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SUMMARY 

 

Ribonucleotides, also known as ribonucleoside monophosphates (rNMPs), are the most 

abundant non-canonical nucleotides incorporated into genomic DNA. Despite the 

relevance, information about their repair pathways, consequences, and profiles is still 

lacking. Exploiting the use of oligonucleotides containing rNMPs in a molecular 

approach to generate various RNA/DNA hybrids of chosen sequence and structure at the 

chromosomal level in cells, we show that mispaired rNMPs embedded into genomic 

DNA are not only targeted by ribonucleases H (RNases H) but also by the mismatch 

repair (MMR) system both in E. coli and S. cerevisiae cells. In addition, we discovered 

that paired rNMPs in DNA are targets of both RNase H type 2 and nucleotide excision 

repair (NER) in yeast. Also, we report atomic force microscopy (AFM)-based single 

molecule elasticity measurement, molecular dynamics simulation, and nuclear magnetic 

resonance spectroscopy results, showing that rNMPs in short DNA duplexes can change 

the elastic and structural properties of DNA. Lastly, we developed ribose-seq, a method 

for capturing rNMPs embedded in DNA. High-throughput sequencing of rNMP-captured 

molecules from the yeast S. cerevisiae revealed widespread but non-random rNMP 

distribution with preferences in base composition of rNMPs and neighboring DNA 

sequence context in both nuclear and mitochondrial DNA. With ribose-seq, systematic 

profiling of rNMP incorporation into genomic DNA is achieved, potentially allowing 

determination of specific signatures of rNMPs in DNA which could help to better 

understand the nature of rNMP repair mechanisms, effect of rNMPs on DNA mechanical 

properties and structure, and eventually rNMP impact on genome integrity.



 

1 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Genome Integrity 

Genome integrity is persistently tested by various exogenous agents, such as chemicals 

and UV radiation, and endogenous sources, including DNA replication errors, DNA 

single- and double-strand breaks from collapsed DNA replication forks, dysfunctional 

DNA repair pathways, and reactive oxygen species [1, 2]. Numerous types of mutations, 

such as substitutions, insertions, deletions, and chromosomal rearrangements, can result 

from accumulation of DNA damage. Genome instability is generally thought to be 

detrimental to cells, but it is also the driving force of evolution leading to genetic 

variation at the molecular level. Prevention of genome instability and maintenance of 

genome integrity are achieved by several DNA repair pathways, including direct reversal 

of damage and post-replicative processes of base-excision repair (BER), mismatch repair 

(MMR), nucleotide excision repair (NER), and double-strand break (DSB) repair [1]. In 

addition to well-known types of DNA damage, such as base alkylation, oxidation, and 

hydrolysis, ribonucleotides comprise a significant portion of DNA lesions. 

 

1.2 Incorporation of Ribonucleotides into DNA 

Ribonucleotides, also known as ribonucleoside 5-monophosphates (rNMPs), which are 

normally monomers of RNA, have been found to be the most abundant non-canonical 

nucleotides incorporated in DNA. rNMPs have an extra 2-hydroxyl (OH) group, 

differing from their corresponding deoxyribonucleotides, also known as 

deoxyribonucleoside 5-monophosphates (dNMPs). Incorporation of rNMPs in DNA was 

initially found only in particular DNA sequences, including the mammalian 



 2 

mitochondrial genome [3] and the mating type locus of fission yeast [4]. Despite the 

presence of conserved “steric gate” against 2-OH of ribonucleotide, which partly 

prevents the incorporation of rNMP by a DNA polymerase (Pol), recent evidence shows 

the capacity of nearly all DNA polymerases from bacteria to yeast and human to 

incorporate rNMPs into DNA [5-23]. For example, Escherichia coli polymerases III [19] 

and V [12], the polymerase component of bacterial non-homologous end joining ligases 

[13], and the human replicative polymerases  [14] and  [15] all insert rNMPs. In 

addition, human polymerase  can insert rNMPs with the same efficiency as 

deoxyribonucleotides, also known as deoxyribonucleoside 5-monophosphates (dNMPs) 

[16]. All replicative polymerases of budding yeast (Pol , , and ) incorporate rNMPs 

into DNA with frequencies of 1 rNMP for every 625, 5,000, and 1,250 dNMPs, 

respectively [21]. The fact that the amount of ribonucleoside 5-triphosphates (rNTPs) is 

generally 10 to 188-fold higher than that of deoxyribonucleoside 5-triphosphates 

(dNTPs) in cycling cells [21, 24, 25] increases the probability of rNMP incorporation 

during DNA replication and repair. 

 

Other sources of ribonucleotides in DNA include incomplete Okazaki fragment 

maturation during DNA replication and oxidative damage. Initial steps of DNA 

polymerization involve an RNA primer synthesized by an RNA primase [26]. This 

primer is used to initiate DNA synthesis of Okazaki fragments during lagging-strand 

synthesis [27]. The RNA fragment is then removed via Okazaki fragment maturation, but 

incomplete maturation may lead rNMPs to be remained and embedded in DNA by DNA 

ligase I [28]. Oxidative damage has also been shown to form rNMPs in vitro and in vivo 

[29]. Reactive oxygen species (ROS), among which the hydroxyl radical (OH) is the 

most reactive, can cause multiple modifications to DNA [30]. Via Fenton chemistry, the 
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OH radical can attach all components of DNA, including the deoxyribose that can give 

rise to ribose [29]. 

 

Quantitative measures of rNMPs in DNA following alkali treatment of yeast genomic 

DNA derived from RNase H2–deficient cells estimated ~1,500 to ~2,400 rNMPs per 

genome [31-33]. Similar measurement conducted for genomic DNA derived from RNase 

H2–deficient embryonic fibroblasts revealed the presence of more than one million 

rNMPs in the mouse genome, suggesting that rNMPs are the most common nucleotide 

base lesion in dividing mouse cells [34]. Overall, these findings show that rNMPs occur 

in DNA much more often than previously anticipated and much more frequently than 

mismatches or oxidized bases; thus, rNMPs are the most common non-canonical 

nucleotides found in genome of cells. 

 

Information about the identity and the distribution of rNMPs in genomic DNA is still 

lacking and remains to be determined. 

  

1.3 Repair and Tolerance of Ribonucleotides in DNA 

As previously described, the number of rNMPs incorporated in DNA exceeds the number 

of other DNA lesions. Therefore, one would expect multiple pathways to exist to process 

rNMPs in DNA. 

 

1.3.1 Ribonucleotide excision repair 

Ribonucleotide excision repair (RER) is generally known as the primary mechanism of 

removal of rNMPs in DNA [35]. RER is initiated by ribonucleases (RNases) H, which 

are enzymes that have been shown in vitro to degrade the RNA strand of an RNA:DNA 

hybrid [36-38]. RNases H have been reported to be involved in DNA replication, 

transcription, recombination repair, and development. RNases H can be classified into 
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two major categories: type I/1 and type II/2. RNase HI/1 enzymes require a stretch of 

four or more rNMPs embedded in a DNA duplex while RNase HII/2 enzymes are able 

cleave even single rNMPs embedded in DNA [37, 38]. RER, for example in yeast, is 

initiated by the incision of the rNMP(s) by either RNase H, and the nicked DNA strand is 

further excised by the flap endonuclease FEN1 or Exo1 with strand displacement 

synthesis carried out by DNA Pol , the PCNA clamp, its loader RFC, and DNA ligase I 

(Figure 1.1). As mentioned earlier, all quantitative studies of rNMPs in DNA have been 

performed with genomic DNA from RNase H2–deficient cells, suggesting the significant 

role of RNase H2 in removal of rNMPs in DNA. 

 

 

Figure 1.1 Model for ribonucleotide excision repair. rNMP is in red. RNase H2 is 

shown here as the substrate is a single rNMP. (from [35]) 

 

1.3.2 Topoisomerase I–mediated removal of ribonucleotides 

In the absence of functional RNase H2, the accumulation of genomic rNMPs is partially 

suppressed by the action of DNA topoisomerase I (Top1) [32, 39, 40]. Top1 is a type IB 

topoisomerase whose action proceeds through the reversible formation of a DNA nick 

with a DNA-3-phosphate-Top1 covalent complex and a 5-OH. When Top1 incises at  
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rNMPs, it is transiently linked to 3-phosphate of the rNMP. With the nucleophilic attack 

by the neighboring 2-OH group, Top1 is released, resulting in a nick containing 

unligatable 5-OH and 2,3-cyclic phosphate ends [41]. This 2,3-cyclic phosphate end-

containing DNA is then unwound by a DNA helicase Srs2, which interacts with and 

enhances the activity of nuclease Exo1, allowing nick processing-gap filling [40]. 

Quantitative measurement of rNMPs removed by Top1 was only possible in the absence 

of RNase H2, suggesting that RNase H2 is the first repair enzyme to remove rNMPs in 

DNA. 

 

1.3.3 Other removal and tolerance pathways of ribonucleotides in DNA 

DNA polymerases do have the ability to proofread rNMPs but is very limited [14, 42]. 

For example, yeast replicative Pol  has been shown to proofread rAMPs and rUMPs, but 

not rGMPs and rCMPs [42]. 

 

Incision at an rNMP embedded in DNA by RNase H2 leaves a 3-OH end and a 5-

phosphate end, which allows the possibility of DNA ligase to attempt to re-ligate the nick. 

The first step of re-ligation would involve the adenylation of the rNMP–DNA junction. 

This adenylation is reversed by aprataxin, which restores the normal RER [43]. 

 

rNMPs in DNA, if unremoved, need to be tolerated by the cells. During the subsequent 

round of replication, DNA polymerases need to be able to bypass rNMPs in DNA. 

rNMPs in DNA template have been found to impede DNA synthesis by the yeast 

replicases  and  [44-46], with the former having much lower bypass efficiency when 

there was a stretch two to four rNMPs. Therefore, to properly complete replication, there 

must be some other pathways for tolerance. One known mechanism for tolerance is via 

postreplication repair (PRR). Specifically, MMS2-dependent template switch and Pol -
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dependent bypass have been found to be important for tolerating the presence of rNMPs 

in DNA [47]. 

 

Whether rNMPs are targeted by other repair pathways remains to be further investigated. 

 

1.4 Consequences of rNMPs in DNA 

Incorporation of rNMPs into DNA has several consequences, including both positive and 

negative consequences. 

 

1.4.1 Positive consequences 

There are so far two known positive consequences of rNMPs in DNA. One is observed in 

fission yeast Schizosaccharomyces pombe. The presence of two rNMPs in the mat1 locus 

stalls leading-strand synthesis by Pol  during subsequent DNA replication, initiating the 

replication-coupled recombination event leading to mating-type switching between M 

and P [4, 48]. 

 

Another positive consequence of rNMPs in DNA involves mismatch repair (MMR). 

MMR is responsible for correcting any kind of DNA/DNA misalignments, including 

base-base mismatches and insertion/deletion loops [49-51]. In order for proper repair to 

occur, MMR must target the nascent strand. In E. coli, the transiently unmethylated state 

of adenine in GATC sequences during DNA replication acts as the strand discrimination 

signal. In eukaryotes, transient 5 ends of Okazaki fragments may allow strand 

discrimination during lagging-strand synthesis [52]. During leading-strand synthesis, 

nicks created by RNase H2 at rNMPs in DNA act as strand discrimination signals [33, 

53]. 

 

1.4.2 Negative consequences 
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With the highly reactive extra 2-OH group in the sugar, rNMPs embedded in DNA 

constitute an internal threat to DNA [54]. Despite the few instances mentioned above, 

overall, the presence of rNMPs in DNA is deleterious. DNA contaminated with ribose is 

markedly more susceptible to breakage [54]. Short rNMP tracts embedded in DNA can 

serve as templates for DNA synthesis and can propagate a mutation upon replication in E. 

coli, budding yeast, and human embryonic kidney cells [46, 55-58]. As mentioned earlier, 

while yeast replicative polymerases can incorporate dNMPs opposite to rNMPs in 

template, their efficiencies are lower than to DNA [44, 45]. Thus, the rNMPs embedded 

in DNA and/or the DNA breaks that arise from processing of rNMPs can pause DNA 

replication or transcription and cause nucleotide deletions during DNA synthesis, 

threatening genome integrity. Moreover, nucleosome assembly onto DNA duplexes 

containing even a single rNMP within 125 base-pairs (bp) of DNA occurs with reduced 

efficiency [59]. 

 

RNase H2–null Saccharomyces cerevisiae strains with an additional Pol  mutant that 

increases rNMP incorporation show several phenotypes of replication stress, including 

slow growth, accumulation in S phase, and sensitivity to hydroxyurea (HU), a replication 

inhibitor [47, 60]. Also, increased genome instability is observed with an increase in 2–5 

bp deletions in short tandem repeats [60, 61]. Pol  mutation which decreases rNMP 

incorporation eliminates these effects, suggesting that the stress is dependent on the level 

of rNMP incorporation. Also, additional knockout of top1 lessens these effects, 

suggesting that they mainly result from ends created by Top1 cleavage at rNMPs [32, 39, 

62]. Deletion of either RNase H1 or H2 in mice is embryonic lethal [34, 63]. Murine 

RNase H2–null embryonic fibroblasts accumulate over one million rNMPs in their 

genomic DNA, activating a p53–dependent damage response [34]. In humans, partial-

loss-of-function mutations in any of three subunits of RNase H2 are associated with the 

neurological syndrome of Aicardi-Goutieres (AGS) [64, 65]. Altered RNase H2 function 
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in AGS patients may lead to accumulation of rNMPs in DNA, which in turn is thought to 

induce a chronic, low-level DNA damage response signaling that stimulates innate 

immune pathways [66]. 

 

1.4.3 Consequences that could go both ways 

The structural effects of rNMP(s) in DNA have been investigated by nuclear magnetic 

resonance (NMR), X-ray crystallography, and molecular dynamics (MD) simulation [67-

75]. Most of these studies are analyses of DNA duplexes with a stretch of rNMPs to 

investigate the structural influence of RNA, which is present transiently in DNA during 

DNA replication as an Okazaki fragment. A few studies have investigated the structural 

effects of isolated rNMPs in DNA [72-75]. Crystallography studies so far indicate that 

the rNMP(s)-embedded DNA molecules adopt an overall A-DNA conformation, which is 

observed in RNA. NMR and MD simulation studies of DNA containing rNMPs in 

solution indicate that the duplex retains its overall B-conformation with local distortions 

observed in the vicinity of the isolated rNMPs. Most of these studies used self-

complementary DNA sequences; for example, NMR study by DeRose et al. [75] used a 

self-complementary Dickerson dodecamer sequence, having an rNMP in each strand of 

DNA. Helical distortions are caused by rNMP(s) in DNA can not only be helpful but also 

harmful to the cells. These helical distortions can easily affect DNA-DNA and DNA-

protein interactions, playing a role in DNA recognition, packaging, and modification by 

proteins. 

 

Whether the local helical distortions caused by rNMP(s) in DNA affect the mechanical 

properties of DNA remains to be determined. 

 

1.5 Research Goals 
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1.5.1 To identify the protein factors and DNA repair mechanisms that can target 

ribonucleotides embedded in DNA. 

Given the frequency of rNMP incorporation into DNA, we propose that there are multiple 

repair pathways targeting rNMPs in genomic DNA, such as RNases H, mismatch repair 

(MMR), nucleotide excision repair (NER), and base excision repair (BER). In addition to 

in vitro cleavage assays, we have utilized in vivo oligonucleotide (oligo)-driven gene 

correction assays in E. coli and S. cerevisiae to examine gene correction efficiency in 

different mutant backgrounds. 

 

1.5.2 To determine whether ribonucleotides embedded in DNA affect its mechanical and 

structural properties. 

With the high level of rNMP incorporation into DNA and its consequences in cells, we 

propose that rNMPs in DNA change its elasticity and structure. We made atomic force 

microscopy (AFM)-based single molecule force measurements to determine the elasticity 

and performed molecular dynamics (MD) simulations and nuclear magnetic resonance 

(NMR) to study the structure of rNMP(s)-containing DNA. 

 

1.5.3 To profile ribonucleotides incorporated into genomic DNA. 

Numerous studies have shown the presence of rNMPs in DNA; however, the information 

about the identity and the distribution of these rNMPs in genomic DNA is unknown. We 

propose to develop an approach to capture rNMPs in S. cerevisiae genomic DNA so that, 

via next-generation sequencing, profiles of rNMPs in DNA could be obtained. 
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CHAPTER 2 

 

RIBONUCLEOTIDES IN DNA ARE TARGETS OF RNASES H, 

MISMATCH REPAIR, AND NUCLEOTIDE EXCISION REPAIR.  
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2.1 Abstract 

Numerous studies have shown that ribonucleoside monophosphates (rNMPs) are the most 

abundant among all non-standard nucleotides occurring in genomic DNA. Therefore, it is 

important to understand to what extent rNMPs may alter genome integrity and what 

factors affect their stability. We developed oligonucleotide-driven gene correction assays 

in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae to show that 

mispaired and paired rNMPs embedded into genomic DNA, if not removed, serve as 

templates for DNA synthesis and produce a genetic change. We discovered that isolated 

mispaired rNMPs in chromosomal DNA are removed by the mismatch repair system in 

competition with RNase H type 2. However, a mismatch within an RNA-DNA 

heteroduplex region requires RNase H type 1 for removal. In the absence of mismatch 

repair and RNases H, ribonucleotide-driven gene modification increased a factor of 47 in 

yeast and 77,000 in E. coli. Also, we found that isolated paired rNMPs in DNA are 

removed by RNase H type 2 and nucleotide excision repair. 

 

2.2 Introduction 

Modifications of nucleotides in DNA pose a threat to the genomic integrity of cells, often 

resulting in cell death or mutation. Numerous studies suggest that ribonucleoside 

monophosphates (rNMPs) are abundant among all non-standard nucleotides occurring in 

genomic DNA. Many DNA polymerases have been shown in vitro to incorporate rNMPs 

into DNA [5-8, 13, 17, 18], including all yeast replicative polymerases [21]. The 

abundance of rNMPs in DNA raises the possibility of multiple repair pathways to target 

and remove rNMPs embedded in DNA. Importantly, the combination of ribonucleotide 

misincorporation and mispairing in vivo can occur with sufficient frequency to affect 

mutation rates in yeast [60, 61]. The finding that rNMP incorporation during replication 

in yeast is coupled with genome instability in an RNase H2–defective background [60] 

raises the question whether mismatches generated by mispaired rNMPs or processing of 
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rNMPs in DNA are subject to mismatch repair (MMR) and whether paired rNMPs are 

targeted by other common DNA repair mechanisms, such as nucleotide excision repair 

(NER) and base excision repair (BER). 

 

The concentration of ribonucleoside triphosphates in cells is generally higher than that of 

deoxyribonucleoside triphosphates, increasing the probability of paired and mispaired 

rNMP incorporation by DNA polymerases during DNA replication and repair ([21] and 

references therein). Regions of highly transcribed DNA were found to contain a high 

concentration of dUMP in yeast [76], and it would be interesting to see if these regions 

may also be hot spots for rNMP incorporation. In addition, DNA primases have very low 

fidelity, resulting in the incorporation of mispaired rNMPs, and could potentially leave 

one or several rNMPs embedded in chromosomal DNA by including 

deoxyribonucleotides in addition to ribonucleotides in the primer sequence [26, 77]. 

Finally, oxidative damage of DNA can convert a deoxynucleotide in DNA to an rNMP 

[29]. 

 

Ribonucleotides in DNA can distort the double helix [73], resulting in genomic 

instability, defective replication [78], or transcription and mutagenesis. Topoisomerase I 

can initiate a process of rNMP removal when its site of cleavage occurs 3 to an rNMP 

embedded in DNA [39]. However, the enzymes that specifically cleave RNA in 

RNA/DNA hybrids are ribonucleases H (RNase H type 1 (I or 1) and type 2 (II or 2)) [37, 

38]. In vitro, RNases HI or H1 and RNases HII or H2 have very distinct cleavage 

patterns. RNases HI or H1 require a substrate with an RNA stretch containing at least 

four ribonucleotides in a DNA duplex to allow cleavage, while RNases HII or H2 can 

cleave a single ribonucleotide embedded in DNA even when mispaired [37, 79]. Yet, up 

to now a detailed analysis of the in vivo substrate specificity of these enzymes is missing 

[37]. Here we utilized an approach to generate in vivo defined rNMP-containing DNA 



 13 

duplexes and reveal the substrate preference of RNase H enzymes, and we investigated 

whether RNA:DNA mismatches can be recognized by the MMR system in E. coli and in 

yeast cells and whether paired rNMPs can targeted by NER and/or BER in yeast cells. 

 

2.3 Materials and Methods 

2.3.1 Bacterial strains 

All E. coli strains used here (Table A.1a) have a thermoinducible  red recombination 

system, which permits the efficient incorporation of linear DNA into the chromosome 

[80], We used both deletion and nonsense mutations for rnhA and rnhB. Complete 

deletions of the coding regions are ideal because they eliminate the possibility that 

defective products might still be present, although they also remove the promoters of 

neighboring dnaQ and dnaE genes, which then are transcribed, we assume, from 

alternative promoters. Therefore, we also constructed truncated forms of RNase HI and 

HII (verified by sequencing) by introducing two consecutive stop codons (Ochre and 

Opal) upstream of dnaQ and dnaE promoters and after codon 48 in rnhA and after codon 

70 in rnhB in strain BW1988 and BW2037 exploiting oligo-directed transformation 

(Table A.1a). We then compared the transformation frequencies by the LacZ.R6I2, 

LacZ.R1S1 or LacZ.D oligo in the rnh deletion and nonsense mutants and no differences 

were revealed (Table A.5a,b). We concluded that both the deletion and nonsense rnh 

mutant alleles behave similarly, at least with respect to gene correction by RNA-

containing oligos. Bacterial media and growth conditions were as described before [81]. 

 

2.3.2 Yeast strains 

The yeast haploid strains used in this work derives from either FRO-694, which contains 

the GSKU cassette [82] and the I-SceI cutting site in TRP5, inserted between nucleotide 

(nt) C1001 and nt C1002, or FRO-767 [46] (Table A.1b). Three different oligos with 

homology to the TPR5 gene containing a 2-base deletion (C-C1001-1002) plus a 
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nonsense mutation (nt G1017 to A), only the 2-base deletion mutation, or only the 

nonsense mutation were used to transform the FRO-694 to pop out the GSKU cassette in 

trp5 and generate the three different trp5 alleles in three different strains, YS-301/303, 

YS-316/318 and YS-320/322, respectively (Table A.1b), following the “delitto perfetto” 

method as described [82]. The oligos used for the construction of the different trp5 alleles 

are shown here with the introduced mutations in bold: 

80DeltaCC+STOP_TRP5.e:  

5'-AAGAGAGTTGGAAAAGGGTTTTGATGAAGCTGTCG__GATCCCACATTCTG  

AGAAGACTTCAAATCCTTGTATTCTTATATT (2-base deletion & nonsense 

mutation)  

80DeltaCC_TRP5.e:  

5'-AAGAGAGTTGGAAAAGGGTTTTGATGAAGCTGTCG__GATCCCACATTCTG  

GGAAGACTTCAAATCCTTGTATTCTTATATT (2-base deletion mutation)  

82STOP_TRP5.e:  

5'-AAGAGAGTTGGAAAAGGGTTTTGATGAAGCTGTCGCCGATCCCACATTCTG 

7 7  

AGAAGACTTCAAATCCTTGTATTCTTATATT (nonsense mutation) 

Null alleles for RNH201, MSH2 or both were created by replacing the open reading frame 

of each of these genes by either the kanMX4 or the hygMX4 module. Isogenic y yeast 

haploid strains KK-158 and KK-159 were derived from FRO-767 and FRO-768 [46]. 

KK-158 and KK-159 were constructed from FRO-767 and FRO-768 by replacement of 

UNG1 with the hygMX4 cassette. 

 

2.3.3 Transformation using oligos 

For experiments in E. coli, electrocompetent cells were prepared as described [81] and 

used immediately. The final wash and resuspension were in RNase-free water. RNA-

containing oligos retained ≥90% of their activity after incubation with fresh cells for 3 
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min. Electroporation was performed as described [81], immediately after adding 100 ng 

of oligo in 50 l of a cell suspension. For transformation experiments to mutate the rpsL
+
 

gene, 10 l of cultures after recovery in the SOC media were transferred to 1 ml of LB 

media and incubated overnight to reduce the proportion of the original streptomycin-

sensitive ribosomes. Cells were then diluted in 10 mM MgSO4 and plated in an overlay of 

4 ml of soft agar on LB agar with streptomycin to select for transformants and on LB 

agar to measure viability. Survival after transformation was 24%-30% for BW1988, 

BW2037 and all the derivative strains used. All strains with rnhA mutations form smaller 

colonies on LB agar media than strains with wild-type rnhA. For experiments in yeast, 

transformation with RNA-containing or DNA-only oligos (1 nmol) were done as 

described [46]. Cells from each oligo transformation were either plated to selective Trp
-
 

media for TRP5 oligos or to selective Leu
-
 media for LEU2 oligos and were diluted and 

plated on the rich YPD media. Survival after yeast transformation was 29% for WT, 26% 

for msh2, 24% for rnh201 and 29% for rnh201 msh2 cells, respectively. The relative 

transformation frequencies were calculated by dividing the number of transformants per 

10
7
 viable cells obtained with an RNA-containing oligo by the median of the number of 

transformants per 10
7
 viable cells obtained with the corresponding DNA-only oligo in the 

same experiment. The results are each expressed as a median and 95% confidence limits 

(in parentheses), or alternatively the range when number of repeated experiments was <6. 

Random clones derived from gene correction by LacZ.R1S1 in the rnhB mutS 

background, LacZ.R5S1 in the rnhA rnhB background, RpsL.R1S1 in the rnhB mutS 

background, or TRP5.R2_R1I2_S1 in the rnh201 msh2 background were sequenced at the 

region targeted by the oligos, and all (24/24, 19/19, 13/13 and 14/14, respectively) had 

the expected corrected lacZ
+
, rpsL

r
, or TRP5 sequence, with no additional changes. 

 

2.3.4 Colony PCR of Leu
+
 transformants and StuI-digestion of their PCR products 
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For each transformation with LEU2 oligos, 20 Leu
+
 transformants were selected. Colony 

PCR was performed on those transformants, amplifying with primers LEU2.3 and 

LEU2.6 a 900-bp region in LEU2 locus where a new StuI restriction site is expected. The 

resulting PCR products were treated with StuI (New England Biolabs) and analyzed by 

agarose gel electrophoresis to confirm the presence of the StuI restriction site. 

 

2.3.5 Standard genetic and molecular biology techniques 

Standard genetics and molecular biology analyses were done as described [46, 81, 82]. 

Samples for sequencing were submitted to Eurofins MWG Operon. 

 

2.3.6 RNase HII cleavage assay 

RNA-containing oligos and their corresponding DNA-only oligos (Table A.2) were 5′-

end-labeled using [γ-
32

P]ATP (PerkinElmer) and T4 Polynucleotide Kinase (NEB). 

Double-strand substrates (Figure 2.2a) were prepared by annealing appropriate 

complementary oligos in 1X ThermoPol Reaction Buffer (NEB), which is the RNase HII 

reaction buffer, at pH 8.8. RNase HII reactions were performed by incubating 40 fmol of 

each substrate with 1 unit of RNase HII (NEB) in the same buffer for 2 hours at 37 
°
C, or 

with 0.75 units of RNase HII for 30 minutes at 37 
°
C. 20-100 Oligo Length Standard 

(IDT) was used as a marker. Samples were heated to 95 
°
C for 5 min before 

electrophoresis in 15% (w/v) polyacrylamide 8M Urea gel. Following electrophoresis, 

gels were exposed to a phosphor screen overnight. Images were taken with Typhoon 

Trio
+
 (GE Healthcare) and obtained with ImageQuant (GE Healthcare). Band intensities 

were quantified by Multi Gauge V3.0 (Fujifilm). 

