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Abstract

This PhD-thesis is based on the five experiments I have performed during
my time as a PhD-student. Three experiments are implementations of non-
contextual inequalities and two are implementations of witness functions for
classical- and quantum dimensions of sets of states.

A dimension witness is an operator function that produce a value when
applied to a set of states. This value has different upper bounds depending
on the dimension of the set of states and also depending on if the states are
classical or quantum. Therefore a dimension witness can only give a lower
bound on the dimension of the set of states.

The first dimension witness is based on the CHSH-inequality and has the
ability of discriminating between classical and quantum sets of states of two
and three dimensions, it can also indicate if a set of states must be of dimension
four or higher.

The second dimension witness is based on a set theoretical representation
of the possible combinations of states and measurements and grows with the
dimension of the set of states you want to be able to identify, on the other hand
there is a formula for expanding it to arbitrary dimension.

Non-contextual hidden variable models is a family of hidden variable mod-
els which include local hidden variable models, so in a sence non-contextual
inequalities are a generalisation of Bell-inequalities. The experiments pre-
sented in this thesis all use single particle quantum systems.

The first experiment is a violation of the KCBS-inequality, this is the sim-
plest correlation inequality which is violated by quantum mechanics.

The second experiment is a violation of the Wright-inequality which is the
simplest inequality violated by quantum mechanics, it contains only projectors
and not correlations.

The final experiment of the thesis is an implementation of a Hardy-like
equality for non-contextuality, this means that the operators in the KCBS-
inequality have been rotated so that one term in the sum will be zero for all
non-contextual hidden variable models and we get a contradiction since quan-
tum mechanics gives a non-zero value for all terms.





Sammanfattning på Svenska

Denna doktorsavhandling är baserad på fem experiment jag har utfört under
min tid som doktorand. Tre experiment är realiseringar av icke-kontextuella
olikheter och de två övriga är realiseringar av vittnesfunktioner för klassiska
och kvantmekaniska dimensioner hos en uppsättning tillstånd.

Ett dimensionsvittne är en funktion som tar en uppsättning tillstånd och
producerar ett värde. Detta värde har olika övre gränser beroende på dimen-
sionen hos uppsättningen tillstånd och beror även på om tillstånden är klassiska
eller kvantmekaniska. På grund av detta kan ett dimensionsvittne endast ge en
undre uppskattning på dimensionen hos en uppsättning tillstånd.

Det första dimensionsvittnet är baserat på CHSH-olikheten och kan urskilja
mellan klassiska och kvantmekaniska tillstånd av två och tre dimensioner, det
kan även avgöra ifall uppsättningen av tillstånd har dimension fyra eller högre.

Det andra dimensionsvittnet är baserat på en sannolikhetsteoretisk repre-
sentation av möjliga kombinationer av tillstånd och mätningar. Detta vittne
växer med antalet dimensioner som skall kunna urskiljas, å andra sidan finns
det en formel för hur man kan expandera vittnet till godtycklig dimension.

Icke-kontextuella gömda-variabel-teorier är en familj av gömda-variabel-
teorier som innefattar lokala gömda-variabel-teorier, så i en bemärkelse är
icke-kontextuella olikheter en generalisering av Bell-olikheter. Experimenten
i denna avhandling använder sig alla av en-partikel-kvantsystem.

Det första experimentet är en brytning av KCBS-olikheten, det är den en-
klaste olikheten baserad på korrelationer som kan brytas av kvantmekanik.

Det andra experimentet är en brytning av Wright-olikheten som är den en-
klaste olikheten som kan brytas av kvantmekanik, den innehåller endast pro-
jektorer inga korrelationer.

Det sista experimentet i avhandlingen är en realisering av en Hardy-lik
olikhet för icke-kontextualitet. Detta betyder att operatorerna i KCBS-olikheten
har roterats så att en term i summan är identiskt noll för alla icke-kontextuella
gömda-variabel-teorier och vi får en motsägelse då kvantmekaniken ger ett
noll-skiljt värde för alla termer.
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Figure 1: The optical components used in the experiments.
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Background
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1. Introduction

This thesis will describe the experiments (detailed in papers I-IV) I have been
part of conducting as a PhD-student in the Quantum Information and Quan-
tum Optics group at Fysikum at Stockholm University. We will start with a
brief background where the key concepts will be introduced1. Topics that are
good to have in mind when reading the thesis include qubits and their higher
dimensional derivatives, dimensions of physical entities, and the implications
of contextuality, locality, and realism. I will also, mostly as a curiosity, show
some connections between graphs and non-contextual inequalities.

1N.B. this is not to be considered a textbook on the subject, a background in
physics and familiarity of quantum mechanics is assumed.
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1.1 Quantum state preparation

When you do calculations in quantum mechanics you usually want to answer
something like: “if a spin-half particle in the state |ψ〉 = 1√

2
(|↑〉z + eiϕ |↓〉z)

pass through a Stern-Gerlach apparatus aligned in the z-direction, what are
the possible measurement outcomes and their corresponding probabilities?”.
This is quite straight forward and it only takes a line or two to write down
the answer. In this thesis however we are discussing experimental quantum
mechanics, so how would you do the same thing experimentally? To start with
you need a source of spin-half particles and some way of changing the state
of the particles in a controlled manner. Depending on the motivation for the
experiment and the assumptions made you may need to make sure that you
can eject single particles from the source. Say we want to make an ’optical
Stern-Gerlach’ experiment, this will work well since the photon, even though
it is a spin-one particle, only assume the spin states -1 and 11. The spin of the
photon is directly related to the polarization of the classical light field which
the photon would seem to be a part of. Thus a polarizing beam splitter (PBS)
will work as a Stern-Gerlach apparatus, and the convention is that horizontal
polarization corresponds to spin 1 and vertical polarization corresponds to spin
-1 in the z-basis2. An even superposition, with real coefficients, of these spin
states gives the x-basis, where spin 1 corresponds to diagonal polarization and
spin -1 to anti-diagonal. This means that if we want to align our Stern-Gerlach
apparatus in the x-direction all we need to do is rotate it 45 degrees around the
direction of propagation. This is a bit cumbersome however and an equivalent
action is to put half wave-plates (HWP) before and after the PBS and rotate
them by an angle of 22.5 degrees3 but more of this in the next section.

Now back to the state |ψ〉, we need a source of photons, in this thesis we
will use a laser. The laser emits light with a certain polarization and the first
thing to do is to determine which it is. The simplest way to do this is with a
PBS, two HWPs, and a quarter wave-plate (QWP)4. Next we use wave-plates
to rotate the polarization to the polarization corresponding to the state |ψ〉.
The final thing we need to do is attenuate the laser light until we only have one
photon at a time.

1Photons with helicity zero are called virtual photons and cannot be directly de-
tected.

2In this notation the positive y-direction is taken to be the direction of propagation
and thus spin 1 in the y-basis corresponds to right circular polarization, and -1 to left
circular polarization.

3Please see appendix A for the behavior of PBSs and HWPs.
4More information in appendix A.
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1.2 Measurement

In this section I will describe the idea behind and the implementation of the
quantum optical measurement system that has been used in the experiments.
We have taken the viewpoint that a measurement can be divided into two parts,
first a transformation to the eigenbasis of the observable and then detection of
the eigenstates. This approach is especially useful when making sequential
measurements since it is a simple task to entangle the different eigenstates
with other degrees of freedom of the photon. After which we transform back
to the laboratory basis. At this point we can choose to either send the photon
to another observable or to detection.

The system will be presented in a box framework. First we have the P-
box, state preparation, this is followed by the U-box, unitary transformation
to eigenbasis of the observable. Then comes the E-box, entangling eigenstates
with other degrees of freedom, the U†-box, unitary transformation back to the
laboratory basis. Finally we have the D-box, the detection of the photon. The
block of U->E->U† can be interpreted as a non-demolishing measurement, and
by adding more of these blocks sequential measurements can be done.

5



1.2.1 Box framework

• P-box - The P-box is the first box in the setup used in the experiments
presented in this thesis. P stands for preparation and the P-box is where
the states needed for alignment of the operators, as well as those needed
for testing the inequalities, are prepared. The states are encoded in what
will be called the laboratory basis.

• U-box - The second box in the setup is the U-box. U stands for unitary
transformation of the state from the laboratory basis to the eigenbasis of
the observable to be measured.

• E-box - The middle box is the E-box. E stands for entangling the eigen-
states with some other mode1 of the state.

• U†-box - The fourth box is the U†-box. U† stands for the inverse unitary
transformation, i.e, the transformation back to the laboratory basis.

• D-box - The final box is the D-box. D stands for detection and it is
where the particle is destroyed in order to get a click in the detector.

These boxes are all clearly implementation technology dependent but the
one which might need a bit more looking into is the E-box. To entangle the
eigenstates we can choose whichever mode we want for each eigenstate, as
long as it is not used for something else. What we mean by entangling here is
that we add information to the state so that the different eigenstates are distin-
guishable, even after further evolvement of the state. Take for instance a qubit
encoded in the polarization in a single spatial mode. If you want to measure
this qubit you will probably use a phase-plate of some kind to rotate it to the
basis you want to measure it in2. Then you put a PBS in the beam and de-
tectors to detect the horizontal and the vertical parts, respectively. What you
actually do with the PBS is that you entangle the eigenstate “+” with the spatial
mode transmitted into by the PBS and the eigenstate “-” with the spatial mode
reflected into by the PBS. You have added information to the state specifying
that if you find the photon at this point it is this specific eigenstate.

1I.e., other than those used for encoding.
2This is the U-box by the way.
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1.2.2 Sequential measurements

When making sequential measurements the box framework is very convenient
to work with, all observables are implemented in the same way and there is a
laboratory basis as reference between all observables so there is little room for
confusion of how the state is encoded. In the papers presented in this thesis
two different systems have been used but for clarity we will start with a third
system that might be easier to grasp1. In all the systems we start with a P-
box, followed by a U-box, then differences will come in the E-box where we
entangle the eigenstates with different degrees of freedom.

In the first example, see Fig. (1.1), we entangle the eigenstates with dif-
ferent spatial modes. This leads to the fact that we need two U†-boxes, one in
each spatial mode. It also means that we will have two instances of the second
operator, one after each U†-box. Each of these will have a U-box, an E-box,
and two U†-boxes. Finally we will have four D-boxes, one after each U†-box.
These four will represent outcomes “++”2, “+-”, “-+”, and “–” which is all
the possible combinations we can get from this simple experiment3. Since all
outcomes are spatially separated the D-boxes need to consist only of detectors
and depending on which detector clicks the different outcomes can be inferred.

