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Abstract
To ensure a high level of safety and reliability of electronic/electric systems EMC (electromagnetic
compatibility) tests together with computational techniques are used. In this thesis, mathematical
modeling and computational electromagnetics are applied to mainly two case studies. In the first case
study, electromagnetic modeling of electric networks and antenna structures above, and buried in, the
ground are studied. The ground has been modelled either as a perfectly conducting or as a dielectric
surface.  The second case study is focused on mathematical modeling and algorithms to solve the direct
and inverse electromagnetic scattering problem for providing a model-based illustration technique. This
electromagnetic scattering formulation is applied to describe a microwave imaging system called Breast
Phantom. The final goal is to simulate and detect cancerous tissues in the human female breast by this
microwave technique. 

The common issue in both case studies has been the long computational time required for solving large
systems of equations numerically. This problem has been dealt with using approximation methods,
numerical analysis, and also parallel processing of numerical data. For the first case study in this
thesis, Maxwell’s equations are solved for antenna structures and electronic networks by approximation
methods and parallelized algorithms implemented in a LAN (Local Area Network). In addition, PMM
(Point-Matching Method) has been used for the cases where the ground is assumed to act like a dielectric
surface. For the second case study, FDTD (Finite-Difference Time Domain) method is applied for solving
the electromagnetic scattering problem in two dimensions. The parallelized numerical FDTD-algorithm
is implemented in both Central Processing Units (CPUs) and Graphics Processing Units (GPUs).
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Introduction

1 Introduction

Almost any problem involving derivatives, integrals, or non-linearities can-
not be solved in a finite number of steps and thus must be solved by a theo-
retically infinite number of iterations for converging to an ultimate solution;
this is not possible for practical purposes where problems will be solved
by a finite number of iterations until the answer is approximately correct.
Indeed, the major aspect is, by this approach, finding rapidly convergent
iterative algorithms in which the error and accuracy of the solution will also
be computed. In computational electromagnetics, a difficult problem like a
partial differential equation or an integral equation will be replaced by, for
instance, a much simpler system of linear equations. Replacing complicated
functions with simple ones, non-linear problems with linear problems, high-
order systems by low-order systems and infinite-dimensional spaces with
finite-dimensional spaces are applied as other alternatives to solve easier
problems that have approximately the same solution to a difficult mathe-
matical model. Numerical modeling of electromagnetic (EM) properties are
used in, for example, the electronic industry to:

1. Ensure functionality of electric systems. System performance can be
degraded due to unwanted EM interference coupling into sensitive
parts.

2. Ensure compliance with electromagnetic compatibility (EMC) regula-
tions and directives. To prevent re-designs of products and ensure
compliance with directives post-production.

3. Calculate EM properties of tissues inside the human body. To detect,
for example, cancerous tissues.

Methods for determining electromagnetic field quantities, can be classified
as experimental, analytical (exact), or numerical (approximate). The ex-
perimental techniques are expensive and time-consuming but are still used.
The analytic solution of Maxwell’s equations involves, among others, separa-
tion of variables and series expansion, but are not applicable in the general
case. The numerical solution of the field problems became possible with
the availability of high performance computers. The most popular numeri-
cal techniques are (1) Finite difference methods (FDM), (2) Finite element
methods (FEM), (3) Moment methods (MoM), (4) Partial element equiva-
lent circuit (PEEC) method. The differences in the numerical techniques
have their origin in the basic mathematical approach and therefore make

9



Contents

Papers A– E

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Concepts in Electromagnetism . . . . . . . . . . . . . 14

3 Solution of Electromagnetic Fields and Antenna Analysis . . 34

4 Direct Electromagnetic Scattering Problem . . . . . . . . . . 52

5 Inverse Electromagnetic Scattering Problem . . . . . . . . . . 58

6 Medical Diagnostics and Microwave Tomographic Imaging by
Applying Electromagnetic Scattering . . . . . . . . . . . . . . 72

7 Numerical Results and Conclusions . . . . . . . . . . . . . . . 80

8 Summaries of the Papers . . . . . . . . . . . . . . . . . . . . . 98

References 101

8

Introduction

1 Introduction

Almost any problem involving derivatives, integrals, or non-linearities can-
not be solved in a finite number of steps and thus must be solved by a theo-
retically infinite number of iterations for converging to an ultimate solution;
this is not possible for practical purposes where problems will be solved
by a finite number of iterations until the answer is approximately correct.
Indeed, the major aspect is, by this approach, finding rapidly convergent
iterative algorithms in which the error and accuracy of the solution will also
be computed. In computational electromagnetics, a difficult problem like a
partial differential equation or an integral equation will be replaced by, for
instance, a much simpler system of linear equations. Replacing complicated
functions with simple ones, non-linear problems with linear problems, high-
order systems by low-order systems and infinite-dimensional spaces with
finite-dimensional spaces are applied as other alternatives to solve easier
problems that have approximately the same solution to a difficult mathe-
matical model. Numerical modeling of electromagnetic (EM) properties are
used in, for example, the electronic industry to:

1. Ensure functionality of electric systems. System performance can be
degraded due to unwanted EM interference coupling into sensitive
parts.

2. Ensure compliance with electromagnetic compatibility (EMC) regula-
tions and directives. To prevent re-designs of products and ensure
compliance with directives post-production.

3. Calculate EM properties of tissues inside the human body. To detect,
for example, cancerous tissues.

Methods for determining electromagnetic field quantities, can be classified
as experimental, analytical (exact), or numerical (approximate). The ex-
perimental techniques are expensive and time-consuming but are still used.
The analytic solution of Maxwell’s equations involves, among others, separa-
tion of variables and series expansion, but are not applicable in the general
case. The numerical solution of the field problems became possible with
the availability of high performance computers. The most popular numeri-
cal techniques are (1) Finite difference methods (FDM), (2) Finite element
methods (FEM), (3) Moment methods (MoM), (4) Partial element equiva-
lent circuit (PEEC) method. The differences in the numerical techniques
have their origin in the basic mathematical approach and therefore make

9



Mathematical Tools Applied in Computational Electromagnetics
for a Biomedical Application and Antenna Analysis

one technique more suitable for a specific class of problems compared to the
others. Typical classes of problems in the area of EM modeling are:

• Printed circuit board (PCB) simulations (mixed circuit and EM prob-
lem).

• Electromagnetic field strength and pattern characterization.

• Antenna design.

• Microwave image reconstruction.

Further, the problems presented above require different kinds of analysis in
terms of:

• Requested solution domain (time and/or frequency).

• Requested solution variables (currents and/or voltages or electric and/or
magnetic fields).

The categorization of EM problems into classes and requested solutions in
combination with the complexity of Maxwell’s equations emphasizes the
importance of using the right numerical technique for the right problem to
enable a solution in terms of accuracy and computational effort.

In many disciplines such as image and signal processing, astrophysics,
acoustics, quantum mechanics, geophysics and electromagnetic scattering,
inverse formulations are solved on a daily basis. The inverse formulation, as
an interdisciplinary field, involves people from different fields within natural
science. To find out the contents of a given black box without opening it
by studying the input and output, would be a good analogy to describe the
general inverse problem. Experiments will be carried on to guess and realize
the inner properties of the box. It is common to call the contents of the box
”the model” and the result of the experiment ”the data”. The experiment
itself is called ”the forward modeling”. As sufficient information cannot be
provided by an experiment, a process of regularization will be needed. The
reason to this issue is that there can be more than one model (’different
black boxes’) that would produce the same data. On the other hand, ill-
posed numerical computations will occur in the calculation procedure. Thus,
a process of regularization constitutes a major step to solve the inverse
problem. Regularization is used at the moment when selection of the most
reasonable model is on focus. Computational methods and techniques ought
to be as flexible as possible from case to case. A computational technique
utilized for small problems may fail totally when it is used to large numerical

10
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domains within the inverse formulation. It is worth noting that ’small’
and ’large’ are relative concepts and they are changing rapidly with the
progress of computer technology. A coefficient matrix of size of hundreds of
millions can be considered large if one is using a high-performance computer
while, similarly, a coefficient matrix of size of a few thousands can also be
considered large if one is working on a workstation. Hence, methodologies
and algorithms have to be created for new problems though existing methods
are insufficient and computer technology is progressing rapidly. This is the
major character of the existing inverse formulation in problems with large
numerical domains. There are both old and new computational tools and
techniques for solving linear and nonlinear inverse problems. When existing
numerical algorithms fail, new algorithms must be developed to carry out
nonlinear inverse problems.

Electromagnetic inverse and direct scattering problems are, like other
related areas, of equal interest. The electromagnetic scattering theory is
about the effect an inhomogeneous medium has on an incident wave where
the total electromagnetic field is consisted of the incident and the scattered
field. The direct problem in such context is to determine the scattered field
from the knowledge of the incident field and also from the governing wave
equation deduced from the Maxwell’s equations. Even though the direct
scattering problem has been thoroughly investigated, the inverse scattering
problem has not yet a rigorous mathematical/numerical basis. Because the
nonlinearity nature of the inverse scattering problem, one will face ill-posed
numerical computation. This means that, in particular applications, small
perturbations in the measured data cause large errors in the reconstruction
of the scatterer. Some regularization methods must be used to remedy the
ill-conditioning due to the resulting matrix equations. Concerning the ex-
istence of a solution to the inverse electromagnetic scattering one has to
think about finding approximate solutions after making the inverse problem
stabilized. A number of methods is given to solve the inverse electromag-
netic scattering problem in which the nonlinear and ill-posed nature of the
problem are acknowledged. Earlier attempts to stabilize the inverse problem
was via reducing the problem into a linear integral equation of the first kind.
However, general techniques were introduced to treat the inverse problems
without applying any integral equation formulation of the problem.

1.1 Background and Motivation

The vast and increasing applications of antennas within the electronic indus-
try and biomedical applications desires constant mathematical analysis for

11
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new antenna structures. A good design of antenna, based on a mathemat-
ical modeling, improves performance of an electronic device or system. In
addition, to optimize the radiation energy in an advanced wireless system,
the antenna serves as both a directional device and probing device. Anten-
nas have a central role in the microwave technique in which the direct, and
inverse electromagnetic scattering problem are solved in a system consisting
of several antennas and wave-guides.
In order to guarantee operability of advanced electronic devices and systems,
electromagnetic measurements should be compared to results from compu-
tational methods. The experimental techniques are expensive and time con-
suming but are still widely used. Hence, the advantage of obtaining data
from tests can be weighted against the large amount of time and expense
required to operate such tests. However, in some EM modeling applications
like the scattering problem, information from both the numerical solution
and experimental data is required and used in, for instance, a least-squares
method. Analytic solution of Maxwell’s equations offers many advantages
over experimental methods but applicability of analytical electromagnetic
modeling is often limited to simple geometries and boundary conditions.
Analytical solutions of Maxwell’s equations by the method of separation of
variables and series expansions have a limited scope and they are not ap-
plicable in a general case and rarely in a real-world application. Availability
of high performance computers during the last decades has been one of the
reasons to use numerical techniques within computational modeling to solve
Maxwell’s equations also for complicated geometries and boundaries.

Scattering theory has had a major roll in twentieth century mathematical
physics. In computational electromagnetics, the direct scattering problem
is to determine a scattered field from knowledge of an incident field and
the differential equation governing the wave equation. The incident field is
emitted from a source, an antenna for instance, against an inhomogeneous
medium. The total field is assumed to be the sum of the incident field and
the scattered field. The governing differential equation in such cases is the
coupled differential form of Maxwell’s equations, which will be converted to
the wave equation.

In some applications, a model based illustration technique within the mi-
crowave range is used to determine EM properties of biological tissues. Ap-
propriate algorithms are used to make it possible for parallel processing of
the heavy and large numerical calculation due to the inverse formulation of
the problem. The parallelism of the calculations can then be implemented
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and performed on GPU:s, CPU:s, and FPGA:s. By the aid of a deeper math-
ematical analysis and thereby faster numerical algorithms, an improvement
of the existing numerical algorithms is expected. The algorithms may be in
the the time domain, frequency domain and a combination of both domains.

The main objective of this thesis is to apply mathematical modeling
and algorithms for different antenna structures used in EMC applications
and biological diagnostic technique. For EMC applications, radiation due
to different antenna structures, above and in the proximity of the ground, is
investigated. The ground has been assumed as both a perfect conductor and
as a lossy medium. In comparison to situations where the ground is acting
like a perfect conductor, more complicated mathematical models are desired
to analyze antenna structures close to the ground as a lossy medium. In this
thesis, this kind of problems are solved by both approximative and numeri-
cal methods. For biomedical applications, the EM scattering formulation in
two dimensions is solved and analyzed by finite difference approximations.
The Finite Difference Time Domain (FDTD) method is used in this thesis
to solve the two-dimensional electromagnetic scattering problem, first by a
single processor. The electromagnetic scattering problem is, in fact, resem-
bling a so-called Breast Phantom. The Breast Phantom is used to simulate
human female breast by the microwave technology, detecting cancerous tis-
sues in the breast. To speedup computational time, the FDTD algorithm
is then parallelized by CPUs, GPUs, and FPGAs. The long computational
time is a crucial issue when solving such kind of electromagnetic scattering
problems. The new parallelized algorithms are developed and implemented
in MATLAB and Octave to be re-programmed and executed in C, as a more
optimized environment; this re-programming is done to suit the algorithms
to GPU:s, CPU:s, and FPGA:s. The GPU parallelized algorithm is imple-
mented in OpenCL and CUDA.
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2 Related Concepts in Electromagnetism

1 In constructing the electrostatic model, the electric field intensity vector
E and the electric flux density vector, D, are respectively defined. The
fundamental governing differential equations are [10]

∇×E = 0, (1)

∇ ·D = ρv,

where ρv is the free charge density. By introducing ε = εrε0 as the the
electric permittivity where εr is relative permittivity, and ε0 = 8.854× 10−12

F/m, the permittivity of the free space for a linear and isotropic media, E
and D are related by relation

D = εE. (2)

The fundamental governing equations for magnetostatic model are

∇ ·B = 0, (3)

∇×H = J,

where B and H are defined as the magnetic flux density vector and the
magnetic field intensity vector, respectively. In the above, J is conducting
current. B and H are related as

H =
1

µ0µr
B, (4)

where µ0µr = µ is defined as the magnetic permeability of the medium
which is measured in H/m.; µ0 = 4π × 10−7 H/m is called permeability of
space and µr is the relative magnetic permeability. The medium in ques-
tion is assumed to be linear and isotropic. Eqns. (1) and (3) are known
as Maxwell’s equations in local form and constitute the foundation of elec-
tromagnetic theory. As it is seen in the above relations, E and D in the
electrostatic model are not related to B and H in the magnetostatic model.
The coexistence of static electric fields and magnetic electric fields in a con-
ducting medium causes an electromagnetostatic field and a time-varying
magnetic field gives rise to an electric field. These are verified by numer-
ous experiments. Static models are not suitable for explaining time-varying
electromagnetic phenomenon. Under time-varying conditions it is necessary

1The following two chapters are based, to a large extent, on the work presented in [65].
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to construct an electromagnetic model in which the electric field vectors E
and D are related to the magnetic field vectors B and H. In such situations,
the equivalent equations are constructed as

∇×E = −∂B

∂t
, (5)

∇×H = J+
∂D

∂t
, (6)

∇ ·D = ρv, (7)

∇ ·B = 0, (8)

where J is conducting current. As it is seen, the Maxwell’s equations above
are in differential form. To explain electromagnetic phenomena in a physical
environment, it is more convenient to convert the differential forms into their
integral-form equivalents. To do this, the Stokes’s and divergence theorems
can be applied. The Stokes’s theorem for an arbitrary vector A can be
written as ∮

C
A · dl =

∫

S
(∇×A) · ds, (9)

which states that the circulation of a vector field A around a (closed) path
C is equal to the surface integral of the curl of A over the open surface S
bounded by C, provided A and ∇ ×A are continuous on S. In Eqn. (9),
quantities dl and ds are the infinitesimal length and surface, respectively.
The divergence theorem, otherwise known as Gauss-Ostrogradsky, is stated
as [88] ∮

S
A · ds =

∫

V
(∇ ·A)dv, (10)

which means that the volume integral of the divergence of a vector field
equals the total outward flux of the vector through the surface that bounds
the volume. In Eqn. (10), the volume V is enclosed by the closed sur-
face S and dv and ds are the infinitesimal volume and infinitesimal surface,
respectively.

Now, based on the Stokes’s theorem, the integral form of Maxwell’s
equations can be derived from the two Maxwell’s curl equations, stated in
general form as [11, 25]

∇×E = −Mi −
∂B

∂t
, (11)

∇×H = Ji + Jc +
∂D

∂t
, (12)
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where Mi is the source magnetic current density (V/m2), Ji is the source
electric current density (A/m2), and Jc is the conduction electric current
density (A/m2). Taking the surface integral of both LHS and RHS of Eqn.
(11) yields [11]

∫∫

S
(∇×E) · ds = −

∫∫

S
Mi · ds−

∂

∂t

∫∫

S
B · ds, (13)

which will be reduced to
∮

C
E · dl = −

∫∫

S
Mi · ds−

∂

∂t

∫∫

S
B · ds, (14)

by applying the Stokes’s theorem given in Eqn. (9). Eqn. (14) is referred
to as Maxwell’s equation in integral form as derived from Faraday’s law
which is stated as: The electromotive force appearing at the open-circuited
terminals of a loop is equal to the time rate of decrease of magnetic flux
linking the loop.

The corresponding integral form of Eqn. (12) can be written as
∮

C
H · dl = −

∫∫

S
Jic · ds+

∂

∂t

∫∫

S
D · ds, (15)

in which
Jic = Ji + Jc (16)

Eqn. (15) is Maxwell’s equation in integral form as derived from Ampere’s
law.

The procedure to obtain the integral form of the other two Maxwell
equations, stated as

∇ ·D = qev, (17)

∇ ·B = qmv, (18)

in which qev is electric charge density (C/m3), and qmv is the magnetic
charge density (web/m3). The procedure to obtain the next integral form of
Maxwell’s equations is started by taking the volume integral of both sides
of Eqn. (17), that is [11]

∫∫∫

V
(∇ ·D)dv =

∫∫∫

V
qevdv (19)

By applying the divergence theorem, that is Eqn. (10), on the LHS of Eqn.
(19), one can obtain [11]

∮

S
D · ds =

∫∫∫

V
qevdv, (20)
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which is Maxwell’s electric field equation in integral form as derived from
Gauss’s law, stated as: The total electric flux through a closed surface is
equal to the total charge enclosed.

The divergence theorem, given by Eqn. (10) is applied on the LHS of
Eqn. (19) to obtain ∮

S
B · ds = ρm, (21)

in which ρm is the total magnetic charge. Eqn. (21) is Maxwell’s magnetic
field equation in integral form as derived from Gauss’s law. In fact, there
is no magnetic charge in nature but the concept is used as an equivalent to
represent physical problems.

Maxwell’s equations in a more appropriate form to be applied in this
work, are constructed as in the following table.