 

2.4 Results 

2.4.1 Gene correction by rNMP-containing oligos: impact of RNases H 
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We initially set up a gene correction assay for different RNA-containing oligonucleotides 

(oligos) in the E. coli strain BW1988, which is an MMR-deficient (mutS null) strain 

expressing the  phage recombination system for highly efficient oligo targeting [81, 83] 

(Table A.1). In this system, lagging-strand oligos anneal to the complementary gapped 

single-strand region at the replication fork, are incorporated into the genome similarly to 

Okazaki fragments and serve as templates for gene correction in the next round of DNA 

replication [83]. A lagging-strand oligo containing a tract of 6 rNMPs was also much 

more efficient at gene correction than the corresponding complementary oligo [56]. The 

E. coli BW1988 strain had a lacZ marker gene altered by a two-base frameshift deletion 

(GG1370-1) and a missense mutation at nucleotide 1384, changing codon GAG (lactose 

deficient, Lac
–
) into AAG (lactose proficient, Lac

+
)  (Table A.1a). To correct these lacZ 

mutations, BW1988 was transformed with lagging-strand oligos having the sequence of 

the wild-type lacZ gene and containing 6 or 2 rNMPs opposite to the deletion (LacZ.R6I2 

or LacZ.R2.47I2), 1 rNMP or 5 rNMPs opposite to the missense mutation (LacZ.R1S1 or 

LacZ.R5S1), or no rNMPs (LacZ.D or LacZ.D.47) (Figure 2.1a and Table A.2). 

Transformation results are shown in Table 2.1. In the mutS background, differently from 

the LacZ.R6I2 and the LacZ.R2.47I2, the LacZ.R1S1 and the LacZ.R5S1 oligos produced a 

surprisingly low frequency of Lac
+
 transformants relative to the control DNA-only oligos. 

The experiment was repeated with mutants for RNase HI (rnhA) and RNase HII (rnhB) in 

the mutS background to see if the enzymes would affect oligo transformation by attacking 

the embedded rNMPs. As presented in Table 2.1, the rnhA mutation showed a strong 

effect only on the transformation frequency by LacZ.R5S1 oligo (a factor of 85 (6×10
–

3
/7×10

–5
) increase). Differently, the rnhB mutation enhanced the relative transformation 

frequency of the LacZ.R1S1 oligo a factor of 6,800 (3.43/5×10
–4

) and that of the 

LacZ.R6I2 oligo a factor of 8 (0.16/0.02). It had no effect on the LacZ.R2.47I2 oligo, and 

it enhanced the frequency of the LacZ.R5S1 oligo only in combination with the rnhA 

mutation. Clearly, our data show that in vivo RNase HII very efficiently targets a single 



 18 

mispaired rNMP and cannot target the isolated 2-rNMP loop, whereas RNase HI is 

preferred to RNase HII for targeting a tract of 5 rNMPs with a mispair. The stronger 

resistance of LacZ.R6I2 and in particular of LacZ.R2.47I2 to cleavage by RNase HI and 

HII is probably due to the secondary structure of the insertion loop present in these oligo 

sequences. From in vitro studies it is known that RNases HI and H1 can cleave DNA 

substrates containing a stretch of at least four ribonucleotides, whereas RNases HII and 

H2 can cleave a single ribonucleotide embedded in DNA, even when mispaired, or longer 

embedded rNMP tracts [37, 79]. It was then surprising to find that the rnhB mutation did 

not affect the gene correction frequency by the LacZ.R5S1 and the LacZ.R2.47I2 oligos 

and it only modestly affected that by the LacZ.R6I2 oligo compared to that by the 

LacZ.R1S1 oligo (Table 2.1). The data also demonstrate that all the different rNMPs 

embedded in double-strand E. coli chromosomal DNA are used as templates for DNA 

synthesis. 
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Figure 2.1 Diagrams and sequences of the loci targeted by the RNA-containing 

oligos. (a–f) In the name of the RNA-containing oligos, substitutions are indicated by a 

subscript capital “S” and insertions by a subscript capital “I”. The letters “S” and “I” are 

followed by a subscript number indicating the number of bases that are substituted or 

inserted, respectively. The lacZ locus containing a two-base deletion and a substitution 

mutation targeted by the LacZ.R6I2, LacZ.R2.47I2, LacZ.R1S1, or LacZ.R5S1 oligo (a). 

The lacZ locus containing a substitution mutation targeted by the LacZ.R1S1, or 
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LacZ.R5S1 oligo (b). The rpsL locus targeted by the RpsL.R1S1 oligo (c). The trp5 locus 

containing a two-base deletion and a substitution mutations targeted by the 

TRP5.R2_R1I2_S1 oligo (d), containing just a substitution mutation targeted by the 

TRP5.R1S1 oligo (e), or containing only a two-base deletion mutation targeted by the 

TRP5.R2I2 oligo (f). 

 

Table 2.1 The effect of RNase HI (rnhA) and RNase HII (rnhB) mutations on 

transformation by rNMP-containing oligos in E. coli mutS cells. 

Genotype LacZ.R6I2 LacZ.R2.47I2 LacZ.R1S1 LacZ.R5S1 

mutS 0.02 (0.01–0.03) 0.18 (0.13–0.22) 5×10
–4

 (4×10
–4
–6×10

–4
) 7×10

–5
 (0–9.7×10

–5
) 

mutS  rnhA 0.04 (0.02–0.05) ND 9×10
–4

 (7×10
–4
–1.4×10

–3
) 6×10

–3
 (5.5×10

–3
–7.3×10

–3
) 

mutS rnhB 0.16 (0.13–0.18) 0.16 (0.13–0.20) 3.43 (1.74–3.87)  9×10
–5

 (4.3×10
–5
–1.8×10

–4
) 

mutS rnhA rnhB 0.38 (0.35–0.46) ND 2.40 (1.94–2.81)  0.08 (0.06–0.09) 

The values are relative frequencies of Lac
+ 

transformants (see Materials and Methods). 

The significance of all non-overlapping confidence limit values was confirmed by the 

Mann-Whitney U-test (P < 0.05) (Table A.3a). The median transformation frequencies 

per 10
7
 cells and 95% confidence limits (in parentheses) for the strains transformed with 

the LacZ.D and the LacZ.D.47 oligos were as follows: mutS, 7,290 (4,120–10,800); mutS 

rnhA, 7,780 (5,090–11,300); mutS rnhB 4,840 (2,880–6,950); mutS rnhA rnhB, 12,908 

(7,750–18,000), and mutS, 2,430 (1,770–3,760); mutS rnhB 2,720 (2,250–3,630), 

respectively. In the absence of a transforming oligo, the frequency of Lac
+
 colonies per 

10
7
 viable cells were <0.1. The numbers of repeats for each of the mutS, mutS rnhA, mutS 

rnhB, and mutS rnhA rnhB strains transformed with these oligos were as follows: 

LacZ.R6I2: 6 or 7; LacZ.R2.47I2: 4; LacZ.R1S1: 6 or 7; LacZ.R5S1. ND, not determined. 

The strains used were BW1988, BW2028, BW2029, and BW2032. 

 

2.4.2 RNase HII cleavage of heteroduplexes containing paired or mispaired rNMPs 
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The inability of the rnhB mutation to increase gene correction frequencies by the 

LacZ.R5S1 and the LacZ.R2.47I2 oligos and its capacity to increase gene correction by the 

LacZ.R6I2 oligo to a much lesser extent than by the LacZ.R1S1 oligo may be a reflection 

of the specificity of RNase HII. To test this hypothesis, we analyzed the ability of the 

purified enzyme to cleave heteroduplexes containing the same sequences and RNA:DNA 

mismatches that we examined in the transformation experiments (Table A.2 and Figure 

2.2a). RNase HII cleavage of these different substrates was determined by 

polyacrylamide gel electrophoresis (PAGE) following two-hour incubation at 37 
°
C (see 

Online Methods section). Under these experimental conditions, substrates with a single 

rNMP mispair, whether alone or in a tract of 5 rNMPs (substrates S2 and S6, 

respectively), were cleaved to the same extent as the rNMP-containing substrates with no 

mismatches (S1 and S5, respectively) (Figure 2.2a,b). RNase HII cleaved 5′ to the last 

ribonucleotide, or the junction ribonucleotide, in the 5 and 6-ribonucleotide tracts. The 

faint bands appearing below the major cleavage band for each substrate containing more 

than 1 rNMP are products of RNA degradation, as they appear also in the absence of 

RNase HII (Figure A.1). The substrate containing a loop of two unpaired rNMPs alone 

(S11) was not cleaved. The substrate containing the same rNMP loop within a stretch of 6 

rNMPs was cleaved to a lesser extent (53%) than those containing a single mispair (S2 

and S6). These data, except those obtained with the S6 substrate, are entirely consistent 

with our in vivo results (Table 2.1), in which gene correction by LacZ.R2.47I2 or the 

LacZ.R6I2 oligo is significantly (P = 0.0106 or P = 0.0021, respectively, Table A.3a) 

more efficient than correction by the LacZ.R1S1 oligo in the presence of RNase HII, and 

deletion of rnhB does not increase at all gene correction by the LacZ.R2.47I2 oligo. When 

we performed a similar experiment in conditions in which RNase HII cleaved the 

substrate with a single rNMP mispair (S2) at 77%, the substrate with the same mispair in 

a tract of 5 rNMPs (S6) was cleaved at 50%, thus less efficiently than S2 though much 

more efficiently than S4 (5.4%) and S11 (<1%) (Figure 2.2c,d). Overall, the RNase HII 
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cleavage results do not explain why in vivo the rnhB mutation did not increase gene 

correction by the LacZ.R5S1 oligo while it increased gene correction by the LacZ.R6I2 

(Table 2.1). Therefore, in this case, there is no correlation between the preference for the 

substrate containing a single rNMP mispair in a tract of 5 rNMPs in vitro and in vivo. 

 

 

Figure 2.2 RNase HII cleavage specificity. (a) Structural presentation of 5′-radiolabeled 

(
32

P, indicated by a purple asterisk) substrates (S1-S11) and cleavage percentage for each 

substrate, expressed as median and range (in parentheses) from 3 independent samples. 

Inverted triangles indicate the cleavage sites. (b) Denaturing polyacrylamide gels 
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showing fragments resulting from cleavage using RNase HII. M: 20-100 nt 

oligonucleotide marker. The gel images were cropped above the 50-nt band of the marker. 

S1-S11: substrates used. (c) Substrates (S2, S4, S6, S11) used in the experiment shown in 

panel d and their cleavage percentage, expressed as mean and range (in parentheses) from 

2 independent samples. (d) Denaturing polyacrylamide gel showing fragments resulting 

from cleavage using reduced amount of RNase HII and shorter incubation time. M: 20-

100 nt oligonucleotide marker. The gel image was cropped as in b. S2, S4, S6, S11: 

substrates used. 

 

2.4.3 Functional redundancy of MMR and RNase HII at an rG:dT site 

We next examined the capacity of the MMR system to recognize RNA:DNA mismatches 

in E. coli. The MMR system is highly conserved from prokaryotes to eukaryotes. It 

recognizes DNA:DNA mispairs, such as base-base mismatches as well as small insertions 

and deletions (ins/dels) occurring both during DNA replication [84] and recombination 

[85]. We modified the bacterial strain BW1947, containing just one missense mutation in 

lacZ (nucleotide 1384 GA) [81], to generate a set of strains having wild-type and 

mutant alleles of mutS, rnhA and rnhB in all combinations (Table A.1a). We then 

transformed these strains with the LacZ.R1S1 (Figure 2.1b) or the LacZ.D control oligo. 

Transformation results are shown in Table 2.2. As expected, lacZ correction by the 

DNA-only oligo in mutS cells was over two orders of magnitude higher than in all mutS
+
 

cells, in agreement with previous findings [81, 83]. MutS was also able to recognize the 

mismatched rG:dT mispair, as gene correction frequency by the LacZ.R1S1 oligo in mutS 

was a factor of 5 higher than in mutS
+
 cells. The relative transformation frequency of 

LacZ.R1S1 increased only to a factor of 2 in the absence of RNase HI both in mutS
+
 and 

in mutS
 
cells, in line with the observation that RNase H type 1 cannot cleave at rNMPs in 

stretches of less than four [37, 79]. In mutS
+ 

cells an rnhB mutation enhanced the 

frequency of transformation by LacZ.R1S1 only a factor of 11 (21.8/1.88) (Table 2.2), as 
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opposed to the factor of 6,800 enhancement seen in a mutS mutant (Table 2.1). The rnhB 

mutS double mutant showed correction frequency for the LacZ.R1S1 oligo a factor of 

17,500 (33,000/1.88) higher than the wild type and a factor of 1,500–3,400 higher than 

either of the single mutants (Table 2.2). The gene correction frequency by LacZ.R1S1 

increased a factor of 77,000 (145,000/1.88) in the rnhA rnhB mutS triple mutant 

compared to the frequency in wild-type cells, and became similar to that of the 

corresponding DNA-only oligo in the mutS backgrounds used (Table 2.2). Further 

purification of the LacZ.R1S1 oligo by PAGE produced no observable changes in gene 

correction frequencies (not shown). These data prove not only that the E. coli MMR 

system can recognize and remove an rG:dT mismatch in DNA, but also that MutS and 

RNase HII act redundantly, via independent pathways, to remove an rG:dT mispair. 

 

Table 2.2 Tolerance of an rG:dT mispair in E. coli. 

 LacZ.R1S1  LacZ.R5S1  LacZ.D No oligo 

Genotypea Lac
+ 

freq.
b
 

Rel. tr. 

freq.
c
 

Lac
+ 

freq. 
Rel. tr. 
freq.

 
 

Lac
+ 

freq. Lac
+ 

freq. 

WT 1.88 0.02 0.36 4×10
–3

 90.7 < 0.1 

 (0.82–5.97)  (0–0.48)  (38.5–177)  

rnhA 12.1 0.04 256 0.76 336 < 0.1 

 (8.75–23.2)  (176–803)  (162–485)  

rnhB 21.8 0.13 0.715 4.3×10
–3

 165 < 0.1 

 (20.8–26.1)  (0.62–0.89)  (140–242)  

rnhA rnhB 174 0.37 22,600 48.2 470 < 0.1 

 (154–196)  (19,700–27,300)  (371–2,110)  

mutS 17.4 1.2×10
–4

 7.53 10
–5

 82,300 7.76 

 (14–19.6)  (5.48–14.2)  (50,000–104,950) (4.6–9.51) 

rnhA mutS 70 4×10
–4

 485 5×10
–3

 93,908 32.1 

 (34.8–137)  (213–820)  (37,900–145,000) (10–57.6) 

rnhB mutS 33,000 0.27 5.23 10
–5

 124,200 3.77 

 (30,400–79,500)  (4.34–5.66)  (84,600–163,000) (3.51–5.06) 

rnhA rnhB mutS 145,000 0.69 22,400 0.11 212,000 24 

 (33,300–320,000)  (11,600–32,600)  (100,000–267,000) (20.2–40.2) 
 

a
The strains used were BW2038A,B, YSB-21A,B, YSB-22A,B, and YSB-23A,B, which 

were mutS
+
 and BW2037A,B, YSB-19A,B, YSB-17,18, YSB-20A,B, which were mutS.  
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b
The values are median and the range (in parentheses) of E. coli Lac

+
 transformant 

colonies reverting the missense mutation per 10
7
 viable cells for each oligo. The numbers 

of repeats for each of the strains transformed with these oligos were 4. The significance 

of all non-overlapping confidence limit values was confirmed by the Mann-Whitney U-

test (P < 0.05) (Table A.3b). 

c
The relative frequencies of Lac

+ 
transformants (see Materials and Methods) are used 

for comparisons within mutS
+
 or mutS

 
strains. 

 

2.4.4 Inefficient MMR of an rC:dA mispair in E. coli 

We then investigated whether MMR could recognize an rC:dA mismatch. We used an 

oligo of the lagging strand containing an rC ribonucleotide (RpsL.R1S1) that would 

replace a dT in the rpsL wild-type gene of E. coli BW2037 (streptomycin sensitive cells, 

Str
S
) and derivative strains (Table A.1a), generating the K87R mutation (rpsL40) that 

confers streptomycin resistance (Str
r
) [81] (Figure 2.1c). We found that the dC:dA 

mismatch was efficiently repaired by the MMR system in E. coli, consistent with 

previous findings [86]. Whereas the ribonucleotide in the rC:dA mismatch in rpsL was 

removed very efficiently by RNase HII, there was only a modest, but still detectable, 

correction by MMR in rnhB cells (Table 2.3). These data differ from our results with an 

rG:dT mismatch in the lacZ gene, where MMR had a much stronger effect. We conclude 

that MMR can recognize an rC:dA mismatch, but with less efficiency than dC:dA or the 

complementary rG:dT mismatches. 

 

Table 2.3 Strong effect of RNase HII and minor effect of 

MutS in preventing gene correction by an rC:dA mispair in E. 

coli. 

 RpsL.R1S1  RpsL.D No oligo 

Genotype
a
 Str

r 
freq.

b
 Rel. tr. freq.

c 
 Str

r 
freq. Str

r 
freq. 
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WT 8 0.8 10 <0.1 

 (1.46–8.60)  (5.41–17.7) (0–0) 

rnhB 1,850 316 5.86 <0.1 

 (1,410–2,460)  (4.37–8.27) (0–0.03) 

mutS 11.6 0.001 10,500 0.76 

 (10.5–13.1)  (8,070–12,900) (0.03–2.70) 

rnhB mutS 4,310 0.826 5,220 0.32 

 (3,000–5,320)  (2,660–8,930) (0.13–2.39) 
a
The strains used were BW2038A,B, BW2040A,B, BW2037A,B 

and BW2039A,B. 

b
The frequency of streptomycin resistant transformant colonies 

per 10
7
 viable cells for wild-type, mutS, rnhB single mutant and 

rnhB mutS double mutant after transformation with RpsL.R1S1 or 

RpsL.D oligo is shown as median and 95% confidence limits (in 

parentheses), or alternatively range when number of repeats was 

<6. The numbers of repeats for each of the strains transformed 

with these oligos were 4 or 6. The significance of all non-

overlapping CI or range values was confirmed by Mann-Whitney 

U-test (P < 0.05) after subtraction of the background values 

(Table A.3c). 

c
Relative frequency of Str

r
 transformants (see Materials and 

Methods). 

 

2.4.5 Mismatch repair of RNA:DNA mispairs in yeast cells 

To test if the MMR system could recognize RNA:DNA mismatches in eukaryotic cells, 

we created a yeast S. cerevisiae strain in which we inactivated the genomic TRP5 gene by 

introducing a two-base deletion and one-base substitution to cause a frameshift and a 

nonsense mutation 15 bp apart (YS-301 and YS-303, (tryptophan auxotrophic cells, Trp
–
) 

Table A.1b). The combination of these two mutations reduced the spontaneous reversion 

of trp5 to the tryptophan prototrophic (Trp
+
) phenotype to <10

–9
, allowing the detection 
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of very low frequencies of gene correction despite the low efficiency of gene targeting in 

yeast [87, 88]. MMR was inactivated by deletion of MSH2, a yeast mutS homolog [84]. 

RNase H2 was inactivated by deleting the gene of the catalytic subunit, RNH201 [37]. 

Unlike the E. coli  recombination system [89], gene correction at the yeast trp5 locus 

displayed no strand bias (Figure A.2). All TRP5 oligos used here had a sequence 

corresponding to the TRP5 sense strand. Wild-type and mutant cells were then 

transformed with an oligo containing two rNMPs to repair the deletion and another rNMP 

to correct the nonsense mutation in trp5 (TRP5.R2_R1I2_S1) (Figure 2.1d and Table A.2). 

A DNA-only oligo (TRP5.D) provided a reference. The results (Table 2.4a) were similar 

to those obtained in E. coli with the LacZ.R1S1 oligo (Table 2.2). Gene correction in the 

rnh201 single mutant was only a factor of 2.5 more than that in wild-type cells. As 

expected , the msh2 deletion enhanced gene correction by the DNA-only oligo TRP5.D. 

With the TRP5.R2_R1I2_S1 oligo, in which both the 2-base insertion and the substitution 

were rNMPs, we observed a factor of 5 (3.71/0.72) increase in gene correction efficiency 

in the msh2 mutant and more than a factor of 45 (33.8/0.72) increase in the rnh201msh2 

double mutant, making the RNA-containing oligo as efficient as the corresponding DNA-

only oligo. We concluded that the yeast MMR system also recognizes RNA:DNA 

mismatches and can act redundantly with RNase H2 to remove mispaired ribonucleotides 

embedded in DNA. 

 

To determine whether the RNA:DNA ins/del and the rG:dT mispairs could be 

independently recognized by the MMR system in yeast, we constructed strains carrying 

either the nonsense mutation or the 2-base deletion in trp5 and having msh2 and/or 

rnh201 mutant alleles. We transformed these strains with oligos containing either a 1-

rNMP substitution (TRP5.R1S1) or a 2-rNMP insertion (TRP5.R2I2) (Figure 2.1e,f and 

Table A.2), respectively. Transformation results revealed that the rG:dT mispair was 

recognized by MMR in yeast (Table A.4a). To determine the effect of MMR on the 2-
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rNMP insertion we sequenced all the Trp
+
 transformant clones obtained in the experiment 

with the TRP5.R2I2 oligo in order to distinguish Trp
+
 clones targeted by the oligos 

(TRP5.R2I2 or the TRP5.D control) from Trp
+ 

revertant clones (Table A.4b–d). 

Sequencing of Trp
+
 transformants revealed that the ins/del RNA:DNA mismatch was 

clearly targeted both by Msh2 and RNase H2 (Table 2.4b). 

 

Table 2.4 Competition between mismatch repair and RNase H type 2 functions in 

the removal of RNA:DNA mispairs in yeast. 

a 

 TRP5.R2_ R1I2_S1  TRP5.D No oligo 
Non-specific 
oligo

a
 

Genotype Trp
+
 freq. 

Rel. tr. 
freq.

b
 

Trp
+
 freq. Trp

+
 freq. Trp

+
 freq. 

WT 0.72 (0.40–1.32) 0.30 2.39 (1.50–3.51) < 0.1 (0–0) <0.1 (0–0) 

msh2 3.71 (2.07–4.31) 0.12 31.6 (24.5–37.2) < 0.1 (0–0) ND ND 

rnh201 1.84
c
 (1.15–2.88) 0.67 2.76 (1.83–3.29) < 0.1 (0–0.03) ND ND 

rnh201 msh2 33.8 (26.3–35.6) 0.76 44.6 (32.9–48.8) < 0.1 (0–0.57)
d
 0.51 (0–1.36) 

(a) Trp
+
 transformant frequencies for strains that contained both a two-base pair deletion 

and a nonsense mutation. Each value represents the median and range (in parentheses) for 

10
7
 viable cells, based on 8 experiments. The significance of all non-overlapping 

confidence limits or range values was confirmed by Mann-Whitney U-test (P < 0.05) 

after subtraction of the no-oligo background values (Table A.3d). (b) Trp
+
 transformant 

frequencies obtained by precise correction of a two-base deletion calculated by 

 
    b 

 TRP5.R2I2 
 

TRP5.D No oligo 

Genotype Trp
+
 freq. 

Rel. tr. 
freq. 

Trp
+
 freq. Trp

+
 freq. 

WT 1.65 (0.58–2.50) 0.04 39.1 (35.9–43.6) < 0.1 (0–0) 

msh2 7.64 (4.96–9.82) 0.17 46.1 (24.3–76.8) < 0.1 (0–0) 

rnh201 9.64 (7.51–15.0) 0.35 27.7 (12.3–36.9) < 0.1 (0–0) 

rnh201 msh2 26.9 (20.5–35.3) 0.38 70.0 (63.3–86.9) < 0.1 (0–0) 
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multiplying the number of Trp
+
 transformant colonies per 10

7
 viable cells (shown in 

Table A.4b) by the percentage of clones with precise correction of the “CG” deletion 

(pattern R in Table A.4c,d). Each value represents the median and range (in parentheses) 

for 10
7
 viable cells, based on 4 experiments. The significance of all non-overlapping 

confidence limits or range values was confirmed by Mann-Whitney U-test (P < 0.05) 

after subtraction of the no-oligo background values (Table A.3e). 

 

2.4.6 Removal of paired rNMPs in DNA by RNase H2 and NER in yeast cells 

NER machinery has the ability to recognize a vast array of backbone distortions in DNA 

[90]. With the ability of rNMPs to induce helical distortions in DNA [75, 91], one could 

predict that NER recognizes rNMPs in DNA as damage. Since BER, specifically uracil-

DNA glycosylase (Ung1)-initiated BER, recognizes uracil of dUMPs as damage [92], 

one could also predict that uracil of rUMPs could be targeted by Ung1. To test whether 

RNase H2, NER, or BER targets paired rNMPs in DNA, we implemented a yeast assay 

of chromosomal double-strand break (DSB) repair, in which DNA oligos carrying 

embedded rGMP, rUMP, or deoxyribonucleotides only are templates for DSB repair 

(Figure 2.3a). rGMP-containing DNA oligo LEU2.rG was used to test targeting of 

RNase H2 and NER while rUMP-contaning DNA oligo LEU2.rU was used to test 

targeting of RNase H2 and Ung1. Oligos were designed to repair the DSB in the leu2 

gene and to create a point mutation (A:TG:C) four to five nt downstream of the rNMP 

position, allowing the creation of a new StuI restriction enzyme recognition site in LEU2 

locus. RNase H2-initated ribonucleotide excision repair (RER), NER, and BER all 

remove a short single-strand DNA region downstream of the damage during the repair 

[35, 90, 92]. Therefore, when transformed with rNMP-containing oligos after induction 

of DSB, an increase in the percentage of the new StuI site-containing Leu
+
 transformants 

when a repair pathway of interest is deficient would indicate that the repair pathway 

targeted the rNMP for removal. RER, NER, and Ung1-initiated BER were inactivated by 
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deletion of rnh201, rad14 (S. cerevisiae homolog of the human XPA, which is required 

in all types of NER [90]), and ung1, respectively. 

Our results show that, among the repaired Leu+ transformants, 63–65% of clones from 

all genotypes transformed with the DNA-only oligo control (LEU2.D) contained the StuI 

site (Figure 2.3b,c and Table A.6). We found that the single paired rGMP of the 

LEU2.rG oligo was targeted by both RER and NER as the StuI site was present only in 

30% of the wild-type cells, but significantly up to 90% (P = 0.0286) and 63% (P = 

0.0286) in rnh201 and rad14 cells, respectively (Figure 2.3b and Table A.6a,b). RER 

also targeted the single paired rUMP of the LEU2.rU oligo while Ung1 targeted uracil 

from a dUMP but not an rUMP (Figure 2.3c and Table A.6c,d). 
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Figure 2.3 Targeting of paired rNMP by RNase H2 and NER in yeast. 

(a) Diagram and sequence of the chromosomal leu2 region targeted by DNA-control 

LEU2.D, rGMP-containing LEU2.rG, dUMP-containing LEU2.dU, and rUMP-

containing LEU2.rU oligos (Table A.2). StuI recognition sequence is underlined in 

turquoise. (b,c) The oligos were transformed to either RNase H2–, NER–, and Ung1–

proficient wild-type (WT; FRO-767,768), RNase H2–deficient (rnh201; FRO-984,985), 

NER–deficient (rad14; YS-388,389), rnh201 rad14 (YS-390,391), or Ung1–deficient 

(ung1; KK-158,159) S. cerevisiae cells (see Table A.1b). Median percentages of StuI-cut 

Leu
+
 transformants from four independent transformations are shown with ranges as bars. 

For each transformation, 20 Leu
+
 transformants were selected for analysis. Mann-

Whitney U-test was implemented for statistical analysis against the WT. P values of less 

than 0.05 are marked as asterisk. See Table A.6 for more statistics. 

 

2.5 Discussion 

Previously, in experiments of DSB repair in yeast using oligos containing tracts of four 

ribonucleotides or longer, we showed that oligos containing the shortest RNA tracts were 

the most efficient at chromosomal gene modification [46]. Also an oligo containing a 2-

base loop within a 6-rNMP tract was a factor of 25 to 50 less efficient at gene correction 

than the corresponding DNA-only oligo in E. coli [56]. Contrary to expectations, it was 

then remarkable to find in the current work that gene correction by an oligo containing 

just a single rNMP is a factor of 40 less efficient than that obtained with an oligo 

containing 6 rNMPs and a factor of 2,000 less than that obtained with the corresponding 

DNA-only oligo in E. coli (Table 2.1). Here we show that the capacity of rNMPs 

embedded in DNA to directly transfer genetic information to the genome is not only 

affected by the length but also by the structure of the embedded RNA tracts, which can 

be targets of specific proteins and be removed before serving as templates for DNA 

synthesis (Table 2.1 and 2.2).  
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While it is known that RNase H type 1 and type 2 have distinct cleavage specificities, 

mostly from biochemical studies [37, 38, 79], our in vivo gene correction results shed 

light on the in vivo substrate specificity of these enzymes and offer an opportunity to 

investigate the mechanism underlying cellular tolerance of ribonucleotides 

misincorporated into genomic DNA. 