Figure 1.1: In this schematic we have an overview of two sequential measure-
ments where the outcomes are encoded in spatial modes. After the first E-box
we need two U†-boxes since we have two different outcomes. Likewise after the
second set of E-boxes, we have two U†-boxes each which finally results in four
D-boxes. It is noteworthy that each D-box must contain two detectors, since even
though we have a two level system we transform back to the laboratory basis.

1To keep the complexity as low as possible we consider only two dimensional
states and two consecutive measurements.

2Reading as; plus for the first observable and plus for the second.
3Note that this is the way the Stern-Gerlach experiment is usually presented in

introductory textbooks.
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In the second example, see Fig. (1.2), the E-box instead entangle the eigen-
states with time modes, i.e., separating the eigenstates by a certain amount of
time1. This system requires a pulsed laser so that the photons will arrive at
specific times. The benefit of this system as opposed to the previous, is that we
only need one U†-box and a single instance of the second operator. We will
also need only one D-box, however we will need some kind of synchronization
device to distinguish between the different outcomes. The D-box will also in
this case be just detectors, which indicates if a photon has been detected, the
times at which it can detect a photon will give us the four outcomes “++”, “+-”,
“-+”, and “–”.

Figure 1.2: In this schematic we have encoded the outcomes in time, so in the
E-boxes there is a delay device which separates the two outcomes. Of course the
delay has to be different in the two E-boxes, so that we get four well separated
times. In addition to the optical setup we also need a synchronization box which
synchronizes the detector clicks with the pulsing of the laser, so that we know
which detector click belongs to which outcome.

1Larger than the coherence time of the photon.
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The final example, see Fig. (1.3), comes with three restrictions; first: you
are not allowed to use the polarization for encoding your state, second: you
can only make two consecutive measurements, and third: the measurements
must be dichotomic. The reason for these restrictions is that the first E-box
will entangle the eigenstates with polarization modes. Again, it has the benefit
of just needing one U†-box and a single instance of the second operator1. In
addition it does not need any synchronization device to distinguish between
outcomes. A drawback however, is that it consumes a lot of detectors since the
D-box will have a PBS in each of the modes, and each detector will represent
one of the outcomes “++”, “+-”, “-+”, and “–”.

Figure 1.3: In this last schematic the first E-box encodes the outcomes in polar-
ization modes and the second one in spatial modes. This makes for a compact
setup without delays and thus without the need of a pulsed source. However, we
need PBSs to translate the polarization modes to spatial modes and thus we need
four detectors in order to register all of our outcomes.

1The simplest implementation of the second operator is to let the E-box entangle
the eigenstates with different spatial modes, in this way a detector in each spatial mode
will give the outcomes of the second operator. No U†-box is needed since there will
only be detection of the photons after the operator.
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1.3 Dimensions

As with all words that are used in daily life, most people have an idea of
what the word dimension means. This meaning might differ depending on
the person and the situation and thus we need to define how we will use the
word in this thesis1. To start with we note that dimensionality is a property
of a set of states not of a single state, it is only when we compare it with
other states that we see how much information we need, to fully distinguish
it from the rest. This leads us to the definition of classical dimension; the
number of distinguishable states in a set, e.g. the two dimensions used in
CMOS technology are defined as the ranges 0V - 1

3 VDD
2, corresponding to

’0’, and 2
3 VDD - VDD, corresponding to ’1’. For a quantum system we are not

satisfied with just having distinguishability of the states, we demand that they
span a Hilbert space, i.e., the states must be superposable. This is a purely
experimental issue since if you have a set of orthonormal state vectors |i〉 it
is easy to write a general state |ψ〉 = 1√

∑αiα
∗
i

∑
N
0 αi |i〉, however just because

you can make a number of states in the lab does not mean you can easily
construct any superposition of them. As an example of a two dimensional
quantum system we can take the spin states of photons, if we can prepare spin
1 and spin -1 in the z-basis and then measure in the x-basis we see that both
are superpositions of spin 1 and spin -1 in that basis.

1It is important with a clear definition of all concepts in physics but especially
necessary for words which have a relaxed or different meaning outside of physics.

2VDD is the supply voltage.
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1.4 Classicality and quantumness

The aim of this thesis is to illustrate different ways of discerning the descrep-
ancy between classical and quantum mechanics.

In macroscopic mechanics, objects have pre-established properties which
does not change depending on which measurements (or lack there of) are
made. Take for instance a ball and two boxes, now the boxes can contain the
ball or be empty. This is fact and will not change unless we add or remove the
ball to/from the boxes. Extrapolating this idea to microscopic systems might
be intuitive and we call this a classical viewpoint.

According to quantum mechanics however, particles (e.g. photons) do not
have pre-established properties in this way. Let the polarisation state of an
ensemble of photons correspond to the boxes in the example above, where
horizontal polarisation would be the ball in box one, vertical polarisation; the
ball in box two and if you would detect both horizontal and vertical polarisa-
tion, this would correspond to both boxes being empty. So far it would seem
there is no difference between the two examples, but if you were to rotate you
measurement apparatus 45 degrees around the axis of propagation the result
would be completely different. If the photons were created horizontally then
half of the photons would end up in each of the detectors in the new measure-
ment apparatus, the same for vertically created photons. The photons that were
created to have equal probability to be horizontal and vertical could be any of
the three possible outcomes (depending on how they were created). While the
classical viewpoint perhaps was intuitive, this modern viewpoint explain ex-
perimental results and successfully predict how the world will behave, giving
rise to many technological advancements.

Note that the randomness, or unpredictability, that arises from quantum
mechanics is not due to lack of knowledge but is inherent to the system. In
contrast, the state of the ball and boxes can seem unpredictable if we are not
present when the system is prepared. However, most of us would agree that
there is a “true” state of the boxes which is just unknown to us1.

1Think of a small child who is present when the system of ball and boxes is pre-
pared. When asked what a person not present at the preparation would answer about
the state, the child (until a certain degree of maturity) would indicate the box with the
ball in it, thinking that fact is fact.
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1.5 Realism

Since the begining of quantum mechanics there has been a discussion about
what the wavefunction really describes and if this description can be consid-
ered a complete description of the system at hand.

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen wrote an article[1]
were they argue against quantum mechanics being complete. They make the
assumption that the world we live in must have an ’objective reality’, and quan-
tum mechanics clearly states that two noncommuting operators cannot be si-
multaneously determined. They conclude that since there exist some special
states, so called EPR-pairs, in which a particle simultaneously can have ele-
ments of reality for two noncommuting operators quantum mechanics is in-
complete. John Bell wrote, in 1964, an article in which he derives a theorem
which states that, using states of the same kind as EPR you can make certain
measurements for which quantum mechanics will give a higher expectation
value than any local hidden-variable theory1 (LHVT). These measurements on
the right kind of state were made experimentally by Freedman and Clauser in
1972[2]. They used photons from radiative calcium to generate meaurement
results which exceeded the ’classical bound’ in Bell’s theorem and thus gave
the first experimental evidence that the world is not governed by local-realism.
These results show that there is a fundamental flaw in the classical understand-
ing of the world, and that this flaw is made visible under the assumption of
locality.

Another direction was taken by Simon B. Kochen and Ernst Specker in
1967[3], when they considered a larger family of hidden-variable theories
(HVT), the non-contextual ones. The idea is basically the same as the one
of Bell, you can find a set of measurements for which the expectaion value
of quantum mechanics exceed that of any non-contextual hidden-variable the-
ory (NCHVT). The first experimental verification of the Kochen-Specker the-
orem was done with neutrons by Bartosik, Klepp, Schmitzer, Sponar, Cabello,
Rauch, and Hasegawa[4].

1I.e. a theory based on local-realism.
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Objective reality:
The concept of objective reality springs from the idea that there exists ele-
ments of reality. “If without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to
this physical quantity.”
Locality: Non-contextuality:
The concept of locality springs from
the theory of relativity, or more pre-
cicely from the postulate that noth-
ing can travel faster than the speed
of light. Thus a particle at position
A can only have information about
a particle at position B if the infor-
mation has had time to be transmit-
ted the distance from B to A at the
speed of light. “But on one supposi-
tion we should, in my opinion, ab-
solutely hold fast: the real factual
situation of the system S2 is inde-
pendent of what is done with the
system S1, which is spatially sepa-
rated from the former.” 1

The concept of non-contextuality
comes from the notion that given
three observables A, B, and C,
where the outcome of A is not af-
fected by neither the outcome of B
nor C (the outcome of these latter
two can affect each other though),
then the outcome of A is not af-
fected by if it is measured with B or
C.2

Figure 1.4: These information boxes has been presented before in my Licentiate
thesis.

1A. Einstein in Albert Einstein, Philosopher Scientist, (Edited by P. A. Schilp)
p.85, Library of Living Philosophers, Evanston, Illinois (1949).

2The act of measuring A with B is one context, and measuring A with C another.
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1.6 Graphs

Graphs are a convenient tool to use when working with noncontextuality in-
equalities, they will also be some sort of theme for this thesis. We will talk
about two different but related kind of graphs; the orthogonality graphs and the
exclusivity graphs. An orthogonality graph is a set of vertices and edges, where
an edge connects two vertices if they are orthogonal. An exclusivity graph is
a set of vertices and edges, where an edges connects two vertices if they are
exclusive. What do we mean when we say that two vertices are orthogonal or
exclusive? To start with we associate the vertices to, in the case of orthogonal-
ity graphs, unit-vectors or, in the case of exclusivity graphs, probabilities for
events. Now, an orthogonality graph shows the orthogonality relation between
the set of unit-vectors and an exclusivity graph shows the exclusivity relations
of the set of events, we say that two events are exclusive if they cannot both be
true simultaneously.

From graph theory we can learn some properties of graphs which are use-
ful in our study of noncontextuality inequalities. A fundamental property of a
graph G is the independence number, α(G). α(G) is the largest set of inde-
pendent vertices in G, two vertices are independent if they are not connected
by an edge. Calculating α(G) is a NP-hard problem so another property of
the graph G, the Lovász number ϑ(G), which is an upper bound of α(G)
was found, and this is computable in polynomial time. ϑ(G) is defined as

ϑ(G) = max
n
∑

i=1
| 〈ψ|vi〉 |2,1 and this is of course the sum of the expectation

values of the projectors |vi〉〈vi|.

1The maximization is done over the different sets of |vi〉s that fulfill the graph,
these are called orthogonal representations of the graph, and all |ψ〉s.
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1.7 Units of quantum information

Information is always carried by and stored in some kind of physical system,
the system of choice depends on the application and can vary from scratches
on bark to the direction of the current in a fluxqubit. In this thesis we will use
spatial and polarisation degrees of freedom of photons, these photons should
come one at a time and as such be treated like single quantum particles. This
is not really true since a proper single photon source was not available when
the experiments were done. Instead we used an approximation to a single
photon in the guise of attenuated coherent light. The reason we need a single
quantum particle is the assumptions we will make that a particle can contain
more information than a classical description allows1. Mathematically we can
write it |ψ〉, for a single particle state, |ψ1,ψ2〉, for a two particle state, and so
on. Now the smallest system that can contain information is a two dimensional
one2, this is in classical information theory called a binary digit, bit for short,
and the quantum informational counterpart is called a quantum bit (qubit).
States containing quantum information lives in Hilbert space3, the dimension
of the Hilbert space needed for distinguishing the different states in use is the
dimension of the information carrying entity.

