)−avg(CDFmod))

n
∑

i=1
(CDFexp(i)−avg(CDFexp)2


n
∑

i=1
(CDFmod(i)−avg(CDFmod)2

(8.2)

8.4 Experiments with Variable Load

The first set of experiments was done while increasing the load of environment
nodes in the network. Related to Figure 6.7, we can see the results of all three series
in Figure 8.4.
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Fig. 8.4 Experimental CDF for load experiments using data rates of 0.53, 0.70 and 0.79 Mbit/s.
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It can be seen that the responsiveness generally decreases with increasing load.
More retries are needed at higher loads to achieve similar responsiveness. It can
additionally be seen that the steps in the CDF after doing retries are less pronounced,
as the additional packets provoke contention on links and nodes and the delay of
packets gets higher. More detailed information can be found in Chapter 6.

8.4.1 Full Model Hierarchy

The results for the correlation of experiment and full model are shown in Figure
8.5. Here, the experiment results reflect the black line corresponding to the line for
the same load in Figure 8.4. The dotted red line is the estimation of the full model
hierarchy calculated bottom up. The dashed green line reflects the absolute error.

The model results do not correlate very well with the measured results. A de-
creasing error is to be expected when comparing two cumulative distributions, in
fact, both of them will converge to a responsiveness of 1. However, the error is very
high with a RMSE of between 0.21 and 0.47 depending on the load and a low Pear-
son coefficient r. The value of r is actually higher with increasing load because the
model estimations only then start to show the characteristic step function but r re-
mains very low with 0.86. The Pearson coefficient needs to be very close to 1 to
reflect a strong positive correlation between two data sets.

One can see that with low load as in Figure 8.5a, the models basically predict
a near perfect responsiveness already after the first request. The reason for this be-
havior is the input data to the network mapping model (see Section 7.2.3), which
calculates transmission times and delays of SD multicast messages based on the
link quality as given by OLSR. It turns out that according to OLSR, the links are
almost perfect. As mentioned earlier, OLSR uses probe messages to monitor the
quality of links and these link qualities continue to be sent, even when no load is be-
ing generated between experiment runs. A solution would be to run load generation
as a continuous process outside the abstract experiment description that ExCovery
reads. However, since the load generating pairs are being switched randomly each
run, this external process would need to be synchronized with experiment execu-
tion. Alternatively, ExCovery could be extended to support such global processes.
As a short term remedy, we will show results of the full model hierarchy when we
increase the fault intensity by decreasing the wireless signal quality on the nodes.
This is constant for the duration of an experiment series and allows OLSR to have
reasonably static conditions. It remains to be noted that the full model hierarchy
depends directly on the quality of the input data and results inherit the uncertainties
in this data. Figure 8.5 is an impressive illustration of this argument. As a reference,
Table 8.2 shows the correlation scores for the full model hierarchy in this scenario.
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(a) Load 0.53 Mbit/s
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Fig. 8.5 Comparison between measured Responsiveness and results of the full model hierarchy
for different loads. The green line denotes the absolute error between the two distributions.

Table 8.2 Table of errors and correlation metrics for full model hierarchy in load scenario.

Experiment max(e) avg(e) RMSE σe r
0.53 Mbit/s 0.8952 0.1374 0.2106 0.0936 0.3053
0.70 Mbit/s 0.8856 0.3068 0.3573 0.1363 0.5762
0.79 Mbit/s 0.7147 0.4563 0.4715 0.1101 0.8623

8.4.2 Discovery Model

In this section, we will show the correlation between responsiveness measurements
and model estimations based on recorded packet transmission times. As has been
explained earlier, the highest model in the model hierarchy, the discovery model uses
as input the cumulative distribution of response times for individual pairs request
and response. This distribution is used to calculate the transition probabilities as in
Equations 7.4 and 7.5. When the full model hierarchy is calculated bottom up, this
distribution is calculated using the retry model (see Section 7.2.2). Instead, packet
based measurements can be employed, converted into such distributions as shown
in Figure 6.8. This will be done in this section as well. It provides a way to show
the correlation of the discovery model isolated from the lower parts of the model
hierarchy.

The results are illustrated in Figure 8.6 where exemplary curves for data rates
of 0.53 and 0.79 Mbit/s are shown. In Figure 8.6, the black line again is the actual
measured responsiveness, the red dotted line is the model estimation and the green
line the absolute error. Two observations can be made. First, the correlation of the
estimations is almost perfect with a Pearson coefficient higher than 0.99 in all ex-
periments. The RMSE is 0.03 and lower. On average, the estimated responsiveness
differs by only 0.02 within the observed interval until the deadline at 18 seconds.
The maximum error is higher, but occurs only right at the beginning of the interval.
This hints at optimization potential when calculating the computing overhead on the
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Fig. 8.6 Comparison between measured Responsiveness and discovery model results for different
loads. The green line denotes the absolute error between the two distributions.

Table 8.3 Table of errors and correlation metrics for discovery model in load scenario.

Experiment max(e) avg(e) RMSE σe r
0.53 Mbit/s 0.2079 0.0153 0.0300 0.0043 0.9949
0.70 Mbit/s 0.1144 0.0189 0.0288 0.0018 0.9975
0.79 Mbit/s 0.0544 0.0198 0.0248 0.0007 0.9988

node. However, the two distributions correlate very well and this validates the dis-
covery model and especially its calculation of the transition probabilities for such a
scenario. Table 8.3 sums up the values of the different error and correlation metrics.