 

In addition to demonstrations of ribonucleotide incorporation by DNA polymerases in 

vitro [5-7, 17, 18, 21], recent work from the Kunkel group provides indirect evidence that 

ribonucleotides are incorporated into yeast DNA by low-fidelity (pol2-M644G) and wild-

type Pol  alleles and can destabilize the yeast genome in rnh201 cells [60, 61], 

strengthening the knowledge that yeast rnh201 mutant cells display an increased rate of 

genome instability [93]. Up to a factor of 25 increase in the rate of spontaneous 

mutagenesis was observed in cells with rnh201 null [60]. Interestingly, the frequency of 

base substitutions (G to A transitions) increased a factor of 6 in pol2-M644G rnh201 

when the MMR gene MSH6 was also deleted [61]. MMR could recognize RNA:DNA 

mismatches generated by polymerase  and/or by other replicative polymerases [21]. 

Moreover, also repair polymerases, such as Pol , Pol , and LigD polymerase can add 

rNMPs in DNA [13, 17, 18],  and especially error-prone polymerases might be more 

promiscuous at rNMP incorporation in DNA. We suggest that RNA:DNA mismatches 

can arise by mispairing of an rNMP during its incorporation, or by a correct pairing 

during initial incorporation followed by the mispairing of a dNMP during a subsequent 

round of DNA synthesis. In the current work, we have found that MMR can remove the 

region containing a mispaired rNMP. 

 

Among the types of RNA:DNA mismatches examined, we found that the rG:dT mispair 

is well recognized by the MMR system both in E. coli and in yeast cells. A preliminary 
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binding experiment of yeast Msh2–Msh6 to an rG:dT mismatch [61] supports our finding 

that the MMR system can target this mismatch in vivo. The rC:dA mispair is also targeted 

by the MMR system in E. coli, although less efficiently, since gene correction by the 

oligo generating the rC:dA mispair is increased only a factor of 2 in the absence of MutS 

in the rnhB mutant cells (Table 2.3). The sequence context surrounding the RNA:DNA 

mispair could certainly affect RNA:DNA mismatch recognition and/or removal. A more 

rigorous analysis of eukaryotic and prokaryotic MMR factor binding and ATPase 

functions in the context of various RNA:DNA mismatches will be an important next step 

to better characterize the capacity of MMR factors to process RNA:DNA mismatches. In 

yeast cells, gene correction by the TRP5.R2_R1I2_S1 and by the TRP5.R2I2 oligos was a 

factor of 5 and a factor of 4 more efficient in msh2 than in wild-type cells, respectively 

(Table 2.4). Thus, we conclude that the MMR system can target, with different 

specificity, RNA:DNA mismatches (in E. coli and yeast) or small insertions/deletions (in 

yeast, not tested in E. coli). Moreover, our work demonstrates not only that RNA:DNA 

mismatches are susceptible to MMR but also that MMR and RNase H type 2 compete for 

RNA:DNA mismatches both in the E. coli and the yeast S. cerevisiae systems. Absence 

of both RNase H type 2 and MMR functions has a synergistic effect on gene correction 

frequency by the TRP5.R2_R1I2_S1 and the LacZ.R1S1 oligos (Table 2.4a and Table 

A.4a). 

 

The MMR system of E. coli can recognize RNA:DNA mismatches only when these 

consist of one or two isolated ribonucleotides embedded in DNA, but not when the 

RNA:DNA mismatch is within an RNA:DNA duplex region. Indeed, while the single 

rG:dT mispair was very efficiently removed by the MMR system, there was no detectable 

effect of MMR on the same rG:dT mispair in the same sequence context, when the 

mispair was surrounded by two rNMPs on each side (Figure 2.1b and Table 2.2). 

Differently from the misincorporated rNMPs scattered in DNA, which are preferred 
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substrates for RNase H type 2 and are not targeted by RNase H type 1, mispairs in longer 

RNA-tracts, such as those that could be generated by error-prone primases that can 

misincorporate dNMPs, or those that could be present in RNA:DNA hybrid tracts of R-

loops, are primarily targets of RNase H type 1, which can only be partially backed up by 

RNase H type 2 function.  

 

NER system has the capacity to recognize a variety of DNA backbone distortions [90, 

94]. Even a single rNMP embedded in DNA is sufficient enough to cause local helical 

distortions in DNA [75, 91] and decrease the efficiency of nucleosome assembly [59]. In 

this study, we found that a single rG/dC pair is recognized by NER machinery (Figure 

2.3 and Table A.6a,c). The level of targeting by NER compared to RNase H2 was lower. 

Whether this is due to the dominance of RNase H2 when it comes to removing rNMPs in 

DNA and/or the substrate specificity of NER in terms of sequence context needs further 

investigation. 

 

In summary, we have demonstrated that the MMR system recognizes and targets several 

types of RNA:DNA mismatches present in DNA in E. coli and S. cerevisiae cells. In 

addition, an RNA:DNA heteroduplex region that contains a mismatch is preferentially 

and efficiently targeted by RNase H type 1 in vivo, whereas mispaired rNMPs in E. coli 

and yeast and small rNMP insertions in yeast are specific substrates for RNase H type 2. 

Thus, RNase H type 2 and MMR have overlapping activity in contributing to the removal 

of mispaired rNMPs embedded in DNA both in a prokaryotic and a eukaryotic cell 

system. Also, we have demonstrated that RNase H2 and NER recognize and target paired 

rNMPs in yeast. Our findings open up the possibility that other DNA repair mechanisms 

could tackle rNMPs embedded into DNA. 

 

2.6 Acknowledgments 



 35 

The authors thank P. W. Doetsch with his group and Y. W. Kow for discussions and 

comments; we are grateful to G. F. Crouse and R. Pai for suggestions on the paper, L. D. 

Williams for technical support for the gels, C. Flood for technical assistance and all the 

members of the Storici laboratory for advices in the course of the study. This research 

was supported by the Georgia Cancer Coalition grant R9028 (F.S.), the National Science 

Foundation grant MCB-1021763 (F.S.) and the Integrative Biosystems Institute grant 

IBSI-4 (F.S.). 



 36 

CHAPTER 3 
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3.1 Abstract 

The units of RNA, termed ribonucleoside monophosphates (rNMPs), have been recently 

found as the most abundant defects present in DNA. Despite the relevance, it is largely 

unknown if and how rNMPs embedded in DNA can change the DNA structure and 

mechanical properties. Here, we report that rNMPs incorporated in DNA can change the 

elastic properties of DNA. Atomic force microscopy (AFM)-based single molecule 

elasticity measurements show that rNMP intrusions in short DNA duplexes can decrease 

– by 32% – or slightly increase the stretch modulus of DNA molecules for two sequences 

reported in this study. Molecular dynamics simulations and nuclear magnetic resonance 

spectroscopy identify a series of significant local structural alterations of DNA containing 

embedded rNMPs, especially at the rNMPs and nucleotide 30 to the rNMP sites. The 

demonstrated ability of rNMPs to locally alter DNA mechanical properties and structure 

may help in understanding how such intrusions impact DNA biological functions and 

find applications in structural DNA and RNA nanotechnology. 

 

3.2 Introduction 

DNA has unique mechanical properties that are crucial in many natural biochemical 

processes, such as specific DNA-binding to proteins, DNA replication, repair and 

recombination, and chromosome organization [95-101]. Comprehending the dynamics of 

many cellular functions requires the understanding of the physical behavior of DNA as 

many of the mechanisms by which genetic information is stored and used involve 

deformation of the DNA. Every system which binds, cleaves, or reads DNA is able to 

exploit and/or alter the structural and mechanical properties of DNA, which is affected by 

the nucleotide sequence [102] for recognition, packaging, and modification [97, 103]. 

These sequence-dependent effects are involved in modulating biological functions of 

DNA [102, 104]. DNA mechanical properties also play important roles in DNA-based 

nanotechnology applications, such as DNA origami, molecular scale electronics, and 
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nanomedicine [105-108]. It remains largely unknown how the presence of distortions and 

defects in DNA impacts its elasticity. 

 

RNA is a polymer of units called ribonucleoside monophosphates (rNMPs), which differ 

from DNA units by an additional hydroxyl (OH) group in the sugar moiety (Figure 

3.1a,b). Recent studies have revealed that rNMPs are unexpectedly the most abundant 

non-standard nucleotides present in DNA [12, 14, 18, 21, 34] (and references therein). 

Furthermore, rNMPs can be replicated during DNA synthesis and can transfer a genetic 

change to genomic DNA [46, 56, 58]. With the highly reactive extra OH group of the 

ribose sugar, accumulation of rNMPs in the DNA genome might distort the double helix, 

alter the elasticity, and increase the fragility of DNA. Their presence in DNA can be a 

threat for the genomic integrity of cells [34, 39, 54, 58] (and references therein) and could 

be a useful mean for manipulating DNA physical properties. 

 

 

Figure 3.1 Structure and sequences of rNMP(s)-embedded DNAs analyzed in this 

study. (a) Chemical structures of an rNMP and a dNMP at the base G (rGMP and dGMP, 
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respectively). The ribose and deoxyribose are colored in red and blue, respectively. The 

2′, 3′, and 5′ carbon atoms of the sugars are shown. (b) Scheme of an rGMP-embedded 

DNA. Hydrogen bonds are indicated by dashed lines. The 5′ to 3′ direction for each DNA 

strand is indicated. (c) Sequences of rGMP-embedded DNA, rG-DNA, and their DNA-

control, dG-DNA, used in AFM experiments. The dNMPs are indicated in blue while the 

rGMPs are indicated in red, preceded by letter ‘r’. 

 

Despite demonstrations of their abundance and importance, very few reports address how 

scattered rNMPs present in DNA (Figure 3.1b) affect the structure and properties of 

DNA [67, 71, 72, 74, 75] (and references therein). In particular, only a few reports have 

examined the structural effects of isolated single rNMPs in DNA, and, in addition, only 

self-complementary DNA sequences have been used, in which an rNMP is present in 

both strands of DNA [72-75]. To the best of our knowledge, no data exist in the literature 

regarding elastic measurements and sequence-dependent structural distortions of double-

strand (ds) DNA with isolated single rNMP intrusions. Here, we present an innovative, 

combined experimental and theoretical study, in which we designed two short ds DNA 

molecules containing isolated rNMP intrusions at specific bases in only one of the two 

strands (Figure 3.1c). We examined and identified how the elasticity and structure of the 

two DNA molecules are altered by these rNMP intrusions. Atomic force microscopy 

(AFM)-based single molecule force spectroscopy demonstrated that rNMP intrusions 

decrease – by 32% in one short DNA duplex – or slightly increase in the second duplex 

the stretch modulus of DNA. Molecular dynamics (MD) simulations and nuclear 

magnetic resonance (NMR) experiments indicated that rNMP inclusions locally introduce 

a torsional distortion of the sugar-phosphate backbone in DNA. The type of alteration and 

its degree are different for the specific rNMP sites we studied. 

 

3.3 Materials and Methods 
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3.3.1 Sample preparation for AFM measurements 

All oligonucleotides used in the AFM experiments were 30 nt long and were purchased 

from Dharmacon (Table B.1). For both Sequence 1 and Sequence 2, either single-strand 

(ss) dG or rG oligonucleotide was annealed to the complementary DNA oligonucleotides, 

compl_DNA, to produce ds dG-DNA and ds rG-DNA. The annealing was performed in 

100 mM NaCl, 10 mM phosphate, and 0.1 mM EDTA at pH 7.4 by heating at 95 °C for 5 

min and cooling slowly to room temperature. Each DNA was then immobilized on gold-

coated substrates (Platypus Technologies, LLC), by putting a drop of DNA solution (0.1 

mM of DNA molecules in 100 mM Na
+
) on the substrate for 3 hours. Next, the substrate 

was immersed in 1 mM MCH (6-mercapto-1-hexanol) solution for 60 s to reduce non-

specific binding of DNA and avoid molecular aggregation on the surface. The gold 

substrate was then rinsed with DEPC-treated water and is ready for use. Different 

concentrations of ds DNA have been tested to obtain optimal conditions that prevent 

formation of aggregates on the surface. For all measurements, the spring constants of 

gold-coated, COOH-modified silicon nitride cantilevers were individually calibrated 

using reference beam methods (see Figure B.1 and Table B.2). To functionalize these 

cantilevers with streptavidin, they were first immersed in a PBS (phosphate buffered 

saline, pH 7.4) buffer solution of 5 mM EDC (1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride) and 10 mM NHS (N-hydroxysuccinimide) for 1 hour to 

activate the carboxyl (–COOH) group on the tip. Next, the cantilevers were immersed in 

a 100 mg/mL streptavidin solution for 2 hours. The streptavidin-coated cantilevers were 

then washed with PBS 10 times followed by DEPC-treated water to reduce nonspecific 

binding and stabilize the biomolecules. These cantilevers were then ready for AFM 

measurements. Next, the AFM liquid cell, which is used to hold the functionalized 

cantilever, was cleaned with RNaseZAP (Ambion), rinsed with copious ultra-filtered 

deionized water, and dried with compressed nitrogen gas, followed by the exposure to 
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UV light at a wavelength of 254 nm for 10 min, to remove any residual organic 

contamination. 

 

3.3.1.1 Gold surface used in AFM experiments 

The template stripped gold substrates were purchased from Platypus Technologies 

(http://www.platypustech.com/templatestrippedgold.html). The thickness of gold coating 

is 100 nm. The roughness of gold surface is 0.4 nm within 1x1 m area. The AFM image 

of a freshly stripped gold surface is shown in Figure B.2a. 

 

3.3.1.2 Calibration of AFM cantilevers 

The spring constants of all used cantilevers (Novascan) are calibrated using the 

“reference beam method” with the same reference cantilever [109, 110]. This is to 

minimize the possible experimental error from the calibration procedure propagating into 

the final results. A reference cantilever with a known spring constant kref = 0.08 N/m was 

used. As shown in Figure B.1, a cantilever with unknown spring constant is pressed onto 

the reference cantilever. Then, the unknown spring constant can be determined by 

 

where Sref and Shard are the slopes of force curves when the tip is in contact with the 

reference cantilever and a hard surface such as silicon, respectively. Lref is the length of 

the reference cantilever, and L is the offset between the AFM tips due to possible 

misalignment. For the triangular cantilevers used in this work, extra care was needed to 

position the AFM tip near the middle line of the reference cantilever to avoid errors 

owing to the torsional bending [111]. The Lref of our reference cantilever is purposely 

chosen to be 480 m; thus the error coming from the tip alignment is negligible. 

Furthermore, to properly calibrate the unknown stiffness k of a cantilever using this 

method, the following condition needs to be satisfied: 

http://www.platypustech.com/templatestrippedgold.html
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According to the manufacturer’s data, the spring constants of our cantilevers are 

approximately 0.06 N/m, which satisfies the condition above. The measured force can be 

calculated by , where m is the optical sensitivity of the AFM cantilever 

and Dlever is the deflection signal of the cantilever recorded by the photodiodes of AFM. 

The optical lever sensitivities (m) are calibrated in solution on gold substrate during the 

force measurements. All calibrated w and k of the used cantilevers are listed in Table B.2. 

 

3.3.2 UV melting and circular dichroism for AFM substrates 

Duplexes used in AFM measurements were analyzed by UV melting and circular 

dichroism (CD). The samples were prepared by annealing appropriate complementary 

oligos at concentrations of 1.38 M in 100 mM NaCl, 10 mM phosphate, and 0.1 mM 

EDTA at pH 7.4. UV absorption changes at 260 nm were acquired by Cary 1E UV-Vis 

Spectrophotometer, between 25 °C to 91 °C. The temperature was raised at a rate of 

0.5 °C/min. Absorbance values were normalized at the value at 25 °C. Only the Tm was 

calculated from the UV melting curves since the substrates were all 30 bp long. CD 

spectra were acquired on Jasco J-810 Circular Dichroism Spectrometer between 210 nm 

to 320 nm, with a scanning rate of 200 nm/min and a band width of 1 nm. The samples 

were placed in 1-cm path length cells at 25 °C. 

 

3.3.3 AFM measurements 

A Veeco Multimode Nanoscope IV AFM was used to perform single molecule force 

spectroscopy. During the measurements, the approaching/retracting tip velocity was kept 

at 29.1 nm/s. A total of 4,096 data points were acquired for each approaching–retracting 

cycle. To avoid multiple pick-ups during the experiment, we intentionally reduced the 

density of DNA distribution on the surface; thus, the successful DNA pick-up rate by the 
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tip was less than 10% from approximately 6,000 force–distance curves. Occasionally, 

multiple pick-ups of DNA did occur. Only force–distance curves clearly showing one 

DNA stretching were analyzed and reported. The same measurements were performed 

with ss DNA molecules as experimental controls (Figure B.3 and Table B.3–5). For each 

sequence (with and without rGMP intrusions) the experiments were repeated for two to 

three different samples, and for each sample between 50 and 130 force curves were 

acquired pulling different DNA molecules present on the sample surface. We also 

performed AFM imaging of DNA molecules deposited on the gold surface (Figure B.2). 

 

3.3.3.1 Selection and calibration of AFM force–distance curves 

We only consider force-distance curve showing only one DNA pick-up by the tip. We do 

not use data showing multiple DNA pick-ups. Typical force curves showing multiple 

DNA pick-ups are shown in Figure B.4. During the data acquisition, the force-distance 

curve is recorded as cantilever deflection vs. distance moved by the piezo scanner, i.e. 

zlever vs. zpiezo, as shown in Figure B.5a. This is not the real separation distance, d, 

between the AFM tip apex and the gold surface. To accurately determine the tip-surface 

distance, d, the cantilever deflection zlever has to be subtracted from zpiezo, i.e., d = zpiezo - 

zlever [112]. In addition, the cantilever deflection is assumed to be zero when the tip is 

far away from the surface and is used to offset the whole force curve. The calibrated 

force-distance curve is shown in Figure B.5b. 

 

3.3.3.2 Determination of L0, , and Fst 

The calibrated force-distance curve during tip retracting shown in Figure B.5b is now 

presented in Figure B.6. As indicated by two red solid lines, we performed linear fitting 

to two linear sections of the retracting curve to determine the position when the DNA 

begins to be stretched. The intersected point of the fitted lines is determined to be the 

position where the stretching of DNA begins. The sudden jump in the force curve 
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indicates when the DNA is suddenly detached from tip, i.e. when the bonding between 

streptavidin and biotin is broken. Then, the cantilever goes back to its initial position 

when there is no force, and the deflection of becomes zero again. The initial contour 

length L0, extension  of DNA, and the stretching force Fst can then be determined from 

the force curve and are used to calculate the stretch modulus by using S = Fst  L0 / . 

 

3.3.3.3 Removal of outliers 

We used Peirce’s criterion to perform the outlier test [113, 114]. Using Peirce’s criterion, 

multiple outliers can be removed. Table B.6 summarizes the number of outliers that was 

excluded to obtain the final data sets for statistical consideration. Only as much as 6% of 

total data were removed. 

 

3.3.3.4 Gaussian fitting 

The best Gaussian fit to the data was obtained using the following equation: 

 

where the offset y0 is set to 0 during the fitting procedure. The value of xc is the peak 

position of the Gaussian distribution. 

 

3.3.4 MD simulations 

MD simulations were performed by using an in-house Fortran code. Energy and atomic 

forces were calculated by using the potential energy and parameters of the Amber force 

fields parmbsc0. The in-house MD code implements periodic boundary conditions, the 

Verlet algorithm to integrate the equations of motion, the Ewald method to calculate 

Coulomb interactions and forces, the Nose–Hoover thermostat and Parrinello–Rahman 

barostat methods to control temperature and pressure of the system, standard routines to 

calculate short-range energy and force contributions, and Message Passing Interface 
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instructions to run simulations on parallel computer clusters [115-117]. Initial structures 

consisted of 10-bp duplexes with the standard B-DNA geometry immersed in a 

tetrahedral box containing 1,535 water molecules and 20 sodium cations to neutralize the 

whole system. A duplex is oriented and periodic along the z-axis, and the dimensions of 

the simulation box are about 38 Å   38 Å   34 Å . The systems were first optimized and 

then equilibrated for about 1 ns at a temperature and pressure of 300 K and 1 atm, 

respectively, by using an isothermic, isobaric ensemble. Simulations were then extended 

for about 20 ns in the microcanonical ensemble. In this last step, temperature and 

pressure remained close to 300 K and 1 atm, respectively, and the MD trajectories were 

used for the structural analyses. Further technical details and applications of our Fortran 

MD code can be found in our previous work [115, 118]. 

 

3.3.5 NMR 

NMR experiments were performed on a Bruker Avance 600 spectrometer, equipped with 

a 5mmQXI 
1
H, 

31
P, 

13
C, 

15
N probe (Bruker). Acquisition and processing parameters are 

similar to those described in our earlier studies [119] with the following variables. 

For experiments in D2O: NOESY spectra (2k  600) were collected with mixing times of 

75 ms, 125 ms, and 250 ms and a relaxation delay of 4 s. COSY experiments (2k  1200) 

were run with 
31

P decoupling, a 2 s relaxation delay, and zero filled to (4k  4k). 
1
H–

31
P 

correlation (HPCOR) [120] experiments (2k  400) with a sweep width of 9 and 12 ppm 

for 
1
H and 

31
P, respectively, used a relaxation delay of 2 s. For water experiments, a 1-1 

jump and return and a 1-1 jump and return NOESY (2k  400) with a 150 ms mixing 

time were used with a 1 s delay. Assignment and integration of 2D spectra were carried 

out using SPARKY 3.33 [121]. The phosphodiester signals were assigned based on their 

correlation to assigned H3′ and H4′ protons. 
1
H and 

31
P were referenced to internal DSS 

and external 85% H3PO4 (capillary in D2O), respectively. 
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3.3.5.1 UV melting for NMR substrates 

Thermal denaturation curves for an rGMP-containing 9-bp duplex, ATGGArGCTC (with 

rGMP III) and its DNA-control were obtained on a Cary UV-Vis Spectrophotometer. The 

duplexes were prepared in 100 mM NaCl, 10 mM phosphate, 0.5 mM EDTA at pH 6.6.  

Melting temperatures (Tm) were derived from a six-parameter fit of the melting curves for 

a series of duplex concentrations ranging from 2 to 20 M [122]. Enthalpy and entropy 

values were then calculated from a linear fit of the van’t Hoff plot. 

 

3.4 Results and Discussion 

In order to investigate the effect of rNMP intrusions in DNA, we have performed elastic 

measurements on 30-bp ds DNA molecules with two different sequences, Sequence 1 and 

Sequence 2, as shown in Figure 3.1c, where the rNMP intrusions were always introduced 

at the bases of guanosine, dG of the corresponding DNA molecule. These intrusions are 

therefore called riboguanosine (rGMP) or rG. Riboguanosine is the most frequently 

incorporated rNMP by DNA polymerases in vitro [14, 42], and it is well recognized by 

ribonuclease H type 2 (RNase HII/2) and mismatch repair if mispaired in DNA or by 

RNase HII/2 and nucleotide excision repair if paired both in E. coli and S. cerevisiae 

cells (Koh et al., unpublished) [58]. For this reason, we incorporated rGMP into our 

sequences. So far, no data exist in the literature to the best of our knowledge on the effect 

of any rNMP intrusions on the elasticity of DNA. Therefore, to start our studies we have 

chosen two sequences with the only constraint that they did not present any self-

complementarity, which could produce hairpin loops. In particular, Sequence 2 derives 

from the yeast S. cerevisiae genome and is a sequence we utilize to study the impact of 

rNMPs in vivo [55]. With the concern that the mechanical alterations caused by a single 

rGMP embedded in a 30-bp ds DNA molecule could be below AFM detection capacity, 

in both sequences, an rGMP was introduced every four to six nucleotides and in only one 
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of the two strands (Figure 3.1c). MD simulations and NMR have instead been performed 

on segments of these two sequences because the diverse techniques dictate different 

lengths of the investigated DNA molecules. 

 

The elastic properties of micrometer-long ds DNA have been studied extensively in the 

last two decades using AFM [123], magnetic [124], and optical tweezers [125]. The 

stretch modulus of long ds DNA with a few thousand bp is found to be approximately 

1000 pN [123-125]. Recently, ds RNA with a similar length has also been investigated 

using these techniques; experiments using AFM and magnetic tweezers have found that 

elasticity of micrometer-long ds RNA can be 10% to 20% larger than that of ds DNA 

[126, 127]. AFM, in particular, is a powerful technique to study the elasticity of nano-

systems [112, 128], and ds DNA shorter than hundred nanometers has been investigated 

using AFM [129-132]. Interestingly, recent studies about the elastic properties of ds DNA 

using AFM [130, 132], X-ray diffraction [133, 134], and fluorescence resonance energy 

transfer (FRET) [134] techniques have consistently found that ds DNAs are much more 

elastic than the micrometer-long ones on the nanoscale. For ds DNAs shorter than 150 bp, 

their stretch moduli are found to be about 100 pN, an order of magnitude smaller 

compared to that of few thousand-bp-long ds DNA. The difference in elastic properties of 

ds DNA of different lengths cannot be explained by the classical Worm-Like-Chain 

model [130, 133, 134], which was successfully applied to describe the mechanical 

properties of micrometerlong ds DNA under strain [124, 125, 135]. However, all the 

DNA and rG-DNA molecules used here are about 10 nm long, and for DNA molecules 

shorter than about 50 nm, the WLC model is not appropriate, as already discussed in 

previous studies [130, 133]. Although the origin of ds DNA softening on the nanoscale is 

not clear, it is hypothesized that the base-pair breathing of the DNA chain is one possible 

cause [134, 136]. Further discussion about this phenomenon is beyond the scope of this 

paper, interested readers are referred to the aforementioned references for further details. 
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To study how the embedded rNMPs alter the mechanical properties of DNA, we used 

AFM-based single molecule force spectroscopy to stretch two individual short DNA 

duplexes attached between an AFM tip and a gold surface. Thermodynamic data of 

duplex formation showed that the rNMPs are tolerated well in a DNA duplex and do not 

result in a marked alteration of the duplex stability (Table B.7), demonstrating that the 

duplexes are suitable for AFM studies. Circular dichroism (CD) spectra were collected 

for the investigated two 30-bp sequences of DNA with and without rNMP intrusions. All 

these DNA molecules showed a typical conservative spectrum with a positive and a 

negative peak at 280 nm and 250 nm, respectively, indicative of a B-form helical 

structure (Figure B.7). During the AFM measurements, as illustrated in Figure 3.2a, at 

one end, both the DNA strands were covalently anchored on a gold substrate through 

thiol–gold chemistry, while the strands at the other end were attached to the AFM tip via 

streptavidin–biotin bonding [132]. The elastic properties were then investigated by 

stretching DNA using the AFM tip (Figure 3.2a). For each sequence, we compared the 

stretch modulus of DNA containing rNMPs with the modulus of the corresponding DNA 

sequence without rNMPs. Figure 3.2b shows an AFM image of anchored rG-DNA 

molecules of Sequence 1 on the gold surface (see Figure B.2 for images of other DNA 

molecules). The height profile shown in Figure 3.2c indicates that DNA molecules on 

the surface have heights of a few nanometers, a value which corresponds to the length of 

these molecules, proving that they are standing up and not lying on the surface [132]. To 

avoid multiple DNA pick-ups during the pulling experiment, we have purposely reduced 

the distribution of DNA density on the surface for each measurement. In addition, the 

measurements were performed in a buffer solution of 100 mM Na
+
, which gave rise to a 

Debye length of 1 nm from the surface and occasionally resulted in repulsive force 

between the tip and the gold substrate at short separation distance. During the pulling 

measurements, the AFM tip is first brought into gentle contact with the gold substrate to 
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pick up a DNA molecule through streptavidin–biotin interaction. When the AFM tip is 

retracted from the surface, the picked DNA molecule is extended to its natural contour 

length L0, and then further stretched to L0 +  until the streptavidin–biotin bonding is 

broken (Figure 3.2a,d). The typical binding force for a streptavidin–biotin bond is about 

100 pN [137] for the tip velocity used in this experiment, which is an order of magnitude 

weaker than the covalent thiol–gold binding force, approximately 1.4 nN [138]. This 

significant difference in the binding force magnitude ensured that the DNA molecules 

could be repeatedly stretched by the AFM tip and were not plucked away from the 

surface during the experiment. Sometimes multiple DNA pick-ups did occur (Figure 

B.4); thus, we discarded such events and used only force–distance curves showing a 

single DNA pick-up for data analysis. Typical force vs. tip-substrate distance curves 

during the tip approaching and retraction are shown in Figure 3.2d and schematically 

illustrated in Figure 3.2e. Details about force curve calibration can be found in Materials 

and Methods, Figure B.5, and the literature [139-143]. In the retracting force curve (red 

in Figure 3.2d), it is possible to observe that the tip has to overcome an initial adhesion 

force Fadh to detach from the substrate. Once the tip is out-of-contact from the substrate, 

further retraction of the tip extends the DNA to its natural contour length L0. During this 

elongation, no force is detected. However, when the tip moves further up, the DNA is 

stretched to L0 +  and simultaneously a sudden increase of the force that pulls the tip 

downward towards the substrate is detected (Figure 3.2d,e). After the bond between 

streptavidin and biotin abruptly breaks, the cantilever jumps back to its zero-force 

position, corresponding to zero-cantilever-bending. The difference in force magnitude 

between the point where the DNA stretching is at a maximum and the point where the 

DNA detaches from the AFM tip is defined as the stretching force Fst exerted on the 

DNA. Details about determination of all the parameters are shown in Materials and 

Methods and Figure B.5. Finally, by the definition of stretch modulus S, we obtain S = 

Fst  L0 /  [123, 132]. 
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Figure 3.2 DNA stretching experiments using AFM. (a) Schematic view of a DNA 

molecule with rNMP intrusions during AFM stretching. The DNA biotinylated ends 

interact with the streptavidin-modified tip, while the DNA thiolated ends are attached to 

the Au surface. (b) AFM topographic image of Sequence 1 ds DNA molecules containing 

rGMP intrusions deposited on an Au surface. (c) Height profile of the cross section (blue 

line in b) of the topographic image shown in b. (d) Typical force–distance curves 

acquired during AFM force measurements after calibration. (e) Schematic of force–

distance curves for the determination of L0, , and Fst. 