Maxwell’s equations

Differential form Integral form

∇×H = J+
∂D

∂t

∮

C
H · dL = I +

∫

S

∂D

∂t
· dS (22)

∇×E = −∂B

∂t

∮

C
E · dL = −

∫

S

∂B

∂t
· dS (23)

∇ ·D = ρv

∮

S
D · dS =

∫

V
ρvdv (24)

∇ ·B = 0

∮

S
B · dS = 0 (25)

2.1 Green’s Functions

When a physical system is subject to some external disturbance, a non-
homogeneity arises in the mathematical formulation of the problem, either
in the differential equation, or in the auxiliary conditions, or both. When
the differential equation is nonhomogeneous, a particular solution of the
equation can be found by applying either the method of undetermined co-
efficients or the variation of parameter technique. Green’s functions2 are
specific functions that develop general solution formulas for solving non-
homogeneous differential equations. Importantly, this type of formulation

2George Green, 1793-1841, was one of the most remarkable of nineteenth century physi-
cists, a self-taught mathematician whose work has greatly contributed to modern physics.
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gives an increased physical knowledge since every Green’s function has a
physical significance. This function measures the response of a system due
to a point source somewhere on the fundamental domain, and all other so-
lutions due to different source terms are found to be superpositions 3 of
the Green’s function. Although Green’s first interest was in electrostatics,
Green’s mathematics is nearly all devised to solve general physical prob-
lems. The inverse-square law had recently been established experimentally,
and George Green wanted to calculate how this determined the distribution
of charge on the surfaces of conductors. He made great use of the electri-
cal potential and gave it that name. Actually, one of the theorems that he
proved in this context became famous and is nowadays known as Green’s the-
orem. It relates the properties of mathematical functions at the surfaces of
a closed volume to other properties inside. The powerful method of Green’s
functions involves what are now called Green’s functions, G(x, x′). Applying
Green’s function method, solution of the differential equation Ly = F (x),
by L as a linear differential operator, can be written as

y(x) =

x∫

0

G(x, x′)F (x′)dx′. (26)

To see this, consider the equation

dy

dx
+ ky = F (x),

which can be solved by the standard integrating factor technique to give

y = e−kx

x∫

0

ekx
′
F (x′)dx′ =

x∫

0

e−k(x−x′)F (x′)dx′,

so that G(x, x′) = e−k(x−x′). This technique may be applied to other more
complicated systems. In general, Green’s function is the response of a system
to a stimulus applied at a particular point in space or time. This concept
has readily been adapted to quantum physics where the applied stimulus
is the injection of a quantum of energy. Within electromagnetic computa-
tion, it is common practice to use two methods for determining the Green’s

3Consider a set of functions φn for n = 1, 2, ..., N . If each number of the functions φn

is a solution to the partial differential equation Lφ = 0, where L is a linear differential
operator with some prescribed boundary conditions, then the linear combination φN =

φ0 +
N∑

n=1

anφn also satisfies Lφ = g. Here, g is a known excitation or source.
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function in the cases where there is some kind of symmetry in the geometry
of the electromagnetic problem. These are the eigenvalue formulation and
the Method of Images. These two methods are described in the following
sections, but in order to its importance, the method of the eigenfunction
expansion method is, first presented.

Green’s Functions and Eigenfunctions

If the eigenvalue problem associated with the operator L can be solved, then
one can derive the associated Green’s function explicitly. It is known that
the eigenvalue problem

Lu = λu, a < x < b, (27)

with prescribed boundary conditions, has infinitely many eigenvalues and
corresponding orthonormal eigenfunctions as λn and φn, respectively, where
n = 1, 2, 3, .... Moreover, the eigenfunctions form a basis for the square
integrable functions on the interval (a, b). Therefore it is assumed that the
solution u is given in terms of eigenfunctions as

u(x) =
∞∑

n=1

cnφn(x), (28)

where the coefficients cn are to be determined. Further, the given function
f forms the source term in the nonhomogeneous differential equation

Lu = f, u = L−1f

where L−1 is the inverse operator to the operator L. Now, the given function
f can be written in terms of the eigenfunctions as

f(x) =
∞∑

n=1

fnφn(x), (29)

with

fn =

b∫

a

f(ξ)φn(ξ)dξ. (30)

Combining (28), (29), and (30) gives

L

( ∞∑

n=1

cnφn(x)

)
=

∞∑

n=1

fnφn(x). (31)
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gives an increased physical knowledge since every Green’s function has a
physical significance. This function measures the response of a system due
to a point source somewhere on the fundamental domain, and all other so-
lutions due to different source terms are found to be superpositions 3 of
the Green’s function. Although Green’s first interest was in electrostatics,
Green’s mathematics is nearly all devised to solve general physical prob-
lems. The inverse-square law had recently been established experimentally,
and George Green wanted to calculate how this determined the distribution
of charge on the surfaces of conductors. He made great use of the electri-
cal potential and gave it that name. Actually, one of the theorems that he
proved in this context became famous and is nowadays known as Green’s the-
orem. It relates the properties of mathematical functions at the surfaces of
a closed volume to other properties inside. The powerful method of Green’s
functions involves what are now called Green’s functions, G(x, x′). Applying
Green’s function method, solution of the differential equation Ly = F (x),
by L as a linear differential operator, can be written as

y(x) =

x∫

0

G(x, x′)F (x′)dx′. (26)

To see this, consider the equation

dy

dx
+ ky = F (x),

which can be solved by the standard integrating factor technique to give

y = e−kx

x∫

0

ekx
′
F (x′)dx′ =

x∫

0

e−k(x−x′)F (x′)dx′,

so that G(x, x′) = e−k(x−x′). This technique may be applied to other more
complicated systems. In general, Green’s function is the response of a system
to a stimulus applied at a particular point in space or time. This concept
has readily been adapted to quantum physics where the applied stimulus
is the injection of a quantum of energy. Within electromagnetic computa-
tion, it is common practice to use two methods for determining the Green’s

3Consider a set of functions φn for n = 1, 2, ..., N . If each number of the functions φn

is a solution to the partial differential equation Lφ = 0, where L is a linear differential
operator with some prescribed boundary conditions, then the linear combination φN =

φ0 +
N∑

n=1

anφn also satisfies Lφ = g. Here, g is a known excitation or source.
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function in the cases where there is some kind of symmetry in the geometry
of the electromagnetic problem. These are the eigenvalue formulation and
the Method of Images. These two methods are described in the following
sections, but in order to its importance, the method of the eigenfunction
expansion method is, first presented.

Green’s Functions and Eigenfunctions
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solution u is given in terms of eigenfunctions as

u(x) =
∞∑

n=1

cnφn(x), (28)

where the coefficients cn are to be determined. Further, the given function
f forms the source term in the nonhomogeneous differential equation
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where L−1 is the inverse operator to the operator L. Now, the given function
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fnφn(x), (29)
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b∫

a

f(ξ)φn(ξ)dξ. (30)
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L

( ∞∑

n=1

cnφn(x)

)
=

∞∑

n=1

fnφn(x). (31)
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When the linear property associated with superposition principle holds, it
can be shown that [62]

L

( ∞∑

n=1

cnφn(x)

)
=

∞∑

n=1

cnL(φn(x)). (32)

But
∞∑

n=1

cnL(φn(x)) =

∞∑

n=1

cnλnφn(x) =

∞∑

n=1

fnφn(x), (33)

which finally yields

L

( ∞∑

n=1

cnφn(x)

)
=

∞∑

n=1

fnφn(x). (34)

By comparing the above equations, it will be obtained that

cn =
1

λn
and fn =

1

λn

b∫

a

f(ξ)φn(ξ)dξ for n = 1, 2, 3, .... (35)

Further

u(x) =

∞∑

n=1

cnφn(x) (36)

=
∞∑

n=1

1

λn




b∫

a

f(ξ)φn(ξ)dξ


φn(x).

Now, it is supposed that an interchange of summation and integral is allowed.
In this case, (36) can be written as

u(x) =

b∫

a

( ∞∑

n=1

φn(x)φn(ξ)

λn

)
f(ξ)dξ. (37)

On the other hand, by the definition of Green’s function, one may write

u(x) = L−1f =

b∫

a

g(x, ξ)f(ξ)dξ. (38)
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By comparing the last two equations, u(x) can be expressed in terms of
Green’s functions as [62]

g(x, ξ) =

∞∑

n=1

φn(x)φn(ξ)

λn
, (39)

where g(x, ξ) is the Green’s function associated with the eigenvalue problem
(27) with the differential operator L.

2.2 Method of Images

Solution of electromagnetic field problems is greatly supported and facil-
itated by mathematical theorems in vector analysis. Maxwell’s equations
are based on the Helmholtz’s theorem where it is verified that a vector is
uniquely specified by giving its divergence and curl, within a simply con-
nected region and its normal component over the boundary. This can be
proved as a mathematical theorem in a general manner [6]. Solving par-
tial differential equations (PDE) like Maxwell’s equations, desires different
methods, depending on, for instance, which boundary condition the PDE
has and in which physical field it is studied. The Green’s function modeling
is an applicable method for solving Maxwell’s equations for some frequently
used cases with different boundary conditions. The issue in this type of
formulation is, in the first hand, determining and solving the appropriate
Green’s function by its boundary condition. Once the Green’s function is de-
termined, one may receive a clue to the physical interpretation of the whole
problem and hence a better understanding of it. This forms the general man-
ner of applying Green’s function formulation in different fields of science. In
some cases within electromagnetic modeling, where the physical source is in
the vicinity of a perfect electric conducting (PEC) surface and where there
is some kind of symmetry in the geometry of the problem, the Method of
Images will be a logical and facilitating method to determine the appropriate
Green’s function. The Method of Images can be used for the problems which
include not only PEC surfaces but surfaces of materials with, for instance,
dielectric characteristics or with finite specific conductance. The Method
of Images is, in its turn, based on the uniqueness theorem verifying that
a solution of an electrostatic problem satisfying the boundary condition is
the only possible solution [24]. Electric and magnetic field of an infinitesi-
mal dipole in the vicinity of an infinite PEC surface is one of the subjects
that can be studied and facilitated by applying the Method of Images. In
the following section, the Method of Images is applied to electromagnetic
modeling of electrical sources above PEC surface.
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2.3 Electric Field of Sources above PEC Surface

It is assumed that an electric point charge q is located at a vertical distance
y = r above a large conducting plane that is grounded, see Fig. 1(a) . It

Figure 1: Point charge over a grounded PEC surface.

will be difficult to apply the ordinary field solution in this case but by the
image methods, where an equivalent system is presented, it will be consid-
erably easier to solve the original problem. An equivalent problem considers
placement of an image point charge −q on the opposite side of the PEC
plane, i.e. y = −r, see Fig. 1(b). In the equivalent problem, the boundary
condition is not changed, that is, the boundary plane is still as y = 0, and
a solution to the equivalent problem will be the only correct solution. The
potential at the arbitrary point P (x, y, z) is [25]

Φ(x, y, z) =
q

4πε0

(
1√

x2 + (y − r)2 + z2
− 1√

x2 + (y + r)2 + z2

)
, (40)

which is a contribution from both charges q and −q as

Φ+(x, y, z) =
q

4πε0

(
1√

x2 + (y − r)2 + z2

)
(41)

and

Φ−(x, y, z) =
−q

4πε0

(
1√

x2 + (y + r)2 + z2

)
, (42)

respectively. According to the image method, Eqn. (40) gives the potential
due to an electric point source above the PEC plane in the region y > 0.
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The field located at y < 0 will be zero; it is indeed the region where the
image charge −q is located, see Fig. 1(b).

Now it is assumed that a long line charge of constant charge λ per unit
length is located at distance d from the surface of the grounded conductor,
occupying half of the entire space, see Fig. 2. It is also assumed that

Figure 2: Uniform infinite line charge λ parallel to a semiinfinite grounded conducting
plane and perpendicular to the page.

the line charge is parallel to both the grounded plane and to the z-axis in
the rectangular coordinate system. Further, the surface of the conducting
grounded plane is coincided with yz-plane and x-axis passes through the
line charge so that the boundary condition for this system is Φ(0, y, z) = 0
where Φ is defined as the electric potential. This is illustrated in Fig. 2.
To find the potential everywhere for this system applying the Method of
Images, one may start by converting this system to an equivalent system
where the boundary condition of the original problem will be preserved.
This will consider a system where the conducting grounded plane vanishes,
i.e. a system where the line charge is in the free-space. Adopting the polar
coordinate system, the potential at an arbitrary point P , is

Φ(ρ, φ) =
λ

2πε0
ln

[
(4L2L1)

1/2

ρ

]
. (43)

An equivalent problem may consist of a system of two long parallel lines
with opposite charges in the free-space at distance 2d from each other; the
charge densities of the two lines are assumed to be λ and −λ, respectively.
According to the Method of Images, the total potential Φ will be determined
by contribution from these two line charges, which respectively are

23
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Figure 3: Geometry of two opposite long line charges, λ and −λ by a distance of
2d from each other and observed as parallel to the paper plane (left) and
perpendicular to the paper plane (right).

Φ+ =
λ

2πε0
ln

[
(4L2L1)

1/2

ρ+

]
(44)

and

Φ− = − λ

2πε0
ln

[
(4L2L1)

1/2

ρ−

]
. (45)

The total potential is obtained as a sum of previous two expressions: as

Φ = Φ+ +Φ−

=
λ

2πε0
ln

(
ρ−
ρ+

)

=
λ

2πε0
ln

(
d2 + ρ2 + 2dρ cosφ

d2 + ρ2 − 2dρ cosφ

)
. (46)

According to the uniqueness theorem and the Method of Images, Eqn. (46)
gives the solution for a long line charge at distance d above the PEC plane.
The potential at the left side of the PEC surface will be zero. Electric
equipotential lines, due to the line charge λ parallel to the PEC surface are
illustrated in Fig. 4.

2.4 Incremental Current Sources

The overall radiation properties of a radiating system can significantly alter
in the vicinity of an obstacle. The ground as a lossy medium, i.e. σ �= 0, is
expected to act as a very good conductor above a certain frequency. Hence,

Related Concepts in Electromagnetism

Figure 4: Electric equipotential lines due to the infinitely long line charge λ, parallel
to a PEC surface and z-axis.

applying the Method of Images the ground should be assumed as a perfect
electric conductor, flat, and infinite for facilitating the analysis. It will also
be assumed that any energy from the radiating element towards the ground
undergoes reflection, and the total amount of energy is a summation of the
reflected and directed (incident) components where the reflected component
can be accounted for by the introduction of the image sources. In all of the
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following cases, the far-field observation is considered. To find the electric
field, radiated by a current element along the infinitesimal length l′, it will
be convenient to use the magnetic vector potential A as [10]

A(x, y, z) =
µ

4π

∫

C
I(x′, y′, z′)

e−jkR

R
dl′ (47)

where (x, y, z) and (x′, y′, z′) represent the observation point coordinates
and the coordinates of the constant electric current source I, respectively.
R is the distance from any point on the source to the observation point; the
integral path C is the length of the source, and k2 = ω2µε where µ and ε
are permeability and permittivity of the medium. By the assumption that
an infinitesimal dipole is placed along the z-axis of a rectangular coordinate
system, see Fig. 5, plus that it is placed in the origin, one may write I = ẑI0
for constant electric current I0, and x′ = y′ = z′ = 0. Hence, the distance
R will be

R =
√
(x− x′)2 + (y − y′)2 + (z − z′)2 =

√
x2 + y2 + z2. (48)

Knowing that dl′ = dz′, and by setting r =
√

x2 + y2 + z2, Eqn. (47) may
be written as

A(x, y, z) = ẑ
µI0
4πr

e−jkr

∫ l/2

−l/2
dz′ = ẑ

µI0l

4πr
e−jkr. (49)

The most appropriate coordinate system for studying such cases is the
spherical coordinate system, so the vector potential in Eqn. (49) should be
converted into the spherical components as

Ar = Az cos θ =
µI0l

4πr
e−jkr cos θ, (50)

Aθ = −Az sin θ = −µI0l

4πr
e−jkr sin θ, (51)

Aφ = 0. (52)

In the last three equations, Ax = Ay = 0 by the assumption that the
infinitesimal dipole is placed along the z-axis. For determining the electric
field radiation of the dipole, one should operate the magnetic vector potential
A by a curl operation to obtain the magnetic field intensity HA as

HA =
1

µ
∇×A. (53)
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Figure 5: Geometry of a dipole in the origin with incremental electric current.

In spherical coordinate system, Eqn. (53) is expressed as

HA =
1

µ

(
r̂

1

r sin θ

[
∂

∂θ
(Aφ sin θ)−

∂Aθ

∂Aφ

]
+

θ̂

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]

+
φ̂

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

])
.

But according to Eqn. (52) and due to spherical symmetry of the problem,
where there are no φ-variations along the z-axis, the last equation simplifies
to [10]

HA =
1

µ

φ̂

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
, (54)

which together with Eqn. (50) and (51) gives

HA = φ̂
kI0l sin θ

4πr
j

(
1 +

1

jkr

)
e−jkr. (55)

Further, by equating Maxwell’s equations, it will be obtained that

∇×HA = J+ jωεEA. (56)

By setting J = 0 in Eqn. (56), it will be obtained that

EA =
1

jωε
∇×HA. (57)
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for constant electric current I0, and x′ = y′ = z′ = 0. Hence, the distance
R will be

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 =
√

x2 + y2 + z2. (48)

Knowing that dl′ = dz′, and by setting r =
√

x2 + y2 + z2, Eqn. (47) may
be written as

A(x, y, z) = ẑ
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Figure 5: Geometry of a dipole in the origin with incremental electric current.

In spherical coordinate system, Eqn. (53) is expressed as

HA =
1

µ

(
r̂

1

r sin θ

[
∂

∂θ
(Aφ sin θ)−

∂Aθ

∂Aφ

]
+

θ̂

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]

+
φ̂

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

])
.

But according to Eqn. (52) and due to spherical symmetry of the problem,
where there are no φ-variations along the z-axis, the last equation simplifies
to [10]

HA =
1

µ

φ̂

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
, (54)

which together with Eqn. (50) and (51) gives

HA = φ̂
kI0l sin θ

4πr
j

(
1 +

1

jkr

)
e−jkr. (55)

Further, by equating Maxwell’s equations, it will be obtained that

∇×HA = J+ jωεEA. (56)

By setting J = 0 in Eqn. (56), it will be obtained that

EA =
1

jωε
∇×HA. (57)
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Eqn. (57), together with Eqns. (50)-(52) yields

Er = η
I0l cos θ

2πr2

[
1 +

1

jkr

]
e−jkr, (58)

Eθ = jη
kI0l sin θ

4πr

[
1 +

1

jkr
− 1

kr2

]
e−jkr, (59)

Eφ = 0, (60)

where η = Eθ/Hφ is called the intrinsic impedance (= 377 ≈ 120π ohms
for the free-space). Stipulating for the far-field region, i.e. the region where
kr >> 1, the electric field components Eθ and Er in Eqns. (58)-(60) can be
approximated by

Eθ ≈ jη
kI0l sin θ

4πr
e−jkr, (61)

Er ≈ Eφ = 0, (62)

which is the electric far-field solution for an infinitesimal dipole along the
z-axis and in the spherical coordinate system. The same procedure may be
used to solve the electric field for an infinitesimal dipole along the x-axis
where the magnetic vector potential A is defined as

A = x̂
µI0le

−jkr

4πr
. (63)

In the spherical coordinate system, the above equation is expressed as

Ar = Ax sin θ cosφ, (64)

Aθ = Ax cos θ cosφ, (65)

Aφ = −Ax sinφ. (66)

It should be mentioned that Ay = Az = 0 due to the placement of the
infinitesimal dipole along the x-axis. By far-field approximation, and based
on Eqns. (64)-(66), the electric field can be written as

Er ≈ 0, (67)

Eθ ≈ −jωAθ = −jω
µI0le

−jkr

4πr
cos θ cosφ, (68)

Eφ ≈ −jωAφ = −jω
µI0le

−jkr

4πr
sinφ. (69)

The electric field, as a whole, will be contributions from both Aθ and Aφ

which is expressed as

EA ≈ −jω (Aθ +Aφ) = −jω
µI0le

−jkr

4πr
(cos θ cosφ− sinφ) . (70)

2.5 Infinitesimal Dipoles above Grounded PEC Surface

A vertical dipole of infinitesimal length l and constant current I0, is now
assumed to be placed along z-axis at distance h above the grounded PEC
surface by an infinite extent, see Fig. 6. The far-zone directed and reflected
components in a far-field point P are respectively given by [11]

ED
θ ≈ jη

kI0le
−jkr1

4πr1
sin θ1, (71)

and

ER
θ ≈ jη

kI0le
−jkr2

4πr2
sin θ2, (72)

where r1 and r2 are the distances between the observation point and the two
other points, the source and the image locations; the angles θ1 and θ2 are
related between these lines and the z-axis, as visualized in 6. It is intended to
express all the quantities only by the elevation plane angle θ and the radial
distance r between the observation point and the origin of the spherical
coordinate system. For this purpose, one may utilize the law of cosines and
also a pair of simplifications regarding the far-field approximation. The law
of cosines gives

r1 =
√

r2 + h2 − 2rh cos θ, (73)

r2 =
√

r2 + h2 − 2rh cos(π − θ). (74)