8.5 Experiments with Variable Radio Power

In the second set of experiments, in each series a different radio signal power was
used on each of the mesh nodes. This changed the range of the wireless signal and
in turn made it more vulnerable to interference and other types of faults. The results
of the three series for antenna gains of 15, 18 and 20 dB are shown in Figure 8.7.

It can be seen when comparing Figure 8.7 and 8.4 that the overall responsiveness
of both sets is similar. In fact, the antenna gain was chosen to resemble similar con-
ditions for packet loss. However, contrary to the results from the load experiments
in Section 8.4 the slope of the CDF is a lot less smooth and the steps in the distri-
bution due to the retries are considerably more pronounced. The reason for this is
that although the overall signal quality is lower and produces a comparable packet
loss on the paths between requester and provider, the nodes do have to deal with less
traffic as no background load is generated. Additionally, collisions happen only due
to the multicast flooding of SD packets or because of external interference. Both
causes lead to a lower delay in the network, hence, sharper steps in the CDF.
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Fig. 8.7 Experimental CDF for power Experiments using antenna gains of 15, 18 and 20 dB.

8.5.1 Full Model Hierarchy

The results for the correlation of experiment and results of the full model hierarchy
are shown in Figure 8.8. The experiment results reflect the black line corresponding
to the line for the same load in Figure 8.4. The dotted red line are the estimations
of the model calculated bottom up. The dashed green line reflects the absolute error.
Two exemplary graphs for antenna gains of 20 and 18 dB are shown.

As opposed to the results in Section 8.4.1, the two curves correlate considerably
better. Especially with lower signal quality, the OLSR monitoring data seems to bet-
ter pick up the actual transmission quality of the network and thus, the estimation
of the full model hierarchy is consistently more accurate. With high signal quality
the models overestimate responsiveness. What exactly causes this behavior cannot
yet be fully explained. The behavior hints at the smaller OLSR probe packets being
less likely to be dropped than SD packets over higher quality links. More thorough
investigation is needed here. The RMSE is between 0.04 and 0.18 and the Pear-
son coefficient is above 0.98 in two out of three series. The correlation in all three
scenarios is promising, given that no additional measurements are needed to pro-
duce such results but a current snapshot of the network is sufficient. All errors and
correlation metrics are summarized in Table 8.4.

Table 8.4 Table of errors and correlation metrics for full model hierarchy in power scenario.

Experiment max(e) avg(e) RMSE σe r
20 dB 0.7110 0.0696 0.1107 0.0443 0.8817
18 dB 0.2955 0.0216 0.0373 0.0071 0.9822
15 dB 0.2786 0.1767 0.1827 0.0148 0.9913
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Fig. 8.8 Comparison between measured responsiveness and results of the full model hierarchy
with different antenna gain. The green line denotes the absolute error between the two distributions.

8.5.2 Discovery Model

Finally, we will show the correlation between responsiveness measurements with
different antenna gain and model estimations based on recorded packet transmission
times. Results are illustrated in Figure 8.9. The observations from Section 8.4.2 are
valid here as well. The correlation of the estimations is again almost perfect with r >
0.99 in all experiments. The RMSE is 0.035 and lower. On average, the estimated
responsiveness different by only 0.02 within the observed interval until the deadline
at 18 seconds. Also the maximum error is comparable to the load experiments so
the discovery model works equally well in both presented scenarios. This is strong
evidence for the validity of the discovery model.

Another observation can be made in both the full model and discovery model
estimations. The retry steps in the CDF are steeper due to lower packet delays and
the maximum error shows spikes right after these retries. It shows that estimating
the exact arrival times is non-trivial and the models struggle to capture it properly.
However, even in those worst cases, the maximum error of the discovery model is
still between 0.24 and 0.09. In the latter case that means that predicting the respon-
siveness at any given time will be at maximum 10% off and on average only 2%
in all cases. Table 8.5 presents a summary of the obtained errors and correlation
metrics.

Table 8.5 Table of errors and correlation metrics for discovery model in power scenario.

Experiment max(e) avg(e) RMSE σe r
20 dB 0.2426 0.0163 0.0353 0.0059 0.9922
18 dB 0.1687 0.0220 0.0334 0.0036 0.9957
15 dB 0.0905 0.0221 0.0295 0.0013 0.9964
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Fig. 8.9 Comparison between measured responsiveness and results of the discovery model with
different antenna gain. The green line denotes the absolute error between the two distributions.

8.5.3 One Hop Experiments

A separate set of experiments was run with only two neighboring nodes, to isolate
the SD operation from the rest of the network. The antenna gain was chosen to be at
15 and 11 dB. In fact, it was rather difficult to choose correct values as the operating
system allows to set only integer values. This coarse grained resolution led to either
perfect or non existent links if chosen too high or two low. At the same time, the gain
needed to be chosen such that one value provided consistently better quality then the
other. Although both created a reasonably reliable link, 15 and 11 dB fulfilled these
requirements. Results are illustrated in Figure 8.10.

