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Preface

This dissertation is the result of work carried out in the period May 2012 - November 2014, at
University of Novi Sad and partly at Politehnica University of Bucharest Bucharest, Faculty
of Applied Sciences, Romania. Many years of intensive study preceded this research.

Research topics

The research topics of this PhD thesis are:

• A comparative analysis of classical and specific geometric frameworks and their anisotropic
extensions;

• The construction of Finsler frameworks, which are suitable for the analysis of dynamical
systems;

• The development of anisotropic Beltrami framework theory with the derivation of the
evolution flow equations corresponding to different classes of anisotropic metrics.

Main goals

The two main goals of this research are:

• The mathematical modelling of the real dynamical system of the evolution of cancer
cell population, with the comprehensive description of its characteristics;

• The development of theoretical results which provide new techniques for image process-
ing.

Motivation

The Garner mathematical model reflecting the dynamical system of the evolution of cancer cell
population is presented in [53], while advantages of the Finsler framework in dynamical system
analysis are presented in [3, 111]. The statistically determined Finsler norm modelling certain
measurements in medical image analysis is defined in [10]. This inspired us to determine a
Finsler framework for the Garner dynamical system.

Beltrami frameworks are extremely useful in image processing, since they present a digital
image as a geometric active object, commonly a surface in a Riemannian (hence, isotropic)
ambient [63, 103, 105, 114, 115]. On the other hand, [52] and [74] promote anisotropic
extensions, which motivate the development of the general anisotropic Beltrami framework
theory, applicable in image processing.

A comparative overview of metric structures of interest for the research is based on the
theoretic background and general applicative aspects [34, 27, 35, 6, 42].
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Structure

The PhD thesis has the following structure. The first chapter considers differentiable mani-
folds endowed with metrical structure - ranging from the Euclidean metric to the Generalized
Lagrange one. The theory of differential equations on manifolds is concisely presented in
accordance with the research topics. The importance of the Finsler framework for dynamical
system analysis is emphasized.

The second chapter presents an original example of constructing certain Finsler norms,
which are naturally related to the Garner dynamical system.

In the third chapter, an overview of the basic concepts for surface theory in Riemannian
spaces is given, with special emphasis on the Beltrami framework. It also contains the new
original anisotropic extension of the Beltrami framework, and the appropriate variational
calculus, which provides the minimization of the embedded surfaces.

The fourth chapter presents original results of the variational calculus applied to the
particular anisotropic Beltrami frameworks of Finsler-Randers and general Lagrange types
and determines the evolution flow PDE for the embedded surfaces.

The last chapter presents several commonly used applications of the existing isotropic
image processing techniques and the original tentative applications of the obtained anisotropic
evolution flows.

Remarks

We will use the terms ”isotropic” and ”anisotropic” regarding the dependence on direction
of the geometric objects constructed on a manifold and on its tangent bundle. ”Isotropic”
means that an object depends only on the points of the manifold, while ”anisotropic” means
the dependence both on the point and on tangent vectors belonging to the corresponding
fibers of the tangent bundle.

We will use the Einstein convention of implicit summation on repeated indices throughout,
in order to simplify formulas that usually contain components of tensors.
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Chapter 1

Anisotropic extensions of the
Euclidean framework

This chapter contains a brief overview of differentiable manifolds, their subspaces and tangent
bundles, and metric spaces, from the Euclidean one to the general Lagrange space. The
main metrical properties are presented and compared. The usage of certain metric spaces as
frameworks for dynamical systems is further considered.

1.1 Preliminaries

Differentiable manifolds are essential in various areas of mathematics, and they are straight-
forward generalizations of finite-dimensional vector spaces. Roughly speaking, a differentiable
manifold is a space locally behaving like the Euclidean one, but whose global structure is more
complex.

Definition 1.1.1. Let M be a paracompact Hausdorff topological space, such that every
open set U ⊂M is homeomorphic with an open set in Rn, by a mapping ϕ : x 7→ (x1, . . . , xn).
The pair (U, ϕ) is a coordinate chart on M , and the components of the n-tuple ϕ(x) = (xi)
are the local coordinates of the point x.

If the intersection of two chart domains is nonempty, the map ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) →

ϕβ(Uα ∩ Uβ) from one coordinate mapping ϕα to another ϕβ is called the transition map.

The maximal family of charts
{
(Uα, ϕα)

∣∣α ∈ A
}

with smooth transition maps, is the
differentiable structure on M , and M is said to be a differentiable manifold of dimension n.

Geometric objects on a manifold have also their local representations regarding a local
chart, and transition maps indicates changes of corresponding local coordinates (e.g. vector
fields, connections, tensors). The general basic notions and results on differentiable manifolds
used in this text can be found in [34, 41, 42, 66, 70, 79, 90].

Definition 1.1.2. A curve on a differentiable manifold is a smooth mapping

c : I →M, I ⊂ R.

The curve c is said to be regular if dc
dt ̸= 0, ∀t ∈ I .

1



2 CHAPTER 1. EXTENSIONS OF THE EUCLIDEAN FRAMEWORK

A curve is often composed with a local chart and therefore the notation c : t 7→ x(t) is

commonly used, and regularity condition can be written as dxi

dt ̸= 0, i = 1, n, ∀t ∈ I .
We shall introduce the notion of tangent space to a given manifold M at its point x as

the collection of all tangent vectors toM at that point [35]. There are some other approaches
that also lead to the same notion (cf. [34, 60, 70]).

Definition 1.1.3. The tangent bundle of an n-dimensional differentiable manifold M is the
triple (TM, π,M), where

1. the total space TM is a 2n-dimensional manifold

TM =
∪
x∈M

TxM,

whose elements are denoted by u = (x, y), and y ∈ TxM is called the tangent vector on
manifold M at the point x;

2. the surjection map π : TM →M given by π(x, y) = x is called natural projection;

3. for every point x ∈M the fiber π−1(x) = TxM is isomorphic with Rn.

The tangent bundle is the 2n-differentiable manifold with the structure induced by the
differentiable structure of M , see [69, 76]. The elements of a fiber TxM can be viewed as
tangent vectors of curves on M passing through x.

Definition 1.1.4. A section of the tangent bundle (TM, π,M) is a map f : M → TM with
π ◦ f = idM .

A frame in the tangent bundle (TM, π,M) is a collection of smooth sections s1, s2, . . . , sn
of TM defining for each point x ∈M a basis s1(x), s2(x), . . . , sn(x) for the fiber π−1(x).

The set of all smooth sections of the tangent bundle is a vector space over R, but also
a module over the ring C∞(M) of smooth functions on M . The canonical frame of the
tangent bundle is

{
∂

∂x1 ,
∂

∂x2 , . . . ,
∂

∂xn

}
. It produces the decomposition of each tangent vector

y ∈ TxM, ∀x ∈M

y = yi
∂

∂xi

∣∣∣
x
.

Further, with the induced differentiable structure, the decomposition assigns coordinates to
tangent vectors. The tangent bundle TM of M without the global zero section is called the
slit tangent bundle,

T̃M = TM \ {0} = TM \ {(x, 0) | x ∈M}.

The collection T ∗M =
∪

x∈M T ∗
xM of all dual vector spaces T ∗

xM = {ωx

∣∣ ωx : TxM →
R, ωx linear} provides the cotangent bundle (T ∗M,π∗,M) of the differentiable manifold M .
The canonical dual local frame of the cotangent bundle is {dx1, . . . , dxn} is related to the

tangent frame by dxi
∣∣
x

(
∂

∂xj

∣∣∣
x

)
= δij , ∀x ∈M .

Definition 1.1.5. A vector field on M is a smooth section of the tangent bundle X : M →
TM . The collection of all vector fields on M is denoted by χ(M). The Lie bracket is the
operator from χ(M), given by

[X,Y ](f) = X(Y (f))− Y (X(f)), ∀f ∈ C∞(M).
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A smooth curve c : I →M is said to be an integral curve of a vector field X ∈ χ(M), if

dc

dt
= X ◦ c, i.e., dc

dt

∣∣∣
t
= Xc(t), ∀t ∈ I.

The vector field X smoothly assigns one tangent vector to every point of M , i.e.,

X :M → TM, X(x) = Xx ∈ TxM.

Definition 1.1.6. An 1-form on M is a smooth section of the cotangent bundle, which
smoothly assigns one tangent covector to every point of M , i.e.,

ω :M → T ∗M, ω(x) = ωx ∈ T ∗
xM.

The collection of all 1-forms on M is denoted by Λ1(M).

Vector fields and 1-forms are examples of tensors - smooth collections, over M , of scalar
linear maps acting on the elements of the corresponding fibres in the tangent and cotangent
bundles.

Definition 1.1.7. A tensor of (p, s)-type in a vector space V over the field R, is a scalar
R-multilinear function on V ∗ × . . .× V ∗︸ ︷︷ ︸

p

×V × . . .× V︸ ︷︷ ︸
s

, i.e., an element of

T p
s (V ) = Lp+s(V ∗, . . . , V ∗︸ ︷︷ ︸

s

, V, . . . , V︸ ︷︷ ︸
p

;R).

The element T p
s ∈ T p

s (V ) is called p times contravariant and s times covariant tensor.
A tensor field of (p, s)-type on the manifold M is T , a section of the product bundle

TM ⊗ . . .⊗ TM︸ ︷︷ ︸
p

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s

whose fibres are T p
s (TxM) = Lp+s(T ∗

xM, . . . , T ∗
xM︸ ︷︷ ︸

s

, TxM, . . . , TxM︸ ︷︷ ︸
p

;R).

Submanifolds

A map between two C∞-manifolds f :M → N is called smooth if it is continuous and for each
point x ∈M there exist charts (U, ϕ) around x, and (V, ψ) around f(x), such that ψ ◦ f ◦ϕ−1

is smooth. The map ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) → ψ(V ) is called the local representation
of f . If f is bijective, smooth and f−1 is also smooth, then f is said to be a diffeomorphism,
and the corresponding Jacobian matrix of the local representation D(ψ ◦ f ◦ ϕ−1) is regular
and invertible.

Definition 1.1.8. Let f : M → N be a smooth map between two differentiable manifolds,
and let x ∈ M be an arbitrary point. The tangent map of f at x maps the tangent space at
x to the tangent space at f(x), Txf : TxM → Tf(x)N, in the following way:

Txf(y) =
d

dt
(f ◦ c)|t=0,
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where y ∈ TxM and c = c(t) is a curve on M such that c(0) = x and dc
dt |t=0 = y.

The corresponding map between the tangent bundles Tf : TM → TN is called the tangent
map of f and is defined by

Tf(x, y) = (f(x), Txf(y)).

According to the induced charts on TM and the basis elements of TxM , one can write
the local representation of Tf . Let (U, ϕ) and (V, ψ) be the local charts around x and f(x),
respectively. Then, one can write

Tf(x, y) =
(
f(x), D(ψ ◦ f ◦ ϕ−1)(x)y

)
.

Therefore, the tangent map Tf is also called the derivative map, and sometimes it is also
denoted by df or f∗.

Definition 1.1.9. A smooth map f : M → N between two C∞-manifolds is called immer-
sion if the derivative map of f at x, f∗,x : TxM → Tf(x)N is injective for all x ∈M . Moreover,
if f is a homeomorphism, then f(M) is said to be a submanifold of N .

A smooth map f : M → N between two C∞-manifolds is called the embedding (or the
imbedding) if it is an immersion which is a homeomorphism onto the submanifold f(M).
Then, f(M) is an embedded (or a regular) submanifold of N , and has the induced topology
as a subspace in N .

An immersion f :M → N is a local embedding, i.e., each point x ∈M of the domain has
a neighborhood U ⊂M such that f |U : U → N is an embedding.

More details on the subject can be found in [2, 34, 66, 70].

Distributions

Another generalization of vector spaces and 1-forms can be defined by assigning to each point
x ∈M a linear subspace of the fiber π−1(x) or (π∗)−1(x), rather then a vector or an 1-form,
respectively.

Definition 1.1.10. A smooth and regular m-distribution on the n-dimensional differentiable
manifold M is a smooth mapping D : M → TM that assigns to every point x ∈ M an
m-dimensional linear subspace (m < n) of the fiber π−1(x), D(x) ⊂ TxM .

Remark. A notion which generalizes the previous one, is the distribution, a family {D(x)
∣∣x ∈

M} of linear subspaces D(x) ⊂ TxM , which smoothly depends on the point x ∈M , but where
the subspaces of the family need not necessarily be of the same dimension.

A smooth and regular m-distribution D of TM is locally spanned by smooth vector fields
X1, . . . , Xm, such that for each point x ∈M it holds D(x) = span {X1(x), . . . , Xm(x)}1. The
regularity of the distribution ensures that vectors X1(x), . . . , Xm(x) are linearly independent.

Definition 1.1.11. A distribution D on M is integrable if for every point p ∈ M there is a
submanifold S(p) ⊂ M around p, such that D(x) = TxS(p), ∀x ∈ S(p). S(p) is called an
integral submanifold of the distribution D.

1span denotes the collection of all linear combinations of the considered vectors or - more generally - fields
of the same type over R.
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The notion of integral submanifold of a distribution generalizes the one of integral curve
of a vector field.

Metric structures

To turn a differentiable manifoldM into a metric space (M, g), one can equip each fiber TxM
with a scalar product gx : TxM × TxM → R. It is of particular interest to consider the case
when the scalar product varies smoothly from point to point. The trivial case when the scalar
product gx(y, v) does not depend on x ∈ M leads to a Eucledean space, and we denote the
family of all Euclidean spaces as En. Otherwise, M is said to have a Riemannian structure,
and (M, g) is an element of the family Rn of all Riemannian spaces.

If each tangent space is endowed with a whole family of scalar products, that depend
smoothly not only on the point, but also on tangent vectors in TxM , one obtains Finsler,
Lagrange or generalized Lagrange manifold, that belongs to the corresponding family of metric
spaces, Fn, Ln or GLn (cf. [76]). It other words, the field of scalar products is given over the
tangent space of the manifold as

g : TM → B(Rn), g : (x, y) 7→ g(x,y), g(x,y) : Rn × Rn → R,

where B(Rn) denotes the set of all bilinear maps. Thus, the characteristics of the scalar
product field considered as a function over TM , determine the nature of the space structure,
and place it into one of the classes related as follows, [76]:

En ⊂ Rn ⊂ Fn ⊂ Ln ⊂ GLn.

The linearity of the scalar product g(x,y) yields the following coordinate expression:

g(x,y)(u, v) = gij(x, y)u
ivj , u = (u1, . . . , un), v = (v1, . . . , vn) ∈ TxM.

Hence, the definition of the scalar product field is equivalent with a globally defined sym-
metric, nondegenerate two times covariant tensor field on TM , g(x, y) = gij(x, y)dx

i ⊗ dxj ,
called metric or fundamental tensor . Each scalar product g(x,y) in the fiber TxM of the
tangent bundle (for the particularly chosen flagpole y ∈ TxM) produces in a natural way,
the quadratic form Q(x,y)(u) = g(x,y)(u, u) of a vector u ∈ TxM , and the norm function

|u|g(x,y) =
√
gij(x, y)uiuj . The norm of a vector coincides with its length, and can be used to

calculate angles and areas. In other words, the metric tensor field on a differentiable manifold
enables measuring the length of a curve on the manifold and other related notions.

The existence of isotropic vector fields for the quadratic forms over TM which is induced
by the metric tensor, will lead to assigning to the structure the prefix ”pseudo” (e.g., pseudo-
Riemann structure). If the metric tensor ceases to be non-degenerate, then the added prefix
will be ”sub” (e.g., sub-Riemannian structure).

A vector space is flat, which means that parallel transport of its elements is achieved simply
by translation. On a differentiable manifold, there is no canonical isomorphism between
tangent vector spaces at different points. Hence, a parallel transport that relates a tangent
vector at one point with precisely one tangent vector at another point, can not be defined in
a natural way. A parallel transport is achieved along curves on the manifold and is defined by
the notions of connection and covariant derivative. They further introduce geometric objects
of the manifold (autoparallel curves, torsion and curvature as the most important ones).
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1.2 Euclidean and Riemannian structures

A constant metric tensor field gij(x, y) = const, i, j = 1, n over the tangent space TM of a
differentiable manifold M leads to the same measure of distances and angles in all tangent
spaces over the differentiable manifold M . The Euclidean structure on the manifold M is
given by the constant scalar product field, g : (x, y) 7→ g, i.e., by a nondegenerate symmetric
bilinear form g,

g(u, v) ∈ R, ∀u, v ∈ TxM, ∀x ∈M,

i.e., by a two times covariant nondegenerate symmetric tensor. The local chart can be chosen
in such a way that components of the corresponding metric tensor is locally provided by the
identity matrix, i.e.,

g(u, v) = giju
ivj = u1v1 + u2v2 + . . .+ unvn, ∀u, v ∈ TxM, ∀x ∈M.

Moreover, the norm

∥u∥ =
√
(u1)2 + (u2)2 + . . .+ (un)2, ∀u ∈ TxM, ∀x ∈M

is the same in each fiber of the tangent bundle.

Locally, the Euclidean space is flat, which means that the parallel transport of a tangent
vector does not depend on the curve along which the transport is made. That property is
globally present only in Euclidean spaces and it is described by the vanishing curvature.

The length of an arc of the regular curve c is locally approximated by the length (norm)

of the tangent vector ∥(dxi

dt )∥. Globally, the curve length is defined by the integration ℓ(c) =∫
∥(dxi

dt )∥ dt, hence, in the Euclidean space

ℓ(c) =

∫
I

√(
dx1

dt

)2

+ . . .+

(
dxn

dt

)2

dt.

The notion of a straight line in the Euclidean space means a curve of the minimal length
between two given points, but also a curve whose tangent vector field is parallel along the
curve. This notion is generalized in non-Euclidean spaces by geodesics and autoparallel curves.

In the Riemannian geometry, it is necessary to consider at the same time a differentiable
manifold and its associated tangent bundle.

Definition 1.2.1. A Riemannian manifold V n = (M, g) is an n-dimensional differentiable
manifold M with a positive definite scalar product g on tangent spaces. g is called a Rieman-
nian metric and can be written as g = gijdx

i ⊗ dxj , where g is a smooth two times covariant
tensor field over M , with components

gij(x), x ∈M, i, j = 1, n (1.1)

satisfying the following conditions

1. symmetric: gij(x) = gji(x),

2. regular (nondegenerate): rank(gij) = n,
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3. positive definite: gij(x)X
iXj > 0, ∀X ∈ TxM\{0}, ∀x ∈M.

Without the condition of positive definiteness in Definition 1.2.1, (M, g) is a pseudo-
Riemannian manifold, and if g is degenerate, the space is of sub-Riemannian type.

The regularity of matrices (gij(x)), ∀x ∈M ensures the existence of the dual metric tensor
gij ∂

∂xi ⊗ ∂
∂xj . Contractions with both metric tensors are used to change the character of a

tensor. Namely, the tensor gij is used for lowering the indices of tensors, and its inverse gij

is used for raising the indices.
The existence of a Riemannian metric on an arbitrary differentiable manifold is not manda-

tory (para-compacity of M is a sufficient condition), and a constructive proof can be found
in [39, 42, 79]. A Riemannian space can be embedded in the Euclidean space of high enough
dimension [81].

The metric tensor field of a Riemannian manifold depends on the point x, and produces
in each tangent space TxM the unique scalar product defined by the total contraction,

gx(u, v) = gij(x)u
ivj , u, v ∈ TxM.

The length of a regular curve x = x(t), t ∈ I in the Riemannian space (M, g) can be
expressed in terms of the metric tensor g. An infinitesimal displacement along the curve can
be approximated by the infinitesimal tangent vector dx

dt in the corresponding tangent space,
so the arc length differential dℓ can be expressed by the scalar invariant determined by the
Riemannian metric and the curve itself

dℓ =
√
gij(x)dxidxj .

The length of the regular curve c : I →M is given by

ℓ(c) =

∫
I

√
gij(x(t))

dxi

dt

dxj

dt
dt. (1.2)

The notion of connection is necessary in non-Euclidean structures as a tool for locally
analyzing vector fields. The connection is a mapping that further defines the parallel transport
of vector fields along curves and the covariant derivatives operator ∇, that expresses the
infinitesimal variation of a tensor field.

Definition 1.2.2. In the Riemannian manifold (M, g) the connection ∇ is defined as the
mapping

∇ : χ(M)× χ(M) → χ(M), ∇(X,Y ) 7→ ∇XY,

that is linear in the first argument over the module C∞(M), linear in the second argument
over the field R and satisfies the product rule

∇X(fY ) = f∇XY +X(f)Y, f ∈ C∞(M).

Remark. Due to the linearity in the first argument, it is natural to call ∇ linear connec-
tion. It should be emphasized that a connection in a manifold may be defined regardless of
the existence of a metric.

Any linear connection ∇ is determined by its coefficients

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk
.

The main geometric objects that characterize a connection are its torsion and curvature.



8 CHAPTER 1. EXTENSIONS OF THE EUCLIDEAN FRAMEWORK

Definition 1.2.3. Let M be a differentiable manifold endowed with the connection ∇. The
torsion of the connection is the mapping

T : χ(M)× χ(M) → χ(M), T (X,Y ) = ∇XY −∇YX − [X,Y ],

while the curvature of the connection is

R : χ(M)× χ(M)× χ(M) → χ(M), R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Both the torsion and the curvature associated to the linear connection can be locally
expressed by their components [35, 75, 76]:

T

(
∂

∂xi
,
∂

∂xj

)
= T k

ji

∂

∂xk
, R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= Rh

k,ji

∂

∂xh
.

The torsion tensor field measures the symmetricity of the connection ∇ and has the
following components

T k
ji = Γk

ij − Γk
ji.

The deviation of a vector X ∈ TxM parallelly transported along a closed contour is described
by the Riemannian curvature tensor field with components(

∇ ∂

∂xi
∇ ∂

∂xj
−∇ ∂

∂xj
∇ ∂

∂xi

)
Xh = Rh

k,jiX
k,

where

Rh
k,ji =

∂Γh
jk

∂xi
−
∂Γh

ik

∂xj
+ Γh

ipΓ
p
jk − Γh

jpΓ
p
ik.

In a Riemannian manifold (M, g) there is only one torsion free connection (T ≡ 0) that
preserves scalar product of two vectors transported parallel along a curve. That is the Rieman-
nian connection or the Levi-Civita connection Γi

jk, which is symmetric (Γi
jk = Γi

kj) metric-
compatible, and whose coefficients are given by:

Γi
jk =

1

2
gih
(
∂gjh
∂xk

+
∂gkh
∂xj

−
∂gjk
∂yh

)
. (1.3)

The coefficients of the Levi-Civita connection are called the Cristoffel symbols (of 2-nd kind).
The associated covariant curvature tensor Rij,kl = gihR

h
j,kl is symmetric in the pairs of

indices, but it is antisymmetric within each pair. Its contraction with the contravariant
metric tensor gil produces the Ricci tensor with components Rjk = Rh

j,kh, and a second

contraction with gjk produces the scalar curvature S = gjkRjk. The Riemannian curvature
tensor vanishes (and consequently, the Ricci tensor and scalar curvature) if and only if the
metric tensor field is constant and the space is of locally Euclidean type.

A curve c : I → M in a Riemannian manifold (M, g) with the Levi-Civita connection ∇
is said to be a geodesic if its tangent vector filed ċ = dx

dt is parallel along the curve,

∇ċċ = 0. (1.4)

Remark. Actually, if the relation (1.4) is considered for an arbitrary (possibly different
from the Levi-Civita) connection, then the corresponding curves are called autoparallel curves
of the connection, and are not generally related to the metric structure of the manifold.
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A geodesic curve is the trajectory of the following system of second order differential
equations (called the geodesic equations)

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0. (1.5)

There exists a unique geodesic passing through a given point and having a given vector as
emerging given tangent vector. At the same time, a minimal geodesic is the shortest curve
connecting two given close points, and is an extremal curve for the variation of the length
functional (and of the energy functional, too).

More details on the Riemannian geometry can be found in, e.g., [37, 41].

1.3 Anisotropic structures

Further extensions of Euclidean spaces include anisotropic structures, i.e., metrics that depend
on points and tangent vectors. Since the metric tensor field will be defined over the tangent
space, it is necessary to consider the second order tangent bundle of a differentiable manifold.

1.3.1 The second order tangent bundle

The second order tangent bundle of a differentiable manifold M is the tangent bundle of
TM , (TTM, π∗, TM) with π∗ denoting the derivative map of π : TM → M , given by
π∗(x, y,X, Y ) = (x,X). The elements of TTM are (u,Z) ∈ TTM , where u = (x, y) ∈ TM,
and Z ∈ T(x,y)TM. The fibers are 2n-dimensional vector spaces with the natural basis

T(x,y)TM = span

{
∂

∂xi

∣∣∣
(x,y)

,
∂

∂yi

∣∣∣
(x,y)

∣∣∣ i = 1, n

}
,

which provides the decomposition of a tangent vector as

Z(x, y) = Xi(x, y)
∂

∂xi

∣∣∣
(x,y)

+ Y i(x, y)
∂

∂yi

∣∣∣
(x,y)

.

Some of tensorial objects defined in the tangent space TTM change their coordinates
like the tensors which are defined on the base manifold, i.e., in the bundle TM . They are
particularly important and are called distinguished, or d-tensors.

The natural submersion π : TM → M induces on TTM a regular and integrable n-
dimensional distribution V : TM → TTM called the vertical distribution. In fact, the kernel
of the derivative map π∗ restricted to some point u = (x, y) ∈ TM is a subspace of TuTM ,
called the vertical subspace, and

V TM =
∪

u∈TM

Ker(π∗,u),

where π∗,u is the restriction of π∗ on the fiber π−1
∗ (u). The triple (V TM, τ, TM) is called

the vertical bundle with τ its canonical projection induced by π∗. Since π∗

(
∂
∂yi

)
= 0, it is

straightforward to see that

VuTM = span

{
∂

∂yi

∣∣∣
u

∣∣∣i = 1, n

}
.



10 CHAPTER 1. EXTENSIONS OF THE EUCLIDEAN FRAMEWORK

The vector fields
∂

∂yi
, i = 1, n, are local d−tensors on TM .

