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Ferreira, Eija, Model selection in time series machine learning applications. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Computer Science and Engineering; Infotech Oulu
Acta Univ. Oul. C 542, 2015
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Model selection is a necessary step for any practical modeling task. Since the true model behind a
real-world process cannot be known, the goal of model selection is to find the best approximation
among a set of candidate models.

In this thesis, we discuss model selection in the context of time series machine learning
applications. We cover four steps of the commonly followed machine learning process: data
preparation, algorithm choice, feature selection and validation. We consider how the
characteristics and the amount of data available should guide the selection of algorithms to be
used, and how the data set at hand should be divided for model training, selection and validation
to optimize the generalizability and future performance of the model. We also consider what are
the special restrictions and requirements that need to be taken into account when applying regular
machine learning algorithms to time series data. We especially aim to bring forth problems
relating model over-fitting and over-selection that might occur due to careless or uninformed
application of model selection methods.

We present our results in three different time series machine learning application areas:
resistance spot welding, exercise energy expenditure estimation and cognitive load modeling.
Based on our findings in these studies, we draw general guidelines on which points to consider
when starting to solve a new machine learning problem from the point of view of data
characteristics, amount of data, computational resources and possible time series nature of the
problem. We also discuss how the practical aspects and requirements set by the environment
where the final model will be implemented affect the choice of algorithms to use.

Keywords: machine learning, model selection, real-world applications, time series data





Ferreira, Eija, Aikasarjatiedon mallinnus ja mallinvalinta koneoppimis-
sovelluksissa. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta,
Tietotekniikan osasto; Infotech Oulu
Acta Univ. Oul. C 542, 2015
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Mallinvalinta on oleellinen osa minkä tahansa käytännön mallinnusongelman ratkaisua. Koska
mallinnettavan ilmiön toiminnan taustalla olevaa todellista mallia ei voida tietää, on mallinvalin-
nan tarkoituksena valita malliehdokkaiden joukosta sitä lähimpänä oleva malli.

Tässä väitöskirjassa käsitellään mallinvalintaa aikasarjamuotoista dataa sisältävissä sovelluk-
sissa neljän koneoppimisprosessissa yleisesti noudatetun askeleen kautta: aineiston esikäsittely,
algoritmin valinta, piirteiden valinta ja validointi. Väitöskirjassa tutkitaan, kuinka käytettävissä
olevan aineiston ominaisuudet ja määrä tulisi ottaa huomioon algoritmin valinnassa, ja kuinka
aineisto tulisi jakaa mallin opetusta, testausta ja validointia varten mallin yleistettävyyden ja
tulevan suorituskyvyn optimoimiseksi. Myös erityisiä rajoitteita ja vaatimuksia tavanomaisten
koneoppimismenetelmien soveltamiselle aikasarjadataan käsitellään. Työn tavoitteena on erityi-
sesti tuoda esille mallin ylioppimiseen ja ylivalintaan liittyviä ongelmia, jotka voivat seurata
mallinvalin- tamenetelmien huolimattomasta tai osaamattomasta käytöstä.

Työn käytännön tulokset perustuvat koneoppimismenetelmien soveltamiseen aikasar- jada-
tan mallinnukseen kolmella eri tutkimusalueella: pistehitsaus, fyysisen harjoittelun aikasen ener-
giankulutuksen arviointi sekä kognitiivisen kuormituksen mallintaminen. Väitöskirja tarjoaa näi-
hin tuloksiin pohjautuen yleisiä suuntaviivoja, joita voidaan käyttää apuna lähdettäessä ratkaise-
maan uutta koneoppimisongelmaa erityisesti aineiston ominaisuuksien ja määrän, laskennallis-
ten resurssien sekä ongelman mahdollisen aikasar- jaluonteen näkökulmasta. Työssä pohditaan
myös mallin lopullisen toimintaympäristön asettamien käytännön näkökohtien ja rajoitteiden
vaikutusta algoritmin valintaan.

Asiasanat: aikasarjadata, koneoppiminen, käytännön sovellukset, mallinvalinta
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Symbols and abbreviations

Mathematical notations

β p-dimensional vector of regression coefficients

c j Class j

ε N-dimensional vector of random errors

g(x) Classification rule

k Number of nearest neighbors

λ j jth eigenvalue

m Number of classes

N Sample size

n Number of features

p Dimension of feature space

P(c j) A priori probability of class c j

P(c j | x) A posteriori probability of class c j

p(x) Probability density function

p(x | c j) Class-conditional probability density function

u j jth eigenvector

x Input vector

X (N× p)-dimensional matrix of explanatory variables

xi Input variable

y Response variable

Y N-dimensional vector of responses

Abbreviations

BR Breathing rate

ECG Electrocardiography

ECT Elementary cognitive task

EE Energy expenditure

EEG Electroencephalography

EMG Electromyography

EOG Electrooculography
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FA Finding A’s test

GC Gestalt completion test

GLVQ Generalized learning vector quantization

GSR Galvanic skin response

HP Hidden pattern test

HR Heart rate

HRV Heart rate variability

HWH Harms+Wende GmbH & Co.KG

IQR Interquartile range

kNN k-nearest neighbors classifier

LDA Linear discriminant analysis

LVQ Learning vector quantization

MAD Median absolute deviation

MAFD Mean of absolute values of first differences

MASD Mean of absolute values of second differences

MD Mahalanobis discrimination

MET Metabolic equivalent

MSE Mean squared error

nBest n best features selection

NB Naïve Bayes classifier

NC Number comparison test

OLVQ Optimized learning rate learning vector quantization

PCA Principal component analysis

pNN20 Relative occurrence of successive R-R differences exceeding 20ms

pNN50 Relative occurrence of successive R-R differences exceeding 50ms

PT Pursuit test

QDA Quadratic discriminant analysis

R-R Heartbeat R wave to R wave interval

RMSSD Root mean square of successive differences of R-R intervals

RSW Resistance spot welding

SBFS Sequential backward floating selection

SBS Sequential backward selection

SBT Stanzbiegetechnik GES.M.B.H.

SCR Skin conductance response

SDNN Standard deviation of R-R intervals
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SFFS Sequential forward floating selection

SFS Sequential forward selection

SLVQ Soft learning vector quantization

SOM Self-organizing map

SX Scattered X’s test
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1 Introduction

Essentially, all models are wrong, but some are useful.

– George E. P. Box, 1987

These famous words from statistician George E. P. Box summarize the essence of model
selection. Since it is in practice impossible to know the true model behind any real-world
process, the goal of model selection is to find the one that provides the most useful
approximation.

The goal of modeling is to derive new information based on the data available, to
describe the data by summarizing it in some appropriate way, or to make predictions
about future data values (Hand et al. 2001). Models are used across the fields of science
ranging from computer science to physics, and economics to engineering. The principal
idea of model selection is to estimate the performance of different model candidates in
order to choose the best model achievable (Hastie et al. 2009). The improved model
performance achieved with model selection often brings along more reliable functioning
of the model, better predictions about future outcomes of the process, financial savings
or increased safety in safety-critical applications.

In this thesis, we will discuss model selection in the context of time series data. A
time series is a sequence of observations that are measured at specified times, typically at
uniform intervals. Even though the phenomena being measured usually are continuous
by nature, the measurements need to be made at discrete time steps for representation
in computer memory. The measurements at each time can be multivariate. Because
of the unique structure, and especially the high correlation between the subsequent
observations of a time series, caution needs to be taken when applying traditional
modeling algorithms to time series data.

We will discuss model selection in the field of machine learning. There are, however,
three interlinked research areas where our results equally apply: machine learning,
pattern recognition and data mining. Machine learning is concerned with the question
of how to construct computer algorithms that automatically improve through experience
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(Mitchell 1997). Bishop (2006) defines pattern recognition as follows: "The field of
pattern recognition is concerned with the automatic discovery of regularities in data
through the use of computer algorithms and with the use of these regularities to take
actions such as classifying the data into different categories." It is difficult to tell the
difference between pattern recognition and machine learning since the fields are closely
related and use similar methods. This is explained by the fact that these activities are
in fact two facets of a field that is the product of two different disciplines. Pattern
recognition has its origins in engineering, while machine learning grew out of computer
science (Bishop 2006).

Data mining is also closely related to the aforementioned fields. Hand et al. (2001)
define it as follows: "Data mining is the analysis of (often large) observational data
sets to find unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner." Jain et al. (2000) point out that even
though it is often difficult to teach a machine to solve a pattern recognition problem, the
solution may be trivial to the human eye. In data mining, however, the pattern is often
impossible for a human to perceive, since it is identified in millions of patterns. In this
case, the computational implementation of the problem is also more demanding. In the
following, we will consistently use the term machine learning even if the methods or
considerations discussed were originally presented in the context of any of the other two
disciplines.

1.1 Objectives and scope

This thesis aims to discuss aspects of the model selection process that should be
considered when solving a machine learning problem in general, and when working
with time series data in particular. We cover questions including selection of the model
type and the feature selection strategy, taking into consideration the characteristics of
the dataset at hand. We discuss the division of the dataset for training and testing the
models, with additional considerations for modeling temporally dependent time series
data. We also consider how the temporal dependency of time series data affects the
selection of model type. From our experience in model selection within three different
machine learning application areas, all involving time series data, we draw general
guidelines, also supported by literature, which can be taken as a starting point when
tackling a new machine learning problem. We emphasize the special caution that needs
to be addressed when working with time series data.

20



In summary, we will consider the following research questions in this thesis:

1. How should the data characteristics and the amount of data available guide the
selection of model type and the model selection strategy?

2. How should the data set available be used for model training, selection and validation
to optimize the model generalizability and performance on new data?

3. What are the special considerations to take into account when applying machine
learning algorithms to time series data?

1.2 Contributions of the thesis

The scientific contributions of the individual publications in this compilation lie in their
individual application areas: in how these real-world modeling problems are solved
using machine learning methods. The contribution of this thesis, however, comprises
of an understanding of how to select the methods based on the nature of the problem
at hand and the data set available. While these insights are not novel individually,
combined they give guidance and help in avoiding errors that are commonly made
during the model selection process (Reunanen 2003, Grimes et al. 2008).

Publications I and II present a method to classify resistance spot welding (RSW)
processes to be able to use information from previous welding batches when setting
up a new batch with similar characteristics. In Publication I, we searched for suitable
features calculated from welding signals to present their characteristics and looked for a
classifier that would give the best results in classifying welding processes. We compared
both parametric and nonparametric methods to classify this data set. The thesis author’s
contributions in this publication included data analysis and interpretation of the results.

In Publication II, we further explored the feature space to eliminate features with
less classification-relevant information to speed up the classification and to improve
the classification accuracy. We compared a number of search strategies for the feature
selection problem. In this publication, the author’s contributions included planning and
implementing the data analysis as well as interpreting the results.

Publication III presets our results on human exercise energy expenditure (EE)
estimation, based on measurements from a wrist-worn acceleration sensor. We introduced
a method of modeling exercise EE using the linear mixed model that takes into account
the temporal dependencies in the data. The author’s contributions included selecting the
model type to be used, implementing the models and interpreting the results, while the
study was designed together with the other authors.
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The last two publications (Publications IV and V) discuss modeling the human
cognitive load based on psycho-physiological measurements. In Publication IV, we
collected data from a range of psycho-physiological sensors from young adults and
extracted a large number of features from the measured signals to explore which ones
are useful for assessing cognitive load. The thesis author’s contributions consisted of
pre-processing the data, implementing the models and analyzing the results, while the
study was designed and the data collected mainly by the other authors.

In Publication V, we further explored if we could build cognitive load models also
for older adults, and if it would be the same psycho-physiological measurements that are
indicative of cognitive load for older adults as for young adults. The thesis author was
mainly responsible for planning and running the study with her contributions including
data collection and pre-processing, modeling and interpretation of the results.

1.3 Outline of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce the theoretical
background and review the related literature for our work. We start by defining the
machine learning process commonly followed when solving a modeling problem, and
then focus on four individual steps of the process: data preparation, selection of the
model type, feature selection and validation. We finish the chapter with a discussion of
the special requirements set by the nature of time series data. In Chapter 3, we introduce
the results of the contributing publications and summarize their contributions to this
thesis. In Chapter 4, we discuss the contributions of our work as a whole from both
a theoretical and a practical point of view. Chapter 5 wraps up the thesis with final
conclusions.
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2 Theoretical foundation

This chapter introduces the theoretical background for our work, as well as the methods
we used. Section 2.1 describes the modeling process commonly used when solving
a machine learning problem. Section 2.2 presents the data preparation methods, and
Section 2.3 the models we used. Section 2.4 focuses on algorithms and procedures
we applied for model selection. All of these methods are commonly used in machine
learning applications, but they are also suitable for modeling time series data as long as
they are applied with some caution. These considerations are brought forth in Section
2.5. We will discuss the choice of methods for this work and their implications for our
results later in Chapter 4.