It can again be seen, that both the discovery model and the full model hierarchy
correlate well with the measured responsiveness. As before, the discovery model
fares consistently better as it relies on concrete SD packet measurements instead
of abstractions on the lower layers. For reference, Table 8.6 contains the numerical
results for this scenario.

Table 8.6 Table of errors and correlation metrics for one hop experiments in the power scenario.

Experiment model used max(e) avg(e) RMSE σe r

15 dB
full model 0.6679 0.0267 0.0621 0.0293 0.8229

discovery model 0.2589 0.0102 0.0349 0.0080 0.9888

11 dB
full model 0.6142 0.0348 0.0646 0.0242 0.8511

discovery model 0.2417 0.0105 0.0327 0.0068 0.9902
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Fig. 8.10 Comparison between measured responsiveness and results of the full model hierarchy
for different values of signal strength.

8.6 Conclusion

We correlated model estimations for responsiveness with the actual measured re-
sponsiveness during the same time interval. Two different estimations were calcu-
lated. The first uses the full model hierarchy bottom up as presented in Section 7.5. It
uses input data about the links and their quality from the routing layer and uses it to
approximate the distribution of transmission times and probabilities over the paths
between the SD actors. This is done with the help of Probabilistic Breadth-First
Search (PBFS), which is described in Section 7.3. The second estimation is done by
solving only the discovery model using measurements of previous SD packets.

Both types of estimations may be feasible, depending on the application scenario.
Using the full model hierarchy is advised if the network provides such low level
data. Generally, this is true for wireless mesh networks with proactive routing. At the
cost of computing resources for solving all models bottom up, network bandwidth
is saved. Also, this estimation can be performed upon entering a network, no history
of measurements is needed. The second approach should be used if no low level
network measurements are available. In this case, a history of SD operations should
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be kept to be used as input data to the models. The more frequent SD operations are
and the less dynamic the network is, this estimation will be more precise.

The estimations of the full model hierarchy depend highly on the quality of the
input data. Due to the experiment setup, the generated load did not have the same
impact on the routing layer monitoring packets than it had on the SD packets. This
uncertainty is inherited by the models which in these cases led to an overestimation
of responsiveness. As soon as the low level monitoring data more closely reflects the
quality of the SD communication, the model hierarchy estimations correlate better
with the actual measurements. In these cases, the Root Mean Squared Error (RMSE)
lies between 0.18 and 0.03 and the Pearson coefficient r is above 0.99 in two out of
three cases while being 0.88 in the third. Still, more research is needed to improve
the quality of the input data. This in turn will automatically improve the quality of
the models.

The correlation of the discovery model is exceptionally good. In fact, it correlates
nearly perfectly in all considered scenarios. The maximum error occurs only right
after the requests and subsequent retries. This is due to the computing overhead
on the client node being estimated outside the discovery model. A more precise
estimation will reduce this error. Still, the absolute error is between 0.05 and 0.24 in
all scenarios. The RMSE is very low between 0.025 and 0.035 and r is well above
0.99 in all scenarios. This validates the discovery model as a representation of the
active single SD process.

All error and correlation metrics are summarized in Table 8.7.

Table 8.7 Table of errors and correlation metrics in all scenarios.
Scenario Experiment model used max(e) avg(e) RMSE σe r

Load

0.53 Mbit/s
full model 0.8952 0.1374 0.2106 0.0936 0.3053

discovery model 0.2079 0.0153 0.0300 0.0043 0.9949

0.70 Mbit/s
full model 0.8856 0.3068 0.3573 0.1363 0.5762

discovery model 0.1144 0.0189 0.0288 0.0018 0.9975

0.79 Mbit/s
full model 0.7147 0.4563 0.4715 0.1101 0.8623

discovery model 0.0544 0.0198 0.0248 0.0007 0.9988

Power

15 dB
full model 0.2786 0.1767 0.1827 0.0148 0.9913

discovery model 0.0905 0.0221 0.0295 0.0013 0.9964

18 dB
full model 0.2955 0.0216 0.0373 0.0071 0.9822

discovery model 0.1687 0.0220 0.0334 0.0036 0.9957

20 dB
full model 0.7110 0.0696 0.1107 0.0443 0.8817

discovery model 0.2426 0.0163 0.0353 0.0059 0.9922

Power 1-Hop
11 dB

full model 0.6142 0.0348 0.0646 0.0242 0.8511
discovery model 0.2417 0.0105 0.0327 0.0068 0.9902

15 dB
full model 0.6679 0.0267 0.0621 0.0293 0.8229

discovery model 0.2589 0.0102 0.0349 0.0080 0.9888
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Chapter 9
Conclusions and Outlook

Abstract The results of the two main parts of this work are summarized and put into
context. We first cover user-perceived service availability evaluation as presented in
Part II. We then comment on the research on service discovery responsiveness in
Part III and give pointers to future research.

9.1 User-Perceived Dependability

Services play an increasingly important role in modern networks, ranging from web
service provision of global businesses to the Internet of Things. Dependability of
service provision is thus an important goal but the assessment of specific depend-
ability properties remains challenging. Ever more often, a system-view of depend-
ability does not properly reflect the variable distribution of dependability within dy-
namic networks and is thus only of statistical relevance. Since providers and clients
are part of a connecting Information and Communications Technology (ICT) in-
frastructure, service dependability varies with the position of actors. The ICT de-
vices needed for service provision change for each configuration. Service depend-
ability models need to incorporate these user-perceived perspectives. We present
two approaches to quantify user-perceived service dependability. Both approaches
demonstrate that the dependability of service provision indeed differs considerably
depending on the position of service clients and providers, even in highly reliable
wired networks. The following sections hold concluding remarks for each problem
area that has been covered in the preceeding parts of this work.