A general qubit can be written as a |0〉+beiϕ |1〉 ,a,b ∈ R, the reason that
a and b are real is that the global phase of a state is a free parameter and has
no physical meaning. The states are usually normalized, this means that the
square of the coefficients a and b add to one a2+b2 = 1 and is done to simplify
calculations4. Thanks to the fact that Hilbert space is complex, a qubit is not
defined only by the relative amplitudes of |0〉 and |1〉, but also the relative
phase ϕ . This means that (pure) states live on a two dimensional surface in a
three dimensional space, called the Bloch sphere5.

1It would not have mattered if we used 1, 2, or 100 particles as long as we could
know for sure that was the exact number we were using, but since knowing the exact
number of particles is a difficult task using one particle is the easiest.

2This represents that something is or is not, a one dimensional system only has
one state and can not contain information since information only lives in relation to
something else.

3 Hilbert space is a complex space with a metric and an innerproduct.
4The magnitude of a state only holds meaning if it can be compared to something

else, of which there is none for a single state.
5Mixed states live in the Bloch ball, but that is another story altogether.
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Part II

Experiments
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2. Bell

We will start this journey of experimental quantum optics and quantum infor-
mation with a theoretical chapter. The resource that most clearly represent
the quantumness in quantum information is entanglement. The discussion of
entanglement started with a paper by Einstein, Podolsky, and Rosen[1] where
they claimed that quantum mechanics is either incomplete or incorrect. This
led to the EPR-paradox and the subsequent discussion between Einstein and
Bohr. Bell was inspired by the idea that it might be possible to design an
experiment[5] for which quantum mechanics would predict a value unreach-
able by the classical point of view (represented by Einstein et al). He used the
notion of LHVTs, which have the property of local-realism (see boxes about
locality and objective-reality in Sec. (1.5)), to construct a function of the ex-
pectation values of some specific observables. This fuction was bounded from
above, however the bound was surpassed by quantum mechanics. Clauser,
Horne, Shimony, and Holt [6] generalized the result of Bell and constructed
an inequality (the CHSH-inequality) which was experimentally testable. So
physicists were now provided with a way to show or solve the EPR-paradox.
This was done by Freedman and Clauser[2] as well as by Aspect, Grangier,
Roger, and Dalibard[7–9] using entangled photons from a calcium cascade
source.
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2.1 Derivation of the CHSH-inequality

In the original article by Bell he showed that it is possible to construct situ-
ations where a LHVT cannot correctly reproduce the predictions of quantum
mechanics. His argumentation is based on a Gedankenexperiment presented
by Bohm and Aharonov[10], which basically is the EPR-experiment in a sim-
plified form. While fundamentally important, the aim of Bell’s article was
not to suggest an experiment which could prove if the world is describable
by LHVTs or quantum mechanics, just that such an experiment can be con-
structed. Clauser, Horne, Shimony, and Holt[6] presented a generalization of
Bell’s theorem and subsequently a proposition for an experiment which could
make the distinction between LHVTs and quantum mechanics. They chose the
experimental setting to consist of two parties, Alice and Bob, who can choose
between two different measurement settings, x ∈ {a,a′} and y ∈ {b,b′}. Fur-
ther, pairs of particles are sent to the two parties, one particle to each. Upon
measurement the results A(x) and B(y), with possible values ±1, are recorded.
Assume that there is a LHVT that can describe this system, then the measure-
ment outcomes could be written A(x,λ ) and B(y,λ ), where λ is the hidden
variable. Note that since we assume that the theory is local A(x,λ ) must be in-
dependent of y and B(y,λ ) independent of x. We can now define the correlation
between A and B as:

CAB(x,y) =
∫

Λ

A(x,λ )B(y,λ )ρ(λ )dλ ,

where ρ(λ ) is the probability distribution of λ , for λ ∈ Λ1. Now consider:

∣∣CAB(a,b′)−CAB(a,b)
∣∣≤∫

Λ

∣∣A(a,λ )B(b′,λ )−A(a,λ )B(b,λ )
∣∣ρ(λ )dλ

=
∫

Λ

∣∣A(a,λ )B(b′,λ )∣∣(1−B(b′,λ )B(b,λ ))ρ(λ )dλ

=
∫

Λ

(1−B(b′,λ )B(b,λ ))ρ(λ )dλ

=1−
∫

Λ

B(b′,λ )B(b,λ )ρ(λ )dλ .

Let us make another setting a’ which has the correlation CAB(a′,b′) = 1− δ ,
where 0≤ δ ≤ 1. We can now divide the set Λ into Λ±= {λ |A(a′,λ ) =±B(b′,λ )}2,

1Λ contains all knowledge that can be preestablished for the system.
2I.e., we separate the HVs for which A and B are correlated from those for which

they are anticorrelated.
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it follows that
∫

Λ−
ρ(λ )dλ = 1

2 δ . Now we can write:∫
Λ

B(b′,λ )B(b,λ )ρ(λ )dλ =
∫

Λ+

A(a′,λ )B(b,λ )ρ(λ )dλ −
∫

Λ−
A(a′,λ )B(b,λ )ρ(λ )dλ

=
∫

Λ+

A(a′,λ )B(b,λ )ρ(λ )dλ +
∫

Λ−
A(a′,λ )B(b,λ )ρ(λ )dλ

−2
∫

Λ−
A(a′,λ )B(b,λ )ρ(λ )dλ

=
∫

Λ

A(a′,λ )B(b,λ )ρ(λ )dλ −2
∫

Λ−
A(a′,λ )B(b,λ )ρ(λ )dλ

≥
∫

Λ

A(a′,λ )B(b,λ )ρ(λ )dλ −2
∫

Λ−

∣∣A(a′,λ )B(b,λ )∣∣ρ(λ )dλ

=
∫

Λ

A(a′,λ )B(b,λ )ρ(λ )dλ −2
∫

Λ−
ρ(λ )dλ

=CAB(a′,b)−δ

thus we have:∣∣CAB(a,b′)−CAB(a,b)
∣∣≤1−

∫
Λ

B(b′,λ )B(b,λ )ρ(λ )dλ

≤1−CAB(a′,b)+δ

=2−CAB(a′,b)− (1−δ )

=2−CAB(a′,b)−CAB(a′,b′)

and we finally end up with the inequality:∣∣CAB(a,b′)−CAB(a,b)
∣∣+CAB(a′,b)+CAB(a′,b′)≤ 2

or as it usually is written:∣∣CAB(a′,b′)+CAB(a,b′)−CAB(a,b)+CAB(a′,b)
∣∣≤ 2.

Now let us look at another way of deriving the inequality, starting with
the exclusivity graph, see Fig. (2.1), introduced by Cabello, Severini, and
Winter[11]. From this we can construct the inequality:

SCHSH =P(11|00)+P(00|00)+P(11|10)+P(00|10)

+P(10|11)+P(01|11)+P(11|01)+P(00|01)≤ 3

where P(ab|xy) is the probability that the observables Ax and By take the val-
ues (−1)a and (−1)b, x ∈ {0,1} and y ∈ {0,1} are the settings. From the
probabilities P(ab|xy) we can construct expectation values of the observables:

〈AxBy〉= P(11|xy)+P(00|xy)−P(10|xy)−P(01|xy).
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Now if we instead look at the expectation values:〈
1+(−1)a+bAxBy

〉
= 2(P(ab|xy)+P(āb̄|xy)),

and group the probabilities of the inequality by which measurements they be-
long to we can make the identification:

[P(11|00)+P(00|00)]+ [P(11|10)+P(00|10)]

+[P(10|11)+P(01|11)]+ [P(11|01)+P(00|01)]

=
1
2
(〈1+A0B0〉+ 〈1+A1B0〉+ 〈1−A1B1〉+ 〈1+A0B1〉)

=
1
2
(4+ 〈A0B0〉+ 〈A1B0〉−〈A1B1〉+ 〈A0B1〉)

≤3,

which finally gives us:

〈A0B0〉+ 〈A1B0〉−〈A1B1〉+ 〈A0B1〉 ≤ 2.

Figure 2.1: The exclusivity graph for SCHSH .
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3. Bell Dimension Witness

The first experiment we will discuss is the implementation of a dimension
witness inspired by the CHSH-inequality[6].

A dimension witness is a mathematical function of operators that yields
different values depending on the dimension of the states on which the oper-
ators acts. The higher the dimension the larger is the value that can be ob-
tained. Please note that these values are the maximal values obtainable, thus
a dimension witness can only give a lower bound of the dimension (a higher
dimensional state can pose as a lower dimensional one). This means that a di-
mension witness cannot be used to detect possible side channels1 for example.
This chapter is based on one of the experiments described in Paper I.

1Side channel attacks is a collective name for attacks on communication schemes
where the adversary introduces additional degrees of freedom (side channels) in order
to extract information from the communicating parties.
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3.1 Motivation

The idea of constructing witnesses for the dimension of quantum systems was
conceived by Brunner et. al. in 2008[12]. They took a black-box approach
and considered correlations beween separated measurement devices. In 2010,
Gallego et. al.[13] took this idea and made it device-independent1 by look-
ing at the outcomes conditioned on the setting of the state preparation and
the measurement. Here we will discuss a dimension witness inspired by the
device-independent idea but which actually emerges when one translates a
device-independent protocol, based on the CHSH-inequality, to a semi-device-
independent2 one[14]. This has the advantage that the states and measurements
are chosen for their applicability in quantum key distribution and/or quantum
random-number-generation protocols.

1Device-indenpendence means that the communicating parties either do not know
the inner workings of their devices or do not trust them.

2Semi-device-independence means that the communicating parties have some
level of trust in their devices, even if they do not have complete control over the inner
workings.
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3.2 Derivation

The starting point of the derivation of the dimension witness in this chapter
is a two partite device independent protocol[14]. The two parties, say Alice
and Bob, each get one particle of a maximally entangled pair. They randomly
choose to make one out of two predefined measurements each and record the
outcome. The security of this protocol comes from the fact that by randomly
choosing joint events1, they can construct a CHSH-inequality and if they vio-
late the classical bound nobody has intercepted their particles since the entan-
glement is still there, i.e., their communication is secure.

Let the measurement settings of Alice and Bob be x’ and y, respectively,
and their outcomes be a and b. Their joint probability for the different out-
comes can now be expressed as: P(a,b|x′,y) and the CHSH-inequality as:

S = ∑
a,b,x′,y

αa,b,x′,yP(a,b|x′,y).