 

The histograms of the measured stretch moduli of ds DNAs with Sequences 1 and 2 (with 

and without rGMPs) are presented in Figure 3.3a and b, respectively. In all histograms, 

the magnitude of the peak (the maximum number of elastic measurements performed for 
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a given sample) was normalized to 1 for clarity when comparing different measurements. 

The exact number of performed measurements is reported in Table B.6, and it ranges 

between 50 and 130 per sample. For each sequence, we plotted the histograms of the 

stretch modulus obtained for the ds DNA molecules with (in red) and without (in blue) 

rGMP intrusions, shown in the top and the bottom panels, respectively. Individual 

histograms for each ds DNA molecule are shown in Figure B.8–10. All the histograms 

show typical Gaussian distributions in which the peak position can be obtained directly 

from the Gaussian fit. For each sequence, the solid lines are the best Gaussian fit to all 

the combined data obtained from different measurements and samples. The parameters 

L0, , and Fst used for the calculation of S are summarized in the tables presented in 

Figure 3.3c,d. See Table B.8–10 for mean and median values and Table B.11–14 for 

summary of detailed statistical analysis. Interestingly, for Sequence 1 the peak position of 

all the combined data indicates that the stretch modulus in the presence of rGMPs (71.1  

3.5 pN) is 32% lower than the modulus in the absence of intrusions (105.3  2.0 pN) 

(Figure 3.3a,c). The presence of rGMPs in DNA is thus softening the DNA for Sequence 

1. On the other hand, for Sequence 2 (Figure 3.3b,d) the Gaussian distribution of the 

data corresponding to ds DNA in the presence of rGMPs is very similar to the 

distribution of the data in the absence of rGMPs, and the peak position of the modulus is 

even slightly shifting towards larger values (stiffening) in the presence of rGMP 

intrusions, precisely from S = 73.2  2.8 pN without rGMPs to 89.9  3.8 pN with 

rGMPs. These results demonstrate that rGMP intrusions in DNA can substantially 

decrease the stretch modulus of DNA, as in the case of Sequence 1, and that this effect is 

not a general alteration caused by rGMPs in DNA. In fact, rGMPs in Sequence 2 cause 

only a minor perturbation of DNA elasticity, and even in the opposite direction, inducing 

a mild increase of the modulus. Since both sequences have the same number of rNMPs of 

the same base, rG, the measurements suggest that very different effects are likely 

depending on the position of the rNMPs and the sequence context. We point out that the 
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stretch moduli of the ds DNA without rGMP intrusions are both around 100 pN, which is 

consistent with those obtained using different techniques [133, 134], for both Sequences 

1 and 2. Moreover, the stretch modulus of ds DNA without rGMP intrusions is larger for 

Sequence 1 than for Sequence 2, owing to the previously shown sequence-dependent 

effect of DNA elasticity [144, 145]. 

 

(a) (b)

Sequence 1
Gaussian Peak Median

L0 (nm) δ (nm) Fst (pN) S (pN) S (pN)

dG-DNA
(n=157)

9.0 ± 0.2 2.1 ± 0.4 27.1 ± 0.8 105.3 ± 2.0 109.3 (99.3 – 121.4)

rG-DNA
(n=251)

11.2 ± 0.2 3.8 ± 0.1 28.6 ± 0.1 71.1 ± 3.5 76.5 (67.2 – 86.1)

Sequence 2
Gaussian Peak Median

L0 (nm) δ (nm) Fst (pN) S (pN) S (pN)

dG-DNA
(n=186)

9.9 ± 0.3 2.8 ± 0.1 22.5 ± 0.3 73.2 ± 2.8 84.1 (75.0 – 95.2)

rG-DNA
(n=139)

10.3 ± 0.3 1.6 ± 0.4 31.3 ± 0.2 89.9 ± 3.8 107 (92.4 – 126.6)
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Figure 3.3 Stretch moduli of investigated DNA without and with rGMPs. (a) 

Histograms of the stretch modulus distributions of Sequence 1 DNA without rGMPs (dG-

DNA, blue) (2 repeats) and with rGMPs (rG-DNA, red) (3 repeats). (b) Histograms of the 

stretch modulus distributions of Sequence 2 DNA without (2 repeats) and with (3 repeats) 

rGMPs. Solid lines are the best Gaussian fit for all the combined data. (c and d) Summary 

of values L0, , and Fst extracted from the force–distance curves and used to obtain the 

stretch modulus S for Sequences 1 and 2, respectively. The values are obtained from a 

Gaussian fit and represent the peak position  the standard error from the Gaussian fit. 
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The stretch modulus is also shown as the median value with 99% confidence interval of 

the median in parentheses. The value n denotes the total number of force measurements 

used for fitting. P values, comparing the stretch moduli of dG-DNA and rG-DNA for 

each sequence, are shown. The Mann–Whitney U-test was utilized to obtain P values. 

 

In order to gain some molecular insight into the origin of the elastic properties of 

modified and control DNA oligomers, we performed MD simulations using all the 

different rGMPs (I–X) of the DNA sequences used in the AFM measurements (Figure 

3.1c). Our simulations showed that three of the five rGMP intrusions in DNA of 

Sequence 1 are able to induce local structural distortions involving the rGMP and/or the 

following nucleotide in the 3′ direction (Figure 3.4a,b). In the particular case of sequence 

CrGATGGArGCT (Figure 3.4c), the two rGMPs (II and III) are both sandwiched by C 

and A nucleotides, and MD simulations show that the decamer undergoes significant 

local distortions (see alpha and gamma torsional angles of the sugar-phosphate backbone 

relative to average values in control DNA in Figure 3.4a,b) in correspondence of the 

nucleotide on the 3′ side of each rGMP. Inspection of the MD trajectories suggests that 

these distortions arise from the formation of a hydrogen bond between the hydroxyl 

group of an rGMP and neighboring electronegative sites of either the backbone or the 

vicinal base in the 3′ direction (Figure 3.4d–g). A similar local distortion was found also 

in the case of the decamer with sequence GrGTTCArGGTT for rGMP I (Figure 3.4b). 

Although deriving conclusive results from our MD simulations is challenging, the MD 

runs show nonetheless that rNMPs are capable of triggering the occurrence of local 

distortions having lifetimes of the order of nanoseconds (Figure B.11), thereby 

suggesting that these local distortions at rGMP intrusions might be at the origin of 

different elastic properties of modified and control DNA oligomers. In the past, it has 

been shown that the structural distortion of the sugar-phosphate backbone of nucleic 

acids can substantially influence DNA flexibility [146, 147]. Thus, the significant local 
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structural distortions due to rNMP intrusions in the DNA chain found by MD simulations 

likely alter the elasticity of DNA molecules in the presence of rNMPs. 

 

 

Figure 3.4 Molecular dynamics simulation of DNA sites with an rGMP. Mean 

deviation of the (a) alpha () torsional angles and (b) gamma () torsional angles from 

expected values of corresponding DNA-only sequences across all rGMP segments (I to 

X) of Sequences 1 and 2 modeled via MD has been calculated; averages have been 
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performed by taking instantaneous values between the 5
th

 and the 15
th

 ns of each MD run. 

Black circles, red squares, blue triangles, green inverted triangles, and purple rhombus 

present data for the shown sequences with rGMP II and III, IV and V, VI and VII, VIII 

and IX, and I and X, respectively. rGMPs I–V and VI–X are from Sequence 1 and 

Sequence 2, respectively. (c) Illustration of the CrGATGGArGCT duplex with rGMP II 

and III, showing in colors the (top) 5′-rGA-3′ and (bottom) 5′-rGC-3′ dinucleotides, 

respectively. O, C, N, H, and P atoms are shown in red, green, blue, white, and yellow 

colors, respectively; the rest of the duplex is displayed in grey. The white box indicates a 

periodic unit of an infinite oligomer used in simulations. (d) Zoom-in of a 5′-GA-3′ 

dinucleotide exhibiting regular values of  and . (e) Illustration of the 5′-rGA-3′ 

dinucleotide (with rGMP II) in a distorted conformation with  and  deviating by about 

200 ° and 100 °, respectively; this conformation appears to be stabilized by the formation 

of a hydrogen bond (white dashed line) between the 2′-hydroxyl group of rG and the N7 

site of adenine in the 5′-rGA-3′ dinucleotide. (f) Zoom-in of a 5′-GC-3′ dinucleotide 

showing regular values of  and . (g) Illustration of the backbone region of the 5′-rGC-3′ 

dinucleotide (with rGMP III) showing the occurrence of a metastable local distortion 

involving significant deviations of both  and . Also in this case, the local distortion is 

accompanied by the formation of a hydrogen bond between the 2′-OH group of rG and an 

O atom of the phosphate group. Water molecules and Na
+
 ions are not shown for clarity 

in d–g while bases are also not shown in f and g. 

 

To further probe the structural impact of a single rGMP embedded in DNA, NMR 

spectroscopy was performed on three selected segments from Sequence 1 and Sequence 2 

of the AFM study. All three segments chosen for NMR studies contain a single rGMP 

embedded at the 6th or the 5th position of a 9-bp DNA duplex (Figure 3.5). The rG is 

tolerated well in the DNA duplex and does not appreciably affect duplex stability (Figure 

3.5a,c,e and Table B.15). All three rGMP-containing 9-bp duplexes and their DNA-
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controls exhibit a characteristic B-form helical structure. Additionally, imino 
1
H NMR 

spectra (Figure 3.5 and Table B.16) reveal that all base-pairs are formed, including the 

rG:C base-pair, with chemical shift perturbation localized to the rG:C and neighboring 

base-pairs (Figure 3.5a,c,e). 
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Figure 3.5 Structural perturbation caused by an rGMP embedded in a DNA duplex 

as observed by 
1
H and 

31
P NMR. (a) Imino 

1
H NMR spectra for the 5′-ATGGArGCTC-

3′ duplex containing rGMP III of Sequence 1 (top) and its DNA-control (bottom) at 280 

K in 100 mM NaCl, 10 mM phosphate, 10% D2O buffer at pH 6.4. (b) 
31

P NMR spectra 

of the 5′-ATGGArGCTC-3′ duplex (top) and its DNA-control (bottom) recorded at 294 K. 

(c) Imino 
1
H NMR spectra for the 5′-ATCCrGGTAG-3′ duplex containing rGMP VI of 

Sequence 2 (top) and its DNA-control (bottom) at 280 K under the same buffer 

conditions. (d) 
31

P NMR spectra for the 5′-ATCCrGGTAG-3′ duplex (top) and its DNA-

control (bottom) recorded at 294 K. (e) Imino 
1
H NMR spectra for the 5′-

TTAGrGCCTG-3′ duplex containing rGMP VIII of Sequence 2 (top) and its DNA-

control (bottom) at 280 K under the same buffer conditions. (f) 
31

P NMR spectra of the 

5′-TTAGrGCCTG-3′ duplex (top) and its DNA-control recorded (bottom) at 294 K. 

 

The NMR study focused on the phosphodiester backbone of the duplexes. The 

phosphorous chemical shifts depend on the environment; the major determinants of the 

31
P chemical shift are the alpha and zeta torsion angles [147]. Typically, B-form DNA 

phosphorous resonances are confined to a narrow shift window (~0.6–0.8 ppm) as seen 

for the DNA-controls. The presence of a single rGMP results in local perturbations to the 

duplex backbone. This localized perturbation is limited to the nearest and next nearest 

base-pairs and is consistent with a recent study of an rGMP-containing dodecamer 

sequence [75]. In contrast to this study, however, due to the non-self-complementary 

design of our duplexes with a single rGMP on only one strand, we observed an 

asymmetric 3′ perturbation of the duplex primarily on the rGMP-containing strand 

(Figure 3.5b,d,f and Table B.17). 

 

In two of the three rGMP-containing duplexes, 5′-ATGGArGCTC-3′ (rGMP III) and 5′-

ATCCrGGTAG-3′ (rGMP VI), the rG phosphorous resonance showed relatively little 
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deviation <0.25 ppm from the DNA-control, while the phosphorous peaks following rG 

were shifted downfield by 0.80 and 1.28 ppm, respectively (Figure 5b,d and Table 

B.17). Additionally, the next to nearest neighboring phosphorous resonances 3′ of the 

rG experienced an upfield shift of 0.27–0.29 ppm. This is indicative of a distortion of the 

backbone, localized 3′ of the rG base in these sequence contexts. The other NMR 

sequence, 5′-TTAGrGCCTG-3′ (rGMP VIII), exhibited a different trend; in this duplex, 

the 
31

P NMR spectrum of the rGMP-containing oligonucleotide appears less perturbed, 

the furthest downfield shifted phosphorous resonance corresponded to rG5 while the 

phosphodiester on the 3′ side of rG is essentially unaffected (Figure 3.5f). Taken together 

this means that the resulting backbone distortions are not the same, highlighting the 

importance of the sequence context previously mentioned in the AFM study. 

Although two of the three selected NMR duplexes contain a purine-rG-pyrimidine motif 

(5′-ArGC-3′, rGMP III and 5′-GrGC-3′, rGMP VIII) and would be expected to have 

similar stacking interactions, they exhibit strikingly different 
31

P spectra (Figure 3.5b,f). 

Interestingly, in the MD trajectory of the 5′-ArGC-3′ (rGMP III) sequence, we observe a 

hydrogen bond between the 2′-OH and the phosphate group (Figure 3.4g). Such a 

hydrogen bond may simultaneously dampen the dynamics and change the local 

environment and rationalize the different behavior of the 5′-ArGC-3′ (rGMP III) 

sequence context. 

 

3.5 Conclusions 

In summary, we have studied the elastic properties and structure of two short ds DNAs 

with and without rGMP intrusions, employing a combined experimental and theoretical 

approach on different segments of these two sequences. AFM-based single molecule 

force measurements showed that, depending on the DNA sequence and/or the specific 

positions of the rGMP intrusions in the sequence, rGMPs can dramatically decrease (up 

to 32% for the sequences used here) or slightly increase thestretch modulus of ds DNA. 
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Snapshots of MDsimulations reveal sequence-dependent local structure alterations of the 

torsion of the DNA backbone caused by the intrusion of rGMPs in the DNA chain. The 

major alterations identified by MD simulation involve the rGMP and the nucleotide 3′ 

from the rGMP. Consistent with MD simulations, NMR spectra demonstrate that even a 

single rGMP can substantially alter the local sugar-phosphate backbone, and major 

alterations also involve the rGMP and nucleotide 3′ from the rGMP. Our findings point 

towards a marked effect in the elastic properties and structure of ds DNA possibly played 

by the sequence context in the immediate vicinity of the embedded rNMPs, at the 

nucleotide 3′ to the rNMP sites. It is reasonable to think that the nucleotide to the 3′ side 

of the rNMP is the most altered in the structure because it is the closest nucleotide to the 

2′-OH group of the rNMP (Figure 3.1b, 3.4, and 3.5). The combined theoretical and 

experimental approach accomplished here opens a new route to understand how rNMP 

intrusions, at which sites and densities, can modify the structural, physical, and 

mechanical properties of DNA, and ultimately change its chemical and biological 

functions. Overall, our results reveal a complex effect of rNMPs on DNA elastic 

properties, the direction and the impact of which can be determined for each specific 

sequence via AFM. Only a high throughput and systematic analysis of multiple DNA 

sequence contexts with rNMPs can help to elucidate the rules on how rNMPs alter DNA 

mechanical properties. Furthermore, this study shows that DNA elasticity could be 

modulated by means of rNMP inclusions for a variety of applications in 

nanobiotechnology. 
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CHAPTER 4 

 

RIBOSE-SEQ: GLOBAL MAPPING OF RIBONUCLEOTIDES 

EMBEDDED IN GENOMIC DNA 
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4.1 Abstract 

Abundant ribonucleotide incorporation in DNA during replication and repair has 

profound consequences for genome stability, but the global distribution of ribonucleotide 

incorporation is unknown. We developed ribose-seq, a method for capturing unique 

products generated by alkaline cleavage of DNA at embedded ribonucleotides. High-

throughput sequencing of these fragments in DNA from the yeast Saccharomyces 

cerevisiae revealed widespread ribonucleotide distribution, with a strong preference for 

cytidine and guanosine, and identified hotspots of ribonucleotide incorporation in nuclear 

and mitochondrial DNA. Ribonucleotides were primarily incorporated on the newly 

synthesized leading strand of nuclear DNA and were present upstream of (G+C)-rich 

tracts in the mitochondrial genome. Ribose-seq is a powerful tool for the systematic 

profiling of ribonucleotide incorporation in genomic DNA. 

 

4.2 Introduction 

Genomic DNA contains embedded ribonucleotides (rNMPs) that are incorporated during 

DNA replication and repair or formed during DNA damage (reviewed in [148]). The 

modifications have been linked to genome instability and disease, but no method 

currently exists to profile their locations genome wide. 

 

rNMPs were initially found at specific DNA loci in mouse and human mitochondrial 

DNA [149] and the mating type locus of fission yeast [4], but they have since been 

detected in a variety of cell types [150]. Many DNA polymerases can incorporate rNMPs 

into DNA, including the human replicative DNA polymerase (Pol)  [14] and 

mitochondrial Pol  [19], budding yeast nuclear replicative Pol , , and  [21], 

Escherichia coli polymerase V [12], and the polymerase components of bacterial 

nonhomologous end joining ligases [151]. rNMP incorporation could also be a 

consequence of incomplete maturation of Okazaki fragments during lagging strand 
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synthesis in DNA replication [28]. Moreover, generation of hydroxyl radicals during 

oxidative stress can modify DNA deoxyribose sugars to ribose, forming rNMPs in DNA 

both in vitro and in vivo [29]. 

 

RNase H type 2 (RNase H2 or HII) cleaves single rNMPs or longer rNMP tracts 

incorporated in DNA [37] and initiates ribonucleotide excision repair, the main rNMP 

repair mechanism in bacterial DNA and in eukaryotic nuclear DNA ([35] and references 

therein). By contrast, RNase H1 (or HI) recognizes only rNMP tracts longer than four 

nucleotides. Inactivation of RNase H2 leads to the accumulation of high amounts of 

rNMPs in genomic DNA, enabling >1 million rNMPs to be quantified per mouse 

embryonic fibroblast genome and suggesting that rNMPs are the most common 

noncanonical nucleotides in dividing mouse cells [34]. Similar measurements on genomic 

DNA derived from RNase H2–deficient (rnh201) budding yeast estimated a few 

thousand rNMPs incorporated per genome per cell cycle [32, 33], and RNase HII–null 

Bacillus subtilis cells have high levels of incorporated rNMPs [11]. Embedded rNMPs in 

DNA have highly reactive 2′-hydroxyl groups, altering its properties, structure, and 

function [54, 91] and leading to genome instability [32, 39, 40, 62]. In humans, mutations 

in any of the three subunits of RNase H2 are associated with Aicardi-Goutieres syndrome 

(AGS), a neurological disorder [64]. 

 

Despite abundant evidence for the frequent incorporation of rNMPs in DNA, a 

comprehensive and detailed picture of rNMP incorporation throughout a genome is 

lacking. Here we introduce ribose-seq: a technique for mapping rNMPs in genomic DNA. 

 

4.3 Materials and Methods 

4.3.1 Yeast strain construction 
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Yeast strains used in this study are presented in Table C.1. Isogenic yeast haploid strains 

KK-100, KK-174, KK-107 and KK-120 were derived from E134 (MAT ade5-1 lys2-

14A trp1-289 his7-2 leu2-3,112 ura3-52) [152]. KK-100 was made from E134 by 

deletion and replacement of RNH201 via transformation with a PCR product containing 

the hygMX4 cassette flanked by 50 nt of sequence homologous to regions upstream and 

downstream of the RNH201 ORF. KK-174 was constructed from KK-100 by deletion and 

replacement of RNH1 via transformation with a PCR product containing the kanMX4. 

KK-107 was generated by introducing the pol2-4 mutation into KK-100 via integration-

excision using plasmid YIpJB1 [153]. KK-120 was made by introducing the pol3-5DV 

mutation into KK-100 via integration-excision using plasmid p170-5DV [154]. 

 

Isogenic yeast haploid strains KK-30, KK-125, KK-164 and KK-170 were derived from 

FRO-767,768 (ho hml::ADE1 MATa-inc hmr::ADE1 ade1 leu2-3,112 lys5 trp1::hisG 

ura3-52 ade3::GAL::HO leu2::HOcs mata::hisG) [46]. KK-30 was made from FRO-768 

by reversion of ade3::GAL::HO to intact ADE3 via transformation with a PCR product 

containing ADE3, followed by replacement of RNH201 with the hygMX4. KK-125 was 

constructed from KK-30 by replacement of RNH1 with the kanMX4 cassette. KK-164 

was generated from KK-125 by replacement of UNG1 with the natMX4 cassette. KK-170 

was made by introducing the pol2-M644G mutation into KK-30 via integration-excision 

using plasmid p173-M644G [155]. 

 

Isogenic yeast haploid strains KK-158 and KK-159 were derived from FRO-767 and 

FRO-768 [46]. KK-158 and KK-159 were constructed from FRO-767 and FRO-768 by 

replacement of UNG1 with the hygMX4 cassette. 

 

4.3.2 AtRNL ligation assay 
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rNMP-containing DNA oligonucleotide (oligo) Lig.47.R (see Table C.2) and its DNA-

only control, Lig.47.D, were 5′ end-labeled with [γ-
32

P]ATP (PerkinElmer) by T4 

polynucleotide kinase (New England Biolabs). Alkali treatment was carried out in 0.3 M 

NaOH for 2 h at 55 °C. The resulting solution was neutralized and diluted. 100 nM of 

alkali-treated 5′-radiolabeled products were incubated in 50 mM Tris-HCl, pH 7.5, 40 

mM NaCl, 5 mM MgCl2, 1 mM DTT, 30 M ATP (Sigma-Aldrich), and 1 M AtRNL 

[156] for 1 h at 30 °C. After dilution, the ligated products and remaining substrates were 

treated with T5 exonuclease (NEB) for 2 h at 37 °C. Aliquots were withdrawn after 

appropriate steps and quenched with 90% formamide. The products were analyzed by 

15% (w/v) polyacrylamide, 8 M urea gel electrophoresis (urea-PAGE). 20–100 

Oligonucleotide Length Standard (Integrated Device Technology) was used as a ladder. 

After electrophoresis, gels were exposed to a phosphor screen overnight. Images were 

taken with Typhoon Trio
+
 (GE Healthcare) and obtained with ImageQuant (GE 

Healthcare). Band intensities were quantified by Multi Gauge V3.0 (Fujifilm). 

 

4.3.3 3′ base bias for AtRNL ligation assay 

rAMP, rGMP, rUMP, and rCMP-containing DNA oligos (Lig.30.rA, Lig.30.rG, 

Lig.30.rU, and Lig.30.rC, respectively; see Table C.2) were 5′ end-labeled with either 

hot [γ-
32

P]ATP (PerkinElmer) or cold ATP (Sigma-Aldrich) by T4 polynucleotide kinase 

(NEB). Each of the hot rNMP-containing 5′-radiolabeled DNA oligonucleotides was 

mixed with the other three cold DNA oligonucleotides at equimolar ratios. The mixtures 

were treated with 0.3 M NaOH for 2 h at 55 °C, neutralized, and diluted. 100 nM alkali-

cleaved products (25 nM of each base) was then incubated in 50 mM Tris-HCl, pH 7.5, 

40 mM NaCl, 5 mM MgCl2, 1 mM DTT, 30 μM ATP (Sigma-Aldrich), and either 1 M 

or 200 nM AtRNL [156] for 1 h at 30 °C. After dilution, the resulting products were 

treated with T5 exonuclease for 2 h at 37 °C. Aliquots were withdrawn after appropriate 

steps, quenched, and analyzed by urea-PAGE. 
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4.3.4 rNMP bypass assay 

A DNA primer oligo, ByPrim (see Table C.2), was 5′ end-labeled with [γ-
32

P]ATP 

(PerkinElmer) by T4 polynucleotide kinase (NEB). The 5′-radiolabeled primer was 

annealed to either rCMP- or rUMP-containing template oligonucleotide (ByTemp.rC or 

ByTemp.rU, respectively). 100 nM annealed substrates was incubated in HF Buffer, 2 

mM dNTPs and 0.2 units of Phusion High-Fidelity DNA Polymerase (NEB) for 30 s at 

72 °C. The reactions were quenched and analyzed by urea-PAGE. Bypass probability was 

calculated as the band intensity at the +1 position plus all longer products divided by the 

intensity at the −1 position (preceding the rNMP) plus all longer products, as described 

by Kokoska et al. [157]. 

 

4.3.5 Double-strand break repair assay with rNMP-containing oligos 

Transformations with rNMP-containing DNA oligos LEU2.rG and LEU2.rU (see Table 

C.2) and DNA-only oligos LEU2.D and LEU2.dU were done as described by Storici et 

al. [46]. Cells from each oligonucleotide transformation were plated to selective Leu
– 

medium. For each transformation, 20 Leu
+
 transformants were selected. Colony PCR was 

performed on those transformants, amplifying with primers LEU2.3 and LEU2.6 a 900-

bp region in LEU2 locus where a new StuI restriction site is expected. The resulting PCR 

products were treated with StuI (NEB) and analyzed by agarose gel electrophoresis to 

confirm the presence of the StuI restriction site. 