By binomial expansion and regarding phase variations, one may write

r1 = r − h cos θ, (75)
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Figure 6: Vertical electric dipole above a PEC surface.

r2 = r + h cos θ. (76)

By utilizing the far-zone approximation where r1 ≈ r2 ≈ r, and all of the
above simplifications, it is obtained that

Etotal
θ = ED

θ + ER
θ = jη

kI0le
−jkr

4πr
sin θ

(
e+jkh cos θ + e−jkh cos θ

)
. (77)

Finally, after some algebraic manipulations, one may find for z ≥ 0

Etotal
θ = jη

kI0le
−jkr

4πr
sin θ [2 cos(kh cos θ)] . (78)

According to the Method of Images, the field will be zero for z < 0.
The electric field due to a horizontal electric dipole, positioned above a

grounded PEC surface can by a similar process be determined. Considering
Fig. 7 and as it is depicted in [11], the total electric field in this context is

Etotal = jη
kI0le

−jkr

4πr

√
1− sin2 θ sin2 φ [2j sin(kh cos θ)] , (79)

which is valid for z ≥ h, 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π, that is, only above
the horizontal grounded PEC surface.
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Figure 7: Horizontal electric dipole above a grounded PEC surface.
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Figure 6: Vertical electric dipole above a PEC surface.
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Figure 7: Horizontal electric dipole above a grounded PEC surface.
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2.6 Mixed-Potential Integral Equation

Determining Green’s functions for stratified media has been, during the last
decades, an important and fundamental stage to design of high-frequency
circuits. In the case of a layered medium, a so-called mixed-potential integral
equation (MPIE), is applied to the associated geometry [67]. MPIE can be
solved in both spectral and spatial domain and both solutions require ap-
propriate Green’s functions. The Green’s functions for multi-layered planar
media are represented by the Sommerfeld’s integrals whose integrand con-
sists of the Hankel function, and the closed-form spectral-domain Green’s
functions [26]. A two-dimensional inverse Fourier transformation is needed
to determine the spectral-domain Green’s functions analytically via the fol-
lowing integral which is along the Sommerfeld’s integration path (SIP) and
the kρ-plane as

G =
1

4π

∫

SIP
dkρkρH

(2)
0 (kρρ)G̃(kρ), (80)

where H
(2)
0 is the Hankel function of the second kind; here, G and G̃ are

the Green’s functions in the spatial and spectral domain. One of the topics
in this context is that there is no general analytic solution to the Hankel
transform of the closed-form spectral-domain Green’s function. Numerical
solution of the above transformation integral is very time-consuming, partly
due to the slow-decaying Green’s function in the spectral domain, partly due
to the oscillatory nature of the Hankel function. Dealing with such problem
constitutes one of the major topics within the computational electromag-
netics for multi-layered media. In many applications, the Discrete complex
image method (DCIM) is used to handle this numerically time-consuming
process. The strategy in this process is to obtain Green’s functions in a
closed-form as

G ∼=
N∑

k=1

an
e−jkrm

rm
, (81)

where

rm =
√
ρ2 − b2m, (82)

with j =
√
−1, the imaginary unit, will be complex-valued. The constants

an and bm are to be determined by numerical processes such as the Prony’s
method [100, 43]. In dyadic form and by assuming an ejωt time dependence,
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the electric field at an observation point, defined by the vector r, produced
by a surface current J of a surface S′ can be expressed as

E(r) = −jω

∫

S′

[
I +

1

k2∇∇

]
µe−jkR

4πR
J(r, r′)dS′

=

∫

S′
G(r, r′)J(r, r)′dS′, (83)

where k = ω
√
µε by µ and ε as the electromagnetic characteristics for the

layered medium; R is the distance from the source point to the field point.

I is the unit dyad and G(r, r′) is defined as the dyadic Green’s function.
There are different methods to construct the auxiliary Green’s function in
the case of boundary value problems, which are as a consequence of using
mathematics to study problems arising in the real world. The numerical
solution of an integral equation has the general property that the coeffi-
cient matrix in the ultimate linear equation Ax = y will consist of a dense
coefficient matrix A and a relatively fewer number of elements in the un-
known vector x. Numerical solution of a general integral equation involves
challenges due to the ill-conditioned coefficient matrix A, as a rule and not
as an exception; the integration operator to solve a differential equation
is a smoothing operator and the differential operator to solve an integral
equation will be a non-smooth operator. This is the main reason of the
ill-conditioning. Generally, and depending on the kind of problem, there are
several numerical methods to handle the ill-conditioning and in the case of
solution of Maxwell’s equations in the integral form, ill-conditioning will be
a problem to handle.4

4More about integral equations and ill-conditioning in the next sections.
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3 Solution of Electromagnetic Fields and Antenna
Analysis

Generally, the exact mathematical solution of the field problem is the most
satisfactory solution, but in modern applications one cannot find such ana-
lytical solution in majority of cases. Analytical methods are limited to solve
electromagnetic field problems with simple geometries and as a result one
should apply numerical methods to solve problems with complicated geome-
tries. In fact, numerical methods cannot be applied without checking and
realizing the limitations in classical analytical methods. In addition, every
numerical method involves an analytical simplification to the point where
it is easy to apply a certain numerical method. The most commonly used
analytical solutions in computational electromagnetics are

• Laplace, and Fourier transforms,

• Perturbation methods,

• Separation of variables (eigenfunction expansion method),

• Conformal mapping,

• Series expansion.

In the next following subsections, several frequently used methods for solving
electromagnetic field problems are described.

3.1 Eigenfunction Expansion Method

The method of eigenfunction expansion can be applied to derive the Green’s
function for partial differential equations by known homogeneous solution.
The partial differential equation

Uxx =
1

κ
Ut +Q(x, t), 0 < x < L, t > 0, (84)

B.C. : U(0, t) = 0, U(L, t) = 0, t > 0,

I.C. : U(x, 0) = F (x), 0 < x < L,

with

Q(x, t) =
1

κ
Kt(x, t)− q(x, t), (85)

F (x) = f(x)−K(x, 0),

Solution of Electromagnetic Fields and Antenna Analysis

features a problem with homogeneous boundary conditions (B.C.) and non-
homogeneous initial conditions (I.C.). The Green’s function, in this case,
can be represented in terms of a series of orthonormal functions that satisfy
the prescribed boundary conditions. By using the Method of Separation of
Variables, it is assumed that the solution of the partial differential equation
may be written in the form [93]

U(x, t) =
∞∑

n=1

En(t)Ψn(x), (86)

where Ψn(x) are eigenfunctions belonging to the associated eigenvalue prob-
lem5

X ′′ + λX = 0 (87)

by prescribed boundary condition (B.C.) and initial conditions (I.C.). In
the above equation, En(t) are time-dependent coefficients to be determined.
It is also assumed that termwise differentiation is permitted. In this case

Ut(x, t) =

∞∑

n=1

E
′
n(t)Ψn(x), (88)

and

Uxx(x, t) =
∞∑

n=1

En(t)Ψ
′′
n(x),

which together with (87) gives

Uxx(x, t) = −
∞∑

n=1

λnEn(t)Ψn(x). (89)

This is a result of applying the superposition principle which can be deduced
as Ψ′′

n(x) = −λnΨn(x) from (87). Next, by rewriting the partial differential
equation above as

κUxx = Ut + κQ(x, t), (90)

and inserting the expressions (88) and (89) into the last equation, one can
obtain

κUxx =
∞∑

n=1

[E′
n(t) + κλnEn(t)]Ψn(x). (91)

5Clearly U(x, t), satisfies the prescribed homogeneous boundary conditions, since each
eigenfunction Ψn(x) does.
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The right-hand side of the equation above is interpreted as generalized
Fourier seriesof the function κUxx for a fixed value of t. Thus, the Fourier
coefficients are defined as

E
′
n(t) + κλnEn(t) = κ

1

‖Ψn‖2
L∫

0

Q(x, t)Ψn(x)dx, (92)

for n = 1, 2, ...

where ‖Ψn‖ is defined as the L2-norm of Ψn(x) with the relation

‖Ψn‖2 =
L∫

0

[Ψn(x)]
2dx, for n = 1, 2, ..., (93)

Eqn. (91) as a first-order linear differential equation, has the general solution

En(t) =


cn +

1

κ

t∫

0

exp(
1

κ
λn)Pn(τ)dτ


 exp(−1

κ
λnt), (94)

for n = 1, 2, 3, .... It has to be added that cn are constants. In the equation
above, Pn(t) is defined as

Pn(t) =
1

‖Ψn‖2
L∫

0

Q(x, t)Ψn(x)dx, for n = 1, 2, 3, ... (95)

Now, by substituting (94) into (86), it will be obtained that

U(x, t) =
∞∑

n=1


cn +

1

κ

t∫

0

exp(
1

κ
λn)Pn(τ)dτ


 exp(−1

κ
λnt)Ψn(x). (96)

For determining the coefficients cn, n = 1, 2, 3, ..., one shall force Eqn. (95)
to satisfy the prescribed initial condition.
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3.2 Method of Moments (MoM)

Method of moments (MoM) is based on the integral formulation of the
Maxwell’s equations [37]. The basic feature makes it possible to exclude
the air around the objects in the discretization. The method is usually em-
ployed in the frequency domain but can also be applied to the time domain
problems. In the MoM, integral-based equations, describing the current dis-
tribution on a wire or a surface, are transformed into matrix equations easily
solved using matrix inversion. When using the MoM for surfaces, a wire-grid
approximation of the surface can be utilized as described in [5]. The wire
formulation of the problem simplifies the calculations and is often used for
field calculations. The starting point for theoretical derivation is to apply
a linear (integral) operator, L, involving the appropriate Green’s function
G(r, r′), applied to an unknown function, I, by an equation as [5, 37]

LI = f, (97)

where f is the known excitation function for the above system. As an
example the above equation can be the Pocklington’s integral equation [88],
describing the current distribution I(z′) on a cylindrical antenna, written as

∫ b

a
I(z′)(

∂2

∂z2
+ k2)G(z, z′)dz′ = jωεEz. (98)

Then the unknown function, I, can be expanded into a series of known
functions, ui, with unknown amplitudes, Ii, resulting in

I =

n∑

i=1

Iiui, (99)

where ui, are called basis (or expansion) functions. To solve the unknown
amplitudes, n, equations are derived from the combination of Eqn. (97) and
Eqn. (99) and by the multiplication of n weighting (or test) functions, inte-
grating over the wire length (the cylindrical antenna) and the formulation
of a proper inner product [88]. This results in the transformation of the
problem into a set of linear equations which can be written in matrix form
as

[Z][I] = [V ], (100)

where the matrices, Z, I, and V are referred to as generalized impedance,
current, and voltage matrices and the desired solution for the current, I, is
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The right-hand side of the equation above is interpreted as generalized
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E
′
n(t) + κλnEn(t) = κ

1

‖Ψn‖2
L∫

0

Q(x, t)Ψn(x)dx, (92)

for n = 1, 2, ...

where ‖Ψn‖ is defined as the L2-norm of Ψn(x) with the relation

‖Ψn‖2 =
L∫

0

[Ψn(x)]
2dx, for n = 1, 2, ..., (93)

Eqn. (91) as a first-order linear differential equation, has the general solution

En(t) =


cn +

1

κ

t∫

0

exp(
1

κ
λn)Pn(τ)dτ


 exp(−1

κ
λnt), (94)

for n = 1, 2, 3, .... It has to be added that cn are constants. In the equation
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Pn(t) =
1

‖Ψn‖2
L∫

0

Q(x, t)Ψn(x)dx, for n = 1, 2, 3, ... (95)
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U(x, t) =
∞∑

n=1


cn +

1

κ

t∫

0

exp(
1

κ
λn)Pn(τ)dτ


 exp(−1

κ
λnt)Ψn(x). (96)

For determining the coefficients cn, n = 1, 2, 3, ..., one shall force Eqn. (95)
to satisfy the prescribed initial condition.
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Method of moments (MoM) is based on the integral formulation of the
Maxwell’s equations [37]. The basic feature makes it possible to exclude
the air around the objects in the discretization. The method is usually em-
ployed in the frequency domain but can also be applied to the time domain
problems. In the MoM, integral-based equations, describing the current dis-
tribution on a wire or a surface, are transformed into matrix equations easily
solved using matrix inversion. When using the MoM for surfaces, a wire-grid
approximation of the surface can be utilized as described in [5]. The wire
formulation of the problem simplifies the calculations and is often used for
field calculations. The starting point for theoretical derivation is to apply
a linear (integral) operator, L, involving the appropriate Green’s function
G(r, r′), applied to an unknown function, I, by an equation as [5, 37]

LI = f, (97)

where f is the known excitation function for the above system. As an
example the above equation can be the Pocklington’s integral equation [88],
describing the current distribution I(z′) on a cylindrical antenna, written as

∫ b

a
I(z′)(

∂2

∂z2
+ k2)G(z, z′)dz′ = jωεEz. (98)

Then the unknown function, I, can be expanded into a series of known
functions, ui, with unknown amplitudes, Ii, resulting in

I =

n∑

i=1

Iiui, (99)

where ui, are called basis (or expansion) functions. To solve the unknown
amplitudes, n, equations are derived from the combination of Eqn. (97) and
Eqn. (99) and by the multiplication of n weighting (or test) functions, inte-
grating over the wire length (the cylindrical antenna) and the formulation
of a proper inner product [88]. This results in the transformation of the
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obtained by matrix inversion. Thus, the unknown solution is expressed as
a sum of known basis functions whose weighting coefficients corresponding
to the basis functions will be determined for the best fit. The same process
applied to differential equations is known as the ”weighted residual” method
[71]. The MoM delivers the result in system current densities J and/or volt-
ages at all locations in the discretized structure and at every frequency point
(depending on the integral in Eqn. (98)). To obtain the results in terms
of field variables, post-processing is needed for the conversion. The well-
known computer program Numerical Electromagnetics Code, often referred
to as NEC [70], utilizes the MoM for calculation of the electromagnetic
response for antennas and other metal structures.

3.3 Method of Partial Element Equivalent Circuit (PEEC)

The basis of the Partial Element Equivalent Circuit (PEEC) method orig-
inates from inductance calculations performed by Dr. Albert E. Ruehli at
IBM T.J. Watson Research Center, during the first part of 1970s [83, 19, 85].
Dr. Ruehli was working with electrical interconnect problems and under-
stood the benefits of breaking a complicated problem into basic partitions,
for which inductances could be calculated to model the inductive behavior
of the complete structure [83, 20]. By doing so, return current paths need
not to be known a priori as required for regular (loop) inductance calcu-
lations. The concept of partial calculations was first introduced by Rosa
[90] in 1908, further developed by Grover [36] in 1946, and Hoer and Love
[45] in 1965. However, Dr. Ruehli included the theory of partial coefficients
of potential and introduced the partial element equivalent circuit (PEEC)
theory in 1972 [82]. Significant contributions of the PEEC method are:

• The inclusion of dielectrics [86],

• The equivalent circuit representation with coefficients of potential [38],

• The retarded partial element equivalent circuit representation [39],

• PEEC models to include incident fields, scattering formulation [39],

• Nonorthogonal PEECs [87].

The interest and research effort of the PEEC method have increased during
the last decade. The reasons can be an increased need for combined circuit
and EM simulations and the increased performance of computers enabling
large EM system simulations. This development reflects on the areas of the
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current PEEC research, for example, model order reduction (MOR), model
complexity reduction, and general speed up. The PEEC method is a 3D,
full wave modeling method suitable for combined electromagnetic and cir-
cuit analysis. In the PEEC method, the integral equation is interpreted as
the Kirchhoff’s voltage law applied to a basic PEEC cell, which results in
a complete circuit solution for 3D geometries. The equivalent circuit for-
mulation allows for additional SPICE-type circuit elements to be included.
Further, the models and the analysis apply to both the time and the fre-
quency domain. The circuit equations resulting from the PEEC model are
easily constructed using a condensed modified loop analysis (MLA) or mod-
ified nodal analysis (MNA) formulation [44]. In the MNA formulation, the
volume cell currents and the node potentials are solved simultaneously for
the discretized structure. To obtain field variables, post-processing of cir-
cuit variables is necessary. This section gives an outline of the nonorthogonal
PEEC method as fully detailed in [87]. In this formulation, the objects, con-
ductors and dielectrics, can be both orthogonal and non-orthogonal quadri-
lateral (surface) and hexahedral (volume) elements. The formulation utilizes
a global and a local coordinate system where the global coordinate system
uses orthogonal coordinates x, y, z where the global vector F is of the form
F = Fxx̂+Fyŷ+Fz ẑ. A vector in the global coordinates are marked as rg.
The local coordinates a, b, c are used to separately represent each specific
possibly non-orthogonal object and the unit vectors are â, b̂, and ĉ, see
further [87]. The starting point for the theoretical derivation is the total
electric field on the conductor expressed as

Ei(rg, t) =
J(rg, t)

σ
+

∂A(rg, t)

∂t
+∇φ(rg, t), (101)

where Ei is the incident electric field, J is the current density in a conductor,
A is the magnetic vector potential, φ is the scalar electric potential, and σ
is the electrical conductivity. The dielectric areas are taken into account as
an excess current with the scalar potential using the volumetric equivalence
theorem. By using the vector potential A and scalar potential φ one can
formulate the integral equation for the electric field at a point rg which is to
be located either inside a conductor or inside a dielectric region according
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Figure 8: Nonorthogonal element created by the mesh generator with associated local
coordinate system.

to [30]

Ei(rg, t) =
J(rg, t)

σ
(102)

+ µ

∫

v′
G(rg, rg

′)
∂J(rg

′, td)
∂t

dv′

+ ε0(εr−1)µ

∫

v′
G(rg, r

′
g)

∂2E(rg
′, td)

∂t2

+
∇
ε0

∫

v′
G(rg, rg

′)q(rg′, td)dv
′.

Eqn. (102) is the time domain formulation which can easily be converted
to the frequency domain using the Laplace transform operator s = ∂

∂t and
where the time retardation τ will transform to e−sτ . The PEEC integral
equation solution of the Maxwell’s equations is based on the total electric
field in (101). An integral or inner product is used to reformulate each term
of (102) into the circuit equations. This inner product integration converts
each term into the fundamental form

∫
E · dl = V where V is the voltage

or potential difference across the circuit element. It can be shown how this
transforms the sum of the electric fields in (101) into the Kirchhoff’s Voltage
Law (KVL) over a basic PEEC cell. Fig. 9 details the (Lp,P ,τ)PEEC model
for the metal patch in Fig. 8 when discretized using four edge nodes (solid
dark circles). The model in Fig. 9 consists of:

• partial inductances (Lp) which are calculated from the volume cell
discretization using a double volume integral.

• coefficients of potentials (P ) which are calculated from the surface cell
discretization using a double surface integral.
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Figure 9: (Lp,P ,τ)PEEC model for metal patch in Fig. 8 discretized with four edge
nodes. Controlled current sources, Inp , account for the electric field coupling
and controlled voltage sources, V n

L , account for the magnetic field coupling.

• retarded controlled current sources, to account for the electric field
couplings, given by Iip =

pij
pii

IjC(t − tdij ) where tdij is the free space
travel time (delay time) between surface cells i and j,

• retarded current controlled voltage sources, to account for the mag-

netic field couplings, given by V n
L = Lpnm

∂ Im(t−tdnm )
∂t , where tdnm is

the free space travel time (delay time) between volume cells n and m.

Using the MNA method, the PEEC model circuit elements can be placed
in the MNA system matrix during evaluation by the use of correct matrix
stamps [44]. The MNA system, when used to solve frequency domain PEEC
models, can be schematically described as

jωP−1V −AT I = Is,
AV − (R+ jωLp)I = Vs,

(103)

where: P is the coefficient of potential matrix, A is a sparse matrix con-
taining the connectivity information, Lp is a dense matrix containing partial
inductances, elements of the type Lpij , R is a matrix containing the vol-
ume cell resistances, V is a vector containing the node potentials (solution),
elements of the type φi, I is a vector containing the branch currents (solu-
tion), elements of the type Ii, Is is a vector containing the current source
excitation, and Vs is a vector containing the voltage source excitation. The
first row in the equation system in (103) is the Kirchhoff’s current law for
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Figure 8: Nonorthogonal element created by the mesh generator with associated local
coordinate system.
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Figure 10: The test environment for implementation of the Grid-PEEC by several
executors and the manager.

each node while the second row satisfies the Kirchhoff’s voltage law for each
basic PEEC cell (loop). The use of the MNA method when solving PEEC
models is the preferred approach since additional active and passive circuit
elements can be added by the use of the corresponding MNA stamp. For a
complete derivation of the quasi-static and full-wave PEEC circuit equations
using the MNA method, see for example [31].