A complementary distribution to the vertical one V TM will be denoted as HTM and will
be called horizontal distribution. It determines a Whitney decomposition of the second order
tangent bundle

TTM = HTM ⊕ V TM. (1.6)

A fiber π−1
∗ (u) of TTM is a direct sum of the vertical subspaces VuTM and the complemen-

tary to it, horizontal subspace HuTM , π−1
∗ (u) = HuTM ⊕ VuTM . Hence,

HTM =
∪

u∈TM

HuTM

defines a subbundle of TTM , also with the canonical projection (HTM, τ, TM). The hori-
zontal distribution is not unique, it is related with a kernel of a linear submersion of TTM
into V TM and with the notion of nonlinear connection (see [35, 76]).

Definition 1.3.1. A linear submersion N : TTM → V TM is called a nonlinear connection
if N ◦ ι = id|V TM , where ι : V TM → TTM is the canonical inclusion.

A nonlinear connection is determined by a connection form, that is a vector 1-form defined
on T̃M by a smooth mapping N = N i

j(x, y),

N : (x, y,Xi, Y i) → (x, y, 0, XiN j
i + Y j). (1.7)

The zero section is an invariant of the nonlinear connection map.
The horizontal distribution providing the decomposition (1.6) is a mapping H : TM →

TTM , that assigns to each point u ∈ TM the subspace of TuTM defined by

HuTM = H(u) = Ker(N
∣∣
TuTM

).

The horizontal bundle HTM :=
∪

uHuTM is spanned by the local frame elements

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
.

At any point u ∈ TM , the subspaces HuTM and VuTM are complementary. The frames
adjusted to the Whitney decomposition (1.6) contain d−vector fields

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
∈ Γ(HTM),

∂

∂yj
∈ Γ(V TM), (1.8)

and the local basis of TuTM is called Berwald basis. By means of the Whitney decomposition
(1.6) and (1.8), the nonlinear connection introduces on (TTM, π∗, TM) a structure with
structural group GL(n,R)×GL(n,R).

The main purpose of the nonlinear connection is to connect tangent spaces at two separate
points on the base manifoldM , TpM and TqM . The vectors from spaces TpM and TqM can
be related by a parallel transport along some curve, such that the transport depends only on
the curve direction and not on the curve itself. So, a nonlinear connection yields a covariant
derivative ∇ : χ(M)× χ(M) → χ(M), where ∇XY = ∇(X,Y ) provides the resulting vector
obtained by a parallel transport of Y in the direction of X. The covariant derivative still has
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to be linear over R and to satisfy the Leibniz rule in the second argument. But the linearity
in the first argument is not postulated. The covariant derivative is defined as

∇XY =
{
X(Y j) +N j

i (x,X)Y i
} ∂

∂xj
, where Y = Y i ∂

∂xi
,

and X,Y ∈ TxM . Hence (x,X) is an element of T̃M where the connection coefficients N j
i

are defined.
If the connection coefficients are linear also in the second argument N i

j(x, y) = γijky
k, then

the connection N is called linear connection. In that case, the covariant derivative ∇ becomes
linear in the first argument too, and γijk are coefficients uniquely determined by the spanning
relations

∇ ∂

∂xi

∂

∂xj
= γkij

∂

∂xk
.

A curve c on M is called autoparallel with respect to the nonlinear connection ∇ if the
tangent vector field ċ on c remains tangent during the parallel transport along c. Necessary
and sufficient condition for the latter is (like in the Riemannian case)

∇ċċ = 0.

The second order differential equation of an autoparallel curve is

d2xi

dt2
+N i

j

(
x,
dx

dt

)
dxj

dt
= 0. (1.9)

The nonlinear connection N is said to be integrable if the corresponding horizontal distri-
bution is integrable or, equivalently, involutive. The verification consists of checking whether
the Lie bracket of two horizontal vectors remains horizontal. The calculation gives[

δ

δxi
,
δ

δxj

]
= Rk

ij

∂

∂yk
,

where

Rk
ij =

δNk
i

δxj
−
δNk

j

δxi
(1.10)

are the components of the curvature tensor of the nonlinear connection , R = 1
2R

k
ijdx

j ∧dxi⊗
∂

∂yk
measuring the (non)integrability of the horizontal distribution. The vanishing of the

curvature components Rk
ij is a necessary and sufficient condition for the integrability of the

horizontal distribution. Due to the skew symmetry in the low indices, Rk
ij is also interpreted

as the hhv−torsion tensor (see eg. [111]).
The nonlinear connection is said to be symmetric if tijk = 0, where

tijk =
∂N i

j

∂yk
−
∂N i

k

∂yj
,

are the components of the so called weak torsion tensor of the nonlinear connection.
Let us consider a linear connection

D : χ(TM)× χ(TM) → χ(TM).



12 CHAPTER 1. EXTENSIONS OF THE EUCLIDEAN FRAMEWORK

If D preserves the Whitney decomposition (1.6) induced by a given nonlinear connection N ,
then D is called N -linear connection. It transports horizontal vectors into horizontal ones
and vertical vectors into vertical ones. The compatibility of the linear connection D with the
nonlinear connection N yields two types of connection coefficients, D(N) = (F i

jk, C
i
jk). The

coefficients F i
jk describe the transport in horizontal direction, and the coefficients Ci

jk describe
the transport in vertical direction. The covariant derivative of D(N) uniquely provides the
coefficients, by means of

D δ

δxj

δ

δxk
= F i

jk

δ

δxi
, D δ

δxj

∂

∂yk
= F i

jk

∂

∂yi
,

D ∂

∂yj

δ

δxk
= Ci

jk

δ

δxi
, D ∂

∂yj

∂

∂yk
= Ci

jk

∂

∂yi
.

(1.11)

The vertical coefficients Ci
jk are components of a d−tensor, and the horizontal ones F i

jk

transform like the local coefficients of an affine connection on the base manifold.

Consequently, the covariant derivative can be decomposed into two parts: horizontal
and vertical covariant derivatives. Further, the notions of metricity and symmetry will be
independently addressed.

A regular curve c : I → TM, c(t) = (xi(t), yi(t)) is a horizontal curve if the tangent
vector field ċ along c is in HTM. The curve c is said to be an autoparallel curve of the N -linear
connection D if

Dċċ = 0.

The necessary and sufficient condition for a curve c to be horizontal is

d2xi

dt2
+ F i

jk

dxj

dt

dxk

dt
= 0. (1.12)

A regular curve on the base manifold c : I → M, c(t) = (xi(t)) is an autoparallel curve of

an N -linear connection, if its natural lift to TM , ĉ(t) = (xi(t), dx
i

dt (t)) is a horizontal curve.

Remark. Though the equations (1.9) and (1.12) are analogous, the curves are differently
named. The reason is an ability to relate the N -linear connection with a metric structure,
and further to consider curves by their length minimality.

The properties of a N -linear connection D are described by the components of the torsion
tensor and of the curvature tensor.

The torsion tensor of the N -linear connection D(N) = (F i
jk, C

i
jk) is defined as

T (X,Y ) = DXY −DYX − [X,Y ], ∀X,Y ∈ χ(TM)

and can be expressed by five d-tensors defined in the following way:

T

(
δ

δxi
,
δ

δxj

)
= T k

ji

δ

δxk
+Rk

ji

∂

∂yk
,

T

(
∂

∂yi
,
δ

δxj

)
= Ck

ji

δ

δxk
+ P k

ji

∂

∂yk
,

T

(
∂

∂yi
,
∂

∂yj

)
= Sk

ji

∂

∂yk
;

(1.13)
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where the components of the d-tensors are explicitly given by

T k
ji = F k

ji − F k
ij , Rk

ji =
δNk

j

δxi
− δNk

i

δxj
, P k

ji =
∂Nk

j

∂yi
− F k

ij , Sk
ji = Ck

ji − Ck
ij . (1.14)

The curvature of the N -linear connection D(N) = (F i
jk, C

i
jk) defined as

R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z, ∀X,Y, Z ∈ χ(TM),

has only three sets of components defined by (cf. [35, 76])

R

(
δ

δxi
,
δ

δxj

)
δ

δxh
= Rk

hji

δ

δxk
,

R

(
∂

∂yi
,
δ

δxj

)
δ

δxh
= P k

hji

δ

δxk
,

R

(
∂

∂yi
,
∂

∂yj

)
δ

δxh
= Sk

hji

δ

δxk
;

(1.15)

where

Rk
hji =

δF k
hj

δxi
−
δF k

hi

δxj
+ Fm

hjF
k
mi − Fm

hiF
k
mj + Ck

hmR
m
jk,

P k
hji =

∂F k
hj

∂yi
−
δCk

hi

δxj
− Cm

hiF
k
mj + Ck

miF
m
hj + Ck

hmF
m
ij + Ck

hmP
m
ji ,

Sk
hji =

∂Ck
hj

∂yi
−
∂Ck

hi

∂yj
+ Cm

hjC
k
mi − Cm

hiC
k
mj .

(1.16)

There are three more expressions of vertical type defining the curvature tensor; these can be
obtained by changing the third argument in (1.15) to be from the vertical local basis. Then,
the righthand sides will be changed in the same manner, but the components of the curvature
tensor remain the same as in (1.16).

The nonlinear connection N on M produces some special N -linear connections on TM .
One of them is the Berwald connection BΓ = D(N), whose local coefficients are:

BΓ(N i
j) =

(
F i
jk =

∂N i
j

∂yk
, Ci

jk = 0

)
. (1.17)

The relations (1.11) show that the vertical connection coefficients vanish.
Considering the torsion of the Berwald connection described by (1.13) and (1.14), one can

see that the only nonvanishing set of components of the torsion is of type hh − v, and the
hh− v torsion of the Berwald connection coincides with the already mentioned invariant, the
curvature tensor of the nonlinear connection (1.10).

Analogously, the curvature tensor of the Berwald connection has only two nonvanishing
sets of components: the horizontal and the mixed one:

Rk
hji =

δF k
hj

δxi
−
δF k

hi

δxj
+ Fm

hjF
k
mi − Fm

hiF
k
mj , P k

hji =
∂F k

hj

∂yi
=

∂2Nk
h

∂yj∂yi
. (1.18)

The curvature of the nonlinear connection and the horizontal curvature of the induced Berwald
connection are related by

Rk
hji =

∂Rk
ji

∂yh
. (1.19)
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Some more mappings and geometric objects existing in TTM will be further described.

The tangent structure J is the submersion J : TTM → V TM , that is nilpotent of the
second order, and its kernel and image coincide

J2 = 0, ImJ = KerJ = V TM.

It can be considered as a globally defined (1, 1)-type tensor field on TM , J = δij
∂
∂yi

⊗ dxj .

The action of J on the canonical frame of χ(TTM) is the following:

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.

Definition 1.3.2. The canonical vertical vector field C = yi ∂
∂yi

, globally defined on the slit

tangent bundle, is called the Liouville vector field . A vector field S ∈ χ(TM) is called a
semispray (or a second order vector field) if and only if JS = C.

The second order tangent bundle provides by duality the cotangent bundle with total
space T ∗TM and dual coframe {dxi, dyi}. Analogously, there exists the dual decomposition
T ∗TM = H∗TM ⊕ V ∗TM induced by the nonlinear connection N , and the adjusted dual

coframe
{
dxi, δyi = dyi +N i

jdx
j
}
⊂ Γ(T ∗TM).

For more details on d-connection theory we refer to [35].

1.3.2 Finsler structures

The theory of Finsler spaces has been systematically and comprehensively considered by many
authors, see [27, 35, 40, 94, 101]. Here, we give a concise introduction to the basic notions
and results from the Finsler geometry.

Finsler geometry has its physical motivation in the variational calculus of the following
integral ∫ b

a
F

(
x1, . . . , xn,

dx1

dt
, . . . ,

dxn

dt

)
dt, (1.20)

where F (x1, . . . , xn, y1, . . . , yn) is nonnegative real function (cf.[27]). Some additional con-
strains for the dependency F on yi will be given in Definition 1.3.3.

1.3.1. Examples

1. When interpreting t as the time, x as the physical position and y as the velocity of
a particle, then F describes the motion speed of the particle, and the above integral
measures the distance between the positions x(a) and x(b).

2. If x stands for the position inside a vector field action, then a force F (x, y) depends on
the direction too, and the integral (1.20) represents the work done by the force F .

3. If x stands for the position inside an anisotropic medium (e.g. crystal structure), the
speed of light propagation F (x, y) depends on its direction. The integral (1.20) repre-
sents the total time that light needs to traverse the given path.

4. One can find examples from biology and ecology in [4, 6, 7, 27].
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A Finsler manifold is a pair (M,F ), where M is a differentiable manifold equipped with a
Finsler fundamental function F , that can arise from two different approaches: from differential
geometry, by defining a metric tensor field on the tangent space TM (see e.g. [27, 94]), or
from functional analysis, by defining a family of inner products in every fiber TxM of the
tangent bundle (cf. [35, 100]). The Finsler structure is globally defined on the tangent space
of M by allowing F to act on the total tangent space TM of the manifold.

Definition 1.3.3. A function F : TM → [0,∞) is the Finsler fundamental function on an
n-dimensional differentiable manifold M if it satisfies the following conditions:

1. (regularity) F (x, y) is C∞-differentiable on the slit tangent bundle T̃M and only con-
tinuous on the null section;

2. (positive homogeneity) F (x, y) is positively homogeneous of the first order with respect
to the fiber coordinates,

F (x, λy) = λF (x, y), ∀λ > 0;

3. (strong convexity) the Hessian matrix of F 2 with respect to the fiber coordinates

(gij(x, y)) =

(
∂2

∂yi∂yj

[
1

2
F 2(x, y)

]∣∣∣∣
(x,y)

)
i,j=1,n

(1.21)

is positive definite on the slit tangent bundle.

The fundamental function defines a Finsler structure on M and turns M into a Finsler mani-
fold (M,F ). The collection of scalar functions gij(x, y), i, j = 1, n, represent the components
of the so-called fundamental tensor g = gij(x, y)dx

i ⊗ dxj .

The fundamental tensor field on M , g = gij(x, y)dx
i ⊗ dxj is well defined. Actually, it

is a tensor field on T̃M , but the properties of the fundamental function ensures it being a
d-tensor field. More, the corresponding inverse tensor field with components (gij(x, y)) is also

a d-tensor field on T̃M .
The strong convexity condition is well defined, i.e., it does not depend on the choice of

fiber coordinates and implies that the symmetric bilinear form

g(x,y)(u, v) =
1

2

∂2

∂s∂t

[
F 2(x, y + su+ tv)

] ∣∣
s=t=0

, (x, y) ∈ TM, u, v ∈ TxM,

is positive definite at every point of the slit tangent bundle.
The restriction of F to a specific tangent space Fx = F (x, ·) : TxM → [0,∞) satisfies

all the needed conditions to be a Minkowski norm in the vector space TxM ([40, 100]). The
direction of the zero-tangent vector is trivial, so there is no interest of existence of partial
derivatives of F at y = 0. This explains the absence of the differentiability request at the zero
section of TM . But homogeneity and strong convexity of the fundamental function guarantee
the continuity at the null section of the tangent bundle.

Remark. Some authors, see [35], allow the third condition in Definition 1.3.3 to be
weaker, namely that the Hessian matrix and the corresponding bilinear form be nondegenerate
and of constant signature. In order to avoid the ambiguity such a structure will be called
pseudo-Finsler structure.
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Remark. One may also consider a generalized Finsler structure (M,F ), whose funda-
mental function F is not defined on the whole tangent space, but only on certain distributions
of TM , or has its smoothness domain strictly included in the slit tangent space. Some classi-
cal illustrative examples in this respect are the Kropina metric, the m-th root pseudo-Finsler
metrics, including the Berwald-Moor metric, etc (see [86, 87]).

Remark. Any Riemannian manifold (M, g) is also Finslerian. The scalar product
gx(u, v) = gij(x)u

ivj , ∀u, v ∈ TxM is induced by the following norm

F (x, y) =
√
gij(x)yiyj , ∀y ∈ TxM.

Then F defines a fundamental function of the Finsler manifold of Riemann type.

The problem of existence of a Finsler structure on a differentiable manifold is considered
in [35]. In this matter, we have the following result:

1.3.2. Theorem ([35]) Let M be a paracompact manifold with a differentiable structure and
the tangent bundle TM . Then there exists a function F : TM → R, which satisfies the axioms
of a Finsler fundamental function on M , and hence endows M with a Finsler structure.

The necessary and sufficient condition for (M,F ) to be reducible to a Riemannian manifold
is the parallelogram equality

F 2(x, y + z) + F 2(x, y − z) = 2F 2(x, y) + 2F 2(x, z), ∀y, z ∈ TxM.

There is another geometric object specific for Finsler manifolds, which describes the de-
pendency on direction (fiber coordinates) of the fundamental tensor.

Definition 1.3.4. The Cartan tensor is the (0, 3)-type tensor field on T̃M defined as

Cijk(x, y) :=
1

2

∂gij(x, y)

∂yk

∣∣∣
(x,y)

=
1

4

∂3F 2(x, y)

∂yi∂yj∂yk

∣∣∣
(x,y)

.

The vanishing of the components of the Cartan tensor field is a necessary and sufficient
condition for the Finsler manifold to be Riemannian. The Cartan tensor is totaly symmetric,
due to the smoothness of the fundamental function. The partial contraction of the contravari-
ant metric with the Cartan tensor gives the mean Cartan tensor

Ii = gjkCijk,

which is simpler, but with analogous properties and similar importance as Cijk. By Deicke’s
theorem ([44]), one has the following equivalences (cf. [27]):

1.3.3. Theorem Let (M,F ) be a Finsler manifold. Then the following conditions are equiv-
alent:

1. M is Riemannian manifold.

2. The Cartan tensor Cijk vanishes.

3. The mean Cartan tensor Ii vanishes.
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Both Cartan tensors Cijk and Ii are d-tensors on T̃M . Their main properties arise from
the homogeneity of F and will be presented in Proposition 1.3.4.

The homogeneity of the fundamental function is the necessary and sufficient condition for
the existence of an extremal for the integral (1.20), see [94]. Euler’s theorem for homoge-
neous functions gives an equivalent condition for the positive 1-homogeneity of the Finsler
fundamental function ([27]):

∂F (x, y)

∂yi
yi = F (x, y). (1.22)

1.3.4. Proposition The following properties hold true in a Finsler space (M,F ):

1. The Finsler fundamental function satisfies

∂2F (x, y)

∂yi∂yj
yi = 0; (1.23)

∂2F 2(x, y)

∂yi∂yj
yi = 2F (x, y)

∂F

∂yj
;

F 2(x, y) = gij(x, y)y
iyj , or equivalently gij(x, y)

yi

F (x, y)

yj

F (x, y)
= 1; (1.24)

gij(x, λy) = gij(x, y). (1.25)

2. The Cartan tensor and the mean Cartan tensor are positively homogeneous of
degree −1:

Cijk(x, λy) = λ−1Cijk(x, y), and Cijky
k = 0,

Ii(x, λy) = λ−1Ii(x, y), and Iiy
i = 0.

3. The Finsler norm Fx = F (x, ·) in TxM is equivalent with any other norm of Finsler
type ∥ · ∥F , including the Euclidean one.

Proof. These relations are consequences of Euler’s theorem, precisely of the relation (1.22). 2

The property (1.23) shows that the Hessian matrix of the fundamental function F is
singular. The equality (1.25) shows that the fundamental tensor is positively homogeneous of
order 0. Inside any fiber TxM\{0}, the function gij(x, ·) is constant on each subset {λy

∣∣λ > 0},
so one can say that the fundamental tensor is constant in the direction of the tangent vector
y ∈ TxM \ {0}. Precisely, the fundamental tensor is constant only on the positive semi-ray
determined by y. The first relation in (1.24) can be interpreted as F (x, y) =

√
gij(x, y)yiyj ,

hence it makes sense to call F (x, y) the length (or norm), of the tangent vector y at the point
x. The unit length vector l(x, y) ∈ TxM associated to a tangent vector y ∈ TxM \ {0} is
called a supporting element at the point x in the direction of y, and the second relation at
(1.24) provides its explicit form:

l(x, y) =
y

F (x, y)
=

(
y1

F (x, y)
, . . . ,

yn

F (x, y)

)
.

The set of all unit tangent vectors at point x of a Finsler manifold is a hypersurface in TxM ,
called the indicatrix at x,

Ix =
{
y ∈ TxM

∣∣F (x, y) = 1
}
.
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The theory of these hypersurfaces is developed in [31, 62, 94] and widely applicable, especially
in the wavefront representation and propagation, cf. [12, 54, 45, 112].

Without loss of generality, we can assume that the further considered regular curves in
the Finsler manifold (M,F ), given by c : I → M, c : t 7→

(
xi(t)

)
, are parameterized by

arclength, which means F
(
c(t), dcdt (t)

)
= 1, ∀t ∈ I.

The length and the energy of the curve c in the Finsler manifold are defined by the restric-
tion of the fundamental function and its square to the curve extension ĉ : I → T̃M, ĉ(t) =(
c(t), dcdt

∣∣∣
t

)
, as follows

ℓ(c) =

∫
I
F (ĉ(t)) dt, E(c) =

∫
I
F 2(ĉ(t)) dt.

Both integrals do not depend on parameterization, due to the homogeneity of F , and they
achieve extremal values on the same curve assuming that the endpoints are fixed.

Definition 1.3.5. A variation of a curve c is a smooth mapping cε : (−ϵ, ϵ) × [0, 1] →
M (ϵ > 0), where the following holds:

1. c0(t) = c(t), t ∈ [a, b], (ε = 0 provides the initial curve);

2. cε(0) = c(0), cε(1) = c(1), ∀ε ∈ (−ϵ, ϵ), (the endpoints are fixed).

Definition 1.3.6. A curve c in Finsler manifold is called a geodesic if its length ℓ(c) is
stationary with respect to the variations of c, i.e.,

dℓ(cε)

dε

∣∣∣∣
ε=0

= 0.

The classical Euler-Lagrange equation for the variational problem of curve length in the
Finsler manifold aims to minimize the length ℓ(c) and produces the local condition for a curve
to be geodesic (see [35]). This is described by the following proposition.

1.3.5. Proposition (The geodesic equation, [35]) A curve c : I → M with arclength pa-
rameterization is a geodesic in the Finsler manifold (M,F ) if and only if its local coordinates
satisfy the following second-order system of differential equations

d2ci

ds2
+ 2Gi

F

(
c(s),

dc

ds

)
= 0, i = 1, n, (1.26)

where

2Gi
F (x, y) =

1

2
gij
[
∂2F 2

∂xk∂yj
(x, y)yk − ∂F 2

∂xj
(x, y)

]
, y =

dx

ds
. (1.27)

The meaning of this proposition is that an arclength parameterized curve onM is geodesic
if and only if its canonical lift is an integral curve of the corresponding semispray vector field
on T̃M ,

SF (x, y) = yi
∂

∂xi

∣∣∣
(x,y)

− 2Gi
F (x, y)

∂

∂yi

∣∣∣
(x,y)

. (1.28)

The functions Gi
F (x, y) are called the geodesic coefficients, and further computation based on

their homogeneity gives another, equivalent form of (1.27):

Gi
F (x, y) =

1

2
γijk(x, y)y

iyj ,
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where γijk(x, y) are the formal Cristoffel symbols of the fundamental tensor (similar to (1.3)),

γijk(x, y) =
1

2
gir(x, y)

(
∂grk
∂xj

(x, y) +
∂gjr
∂xk

(x, y)−
∂gjk
∂xr

(x, y)

)
.

The homogeneity property holds for the geodesic coefficients too. The vector field (1.28) is
said to be the geodesic spray of the Finsler manifold.

Further, through the geodesic coefficients, the Finsler structure uniquely determines the
Cartan nonlinear connection

N i
j(x, y) =

∂Gi

∂yj

∣∣∣
(x,y)

.

There are four special N -linear connections canonically associated to the Finsler space (M,F ):
Berwald, Cartan, Chern-Rund and Hashiguchi, but none of them has the two important prop-
erties of metricity and symmetry of the Levi-Civita connection associated to a Riemannian
structure. Various choices of the horizontal and vertical connection coefficients (in the four
cases) provide vanishing torsion and compatibility with the Finsler metric but separately
considered in horizontal and vertical distribution, but not simultaneously.

The Berwald N -linear connection is h-metrical and h-symmetric and has the following
coefficients

F i
jk =

∂N i
j

∂yk
, Ci

jk = 0.

The Cartan N -linear connection is metrical and symmetric in both distributions and has
the following generalized Cristoffel symbols

F i
jk =

1

2
gih
(
δghk
δxj

+
δghj
δxk

−
δgjk
δxh

)
, Ci

jk =
1

2
gih
(
∂ghk
∂yj

+
∂ghj
∂yk

−
∂gjk
∂yh

)
.

The Chern-Rund N -linear connection is h-metrical and h-symmetric and has the following
coefficients

F i
jk =

1

2
gih
(
δghk
δxj

+
δghj
δxk

−
δgjk
δxh

)
, Ci

jk = 0.

The Hashiguchi N -linear connection is h-symmetric, v-metrical and v-symmetric and has
the following coefficients

F i
jk =

∂N i
j

∂yk
, Ci

jk =
1

2
gih
(
∂ghk
∂yj

+
∂ghj
∂yk

−
∂gjk
∂yh

)
.

More details on this subject can be found in [35].
The theory of submanifolds in Finsler spaces is presented in [99]. Particularly, minimality

of a surface in Finsler spaces of different types is considered in [15, 16, 17].

1.3.3 Finsler structures of Randers type

Randers spaces are the simplest non-Riemannian examples of Finsler structures. A Randers
fundamental function can be considered as a linearly deformed Riemannian norm. More
precisely, a Randers structure on a differentiable manifoldM is given by a Finsler fundamental
function of the form:

F (x, y) =
√
aij(x)yiyj + bi(x)y

i, (1.29)
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where a = aijdx
i ⊗ dxj is a Riemannian metric on M and b = bidx

i is a 1-form on M . These
naturally produce the following scalar functions on the tangent space TM ,

α(x, y) =
√
aij(x)yiyj , β(x, y) = bi(x)y

i, ∀y ∈ TxM,x ∈M.

Since β(x, ·) does not have a fixed sign and F has to be positive on T̃M , the following function
which is globally defined on M has to be bounded,

||b|| =
√
aijbibj < 1.

The absolute homogeneity of the Riemannian norm α and the linearity of β ensure that F is
positively homogeneous.