Now consider a similar situation where instead of the two parties having a dis-
tributed entangled state, one of them sends single particles to the other one.
Let Alice be the sender and thus not have a measurement outcome, this can
be modeled as Alice choosing a measurement and getting an outcome which
in turn is the setting for the sender device. The outcome probability for Bob
can now be expressed as: P(b|a,x′,y)P(a|x′) where the initial choice and re-
sulting outcome for Alice gives the new setting (a,x′) = x. Since x’ is chosen
randomly and unweighted: P(a|x′) = 1

A where A is the size of the alphabet of a
and the witness function corresponding to the CHSH-inequality will then take
the form:

D = ∑
a,b,x′,y

αa,b,x′,y

A
P(b|a,x′,y)

where (a,x′) = x and can thus be written:

D = ∑
b,x,y

βb,x,yP(b|x,y).

This is the general formula and we will now discuss the specific expression of
the dimension witness presented in this chapter.

1Occations where both Alice and Bob detects a particle.
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The measurements in the CHSH-inequality are dichotomic, i.e., they can
take the values -1 or 1, and since Alice and Bob choose one out of two mea-
surements each they end up with 16 different outcome probabilities which in
order to get the greatest violation should have coefficients as shown below:

P(1,1|x′1,y1) −P(1,1|x′1,y2) P(1,1|x′2,y1) P(1,1|x′2,y2)
−P(1,−1|x′1,y1) P(1,−1|x′1,y2) −P(1,−1|x′2,y1) −P(1,−1|x′2,y2)

−P(−1,1|x′1,y1) P(−1,1|x′1,y2) −P(−1,1|x′2,y1) −P(−1,1|x′2,y2)
P(−1,−1|x′1,y1) −P(−1,−1|x′1,y2) P(−1,−1|x′2,y1) P(−1,−1|x′2,y2)

This will translate to the outcome probabilities of the witness function,
with (1,x′2) = x1, (−1,x′2) = x2, (1,x′1) = x3, and (−1,x′1) = x4 (the colors
indicate corresponding terms):

P(1|x1,y1) −P(−1|x1,y1) P(1|x1,y2) −P(−1|x1,y2)

−P(1|x2,y1) P(−1|x2,y1) −P(1|x2,y2) P(−1|x2,y2)

P(1|x3,y1) −P(−1|x3,y1) −P(1|x3,y2) P(−1|x3,y2)

−P(1|x4,y1) P(−1|x4,y1) P(1|x4,y2) −P(−1|x4,y2)

Now the expectation values Exy =P(1|x,y)−P(−1|x,y) can be constructed
and give the expression:

D =(Ex1y1 +Ex1y2)− (Ex2y1 +Ex2y2) (3.1)

+(Ex3y1−Ex3y2)− (Ex4y1−Ex4y2) (3.2)

for the witness function.
Since the basis for this witness is a communication protocol we choose the

four states, that Alice can emit, to be the BB84[15] states with the following
correspondence: x1⇒ |1〉, x2⇒ |0〉, x3⇒ 1√

2
(|0〉+ |1〉), and x1⇒ 1√

2
(|0〉−

|1〉) and in order to get as large violation as possible we need to optimize the
measurements y for Bob.

A general dichotomic measurement can be written as:

Mi = 1−2∑ |mi〉〈mi| (3.3)

where ∑ |mi〉〈mi| represents1 the eigenstates with eigenvalue -1.

1N.B. the index i referes to the measurement not to the eigenstate of the measure-
ment, i.e., it is not a summation index.
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3.3 Setup

We have seen that the witness can distinguish between bits, qubits, trits, qutrits,
and quarts. Thus in order to test this witness we will need to be able to prepare
states belonging to these classes. A nit is just an n level system without phase
relation, while a qunit is an n level system with phase relation. This means that
we need a physical system of at least four levels where we should be able to
set a phase between at least three of these. We have chosen to encode our *nits
in two spatial- and two polarization degrees of freedom. An overview of the
setup is given in Fig. (3.1).

Figure 3.1: The setup for the CHSH-inspired dimension witness.
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The P-box

In order to prepare a single photon state we need a source of single photons.
The single photon source used in this experiment consists of a highly attenu-
ated laser. A laser emits photons in a coherent state, this means that they are
in a coherent superposition of all Fock-states1. By attenuation we can shift the
expectation value of the number operator to be significantly lower than one,
this will then yield a state where multiphoton events are very rare while single
photon events still occur relatively often. The attenuation is done in two steps,
first a HWP and a PBS make up a variable attenuator, then an optical density
(OD) filter does the main attenuation. In the single photon source there is also
an additional QWP just before the OD-filter, this is in place to rotate the po-
larization of any reflections from the OD-filter and fiber coupler so that they
cannot pass the same way through the PBS back to the laser2. When the pho-
ton state has been attenuated it is coupled to a single mode optical fiber. The
fiber has a passive polarization controller attached so that the photon source
can be made to produce single photons vertically polarized in a single spatial
mode, see Fig. (3.2). Now we want to expand the state to two spatial modes,
this is done by a HWP and a PBS whereby the state

|ψ〉= sin(2θ1) |a〉+ cos(2θ1) |b〉 (3.4)

can be produced3. In each of the two spatial modes there are additional HWPs
to expand the state to

|ψ〉= sin(2θ1)cos(2θ2) |H,a〉+ sin(2θ1)sin(2θ2)|V,a〉
+cos(2θ1)cos(2θ3)|H,b〉+ cos(2θ1)sin(2θ3)|V,b〉.

(3.5)

This state has access to four levels by adjusting the angle θi of the HWPs,
see Fig. (3.3), and thus has the possibility to constitute a quart. Since we only
use HWPs, and not QWPs, all coefficients in the state will be real numbers.
This is not a problem for the experiments since all the states needed both for
aligning the measurements and for testing the inequalities have coefficients
which are real. Now that a state of four levels can be created we can define the
laboratory basis:

|0〉 ≡ |H,b〉, |1〉 ≡ |V,a〉
|2〉 ≡ |H,a〉, |3〉 ≡ |V,b〉. (3.6)

1 |ψ〉=
∞

∑
k=0

akeiϕk |k〉, where the ak’s are the probability amplitudes for the different

Fock-states, and the ϕk’s are the relative phases.
2Reflections that go straight back into the laser cavity can make the laser unstable.
3Note that the polarization in mode a is horizontal while in b it is vertical.
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Figure 3.2: The source of emulated single photons. Directly after the laser we
have a HWP to regulate the fraction reflected in the PBS (this works as a variable
attenuator). Before the OD-filter we have a QWP so that any reflections from
the filter or the fiber coupler will be turned to horizontal polarization and thus
transmitted by the PBS. The optical fiber goes through a passive polarization
controller so that we can set the polarization as we want it. This setup gives us
nearly single photons in a single spatial mode and a set polarization mode.

Figure 3.3: Preparation of quantum states. A HWP turns the polarizations so
that we can distribute the photon state over our two spatial modes. The two
spatial modes both have HWPs in order to distribute the photon state over the
polarization modes.
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The U-box

The measurements in this experiment are all dichotomic, and the two outcomes
for each measurement is determined by the sign of the eigenvalue of the eigen-
states of the corresponding observable. With the encoding we have chosen and
the measurements we need to perform, all transformations can be done with a
HWP in mode a, see Fig. (3.4), resulting in the following:

|−〉 ≡ |V,a〉
|+〉 ≡ α |H,a〉+β |H,b〉+ γ |V,b〉 (3.7)

The E-box

When the state has been rotated by the U-box the negative-valued eigenstate
of the observable will be |mi〉 = |V,a〉 in all measurements except for the
quart, where |mi〉 = |H,b〉 and |mi〉 = |V,b〉. Thus a PBS in mode a, see Fig.
(3.4), will entangle the negativ-valued eigenstate with spatial mode a and the
positive-valued ones with the spatial modes b, c, and d.

Figure 3.4: Unitary transformation from laboratory basis to the eigenbasis of the
operator and entangling the eigenstates with spatial modes. The HWP in mode
a makes the transformation from the laboratory basis and the PBS entangles the
eigenstates with different spatial modes.

The D-box

In this experiment the D-box consists of three single photon detectors, one in
each output mode of the E-box.
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3.4 Results

The aim for the experimental implementation of the CHSH inspired dimen-
sion witness was to reproduce the theoretical values for systems of different
dimensions. The maximum values for classical states have been derived for the
general dimension witness of this kind and were given as: D(bit) = 4 for bits,
D(trit) = 6 for trits, and D(nit) = 8 for all higher dimensional systems1. The
maximum values for sets of quantum states were found in the optimization pro-
cess for the specific witness: D(qubit) = 5.66 for qubits and D(qutrit) = 6.47
for qutrits. Our experimental results are presented in the table (3.1), Dth are
the theoretical value, Dexp are the raw experimental values, and Db

exp are the
experimental values corrected for dark counts in the detectors. We also include
the errors of the experiment as: ∆p for the error induced by polarizing compo-
nents2, ∆d for errors due to poissonian counting statistics, and ∆T for the total
errors.

Table 3.1: Experimental results for test of the CHSH inspired dimension wit-
ness, Dth are the theoretical bounds, Dexp are the experimental values for these
bounds, and Db

exp are the experimental values corrected for dark counts in the
detectors. ∆p are the errors due to polarizing components, ∆d are the errors due
to poissonian statistics, and ∆T are the total errors. The colored columns con-
tain the numbers of greatest interest, the theoretical bounds, the corrected
experimental values, and the total errors.

Input states Dth Dexp Db
exp ∆p ∆d ∆T

bit 4.00 3.94 3.98 0.08 0.010 0.08
qubit 5.66 5.51 5.56 0.12 0.008 0.12
trit 6.00 5.90 5.96 0.13 0.010 0.13

qutrit 6.47 6.44 6.50 0.14 0.009 0.14
nit 8.00 7.88 7.94 0.16 0.010 0.16

1This is the algebraic limit.
2I.e., non-perfect alignment of wave-plates and imperfect splitting by PBSs.
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4. Optimal Dimension Witness

In this chapter we will discuss a family of optimal dimension witnesses[13].
These are, in contrast to the CHSH-based witness, constructed to give as large
separation between all the bounds, for the different dimensions, as possible.

This family of dimension witnesses was found by Gallego, Brunner, Hadley,
and Acín[13]. This chapter is based on one of the experiments described in Pa-
per II.
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4.1 Motivation

As was described in the last chapter dimension witnesses have evolved over
time and the type discussed in this chapter is of the device-independent type.
However instead of being tailored for communication protocols these are opti-
mized for discrimination between dimension bounds. The family of dimension
witnesses described in this chapter also have the advantage that there is a for-
mula for deriving witnesses which can distinguish between any dimensions1.