Grid Computing and the PEEC Method

Partial element equivalent circuit (PEEC) models [83, 84, 85] are ideal for
solving mixed circuit and electromagnetic problems. However, the nonorthog-
onal PEEC formulation [87] is computationally demanding for partial ele-
ment computations since semi-analytic computation routines can not be
used. Worse case is for PEEC-based frequency domain, full-wave solvers
that require the partial elements to be recomputed at each frequency step.
Different speed-up approaches for PEEC have been presented, for instance,
using wavelet transform [3] and fast multipole method [4]. To deal with opti-
mization of an existing frequency domain, nonorthogonal PEEC-based code,
parallel computation by Grid-PEEC is applied. The purpose is to speed up
both the calculation of the nonorthogonal partial elements and the solution
of the frequency domain systems. In the applied Grid-PEEC, three differ-
ent groups of accounts are defined as Executors, Users, and Administrators.
For implementation of the Grid-PEEC, a test environment was provided in
which the test was preformed with different numbers of executors (1, 2, 6,
12 and 20), see Fig. 10. The modified code works as follows:

1. Manager performs:
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• parsing and meshing,

• calculations of A and R,

• setup IS and V,

• check how many executors.

2. Partition calculation of coefficients of potentials on the connected ex-
ecutors (fill P). Keep track of non-fill-ins.

3. Partition calculations of partial inductances on the connected execu-
tors (fill L). Keep track of non-fill-ins.

4. Solve eq. (103) on the executors. Collect the results.

Antenna Analysis Applying the PEEC and Image Methods

The partial element equivalent circuit (PEEC) method has been developed
from the VLSI inductance calculations in the early 70s. Electric and mag-
netic field of an electric dipole in the vicinity and within an infinite perfect
electric conductor (PEC), or dielectric plane are subjects that can be stud-
ied and facilitated applying the image method (IM) and the complex image
method (CIM) [92, 100]. Due to a layered medium, the idea of the CIM is
to transform the problem into a combination of the source dipole and image
dipoles with real and complex locations in space and in the absence of the
layered medium, see Fig. 11. The radiation dyadic integral is expressed as

Ē(r, ω) = −jωµ

[
I +

1

β2

] ∫
G(r, r′)dr′, (104)

where ω and µ are the angular frequency and permeability, respectively. r is
the observation point distance to the origin and r′ is the distance from the

origin to the source point. The identity dyad I is defined as I = x̂x̂+ŷŷ+ ẑẑ.
The radiation integral in (104) gives the solution of the Maxwell’s equations
in terms of a Green’s function formulation. The Green’s function in this
case will be a 3× 3 matrix of functions, or dyadic as

G =

[
I +

1

β2
∇∇

]
ejβ|r−r′|

4π|r− r′| . (105)

The integral in (104) is strongly singular, which makes the numerical inte-
gration very time-consuming. For the case of an infinitesimal vertical dipole
above a dielectric half-plane, Eqn. (104) can be rewritten as

Ez(z) =
1

jωε0

∫

z′

(
β2
0 +

∂2

∂z2

)
Gzz

A I(z′)dz′, (106)
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Figure 10: The test environment for implementation of the Grid-PEEC by several
executors and the manager.
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Figure 11: Real and complex images for a vertical dipole above a dielectric plane.

where β0 is the free-space wave-number and Gzz
A is the dyadic Green’s func-

tion for the vector potential A. It is shown that the dyadic Green’s function
in the above equation takes the form of a Sommerfeld-type integral for an in-
finitesimal vertical dipole located at (x′, y′, z′) above a dielectric half-space of
the relative permittivity εr [13]. This is an slowly convergent integral that is
cumbersome to solve numerically. However, by the CIM, this dyadic Green’s
function can be solved much easier in terms of spherical wave components
as [92]

Gzz
A =

e−jβ0Rs

4πRs
−K

e−jβ0Rq

4πRq
+

N∑

i=1

e−jβ0Ri

4πRi
, N = 3...5, (107)

whereK = (1−εr)/(1+εr), and Rs, Rq, and Ri are distances from the source
point, real image point (quasidynamic image), and i-th image respectively
to the field point. The classical image solution of an infinitesimal vertical
dipole above a PEC plane can be derived where the third term in (107)
vanishes. This Green’s function is

Gzz
A =

e−jβ0Rs

4πRs
− e−jβ0Rq

4πRq
. (108)

Applying the image methods, the input impedance of a horizontal dipole
above a PEC plane, as described in [10], can be calculated as a summation
of self- and mutual impedances. For determining the input impedance of a
horizontal dipole located above a PEC plane, a side-by-side configuration
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can be applied. For this case, the self-impedance Z11 will be computed as
Z11 = R11 + jX11 where R11 and X11 are input- resistance and reactance.
The mutual impedance for a side-by-side dipole configuration is computed
as Z21 = R21 + jX21 where R21 and X21 are the mutual- resistance and
reactance. This computation of the input impedance is based on the current
at the input.

Partial Element Calculations Applying PEEC and IM

Based on the PEEC method, the coefficients of potential are obtained by
[30]

pij =
1

SiSjε

∫

Sj

∫

Si

G(ri, rj)dSjdSi, (109)

where Si and Sj are the surface areas of cell i and j, created in the PEEC
discretization. Applying (108), the Green’s function in the above case, i.e.
in the case of a vertical dipole above a PEC plane, is shown to be [92]
G = Gfree−space −Gimage where

Gfree−space =
1

4π|r̄i − r̄j |
, Gimage =

1

4π|r̄i − r̄q|
, (110)

in which |r̄i− r̄j | and |r̄i− r̄q| represent respectively the distances to the field
point from the source point and to the quasidynamic image, i.e. the distance
between the source point and its classical real image. This means that each
element in the matrix for partial element potential coefficients pij includes
the subtraction Gfree−space−Gimage. Determining the total partial self- and
mutual inductances for a structure above a PEC plane will be analogous to
that of the partial coefficients of potential [64], that is

Ltotal = Lfree−space − Limage, (111)

where the elements in the matrix Lfree−space are the partial self- and mutual
inductances for the physical segments; Limage is the matrix including partial
mutual inductances between the physical segments and their images.

3.4 Finite Difference Time-Domain (FDTD) Method

In this section the Finite Difference Time Domain (FDTD) method is de-
scribed. The method is widely used within EM modeling mainly due to its
simplicity. The FDTD method can be used to model arbitrarily heteroge-
neous structures like printed circuit boards (PCBs) and the human body.
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Figure 11: Real and complex images for a vertical dipole above a dielectric plane.
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simplicity. The FDTD method can be used to model arbitrarily heteroge-
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In the FDTDmethod finite difference equations are used to solve Maxwell’s
equations for a restricted computational domain. The method requires the
whole computational domain to be divided, or discretized, into volume ele-
ments (cells) for which Maxwell’s equations have to be solved. The volume
element sizes are determined by considering two main factors [5]:

1. Frequency. The cell size should not exceed λ
10 , where λ is the wave-

length corresponding to the highest frequency in the excitation.

2. Structure. The cell sizes must allow the discretization of thin struc-
tures.

The volume elements are not restricted to cubical cells, parallelepiped cells
can also be used with a side to side ratio not exceeding 1 : 3, mainly to avoid
numerical problems [22]. In many cases, the resulted FDTD method is based
according to the well-known Yee formulation [101]. However, there are other
FDTD methods which are not based in the Yee cell and thus have another
definition of the field components. To be able to apply Maxwell’s equations
in differential form to the Yee cell, the time and spatial derivatives using
finite difference expressions will result in the FDTD equations [95]. The
equations are then solved by:

1. Calculating the electric field components for the complete structure.

2. Advancing in time by ∆t
2 .

3. Calculating the magnetic field components for the complete structure
based on the electric field components calculated in 1.

4. Advancing in time by ∆t
2 and continuing to 1.

The FDTD method delivers the result in field variables, E andH, at all loca-
tions in the discretized domain and at every time point. To obtain structured
currents and voltages post-processing is needed for the conversion.

Leap-Frog Algorithm for Two-Dimensional (FDTD)

By the 2D-FDTD applied in this work, the staggered field quantities are
based on a ”leap-frog” time-update strategy where the magnetic and electric
fields are computed in an altering manner. The method of the Central
Differences is used in the FDTD to approximate the first-order derivatives
in which the general derivative is written as [40]

∂f(x)

∂x
=

f
(
x+ ∆x

2

)
− f

(
x− ∆x

2

)

∆x
+O(∆x2) (112)

46

Solution of Electromagnetic Fields and Antenna Analysis

or

∂f(x)

∂x
≈ f

(
x+ ∆x

2

)
− f

(
x− ∆x

2

)

∆x
. (113)

To reduce the three-dimensional Maxwell’s equations into special forms
with faster solution, a two-dimensional analysis is widely used. In this
manner, the two-dimensional domain will be described in a mathematical
sense though any radiating electromagnetic field takes place in the three-
dimensional physical space. By assuming that there is no variation in the
electromagnetic field in the z-direction, the curl form of

∇×H = J+
∂D

∂t

in Maxwell’s equations can be expanded as [88]

−µ
∂Hx

∂t
=

∂Ez

∂y
, (114)

µ
∂Hy

∂t
=

∂Ez

∂x
, (115)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(116)

where the current density J is expressed as σEz [88]. Eqns. (114)-(116) are
referred to as Transverse Magnetic (TM) fields, or TM polarization fields,
implying that the electromagnetic fields lie only in the xy-plane. Different
electromagnetic field directions for the TM polarization are illustrated in Fig.
12, applying 2D-FDTD discretization. Consider a uniformly rectangular
grid, Ω = [0, a]× [0, b] where each grid cell has dimensions ∆x and ∆y along
each Cartesian axis. In this work, ∆x and ∆y have been chosen of equal
size. By defining ∆t as the time-step, in the domain (t, x, y) ∈ [0, T ]×Ω for
T > 0, the following notation will be used in the 2D-FDTD formulation [89]

xi = i∆x, xi+ 1
2
= xi +

1

2
∆x, i = 0, 1, 2, ..., I − 1, xI = a, (117)

yj = j∆y, yj+ 1
2
= yj +

1

2
∆y, j = 0, 1, 2, ..., J − 1, yJ = b, (118)

tn = n∆t, tn+
1
2 = tn +

1

2
∆t, n = 0, 1, 2, ..., N − 1, N∆t = T. (119)

where I, J and N are positive integers so that the electric field at the spatial
location (i∆x, j∆y) and the time-step tn = n∆t is then denoted by

E(i∆x, j∆y, n∆t) = En
i,j (120)
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referred to as Transverse Magnetic (TM) fields, or TM polarization fields,
implying that the electromagnetic fields lie only in the xy-plane. Different
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12, applying 2D-FDTD discretization. Consider a uniformly rectangular
grid, Ω = [0, a]× [0, b] where each grid cell has dimensions ∆x and ∆y along
each Cartesian axis. In this work, ∆x and ∆y have been chosen of equal
size. By defining ∆t as the time-step, in the domain (t, x, y) ∈ [0, T ]×Ω for
T > 0, the following notation will be used in the 2D-FDTD formulation [89]

xi = i∆x, xi+ 1
2
= xi +

1

2
∆x, i = 0, 1, 2, ..., I − 1, xI = a, (117)

yj = j∆y, yj+ 1
2
= yj +

1

2
∆y, j = 0, 1, 2, ..., J − 1, yJ = b, (118)

tn = n∆t, tn+
1
2 = tn +

1

2
∆t, n = 0, 1, 2, ..., N − 1, N∆t = T. (119)
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location (i∆x, j∆y) and the time-step tn = n∆t is then denoted by
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Using the FDTD method, the TM polarization formulation in Eqns. (114)-
(116), will be then substituted by the following difference equations [89]

H
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2
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2
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, (121)

H
n+ 1

2
y
i+1

2 ,j
= H

n− 1
2

x
i+1

2 ,j
+

∆t

hµ0

[
En

zi+1,j
− En

zi,j

]
, (122)

En+1
zi,j = En

zi,j +
∆t

hε0

[
H

n+ 1
2

y
i+1

2 ,j
−H

n+ 1
2

y
i− 1

2 ,j
−H

n+ 1
2

x
i,j+1

2

+H
n+ 1

2
x
i,j− 1

2

]
− ∆t

hε0
J
n+ 1

2
zi,j ,

(123)
where h = ∆x = ∆y and Jz can be a source due to an incident plane wave.
The recursive update equations (121-123) are referred to as leap-frog time-

update strategy in which En+1
zi,j relies on H

n+ 1
2

y
i+1

2 ,j
and H

n+ 1
2

y
i− 1

2 ,j
along the y-axis

and H
n+ 1

2
x
i,j+1

2

and H
n+ 1

2
x
i,j− 1

2

along the x-axis; these are spatially centered about

En+1
zi,j . This is illustrated in Figs. 12-13. On the other hand, the magnetic

field quantities along both x and y-axis are updated at n + 1
2 , i.e., at the

previous time-step for all space samples. The electric field quantities are
then updated at time step n+ 1 for all space samples, and so on.

To simulate unbounded problems by the FDTD method, an Absorb-
ing Boundary Condition (ABC) should be designed. In [68] a so-called
second-order accurate ABC is proposed to resolve the unboundedness of the
problem. To find a stable maximum time-step, a combination of theory
and numerical experimentation is often the only way to proceed. To ap-
proximate the solution of a partial differential equation (PDE), one should
analyze the problem by three important concepts which are consistency,
convergence, and stability. By definition, a finite difference (FD) scheme
is convergent if the point-wise error tends to zero as both the spatial and
temporal step-sizes, for example ∆x and ∆t, tend to zero. However, it may
be cumbersome to prove convergence for many numerical schemes. In fact,
the order of convergence gives a good indication to how well a solution of an
FD scheme approximates the exact solution of a differential equation. An
FD scheme is consistent if the truncation error tends to zero as the spatial
and temporal step-sizes tend to zero. Truncation error gives therefore a
rate to how well the exact solution of a differential equation satisfies the FD
scheme. In addition, truncation error is an accessible rate to determine the
accuracy of an FD scheme whose formal order of accuracy is defined by the
order of its truncation error. Similar to the point-wise error, the truncation
error is an accessible rate to the accuracy for an FD scheme. The point-wise
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Figure 12: 2D-FDTD mesh for the transverse magnetic polarization.

Figure 13: Leap-frog scheme used in 2D-FDTD for the transverse magnetic polariza-
tion.
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Using the FDTD method, the TM polarization formulation in Eqns. (114)-
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error in an FD scheme shall grow unboundedly with time if the FD scheme
is not stable. According to the Lax Equivalence Theorem, a consistent FD
scheme, approximating the exact solution, is convergent if and only if the
FD scheme is stable [59]. The three-dimensional FDTD algorithm is stable
according to Courant-Fredrichs-Lewy or CFL stability condition in which
the time-step is bounded by the limit [96]

∆t ≤ 1

c0

1√
1

(∆x)2
+ 1

(∆y)2
+ 1

(∆z)2

. (124)

However, in the 2D-FDTD algorithm in this work, the CFL stability condi-
tion (124) reduces to

∆t ≤ h

c0

1√
2
, (125)

where h = ∆x = ∆y. By choosing ∆t, ∆x, and ∆y based on the CFL
stability condition, the 2D-FDTD algorithm will be convergent, according
to the Lax Equivalence Theorem [18]. In problems applying central-finite
differences, one does not know the order of convergence even though the
standard central-difference algorithm converges with an error of order h2; h
being the cell size. The order of convergence will decrease due to singular
behavior of the solution in problem with geometries possessing sharp edges
of metallic conductors and dielectrics [28]. The next step will then be to
determine the order of convergence which is introduced by an error analysis
and defining a semi-norm.

To determine the order of convergence in the 2D-FDTD algorithm, an
error analysis is used. A good way to visualize errors when they are expected
to behave like some power of the spatial discretization, is to write the error
ε as [59]

ε(h) ≈ C (h)p (126)

where h is the cell size and C is a constant independent of h. Then by taking
logarithm of both sides of (235), namely

ln |ε (h)| ≈ ln |C|+ p ln |h| (127)

the error ε, on a log-log scale, behaves linearly with a slope which is equal
to the order of convergence p. The next step in the process of determining
the order of convergence is to define a semi-norm.

Let X be a vector space. Then, for every u, v ∈ X, and every c ∈ R, a
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semi-norm |||.||| : X → R+ satisfies

N1 : |||u||| ≥ 0

N2 : |||cu||| = |c| · |||u|||
N3 : |||u+ v||| ≤ |||u|||+ |||v|||

Let also P be an observation point. By defining the semi-norm |||u||| =
|u(P )| in this section, the goal is to show that the error εh = |||uh − uh/2|||
has order of convergence 2, where uh is the numerical 2D-FDTD solution to
the electric field E in the observation point P ; h = ∆x = ∆y is the spatial
cell size in meter. Having (126) and (127) in mind, it will be shown that the
error will be reduced by reducing the step size. Assume that

|||uh − uh
2
||| ≤ C · hk (128)

where C is some constant (independent on k), and the integer k is to be
determined by the above semi-norm; uh

2
is the solution of the problem by

a halved-cell size h
2 . The discretized semi-norm will then be used to inves-

tigate how the order of convergence in the 2D-FDTD algorithm changes by
halving the spatial step size h. The procedure for investigating a point-wise
convergence in the point P is started by taking logarithm of both sides of
Eqn. (128), that is

ln
(
|||uh − uh

2
|||
)
≤ ln

(
C · hk

)

= ln(C) + ln
(
hk

)

= k ln(h) + ln(C). (129)

Eqn. (129) can be interpreted as a linear equation in the general form of

η = kξ +m, where m = ln(C), ξ = ln(h), and η = ln
(
|||uh − uh

2
|||
)
. The

problem of determining the order of convergence is now converted to deter-
mine the slope k in the linear equation of η = kξ+m. The left hand-side of
Eqn. (129) will then be found by running the computer program for differ-
ent step sizes h. That is, at each step in the algorithm, the spatial step size
h (i.e. ξ-values) is halved.
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error in an FD scheme shall grow unboundedly with time if the FD scheme
is not stable. According to the Lax Equivalence Theorem, a consistent FD
scheme, approximating the exact solution, is convergent if and only if the
FD scheme is stable [59]. The three-dimensional FDTD algorithm is stable
according to Courant-Fredrichs-Lewy or CFL stability condition in which
the time-step is bounded by the limit [96]

∆t ≤ 1

c0

1√
1

(∆x)2
+ 1

(∆y)2
+ 1

(∆z)2

. (124)

However, in the 2D-FDTD algorithm in this work, the CFL stability condi-
tion (124) reduces to

∆t ≤ h

c0

1√
2
, (125)

where h = ∆x = ∆y. By choosing ∆t, ∆x, and ∆y based on the CFL
stability condition, the 2D-FDTD algorithm will be convergent, according
to the Lax Equivalence Theorem [18]. In problems applying central-finite
differences, one does not know the order of convergence even though the
standard central-difference algorithm converges with an error of order h2; h
being the cell size. The order of convergence will decrease due to singular
behavior of the solution in problem with geometries possessing sharp edges
of metallic conductors and dielectrics [28]. The next step will then be to
determine the order of convergence which is introduced by an error analysis
and defining a semi-norm.

To determine the order of convergence in the 2D-FDTD algorithm, an
error analysis is used. A good way to visualize errors when they are expected
to behave like some power of the spatial discretization, is to write the error
ε as [59]

ε(h) ≈ C (h)p (126)

where h is the cell size and C is a constant independent of h. Then by taking
logarithm of both sides of (235), namely

ln |ε (h)| ≈ ln |C|+ p ln |h| (127)

the error ε, on a log-log scale, behaves linearly with a slope which is equal
to the order of convergence p. The next step in the process of determining
the order of convergence is to define a semi-norm.