 

4.3.6 Ribose-seq library construction to map rNMPs in DNA 

Genomic DNA from S. cerevisiae cells grown in liquid rich medium containing yeast 

extract, peptone and 2% (w/v) dextrose (YPD) for 2 days to stationary phase was 

extracted following the protocol “Preparation of Yeast Samples” in the Qiagen Genomic 

DNA Handbook. Genomic-tip 500/G (Qiagen), Genomic DNA Buffer Set (Qiagen), 
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proteinase K (Qiagen), RNase A (Qiagen) and lyticase (Sigma-Aldrich) were used to 

extract genomic DNA from S. cerevisiae cells. Extracted genomic DNA was digested 

with SspI, DraI, and EcoRV (NEB) overnight at 37 °C to create a population of 500- to 

3,000-bp genomic fragments with an average size of ~1.5 kb. Assuming that rNMPs, if 

present, could be located in any position of each genomic fragment, an average of 1.5 kb 

allows a reasonable window for rNMP capture. Following confirmation of digestion by 

Experion Automated Electrophoresis System (Bio-Rad), the fragments were tailed with 

dATP (Sigma-Aldrich) by exo
–
 Klenow fragment (NEB) for 30 min at 37 °C. The 

resulting products were purified by spin column (Qiagen) and then ligated to preannealed 

double-strand adaptors (Adaptor.L:Adaptor.S; see Table C.2) that contain single dT 

overhangs and a randomized 8-base unique molecular identifier (UMI) by T4 DNA ligase 

(NEB) overnight at 15 °C. The products were purified using AMPure XP beads 

(Beckman Coulter). All subsequent purifications were done using AMPure XP beads. 

The adaptor-ligated DNA fragments were incubated in 0.3 M NaOH for 2 h at 55 °C to 

expose 2′,3′-cyclic phosphate and 2′-phosphate termini of DNA at rNMP sites, followed 

by neutralization and purification. The resulting single-strand (ss) fragments were 

incubated in 50 mM Tris-HCl, pH 7.5, 40 mM NaCl, 5 mM MgCl2, 1 mM DTT, 30 M 

ATP (Sigma-Aldrich), and 1 M AtRNL for 1 h at 30 °C, followed by purification. The 

products and remaining fragments of DNA were treated with T5 exonuclease (NEB) for 2 

h at 37 °C to degrade the background of unligated, linear ss DNA, leaving self-ligated ss 

DNA circles intact. Treatment with 1 M Tpt1 [156] in 20 mM Tris-HCl, pH 7.5, 5 mM 

MgCl2, 0.1 mM DTT, 0.4% Triton X-100 and 10 mM NAD
+
 (Sigma-Aldrich) for 1 h at 

30 °C was used to remove the 2′ phosphate remaining at the ligation junction. After 

purification and resuspension, the libraries were PCR-amplified with one of the barcoded 

primers, PCR.1.Index1-4, and PCR.2 (see Table C.2) using either Phusion High-Fidelity 

DNA Polymerase (NEB) or EconoTaq DNA Polymerase (Lucigen), confirmed by 6% 

PAGE, purified, and pooled for analysis by Illumina sequencing. 100-bp DNA Ladder 
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(NEB) was used as a size standard. SYBR Gold Nucleic Acid Gel Stain (Life 

Technologies) was used to stain PAGE gels for visualization under UV light. 

 

4.3.7 DNA sequencing 

Indexed sequencing libraries were mixed at equimolar concentrations and normalized to 

10 nM. Libraries were sequenced on an Illumina MiSeq and 50-cycle single-end reads 

were collected. Raw sequencing reads are available at NCBI GEO [158] under accession 

code GSE61464. 

 

4.3.8 Sequence alignment and processing 

Reads were aligned to the S. cerevisiae genome (sacCer2) with bowtie using two 

different settings to report uniquely aligning and multiple aligning reads (“-m 1” and “--

all”, respectively). Aligned reads in BAM format were processed to remove PCR 

duplicates using umitools (https://github.com/brwnj/umitools/), which filters reads that 

contain duplicate UMIs and reports reads with unique UMIs. Reads in this study had an 

eight-base UMI incorporated during ligation, corresponding to the first eight cycles of 

raw FASTQ sequence. Following UMI removal, read depths at each 5′ position were 

calculated with BEDTools [159, 160]. 

 

4.3.9 Nucleotide frequencies 

Nucleotide frequencies for mapped rNMP positions (that is, the 5′ position of each 

aligned read) were calculated and normalized to genome frequencies (nuclear and 

mitochondrial genomes in sacCer2). The identity of the rNMP base is the reverse 

complement of the 5′ base of each read. Nucleotide frequencies of downstream sequences 

of incorporated rNMPs, including the +1 position, cannot be affected by our approach of 

capturing rNMPs in DNA because the rNMPs and their upstream sequences are captured, 

sequenced and aligned to the reference genome. 
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4.3.10 Replication correlations 

The density and identity of rNMPs present on leading and lagging strands were 

calculated relative to annotated origins of replication [161] and were further categorized 

by replication timing [162]. Data were filtered for specified replication timings (for 

example, 25 min after release into S phase) and distances relative to the middle of each 

ARS annotation (for example, 5.0 kb upstream and downstream of each ARS). 

 

4.3.11 Determination of hotspots of rNMP incorporation in genomic DNA 

Two different analyses were conducted to identify hotspots of rNMP incorporation in 

genomic DNA. Peak calling was performed with macs2 (version 2.1.0.20140616) [163] 

with specific parameters (--keep-dup all --nomodel -s 25 --extsize 5 --call-summits). 

Peaks of length greater than 1,000 were filtered from further analysis, and remaining 

peaks with a q-value less than 0.001 were selected. A second analysis involved finding 

positions of rNMPs within the locus of interest with ribose-seq signal greater than the 

mean plus three standard deviations for each library from rnh201 (KK-100), rnh201 

(KK-100, EconoTaq), rnh201 (KK-30), rnh1 rnh201 (KK-174) and rnh1 rnh201 

(KK-125) cells. 

 

4.3.12 Data presentation and statistics 

Graphs were made using GraphPad Prism 5 (GraphPad Software). A nonparametric two-

tailed Mann-Whitney U-test [164] was implemented for statistical analysis of AtRNL 

ligation efficiencies, rNMP bypass probabilities and the percentages of StuI-cut Leu
+
 

transformants in the DSB repair assay. A chi-squared goodness-of-fit test [164] was used 

for statistical comparison of the distribution of rNMP reads to the expected Poisson 

distribution. 
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4.4 Results 

4.4.1 Ribose-seq strategy to capture rNMPs in DNA 

Ribose-seq captures rNMP-terminated single-strand (ss) DNA fragments generated by 

alkaline cleavage of rNMPs in DNA (Figure 4.1 and Figure C.1). We exploited the 

distinctive ligation mechanism of Arabidopsis thaliana tRNA ligase (AtRNL), normally 

involved in tRNA maturation. AtRNL converts 2′,3′-cyclic phosphate ends of RNA to 2′-

phosphate and ligates these to 5′-phosphate ends of RNA [156, 165] or DNA [165]. We 

demonstrated that AtRNL captures 2′,3′-cyclic phosphate or 2′-phosphate termini of 

DNA derived from alkaline cleavage of a DNA oligo at an embedded rNMP, ligating the 

2′-phosphate end to the 5′-phosphate terminus of the same DNA molecule and producing 

a ss DNA circle containing an embedded rNMP. Self-ligation was strongly preferred over 

dimerization, as linear dimers were not detected (Figure 4.1a). Further, these ss DNA 

circles are resistant to T5 exonuclease, enabling their enrichment relative to unligated 

linear DNA upon exonuclease treatment (Figure 4.1a). We did not observe any bias for 

the 3′ rNMP substrate of AtRNL: the ligase captured an embedded rAMP, rCMP, rGMP, 

or rUMP with equal efficiency (0.49 ≤ P ≤ 1.0) (Figure C.2 and Table C.3), nor was any 

bias observed in a previous study [166]. These data indicate that self-ligation is favored 

for AtRNL on 2′-phosphate-terminated ss DNA fragments as small as 22 nt (Figure 4.1a 

and Figure C.2), thus facilitating library construction and high-throughput DNA 

sequencing. 
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Figure 4.1 Ribose-seq method for mapping rNMPs in genomic DNA. (a) AtRNL 

captures 2′,3′-cyclic phosphate (cP) or 2′-phosphate (2′P) DNA termini, and does not 

capture 3′-phosphate (3′P) DNA termini (indicated in parentheses), generated by alkaline 

cleavage of a single rGMP in a 5′-radiolabeled 47-nt ss DNA oligo (see Table C.2). R, 

rGMP, or rGMP-bearing oligo. D, DNA-only control oligo. P in purple indicates the 5′ 



 72 

radiolabel. T5 exonuclease treatment confirms the presence of circular ligation product. 

Left lane, ss DNA ladder. Ligation efficiency was about 50%, as expected owing to the 

mixture of 2′-phosphate and 3′-phosphate ends generated upon alkaline cleavage. (b) 

Schematic of the ribose-seq approach. Genomic DNA is fragmented, dA-tailed and 

ligated to a molecular barcode-containing sequencing adaptor. Alkali treatment denatures 

the DNA and cleaves at rNMP sites, exposing 2′,3′-cyclic phosphate and 2′-phosphate 

termini, which are self-ligated to 5′-phosphate ends by AtRNL. Linear, unligated 

fragments are degraded by T5 exonuclease and the remaining rNMP-captured, circular 

DNA molecules, upon removal of the 2′-phosphate at the ligation junction by the 2′-

phosphotransferase Tpt1, are PCR-amplified and sequenced. UMI, unique molecular 

identifier. R in black indicates the rNMP converted to a dNMP during PCR. Ribose-seq 

does not capture RNA primers of Okazaki fragments because the 5′-most rNMP is a 5′-

triphosphate [26], and the T4 DNA ligase used to attach the sequencing adaptors 

absolutely requires a 5′-monophosphate [167]. Moreover, the rest of the primers are 

reduced to single nucleotides upon alkali treatment, and they will have no adaptor 

sequence ligated on. Ribose-seq also does not detect rNMP positions derived from 

residual RNA molecules or RNA:DNA hybrids not embedded in DNA (such as cDNA) 

nor DNA abasic sites, which could have been ligated to the adaptor sequence by T4 DNA 

ligase. Following alkali treatment, RNA stretches are reduced to single nucleotides that 

are removed in subsequent purification steps; even if the 5′-most rNMP is captured, the 

rNMP-containing single-stranded circle would not have any sequence to be aligned to the 

reference genome. Abasic sites undergo both β- and δ-eliminations to yield 5′-phosphate 

and 3′-phosphate ends [168, 169], which cannot be ligated by AtRNL. Because of the 

nature of alkaline hydrolysis within a stretch of rNMPs embedded in DNA, our ribose-

seq captures only the 5′-most rNMP of the stretch of two or more rNMPs. Moreover, 

ribose-seq does not require rNMPs to be present at the same location from cell to cell, 

and it can identify incorporated rNMPs with single-base precision. 
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We applied ribose-seq to identify rNMPs embedded in nuclear and mitochondrial DNA 

of RNase H2–deficient budding yeast (strain KK-100, Table C.1). Genomic DNA was 

extracted from cells grown to stationary phase, and a mixture of three blunt-end 

restriction enzymes was used to fragment the DNA. Application of our rNMP-capture 

scheme (Figure 4.1b) yielded a library of DNA molecules (Figure C.3a) with an average 

size of ~350 bp, each of which maps to a single site of rNMP incorporation and its 

upstream sequence. In control experiments, we found that exclusion of either AtRNL 

(Figure C.3a) or alkali treatment (Figure C.3b) prevented library formation, validating 

that captured molecules derive from rNMPs embedded in DNA. 

 

4.4.2 Spectrum of rNMPs in S. cerevisiae genome 

A ribose-seq library prepared from rnh201 cells (KK-100) was sequenced to a depth of 

~2 million reads, which were mapped to the yeast S. cerevisiae genome, allowing us to 

define rNMP locations along yeast nuclear and mitochondrial DNA with single-

nucleotide resolution. This analysis uncovered widespread rNMP incorporation with a 

coverage of 0.449 and 19.5 rNMP reads per kb in the nuclear and mitochondrial genome, 

respectively (Figure 4.2a and Table C.4). While broadly scattered, the rNMP sites in the 

nuclear and mitochondrial DNA were not randomly distributed (Figure 4.2b,c). We 

found no major Watson/Crick strand bias in ribonucleotide distribution throughout the 

genome (Figure 4.2a), and the number of rNMPs identified per nuclear chromosome was 

proportional to chromosome size (Figure 4.2d). 
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Figure 4.2 Distribution of rNMP incorporation in the S. cerevisiae genome. (a) 

Ribose-seq map of rNMPs in genomic DNA from rnh201 (KK-100) cells. The data, as 

peaks of rNMP reads, are shown for the individual nuclear chromosomes (Chr I–XVI) 

and the two strands of mitochondrial DNA (Chr M). The height of each peak corresponds 

to the number of reads. A comparison of nuclear and mitochondrial rNMP reads for 
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Watson (W) and Crick (C) strands is also displayed. (b,c) The proportion of 2.5-kb 

windows containing an observed number of rNMPs was calculated for (b) nuclear and (c) 

mitochondrial genomes and compared to random expectation based on Poisson 

frequencies. The P values calculated from a chi-squared goodness-of-fit test are shown (n 

= 10,847 and 3,347 aligned rNMP sites for nuclear and mitochondrial, respectively). (d) 

Chromosomal distribution of rNMPs compared to the size of each nuclear chromosome. 

 

We determined the identity and relative frequencies of incorporated rNMPs, the reverse 

complement of the 5′ base of each read, as well as flanking bases for the nuclear and 

mitochondrial genomes in rnh201 cells. At the site of rNMP incorporation, we found 

that rCMP and rGMP were incorporated more frequently than expected from the G+C 

content, while rAMP and in particular rUMP were incorporated less frequently than 

expected from the A+T content in both nuclear and mitochondrial genomes, indicating a 

strong bias in the rNMP spectrum considering the (A+T)-rich nature of these genomes in 

yeast (62% and 83%, respectively) (Figure 4.3a,b). Examining the absolute composition 

of the genomic rNMPs, we found 44% rC, 28.1% rG, 15.4% rA, and 12.5% rU in the 

nuclear genome and 36.8% rC, 25.6% rA, 19% rG, and 18.7% rU in the mitochondrial 

genome (Table C.4). The difference in the base composition between nuclear and 

mitochondrial rNMPs is likely to be due to the higher A+T content of the mitochondrial 

genome. 
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Figure 4.3 Identity and sequence contexts of rNMP incorporation in S. cerevisiae 

genome. (a,b) Normalized nucleotide frequencies relative to mapped positions of 

sequences from the ribose-seq library of rnh201 (KK-100) cells. Position 0 is the rNMP. 

(c,d) Zoom-out of frequencies. (e) Ratios of rNMPs on newly synthesized leading to 

lagging strand for all ribose-seq libraries. Early-firing ARSs selected by their replication 

timing (Trep) were investigated for two different flanking sizes. EconoTaq indicates the 

library constructed using a Taq-based DNA polymerase. All other libraries were 
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constructed with a Pfu-based DNA polymerase. (f,g) Normalized nucleotide frequencies 

relative to mapped sequence positions in leading (f) and lagging (g) strands from the 

rnh201 (KK-100) library. ARSs with a Trep of no longer than 25 min were selected with 

flanking size of 10 kb. (h–k) Normalized nucleotide frequencies relative to mapped 

sequence positions from a pol2-4 rnh201 (KK-107) library. Reads were mapped to the 

(a,c,h) nuclear genome, (b,d,i) mitochondrial genome, (f,j) leading strand, or (g,k) 

lagging strand. 

 

The high level of rCMP and low level of rUMP observed both for nuclear and 

mitochondrial DNA in the rnh201 library are not attributable to differential bypass by 

the Pfu-based DNA polymerase used for PCR (Figure C.4 and Table C.6), as we also 

observed similar rNMP patterns using a Taq-based DNA polymerase (Figure C.5a,b and 

C.6a,b). Similarly, the nucleotide frequency derived from a ribose-seq library constructed 

from another rnh201 strain (KK-30, Table C.1) was comparable to that obtained from 

strain KK-100 both for nuclear and mitochondrial sites (Figure C.5c,d and C.6c,d). 

Additional deletion of the gene encoding RNase H1 (rnh1), generating rnh1 rnh201 

strains KK-174 and KK-125, did not affect the nucleotide frequency of rNMP 

incorporation (Figure C.5e–h and C.6e–h). While some variation in the absolute rNMP 

counts were found among these different libraries in the mitochondrial DNA (Table C.5), 

the high level of rCMP and low level of rUMP remained constant, as well as a preferred 

rNMP incorporation in (G+C)-rich regions of the mitochondrial DNA. These data 

support a model in which rNMPs in yeast genomic DNA are present as single, di- or tri-

nucleotides, which are not substrates of RNase H1 [34], and indicate that RNase H1 has 

only a minor impact on the distribution of genomic rNMPs. 
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To test whether the low frequency of rUMP incorporation was a consequence of removal 

by the uracil N-glycosylase, Ung1, we deleted the UNG1 gene in the RNases H–defective 

background (rnh201 rnh1 ung1, strain KK-164) and mapped rNMP sites in these 

cells. Ung1 repairs dUMP from nuclear and mitochondrial DNA [92]. Although Ung1 

does not act on uracil in RNA (for example, ribosomal RNA) [170], it is not known 

whether Ung1 can act on rUMP embedded in a DNA duplex. We found that the level of 

rUMP incorporation in the chromosomal and mitochondrial genomes of an rnh1 

rnh201 ung1 strain was similar to that in an rnh1 rnh201 strain, demonstrating that 

Ung1 does not target rUMP in DNA (Figure C.5i,j and C.6i,j and Table C.5). 

 

Using a yeast assay of chromosomal double-strand break repair (DSB), in which DNA 

oligonucleotides carrying embedded rGMP, rUMP, or deoxyribonucleotides only are 

templates for DSB repair (Figure C.7a), we demonstrated that Ung1 targets uracil from a 

dUMP but not an rUMP embedded in DNA, while RNase H2 targets only rNMPs (rGMP 

and rUMP in this experiment) but not dNMPs (Figure C.7b and Table C.7). We attribute 

rNMP incorporation frequencies to the levels of corresponding dNTPs. dCTP and dGTP 

are typically the least abundant dNTPs [21, 25] and therefore might be depleted faster 

than dTTP and dATP, increasing the probability of rCMP and rGMP incorporation over 

rUMP and rAMP. These results are also consistent with the finding that rCMP and rGMP 

are the most frequently incorporated rNMPs by DNA polymerases in vitro under 

physiological dNTP and rNTP concentrations [14, 42]. This ability of DNA polymerases 

to incorporate rNMPs into genomic DNA could serve as a mechanism for continuing 

replication under conditions in which one or more dNTP pools are depleted. In the 

presence of hydroxyurea, a known ribonucleotide reductase inhibitor, higher levels of 

rNMPs are found incorporated in genomic DNA [34]. However, extensive rNMP 

incorporation would also result in increased breaks and genomic instability. 
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4.4.3 Pattern of sequences flanking rNMPs in S. cerevisiae DNA 

Downstream of incorporated rNMPs, we found that the +1 position was most frequently 

dA and least frequently dG both in the nuclear and in the mitochondrial genomes, with 

42–52% dA and 6–16% dG among all four deoxyribonucleotides (dA, dC, dG, and dT) 

(Table C.5). At the +1 position, dT was also frequent (31–40%) in the mitochondrial 

genome. In mitochondrial DNA, the high level of dA or dT at the +1 position 3′ from the 

rNMP could reflect the high A+T content in the mitochondrial genome. It is also possible 

that the dA in +1 position influences rNMP incorporation by DNA polymerases. 

Alternatively, we speculate that dA in the +1 position might stabilize incorporated 

rNMPs, possibly by affecting base stacking and preventing its repair by mechanisms 

other than ribonucleotide excision repair. It will be useful to determine the nearest-

neighbor thermodynamic parameters for single rNMPs in DNA duplex and, in particular, 

the stability trend for the base pair 3′ of the rNMP sites. We recently showed that single 

rGMPs embedded in a short DNA duplex have a marked effect on the elastic properties 

of DNA by altering the DNA structure at the site encompassing the rNMP and the 

nucleotide 3′ to it [91]. Thus, it is reasonable to think that the +1 position 3′ from the 

rNMP is prone to altered structure, and it is the most critical site for signaling the 

presence of an rNMP in DNA because it is the closest nucleotide to the 2′-OH group of 

the rNMP. 

 

Sites of rNMP incorporation were flanked by sequence contexts that differed between the 

nuclear and mitochondrial DNA genomes. While nucleotide frequencies up- and 

downstream of rNMP sites in the nuclear genome were largely similar to background 

frequencies (Figure 4.3c), rNMP sites in mitochondrial DNA were primarily upstream of 

(G+C)-rich regions, concentrated in areas in which G+C content was 1.7 to 1.8 times that 

of the background (Figure 4.3d). Notably, mitochondrial G+C tracts have been shown to 

have recombinogenic properties [171], and mitochondrial DNA recombination has been 
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suggested to initiate mitochondrial DNA replication in yeast ([172] and references 

therein). Thus, it is possible that the presence of rNMP sites in yeast mitochondrial G+C 

clusters influences these recombination events in mitochondrial DNA. 

 

4.4.4 rNMP incorporation by replicative DNA polymerases 

We next analyzed rNMP incorporation in the newly synthesized leading and lagging 

strands of yeast nuclear DNA. We selected 154 to 271 early-firing yeast autonomously 

replicating sequences (ARSs) (activated in the first 25 or 30 min, respectively) on the 

basis of replication timing [162]. We examined the type and abundance of rNMPs 

incorporated in regions 5 or 10 kb upstream and downstream from selected ARSs. This 

analysis was conducted using all our ribose-seq libraries, including a library derived from 

yeast RNase H2–deficient cells containing the low-fidelity Pol  mutant (rnh201 pol2-

M644G, Table C.1). Because yeast Pol  is mainly responsible for leading strand 

synthesis during DNA replication, yeast cells containing the pol2-M644G mutation, 

which leads to increased rNMP incorporation, would be predicted to contain more 

rNMPs on the newly synthesized leading strand than on the lagging strand [33]. 

 

We found higher rNMP incorporation on the newly synthesized leading strand of DNA 

replication (Figure 4.3e), consistent with previous observations that the leading strand 

DNA Pol  incorporates more rNMPs than the lagging strand Pol  [21]. As expected, 

analysis of rNMPs from rnh201 pol2-M644G cells revealed a stronger bias toward 

rNMP incorporation on the newly synthesized leading strand as compared to that in all 

other libraries (Figure 4.3e). However, the increase in rNMP incorporation by the low 

fidelity Pol  mutant did not change the overall rNMP spectrum, which had similar 

patterns of rNMP incorporation to those of libraries derived from wild-type Pol  strains 

(Figure C.5k,l and C.6k,l). Furthermore, we examined whether the spectrum of rNMP 
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incorporation was different between the newly synthesized leading and the lagging strand 

upon DNA replication. Cells containing either rnh201 or rnh1 rnh201 mutations had 

similar spectra of rNMP incorporation on the leading and the lagging strand (Figure 

4.3f,g and C.8a,b). In contrast, mapping of rNMPs in yeast cells carrying a mutant allele 

of DNA Pol  that is defective in proofreading activity (pol2-4, Table C.1) showed a 

lower frequency of rA versus rU in the nuclear but not in the mitochondrial genome 

(Figure 4.3h,i and C.6m,n and Table C.5), and it showed a bias for lower rA than rU 

only on the newly synthesized leading strand (Figure 4.3j,k), which was not observed in 

libraries derived from wild-type nor low-fidelity mutant Pol ε strains. The rNMP spectra 

for a strain with proofreading-defective DNA Pol  (pol3-5DV, Table C.1) were not 

different from those containing the wild-type Pol  (Figure C.5m,n, C.6o,p, and C.8c,d 

and Table C.5). These results suggest that DNA Pol  can proofread rNMPs, particularly 

rUMP, in DNA and that this activity is superior to that of DNA Pol , as is consistent 

with previous biochemical studies [14, 42]. 

 

4.4.5 Hotspots of rNMP incorporation in the S. cerevisiae genome 

We performed two types of analysis to determine potential hotspots of rNMP 

incorporation in the S. cerevisiae genome. We identified enriched regions of rNMP 

incorporation in genomic DNA from ribose-seq data (see Materials and Methods). We 

found several regions of notable rNMP incorporation in mitochondrial DNA for each 

ribose-seq library in this study (Figure 4.4a displays a few regions). Because this 

analysis excludes all reads aligning to more than one position in the genome, we 

performed a second analysis with respect to specific loci to identify single-nucleotide 

hotspots that were reproducibly present in multiple ribose-seq libraries (see Materials 

and Methods). We identified hotspots of rNMP incorporation in sequences present in 

multiple copies per yeast cell: the mitochondrial genome (~80 copies) [173], the 
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ribosomal DNA (rDNA) repeats (~140) clustered on chromosome XII [174] and the yeast 

retrotransposon (Ty), of which there are ~30 copies encoded on multiple chromosomes 

[175]. In mitochondrial DNA, we found a marked hotspot at an rAMP on the Watson 

strand in the cytochrome oxidase B gene (COB) and the overlapping maturase BI3 and 

BI4 genes (Figure 4.4b and Table C.8), in addition to several other hotspots (Table C.8). 

In the rDNA locus, the strongest hotspot was found in gene RDN37-1 and the 

overlapping RDN25-1 at an rGMP (Figure 4.4c and Table C.8). In the yeast Ty1 

sequence, we found a hotspot at an rAMP in the coding sequence of TY1A-1 (Figure 4.4d 

and Table C.8). 
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Figure 4.4 Hotspots of rNMP incorporation in S. cerevisiae mitochondrial DNA, 

rDNA repeat and Ty1. (a) Ribose-seq map of rNMPs in a 3-kb window (39,001–

42,000) of mitochondrial DNA showing enriched regions of rNMP incorporation. 

Enriched regions with q-value < 0.001 are shown in blue above the plot. Positions of 

restriction sites used for genomic fragmentation are displayed below the plot in turquoise. 

(b) Map of rNMPs in the COB mitochondrial locus (left). Zoom-in map (right) with 

sequence at the hotspot site (underlined). (c) Map of rNMPs in the first of two rDNA 

repeat loci on Chr XII, based on alignment data from the two loci of the reference 

genome (left). Zoom-in map (right) of the rDNA hotspot. (d) Map of rNMPs in the Ty1 
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locus YDRCTy1-1 on Chr IV based on multiple-alignment data from several Ty1 loci 

(left). Zoom-in map (right) of the Ty1 hotspot. Results are shown for rnh201 (KK-100) 

cells. W, Watson strand; C, Crick strand. 

 

The occurrence of such hotspots indicates that there are preferred sites for rNMP 

incorporation in the mitochondrial genome, rDNA and Ty1 sequences. In addition to the 

recombinogenic properties of mitochondrial G+C clusters discussed above, yeast rDNA 

and Ty are also active in recombination [174, 176]. Frequent rNMP incorporation could 

trigger recombination, as do rNMPs embedded in the mating type locus of 

Schizosaccharomyces pombe [4]. The rNMPs detected in Ty DNA could originate from 

cDNA rather than genomic DNA. Because rnh201 rnh1 cells have abundant Ty cDNA 

[177], if rNMPs are incorporated in Ty1 during the process of reverse transcription, 

which forms the cDNA, we would expect a different rNMP pattern in Ty1 DNA in 

rnh201 rnh1 than in rnh201 cells. Although we did not observe major differences in 

the rNMP spectra derived from rnh201 single mutant versus rnh201 rnh1 cells at the 

Ty1 locus or in general (Figure 4.3e, C.5, and C.6 and Table C.8), it would be of interest 

to conduct in vitro tests to determine whether Ty reverse transcriptase incorporates 

rNMPs frequently opposite RNA and/or DNA, and whether it has a particular bias for 

rNMP incorporation. 

 

4.5 Discussion 

rNMP incorporation has been extensively studied in recent years; however, locating sites 

of rNMP incorporation in genomic DNA has not yet been possible. Alkaline cleavage of 

rNMPs and AtRNL ligation exclude Okazaki fragments and DNA abasic sites, allowing 

the construction of ribose-seq libraries containing stably incorporated rNMP sites. 