2.1 Modeling process

The sequence of steps commonly followed when solving a machine learning problem is
known as the machine learning process (Marsland 2014) or equivalently the data mining

process (Kantardzic 2011). It is "the process by which machine learning algorithms can
be selected, applied, and evaluated for the problem" (Marsland 2014). The terms used in
the literature for the different steps vary somewhat, while the tasks of the process remain
mostly the same. Marsland (2014) defines the steps of the highly iterative process as
follows:

1. Data collection and preparation
2. Feature selection
3. Algorithm choice
4. Parameter and model selection
5. Training
6. Evaluation

Hand et al. (2001) mention three similar steps: selection of the model structure, the
criterion function and the optimization strategy. They emphasize the importance of
tailoring each of the algorithms used for the specific application at hand rather than
using a commonly used combination.

In this thesis, we will concentrate especially on the tasks of data preparation,
selection of the model type, feature selection and validation. We use the term model
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selection with a broader meaning to cover all the aspects of model structure, parameter
and feature selection.

2.2 Data preparation

According to (Pyle 1999), the purpose of data preparation is to obtain a data set that
produces better models faster than could be done with unprepared data. This should be
done in a way that does not disturb the natural order of the data but best enhances the
data for the particular task at hand. In this work, we have applied outlier detection,
feature extraction as well as two types of data preparation techniques that rescale the
range of a variable: data normalization and data standardization.

2.2.1 Outlier detection and missing values

An outlier is defined as a very low frequency occurrence of a value of a variable that is
located far away from the mean of the variable (Pyle 1999). Outliers are often caused by
measurement error due to device malfunction or an error in reading the data. If the
plausible range of measurement values is known, values falling outside this range can be
pointed out. If, however, the true range of the values is not known, a threshold for an
acceptable distance from the mean can be used, usually proportional to the standard
deviation of the distribution of the variable. For a normally distributed random variable,
95% of the data points lie within two standard deviations from the mean, and 99% of the
values are located within three standard deviations (Theodoridis & Koutroumbas 2008).

Most modeling methods are sensitive to outliers in data. Two approaches for
handling outliers are commonly used. If the number of outliers is very small, they are
often discarded. However, many modeling methods are unable to utilize observations
where some of the variable values are missing. Therefore, the whole multi-dimensional
observation needs to be discarded. This reduces the amount of information available for
modeling and can have a negative influence on the model accuracy. The same applies to
missing values commonly occurring in many real-world data sets where data values
might not be recorded for all variables.

Another commonly used approach is to replace the outlier or a missing value by an
estimate of its true value. Typically, the average value is used. Although this approach
introduces additional noise to the data, if the proportion of missing values is small, the
effect on the modeling results might be tolerable.
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2.2.2 Feature extraction

Feature extraction is one of the most important preprocessing steps of the machine
learning process, having a major influence on the success of any subsequent modeling
effort (Guyon & Elisseeff 2006). Feature extraction means creating new features as
transformations or combinations of the original sensed data. Thus, feature extraction
methods determine an appropriate linear or nonlinear subspace of the original data
space (Jain et al. 2000). Features can be derived from either a single variable or a
combination of variables in the raw data with the purpose of presenting the data in
a form that best exposes its information content to the machine learning algorithm
used. Feature extraction can also reduce the dimensionality or sensibility to noise of the
original data set (Pyle 1999).

Even though the word variable is usually used in the context of statistical models
and the term feature is commonly used for the inputs of a machine learning algorithm,
we will use these terms somewhat interchangeably, depending on the context, in the
following.

2.2.3 Normalization

Normalizing the data simply means scaling the data values to the range [0,1]. An easy
way to do this is to use the linear scaling transform

xnN =
xn−min(x1 . . .xN)

max(x1 . . .xN)−min(x1 . . .xN)
, (1)

where x1 . . .xN are all the values in the sample, xn is the original instance value, and xnN

is the normalized value (Pyle 1999). In a data set with several variables, each variable
is normalized separately, which equalizes the magnitude of change in each of them.
Normalization is a necessity for some modeling techniques and a convenience for others.
For example, for techniques using the Euclidean distance, all variables should have the
same scale for a fair comparison between them.

However, two kinds of problems might arise from normalization. First of all, the
sample minimum and maximum values used in normalizing the data might be less
extreme than the population minimum and maximum. Therefore, if these local extremes
are used for normalizing future values, values outside the sample range will fall into a
range wider than that intended [0,1]. The second type of problems arises if there are
outliers in the sample. In this case, future values will be scaled to a range narrower
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than [0,1], and the equalization of the magnitudes of change in the variables will be
compromised.

In this work, we handled the first problem by either having a relatively large data
set that was assumed to be fairly well representative of the whole population, or by
expecting that when the model is applied in the future, for example for a participant not
in our study, a new training set will be collected and the normalization will be done
based on that. The second problem was prevented through either replacing values falling
outside a known range of possible measurement values by the sample mean, through
excluding a small proportion of observations at the extremes of the sample distribution,
or by using the 5th and 95th percentiles of the sample values instead of the minimum
and maximum in linear scaling so that these percentiles would meet the range [0,1].

In spite of these shortcomings, normalization has the advantage that it preserves the
original distribution of the variable.

2.2.4 Standardization

In standardization, each variable is transformed to have zero mean and unit variance.
This can be done using estimates of mean and standard deviation calculated from the
sample

xnS =
xn− x̄

σ
, (2)

where xn is the original instance value, x̄ is the sample mean, σ is the sample standard
deviation, and xnS is the standardized value.

Standardization is commonly used, especially when applying regression models
(see Section 2.3.2) to the data, to improve the interpretability of explanatory variables
and their relative impacts on the response variable, in particular. After standardization,
the units of the regression coefficients are the same and they can be interpreted as the
amount of change in the response variable when the explanatory variable increases by
one standard deviation. However, the standardized coefficients depend on the sample
variation. In spite of this, standardization can be useful in practice, especially as an
automatic starting point to make coefficients roughly comparable (Gelman & Pardoe
2007). Standardization is also a linear transformation and it leaves the relative distances
between observations intact.

Variables can also be centered around zero by subtracting the mean without dividing
by standard deviation. Then the intercept term of a regression model is interpreted as
the expected value of the response variable when the explanatory variables are set to
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their means. Otherwise, the intercept would be interpreted as the expected value of
the response variable when the explanatory variables are set to 0, which may not be a
realistic situation in practice.

2.3 Modeling

In this work, we have applied predictive models that aim to predict future values of
a response variable based on input variables instead of descriptive models that help
to understand the underlying process that generated the data. There are two kinds
of predictive models depending on whether the response variable is categorical or
real-valued. For a categorical response the modeling task is called classification whereas
for modeling a real-valued response the term regression is used (Hand et al. 2001).

2.3.1 Classification

In classification, each observation, consisting of a p-dimensional vector x = {x1, . . . ,xp}
of input variables (also called features), is classified into one of m classes c1 . . .cm. Clas-
sification methods can be divided into two categories, parametric and non-parametric

classifiers. Parametric methods assume the data to originate from a certain distribution
whose functional form is known. This simplifies the estimation and interpretation of
models, but the resulting models may have relatively high bias because real-world
data may not follow the assumed distribution (Hand et al. 2001). In addition, all
of the commonly used parametric densities are unimodal, whereas many practical
modeling tasks require multimodal densities (Duda et al. 2001). In non-parametric
classification, on the other hand, few assumptions are made about the form of the
underlying distribution so these methods can be used with arbitrary distributions.

In practice, it is often preferable to use simple classification rules if the data set
available is small, to avoid over-fitting of the model to the data, whereas complex
classifiers can be used more efficiently when a large data set is available (Raudys 2006).
The same principle applies to regression models (Hand et al. 2001, Bishop 2006) which
we will discuss later in the next section.
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Parametric classifiers

The parametric methods introduced in the following, the quadratic discriminant analysis,
linear discriminant analysis, Mahalanobis discrimination and Naïve Bayes classifier,
model the class-conditional densities parametrically as multivariate normals. They are
all applications of the Bayes theorem and classify an observation in the most probable
of the classes. Bayes theorem states that the a posteriori probability of the class
c j, P(c j | x), j = 1 . . .m, can be estimated based on the class-conditional probability
densities p(x | c j) and the class a priori probabilities P(c j)

P(c j | x) =
p(x | c j)P(c j)

p(x)
, (3)

where p(x) is the probability density function of x, which can be expressed as p(x) =
m
∑
j=1

p(x | c j)P(c j) (Theodoridis & Koutroumbas 2008). The density p(x) is the same for

all classes and it does not affect the classification decision.
The multivariate normal class-conditional densities have the form

p(x | c j) =
1

(2π)p/2|Σ j|1/2 exp{−1
2
(x−µ j)

T
Σ
−1
j (x−µ j)}, (4)

where µ j is the mean and Σ j is a p×p-covariance matrix of the class c j.

Quadratic discriminant analysis
By taking the natural logarithm of the numerator in Equation 3, we get the quadratic
discriminant analysis (QDA) classification rule (Holmström et al. 1997)

gQDA(x) = argmax
c j

[
−1

2
ln |Σ j|−

1
2
(x−µ j)

T
Σ
−1
j (x−µ j)+ lnP(c j)

]
. (5)

The method is computationally relatively light, so it scales well to big data sets. However,
it is not particularly reliable for large numbers of variables, as the dependence on the
number of variables is quadratic (Hand et al. 2001).

Linear discriminant analysis
In linear discriminant analysis (LDA), the different classes are again assumed to have
different mean vectors, but the covariances are now assumed to be equal. The LDA rule
has the form (Holmström et al. 1997)

gLDA(x) = argmax
c j

[
µ

T
j Σ
−1(x− 1

2
µ j)+P(c j)

]
. (6)
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Even though QDA will likely fit the data better, the advantage of LDA is that
it has fewer parameters to estimate. Both of these methods can often provide good
classification results even if the normality assumption does not hold. However, for these
methods to work, the number of observations in each class needs to exceed the number
of input variables. Otherwise the covariance estimates are not positive definite and so
cannot be inverted.

Mahalanobis discrimination
Mahalanobis discrimination (MD) is similar to the previous method, with the exception
that the a priori probabilities of the classes are assumed to be identical, leading to the
rule

gMD(x) = argmin
c j

[
(x−µ j)

T
Σ
−1(x−µ j)

]
, (7)

where the quantity to be minimized is called the Mahalanobis distance (Theodoridis &
Koutroumbas 2008).

Naïve Bayes classifier
The Naïve Bayes classifier (NB) is based on the simplest assumption that the input
variables xi are conditionally independent given the class c j. The classification rule is
now reduced to (Mitchell 1997)

gNB(x) = argmin
c j

[
P(c j)

p

∏
i=1

p(xi | c j)
]
. (8)

In spite of the strong independence assumption, which is rarely true in real-world
applications, the Naïve Bayes classifier is often quite effective. It reduces the p-
dimensional multivariate problem to p univariate estimation problems where only
the variances of the variables for each class need to be determined and not the entire
covariance matrix. This is particularly helpful when the dimensionality of the input
space is high. Since relatively few parameters need to be estimated, the Naïve Bayes
classifier only requires a small amount of training data compared to the above methods
with more relaxed assumptions. Even though the conditional independence assumption
may lead to rather poor estimations of the class-conditional densities, the model may
still perform well in practice because the decision boundaries can be insensitive to some
of the details in the class-conditional densities (Bishop 2006). In addition, the decision
surfaces produced by the Naïve Bayes classifier can in fact have complicated non-linear
shapes that can fit quite complicated distributions (Hand et al. 2001). Because of the
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effectiveness, simplicity and robustness the Naïve Bayes classifier was selected as one
of the 10 most influential data mining methods in 2008 (Wu et al. 2008).

Non-parametric classifiers

The non-parametric methods used in this work, the k-nearest neighbors classifier and the
learning vector quantization, are based on modeling the classes using prototypes. In
the case of learning vector quantization, the classification is performed according to
the shortest distance to a prototype and in the case of k-nearest neighbors classifier
according to the shortest distances to k prototypes, respectively.

k -nearest neighbors classifier
The prototypes of the k-nearest neighbors classifier (kNN) consist simply of the training
vectors. All observations are assumed to correspond to points in the p-dimensional
feature space and a new observation is classified to the class most frequently represented
among its k nearest neighbors in the training set. Commonly, the Euclidean distance is
used to define the nearest samples (Mitchell 1997). The value of the parameter k is
usually chosen to be odd to avoid ties. In the case k = 1 the new observation is simply
assigned to the same class as the nearest point from the training set.