We first focus on service availability. Using input models of the service, the in-
frastructure and a mapping between the two to describe actors of service commu-
nication, availability models are automatically created that calculate user-perceived
instantaneous availability. The feasibility of the approach is demonstrated using ex-
emplary services in the network of University of Lugano, Switzerland. The contri-
butions of this approach as presented in Part II are being summarized in Section
9.2.
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The second and main part of this thesis aims at the responsiveness of Service Dis-
covery (SD), the probability to find service instances within a deadline even in the
presence of faults. For successful provision, a service first has to be discovered by
a client so successful SD is a precondition for successful service usage. We present
a hierarchy of stochastic models to calculate user-perceived responsiveness of SD
based on monitoring data from the routing layer. Extensive series of experiments
have been run in the Distributed Embedded Systems (DES) wireless testbed at Freie
Universität Berlin to assess responsiveness of current Service Discovery Protocols
(SDPs) and to validate the presented models. The contributions of Part III can be
found in in Section 9.3.

9.2 Service Availability Evaluation

A methodology is provided in Part II to facilitate the evaluation of user-perceived
service dependability, that is, the dependability valid for a specific pairs service re-
quester and provider. The approach is based on the work by Milanovic et al. [157]
but we focus explicitly on instantaneous service availability and provide an auto-
mated, fully model-driven methodology that evaluates user-perceived service avail-
ability. In addition, the same methodology could be used to evaluate other depend-
ability properties, given that different attributes necessary for evaluation of such
properties are attributed to the ICT component model. All described features are
achieved by transforming a set of input models that describe:

1. The ICT infrastructure, including non-functional properties related to the analy-
sis of interest for every entity of the infrastructure.

2. An abstract service as a composition of atomic services, which are indivisible
with respect to their functionality.

3. A mapping of atomic services to ICT components that enable these services,
hence, the actors of service communication.

For the input models, the Unified Modeling Language (UML) was adopted for
infrastructure and service descriptions as it is standardized and widely used, espe-
cially for design purposes. For the mapping model, the Extensible Markup Lan-
guage (XML) was chosen due to its versatility. Visualization of the models has been
an important factor as well and these decisions guarantee that the models remain
human-readable. The separation into individual models and distinct steps for gen-
erating and using the models allows the methodology to be well suited for dynamic
environments. Changes to intrinsic properties of network devices, such as failure
rate, redundant components, manufacturer and others, can be performed directly
in the device class description and so reflect to all objects in the ICT infrastruc-
ture model. That way, the methodology provides a straight-forward way to enable
different types of user-perceived dependability analysis based on a User-Perceived
Service Infrastructure Model (UPSIM), depending on the properties for each class
of components. The methodology uses a hierarchical service model with a compos-
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ite service on the highest level, which is composed of atomic services. The atomic
services in turn map to ICT infrastructure components. With only minor changes
to this mapping model, all properties can be evaluated for different requesters and
providers, reflecting different user-perceived views.

Parts of the results of the research on service availability presented in this work
have been published in [2, 3, 5, 10, 12].

9.2.1 Output Models

The presented methodology provides an in major parts automated generation of dif-
ferent output models for specified user-perceived views, such as a UPSIM for sub-
sequent analysis, or Reliability Block Diagrams (RBDs) and Fault Trees (FTs) for
availability evaluation. The methodology uses specific instances of the previously
described input models, which define the current state of the network, the service
under analysis and the user-perceived scope, and finds all ICT components relevant
for service provision of this pair, preserving their context within the network. It then
generates a UPSIM that can be used in subsequent user-perceived dependability
analysis. We exemplify a transformation into a RBD, which is solved to obtain the
steady-state availability of the given service. Given deployment times of the ICT
components in the infrastructure model and usage durations in the service model,
one main contribution of this methodology is a transformation into a RBD to assess
instantaneous service availability at a specific point in time. The approach defines
a sound concept of service and component time to allow such analysis: In addition
to the usage durations the exact component access times during provision are in-
cluded in the service model and taken into account for evaluation, which results in
a more accurate estimation, especially for longer service execution times. Instead
of an RBD, the methodology also supports and equivalent transformation to a FT.
These output models for a client-specific infrastructure providing a composite ser-
vice constitute a User-Perceived Service Availability Model (UPSAM).