1The higher the dimensions you want to distinguish between, the larger the witness
function will be.
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4.2 Derivation

In contrast to the dimension witness in the last chapter where we have started
the derivation from a comunication protocol, the derivation of these witnesses
starts from the set of possible classical experiments that have a determinis-
tic outcome. An experiment with N states and m measurements is here de-
fined by a vector E =(E11,E12, . . . ,E1m,E21, . . . ,ENm), where Exy =P(1|x,y)−
P(−1|x,y) is the expectation value of measurement y given the state x. Any
possible experiment can be written as a convex combination of the set of deter-
ministic experiments, and a deterministic experiment has all Exy =±1. The set
of all possible experiments constitute a polytope, PNm, with the deterministic
experiments as extremal points. A set of states with dimension larger than N
can be used to realize all experiments in PNm, while a set of states with di-
mension d less than N can realize experiments constituting the polytope Pd

Nm
which is completely enclosed in PNm. The facets of this new polytope can be
written as linear combinations of the expectation values Exy and are bounded
by a number, Cd , dependent on the dimension d. This is what is called a tight
classical dimension witness1. When trying to do the same thing as above for
a set of quantum states you end up in a bit of trouble because while the set of
possible experiments is convex it does not constitute a polytope since there is
an infinite number of extremal points and there is no analogue to the facets that
define the classical dimension witness. However, when looking at the simplest
classical case, P2

32, it can be shown that it exhibits only one type of nontrivial
facet which gives the classical dimension witness

I3 = |E11 +E12 +E21−E22−E31| ≤ 3. (4.1)

The first four terms can be seen as the CHSH terms giving, for a two level
quantum system, a maximum of 2

√
2 and the last term is given by a third state

which can be chosen freely and thus can be made to yield -1. Optimizing for
general quantum states and operators you can find that the maximum value for
a set of qubits is 1+2

√
2 and thus a dimension witness capable of distinguish-

ing between bits, qubits, and higher dimensional sets of states has been found.
The dimension witness has been generalized to distinguish higher dimensional
states by making the expansion of I3 for N = m+1 as:

IN ≡
N−1

∑
j=1

E1 j +
N

∑
i=2

N+1−i

∑
j=1

αi jEi j, αi j =

{
1, i+ j ≤ N

-1, i+ j > N
(4.2)

it can be shown that for sets of classical states, IN ≤Cd = N(N−3)
2 +2d−1.

1It is a classical dimension witness because in order to violate Cd a set of states
with dimension at least d + 1 is needed, and it is tight because it lays tight against a
facet of the polytope.
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4.3 Setup

The setup for this experiment is the same as in the previous one except for the
U-box, see Fig. (4.1).

Figure 4.1: The setup of the optimal dimension witness.
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The U-box

As in the previous experiment all measurements are dichotomic, and the two
outcomes for each measurement is determined by the sign of the eigenvalue of
the eigenstates of the corresponding observable. However, due to the states be-
ing slightly different we need a more complicated unitary transformation, see
Fig. (4.2). In addition to the HWP in mode a, a twisted polarizing Michelson
interferometer is used to move the vertical components of each spatial mode
to the other, and changing all polarizations from horizontal to vertical and vice
versa. In the new b mode another HWP is placed in order to interfere the
polarizations modes resulting in the following:

|−〉 ≡ |H,b〉
|+〉 ≡ α |V,a〉+β |V,b〉. (4.3)

Figure 4.2: Unitary transformation from the laboratory basis to the eigenbasis of
the operator. The first HWP interferes the polarization modes in mode a. The po-
larizing Michelson interferometer transfere the |V,a〉-component to |H,b〉, |H,a〉
to |V,a〉, and |H,b〉 to |V,b〉. Finally, the second HWP interferes the polarization
modes in mode b.
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The E-box

As seen above the U-box rotates the state so that the negative-valued eigenstate
of the observable will be |mi〉 = |H,b〉. A PBS in mode b will then entangle
the negative-valued eigenstate with spatial mode b and the positive-valued ones
with the spatial modes a and c, see Fig. (4.3).

Figure 4.3: Entangling the eigenstates with different spatial modes. The PBS
splits the polarization modes of mode b into different spatial modes.

The D-box

The d-box consists of single photon detectors in the modes a, b, c, and d.
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4.4 Results

The optimal dimension witness was designed to get a scalable dimension wit-
ness capable of distinguishing between classical and quantum sets of states.
The goal of the experiment was to reproduce the classical and quantum bounds
as well as possible. The formula for the classical bounds as stated in chap-
ter 4.2 is: IN ≤ Cd = N(N−3)

2 + 2d− 1, and yields for the witness with three
different state preparations: I3(bit) = 3 for bits and I3(nit) = 5 for higher
dimensional sets of states. For the witness with four different state prepa-
rations we get: I4(bit) = 5 for bits, I4(trit) = 7 for trits, and I4(nit) = 9
for higher dimensional sets of states. The bounds for quantum mechanical
sets of states were found during the optimization process for the states and
operators: I3(qubit) = 1+ 2

√
2 ≈ 3.8284 and I4(qubit) = 6 for qubits, and

I4(qutrit) = 2+
√

13+16
√

2 ≈ 7.9688 for qutrits. Our experimental results
are presented in table (4.1)1.

Table 4.1: Experimental results for test of the optimal dimension witnesses. Ith
is the theoretical value, Iexp the raw experimentally measured value, Ib

exp is the
experimentally measured value with subtracted dark counts, ∆T is the total ex-
perimental error, ∆p the error due to misaligned polarizing components, and ∆d
the error due to the poissonian counting statistics from the detectors. As before
the colored columns are of most interest, the theoretical value, the experi-
mentally measured value with subtracted dark counts, and the total experi-
mental error.

Input states Ith Iexp Ib
exp ∆p ∆d ∆T

I3
qubit 3.83 3.65 3.78 0.0772 0.0125 0.08

nit 5.00 4.71 4.93 0.1021 0.0150 0.10

I4

BB84 5.65 5.52 5.55 0.1126 0.0133 0.11
qubit 6.00 5.76 5.95 0.1221 0.0163 0.12
trit 7.00 6.76 6.96 0.1433 0.0171 0.14

qutrit 7.97 7.29 7.60 0.1596 0.0419 0.17
nit 9.00 8.52 8.91 0.1833 0.0209 0.18

1This table has previously been presented in my Licentiate thesis.
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5. Kochen-Specker

This chapter will not present an experiment. It is a theoretical chapter with the
purpose of introducing contextuality, which will be the theme for the rest of the
thesis. So far we have taken a look at Bell inequalities which were designed to
show that LHVT cannot explain the outcomes of some experiments. Then we
looked at dimension witnesses based on the CHSH-inequality, how they are
constructed by taking the two particle experiment with two recievers to a one
particle experiment with one sender and one receiver, where the state prepara-
tion setting can be seen as a result of a measurement setting and measurement
outcome. This shows that while we can test the validity of LHVT by the use
of Bell-inequalities, if we remove the possibility of two partite entanglement,
we can still measure some kind of quantumness by making consecutive mea-
surements of certain observables.
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5.1 The Kochen-Specker rules

In order to show that quantum mechanical predictions cannot be described by
NCHVTs Kochen and Specker derived two rules[3] for systems with three or
more degrees of freedom which have to be fulfilled by any NCHVT.

• Two orthogonal vectors cannot both be ’1’.

• Exactly one vector in all completely connected n-lets is ’1’, where n is
the degrees of freedom of the system considered.

Even without the mathematical proof we can see that this is reasonable if we
project a state onto the projectors defined by the vectors represented by the
vertices of a graph.

Consider a completely connected orthogonality graph with three vertices,
this is a representation of a set of basis vectors in a three-dimensional states-
pace. According to HVTs there should exist an element of objective reality to
all possible measurements. Assume that our three basis vectors represent three
possible outcomes of a specific measurement, and that a projection onto one
of the vectors signifies a measurement result. Clearly we will always project
on some vector, and likewise we can only project on one of the vectors.

If we now could construct a graph in which these rules cannot be fulfilled
we have proven that quantum mechanical predictions cannot be described by
NCHVTs.
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5.2 The original Kochen-Specker graph

The original Kochen-Specker graph is composed of 120 vertices, when repre-
senting the vertices by vectors it is found that three vectors are repeated once
each, resulting in 117 vectors, see Fig. (5.1). This graph was the first graph
that was shown not to fulfill the Kochen-Specker rules, no matter how we try
to assign values to the vertices we will always have a conflict with the rules
when trying to assign a value to (at least) the last vertex.

Figure 5.1: The Kochen-Specker graph, vertices A and a, B and b, and C and c,
represents the same vector respectively.
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6. KCBS

This chapter will take us into the world of experimental violation of non-
contextual inequalities.

The inequality we will discuss is the KCBS-inequality1, the simplest non-
contextual inequality violated by quantum mechanics. This chapter is based
on one of the experiments described in Paper III.

1Named after Klyachko, Can, Biniocioğlu, and Shumovsky.
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6.1 Motivation

As we saw in the last chapter non-classical correlations can be obtained even
in the absence of entanglement. The Kochen-Specker theorem gives us a way
to construct state-independent tests of NCHVTs. If we instead are interested
in the minimal test of NCHVTs we have to abandon state-independence and
consider an inequality violated by certain states. Klyachko, Can, Binicioğlu,
and Shumovsky[16] found that it is possible to use the pentagon graph1, see
Fig. (6.1), to construct operators which when measured in pairs can exhibit
correlations, between the measurement outcomes of the two operators, which
are stronger than what is permitted by NCHVMs.

Figure 6.1: To the left we have a pentagon and to the right a pentagram. The
two graphs represents the same relation between vertices as can be seen by the
labeling.

1What they actually use is the pentagram graph. However the pentagram and the
pentagon are equivalent, just relabel the vertices from {0,1,2,3,4} to {0,3,1,4,2} for
instance.
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6.2 Derivation

As was stated in the last section the operators used in this test are derived from
the pentagon graph. This is done by taking an orthogonal representation of
the graph and letting the projectors specified by these vectors represent the
negative valued eigenstates of the operators we are looking for. The positive
valued eigenstates are defined by any two orthogonal vectors lying in the plane
orthogonal to the first vector. We have five vectors; |v0〉, |v1〉, |v2〉, |v3〉, and
|v4〉 related by 〈vi|vi+1〉= 0, that define five projectors; Qi = |vi〉〈vi|.

If we assume the world can be described by a NCHVT, and we want to
calculate the sum of the expectation values of the projectors Qi, lets denote it by
W, we can easily see that it has to be less or equal to two. Say for instance that
the system projects on Q1, this means that it cannot project on Q0 or Q2, and

similarly it can only project on one of Q3 and Q4
1. Thus W =

4
∑

i=0
< Qi >≤ 2.