The kNN method can also be seen as a way to estimate the a posteriori probabilities
locally by

P(c j | x) =
p(x | c j)P(c j)

p(x)
=

k j

k
, (9)

where k j is the number of samples originating from class c j (Bishop 2006). In fact, it
has been shown that as the number of training samples N approaches infinity, the error
rate of the 1NN classifier is bounded above by twice the minimum achievable error rate
of the optimal Bayes classifier (derived from Equation 3) that assumes the true class
distributions to be known (Cover & Hart 1967). The asymptotic performance of kNN
is even better since, as k→ ∞, the kNN tends to the Bayes classifier (Theodoridis &
Koutroumbas 2008).

Unfortunately, these results do not hold in the finite sample case. In practice, we
would like to use a large value for k in order to obtain a reliable estimate, since a small
value would produce a classifier too sensitive to single data points. On the other hand,
increasing k means that all the neighbors are not necessarily very close to the observation
to be classified. The problem arises especially when the dimensionality p of the feature
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space is high: as p increases, while the number of samples N remains the same, the data
becomes more and more sparse. This phenomenon is known as the so-called curse

of dimensionality (Theodoridis & Koutroumbas 2008). As a compromise, we should
choose a k that is a small fraction of the number of training samples N (Duda et al.

2001).
Another drawback associated with the kNN classifier is its computational complexity.

As making a single classification decision requires visiting each of the training set
samples to calculate the distance to them, the method becomes impractical for large data
sets especially if the dimensionality is high. In addition, the entire training set needs to
be stored in the memory.

Despite these problems, the kNN method is easy to implement, does not require
training and may perform surprisingly well in some applications. Like the other simple
classification method presented above, Naïve Bayes, kNN was also among the 10 most
influential data mining algorithms selected in 2008 (Wu et al. 2008).

Learning vector quantization
In learning vector quantization (LVQ) (Kohonen et al. 1996), the prototypes, called
codebook vectors, are composed of a more compact set of vectors based on the training
samples. Once the number of codebook vectors has been decided on, they can be
initialized, for example, by sampling from the set of training vectors correctly classified
by the kNN method, or by using the self-organizing map (SOM) algorithm (Kohonen
et al. 1996). Then, the locations of the codebook vectors are updated iteratively using
each training sample in turn. The principle of LVQ is that the training samples attract
codebook vectors of their own class and reject prototypes of other classes.

The codebook vectors are used in classification according to the 1NN rule. An
observation x is classified to the same class as the closest codebook vector mi in the
sense of Euclidean distance. The index of the nearest prototype can be defined as

c = argmin
i
{||x−mi||}. (10)

The basic LVQ algorithm (LVQ1) is defined by the following algorithm, where x(t)

is an input vector and mi(t) represents sequential values of the mi at discrete time steps
t = 0,1,2, . . . ,
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mc(t +1) = mc(t)+α(t)[x(t)−mc(t)],

if x and mc belong to the same class,

mc(t +1) = mc(t)−α(t)[x(t)−mc(t)],

if x and mc belong to different classes,

mi(t +1) = mi(t) for i 6= c.

(11)

The learning rate parameter α(t), 0 < α(t) < 1, is usually made to decrease mono-
tonically in time. The class borders defined by the LVQ algorithm are piecewise
linear.

There are several variations of the LVQ algorithm that differ in the way the prototype
vectors are updated. In the optimized learning rate LVQ1 (OLVQ1), the learning rate
parameter αi(t) is chosen individually for each codebook vector mi. In the LVQ3
algorithm, the two closest codebook vectors are updated simultaneously. Two variants of
the LVQ algorithm based on cost functions, the generalized learning vector quantization

(GLVQ) (Sato & Yamada 1996) and soft learning vector quantization (SLVQ) (Seo &
Obermayer 2003) improve the classification ability. GLVQ satisfies the convergence
condition of the rule and SLVQ extends the LVQ family to different distance measures.

Compared with the other prototype classifier introduced above, kNN, the limitation
of LVQ is the large number of steps needed. Where in kNN there is only one parameter
value to decide on, i.e. the number of nearest neighbors k, and no training is needed, in
LVQ the classification result and the time needed for learning depend on several factors.
First, the user needs to fix the number of codebook vectors and choose a method to
initialize them. Then, the specific LVQ algorithms to be used, the value of the learning
rate and a stopping criterion for learning need to be decided on (Kohonen et al. 1996).

The advantage of LVQ over kNN is that not the whole training set needs to be stored
for reference, but a smaller number of codebook vectors. This is especially the case
since good approximations of the class-conditional densities p(x | c j) are not needed
everywhere, but only at the class borders (Kohonen et al. 1996).

2.3.2 Regression

The goal of regression is to find a functional description for data that can be used to
predict values of the response variable for new input. The simplest and most popular
form of regression is linear regression, in which the function is linear in the input
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variables (Hand et al. 2001). The linear regression model predicts values of the response
variable y as a linear combination of the explanatory variables xi,1≤ i≤ p. This can be
presented for all the observations simultaneously with the matrix form

Y = Xβ + ε, (12)

where Y is the N-dimensional vector of responses, X is a (N× p)-dimensional matrix of
the explanatory variables, β is the vector of regression coefficients to be estimated and ε

is a random error. The errors for different observations are assumed to be independent
and identically distributed, and follow the normal distribution, denoted ε

i.i.d.∼ N(0,σ2I).
The first column of X contains a vector of 1s to include an intercept term in the model.
Commonly, the coefficients of the model are estimated by minimizing the sum of squared
errors, a procedure known as the least squares method, that under the assumption
of independent and identically distributed observations coincides with the maximum

likelihood method (Borovkov 1999).
Hand et al. (2001) explain the popularity of this simple method because it is very

easy to both compute and understand. It also often performs well even when the true
relationship between the input and response variables is not linear. On the other hand,
they point out that estimation of the coefficients becomes difficult if the sample size N is
small, or if the input variables are exactly or almost linearly dependent.

Linear mixed model
The linear mixed model is particularly suited for modeling data originating from different
statistical units, such as test subjects, with repeated measurements. Unlike the linear
regression model, which assumes that observations are independent and identically
distributed, the linear mixed model assumes two sources of variation: subject-specific

and population-specific. The vector of repeated measurements of each subject is assumed
to follow a linear regression model where some of the regression parameters are common
for all the subjects, and others differ between subjects.

In general, a linear mixed model has the form (Verbeke & Molenberghs 2000)

Ys = Xsβ +Zsbs + εs,

bs
i.i.d.∼ N(0,D),

εs
i.i.d.∼ N(0,Σs), 1≤ s≤ S,

(13)

where S is the number of subjects, Ys is the Ns-dimensional response vector for subject s,
Xs and Zs are (Ns× p) and (Ns×q) dimensional fixed matrices of explanatory variables,
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β is a p-dimensional unknown fixed-effects parameter vector, bs is the q-dimensional
vector of random effects, and ε is an Ns-dimensional vector containing the error
components. D is a general symmetric (q×q) covariance matrix and Σs is a (Ns×Ns)

covariance matrix where the set of unknown parameters in Σs do not depend upon s.
If the only subject-specific term in the model is set to be the intercept and the

regression coefficients are otherwise the same for all subjects, we get the random-

intercepts model. For more information on the linear mixed model, see (Verbeke &
Molenberghs 2000).

2.4 Model selection

In this work, we have used methods relating to two different aspects of model selection:
validation and dimensionality reduction, that we will discuss in this section.

As the goal of model selection is to find a model that best describes the data or
predicts future values as accurately as possible, the natural first step is to choose a
criterion or score function to compare model candidates. In classification, an obvious
choice is the misclassification rate. For regression models, the log-likelihood function is
commonly used (Hand et al. 2001).

2.4.1 Validation

To ensure the best predictive performance of a model on new data, and to make sure no
over-fitting has taken place, a data set separate of the training set, called validation

set, needs to be used to estimate the model generalization performance. The simplest
approach for this is to split the available data into two parts and to use the first one
for adjusting the model parameters and the second to estimate the generalization error.
Generally, a smaller portion of the data is used for validation than for training (Duda
et al. 2001). The same approach can be used to compare a range of different models to
find the most appropriate one for a given application.

Over-fitting in model selection is likely to be most severe when the sample of data is
small and the collection of models to choose from is relatively large (Cawley & Talbot
2010). If the model design is iterated several times, or if the set of candidate models
from which the final model is selected is large, it is necessary to keep aside a third test

set on which the performance of the final selected model is evaluated. Otherwise, if the
model performing best on the validation set is selected, the performance estimate of the
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final model will be optimistically biased towards this set (Hand et al. 2001, Bishop
2006).

Many times, however, the data set size is so limited that we wish to use as much
of it as possible for training the model. In this case, a generalization of the above
method, called M-fold cross-validation, can be adopted. The training set is divided into
M sets (usually of equal size), and the model is trained M times, each time holding out a
different set for validation. The overall performance of the model is then calculated as
an average of these M errors (Duda et al. 2001). If the number of hold out sets M is
selected to be equal to the number of observations in the data set N, the method is called
leave-one-out cross-validation.

One drawback of the cross-validation approach is that the number of training runs
needed is increased by a factor of M (Bishop 2006). Another concern is that, for small
data sets, because of variation across the data sets, the variance of the cross-validation
error can be unreasonably high, and thereby needs to be monitored in practice (Hand
et al. 2001).

In the case of cross-validation, as well, it is important to use a separate test set
or holdout sets generated by an external loop of cross-validation that were never
used during the model selection process (Moore & Lee 1994, Kohavi & Sommerfield
1995, Reunanen 2003). Otherwise, an intensive use of cross validation may produce a
deceptively good lowest-error model, in a manner similar to over-fitting of data (Schaffer
1993, Moore & Lee 1994). Cawley & Talbot (2010) recommend to always use multiple
partitions of the data to form training, validation and test sets, as the sampling of data
for a single partition might arbitrarily favor one model over another.

In spite of the recurrent mention of the importance of a separate test set in evaluating
the selected model, a common mistake, even among experienced machine learning
researchers, pointed out by Kohavi & Sommerfield (1995), Reunanen (2003), Fiebrink
& Fujinaga (2006), and Smialowski et al. (2010), is to present the training set or
cross-validation estimate as the final performance estimate of a model, thus achieving
overly optimistic results.

2.4.2 Dimensionality reduction

As we have seen earlier in this chapter, many of the presented methods suffer from
high dimensionality. In addition to model accuracy and robustness, a high number
of features also negatively influences the computational time of the algorithms, and
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possibly increases the costs of data collection and storage. Models with fewer features
are often also easier to interpret. There are two approaches to dimensionality reduction
that we shall discuss in this section: feature subset selection, and transforming the

feature space.

Feature selection

The goal of feature selection is to select the best subset of the original feature set.
The feature selection process can be started by inspecting each feature individually to
discard features that do not carry enough information related to the current modeling
problem. However, since there may be dependencies between the features, selecting the
individually best features may not lead to the best possible result. With a small number
of features it may be possible to search through all possible feature combinations. In
practice, this is rarely the case, and we need a more sophisticated search strategy to go
through the space of possible feature sets.

Sequential selection methods
The sequential forward selection (SFS) (Whitney 1971) is a simple bottom-up search
procedure in which one feature at a time is added to the current feature set. At each
stage, the feature to be included is selected from the set of remaining available features,
so that the new extended feature set yields a maximum value of the criterion function
used (Devijver & Kittler 1982). The sequential backward selection (SBS) method is the
top-down counterpart of the SFS algorithm. The advantage of these algorithms is their
easy application and relatively short calculation time.

Sequential floating selection methods
The floating forward and backward feature selection methods, sequential forward

floating selection (SFFS) and sequential backward floating selection (SBFS), introduced
by Pudil et al. (1994), are based on the plus l - take away r method (Stearns 1976), in
which the feature set is alternately enlarged by l features using the SFS method, and
reduced by discarding r features applying the SBS algorithm. In the floating selection
methods, however, the number of forward and backward steps is dynamically controlled
instead of being fixed in advance. The conditional inclusion and exclusion of features is
controlled by the value of the criterion function. In the bottom-up algorithm, SFFS,
after each forward step, a number of backward steps are applied as long as the resulting
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subsets yield better values for the criterion function than the previously evaluated ones
of the same dimension. In the top-down counterpart, SBFS, an exclusion of a feature
is followed by a series of successive conditional inclusions if an improvement to the
previous sets can be made. The feature to be included into the current feature set or
excluded from it is always the one that improves the set most, or degrades the value of
the criterion function least (Pudil et al. 1994).