9.2.2 Case Study

To demonstrate the proposed methodology, we apply it to parts of the service net-
work infrastructure at University of Lugano (USI), Switzerland. We show how to
generate the UPSIM for an exemplary email service and demonstrate how such a
UPSIM could be used to evaluate different user-perceived properties of the print-
ing service for given service requesters and providers. As a side effect, with the
UPSIM the methodology provides a practical way to automatically identify and vi-
sualize dependability-relevant ICT components, to give a quick overview on where
the service problem might be caused. Using the generated UPSAM, we show how
the steady-state availability of the same service can differ considerably even in such
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a high-availability network when requested from two different users. The methodol-
ogy is thus able to provide a fine-grained view on service availability as experienced
from different points of the network. By using an UPSAM for instantaneous avail-
ability evaluation, not only different views have been compared but also the impact
on user-perceived service availability over time when modifying network compo-
nents. As an example, the impact of redundant atomic service providers on the com-
posite service availability was calculated. Additionally, individual ICT components
were exchanged to demonstrate the effect of component age on availability. The
results show availability as a dynamic property and indicate how the methodology
can improve network design by estimating the impact of new component deploy-
ment. After deployment, they can be used to detect bottlenecks in the network or to
evaluate the impact of planned changes to the ICT infrastructure.

9.2.3 Outlook

Although the demonstration network is based only on parts of the service network
at USI, the proposed methodology is scalable and applicable to complex, dynamic
networks as well. We showed how different types of dynamics affect only specific
models so that in most scenarios, the majority of models remains unchanged. Also,
the methodology implementation is automated whenever no human input or deci-
sion is necessary and it is thus possible to quickly regenerate the output models in
case of dynamic changes to the network or its services. More research is needed to
demonstrate the applicability of the methodology to complex infrastructures such
as cloud computing, which do not provide the operator with enough information
about individual components necessary for service provision. Additionally, the path
discovery algorithm and creation of the composite reliability block diagram need
optimization when applied to networks with a high degree of connectivity, such as
wireless mesh networks. Combining sets of components with a low variability in
user-perceived availability to reduce the size of the topology graph should be con-
sidered. Finally, extending the methodology to evaluate different time-dependent
dependability properties like performability remains an open issue. With respect to
instantaneous availability, future work should focus on improving the accuracy of
the resulting availability estimation especially with respect to short term effects on
the infrastructure. This includes examining extensions to support variable failure
and repair rates and a proper load model.

9.3 Evaluation of Service Discovery Responsiveness

Part III provides an extensive evaluation of the responsiveness of SD, the proba-
bility to successfully discover service providers within deadlines. To the best of
our knowledge, no work has been done that covers an evaluation of this impor-
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tant property both by experiments and using stochastic models. Results of the re-
search on SD responsiveness presented in this work have in parts been published in
[3, 1, 4, 6, 7, 9, 11, 8].

9.3.1 Experimental Evaluation

First, we examined the dependability of decentralized active SD in experiments, to
observe the behavior of SD responsiveness in three common scenarios. This has
been done in two experiment environments. First, a hypervisor based virtual testbed
and second, the Distributed Embedded Systems (DES) wireless testbed at Freie Uni-
versität Berlin (FUB). In the DES testbed, the ExCovery experiment framework was
employed to run all series of experiments. Responsiveness of Domain Name System
(DNS) based discovery was evaluated under varying fault intensity and with up to
50 service instances. Furthermore, we analyzed the impact of the deadline of the SD
operation, the distance of nodes, the load in the network and the required number
of providers to be discovered. Analysis in the DES testbed was performed both for
the individual discovery packets as well as the complete discovery operation, which
includes retries in case packets do not arrive in time. The former allows to infer
conclusions for other application protocols which use similar packets and can pro-
vide input for existing and future analytical models which use lower network level
measurements. The analysis provides an extensive evaluation of SD responsiveness
with a realistic fault model. Presented results are applicable to various types of op-
timizations in wireless mesh networks.

The results in the virtual testbed show that the responsiveness of the used SDPs
decreases dramatically with moderate packet loss of around 20%. It decreases non-
proportional when more service instances need to be discovered. At higher packet
loss rates the decrease becomes exponential with the number of nodes to be discov-
ered such that SD becomes practically impossible. Responsiveness can be improved
if a low coverage is acceptable. This can be the case, for example, if redundant
service instances are introduced to the network and only a fixed number of service
instances needs to be discovered, regardless of the total number of instances in the
network. However, this assumption is only valid in networks with low packet loss.
In less reliable networks, redundant service instances and the caused overhead in
communication could in fact worsen responsiveness.

In addition to the experiments on SD, an analysis of the long-term behavior of
the DES testbed and the effects of internal and external faults was carried out. In-
ternal faults contain node crashes or clock drifts, external faults comprise all types
of wireless interference or also forced interruptions during experiment execution. It
has been shown that the effect of these faults is considerable and has to be taken into
account when interpreting results. Experiment analysis based on average measure-
ments should be done very carefully. Choosing the measurement history window
size too big can easily lead to over or underestimating of the testbed link quality.
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Experiment Environment ExCovery

The experiment framework ExCovery developed for this work has been tried and re-
fined in a manifold of SD dependability experiments over the last two years, which
were carried out on the wireless DES testbed at FUB. The core of ExCovery is a
formal experiment description that supports automated checking, execution and ad-
ditional features, such as visualization of experiments. In addition to that, the frame-
work offers unified concepts for experiment execution, measurement and storage of
results. As such, ExCovery is expected to foster experiment repeatability, compa-
rability and transparency. To support this claim and to facilitate transparency and
repeatability, all experiment descriptions and results of this work are made available
for interested researchers on request. ExCovery is available for download in a public
repository under the permissive MIT license [8].