1.3.6. Theorem Let (M,F ) be the Finsler space with Randers type fundamental function
(1.29). The metric tensor field defined by (1.21) has the following form

gij =
F

α
aij −

F

α2
yiyj +

(
bi +

yi
α

)(
bi +

yi
α

)
, (1.30)

the corresponding inverse metric is given by

gij =
α

F
aij +

β + α||b||2

F 3
yiyj − α

F 2
aikbky

j − α

F 2
ajkbky

i, (1.31)

and the fundamental determinant g = det(gij) has the following expression

g =

(
F

α

)n+1

det(aij). (1.32)

The proof of this theorem can be found in [27], and is based on the following algebraic
fact:

1.3.7. Lemma Let (Qij) be a nonsingular real square matrix of order n with the inverse
matrix (Qij), and let (Ci) be an n×1 real matrix. Then, denoting c2 = QijCiCj, the following
holds true:

det(Qij + CiCj) = (1 + c2)det(Qij).

If 1 + c2 ̸= 0 then the matrix (Qij + CiCj) is nonsingular and has its inverse defined by

(Qij + CiCj)
−1 =

(
Qij − 1

1 + c2
CiCj

)
,

where Ci = QijCj.

Further details about Randers spaces, including examples, can be found in [6, 38, 73].

1.3.4 Ingarden structures

On a Randers space (M,F = α+ β), the Finslerian nonlinear connection can be constructed
in many ways, in accordance with Definition 1.3.1. The choice of the connection coefficients
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N i
j provides through the mapping (1.7) the horizontal sections for the Whitney decomposition

(1.6). Besides of the Cartan nonlinear connection (1.27), one can chose

N i
j = γijky

k − 1

2
aih
(
∂bh
∂xj

− ∂bj
∂xh

)
, or N i

j = γijky
k − 1

2
aihbky

k

(
∂bh
∂xj

− ∂bj
∂xh

)
, (1.33)

where γijk are the Cristoffel symbols of the Riemannian metric a. The coefficients (1.33) define
variants of the Lorenz nonlinear connection, which are nonhomogeneous or homogeneous,
respectively.

Ingarden spaces are Finsler spaces with Randers structure and Lorenz type nonlinear
connection. An important property of these spaces is their having a simple Berwald connection
(1.17), whose horizontal coefficients coincide with the coefficients of the Levi-Civita connection
associated to the Riemannian structure a.

In the case of nonhomogeneous Lorentz connection, Ingarden spaces can be regarded as
Lagrange spaces. The theory of Ingarden spaces is presented in [77, 78].

1.3.5 Other special Finsler structures

(α, β)−structures

The previously considered Randers structures belong to the class of (α, β)−structures, whose
fundamental function F is given by a Riemannian norm α and an 1-form β, as

F = αϕ

(
β

α

)
,

where ϕ is a smooth real function defined on a symmetric open interval I ⊂ R. In [40] one can
find the proof that the same condition ||b|| < 1 is sufficient for F to be a Finsler fundamental
function.

Another particular case of (α, β)−structure is the Kropina structure, with the fundamental
function given by

F (x, y) =
α2

β
=
aij(x)y

iyj

b
.

This type of metric is used for modelling dissipative mechanical systems and the corresponding
theory is presented in [9]. Global properties of Randers-Kropina metrics are considered in
[21].

m-th root Finsler structures

An m-th root Finsler space is a differentiable manifold endowed with a fundamental function
of the form

F (x, y) = m

√
ai1i2...im(x)y

i1yi2 . . . yim , (1.34)

where ai1i2...im are components of a totaly symmetric covariant tensor field onM , and m > 2.
Generally, an m-th root Finsler fundamental function does not produce necessarily a positive
definite metric tensor (1.21), hence it is a pseudo-Finsler structure.

The fundamental metric tensor of an m-th root structure has the components

gij = (m− 1)aij − (m− 2)aiaj ,
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where

aij = aiji3i4...im(x)y
i3yi4 . . . yim , and ai = aii2i3...im(x)y

i2yi3 . . . yim .

In the cases when aij is a regular tensor, the metric is regular too, and its dual components
are

gij =
1

m− 1

(
aij + (m− 2)aiaj

)
,

where ai = aijaj . Properties of these Finsler spaces are considered in [18], where explicit
expressions for the representative geometric objects are given. Some particular cases are:

1. The firstly considered Finsler fundamental function, proposed by Riemann, see [18]:

F (x, y) = 4
√

(y1)4 + (y2)4 · · ·+ (yn)4.

2. The cubic (3-rd root) Finsler metric, which canonically possesses a Wagner type N -
linear connection, was studied in [71, 73, 84, 85].

3. The Berwald-Moor structure with the fundamental function

F (x, y) = n
√
y1y2 . . . yn

is pseudo-Finslerian. Its metric tensor has the signature (+,−,−, . . . ,−), hence it is
commonly used in Relativity models. Other significant properties are presented in [14].
More details on the subject, from different approaches, can be found in [9, 11, 72].

1.4 Generalized Lagrange structures

Weaker conditions in Definition 1.3.3 produce a generalization of Finsler spaces, the Lagrange
spaces. An (x, y)-dependent metric tensor field provides a Generalized Lagrange structure.
The notion of generalized Lagrange structure was motivated by the fact that many properties
of Lagrange spaces refer only to the metric tensor instead of considering ab initio a Lagrangian.
The theory of generalized Lagrange structures was introduced by Miron, and details of the
theory can be found in [35, 75]. Here, we present basic facts that are of the interest for our
work.

Definition 1.4.1. A generalized Lagrange space, or shortly GL-space is the pair (M, g), where
M is a differentiable manifold and g = gij(x, y)dx

i⊗dyj is d-tensor field on the tangent space
TM , satisfying the following properties:

1. g is symmetric, gij(x, y) = gji(x, y), ∀(x, y) ∈ TM ,

2. g is regular, det(gij(x, y)) ̸= 0, ∀(x, y) ∈ TM ,

3. the quadratic form g(x, y) : Rn → R given by gij(x, y)v
ivj has constant signature.

The tensor g is said to be the GL-metric on the space.

Obviously, any Finsler space is also a GL-space. Conversely, the restriction of a GL-metric
gij(x, y) to the slit tangent bundle T̃M is reducible to a Finslerian metric if there exists a
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function F : TM → [0,∞), of C∞-class on T̃M and only continuous on the zero section,
which is positively homogeneous of order 1 in the second argument, and satisfies

gij(x, y) =
1

2

∂2F 2

∂yi∂yj
(x, y).

The Cartan tensor, which is a d-tensor specific for Finsler geometry, can be extended to
the GL-framework as follows:

Definition 1.4.2. The Cartan tensor of a GL-metric g is the (0,3)-type d-tensor

Cijk =
1

2

(
∂gik
∂yj

+
∂gij
∂yk

−
∂gjk
∂yi

)
.

This generalization is well defined while in the case of Finsler spaces, only the first term
remains. The Cartan tensor of a GL-space is symmetric in the last two indices.

1.4.1. Proposition A GL-metric gij is reducible to a Finsler metric if and only if

Cijky
j = 0.

A GL-metric g is said to be reducible to a Riemannian metric if it does not depend on
tangent vectors, i.e., gij(x, y) = gij(x). A necessary and sufficient condition for a GL-metric
to be reducible to a Riemannian metric is the vanishing of the Cartan tensor.

A GL-space (M, g) does not have a canonical nonlinear connection. Hence, it is usual to
establish a nonlinear connection N induced by a semispray S defined on M . Further, the
compatibility of the two geometries (M, g) and (S,N) can be considered.

The variational problem of a GL-space (M, g) can be considered if the GL-metric is zero
homogeneous and if it canonically defines a nonlinear connection. Then, it becomes a varia-
tional problem of the Finsler space with F (x, y) =

√
gij(x, y)yiyj .

1.4.1 The Lagrange structure

Definition 1.4.3. [35] A Lagrange space is a couple (M,L), where M is a differentiable
manifold and the Lagrangian L : TM → R is a scalar function, which is C∞-differentiable on
the slit tangent bundle T̃M , only continuous on the null section, and regular, meaning that
the halved Hessian of L(x, y) with respect to the fiber coordinates yi,

gij(x, y) =
1

2

∂2L

∂yi∂yj
(x, y) (1.35)

is regular (of maximal rank) and of constant signature over the slit tangent bundle T̃M .

A Lagrange space (M,L) is said to be reducible to a Finsler space if there is a Finsler
fundamental function defined on TM , such that L(x, y) = F 2(x, y).

Remark. Lagrange spaces represent a generalization of the Riemannian and Finsle-
rian ones. In the first case, the Lagrangian is exactly the square of the Riemannian norm
LR(x, y) = gij(x)y

iyj and in the second one, it is the square of the Finsler norm LF (x, y) =
F 2(x, y).
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An example of a Lagrange space that is not reducible to a Finsler space is given by the
following Lagrangian

L(x, y) = F 2(x, y) +Ai(x)y
i + U(x),

where F is a Finsler fundamental function, Ai are the components of a covector field on M ,
and U is a smooth scalar function on M .

The Cartan tensor of a Lagrange space (M,L) is defined in an analogous way,

Cijk =
1

2

∂gij
∂yk

=
1

4

∂3L

∂yi∂yj∂yk
,

and it is a totaly symmetric d-tensor field.

1.4.2. Proposition A GL-space (M, g) is reducible to a Lagrange space if and only if its
Cartan tensor given in Definition 1.4.2 is totally symmetric.

Definition 1.4.4. The energy of the Lagrange space (M,L) is defined by the Lagrangian in
the following way

EL = yi
∂L

∂yi
− L. (1.36)

In the particular case of Finslerian (and Riemannian) spaces, the energy (1.36) coincides
with the Lagrangian itself, since the 2-homogeneity of corresponding Lagrangian L produces

the relation yi
∂L

∂yi
= 2L.

Similarly as before, the geodesics of a Lagrange space are curves which minimize the action
of the Lagrangian

I(c) =

∫
c
L

(
x,
dx

dt

)
dt, c : [0, 1] 7→ xi(t) ∈M.

Hence, they are determined from the Euler-Lagrange equations

∂L

∂xi
− d

dt

∂L

∂yi
= 0, yi =

dxi

dt
.

The Lagrange structure canonically defines a semispray vector field with the coefficients
[61]

2Gi(x, y) =
1

2
gij
(

∂2L

∂xk∂yj
yk − ∂L

∂xj

)
,

and the nonlinear connection N i
j = ∂Gi

∂yj
. An N -linear connection compatible with the

Lagrange metric can be defined analogously as for the Cartan N -linear connection of a Finsler
structure.

1.4.2 The Synge-Beil structure

Due to the relation between classes of Finsler and GL structures, a whole class of GL-metrics
can be obtained by deformations of Finsler metrics. One particular type of GL-metric, called
the Beil metric, will be of the interest in the sequel. Beil proposed a metric applicable in
unified field theory [29, 30], with the following components:

g̃ij(x, y) = gij(x, y) + c(x, y)Bi(x, y)Bj(x, y), (1.37)
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where gij is a Finslerian metric on a differentiable manifold, c is a smooth scalar function
over the tangent space, and Bi = gikB

k for Bk being a given d-vector field over the tangent
space, see [35]. g̃ij are components of a symmetric d-tensor field. For c > 0 the Beil metric
is positive definite. By using the algebraic Lemma 1.3.7, one obtains the dual metric in an
analogous form,

g̃ij(x, y) = gij(x, y)− c

1 + cB2
Bi(x, y)Bj(x, y), B2 = BiB

i = gijB
iBj , (1.38)

and the determinant value
det(g̃ij) = (1 + cB2)det(gij). (1.39)

The deformation (1.37) of a Riemannian metric gij(x, y) = gij(x) produces the Synge-Beil
metric, which is significant in geometric theory of relativistic optics ([13, 75]). The reducibility
of Synge-Beil metrics is considered in [35] and depends on the function c and the tensor field
(Bi). The simplest example of a Beil-type metric is obtained for the canonical vector field
Bi = yi,

g̃ij(x, y) = gij(x) + c(x, y)yiyj , (1.40)

where yi = giky
k.

For a constant a ∈ R and c(x, y) = a
(
||y||2g

)−1
= a

(
gkhy

kyh
)−1

, one obtains the so called
normalized Miron metric, or shortly NM-metric,

g̃ij(x, y) = gij(x) +
a

gkhykyh
yiyj . (1.41)

The metric (1.41) on a 2-dimensional manifold is directionally homogeneous and nonreducible
to Lagrange case. For the sake of completeness, we also provide the proof based on a more
general theorem, see [35, 75].

1.4.3. Proposition The metric structure (1.41) given on a 2-dimensional differentiable
manifold is directionally 0-homogeneous and nonreducible to a Lagrange metric.

Proof. The straightforward calculation verifies the homogeneity,

g̃ij(x, λy) = gij(x) +
a

λ2gkhykyh
λ2yiyj = g̃ij(x, y).

Next, the total symmetry of the Cartan tensor has to be checked. The symmetry in the
last two indices holds by the Definition 1.4.2, so Cijk = Ckji will be considered. But this is
equivalent with

∂g̃ij
∂yk

=
∂g̃kj
∂yi

.

Taking partial derivatives of (1.41), the total symmetry condition becomes

ypgipgjk = ypgkpgji.

Checking all 8 possibilities for the indices, one concludes that this equality holds if and only if
g12g12 = g11g22, which is in contradiction with the regularity of the Riemannian metric g. 2

In case that the metric d-tensor field is 0-homogeneous, we say that it is of generalized
Finslerian type. An example is given by the normalized Miron metric (1.41).
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1.5 Differential equations on differentiable manifolds

The theory of differential equations considered on differentiable manifolds has some constrains
but also some specific properties. We present a concise description of the ODE and PDE
theory on manifolds. The ODE theory is exposed in accordance with [32, 34, 65, 88, 109],
while the particular case of the second order ODE follows [3, 35]. For the PDE theory
approached by the geometrical point of view, we refer to [55, 95].

1.5.1 ODEs on manifolds

An autonomous ODE (a dynamical system) on an n-dimensional differentiable manifold M
is given by a vector field X ∈ χ(M) (see Definition 1.1.5),

ẋ = X(x). (1.42)

The solution of the Cauchy problem which consists of the differential equation (1.42) and the
initial condition x(0) = x0, is the integral curve cx0 of the vector field X. The existence and
the uniqueness of the solution of the Cauchy problem are basic issues of the ODE theory, (e.g.
[32, 88, 109]). The integral curves are local solutions of (1.42). The following theorem ([65])
includes the essential facts on the integral curves ([34, 109]) and provides the global solution
through the notion of flow.

1.5.1. Theorem Let M be an n-dimensional manifold and X a vector field, X ∈ χ(M).
Then:

(1) Any point x ∈M is contained in a unique maximal integral curve of X, i.e.,

∃! cx : Ix = (t1(x), t2(x)) →M, cx(0) = x,

where Ix ∋ 0 is the maximal domain of cx.

(2) If t2(x) <∞ then the integral curve cx(t), t→ t2(x), leaves every compact subset of M .
(Similarly for t1(x) > −∞.)

(3) The set W =
∪

x∈M Ix × {x} is an open subset in R×M . The mapping

φ :W →M, (t, x) 7→ φ(t, x) = cx(t) (1.43)

is smooth and has the following properties:

(i) φx(t) = φ(·, x) : Ix →M is the maximal integral curve at x, i.e., φx(t) = cx(t);

(ii) φ(0, x) = x, but also
d

dt
φ(t, x)

∣∣∣
t=0

= X(x), (1.44)

which means that the maximal integral curve φx(t) passes through the point x in
direction X(x);

(iii) φt(x) = φ(t, ·) is a local diffeomorphism onM and satisfies the semigroup property:

φt ◦ φs = φt+s, ∀s, t ∈ Ix such that t+ s ∈ Ix.
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Definition 1.5.1. The flow of the vector fieldX ∈ χ(M) and of the corresponding differential
equation (1.42) is the smooth map (1.43)

φ :W →M, (t, x) 7→ φ(t, x) = cx(t), W =
∪
x∈M

Ix × {x} ⊆ R×M,

satisfying the properties (i), (ii) and (iii) from Theorem 1.5.1.
The family of diffeomorphisms {φt} is called one-parameter group of transformations

induced by X. The image φ (Ix × {x}) is the orbit of x.

Theorem 1.5.1 shows that any vector field produces a flow. Conversely, one has that a
given function φ : W → M, φ = (φ1, . . . , φn), induces a vector field whose flow is the
function itself, in the following way:

X(x) = f i(x)
∂

∂xi

∣∣∣
x
, f i(x) =

dφi
x

dt

∣∣∣∣
t=0

. (1.45)

The vector field X defined by (1.45) is called the infinitesimal generator of the flow φ.
From geometrical point of view the main benefit of considering ODE on manifolds is the

following: the theory of existence and uniqueness of the solution for an autonomous ODE can
be reconsidered over the whole manifold, emerging from local to global, by using concepts of
vector fields, integral curves and flows.

In the sequel we shall consider second order ODEs, for which we refer to [35].
A system of second order ODE, denoted by SODE, given on a manifold M by

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0, i = 1, n, (1.46)

is defined over a local chart on the tangent bundle TM . The system (1.46) has to be com-
patible on the intersections of two local charts on the base manifold. More precisely, the left
hand side of the above equation must be a d-tensor on TM , which is equivalent with the
following transformation rule for the functions Gi under the coordinate change xi 7→ x̃i(xi)
(see [35]):

2G̃i =
∂x̃i

∂xj
2Gj − ∂ỹi

∂xj
yj . (1.47)

The functions Gi are assumed to be smooth enough on the slit tangent bundle T̃M and only
continuous on the null section.

1.5.2 KCC theory and semispray geometry

The Kosambi-Cartan-Chern (KCC) theory of a SODE (1.46) deals with the geometric char-
acteristics of the solutions - associated trajectories of the system. The KCC theory studies
the deviation of closed trajectories, their stability, robustness and chaotic behavior. The aim
is to find the geometric objects - called the invariants of the system (1.46) - which remain
invariant under the regular coordinate transformation

x̃i = x̃i
(
x1, . . . , xn

)
, i = 1, n

ỹi =
∂x̃i

∂xj
yj , i = 1, n

(1.48)
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which is actually the transition map on TM . The invariants will be called theKCC-invariants.
These are five d-tensors on the slit tangent bundle T̃M , which describe the geometry of the
SODE. More precisely, if two systems of type (1.46) have the same KCC-invariants, they
can be locally transformed one into another. Particularly, if all five KCC-invariants vanish,
there exist local coordinates where the trajectories of the system (1.46) are described by affine
equations of first degree.

KCC theory is applicable in analyzing dynamical systems (see, e.g., [1, 33, 112]).
In order to find the KCC-invariants, one can define the covariant differential corresponding

to the SODE (1.46) as follows ([3, 33, 18]): For a vector field ξ = ξi(x) ∂
∂xi ∈ TxM , the KCC-

covariant differential is defined on the open subset of Rn × Rn by

Dξi

dt
=
dξi

dt
+
∂Gi

∂yj
ξj .

The KCC-covariant differential of yi produces the invariant form of the system (1.46):

Dyi

dt
= −εi, where εi = 2Gi − ∂Gi

∂yj
yj . (1.49)

We note that εi is a contravariant vector field on M (a d-tensor on T̃M), called the first
KCC-invariant , and representing an external force.

A variation of a solution of the SODE c(t) = (xi(t)) can be given by

xi(t) = xi(t) + ηξi(t), 0 < η << 1. (1.50)

Remark. Definition 1.3.5 gives a more general concept of curve variation, regardless of vector
fields, but (1.50) is more appropriate to what follows.

By inserting (1.50) into (1.46), and letting η → 0, we generate a local perturbation of
the solution. Its infinitesimal change is described by a Jacobi vector field ξi(t) satisfying the
variational equation:

d2ξi

dt2
+ 2

∂Gi

∂yj
dξj

dt
+
∂Gi

∂xj
ξj = 0. (1.51)

The following d-tensor field, called also Jacobi endomorphism,

Bi
j = 2

∂Gi

∂xj
+ 2Gl ∂

2Gi

∂yj∂yl
− ∂2Gi

∂yj∂xl
yl − ∂Gi

∂yl
∂Gl

∂yj
(1.52)

related to the KCC-covariant differential, enables to provide an invariant form of the varia-
tional equation (1.51):

D2ξi

dt2
= Bi

jξ
j . (1.53)

The d-tensor Bi
j is the second KCC-invariant and it is related with the stability of solutions.

The third KCC-invariant is defined as follows:

Bi
jk =

1

3

(
∂Bi

j

∂yk
−
∂Bi

k

∂yj

)
, (1.54)

and represents the field strength. An inflection of the field strength is also an invariant, the
fourth KCC-invariant

Bi
jkl =

∂Bi
jk

∂yl
. (1.55)
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The last invariant, the fifth KCC-invariant is related with the interaction in the system (it
gives account of the chaotic behavior), and has the form

Di
jkl =

∂3Gi

∂yj∂yk∂yl
. (1.56)

The KCC-theory in full detail can be found in [3].

1.5.2. Theorem Two SODEs of form (1.46) defined on the same domain can locally be
transformed one into another by a transition map, if and only if their five invariants εi, Bi

j,

Bi
jk, B

i
jkl and D

i
jkl are equivalent tensors. In particular, there are local coordinates for which

Gi(x, ẋ) = 0 if and only if all five KCC-tensors vanish.

The functions Gi which change via (1.47) under (1.48), globally define semispray vector
field ([35]):

1.5.3. Proposition Let the functions Gi(x, y) be defined on domains of all induced local
charts on TM , and let S ∈ χ(TM) be a vector field of the form

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
. (1.57)

Then S is a semispray, JS = C, and the following two statements are equivalent:

(a) The vector field S is globally defined.

(b) Under the coordinate change (1.48), the functions Gi transform by the rule (1.47).

The functions Gi(x, y) are called the local coefficients of the semispray .
A smooth curve on the base manifold, c : I →M, t 7→ c(t) = (xi(t)), which is a solution

of (1.46) is called a path of the semispray (1.57), while its complete lift ĉ : I → TM, t 7→
ĉ(t) =

(
xi(t), dx

i

dt

)
is an integral curve of the corresponding semispray vector field given by

(1.57).
If the semispray is determined by a SODE, then global properties of the SODE are related

to the semispray geometry: the nonlinear connection induced by the semispray can be assigned
to the SODE (1.46) in such a way that the corresponding autoparallel curves of the connection
and the solutions of the SODE coincide. Furthermore, the nonlinear connection produces five
invariants of the semispray. More details on the subject can be found in [35].

A nonlinear connection (1.7) induced by the semispray has the following local coefficients

N i
j =

∂Gi

∂yj
. (1.58)

Remark. Conversely, any symmetric nonlinear connection N i
j induces a semispray with

local coefficients 2Gi(x, y) = N i
j(x, y)y

j . This correspondence is one-to-one only under the
additional conditions of homogeneity of the local coefficients.

With respect to the induced nonlinear connection N i
j (1.58) and to the adjusted Berwald

basis (1.8), the semispray can be expressed as

S = yi
δ

δxi
− εi

∂

∂yi
, (1.59)
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where
εi(x, y) = 2Gi(x, y)−N i

j(x, y)y
j . (1.60)

The scalar functions εi are components of a contravariant d−vector field called the deviation
tensor of the semispray. It coincides with the first KCC-invariant (1.49).

A semispray determines through the induced nonlinear connection a

∇Xi = S(Xi) +N i
jX

j , (1.61)

and it maps vertical d-vector fields2 of T̃M , ∇ : χv(TM) → χv(TM),

∇
(
Xi(x, y)

∂

∂yi

)
= ∇Xi ∂

∂yi
; ∇Xi =

∂Xi

∂xj
yj − ∂Xi

∂yj
N j

ky
k +N i

jX
j . (1.62)

Further, by the composition with the vertical lift χ(M) → χv(TM), Xi ∂
∂xi 7→ Xi ∂

∂yi
,

the dynamical covariant derivative defines a map (also called the dynamical derivative)
∇ : χ(M) → χv(TM), given by

∇
(
Xi ∂

∂xi

)
= ∇Xi ∂

∂yi

.
The dynamical covariant derivative provides the equivalent invariant form of the SODE,

∇
(
dxi

dt

)
= −εi

(
x,
dxi

dt

)
, (1.63)

the same as the (1.49), expressed by the KCC-covariant differential and using the same εi.

1.5.4. Theorem The variational equations of a path of the semispray (1.57) can be expressed
by means of the dynamical covariant derivative as

∇2ξi + P i
j ξ

j = 0. (1.64)

The equation (1.64) is also a necessary and sufficient condition for a vector field (ξi(t)) given
along the path of the semispray to be a Jacobi vector field.

Proof. ([35]) Since the path is also the solution of SODE, its variation is (1.50). The
substitution of the varying solution (1.50) into (1.46), by considering η → 0 yields

dξ2

dt2
+ 2

∂Gi

∂yj
dξj

dt
+ 2

∂Gi

∂xj
ξj = 0.

By the use of the dynamical covariant derivative (1.62) in order to calculate∇2ξi and denoting

P i
j = Ri

jky
k +

δεi

δxj
+

∂2Gi

∂yj∂yk
εk, (1.65)

the variational equation gets the expected form (1.51). 2

A vector field ξi which gives a variational equation is called a Jacobi vector field and
(1.51) its defining condition, hence it is called Jacobi equation. The (1, 1)-type tensor field

2We denote by χv(TM) the set of all vertical vector fields on TM .
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P i
j defined by (1.65) is called the deviation curvature tensor, it is the second invariant of the

semispray and coincides with the second KCC-invariant (1.53).
The geometric object Ri

jk appearing in the above formula is called the third semispray
invariant, but it actually is just the curvature (1.10) of the nonlinear connection NS induced
by the semispray (1.58).

The two remaining invariants of the SODE are provided by the Berwald NS-linear con-
nection, which now has its components arising from the nonlinear connection induced by the
semispray,

BΓS =

(
F i
jk =

∂2Gi

∂yj∂yk
, Ci

jk = 0

)
. (1.66)

The curvature tensor of the Berwald connection yields the last two semispray invariants
throughout its nonvanishing components, namely

Ri
hjk =

δF i
hj

δxk
−
δF i

hk

δxj
+ Fm

hjF
i
mk − Fm

hkF
i
mj ; P i

hjk =
∂F i

hj

∂yk
.

The fourth semispray invariant is Ri
hjk, the Riemann-Cristoffel curvature of the Berwald

linear connection and the fifth one is P i
hjk, the hv-curvature of the Berwald linear connection,

which coincides with the so called the Douglas tensor of the nonlinear connection,

Di
hjk =

∂2N i
h

∂yj∂yk
,

and obviously is the same as the fifth KCC-invariant (1.56).
It is proved in [3, 35] that all the five invariants of the semispray coincide with the

corresponding KCC-ones.