Compared to the basic sequential feature selection methods, the main advantage of
the floating methods is that the resulting feature sets of different dimensions are not
necessarily nested, as in the case of the SFS and SBS methods. The floating methods
are able to correct erroneous decisions made at the previous steps of the algorithm.
Therefore, these methods provide a close to optimal solution to the problem of feature
subset selection. Because of this characteristic, they are also applicable to problems
involving non-monotonic feature selection criterion functions (Pudil et al. 1994). In
addition, even though the floating feature selection methods are only nearly optimal,
they are much faster than the optimal but computationally exhaustive branch and bound

algorithm (Narendra & Fukunaga 1977).
After the discussion of over-fitting in feature selection by Wolpert (1992), Schaffer

(1993) and Kohavi & Sommerfield (1995), Ambroise & McLachlan (2002) and Reunanen
(2003) pointed out a methodological flaw in the comparisons claiming to show the
superiority of the floating methods compared to the basic sequential methods (e.g. Kudo
& Sklansky (2000)). In many studies, the reported results were based on cross-validation
accuracy in the training set only where over-fitting might have happened and no separate
validation set was used. According to Reunanen’s (2003) results, the basic algorithms
may give equally good results in significantly less time, although the floating methods’
capability to avoid nesting of the subsets can in some cases be useful. Reunanen (2004)
even showed that, when evaluated properly, feature selection is often actually ineffective
at improving classification accuracy.

Nevertheless, the floating methods are still widely used and many researchers (e.g.
Peng et al. (2010)) consider them as one of the best alternatives for feature selection.
This, however, does not contradict with Reunanen’s (2003) findings as they did not
criticize the methods themselves, only the implementation of the studies aiming to show
their superiority.

n best features selection
The n best features selection method (nBest) simply means selection of the n individually

37



best features in the sense of maximizing the criterion function. It is the simplest
alternative for feature subset selection, but also the most unreliable since the features
selected may correlate with each other. However, the use of simple search algorithms
that are less prone to over-fitting might be justifiable in the case that very little data is
available (Reunanen 2003).

Feature over-selection

Later, Raudys (2006) showed that feature over-selection can decrease the performance
of a classifier, especially when the validation set used is very small or when a very large
number of feature subsets is considered. Consequently, the emphasis in feature selection
algorithm comparisons has recently shifted from searching for the most optimal feature
subset with respect to some criterion function to aiming at a feature subset with the best
generalization performance, i.e. the ability to perform well on previously unseen data.
For example, Saari et al. (2011) considered the generalizability and simplicity of the
obtained models as criteria for feature selection in classification of mood in music.

Cawley & Talbot (2010) also noted that if the difference in performance between
two feature selection algorithms is smaller than the variation in performance due to the
random sampling of the data, it is unlikely to be of practical significance. In that case, a
greater improvement in performance would be obtained by further data collection than
by selection of the optimal classifier.

Transforming the feature space

Another approach to dimensionality reduction is to transform the original feature set
onto a lower dimensional subspace. The basic idea is to transform the original p-
dimensional input vectors x = {x1, . . . ,xp} into p′-dimensional vectors z = {z1, . . . ,zp′},
where typically p′ is much smaller than p. The z variables are defined as functions of
the x variables, and the transformation is chosen in some sense to produce the best set of
p′ variables for the task at hand (Hand et al. 2001).

Principal component analysis
In principal component analysis (PCA) (Hotelling 1933) the original data is projected
onto a lower dimensional space, and the projection is chosen so as to maximize the
variance of the projected data. In practice, the transform is accomplished by projecting
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the original data linearly onto an orthogonal basis defined by the p′ eigenvectors
u1, . . . ,up′ of the data covariance matrix Σ corresponding to the p′ largest eigenvalues
λ1, . . . ,λp′ . Thus, the resulting features are mutually uncorrelated.

Since the eigenvalues are equal to the variances of the transformed features, the total
variance of the projected data can be calculated as ∑ j λ j, where λ j is the jth eigenvalue.
In addition, this projection minimizes the mean squared error (MSE) compared with any
other approximation of the original p-dimensional feature vector x by an p′-dimensional
vector (Pearson 1901).

The squared error of approximating the original data can be expressed as (Hand et al.

2001)
∑

p
j=p′+1 λ j

∑
p
l=1 λl

. (14)

Thus, one approach for choosing the number of principal components to be used is to
increase p′ until the squared error is smaller than some predefined threshold. Another
way is to plot the eigenvalues in descending order by their magnitude, to demonstrate
the amount of variance explained by each of them, and to choose the ones that have
the largest values. This is particularly helpful if there is a sudden fall towards zero
somewhere in the plot (Hand et al. 2001).

PCA is a powerful tool with excellent information packing properties. However, it
does not always lead to maximal class separability in the projected feature space since
the dimensionality reduction is not optimized with respect to this property (Theodoridis
& Koutroumbas 2008). It is also not invariant under rescalings of the original variables,
so the data is typically normalized before applying PCA if different variables are
measured in different units (Hand et al. 2001).

2.5 Special considerations on time series modeling

In this thesis, we have chosen to use the term time series data to emphasize the time-
dependent nature of the sensor data we used. Elsewhere, other terms, such as streaming

data or sequential data have been used in similar but not identical contexts. Data stream

mining is usually understood to be dealing with very high fluctuating data rates with
underlying distributions changing over time (Dietterich 2002). Sequential data, on the
other hand, is a broad concept also covering time series data, but also other types of
sequences not ordered by time stamps (Xing et al. 2010).

The general considerations and methods presented so far in this chapter apply mostly
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to time series data as well. However, the temporal dependency of time series data adds
some additional aspects to the modeling process, and sets some restrictions on the direct
application of the methods in practical time series machine learning problems.

Time series data is typically high-dimensional, and characterized by noise and trends
that are removed using preprocessing methods. In this work, we have used the Reinsch
algorithm (Reinsch 1967, 1971) and convolution with a Bartlett window (Prabhu 2013)
to smoothen, and differencing (Chatfield 2003) to remove trends.

The purpose of feature extraction is to compress the time series, keeping only the
important information. It can be based on descriptive statistics (Kugiumtzis & Tsimpiris
2010), time series analysis (e.g. auto-correlation, autoregressive models) (Chatfield
2003, Hyndman & Athanasopoulos 2014), or frequency domain features (e.g. discrete
wavelet transform, discrete Fourier transform, energy on frequency bands) (Agrawal
et al. 1993, Mörchen 2003, Gevins & Rémond 1987). Typically, features are calculated
on subsequent segments of time series observations, called windows. A special type
of feature, past observations (lags), is important for time series prediction models
(Chatfield 2003, Hyndman & Athanasopoulos 2014).

When time series data is collected from different statistical units (for example test
subjects), both the within-subject variation and the between-subject variation in the
data needs to be taken into consideration when selecting an appropriate model type.
We can expect the repeated responses from the same subject to be more similar than
the responses across different subjects (Fitzmaurice et al. 2011). This means that a
model describing variation in one subject’s data may not be generalizable to the whole
population, and on the other hand, a model fitted to the data from the entire population
of subjects may not explain individual variation in a single subject’s data. In the context
of linear regression, we have used a particular model suitable for this purpose, the linear
mixed model (discussed earlier in Section 2.3.2) in this work.

Also when dividing a data set for training, testing and validation, the temporal
dependency of time series data needs to be considered. If a data set collected during
one session is randomly divided into three parts, or random samples are held out for
cross-validation, one ends up training on data that is temporally fairly close, or even
adjacent to test data. Because the adjacent observations are not independent, this
produces significantly overestimated estimates of the model performance. In statistics,
this phenomenon is well-known (Hart & Wehrly 1986, Burman et al. 1994, Arlot
& Celisse 2010). According to Arlot & Celisse’s (2010) review of cross-validation
procedures for model selection, the most commonly used approach for applying cross-
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validation for dependent observations is to use a distance threshold from which the
observations are independent. This method, called modified cross-validation was
introduced by Chu & Marron (1991) and applied for nonparametric regression. In the
field of machine learning, the effect of dependent observations on validation performance
is less commonly acknowledged. In part of this work, we have used a block study
design adapted from the block cross-validation scheme (Grimes et al. 2008), where
entire contiguous sequences of observations are used for training, model selection and
validation. Even better would be to use distinct data sets collected on different occasions.
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3 Results

This chapter presents the main results of our case studies, where we used model
selection methods to optimize model performance. The findings of this thesis are
drawn from studies in three different application areas. Section 3.1 introduces our
study on improving the quality of resistance spot welding processes (Publications I and
II). Section 3.2 presents our results on human exercise energy expenditure estimation,
based on measurements from a wrist-worn acceleration sensor (Publication III), and
Section 3.3 discusses modeling the human cognitive load, based on psycho-physiological
measurements (Publications IV and V). Even though the scientific contributions of
the individual publications lie in their application areas, we can use these studies as
examples when considering different aspects of the modeling process. Section 3.4
summarizes the contributions of the publications from the point of view of improving
model performance, and the work is discussed as a whole in Chapter 4.

Table 1 summarizes the data characteristics and model requirements of the three
case studies with the type of sensor data available, desired model outcome, type of
modeling task (classification / regression), as well as the temporal and computational
requirements of the model.

Table 1. Data characteristics and model requirements of the three case studies.
Study Data Model

outcome
Type Temporal

requirements
Computational
resources

Resistance spot
welding

Current and
voltage
signals

Most similar
previous
welding
process

C Offline Not limited

Exercise energy
expenditure

Acceleration
signals

Energy
expenditure
estimate in
VO2 / kg

R Online Limited

Cognitive load Psycho-
physiological
sensor
streams

Cognitive
load estimate
(low/high)

C Online Not limited 1

1 Possibly limited in a future implementation (e.g. a mobile device)
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3.1 Resistance spot welding

Resistance spot welding (RSW) is one of the most important methods for joining metal
objects. In the automotive industry, a typical passenger car requires approximately
4000 welding joints and the durability of the vehicle is dependent on the quality of the
welding on the body (Wylie et al. 2010). In RSW, two or more metal sheets are joined
together by passing an electrical current through them. The current is conducted through
two electrodes pressed against the metal surfaces to hold the parts to be welded tightly
together. The heat produced by the flowing current melts the metals, and a welding spot
is formed. The amount of current, pressure and time are all carefully controlled and
matched to the type and thickness of the material.

In general, the bigger the diameter of the welding nugget, the firmer is the joint.
However, this dimension does not only depend on the welding parameters applied, but
also on the profile of the electrode tip that wears out in time. Some other factors, such as
faults and embrittlement in the welding joint, also affect its strength. The most reliable
and commonly used method to verify the quality of an RSW joint is to tear the welded
parts apart after cooling to measure the spot diameter. However, the welding joint is
thereby destroyed. Some non-destructive methods for estimating the spot diameter have
also been used (e.g. radiographic and ultrasonic weld inspection (Anderson 2001) and
primary circuit dynamic resistance monitoring (Cho & Rhee 2002)), but the challenge
has been to find a real-time, non-destructive method for online use in production lines.

More recently Cullen et al. (2008) introduced a method for online real-time non-
destructive quality control of RSW that is based on ultrasonic monitoring and neural
network modeling, which evaluates every weld as it is formed. Similarly, El Ouafi et al.

(2012) presented a dynamic resistance based model for online quality control of RSW.

3.1.1 Process classification

The objective of this study was to use information collected from previous welding
processes to reduce the set-up time of a new process. We compared the characteristics of
a sample from a new welding process to information collected from previous processes
to find a process that would match the new process as closely as possible. Then, the
process parameters and quality control methods proven to lead to high-quality welding
joints for the previous process could be applied for the new process.

In Publication I, we searched for suitable features calculated from the welding
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signals to present their characteristics and looked for a classifier that would give the
best results in classifying welding processes. In Publication II, we further explored the
feature space to eliminate features with less classification-relevant information to speed
up the classification, and to improve the classification accuracy.

3.1.2 Data

The data sets we used in this study were supplied by two welding equipment manufactur-
ers: Harms+Wende GmbH & Co.KG (HWH) and Stanzbiegetechnik GES.M.B.H. (SBT).
Sets of welding experiments conducted with different welding machines, materials and
thicknesses of the objects to be welded were called welding processes. There were
altogether 20 processes, of which 11 were from HWH, and 9 from SBT. The data set
comprised of a total of 3879 welding experiments. Each of the observations contained
measurements of current and voltage recorded during an RSW event.

3.1.3 Features

We extracted 12 geometrical and 15 statistical features from the two signal curves
relating to a single welding experiment (thus totaling 54 feature values). The geometrical
features were chosen to locate the transition points of the curves as precisely as possible.
The statistical features included the median of the signal and the means of the signal
values calculated on four intervals based on the transition points. In addition, the signal
curve was divided into ten intervals of equal length, and the means of the signal values
within these intervals were used as features.