Let X be a vector space. Then, for every u, v ∈ X, and every c ∈ R, a
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semi-norm |||.||| : X → R+ satisfies

N1 : |||u||| ≥ 0

N2 : |||cu||| = |c| · |||u|||
N3 : |||u+ v||| ≤ |||u|||+ |||v|||

Let also P be an observation point. By defining the semi-norm |||u||| =
|u(P )| in this section, the goal is to show that the error εh = |||uh − uh/2|||
has order of convergence 2, where uh is the numerical 2D-FDTD solution to
the electric field E in the observation point P ; h = ∆x = ∆y is the spatial
cell size in meter. Having (126) and (127) in mind, it will be shown that the
error will be reduced by reducing the step size. Assume that

|||uh − uh
2
||| ≤ C · hk (128)

where C is some constant (independent on k), and the integer k is to be
determined by the above semi-norm; uh

2
is the solution of the problem by

a halved-cell size h
2 . The discretized semi-norm will then be used to inves-

tigate how the order of convergence in the 2D-FDTD algorithm changes by
halving the spatial step size h. The procedure for investigating a point-wise
convergence in the point P is started by taking logarithm of both sides of
Eqn. (128), that is

ln
(
|||uh − uh

2
|||
)
≤ ln

(
C · hk

)

= ln(C) + ln
(
hk

)

= k ln(h) + ln(C). (129)

Eqn. (129) can be interpreted as a linear equation in the general form of

η = kξ +m, where m = ln(C), ξ = ln(h), and η = ln
(
|||uh − uh

2
|||
)
. The

problem of determining the order of convergence is now converted to deter-
mine the slope k in the linear equation of η = kξ+m. The left hand-side of
Eqn. (129) will then be found by running the computer program for differ-
ent step sizes h. That is, at each step in the algorithm, the spatial step size
h (i.e. ξ-values) is halved.
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4 Direct Electromagnetic Scattering Problem

Scattering theory has had a major roll in the twentieth century mathemat-
ical physics. The theory is concerned with the effect an inhomogeneous
medium has on an incident particle or wave. The direct scattering problem
is to determine a scattered field us from a knowledge of an incident field ui

and the differential equation governing the wave equation. The incident field
is emitted from a source, an antenna for example, against an inhomogeneous
medium. The total field is assumed to be the sum of the incident field ui and
the scattered field us. The governing differential equations in such cases are
Maxwell’s equations that will be converted to the wave equation. Generally,
the direct scattering problems depend heavily on the frequency of the wave
in question. In particular, the phenomenon of diffraction is expected to
occur if the wavelength λ = 2π/k is very small compared to the smallest ob-
served distance; k is the wavebumber. Thus, due to the scattering obstacle,
an observable shadow with sharp edges is produced. Obstacles which are
small compared with the wavelength disrupt the incident wave without any
identifiable shadow. Two different frequency regions are therefore defined
based on the wavebumber k and a typical dimension of the scattering objects
a. The set of k values such that ka >> 1 is called the high frequency region
and the set of k values where ka ≤ 1 is called the resonance region. The
distinction between these two frequency regions is due to the fact that the
applied mathematical methods in the resonance region differ greatly from
the ones used in the high frequency region.

One of the first issues to think about when studying the direct scattering
problem is the uniqueness of the solution. Then, by having established
uniqueness, the existence of the solution and a numerical approximation of
the problem must be analyzed and handled. The uniqueness of the solution
will be discussed in the next section.

4.1 Uniqueness of the Solution

Within the electromagnetic field theory there are two fundamental governing
differential equations for electrostatics in any medium. These are [25]:

∇ ·D = ρv, (130)

∇×E = 0, (131)

where D and E, are the electric flux density and electric field intensity, as
defined earlier; ρv is free charge per unit volume. Because E is rotation-free,
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a scalar electric potential Φ can be defined such that

E = −∇Φ. (132)

Combining (130) and (132) yields

∇ · (ε∇Φ) = −ρv, (133)

where ε is the permittivity due to linear isotropic medium in which D = εE.
The above equations will finally result in

∇2Φ =
−ρv
ε

. (134)

Eqn. (134) is called the Poisson’s equation. In this equation ∇2 is Laplacian.
If there is no charge in the simple medium, i.e. ρv = 0, then Eqn. (134) will
be converted into

∇2Φ = 0, (135)

which is called the Laplace’s equation. The concept of uniqueness has arisen
when solving the Laplace’s or Poisson’s equation by different methods. De-
pending on the complexity and the geometry of the problem, one may use
analytical, numerical, or experimental methods. The question is whether
all of these methods will give the same solution. This may be reformulated
as: Is the present particular solution of the Laplace’s or Poisson’s equation,
satisfying the boundary conditions, the only solution? The answer will be
yes by relying on the uniqueness theorem. Irrespective of the method, a so-
lution of the problem satisfying the boundary conditions is the only possible
one.

In connection with the concept of the uniqueness, two theorems are ex-
tensively discussed within the computational electromagnetics [6]. These
are:

Theorem 1. A vector is uniquely specified by giving its divergence and its
curl within a simply connected region and its normal component over the
boundary.

Theorem 2. A vector V with both source and circulation densities van-
ishing at infinity may be written as the sum of two parts, one of which is
irrotational, the other solenoidal.

A field A is irrotational if ∇ × A = 0 and solenoidal if ∇ · A = 0. A
proof of the uniqueness theorem due to the Laplace’s equation is given in
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[89]. The theorem (2) is called the Helmholtz’s theorem. The theorems (1)
and (2) can together be interpreted as: ”a solution of the Poisson’s equation
(134) and Eqn. (135) (as a special case), which satisfies a given boundary
condition, is a unique solution” [25]. In [10], there is another interpretation
of the uniqueness theorem:

”A field in a lossy region is uniquely specified by the sources within the
region plus the tangential components of the electric field over the boundary,
or the tangential components of the magnetic field over the boundary, or the
former over part of the boundary and the latter over the rest of the bound-
ary”. Hence, according to the uniqueness theorem, the field at a point in
space will be sufficiently determined by having information about the tan-
gential electric field and the tangential magnetic field on the boundary. This
means that to determine the field uniquely, one of the following alternatives
must be specified [97]:

• n̂× Ê everywhere on S,

• n̂× Ĥ everywhere on S,

• n̂× Ê on a part of S and n̂× Ĥ on the rest of S,

with S as the boundary of the domain. Directly related to the electromag-
netic obstacle scattering two other theorems can be found in [27]. These
are:

Theorem 3. Assume that D1 and D2 are two perfect conductors such that
for one fixed wavebumber the electric far-field patterns for both scatterers
coincide for all incident directions and all polarizations. Then D1 = D2.

Theorem 4. Assume that D1 and D2 are two perfect conductors such that
for one fixed incident direction and polarization the electric far field patterns
of both scatterers coincide for all wavebumbers contained in some interval
0 < k1 < k < k2 < ∞. Then D1 = D2.

As depicted in the above theorems, the scattered wave depends analyti-
cally on the wavebumber k.
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4.2 Solution of the Direct Electromagnetic Scattering Prob-
lem

The simplest problem in the direct scattering problem is scattering by an
impenetrable obstacle D. Then, the total field u can be determined by [27]

∇2u+ k2n(x)u = 0 in R3, (136)

u(x) = eikx·d + us(x), (137)

lim
r→∞

r(
∂us

∂r
− ikus) = 0, (138)

in which r = |x|, and n = c20/c
2 is the refractive index due to the square

of the sound speeds. By the assumption that the medium is absorbing and
also assuming that 1 − n has compact support, n will be complex-valued
[27]. For the homogeneous host medium, c = c0, and for the inhomogeneous
medium, c = c(x). Depending on obstacle properties, different boundary
conditions will be assumed. Eqn. (138) is called Sommerfeld radiation con-
dition. Acoustic wave equations possessing such kind of boundary condition
guarantee that the scattered wave is outgoing.

Within the computational electromagnetics for the scattering problem,
the incident field by the time-harmonic electromagnetic plane wave can be
expressed as

Ei(x, t) = ik(d× p)× dei(kx·d−ωt), (139)

H i(x, t) = ik(d× p)ei(kx·d−ωt), (140)

where ω is the radial frequency, ε0 the electric permittivity in vacuum, µ0

the magnetic permeability in vacuum, d the direction of propagation and p
the polarization. Assuming variable permittivity but constant permeability,
the electromagnetic scattering problem is now to determine both the electric
and magnetic field according to

∇× E − ikH = 0 in R3, (141)

∇×H + ikn(x)E = 0 in R3,

where n = ε/ε0 is the refractive index by the ratio of the permittivity
ε = ε(x) in the inhomogeneous medium; n will have a complex value if the
medium is conducting. It is assumed that 1− n has compact support. The
total electromagnetic field is determined by

E(x) = (i/k)∇×∇× peikx·d + Es(x), (142)

H(x) = ∇× peikx·d +Hs(x), (143)
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with S as the boundary of the domain. Directly related to the electromag-
netic obstacle scattering two other theorems can be found in [27]. These
are:

Theorem 3. Assume that D1 and D2 are two perfect conductors such that
for one fixed wavebumber the electric far-field patterns for both scatterers
coincide for all incident directions and all polarizations. Then D1 = D2.

Theorem 4. Assume that D1 and D2 are two perfect conductors such that
for one fixed incident direction and polarization the electric far field patterns
of both scatterers coincide for all wavebumbers contained in some interval
0 < k1 < k < k2 < ∞. Then D1 = D2.

As depicted in the above theorems, the scattered wave depends analyti-
cally on the wavebumber k.

54

Direct Electromagnetic Scattering Problem

4.2 Solution of the Direct Electromagnetic Scattering Prob-
lem

The simplest problem in the direct scattering problem is scattering by an
impenetrable obstacle D. Then, the total field u can be determined by [27]

∇2u+ k2n(x)u = 0 in R3, (136)

u(x) = eikx·d + us(x), (137)

lim
r→∞

r(
∂us

∂r
− ikus) = 0, (138)

in which r = |x|, and n = c20/c
2 is the refractive index due to the square

of the sound speeds. By the assumption that the medium is absorbing and
also assuming that 1 − n has compact support, n will be complex-valued
[27]. For the homogeneous host medium, c = c0, and for the inhomogeneous
medium, c = c(x). Depending on obstacle properties, different boundary
conditions will be assumed. Eqn. (138) is called Sommerfeld radiation con-
dition. Acoustic wave equations possessing such kind of boundary condition
guarantee that the scattered wave is outgoing.

Within the computational electromagnetics for the scattering problem,
the incident field by the time-harmonic electromagnetic plane wave can be
expressed as

Ei(x, t) = ik(d× p)× dei(kx·d−ωt), (139)

H i(x, t) = ik(d× p)ei(kx·d−ωt), (140)

where ω is the radial frequency, ε0 the electric permittivity in vacuum, µ0

the magnetic permeability in vacuum, d the direction of propagation and p
the polarization. Assuming variable permittivity but constant permeability,
the electromagnetic scattering problem is now to determine both the electric
and magnetic field according to

∇× E − ikH = 0 in R3, (141)

∇×H + ikn(x)E = 0 in R3,

where n = ε/ε0 is the refractive index by the ratio of the permittivity
ε = ε(x) in the inhomogeneous medium; n will have a complex value if the
medium is conducting. It is assumed that 1− n has compact support. The
total electromagnetic field is determined by

E(x) = (i/k)∇×∇× peikx·d + Es(x), (142)

H(x) = ∇× peikx·d +Hs(x), (143)

55



Mathematical Tools Applied in Computational Electromagnetics
for a Biomedical Application and Antenna Analysis

so that

lim
r→∞

(Hs × x− rEs) = 0, (144)

where Eqn. (144) is called the Silver-Müller radiation condition. The elec-
tromagnetic scattering by a perfect obstacle D is now to find an electromag-
netic field such that [27]

∇E − ikH = 0, ∇H − ikE = 0 in R3 \ D̄, (145)

E(x) = (i/k)∇×∇× peikx·d + Es(x), (146)

H(x) = ∇× peikx·d +Hs(x), (147)

ν ×∇E = 0 on ∂D, (148)

lim
r→∞

(Hs × x− rEs) = 0, (149)

where ν is the unit outward normal on ∂D. Eqns. (145) are called the
time harmonic Maxwell’s equations. The above formulation is called the
direct electromagnetic scattering problem. The method of integral equations
is a common method to investigate the existence of a numerical approxi-
mation of the direct problem. The integral equation associated with the
electromagnetic scattering problem due to Eqns.(141)-(143) is given by [27]

E(x) =
i

k
∇×∇× peikx·d − k2

∫

R3

Φ(x, y)m(y)E(y) (150)

+∇
∫

R3

1

ν(y)
∇n(y) · E(y)Φ(x, y)dy, x ∈ R3,

where

Φ(x, y) =
1

4π

eik|x−y|

| x− y | , x �= y, (151)

and m := 1− n; if E is the solution of Eqn. (151), one can define

H(x) =
1

ik
∇× E(x). (152)

Letting x tend to the boundary of D and introducing a as a tangential
density to be determined, one can verify that a will be a solution for E in
the following boundary integral equation [27]:

Es(x) = ∇×
∫

∂D
a(y)Φ(x, y)ds(y), x ∈ R3\D̄ (153)

Hs(x) =
1

ik
∇× Es(x), x ∈ R3\D̄.
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In this formulation, the boundary integral equation in Eqns. (153) will be
used to solve Eqns. (141)-(143). The fact is that the integral equation is not
uniquely solvable if k2 is a Neumann eigenvalue of the negative Laplacian
in D [9]. The numerical solution of boundary integral equations in scatter-
ing theory is generally a much challenging area and a deeper understanding
of this topic requires knowledge in different areas of functional analysis,
stochastic processes, and scientific computing. In fact, the electromagnetic
inverse medium problem is not entirely investigated and numerical analysis
and experiments have yet to be done for the three dimensional electromag-
netic inverse medium.
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5 Inverse Electromagnetic Scattering Problem

The inverse scattering problem is, in many areas, of equal interest as the
direct scattering problem. Inverse formulation is applied on a daily basis in
many disciplines such as image and signal processing, astrophysics, acous-
tics, geophysics and electromagnetic scattering. The inverse formulation, as
an interdisciplinary field, involves people from different fields within natural
science. To find out the contents of a given black box without opening it,
would be a good analogy to describe the general inverse problem. Exper-
iments will be carried out to guess and realize the inner properties of the
box. It is common to call the contents of the box ”the model” and the
result of the experiment ”the data”. The experiment itself is called ”the
forward modeling.” As sufficient information cannot be provided by an ex-
periment, a process of regularization will be needed. The reason to this
issue is that there can be more than one model (’different black boxes’) that
would produce the same data. On the other hand, improperly posed numer-
ical computations will arise in the calculation procedure. A regularization
process in this context plays a major roll to solve the inverse problem.

5.1 Analytic Formulation of the Inverse Scattering Problem

As in the direct formulation, the permittivity ε has a constant value, in
inverse scattering formulation ε has to be assumed as room-dependent. As-
suming ε = 1 outside a sphere with radius R, and ε �= 1 inside, the following
equation can be deduced by starting from Maxwell’s equations and some
vector algebra [57]

∇× (∇×E(r, ω))− ω2ε0µ0ε(r)E(r, ω) = 0, (154)

where r is the room variable and the scatterer material with volume Vs is
assumed to be non-magnetic, i.e. µ = 1; no other current sources except
induced current generated by the incident field Ei are assumed to exist
either. By introducing a dimensionless quantity χe, known as the electric
susceptibility, a new equation will be introduced as

D = ε0(1 + χe(r))E(r, ω) = ε0ε(r)E(r, ω) = εE(r, ω) (155)

where D(C/m2) is defined as electric displacement, see previous sections.
By Eqn. (155), it is easy to see that

ε(r) = 1 + χe(r). (156)
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A dielectric medium is, by definition, linear if χe is independent of E and
homogeneous if χe is independent of space coordinates. In fact, the electric
susceptibility χe gives the dielectric deviation between the free-space and
other dielectric media in the case of inverse scattering problem. It is equal to
zero in the free-space on the outside of the sphere with radius R and distinct
from zero inside. The sphere in fact contains the scatterer with the volume
Vs. In addition, it is assumed that the medium contained in the volume Vs is
not dispersive, i.e. χe inside the volume Vs is not dependent on the frequency
ω. In the case of the inverse electromagnetic scattering problem, the goal is
to determine the function χe(r) by experimentally obtained incident electric
field Ei and scattered electric field Es and the total field E = Ei+Es. This
process is started by re-writing the Eqn. (154) as

∇× (∇×E(r, ω))− k2E(r, ω) = k2χe(r)E(r, ω) (157)

where
k2 = ω2ε0µ0 (158)

in which k is the wavebumber associated with vacuum as the surrounding
medium. Due to the incident field Ei, a current will be induced in Vs with
the associated current density Js, which can be expressed as [57]

Js = −jωε0χeE. (159)

By the aid of this induced current density, the scattered electric field can be
expressed as [57]

Es(r) = [k2 +��] ·
∫

Vs

ejk|r−r′|

4π|r− r′|χe(r
′)E(r′)dv′, r �∈ Vs, (160)

where j =
√
−1As it is seen in Eqn. (160), the integral deals with the

inside of the scatterer which is unobservable by experimentally measuring
the electric field. Both the scattered and the incident electric field can be
measured at the outside of the scatterer and the unknown electric field inside
the integral should be determined in different situations. In the cases where
Es << Ei, there are different methods to approximate the integral in Eqn.
(160). In the Born approximation, the dielectric properties of the scatterer
can be determined by a three-dimensional inverse Fourier transforming of the
far-field F in certain directions and for any frequency [57]. This means that
for the experimentally given incident plane wave with propagation vector
k̂i, one has

Ei(r) = E0e
jkk̂i·r, (161)
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5 Inverse Electromagnetic Scattering Problem
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∇× (∇×E(r, ω))− ω2ε0µ0ε(r)E(r, ω) = 0, (154)
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D = ε0(1 + χe(r))E(r, ω) = ε0ε(r)E(r, ω) = εE(r, ω) (155)

where D(C/m2) is defined as electric displacement, see previous sections.
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ε(r) = 1 + χe(r). (156)
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A dielectric medium is, by definition, linear if χe is independent of E and
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k2 = ω2ε0µ0 (158)
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and for a fixed point k, a three-dimensional Fourier transform of the function
χe can be calculated in a point k(k̂i − r̂), that is [57]

∫

Vs

χe(r
′)ejk(k̂i−r̂)·r′dv′ =

4π

k3
F(r̂)

r̂× (E0 × r̂)
, (162)

where the far-field scattering amplitude (measured data in the far-field) is

F(r̂) = r̂× (E0 × r̂)
k3

4π

∫

Vs

χe(r
′)ejk(k̂i−r̂)·r′dv′. (163)

As depicted in Eqn. (162), in the Born approximation the problem is lin-
earized with substitution of the unknown field in the integral by the given
incident field. In the Rytov approximation, the polarization field is assumed
to be almost unchanged and the phase of the field is interpreted as all the
scattering, that is

E(r̂) = E0e
jkψ(r), (164)

where ψ(r) is the field phase as

ψ(r) = k̂i · r+ ψs(r), (165)

in which ψs(r) is the deviations from k̂i, i.e., the phase associated with the
incident field. By application of some vector algebra and by the aid of an
approximation, (157) can be written as [57]

2E0(k̂i · ∇ψ(r))− (E0 · ∇ψs(r))k̂i = χe(r)E0, (166)

that yields

2k̂i · ∇ψ(r) = χe(r), (167)

E0 · ∇ψs(r) = 0,

using which the electric susceptibility χe can be determined by the follow-
ing process. By introducing new Cartesian coordinates ξ and η, it will be
possible to have the directions of k̂i lying in, for example, the xy-plane so
that the ηξ-plane is perpendicular to the xy-plane, see Fig. 14. Hence:

ξ = x cosφ+ y sinφ, (168)

η = −x sinφ+ y cosφ,

where φ is the rotation angle between the two coordinate systems of xy and
ηξ.
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Figure 14: New Cartesian coordinate system building the ηξ-plane.