Now lets construct the operators Ai ≡ 2Qi−1, and look at the correlations.
More specifically consider

K ≡< A0A1 >+< A1A2 >+< A2A3 >+< A3A4 >+< A4A0 > .

By the definition of Ai we have that,

AiAi+1 =(2 |vi〉〈vi|−1)(2 |vi+1〉〈vi+1|−1)

=4 |vi〉〈vi||vi+1〉〈vi+1|−2 |vi〉〈vi|−2 |vi+1〉〈vi+1|+1,

but 〈vi|vi+1〉= 0 and all operators appear exactly twice in K so

K =< 5 ·1−4
4

∑
i=0
|vi〉〈vi|> .

We have that
4
∑

i=0
< |vi〉〈vi|>=

4
∑

i=0
< Qi >=W ≤ 2 which finally gives us

K = 5−4 ·W ≥−3.

This can easily be visualized by letting ai =±1 be the values that Ai can take,
and then try to minimize the value of K = a0a1 + a1a2 + a2a3 + a3a4 + a4a0.
Now aiai+1 =−1 if ai and ai+1 have different signs, so minimizing K we can
set a0 = 1, a1 = −1, a2 = 1, and a3 = −1, this sums the first three terms to
−3, but when assigning a value to a4 no matter how we choose, one of the two
remaining terms will be 1 and the other −1, adding nothing to the total sum.

1This follows from the Kochen-Specker rules described in 5.1.
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This is the bound for NCHVTs. If we consider quantum mechanical op-
erators we should instead of W insert the Lovász number for the pentagon,
which is

√
5 and we get K ≥ 5−4

√
5 ≈ −3.944. This value is reached using

the state:

|ψ〉=

0
0
1

 ,

and the operators defined by the states:

|v0〉=
1√

1+ r2

1
0
r

 , |v1〉=
1√

1+ r2

cos 4π

5
sin 4π

5
r

 , |v2〉=
1√

1+ r2

 cos 2π

5
−sin 2π

5
r

 ,

|v3〉=
1√

1+ r2

cos 2π

5
sin 2π

5
r

 , |v4〉=
1√

1+ r2

 cos 4π

5
−sin 4π

5
r

 .
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6.3 Setup

The setup for the KCBS experiment is both an extension, and a simplifica-
ton of the setups for the dimension witnesses since we will be measuring two
operators sequentially but are only concerned with qutrit states, see Fig. (6.2).

Figure 6.2: The setup for the KCBS-experiment.

49



The P-box

The difference in the P-box (see Fig. (6.3)) in the KCBS and Wright experi-
ments as compared to the dimension witness experiments is the single photon
source. In these experiments instead of using a continous wave laser we used
a pulsed laser which gave us 100 000 pulses, with 3ns duration, every second.
This enabled us to encode measurement results in time. There is also a differ-
ence in the state preparation part (see Fig. (6.4)), since we in this experiment
only use qutrits we do not wish to have a HWP in the b mode.

Figure 6.3: The source of emulated single photons. Directly after the laser we
have a HWP to regulate the fraction reflected in the PBS (this works as a variable
attenuator). Before the OD-filter we have a QWP so that any reflections from
the filter or the fiber coupler will be turned to horizontal polarization and thus
transmitted by the PBS. The optical fiber goes through a passive polarization
controller so that we can set the polarization as we want it. This setup gives us
nearly single photons in a single spatial mode and a set polarization mode.

The U-box

As before all measurements are dichotomic, and the two outcomes for each
measurement is determined by the sign of the eigenvalues. The U-box has the
same basic structure as for the optimal dimension witness, see Fig. (6.5); a
HWP in mode a, a twisted polarizing Michelson interferometer to move the
vertical component in the a mode to the b mode and flipping the polarizations,
and a HWP in the b mode. But in this experiment we have interchanged which
eigenstates go where, resulting in:

|+〉 ≡ |H,b〉
|−〉 ≡ α |V,a〉+β |V,b〉. (6.1)
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Figure 6.4: State preparation. A HWP turns the polarizations so that we can
distribute the photon state over our two spatial modes. There is a HWP in mode
a in order to distribute the photon state over the polarization modes.

Figure 6.5: Unitary transformation from laboratory basis to eigenbasis of the
operator. The first HWP interferes the polarization modes in mode a. The polar-
izing Michelson interferometer transfere the |V,a〉-component to |H,b〉, |H,a〉 to
|V,a〉, and |H,b〉 to |V,b〉. Finally, the second HWP interferes the polarization
modes in mode b.
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The E-box

As seen above the U-box rotates the state so that the positive-valued eigenstate
of the observable will be |mi〉 = |H,b〉. As can be seen in Fig. (6.6) a PBS
placed over both spatial modes will split off the |H,b〉-part of the state and
direct it into a short optical fiber. All polarizations are once more flipped and a
PBS is used to reintroduce the, now delayed by ∆t, |V,b〉-part (see Fig. (6.7)).
The E-box has now entangled the negative-valued eigenstates with the time
delays τY0

1 and the positive-valued eigenstate with time delays τY1 .

Figure 6.6: Entangling eigenstates of different eigenvalue with different degrees
of freedom. The PBS splits the |H,b〉-component from the |V,b〉-component and
transmits it into a single mode fiber. The fiber flips the polarization of the |H,b〉-
component and introduces a time delay between different valued eigenstates. The
polarization of the |V,a〉- and |V,b〉-component is flipped by the QWP and the
mirror.

The U†-box

The transformation back to the laboratory basis is the reverse of the transfor-
mation done by the U-box. First the polarisation needs to be flipped, this is
done by HWPs in each spatial mode, then a twisted polarizing Michelson in-
terferometer moves the interchanged parts back, and finally a HWP in mode a
undoes the initial rotation of the polarization modes, see Fig. (6.8).

1The index of τ is a binary number indicating the amount of time delay, in units
of ∆t, which is introduced to the state.
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Figure 6.7: Reintroducing the delayed eigenstate to the system. Since the posi-
tive valued eigenstate is vertically polarized and the negative valued ones are hor-
izontally polarized, a PBS can be used to reintroduce the positive valued eigen-
state into mode b.

Figure 6.8: Unitary transformation from eigenbasis of the operator to the lab-
oratory basis. The HWP in mode a flips the polarization from H to V and the
HWP in mode b will undo the second interference from the U-box. The polariz-
ing Michelson interferometer will transfere the |V,a〉-component to |H,a〉, |H,b〉
to |V,a〉, and |V,b〉 to |H,b〉. Finally the HWP in mode a will undo the first
interference from the U-box.
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The second operator

At this stage the photonic state enters another U-box which is constructed in
the same way as the first one, but with different settings of the HWPs. The state
then goes to the second E-box, which entangles the negative-valued eigenstates
with the time delays τ0X and the positive-valued eigenstate with time delays
τ1X . After which the photonic state is once again rotated back to the laboratory
basis.

The D-box

The D-box consists of APDs in the output modes of the U†-box and a coinci-
dence counter which, with the help of a pulse generator, determines at which
time delay (τ00 , τ01 , τ10 or τ11) the photon is detected.
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6.4 Results

According to the KCBS-inequality NCHVTs predict that the sum of the ex-
pectation values of five dichotomic observables, is always greater than -3, if
neighboring observables are exclusive. If we instead consider quantum me-
chanical observables, the bound is moved to 5− 4

√
5 ≈ −3.944. Our experi-

mental results are presented in table (6.1), the two orders of the operators are
presented on either side of the theoretical values. It is worth noteing that the
results seem to indicate that the order of the observables does matter, however
we would like to claim that this is an artefact due to the alignment process.

Table 6.1: Experimental results for the violation of the KCBS-inequality. The
two main sources of error are given in the outermost columns from each side,
the poissonian counting error and the systematic error. The colored columns
are again of most interest with the total error, the experimentally measured
expectation values, and the theoretical values in the middle. Each side rep-
resents different order of the operators.

i ∆poisson ∆syst ∆tot 〈PiPi+1〉 Theory 〈Pi+1Pi〉 ∆tot ∆syst ∆poisson

0 0.002 0.023 0.023 -0.712 -0.789 -0.785 0.022 0.022 0.003
1 0.002 0.023 0.023 -0.706 -0.789 -0.781 0.023 0.023 0.003
2 0.002 0.022 0.022 -0.704 -0.789 -0.774 0.023 0.023 0.003
3 0.002 0.022 0.022 -0.708 -0.789 -0.774 0.022 0.022 0.003
4 0.002 0.024 0.024 -0.706 -0.789 -0.782 0.021 0.021 0.003
Σ 0.115 0.005 0.11 -3.5 -3.944 -3.9 0.11 0.115 0.006
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7. Wright

The Wright inequality[17] is the simplest inequality where quantum mechanics
violates the classical bound. It is simplest in the sense that you cannot get a
quantum violation of the classical maximum with fewer measurements or a
state with smaller dimension. This chapter is based on one of the experiments
described in Paper III.
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7.1 Theory

The easiest way to give a setting for Wright’s inequality is by introducing a
game of boxes and coins. Let the number of boxes be five and place them in
a circle, start the game by placing a coin in one of the boxes. Now one box is
choosen at random, this box and the one two steps in the clockwise direction
is opened. Let the probability of finding the coin given the choice of a certain
box, Bi, be denoted P(+1|Bi) and construct the function:

W ≡
4

∑
i=0

P(+1|Bi). (7.1)

In any given round of the game two choices of boxes have the potential of
uncovering the coin1, resulting in W = 2.

If we assign to each box Bi, a vector vi and define the orthogonality relation
by the possibility of uncovering the coin, i.e, 〈vi|vi+1〉 = 0, we see that again
we have the pentagon graph and we know that the independence number is
2. We can also make the observation that P(+1|Bi) =< |vi〉〈vi| >= | 〈vi|ψ〉 |2,
and thus W is the Lovász number of the pentagon, which is

√
5. This value

is reached using the projectors defined by the vectors found for the KCBS
inequality:
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and the test state:

|ψ〉=

0
0
1

 .

1Namely if we choose the box with the coin inside or the box two steps in the
counterclockwise direction of the one with the coin inside.
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7.2 Setup

The setup for the Wright experiment is the setup for the first operator of the
KCBS-inequality, see Fig. (7.1). We could have done this experiment without
transforming back to the laboratory basis, but since the setup was part of the
larger KCBS-setup it was easier to use the same detection scheme.

Figure 7.1: The setup for the wright experiment.
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The P-box

The difference in the P-box (see Fig. (7.2)) in the Wright and Klyachko exper-
iments as compared to the dimension witness experiments is the single photon
source. In these experiments instead of using a continous wave laser we used
a pulsed laser which gave us 100 000 pulses, with 3ns duration, every second.
This enabled us to encode measurement results in time. There is also a differ-
ence in the state preparation part (see Fig. (7.3)), since we in this experiment
only use qutrits we do not wish to have a HWP in the b mode.