We then formed eight different combinations of the original features to be tested
with different classifiers. The first feature set contained all the features, while the second
consisted of only the ten means. Since the number of features was rather high, and we
did not known if all of them contained information relevant to the classification, we then
compressed the two feature sets using principal component analysis (PCA). Finally, the
last four feature sets were obtained by standardizing each of the previous sets to have a
mean of zero and a standard deviation of one.
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3.1.4 Classifier selection

In Publication I, we tested five different classifiers to classify the welding processes.
Since the distribution of the data was unknown, we chose both parametric and non-
parametric methods. The classifiers we used were quadratic discriminant analysis
(QDA), linear discriminant analysis (LDA), Mahalanobis discrimination (MD), the
k-nearest neighbor classifier (kNN) and learning vector quantization (LVQ).

In order to evaluate the classifiers, we divided the data into training and test data sets,
which consisted of 2/3 and 1/3 of the data, respectively. The training data set was used
to train each of the classifiers, and the test set was used to evaluate their performance.

Before the actual classification, we searched for suitable parameter values for the
kNN and LVQ classifiers using 10-fold cross-validation on the training set. Figure 1
presents the cross-validation results for kNN, where the best value for the parameter k
and the number of principal components to be used was searched for. The surface plot
demonstrates the results for the feature set consisting of all the features. As we can
see, the classification accuracy does not notably improve after the inclusion of the fifth
principal component. Likewise, the value 3 for the parameter k yields good results in the
classification. The results for the other feature sets were similar.

Figure 2 shows how an increase in the number of LVQ prototype vectors, called
codebooks, affects the accuracy of classification. We selected the parameter value 2200
because it seems to yield good classification results for all the feature sets. As advised
by (Kohonen et al. 1996), the LVQ codebooks were initialized using the 3NN algorithm,
after which the OLVQ1 and LVQ3 algorithms were used to train the model at a learning
rate of 0.05.

We tested the five classifiers on the eight feature sets, and the results for the
test data are shown in Table 1. The percentages in the cells indicate the ratios of
correctly classified processes; the cells left empty indicate invalid classifier - feature set
combinations due to high feature correlation.
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Fig 1. A surface plot of the results of tenfold cross-validation of the parameter k and the
number of principal components used. Reprinted with permission from Publication I c©2005
Springer.
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Fig 2. Results of tenfold cross-validation of the number of LVQ codebook vectors for the
different feature sets. Reprinted with permission from Publication I c©2005 Springer.
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Table 2. Classification accuracies for 20 welding processes with different classifiers and
feature sets. Revised from Publication I c©2005 Springer.

LDA QDA MD 3NN LVQ

All features 93.0 84.1 84.5

All features, 5 PCs 62.5 75.2 72.4 83.2 82.5

All features, standardized 93.0 94.7 94.9

All features, standardized, 5 PCs 71.1 85.5 86.3 93.5 92.4

10 means 90.9 96.4 97.1 98.5 98.1

10 means, 5 PCs 82.1 94.3 94.4 97.8 97.1

10 means, standardized 90.9 96.4 97.1 95.4 96.1

10 means, standardized, 5 PCs 76.2 89.3 88.3 94.6 94.1

Classification accuracy was dependent on both the feature set and the classifier used.
QDA performed better than LDA, indicating that the data rather supported quadratic
than linear decision boundaries. The results for the MD method were approximately
equal to QDA. However, none of these classifiers compared with the two non-parametric
prototype classifiers, kNN and LVQ, that gave the best classification results and
performed approximately equally well. We found the kNN classifier to be most suitable
for this study due to its easy implementation in contrast to LVQ. The 3NN classifier
with the 10 signal means as features was the best classifier – feature set combination,
with a classification accuracy of over 98%.

3.1.5 Feature selection

In Publication II, we then tested several feature selection methods on the original
feature set to consider the usefulness of the individual features, and to further reduce
the dimension of the feature space. The algorithms we tested were the sequential
forward selection (SFS), sequential backward selection (SBS), sequential forward
floating selection (SFFS), sequential backward floating selection (SBFS), and the n best
features selection (nBest). We used the classification accuracy of the 3NN classifier as
the criterion function for the feature selection. We applied the feature selection methods
to both the original and the standardized feature set. The best classification results for
each method are presented in Table 3 a) and b).
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Table 3. Classification results of the best feature subsets for five feature selection meth-
ods together with the number of features included in each set. a) Original feature data b)
Standardized feature data. Revised from Publication II c©2008 Springer.

a) SFS SBS SFFS SBFS nBEST

Classification accuracy 98.9 84.7 99.3 84.8 95.3

Number of features used 6 7 11 7 10

b) SFS SBS SFFS SBFS nBEST

Classification accuracy 98.3 97.1 98.5 97.5 95.1

Number of features used 18 17 19 29 52

The best results were obtained with the forward methods applied to the original
feature set. The SFFS method produced the best feature subset, with 11 features and a
classification accuracy of 99.3%. The SFS method provided a set of 6 features with a
comparable classification accuracy of 98.9%. The subsets selected from the standardized
feature set are notably larger than the subsets of the set of original features, and only the
backward methods, SBS and SBFS, seem to yield better feature subsets when applied to
the standardized data. The fact that standardization seemed to weaken the classification
results implies that the features calculated from the current signal, which originally
had the wider measurement range, contained more classification-relevant information
than the features calculated from the voltage signals. The standardization equalized the
magnitude of the two feature types and hence obscured some of the information relevant
to the classification.

3.2 Exercise energy expenditure estimation

Daily physical activity has important and wide-ranging health benefits. For adults,
regular physical activity has been shown to reduce the risk of chronic diseases such as
heart disease, type 2 diabetes, and some cancers, and also enhance and preserve function
with age (Blair 2009). For children, in addition to preventing obesity, promoting a
physically active lifestyle reduces the risk of getting these diseases later in life (Froberg
& Andersen 2010). Objective and reliable assessment of physical activity is essential to
evaluate these health benefits, to give recommendations on the amount of daily exercise
and to track adherence to these recommendations. Energy expenditure (EE) caused by
physical activity is commonly accepted as the standard reference of physical activity

49



(LaPorte et al. 1985). It can be reliably measured from a person’s oxygen consumption.
However, measurement of oxygen consumption requires the use of a breath gas analyzer
(indirect calorimetry), and is therefore impractical and not feasible under free-living
conditions.

3.2.1 Modeling physical activity based on body-acceleration

Research on modeling physical activity in different activities based on acceleration
data has expanded over the past two decades (Bouten et al. 1994, Troiano 2006).
Measurements done with body-mounted accelerometers are widely used in determining
the frequency and intensity of movements during physical activity (Bouten et al. 1997).
Estimation of EE based on acceleration measurements has become a widely discussed
problem approached in various studies. However, widely accepted, precise and reliable
methods for estimating physical activity based on acceleration data have not been found.

In many studies, regression methods have been applied to accelerometer counts,
obtained by integrating the accelerometer signal (Chen & Bassett 2005), and oxygen
consumption simultaneously measured to determine the relationship between the two
measures and to define an equation to predict EE from acceleration (Albinali et al.

2010, Troiano 2006). Some of the most widely used regression models are the Freedson
(Freedson et al. 1998), Swartz (Swartz & Strath 2000), and Hendelman (Hendelman
et al. 2000) equations. Also neural networks have been used to map the activity count
data (Staudenmayer et al. 2009) or raw acceleration data (Rothney et al. 2007) to EE. In
most studies, one acceleration sensor has been used on the participants waist (Troiano
2006) or hip (Rothney et al. 2007), but some studies have used additional sensors placed
on other body parts such as the thigh, upper arm or wrist (Albinali et al. 2010, Swartz &
Strath 2000).

As Rothney et al. (2007) mention, one of the biggest challenges in modeling
EE based on accelerometer data is the large deviation between subjects. Because of
different personal characteristics, the same metabolic costs may not result from identical
accelerations. In Publication III, we introduced a new method of modeling exercise
EE based on wrist-acceleration using the linear mixed model. The advantage of the
linear mixed model is that it models both between-subject and within-subject variation.
Therefore, individual differences in EE can be accounted for.
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3.2.2 Data

The data we used in this study was provided by Polar Electro Oy. It was collected from
ten healthy participants (8 men and 2 women) whose characteristics are shown in Table
7. The participants performed four different activities: walking, running, Nordic walking
and bicycling for 10 minutes each. These activities were selected because they constitute
a considerable proportion of the incidental exercise performed in daily life; that is, the
exercise we get doing daily activities. In addition, these activities were suitable for
showing the functionality of the algorithm proposed, since they differ in the amount of
movement of different body parts.

Table 4. Physical characteristics of the subjects (mean, standard deviation, range).
Reprinted with permission from Publication III c©2008 IEEE.

Men (n=8) Women (n=2) All (n=10)

Age (years) 29.8 ± 4.7 (22-37) 24.5 ± 4.9 (21-28) 28.7 ± 4.9 (21-37)

Height (cm) 181 ± 5.6 (169-188) 164 ± 1.4 (163-165) 178 ± 8.8 (163-188)

Body mass (kg) 82.6 ± 13.1 (62-104) 56.5 ± 7.8 (51-62) 77.4 ± 16.2 (51-104)

BMI (kg/m2) 25.1 ± 3.4 (21.6-31.1) 21.0 ± 2.5 (19.2-22.8) 24.3 ± 3.5 (19.2-31.1)

While performing the activities, the participants were asked to wear a biaxial accelerom-
eter on their left wrist, as well as a portable breath gas analyzer (Cosmed K4b2) that
uses a face mask. The sampling rate of the accelerometer was 100 Hz and the breath
gas exchange measurement system recorded the concentration of expiration gases at
intervals of 15 seconds. The weight of the subject was taken into consideration by
dividing the oxygen consumption values by the weight of the subject.

Although all ten participants performed the four activities, the measurement data
could not be recorded from all the activities due to technical problems with the
accelerometer data logger. The bicycling data set contains measurements from nine
participants, while the walking and Nordic walking data is available from seven
participants, and the running data set has measurements from six participants.

3.2.3 Features

Instead of the accelerometer counts commonly used in other studies, we used the
variance of the raw acceleration signal as a feature as we believed it would better
preserve the intensity of acceleration. Since the sampling frequency of the acceleration
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measurement was higher than that of the expiration gases, we calculated the variances
at 15-second intervals on the two acceleration signals. Other features we used in the
models were the height and a logarithmic transformation of the height of the subject,
and the product of the two variance values. In addition to the acceleration measurements
made simultaneously with the oxygen consumption measurement, we used the five
preceding variance values to take into account the influence of acceleration from the 90
seconds preceding the oxygen consumption measurement.

3.2.4 Model type and feature selection

We modeled the oxygen consumption of the participant using the linear mixed model
that models both between-subject and within-subject variance. This type of model was
chosen to solve the estimation problem, since it is very suitable for modeling time series
data containing repeated measurements from several participants which are correlated
with each other.

An overall intercept term was fitted to model the average level of oxygen consumption
across all participants, and subject-specific intercepts to model the individual ground
level of each participant. This is the so-called random-intercepts model (Verbeke &
Molenberghs 2000), where the regression coefficients are the same for all participants.
When the model is applied to measurements outside the training data set, no information
about the subject-specific level of oxygen consumption is available. Therefore, when the
oxygen consumption is estimated for a participant not included in the training set, only
the overall intercept term and the fixed regression structure are used.

We first fitted the model using all of the calculated features as explanatory variables.
Then, we searched for the optimal model structure based on both the significance of the
terms and a fit statistic of the model (−2 log likelihood ratio). The less significant terms
(at a significance level of 0.1) were excluded from the model one by one. The fit statistic
was monitored and the elimination of terms was stopped if it had a notable negative
influence on the performance of the model.

We modeled the four activities separately. From the data set available from each
activity, we excluded the measurements of one participant for testing the model and
used the data from the other participants for feature selection and training the model.
We chose a male participant (22 years, 86 kg, 1.81 m) for testing because the proportion
of females in the data was low. In addition, this participant was chosen since his
measurements in all the activities were available.
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(a) Walking (b) Running

(c) Nordic walking (d) Bicycling

Fig 3. Measured (black) and estimated (grey) oxygen consumption. Reprinted with permis-
sion from Publication III c©2008 IEEE.

3.2.5 Results

Figures 3 a) - d) show the modeling results for the test data in the four activities. The
black line in the figures represents the true oxygen consumption measured using indirect
calorimetry, and the grey line is the estimated oxygen consumption given by the linear
mixed model. The fact that the estimated curve starts later than the measured oxygen
consumption curve results from the use of lagged effects in the model.