ExCovery was specifically developed for the experiments on SD presented in
Chapters 6 and 8 but has generic support for experiments on the dependability of
distributed processes. We provided an abstract description of SD as experiment pro-
cess. The description covers the specification of the individual processes of an ex-
periment and their actors: Fault injection, environment manipulation and the main
process under experimentation (in this case SD) are expressed as interdependent se-
ries of actions and events. Execution takes care of controlling the individual nodes
during experiment runtime, to make sure each run of an experiment has a clean and
defined environment and each node acts according to the experiment description.
ExCovery manages series of experiments and recovers from failures by resuming
aborted runs. Measurements are taken both on the level of experiment process ac-
tions and events, to record the behavior as seen by the application, and on the level
of raw network packets. Measurements are stored in a unified database format to
facilitate sharing and comparison of results. ExCovery has already been employed
in a number of works from other authors and is still under active development.

9.3.2 Stochastic Modeling

This work proposes a stochastic model family to evaluate the user-perceived respon-
siveness of active decentralized SD. The family consists of a hierarchy of Markov
and semi-Markov processes that are parametrized to allow instantiation for diverse
SD scenarios and use current network monitoring data as input. To put the models
into use, a methodology is introduced that works specifically in wireless mesh net-
works with proactive routing. Upon request, the methodology generates and solves
model instances bottom up for specific SD scenarios. Especially the abstractions
at the lower layers lead to a comparably low complexity, which allows for diverse
aggregate calculations, such as the average responsiveness of one provider for all
clients in the network. The methodology relies on the Monte Carlo method Proba-
bilistic Breadth-First Search (PBFS) to estimate the behavior of SD multicast com-
munication. PBFS was developed during the work on this dissertation and approx-
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imates the reachability and other metrics of network-wide broadcasts by random
sampling the packet traversal through a probabilistic graph.

Using monitoring data from the DES testbed, responsiveness is evaluated for the
three most prevalent SDPs in IP networks: Service Location Protocol (SLP), Simple
Service Discovery Protocol (SSDP) and Zeroconf discovery. First, the responsive-
ness for different pairs of requester and provider is compared. Second, the average
responsiveness of a single provider, depending on the topology, is analyzed. Results
demonstrate that responsiveness varies dramatically depending on the position of
nodes in the network and the overall link quality. Thus, they confirm the findings
from the experiments. The results further indicate that, with short deadlines close to
the individual retry intervals, the right retry timing strategy is more important than
the communication mechanism. With longer deadlines, using the more reliable uni-
cast instead of multicast consistently improves responsiveness. In either case, the
fixed strategies of current SDPs struggle to achieve a high responsiveness in these
dynamic and inherently unreliable networks. Finally, a new metric expected respon-
siveness distance der is introduced, estimating the maximum hop distance from a
provider at which nodes can discover it with a required responsiveness. To deploy a
responsive service with a minimum number of nodes, every requester in the network
should be within the der of at least one provider. The der of two different providers is
evaluated and the results underline the importance of position when placing service
instances.

Validation shows that the highest layer discrete time Markov model, which rep-
resents the SDP itself, is able to estimate the actual measured responsiveness with a
very low error at any given time. It uses input data in the form of a distribution of
response times of previous discovery operations. Model estimations and experiment
measurements consistently converge to the same value and correlate with a root
mean squared error of 0.03 and below in all cases. The Pearson product-moment
correlation coefficient r is well above 0.99 in all cases. This validates the model as
a proper representation of the discovery operation. The lower layer models, which
calculate the probability and time distribution of traversal for specific network pack-
ets, are able to estimate the actual behavior with a low error under the condition that
the input data properly reflects the current network quality. It has been shown that
the used Expected Transmission Count (ETX) metric, as given by the routing layer,
has its shortcomings and cannot always cope with the dynamics of wireless link
qualities. The quality of the ETX metric increases the more static the network is,
thus reducing the error of the estimations given by the presented stochastic models.
We can conclude that given a precise metric of the link quality, the complete hier-
archy of stochastic models is able to estimate the responsiveness for any given SD
communication pair with a high accuracy.
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9.3.3 Outlook

Responsiveness evaluation of SD in dynamic and decentralized networks remains
challenging. With increasing demand for real-time systems, responsiveness opti-
mization will become one of the main issues. With self-configuring networks enter-
ing dependability critical domains, our experimental and analytical evaluation has
shown that distributed SD has to be used with caution, especially in wireless sce-
narios where packet loss cannot be neglected. Applying advanced cache optimiza-
tions to reduce transmissions as proposed in [45] could improve responsiveness in
such scenarios. Optimizing retry strategies seems to be indeed one promising next
step. However, further investigations are needed since not all improvements would
be compliant with existing standards that are already deployed in current network
devices. Some adaptations such as accepting non-authoritative discovery responses
from any node in the service network might improve discovery responsiveness but
reduce the reliability of service discovery as a whole.