Figure 7.2: The source of emulated single photons. Directly after the laser we
have a HWP to regulate the fraction reflected in the PBS (this works as a variable
attenuator). Before the OD-filter we have a QWP so that any reflections from
the filter or the fiber coupler will be turned to horizontal polarization and thus
transmitted by the PBS. The optical fiber goes through a passive polarization
controller so that we can set the polarization as we want it. This setup gives us
nearly single photons in a single spatial mode and a set polarization mode.

The U-box

As before all measurements are dichotomic, and the two outcomes for each
measurement is determined by the sign of the eigenvalues. The U-box has the
same basic structure as for the optimal dimension witness, see Fig. (7.4); a
HWP in mode a, a twisted polarizing Michelson interferometer to interchange
the vertical components and flipping the polarizations, and a HWP in the b
mode. But in this experiment we have interchanged which eigenstates go
where, resulting in:

|+〉 ≡ |H,b〉
|−〉 ≡ α |V,a〉+β |V,b〉. (7.2)
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Figure 7.3: The preparations of quantum states. A HWP turns the polarizations
so that we can distribute the photon state over our two spatial modes. There is
a HWP in mode a in order to distribute the photon state over the polarization
modes.

Figure 7.4: Unitary transformation from laboratory basis to eigenbasis of the
operator. The first HWP interferes the polarization modes in mode a. The polar-
izing Michelson interferometer transfere the |V,a〉-component to |H,b〉, |H,a〉 to
|V,a〉, and |H,b〉 to |V,b〉. Finally, the second HWP interferes the polarization
modes in mode b.
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The E-box

As seen above the U-box rotates the state so that the positive-valued eigenstate
of the observable will be |mi〉 = |H,b〉. As can be seen in Fig. (7.5) a PBS
placed over both spatial modes will split off the |H,b〉-part of the state and
direct it into a short optical fiber. All polarisations are once more flipped and
a PBS is used to reintroduce the, now slightly delayed, |V,b〉-part (see Fig.
(7.6)). The E-box has now entangled the negative-valued eigenstates with the
time τ0 and the positive-valued eigenstate with time τ1.

Figure 7.5: Entangling eigenstates of different eigenvalue with different degrees
of freedom. The PBS splits the |H,b〉-component from the |V,b〉-component and
transmits it into a single mode fiber. The fiber flips the polarization of the |H,b〉-
component and introduces a time delay between different valued eigenstates. The
polarization of the |V,a〉- and |V,b〉-component is flipped by the QWP and the
mirror.

The U†-box

There is not really a need of a U†-box since we will only make single mea-
surements and detection directly after the E-box would be sufficient. This
setup was part of the Klyachko setup however, and in that setup we needed to
get back to the laboratory basis. The transformation back is the reverse of the
transformation done by the U-box. First the polarisation needs to be flipped,
this is done by HWPs in each spatial mode, then a twisted polarizing Michel-
son interferometer moves the interchanged parts back, and finally a HWP in
mode a undoes the initial rotation of the polarization modes, see Fig. (7.7).
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Figure 7.6: Reintroducing the delayed eigenstate to the system. Since the posi-
tive valued eigenstate is vertically polarized and the negative valued ones are hor-
izontally polarized, a PBS can be used to reintroduce the positive valued eigen-
state into mode b.

Figure 7.7: Unitary transformation from eigenbasis of the operator to the lab-
oratory basis. The HWP in mode a flips the polarization from H to V and the
HWP in mode b will undo the second interference from the U-box. The polariz-
ing Michelson interferometer will transfere the |V,a〉-component to |H,a〉, |H,b〉
to |V,a〉, and |V,b〉 to |H,b〉. Finally the HWP in mode a will undo the first
interference from the U-box.

63



The D-box

The D-box consists of APDs in the output modes of the U†-box and a coinci-
dence counter which, with the help of a pulse generator, determines at which
time (τ0 or τ1) the photon is detected.
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7.3 Results

Assume that we have a set of five statements, where each statement is exclusive
to two other. Then the Wright inequality states that if we sum the probabilities,
that each statement is true, we will get a value which is less than or equal to 2.
If this is set in a quantum mechanical setting the sum of the probabilities can
reach

√
5 ≈ 2.24.Our experimental results from the Wright inequality test are

presented in table (7.1).

Table 7.1: Experimental results for the violation of Wright’s inequality. The
columns specify the theoretical values, the experimentally measured values, the
systematic errors, the poissonian counting errors, and the total errors. The col-
ored columns are of most interest and show the theoretical values, the exper-
imentally measured values, and the total experimental error, respectively.

Projector P(+1|Pi)T h P(+1|Pi)Exp ∆syst ∆poisson ∆tot

0 0.447 0.4600 0.0112 0.0012 0.0113
1 0.447 0.4544 0.0112 0.0012 0.0113
2 0.447 0.4603 0.0112 0.0016 0.0113
3 0.447 0.4610 0.0112 0.0011 0.0112
4 0.447 0.4566 0.0112 0.0010 0.0112
Σ 2.236 2.29 0.0559 0.03 0.06
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8. Hardy

This chapter will describe an experiment that shows a direct conflict between
quantum mechanics and NCHVTs in the sense that quantum mechanics gives
a non-zero probability for an event that cannot occur according to NCHVTs.
Lucien Hardy wrote two papers in the 1990’s[18; 19] where he outlines an
experiment which would give this kind of contradiction for entangled qubits.
These experiments inspired the writing of a paper by Cabello, Badzia̧g, Cunha,
and Bourennane in the summer of 2013[20]. This chapter is based on the
experiment described in Paper IV.
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8.1 Motivation

The idea behind this experiment is that a “Hardy argument” for non-contextual
inequalities would in some sense be the cleanest violation of NCHVT. So to
start with, lets refresh what Hardy’s argument was.

The first idea that Hardy had was to make a similar statement as Green-
berger, Horne, and Zeilinger[21] had done for three particles, but for a system
of only two particles. Even though this is possible if we consider a situation
where the number of settings of the local measurements are infinite, it is im-
possible to use the same procedure for a finite set of measurements. Instead,
consider the situation where we have two boxes, A and B, with two buttons
each, labeled {a1,a2} and {b1,b2} respectively. Let us now send one particle
to each box in a state such that we get the measurement probabilities:

P(1,1|a1,b2) = 0

P(1,1|a2,b1) = 0

P(0,0|a2,b2) = 0,

where P(α,β |ai,b j) is the probability to get the measurement outcomes
α and β when box A is set to ai and box B to b j. A HVT would predict that
P(1,1|a1,b1) = 0 by necessity, however with an entangled state and suitable
measurement settings we can get P(1,1|a1,b1) =

1
16 .
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8.2 Derivation

As we saw in the last section, it is possible to transform the CHSH-inequality
to a direct contradiction between LHVTs and experiment outcomes. In this
chapter we will do a similar thing to the KCBS-inequality.

In chapter 6 we saw that we could describe the classical bound of the
KCBS-inequality with a game of five boxes and one coin. In the spirit of
Hardy’s argument we now want to find restrictions on the probabilities to un-
cover the coin so that we get a contradiction for some measurement outcome.

If we have the five choices of pairs P1, P2, P3, P4, and P5, then let A be the
set of preparations for which P1 uncover the coin, and B, the set for P2, C for
P3, D for P4, and E for P5. Also let Ac be the compliment of A, i.e, the set of
preparations for which P1 do not uncover the coin, and likewise for Bc, Cc, Dc,
and Ec. Now we make the restrictions:

P(Ac∩B)+P(Bc∩C) = 1 (8.1)

P(Cc∩D)+P(Dc∩E) = 1, (8.2)

which makes a NCHVT predict that P(Ec ∩A) = 0. This is easy to see since
from equation 8.1 we have that A ⊆ C and from 8.2 that C ⊆ E, thus A ⊆ E,
and obviously P(Ec∩E) = 0.

In order to test this prediction in the lab we need to find observables, that
can correspond to opening boxes looking for the coin, and a test state, that
can correspond to the distribution of the coin. We design observables of the
form: Oi = 2 |vi〉〈vi| − 1, and make the identification that the preparations in
the classical game correspond to the positive eigenstates of our observables:
A⇒ |v1〉〈v1|, B⇒ |v2〉〈v2|, C⇒ |v3〉〈v3|, D⇒ |v4〉〈v4|, and E⇒ |v5〉〈v5|. This
means that we can write, for instance P(Ec ∩A) as P(O5 = −1,O1 = 1) or
P(−1,1|O5,O1) as a more convenient notation and thus we can write equations
8.1 and 8.2 as:

P(−1,1|O1,O2)+P(−1,1|O2,O3) = 1 (8.3)

P(−1,1|O3,O4)+P(−1,1|O4,O5) = 1. (8.4)

The restriction that “neighbouring” pairs have no common boxes in the
classical game corresponds to that “neighbouring” eigenstates, |vi〉 and |vi+1〉,
are orthogonal. These conditions can be used in the maximization of the prob-
ability P(−1,1|O5,O1) to find the optimal test state:

|η〉= 1√
3

1
1
1

 , (8.5)
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and eigenstates for the operators:

|v1〉=
1√
3

 1
−1
1

 , |v2〉=
1√
2

1
1
0

 , |v3〉=

0
0
1

 ,

|v4〉=

1
0
0

 , |v5〉=
1√
2

0
1
1

 . (8.6)

These choices yields the probability P(−1,1|O5,O1) =
1
9 , which is in clear

contradiction to the prediction of NCHVTs.
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8.3 First setup

The first setup that was built for this experiment was based on the idea that
only certain projection combinations were needed. As we have seen we have
two conditions for our system:

P(Ac∩B)+P(Bc∩C) = 1
P(Cc∩D)+P(Dc∩E) = 1.

(8.7)

These conditions could be interpreted as:

P(Ac|B)+P(C|Bc) = 1
P(Cc|D)+P(E|Dc) = 1

(8.8)

which can be seen as restrictions on chains of events ending in the outcome
probabilities; P(A|B), P(Ac|B), P(C|Bc), and P(Cc|Bc) for the first and P(C|D),
P(Cc|D), P(E|Dc), and P(Ec|Dc) for the second.

A P(A|B)
B Â

Ac P(Ac|B)
B̂

C P(C|Bc)

Bc Ĉ

Cc P(Cc|Bc)

This would seem to implicate that if we implement observable B̂, we could
implement both Â and Ĉ at the same time by letting the positive valued eigen-
state of B̂ go to Â and the negative valued eigenstates go to Ĉ. While this is
sufficient in an ideal scenario the additional outcome probabilities that we can
measure if we let the whole state propagate through both Â · B̂ and Ĉ · B̂ can
provide us with information which will be of great interest. For instance the
probability P(C∩B) can be seen as a measure of the compatibility of Ĉ and B̂,
and the probability P(Ac∩Bc) can be seen as a measure of how well the probe
state |η〉 is prepared with respect to Â and B̂.