Finally, the phase ψs can be expressed, by the Rytov approximation as
[57]

ψs(ξ, φ) =
1

2

∫ +∞

−∞
χe(x, y)dη. (169)

Two methods are frequently used to obtain χe(x, y) from Eqn. (169): the
method of Projection and the method of Integral Equation. Following, the
method of Projection is briefly explained.

The general inverse formulation of determining dielectric properties f(x, y)
of the scatterer is in the form of the following integral [57]

uφ(ξ) =

∫ ∞

−∞
f(x, y)dη =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(ξ − ρ · ξ̂)dxdy, (170)

where ρ = x̂x+ ŷy is a two-dimensional regional vector and δ, Dirac’s delta
distribution. The coordinates ξ and η are associated with the directions ξ̂
and η̂ according to

ξ̂ = x̂ cosφ+ ŷ sinφ, (171)

η̂ = −x̂ sinφ+ ŷ cosφ.
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According to this formulation of inverse electromagnetic scattering, the data
is actually the Fourier transform F of the dielectric properties of the scatterer
in question. This means

F{uφ(p)} = ûφ(p) =

∫ ∞

−∞
uφ(ξ)e

ipξdξ, (172)

where p is a Fourier variable related to ξ. Eqn. (172) and (170) yield

ûφ(p) =

∫ ∞

−∞
eipξ

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(ξ − ρ · ξ̂)dxdydξ. (173)

Using the Dirac’s delta distribution properties, (173) can be written as

ûφ(p) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eipρ·ξ̂dxdy. (174)

The unknown dielectric properties f(x, y) can now be determined by inverse
Fourier transforming of (174), that is [57]

f(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f̂(p)e−jρ·pdpxdpy, (175)

where

f̂(p) = ûφ(p), for p ≥ 0. (176)

Expressed in the Cartesian coordinates, the vector p can be written as

p = x̂px + ŷpy. (177)

5.2 Numerical Solution of the Inverse Electromagnetic Scat-
tering Problem

As the direct scattering problem has been thoroughly investigated, the in-
verse scattering problem has not yet a rigorous mathematical/numerical
basis. Because of the nonlinear nature of the inverse scattering problem,
one will face improperly posed numerical computation in the inverse calcu-
lation process. This means that, in many applications, small perturbations
in the measured data cause large errors in the reconstruction of the scatterer.
Some regularization methods must be used to remedy the ill-conditioning
due to the resulting matrix equations. Concerning the existence of a solution
to the inverse electromagnetic scattering one has to think about finding ap-
proximate solutions after making the inverse problem stabilized. A number
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of methods is given to solve the inverse electromagnetic scattering problem
in which the nonlinear and ill-posed nature of the problem are acknowl-
edged. Earlier attempts to stabilize the inverse problem was via reducing
the problem into a linear integral equation of the first kind. However, general
techniques were introduced to treat the inverse problems without applying
an integral equation. The process of regularization is used at the moment
when selection of the most reasonable model is on focus. Computational
methods and techniques ought to be as flexible as possible from case to
case. A computational technique utilized for small problems may fail to-
tally when it is used for large numerical domains within the inverse formula-
tion. New methodologies and algorithms would be created for new problems
since existing methods are insufficient. This is the major characteristics of
the existing inverse formulation in problems with large numerical domains.
There are both old and new computational tools and techniques for solving
linear and nonlinear inverse problems. Linear algebra has been extensively
used within linear and nonlinear inverse theory to estimate noise and effi-
cient inverting of large and full matrices. As different methods may fail,
new algorithms must be developed to carry out nonlinear inverse problems.
Sometimes, a regularization procedure may be developed for differentiating
between correlated errors and non-correlated errors. The former errors come
from linearization and the latter from the measurement. To deal with the
nonlinearity, a local regularization will be developed as the global regulariza-
tion will deal with the measurement errors. There are researchers who have
been using integral equations to reformulate the inverse obstacle problem as
a nonlinear optimization problem. In some approaches, a priori is assumed
such that enough information is known about the unknown scattering ob-
stacle D [51, 52, 53]. Then, a surface Γ is placed inside D such that k2 is not
a Dirichlet eigenvalue of the negative Laplacian for the interior of Γ. Then,
assuming a fixed wavebumber k and a fixed incident direction d, and also
by representing the scattered field us as a single layer potential [27]

us(x) =

∫

Γ
φ(y)Φ(x, y)dS(y), (178)

where φ ∈ L2(Γ) is to be determined; L2(Γ) is the space of all square in-
tegrable functions on the boundary Γ. The far field pattern u∞ is then
represented as

u∞(x̂; d) =
1

4π

∫

Γ
e−ikx̂·yφ(y)Φ(x, y)dS(y), x̂ ∈ Ω (179)
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where Ω is the unit sphere, and x̂ = x/|x|. By the aid of the given (measured)
far field pattern u∞, one can find the density φ by solving the ill-posed
integral equation of the first kind in Eqn. (179). This method is described
thoroughly in [54, 55, 56].

In another method it is assumed that the given (measured) far field u∞
for all x̂, and d ∈ Ω is given. The problem is now to determine a function
g ∈ L2(Ω) such that

∫

Ω
u∞(x̂; d)g(d)dS(d) =

1

kip+1
Yp(x̂), x̂ ∈ Ω, (180)

where p is an integer and k is fixed; Yp is a spherical harmonic of order p
[6]. It can be shown that solving the ill-posed integral equation (180) leads,
in special conditions, to the nonlinear equation [27]

∫

Ω
eikr(a)a·dg(d)dS(d) = −h(1)p (kr(a))Yp(x̂), a ∈ Ω, (181)

in which r is to be determined, and where x(a) = r(a)a; h1p is the spherical
Hankel function of the first kind of order p [6]. In [14], this method is
developed and applied to the case of the electromagnetic inverse obstacle
problem.

Optimization of the Inverse Problem

A linear inverse problem can be given in the form of finding x such that
Ax = b + n, where b, x, and n are vectors, and A is a matrix; n is
the noise which has to be minimized by different so-called regularization
methods. Within the field of image processing, a forward model is defined
as an unobservable input x∗ which returns as an observable output b. Here,
the forward problem is modeled by a forward model, and the inverse problem
will be an approximation of x∗ by x̂. The forward process is, in other words,
a mapping from the image to error-free data, d̄, and the actual corrupted
data, d; the noise n is the difference d̄− d. The corruption in such context
is due to small round off error by a computer representation and also by
inherent errors in the measurement process.

The collection of values that are to be reconstructed is referred to as the
image. Denoting f as the image, the forward problem is the mapping from
the image to the quantities that can be measured. By the forward mapping
denoted by A, the actual data d can be denoted by

d = A(f) + n, (182)
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where A may be either linear or nonlinear mapping. Accordingly, the inverse
problem can now be interpreted as finding the original image given the data,
and the information from the forward problem.

Well-posed and Ill-posed Problems

As the image and data are infinite-dimensional (continuous) or finite-dimensional
(discrete), there will be several classifications. Image and data can be both
continuous; they can also be both discrete, or the former continuous, the
latter discrete, and vice versa. However, each of the cases is approximated
by a discrete-discrete alternative as computer implementation is in a dis-
crete way. The other mentioned alternatives are always an idealization of
the problem. According to Hadamard [33], the inverse problem to solve

A(f) = d (183)

is a well-posed problem if

• a solution exists for any data d,

• there is a unique solution in the image space,

• the inverse mapping from d to f is continuous.

In addition, an ill-posed problem is where an inverse does not exist because
the data is outside the range of A. Other interpretations of the above three
conditions is an ill-posed problem, i.e, a problem in which small changes
in data may cause large changes in the image. To stabilize the solution of
ill-conditioned and rank-deficient problems, the concept of singular value
decomposition (SVD) is widely used. The reason is that relatively small
singular values can be dropped, which makes the process of computation
less sensitive to perturbations in data. Another important application of
the SVD is the calculation of the condition number of a matrix which is
directly related to ill-posed problems.

Singular Value Decomposition

In connection with rank-deficient and ill-posed problems, it is convenient to
describe singular value expansion of a kernel due to an integral equation.
This calculation is by means of the singular value decomposition (SVD).
All the difficulties due to ill-conditioning of a matrix will be revealed by
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This calculation is by means of the singular value decomposition (SVD).
All the difficulties due to ill-conditioning of a matrix will be revealed by
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applying SVD. Assuming A ∈ Rm×n be a rectangular or square matrix and
letting m ≥ n, the SVD of A is a decomposition in form of

A = UΣV T =

n∑

i=1

uiσiv
T
i , (184)

where the orthonormal matrices U = (u1, ..., un) ∈ Rm×n and V = (v1, ..., vn ∈
Rn×n) are such that UTU = V TV = In [40]. The diagonal matrix Σ =
diag(σ1, ..., σn) has decreasing nonnegative elements such that

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0, (185)

where the vectors ui and vi are the left and right singular vectors of A,
respectively; σi are called the singular values of A which are, in fact, the
nonnegative square roots of the eigenvalues of ATA. Columns of U and A
are orthonormal eigenvectors of AAT and ATA respectively. The rank of
a matrix is equal to the number of nonzero singular values, and a singular
value of zero indicates that the matrix in question is rank-deficient. One of
the most significant applications of matrix decomposition by SVD is within
parallel matrix computations. The SVD has other important applications
within the area of scientific computing. Some of them are as follows [40]:

• solving linear least squares of ill-conditioned and rank-deficient prob-
lems,

• calculation of orthonormal bases for range and null spaces,

• calculation of condition number of a matrix,

• calculation of the Euclidean norm.

As an example, the Euclidean norm of a matrix can be calculated by SVD
as the first element in (185), i.e. σ1. This value is indeed the first (and the
largest) singular value, positioned on the diagonal matrix Σ, that is:

σmax = ‖A‖2 = max
x�=0

‖Ax‖2
‖x‖2

. (186)

With respect to the Euclidean norm in (186), and also the smallest singu-
lar value, both calculated by the SVD procedure, one can determine the
condition number of the matrix A by

cond(A) =
σmax

σmin
, (187)

with σmin as the smallest element on the diagonal matrix Σ in (184).
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Regularization

With an origin in the Fredholm integral equation of the first kind as [6]

f(x) =

∫ b

a
K(x, t)φ(t)dt, (188)

with f(x) and K(x, t) known and φ(t) unknown, most inverse problems de-
scribe the continuous world. The kernel K represents the response functions
of an instrument (determined by known signals), and f represents measured
data; φ represents the underlying signal to be determined. Integral equations
can also result from the method of Green’s functions [81] and the boundary
element methods [58] for solving differential equations. The existence and
uniqueness of solutions to integral equations is more complicated in compar-
ison to algebraic equations. In addition, the solution may be highly sensitive
to perturbations in the input data f . The reason to sensitivity lies in the na-
ture of the problem that has to do with determining the integrand from the
integral; this is just the opposite integration operator which is a smoothing
process. Such an integral operator with a smooth kernelK, i.e., a kernel that
does not possess singularities, has zero as an eigenvalue [40]. This means
that there are nonzero functions that will be annihilated under the integral
operator. Solving for φ in (188) tends to introduce high-frequency oscilla-
tion as the integrand contains φ as an arbitrary function and the smooth
kernel K. The sensitivity in the process of solving integral equations of type
(188) is inherent in the problem and it has not to do with the method of
solving. For an integral operator with a smooth kernel by having zero as
an eigenvalue, additional information may be required. The reason to this
is that using a more accurate quadrature rule leads to an ill-conditioned
linear equation system, which thereby results into a more erratic solution.
To handle the ill-conditioning in such context, several numerical methods
have been used. In truncated singular value decomposition the solution of
the ultimate linear equation system Ax = y is computed by using the sin-
gular value decomposition of A. In this process, small singular values of A
are omitted from the solution; the small singular values of A reflects and
generates in fact ill-conditioning when solving the ultimate linear equation
system.

The method of regularization solves a minimization problem to obtain a
physically meaningful solution. Starting from the Fredholm integral equa-
tion in (188) and introducing m(t) as the model and letting b = [b1, ..., bn]

T
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be the vector of the measured data, a connection between m and b will be

bi =

∫

D
K(si, t)m(t)dt+ εi, (189)

whereK(s, t) is still the smooth kernel, and εi is the measurement noise; D is
the domain of the integration. The goal is now to find the modelm assuming
that the noisy data b is given. The problem (189) becomes a well-posed
least-squares system if it will be discretized with a number of parameters
M which is smaller than N . As a disadvantage, this discretization makes
the solution lie in a small subspace which does not always fit the problem.
However,choosing a discretization with a number of parameters M bigger
than N , the discrete system will possess some of the characteristics of the
continuous system.

Two different methods have been used to discretize Eqn. (189) [99].
The first method uses a quadrature rule to approximate the integral in Eqn.
(189), that is

∫

D
K(sj , t)m(t)dt ≈

M∑

i=1

wiK(sj , t)m(ti)�(ti). (190)

This discretization results into a rectangular system like

b = Ax+ ε, (191)

where Aji = wiK(sj , tj) and x = m(ti) which is a vector in RM . The second
method uses discretization by the Galerkin methods in which the model m
is described by

m =
M∑

i=1

xiψi(s), (192)

where ψi(s) for i = 1, 2, ...,m is an orthonormal set of basis functions. The
integral in Eqn. (190) can now be written as

∫

D
K(sj , t)m(t)dt =

M∑

i=1

xi

∫

D
K(sj , t)ψi(t)dt, (193)

which is in the same form as in Eqn. (191), that is b = Ax + ε, in which x
is a vector of coefficients and

Aji =

∫

D
K(sj , t)ψi(t)dt. (194)
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The ”trade-off” is of importance to think about when selecting discretiza-
tion methods in computational work; as quadrature methods are easier to
implement, the Galerkin method gives more accurate results and requires
fewer unknowns to obtain the same accuracy. However, the major issue to
think about in this stage is that the matrix A is, as a rule, ill-conditioned
and to get rid of ill-conditioning, regularization is needed for the solution of
the problem. In the following section, two different methods for regulariza-
tion are presented. They are the Tikhonov regularization and regularization
by the subspace methods.

Tikhonov Regularization

According to Tikhonov, the problem of finding x as a solution to b = Ax+ ε
can be substituted by a minimization problem as [99]

min φ(β, x) = ‖Ax− b‖2 + β‖Wx‖2,

Subject to x

where φ(β, x) is called the global objective function. In this formulation
‖Ax − b‖2 is the data misfit and ‖Wx‖2 is called the model objective func-
tion; β is a penalty parameter as a parameter that determines how well the
solution is fitted with data. By adjusting β, the solution will fit the data in
an optimal way. By differentiating the problem in (194) with respect to x
and setting the differentiation to zero, a solution will be achieved, that is

(ATA+ βW TW )x = AT b. (195)

It is shown that the penalty parameter β is found by solving

‖b−Ax(β)‖2 = ‖(I −A(ATA+ βI)−1AT )b‖2, (196)

where I is the identity matrix. Inversion or decomposition of the term
(ATA+βI)−1 is costly in this equation and this constitutes a major challenge
in finding the solution. In the context of inverse problems, the Tikhonov reg-
ularization is used to damp the singular vectors, which are associated with
small singular values in the problem, formulated as a singular value decom-
position [99]. Referred to Eqn. (196) and with the matrix A decomposed
by singular value decomposition as

A = UΣV T , (197)
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one can find out that

(ATA+ βI)x = (V Σ2V T + βI)x = V (Σ2 + βI)V Tx = V ΣUT b. (198)

Multiplying both sides in V T in (198) and by other simplifications, x can
be found as

x = V Σ−1(Σ2 + βI)−1Σ2UT b. (199)

Having (199) in vector form, it can be written as

x =

N∑

i=1

λ2
i

λ2
i + β

bTui
λi

vi. (200)

Introducing a function fT (λ) as

fT (λ) =
λ2

λ2 + β
, (201)

which is called the Tikhonov filter function, Eqn. (200) will be rewritten as

x =
N∑

i=1

fT (λi)
bTui
λi

vi. (202)

In fact, the Tikhonov filter function in (201), ”filters” the singular vectors
which are associated with small singular values [99]. These vectors are in
their turn associated with λ2 which are much smaller than β as the penalty
parameter. The Tikhonov regularization is a fundamental process in inverse
problems.

Subspace Regularization

For more efficiency, the Tikhonov regularization can be extended by the Sub-
space regularization method. In fact, the Tikhonov regularization solutions
require a long time and considerable memory. Any shortcut like discretizing
the problem with fewer parameters, leads to an overdetermined system for
a solution to b = Ax + ε. As a consequence, a coarse discretization will
not fit the problem as the solution is forced into a small subspace [99]. The
challenge in such context will be to transform the problem into a small ap-
propriate one by choosing a new subspace Sk in the minimization problem
of

min ‖Ax− b‖2, (203)

Subject to x ∈ Sk
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where A : RM −→ RN . Subspace regularization is involved with definition
of the k−dimensional subspace Sk for k < N such that Sk = Span(Vk).
Hence, the original problem of (203) is now converted into an equivalent
minimization problem of the least-square system of

AVkz = 0. (204)

In fact, a more realistic formulation in this context is to solve a minimization
problem of (203) by defining a subspace Sk with k << N < M that leads
to a well-posed overdetermined system by choosing a small enough k and
a good choice of Sk. There are different methods in which the subspace is
chosen such that it is spanned by singular values.

71



Mathematical Tools Applied in Computational Electromagnetics
for a Biomedical Application and Antenna Analysis

one can find out that

(ATA+ βI)x = (V Σ2V T + βI)x = V (Σ2 + βI)V Tx = V ΣUT b. (198)

Multiplying both sides in V T in (198) and by other simplifications, x can
be found as

x = V Σ−1(Σ2 + βI)−1Σ2UT b. (199)

Having (199) in vector form, it can be written as

x =

N∑

i=1

λ2
i

λ2
i + β

bTui
λi

vi. (200)

Introducing a function fT (λ) as

fT (λ) =
λ2

λ2 + β
, (201)

which is called the Tikhonov filter function, Eqn. (200) will be rewritten as

x =
N∑

i=1

fT (λi)
bTui
λi

vi. (202)

In fact, the Tikhonov filter function in (201), ”filters” the singular vectors
which are associated with small singular values [99]. These vectors are in
their turn associated with λ2 which are much smaller than β as the penalty
parameter. The Tikhonov regularization is a fundamental process in inverse
problems.

Subspace Regularization

For more efficiency, the Tikhonov regularization can be extended by the Sub-
space regularization method. In fact, the Tikhonov regularization solutions
require a long time and considerable memory. Any shortcut like discretizing
the problem with fewer parameters, leads to an overdetermined system for
a solution to b = Ax + ε. As a consequence, a coarse discretization will
not fit the problem as the solution is forced into a small subspace [99]. The
challenge in such context will be to transform the problem into a small ap-
propriate one by choosing a new subspace Sk in the minimization problem
of

min ‖Ax− b‖2, (203)

Subject to x ∈ Sk

70

Inverse Electromagnetic Scattering Problem

where A : RM −→ RN . Subspace regularization is involved with definition
of the k−dimensional subspace Sk for k < N such that Sk = Span(Vk).
Hence, the original problem of (203) is now converted into an equivalent
minimization problem of the least-square system of

AVkz = 0. (204)

In fact, a more realistic formulation in this context is to solve a minimization
problem of (203) by defining a subspace Sk with k << N < M that leads
to a well-posed overdetermined system by choosing a small enough k and
a good choice of Sk. There are different methods in which the subspace is
chosen such that it is spanned by singular values.

71



Mathematical Tools Applied in Computational Electromagnetics
for a Biomedical Application and Antenna Analysis

6 Medical Diagnostics and Microwave Tomographic
Imaging by Applying Electromagnetic Scatter-
ing

The main objective of this section is to investigate biological imaging algo-
rithms by solving the direct, and inverse electromagnetic scattering problem
due to a model based illustration technique within the microwave range. A
well-suited algorithm will make possible fast parallel processing of the heavy
and large numerical calculation of the problem’s inverse formulation. The
parallelism of the calculations can then be performed and implemented on
GPU:s, CPU:s, and FPGA:s. By the aid of mathematical/analytical meth-
ods, and thereby faster numerical algorithms, an improvement of the existing
algorithms is also expected to be developed. These algorithms may be in
time domain, frequency domain, and a combination of both.