Future research could extend the presented hierarchy of stochastic models to sup-
port centralized and hybrid SD architectures. Also, the higher layer discovery model
is not time-dependent and needs to be regenerated for different deadlines if the num-
ber of retries changes. The probability Pe to transition to the error state after the last
retry needs to be calculated for each deadline. However, the discovery model pro-
vides an intuitive representation of the SDP communication and can be calculated
with low complexity. These advantages are important when optimizing SDPs for
fixed deadlines as given by the application layer. Nevertheless, the time dependence
of the lower layer models could be combined in a single discovery layer model
which uses the deadline as a parameter and calculates the distribution of arrival
times in the absorbing states. This in turn could be used to assess responsiveness.
Such model could then support the development of novel SDPs that, for example,
support variable retry intervals depending on the state of the network.
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Final Remarks

The main contributions of this dissertation are two different methodologies for user-
perceived dependability evaluation in service networks. Both methodologies have
the same foundation, to generate models for dependability evaluation bottom up
based on the current monitored state of the network and to allow a time-dependent
dependability evaluation using these models. This way, they enable optimization of
service networks with respect to known or predicted usage patterns.

The presented solutions can be used in service networks to analyze the qual-
ity of service deployments for different client perspectives. Service discovery is an
integral parts of such deployments. Furthermore, they help to improve them by es-
timating the quality when placing additional instances, moving existing instances
and adding or replacing network equipment. Since the user-perspective is valid for
both the clients and providers, both parties may use the models given that they have
sufficient input data to generate and solve them.

Finally, the methodologies developed in this work are one step away from antic-
ipating novel service dependability models which combine service discovery, time-
liness, placement and usage, areas that until now have been treated to a large extent
separately. Such models will become the basis for future adaptive and autonomous
networks such as the Internet of Things and its successors.
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32. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework. In: 16th

Annual International Conference on Automated Software Engineering (ASE), pp. 273–280.
IEEE Computer Society Press (2001). doi:10.1109/ASE.2001.989813

33. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination func-
tion. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000).
doi:10.1109/49.840210

34. Bittanti, S., Campi, M.C., Prandini, M.: How many experiments are needed to adapt? In:
A. Chiuso, S. Pinzoni, A. Ferrante (eds.) Modeling, Estimation and Control, Lecture Notes
in Control and Information Sciences, vol. 364, pp. 5–14. Springer Berlin Heidelberg (2007).
doi:10.1007/978-3-540-73570-0 2

35. Bluetooth SIG, Inc.: Specification of the Bluetooth System, 4.1 edn. (2013)
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226. Tröger, P., Becker, F., Salfner, F.: FuzzTrees – failure analysis with uncertainties. In: 20th Pa-
cific Rim International Symposium on Dependable Computing (PRDC), pp. 263–272. IEEE
Computer Society, Singapore (2014). doi:10.1109/PRDC.2013.48

227. Tromp, E.: Basic Multicast Forwarding Plugin for Olsrd, 1.7.0 edn. (2010)
228. Tsai, W.T.: Service-oriented system engineering: a new paradigm. In: IEEE International

Workshop on Service-Oriented System Engineering (SOSE), pp. 3–6. IEEE Computer Soci-
ety (2005). doi:10.1109/SOSE.2005.34

229. Tseng, Y.C., Ni, S.Y., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a mobile ad
hoc network. Wireless Networks 8(2), 153–167 (2002). doi:10.1023/A:1013763825347
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Appendix A
XML Schema of Service Discovery Experiment
Process

In the listing below is a sample XML schema for service discovery as an experiment
process. One can see that few adjustments to the actions parts allow to use a
similar schema for arbitrary network protocols that are to be examined under the
influence of the same factors to be varied. See also Chapter 3.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://sd_experiments"
targetNamespace="http://sd_experiments"
elementFormDefault="qualified">

<xs:element name="sd_experiment_description" >
<xs:complexType>
<xs:sequence>
<xs:element name="meta" type="xs:anyType" />
<xs:element name="abstractnodes" type="abstractnodes" />
<xs:element name="factorlist" type="factorlist" />
<xs:element name="processes" type="processes" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="abstractnodes">
<xs:sequence>
<xs:element name="abstractnode" type="abstractnode" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="abstractnode">
<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="factorlist" >
<xs:sequence>
<xs:element name="factor" type="factor" maxOccurs="unbounded"/>
<xs:element name="replicationfactor" type="replicationfactor" maxOccurs="1"
↩→ />

</xs:sequence>
</xs:complexType>

<xs:complexType name="factor">
<xs:sequence>
<xs:element name="levels" maxOccurs="1" />
<xs:element name="description" maxOccurs="1" type="xs:anyType"/>
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</xs:sequence>
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="type" type="xs:string" />
<xs:attribute name="usage" type="xs:string" />

</xs:complexType>

<xs:complexType name="replicationfactor">
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="type" type="xs:string" />
<xs:attribute name="usage" type="xs:string" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="levels">
<xs:sequence>
</xs:sequence>

</xs:complexType>

<xs:complexType name="processes">
<xs:sequence>
<xs:element name="node_processes" type="node_processes" />
<xs:element name="env_process" type="env_process" />

</xs:sequence>
<xs:attribute name="max_run_time" type="xs:int" />

</xs:complexType>

<xs:complexType name="node_processes">
<xs:sequence>
<xs:element name="process_parameters" minOccurs="1" maxOccurs="1"
↩→ type="process_parameters"/>
<xs:element name="actor" minOccurs="1" maxOccurs="unbounded" type="actor"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="process_parameters" >
<xs:sequence>
<xs:element name="actor_node_map" type="actor_node_map" />