1.5.3 PDEs on manifolds

A partial differential equation (PDE) in Rn of order k has the following general form:

ϕ

(
x, u,

∂u

∂xi
,
∂2u

∂xi∂xj
, . . . ,

∂ku

∂xi1 . . . ∂xik

)
= 0,

where x = (x1, . . . , xn) is a point of an open domain in Rn. This PDE implicitly defines
a scalar function u = u(x). It is not always possible to solve PDE explicitly, i.e., to find
a classical solution, but rather a weak (or distributional) solution. The questions of the
existence and of the uniqueness of solutions are among the main problems in the theory of
PDEs (cf. [49, 50]).

The theory of PDEs on manifolds means additional complexity. A PDE on a manifold
must have its solutions on the manifold, too. In other words, the PDE should be defined
in a coordinate independent way. It is possible to consider PDEs in a jet bundle [11, 96],
analogously as a SODE (1.46) in TTM . In that way, the PDE on the manifold is related with
a distribution over the manifold (in the corresponding jet bundle), and the solvability of the
PDE is reflected by the integrability of the distribution, and further by its involutivity [66].

Our interest will be in PDEs derived from the variational problem that minimizes the
energy E. Generally, a PDE is formulated as

argminΣ{E(X)}, (1.67)
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where Σ is a submanifold - the image of a mapping X from an open domain in Rn to a
differentiable manifold, E is a global scalar feature on Σ (usually an energy), and argmin
gives a submanifold at which E is minimized. The integral of the PDE given by (1.67) will
be a submanifold where the energy is extremal (E′ = 0). In general, the solutions are not
analytic, and cannot be obtained directly. One of the nonvariational techniques, useful in
image processing, is the descent flow technique. This is a minimization process that evolves
the geometric active object related to a digital image [55, 95].

One can consider the PDE
∂X

∂t
= −E′(X) (1.68)

with the unknown function X = X(x, t), coupled with the initial condition X(x, 0) = X(x) =:
X0. With respect to the parameter t, (1.68) is an ODE, and the steady state is necessary for
the energy extremal,

∂X

∂t
= 0 ⇒ E′(X) = 0.

The auxiliary variable t can be seen as a time (or scale) parameter, and X = X(x, t) can
be seen as a flow of the PDE. Actually, for the initial mapping X0 = X : (x1, . . . , xn) →(
X1(x1, . . . , xn), . . . , Xm(x1, . . . , xn)

)
and the initial produced submanifold Σ0 = Σ, the PDE

(1.68) defines an one-parameter family of mappings

Xt : (x
1, . . . , xn) →

(
X1

t (x
1, . . . , xn, t), . . . , Xm

t (x1, . . . , xn, t)
)
, (1.69)

and the corresponding family of submanifolds Σt (called layers in image processing). This
process of deforming the initial map is also called the evolution of the submanifold.

Let us resume: when the integral submanifold of (1.67) cannot be obtained, one can start
with the initial submanifold and evolve it during the time by the descent flow (1.68).

Theoretical background, as well as constrains of the flow technique, are comprehensively
presented in [49, 50].

1.6 Frameworks for dynamical systems

A dynamical system is defined by a system of second order ordinary differential equations,
or equivalently, by a second order vector field on a manifold representing a set of all possible
states of the dynamical system.

1.6.1 Dynamical systems on a differentiable manifold

Preliminary concepts and definitions

The understanding of a real phenomenon includes the proper understanding and descriptions
of its possible states, parameters which affect the outcome and its changes over time. Time
dependency of a process is called an evolution and it is closely related to the notion of
dynamical system.

Definition 1.6.1. A dynamical system is a semigroup G acting on a space M , as follows:

T : G×M →M, (g, x) 7→ Tg(x) := T (g, x), Tg ◦ Th = Tg◦h.
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This definition is of general type (see [109]), and we are interested in the particular case of
continuous dynamical systems, where M is an n-dimensional differentiable manifold, usually
called configuration space or state space with the elements x ∈M representing all the possible
states of the system, and the semigroup G, also called the time domain, the real additive
semigroup G = R+ or even the group G = R (in the second case the system is said to be

reversible). The action of G on M leads to the changes of the states during time ẋ =
dx

dt
.

The action is given by a mapping called the flow.

We shall additionally assume the following:

1. the phenomenon represented by a dynamical system is deterministic in past and future;

2. dynamical systems are autonomous: the evolution rule does not explicitly depend on
time. For any two values t, t0 ∈ R, (with t > 0), from the time domain, an effect of the
evolution over the time interval [t0, t0 + t] does not depend on t0, but only on t;

3. dynamical systems are nonconservative: for any external force influencing the system,
the work of the force along some path depends not only on the end points, but also on
the path itself.

Such a dynamical system describes a process in the configuration spaceM that is evolving
in time. The rule of change is defined by a system of ODE onM , called the evolution equation:

ẋ = f(x),

where the same notation x will be used for the coordinate representation x = (xi), i = 1, n of
a point inM and for the point itself, x ∈M . This is a usual ODE (where f = (f1, f2, . . . , fn) :
M → Rn is assumed to be smooth enough on M), but it originates from a dynamical system.
The local behavior is represented by a Cauchy problem consisting of the evolution equation
and the initial state x(0) = x0.

The evolution equation can also be regarded as a smooth vector field Xf ∈ χ(M), which
can be decomposed in terms of the tangent frame

Xf = f i
∂

∂xi
. (1.70)

Hence, the solution is called a trajectory or an integral curve of the dynamical system.

Assigning the maximal integral curve to a point produces the flow (1.43) which defines the
dynamical system T , and which determines the action of the group G = R on the configuration
space M [109]. More precisely, the flow associated to a given vector field is a local group with
a parameter, which acts on an open set, and whose action is induced by the field after getting
the maximal solution of the SODE.

According to the above assumptions and notions, we introduce an adjusted definition of
dynamical system.

Definition 1.6.2. A dynamical system is a pair (M,X), where M is a finite dimensional
differentiable manifold, and X is a global vector field on M defining the evolution by

ẋ = X(x). (1.71)
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Remark. According to the relations (1.43) and (1.44), another equivalent definition of
the autonomous dynamical system can be given by a manifold and a flow function (M,φ).

The nature of a given dynamical system (1.71) is locally determined by the function
f = (f1, . . . , fn), which defines the components of the vector field on a given chart, X = f i ∂

∂xi

.
The theory of linear dynamical systems has exact analyzing and solving procedures (cf.

[58, 88, 92, 109]), and the integration of the system gives a general solution and trajectories
corresponding to initial conditions. On the other hand, the theory of nonlinear dynami-
cal systems is complex, because real phenomena often exhibit nonlinear characteristics and
their integral curves are generally not given by classical, analytical functions, but rather by
transcendental ones. Therefore, a qualitative study of these solutions is necessary includ-
ing critical points and poles, bifurcations of the system, chaotical behavior and stability of
solutions (cf. [88, 92, 109]). The study of nonlinear dynamical systems mainly consists of
qualitative, analytical and numerical methods. The qualitative study of a dynamical system
focuses on the critical points: fixed points, poles and other singularities by considering their
nature in the configuration space. Further, it explains the dependence of the system evolution
on the varying parameters (bifurcation theory), and its chaotical behavior - sensitivity on the
initial conditions. The (local) stability at a point and global stability are also a part of the
qualitative study (cf. [92, 109]).

Definition 1.6.3. A point x0 ∈M is called a fixed point of the dynamical system (M,X) if
X(x0) = 0. Otherwise, x0 is a regular point (assuming that f is bounded).

In a certain neighborhood of a given regular point, the vector field can be locally straight-
ened. Moreover, away from the fixed point the tangent vectors from the vector field Xf (x)
can be locally uniformed as shown in the following lemma ([109]).

1.6.1. Lemma For Xf (x) ̸= 0 there exists a local transition map on M , such that x̃ = ϕ(x)
transforms the dynamical system (1.71) into

˙̃x = (1, 0, . . . , 0), x̃(0) = x̃0.

A nonlinear system can be linearly approximated near certain fixed points, which makes
the theory of linear dynamical systems applicable, but not completely accurate. For exam-
ple, the stability of the linearized system is called linear stability of the original nonlinear
dynamical system [33].

Definition 1.6.4. A fixed point x0 of the dynamical system (M,X) is (Lyapunov) stable, if
for any neighborhood U of x0 there exists another neighborhood of x0, V ⊂ U , such that any
integral curve starting at x ∈ V remains in U for t ∈ Ix ∩ [0,∞).

A fixed point x0 is said to be asymptotically stable if it is stable and all the integral curves
converge to x0.

A fixed point which is not stable is called unstable.

Lyapunov stability along the whole trajectory is related with its perturbation (1.50) by a
Jacobi vector field ξi (1.51).

1.6.2. Theorem The trajectories of (1.71) are Jacobi stable if and only if the real parts of the
eigenvalues of the deviation tensor P i

j (1.65) are strictly negative everywhere. An analogous

statement holds truth for the second KCC-invariant Bi
j (1.53).
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The proof of this theorem and more details on the subject can be found in [1, 3, 33].

The global stability of a dynamical system (M,X) is not an intrinsic property, but involves
environmental characteristics [89]. A family of (semi)norms in the ambient space will enable
a measurement of perturbations of the integral curves. This is an additional motivation to
introduce Finsler manifolds, which we present in the following.

Dynamics of Lagrange mechanical systems

In general, a dynamical system my arise from a mechanical system and determine its evolution,
see,e.g., [35, 109]. One can describe a mechanical system as a triple (M,E, σ) where M is a
configuration space, E is an energy function - a globally defined scalar characteristic of the
system - and σ is an external force action that can be described by one tensor field of the
first order.

If the external force (and hence, the system) is autonomous and nonconservative, the most
of dynamical systems model the mechanical system are of the Lagrange type.3

Definition 1.6.5. A nonconservative mechanical system is a triple ΣL = (M,E, σ), where
(M,L) is a Lagrange space, E is the energy related to the Lagrangian by (1.36) and σ
is a vertical vector field σ = σi(x, y) ∂

∂yi
∈ χ(TM) or a covertical 1-form, which means

σ( ∂
∂yi

) = 0, i = 1, n, or equivalently σ = σi(x, y)dx
i ∈ Λ(TM).

Remark. An external force σ can act on the system influencing its scalar or vector
properties regarding its nature. Nonconservativity is reflected in the dependency of σi(x, y)
on direction y. There exists a natural mapping σi = gijσ

j , which can change the character of
the external force.

In general, any system tends to the state of its minimal energy, and therefore the evolution
equation of the system arises from the Euler-Lagrange variational equation,

d

dt

(
∂E

∂yi

)
− ∂E

∂xi
= 0, (1.72)

whose integral curves are geodesics.

Remark. In the absence of the homogeneity property, besides energy minimization, we
shall separately consider Lagrangian minimization.

Any kind of an external force demands reaction. Therefore, the evolution equations arise
from the following one

d

dt

(
∂E

∂yi

)
− ∂E

∂xi
= σi(x, y), yi =

dxi

dt
. (1.73)

1.6.3. Theorem The evolution equations (1.73) of the Lagrange mechanical system ΣL with
the energy (1.36), have the equivalent form

d2xi

dt2
+ 2Gi

DS

(
x,
dx

dt

)
= 0, 2Gi

DS(x, y) =
1

2
gis
(

∂2L

∂ys∂xj
yj − ∂L

∂xs

)
− 1

2
σi (1.74)

3Considerations that follow in this section are mostly based on [35, 75].
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Proof. The left-hand side of the Euler-Lagrange equation (1.73) can be calculated

d

dt

(
∂L

∂yi

)
− ∂L

∂xi
=

∂2L

∂xj∂yi
dxj

dt
+

∂2L

∂yj∂yi
dyj

dt
− ∂L

∂xi
=

∂2L

∂xj∂yi
yj + 2gji

d2xj

dt2
− ∂L

∂xi
.

Then, substitution into (1.73) and multiplication by 1
2g

is, where the regularity of L ensures
the existence of the inverse of gji defined by (1.35), leads to

d2xs

dt2
+

1

2
gis
(

∂2L

∂xj∂yi
yj − ∂L

∂xi

)
=

1

2
σs,

and the statement follows by renaming the indices. 2

This theorem allows the Lagrangian variational theory to become applicable to dynamical
systems.

The dynamics of the system ΣL is determined by the evolution equation (1.74), which is

locally given on T̃M by the SODE of evolution (1.74), and is equivalent with the first order
ODE system {

ẋ = y

ẏ = −2Gi
DS(x, y),

and globally, by a vector field on TM , the semispray (1.57)

SDS(x, y) = yi
∂

∂xi

∣∣∣∣
(x,y)

− 2 Gi
DS(x, y)

∂

∂yi

∣∣∣∣
(x,y)

.

1.6.2 Finslerian framework for dynamical systems

Proposition 1.3.5 shows that the variational problem on a Finsler manifold is represented by
the SODE (1.26), that further produces a semispray by Proposition 1.5.3. Homogeneity of
the fundamental function and the relation (1.27) result the 2-homogeneity of the semispray
SF , hence it is called a spray. The spray related to the geodesic equations (1.26) in a Finsler
manifold is called geodesic spray

SF (x, y) = yi
∂

∂xi
− 2Gi

F (x, y)
∂

∂yi
.

The geodesic spray SF of the Finsler manifold is a vector field on TM , and it is an
element of Γ(TTM). Because of homogeneity, it mutually induces the nonlinear connection
NSF

(1.58), that is, the canonical nonlinear connection of the Finsler manifold, also called
the Cartan nonlinear connection:

(NSF
)ij =

∂Gi
F

∂yj
.

This further produces the Whitney decomposition (1.6), and there exist four special, inten-
sively studied, NSF

-linear connections in TTM of the Finsler manifold [27, 35, 40]. One of
them is the Berwald connection BΓSF

(1.66) which plays an essential role in defining the
KCC invariants of the Finsler structure [5, 35, 18]. This connection is responsible for the
Jacobi stability of the second order associated geodesic system, measuring the ”distance” of
the Finslerian paths to the flat affine behavior of straight paths.

If the configuration space of a dynamical system is supplemented with an appropriate
Finsler structure, then all five invariants can be expressed in terms of the fundamental function
and all trajectories become geodesic curves.



Chapter 2

Example of the fitting Finslerian
structures for a dynamical system

The previously exposed theory on the relationship between dynamical systems and Finsler
structures was the motivation for the following statistical fitting process, in which a Finsler
fundamental function is numerically interpolated, by the least squared method, over a config-
uration space of a dynamical system. The same technique was used in [10], where a Finsler
structure supporting the HARDI analysis of medical images is constructed.

In this chapter, the Garner dynamical system of cancer cell population will be presented
as well as the procedure of fitting appropriate Finsler structures. We shall determine, by
statistical fitting, three Finsler norms over a certain 2-dimensional subdomain related to
the model,of the Randers, Euclidean and 4-th root type, FR, FE , FQ : TM → [0,∞). The
proposed Finsler functions will provide point-independent norms, which means that they are
of locally Minkowski type, i.e., FR(x, y) = FR(y), FE(x, y) = FE(y) and FQ(x, y) = FQ(y).
In that way, many geometric objects related to the chosen structures considerably simplify:
the geodesics are (pieces of) straight lines, the KCC invariants vanish, the Berwald linear
connection is trivial [5, 35]. Each of the structures respectively provides the corresponding
Finsler metric tensor fields: gR, gE and gQ. Considering the metrics as elements of appropriate
Hilbert space we can analyze their properties and the way these metrics relate.

For convenience, we shall use the following notations in this chapter:

• the elements of the manifold that represent the configuration space of the dynamical
system will be denoted by (x, y),

• the elements of the corresponding tangent bundle will be denoted by (x, y, ẋ, ẏ).

Actually, the configuration space of the dynamical system is a subspace of R2 and only one,
trivial, chart is enough to consider. Tangent vectors represent changes of he current state of
the dynamical system.

This chapter contains original results published in [23, 24].

2.1 The Garner cancer cell population dynamical system

It is a known fact that the subpopulations of abnormal cells responsible for the cancer disease
contain the so called cancer stem cells (CSCs), [91]. In this context, it is very important

37
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Figure 2.1: Transitions between cell classes in the Solyanik and Garner cancer evolution models

to describe changes in the cancer population, which contains three types of cells, [51, 68]:
proliferating, quiescent (resting) and dead ones, their abundance being determinant in the
prognostic of the cancerous disease.

The evolution of the cancer cells population was firstly modeled in 1995 by means of
Solyanik’s dynamical system, which is based on the following assumptions: cancer population
consists of proliferating and quiescent cells, proliferating cells can lose the division feature and
transit to the quiescent ones, and quiescent cells can become proliferating or die. The states
of Solyanik’s model were described by the amount x̃ of proliferating cells and the amount ỹ
of quiescent cells, which satisfy the differential system{

˙̃x = bx̃− Px̃+Qỹ
˙̃y = −dỹ + Px̃−Qỹ,

where

• b is the rate of cell division of the proliferating cells;

• d is the rate of cell death of the quiescent cells;

• Q and P describe the intensity of cell transition from the quiescent to proliferating cells
and converse,

with all the involved parameters reconsidered on a daily basis (see Fig. 2.1). Solyanik’s
model [106] was further improved by Garner et al. in [53] by regarding the parameters P,Q
as dependent on x̃ and ỹ, via P = c(x̃+ aỹ) and Q = Āx̃/(1 + B̄x̃2), where

• a measures the relative nutrient uptake by resting vs. proliferating cancerous cells;

• c gives the magnitude of the rate of cell transition from the proliferating to the resting
state;

• Ā is the initial rate of Q increase at small x̃;

• Ā/B̄ is the rate of Q decrease for large x̃.

The Garner model describes the evolution of the scaled cell populations x = c
b x̃, y = ca

b ỹ
by means of the dynamical system:

ẋ = x− x(x+ y) +
hxy

1 + kx2

ẏ = −ry + ax(x+ y)− hxy

1 + kx2
,

(2.1)

where
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• r = d/b is the ratio between the death rate of quiescent cells and the birth rate of
proliferating cells;

• h = Ā/(ac) represents a growth factor that preferentially shifts cells from quiescent to
proliferating state;

• k = B̄ · (b/c)2 represents a mild moderating effect.

The associated nullclines, equilibrium points, the appropriate versal deformation and the
static bifurcation diagram of the Garner’s system were studied in [19, 20].

The set of all possible states of the GS is a bounded subset D of the first quadrant in R2,

K+ = {p = (x, y) | x > 0, y > 0},

which contains the information on the scaled amount of proliferating and of quiescent cells.
We shall further consider the Garner dynamical system for the case of the fixed parameters

([53])

a = 1.998958904 and r = 0.03. (A1)

The reduced Garner system

We observe that the original Garner dynamical system (2.1) - denoted further as GS - is the
extended version of the reduced dynamical system (denoted as RS)1:{

ẋ = x− x(x+ y)
ẏ = −ry + ax(x+ y).

(2.2)

In the original system GS, for h being significant one notices a malignant evolution of the
illness; this happens when:

• the parameter a significantly decreases, becoming negligible (i.e., there is a small ratio
of nutrient uptake of resting vs. proliferating cells, which shows that the resources are
absorbed mostly by the proliferating cells in detriment of quiescent cells);

• the parameter c is negligible (i.e., the rate of cell transition from cancerous to the resting
state is negligible, hence the evolution of the disease is either stationary, or worsening);

• the parameter Ā significantly increases (the rate of increase of Q is abruptly big at small
x, i.e., the cell transition from the quiescent to cancerous cells is intense).

When these conditions are far from being achieved (this might happen, e.g., under treatment,
which may significantly modify the intake of nutrient ratio in disfavor of cancerous cells), the
GS (2.1) can be approximated by RS (2.2).

We will assume that under mild (controlled) evolution of the disease (for 0 ≤ |h| << 1),
the RS system (2.2) reasonably approximates the original system (2.1).

The change rate of cancer cell populations under changes of premises

The RS (2.2) attaches to any point p = (x, y) ∈ D its related velocity ṗ = (ẋ, ẏ) ∈ T(x,y)(K+)
(see Fig. 2.2). Due to the polynomial form of its associated vector field, RS provides a reverse

1This happens when in the GS system (2.2) the constant h = Ā/(ac) is negligible (0 < |h| << 1), or
vanishes.
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Figure 2.2: The field lines of the reduced Garner model RS, for a = 1.998958904 and r = 0.03.

association ṗ = (ẋ, ẏ)  p(x, y), by solving the nonlinear algebraic system (2.2) in terms of
p = (x, y) for given ṗ = (ẋ, ẏ), but only in certain regions of K+ and only for certain values
of the parameters r, h, k,

We choose the domain D of the Finsler norm F as a set of tangent vectors, where D =
φ(Iρ × Iθ) ⊂ TpK+, with Iρ × Iθ = [0.329915, 0.888939]× [1.0988, 1.51452] ⊂ [0,∞)× [0, 2π)
and φ is the mapping which changes polar coordinates to Cartesian ones,

φ : [0,∞)× [0, 2π) → R2, φ(ρ, θ) = (ρ cos θ, ρ sin θ).

Under an appropriate choice of I1 and I2, one can uniquely solve the quadratic system
(2.2) in terms of p = (x, y), with P located on a field line from K+, with related tangent
direction of the emerging velocity ṗ ∈ D.

By using the inverse function theorem for the feasible directions of the reduced dynamical
system, one may solve the pair of algebraic nonlinear equations of the system, to locally find
the associated point p.

The status of the cancerous disease changes from mild to severe status due to a multitude
of factors which corresponds to a change of parameters in the GS Garner system (2.1).

Such a case occurs when h becomes significant; this transforms RS into GS and then (2.1)
associates to the solutions p from the nonlinear system, the new rates of change ṗe = (ẋe, ẋe)
valid for the new circumstances of the illness. Namely, the point coordinates p = (x, y)
determined under mild conditions (by the inverse of the RS), plugging in (2.1), produce the
new change rate ṗe of the cancer cell populations (see Fig. 2.3).

Figure 2.3: The transition ṗ ṗe between the RS and the GS change rates.
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2.2 Statistical fitting of Finsler norms

The Euclidean norm ||ṗe||E of the obtained rate-vector ṗe = (ẋe, ẏe) can be used to evaluate
the severeness of the disease evolution. This choice, however, has the drawback of being
symmetric in the two components of ṗe, especially in the case ẋ > 0, since equal credit is
given to the two rates of the increase.

One alternative choice is to design a tool which emphasizes the cancer cell population
increase, by means of a Finsler norm, which is likely to emphasize a tuned fair evaluation of
the illness evolution.

To this aim we note that ||ṗe|| can provide a locally Minkowski (i.e., depending on di-
rectional variables only) Finsler norms FR(ẋ, ẏ), FE(ẋ, ẏ) and FQ(ẋ, ẏ) by statistical fitting2.
The proposed approximation, which provides the fit of the Finsler norm F is given by:

F (ẋ, ẏ) ∼ ||ṗe||E , (2.3)

where ∥ ·∥E is the Euclidean norm. We note that the triangle inequality for norms shows that
the rate-jump entailed by the change of status RS → GS due to the increase of |h|, does not
exceed ||ṗe − ṗ||E .

We shall consider the following choices which follow the main requirements of a Finsler
norm, and which are fundamental functions of locally Minkowski type3:

FR(ẋ, ẏ) =
√
ẋ2 + ẏ2 + b1ẋ+ b2ẏ (2.4)

FE(ẋ, ẏ) =
√
c1ẋ2 + c2ẋẏ + c3ẏ2 (2.5)

FQ(ẋ, ẏ) = 4
√
a(ẋ)4 + b(ẋ)3(ẏ) + c(ẋ)2(ẏ)2 + d(ẋ)(ẏ)3 + e(ẏ)4 (2.6)

where b1,2 and c1,2,3 and (a, b, c, d, e) = (q1, q2, q3, q4, q5) are coefficients to be evaluated by
statistic fitting. In our research, we use the values assumed in (A1) for the systems RS (2.2)
and GS (2.1). For the statistical fitting of F (ṗ) from (2.3) to ||ṗe||, where ṗ = (ẋ, ẏ), and
p = (x, y), ṗe = (ẋe, ẏe) are respectively obtained by tracing the process described in Fig. 2.3,
we use for the Randers, Euclidean and 4-th root cases the following equalities (k ∈ 1, N)

b1ẋk + b2ẏk =
√

(ẋe)2k + (ẏe)2k −
√
ẋ2k + ẏ2k, (2.7)

c1ẋ
2
k + c2ẋkẏk + c3ẏ

2
k = (ẋe)

2
k + (ẏe)

2
k, (2.8)

a(ẋ)4k + b(ẋ)3k(ẏ)k + c(ẋ)2k(ẏ)
2
k + d(ẋ)k(ẏ)

3
k + e(ẏ)4k =

(
(ẋe)

2
k + (ẏe)

2
k

)2
, (2.9)

which allows us to determine the statistical fit for the values b1,2, c1,2,3 and a, b, c, d, e by the
method of least squares.

For finding ṗe from ṗ via RS and further GS, we use in (2.1) the parameter values
([19, 53]):

h = 1.236 and k = 0.236. (A2)

2Generally, when considering one of the three structures, we shall simply write F (ẋ, ẏ)
3For brevity, we denote (a, b, c, d, e) := (q1, q2, q3, q4, q5).
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The constructing process of the measuring Finslerian tool is presented in the following
scheme:

D
σ1=XR|K1

~~||
||
||
||

σ2   B
BB

BB
BB

B
|| · ||F // R

K1

π1

>>||||||||

� p

  B
BB

BB
BB

K2

π2

``BBBBBBBB

XG

//
N n

~~||
||
||
|

V

|| · ||E
__????????

K

The field lines of the reduced system (2.2) yield a vector subset D of the tangent space
TK+, containing related feasible directions ṗ ∈ TpK+. By using the theorem of inverse
function, the polynomial form of the reduced system RS (2.2) enables a reverse association
ṗ = (ẋ, ẏ)  p = (x, y), given by the second of the possible reverse mappings σ1 and σ2.
Precisely, the second degree of the polynomials yields two p-domains, the subsets K1,2 ⊂ K+,
of which we choose just one in the statistical fitting.