Since the first idea was that just the special sequences needed to be mea-
sured, the first setup was constructed accordingly.

The P-box

The state needed to test this contradiction is a qutrit with equal weight in all
levels which are all in phase. For this experiment we have chosen to use three
spatial modes to encode our qutrits in. To create a state like this we need a
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single photon source and then be able to split the probability amplitude into
the three levels. This is easily done with two HWPs and two PBS’s, however
this will result in the three modes having different polarization so we need one
more HWP to adjust the polarization in the differing mode.

The U-boxes

Since we are only using spatial modes for encoding in this experiment the
transformations are not as simple as in previous experiments. So instead of im-
plementing a general unitary transformation, each observable is implemented
individualy. The five observables are defined by the projectors onto the states
(8.6).

• The first observable consists of a phase-plate in mode b to introduce a
π phase shift, then a 50:50 BS to interfere mode b and c, and finally a
33:67 BS to interfere mode a and b.

• The second observable consists of a 50:50 BS to interfere mode a and b.

• The third observable consists of just permuting mode a to b, b to c, and
c to a.

• The fourth observable is the identity, i.e., it does nothing.

• The fifth obsevable consists of a 50:50 BS to interfere mode b and c, and
transposing a and b.

The E-box

The entangling in this setup is very simple, mode a is representing the positive
valued eigenstate and is directed in one direction while mode b and c represents
the negative valued eigenstates and are directed in another direction.

The U†-boxes

When implementing the transformation back to the laboratory basis we just
need to reverse the actions taken in the corresponding U-box. This is only
needed for the first observable in the sequence since the E-box following the
second transformation has made all the possible outcomes for the experiment
distinguishable.

The D-box

The detection is done by an APD in each output mode of the second E-box.
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8.4 Final setup

To accomodate for the probabilities that were left out in the first setup, the
experiment needed to be expanded to include all possible projection combi-
nations. This work was done by Breno Marques1. In this setup we made the
decision to encode the outcome of the first operator in polarization and then
have detection directly after the second E-box, which separates the eigenstates
into different spatial modes.

1When the new setups were designed both of us checked that the operators of the
two experiments were the same.

73



8.5 Results

The idea that Hardy had to create a conflict between LHVTs and quantum
mechanics resulted in an outcome probability of 1

16 for an entangled pair, of an
event with zero probability according to LHVTs. When adjusted to the KCBS-
inequality we get an outcome probability of 1

9 , for an event that according to
NCHVTs cannot happen.

Table 8.1: Experimental results for the final setup of the Hardy experiment. The
index to the left indicates which pair of operators have been measured. The
experimental data is given in the two columns to the right, measured in the order
indicated by the indecies.

i Theory P(0,1|i, i+1) P(0,1|i+1, i)
1 0.667 0.635±0.020 0.661±0.011
2 0.333 0.332±0.008 0.331±0.005
3 0.333 0.330±0.004 0.339±0.003
4 0.667 0.650±0.008 0.656±0.011
5 0.111 0.111±0.003 0.109±0.004
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9. Further discussions on
noncontextuality

In this thesis we have discussed experimental implementations of dimension
witnesses and non-contextual inequalities. As a conclusion of the thesis I will
end by reviewing some problems and topics regarding noncontextuality that
are only loosely connected to the work presented in this thesis. Some issues
were known before I started the experiments and some have evolved during
the time of my studies. The work presented in this chapter has all been done
by other people and/or groups.
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9.1 State independent noncontextuality inequalities

The experimental violation of noncontextuality inequalities presented in this
thesis are state dependent, i.e., for a given inequality we need to optimize the
state in order to get the maximal violation1. However the beauty of the Kochen-
Specker theorem is that it is state independent, i.e., it does not matter how
you prepare your state, there will always be a violation if the world cannot be
explained with NCHVT.

Cabello[22] conceived of an experiment based on nine observables ordered
in three rows and three columns where the expectation value of each row and
each column is equal to unity except for the last column which has expectation
value equal to minus one. This is a system which is impossible to construct in
a NCHVM and we can construct an inequality

χ = 〈ABC〉+ 〈abc〉+ 〈αβγ〉+ 〈Aaα〉+ 〈Bbβ 〉−〈Ccγ〉 ≤ 4 (9.1)

which is violated to the maximum value 6 by any quantum state. This was
done experimentally with linear optics by Amselem, Rådmark, Cabello, and
Bourennane[23].

1As a matter of fact optimization is needed to get any violation at all.
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9.2 Compatibility problems in noncontextuality

In experiments testing noncontextuality inequalities, a number of observables
need to be implemented and measured sequentially in such a way that the mea-
surement outcomes of all observables can be accessed. One of the demands is
that the observables that are measured simultaneously are compatible. The
fulfillment of this demand is hard to ensure since the implementation of the
observables are susceptible to experimental errors. A way to assess the degree
to which two observables are incompatible is to estimate the probability of the
’forbidden’ outcome1. This probablity can then be taken as the fraction of the
joint measurement for which the observables are incompatible and the bound
of the inequality can be adjusted accordingly.

Another way to circumvent the problem of compatibility is to make use
of entangled states[24]. This way the two observables will be operating on
disjoint parts of the state2.

1For two compatible observables there will be at least one eigenstate from each
which is orthogonal to one of the eigenstates of the other. A simultaneous projection
on these two eigenstates constitutes a forbidden measurement outcome.

2The observables are spacelike separated and operates only on the part of the state
which is at the spatial location of the observable.
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9.3 Context problems in noncontextuality

The group of Zeilinger in Vienna ’solved’ the problem of compatibility for ex-
periments with two successive observables by choosing a common basis for
the implementation of the two observables[25]. This basis is one that simul-
taneously diagonalizes the observables. While this successfully ensures that
the two observables are compatible it introduces a new problem, which is that
an observable Â will be implemented differently depending on which other
observable is measured simultaneously. This violates another demand which
states that each observable needs to be the same no matter what context it is
measured in. If this demand is not met a NCHVT can exploit this freedom and
the inequality is no longer bounded by the theoretical bound. Another conse-
quence of the way they implemented the observables is that they need to add
an additional term to the inequality. They start their experiment with prepar-
ing a photonic state in three spatial modes. An operator acts on this state by
projecting on three spatial modes1, now another operator acts on the state by
again projecting on three spatial modes2. They place detectors in two of the
modes and the operators are designed in such a way that the eigenstate with
eigenvalue -1 is projected on one of the modes terminated in a detector. For
two successive operators a click in one of the two detectors corresponds to
projection on the eigenstate with eigenvalue -1 of the corresponding operator.

1These three modes are now the eigenstates of the operator.
2Which are now the eigenstates of the second operator.
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A. Components for experimental
quantum optics

The following appendix is a direct citation from my Licentiate thesis.

All three experimental setups are built from the same optical components.
They are even all part of the same setup, where the witness setup is made up of
a general four-level operator. The Wright setup includes repreparation of the
eigenstates in the same basis as the input state, and the Klyachko setup is ex-
panded to two consecutive Wright setups. All setups can be divided into three
parts, a state preparation part made up of a photon source, a beam splitter, and
half-wave plates. This is followed by an operator part made up of a number of
half-wave plates, beamsplitters, and optical fibers. Finally there is a detection
part made up of optical fibers and single photon detectors. In addition there is
an electronics layer for controlling the optics layer.

Laser

There were two different lasers used in the experiments; one was a pulsed
diode laser with a wavelength of 780nm, it had a repetition rate of 100kHz and
each pulse had a duration of 3ns. The other one was a continuous wave diode
laser also centered at 780nm. Both lasers were attenuated until the number of
coincidences were negligable. 1nm filters were used in order to increase the
coherence length.

Wave plates

Birefringence is an effect that delays one polarization with respect to an or-
thogonal one. A zero order wave plate is a birefringent crystal cut so that this
delay is within one wavelength of the light. Specifically there are two com-
monly used wave plates; quarter-wave and half-wave plates, these introduce a
delay of precisely a quarter and half of a wavelength, respectively. By turning
the waveplates in the plane perpendicular to the propagation direction of the
light one can manipulate the polarization of the light.

A simple model of the action of a half-wave plate acting on linearly po-
larized light is to let a normal 2-D Cartesian coordinate system represent the
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incoming polarization, now draw a line with the same inclination as the half-
wave plate, mirror all points in this line and the resulting points are the out-
going polarization. Since elliptical polarization can be interpreted as a su-
perposition of linear polarization this model can be expanded to include all
polarization states.

Beam-splitters

There are different kinds of beam-splitters, in this thesis the polarizing beam-
splitter (PBS) is the one used. The PBS transmit the horizontal part and reflect
the vertical part of the light.

Single photon detectors

The detectors used in the experiments were of the avalanche-photo-diode (APD)
type. They are used in a reverse bias mode (Geiger mode) so that when a pho-
ton is incident on the active area a charge carrier pair can be created, these
will in turn collide with the lattice and create more pairs and so on building
up an avalanche of charge carriers. This current is detected by the controlling
electronics and upon detection a quenching circuit reduce the bias voltage so
that the charge carriers are not accelerated, reducing the creation of additional
pairs, letting the existing pairs dissipate.

The detectors produce TTL output signals of 4.1 Volt (with a duration of
41 ns). The dead time of the detectors is 50 ns. The detector signals were
registered using a multi-channel coincidence logic with a coincidence time
window of 1.7 ns. The coincidence time window was used to estimate multi-
events and to define different time slots.

80



B. Error analysis

When doing experimental investigations it is crucial to understand what sources
of error are present and how to take the effect of these errors in to account in
the final result.

In the experiments presented in this thesis we have two main sources of
error. These are the imperfections in the polarizing components1 and the error
due to the poissonian counting statistics caused by the fact that the detectors
are not 100% efficient.

In order to assess the influence of the first error, models of the setups were
made in Octave2 where the imperfections could be inserted to see how they
would affect the outcome. The transmission and reflectance of horizontal and
vertical polarization in the PBSs were set to 99.5%3 and the precision of the
setting of the wave-plates were set to half a degree.

To assess how the detection error would affect the result the poisson error4

was propagated through the expectation value calculation.

1In this error we include the imperfections of the physical object, i.e., nonperfect
splitting by PBSs, as well as misalignment of wave-plates.

2Octave is a high-level interpreted language for numerical computations.
3This is the specification from the manifacturer.
4The poisson error is the square root of the detected events in one measurement

bin, in our case the measurement bins were one second.
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