There is a potential in the microwave tomographic imaging for providing
information about both physiological state and anatomical structure of the
human body. By several strong reasons the microwave tomographic imag-
ing is assumed to be tractable in medical diagnostics: the energy in the
microwave region is small enough to avoid ionization effects in comparison
to X-ray tomography. Furthermore, tissue characteristics such as blood con-
tent, blood oxygenation, and blood temperature cannot be differentiated by
the density-based X-ray tomography. The microwave tomography can be
used instead of determining tissue properties by means of complex dielectric
values of tissues. It is shown that the microwave tissue dielectric properties
are strongly dependent on physiological condition of the tissue [91]. The
dependence of the tissue dielectric properties plays a major roll to open op-
portunities for microwave imaging technology within medical diagnostics.
In such context, the interesting thing to think about is, always, how the old
electromagnetic scattering computations can be improved by smarter faster
mathematical/numerical algorithms. In addition, there are promising meth-
ods providing a good compromise between rapidity and cost why there is
a potential interest for microwave imaging in biomedical applications. The
area of the research is rather new so that new approaches and new methods
are expected to be developed for tomographic imaging.

The inverse electromagnetic scattering should be solved in order to pro-
duce a tomographic image of a biological object. In this process, the di-
electric properties of the object under test are deduced from the measured
scattered field due to the object and a known incident electric field. Nonlin-
earity relations arise between the scattered field and multiple paths through
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the object. Approximations are used to linearize the resulting nonlinear
inverse scattering problem. As this problem is ill-posed, the existence and
uniqueness of the solution and also its stability should be established [42].

6.1 Direct and Inverse Formulation in Biological Imaging

A two-dimensional prototype microwave tomographic imaging system com-
posed of 64 antennas (a circular antenna array) with the operating frequency
in 2450 MHz is considered in [91]. The antennas are located on the perime-
ter of a cylindrical microwave chamber with an internal diameter of 360
mm which can be filled with various solutions, including deionized water.
By separating the antennas into emitters and receivers, the influence of the
emitter signal is assumed to be avoided. The sequential radiation from 32
emitters and 16 − 20 receiving antennas, is measured. The antennas are
used with a narrow radiation pattern in the vertical direction for creating
a two-dimensional slice of the three-dimensional object under test (OUT).
Special waveguides are also used to get a wider horizontal projection. The
amplitude and the phase of the scattered field due to the OUT is also mea-
sured. The OUT is located in the media with a constant complex dielectric
permittivity. In addition, the magnetic permeability is assumed to be con-
stant everywhere. The dielectric properties of the OUT which is assumed to
be an infinite cylindrically symmetric object with volume V is investigated.
The situation is finally modeled by the following integral equation [91]

j

k2 − k20
−

∫

v
GjdV = Ei, inside V (205)

∫

v
GjdV = Es, outside V

where

k2 = (
ω′

c
)2εµ0, k20 = (

ω′

c
)2ε0µ0

in which



Ei, Incident field;
Es, Scattered field;
G, Green’s function;
j, Polarization current.

Eqns. (205) describe the OUT with unknown dielectric characteristics ε
which is illuminated from the circular antenna array; the scattered field
is received by the receiving antennas on the same antenna array. As the
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be an infinite cylindrically symmetric object with volume V is investigated.
The situation is finally modeled by the following integral equation [91]

j

k2 − k20
−

∫

v
GjdV = Ei, inside V (205)

∫

v
GjdV = Es, outside V

where

k2 = (
ω′

c
)2εµ0, k20 = (

ω′

c
)2ε0µ0

in which



Ei, Incident field;
Es, Scattered field;
G, Green’s function;
j, Polarization current.

Eqns. (205) describe the OUT with unknown dielectric characteristics ε
which is illuminated from the circular antenna array; the scattered field
is received by the receiving antennas on the same antenna array. As the
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ill-posed problem for the inverse system of determining ε in Eqns. (205),
approximation methods should be chosen. In [91] a modified Rytov’s ap-
proximation is used. Born approximation is also used for the above inverse
problem concerning the objects with high contrast of ε. In this case, the
Rytov’s approximation gives better results. The algorithm in [91] gives an
accurate solution of the inverse problem in two-dimensional cases including
image reconstruction of a phantom consisted of a semisoft gel cylinder. The
gel phantom is immersed into the working chamber after being cooled in
a refrigerator. It is shown that the dielectric situation inside the working
chamber is affected by the temperature gradients. In addition, the dielectric
properties of the phantom are also affected by non-isothermic conditions in
the working chamber. Assuming that the frequency range from 2 to 8 GHz
gives the most suitable results for microwave imaging [61], there are technical
difficulties in building a tomographic system for the whole body concern-
ing the frequency range. One of the reasons is that the acquisition time
would be unrealistically long. However, at the lower frequency of about 0.9
GHz suitable spatial resolution is achieved. In summary, the multifrequency
range from 0.9 to 3 GHz is optimal for microwave tomographic imaging [91].
In [15], a suitable method for quasi real-time microwave tomography for
biomedical applications is presented. By simulating a focusing system char-
acterized by small field depth and a variable focal length, a tomographic
process is achieved in this work. The organ under test, which constitutes
the scatterer, transforms the divergent wavefront from the focusing system
into a convergent wavefront. An image, corresponding to a thin organ slice,
from the divergent wavefront can be derived. By changing the focal length,
different slices can be obtained resulting into a cross-section of the organ.
From the measured field distribution, the slice images are deduced. Letting
d and D be the length of the organ and the distance between the observation
line and the slice, respectively, the length of the observation domain will be
2D+ d. The equivalent currents J, responsible for the scattered field is [15]

J(x, y) = (k2(x, y)− k2m)Et(x, y), (206)

where Et(x, y) and k(x, y) are the total field and the wavenumber inside the
organ, respectively; km is the wavenumber of the homogeneous surrounding
medium. For cylindrical objects, illuminated by a plane wave, the scattered
field ES is determined by [15]

ES(x, y) =

∫

S
J(x, y)H

(2)
0

(
km

√
(x− x′)2 + (y − y′)2

)
dx′dy′, (207)
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where H
(2)
0 is the Hankel function of order zero and of the second kind.

For both two-dimensional and the three-dimensional cases, such algorithms
can be used to reconstruct J from the scattered field ES . Here, the recon-
structed current is the image which appears as the convolution between the
point-spread function of the focusing system and the induced current dis-
tribution in the organ. The method of angular spectrum may be used for
reconstruction of the current distribution from the scattered field [72, 94].

6.2 Complex Permittivity of a Lossy Dielectric Medium

Assuming the total electric field I flowing through an arbitrary surface S,
one can write [88]

I =

∫

S
J · ds, (208)

where J is current density in amperes per square meter. The current density
J is, in its turn, defined as

I = Nqu, (209)

where q is electric charge, u the velocity of the electric charge andN , number
of charge carriers per unit volume. The product Nq is free charge per unit
volume. In the case of conduction currents possessing more than one kind
of charge carriers (electrons, ions and holes) with different velocities, Eqn.
(209) should be written as

J =
∑

i

Niqiui, (210)

for i = 1, 2, ...,M and M ∈ N. For most conducting materials, the average
velocity is directly proportional to the applied electric field intensity E. For
metallic conductors

ue = −µeE, (211)

where µe is the electron mobility in m2/V · s. Combining Eqns. (209) and
(211) yields

J = −ρeµeE, (212)

where ρe = −Ne is the charge density for drifting charges (electrons) which
is denoted by e. Eqn. (212) can now be written as

J = −σE, (213)

where σ is called conductivity. Eqn. (213) is called the point form of Ohm’s
law.
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For semiconductors, conductivity is dependent on the concentration and
mobility of both electrons and holes, that is [24]

σ = −ρeµe + ρhµh, (214)

where the subscript h denotes hole. Assume now a lossy medium, defined
as an imperfect conductor or imperfect dielectric with σ �= 0, distinguished
from a perfect dielectric with σ = 0; a lossy medium is also defined as a
medium in which electromagnetic wave loses power as it propagates due to
poor conduction. In addition, a dielectric is [88]:

• linear, if the permittivity ε does not change with an applied E field,

• homogeneous, if ε does not change from point to point and

• isotropic if ε does not change with direction.

Consider now a linear, homogeneous, isotropic, lossy dielectric medium
which is charge free (ρυ = 0). For so-called time-harmonic fields, Maxwell’s
curl equations become

∇×E = −jωH, (215)

and
∇×H = (σ + jω)E. (216)

where ω = 2πf is the angular frequency (rad/s), f being the frequency in
hertz. By time-harmonic fields, the time factor ejωt is suppressed. From
Eqn. (216):

∇×H = jω(1− jσ

ωε
)E = jωεcE, (217)

where
εc = ε(1− j

σ

ωε
), , (218)

or
εc = ε′ − jε′′, , (219)

and ε′ = ε, ε′′ = σω; the new variable, εc is called complex permittivity of
the medium.

6.3 Direct Methods in Biological Imaging

For the direct electromagnetic formulation, a classical approach considering
a 2D version of the problem may be used as an alternative. A 3D version
of the problem would otherwise be to describe the field properties using
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the Maxwell’s equations which leads to a heavy 3D vectorial problem. In
the 2D formulation, the biological object under test is considered to be
nonmagnetic with constant dielectric properties along its vertical axis. The
whole strategy in this approach is to convert the electromagnetic scattering
problem into a radiating problem in the free space and a, so called, 2D scalar
Electrical Field Integral Equation (EFIE). The implicit time dependence of
e−jωt, with ω as the radial frequency is also introduced. The homogeneous
and inhomogeneous wave equations in this context are [42]

(∇2 + k21)E
i(r) = 0, (220)

and
(∇2 + k2(r))E(r) = 0, (221)

respectively. Here, Ei(r), as the incident field, is the propagation of a TM-
polarized, single-frequency, time-harmonic electromagnetic wave, see Fig.
15; the total electric field is denoted by E(r). The constant wavenumber k1
inside the homogeneous media, and the wavenumber k are respectively as

k1 = ω
√

µ0ε∗1, (222)

and
k2(r) = ω2µ0ε

∗(r), (223)

where ε∗1 is the complex permittivity inside the homogeneous media, and
ε∗(r) the complex permittivity of the inhomogeneous region. For the two-
dimensional mathematical formulation it is assumed that the OUT with the
complex dielectric permittivity is not dependent on the z coordinate in the
media, see Fig. 15 The total field, E(r), as a superposition of the incident
field and the scattered field Es(r) can be written as

E(r) = Ei(r) + Es(r). (224)

Introducing a new constant C(r) as

C(r) = k2(r) + k21 (225)

together with the above equations will result into the following wave equa-
tion

(∇2 + k21)E
s(r) = −C(r)E(r). (226)

Associated with the scattered field Es(r) in Eqn. (226), an equivalent cur-
rent J(r) can be defined as

J(r) = C(r)E(r). (227)
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Figure 15: Two-dimensional visualization of the object under test to measure the
complex dielectric permittivity.

In fact, this equivalent current produces the scattered field and the wave
equation above can now be written as [42]

(∇2 + k21)E
s(r) = −J(r). (228)

A Green’s function formulation for the inhomogeneous wave equation in
(228) can be deduced to solve Es(r), that is

(∇2 + k21)G(r, r′) = −δ(r− r′), (229)

where δ(r− r′) is the Dirac delta function; the associated Green’s function
is

G(r, r′) =
j

H
(1)
0

(k1|r− r′|), (230)

where H
(1)
0 is, as previously mentioned, the zero-order Hankel function of

the first kind. By the aid of the Green’s function formulation above, and
the principle of superposition, the scattering field can be obtained by

Es(r) =

∫ ∫

S
G(r, r′)C(r′)E(r′)dr′. (231)
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Considering (224) and (231), the total field is finally expressed as the fol-
lowing integral formulation [42]:

E(r) = Ei(r) +

∫ ∫

S
G(r, r′)C(r′)E(r′)dr′. (232)

Since the complex permittivity is known and the incident field Ei(r) is given,
the scattered field Es(r) will be computed as the direct formulation of the
electromagnetic scattering problem. In such context, Eqns. (231) and (232)
can be solved, for example, by the method of moments (MoM), see previ-
ous chapters. Using this numerical method, two different two-dimensional
configurations, by planar or cylindrical situated dipoles, are solved in [42].
Assuming constant fields and dielectric properties in a rectangular cell as
the OUT, the incident and the scattered field will be discretized as

Ei(rn) =

N∑

j=1

(δnj −G(rn, rj)C(rj))E(rj), n = 1, 2, ..., N, (233)

and

Es(rm) =
M∑

j=1

(δnj −G(rm, rj)C(rj))E(rj), m = 1, 2, ...,M, (234)

where the region, i.e., the OUT, is discretized into N cells and also M
receiving points for the observed scattered field; the Green’s function G
can be computed analytically as depicted in [29]. Numerical solution of
this direct scattering problem will be used for creating image reconstruction
algorithms for the inverse problem using which the unknown permittivity
contrast distribution of the OUT will be found. Concerning biological image
reconstruction by microwave methods, there are different approaches which
are generally based on either radar techniques or tomographic formulation
[60, 16, 17].
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Figure 15: Two-dimensional visualization of the object under test to measure the
complex dielectric permittivity.

In fact, this equivalent current produces the scattered field and the wave
equation above can now be written as [42]

(∇2 + k21)E
s(r) = −J(r). (228)

A Green’s function formulation for the inhomogeneous wave equation in
(228) can be deduced to solve Es(r), that is

(∇2 + k21)G(r, r′) = −δ(r− r′), (229)

where δ(r− r′) is the Dirac delta function; the associated Green’s function
is

G(r, r′) =
j

H
(1)
0

(k1|r− r′|), (230)

where H
(1)
0 is, as previously mentioned, the zero-order Hankel function of

the first kind. By the aid of the Green’s function formulation above, and
the principle of superposition, the scattering field can be obtained by

Es(r) =

∫ ∫

S
G(r, r′)C(r′)E(r′)dr′. (231)

78

Medical Diagnostics and Microwave Tomographic Imaging by
Applying Electromagnetic Scattering

Considering (224) and (231), the total field is finally expressed as the fol-
lowing integral formulation [42]:

E(r) = Ei(r) +

∫ ∫

S
G(r, r′)C(r′)E(r′)dr′. (232)

Since the complex permittivity is known and the incident field Ei(r) is given,
the scattered field Es(r) will be computed as the direct formulation of the
electromagnetic scattering problem. In such context, Eqns. (231) and (232)
can be solved, for example, by the method of moments (MoM), see previ-
ous chapters. Using this numerical method, two different two-dimensional
configurations, by planar or cylindrical situated dipoles, are solved in [42].
Assuming constant fields and dielectric properties in a rectangular cell as
the OUT, the incident and the scattered field will be discretized as

Ei(rn) =

N∑

j=1

(δnj −G(rn, rj)C(rj))E(rj), n = 1, 2, ..., N, (233)

and

Es(rm) =
M∑

j=1

(δnj −G(rm, rj)C(rj))E(rj), m = 1, 2, ...,M, (234)

where the region, i.e., the OUT, is discretized into N cells and also M
receiving points for the observed scattered field; the Green’s function G
can be computed analytically as depicted in [29]. Numerical solution of
this direct scattering problem will be used for creating image reconstruction
algorithms for the inverse problem using which the unknown permittivity
contrast distribution of the OUT will be found. Concerning biological image
reconstruction by microwave methods, there are different approaches which
are generally based on either radar techniques or tomographic formulation
[60, 16, 17].

79



Mathematical Tools Applied in Computational Electromagnetics
for a Biomedical Application and Antenna Analysis

7 Numerical Results and Conclusions

7.1 Current Distribution along the Horizontal Dipole An-
tenna above Real Ground

In the case of a thin horizontal dipole antenna (HDA) above lossy half-space
(LHS) of known electrical parameters, thorough analysis is performed. The
approach is based on the electric-field integral equation method, and formu-
lation of the Hallén’s integral equation (HIE), [10]. This equation is then
solved for the current, which is assumed in a polynomial form Popović[73],
using the point-matching method (PMM) [10]. This way obtained system
of linear equations involves improper Sommerfeld’s integrals, which express
the influence of the real ground, and are here solved approximately using
simple, so-called OIA and TIA, approximations (Rančić and Rančić[76, 77],
Rančić and Aleksić[78, 80], Rančić[79]). Both types of approximations are
in an exponential form, and therefore, are similar to those obtained applying
the Method of Images. Approximate method for the analysis of horizontal
dipole antenna has been applied for the purpose of the current distribution
and input admittance evaluation for the HDA positioned in the air at arbi-
trary height above LHS, which is considered a homogenous medium. This
analysis is focused on validation of the applied method for the cases of inter-
est in the EMC studies. The analysis has been performed in a wide frequency
range, and for different positions of the antenna, as well as for various val-
ues of the LHS’s conductivity. It has been proven, based on the comparison
with the exact model from Arnautovski-Toseva et al.[8, 7], that the method-
ology used here yields very accurate results in the observed parameters’
ranges. This indicates a possibility of applying this method for analysis of
different wire structures in the air above LHS, and more importantly, very
close to the ground where the finite conductivity’s influence is the greatest.
Thorough analysis is performed in order to observe the influence of different
parameters of the geometry, and the ground, on current distribution and
the input impedance/admittance of the HDA. Furthermore, the verification
of the method is done by comparison to the exact model based on the full-
wave theory (Arnautovski-Toseva et al.[8, 7]), and experimental data from
Nicol and Ridd[69]. Obtained results indicate a possibility of applying the
described methodology to inverse problems involving evaluation of electrical
parameters of the ground (or detection of ground type change) based on
measured input antenna impedance/admittance.

Described numerical procedure is applied to near-field analysis of the
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Figure 16: Relative error of the current magnitude along the HDA arm.

Figure 17: Relative error of the current phase along the HDA arm.

symmetrical HDA fed by an ideal voltage generator of voltage U .

Firstly, results of the relative error of current distribution calculation
are given in Figs. 16 and 17. The conductor is 2l = 20 m long with the
cross-section radius of a = 0.007 m, and it is placed at h = 1.0 m above
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Figure 18: Relative error of the current magnitude along the HDA for different ground
conductivities.

Figure 19: Relative error of the current phase along the HDA for different ground
conductivities.

lossy ground with electrical permittivity εr1 = 10. In this case, the variable
parameter is the frequency that takes values from a wide range (10 kHz to
10 MHz). The relative error is shown separately for the current magnitude
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Figure 20: Relative error of the current magnitude along the HDA above LHS at
different heights.

Figure 21: Relative error of the current phase along the HDA above LHS at different
heights.

and phase along the HDA arm for the case of the specific conductivity of
σ1 = 0.001 S/m. As a reference set of data, those from Arnautovski-Toseva
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Figure 18: Relative error of the current magnitude along the HDA for different ground
conductivities.

Figure 19: Relative error of the current phase along the HDA for different ground
conductivities.
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et al.[8, 7] are taken.
Current distribution’s magnitude and phase at 1 MHz, can be observed

from Figs. 18 and 19. The HDA has the same dimensions as previously, and
it is placed at h = 1.0 m above lossy ground with electrical permittivity εr1 =
10. The value of the specific conductivity has been taken as a parameter:
σ1 = 0.001, 0.01, 0.1 S/m. Comparison has been done with the results from
Arnautovski-Toseva et al.[8, 7].

Further, the influence of the conductor’s position on the current distri-
bution has been analyzed. The results are graphically illustrated in Figs. 20
and 21 together with the ones from Arnautovski-Toseva et al.[8, 7]. Three
cases were observed that correspond to heights h = 0.1, 1.0, 5.0 m. The
current has been calculated at frequency of 1 MHz, and analysis has been
done for the following values of the specific ground conductivity: σ1 =
0.001, 0.01, 0.1 S/m. HDA dimensions are the same as previously. Next ex-

Figure 22: HDA current magnitude at point A for different ground conductivities.

ample explores the dependence of the current (its magnitude and phase) on
different ground conductivities calculated at the feeding point A(l = 0 m),
which can be observed from Figs. 22 and 23. Two cases are considered:
solid line represents the value of σ1 = 0.001 S/m, and the dashed one corre-
sponds to σ1 = 0.1 S/m. Fig. 22 corresponds to HDA height of h = 2.5 m,
and Fig. 23 to h = 5.0 m. The same influence for height h = 0.5 m is given
in Rančić and Aleksić[80].