Further, by using the Garner vector field XG, corresponding to (2.1), we associate to the
detected point p = (x, y) (and hence, to the initial vector ṗ ∈ D), the corresponding shifted
vector ṗe ∈ V .

The discretization is achieved by a grid spanned over the coordinates of the feasible di-
rections over the p-domain K2 and V :

Gr(D)

π2

�� ��

|| · ||F // R

Gr(K2) σ
// Gr(V )

|| · ||E

OO

The grid defines a discrete sample volume N , and leads to the approximation problem

||ṗ||F = ||ṗe||E ,

which produces the system of linear equations in the unknown parameters of the Finsler
structure. The influence of the grid dense on the fitting process is considered in [26].

We note that the uniform grid over the domain of the feasible directions provides the
needed inputs for the fitting process. Maple computation produces the corresponding polar
(ρ, θ)-domain of the field lines of the Garner system,

Iρ × Iθ = [0.329915, 0.888939]× [1.0988, 1.51452],

a grid with N = (nρ + 1)(nθ + 1) knots

(ρi, θj) ∈ Iρ × Iθ, (i, j) ∈ 0, nρ × 0, nθ.

The Cartesian domain of the feasible directions is φ(Iρ × Iθ) = I1 × I2 = [0.05, 0.1596] ×
[0.293844, 0.887532], and the used grid consists of scaled spherical harmonics regarded as
tangent vectors

ṗk = (ẋk, ẏk) = (ρi cos θj , ρi cos θj) ∈ D = I1 × I2, k ∈ 1, N

where k = (i− 1)nρ + j ∈ 1, N .
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Let us resume: the right hand side of the RS (2.2) contains quadratic polynomials, and
that for given input ṗ = ṗ1, (RS)

−1 provides a twofold point-solution, p′, p′′, of which one
solution p1 is chosen. For each next plugged-in scaled spherical harmonic ṗk+1, RS similarly
provides two other point-solutions, and the right choice pk+1 is determined by both the non-
negativity of its components and by the Euclidean proximity to the previous selected point
pk (k ∈ 1, N − 1).

Finally, one gets the set of points pk = (xk, yk) and (via GS) the corresponding change
rates (ṗe)k, k ∈ 1, N , which are further plugged in (2.7)-(2.9). The N samples ṗk and the
new rates (ṗe)k (k = 1, N), plugged in the N relations from (2.7)-(2.9), provide in each case
N linear equations with parameters as unknowns - which fix the Finsler function (2.4)-(2.6).

2.2.1 The Randers fitting

The system (2.7) is linear relative to b1 and b2, over-determined (N >> 2), and has the
form AS = B, where A = (ẋk, ẏk)k=1,N ∈ MN×2(R), S = (b1, b2)

t ∈ M2×1(R) is the the

unknown vector, and B ∈ MN×1(R) is given by the r.h.s. of (2.7) for k = 1, N . Computer
Maple 17 simulation for N = 36, provides by the least square method the pseudosolution
(b1, b2)

t = (AtA)−1AtB, and under the assumptions (A1) and (A2), the exact fit-values of
the parameters are

b1 ≈ .628481987778205518, b2 ≈ −.269476980932055964. (2.10)

Hence the fit Randers structure related to the dynamical system of the Garner cancer cells
population model (2.1) becomes (for the obtained (2.10) fit values of the parameters)

FR(ẋ, ẏ) ≈
√
ẋ2 + ẏ2 + 0.63 · ẋ− 0.27 · ẏ (2.11)

where the dot marks denote time derivatives, which describe the rates of increase for the
scaled cancer cell populations4.

2.2.2 The Euclidean fitting

For the Euclidean case, for fixing the Finsler function (2.5), the same N samples ṗk and new
rates (ṗe)k (k = 1, N), are plugged in the N relations (2.8). The obtained system is linear
in terms of c1, c2 and c3, superdetermined (N >> 3), and has the form AS = B, where
A ∈ MN×3(R), S ∈ M3×1(R), and B ∈ MN×1(R), with the unknown vector S = (c1, c2, c3)

t.
Analogous computer simulation provides the parameter solutions

c1 ≈ 0.940805450748692151

c2 ≈ 1.16189809024084268

c3 ≈ 0.496069555231253400,

hence the fit Euclidean type fundamental function of the structure related to (2.1) is

FE(ẋ, ẏ) ≈
√

0.94ẋ2 + 1.16ẋẏ + 0.50ẏ2. (2.12)

4For display convenience, truncated values of the coefficients have been used, in this, but also in the next
two structures
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2.2.3 The 4-th root fitting

The 4-th root type Finsler function (2.6) (the third case) is determined by use of the same
method as in the previous two cases with the differences: A ∈ MN×5(R), S ∈ M5×1(R), and
S = (a, b, c, d, e)t. The same computer simulation provides the parameter solutions5:

a ≈ −0.320013354328217758; b ≈ 2.69642032805366582;

c ≈ 2.42492765757201711; d ≈ 1.07381846633249766;

e ≈ 0.254991915496320776,

(2.13)

hence the fit 4-th root Finsler fundamental function locally related to the GS (2.1) is

FQ(ẋ, ẏ) ≈ 4
√

−0.32ẋ4 + 2.70ẋ3ẏ + 2.42ẋ2ẏ2 + 1.07ẋẏ3 + 0.25ẏ4. (2.14)

2.3 The properties of the constructed Finsler metric struc-
tures

The constructed Finsler norms produce corresponding metrics gR, gE and gQ, belonging to
the Hilbert space of bounded and continuous d-tensor fields of the (0, 2)-type [35, 76]. Further,
the Cartan tensors of the constructed structures are elements of the analogous Hilbert space
of the (0, 3)-type. Hence, for the comparisons of the constructed metrics we need a metrical
structure is the Hilbert spaces.

The scalar product which provides the Hilbert structure generally acts on a pair of two
(0,m)-tensors A and B by means of the formula:

⟨A,B⟩g = Ai1...img
i1j1 . . . gimjmBi1...im .

This naturally induces the norm, the projection of A onto B, and the angle between the two
tensors as follows:

||A||g =
√

⟨A,A⟩, prBA =
⟨A,B⟩
⟨B,B⟩

B, ^(A,B) = arccos
⟨A,B⟩

||A|| · ||B||
.

The statistically fitted metrics are denoted by gR, gE and gQ. We shall analyze the way
these structures relate by examining their Cartan tensors, and by estimating their shift from
the associated conformally Euclidean projection.

Except for the Euclidean case, where the Cartan tensor is identically zero, the Randers
and the 4-th root cases provide a nontrivial Cartan tensor, whose squared Frobenius norm is
a direction-dependent scalar function provided by the transvection6:

||C||2g = Cijkg
irgjsgktCrst.

The metric tensor fields are represented by square matrices A and B respectively, and for
gij = δij (i.e. Finsler space of Euclidean type), we have

⟨A,B⟩δ = Trace(A ·Bt), (2.15)

where ( )t is the transposition operator.

5For brevity, we denote (a, b, c, d, e) := (q1, q2, q3, q4, q5).
6In [40] is presented an alternative of norm for the Cartan tensor, which results in a numerical value.
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2.3.1. Proposition The following assertions hold7:

(1) The Finsler metric produced by (2.4) has the following conformally Euclidean projection

prδgR =
1

2

(
2 +

3(b1ẋ+ b2ẏ)√
ẋ2 + ẏ2

+ b21 + b22

)
δ. (2.16)

(2) The Finsler metric produced by (2.5) has constant conformally Euclidean factor, i.e.,
conformally flat projection is

prδgE =
1

2
(c1 + c3)δ. (2.17)

(3) The Finsler metric produced by (2.6) has the following conformally Euclidean projection

prδgQ =
p

16F 6
Q

δ, (2.18)

where p is the following polynomial in the components of the tangent vector y = (y1, y2) =
(ẋ, ẏ):

p = (8q21 + 4q1q3 − q22)ẋ
6 + (12q1q4 + 12q1q2)ẋ

5ẏ

+(12q1q3 + 6q2q4 + 24q1q5 + 3q22)ẋ
4ẏ2

+(16q1q4 + 4q2q3 + 16q2q5 + 4q3q4)ẋ
3ẏ3

+(12q3q5 + 3q24 + 24q1q5 + 6q2q4)ẋ
2ẏ4

+(12q4q5 + 12q2q5)ẋẏ
5 + (4q3q5 + 8q25 − q24)ẏ

6.

Proof. A straightforward calculation produces the components of Finsler metric tensor fields
in the all three cases: 

gR11 = − β

α3
ẋ2 +

2

α
b1ẋ+

F

α
+ b21,

gR12 = − β

α3
ẋẏ +

b2
α
ẋ+

b1
α
ẏ + b1b2,

gR22 = − β

α3
ẏ2 +

2

α
b2ẏ +

F

α
+ b22;

gE11 = c1, gE12 =
1
2c2, gE22 = c3;

(2.19)

7Hereby we denote by δ the canonic metric for the Euclidean 2-dimensional case, and use the notation
y = (y1, y2) = (ẋ, ẏ).
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

gQ11 =
1

8F 6

(
8q21ẋ

6 + 12q1q2ẋ
5ẏ + (3q22 + 12q1q3)ẋ

4ẏ2

+(4q2q3 + 16q1q4)ẋ
3ẏ3 + (24q1q5 + 6q2q4)ẋ

2ẏ4

+12q2q5ẋẏ
5 + (4q3q5 − q24)ẏ

6
)

gQ12 =
1

8F 6

(
2q1q2ẋ

6 + 3q22ẋ
5ẏ + 6(q2q3 − q1q4)ẋ

4ẏ2

+(2q2q4 + 4q23 − 16q1q5)ẋ
3ẏ3 + 6(q3q4 − q2q5)ẋ

2ẏ4 + 3q24ẋẏ
5 + 2q4q5ẏ

6
)

gQ22 =
1

8F 6

(
(4q1q3 − q22)ẋ

6 + 12q1q4ẋ
5ẏ + (24q1q5 + 6q2q4)ẋ

4ẏ2

+(16q2q5 + 4q3q4)ẋ
3ẏ3 + (12q3q5 + 3q24)ẋ

2ẏ4 + 12q4q5ẋẏ
5 + 8q25 ẏ

6
)
.

The inner product (2.15) of g and δ reduces to the trace and ⟨δ, δ⟩ = 2, hence summation
1
2(g11+g22) gives the conformal factors in (2.16), (2.17) and (2.18). 2

2.3.2. Proposition In the Hilbert space of (0, 2)-type Finsler tensors, the following deviation
angles occur:

(1) The Finsler-Randers metric produced by (2.4) deviates from its conformally Euclidean
approximation by the angle

θR = arccos

√
1

2
+

(A+ 1)(A2 − 4A+ 1)

(2 + 3A+B)2 − 2(A+ 1)(A2 − 4A+ 1)
, (2.20)

where the following abbreviations are used: A = (b1ẋ+ b2ẏ)/
√
ẋ2 + ẏ2 and B = b21+ b22.

(2) The Finsler metric produced by (2.5) and its conformally flat approximation determine
the constant deviation angle

θE = arccos
c1 + c3√

2c21 + c22 + 2c23
.

(3) The deviation function expressing the angle between the Finsler metric produced by (2.6)
and its conformally Euclidean approximation is

θQ = arccos
p√
2s
, (2.21)

where p is the polynomial from (2.3.1), and s is the following polynomial in ẋ, ẏ:

s = π + σ(π)
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with

π =
(
64q41 + 8q21q

2
2 − 8q1q

2
2q3 + 16q21q

2
3 + q42

)
ẋ12

+
(
192q31q2 + 96q21q3q4 − 24q1q

2
2q4 + 24q1q

3
2

)
ẋ11ẏ

+
(
192q31q3 ++192q21q

2
2 + 144q21q

2
4 − 48q21q2q4 + 192q21q3q5

+48q1q2q3q4 + 48q1q
2
2q3 − 48q1q

2
2q5 − 12q32q4 + 18q42

)
ẋ10ẏ2

+
(
256q31q4 + 352q21q2q3 − 128q21q2q5 + 576q21q4q5 + 128q1q2q3q5

−56q1q
2
2q4 + 32q1q2q

2
3 + 144q1q2q

2
4 − 8q22q4q3

+32q1q4q
2
3 + 72q1q

3
2 + 72q32q3 − 32q32q5

)
ẋ9ẏ3

+
(
384q31q5 + 144q21q

2
3 + 72q21q

2
4 + 576q21q

2
5 + 480q21q2q4 − 96q1q2q4q3

+672q1q2q4q5 + 168q1q
2
2q3 + 96q1q

2
3q5 + 120q1q3q

2
4

+30q22q
2
4 − 240q1q

2
2q5 − 24q22q3q5 + 120q22q

2
3 + 24q32q4 + 9q42

)
ẋ8ẏ4

+
(
768q21q2q5 + 384q21q3q4 + 384q21q4q5 − 96q1q

2
3q4 + 768q1q2q

2
5 − 384q1q2q3q5

+576q1q3q4q5 + 48q2q3q
2
4 − 72q32q5 + 168q22q4q5 + 120q22q3q4 + 240q1q

2
2q4

−24q1q2q
2
4 + 96q1q2q

2
3 + 72q1q

3
4 + 24q32q3 + 96q2q

3
3

)
ẋ7ẏ5

+
(
512q21q

2
5 + 640q21q3q5 + 272q1q2q3q4 + 32q1q2q4q5 + 272q2q3q4q5

+432q1q
2
2q5 − 144q1q3q

2
4 − 144q22q3q5 − 256q1q

2
3q5 + 432q1q

2
4q5 + 44q22q

2
4

+640q1q3q
2
5 + 176q2q

2
3q4 + 240q21q

2
4 + 16q22q

2
3

+16q23q
2
4 + 240q22q

2
5 + 36q32q4 + 36q2q

3
4 + 32q43

)
ẋ6ẏ6 · 1

2
,

and σ(π) produced from π after interchanging (q1, q2, q3, q4, q5, ẋ, ẏ) ↔ (q5, q4, q3, q2, q1, ẏ, ẋ).

Proof. Let f be the conformal Euclidean factor of the projection in the equations (2.16)-
(2.18), and let θ = ^(g, prδg) be the angle between the corresponding metric and its projection
to δ. Then, due to the homogeneity of the inner product, we infer:

cos θ =
⟨g, fδ⟩√

⟨g, g⟩
√
f2⟨δ, δ⟩

= sign(f) · ⟨g, δ⟩√
⟨g, g⟩

√
⟨δ, δ⟩

= sign(f) · cos^(g, δ).

By use of (2.15), we have the following expressions8

cos θ =
g11 + g22√

2(g211 + 2g212 + g222)
, ^(g, δ) = arccos

√
(g11 + g22)2

2(g211 + 2g212 + g222)
. (2.22)

By plugging into (2.22) the appropriate metric components, one gets (2.20)-(2.21). 2

Moreover, by plugging in the fitted coefficients of the three structures into the appropri-
ate equations from Propositions 2.3.1 and 2.3.2 one infers the characterization of each type
structure.

8We shall further consider the absolute value of the factor, reducing thus the angle to the first quadrant.
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Figure 2.4: Plot of the squared locally Minkowski Finsler Randers norm z = F 2(ẋ, ẏ) and of the
indicatrix F (ẋ, ẏ) = 1

2.3.1 The Randers type structure

The Randers metric gR arised from the fitted structure (2.11) has the following norm9

||gR|| ≈
√

(−0.22ẋ3 + 0.60ẋ2ẏ + 0.97αẋ2 − 1.02αẋẏ + 5.28α2ẋ− 2.34α2ẏ + 4.32α3

α3
(2.23)

with respect to the standard Hilbert structure (2.15).

2.3.3. Corollary The conformally Euclidean projection of the metric produced by the Randers
type Finsler structure (2.11) is

prδgR ≈

(
0.945ẋ− 0.405ẏ√

ẋ2 + ẏ2
+ 1.235

)
δ,

and the deviation between these two metrics is given by

θR ≈ arccos
1.89αẋ− 0.81αẏ + 2.47α2

√
r

,

where α =
√
ẋ2 + ẏ2 and

r = −4.68α3ẏ + 1.20αẋ2ẏ − 0.44αẋ3 + 10.56α3ẋ+ 8.64α4 + 1.94α2ẋ2 − 2.04α2ẋẏ.

The graphical representation of the values of the Finsler-Randers norm along the z-axis
in terms of the inputs (ẋ, ẏ) ∈ D = [0.05, 0.1596] × [0.293844, 0.887532], and of the Finsler
indicatrix are provided in Fig. 2.4. These clearly exhibit convexity and compactness the
Randers indicatrix of (2.11).

By Maple symbolic programming one can easily test that the signature of the metric g
is (+,+), hence (D,F ) with D ⊂ K+ is a Randers geometric structure of locally-Minkowski
type [76]. To illustrate the signature of the point-independent metric tensor g, one can see
that, within a fiber of TṗR2, its associated quadratic form10

Qg
y(v) = gij |y vivj , v = (vi, vj) ∈ R2 ≡ TṗR2

9The ”≈” symbol expresses the truncation of numeric coefficients in the r.h.s. expressions.
10The quadratic form Q acts on the vertical fibre of velocities provided by the identification TṗR2 ≡ R2,

assuming the flagpole fixed, ṗ = (.2, 1).
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has its graph an elliptic paraboloid patch (see Fig. 2.5), which gives account of the positive
signature of g, signalled by the inequality ||b||2 ≡ b21 + b22 ≈ (.63)2 + (−.27)2 < 1.

Figure 2.5: Graphs of the quadratic form Qg
y and of QC

y = ||C||2y for ṗ ∈ [−1, 0.5]× [−0.5, 1].

We note as well that the Cartan tensor (1.3.4) measures the ”distance” between the
constructed Finslerian F norm and the space of flat Euclidean-type norms. The distance can
be locally estimated in terms of y = (y1, y2) = (ẋ, ẏ) by the square of the Frobenius norm
QC

y = ||C||2y (see Fig. 2.5), where

||C||y =
√
CijkgirgjsgktCrst.

The plot of the energy QC
y of Cijk emphasizes a special region inside [−1, 0.5] × [−0.5, 1],

at which the difference between the fitted Randers norm and the canonic Euclidean norm
significantly matter. This region (a small neighborhood of the origin) corresponds to slight
variations of the cancer cell population, while for strong variations the Randers structure
asymptotically approaches the canonic Euclidean one.

Regarding the Randers structure, it is remarkable that for ||b||g < 1, which is our case,
one has (gij) positive definite, and there exists a vertical non-holonomic frame

FH =

{
Xj

∣∣∣∣ Xj = Xi
j

∂

∂yi
, j = 1, 2

}
,

called the Holland frame of the Randers structure [35],

Xi
j =

√
α

F

(
δij −

yi(αj + bj)

F
+

√
α

F
· y

iαj

α

)
, j = 1, 2,

in which the Randers metric tensor field gij becomes the α-subjacent Riemannian one and

αi =
∂α
∂yi

= yi

α . In this respect, we get the following results:
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2.3.4. Proposition The following assertions hold true:

a) The associated Finsler metric tensor field g = gij(ṗ)dx
i ⊗ dxj of the Randers structure FR

has the components

gij(y) =
α+ β

α

(
δij −

yiyj

α2

)
+
yiyj + α(biy

j + bjy
i) + bibjα

2

α2
, (2.24)

where (y1, y2) = (ẋ, ẏ), b1 ≈ 0.63, b2 ≈ −0.27 and 11

α =
√
δijyiyj =

√
ẋ2 + ẏ2, β = biy

i = b1ẋ+ b2ẏ.

b) For the Finsler structure (2.4), the components of the fields of the Holland frame are given
by:

Xi
j =

αFδij − yi(yj + αbj)√
αF 3

+
yiyj

αF
, j = 1, 2.

Proof. a) By direct computation, one subsequently obtains:

gij(y) =
F

α
(δij − αiαj) + (αi + bi)(αj + bj)

=
α+ β

α

(
δij − 1

α2 y
iyj
)
+
(
yi

α + bi

)(
yj

α + bj

)
,

whence the result (2.24) follows. For b), one notices that using the definition of the Holland
frame [35] and, by performing the calculations for our locally-Minkowski particular norm, one
infers the claimed result. 2

2.3.2 The Euclidean structure

The fitted Euclidean structure yields constant components of the corresponding Finslerian
metric tensor,

gE11 = 0.94, gE12 = 0.58, gE22 = 0.50,

and with respect to the standard Hilbert structure (2.15), the metric has norm

||gE || = 1.34. (2.25)

The Euclidean case δ is canonic, hence the corresponding equations from the Propositions
2.3.1 and 2.3.2 produce the constant conformally flat factor and the constant deviation angle,

prδgE ≈ 0.72δ, θE ≈ 0.71.

2.3.3 The 4-th root type structure

For the 4-th root Finsler metric, the substitution of the fit truncated parameters (2.13) into
the corresponding equations of the Propositions 2.3.1 and 2.3.2 produce the following

11For display convenience, truncated values of the coefficients have been used, of the more accurate statis-
tically determined values b1 = .628481987778205518 · r · cos(t) and b2 = −.269476980932055964 · r · sin(t).
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2.3.5. Corollary The conformally Euclidean projection of the metric produced by the 4-root
type Finsler structure (2.14) and the deviation angle between the metric and its δ-projection
respectively are

prδg =
1

16F 6
Q

p δ, θQ = arccos
p√
2s
,

where

p ≈ 9.61ẋ6 + 14.93ẋ5ẏ − 27.64ẋ4ẏ2 − 41.64ẋ3ẏ3 − 26.05ẋ2ẏ4 − 11.31ẋẏ5 − 1.78ẏ6,

s ≈ +1.83ẋ12 − 1.34ẋ11ẏ + 7.72ẋ10ẏ2 + 40.57ẋ9ẏ3 + 87.11ẋ8ẏ4

+104.79ẋ7ẏ5 + 84.73ẋ6ẏ6 + 52.57ẋ5ẏ7 + 25.57ẋ4ẏ8

+9.59ẋ3ẏ9 + 2.72ẋ2ẏ10 + 0.49ẋẏ11 + 0.04ẏ12.

The parameters of both type structures, FR and FQ have similar graphs, though the struc-
tures strongly differ, and the indicatrix of FQ is non-convex. As well, the nature of FQ causes

Figure 2.6: Graph of the energy z = F 2(ẋ, ẏ), indicatrix FQ(ẋ, ẏ) = 1 and squared Cartan norm
z = QC

y of the 4-th root Finsler structure.

much stronger dependency of the metric tensor on the directional argument, particularly in
the neighborhood of (0, 0) (see Fig. 2.6).

2.3.4 Comparison of the Randers and the Euclidean structures

Beside projections of the fitted structures onto the canonical Euclidean one, in [24] is devel-
oped the projection of the fitted Randers structure onto the fitted Euclidean one and the
deviation angle between them.
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2.3.6. Corollary

a) The projection of the metric tensor gR associated to (2.11) onto the metric tensor gE
associated to (2.12) is

prgEgR =
1

α3

(
−0.33ẋ2 − 0.34ẋ2ẏ + 0.98α2ẋ+ 0.11α2ẏ + 0.91α3

)
gE .

b) The deviation function expressing the angle between the Finsler metrics gR and gE is

θRE = arccos

(
−0.44ẋ3 − 0.45ẋ2ẏ + 1.32α2ẋ+ 0.15α2ẏ + 1.23α3

α
3
2
√
p

)
,

where p = −0.22ẋ3 + 0.60ẋ2ẏ + 0.97αẋ2 − 1.02αẋẏ + 5.28α2ẋ
−2.34α2ẏ + 4.32α3.

Proof. a) The scalar product of the two metric tensors is

⟨gR, gE⟩ = 0.94gR11 + 2 · 0.58gR12 + 0.50gR22,

and the squared norm of gE is

⟨gE , gE⟩ = 1.8064 ≈ 1.81.

By using the exact values of the Randers metric tensor components (2.19) and the definition
of the projection, one directly obtains the claimed result.

b) Using the definition of angle for standard Hilbert structures (2.3.2), the angle between
the fitted Randers and Euclidean metrics of the Finsler type θRE = ^(gR, gE) is given by:

cos θ =
Trace(gR · gtE)
||gR|| · ||gE ||

.

The Maple calculation produces the numerator, i.e., the scalar product of the metrics

⟨gR, gE⟩ ≈
1

α3

(
−0.59ẋ3 − 0.61ẋ2ẏ + 1.78α2ẋ+ 0.21α2ẏ + 1.65α3

)
.

By using the norms (2.23) and (2.25), we obtain (2.26). 2

Another comparison of the two statistically fitted Finsler structures can be observed as
well by considering certain relevant first order tensors. Namely, the 1-form b = (b1, b2) =
(0.63,−0.27) characterizes the fitted Randers structure through the linear deformation β,
while the Euclidean fitted one has the major semiaxis oriented along the constant vector
field v of the elliptic indicatrices space with fibers Iẋ = {ẏ | FE(ẋ, ẏ) = 1}12. For the fitted
Euclidean structure, the semiaxis vector field is v = (v1, v2) = (−0.71,−0.49).

Since the two objects are of the opposite tensor types, we consider the corresponding
vector field related to b, with indices lifted by the canonical Euclidean scalar dual metric,
b̃ = (biδ

1i, biδ
2i). Simple calculation gives us their canonical Euclidean norms and the angle -

expressed in radians,

||̃b|| = 0.68, ||v|| = 0.86, ^(̃b, v) = 2.13.

12Here, the vector v is the normalized principal eigenvector of the ẏ− dependent quadratic form induced by
the Euclidean structure.
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2.3.5 The relevance of the Finsler structures for the Garner model

We note that the fit Randers Finsler norm (2.4) arises from the evaluation of the GS evolution-
rate in terms of the reduced RS, and provides a mediated information on the prognosis of the
disease after the state worsening signaled by the increase of the parameter h. The additive
term β = .63ẋ + −.27ẏ from the Randers norm evaluates the impact of the change in the
parameter h and the rate of increase. The statistically determined coefficients (b1, b2) ≈
(.63,−.27) emphasize the dominant role of the proliferating cells in the dynamical system
(2.1).

The Finsler norm (2.4) provides an evaluation of the severity of the rate of cancer cell
evolution immediately after a significant change of the Garner parameter h, which can be
experimentally measured or estimated in terms of the cause which determined the change.
The benefit of the Randers structure relies on the fact that the vector input y = ṗ of F (the
growth rates of the cancerous cells) does not require knowledge of the amount of the total
cell populations p. These inputs can be experimentally determined when the cancer evolu-
tion is controlled (”steady”, for h ≈ 0), and can be estimated by measuring the population
increase/decrease of the cancerous cells by using only two subsequent laboratory samples.
Moreover, the deformation term β = .63ẋ + −.27ẏ ≈ ||ṗe|| − ||ṗ|| represents the drift13 [28],
which affects the straight paths of the Euclidean norm α, producing the new, curved paths
of our Randers structure FR = α+ β.