</xs:sequence>
</xs:complexType>

<xs:complexType name="actor_node_map">
<xs:choice>
<xs:element name="factorref" type="factorref"/>
<xs:sequence>
<xs:element name="actormap" type="actormap" minOccurs="1"/>

</xs:sequence>
</xs:choice>

</xs:complexType>

<xs:complexType name="actormap" >
<xs:sequence>
<xs:element name="instance" minOccurs="1"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string" />

</xs:complexType>

<xs:complexType name="instance">
<xs:simpleContent>
<xs:extension base="xs:integer">
<xs:attribute name="id" type="xs:string" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
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<xs:complexType name="description">
<xs:simpleContent>
<xs:extension base="xs:string"></xs:extension>

</xs:simpleContent>
</xs:complexType>

<xs:complexType name="actor">
<xs:sequence>
<xs:element name="sd_actions" maxOccurs="1" />
<xs:element name="manipulation_actions" minOccurs="0" maxOccurs="1" />

</xs:sequence>
<xs:attribute name="id" type="xs:string" />
<xs:attribute name="name" type="xs:string" />

</xs:complexType>

<xs:complexType name="factorref" >
<xs:attribute name="id" type="xs:string" />

</xs:complexType>

<xs:complexType name="sd_actions" />
<xs:complexType name="manipulation_actions" />
<xs:complexType name="env_process">
<xs:sequence>
<xs:element name="description" type="description" />
<xs:element name="env_actions" type="env_actions" />

</xs:sequence>
</xs:complexType>

<xs:complexType name="env_actions">
<xs:sequence>
<xs:element type="flow_control_actions" minOccurs="0" maxOccurs="unbounded"
↩→ />

</xs:sequence>
</xs:complexType>

<xs:complexType name="flow_control_actions" />
<xs:choice></xs:choice>

</xs:complexType>

<!-- ACTIONS //-->
<xs:complexType name="traffic">
<xs:sequence>
<xs:element name="pairs" />
<xs:element name="bw" />
<xs:element name="choice" />

</xs:sequence>
</xs:complexType>

<xs:complexType name="wait_for_event">
<xs:sequence></xs:sequence>

</xs:complexType>

</xs:schema>
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ExCovery Process Description

This listing contains experiment and environment process descriptions as used for
the experiments conducted in this work. See also Chapters 6 and 3.

<!-- ... -->
<processes max_run_time="120">
<node_processes name="">
<process_parameters>
<actor_node_map>
<factorref id="fact_nodes"/>

</actor_node_map>
</process_parameters>

<actor id="responder" name="publisher">
<sd_actions>
<sd_init />
<sd_publish />
<wait_for_event>
<event_dependency>done</event_dependency>

</wait_for_event>
<sd_unpublish />
<sd_exit />

</sd_actions>
</actor>

<actor id="requester" name="searcher">
<sd_actions>
<wait_for_event>
<from_dependency>
<node actor="responder" instance="all"/>

</from_dependency>
<event_dependency>sd_start_publish</event_dependency>

</wait_for_event>
<wait_for_event>
<event_dependency>ready_to_init</event_dependency>

</wait_for_event>
<sd_init />
<wait_for_event>
<event_dependency>ready_to_search</event_dependency>

</wait_for_event>
<wait_marker />

<sd_start_search />
<wait_for_event>
<from_dependency>
<node actor="requester" instance="all"/>
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</from_dependency>
<event_dependency>sd_service_add</event_dependency>
<param_dependency>
<node actor="responder" instance="all" />

</param_dependency>
<timeout>30</timeout>

</wait_for_event>
<event_flag><value>done</value></event_flag>

<sd_stop_search />
<sd_exit />

</sd_actions>
</actor>

</node_processes>

<env_process>
<description>The sd process is treated with a varying network
↩→ traffic</description>
<env_actions>
<wait_for_event>
<from_dependency>

<node actor="responder" instance="all"/>
</from_dependency>
<event_dependency>sd_start_publish</event_dependency>

</wait_for_event>
<wait_marker />

<env_start_drop_sd />
<wait_time>
<value>5</value>

</wait_time>
<event_flag>
<value>ready_to_init</value>

</event_flag>

<env_traffic_start>
<bw>
<factorref id="fact_bw" />

</bw>
<choice>0</choice>
<random_switch_amount>1</random_switch_amount>
<random_switch_seed>
<factorref id="fact_replication_id" />

</random_switch_seed>
<!-- this causes the randomization in replications -->
<random_pairs>
<factorref id="fact_pairs" />

</random_pairs>
<random_seed>
<factorref id="fact_pairs"/>

</random_seed>
<!-- this causes the randomization in repeatitions of the same
↩→ pairs-factor to be the same
this means the randomly selected nodes -->

</env_traffic_start>

<wait_for_event>
<from_dependency>
<node actor="requester" instance="all"/>

</from_dependency>
<event_dependency>sd_init_done</event_dependency>

</wait_for_event>
<wait_time>
<value>1</value>

</wait_time>
<env_stop_drop_sd />
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<event_flag>
<value>ready_to_search</value>

</event_flag>

<wait_for_event>
<event_dependency>done</event_dependency>

</wait_for_event>
<env_traffic_stop />

</env_actions>
</env_process>

</processes>
<!-- ... -->
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