We can see in Figures 3 a) - d) that the model estimates the level of oxygen
consumption very accurately, but the estimated oxygen consumption does not follow
the measured oxygen consumption strictly. However, for all practical purposes, it is
more important to find the correct level of oxygen consumption to be able to accurately
estimate the total daily EE.
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The actual EE can be calculated from the estimated oxygen consumption. The
metabolic equivalent (MET) is a widely used unit for EE that represents the energy cost
of physical activity as multiples of resting metabolic rate. One MET corresponds to an
oxygen consumption of 3.5 ml/kg/min. Thus, the estimated oxygen consumption (VO2 /
kg) is converted to METs by dividing by 3.5. Table 5 shows a comparison of the average
EE estimated by the linear mixed model with the average EE calculated from the true
oxygen consumption measured using indirect calorimetry for each of the activities. In
walking, running and Nordic walking, the model underestimated the average EE by 13,
2 and 9 percent, respectively, and in bicycling the average EE was overestimated by 7
percent.

Table 5. Measured and estimated energy expenditure in METs and the prediction error in
four activities. Reprinted with permission from Publication III c©2008 IEEE.

True Predicted Error

Walking 4.7 4.1 -13 %

Running 7.6 7.5 -2 %

Nordic walking 6.3 5.7 -9 %

Bicycling 6.8 7.3 +7 %

3.3 Cognitive load

Human attention is a finite resource, and the balance of our cognitive load or attention
demands can easily fluctuate in situations of task interruption, divided attention and
multitasking. For example, we can experience attention interference due to an unexpected
interruption (e.g., a pedestrian crossing in front of a driver) or due to an expected
interruption (e.g., a preset birthday reminder ringing on a cell phone during a conference
presentation). Cognitive load might also increase when switching our attention between
virtual spaces and physical spaces (e.g., using a navigation display while driving) or
between two user interfaces (e.g., using a smart phone and a laptop together). In order to
determine how to respond to the temporal and subtle changes of cognitive load, it is
necessary to measure the cognitive load of individuals in real-time and in situ. With a
real-time, objective measure, we can develop novel systems that can help users manage
their cognitive effort and provide them with appropriate support.
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3.3.1 Cognitive load modeling based on psycho-physiological
measurements

There are reliable methods for assessing cognitive load, which are mostly based on
task performance and subjective ratings (Cegarra & Chevalier 2008, Hart & Staveland
1988). However, due to their post-hoc (measured after an experience is complete) and
static (measured at a single point in time) nature, these methods are inappropriate for
measuring variations in cognitive load over a continuous time frame.

We chose the approach of modeling real-time cognitive load based on psycho-
physiological measurements. Psycho-physiological measurements have been demon-
strated in the literature as being useful for assessing cognitive load (e.g., gaze information
(Iqbal et al. 2005, Chen & Epps 2014, Piquado et al. 2010), heart rate (HR) (Koenig
et al. 2011, Mehler et al. 2012), electroencephalography - the electrical activity of the
brain (EEG) (Antonenko et al. 2010, Grimes et al. 2008, Knoll et al. 2011), electrocar-
diography - the electrical activity of the heart (ECG) (Koenig et al. 2011), galvanic
skin response (GSR) (Koenig et al. 2011, Mehler et al. 2012), breathing rate (BR)
(Koenig et al. 2011), and skin temperature (Koenig et al. 2011). As we were interested in
identifying a generalized mechanism for assessing cognitive load, we wanted to stimulate
that load using tasks that leverage basic cognitive processes instead of applied tasks,
such as document editing (Iqbal et al. 2005), simulated public speaking (Fredericks
et al. 2005), driving (Reimer et al. 2009, Mehler et al. 2009), learning (Antonenko et al.

2010), and aviation (Noel et al. 2005, Wilson 2002), used in earlier studies. In addition,
earlier work in detecting cognitive load based on psycho-physiological measurements
had not reached a granularity required for real-time assessment.

In Publication IV, we collected data from a range of psycho-physiological sensors
from young adults and extracted a large number of features from the measured signals to
explore which ones are useful for accessing cognitive load. We built individual cognitive
load models for each of our participants. In Publication V, we further explored if we
could perform the assessment in real-time.

Our cognitive ability changes with age (Salthouse 2010). As we age, deficits in
cognitive abilities increase, and more support is needed (Craik & Rose 2012). However,
the magnitude and speed of these changes also vary widely from person to person
(Salthouse 2010). In Publication V, we also investigated if we can use the same sensors
to measure cognitive load in older adults as for young adults.
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3.3.2 Data set 1

For the first part of the study, we recruited twenty young adults with their age ranging
from 19−34 (mean 25.15, sd 4.45), including 15 males and 5 females. They performed
six elementary cognitive tasks (ECTs) that are basic tasks which require only a small
number of mental processes, and which easily specify correct outcomes (Carroll 1993).
We chose tasks that target ‘visual perception’ and ‘cognitive speed’ among the human
cognitive abilities addressed in (Carroll 1993, McGrew 2009). These abilities engage
spatial orientation or spatial attention (French 1951), which are highly leveraged in
today’s world of location-based services, situations of divided attention, and applications
where you may be attending to one activity and are either interrupted by incoming
information or seeking information. The tasks we used were the Gestalt completion test

(GC), the Hidden pattern test (HP), the Finding A’s test (FA), the Number comparison

test (NC), the Pursuit test (PT), and the Scattered X’s test (SX) (see Figure 4). The
participants used a mouse and a keyboard to answer the screen-based ECT questions.

!
Fig 4. Six elementary cognitive tasks (ECTs). Reprinted with permission from Publication IV
c©2010 ACM.

For each ECT, two sets of questions were shown to the participant in a random order.
One of the sets contained questions of a lower difficulty level (inducing a lesser degree
of cognitive load), while the other was comprised of more difficult questions (inducing a
greater degree of cognitive load). The participants were given up to 3 minutes to answer
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each set of questions.
While completing the tasks, the participants wore three sensor devices (the Neu-

roSky Mindset wireless EEG headset, the Polar RS800CX heart rate monitor, and the
SenseWear Pro3 armband) measuring EEG, ECG, cardiac inter-beat (R-R) intervals,
GSR, and heat flux (rate of heat transfer on the skin). In addition, the participants
executed all the tasks in front of a contactless eye tracker (SmartEye 5.5.2), comprised
of two cameras, which measured pupil diameter. The experiment setup and sensor
devices are demonstrated in Figure 5. Figure 6 shows examples of the measured signals.

!

HR#monitor#

Eye#tracker#
Headset#

Armband#

Fig 5. Experiment setup and sensor devices. Reprinted with permission from Publication IV
c©2010 ACM.

Before analysis, we preprocessed the heart rate R-R data by removing outliers falling
outside the range of 35−155 bpm (387−1714 ms). An increasing trend was removed
from the GSR signals and the lowest and highest 0.1 percent of values from each
participant were excluded as outliers.
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Fig 6. Example psycho-physiological signals collected during the Gestalt Completion test
(low and high difficulty). Reprinted with permission from Publication IV c©2010 ACM.
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3.3.3 Features

We modeled the level of cognitive load (low vs. high) using features derived from
non-overlapping segments of psycho-physiological sensor data corresponding to the
different questions in the ECT tests. The average length of the segments was 23.7
seconds although the length varied from a few seconds to several minutes. The altogether
51 statistical features included the mean, variance and median of pupil diameter, GSR,
heat flux, ECG median of absolute deviation (MAD – a measure of variability of ECG),
8 EEG power values and two mental state outputs (provided by the EEG headset) as
well as the average spectral power of the raw EEG signal on five bands (delta 0−4 Hz,
theta 4−7 Hz, alpha 8−12 Hz beta 12−30 Hz and gamma over 30 Hz). Two heart rate
variability (HRV) features, standard deviation of R-R intervals (SDNN) and the root
mean square of the successive differences of R-R intervals (RMSSD), as well as the
mean and variance of HR were derived from the HR data.

3.3.4 Evaluation of individual features

We then evaluated the performance of each of these features in assessing cognitive load.
Because of individual differences in the levels of psycho-physiological responses to
cognitive load, we modeled each participant individually. For each question type, the
data from the separate questions were classified into one of two classes representing the
two difficulty levels. Classification was performed based on one feature alone, using a
Naïve Bayes classifier (NB). We used a leave-one-out validation approach between
the questions in each question type to calculate the average classification accuracy for
the question type. Because the difficulty levels in two different question types were
unlikely to correspond to each other (e.g., high difficulty questions for the Finding A’s
and the Pursuit tasks would not necessarily induce the same amount of cognitive load in
a participant), only data from the same question type was used in the classification. The
overall classification accuracy of the feature was then calculated as the average accuracy
over the 6 question types. This was performed for each participant and each feature in
turn.

Table 6 shows the best feature and the corresponding classification accuracy for each
participant. The results show that for each participant, a feature that discriminates the
two classes with a high accuracy was found. Most of the best features were calculated
from either the heat flux measurement or the ECG signal.
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Table 6. The best feature for each participant and the corresponding classification accuracy.
Revised from Publication IV c©2010 ACM.

Participant Average accuracy (%) Best feature

1 82.5 Heat flux - median

2 86.7 ECG MAD - median

3 86.7 Heat flux - mean

4 74.0 ECG MAD - median

5 81.7 EEG power low beta - median

6 76.3 EEG attention - mean

7 83.3 Heat flux - median

8 80.4 Heat flux - median

9 86.3 EEG power high beta - median

10 87.0 Heat flux - median

11 92.5 ECG MAD - median

12 75.5 GSR - variance

13 78.3 ECG MAD - mean

14 80.8 Pupil diameter - median

15 82.5 ECG MAD - median

16 81.3 ECG MAD - median

17 88.3 ECG MAD - variance

18 89.2 Heat flux - mean

19 94.0 Heat flux - mean

20 76.3 EEG power theta - variance

Table 7 presents the average classification results over all 20 participants using models
created with the best feature from each sensor stream. Here again, the features that
perform the best are based on either the heat flux measurement or the ECG signal. The
classification performance of features calculated from the other measurements is clearly
inferior.

The two best features (median of heat flux and median of ECG MAD) were then
used together to classify the levels of cognitive load. The average classification accuracy
across participants was 81.1%, which is higher than the accuracy of using any single
feature alone.
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Table 7. Average classification results of the best features from each sensor stream over 20
participants. Revised from Publication IV c©2010 ACM.

Sensor Feature Average accuracy (%)

Heat flux median 76.1

ECG MAD median 71.4

EEG attention median 60.2

HR mean 58.7

Pupil diameter median 57.4

GSR variance 53.7

3.3.5 Data set 2

In continuing the study (Publication V), we wanted to explore if we could perform the
assessment in real-time and also, if the same psycho-physiological measures would be
indicative of cognitive load for older adults as for young adults. This is particularly
challenging, given the changes in psycho-physiological responses that occur as a part of
aging (Anderson & McNeilly 1991). We recruited 30 participants split across two age
groups: 13 young with their age ranging from 18−30 (mean 22.9, sd 3.9), including 6
males and 7 females, and 17 older participants with age ranging from 65−88 (mean
74.3, sd 5.7) including 6 males and 11 females. From the six ECTs used in the earlier
stage of the study, we this time presented two to the participants: the Pursuit test (PT)
and the Scattered X’s test (SX).

Again, we prepared two sets of questions for each question type with different
difficulty levels. The questions were presented to the participants in three separate
blocks with each block containing one question set of each difficulty level for each
of the two ECTs. The duration of the question sets in the first block was 4 minutes, 3
minutes in the second, and 2 minutes in the last block.

We measured participants’ psycho-physiological responses with four sensor devices,
two of which were the same as in the first study and two were newly introduced. The
SenseWear Pro3 armband was used to measure heat flux and the NeuroSky Mindset
was used to record EEG activity. The two new sensor devices were a wireless ECG
monitor (Bioharness BT), that also records heart rate (HR) and breathing rate (BR), and
a GSR finger sensor (LightStone). We preprocessed the raw GSR and heat flux signals
by convoluting with a Bartlett window (Oppenheim & Schafer 2010) to smoothen, and
by differencing to remove trend.
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We encountered some challenges with noisy or missing sensor data, especially with
the EEG and ECG sensors. The poor quality of the EEG signal may be caused by poor
contact of the sensor/ground/reference electrodes to a participant’s skin, motion of the
participant, environmental electrostatic noise, or non-EEG biometric noise (i.e., EMG,
ECG, EOG, and others) (NeuroSky 2009). Sources of recording noise in the ECG can
include artifacts caused by movement of the electrode away from the contact area on the
skin, or EMG noise due to muscle contractions under the sensor surface (Friesen et al.

1990). Particularly, ECG measurements from the older participants had irregularities
that may have influenced the extraction of R-R intervals. Participants who had missing
or noisy ECG and EEG data were excluded from the analysis (2 young subjects and 5
older subjects, highlighted in grey in Table 8). In addition, the heat flux signal was
missing from one participant due to a device malfunction and the GSR measurement
had to be dropped from 5 participants because of incomplete readings. This left us with
11 young and 12 older participants with whom we continued the analysis.