The Euclidean and the 4-th root fit Finsler norms exhibit different properties of the
variation of cell populations. While FE gives account via gE on the anisotropic evolution of
the illness process in the 2-dimensional ṗ plane through its PCA spectral data, the 4-th root
norm FQ(y) =

4
√
P4(y) is much more dense in information, through the larger spectral data of

its (0, 4) tensor induced by halvings by the 4-homogeneous in the components of y quadratic
polynomial P4(y). The qualitative advantage over the Euclidean case is sensed within the
space of 4-th root Finsler norms by the difference ∆(y) = 4

√
P4(y)− FE(y).

13In general, in terms of Zermelo navigation [38], the Randers structure represents the most appropriate
model for exhibiting through its geodesics the influence of the β-force field on the geodesic trajectories of the
Riemannian structure given by α.
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Chapter 3

Anisotropic extensions of the
Beltrami framework

The Beltrami framework is a general differential geometric framework that proved its use-
fulness for studding problems in image processing and computer vision. It contains two
differentiable manifolds of different finite dimensions and an embedding. The main problem
studied within the Beltrami framework is the problem of minimizing an energy functional
depending on the embedding map and on the metric structures on both manifolds. However,
direct methods of the variational calculus are not applicable in general. In such cases, flow
techniques may bring the embedded surfaces to the state of minimal energy. The flow is a
vector valued function on the embedded surface, and its components are given by partial
differential equations, called the evolution equations of the embedded surface.

The Beltrami framework has been first introduced in [103] for the purpose of low level
vision. Our goal is to extend the original construction in order to encompass also the di-
rectional dependency, and to appropriately generalize extend the evolution flow function in
order to be defined on the tangent bundle of the embedded surface. Such new framework will
be called the anisotropic Beltrami framework. The original results presented in this chapter
are published in [22, 25].

The construction of the Beltrami framework is closely related to theory of submanifolds,
calculus of variations and partial differential equations on manifolds.

3.1 The Beltrami framework and descent flow

Eugenio Beltrami provided models of the non-Euclidean geometry in Euclidean space. He
published original papers in the second half of the 19th century. His theory particularly
considers the definition of surface and the establishing of metric. A comprehensive overview
of his research on the subject can be found in [8].

The first applications in image processing of the Beltrami framework were first considered
by Sochen et al. in [103] and generalized by Bresson et al. in [36].

Although its intensive development is motivated by its applications in image processing,
we will present a more general framework, in accordance with the theory of submanifolds and
harmonic maps.

LetD denote an open connected subset in an n-dimensional manifold (in the sequel, D will
be referred as a domain) and let (M,h) be an m-dimensional Riemannian manifold (n < m).

55
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The embedding X : D →M is given by m smooth scalar functions of n variables,

X : (x1, . . . , xn) →
(
X1(x1, . . . , xn), . . . , Xm(x1, . . . , xn)

)
, (3.1)

and it produces an n-dimensional submanifold Σ = X(D) ⊂ M embedded in M , called
the image manifold or the image surface. A Riemannian metric tensor field g on Σ is not
necessarily induced from h, so the couple (Σ, g) represents the Riemannian image surface.
The Beltrami framework will be shortly denoted as the triple (X,M,Σ), or (X, (M,h), (Σ, g))
when it is necessary to emphasize metrics on manifolds M and Σ.

Throughout this chapter we shall employ the following notation: Greek indices will run
from 1 to n, and indicate objects on the image surface, while Latin indices running from 1
to m will be reserved for the embedding space, e.g., g = gµνdx

µ ⊗ dxν and h = hijdx
i ⊗ dxj .

We shall also shorten the standard notation for partial differentials and write

Xi
α =

∂Xi

∂xα
, Xi

αβ =
∂2Xi

∂xα∂xβ
,

not only for the embedding map, but for any smooth function dependent on the same param-
eters x1, . . . , xn.

The Beltrami framework uses the local intrinsic description of manifolds Σ and M and
considers the metrics g and h as dynamic variables. It minimizes the weighted Polyakov
action functional that depends on both the image surface Σ (through the embedding and
chosen metric) and the Riemannian manifold M .

Definition 3.1.1. The weighted Polyakov action associated to the Beltrami framework
(X,M,Σ) is given by the functional

S(X, gσµ, hij) =

∫
f · ⟨gradXi, gradXj⟩g · hij dV =

∫
fgσµXi

σX
j
µhij

√
g dx1 . . . dxn, (3.2)

where f = f(Xi, Xi
α, g, h) is a smooth function depending on the embedding X and on the

chosen metrics h and g, and is called the weight function.

Notice that in (3.2), the term ⟨gradXi, gradXj⟩g is the scalar product of the gradient
vector field of X by itself (with respect to the metric g), g = det(gσµ) is the determinant of
the metric tensor, and dV =

√
g dx1dx2 . . . dxn is the volume element on Σ. Putting f ≡ 1

reduces the influence of the weighted Polyakov action (Bresson case) to the initial nonweighted
one (Sochen case).

The standard methods of variational calculus lead to the minimization of the Polyakov
action by considering the Lagrangian density

L(X(xα), f, gσµ(x
α), hij(x

α)) = f
√
ggσµXi

σX
j
µhij ,

with respect to all variables. The Euler-Lagrange equations provide a necessary condition for
an extremal for the corresponding variational problem.

It is shown in [102] that if minimization is considered with respect to the embedded metric
g, then the optimal choice for the image metric is the induced one:

gσµ = hijX
i
σX

j
µ. (3.3)
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By varying the weighted Polyakov action in terms of the embedding, one infers the Euler-
Lagrange equations

∂L

∂Xi
− ∂

∂xα

(
∂L

∂Xi
α

)
= 0.

Due to the complex dependencies within L, we use the following brief notation: for a given
function Φ, we shall denote

Φ;α :=
∂Φ

∂xα
Φ,i :=

∂Φ

∂X i
Φ,( i

α)
:=

∂Φ

∂X i
α

.

Hence, the Euler-Lagrange equations can be written in the following condensed form:

L,i − L,( i
α);α

= 0. (3.4)

Similar to (1.68), the PDE (3.4) yields the flow that leads to the descent of the Polyakov
action.

Definition 3.1.2. Let (Σ, g) be a Riemannian image surface of the Beltrami framework
(X,M,Σ), and let L be the Lagrangian density of the corresponding Polyakov action. The
descent flow which shifts the image surface to the state of minimal Polyakov action, is called
the Beltrami flow : ∂tX =

(
∂tX

1, . . . , ∂tX
m
)
, with

∂tX
r = −1

2

1
√
g
hir
(
L,i − L,( i

α);α

)
. (3.5)

The multiplier −1
2

1√
gh

ir plays the role of making the flow invariant with respect to

reparametrizations, hence to provide to the Beltrami flow geometric meaning. For fixed
t, the flow (3.5) defines the flow vector field over the image manifold. Different choices of the
metrics g and h produce various descent flows. Some particular examples are presented in
the next two sections. For instance, if h and g are the fixed metrics, they can be viewed as
parameters of the minimization. Moreover, if the weight is trivial (f = const), the process
minimizes the area of the submanifold and it is closely related to the notion of harmonic
maps. The equivalence between the intrinsic Beltrami framework approach with the induced
metric g and the implicit harmonic map approach is considered in [105], and proved for the
case of 2-dimensional hypersurfaces. The main difference between these two approaches is in
the focus of interest: the Beltrami framework considers the image surface, while the harmonic
map theory considers the maps themselves, which are not necessarily embeddings.

3.2 Riemannian submanifolds in a Riemannian space

LetX be the Beltrami embedding (3.1) into a Riemannian manifold (M,h), and let g be a met-
ric of Riemannian type associated to the embedded submanifold Σ. The intrinsic properties
of the manifold (Σ, g) and the comparison of the two geometries are studied by submanifold
theory [2, 83].

The minimization of the submanifold area/volume can also be considered by the theory
of harmonic maps. The theory focuses on the minimization of an energy functional E defined
over the space of all smooth functions from D to M , C∞(D,M), aiming to deform a given
embedding X into an extremal of E. At the same time, the embedded surface Σ evolves
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towards the extreme state of minimal energy E. The harmonic energy functional is the
mapping

E : C∞(D,M) → R, E(X) =
1

2

∫
gσµXi

σX
j
µhij

√
g dx1dx2 . . . dxn. (3.6)

For a fixed embedding X ∈ C∞(D,M), the energy E(X) coincides with the Polyakov action
(3.2) with constant weight function f = 1

2 and fixed metrics g and h.
The minimization of the harmonic energy functional E is achieved by variational vector

field associated to the mapping in accordance with variational calculus principles and depends
on the Christoffel symbols of the embedding space M and of the submanifold Σ:

Γr
kl =

1

2
hri (hil,k + hki,l − hkl,i) ,

Γσ
ρθ =

1

2
gασ (gρα;θ + gαθ;ρ − gρθ;α) .

Definition 3.2.1. For a map X ∈ C∞(D,M), the tension field is the vector field τ(X) =(
τ1(X), . . . , τm(X)

)
defined by

τ r(X) = gσµXr
σµ − gρθΓσ

ρθX
r
σ + gσµΓr

klX
k
σX

l
µ. (3.7)

If τ(X) ≡ 0, the map X is said to be a harmonic map.

The tension field is a generalization of the Laplace-Beltrami operator ∆g on Σ associated
to the chosen metric g, applied to the field X. The components of the tension field are

τ r(X) = ∆g(X
r) + gσµΓr

klX
k
σX

l
µ.

The Beltrami-Laplace operator is given by

∆g(X
r) =

1
√
g
∂α (

√
ggασXr

σ) = gασXr
ασ − gρθΓσ

ρθX
r
σ, (3.8)

and ∆g(X) =
(
∆g(X

1), . . . ,∆g(X
m)
)
produced by (3.8) is a vector field over the submanifold

Σ, H : Σ → (TΣ)⊥ ⊂ TM , H(x) = ∆g(X(x)), called the mean curvature vector field.
The vanishing of the tension field is the necessary condition for the map X to be an

extremal of the energy functional (3.6). In other words, the harmonic maps produce the
minimal energy. Otherwise, i.e., for τ(X) ̸= 0, the tension field can be employed by (1.68) to
deform X to a harmonic map. The corresponding flow is called the tension flow ,

∂Xr

∂t
= τ r(X).

The Eells-Sampson theorem gives the existence result for harmonic maps and justifies the
flow technique (see [48]).

3.2.1. Theorem Let D and M be compact Riemannian manifolds with M of non-positive
sectional curvature. Then for any map X ∈ C∞(D,M) there is a unique function Xt :
D × [0,∞) →M , with Xt = f(·, t) continuous in t, which is a solution of the PDE

∂Xt

∂t
= τ(Xt), X0 = X.
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If the metric on the submanifold Σ is chosen to be induced from M , and the weight
function to be f = 1

n (to absorb the surface dimension), then the harmonic energy functional
reduces to

E(X) =
n

2

∫
√
g dx1dx2 . . . dxn,

and becomes proportional to the area functional
∫ √

g dx1dx2 . . . dxn considered in the min-
imal surfaces theory. In this case, the corresponding Beltrami (and the tension) vector field
is proportional to the mean curvature vector field, τ(X) = n

2 · H(X). The corresponding

mean curvature flow ∂Xr

∂t = Hr(X) deforms the embedded surface Σ to the state of minimal
area/volume.

More details on the harmonic maps theory can be found in [48].

Remark. The Polyakov action, the harmonic energy functional and the area functional
differ initially by multiplicative scalar terms (beside the weight function in the first case). This
fact causes differences between corresponding flows. Even flows of the same type differ by some
proportional coefficient, since the functionals might have different initial scalar multiplicative
terms.

3.3 Riemannian submanifolds in a Euclidean space

Let us now consider a Beltrami embedding X into a Euclidean space (M = Rm, hij = const)
with the embedded submanifold of arbitrarily chosen Riemannian type (Σ, g). In this case, the
Christoffel symbols Γi

jk of the ambient space are identically equal to zero, hence the tension
vector field of the embedding coincides with the Laplace-Beltrami operator,

τ r(X) = gσµ
(
Xr

σµ − Γν
σµX

r
ν

)
= ∆g(X

r).

Furthermore, a suitably chosen local chart will provide the vanishing of the Christoffel symbols
of Σ, hence, the tension vector field will locally coincide with the Laplacian,

τ r(X) = Trace
(
Hess(Xr)

)
= gσµ

(
∂2Xr

∂xσ∂xµ

)
.

An example of the Beltrami framework, commonly used in image processing (cf. ([36,
64, 114])), will be presented for m = 3 and n = 2. The image Σ is a Monge surface in the
Euclidean space R3 with the metric hij = diag(1, 1, β2). The embedding that produces the
image surface is

X : (x1, x2) → (x1, x2, I(x1, x2)). (3.9)

Let Σ be endowed with the induced metric g, whose components are then

(gσµ) =

(
1 + β2I2x1 β2Ix1Ix2

β2Ix1Ix2 1 + β2I2x2

)
. (3.10)

The (weighted) Polyakov action is given by

S(X) = 2fE(X) =

∫
f
√
1 + β2I2

x1 + β2I2
x2 dx

1dx2.
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The corresponding Beltrami flow that evolves the Monge-image surface (into another Monge
surface) has nontrivial only the third component,

∂tX =
(
∂tX

1, ∂tX
2, ∂tX

3
)
= (0, 0, ∂tI) ,

that coincides with the weighted mean curvature flow,

∂tI = fH3 + ∂kfg
µν∂µX

k∂νI −
1

β2
∂3f, (3.11)

where H3 is the third component of the mean curvature vector

H3 =
1

g2
(g11Ix2x2 + g22Ix1x1 − 2g12Ix1x2). (3.12)

3.4 The anisotropic Beltrami framework and deformation of
the flow

In order to develop the anisotropic Beltrami framework we consider the embedding (3.1), and
fix a Riemannian metric of the embedding space (M,hij). Initially, we will study the most
general case of directionally dependent embedded metric structures, actually, a generalized
Lagrange metric, which makes the framework anisotropic.

Anisotropic extensions of harmonic mappings have been considered in [80, 98, 108], where
directions are involved in the variational processes. In [80, 98], the focus is on the energy of
mappings from Finsler to Riemannian and Finslerian manifolds, with an anisotropic energy
functional obtained by considering the Holmes-Thompson volume form on a Finsler type
embedded surface. The corresponding Euler-Lagrange operator and the tension field, are
introduced. In [108], anisotropy is achieved by considering the energy functional of mappings
from Riemannian and Finslerian, to Finslerian manifolds.

The directional dependence of the structural tensor on the embedded space in the Beltrami
framework appears firstly in [74], where the anisotropic curve length is considered, and in [52],
where the Euclidean metric is complemented by the structural tensor, which depends on the
surface gradient. Both cases consider geodesic active objects in the one-dimensional case. In
other words, they evolve curves by anisotropic flows.

In [22], a non-weighted anisotropic evolution of the embedded surface is proposed, based
on a 0-homogeneous direction-dependent metric tensor of the surface instead of the weight
function dwelling inside the minimized functional.

In the following, we will study an anisotropic metric γ on the surface produced by the
Beltrami embedding (3.1). In other words, γ is required to be a smooth metric d-tensor field
on the tangent space TΣ. (In order to distinguish anisotropic metric from the Riemannian
type metrics, we use the notation with Greek letters.) The tension field of the anisotropic
Beltrami embedding is defined analogously with (3.7), and has the following components

τ r(X) = γσµ
(
Xr

σµ − Γν
σµX

r
ν + Γr

klX
k
σX

l
µ

)
, (3.13)

where connection coefficients on the embedded surface are also anisotropic

Γν
σµ =

1

2
γνρ (γσρ;µ + γρµ;σ − γσµ;ρ) .
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If the metric γ is symmetric, regular and of constant signature, then (Σ, γ) is a generalized
Lagrange manifold [35], and the anisotropic Beltrami flow ensures the minimal Polyakov
action.

The Polyakov action to be minimized has the same form, but depends on tangent vectors
through the embedded metric γ,

S(X, γσµ, hjk) =

∫
fγσµXi

σX
j
µhij

√
γ dx1 . . . dxn.

According to the terms involved in the Lagrangian density L = f
√
γγσµhklX

k
σX

l
µ, it is

important to simultaneously consider two metrics on the embedded surface: the arbitrarily
chosen one, γ = γσµ(x, v) dx

σ ⊗ dxµ, and the induced one g = gσµ(x) dx
σ ⊗ dxµ, where

gσµ = hklX
k
σX

l
µ. Without loss of generality, we will extend in additive manner the induced

metric g to the new deformed anisotropic metric γ:

γσµ(x, v) = gσµ(x) + a · φσµ(x, v), (3.14)

where a ∈ R and φσµ are components of a d-tensor field on TΣ that will be regarded to as
the additional tensor, and obviously, for a = 0 this becomes the classical Beltrami framework.
For the simplicity we will assume a = 1. The Lagrangian density can be written as

L(x, v) = f
√
γγσµgσµ,

where γσµ are components of the contravariant metric, and γ is the determinant of the matrix
(γσµ).

The Euler-Lagrange equations, which produce the anisotropic flow is derived in accordance
with the Hilbert-Palatini variational principle [9].

3.4.1. Theorem (The anisotropic weighted Beltrami flow) The PDE of the anisotropic Bel-
trami flow, which provides the minimality of the weighted Polyakov action on the surface
(Σ, γ)- which is embedded into the Riemannian manifold (M,h) by the mapping (3.1), is

∂tX
r =

1

2
f,( i

α);α
γσµgσµh

ir − 1

2
f,iγ

σµgσµh
ir

+
1

2
f,( i

α)
hir
[
(γσµ);αgσµ + γσµgσµ;α + γσµgσµ(ln

√
γ);α

]
+
1

2
f;αh

ir
[
(γσµ),( i

α)
gσµ + γσµgσµ,( i

α)
+ γσµgσµ(ln

√
γ),( i

α)

]
+fτ r(X)

+
1

2
hirf

{
gσµ;α

[
(γσµ),( i

α)
+ γσµ(ln

√
γ),( i

α)

]
+ gσµ

[
(γσµ),( i

α);α
+ (γσµ),( i

α)
(ln

√
γ);α + (γσµ);α(ln

√
γ),( i

α)

+ γσµ 1√
γ (
√
γ),( i

α);α
− (γσµ),i − γσµ(ln

√
γ),i

]}
,

(3.15)

where τ(X) is the tension field of the embedding X (3.13), and gσµ = hklX
k
σX

l
µ is the induced

metric tensor field on the embedded surface Σ.
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Proof. A straightforward calculation expresses the partial derivatives of the Lagrangian
density by the partial derivatives of both metrics, the embedding and the weight function, as
follows:

L,i = f,i γ
σµgσµ

√
γ + f(γσµ),i gσµ

√
γ + γσµgσµ,i

√
γ + γσµgσµ(

√
γ),i, (3.16)

L,( i
α)

= f,( i
α)
γσµgσµ

√
γ

+f
(
(γσµ),( i

α)
gσµ

√
γ + γσµgσµ,( i

α)
√
γ + γσµgσµ(

√
γ),( i

α)

)
,

L,( i
α);α

= f,( i
α);α

γσµgσµ
√
γ

+f,( i
α)

[
(γσµ);αgσµ

√
γ + γσµgσµ;α

√
γ + γσµgσµ(

√
γ);α

]
+f;α

[
(γσµ),( i

α)
gσµ

√
γ + γσµgσµ,( i

α)
√
γ + γσµgσµ(

√
γ),( i

α)

]
+f
{
(γσµ),( i

α);α
gσµ

√
γ + (γσµ),( i

α)
gσµ;α

√
γ + (γσµ),( i

α)
gσµ(

√
γ);α

+(γσµ);αgσµ,( i
α)
√
γ + γσµgσµ,( i

α);α
√
γ + γσµgσµ,( i

α)
(
√
γ);α

+(γσµ);αgσµ(
√
γ),( i

α)
+ γσµgσµ;α(

√
γ),( i

α)
+ γσµgσµ(

√
γ),( i

α);α

}
.

(3.17)

By plugging (3.16) and (3.17) into (3.5), and using abbreviate notation

1
√
γ
(
√
γ)⋆ = (ln

√
γ)⋆

for all kind of derivatives ⋆ : ;α, ,i, ,( i
α)
, we obtain the gradient descent flow for the surface

embedded in the Riemannian space in the form (3.15). 2

Theorem 3.4.1 is a generalization of the Beltrami framework presented in [36, 103, 114],
where the considered embedding goes into a Euclidean space (hij = const), and the metric
on the surface is the induced one. In our approach, the present generalization relies on three
aspects: the metric of the embedding space is of Riemannian type, the metric of the embedded
space is generalized Lagrange one (regular and symmetric d-tensor on TΣ), and the weight
function depends not only on the embedding itself, but also on its derivatives.

The weighted Polyakov action of the anisotropic Beltrami framework based on the embed-
ding X (3.1), is influenced by tangent vectors through the weight function and through the
anisotropic metric. Thus, we consider that the double directional influence is unnecessary,
and in the following, we propose the absence of the weight function inside Polyakov action.
Hence, by using f ≡ 1, one proves immediately the following result.

3.4.2. Theorem (The anisotropic Beltrami flow) The explicit form of the anisotropic Bel-
trami flow minimizing non-weighted Polyakov action with generalized Lagrange image metric
γ is

∂tX
r= τ r(X)

+
1

2
hir
{
gσµ;α

[
(γσµ),( i

α)
+ γσµ(ln

√
γ),( i

α)

]
+gσµ

[
(γσµ),( i

α);α
+ (γσµ),( i

α)
(ln

√
γ);α+(γσµ);α(ln

√
γ),( i

α)

+ γσµ 1√
γ (
√
γ),( i

α);α
− (γσµ),i − γσµ(ln

√
γ),i

]}
.

(3.18)
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The process of determining the terms from the previous theorem is achieved by using the
following auxiliary results, where the derivatives of the contravariant metric tensor and of the
determinant are expressed in terms of the covariant metric components.

3.4.3. Lemma The variations of the determinant and of the dual metric tensor for γ are
described by the following expressions

γ∗ = γγλτγλτ∗, (3.19)

(ln
√
γ)∗ =

1

2
γλτγλτ∗ (3.20)

(γσµ)∗ = −γσλγµτγλτ∗ (3.21)

(γσµ),( i
α);α

=
(
γσργλθγµτ + γσλγµργτθ

)
γρθ;αγλτ,( i

α)
− γσλγµτγλτ,( i

α);α
(3.22)

1
√
γ
(
√
γ),( i

α);α
=

1

2

(
1

2
γρθγλτ − γλργτθ

)
γρθ;αγλτ,( i

α)
+

1

2
γλτγλτ,( i

α);α
(3.23)

where ϕ∗ stands for ϕ;α, ϕ,i and ϕ,( i
α)
.

Proof. The assertions are obtained by straightforward calculations and by use of the following
algebraic fact:
Let (sij) be a regular matrix, let (sij) be the corresponding inverse matrix and let s be its
determinant. Then, the derivatives are related by

sij⋆ = −siksjlskl ⋆, s⋆ = s · sijsij ⋆.

2

According to the assumed form of the anisotropic metric γ given by (3.14), its deriva-
tives contain the derivatives of the induced metric components and of the additional tensor
components, which are specific to certain cases.

The various derivatives of the induced metric tensor show its dependency of the embedding
(3.1):

3.4.4. Proposition Let X be an embedding (3.1) into the Riemannian space (M,hij), which
produces the submanifold Σ, and let gσµ be the induced metric. Various derivatives of the
metric components are

gσµ;α = hkl,jX
j
αX

k
σX

l
µ + hklX

k
σαX

l
µ + hklX

k
σX

l
µα (3.24)

gσµ,i = hkl,iX
k
σX

l
µ (3.25)

gσµ,( i
α)

= hilδ
α
σX

l
µ + hikX

k
σδ

α
µ (3.26)

gσµ,( i
α);α

= hil,jX
j
σX

l
µ + hki,jX

j
µX

k
σ + 2hijX

j
σµ (3.27)

Proof. The properties of derivatives and the chain rule yield the assertions. 2

The following result shows the impact of the anisotropic additional tensor onto the evo-
lution, i.e., on the anisotropic Beltrami flow.
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3.4.5. Theorem The anisotropic Beltrami flow of an image surface with metric tensor (3.14)
is described by the evolution PDE:

∂GL
t Xr = τ r(X) +

1

2
hir
{
1

2
γσµγλτ − γσλγµτ

}
·{

gσµ;αgλτ,( i
α)

+ gσµgλτ,( i
α);α

−gσµgλτ,i+gσµ;αφλτ,( i
α)
+gσµφλτ,( i

α);α
−gσµφλτ,i

}
+
1

2
hirgσµ

{
gρθ;αgλτ,( i

α)
+gρθ;αφλτ,( i

α)
+gλτ,( i

α)
φρθ;α+φρθ;αφλτ,( i

α)

}
·{

γσρ(γλθγµτ− 1

2
γµθγλτ)+γσλ(γµργτθ− 1

2
γµτγρθ)− 1

2
γσµ(γλργτθ− 1

2
γρθγλτ)

}
.

(3.28)

Proof. This proof is based on Theorem 3.4.2, relation (3.14) and derivative rules. Straight-
forward but lengthy calculations lead to[

(γσµ),( i
α)

+ γσµ(ln
√
γ),( i

α)

]
=

(
1

2
γσµγλτ − γσλγµτ

)(
gλτ,( i

α)
+ φλτ,( i

α)

)
, (3.29)

[(γσµ),i + γσµ(ln
√
γ),i] =

(
1

2
γσµγλτ − γσλγµτ

)
(gλτ,i + φλτ,i) , (3.30)

[
(γσµ),( i

α)
(ln

√
γ);α + (γσµ);α(ln

√
γ),( i

α)

]
=

−1

2

(
γσλγµτγρθ + γσργµθγλτ

) (
gρθ;αgλτ,( i

α)
+ gρθ;αφλτ,( i

α)
+ gλτ,( i

α)
φρθ;α + φρθ;αφλτ,( i

α)

)
,

(3.31)[
(γσµ),( i

α);α
+ γσµ

1
√
γ
(
√
γ),( i

α);α

]
=(

γσργλθγµτ + γσλγµργτθ +
1

4
γσµγρθγλτ − 1

2
γσµγλργτθ

)
·
(
gρθ;αgλτ,( i

α)
+ gρθ;αφλτ,( i

α)
+ gλτ,( i

α)
φρθ;α + φρθ;αφλτ,( i

α)

)
+

(
1

2
γσµγλτ − γσλγµτ

)(
gλτ,( i

α);α
+ φλτ,( i

α);α

)
.