Ribose-seq enabled us to determine the widespread but nonrandom distribution of rNMPs 

in budding yeast genomic nuclear and mitochondrial DNA, with several hotspots. 
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Our findings both validated the approach and uncovered new aspects of rNMP 

incorporation in the yeast genome. The observed strand bias incorporation on the newly 

synthesized leading strand in wild-type and low-fidelity Pol  strains, and the specific 

rNMP pattern in yeast containing proofreading deficient Pol , provide strong support for 

the in vitro results obtained for these forms of Pol . rCMP and rGMP were more 

abundant than rAMP and rUMP, and there was frequently a dA downstream of the 

rNMPs. We also found that RNase H1 did not contribute substantially to rNMP 

incorporation, and Ung1 did not remove genomic uracil. It is possible that the paucity of 

rUMP in DNA reflects inherent cleavage bias in other rNMP removal pathways, such as 

topoisomerase-mediated rNMP cleavage [62]. It would be of interest to determine the 

rNMP spectrum in cells with defects in alternative rNMP removal pathways, either in 

RNase H2 wild-type or null cells growing under normal and/or stressed conditions. 

Ribose-seq, together with HydEn-seq [178], emRiboSeq [31], and Pu-seq [179] which 

were developed in parallel and capture the nucleotides downstream or upstream of rNMP 

positions, should allow us to better understand the impact of rNMPs on the structure and 

function of DNA and chromatin, and specific rNMP signatures may represent new 

biomarkers for human diseases such as AGS, cancer, and other degenerative disorders. 
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CHAPTER 5 

 

CONCLUSIONS 

 

rNMPs are now known to be the most abundant non-canonical nucleotides incorporated 

into DNA [148]. Given the high frequency of rNMP incorporation into DNA, repair 

pathways to remove and tolerate rNMPs in DNA, their consequences to genomic 

integrity, and their profiles, including their identities and locations, need to be determined. 

 

RNases H type 1 and type 2, involved in RER, have been well-characterized in vitro as 

enzymes to target rNMPs embedded in DNA [37]. Most in vivo studies so far performed 

to investigate the role of RNases H have been based on the ability of DNA polymerases 

to incorporate rNMPs into DNA [32, 33, 39, 60-62], preventing the studies to focus on a 

single-nt position in a specific locus. As demonstrated in bacteria E. coli, yeast S. 

cerevisiae, and human HEK-293 cells using synthetic RNA-containing oligos, RNA can 

serve as direct template for DNA synthesis at the chromosomal level [46, 55-57]. 

Following this demonstration, we used an approach to generate desired RNA:DNA 

hybrids at the chromosomal level by transformation with rNMP(s)-containing oligos with 

homology to a specific chromosomal locus. This procedure allowed us to select specific 

single nucleotide positions in any locus as rNMPs and determine whether those specific 

rNMPs could transfer genetic information and/or could be targeted by different DNA 

repair mechanisms. We showed that isolated mispaired rNMPs in chromosomal DNA are 

recognized and removed not only by RNases H but also by MMR in both E. coli and S. 

cerevisiae cells. In addition, isolated paired rNMPs in DNA are targeted by RNase H2 

and NER in yeast, similar to NER’s activity in E. coli [180, 181], indicating that sugar-

phosphate backbone distortions caused by rNMP embedded in DNA are sufficient for 
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recognition by NER. Our results suggest that RNases H are DNA repair proteins with 

ability to remove rNMPs incorporated into DNA while MMR and NER also play a role in 

their repair. 

 

Ung1-initiated BER did not target uracil from an rUMP embedded in DNA, indicating 

that Ung1 is a true DNA glycosylase recognizing also the sugar of the 

deoxyribonucleotide, not just the uracil base. However, this result does not rule out the 

possibility that BER could still be involved in repair of rNMPs in DNA. rNMPs, if not 

removed by RNase H2, could be incised by Top1, transiently linking to 3′-phosphate of 

the rNMP [32, 39, 41, 62]. Top1 is released upon nucleophilic attack by the 2′-OH, 

resulting in a nick containing 2′,3′-cyclic phosphate, which is hypothesized by many as a 

substrate for endonucleases, exonucleases, and/or helicases [150]. Srs2 and Exo1 have 

been reported to be involved in Top1-rNMP-resulting nick processing [40]. Other 

possible protein factors are apurinic/apyrimidinic (AP) endonucleases (Apn1 and Apn2) 

of the BER pathway, which have the capability to remove 3′-phosphates [182]. Whether 

AP endonucleases and/or lyases (Ntg1 and Ntg2) involved in BER could remove rNMPs 

in DNA still needs to be determined. 

 

Consequences of rNMPs have been shown to be both positive and negative for cells [48, 

54, 148, 150]. With only a few instances where rNMPs in DNA are helpful, replication 

stress and genomic instability have been generally considered as consequences of rNMPs 

in DNA. The characteristics of rNMPs in DNA that lead to these consequences remain 

largely under-studied. With the highly reactive extra 2′-OH group in the sugar, rNMPs in 

DNA have the potential to affect its mechanical and structural properties, which 

ultimately affect DNA-DNA and DNA-protein interactions involved in variety of cellular 

processes. Most structural studies done on rNMPs in DNA focused on stretches of two or 

more rNMPs, likely to be found in Okazaki fragments during DNA replication [72, 73], 
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whether isolated single rNMPs change DNA elasticity and structure needed to be 

determined. Using AFM-base single molecule force spectroscopy, MD simulations, and 

NMR, we showed that single rNMPs do change the elastic and structural properties of 

DNA. We observed that the direction and the degree of the change in elasticity was 

different in two sequences tested, suggesting sequence context-dependence. Also, MD 

simulations and NMR both showed local helical distortions, mostly at and downstream of 

the rNMPs. Different sequences did lead to different backbone distortions, also 

suggesting sequence context-dependence. 

 

The evidence of high frequency of rNMP incorporation into DNA, existence of repair 

pathways to remove them, and their helpful and harmful roles in cells begs the question 

of which rNMPs are and where are they incorporated into genomic DNA. We developed 

ribose-seq, a unique, innovative approach to profile and map rNMPs in DNA. By 

generating rNMP-specific phosphate ends by alkaline cleavage of rNMPs, ribose-seq 

allows capture and next-generation sequencing of rNMPs embedded in genomic DNA. 

rNMP incorporation spectrum in S. cerevisiae genome revealed widespread but 

nonrandom distribution, with preferences for base composition of rNMPs and their 

neighboring DNA sequence context and several hotspots in both nuclear and 

mitochondrial DNA. Ribose-seq allows us to explore rNMP incorporation into DNA 

potentially in any cell type of any organism. 

 

Overall, our ribose-seq approach opens up a new direction to better understand the impact 

of rNMPs on the structure and function of DNA and chromatin. With ribose-seq, specific 

signatures of rNMP incorporation into DNA could be determined and then be applied to 

our in vivo assay with rNMP(s)-containing oligos and physical experiment employing 

AFM, MD simulations, and NMR. For example, we can examine if certain 

hotspots/coldspots of rNMP incorporation from the ribose-seq data are more/less 
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recognized by DNA repair enzymes or alter more/less the elasticity and structure of DNA. 

Moreover, as we observed different signatures of rNMP incorporation in yeast nuclear 

and mitochondrial genomes, it is possible that rNMP incorporation may vary in DNA of 

different cell types of different organisms. The variability could be related to the 

complexity of organisms, such as prokaryotes vs. eukaryotes, unicellular vs. multicellular, 

and invertebrate vs. vertebrata, or the cell type, like stem cell vs. somatic cell and 

muscular cell vs. neuronal cell, and therefore could have evolutionary and developmental 

implications. 

 

Also of interest are the effects of different growth/stress conditions on rNMP 

incorporation into genomic DNA. Unlike other known rNMP-mapping techniques, such 

as HydEn-seq [178], emRiboSeq [31], and Pu-seq [179], the unique nature of direct 

capture of rNMPs embedded in DNA by ribose-seq allows us to investigate rNMP 

incorporation into DNA under stress. HU, a ribonucleotide reductase inhibitor, has been 

shown to increase the level of rNMP incorporation into DNA of mouse embryonic 

fibroblasts [34] while oxidative damage can convert dNMPs into rNMPs [29]. Whether 

rNMP spectrum is affected by HU, oxidative damage, or even growth phase and which 

rNMP repair pathways might be specific to those effects could now be determined.  

 

Several studies on rNMP-induced genome instability have reported rNMP-Top1-

dependent hotspots of 2–5 bp deletions [32, 39, 60, 62]. Nick McElhinny et al. defined 

5′-CACA-3′ as a strong hotspot of rNMP-induced genome instability [60]. This is in 

agreement with our ribose-seq results that rCMP was highly favored for incorporation 

into DNA and that dAMP was most common dNMP immediately downstream of rNMPs. 

Ribose-seq could be applied to genomic DNA of cells with defects in alternative rNMP 

removal pathways, such as Top1–null background. Furthermore, the specific rNMP 

signature could be implemented in our in vivo assay and/or physical experiment via 
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rNMP-containing oligos so that more information about the specificity of repair pathways 

and its physical effects can be obtained. 

 

Lastly, ribose-seq allows the possibility of finding specific rNMP signatures which could 

represent novel biomarkers for human diseases, such as AGS, cancer, and other 

degenerative disorders. For example, it is known that partial loss-of-function mutations in 

subunits of RNase H2 are associated with AGS [64]. However, it still remains unknown 

what is resulted from these RNase H2 mutations which trigger AGS. An increased level 

of general rNMP incorporation is a possibility while a change in rNMP incorporation 

spectrum is also plausible. With combination of our ribose-seq, in vivo repair assay, and 

physical experiment, the true effects of AGS-associated RNase H2 mutations could 

potentially be determined. 
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APPENDIX A 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

 

Table A.1 Bacterial and yeast strains used in this study. 

a 

Straina Relevant genotype Source 
BW1892 mutS::gm cI857 (cro-bio) lacZ(GG1370-1; G1384→A) [82] 

BW1947 mutS:: gm cI857 (cro-bio) lacZ(G1384→A) [82] 

BW1947 (N-gam) BW1947 (N-gam)
b
 

Transformation of 
BW1947 with an oligo [80] 

BW1988 BW1892 (N-gam)  
Transformation of 

BW1892 with an oligo [80] 

BW2028 BW1988 rnhA733::kan P1(JW0204-2)  BW1988
c
 

BW2029 BW1988 rnhB782::kan P1(JW0178-1)  BW1988 

BW2031 BW1988rnhB::FRT  
Excision of kan cassette 

from BW2029  

BW2032 BW1988 rnhB::FRT rnhA733::kan P1(JW0204-2)  BW2031 

BW2037A,B mutS:: gm srlD3131::Tn10 cI857 (cro-bio) (N-gam) lacZ(G1384→A) 
P1(CAG18642) × BW1947 

(N-gam)
d
 

BW2038A,B BW2037 mutS+  P1(CAG18642) × BW1947 

(N-gam)
d
 

BW2039A,B BW2037 rnhB782::kan P1(JW0178-1) × BW2037 

BW2040A,B BW2037 mutS+ rnhB782::kan P1(JW0178-1) × BW2038 

CAG18642 srlD3131::Tn10 [183, 184] 

JW0178-1 rnhB782::kan [185] 

JW0204-2 rnhA733::kan [185] 

YSB-13,14 BW1988 rnhA(48Oc,Op) 
Transformation of 

BW1988 with an oligo 

YSB-15,16 BW1988 rnhB(70Oc,Op) 
Transformation of 
BW1988 with an oligo 

YSB-17,18 BW2037 rnhB(70Oc,Op) 
Transformation of 

BW2037 with an oligo 

YSB-19A,B BW2037 rnhA(48Oc,Op) 
Transformation of 

BW2037 with an oligo 

YSB-20A,B BW2037 rnhA(48Oc,Op) rnhB(70Oc,Op) 
Transformation of YSB-18 
with an oligo 

YSB-21A,B YSB-19 mutS+ P1(JW2674-1) × YSB-19 
YSB-22A,B YSB-18 mutS+ P1(JW2674-1) × YSB-18 

YSB-23A,B YSB-20 mutS+ P1(JW2674-1) × YSB-20 

JW2674-1 srlD::(FRT-kan-FRT) [185] 

 

b 
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(a) E. coli and (b) S. cerevisiae strains. 

a
All E. coli strains are derivatives of E. coli K-12 F

–
 

–
. Abbreviations: gm, gentamycin 

resistance gene; kan, kanamycin resistance gene; FRT, Flp recombinase target sequence; 

GSKU, cassette containing the I-SceI endonuclease gene under the inducible GAL1 

promoter, the kanMX4 kanamycin resistance gene, the counterselectable KlURA3 marker 

and the I-SceI cutting site.  

b
Because both RecB and RecC are required for the viability of an rnhA mutant [188], we 

deleted the prophage N-gam segment [80], the product of which is an inhibitor of the 

BY4742 MAT  his31 leu20 lys20 ura30 [87, 186] 

FRO-694 BY4742 trp5::GSKU  
Insertion of GSKU cassette 
into TRP5 

YS-301,303 BY4742 trp5(CC1001-2; G1017→A) 

Replacement of GSKU in 

FRO-694 with an oligo to 
introduce the desired 

mutations 

YS-305,306 YS-301,303 rnh201::kanMX4 
Disruption of RNH201 
with kanMX4 PCR product 

YS-307,308 YS-301,303 msh2::kanMX4 
Disruption of MSH2 with 

kanMX4 PCR product 

YS-313,314 YS-301,303 rnh201::hygMX4msh2::kanMX4 

Disruption of RNH201 

with hygMX4 PCR product 

and of MSH2 with kanMX4 
PCR product 

YS-316,318 BY4742 trp5(CC1001-2) 

Replacement of GSKU in 
FRO-694 with an oligo to 

introduce the desired 

mutation 

YS-331,332 YS-316,318 rnh201::hygMX4 
Disruption of RNH201 

with hygMX4 PCR product 

YS-327,328 YS-316,318 msh2::kanMX4 
Disruption of MSH2 with 
kanMX4 PCR product 

YS-323,324 YS-316,318 rnh201::hygMX4msh2::kanMX4 

Disruption of RNH201 

with hygMX4 PCR product 
and of MSH2 with kanMX4 

PCR product 

YS-320,322 BY4742 trp5(G1017→A) 

Replacement of GSKU in 
FRO-694 with an oligo to 

introduce the desired 

mutation 

YS-333,334 YS-320,322 rnh201::hygMX4 
Disruption of RNH201 

with hygMX4 PCR product 

YS-329,330 YS-320,322 msh2::kanMX4 
Disruption of MSH2 with 
kanMX4 PCR product 

YS-325,326 YS-320,322 rnh201::hygMX4msh2::kanMX4 

Disruption of RNH201 

with hygMX4 PCR product 
and of MSH2 with kanMX4 

PCR product 

FRO-767,768 
hoΔ hmlΔ::ADE1 MATa-inc hmrΔ::ADE1 ade1 leu2-3,112 lys5 trp1::hisG 
ura3-52 ade3::GAL::HO leu2::HOcs mataΔ::hisG 

[46] 

FRO-984,985 FRO-767,768 rnh201Δ::kanMX4 [187] 

YS-388,389 FRO-767,768 rad14Δ::kanMX4 
Disruption of RAD14 with 
kanMX4 PCR product 

YS-390,391 YS-388,389 rnh201Δ::hygMX4 
Disruption of RNH201 

with hygMX4 PCR product 
KK-158,159 FRO-767,768 ung1Δ::hygMX4 [187] 
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RecBCD enzyme [189]. The partially deleted prophage retained functional exo and bet 

genes of the  red region, of which only the bet gene is necessary for oligo 

transformation [80]. 

c
Transductions were performed with bacteriophage P1 dam rev6 [190]. Transductions 

with bacteriophage P1 are described as follow s: P1(donor)  recipient. Selections were 

for resistance to kanamycin, tetracycline (Tn10), or gentamycin. 

d
Selection was for tetracycline resistance (srlD::Tn10).  The presence of a cotransduced 

mutS
+ 

allele was determined by gentamycin sensitivity and by loss of the mutator 

phenotype as evidenced by over a 90% reduction in spontaneous streptomycin-resistant 

mutants.  

 

Table A.2 Oligos used in this study. 

Name Size Sequence 

LacZ.R6I2 65 5′-GTAATCACCCGAGTGTGATCATrCrUrGrGrUrCGCTGGGGAATGAGTCAGGCCACGGCGCTAATCACGAC 

LacZ.R1S1 65 5′-GTAATCACCCGAGTGTGATCATCTGGTCGCTGGGGAATrGAGTCAGGCCACGGCGCTAATCACGAC 

LacZ.R5S1 65 5′-GTAATCACCCGAGTGTGATCATCTGGTCGCTGGGGArArUrGrArGTCAGGCCACGGCGCTAATCACGAC 

LacZ.D 65 5′-GTAATCACCCGAGTGTGATCATCTGGTCGCTGGGGAATGAGTCAGGCCACGGCGCTAATCACGAC 

RpsL.R1S1 70 5′- ACGTACGGTGTGGTAACGAACACCCGGGAGGTCTrCTAACACGACCGCCACGGATCAGGATCACGGAGTGC 

RpsL.D 70 5′- ACGTACGGTGTGGTAACGAACACCCGGGAGGTCTCTAACACGACCGCCACGGATCAGGATCACGGAGTGC 

TRP5.R2_R1I2_S1 65 5′- AAAAGGGTTTTGATGAAGCTGTCGrCrGGATCCCACATTCTGrGGAAGACTTCAAATCCTTGTATTCT 

TRP5.D 65 5′- AAAAGGGTTTTGATGAAGCTGTCGCGGATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

TRP5.R1S1 65 5′- AAAAGGGTTTTGATGAAGCTGTCGCCGATCCCACATTCTGrGGAAGACTTCAAATCCTTGTATTCT 

TRP5.R2I2 65 5′- AAAAGGGTTTTGATGAAGCTGTCGrCrGGATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

TRP5.Dcc 65 5′- AAAAGGGTTTTGATGAAGCTGTCGCCGATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

TRP5.72D 72 5′-AAGAGAGTTGGAAAAGGGTTTTGATGAAGCTGTCGCGGATCCCACATTCTGGGAAGACTTCAAATCCTTGTA 

TRP5.72Dcom 72 5′-TACAAGGATTTGAAGTCTTCCCAGAATGTGGGATCCGCGACAGCTTCATCAAAACCCTTTTCCAACTCTCTT 

LEU2.R1dw 60 5′-TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCCGGTAGTGTTAGrGCCTGAACAAGGTTTA 

LacZ.R1.47 47 5′-CCCGAGTGTGATCATCTGGTCGCTGGGGAATrGAGTCAGGCCACGGCG 

LacZ.R6.47 47 5′-CCCGAGTGTGATCATrCrUrGrGrUrCGCTGGGGAATGAGTCAGGCCACGGCG 

LacZ.R2.47I2 47 5′-CCCGAGTGTGATCATCTrGrGTCGCTGGGGAATGAGTCAGGCCACGGCG 

LacZ.R5.47 47 5′-CCCGAGTGTGATCATCTGGTCGCTGGGGArArUrGrArGTCAGGCCACGGCG 

LacZ.D.47 47 5′-CCCGAGTGTGATCATCTGGTCGCTGGGGAATGAGTCAGGCCACGGCG 

LacZ.comD.wt.47 47 5′-CGCCGTGGCCTGACTCATTCCCCAGCGACCAGATGATCACACTCGGG 

LacZ.comD.m1.47 47 5′-CGCCGTGGCCTGACTTATTCCCCAGCGACCAGATGATCACACTCGGG 
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LacZ.comD.del2.45 45 5′-CGCCGTGGCCTGACTCATTCCCCAGCGAAGATGATCACACTCGGG 

LEU2.D 60 5’-TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCCGGTAGTGTTAGGCCTGAACAAGGTTTA 

LEU2.rG 60 5’-TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCCGGTAGTrGTTAGGCCTGAACAAGGTTTA 

LEU2.dU 60 5’-TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCCGGTAGTGUTAGGCCTGAACAAGGTTTA 

LEU2.rU 60 5’-TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCCGGTAGTGrUTAGGCCTGAACAAGGTTTA 

LEU2.3 20 5’-ATGTCTGCCCCTAAGAAGAT 

LEU2.3 20 5’-TGCCAAAGAATAAGGTCAAC 

In the name of the RNA-containing oligos, substitutions are indicated by a subscript 

capital “S” and insertions by a subscript capital “I”. The letters “S” and “I” are followed 

by a subscript number indicating the number of bases that are substituted or inserted, 

respectively. The structures of the oligos used in this study are described from the 5′end, 

with DNA sequences (D) shown in blue and RNA sequences (R) in red. Bases with 

homology to the chromosomal DNA are shown in brackets and underlined. Insertions are 

indicated as “ins::”. Base substitutions are indicated as “s”. In the oligo sequences, the 

base changes introduced by the oligos are in bold and shown in blue, if these consist of 

DNA bases and in red, with lower case “r” on the left side, if these consist of RNA bases. 

The RNA tracts of the non-specific LEU2.R1dw oligo and of the lacZ oligos used only in 

the RNase HII cleavage assay are shown in regular red type. The restriction sites that are 

introduced by the oligos are underlined (thin underline for Van91I, thick line for BamHI). 

The DNA oligos were desalted (synthesized by Invitrogen or Alpha DNA); the RNA-

containing oligos were desalted and deprotected (by Dharmacon). The LacZ.R1S1 and all 

the lacZ 45- and 47-mers were also PAGE purified (by Dharmacon or Invitrogen). 

 

Table A.3 Statistical comparisons (P values) between gene correction frequencies 

obtained for different oligos in different genetic backgrounds. 

a 

I) 
Oligo mutS vs. mutS rnhA mutS vs. mutS rnhB 

mutS vs.  
mutS 

rnhA rnhB 

mutS rnhA 
vs.  

mutS rnhA 
rnhB 

mutS rnhB vs.  
mutS rnhA rnhB 

LacZ.R6I2 0.0960 0.0012 0.0021 0.0021 0.0034 

LacZ.R2.47I2 ND 0.6857 ND ND ND 
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LacZ.R1S1 0.0032 0.0021 0.0034 0.0034 0.6166 

LacZ.R5S1 0.0050 0.7000 0.0022 0.0050 0.0022 

 
II) 

Oligo mutS mutS rnhA mutS rnhB mutS rnhA rnhB 

LacZ.R6I2 vs. LacZ.R2.47I2 0.0061 ND 0.7619 ND 

LacZ.R6I2 vs. LacZ.R1S1 0.0021 0.0021 0.0034 0.0034 

LacZ.R6I2 vs. LacZ.R5S1 0.0167 0.0214 0.0238 0.0034 

LacZ.R1S1 vs. LacZ.R5S1 0.0222 0.0218 0.0222 0.0022 

LacZ.R1S1 vs. LacZ.R2.47I2 0.0106 ND 0.0106 ND 

LacZ.R5S1 vs. LacZ.R2.47I2 0.0095 ND 0.0095 ND 

 

b 
I) 

Oligo 
WT vs. 
rnhA 

WT vs. 
rnhB 

WT vs. 
rnhA rnhB 

rnhA vs. 
rnhA rnhB 

rnhB vs. 
rnhA rnhB 

LacZ.R1S1 0.0286 0.0286 0.0286 0.0286 0.0286 

LacZ.R5S1 0.0294 0.0294 0.0294 0.0286 0.0286 

LacZ.D 0.0571 0.1143 0.0286 0.3429 0.0286 

      

Oligo 
mutS vs. 

rnhA 
mutS 

mutS vs. 
rnhB 
mutS 

mutS vs. 
rnhA rnhB mutS 

rnhA mutS vs. 
rnhA rnhB mutS 

rnhB mutS vs. 
rnhA rnhB mutS 

LacZ.R1S1 0.0286 0.0286 0.0286 0.0286 0.2 

LacZ.R5S1 0.0286 0.6857 0.0286 0.0286 0.0286 

LacZ.D 1.0000 0.1143 0.1143 0.1143 0.2 

      

Oligo 
WT vs. 
mutS 

rnhA vs. 
rnhA 
mutS 

rnhB vs.  
rnhB mutS 

rnhA rnhB vs. 
rnhA rnhB mutS  

LacZ.R1S1 0.0286 0.0286 0.0286 0.0286 
 

LacZ.R5S1 1.0000 1.0000 0.3429 1.0000 
 

LacZ.D 0.0286 0.0286 0.0286 0.0286 
 

 

II) 

Oligo WT rnhA rnhB rnhA rnhB 



 97 

No oligo vs. LacZ.R1S1 0.0286 0.0286 0.0286 0.0286 

No oligo vs. LacZ.R5S1 1 0.0286 0.1143 0.0286 

 

c 
I) 

Oligo 
WT vs. 
rnhB WT vs. mutS 

WT vs.  
rnhB mutS 

rnhB vs. 
rnhB mutS 

mutS vs. 
rnhB mutS 

RpsL.R1S1 0.029 0.029 0.029 0.029 0.029 

RpsL.D 0. 171 0.010 0.029 0.010 0. 038 

 

II) 
Oligo WT rnhB mutS rnhB mutS 

No oligo vs. RpsL.R1S1 0.021 0.027 0.029 0.029 

No oligo vs. RpsL.D 0.021 0.013 0.010 0.029 

RspL.R1S1 vs. RpsL.D 0.486 0.010 0.010 0.486 

 

d 
I) 

Oligo WT vs. msh2 WT vs. rnh201 
WT vs.  

rnh201 msh2 
msh2 vs. 

rnh201 msh2 
rnh201vs. 

rnh201 msh2 

TRP5.R2_R1I2_S2 0.008 0.082 0.001 0.001 0.001 

TRP5.D 0.001 0. 875 0.001 0.083 0.001 

Non-specific oligo ND ND 0.197 ND ND 

 

II) 
Oligo WT msh2 rnh201 rnh201 msh2 

No oligo vs.TRP5.R2_R1I2_S2 0.004 0.001 <0.001 0.001 

No oligo vs. TRP5.D 0.001 <0.001 <0.001 0.001 

TRP5.R2_R1I2_S2 vs. TRP5.D 0.023 0.002 0. 267 0.052 

No oligo vs. non-specific oligo ND ND ND 0.814 

 

e 
I) 

Oligo WT vs. msh2 WT vs. rnh201 
WT vs.  

rnh201 msh2 
msh2 vs.  

rnh201 msh2 
rnh201 vs.  

rnh201 msh2 

TRP5.R2I2 0. 029 0.029 0.029 0.029 0.029 

TRP5.D 1 0.057 0.029 0.342 0.029 
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II) 

Oligo WT msh2 rnh201 rnh201 msh2 

TRP5.R2I2 vs. TRP5.D 0.029 0.029 0.057 0.029 

 

f 
I) 

Oligo WT vs. msh2 

TRP5.72D 0.029 

TRP5.72Dcomp 0.029 

No oligo 0.027 

 

II) 
Oligo WT msh2 

No oligo vs. TRP5.72D 0.027 0.029 

No oligo vs. TRP5.72Dcomp 0.027 0.029 

TRP5.72D vs. TRP5.72Dcomp 0.029 0.886 

 

g 
I) 

Oligo WT vs. msh2 WT vs. rnh201 
WT vs.  

rnh201 msh2 
msh2 vs.  

rnh201 msh2 
rnh201 vs.  

rnh201 msh2 

TRP5.R1S1 0.057 0. 486 0.029 0. 114 0.029 

TRP5.Dcc 0.029 0. 486 0.029 0. 343 0.029 

 

II) 
Oligo WT msh2 rnh201 rnh201 msh2 

No oligo vs.TRP5.R1S1 0.028 0.029 0.028 0.029 

No oligo vs. TRP5.Dcc 0.029 0.029 0.029 0.029 

TRP5.R1S1 vs. TRP5.Dcc 0.307 0.029 0.029 1.000 

 

h 
I) 

Oligo WT vs. msh2 WT vs. rnh201 
WT vs.  

rnh201 msh2 

msh2 vs.  

rnh201 msh2 

rnh201 vs.  

rnh201 msh2 

TRP5.R2I2 0. 114 0.029 0.029 0.029 0.029 

TRP5.D 0.029 0.057 0.029 0.2 0.029 
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II) 
Oligo WT msh2 rnh201 rnh201 msh2 

No oligo vs.TRP5.R2I2 0.041 0.029 0.029 0.029 

No oligo vs. TRP5.D 0.029 0.029 0.029 0.029 

TRP5.R2I2 vs. TRP5.D 0.029 0.029 0.057 0.029 

 

i 

Oligo 
BW-2028 vs. 
YSB-13, 14 

BW-2029 vs. 
YSB-15, 16 

LacZ.R6I2 1 0.548 

LacZ.R1S1 0.109 0.647 

 

j 

Oligo BW2039 vs. YSB-18 

LacZ.R1S1 0.710 

LacZ.D 0.111 

No oligo 0.114 

Mann-Whitney U-test was applied to determine whether a difference exists between 

various pairs of gene correction frequencies. Comparison of frequencies presented in (a) 

Table 2.1, (b) Table 2.2, (c) Table 2.3, (d) Table 2.4a, (e) Table 2.4b, (f) Figure A.2, 

(g) Table A.4a, (h) Table A.4b, (i) Table A.5a, and (j) Table A.5b. Two groups in a 

pair were considered to be significantly different when P values were less than 0.05.  I) 

Comparisons were between relative frequencies obtained for each oligo in different 

backgrounds, and II) between relative frequencies obtained for different oligos in the 

same backgrounds. ND, not determined. 