3.3.6 Features

We generated two separate feature sets from the raw measurement signals to study
cognitive load assessment at two different granularities. In the first feature set, raw
measurement signals were represented by statistical features calculated on 60-second
sliding windows, and in the second set on 10-second windows both with a step of one
second.

In total, we extracted 128 features from the signals. The mean, median, variance,
standard deviation, 10th, 25th, 75th and 90th percentile, interquartile range (IQR),
RMSSD, mean of the absolute values of the first (MAFD) and second (MASD)
differences, mean crossing rate and the difference of the last second mean and the first
second mean of the window (end-start difference) were calculated from the heat flux,
GSR and the R-R interval signals. Further, correlation and SDNN, relative occurrence
of successive differences exceeding 20ms (pNN20) and 50ms (pNN50), and mean peak
amplitude were calculated from the R-R data. The count, maximum amplitude, mean
amplitude, mean duration and area under skin conductance response (SCR) occurrences
were extracted from the GSR measurement. The heart rate, breathing rate and breathing
wave amplitude were described by seven features: minimum, maximum, mean, median,
variance, standard deviation and end-start difference. We calculated spectral power of
the raw EEG data on five bands: delta, theta, alpha, beta and gamma.
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We normalized all the features to equalize their importance, and scaled the feature
data from each participant in each question type linearly so that the 5th and 95th
percentiles of each of the features met the range [0,1].

3.3.7 Modeling and feature selection

We used quadratic discriminant analysis (QDA) to classify the feature values calculated
on the sliding windows. We adopted a block study design similar to the cross-validation
scheme suggested by Grimes et al. (2008) to avoid temporal dependence of the data
segments and distortion of the results. We used the three data sets corresponding to the
three blocks of the study design to train the models, select subsets of the original set of
128 features that would give the highest accuracy in measuring cognitive load, and to
simulate a real-time system to provide an estimate of how the model would perform on a
previously unseen set of data, respectively. For feature subset selection, we used the
simple algorithm of selecting the three best individual features. We tested also more
sophisticated methods, but because of overfitting, this simple method proved the most
efficient for the task.

We trained a model with individual feature selection for each participant’s data
for each ECT task to distinguish the two difficulty levels. Cognitive load assessment
accuracies for the young and older participants are presented in Tables 8 and 9,
respectively. The assessment was performed at a one-second frequency. Very high
accuracies are achieved for many of the young participants, but with high variation.
The rationale for the models not working for all participants might include noise in
the measurement data or individual differences in how the changes in cognitive load
manifest themselves in psycho-physiological signals. Participants might also have
experienced the two levels of task difficulty differently, even though we did not find
clear evidence of this in subjective ratings and task performance recorded during the
data collection. Also our decision to fix the number of features at three might explain
the inferior accuracies for some of the participants. This parameter value resulted in the
best results for most of the participants, but some of them would have benefitted from a
higher number of features in the model.
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Table 8. Sensor signal quality and cognitive load assessment accuracies in the two ECT’s
for young participants. Revised from Publication V c©2014 IEEE.

PT SX

Heat ECG
#

flux
GSR EEG

BR, HR
10s 60s 10s 60s

1 • • • ◦ 30% 53% 44% 66%

2 • • 71% 100% 88% 39%

3 • ◦

4 • • • 77% 100% 70% 50%

5 • • • • 94% 86% 100% 100%

6 • • • 50% 50% 62% 89%

7 • • • ◦ 76% 100% 76% 69%

8 • • • ◦ 49% 54% 63% 31%

9 • • • ◦ 76% 53% 63% 85%

10 • • • ◦ 79% 74% 45% 86%

11 • • • 74% 95% 98% 100%

12 • • • ◦ 52% 100% 92% 100%

13 • • ◦

Avg 66% 79% 73% 74%

• - Good ◦ - Poor - Missing

The accuracies for the longer windows are generally better than for the shorter windows in
the PT task, but in the SX task the assessment performance is equal at both granularities.
Even the 10-second assessment is able to differentiate the two levels of cognitive load at
a very high accuracy for some of the participants. The results are particularly good
for young participants 5, 11 and 12. On the other hand, our models did not work
for young participants 1, 6, and 8. However, participant 6 was missing EEG data,
and participants 1 and 8 had poor ECG, HR and BR data. The results for the older
participants are very similar, and the 60-second granularity results are comparable to
those of the young adults. However, for the older adults, the difference in accuracy
between the two granularity levels is greater than for the younger participants. This
might be a consequence of the psycho-physiological changes related to aging (Anderson
& McNeilly 1991). Our models did not work well for older participants 2, 5, 10 and
13. We suspect that the reason for this might be that some older adults do not express
cognitive function with a high enough signal through psycho-physiological responses.
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Table 9. Sensor signal quality and cognitive load assessment accuracies in the two ECT’s
for older participants. Revised from Publication V c©2014 IEEE.

PT SX

Heat ECG
#

flux
GSR EEG

BR, HR
10s 60s 10s 60s

1 • • ◦

2 • • • • 57% 91% 63% 66%

3 • • • 62% 79% 63% 79%

4 • • • 53% 81% 77% 77%

5 • • • • 62% 100% 62% 52%

6 • • • • 88% 98% 55% 50%

7 • • ◦

8 • • • • 49% 85% 77% 100%

9 • • • • 69% 95% 90% 58%

10 • • • ◦ 54% 50% 50% 24%

11 • • • 72% 99% 61% 99%

12 • • ◦ 51% 53% 80% 100%

13 • • • • 72% 100% 50% 50%

14 • • ◦

15 • ◦

16 • • • 80% 96% 50% 28%

17 • • ◦

Avg 64% 86% 65% 65%

• - Good ◦ - Poor - Missing

We then analyzed the features selected for each of the models at the 10-second granularity.
The relative count of times a feature was selected into the set of three best features,
normalized by the number of participants in the age group, from which that sensor
stream was available, is shown in Figure 7. For this, we only considered the participants
and tasks that had an accuracy over 75%. The most often selected features for both the
young and the older participants originate from the EEG and BR signals. The EEG
signal was more important and the BR measurement less important for the older than for
the young participants. R-R signals are also fairly well represented among the most
common features for both age groups, whereas GSR features were seldom used for the
young participants, and never for the older participants.
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Relative counts

Young 211 217 218

Count No. of participants median_g1' gamma' mean_br' max_br' min_br' min_br'

EEG 11 8 1,4 median_b1' mean_att' median_br' min_br' median_g2' median_br'

BR 14 10 1,4 pNN50_RR' median_att' rmssd_RR' mean_br' mean_g2' mean_br'

RR 4 10 0,4

GSR 1 9 0,1

Heat Flux 0 9 0,0

HR 0 10 0,0

Older

Count No. of participants

EEG 11 5 2,2

BR 4 6 0,7

RR 3 6 0,5

GSR 0 4 0,0

Heat Flux 0 6 0,0

HR 0 6 0,0

Younger

0,0 0,5 1,0 1,5

EEG BR RR GSR Heat Flux HR

Older

0,0 0,5 1,0 1,5 2,0 2,5
Relative counts Relative counts

Fig 7. Relative count of the times a feature from each sensor stream was selected into the
models (both tasks, 10-s). Reprinted with permission from Publication V c©2014 IEEE.

Even though our models did not work for all of the participants, our results showed that
we were able to model cognitive load in real-time for both young and older adults, and
that we can use the same sensors for both age groups.

3.4 Summary

This chapter presented the results of our three case studies. In the first study, we
classified RSW processes to find process parameters and quality control methods to
set up a new welding process. We compared eight different sets of features calculated
from current and voltage signals recorded during welding with different compositions,
dimensionality reduction levels and with, or without, standardizing the data. Five
different classifiers were tested. The best results were obtained with the 3NN classifier
and a non-standardized feature set consisting of 10 means calculated at intervals of equal
length on the signals. We further improved the results by applying feature selection
algorithms to the original set of 54 features. Five different feature selection methods
were tested and the best results with a very high classification accuracy were obtained
with a feature set consisting of 11 features selected by the SFFS algorithm.

The second study focused on modeling physical activity in four exercises based on
body-acceleration. To account for the large deviation in exercise EE between participants,
we used the linear mixed model that models both between-subject and within-subject
variation. The feature set we used for the model consisted of features based on the
variance of the acceleration signal, as well as features based on the participants’ height.
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Data from one of the participants was kept for testing the model performance while the
linear mixed model was trained using data from the remaining participants. For each of
the four activities, a subset of the features was selected based on both the significance of
the terms in the model and a fit statistic. Our models were able to accurately estimate
the EE.

In the third case study, our aim was to assess human cognitive load based on psycho-
physiological measurements. In the first stage of the study, we collected a range of
psycho-physiological signals from young adults while they were solving computer-based
ECT tasks with two levels of induced cognitive load and calculated altogether 51
statistical features from these signals. We then evaluated the performance of each of
the features individually using the NB classifier. We used leave-one-out validation
between the questions in each task type to calculate the average classification accuracy
for the task, and then averaged over the six task types to obtain an average classification
accuracy for each feature. Our results showed that for each of our participants, we
were able to find a feature that discriminates the two classes with a high accuracy. We
also found that combining the two individually best features, originating from the heat
flux and ECG MAD signals, resulted in a very high classification accuracy across all
participants.

In the second stage of the study, we explored if we could perform the assessment
in real-time and if the same psycho-physiological measures would be indicative of
cognitive load for older adults. We collected a data set with psycho-physiological
measurements from both young and older adults and extracted 128 features from the
signals at two different time granularities, 10 seconds and 60 seconds. We used a block
cross-validation scheme for training, feature selection and testing our models built with
the QDA classifier on a feature set selected by the 3Best features selection algorithm.
We showed that we are able to model cognitive load in real-time for both young and
older adults, and that we can use the same sensors for both age groups.
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4 Discussion

In this thesis, we have addressed different aspects of the machine learning process,
including data preparation, selection of the model type, feature selection and validation
with a special emphasis on working with time series data. We have also presented
our work and results in three different time series machine learning application areas:
resistance spot welding process identification, exercise energy expenditure estimation,
and cognitive load modeling. In this chapter we will first summarize our findings from
each application area, and then discuss the contributions of our work as a whole from
both a theoretical and a practical point of view.

4.1 Case studies

We will now discuss our choice of methods and our findings in each individual case
study, and also consider the limitations of our work.

4.1.1 Resistance spot welding

In our first case study, resistance spot welding (Publications I and II), we found that
the non-parametric methods we tested worked better than the parametric models for
classifying the different welding processes. We can assume that this might be explained
by the diversity of the data. The non-parametric methods performed better because they
do not make assumptions about the data distribution, whereas the parametric models we
used assume the data to originate from normal distributions. We also noticed that even
though standardization is usually a recommended step of the data preparation process
(Gelman & Pardoe 2007), it weakened the classification accuracies in this case. This
implies that the features calculated from the current signal, which originally had the
wider measurement range, were more important for the classification than the features
calculated from the voltage signals. This reminds us of the advice given by Hand et al.

(2001) that the algorithms selected for data analysis should always be tailored for the
particular problem at hand, rather than blindly following a commonly used procedure.
More importantly, understanding the data lays the foundation for solving any machine
learning problem.

We also searched for the optimal parameter values for the classifiers using 10-fold
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cross-validation in the training set, and applied several feature selection methods to
improve the classification accuracy. We found the forward methods, SFFS and SFS, to
result in the best feature sets. However, our research unfortunately fell into the common
pitfall described in Section 2.4 (Kohavi & Sommerfield 1995, Ambroise & McLachlan
2002, Reunanen 2003) as we presented the validation set accuracies of our candidate
models as final performance estimates of the models. To obtain unbiased estimates,
we should have used a test set separate from the model selection process. Hence, the
feature subset found with the computationally more thorough methods might actually
not be better for distinguishing the different welding processes than the more simple
nBest method that also produced very good results. Also the classification accuracies we
presented might be somewhat higher than what we would have obtained with a fresh
data set. However, according to Kohavi & Sommerfield (1995) and Cawley & Talbot
(2010), overfitting is mainly a problem when the data set available is small. Hence, our
relatively large data set and the fact that the accuracies for all of our models, with or
without, feature selection were similar, ensure the validity of our results in general.

4.1.2 Exercise energy expenditure

In the second case study of this work, exercise energy expenditure modeling (Publication
III), we chose the linear mixed model structure over the general linear model to account
for the temporal dependency of the time series measurement data. Particularly, the
repeated measurements from each participant are correlated with each other, whereas
the general linear model assumes observations to be independent. We found that with
this model structure, we were able to account for individual differences in the oxygen
consumption and produce accurate estimates of energy expenditure in four different
activities.