(3.32)

By plugging the equations (3.29), (3.30), (3.31) and (3.32) into (3.18) and arranging the
expression by the terms which contain the same contravariant metric components, one proves
the assertion (3.28). 2

The anisotropic Beltrami flow given in the previous theorem refers to a generalized La-
grange embedded surface (the most general case), hence it is also called generalized Lagrangian
flow, or shortly, GL-flow.

Regarding the properties of the anisotropic metric γ, the structure on the embedded
surface is classified as the one of the Finslerian, Lagrangian or generalized Lagrangian type.

If there is a fundamental function F : TΣ → R satisfying the conditions from Definition
1.3.3, and which is related with the metric (3.14) by γ = 1

2Hess(F 2)1, the embedded surface

1The Hessian is built by onsidering the directional argument.
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ΣF = (Σ, γ) is said to be Finslerian. If there is a Lagrangian function L : TΣ → R satisfying
the conditions from Definition 1.4.3, and which is related with the metric (3.14) by γ =
1
2Hess(L), the embedded surface ΣL = (Σ, γ) is said to be Lagrangian. Otherwise, the surface
is of generalized Lagrangian type ΣGL = (Σ, γ).

In the following chapters we will develop anisotropic Beltrami flows for two particular
cases. The Randers flow will be associated to the Finsler surface of Randers type, where the
Finsler norm is the linearly deformed induced one (see Section 1.3.3.). It will be shown how
the Synge-Beil flow evolves a generalized Lagrangian surface with induced metric deformed
by the canonical vector field (see Section 1.4.2.).

3.5 The particular case of isometric embeddings

Isometric immersions are natural embeddings between two metric manifolds, which imply the
induced metric on the embedded surface, and at the same time, they represent extremals of
the Polyakov action with respect to embedded metric (see [102]). However, hey yield isotropic
structures on the surface, and the directional impact in the Polyakov action can be achieved
through a weight function. The corresponding Beltrami framework considers minimization
of the weighted isotropic Polyakov action. Thus, the anisotropic metric structure reduces to
the induced one γσµ = gσµ, and the total contraction inside the Polyakov action gives the
dimension of the submanifold, i.e.,

γσµgσµ = gσµgσµ = n. (3.33)

Hence, the Polyakov action has the following form

S(X) = n

∫
f
√
gdx1 . . . dxn.

By using the properties of the induced metric structure on the embedded surface, from
Theorem 3.4.1 one gets the following result:

3.5.1. Proposition Let the mapping X be the isometric immersion given by (3.1) into the
Riemannian manifold (M,h), and let g be the induced metric structure. Then, the PDEs of
the anisotropic Beltrami flow are

∂tX
r =

n

2
f,( i

α);α
hir +

n

2
f,( i

α)
(ln

√
g);α h

ir

+
n

2
f;α(ln

√
g),( i

α)
hir − n

2
f,i h

ir +
n

2
fτ r(X).

(3.34)

Proof. Taking the ⋆-derivative of (3.33), one can see that

(γσµ)⋆ gσµ + γσµgσµ⋆ = 0.

Using this in (3.15) and employing Lemma 3.4.3 to simplify the factor which multiplies f , we
obtain the formula (3.34). 2

3.5.2. Corollary If f = f(Xi, hij) is the weight function of the embedding (3.1) into a
Euclidean space, with the induced metric on the surface, then the partial differential equations
of the Beltrami flow become2

∂tX
r =

n

2
fτ r(X)− n

2
f,i h

ir +
n

2
f,i g

σµXi
σX

r
µ. (3.35)

2The formula (3.35) is the corrected by the author version of the formula (13) from [114].
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Proof. The reduction of the Beltrami framework to the isometric case means considering the
Euclidean embedding space, the induced metric on the embedded surface and more freedom
for the weight function, or, in other words

f,( i
α)

=
∂f

∂Xi
α

= 0,
∂f

∂gσµ
= 0,

∂hij
∂xα

= 0,

which further, by the chain rule, lead to

f;α =
∂f

∂X i

∂Xi

∂xα
+

∂f

∂gσµ

∂gσµ
∂xα

+
∂f

∂hij

∂hij
∂xα

= f,iX
i
α.

The equality (3.26) yields

(ln
√
g),( i

α)
hir =

1

2
gσµ(hilδ

α
σX

l
µ + hikX

k
σδ

α
µ)h

ir =
1

2
(hilX

l
µg

αµ + hikX
k
σg

σα)hir = gαµXr
µ.

Plugging these facts into (3.34) proves the statement. 2



Chapter 4

Particular cases of the evolution
flow

So far we have introduced a geometric framework, namely the Beltrami framework, that is
appropriate for the study of problems in image processing. The aim of this chapter is to
develop anisotropic flows for Randers and Synge-Beil metric structures on the image surface
in the Beltrami framework (X,M,Σ), for which we will assume that the embedding X as well
as the Riemannian metric tensor field h on M are fixed, and only the anisotropic metric will
be varied. Both Randers and Synge-Beil structures will be considered as deformations of the
induced Riemannian metric g. Also, we will develop particular anisotropic flows of Randers,
Ingarden and normalized Miron type for a Monge surface embedded into a 3-dimensional
Riemannian space.

Throughout this chapter we shall use the following notation: x will refer to a point on the
image surface Σ, and v to a tangent vector in TxΣ. Then the induced g-quadratic form and
the induced g-norm on TxΣ will be denoted by V and G, respectively:

V (x, v) = ∥v∥2g = gσµ(x)v
σvµ, (4.1)

G(x, v) = ∥v∥g =
√
gσµ(x)vσvµ. (4.2)

In the sequel we shall omit the arguments and write just V and G, in order to simplify the
expressions. The following lemma provides formulas for the derivatives of V and G.

4.0.3. Lemma The derivatives of the induced g-quadratic form (4.1) and the induced g-norm
(4.2), are

V⋆ = gσµ⋆ v
σvµ, V,( i

α);α
= gσµ,( i

α);α
vσvµ, (4.3)

G⋆ =
1

2G
V⋆, G,( i

α);α
=

1

4G3

(
2V,( i

α);α
V − V,( i

α)
V;α

)
. (4.4)

Proof. The expressions are obtained by the basic derivative rules. 2

4.1 The general Randers case

Let us consider the embedded manifold of Finsler-Randers type ΣR = (Σ, γ), where γ arises
from the Finsler fundamental function F that deforms the induced g-norm (4.2) by a linear

67
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(in v) function
Ω(x, v) = bσ(x)v

σ (4.5)

given in all fibers TxΣ
F (x, v) =

√
gσµvσvµ + bσv

σ = G+Ω. (4.6)

Coefficients bσ of Ω are components of an 1-form over Σ, and depend on the embedding X, but
also on the parameters (xµ), i.e., bσ = bσ(X

i(xµ), Xi
α(x

µ)). Hence, we consider the following
derivatives

bσ,i, bσ,( i
α)
, bσ;α = bσ ,iX

i
α + bσ,( i

µ)
Xi

µα,

which define the derivatives of the scalar function Ω over TΣ,

Ω⋆ = bσ⋆v
σ, Ω,( i

α);α
= bσ,( i

α);α
vσ. (4.7)

The scalar functions on TΣ produced by the induced g-norm G given by (4.2) and the
linear function Ω given by (4.5), are

A =
Ω

G
, B = − Ω

G3
= − Ω

GV
, C =

1

G
.

The Randers fundamental function (4.6) produces by (1.30) the anisotropic metric tensor
γ on Σ, whose covariant metric components are

γσµ = gσµ + φσµ, (4.8)

and the Randers additional tensor reads

φσµ = Agσµ +Bgσρgµθv
ρvθ + C(gσρbµ + gµρbσ)v

ρ + bσbµ (4.9)

= Aσµ +Bσµρθv
ρvθ + Cσµρv

ρ + bσbµ. (4.10)

The expression (4.9) contains the scalar functions, while the expression (4.10) involves the
following d-tensor fields on TΣ with the corresponding components:

Â = Ag, Aσµ = Agσµ,

B̂ = Bg ⊗ g, Bσµρθ = Bgσρgµθ,

Ĉ = C · 2Sym(13) (g ⊗ b) , Cσµρ = C(gσρbµ + gµρbσ),

where the Sym(13) operator means the symmetrization in the first and third indices. Notice
that the functions φαβ(x, v) are the components of a symmetric (0, 2)-type tensor field defined
on the embedded surface Σ.

According to (1.31) we can express the components of the contravariant metric tensor γσµ

in terms of the inverse induced metric gσµ

γσµ = gσµ + ρσµ, ρσµ = −Ω

F
gσµ +

Ω+G∥b∥2g
F 3

vσvµ − G

F 2
gσαbαv

µ − G

F 2
gµαbαv

σ,

where ∥b∥2g = gσµbσbµ is the squared Frobenius norm of the 1-form bσdx
σ in the Hilbert space

of (0, 1)-type tensors on (Σ, g).
The Randers flow, which evolves the Randers embedded surface toward the state of the

minimal Polyakov action, can be obtained by Theorem 3.4.2 or Theorem 3.4.5. Both of them
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require a detailed analysis of the derivatives of the metric tensor components. The first option
implies consideration of the derivatives of the contravariant components of the metric tensor

γσµ and its determinant γ =
(
F
G

)n+1
g. The second possibility involves Lemma 3.4.3, since the

additive structure γαβ⋆ = gαβ⋆+φαβ⋆ allows us to determine the derivatives of the additional
Randers tensor:

φαβ⋆ = Aαβ⋆ +Bαβµσ⋆v
µvσ + Cαβσ⋆v

σ + bα⋆bβ + bαbβ⋆.

Due to the complexity of the inverse metric tensor γσµ, we use Theorem 3.4.5, and the
following auxiliary result.

4.1.1. Lemma Let G and Ω be the scalar functions that characterize the Randers structure
(4.6), and let V be the g-induced quadratic form (4.1). Then, we can express the ⋆-derivatives
of the ratio Ωp

Gq as follows(
Ωp

Gq

)
⋆

=
Ωp−1

Gq+2

(
pΩ⋆V − q

2
ΩV⋆

)
, p, q ∈ N.

Proof. The derivative rules, the equation V = G2, and the first expression from (4.4) yield(
Ωp

Gq

)
⋆

=
1

G2q

(
pΩp−1Ω⋆G

q − qΩpGq−1 1

2G
V⋆

)
=

Ωp−1Gq

G2qG2

(
pΩ⋆V − q

2
ΩV⋆

)
,

and hence the statement is proved. 2

As a straightforward consequence of the previous lemma we have the following result that
yields explicit forms of the derivatives of the scalar functions A, B and C, applicable for
computing the derivatives of the Randers additional tensor, φσµ⋆.

4.1.2. Lemma The derivatives of the scalar functions A, B and C are

A⋆ =
1

GV

(
Ω⋆V − 1

2
ΩV⋆

)
, (4.11)

B⋆ =
1

GV 2

(
3

2
ΩV⋆ − Ω⋆V

)
, (4.12)

C⋆ = − 1

2GV
V⋆. (4.13)

The mixed derivatives of the scalar functions A, B and C read

A,( i
α);α

=
1

G5

(
Ω,( i

α);α
V 2 − 1

2
Ω,( i

α)
V;αV − 1

2
Ω;αV,( i

α)
V − 1

2
ΩV,( i

α);α
V +

3

4
ΩV,( i

α)
V;α

)
, (4.14)

B,( i
α);α

=
1

G7

(
−Ω,( i

α);α
V 2 +

3

2
Ω,( i

α)
V;αV +

3

2
Ω;αV,( i

α)
V +

3

2
ΩV,( i

α);α
V − 15

4
ΩV,( i

α)
V;α

)
,

(4.15)

C,( i
α);α

=
1

G5

(
3

4
V;αV,( i

α)
− 1

2
V V,( i

α);α

)
. (4.16)
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Proof. The first three relations follow from (4.3), (4.4), (4.7) and Lemma 4.1.1. Further,
we calculate the derivative with respect to the parameters xα of the equations (4.11), (4.12)
and (4.13), with ⋆ =;

(
i
α

)
. Again, using the expression for G⋆ from Lemma 4.0.3, we obtain

(4.14), (4.15) and (4.16). 2

Now we can derive explicit expressions for the derivatives of the Randers additional tensor.

4.1.3. Proposition The derivatives of the components of the additional tensor φσµ in the
Randers type metric on the induced surface ΣR are given by

φσµ⋆ =
1

G3

[
(Ω⋆V − 1

2
ΩV⋆)gσµ +ΩV gσµ⋆

]
+ bσ⋆bµ + bσbµ⋆

+
1

G5

[
(
3

2
ΩV⋆ − Ω⋆V )gσρgµθ − ΩV (gσρ⋆gµθ + gσρgµθ⋆)

]
vρvθ

+
1

G3
[V (gσρ⋆bµ + gσρbµ⋆ + gµρ⋆bσ + gµρbσ⋆)− V⋆(gσρbµ + gµρbσ)] v

ρ.

(4.17)

The mixed derivatives of the additional tensor components φσµ in the Randers type metric on
the induced surface ΣR are

φσµ,( i
α);α

=
1

G5

[(
Ω,( i

α);α
V 2 − 1

2
Ω,( i

α)
V;αV − 1

2
Ω;αV,( i

α)
V − 1

2
ΩV,( i

α);α
V +

3

4
ΩV,( i

α)
V;α

)
gσµ

+ V

(
Ω,( i

α)
V − 1

2
ΩV,( i

α)

)
gσµ;α + V

(
Ω;αV − 1

2
ΩV;α

)
gσµ,( i

α)
+ ΩV 2gσµ,( i

α);α

]
+

1

G7

[(
−Ω,( i

α);α
V 2 +

3

2
Ω,( i

α)
V;αV +

3

2
Ω;αV,( i

α)
V +

3

2
ΩV,( i

α);α
V − 15

4
ΩV,( i

α)
V;α

)
gσρgµθ

+V

(
3

2
ΩV,( i

α)
− Ω,( i

α)
V

)
(gσρ;αgµθ + gσρgµθ;α)

+V

(
3

2
ΩV;α − Ω;αV

)(
gσρ,( i

α)
gµθ + gσρgµθ,( i

α)

)
− ΩV 2

(
gσρ,( i

α);α
gµθ + gσρ,( i

α)
gµθ;α + gσρ;αgµθ,( i

α)
+ gσρgµθ,( i

α);α

)]
vρvθ

+
1

G5

[(
3

4
V;αV,( i

α)
− 1

2
V V,( i

α);α

)
(gσρbµ + gµρbσ)

−V V,( i
α)

(gσρ;αbµ + gσρbµ;α + gµρ;αbσ + gµρbσ;α)

− V V;α

(
gσρ,( i

α)
bµ + gσρbµ,( i

α)
+ gµρ,( i

α)
bσ + gµρbσ,( i

α)

)
+V 2

(
gσρ,( i

α);α
bµ + gσρ,( i

α)
bµ;α + gσρ;αbµ,( i

α)
+ gσρbµ,( i

α);α

+ gµρ,( i
α);α

bσ + gµρ,( i
α)
bσ;α + gµρ;αbσ,( i

α)
+ gµρbσ,( i

α);α

)]
vρ

+bσ,( i
α);α

bµ + bσ,( i
α)
bµ;α + bσ;αbµ,( i

α)
+ bσbµ,( i

α);α
.

(4.18)
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Proof. The Leibniz rule and the linearity of derivatives applied to the components of the
tensors Â, B̂ and Ĉ yield

Aαβ⋆ = A⋆ gαβ +Agαβ⋆

Bαβµσ⋆ = B⋆ gαµgβσ +Bgαµ⋆ gβσ +Bgαµ gβσ⋆

Cαβσ⋆ = C⋆ (gασbβ + gβσbα) + C (gασ⋆ bβ + gβσ bα⋆ + gασ⋆ bβ + gβσ bα⋆) .

It then follows that the derivative of the additional Randers term (4.10), can be calculated as

φσµ⋆ = A⋆gσµ +Agσµ⋆

+ [B⋆gσρgµθ +Bgσρ⋆gµθ +Bgσρ⋆gµθ] v
ρvθ

+ [C⋆(gσρbµ + gµρbσ) + C(gσρ⋆bµ + gσρbµ⋆ + gµρ⋆bσ + gµρbσ⋆)] v
ρ

+bσ⋆bµ + bσbµ⋆.

Then, the substitution of the scalar functions derivatives (4.11)-(4.16) leads to (4.17).
By fixing the previous equation for ⋆ =,

(
i
α

)
and by computing its derivative with respect

to the parameter xα, we yield

φσµ,( i
α);α

= A,( i
α);α

gσµ +A,( i
α)
gσµ;α +A;αgσµ,( i

α)
+Agσµ,( i

α);α

+
[
B,( i

α);α
gσρgµθ +B,( i

α)
(gσρ;αgµθ + gσρgµθ;α) +B;α

(
gσρ,( i

α)
gµθ + gσρgµθ,( i

α)

)
+ B

(
gσρ,( i

α);α
gµθ + gσρ,( i

α)
gµθ;α + gσρ;αgµθ,( i

α)
+ gσρgµθ,( i

α);α

)]
vρvθ

+
[
C,( i

α);α
(gσρbµ + gµρbσ) + C,( i

α)
(gσρ;αbµ + gσρbµ;α + gµρ;αbσ + gµρbσ;α)

+ C;α

(
gσρ,( i

α)
bµ + gσρbµ,( i

α)
+ gµρ,( i

α)
bσ + gµρbσ,( i

α)

)
+C

(
gσρ,( i

α);α
bµ + gσρ,( i

α)
bµ;α + gσρ;αbµ,( i

α)
+ gσρbµ,( i

α);α

+ gµρ,( i
α);α

bσ + gµρ,( i
α)
bσ;α + gµρ;αbσ,( i

α)
+ gµρbσ,( i

α);α

)]
vρ

+bσ,( i
α);α

bµ + bσ,( i
α)
bµ;α + bσ;αbµ,( i

α)
+ bσbµ,( i

α);α
.

Then, by using the expressions (4.11)-(4.16), one obtains (4.18). 2

Finally, the Randers embedded surface evolution can be expressed by the use of Theorem
3.4.5. We shall denote by ΣR = (Σ, γ) the Randers manifold embedded into the Riemannian
manifold (M,h) by the mapping (3.1), with the anisotropic metric structure given by (4.8)
and (4.9). The general Randers flow PDEs, which provide minimality of the Polyakov action
on the Randers surface ΣR, are given by

∂GR
t Xr = τ r(X)

+
1

2
hir
[
gσµ;αgλτ,( i

α)
+ gσµgλτ,( i

α);α
− gσµgλτ,i + gσµ;αφλτ,( i

α)
+ gσµφλτ,( i

α);α
− gσµφλτ,i

]
·
{
1
2γ

σµγλτ − γσλγµτ
}

+
1

2
hirgσµ

[
gρθ;αgλτ,( i

α)
+ gρθ;αφλτ,( i

α)
+ gλτ,( i

α)
φρθ;α + φρθ;αφλτ,( i

α)

]
·
{
γσρ(γλθγµτ − 1

2γ
µθγλτ ) + γσλ(γµργτθ − 1

2γ
µτγρθ)− 1

2γ
σµ(γλργτθ − 1

2γ
ρθγλτ )

}
,

(4.19)
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where τ(X) is the tension of the embedding X (cf. (3.13)), gσµ is the induced metric tensor
field and φσµ is the Randers additional term (4.9) whose derivatives are given by (4.17) and
(4.18).

4.1.1 The Randers case

In this section we shall consider the Beltrami framework with 2-dimensional domain embed-
ded into a 3-dimensional Riemannian space (R3, h). The corresponding image surface Σ is
obtained as a Monge surface

X : (x1, x2) → (x1, x2, I(x1, x2))

and endowed with the induced Riemannian metric gσµ = hijX
i
σX

j
µ.

The gradient of the image surface, grad I = (g1αIxα , g2αIxα), is the tangent vector that
points in the direction of the greatest rate of increase of the feature I(x1, x2). It naturally
provides a deformation of the Riemannian norm into a Finslerian norm of Randers type

FR(x, v) =
√
gσµvσvµ + prgrad Iv.

The term prgrad Iv is the algebraic projection of an arbitrary tangent vector onto the gradient
one, and a straightforward calculation expresses it in terms of components

prgrad Iv =
⟨v, grad I⟩g

⟨grad I, grad I⟩g
=

1

P
Ixσvσ,

where we use the brief notation P for the induced squared norm of the gradient vector

P = ∥grad I∥2g = gσµIxσIxµ =
1

g
(I2x1 + I2x2).

If we consider the canonical Euclidean norm and denote its square of the gradient vector by
Z = I2x1 + I2x2 , we can write P = 1

gZ. Further, the particular Finsler-Randers norm has the
following form

FR(x, v) =
√
gσµvσvµ + bσv

σ = G+ΩR, (4.20)

where the particular linear deformation ΩR has the following coefficients

bσ =
1

P
Ixσ =

g

Z
Ixσ . (4.21)

The anisotropic metric tensor of the particular Randers structure is γσµ = gσµ+φσµ, and
the particular Randers additional tensor has the following components:

φσµ =
ΩR

G
gσµ − ΩR

G3
gσρgµθv

ρvθ +
g

GZ
(gσθIxµ + gµθIxσ)vθ +

g2

Z2
IxσIxµ . (4.22)
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4.1.4. Proposition The particular linear function ΩR, characterizing the Randers type em-
bedded surface ΣR with the fundamental function (4.20), has the derivatives (4.7) with

bσ ,i = 0;

bσ ;α =
g

Z
Ixσxα − 1

Z2
Z;αIxσ ;

bσ,(3α)
=
g

Z
δασ − 2

Z2
IxσIxα ;

bσ,(3α);α
=

1

Z3
(4Z;αIxσIxα − 2Z(IxαxαIxσ + IxαIxσxα)− ZZ;αδ

α
σ ) ;

where Z;α = 2Ix1Ix1xα + 2Ix2Ix2xα.

Proof. By taking the derivatives of (4.21) one proves the assertions. In particular, bσ,(1α)
and bσ,(2α)

vanish, which follows from the form of the embedding. 2

Properties of the particular Randers case, presented in Proposition 4.1.4, and Proposition
4.1.3 can be used in computing the derivatives of the additional Randers tensor. Hence, the
Randers flow can be achieved by (4.19).

4.1.2 The Ingarden case

Another Randers type metric on the 2-dimensional surface Σ embedded into the Beltrami
framework with Riemannian embedding space (R3, h) as the Monge surface, can be obtained
by the use of the gradient vector field grad I. Deforming the induced norm on the embedded
surface by the Euclidean scalar product of an arbitrary tangent vector with grad I, one obtains

F (x, v) =
√
gσµvσvµ + Ixσvσ. (4.23)

According to the considerations presented in Subsections 1.3.2-1.3.4, the Finsler fundamental
function (4.23) produces a Randers metric of special Ingarden type. The corresponding linear
deformation of the induced norm is the following Ingarden linear function

ΩI = Ixσvσ. (4.24)

The anisotropic metric tensor of the particular Ingarden structure is γσµ = gσµ + φσµ, and
the particular Randers-Ingarden additional tensor has the following components:

φσµ =
ΩI

G
gσµ − ΩI

G3
gσρgµθv

ρvθ +
1

G
(gσθIxµ + gµθIxσ)vθ + IxσIxµ . (4.25)

The straightforward calculation leads to the following result:

4.1.5. Proposition The linear function ΩI which characterizes the particular Ingarden type
embedded surface ΣI with the fundamental function (4.23), has the derivatives (4.7) defined
by

bσ ,i = 0;

bσ ;α = Ixσxα ;

bσ,(1α)
= 0, bσ,(2α)

= 0, bσ,(3α)
= δασ ;

bσ,( i
α);α

= 0.

The particular Ingarden flow can be obtained by (4.19), where the derivatives of the
additional Randers-Ingarden tensor can be evaluated by Propositions 4.1.3 and 4.1.5.
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4.2 General-Lagrange evolution flow

Both Theorems 3.4.2 and 3.4.5 may produce the general-Lagrange flow, which evolves the em-
bedded GL surface (Σ, γ) of the anisotropic Beltrami framework (X,M,Σ). While considering
only Synge-Beil structures we employ Theorem 3.4.2.

The Synge-Beil type structure has simple components (covariant and contravariant ones)
of the metric tensor, hence, the derivatives of both type metric components and the metric
determinant can be directly computed by the algebraic Lemma 1.3.7, and further substituted
in (3.18).

4.2.1 The Synge-Beil case

The Synge-Beil type metric on the embedded surface Σ has the following form

γσµ = gσµ + c · vσvµ, (4.26)

where gσµ is the metric induced from the embedding space, vσ = gσµv
µ is a covariant com-

ponent of a vector tangent to the surface Σ and c = c(Xi, Xi
α) is a smooth scalar field over Σ

with the following derivatives

c,i; c,( i
α)
; c;α = c,iX

i
α + c,( i

σ)
Xi

σα.

The algebraic Lemma 1.3.7 describes the determinant and the inverse metric tensor

γ = Kg, (4.27)

γσµ = gσµ + S · vσvµ, (4.28)

where

K = 1 + cV, (4.29)

S =
−c

1 + cV
=

−c
K
. (4.30)

In order to apply Theorem 3.4.2 to this case, we need the following results.

4.2.1. Lemma For the scalar functions K and S defined on TΣ by (4.29) and (4.30), the
⋆-derivatives are

K⋆ = c⋆V + cV⋆

S⋆ =
1

K2

(
c2V⋆ − c⋆

)
and the mixed derivatives are

K,( i
α);α

= c,( i
α);α

V + c,( i
α)
V;α + c;αV,( i

α)
+ cV,( i

α);α

S,( i
α);α

=
1

K3

[
c3
(
V,( i

α);α
V − 2V,( i

α)
V;α

)
− c,( i

α);α

+ 2c,( i
α)
cV;α + 2c;αcV,( i

α)
+ c2V,( i

α);α
− V (c,( i

α);α
c− 2c,( i

α)
c;α)
]
.
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Proof. The first equation is just the product rule for derivatives, and the second one follows
from

S⋆ =
1

K2
(cK⋆ − c⋆K)

=
1

K2
(c(c⋆V + cV⋆)− c⋆(1 + cV )) .