 

Table A.4 Reversion frequency of a nonsense mutation or a two-base deletion in the 

yeast trp5 gene following transformation by rNMP-containing oligos in MMR and 

RNase H mutant cells 

a 

Oligo WT msh2 rnh201 rnh201 msh2 
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TRP5.R1S1 9.01 (8.23–11.9) 31.4
a
 (20.6–43.7) 11.2 (9.23–12.6) 84.7 (35.1–130) 

TRP5.Dcc 7.79 (5.46–11.9) 56.4 (51.4–69.1) 7.52 (5.93–7.84) 78.6 (54.6–90.9) 

No oligo 0.68 (0–0.99) 10.7 (8.6–19.3) 0.68 (0.37–1.65) 14.8 (8.2–20.7) 

 

b 

Oligo WT msh2 rnh201 rnh201 msh2 

TRP5.R2I2 
 

3.54 
46.7% 

(1.24–5.35) 
 

 

12.6
b
 

60.6% 
(8.18–16.2) 

 

 
9.64 
100% 

(7.51–15.0) 
 

 
35.5 
75.7% 

(27.1–46.6) 
 

TRP5.D 
 

39.1 
100% 

(35.9–43.6) 
 

 
52.3 
88.2% 

(27.6–87.0) 
 

 
27.7 
100% 

(12.3–36.9) 
 

 
84.6 
82.8% 

(76.5–105) 
 

No oligo 
 

0.38 
0.0% 

(0–1.24) 
 

 
5.27 
0.0% 

(2.01–7.24) 
 

 
0.28 
0.0% 

(0–1.70) 
 

 
6.53 
0.0% 

(3.73–9.80) 
 

 

c 
Pattern Sequence 

Chr AAAAGGGTTTTGATGAAGCTGTCG--GATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

R AAAAGGGTTTTGATGAAGCTGTCGCGGATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

R1 AAAAGGGTTTTGATGAAGCTGTCGCGAATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

R2 AAAAGGGTTTTGATGAAGCTGTCGCGGACCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

A AAAAGGGTTT-GATGAAGCTGTCG--GATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

B AAAAGGGTTTTGATGAAGCTGTC---GATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

C AAAAGGGTTTTGATGAAGCTGTCG--GATCC-ACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

D AAAAGGGTTTTGATGAAGCTGTCG--GATCCCACATTCTGG-AAGACTTCAAATCCTTGTATTCT 

E AAAAGGGTTTTGATGAAGCTGTCG--GATCCCA-ATTCTGGGAAGACTTCAAATCCTTGTATTCT 

F AAAAGGGTTTTGATGAAGCTGTC--GGATCCCACATTCTGGGAAGACTTCAAATCCTTG-ATTCT 

G AAAAGGGTTTTGATGAA----TCT--GATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

H AAAAGGGTTTTGATGAAGCTGTCG--G-TCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

I AAAAGGGTTTTTGGATGAAGCTGTCG--GATCCCACATTCTGGGAAGACTTCAAATCCTTGTATTCT 

J AAAAGGGTTTTGATGAAGCTGTCG--GATCCCACATA-TGGGAAGACTTCAAATCCTTGTATTCT 

 

d 

Oligo WT msh2 rnh201 rnh201 msh2 

No oligo R 0/3 R 0/14 R 0/4 R 0/18 

 A 1/3 A 10/14 A 2/4 A 11/18 

 C 1/3 D 3/14 B 1/4 C 2/18 

 D 1/3 E 1/14 C 1/4 E 5/18 

TRP5.R2I2 R 7/15 R 20/33 R 65/65 R 115/152 

 B 7/15 A 9/33   R1 1/152 

 H 1/15 B 1/33   R2 1/152 

   C 1/33   A 28/152 

   E 1/33   C 1/152 

   I 1/33   D 2/152 

       F 1/152 

       G 2/152 
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       J 1/152 

TRP5.D R 28/28 R 15/17 R 30/30 R 24/29 

   A 2/17   A 5/29 

(a) Median and range (in parentheses) of Trp
+
 transformant colonies per 10

7
 viable wild-

type, MMR, and RNase H mutant cells, obtained to revert the nonsense mutation, or (b) 

the two-base deletion in trp5. The number of repeats for each of the strains transformed 

with these oligos was 4. Results obtained for oligos TRP5.R1S1 and TRP5.R2I2 were not 

due to contamination with DNA oligos. The significance of all non-overlapping CI or 

range values was confirmed by Mann-Whitney test (P < 0.05) after subtraction of the no 

oligo background values. Comparison of frequencies is presented in Tables A.3g,h. In 

panel b, the percentage of clones with precise correction of the “CG” deletion (pattern R 

in panel c) is shown in bold under the median. The median and these percentages were 

used to calculate the frequency of Trp
+
 transformant colonies with precise correction of 

the two-base deletion mutation presented in (Table 2.4b). (c) Sequence patterns of the 

TRP5 region in Trp
+
 colonies transformed with no oligo, TRP5.R2I2, or TRP5.D oligos. 

Differences from the chromosomal sequence are in bold. Chr, chromosomal sequence of 

trp5 with the 2-base deletion mutation; R, sequence of the TRP5 region targeted with 

oligo TRP5.R2I2 or TRP5.D, containing the “CG” insertion; R1, R2, the TRP5 region 

corrected by oligos presenting additional mutations; A-J, patterns of the TRP5 region 

from spontaneous Trp
+
 revertants. (d) The frequency of each sequence pattern obtained 

in WT, msh2, rnh201, and rnh201 msh2 colonies following sequence analysis of 408 

Trp
+
 clones from the experiment shown in panel b above. These data were used to 

generate results presented in Table 2.4b. 

a
The gene correction frequency value obtained in the msh2 mutant cells was different 

from that obtained in the wild-type cells at the significant level 0.1 (P = 0.057) after 

subtraction of the no-oligo background value.  

b
The gene correction frequency value obtained in the msh2 mutant cells was not 

significantly different from that obtained in the wild-type cells (P = 0.114) after 
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subtraction of the no oligo background value. However, after sequencing all the Trp
+
 

clones of this experiment, the frequency value of precise gene correction obtained in the 

msh2 mutant cells was significantly different from that obtained in the wild-type cells (P 

= 0.029, see Table 2.4b and A.3e). 

 

Table A.5 Deletion and nonsense mutations of rnhA and rnhB genes similarly affect 

gene correction by oligos in the BW1988 and the BW2037 backgrounds. 

a 
    

 

LacZ.R6I2 
 

LacZ.R1S1 

 
rnhA (BW2028) 0.04 (0.02–0.05) 9×10

–4
 (7×10

–4
–1.4×10

–3
) 

rnhA (YSB-13, 14) 0.04 (0.02–0.05) 
 

7×10
–4

 (5.5×10
–4
–9.1×10

–4
) 

rnhB (BW2029) 0.16 (0.08–0.19) 3.43 (1.74–3.87) 
 

rnhB (YSB-15, 16) 0.12 (0.09–0.17) 3.07 (2.67–3.97) 
 

 

b 

 

LacZ. R1S1  LacZ.D No oligo 

Genotype Lac
+ 

freq. Rel. tr. freq.
a
 Lac

+ 
freq. Lac

+ 
freq. 

rnhB mutS (BW2039) 17,500 0.2 86,700 3.98 

 
(6,250–30,000) 

 
(45,000–
103,000) 

(2.23–
25.4) 

rnhB mutS (YSB-18) 33,000 0.27 124,200 3.77 

 
(30,400–79,500) 

  
(84,600–
163,000) 

(3.51–
5.06) 

(a) The strains used are BW2028, YSB-13, 14, BW2029, and YSB-15, 16, all of which 

are mutS mutants. All the strains were transformed with the LacZ.R6I2, LacZ.R1S1, or 

LacZ.D oligo. The values are relative transformation frequencies (see Materials and 

Methods). The numbers of repeats for each of strains transformed with these oligos were 

as follows: LacZ.R6I2: 7,3,7,3; LacZ.R1S1:6,3,7,3;  and LacZ.D: 6,3,6,3. The significance 

of all non-overlapping confidence limit values was confirmed by the Mann-Whitney U-

test (P < 0.05) (Table A.3i). (b) The strains used were BW2039 and YSB-18. The strains 

were transformed with LacZ.R1S1 and LacZ.D oligos. The values are median and the 

range (in parentheses) of Lac
+
 transformant colonies reverting the missense mutation per 
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10
7
 cells. The numbers of repeats for each of the strains transformed with these oligos 

were 4. The significance of all non-overlapping confidence limit values was confirmed 

by the Mann-Whitney U-test (P < 0.05) (Table A.3j).  

a
Relative frequency of Lac

+ 
transformants (see Materials and Methods). In the absence 

of a transforming oligo, the number of Lac
+
 transformants per 10

7
 viable cells were <0.1. 

 

Table A.6 Results of leu2 DSB repair assay with rNMP-containing oligos. 

a 

Oligo WT rnh201 rad14 rnh201 rad14 

LEU2.D 65% (55–75) 63% (55–65) 65% (50–75) 65% (55–70) 

LEU2.rG 30% (20–40) 90% (75–100) 63% (55–70) 100% (80–100) 

 

b 
Oligo WT rnh201 ung1 

LEU2.D 65% (55–75) 63% (55–65) 65% (55–70) 

LEU2.dU 5.0% (0–10) N/A 55% (45–60) 

LEU2.rU 33% (25–45) 55% (45–65) 33% (30–40) 

 

c 

Oligo rnh201 rad14 rnh201 rad14 

LEU2.D 0.5357 1.0000 1.0000 

LEU2.rG 0.0286 0.0286 0.0286 

 

d 
Oligo rnh201 ung1 

LEU2.D 0.5357 1.0000 

LEU2.dU N/A 0.0294 

LEU2.rU 0.0421 1.0000 

(a and b) Data shown in Figure 2.3 are presented here as median percentages of StuI-cut 

Leu
+
 transformants from four independent transformations and ranges in parentheses. For 

each transformation, 20 Leu
+
 transformants were selected for analysis. (c and d) Mann-

Whitney U-test was implemented for statistical analysis against the WT, and P values are 

displayed. N/A, not applicable because data are not available for comparison. 
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Figure A.1 PAGE gel showing fragments resulting from RNase HII cleavage and 

random RNA degradation in the absence of RNase HII. Structural presentation of the 

substrates is shown in Figure 2.2a. S3, the substrate that contains a stretch of 6 fully 

complementary rNMPs, was used to show fragments resulting from random degradation 

without RNase HII. The position of the uncleaved 47-mers is shown to the left. The 

positions of the random cleavage of the S3 substrate in the absence of RNase HII are 

indicated by arrows to the right. These barely detectable bands are similar to those seen 

for the other substrates containing more than one rNMP. 
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Figure A.2 Strand-bias targeting effect of two complementary oligos, TRP5.72D and 

TRP5.72com. The effect is mild in wild-type and cannot be observed in msh2 mutant 

strains. (a) Diagram and sequence of the chromosomal trp5 region targeted by the oligos. 

(b) Median and range of yeast Trp
+
 transformant colonies reverting the two-base deletion 

mutation per 10
7
 viable wild-type or MMR mutant cells. The significance of all non-

overlapping range value was confirmed by Mann-Whitney U-test (P < 0.05) after 

subtraction of the no oligo background values. Comparison of frequencies is presented in 

Table A.3f. The number of repeats for each of the strains transformed with the oligos 

was 4. 
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APPENDIX B 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

 

Table B.1 Sequences of synthetic oligos used in this study. 

Name Sequence 

Sequence 1 dG 5’-Bi-CAGGTTCACGATGGAGCTCTCGATTCAGCT-SH-3’ 

Sequence 1 rG 5’-Bi-CAGrGTTCACrGATGGArGCTCTCrGATTCArGCT-SH-3’ 

Sequence 1 compl_DNA 5’-SH-AGCTGAATCGAGAGCTCCATCGTGAACCTG-Bi-3’ 

Sequence 2 dG 5’-Bi-ATCCGGTAGTGTTAGGCCTGAACAAGGTTT-SH-3’ 

Sequence 2 rG 5’-Bi-ATCCrGGTAGTrGTTAGrGCCTrGAACAArGGTTT-SH-3’ 

Sequence 2 compl_DNA 5’-SH-AAACCTTGTTCAGGCCTAACACTACCGGAT-Bi-3’ 

dG_III 5’-ATGGAGCTC-3’ 

rG_III 5’-ATGGArGCTC-3’ 

compl_DNA_III 5’-GAGCTCCAT-3’ 

dG_VI 5’-ATCCGGTAG-3’ 

rG_VI 5’-ATCCrGGTAG-3’ 

compl_DNA_VI 5’-CTACCGGAT-3’ 

dG_VIII 5’-TTAGGCCTG-3’ 

rG_VIII 5’-TTAGrGCCTG-3’ 

compl_DNA_VIII 5’-CAGGCCTAA-3’ 

Biotin and thiol group modifications are indicated by “Bi” and “SH,” respectively. 

dNMPs are shown in blue while rNMPs are shown in red, preceded by letter “r.” 30-mers 

were used in AFM experiments while 9-mers were used in NMR experiments. All oligos 

used in AFM experiments were PAGE-purified. 

 

Table B.2 List of the optical lever sensitivity (w) and spring constant (kN) of 

cantilevers used in the measurements. 

Tips used 
for 

Samples w (nm/V) k (N/m) 

Sequence 1 

dG-DNA Round 1 59.9±1.0 0.068±0.002 

rG-DNA Round 1 62.3±1.0 0.057±0.002 

dG-DNA Round 2 / rG-DNA Round 2 
(Measured with the same tip) 

50.0±1.2 0.053±0.002 

rG-DNA Round 3 53.5±1.7 0.415±0.002 
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Sequence 2 

dG-DNA Round 1 53.1±1.3 0.045±0.002 

rG-DNA Round 1 48.0±1.0 0.051±0.004 

dG-DNA Round 2 / rG-DNA Round 2 
(Measured with the same tip) 

50.3±1.0 0.049±0.002 

 

 

Table B.3 Mean values of all the parameters and stretch modulus of ss substrates 

with Sequence 1. 

Substrate 
Mean 

L0 (nm) δ (nm) Fst (pN) S (pN) 

dG 9.7 ± 3.6 3.0 ± 1.9 20.0 ± 11.1 84.9 ± 61.1 

rG 13.7 ± 4.5 4.3 ± 2.0 26.2 ± 12.1 106.0 ± 84.7 

Mean values are presented with standard deviation of the mean. 

 

Table B.4 Mean values of all the parameters and stretch modulus of ss substrates 

with Sequence 2. 

Substrate 
Mean 

L0 (nm) δ (nm) Fst (pN) S (pN) 

dG 12.8 ± 3.4 5.2 ± 2.2  25.8 ± 9.3 69.7 ± 33.3 

rG 12.0 ± 3.0 5.2 ± 1.9  22.7 ± 8.6 60.4 ± 38.8 

Mean values are presented with standard deviation of the mean. 

 

Table B.5 Comparison of Gaussian peak values and median values of stretch 

modulus of ss substrates. 

Substrate 
Gaussian Peak Median 

L0 (nm) δ (nm) Fst (pN) S (pN) S (pN) 

Sequence 1 
dG 

(n=108) 
9.1±0.2 2.2±0.1 20.2±0.1 67.2 ± 4.3 68.1 (59.4 – 86.9) 

Sequence 1 
rG 

(n=75) 
13.5±0.7 3.7±0.2 23.4±0.1 57.7 ± 4.8 72.4 (55.9 – 102.3) 

Sequence 2 
dG 

(n=52) 
12.0±0.2 5.0±0.2 24.6±0.1 54.0 ± 1.7 59.0 (51.6 – 73.5) 
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Sequence 2 

rG 
(n=132) 

12.1±0.2 5.1±0.2 23.0±0.2 51.0 ± 0.6 50.2 (44.4 – 60.1) 

Gaussian peak values of all the parameters are also listed. Gaussian fitted values are 

presented with standard error of fit while median values are presented with 99% 

confidence interval of the median. 

 

Table B.6 Summary of the number of data population before the removal of outliers 

and the values of stretch modulus that are considered as outliers and removed. 

Substrate 
Data population  

before the removal 
of outliers 

Number 
of outliers 

found 

Stretch modulus  
removed as outliers (pN) 

Double- 
strand 
(ds) 

Sequence 1 
dG-DNA Round 1 

52 2 437.0, 455.6 

Sequence 1 
dG-DNA Round 2 

112 5 
2086.7,1943.5, 903.2, 955.9, 

1391.1 

Sequence 1 
rG-DNA Round 1 

76 3 416.7, 500.63, 407.9 

Sequence 1 
rG-DNA Round 2 

72 3 551.6, 830.2, 615.2 

Sequence 1 
rG-DNA Round 3 

112 3 1243.3, 709.4, 761.8 

Sequence 2 
dG-DNA Round 1 

99 4 590.6, 786.5, 1068.0, 1035.9 

Sequence 2 
dG-DNA Round 2 

94 3 1037.6, 1679.3, 2258.0 

Sequence 2 
rG-DNA Round 1 

84 5 
662.1, 550.1, 989.5, 600.2, 

697.8 

Sequence 2 
rG-DNA Round 2 

64 4 537.9, 520.1, 552.4, 647.8 

Single- 
strand 

(ss) 

Sequence 1 
dG 

113 5 
662.1, 550.1, 898.5, 600.2, 

697.8 

Sequence 1 
rG 

78 3 399.8, 384.2, 408.4 

Sequence 2 
dG 

55 3 352.2, 457.6, 338.2 

Sequence 2 
rG 

140 8 
444.7, 491.9, 432.1, 406.6, 
297.4, 298.2, 295.5, 280.2 

See Materials and Methods for details of the outlier test. 

 

Table B.7 Thermal stability of 30-bp duplexes used in AFM experiments. 

 Tm (°C) 

Sequence 1 dG-DNA 73.6 
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Sequence 1 rG-DNA 70.2 

Sequence 2 dG-DNA 69.6 

Sequence 2 rG-DNA 66.2 

 

 

Table B.8 Mean values of all the parameters and stretch modulus of ds substrates 

with Sequence 1. 

Substrate 
Mean 

L0 (nm) δ (nm) Fst (pN) S (pN) 

dG-DNA 
(n=157) 

10.0 ± 3.0 3.0 ± 1.8 34.2 ± 21.3 125.6 ± 83.3 

rG-DNA 
(n=251) 

11.4 ± 3.7 4.2 ± 2.1 30.9 ± 14.2 94.4 ± 67.7 

Mean values are presented with standard deviation of the mean. 

 

Table B.9 Mean values of all the parameters and stretch modulus of ds substrates 

with Sequence 2. 

Substrate 
Mean 

L0 (nm) δ (nm) Fst (pN) S (pN) 

dG-DNA 
(n=186) 

10.5 ± 4.0 3.3 ± 1.6 28.9 ± 20.1 106.4 ± 97.0 

rG-DNA 
(n=139) 

11.4 ± 3.9 3.2 ± 2.1 31.2 ± 14.5 147.5 ± 112.1 

Mean values are presented with standard deviation of the mean. 

 

Table B.10 Comparison of Gaussian peak values and median values of stretch 

modulus of ds substrates. 

Substrate 
S (pN) 

Gaussian Peak Median 

Sequence 1 

dG-DNA Round 1 
104.5 ± 3.6 111.6 (99.3 – 147.4) 

Sequence 1 
dG-DNA Round 2 

104.2 ± 2.3 107.4 (91.3 – 121.3) 

Sequence 1 
rG-DNA Round 1 

62.8 ± 3.0 70.4 (56.3 – 84.6) 

Sequence 1 
rG-DNA Round 2 

79.1 ± 4.7 94.5 (67.2 – 108.7) 

Sequence 1 
rG-DNA Round 3 

72.0 ± 3.3 73.6 (65.7 – 88.4) 
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Sequence 2 

dG-DNA Round 1 
76.5 ± 2.3 84.4 (65.2 – 98.8) 

Sequence 2 
dG-DNA Round 2 

68.4 ± 4.3 83.2 (71.8 – 99.1) 

Sequence 2 
rG-DNA Round 1 

85.8 ± 4.1 102.5 (73.4 – 120.1) 

Sequence 2 
rG-DNA Round 2 

95.4 ± 5.4 119.9 (93.5 – 181.6) 

Gaussian fitted values are presented with standard error of fit while median values are 

presented with 99% confidence interval of the median. 

 

Table B.11 Summary of P values of all combined data for Sequence 1. 

Substrate dG-DNA rG-DNA dG rG 

dG-DNA – < 0.0001 < 0.0001 0.0008 

rG-DNA < 0.0001 – 0.1357 0.9233 

dG < 0.0001 0.1357 – 0.4098 

rG 0.0008 0.9233 0.4098 – 

Mann-Whitney U-test was performed to obtain the P values.  

 

Table B.12 Summary of P values of all combined data for Sequence 2. 

Substrate dG-DNA rG-DNA dG rG 

dG-DNA – < 0.0001 0.0008 < 0.0001 

rG-DNA < 0.0001 – < 0.0001 < 0.0001 

dG 0.0008 < 0.0001 – 0.0138 

rG < 0.0001 < 0.0001 0.0138 – 

Mann-Whitney U-test was performed to obtain the P values.  

 

Table B.13 Summary of P values of each individual round of measurements of ds 

substrates with Sequence 1. 

Substrate dG-DNA 
Round 1 

dG-DNA 
Round 2 

rG-DNA 
Round 1 

rG-DNA 
Round 2 

rG-DNA 
Round 3 

dG-DNA 
Round 1 

– 0.0425 < 0.0001 0.0041 < 0.0001 

dG-DNA 
Round 2 

0.0425 – < 0.0001 0.1352 < 0.0001 

rG-DNA 
Round 1 

< 0.0001 < 0.0001 – 0.0143 0.2921 

rG-DNA 
Round 2 

0.0041 0.1352 0.0143 – 0.0855 

rG-DNA < 0.0001 < 0.0001 0.2921 0.0855 – 
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Round 3 

Mann-Whitney U-test was performed to obtain the P values. 

 

Table B.14 Summary of P values of each individual round of measurements of ds 

substrates with Sequence 2. 

Substrate dG-DNA 
Round 1 

dG-DNA 
Round 2 

rG-DNA 
Round 1 

rG-DNA 
Round 2 

dG-DNA 
Round 1 

– 0.5045 0.0326 0.0001 

dG-DNA 
Round 2 

0.5045 – 0.0726 < 0.0001 

rG-DNA 
Round 1 

0.0326 0.0726 – 0.0370 

rG-DNA 
Round 2 

0.0001 < 0.0001 0.0370 – 

Mann-Whitney U-test was performed to obtain the P values. 

 

Table B.15 Thermal stability of an rGMP-containing 9-bp duplex and its DNA-

control. 

 Enthalpy (kJ/mol) Entropy (kJ/mol) Tm (K) 

ATGGArGCTC 241 ± 6 0.661 317.6 

DNA-control 261 ± 9 0.733 314.9 

The buffer condition was 100 mM NaCl, 10 mM phosphate, 0.5 mM EDTA at pH 6.6. 

The duplex concentration was 30 M. 

 

Table B.16 Imino proton NMR chemical shift data for three rGMP-containing 9-bp 

duplexes, ATGGArGCTC (with rGMP III), ATCCrGGTAG (with rGMP VI), and 

TTAGrGCCTG (with rGMP VIII), and their DNA-controls. 

Base 
δ (ppm) 

∆δ (ppm) 
DNA-control ATGGArGCTC 

T18 13.03 12.98 0.05 

T2 13.87 13.82 0.05 

G3 12.90 12.84 0.06 

G4 12.92 12.66 0.26 

T14 13.92 13.81 0.11 

G6/rG6 12.76 12.90 -0.14 

G12 12.90 13.05 -0.15 

T8 14.20 14.14 0.06 
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G10 12.81 12.80 0.01 

Base 
δ (ppm) 

∆δ (ppm) 
DNA-control ATCCrGGTAG 

T18 13.36 13.36 0.00 

T2 13.87 13.88 -0.01 

G16 12.79 12.79 0.00 

G15 13.06 12.95 0.11 

G5/rG5 13.06 13.00 0.06 

G6 12.82 12.84 -0.02 

T7 13.72 13.64 0.08 

T11 13.85 13.88 -0.03 

G9 13.16 13.19 -0.03 

Base 
δ (ppm) 

∆δ (ppm) 
DNA-control TTAGrGCCTG 

T1 - - - 

T2 13.59 13.69 -0.10 

T16 13.84 13.82 0.02 

G4 12.93 12.86 0.07 

G5/rG5 12.96 13.06 -0.10 

G13 12.99 13.11 -0.12 

G12 12.95 13.00 -0.05 

T8 14.19 14.12 0.07 

G9 12.98 12.92 0.05 

Spectra were recorded of 1.1 mM duplexes in 100 mM NaCl, 10 mM phosphate, 10% 

D2O buffer (pH 6.4) at 280K using the solvent suppression jump and return pulse 

program. 

 

Table B.17 
31

P NMR chemical shift data for three rGMP-containing 9-bp duplexes, 

ATGGArGCTC (with rGMP III), ATCCrGGTAG (with rGMP VI), and 

TTAGrGCCTG (with rGMP VIII), and their DNA-controls at 294K. 

Nucleotide 
31

P δ (ppm) 
∆δ (ppm) 

DNA-control ATGGArGCTC 

A1 – – – 

T2 -0.68 -0.68 0.00 

G3 -0.24 -0.19 0.05 

G4 -0.32 -0.31 0.01 

A5 -0.49 -0.39 0.10 

G6/rG6 -0.64 -0.40 0.24 

C7 -0.30 0.50 0.80 

T8 -0.83 -1.12 -0.29 

C9 -0.42 -0.47 -0.05 

G10 – – – 

A11 -0.48 -0.53 -0.05 

G12 -0.61 -0.57 0.04 
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C13 -0.34 -0.45 -0.11 

T14 -0.86 -0.92 -0.05 

C15 -0.68 -0.70 -0.02 

C16 -0.38 -0.36 0.02 

A17 -0.28 -0.23 0.05 

T18 -0.61 -0.60 0.01 

Nucleotide 
31

P δ (ppm) 
∆δ (ppm) 

DNA-control ATCCrGGTAG 

A1 - - - 

T2 -0.77 -0.77 0.00 

C3 -0.65 -0.63 0.02 

C4 -0.51 -0.42 0.09 

G5/rG5 -0.36 -0.50 -0.14 

G6 -0.43 0.85 1.28 

T7 -0.80 -1.07 -0.27 

A8 -0.59 -0.69 -0.10 

G9 -0.53 -0.54 -0.01 

C10 - - - 

T11 -0.73 -0.73 0.00 

A12 -0.51 -0.52 -0.01 

C13 -0.66 -0.66 0.00 

C14 -0.54 -0.50 0.04 

G15 -0.43 -0.40 0.03 

G16 -0.43 -0.48 -0.05 

A17 -0.43 -0.48 -0.05 

T18 -0.67 -0.67 0.00 

Nucleotide 
31

P δ (ppm) 
∆δ (ppm) 

DNA-control TTAGrGCCTG 

T1 - - - 

T2 -0.72 -0.79 -0.07 

A3 -0.47 -0.54 -0.07 

G4 -0.50 -0.50 0.00 

G5/rG5 -0.38 0.02 0.40 

C6 * -0.44 * 

C7 * -0.87 * 

T8 -0.70 -1.02 -0.32 

G9 -0.43 -0.54 -0.11 

C10 - - - 

A11 -0.43 -0.53 -0.10 

G12 -0.50 -0.61 -0.11 

G13 -0.40 -0.36 0.04 

C14 -0.57 -0.67 -0.10 

C15 -0.55 -0.69 -0.14 

T16 -0.79 -0.94 -0.15 

A17 -0.61 -0.62 -0.01 

A18 -0.57 -0.60 -0.03 

The phosphorous resonances are a good indicator on the status of the nucleic acid 

backbone. Shown here, large deviations in chemical shift between rGMP-containing 

duplexes and their DNA-controls suggest localized perturbations in the backbone 3′ of 

the damage site on both the top and bottom strand. 
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Note: 5′ nucleotides A1 and G10 do not have phosphate groups.  