Similarly, the dependence of the current (its magnitude and phase) at
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Figure 23: HDA current phase at point A for different ground conductivities.

specific points along the HDA arm in the frequency range from 10 kHz
to 10 MHz, is presented in Figs. 24 and 25. The antenna is 2l = 20 m
long with a cross-section radius of a = 0.01 m, and considered heights are:
h = 0.5, 2.5, 5.0 m. Electrical parameters’ values of the ground are: electrical
permittivity εr1 = 10, and specific conductivity σ1 = 0.1 S/m. Current
is calculated at points: A(l = 0 m), B(l = 2.5 m), C(l = 5.0 m), and
D(l = 7.5 m). This example for σ1 = 0.001 S/m and h = 0.5 m is given in
Rančić and Aleksić[80].

Finally, Figs. 26 and 27 show comparison between theoretical calcu-
lations and the results of the admittance measurements for the frequency
range of 7− 12 MHz (Nicol and Ridd[69]). Observed HDA is 15 m long sus-
pended at height of 0.3 m above the LHS. Two boundary cases of the ground
are observed: a perfect dielectric (blue data), and a highly conducting plane
(black data). Corresponding results obtained by the Method of Images are
also shown (open circles). It can be observed that the better accordance
is achieved using the method described here, which was expected since the
observed antenna is very close to the ground (for the frequency of 10 MHz,
height of 0.3 m corresponds to 0.01λ0), and the accuracy of the Method
of Images decreases when the antenna is at height less than h/λ0 = 0.025
(Popović and Petrović[75]).
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Figure 23: HDA current phase at point A for different ground conductivities.
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Figure 24: HDA current magnitude at different points along the antenna.

Figure 25: HDA current phase at different points along the antenna.

7.2 Semi-Norm Analysis for the FDTD Algorithm

To determine the order of convergence in the 2D-FDTD algorithm, an error
analysis is used. Let P be an observation point in the 2D-FDTD domain.
This point is symbolized as

⊗
in Fig. 28.
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Figure 26: HDA input conductance versus frequency.

Figure 27: HDA input susceptance versus frequency.

A good way to visualize errors when they are expected to behave like
some power of the spatial discretization, is to write the error ε as [59]

ε(h) ≈ C (h)k , (235)
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Figure 28: Absorbing boundary condition in form of MUR1 for the 2D-FDTD in two
cases: without (left), or with (right) a PEC obstacle.

where h is the cell size and C is a constant independent of h. The linear
equation of η = kξ+m was built to determine the real constants k and C. In
this analysis, k constitutes the order of spatial convergence in the 2D-FDTD

algorithm. In this linear equation η = ln
(
|||uh − uh

2
|||
)
, m = ln(C), and

ξ = ln(h). Based on computer implementation, numerical values for ξ and
η can, in vector form, be written as

ξ = ln(h) = [−3.4012 − 4.0943 − 4.7875 − 5.4806] , (236)

η = ln
(
|||uh − uh

2
|||
)
= [−3.2597 − 4.6670 − 6.0616 − 7.4570] . (237)

The next step in determining the order of convergence k in the 2D-FDTD
algorithm, is to choose a constant value for the time-step ∆t equal to 4ns.
To find the order of the spatial convergence k, in a least-squares sense, the
two vectors in (236) and (237) should be fitted. As a result, the polyno-
mial coefficients for the linear equation of η = kξ + m will be determined
as k = 2.0178 and m = 3.5997, respectively. This verifies that the 2D-
FDTD algorithm is point-wise convergent by the order of 2 in the spatial
discretization.

7.3 GPU Parallelism of the 2D-FDTD Algorithm

In order to speedup the simulation process of the 2D electromagnetic prob-
lem by the FDTD method, parallelism was used. The problem to be solved
was resembling so-called Breast Phantom in biological applications [42].
Computer simulations, based on theoretical analysis, confirm stability and
convergence of the 2D-FDTD algorithm, implemented by CPUs and GPUs.
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Discretization/meter Octave C CUDA

30 40.83 1.37 1.63

60 44.53 5.25 1.68

120 63.03 20.26 2.23

240 127.17 79.50 4.75

480 899.91 317.76 15.30

960 3779.71 1322.28 55.84

Table 1: Simulation time per second for the Octave, C, and CUDA implementations
for different discretization levels

Discretization/meter C CUDA

30 29.74 25.05

60 8.49 26.58

120 3.11 28.26

240 1.60 26.80

480 2.83 58.83

960 2.85 67.69

Table 2: Speedups by the C and CUDA implementations compared to the implemen-
tation in Octave

Although CPUs were easy to program, it was shown that they didn’t offer
much in the parallelism process due to the FDTD algorithm. FPGAs, on
the contrary, offered high performance parallelism but the implementation
was complicated. On the other hand, FPGAs are not generally as accessible
as either GPUs or CPUs. These were two reasons to exclude parallelism by
FPGAs. In this thesis, the first parallelism performance aspect was based
on the elapsed time for implementations in Octave, C, and CUDA. This is
depicted in Table 1. The second aspect was the speedup factor for these
three different implementation environments. This is depicted in Table 2,
where the speedup factor for C and Octave is compared to the Octave’s im-
plementation. Finally, the third aspect of performance in this work is with
respect to implementation quality when the discretization level is increasing.
As it is shown in Table 3, in this kind of performance analysis, the number of
computed cells per second is measured with respect to increasing discretiza-
tion level. The efficiency level of the C implementation stay almost still
for different discretization levels while the CUDA’s implementation perfor-
mance grows prominently, see Table 3. The computing performance grows
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Discretization/meter Octave C CUDA

30 2.24 65.55 22.22

60 8.10 68.68 214.93

120 22.85 71.10 645.74

240 45.29 72.45 1213.10

480 25.60 72.51 1506.18

960 24.38 69.70 1650.43

Table 3: Millions of cells computed per second for different discretization level imple-
mented in Octave, C, and CUDA

Figure 29: Efficiency of the CUDA implementation for different levels of discretization
(horizontal axis) vs number of cells computed per second (vertical axis).

from 22 millions cells per second to about 1650 millions cells per second for
different discretization levels. Although efficiency of the C implementation
is significantly higher than that of the Octave’s, the CUDA’s implementa-
tion is strikingly more efficient. However, for greater levels of discretization,
computations implemented in CUDA are shown to stay around 1680 mil-
lions cells per second, see Fig. 29. Validation of the FDTD solution of the
electromagnetic scattering problem was based on a semi-norm analysis in
the previous section and in [66]. Accordingly, this value should converge to
2. As a matter of fact, it was shown that the order of convergence in the
parallelized implementation of the FDTD code was, as well, very close to 2.
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7.4 Antenna Analysis Applying the PEEC Method

Test Object: Orthogonal λ
2 Dipole

For implementation of the Grid-PEEC, a test environment was provided in
which the test was preformed with different numbers of executors (1, 2, 6,
12 and 20). All of the executors were running on Dell Optiplex GX260, P4-
2.0 GHz, 640 Mb RAM, and Gigabit network card. The manager was run
on an IBM Thinkpad R50p with a 1.5 GHz Centrino, 512 Mb RAM, and
a 100 Mbit/s network card. The executors where all located in the same
computer lab and the manager in a nearby office. The bandwidth of the
network between the two rooms is 100 Mbit/s. The Grid-PEEC program was
run on the same computer as the manager. This section shows the results
for a λ

2 dipole discretized using orthogonal cells thus enabling the usage of
analytic calculation routines for partial elements. These computations are
performed in approximately µs and therefore no speed up can be expected
du to the slow connection of computers on the grid. Consider the results for
the calculation of partial elements as shown in Fig. 30. It is clear that grid
computations are not suitable for these type of structures.

Test object: Nonorthogonal Transmission Line

This section present results for a simple nonorthogonal transmission line
(TL). The test object is generic in the sense that another object discretized
in the same manner would give the same speed up. The TL is differential
fed with a unitary current source and the near- and far- end is terminated
using 50 Ω resistances.The TL is discretized using 200 nodes and the near-
and far- end responses are calculated. The structure requires the calculation
of

• 200 self and 19 900 mutual coefficients of potentials (cops) using a
5-5-1 Gauss-Legendre quadrature rule and

• 198 self and 19 503 mutual partial inductances using a 5-5-2 Gauss-
Legendre quadrature rule.

The old code calculated the cops in 10 seconds and the partial inductances
in 320 seconds. The grid-PEEC calculation times for the partial elements
are shown in Fig. 31 for an increasing number of executors. It is clear
that the partial element calculation time is not improved by the grid-PEEC
application.
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Figure 30: Calculation time for orthogonal partial elements when increasing the num-
ber of executors, (top) coefficients of potentials and (bottom) partial in-
ductances.
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Figure 31: Speed up when increasing the number of executors. (Left) shows the lack
of speed up for calculating coefficients of potentials while (right) shows
the lack of speed up for calculating partial inductances.

Solution of Frequency Domain System

The frequency sweep is performed from 1 MHz to 10 GHz using 1 000 points.
The old code performed the 1 000 calculations (solutions) in 65 minutes on
the manager computer (IBM-R50). The grid-PEEC execution time for the
frequency sweep is shown in Fig. 32 (left) for an increasing number of
executors. From the figure, it is clear that the frequency sweep time is

Figure 32: Speed up when increasing the number of executors. (Left) shows the
speed up for the repeated frequency domain solution while (right) shows
the speed up for the total grid-PEEC solver.

clearly improved by the grid-PEEC application. However, five executors are
required to improve the calculations, and by using 20 executors the time is
reduced by 78%.
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Total Solution Time

Even if the grid code does not speed up the partial element calculations, as
seen in Fig. 31, the overall solution time is improved due to the dominance
of the solution time for the frequency domain circuit equations which are
clearly improved.

7.5 The PEEC Method and CIM

This section gives two examples for PEEC models utilizing the theory de-
scribed in previous sections.

λ
2Dipoles

The first example is a horizontal, thin wire dipole of length 50 mm and
radius 0.01 µm, located above a PEC-plane as studied in [1]. For numerical

Figure 33: Resonance frequency results for a λ
2 dipole above a PEC plane modeled

using a combination of PEEC and IM.

modeling, a PEEC-based solver utilizing the modified computation of the
partial elements to account for a PEC plane at z = 0 is used. Fig. 33 shows
the computed driving point impedance of the dipole at various heights above
the PEC-plane which compares well with the results from [1]. Fig. 34 shows
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Figure 34: Electric field for different heights above a PEC-plane for a λ
2 dipole modeled

using a combination of PEEC and CIM.

the computed electric field strengths for two different heights above the
PEC-plane. These results compare well with results from [10].

Dual-Band Antenna (PIFA)

The second numerical example is the dual-band, PIFA (Planar Inverted F
Antenna), studied in [63]. The antenna consists of two interconnected, by
an LC-trap, antenna elements (20 × 10 mm and 10 × 10 mm) above a PEC-
plane. Using the traditional PEEC method, the antenna can be studied by
modeling the PEC-plane. However, here we show the results obtained by
using the theory from above compared to a free-space situation (no PEC-
plane). The PIFA-antenna is designed to have resonance frequencies around
900 and 1 800 MHz depending on the LC-trap. Using one of the suggested
L-C-combinations in [63], the Image-PEEC solver gives the result presented
in Fig. 35. The resonance frequencies are 1 000 and 1 750 MHz without
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altering the L-C-combination which has to be considered well in comparison
with the published results.

(a)

Figure 35: Resonance frequencies for a dual-band antenna (PIFA) above a PEC plane.

Z-Section Test

Based on the coupled formulation of the PEEC method and the CIM, a
so-called Z-section test was done where the system was consisted of two
rails, a ground plane, and a discontinuity, see Fig. 36. The computational
time was considerably reduced by approximating the ground effects and the
reduced number of unknowns, in comparison to the case where the ground
were gridded. Some of the case studies showed computational speed ups for

Figure 36: Voltages and currents in a Z-section test.
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EM problems containing large ground planes where the PEEC method and
the CIM were applied. These results are as follows:

• In the case of the PIFA test from paper A, the frequency domain,
quasi-static solution by 100 steps and gridded ground plane resulted
into 585 + 322 unknowns. This was solved by regular PEEC in 1
minute, 44 seconds. Removed ground plane resulted into 155 + 91
unknowns by the solution time of 3 seconds.

• In the case of the Z-section test, mentioned in Chapter 4, the frequency
domain, quasi-static solution by 100 steps and gridded ground plane
resulted in 2270 + 1275 unknowns. This was solved by the regular
PEEC in 56 minutes. Removed ground plane resulted in 200 + 204
unknowns. This was solved in 5 seconds.

It should be mentioned that the speed ups were strongly application depen-
dent.
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8 Summaries of the Papers

The thesis includes six papers, namely, paper A: ”Antenna analysis using
PEEC and the complex image methods” (Monsefi, Ekman, 2006a); paper
B: ”Optimization of PEEC based electromagnetic modeling code using grid
computing” (Ekman, Monsefi, 2006b); paper C: ”Sommerfeld’s integrals
and Hallén’s integral equation in data analysis for horizontal dipole antenna
above real ground” (Monsefi, Rančić, Aleksić, Silvestrov, 2014a); paper D:
”HF analysis of thin horizontal central-fed conductor above lossy homoge-
neous soil” (Monsefi, Rančić, Aleksić, Silvestrov, 2014b); paper E: ”Analysis
of shielded coupled microstrip line with partial dielectric support” (Perić,
Ilić, Aleksić, Raičević, Monsefi, Rančić, Silvestrov, 2014c); paper F: ”Solu-
tion of 2D electromagnetic scattering problem by FDTD with optimal step
size, based on a discrete norm analysis” (Monsefi, Carlsson, Rančić, Otter-
skog, Silvestrov, 2014d). G: ”GPU Implementation of a Biological Electro-
magnetic Scattering Problem by FDTD. Submitted to Proceedings of 16th
ASMDA Conference, 30 June - 4 July 2015, Piraeus, Greece. (Monsefi,
Carlsson, England, Otterskog, Rančić, Carlsson, Silvestrov, 2015a).

8.1 Paper A

The partial element equivalent circuit (PEEC) method has been developed
from VLSI inductance calculations in the early 70s. The method is still
evolving and new application areas are continuously reported. In this paper
we show how the PEEC method is utilized to model antenna characteristics
by the use of the appropriate Green’s functions. By applying the complex
image methods due to a layered medium, the potential, generated by a
source, will be the same as the sum of potentials by a combination of the
source itself and image sources including both real and image locations. Cal-
culated and analytical results are compared for dipoles while more complex
antenna designs are compared with published results by other researchers.
Fast and accurate results encourage for further work.

8.2 Paper B

This paper deals with the optimization of an existing frequency domain,
nonorthogonal partial element equivalent circuit based electromagnetic anal-
ysis code using the freeware Alchemi toolkit in a Windows environment. The
purpose is to speed up both the calculation of the nonorthogonal partial el-
ements and the solution of the frequency domain systems. The technology

98

Summaries of the Papers

with this type of heterogeneous grid computing was shown to be very young
and extensive work, including the construction of a linear algebra library,
was required to enable satisfactory results.

8.3 Paper C

Increase of the radiation power in different frequency bands during the last
decades, has called for a study of harmful effects on the living organisms and
electronic equipment of the radio frequency energy. An accurate determi-
nation of the near field strength, electric as well as magnetic, in the vicinity
of higher-power transmitting antennas is necessary for assessing any pos-
sible radiation hazard. In that sense, it is of great importance to account
for the influence of the finite ground conductivity on the electromagnetic
field structure in the surroundings of these emitters. The estimation of
this influence has been intensively studied, and a number of approaches has
been applied in that sense, ranging from the exact full-wave based ones to
different forms of approximate, less time-consuming, ones. Although the
approximate methods introduce a certain level of calculation error, their
simplicity is of interest in the electromagnetic compatibility (EMC) studies.
For that reason, finding an approximate, but satisfyingly accurate method,
applicable to wide range of parameters is often a goal of researches done in
this field.

In this paper, the authors perform an analysis of a thin horizontal dipole
antenna (HDA) above real ground of known electrical parameters. The
approach is based on the electric-field integral equation method, and formu-
lation of the Hallén’s integral equation (HIE). This equation is then solved
for the current, which is assumed in a polynomial form, using the point-
matching method (PMM). This way obtained system of linear equations
involves improper Sommerfeld’s integrals, which express the influence of the
real ground and are here solved approximately using simple, so-called OIA
and TIA, approximations (one- and two-image approximations). Both types
of approximations are in an exponential form, and therefore are similar to
those obtained applying the Method of Images. It should be kept in mind
that the goal of this approach is to develop approximations that have a sim-
ple form, whose application yields satisfyingly accurate calculations of the
Sommerfeld’s type of integrals, and are widely applicable, i.e. their employ-
ment is not restricted by the values of electrical parameters of the ground,
or the geometry.

Thorough analysis is performed in order to observe the influence of dif-
ferent parameters of the geometry, and the ground, on current distribu-
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tion and the input impedance/admittance of the HDA in a wide frequency
range. Furthermore, the verification of the method is done by comparison
to the exact model based on the full-wave theory, and experimental data.
Obtained results indicate a possibility of applying the described method-
ology to inverse problem involving evaluation of electrical parameters of
the ground (or detection of ground type change) based on measured input
impedance/admittance of the antenna.

8.4 Paper D

In this paper, the authors perform HF analysis of a thin horizontal conductor
fed in its center, and arbitrarily positioned above lossy homogeneous ground
of known electrical parameters. The approach is based on the electric-field
integral equation method, and formulation of the Hallćn’s integral equa-
tion. This equation is then solved for the current using the point-matching
method. The Sommerfeld’s integrals that express the influence of the lossy
ground, and that appear in these calculations, are solved approximately.
Thorough analysis is performed in order to observe the influence of different
parameters of the geometry and the ground on current distribution in the
specified frequency range. Furthermore, the verification of the method is
done by comparison with the exact model based on the full-wave theory.

8.5 Paper E

A shielded coupled micro-strip line with partial dielectric support is analyzed
using the hybrid boundary element method (HBEM) and the finite difference
method (FDM). The HBEM is a combination of the equivalent electrodes
method (EEM) and the boundary element method (BEM). The microstrip
line characteristic parameters: the effective relative permittivity and the
characteristic impedance are determined. ”Odd” and ”even” modes are
taken into account. The results are compared with corresponding ones found
in the literature.

8.6 Paper F

To solve the electromagnetic scattering problem in two dimensions, the Fi-
nite Difference Time Domain (FDTD) method is used. The order of conver-
gence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl
equations, is estimated in two different computer implementations: with and
without an obstacle in the numerical domain of the FDTD scheme. This
constitutes an electromagnetic scattering problem where a lumped sinusoidal
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current source, as a source of electromagnetic radiation, is included inside
the boundary. Confined within the boundary, a specific kind of Absorbing
Boundary Condition (ABC) is chosen and the outside of the boundary is in
form of a Perfect Electric Conducting (PEC) surface. Inserted in the com-
puter implementation, a semi-norm has been applied to compare different
step sizes in the FDTD scheme. First, the domain of the problem is chosen to
be the free-space without any obstacles. In the second part of the computer
implementations, a PEC surface is included as the obstacle. The numerical
instability of the algorithms can be rather easily avoided with respect to the
Courant stability condition, which is frequently used in applying the general
FDTD algorithm.

8.7 Paper G

A shielded coupled micro-strip line with partial dielectric support is analyzed
using the hybrid boundary element method (HBEM) and the finite difference
method (FDM). The HBEM is a combination of the equivalent electrodes
method (EEM) and the boundary element method (BEM). The micro-strip
line characteristic parameters: the effective relative permittivity and the
characteristic impedance are determined. ”Odd” and ”even” modes are
taken into account. The results are compared with corresponding ones found
in the literature.
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