Further, they respectively produce the third and fourth equations, by the use of relations
(4.1), (4.29) and (4.30). 2

In order to apply Theorem 3.4.2, it is also necessary to consider the derivatives of the
determinant (4.27) and the inverse metric tensor (4.28) of the Synge-Beil metric (4.26).

4.2.2. Lemma Let γ be a metric tensor of the Synge-Beil type with its components given by
(4.26) on the embedded surface Σ. Then, the derivatives of the corresponding inverse tensor
are given by

(γσµ)⋆ = (gσµ)⋆ + S⋆v
σvµ

(γσµ),( i
α);α

= (gσµ),( i
α);α

+ S,( i
α);α

vσvµ,

where the first term on the right-hand side in both equations is explicitly related with the
derivatives of the inverse induced metric components (3.21) and (3.22) from Lemma 3.4.3
and Proposition 3.4.4.

Proof. All the equations result from (4.28) and from the fact that vσ are independent
variables. 2

4.2.3. Lemma Let γ be a metric tensor of the Synge-Beil type with its components given by
(4.26) on the embedded surface Σ. Then, the derivatives of the term ln

√
γ are

(ln
√
γ)⋆ =

1

2γ
(K⋆g +Kg⋆) ,

1
√
γ
(
√
γ),( i

α);α
=

1

4K2

(
2KK,( i

α);α
−K,( i

α)
K;α

)
+

1

4g2

(
2gg,( i

α);α
− g,( i

α)
g;α

)
+

1

4γ

(
K,( i

α)
g;α +K;αg,( i

α)

)
,

where g is the determinant of the induced metric.

Proof. The derivation rules and equation (4.27) yield (4.31), while another derivation of(
ln

√
γ
)
,( i

α)
produces (4.31). 2

4.2.4. Theorem The Synge-Beil evolution flow partial differential equations, which provide
minimality of the Polyakov energy on the surface ΣSB embedded into the Riemannian manifold
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(M,h) by the mapping (3.1), are given by

∂SBt Xr

= τ r(X) +
1

2
hir
[
(gσµ),( i

α);α
gσµ + (gσµ),( i

α)
gσµ;α + gσµgσµ,i

]
+
1

2
hir
[
c
1

2γ

(
gσµgσµ;α(V,( i

α)
g + V g,( i

α)
)− n(V,ig + V g,i)

)
+ c,( i

α)
1

2γ
V gσµgσµ;αg

− c,i
n

2γ
V g ++

1

2γ

(
gσµgσµ;αg,( i

α)
− ng,i

)]
+
1

2
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1

2K2g

[
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(V,( i

α)
g − V g,( i

α)
)gσµ;α + (V g,i − V,ig)gσµ

)
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α)
V gσµ;αg

+ cc,iV gσµg − 2c,( i
α)
gσµ;αg + 2c,igσµg − cgσµ;αg,( i

α)
+ cgσµg,i

]
vσvµ

+
1

2
hir

1

4γ2

[
c2
(
2V
{
V;α(g

σµ),( i
α)

+ V,( i
α)
(gσµ);α

}
gσµg

2

+2V 2
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α)
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α)

}
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α)
V;α
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− g,( i

α)
g;α

}
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α)
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(gσµ);αgσµg
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g;α
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α)
g;α
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{
V,( i
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2gg,( i
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α)
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(4V;αg − 3V g;α) g + cc;α
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α)
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(
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(4.31)

where τ(X) is the tension (3.13) of the embedding X, gσµ = hklX
k
σX

l
µ is the induced metric

tensor field and c = c(X) is the scalar field which defines the Synge-Beil metric.
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Proof. The substitution of the derivatives expressions obtained in Lemma 4.2.2, 4.2.3 and
4.2.1 into the anisotropic Beltrami flow (3.18), yields (4.31). 2

4.2.2 The normalized Miron case

We will present one particular case of the Synge-Beil type metric structure on the Monge
surface Σ. A Synge-Beil deformation (1.40) of the induced Riemannian metric g, with par-
ticularly chosen scalar function c = 1

V (see (4.1)), yields the normalized Miron metric

γσµ = gσµ +
1

V
vσvµ, (4.32)

where vσ = gσµv
µ are covariant components of a tangent vector v.

Characteristic scalar functions of the NM-structure are

K = 2 and S =
−1

2V
,

hence, the components of the inverse metric tensor and the determinant are

γσµ = gσµ − 1

2V
vσvµ, γ = 2g. (4.33)

In order to apply Theorem 3.4.2 to ΣNM = (Σ, γ) with the anisotropic NM-metric (4.32)
one can use the adjusted flow for general Synge-Beil structures (4.31) by plugging therein
derivatives obtained in Lemma 4.2.1 and evaluating derivatives of the scalar function c. How-
ever, due to the simplicity of the scalar functions c, K, S and γ one can evaluate the terms
in (3.18) directly. Thus, the straightforward calculation gives the following result:

4.2.5. Proposition The components of the inverse NM-metric and the determinant of the
NM-metric (4.33) have the following derivatives

(γσµ)∗ = (gσµ)∗ +
1

2V 2
V∗v

σvµ

(γσµ),( i
α);α

= (gσµ),( i
α);α

+
1

2V 3

(
V V,( i

α);α
− 2V,( i

α)
V;α

)
(ln

√
γ)∗ =

1

2g
g∗

1
√
γ
(
√
γ),( i

α);α
=

1

4g2

(
2gg,( i

α);α
− g,( i

α)
g;α

)
.

4.2.6. Proposition Let ΣNM be the image surface of the Beltrami framework (X, (R3, h),ΣNM ),
endowed with the normalized Miron metric (4.32). The NM flow that minimizes the Polyakov
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action of the surface ΣNM , has the following equations

∂NM
t Xr = τ r(X)

+
1

2
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{
gσµ;α
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+
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+
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}
.

(4.34)

Proof. The proof is obtained by plugging results of Proposition 4.2.5 into the general
anisotropic Beltrami flow (3.18). 2



Chapter 5

Applications in image processing

The last chapter is devoted to applying the geometric approach to image processing, that
will be presented in accordance with [63, 64, 95, 103]. A comprehensive mathematical back-
ground of the theory can be found in [64, 95], while we refer to [59, 95] for image processing
terminology.

The chapter is organized as follows. First, we present the Beltrami framework as a math-
ematical model of a digital image, and the discretization of theoretical results. In the second
section several examples of classical (isotropic) Beltrami flows applications are outlined, while
the last section considers possible applications of the new theoretical results obtained in Sec-
tion 3.4 and Chapter 4.

5.1 Beltrami framework in image processing

Image processing commonly uses the Beltrami framework for modelling digital images as
surfaces over a 2-dimensional bounded continuous domain, a subset of R2

+. The parameter
coordinates are (x1, x2) and the embedding is given by

X : (x1, x2) → (x1, x2, I(x1, x2))

where I(x1, x2) is regarded as an image feature, and can be scalar, vector or even tensor
valued. Monochrome (grayscale) images are described with scalar values of I(x1, x2), while
vector valued I(x1, x2) = (IR, IG, IB) refer to color images (see [63, 103]). Tensorial features
are extremely useful in the so called diffusion tensor image regularization [56].

In this chapter we will focus on monochrome image surfaces Σ obtained as Monge surfaces
in R3 endowed with the Euclidean metric, i.e., on the Beltrami framework (X,R3,Σ) presented
in Section 3.3.

Regardless of the chosen Polyakov action type that has to be minimized, the obtained
Beltrami flow is a continuous function. Hence, the theoretical results should be discretized,
in order to become applicable in image processing (see Fig. 5.1).

The discretization of an image surface from the Beltrami framework is induced by the
discretization of the domain, hence the corresponding (monochrome) image is viewed as an
image matrix Σ = (I(i, j)) whose elements I(i, j) are in correspondence with the locations
of the pixels of the image (i, j) = (x1, x2) =: x and their values I(i, j) ∈ {0, 1, . . . , 255}
represent the level of their grey color intensity. The matrix dimensions are defined by the
image resolution.

79
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Figure 5.1: Image processing by the use of Beltrami framework

The partial derivatives of the feature are respectively determined by

Ix1(i, j) = I(i+ 1, j)− I(i, j),

Ix2(i, j) = I(i, j + 1)− I(i, j),

Ix1x1(i, j) = I(i+ 2, j) + I(i, j)− 2I(i+ 1, j),

Ix1x2(i, j) = I(i+ 1, j + 1) + I(i, j)− I(i+ 1, j)− I(i, j + 1),

Ix2x2(i, j) = I(i, j + 2) + I(i, j)− 2I(i, j + 1).

Tangent vectors in a discrete model point to the neighboring pixels

v = (v1, v2) ∈ {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 0), (1, 1)}.

The gradient vector is discretized by the shift tangent vector computed as max-abs of the
shifts towards the pixels of the eight neighbors of the current pixel. Namely, a direction of
maximal difference between the feature values in the considered pixel (i, j) and its neighbors
|I(i, j)− I(i+ v1, j + v2)| determines the gradient vector v(i, j).

The image surface I(x1, x2) evolves as a geometric active surface by the Beltrami flow
PDE ∂tI. The evolution is discretized in the frame of the level set formulation ([64]), and is
gained by the successive shifting of the grayscale image

I(i, j) → I(i, j) +△I(i, j),

where △I(i, j) discretizes one of the Beltrami flows ∂tI.
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Figure 5.2: An element of image matrix and the tangent vector v = (−1, 1).

5.2 Applications of isotropic flows

Classical Beltrami frameworks are widely used in image processing. Weighted and non-
weighted Polyakov actions taken for various embedding metrics, commonly of Euclidean type,
produce different flows and hence different processing effects. Offen, the induced embedded
metric is of Riemannian type, and an anisotropic impact can be reached through the weight
function. Produced Beltrami flows are referred to as the isotropic flows, and the corresponding
theoretical background is presented in Sections 3.1-3.3.

The isotropic Beltrami evolution of the monochrome image Σ = (I(i, j)) is achieved by
successive shifting, where each iteration implies the following steps:

• accessing pixel and its neighborhood-data (excluding the boundary of the image), in
order to get the corresponding feature value I;

• determining weight function value (optionally) and the shift value △I(i, j);

• computing the modified feature value, I → I +△I.

An appropriate embedding space, an embedded metric, and a weight function are chosen
by the purpose of the processing.

In the sequel we indicate some applications, while their comprehensive overview can be
found in [95, 113].

Many linear and non-linear scale space methods of image processing can be expressed
as an appropriate Beltrami flow corresponding to a certain embedding metric and a certain
weight function [36, 63]. The main property of scale spaces is the embedding metric with the
following components

(hij) = diag

(
1

c2
In,

1

c2ρ2

)
,

where n is the spatial dimension, In is the identity matrix, and c and ρ are conductance and
density functions from a general model of heat diffusion transfer [46, 47].

The Euclidean embedding metric, through the induced metric, produces a Beltrami flow
that evolves the image surface toward a minimal area, hence it is usually called mean curvature
flow. This process is edge-preserving, or equivalently area-preserving, hence appropriate
for various kinds of image enhancements, e.g., smoothing, denoising, contrast enhancement
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[63, 95]. The image evolution for the purpose of smoothing is often called Gauss filtering, and
for a monochrome image modelled in the Beltrami framework (3.9)-(3.10), it is gained by the
Beltrami flow (3.12),

△I =
1

g2
(Ix1x1g22 + Ix2x2g11 − 2Ix1x2g12) . (5.1)

Further applications of this type edge-preserving Beltrami flow are in segmentation, reg-
istration and object extraction. In image segmentation process presented in [97], the same
Beltrami framework (3.9)-(3.10) is used, but the weighted Polyakov action is minimized. The
weight function is taken as the edge-detector function

f(x1, x2) =

(
1 +

1

β2
∥∇G(x1, x2) ∗ I(x1, x2)∥2

)−1

,

where ∇G is derivative of the Gaussian kernel and ∗ denotes the convolution. Hence, the
Beltrami flow arises from (3.11), and the obtained evolution produces clear separation of
the image segments. A generalization of this method is presented in [36], as the multiscale
active contours method. An arbitrary weight function is taken, and the embedded surface is
considered as a level-set-function (see [82]).

Image registration processes two images, one of them, I, is embedded into the Beltrami
framework (3.9)-(3.10), and the other one is seen as the target image IT . In [67, 110], the
intensity mismatch f(x1, x2) = IT (x

1, x2)− I(x1, x2) is taken as the weight function, and β2

is related to the topology of objects on the images. The evolution of the image I toward
the target one is gained by the flow (3.11). The geodesic active fields approach to image
registration is proposed in [114, 113, 115], where the embedded surface does not represent an
image, but the deformation field between two images to be registered. Three different weight
functions are considered: squared error, local joint entropy and absolute error. The simplest
image registration is a stereo vision, where two images differ only in lateral shift. Hence
the deformation field consists of scalar values u(x1, x2) = IT (x

1, x2) − I(x1, x2), and can be
embedded into the Beltrami framework with the third component in the embedding (3.9)
denoted by u (the notation in (3.10) has to be adjusted, too). One of the considered weight

functions is the squared error f(x1, x2, u) =
(
(I(x1, x2) + u(x1, x2)− IT (x

1, x2))
)2
, and the

Beltrami flow is obtained by (3.11).
Some enhancements of color images, processed by the use of Beltrami frameworks are

presented in [93, 104]. Beltrami flow of the mean curvature type is also suitable for texture
enhancement, but the embedding has to be from 4-dimensional to 6-dimensional space [63].

5.3 Anisotropic flows - tentative applications

In our developed approach, the concept of anisotropic Beltrami flow refers to the employment
of anisotropic metrics on the image surface and non-weighted Polyakov action. We shall
further implement the theoretical results obtained in Chapter 4 into the Beltrami framework
presented in Section 3.3. In the application, the embedding (3.9) will be discretized by taking
x1 = i, x2 = j, and the induced metric components (3.10) will be evaluated in each pixel.

Since the metric tensor (hij) = diag(1, 1, β2) is constant, by using Proposition 3.4.4 and
Lemma 4.0.3, one can prove the following results, which are essential in the implementation
process
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5.3.1. Corollary The induced metric tensor on the Monge surface in the Beltrami framework
(3.9)-(3.10) has the following nonvanishing derivatives

gσµ;α = β2IσαIµ + β2IσIµα (5.2)

gσµ,(3α)
= β2δασ Iµ + β2Iσδ

α
µ (5.3)

gσµ,(3α);α
= 2β2Iσµ. (5.4)

The induced g-quadratic norm V is

V = (v1)2 + (v2)2 + β2
(
I2x1(v

1)2 + 2Ix1Ix2v1v2 + I2x2(v
2)2
)
. (5.5)

5.3.2. Corollary The derivatives of the induced g-quadratic form V = gσµv
σvµ in the

Beltrami framework (3.9)-(3.10), are

V,i = 0,

V;α = 2β2
(
Ix1Ix1xα(v1)2 + (Ix1xαIx2 + Ix1Ix2xα)v1v2 + Ix2Ix2xα(v2)2

)
,

V,(31)
= 2β2

(
Ix1(v1)2 + Ix2v1v2

)
,

V,(32)
= 2β2

(
Ix1v1v2 + Ix2(v2)2

)
,

V,(3α);α
= 2β2

(
Ix1x1(v1)2 + 2Ix1x2v1v2 + Ix2x2(v2)2

)
.

The aim here is to consider and analyze the following types of Beltrami flows: partic-
ular Randers, Ingarden, and normalized Miron. Therefore, we need the exact forms of the
corresponding metric tensors components.

The particular Randers flow

The linear deformation ΩR of the induced norm G =
√
V in the particular Randers case

(4.20)-(4.21), is given by

ΩR = bRσv
σ =

(
1

Z
+ β2

)
(Ix1v1 + Ix2v2), (5.6)

where Z = I2x1 + I2x2 . The particular Randers additional tensor components (4.22), can be
evaluated as

φR11 =
ΩR

G
g11 −

ΩR

G3

(
g211(v

1)2 + 2g11g12v
1v2 + g212(v

2)2
)

+
2

G

(
1

Z
+ β2

)
Ix1(g11v

1 + g12v
2) +

(
1

Z
+ β2

)2

I2x1 ,

φR12 = φR21 =
ΩR

G
g12 −

ΩR

G3

(
g11g12(v

1)2 + (g11g22 + g212)v
1v2 + g12g22(v

2)2
)

+
1

G

(
1

Z
+ β2

)
(g11Ix2v1 + g12Ix2v2 + g12Ix1v1 + g22Ix1v2) +

(
1

Z
+ β2

)2

Ix1Ix2 ,

φR22 =
ΩR

G
g22 −

ΩR

G3

(
g221(v

1)2 + 2g12g22v
1v2 + g222(v

2)2
)

+
2

G

(
1

Z
+ β2

)
Ix2(g12v

1 + g22v
2) +

(
1

Z
+ β2

)2

I2x2 .
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The derivatives of the φRσµ, which appear in the flow expression, can be obtained by Propo-
sition 4.1.3, (4.7), and the derivatives of the components bRσ (see Proposition 4.1.4):

bRσ ,i = 0;

bRσ ;α =

(
1

Z
+ β2

)
Ixσxα − 1

Z2
Z;αIxσ ;

bRσ,(3α)
=

(
1

Z
+ β2

)
δασ − 2

Z2
IxσIxα ;

bRσ,(3α);α
=

1

Z3
(4Z;αIxσIxα − 2Z(IxαxαIxσ + IxαIxσxα)− ZZ;αδ

α
σ ) ;

where Z;α = 2Ix1Ix1xα + 2Ix2Ix2xα .

In the anisotropic Beltrami framework (3.9)-(3.10) the tension field coincides with the
Laplace-Beltrami operator, and only the third component is significant for the application,

△γ(I) = τ3(X) = γσµ
(
Ixσxµ − Γν

σµIxν

)
. (5.7)

Additional tensor components of the Randers metric γ, defined by (5.6), are involved in
the connection coefficients Γν

σµ, hence they differ from the Cristoffel symbols of the induced
metric. Anyway, the tension τ(I) is the generalization of the third component of the mean
curvature vector (3.12). The particular Randers flow ∂Rt I can be evaluated by the use of
(4.19) for r = i = 3 and h33 = β−2,

∂Rt I = △γ(I) + Φ(V,ΩR, bRσ). (5.8)

We omit here the explicit form of the flow, since its complete expression is computationally
tedious.

The Ingarden flow

Another proposed linear deformation ΩI of the induced norm G =
√
V in (4.20)-(4.21) is of

the Ingarden type, and is given by

ΩI = bIσv
σ = Ix1v1 + Ix2v2.

The Ingarden additional tensor components (4.25) have the explicit form
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G
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(
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2)2
)

+
2

G
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2) + I2x1 ,

φI12 = φI21 =
ΩI

G
g12 −
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G3

(
g11g12(v

1)2 + (g11g22 + g212)v
1v2 + g12g22(v

2)2
)

+
1

G
(g11Ix2v1 + g12Ix2v2 + g12Ix1v1 + g22Ix1v2) + Ix1Ix2 ,

φI22 =
ΩI

G
g22 −

ΩI

G3

(
g221(v

1)2 + 2g12g22v
1v2 + g222(v

2)2
)

+
2

G
Ix2(g12v

1 + g22v
2) + I2x2 .
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The derivatives of the φIσµ, required for the flow expression, can be obtained by Proposition
4.1.3. The derivatives of the Ingarden linear function ΩI can be expressed by (4.7), and
Proposition 4.1.5,

ΩI ,i = 0; ΩI ;α = Ixσxαvσ;

ΩI ,(3α)
= vα; ΩI ,(3α);α

= 0.

Similarly as in the previous case, the Ingarden flow ∂It I can be evaluated by the use of
(4.19) for r = i = 3 and h33 = β−2,

∂It I = △γ(I) + Φ(V,ΩI , Ixσ), (5.9)

where △γ(I) is given by (5.7), with the connection coefficients produced by the Ingarden
metric.

The normalized Miron flow

As shown in Subsection 4.2.2., the NM flow is completely determined by metric components
hij and gσµ, and induced g-quadratic norm V . For the Beltrami framework (X,R3,Σ) given
by (3.9), the components of the metric g are presented in (3.10), and their derivatives in
Corollary 5.3.1. The contravariant metric components are

(gσµ) =
1

g

(
1 + β2I2x2 −β2Ix1Ix2

−β2Ix1Ix2 1 + β2I2x1

)
, where g = 1 + β2I2x1 + β2I2x2 .

By the use of Lemma 3.4.3, their derivatives can be obtained in detail. Hence, the NM flow
∂NM
t I of the image surface in the Beltrami flow (X,R3,Σ) can be evaluated according to

(4.34), by taking r = i = 3 and h33 = β−2,

∂NM
t I = △γ(I) + Φ(V, gσµ, g), (5.10)

where △γ(I) is given by (5.7), with the connection coefficients produced by the normalized
Miron metric.

5.3.1 The implementation

The main difference in the implementation of isotropic and anisotropic flow types, lays the
following fact: anisotropic flows △I produce eight shifting values in a pixel comparing to the
only one obtained by isotropic flows. Therefore, at each pixel of the processed image, one has
more possibilities for shifting. Immediately, the following question arises: how to choose only
one for the shifting? In our tentative application we have decided to always take the shifting
value in direction of the gradient.

The Beltrami induced successive evolutive shifting of the monochrome image Σ = (I(i, j))
is achieved by Matlab implementation, where each iteration implies the following steps:

• accessing pixel (excluding the boundary) to get the corresponding feature value I;

• determining the shift tangent vector;

• applying the flow expression on the feature value and the shift tangent vector to obtain
the shift value △I(i, j);
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• computing the modified feature value, I → I +△I.

The first observation is that the computing of the shift value △I takes remarkably more
time. This was expected, because of the complexity of the flow expressions ∂Rt I, ∂

I
t I and

∂NM
t I, comparing to ∂MC

t I.

We present in [22] an approximate minimizing Beltrami flow, containing only the most
important term from the scaled extremal equation. The output differs from the input by
a slight increase of the contrast between the compact regions, which exhibits a significant
difference between the mean levels. It is observed that the presence of the anisotropic metric
in the expression of the modified mean curvature flow leads to region-growing and slight
salt-and-pepper low granular denoising (see Fig. 5.3).

Figure 5.3: Original image and output provided by the approximate anisotropic evolution
process.

Further, we use Matlab programming for implementing the whole Beltrami flow expres-
sion. We process the flower image of low resolution (60x60) for β = 2, with the aim of
its enhancement. The flower image is shifted by the following four flows: mean curvature
(5.1), Randers (5.8), Ingarden (5.9) and normalized Miron (5.10). Each shifting is tracked
separately. A sample of tracking for the NM flow can be seen in Figure 5.4.

Also, simultaneous shifting is implemented, and the effects can be compared in Figure 5.5.
The doorknob image was efficiently evolved by the isotropic MC flow, and by the anisotropic
R, I and NM flows. In the image enhancement, produced effects display similar results,
however, anisotropic flows offer more possibilities: at each pixel they produce eight values,
and the shifting one could be chosen regarding some other criteria, not necessarily the gradient
vector.

Moreover, it is also important to underline that the large number of iterations in the
processing would result in a substantial enhancement.

Based on the implementation results, we are able to conclude that the anisotropic evolution
process is substantially slower than the isotropic one - the mean curvature flow, but it is more
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Figure 5.4: Original flower image, image evolved by NM flow with 15 iterations, shift no15.

Figure 5.5: Original doorknob image, image evolved with 15 iterations by MC,R,I, and NM
flow, respectively.

sensitive. The later implies that the more comprehensive processing could be expected in the
fiture. The anisotropic metric structure causes the dependence of the Finsler (Synge-Beil)
metric coefficients on the shift vector, and emphasizes the action of the flow at noisy pixels.

The future research will address the following areas:

• selecting an appropriate adaptive anisotropic metric structure (possibly non-smooth);

• considering a weight function in order to accelerate the convergence speed of the evolu-
tion process;

• exploring the possibilities for application in image processing: feature detection, image
enhancement, segmentation, image registration, etc.;

• considering criteria for the selection of the shift value among the eight values;

• considering two levels of neighboring pixels to further increase the sensitiveness of image
enhancement;

• quantitative analysis of image matrices produced by the various evolutions.
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Conclusions

After a theoretical introduction, the procedure of constructing several concrete Finsler funda-
mental functions for the Garner dynamical system was presented. It was shown that produced
anisotropic norms correlate change rates of the dynamical system with significant increase of
its growth factor parameter. The produced Finsler norms were compared with the Euclidean
one, and mutually, by the corresponding elements of the Hilbert tensor spaces.

The next goal was to study surfaces embedded into a Riemannian space, endowed with
an anisotropic metric of General Lagrange type, and the minimization of the energy of the
embedding. It was shown that the variational problem provides the PDE of the surface
evolution, defined by the evolution flow function on the tangent space (having as arguments
both position and direction). The evolution flow PDE was explicitly determined for a Finsler
surface of a general Randers type and several particular cases, as well as for a Synge-Beil
surface and the particular normalized Miron case.

Eventually, theoretical results were adjusted and discretized for processing monochrome
images, and tentatively applied for the image enhancement. Implementation results were
analyzed, and further research directions were addressed.
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NR

Jezik publikacije: engleski
JP
Jezik izvoda: srpski/engleski
JI
Zemlja publikovanja: Srbija
ZP
Uže geografsko područje: Vojvodina
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KO



106 INDEX

UNIVERSITY OF NOVI SAD
FACULTY OF SCIENCES

KEY WORDS DOCUMENTATION

Accession number:
ANO
Identification number:
INO
Document type: Monograph type
DT
Type of record: Printed text
TR
Contents code: PhD thesis
CC
Author: Jelena Stojanov
AU
Mentors: Vladimir Balan, PhD; Sanja Konjik, PhD
MN

Title: Anisotropic frameworks for dynamical systems and image processing
TI

Language of text: English
LT
Language of abstract: Serbian/English
LA
Country of publication: Serbia
CP
Locality of publication: Vojvodina
LP
Publication year: 2015.
PY
Publisher: Author’s reprint
PU



INDEX 107

Publication place: Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 4
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