*Denotes uncertainty; 
31

P resonances for nucleotides C6 and C7 were in the range of -

0.47 to -0.74 ppm. 

 

k

kref

Lref  

Figure B.1 Schematic of the reference beam method for the calibration of cantilever 

spring constant. 
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Figure B.2 Image and profile of gold surfaces. (a) AFM image of a fresh gold surface. 

(b) Surface profile of the gold surface indicated by the blue line in a. (c) A typical image 

of dG-DNA molecules of Sequence 1 attached on gold surface in liquid. (d) Height 

profile of the blue line indicated in c shows that DNAs are also standing up on the surface. 

(e) A typical image of rG-DNA molecules of Sequence 2 attached on gold surface in air. 

(f) Top: Zoom-in image in e indicated by the green box; Bottom: Height profile of the 
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blue line indicated in the top panel. (g) A typical image of dG-DNA molecules of 

Sequence 2 attached on gold surface in air. (h) Height profile of the blue line indicated in 

g. 
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Figure B.3 Histograms of stretch moduli of ss substrates with Sequence 1 and 

Sequence 2. Peak position is presented as the fitted value ± standard error of the fit. 
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Figure B.4 Typical force-distance curves when the AFM tip picks up multiple DNAs. 
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Figure B.5 Force–distance curves. (a) Before and (b) after the calibration procedure. 
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Figure B.6 Procedure to determine L0, , and Fst. 

 

 

Figure B.7 CD spectra of dG-DNA and rG-DNA used in AFM experiments. (a) CD 

spectra of duplexes with Sequence 1; (b) CD spectra of duplexes with Sequence 2. 
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Figure B.8 Histograms of stretch moduli of ds substrates with Sequence 1. Peak 

position is presented as the fitted value ± standard error of the fit. 
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Figure B.9 Histograms of stretch moduli of ds substrates with Sequence 2. Peak 

position is presented as the fitted value ± standard error of the fit. 
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Figure B.10 Gaussian fitting for all combined data. (a) Sequence 1. (b) Sequence 2. 
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Figure B.11 Instantaneous deviations of  and  torsional angles of rNMPs in DNA. 

(a) Instantaneous deviation of  torsional angle of the dAMP following rGMP in the 5′ to 

3′ direction in CrGATGGArGCT for rGMP II. (b) Instantaneous deviations of  torsional 

angles of the dAMP following rGMP and dCMP following rGMP in the 5′ to 3′ direction 

in CrGATGGArGCT for rGMPs II and III. (c) Instantaneous deviation of  torsional 

angle of the rGMP I in GrGTTCArGGTT. 
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APPENDIX C 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 

 

Table C.1 S. cerevisiae strains used in this study. 

a 

Strain Relevant genotype Source 

KK-100 
MATα ade5-1 lys2-14A trp1-289 his7-2 leu2-
3,112 ura3-52 rnh201Δ::hygMX4 

this study 

KK-30 
hoΔ hmlΔ::ADE1 MATa-inc hmrΔ::ADE1 
ade1 leu2-3,112 lys5 trp1::hisG ura3-52 
leu2::HOcs mataΔ::hisG rnh201Δ::hygMX4 

this study 

KK-174 KK-100 rnh1Δ::kanMX4 this study 

KK-125 KK-30 rnh1Δ::kanMX4 this study 

KK-164 KK-125 ung1Δ::natMX4 this study 

KK-170 KK-30 pol2-M644G this study 

KK-107 KK-100 pol2-4 this study 

KK-120 KK-100 pol3-5DV this study 

 
b 

Strain Relevant genotype Source 

FRO-767,768 
hoΔ hmlΔ::ADE1 MATa-inc hmrΔ::ADE1 
ade1 leu2-3,112 lys5 trp1::hisG ura3-52 
ade3::GAL::HO leu2::HOcs mataΔ::hisG 

[46] 

FRO-984,985 FRO-767,768 rnh201Δ::kanMX4 this study 

KK-158,159 FRO-767,768 ung1Δ::hygMX4 this study 

Yeast strains used in (a) ribose-seq library construction and (b) DSB repair assay with 

rNMP-containing oligos. 

 

Table C.2 Oligos used in this study. 

Name Length (nt) Sequence (5’-3’) with end modifications Purification Experiment 
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Lig.47.D 47 
CCCGAGTGTGATCATCTGGTCGCTGGGGAATGA
GTCAGGCCACGGCG 

PAGE 
AtRNL ligation 
assay 

Lig.47.R 47 
CCCGAGTGTGATCATCTGGTCGCTGGGGAATrG
AGTCAGGCCACGGCG 

PAGE 
AtRNL ligation 
assay 

Lig.30.rA 30 NNNNNNNNNNNNNNNNNNNNNrANNNNNNNN PAGE 
AtRNL 3’ base 
bias assay 

Lig.30.rG 30 NNNNNNNNNNNNNNNNNNNNNrGNNNNNNNN PAGE 
AtRNL 3’ base 
bias assay 

Lig.30.rU 30 NNNNNNNNNNNNNNNNNNNNNrUNNNNNNNN PAGE 
AtRNL 3’ base 
bias assay 

Lig.30.rC 30 NNNNNNNNNNNNNNNNNNNNNrCNNNNNNNN PAGE 
AtRNL 3’ base 
bias assay 

Adaptor.L 87 

P-
NNNNNNNNAGATCGGAAGAGCGTCGTGTAGGG
AAAG 
AGGGAGTTCAGACGTGTGCTCTTCCGATCTAGC
CAGCGCAGACCGTGAGGT 

PAGE 
Ribose-seq 
library 
construction 

Adaptor.S 20 P-CCTCACGGTCTGCGCTGGCT-Am Desalted 
Ribose-seq 
library 
construction 

PCR.1.Index1 63 
CAAGCAGAAGACGGCATACGAGATCGTGATGTG
ACTGGAGTTCAGACGTGTGCTCTTCCGATC 

Desalted 
Ribose-seq 
library 
construction 

PCR.1.Index2 63 
CAAGCAGAAGACGGCATACGAGATACATCGGTG
ACTGGAGTTCAGACGTGTGCTCTTCCGATC 

Desalted 
Ribose-seq 
library 
construction 

PCR.1.Index3 63 
CAAGCAGAAGACGGCATACGAGATGCCTAAGTG
ACTGGAGTTCAGACGTGTGCTCTTCCGATC 

Desalted 
Ribose-seq 
library 
construction 

PCR.1.Index4 63 
CAAGCAGAAGACGGCATACGAGATTGGTCAGTG
ACTGGAGTTCAGACGTGTGCTCTTCCGATC 

Desalted 
Ribose-seq 
library 
construction 

PCR.2 58 
AATGATACGGCGACCACCGAGATCTACACTCTTT
CCCTACACGACGCTCTTCCGATCT 

Desalted 
Ribose-seq 
library 
construction 

ByTemp.rC 46 
NNNNNNNrCNNNNNNNNAGATCGGAAGAGCGTC
GTGTAGGGAAAGAG 

PAGE 
Polymerase 
bypass assay 

ByTemp.rU 46 
NNNNNNNrUNNNNNNNNAGATCGGAAGAGCGTC
GTGTAGGGAAAGAG 

PAGE 
Polymerase 
bypass assay 

ByPrim 30 CTCTTTCCCTACACGACGCTCTTCCGATCT PAGE 
Polymerase 
bypass assay 

LEU2.D 60 
TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCC
GGTAGTGTTAGGCCTGAACAAGGTTTA 

Desalted 
leu2 DSB repair 
assay 

LEU2.rG 60 
TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCC
GGTAGTrGTTAGGCCTGAACAAGGTTTA 

Desalted 
leu2 DSB repair 
assay 

LEU2.dU 60 
TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCC
GGTAGTGUTAGGCCTGAACAAGGTTTA 

Desalted 
leu2 DSB repair 
assay 

LEU2.rU 60 
TTAGGTGCTGTGGGTGGTCCTAAATGGGGATCC
GGTAGTGrUTAGGCCTGAACAAGGTTTA 

Desalted 
leu2 DSB repair 
assay 

LEU2.3 20 ATGTCTGCCCCTAAGAAGAT Desalted 
leu2 DSB repair 
assay 

LEU2.6 20 TGCCAAAGAATAAGGTCAAC Desalted 
leu2 DSB repair 
assay 

Name, length, and sequence of oligos used in this study are described. The purification 

type and the specific experiments in which the oligos were used are indicated. rNMPs are 

in red, preceded by ‘r’. End modifications of phosphate and amino groups are indicated 

by ‘P’ and ‘Am’, respectively. All PAGE-purified oligos were synthesized by Thermo 

Scientific Dharmacon with exceptions for Lig.47.D and Adaptor.L, which were 
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synthesized by Life Technologies and IDT, respectively. All desalted oligos were 

synthesized by Eurofins Genomics. 

 

Table C.3 Results of 3′ base bias for AtRNL ligation. 

a 

Base Circular Dimer Circular dimer 

A 48% (44–49) 4.3% (1.8–7.1) 1.5% (0.71–2.1) 

G 47% (44–48) 4.0% (2.6–5.8) 1.5% (0.88–2.3) 

U 47% (45–49) 4.4% (2.1–5.1) 1.5% (0.73–2.0) 

C 47% (44–49) 4.5% (1.9–5.0) 1.4% (0.59–1.8) 

 
b 

P value G U C 

A 0.4857 0.8857 1.0000 

G – 0.8857 0.6857 

U – – 1.0000 

 
c 

 
 
 
 
 
  

d 

P value G U C 

A 1.0000 1.0000 0.6857 

G – 0.3429 0.2000 

U – – 0.8857 

(a) Levels of AtRNL ligation in reaction conditions described in Figure C.1 are 

expressed as median percentage and range (in parentheses) from four independent 

reactions. (b) Mann-Whitney U-test was performed for statistical analysis, and P values 

are displayed, all greater than 0.05. (c) AtRNL ligation was performed with reduced 200 

nM AtRNL, instead of 1 M, to compare the levels of ligation when the reactions were 

incomplete. Median percentages and ranges (in parentheses) from four independent 

reactions are displayed. (d) Mann-Whitney U-test was performed for statistical analysis, 

and P values are displayed, all greater than 0.05. No 3′ base bias was observed for 

AtRNL ligation. 

Base Circular Dimer Circular dimer 

A 27% (23–31) 1.7% (1.5–2.3) 0.53% (0.45–0.74) 

G 27% (24–28) 1.9% (1.5–2.5) 0.54% (0.39–1.1) 

U 29% (24–30) 2.3% (1.3–2.7) 0.64% (0.48–1.2) 

C 29% (25–32) 1.8% (1.7–2.0) 0.53% (0.47–0.80) 
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Table C.4 Ribose-seq coverage for each library in this study. 

Ribose-seq library 
Coverage (aligned reads/kb) 

Nuclear Mitochondrial 

rnh201 (KK-100) 0.449 19.5 

rnh201 (KK-100, EconoTaq) 0.883 47.8 

rnh201 (KK-30) 0.149 8.42 

rnh1 rnh201 (KK-174) 0.149 9.92 

rnh1 rnh201 (KK-125) 0.239 13.2 

rnh1 rnh201 ung1 (KK-164) 0.269 42.2 

pol2-M644G rnh201 (KK-170) 0.254 7.89 

pol2-4 rnh201 (KK-107) 0.528 34.2 

pol3-5DV rnh201 (KK-120) 0.510 33.9 

Coverage is expressed as aligned reads per kb and does not reflect the relative abundance 

of rNMPs among different strains. 

 

Table C.5 Absolute nucleotide frequencies of rNMPs and 3′ flanking nucleotide. 

 Base 
Position 0 Position +1 

Nuclear Mitochondrial Nuclear Mitochondrial 

rnh201 
(KK-100) 

A 15.4% 25.6% 45.0% 45.8% 

C 44.0% 36.8% 22.4% 15.3% 

G 28.1% 19.0% 16.5% 5.8% 

U/T 12.5% 18.7% 16.1% 33.1% 

rnh201 

(KK-100, 
EconoTaq) 

A 23.2% 38.2% 43.3% 43.5% 

C 35.4% 25.6% 19.3% 10.0% 

G 22.7% 14.5% 13.5% 6.2% 

U/T 18.7% 21.7% 23.9% 40.3% 

rnh201 
(KK-30) 

A 20.4% 35.7% 47.5% 47.8% 

C 39.2% 28.3% 19.6% 11.1% 

G 27.5% 24.1% 14.4% 7.2% 

U/T 12.8% 11.9% 18.5% 33.8% 

rnh1 rnh201 
(KK-174) 

A 17.1% 33.6% 44.9% 46.5% 

C 40.2% 27.0% 22.0% 11.8% 

G 27.7% 23.7% 15.0% 7.4% 

U/T 15.1% 15.7% 18.2% 34.2% 

rnh1 rnh201 
(KK-125) 

A 20.1% 35.4% 45.2% 44.3% 

C 36.8% 28.6% 19.4% 12.1% 

G 29.7% 20.9% 15.0% 5.9% 

U/T 13.4% 15.1% 20.4% 37.7% 

rnh1 rnh201 
ung1        

(KK-164) 

A 24.3% 35.8% 44.3% 47.1% 

C 35.3% 30.2% 19.4% 13.2% 

G 26.5% 22.7% 15.3% 6.5% 

U/T 14.0% 11.3% 21.0% 33.2% 

pol2-M644G 
rnh201 

A 19.5% 38.9% 52.2% 47.2% 

C 40.3% 28.6% 18.2% 11.5% 



 126 

(KK-170) G 26.5% 21.5% 13.0% 6.6% 

U/T 13.7% 11.0% 16.6% 34.7% 

pol2-4 
rnh201 

(KK-107) 

A 14.9% 21.9% 42.5% 46.2% 

C 40.2% 43.1% 22.0% 16.3% 

G 23.6% 16.3% 16.4% 6.4% 

U/T 21.2% 18.6% 19.2% 31.1% 

pol3-5DV 
rnh201 

(KK-120) 

A 20.4% 30.0% 44.3% 45.3% 

C 37.1% 33.1% 19.4% 14.6% 

G 25.0% 16.7% 15.3% 6.1% 

U/T 17.5% 20.3% 21.0% 34.0% 

Absolute nucleotide frequencies of nuclear and mitochondrial rNMPs and the nucleotide 

immediately downstream (position +1) from each ribose-seq library. 

 

Table C.6 Results of rNMP bypass by Phusion DNA Polymerase. 

a 
Base Bypass probability 

C 93% (93–93) 

U 93% (92–94) 

 
b 

P value U 

C 0.6857 

(a) Bypass probabilities in reaction conditions described in Figure C.4 are expressed as 

median percentage and range (in parentheses) from four independent reactions. (b) 

Mann-Whitney U-test was performed for statistical analysis, and P value is displayed. 

 

Table C.7 Results of DSB repair assay with rNMP-containing oligos. 

a 
Oligo WT rnh201 ung1 

LEU2.D 65% (55–75) 63% (55–65) 65% (55–70) 

LEU2.rG 30% (20–40) 90% (75–100) N/A 

LEU2.dU 5.0% (0–10) N/A 55% (45–60) 

LEU2.rU 33% (25–45) 55% (45–65) 33% (30–40) 

 
b 

Oligo rnh201 ung1 

LEU2.D 0.5357 1.0000 

LEU2.rG 0.0286 N/A 

LEU2.dU N/A 0.0294 

LEU2.rU 0.0421 1.0000 

(a) Data shown in Figure C.7 are presented here as median percentages of StuI-cut Leu
+
 

transformants from four independent transformations and ranges in parentheses. For each 
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transformation, 20 Leu
+
 transformants were selected for analysis. (b) Mann-Whitney U-

test was implemented for statistical analysis against the WT, and P values are displayed. 

N/A, not applicable because data are not available for comparison. 

 

Table C.8 List of hotspots of rNMP incorporation within S. cerevisiae mitochondrial 

DNA, rDNA repeat, and Ty1. 

Position Strand Gene Base 

Number of rNMP reads 

rnh201 
(KK-100) 

rnh201 
(KK-100, 

EconoTaq) 

rnh201 
(KK-30) 

rnh1 
rnh201 

(KK-174) 

rnh1 
rnh201 

(KK-125) 

rnh1 
rnh201 
ung1 

(KK-164) 

pol2-M644G 
rnh201 

(KK-170) 

pol2-4 
rnh201 

(KK-107) 

pol3-5DV 
rnh201 

(KK-120) 

Chr M 
39,224 

W COB A 30 136 17 24 34 2 20 10 22 

Chr XII
a
 

453,839 
C RDN25 G 97 45 18 30 22 1 25 12 10 

Chr IV
b
 

650,383 
C

b
 Ty1 A 15 42 10 11 19 46 20 19 110 

Chr M 
14,688 

W COX1 A 7 49 5 10 14 33 12 8 38 

Chr M 
14,739 

W COX1 A 8 46 7 14 12 0 5 0 13 

Chr M 
19,157 

W COX1 A 15 73 4 5 22 28 5 7 27 

Hotspots of rNMP incorporation were determined by finding positions of rNMPs within 

the locus of interest with ribose-seq signal greater than the mean plus three standard 

deviations for each library from rnh201∆ (KK-100), rnh201∆ (KK-100, EconoTaq), 

rnh201∆ (KK-30), rnh1∆ rnh201∆ (KK-174), and rnh1∆ rnh201∆ (KK-125) cells (in 

bold). Ribose-seq signal counts found in all other libraries are also shown. 

a
There are two rDNA repeats on Chr XII in the reference genome (sacCer2). Only the 

first repeat unit is shown as an example. 

b
Because of the presence of multiple copies of Ty1 in the genome, YDRCTy1-1 on Chr IV 

is shown as an example. 
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Figure C.1 Mechanism of alkaline cleavage of ribonucleotides in DNA. The 

ribonucleoside embedded in double-stranded DNA is in red. During alkaline treatment, 

DNA strands are denatured, and cleavage occurs at the rNMP site, generating a 2′,3′-

cyclic phosphate end and an opposite 5′-hydroxyl end. The 2′,3′-cyclic phosphate is in 

equilibrium with 2′-phosphate and 3′-phosphate forms. Boxes in black indicate the 2′,3′-

cyclic phosphate and 2′-phosphate DNA termini, which are substrates of AtRNL. 
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Figure C.2 3′ base bias for AtRNL ligation. Hot 5′-radiolabeled 30-nt DNA oligo with 

a single rNMP (either A, G, U, or C) in the 22
nd

 position was mixed with cold equimolar 

30-nt DNA oligos with rNMPs of 3 other bases in the 22
nd

 positions. 5′-radiolabel is 

indicated by ‘P’ in purple. The mixture was treated with 0.3M NaOH for 2 hr at 55 °C 

and neutralized. 100 nM of alkali-cleaved products (25 nM of each base) were then 

incubated with 1 M AtRNL in appropriate buffer (see Materials and Methods) for 1 hr 

at 30 °C. The resulting products were treated with T5 exonuclease for 2 hr at 37 °C. 

Aliquots were withdrawn after appropriate steps and quenched. The products were 

analyzed by urea-PAGE. The circular 22-mer migrates faster than the unligated, linear 

22-mer. Only circular products were resistant to T5 exonuclease while all linear 



 130 

substrates/products were degraded. Median percentages of circular 22-mer formation 

from four independent reactions are displayed. See Supplementary Table 1 for more 

statistics. First left lane, ss DNA ladder. No 3′ base bias was observed for AtRNL ligation 

(see Table C.3). Self-ligation was preferred to dimerization with a shorter 22-nt 

substrate; however, with the shorter substrate, lower levels of linear dimers, which are not 

resistant to T5 exonuclease, and circular dimers were observed. Increasing the length of 

the ss DNA substrate from 22 nt to 32 nt eliminated dimerization (Figure 4.1a). 

 

 

Figure C.3 Ribose-seq library from genomic DNA of S. cerevisiae rnh201∆ (KK-100) 

cells. Appropriate PCR products were analyzed by PAGE. ‘P’ indicates primers-only. No 

amplification product was observed when either (a) AtRNL ligation step or (b) alkali 

treatment was omitted. Tpt1 denotes the step of 2’-phosphate removal at the ligation 

junction in Figure 4.1a. First left lane, ds DNA ladder. 
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Figure C.4 Bypass of a single rNMP by Phusion DNA Polymerase. 5′-radiolabeled 30-

nt primer, ByPrim (Table C.2), was annealed to the 46-nt template oligo containing 

either rCMP (ByTemp.rC) or rUMP (ByTemp.rU) in the 8
th

 position. 100 nM of annealed 

substrate was incubated with 0.2 units of Phusion High-Fidelity DNA Polymerase (NEB) 

and 2 mM dNTPs in appropriate buffer (see Materials and Methods) for 30 sec at 72 °C. 

The reactions were quenched and analyzed by urea-PAGE. Median bypass probabilities 

from four independent reactions are shown. See Table C.6 for more statistics. First left 

lane, ss DNA ladder. The primer extension assay showed no significant difference 

between bypass efficiency over rUMP and rCMP by Phusion DNA Polymerase (Table 

C.6). 
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Figure C.5 Normalized frequency of nucleotides surrounding the rNMP sites. 

Normalized frequency of nucleotides relative to (a) nuclear and (b) mitochondrial 

mapped positions of sequences from ribose-seq library, PCR-amplified with EconoTaq 

DNA Polymerase (Lucigen), of genomic DNA from S. cerevisiae rnh201∆ (KK-100) 

cells. Position 0 corresponds to the rNMP. Negative and positive numbers (from -10 to -1 

and 1 to 10) correspond to upstream and downstream positions from the rNMP, 

respectively. Frequencies were normalized to either nuclear or mitochondrial genomic 
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mononucleotide frequencies. Normalized frequency of nucleotides relative to (c) nuclear 

and (d) mitochondrial mapped positions of sequences from ribose-seq library of genomic 

DNA from S. cerevisiae rnh201∆ (KK-30) cells. Normalized frequency of nucleotides 

relative to (e) nuclear and (f) mitochondrial mapped positions of sequences from ribose-

seq library of genomic DNA from S. cerevisiae rnh1∆ rnh201∆ (KK-174) cells. 

Normalized frequency of nucleotides relative to (g) nuclear and (h) mitochondrial 

mapped positions of sequences from ribose-seq library of genomic DNA from S. 

cerevisiae rnh1∆ rnh201∆ (KK-125) cells. Normalized frequency of nucleotides relative 

to (i) nuclear and (j) mitochondrial mapped positions of sequences from ribose-seq 

library of genomic DNA from S. cerevisiae rnh1∆ rnh201∆ ung1∆ (KK-164) cells. 

Normalized frequency of nucleotides relative to (k) nuclear and (l) mitochondrial mapped 

positions of sequences from ribose-seq library of genomic DNA from S. cerevisiae pol2-

M644G rnh201∆ (KK-170) cells. Normalized frequency of nucleotides relative to (m) 

nuclear and (n) mitochondrial mapped positions of sequences from ribose-seq library of 

genomic DNA from S. cerevisiae pol3-5DV rnh201∆ (KK-120) cells. 
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Figure C.6 Zoom-out of normalized frequency of nucleotides surrounding the rNMP 

sites. Normalized frequency of nucleotides relative to (a) nuclear and (b) mitochondrial 

mapped positions of sequences from ribose-seq library, PCR-amplified with EconoTaq 

DNA Polymerase (Lucigen), of genomic DNA from S. cerevisiae rnh201∆ (KK-100) 

cells. Position 0 corresponds to the rNMP. Negative and positive numbers (from -100 to -

1 and 1 to 100) correspond to upstream and downstream positions from the rNMP, 

respectively. Frequencies were normalized to either nuclear or mitochondrial genomic 
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mononucleotide frequencies. Normalized frequency of nucleotides relative to (c) nuclear 

and (d) mitochondrial mapped positions of sequences from ribose-seq library of genomic 

DNA from S. cerevisiae rnh201∆ (KK-30) cells. Normalized frequency of nucleotides 

relative to (e) nuclear and (f) mitochondrial mapped positions of sequences from ribose-

seq library of genomic DNA from S. cerevisiae rnh1∆ rnh201∆ (KK-174) cells. 

Normalized frequency of nucleotides relative to (g) nuclear and (h) mitochondrial 

mapped positions of sequences from ribose-seq library of genomic DNA from S. 

cerevisiae rnh1∆ rnh201∆ (KK-125) cells. Normalized frequency of nucleotides relative 

to (i) nuclear and (j) mitochondrial mapped positions of sequences from ribose-seq 

library of genomic DNA from S. cerevisiae rnh1∆ rnh201∆ ung1∆ (KK-164) cells. 

Normalized frequency of nucleotides relative to (k) nuclear and (l) mitochondrial mapped 

positions of sequences from ribose-seq library of genomic DNA from S. cerevisiae pol2-

M644G rnh201∆ (KK-170) cells. Normalized frequency of nucleotides relative to (m) 

nuclear and (n) mitochondrial mapped positions of sequences from ribose-seq library of 

genomic DNA from S. cerevisiae pol2-4 rnh201∆ (KK-107) cells. Normalized frequency 

of nucleotides relative to (o) nuclear and (p) mitochondrial mapped positions of 

sequences from ribose-seq library of genomic DNA from S. cerevisiae pol3-5DV 

rnh201∆ (KK-120) cells. 
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Figure C.7 Targeting of rGMP and rUMP by RNase H2 and uracil DNA N-

glycosylase during DSB repair in S. cerevisiae cells. (a) Diagram and sequence of the 

chromosomal leu2 region targeted by DNA-control LEU2.D, rGMP-containing LEU2.rG, 

dUMP-containing LEU2.dU, and rUMP-containing LEU2.rU oligos (Table C.2). StuI 

recognition sequence is underlined in turquoise. Position of either rGMP, dUMP, or 

rUMP was selected so that it is about 4–5 nt upstream of the G-T mispair. Both RNase 

H2-initiated excision repair (RER) and base excision repair (BER) remove a short ss 

DNA region downstream of the damage during the repair [35, 92]. (b) The oligos were 

transformed to either RNase H2– and uracil DNA N-glycosylase–proficient wild-type 

(WT; FRO-767,768), RNase H2–deficient (rnh201; FRO-984,985), or DNA N-

glycosylase–deficient (ung1; KK-158,159) S. cerevisiae cells (see Table C.1). Median 

percentages of StuI-cut Leu
+
 transformants from four independent transformations are 

shown with ranges as bars. For each transformation, 20 Leu
+
 transformants were selected 

for analysis. Mann-Whitney U-test was implemented for statistical analysis against the 

WT. P values of less than 0.05 are marked as asterisk. See Table C.7 for more statistics. 
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Figure C.8 Normalized frequency of nucleotides surrounding the rNMP sites on 

leading and lagging strands. Normalized frequency of nucleotides relative to mapped 

positions of sequences in (a) leading and (b) lagging strands from ribose-seq library of 

genomic DNA from S. cerevisiae rnh1∆ rnh201∆ (KK-174) cells. Position 0 corresponds 

to the rNMP. Negative and positive numbers (from -10 to -1 and 1 to 10) correspond to 

upstream and downstream positions from the rNMP, respectively. ARSs with Trep of no 

longer than 25 min were selected with flanking size of 10 kb. Frequencies were 

normalized to genomic mononucleotide frequencies of either leading or lagging strand of 

the selected ARSs and flanking size. Normalized frequency of nucleotides relative to 

mapped positions of sequences in (c) leading and (d) lagging strands from ribose-seq 

library of genomic DNA from S. cerevisiae pol3-5DV rnh201∆ (KK-120) cells. 
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