We should mention as a shortcoming of our study that we only tested our models on
the data from one of the participants. However, these preliminary results were enough to
demonstrate the feasibility of the new approach to exercise energy expenditure modeling.

4.1.3 Cognitive load

In the third case study (Publications IV and V), we searched for a method to assess
cognitive load for both young and older adults in real-time. We derived a large number
of features from psycho-physiological measurement signals, and in the first stage of
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the study evaluated their individual value in modeling cognitive load. We presented
cross-validation results where we used non-overlapping segments of the measurement
data. However, as in the spot welding study, we only presented the leave-one-out
validation accuracies. In addition, since the data segments corresponding to the two
difficulty levels of the tasks were collected adjacently, and only one data set was
collected, these results are likely to be optimistically biased. In fact, since only one data
set was collected, it would not have helped to put aside a part of the data for validation;
the temporal dependency of the time series data would still have affected the results.

We corrected this mistake in the second stage of the study where we used a block
study design adapted from Grimes et al. (2008). We used three blocks of data collected
separately to train our models, select the best features and evaluate our results. Although
this time our data collection suffered from quite severe problems with the measurement
devices and data quality, these results showed that we were able to assess the cognitive
load of both young and older adults on a fine time granularity.

Since the data sets we used for this study were relatively small, we chose to use
simple parametric classifiers. Also for the feature selection, we chose the simple 3Best
method since we found the use of more complex methods to result in overfitting of the
models.

The measurement signals that we found to be the most valuable for assessing
cognitive load in these two publications were different as the heat flux and ECG
appeared most informative of cognitive load in Publication IV, whereas EEG, BR and
RR were selected as the best signals in Publication V. However, the RR, in fact, is
derived from the ECG signal. The changes in cognitive load probably did not manifest
themselves in the heat flux signal fast enough for the latter part of the study where the
assessment was carried out at a more fine-grained temporal granularity.

4.2 Theoretical implications

The objective of this thesis was to discuss aspects of the model selection process that
should be considered when solving a machine learning problem in general, and when
working with time series data in particular. We will now discuss the three research
questions we set in Chapter 1 based on our case studies, and compare our findings with
the literature reviewed in Chapter 2.
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1. How should the data characteristics and the amount of data available guide the
selection of model type and the model selection strategy?

Based on the characteristics of the data at hand, we can draw some general guidelines
for selecting the approach to use at the different steps of the machine learning process.
From our case study in resistance spot welding, we learned that if the data set available
is relatively large and we do not know the distribution of the data (Publications I and II),
a nonparametric model might work better than a parametric one. On the other hand,
if the data set is limited, a parametric model might still work well, even though the
data might not follow the distribution assumed by the model (Publications IV and V).
These findings are also well-known in the literature (Hand et al. 2001, Duda et al. 2001,
Bishop 2006).

Over-fitting in model selection has been a widely discussed topic during the past two
decades (Wolpert 1992, Schaffer 1993, Kohavi & Sommerfield 1995, Reunanen 2003,
2004, Raudys 2006, Cawley & Talbot 2010). In Publications IV and V we concluded, in
agreement with Raudys (2006), that simple classification algorithms worked better
with small data sets, whereas the use of more complex models would have resulted in
overfitting the data.

In addition, the selection of a feature selection algorithm depends on the amount
of data available. To avoid over-fitting, and to ensure the generalizability of results,
Reunanen (2003) recommends using more simple feature selection strategies when little
data is available. In line with this, we found the simple 3Best method to perform best for
our cognitive load modeling study (Publication V).

2. How should the data set available be used for model training, selection and
validation to optimize the model generalizability and performance on new data?

The importance of using a separate test set in evaluating the selected model has
been recurrently brought up in the literature (Kohavi & Sommerfield 1995, Reunanen
2003, Fiebrink & Fujinaga 2006, Smialowski et al. 2010). Nevertheless, new studies are
repeatedly published where the training set or cross-validation estimates are presented
as the final performance estimates of the model (Fiebrink & Fujinaga 2006, Cawley &
Talbot 2010). Unfortunately, our Publications II and IV also fell into this pitfall, but the
mistake was corrected in Publication V. Even though this finding is not new as such, the
importance of always using a data set previously unseen by the model for performance
evaluation in any machine learning application cannot be emphasized too much.
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3. What are the special considerations to take into account when applying ma-
chine learning algorithms to time series data?

The most important thing to keep in mind when working with time series data is the
ordering of the observations (Pyle 1999). Features can be calculated on subsequent
segments of the original time series, and modeling algorithms can be selected that take
the correlation of the data into account. In Publication III, we chose the linear mixed
model over the general linear regression model to account for the temporal dependency
of the repeated oxygen consumption measurements from our participants.

More importantly, however, the temporal dependency of time series data needs to be
remembered when dividing a data set for training, model selection and evaluating the
performance of the final model. While the dependency of the adjacent observations
in a time series is widely noticed, and this characteristic is taken into account when
preparing data sets in statistics (Hart & Wehrly 1986, Burman et al. 1994, Arlot &
Celisse 2010), it seems to be less acknowledged in the field of machine learning (Grimes
et al. 2008). Our work highlights the importance of this in Publication V, where we used
a block design in data collection where separate contiguous sequences of observations
were used for training, testing and validating our models.

Overall, our work shows that for the most part, the commonly used machine learning
methods can also be applied in problems involving time series data. However, our
results highlight the importance of considering the temporal dependency of the data,
both when selecting a modeling algorithm to be used, and when partitioning the data set
available for training, model selection and estimation of the model performance.

4.3 Practical implications

In this thesis, we have presented our work in three different machine learning application
areas where we solved modeling problems including time series data. In resistance
spot welding, we identified new welding processes with a high accuracy to match them
with process parameters and quality control methods from previous similar processes.
This information can then be used to speed up the set up of a new welding process,
thereby obtaining both material and financial savings. In exercise energy expenditure
estimation, we introduced the use of the linear mixed model to model energy expenditure,
based on measurements from a wrist-worn accelerometer. The use of a wrist-worn
sensor eases the use of the monitoring system compared with the traditional chest
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bands used for exercise energy expenditure estimation. In cognitive load modeling,
we assessed the cognitive load of both young and older adults in real-time, based on
psycho-physiological measurements. Our study was one of the first ones to reach a
fine temporal granularity, and the first one to compare such a variety of off-the-shelf
measurement devices for cognitive load assessment.

In addition to our contributions in each of these application areas, the considerations
we brought up in this thesis might help a new practitioner in the field of machine
learning to adopt a sound methodology and not fall into the pitfalls we, as well as many
more senior researchers, have fallen. In particular, we hope that our work will help
the machine learning community to learn to apply the methods more cautiously to
prevent the negative effects of model over-fitting and feature over-selection, and to better
acknowledge the temporal dependency of time series data, especially when partitioning
data for training, selecting and evaluating models, to ensure unbiased and comparable
results.

As our final contribution, we would like to offer Figure 8, where we summarize the
findings of this thesis. This figure can be used as a checklist for anyone starting to tackle
a new machine learning problem. It covers the four steps of the machine learning process
that we discussed in this thesis: data collection, algorithm choice, model selection and
validation. In this figure, we highlight four dimensions of a machine learning problem
to consider when deciding on an approach to take: the amount of data, the distribution

of the data, computational resources and whether the problem involves time series data.
More precisely, we advise consideration of whether the distribution of the data

is known or unknown, which guides the choice of a parametric or non-parametric
method, and whether the computational resources available are low or high, which
determines if a simple or a more complex algorithm should be used. For the amount
of data we only consider the case where the size of the data set is limited, because in
the case of a large data set the choice of methods is predominantly only limited by the
computational resources. In the case of a small data set, we recommend, if possible,
to collect more data, as it is probable that a greater improvement in the performance
of any algorithm would be obtained by further data collection than by selection of a
more optimal algorithm (Cawley & Talbot 2010). Also the quality of the data might
be more crucial for the success of the modeling effort than the selection of a single
algorithm. Hence, the data collection step should be especially invested in, particularly
when collecting real-world time series data, to minimize noise, missing measurements
and other problems with the data quality. If, however, the data set available is small
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Fig 8. Four dimensions of a machine learning problem to consider when choosing an
approach to take for the four steps of the machine learning process discussed in this thesis.

and additional data collection is not feasible, it is recommended to choose simple
algorithms to avoid over-fitting in model training or selection. Parametric methods
often work better than non-parametric ones for small data sets. Cross-validation is a
good procedure to make the most of a small data set. However, if any model selection
with several candidate models is involved, testing with a separate data set should not
be forgotten. The special nature of time series data should also be remembered when
choosing modeling algorithms to use, and when dividing the available data for training,
model selection and testing the performance of the models.

Based on our experience with real-world applications, we can also reflect on the
requirements set by the nature of the particular problem. One of our application areas,
resistance spot welding, took place in an industrial setting, whereas the other two
applications, exercise energy expenditure estimation and cognitive load modeling,
involved the human aspect. In an industrial application, where the data is collected
from machinery in operation, data collection is often relatively cheap and reliable. In
this case, even a small improvement in model performance, achieved either through
additional data collection or fine-tuning the model, can bring large financial savings
through improved manufacturing efficiency in the long run. In applications involving
data collection from human participants, however, the data collection is generally more
laborious and costly. Also the quality of data is often more variable due to sensor
placement and reliability issues as well as personal differences between the participants.
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In addition to the computational resources available during the model training stage,
also the end-use circumstances of the model need to be considered when choosing
a model to use. In two of our applications, resistance spot welding and cognitive
load modeling, the final model was run on a desktop computer where computational
processing power can be increased when necessary. The exercise energy expenditure
models, on the other hand, were run on a wearable sports watch where the storage and
computational resources limit the complexity of the model.

The requirements for model accuracy also vary according to the application area. In
resistance spot welding, for example, malfunctioning of a model can result in rejection of
a whole production batch, hence causing great financial and material losses. In a safety
critical application relying on cognitive load modeling, the consequences of a single
wrong decision made by a model can be very severe. In exercise energy expenditure
modeling, on the other hand, the correctness of an energy expenditure estimate at a
single moment in time is rather insignificant, while finding the correct level of energy
expenditure during an exercise, and thereby being able to calculate the average energy
expenditure for the activity or the whole day, brings more value for the user.

In summary, in addition to the general guidelines that can be given based on the data
characteristics, amount of data, computational resources and potential time series nature
of the problem, also the requirements of the environment in which the final model will
be used need to be considered when selecting models for a specific application. Hence,
based on our experience with practical machine learning applications, we emphasize the
importance of Hand et al.’s (2001) statement that the methods used at the different steps
of the machine learning process should always be selected for the particular problem at
hand, rather than adopting a commonly used combination.
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5 Conclusions

Model selection is a necessary step for any practical machine learning task. Since it is
impossible to know the true model behind any real-world process, the goal of model
selection is to find the best approximation among a set of candidate models. In practice,
this means finding a model that best describes the real-world process to be modeled or
best predicts the future outcomes of the process. In the case of predictive modeling, a
crucial property of the model is its generalizability to new data. Therefore, testing with a
separate data set should always be included as a part of the model selection procedure.

However, sound methodology is often forgotten and research results are repeatedly
published where model accuracy estimates are based on the data set used for model
selection. In this thesis, we brought forth problems relating model over-fitting and over-
selection caused by careless or uninformed application of model selection methods. We
discussed model selection in time series machine learning applications, and presented our
results in three different application areas: resistance spot welding process identification,
exercise energy expenditure estimation and human cognitive load modeling.

In each of the individual application areas, we developed models to solve a real-life
machine learning problem. We covered the whole machine learning process including
data collection and preparation, selection of the model type, feature selection and
validation. Overcoming challenges typical to real-world modeling tasks, such as sensor
reliability issues, individual differences between people, and requirements for the ease
of use of monitoring systems and the temporal granularity of detection, we obtained
accurate models that can be implemented in end-user applications and products.

Based on our findings in these studies we drew general guidelines on the points to
consider when starting to solve a new machine learning problem and also discussed how
the nature of the problem at hand affects the choice of algorithms to use. Throughout the
thesis, we paid additional attention on the special nature of time series data and the
restrictions and requirements it sets on the methods selected.

For future work, it would be interesting to study how our results on resistance spot
welding process identification would change if we ran the study again following the
recommendations for dividing the data set for model training, selection and evaluation
discussed in this thesis. However, due to the project nature of our work, going back
to an old study is not seen to be worthwhile. Instead, we will keep these lessons in
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mind when solving new machine learning problems in the future. It is our hope that our
work will also serve other researchers in the field of machine learning as a reminder of
cautious application of model selection algorithms. From the variety of application
areas covered, we can see that the considerations brought forth in this thesis apply to
machine learning modeling tasks in general.
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